
European Telecommunications Standards Institute

 TS 101 032 V5.2.0 (1997-11)
Technical Specification

Digital cellular telecommunications system (Phase 2+);
Compression algorithm for text messaging services

(GSM 03.42 version 5.2.0)

GLOBAL SYSTEM FOR
MOBILE COMMUNICATIONS

R

�

TS 101 032 V5.2.0 (1997-11)2GSM 03.42 version 5.2.0

Reference
RTS/SMG-040342QR1 (9k002io3.PDF)

Keywords
digital cellular telecommunications system,
Global System for Mobile communications

(GSM), SMS

ETSI Secretariat

Postal address
F-06921 Sophia Antipolis Cedex - FRANCE

Office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

X.400
c= fr; a=atlas; p=etsi; s=secretariat

Internet
secretariat@etsi.fr
http://www.etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1997.
All rights reserved.

TS 101 032 V5.2.0 (1997-11)3GSM 03.42 version 5.2.0

Contents

Intellectual Property Rights..5

Foreword ..5

Introduction ..5

1 Scope..6

2 References..6
2.1 Normative references ... 6
2.2 Informative references ... 6

3 Abbreviations ...6

4 Algorithms..7
4.1 Huffman Coding .. 7
4.2 Character Groups ... 8
4.3 UCS2 ... 9
4.4 Keywords... 9
4.5 Punctuation .. 9
4.6 Character Sets .. 9

5 Compressed Data Streams..10
5.1 Structure... 10
5.2 Compression Header.. 10
5.2.1 Compression Header - Octet 1 ... 10
5.2.2 Compression Header - Octets 2 to n... 11
5.2.2.1 Compression Header reserved extension types and values .. 13
5.2.3 Identifying unique parameter sets... 13
5.3 Compressed Data ... 13
5.4 Compression Footer... 15

6 Compression processes ..15
6.1 Overview.. 15
6.1.1 Compression... 16
6.1.2 Decompression... 17
6.2 Character sets... 18
6.2.1 Initialization ... 18
6.2.2 Character set conversion .. 19
6.2.3 Character case conversion.. 19
6.3 Punctuation processing .. 19
6.3.1 Initialization ... 20
6.3.2 Compression... 21
6.3.3 Decompression... 22
6.4 Keywords... 22
6.4.1 Dictionaries .. 22
6.4.2 Groups.. 23
6.4.3 Matches .. 25
6.4.4 Initialization ... 26
6.4.5 Compression... 26
6.4.6 Decompression... 27
6.5 UCS2 ... 27
6.5.1 Initialization ... 27
6.5.2 Compression... 27
6.5.3 Decompression... 27
6.6 Character group processing.. 27
6.6.1 Character Groups ... 28
6.6.2 Initialization ... 29
6.6.3 Compression... 29
6.6.4 Decompression... 31

TS 101 032 V5.2.0 (1997-11)4GSM 03.42 version 5.2.0

6.7 Huffman coding ... 31
6.7.1 Initialization Overview... 32
6.7.2 Initialization ... 33
6.7.3 Build Tree .. 34
6.7.4 Update Tree.. 34
6.7.5 Add New Node... 34
6.7.6 Compression... 35
6.7.7 Decompression... 35

7 Test Vectors ...35

Annex A (normative): German Language parameters ..37

Annex B (normative): English language parameters ...38

B.1 Compression Language Context ..38

B.2 Punctuators...38

B.3 Keyword Dictionaries ..39

B.4 Character Groups ...43

B.5 Huffman Initializations ..43

Annex C (normative): Italian Language parameters ...47

Annex D (normative): French Language parameters ..48

Annex E (normative): Spanish Language parameters ...49

Annex F (normative): Dutch Language parameters ..50

Annex G (normative): Swedish Language parameters...51

Annex H (normative): Danish Language parameters...52

Annex J (normative): Portuguese Language parameters..53

Annex K (normative): Finnish Language parameters..54

Annex L (normative): Norwegian Language parameters..55

Annex M (normative): Greek Language parameters ..56

Annex N (normative): Turkish Language parameters...57

Annex P (normative): Reserved ...58

Annex Q (normative): Reserved ...59

Annex R (normative): Default Parameters for Unspecified Language ..60

R.1 Compression Language Context ..60

R.2 Punctuators...60

R.3 Keyword Dictionaries ..60

R.4 Character Groups ...60

R.5 Huffman Initializations ..61

History ..62

TS 101 032 V5.2.0 (1997-11)5GSM 03.42 version 5.2.0

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETR 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of
ETSI standards", which is available free of charge from the ETSI Secretariat. Latest updates are available on the ETSI
Web server (http://www.etsi.fr/ipr).

Pursuant to the ETSI Interim IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No
guarantee can be given as to the existence of other IPRs not referenced in ETR 314 (or the updates on
http://www.etsi.fr/ipr) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI Special mobile Group (SMG).

A 3.5 inch diskette is attached to the back cover of this TS, this diskette is part of clause 7 and is a suite of test vectors to
assist implementors of the compression algorithm described in this specification.

Introduction
This clause introduces the concepts and mechanisms involved in the compression and decompression of a stream of
data.

Overview

Central to the compression of a stream of data and the subsequent recovery of the original data is the that both sender
and receiver have information that not only describes the content of the data stream, but how the stream is encoded.

For example, a simple rule such as "it's 8 bit data" is enough to transport any character value in the range 0 to 255 with 8
bits being required for each and every character. In contrast if both sender and receive know that some characters are
more frequent than others, then the more frequent might be encoded in fewer bits while the less frequent in more -
resulting in a net reduction of the total number of bits used to express the data stream.

This knowledge of the nature of the data stream can be established in two ways. Either both sender and receiver can
agree some key aspects of the data stream prior to it being processed or key aspects of the data can be garnered
dynamically during its processing.

The disadvantage of an approach based on "prior information" is that it must be known It can either be carried as a
header to the data stream, in which case it adds to the net size of the compressed stream. Or it can be fixed and known to
the (de)compression algorithm itself in which case compression performance degrades as a given stream diverges in
nature from these fixed and known states. In contrast, the disadvantage of "dynamic information" is that it must be
discovered; typically this means a greater processing requirement for the (de)compressor. It also implies that
compression performance is initially poor as the algorithm has to "learn" about the data stream before it can apply this
knowledge. It will also require greater working memory to store its knowledge about the data stream.

The choice of compression algorithms is always a balancing of compression rate (in terms of fewer output bits), working
memory requirements of the (de)compressor and CPU bandwidth. For the compression of SMS messages, there is the
additional requirement that it should work well (in terms of compression rate) even on short data streams.

Compression / Decompression is an optional feature but when implemented, the only mandatory requirement is ‘Raw
Untrained Dynamic Huffman’ . The default initialisation for the Huffman Encoder / Decoder operating in the Raw
Untrained Dynamic Huffman mode are defined in annex R. (See also subclause 4.1.)

i.e. There is no need for any pre-defined attributes such as language dependency to be included. This is of particular
significance for entities such as an MS which may have memory storage constraints.

TS 101 032 V5.2.0 (1997-11)6GSM 03.42 version 5.2.0

1 Scope
The present document introduces the concepts and mechanisms involved in the compression and decompression of a
stream of data.

2 References
References may be made to either:

a) specific versions of publications (identified by date of publication, edition number, version number, etc.), in
which case, subsequent revisions to the referenced document do not apply; or

b) all versions up to and including the identified version (identified by "up to and including" before the version
identity); or

c) all versions subsequent to and including the identified version (identified by "onwards" following the version
identity); or

d) publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as EN with the same number.

2.1 Normative references
[1] GSM 03.38 (ETS 300 900): "Digital cellular telecommunications system (Phase 2+); Alphabets

and language-specific information".

2.2 Informative references
[2] "The Data Compression Handbook 2nd Edition" by Mark Nelson and Jean-Loup Gailly, published

by M&T Books, ISBN 1-22851-434-1.

3 Abbreviations
For the purposes of the present document, the following abbreviations apply.

CD Compressed Data
CDS Compressed Data Stream
CDSL Compressed Data Stream Length
CF Compression Footer
CG-ID Character Group ID
CH Compression Header
CLC Compression Language Context
HI-ID Huffman initialization ID
KD-ID Keyword Dictionary ID
PU-ID PUnctuator ID

TS 101 032 V5.2.0 (1997-11)7GSM 03.42 version 5.2.0

4 Algorithms
The compression algorithm comprises a number of components that may be combined in a variety of configurations.
The discrete algorithms are discussed in the following subclauses.

4.1 Huffman Coding
The base compression algorithm is a Huffman coder, whereby characters in the input stream are represented in the
output stream by bit sequences of variable length. This length is inversely proportional to the frequency with which the
character occurs in the input stream.

This is the only component of the whole compression algorithm that can be expected to be included in any
implementation, all other components are optional.

There are two possible approaches here:

a) the (de)coder can be "pre-loaded" with a character frequency distribution, thus improving compression rate for
streams that approximate to this distribution; or

b) the (de)coder can adapt the frequency distribution it uses to (de)code characters based on the incidence of
previous characters within the input stream.

In both cases, the character frequency distribution is represented in a "tree" structure, an example of which is shown in
figure 1.

"Z"
f=1

"W "
f=1

N ode
f=2

"T"
f=4

N ode
f=6

"R "
f=6

N ode
f=12

"A "
f=10

"O "
f=10

N ode
f=20

N ode
f=32

"E "
f=40

R oot N ode
f=72

Figure 1: Character frequency distribution

The tree represents the characters Z, W, T, R, A, O and E which have frequencies of 1, 1, 4, 6, 10, 10 and 40
respectively. The characters may be coded as variable length bit streams by starting at the "character node" and
ascending to the "root node". At each stage, if a left hand path is traversed, a 0 bit is emitted and if a right hand path is
traversed a 1 bit is emitted. Thus the infrequent Z and W would require 5 bits, whereas the most frequent character E
requires just 1 bit. The resulting bit stream is decoded by starting at the "root node" and descending the tree, to the left
or right depending on the value of the current bit, until a "character node" is reached.

It is a requirement that at any time the trees expressing the character frequencies shall be identical for both coder and
decoder. This can be achieved in a number of ways.

TS 101 032 V5.2.0 (1997-11)8GSM 03.42 version 5.2.0

Firstly, both coder and decoder could use a fixed and pre-agreed frequency distribution that includes all possible
characters but as noted above, this use of "prior information" suffers when a given input stream has a significantly
different character frequency distribution.

Secondly, the coder may calculate the character frequency distribution for the entire input stream and prepend this
information to the encoded bit stream. The decoder would then generate the appropriate tree prior to processing the
bitstream. This approach offers good compression, especially if the character frequency information may itself be
compressed in some manner. Approaches of this type are common but the cost of the prepended information for a
potentially small data stream makes it less attractive.

Thirdly, extend the algorithm such that although both coder and decoder start with known frequency distributions, and
subsequently adapt these distributions to reflect the addition of each character in the input stream. One possibility is to
have initial distributions that encompass all possible characters so that all that is required, as each input character is
processed, is to increment the appropriate frequency and update the tree. However, the inclusion of all possible
characters in the initial distribution means that the tree is relatively slow to adapt, making this approach less appropriate
for short messages. An alternative is to have an initial distribution that does not include all possible characters and to
add new characters to the distribution if, and when, they occur in the input stream.

To achieve the latter approach, the concept of a "special" character is required. A "special" character is one whose value
is outside the range of the character set being used (e.g. 256 if the character set has a range 0 to 255). These characters
therefore do not form part of the input stream being conveyed, but their existence in the compressed stream signals the
need for the decoder to adjust its behaviour. Here a "special" character is used to signal that the following n bits (where
n is a fixed value) represent a new character that needs to be added to the frequency distribution. In the example above
this would be done by replacing the "character" node containing the character Z with a new node that had as its children
the "character" nodes for Z and for the new character.

This is the approach taken here. It provides considerable flexibility, effectively enabling all of the foregoing approaches.
The specific approach to be used for a given message is signalled in the header.

The algorithm uses an additional optimization in that 2 special characters are defined, one meaning that a 7-bit literal
follows and the other for 8-bit characters. So for example:

− The initial tree can contain just the "new character follows" special character(s). In this case, the input stream
"AAA" would result in:
[1 bit = new character(7bit) special][7 bits = "A"][2 bits = "A"][1 bit = "A"]

− As can be seen from the above there is quite a high cost in adding a new character (the "special" plus literal). So
if the initial tree contains a small subset of the generally most frequently used characters, the cost of character
addition can be avoided for these characters.

− Given that we can signal in the header a specific initial frequency distribution, there is no reason why this
distribution cannot contain all possible characters and frequency adaptation enabled or disabled as appropriate.

A detailed description of Huffman coding can be found in Chapter 4 of "The Data Compression Handbook 2nd
Edition" by Mark Nelson and Jean-Loup Gailly, published by M&T Books, ISBN 1-22851-434-1.

4.2 Character Groups
Character grouping is an optional component that can effect an increase in compression performance of the Huffman
coder. This technique groups characters that may be expected to occur together within the input stream and signals
transitions between the groups rather than each individual character.

The algorithm derives benefit by;

a) reducing the need to add new characters to the frequency distribution; and

b) using a smaller overall tree. For example, assume that there is no pre-loaded distribution and a stream comprised
the characters "abcdefABCDEF".

The capital letters can be encoded more efficiently by signalling the transition to "upper case" and then coding the extant
lower case characters rather than introducing 6 new characters. "Special" characters are used to signal transitions
between groups of characters.

TS 101 032 V5.2.0 (1997-11)9GSM 03.42 version 5.2.0

4.3 UCS2
Input streams comprising 16bit UCS2 information are handled in a manner similar to Character groups. Both coder and
decoder maintain knowledge of "the current" Basic Multilingual Plane row for characters in the input stream and the
row octet itself is then omitted from the output stream for sequences of characters within that row. Transitions between
rows are signalled in the output stream by a "special" character.

Support for UCS2 is optional.

4.4 Keywords
The algorithm optionally supports the concept of dictionaries - essentially a list of key words or phrases of up to
255 characters in length. Dictionaries need to be known to both the coder and the decoder. The input stream is matched
against entries in the dictionary and matching characters in the stream are replaced with a reference to the dictionary
entry.

Again "special" characters are used to signal that the following sequence of bits describe a reference to a dictionary
entry. So for example, if a dictionary contains the phrases "Please" and "meeting", an input stream "Please cancel the
monthly meeting" would be rendered as:

[keyword special][10 bits = "Please"][.......][keyword special][10 bits = "meeting"]

Dictionary matches for long strings can result in very high compression rates.

4.5 Punctuation
The punctuation processor is distinct from the other algorithms in that it is non-symmetric so the decompressed stream
may not be identical to the original. Its use is therefore mainly applicable to input streams comprising human readable
sentences where it is sufficient to preserve the meaning of the content, but not the exact format. It is also applicable
when the input stream is a "standard sentence" that is known to produce a symmetric result. The punctuation processor is
applied before (on coding) and after (on decoding) any of the other algorithms. Its functions are:

− to remove leading and trailing spaces from the input stream;

− to replace repeated spaces within the stream with a single space;

− to remove (on coding) and insert (on decoding) spaces following certain punctuation characters;

− to decapitalize (on coding) and capitalize (on decoding) the first character of the stream, the first character
following an appropriate punctuation character or a paragraph symbol and capitalized single character words
such as "I";

− to remove (on coding) and insert (on decoding) a full stop if it is the last character of the stream.

The use of the punctuation processor is optional.

4.6 Character Sets
The use of pre-loaded frequencies, key word dictionaries and the punctuation processor all require that a consistent
character set is used by both coder and decoder. As there can be no assumption that the same character will be have the
same value (or even be available) on the devices used to send and receive a compressed message, the algorithms are
specified to operate on a known character set to which (prior to coding) and from which (post decoding) a device needs
to convert an input stream to render it in the native character set of the device.

The handling of character sets is mandatory for all implementations.

TS 101 032 V5.2.0 (1997-11)10GSM 03.42 version 5.2.0

5 Compressed Data Streams
This clause provides:

- A detailed specification of the algorithms and data structures that implement compression and decompression
mechanisms.

5.1 Structure
A Compressed Data Stream (CDS) comprises three key components:

- a Compression Header (CH) containing a variable number of octets, the content of which defines the nature of
the compressed data;

- the Compressed Data (CD) which is a bit stream of variable length;

- a Compression Footer (CF) which is used to signal the number of bits in the last octet of the CDS that form part
of the compressed data.

5.2 Compression Header
The Compression Header (CH) comprises a variable number of octets that define the nature of the compressed data.

The compression header allows for a wide range of compression alternatives, however of these alternatives only one is
defined as the basic mandatory form of compression that shall be supported by all implementations. This is the use of
the basic Huffman algorithm initialized with no prior knowledge of character distribution. This case can be signalled
directly by setting a single octet(octet 1) for the compression header with the value of 120 (decimal).

5.2.1 Compression Header - Octet 1

The first CH octet is mandatory and is defined as follows:

Table 1: CH octet

7 6 5 4 3 2 1 0 Description

0 There is no subsequent CH octet

1 A further CH octet follows

n n n n The "Compression Language Context" this is described below

0 Punctuation processing disabled

1 Punctuation processing enabled

0 Keyword processing disabled

1 Keyword processing enabled

0 Character group processing disabled

1 Character group processing enabled

As noted in clause 4, the compression algorithms can be configured to operate in a variety of ways and may rely on end-
to-end knowledge of "prior" information such as which key word dictionary is to be used.

TS 101 032 V5.2.0 (1997-11)11GSM 03.42 version 5.2.0

A requirement that all configuration information be explicitly stated in the CH is less efficient (in terms of compression
ratio) than if a default configuration is known and only variations from this need be signalled. However, a major
determinant of configuration is the language in which the original message to be compressed is composed. For example,
different keyword dictionaries would be required for French and opposed to German and character frequency
distributions for English texts may vary greatly from those for Swedish texts. From this it can be seen that a universal
"default" configuration would be of little value.

To address this, the Compression Language Context (CLC) allows a default configuration to be specified for each of the
languages defined in GSM 03.38 [1] in relation to the Cell Broadcast Data Coding Scheme as follows:

- The CLC in bits 6 to 3 of the CH specify the language as per GSM 03.38 [1] in the case where bits 7 to 4 of the
Cell Broadcast Data Coding Scheme octet are set to 0000.

- If and when required, higher order bits of the CLC can be signalled by a subsequent CH octet as described below.

- The CLC value 1111 (language unspecified) will indicate a "default" configuration that is language independent.
This is specified in annex R and involves the basic Huffman (de-)coding with no initial character frequency
distribution, see example below.

Table 2: Huffman (de-)coding with no initial character frequency distribution

7 6 5 4 3 2 1 0 Description

0 1 1 1 1 0 0 0 Basic Huffman (de-)coding only.

5.2.2 Compression Header - Octets 2 to n

Any second and subsequent CH octets are used to vary the configuration defaults established by the CLC. These octets
all comprise a continuation bit followed by a Type, Value structure as follows:

Table 3: Value structure

7 6 5 4 3 2 1 0 Description

0 There is no subsequent CH octet

1 A further CH octet follows

n n n CH Extension Type

n n n n CH Extension Value

The bits of the semi-octet CH Extension value are interpreted left to right, MSB to LSB. If the CH contains more than
one octet of the same CH Extension type, the CH Extension value of a subsequent CH octet, is interpreted as being next
most significant semi-octet of the composite value being signalled.

For example if the CLC in CH octet 1 indicates that the default Huffman Initialization ID is 1 (decimal) and the required
HI-ID is 37 (decimal), then the following octets (in the range 2 to n) would also be required in the CH.

Table 4: CH extension octets (Example)

7 6 5 4 3 2 1 0 Description

1 0 1 1 0 1 0 1 The default HI-ID is replaced with the value 0101

0 0 1 1 0 0 1 0 The current HI-ID value (0101) is extended to 0010 0101

TS 101 032 V5.2.0 (1997-11)12GSM 03.42 version 5.2.0

The following values are defined for the CH Extension Type:

000 Extend CLC. The CH Extension Value contains higher order bits that are to be pre-pended to the current
CLC value.

NOTE: for 1st occurrence of the Extend CLC CH Extension Type in the CH, the value for the CLC specified in
CH octet 1 is not replaced but rather the process of "extension" begins directly. Thus is the CLC to be
used is 18, octets 1 and 2 of the CH would contain:

Table 5: CLC extension (Example)

7 6 5 4 3 2 1 0 Description

1 0 0 1 0 The least significant semi-octet of the CLC is 0010

0 0 0 0 0 0 0 1 The CLC value (0010) is extended to 0001 0010

001 Change Character Set. The CLC defines a default character set (UCS2 or otherwise) within which
compression will operate. The Change Character Set CH Extension Type indicates that this should be
overridden by the character set specified by the CH Extension Value. If a CH contains more than one
Change Character Set CH Extension Type octet, the CH Extension Value contained in subsequent CH
octets of this type contains higher order bits and are to be pre-pended to the value of the new character set.

The following Character Sets are defined:

0000 No character set defined. To be used where original message content is binary data and
compression is solely via Huffman coding with no initial frequency training and thus there is no
requirement to ensure consistent use of character set by coder and decoder.

0001 GSM default alphabet (GSM TS 03.38)

0010 Codepage 437

0011 Codepage 850

All other values are reserved - see section 5.2.2.1

A Change Character Set to UCS2 codepoint is not defined here. Where the CLC indicates a character set
other than UCS2 and there is a need to change to UCS2 then this is achieved using the Change UCS2 row
parameter described below.

010 Change UCS2 Row. The CLC defines a default character set (UCS2 or otherwise) within which
compression will operate. The Change UCS2 Row CH Extension Type indicates that this should be
overridden by the use of UCS2 and the UCS2 row value for the first character in the input stream is that
specified by the CH Extension Value. If a CH contains more than one Change UCS2 Row CH Extension
Type octet, the CH Extension Value contained in subsequent CH octets of this type contains higher order
bits for the initial UCS2 Row value and are to be pre-pended to the current value.

NOTE: Change UCS2 Row CH Extension Type octet effectively overrides any prior Change Character Set CH
Extension Type octet and vice versa so these types are logically mutually exclusive within a given CH.

011 Change Huffman Initialization. The CLC defines a default set of parameters for the initialization of the
Huffman (de)coder. The Change Huffman Initialization CH Extension Type indicates that this should be
overridden by the set of initialization parameters identified by the Huffman Initialization ID contained in
the CH Extension Value. If a CH contains more than one Change Huffman Initialization CH Extension
Type octet, the CH Extension Value contained in subsequent CH octets of this type contains higher order
bits for the initial Huffman Initialization ID value and are to be pre-pended to the current value.

TS 101 032 V5.2.0 (1997-11)13GSM 03.42 version 5.2.0

100 Change Keyword Dictionary. The CLC defines a default set of parameters for the initialization of the
Keyword (de)coder. The Change Keyword Dictionary CH Extension Type indicates that this should be
overridden by the set of initialization parameters identified by the Keyword Dictionary ID contained in the
CH Extension Value. If a CH contains more than one Change Keyword Dictionary CH Extension Type
octet, the CH Extension Value contained in subsequent CH octets of this type contains higher order bits
for the initial Keyword Dictionary ID value and are to be pre-pended to the current value.

101 Change Punctuator. The CLC defines a default set of parameters for the initialization of the punctuation
(de)coder. The Change Punctuator CH Extension Type indicates that this should be overridden by the set
of initialization parameters identified by the Punctuator ID contained in the CH Extension Value. If a CH
contains more than one Punctuator CH Extension Type octet, the CH Extension Value contained in
subsequent CH octets of this type contains higher order bits for the initial Punctuator ID value and are to
be pre-pended to the current value.

110 Change Character Group. The CLC defines a default set of parameters for the initialization of the
Character Group (de)coder. The Change Character Group CH Extension Type indicates that this should
be overridden by the set of initialization parameters identified by the Character Group ID contained in the
CH Extension Value. If a CH contains more than one Change Character Group CH Extension Type octet,
the CH Extension Value contained in subsequent CH octets of this type contains higher order bits for the
initial Character Group ID value and are to be pre-pended to the current value.

111 Reserved, see section 5.2.2.1

5.2.2.1 Compression Header reserved extension types and values

Any currently undefined values in the range 0 to 255 decimal are reserved.

Values above 255 are available for user to user requirements.

5.2.3 Identifying unique parameter sets

The four component compression algorithms (Huffman, Keywords, Character Groups and Punctuation) may all have a
variety of initialization options. For each algorithm, a given set of initialization options needs to be identified for the
processing of a given input stream.

Initialization and operation of the algorithms depends not only on the language in which the original source text is
composed but also the character set (UCS2 or otherwise) that is to be used during processing. Thus the Huffman
Initialization ID (HI-ID), Keyword Dictionary ID (KD-ID), Punctuator ID (PU-ID) and Character Group ID (CG-ID)
only define unique values within the context of a given character set (the default established by the CLC or subsequently
amended via Change Character Set or Change UCS2 Row CH Extension types) and within the context of the language
indicated by the CLC.

5.3 Compressed Data
The Compressed Data (CD) is a stream bits of variable length that represent either an encoding of the content original
input stream or control information indication that the operation of some algorithm should vary in some manner.

Control information is signalled within the CD by Huffman encoded symbols (characters) whose value is greater than
255 decimal. Huffman encoded symbols in the range 0 to 255 are of course characters from the original input stream.

TS 101 032 V5.2.0 (1997-11)14GSM 03.42 version 5.2.0

The following control symbols are defined:

Table 6: Compressed Data: control symbols

Decimal
value

Significance

256 New 7 bit character.

On encoding, if a character (octet) from the input stream in the range 0 to 127 does not
exist in the Huffman tree, then the New 7 bit character symbol is Huffman encoded to
the CD and bits 6 to 0 of the original octet are copied unchanged to the CD. The
Huffman tree would then be updated to include the new character as described in the
sections below.

On decoding the New 7 bit character symbol, the symbol itself is discarded and the next
7 bits of the CD are copied unchanged to bits 6-0 of the octet to be output, bit 7 of
which is zero. The Huffman tree would then be updated to include the new character.

257 New 8 bit character.

The operation of this is identical to that of the New 7 bit character except that on
encoding, the input character is in the range 128-255 and on decoding, bit 7 of the
output character is set to 1.

258 Keyword.

This symbol (Huffman encoded) prefixes a sequence of bits of variable length in the CD
that define a representation of characters in the uncompressed stream by an entry in a
keyword dictionary.

On encoding, if a sequence of characters in the input stream can be represented by an
entry in a keyword dictionary, the Keyword symbol is Huffman encoded to the CD
followed by the bit sequence describing the keyword entry (this is described below).
On decoding the Keyword symbol, the symbol itself is discarded and the bit sequence
describing the keyword entry is passed to the Keyword processor to recovery the
original character sequence to be placed in the output stream.

259 to 265 Character Group Transitions.

These symbols signal transitions between groups of characters defined within the
Character Group processor. For example, if 2 groups are defined to be the lower case
and upper case characters then the input stream:

"abcdefABCDEF" would become "abcdef<Change Group>abcdef"

On encoding, Character Group Transition symbols are generated by the Character
Group processor and simply passed to the Huffman processor for encoding.

On decoding a Character Group Transition symbol, it is simply passed from the
Huffman processor to the Character Group processor which takes the appropriate
action based its current state and the group transition indicated.

266 New UCS2 Row.

On encoding, if the next UCS2 character in the input stream has a "row octet" of a
different value to that of the previous character in the input stream, the New UCS2 Row
symbol is Huffman encoded to the CD and the 8 bit of the new row octet are copied
unchanged to the CD. The new row octet is stored by the UCS2 processor as the
"current row octet" and subsequent input characters within the current row are Huffman
encoded as the 8 bit value of the character within the "current row".

On decoding the New UCS2 Row symbol, the symbol is discarded and the next 8 bits
are read from the CD and stored by the UCS2 processor as the "current row octet".
Subsequent UCS2 characters are decoded by treating the 8 bit character values
decoded by the Huffman processor as characters within the "current row".

TS 101 032 V5.2.0 (1997-11)15GSM 03.42 version 5.2.0

5.4 Compression Footer
Although Compressed Data Stream Length (CDSL) - the total number of octets that contain the CDS - is known, the CD
element of the CDS is a bit stream and therefore may not end on an octet boundary. The Compression Footer (CF) is
used to indicate the end of the CD as follows:

- Calculate the number of meaningful bits in the last octet of the CD (i.e. total CD bits modulo 8).

- If the number of meaningful bits is >0 and <6 store the number of meaningful bits in bits 2 to 0 of the last octet.
Otherwise extend the CD by adding 1 octet and store the number of meaningful bits in bits 2 to 0 of this new
octet.

For example if there are 4 meaningful bits in the last CD octet, the CF will be constructed to occupy the shaded area in
table 7.

Table 7: CF with >0 and <6 meaningful bits in last octet (Example)

0 7 6 5 4 3 2 1 0

X X X X X 1 0 0

Alternatively if there are 6 meaningful bits in the last CD octet, a new octet needs to be added the CF will be constructed
to occupy the shaded area in table 8

Table 8: CF with >5 meaningful bits in last octet (Example)

0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

X X X X X X X 1 1 0

6 Compression processes
This clause defines the detailed operation of the various compression algorithms.

6.1 Overview
This subclause describes how the various compression algorithms are combined.

TS 101 032 V5.2.0 (1997-11)16GSM 03.42 version 5.2.0

6.1.1 Compression

Table 9: Compression

Input 1) The nature of the compression to be performed.
2) The input stream of characters to be compressed.

Step 1 Construct the Compression Header so as to fully describe the nature of the
compression to be performed as requested by higher software layers.

Note that it is the responsibility of higher software layers that use the compression
algorithms to ensure that only those aspects of the compression algorithms that are
supported by a particular implementation are requested.

Step 2 Initialize as defined by the CH the following components:
1) Character Set Converter
2) Punctuation Processor
3) Keyword Processor
4) UCS2 Processor
5) Character Group Processor
6) Huffman Processor

Step 3 If the Character set in which input stream is composed is different from that specified in
the CH, convert the input stream so that it is rendered in the Character set (UCS2 or
otherwise) specified in the CH.

Note that if characters in the input stream cannot be rendered in the character set
specified in the CH, it is the responsibility of higher software layers that use the
compression algorithms to detect this situation and take appropriate action.

Step 4 If the Punctuation Processor is enabled, use it to encode the character set converted
input stream produced by Step 3 above.

Step 5 Set the current character position to the start of the character stream produced as the
output of Step 4 above.

Step 6 If the Keyword processor is not enabled goto Step 7.

Examine the sequence of characters starting at the current character position in the
input stream and determine if they can be represented by an entry in the keyword
dictionary.

If an appropriate keyword is not found goto Step 7.

If the Character Group processor is enabled, pass it the Keyword symbol and Huffman
encode to the CD the sequence of symbols output by it.

Huffman encode the Keyword symbol to the CD and then copy the bit sequence
describing the keyword entry to the CD.

Goto Step 10.
Step 7 If the input stream is not UCS2 goto Step 8.

If the character at the current character position in the input stream has a different
UCS2 row octet from the previous character Huffman encode the New UCS2 Row
symbol to the CD and then copy the new row octet to the CD.

Remove the row octet from the character at the current character position in the input
stream which will subsequently treated as an 8 bit value.

Step 8 If the Character Group processor is not enabled goto Step 9.

Pass the character at the current character position in the input stream to the Character
Group processor and Huffman encode to the CD the sequence of symbols output by it.
Goto Step 10.

Step 9 Huffman encode the character at the current character position in the input stream.
Step 10 Increment the current character position by the number if input characters processed in

steps 6 to 9 above.

If the entire input stream has not been processed goto Step 6 above.
Step 11 Construct the Compression Footer.
Output The completed Compressed Data Stream.

Note that the possibility exists that the CDS may be larger than the original input
stream. In this case it is the responsibility of higher software layers that use the
compression algorithms to detect this situation and take appropriate action.

TS 101 032 V5.2.0 (1997-11)17GSM 03.42 version 5.2.0

6.1.2 Decompression

Table 10: Decompression

Input The Compressed Data Stream
Step 1 Interpret the Compression Header to determine the nature of the decompression to be

performed.

Note that it is the responsibility of higher software layers that use the decompression
algorithms to handle appropriately the case where the nature of the decompression to
be performed is not supported by a particular implementation.

Step 2 Initialize as defined by the CH the following components:
1) Character Set Converter
2) Punctuation Processor
3) Keyword Processor
4) UCS2 Processor
5) Character Group Processor
6) Huffman Processor

Step 3 Interpret the Compression Footer to determine the total number of significant bits in the
Compressed Data (CD). Set the total number of bits processed to zero.

Step 4 Read bits from the CD passing them to the Huffman decoder to generate the "current
symbol". The bits should be read in the order bit 7 to bit 0 within each CD octet. CD
octets are processed in the order 1 to n.

Step 5 If the Keyword processor is not enabled, goto Step 6.

If the "current symbol" is the Keyword symbol, read the bit sequence describing the
keyword entry from the CD. Pass the keyword entry description to the Keyword
processor for decoding and add the resulting sequence of characters representing the
keyword to the output stream.

Goto Step 9.
Step 6 If the Character Group processor is not enabled goto Step 7.

If the "current symbol" is a Character Group Transition symbol, pass it to the Character
Group processor so that the current group can be updated and goto Step 9.

If the value of the "current symbol" is in the range 0 to 255 (i.e. not a control symbol),
pass the "current symbol" to the Character Group processor and set the new value of
the "current symbol" to that returned by the Character Group processor.

Step 7 If the output stream is not UCS2 goto Step 8.

If the "current symbol" is the New USC2 Row symbol, read the new "current UCS2 row
octet" from the CD and goto Step 9.

Pre-pend the "current UCS2 row octet" to the 8 bit value of the "current symbol" to
produce a 16 bit UCS2 character.

Step 8 Add the "current symbol" to the output stream.
Step 9 Increment the total number of bits processed by the number of bits read from the CD in

steps 4 to 8 above.

If the total number of bits processed is less than the total number of significant bits in
the CD goto Step 4.

Step 10 If the Punctuation Processor is enabled, use it to decode output stream produced by
steps 3 to 9 above.

Step 11 If the Character set (UCS2 or otherwise) specified in the CH, is different from that
required by higher level software layers, convert the output stream produced by step 10
above so that it is rendered in the Character set (UCS2 or otherwise) required by higher
level software layers.

Note that if characters in the stream cannot be converted, it is the responsibility of
higher software layers that use the compression algorithms to detect this situation and
take appropriate action.

Output The decompressed original input stream.

TS 101 032 V5.2.0 (1997-11)18GSM 03.42 version 5.2.0

6.2 Character sets
The need for character set conversion arises in that a number of the compression algorithms operate on the basis of
"prior information" about the nature of human readable texts. For example Huffman frequency initializations may
specify the an initial relative frequency for the letter "e" as opposed to the letter "x". Similarly, a keyword dictionary
may contain the word "meeting".

Consider the case where a keyword dictionary contains the entry "£10,000" composed using the Code Page 850
character set. If an input stream containing the string "£10,000" also composed in Code Page 850 is processed, the string
will be replace in the CD by a reference to the keyword entry. In contrast if the input string is composed using the GSM
default alphabet (GSM 03.38) than a match between the input string and the keyword entry will not be found as the
value of the "£" symbol in Code Page 850 is 156 decimal whereas in the GSM default alphabet it is 2 decimal.

There can be no assumption that higher level software layers responsible for composing the original input stream to be
compressed and displaying the resulting decompressed output stream use the same character set.

Thus:

- The character set used to compose initialization parameter sets and used for the compression of a given input
stream shall be the same for both compression and decompression.

- Where an input stream is composed using a character set that is different from that used for compression it shall
be converted prior to compression.

- Where an output stream is required in a character set that is different from that used for compression it shall be
converted after decompression.

There is an additional requirement in that a number of the compression algorithms perform upper / lower case
conversions upon the characters within the character set used for compression. The mapping between "lower" and
"upper" case characters needs to therefore be known.

6.2.1 Initialization

Initialization of character set conversion processing will typically involve identifying and loading the appropriate tables
to a) convert between character sets and b) convert between upper and lower case characters.

As the character set(s) in which uncompressed data is required to be rendered is largely an implementation specific
matter, so is the precise specification of the tables to convert these to/from the character set specified for compression.
However, they need to be sufficient to support the following functions:

TS 101 032 V5.2.0 (1997-11)19GSM 03.42 version 5.2.0

6.2.2 Character set conversion

Table 11: Character set conversion

Input 1) The value of the source character.
2) The character set in which the source character is rendered.
3) The character set in which the source character is to be rendered.

Output 1) The value of the converted character.
2) A Boolean value indicating whether a successful conversion has been performed.

Process If the source character can be rendered in the target character set, its value in the
target characterset is returned and a successful conversion is indicated.

Otherwise, the value of the source character is returned unchanged, a conversion
failure is indicated and higher software layers need to take appropriate action.

For example:
- The character "A", 65 decimal in Code Page 850 is rendered in the GSM default

alphabet also as 65 decimal so this value is returned and a successful conversion
is indicated.

- The character "£", 156 decimal in Code Page 850 is rendered in the GSM default
alphabet as 1 decimal so the value 1 is returned and a successful conversion is
indicated.

- The character "Û" 234 decimal in Code Page 850 cannot be rendered in the GSM
default alphabet so the value 234 is returned unchanged and a conversion failure is
indicated.

6.2.3 Character case conversion

Conversion between upper and lower case for characters within the character set used for compression will also typically
be supported by conversion tables that indicate for each character in the character set, the value of any lower case or
upper case equivalent character such that the following function can be supported.

Table 12: Character case conversion

Input 1) The value of the source character.
2) The case (lower or upper) in which the source character is to be rendered.

Output 1) The value of the case converted character.
Process If the character can be rendered in the case requested and the value of this case

converted character is different from that of the source character, the value of the case
converted character is returned.

Otherwise (i.e. the source character is already in the requested case or the character
does not have upper and lower case equivalents), the value of the source character is
returned unchanged.

6.3 Punctuation processing
The punctuation processor achieves compression by using the "prior information" that the uncompressed stream is
human readable and is constructed of sentences that conform to a known set of punctuation rules. Essentially this means
that certain characters within the input stream, of themselves imply information about subsequent characters and this
may therefore be omitted from the compressed stream. In this way the algorithm achieves some significant compression
in a very simple manner.

However, because the algorithm operates on information about sentence structure rather than the exact sequence of
characters used to render this, it is non-symmetric. In other words, although the overall meaning of the human readable
input stream is preserved between compression and decompression, the exact sequence of characters is not. Higher level
software layers or even user inspection may therefore be required to determine if the use of this processor is appropriate
for a given input stream.

TS 101 032 V5.2.0 (1997-11)20GSM 03.42 version 5.2.0

In addition to the ability to handle the conversion of characters between upper and lower case (as described in the
previous subclause), the processor requires that certain characters (expressed in the character set to be used for
compression) are assigned special attributes. These are:

Table 13: special attributes

Attribute Description
PU-IWS Inter-word separator. A character with this attribute is that typically used to separate

words within the input stream.

Only one character in the character set may have this attribute.

This attribute is typically set for the "space" character (32 decimal).
PU-LST Last Sentence Terminator. A character with this attribute is that typically used to

terminate the last sentence in the input stream.

Only one character in the character set may have this attribute.

This attribute is typically set for the "." full stop character (46 decimal).
PU-WSF Word Separator Follows. A character with this attribute is expected to be followed by

one or more characters which have the PU-IWS attribute set.

Any number of characters within the character set may have this attribute.

Examples of characters that would normally have this attribute set are the exclamation
mark (!), comma (,), full stop (.), colon (:), semi-colon (;) and question mark (?).

PU-UCF Upper Case Follows. A character with this attribute is expected to be followed by an
upper case character such as occurs at the start of a sentence or paragraph.

Any number of characters within the character set may have this attribute.

Typically, characters with this attribute set will also have the PU-WSF attribute set.
Examples are the exclamation mark (!), full stop (.), and question mark (?).

Other examples associated with new paragraphs might include the carriage return (13
decimal) and line feed (10 decimal) symbols.

PU-UCW Upper Case Word. A character with this attribute set is expected to be upper case if it is
a word i.e. if it is both preceded and succeeded by character with the PU-IWS attribute
set.

Any number of characters within the character set may have this attribute.

An example in the English language is the letter "I".
PU-NSI No Separator Insertion. A character with this attribute set is does not have the PU-IWS

attribute set but is none the less expected to be preceded by a character for which the
PU-WSF attribute is set.

Any number of characters within the character set may have this attribute.

Typically, characters with this attribute set will be numeric digits so that the case can be
resolved where characters which have the PU-WSF attribute set such as comma (,)
and full stop (.) can be used in number formatting as in the case of the string
"£10,000.25".

6.3.1 Initialization

Initialization of the punctuation processor will typically involve loading a table containing the combination of attributes
defined for each character in the character set to be used for compression for the language defined by the CLC.

TS 101 032 V5.2.0 (1997-11)21GSM 03.42 version 5.2.0

6.3.2 Compression

For compression, the punctuation processor operates as follows:

Table 14: compression punctuation processor

Input The input stream of characters to be compressed, rendered in the appropriate
character set.

Step 1 Set the current character position to the start of the input stream.
Step 2 Determine the attributes of the current character.

If some previous character in the input stream has not had the PU-IWS attribute set
goto Step 3.

If the current character has the PU-IWS attribute set goto Step 8.

Convert the current character to lower case and store the returned value as that of the
"previous character". Store the attributes of the current character as those of the
"previous character" after clearing any PU-UCW attribute.

Goto Step 8.
Step 3 If the previous character has the PU-WSF attribute and the current character has the

PU-IWS attribute goto Step 8.

Otherwise clear the PU-WSF attribute for the "previous character".
Step 4 If the previous character has the PU-UCF attribute, convert the current character to

lower case and clear the PU-UCF attribute for the "previous character".
Step 5 If the previous character has the PU-UCW attribute and the current character has the

PU-IWS attribute, convert the previous character to lower case.
Step 6 If the previous character has the PU-IWS attribute and the current character has the

PU-IWS attribute, goto Step 8.

Otherwise add the previous character to the output stream and set the value of the
previous character to that of the current character.

Step 7 If the current character has the PU-UCW attribute and the previous character attributes
do not contain the PU-IWS attribute, clear the PU-UCW attribute for the current
character.

Set the attributes for the "previous character" to those of the current character.
Step 8 If the current character is the last character in the input stream and if some previous

character in the input stream has not had the PU-IWS attribute set and if the previous
character attributes contain neither the PU-IWS not the PU-LST attribute, add the
previous character to the output stream.

Step 9 If the current character is not the last character in the input stream, read the next
character from the input stream, set the current character to this value and goto Step 2.

Output The de-punctuated data stream.

TS 101 032 V5.2.0 (1997-11)22GSM 03.42 version 5.2.0

6.3.3 Decompression

For decompression, the punctuation processor operates as follows:

Table 15: decompression punctuation processor

Input The de-punctuated stream of characters to be punctuated, rendered in the character
set used for compression.

Step 1 Set the current character position to the start of the de-punctuated stream.
Step 2 Determine the attributes of the current character.

If the current character is the first character in the stream, convert it to upper case and
goto Step 8.

Step 3 If the current character has the PU-IWS attribute and the "previous character" attributes
has the PU-UCW attribute, convert the stored value of the "previous character" to upper
case.

Step 4 If the "previous character" attributes contain the PU-UCF attribute, and the current
character was not generated by Step 10 below, convert the current character to upper
case and clear the PU-UCF attribute for the "previous character" attributes.

Step 5 If the "previous character" was generated as a result of Step 10 and the current
character contains the PU-NSI attribute goto Step 7.

Step 6 Add the "previous character" value to the output stream.
Step 7 If "previous character" attributes contain the PU-IWS attribute and the current character

has the PU-UCW attribute, add the PU-UCW attribute to those of the "previous
character". Otherwise clear any PU-UCW attribute stored for the "previous character".

Step 8 Set the value of the "previous character" to be that of the current character.
Step 9 If the attributes of the current character contain the PU-UCF attribute set this attribute

for the "previous character".
Step 10 If the attributes of the current character contain the PU-WSF attribute and the current

character is not the last character in the de-punctuated stream, insert the character
containing the PU-IWS attribute at the position following the current character in the de-
punctuated stream.

Step 11 If the current character is not the last character in the de-punctuated stream, read the
next character from the stream, set the current character to this value and goto Step 2.

Step 12 Add the previous character to the output stream.

If the current character attributes do not contain the PU-UCF attribute or the previous
character value equals that of the character which has the PU-LST attribute set, add
the character which has the PU-LST attribute set to the output stream.

Output The punctuated data stream.

6.4 Keywords
The operation of the Keyword processor is controlled by the set of parameters defined by a Keyword Dictionary that is
uniquely defined (within a CLC) by the value of the Keyword Dictionary ID (KD-ID) specified in the CH.

6.4.1 Dictionaries

A Keyword Dictionary specifies the following items:

1) Character Set ID

This is the character set in which the dictionary is composed and shall therefore be equal to the character set to be
used for compression as specified in the CH.

2) Match Options

This is a collection of bit flags that control how text in the input stream is to be matched against key word
dictionary entries. These are described in the table below in which Bit 0 is considered to be the lease significant
bit of the Match Options value.

TS 101 032 V5.2.0 (1997-11)23GSM 03.42 version 5.2.0

Table 16: Match options

Bit Description
0 If set, input stream text shall exactly match the dictionary entry.
1 If set, input stream text may match the lower case conversion of a dictionary entry.
2 If set, input stream text may match the upper case conversion of a dictionary entry.
3 If set, input stream text may match the upper case conversion of the 1st character of a

dictionary entry followed by the lower case conversion of the remaining characters of
the dictionary entry.

4 If set, input stream text may match a dictionary entry prefixed by the keyword prefix
characters (if any) described below.

5 If set, input stream text may match a dictionary entry suffixed by the keyword suffix
characters (if any) described below.

6 If set, input stream text may match a part of a dictionary entry. A partial match occurs
when, a dictionary entry contains n characters and a match is found with the first m
characters where m is less than n.

7- All other bits are reserved.

3) Keyword Prefix

The 1st octet is the Keyword Prefix Length which specifies the number of characters that form the prefix string.
The length octet is followed by the actual characters of the prefix string.

4) Keyword Suffix

The 1st octet is the Keyword Suffix Length which specifies the number of characters that form the suffix string.
The length octet is followed by the actual characters of the suffix string.

5) Keyword Threshold

This value determines the minimum number of characters in the input stream that needs to be replaced by a full
match with a keyword entry. For a partial match the value of the threshold needs to be incremented by 2.

If a match occurs involving fewer characters than that specified by the threshold, keyword substitution does not
take place.

6) Maximum Partial Match Length

This value determines the maximum number of characters in the input stream that needs to be replaced by a
partial match with a keyword entry.

If a partial match occurs involving fewer characters than that specified by this value, keyword substitution does
not take place.

7) Key Word Group List

The actual key word dictionary entries are not directly specified within the Keyword Dictionary. Instead, a set of
key word dictionary entries is explicitly identified by a Key Word Group ID - an octet value that is unique within
the language specified by the CLC. This approach allows the same set of keyword dictionary entries to be used in
conjunction with different values for the parameters specified within the Keyword Dictionary and for Keyword
Dictionaries to be defined that combine multiple Key Word Groups.

The 1st octet of the Key Word Group List specifies the number of Key Word Group IDs that follow, each of the
following octets specifies a Key Word Group ID.

6.4.2 Groups

A Keyword Group specifies the following items:

1) Character Set ID

This is the character set in which the keyword dictionary entries are composed and shall therefore be equal to the
character set to be used for compression as specified in the CH.

TS 101 032 V5.2.0 (1997-11)24GSM 03.42 version 5.2.0

2) Number of Entries

The value specifies the number of keyword dictionary entries contained in the Keyword Group.

3) Keyword Entry

The 1st octet is the Keyword Entry Length which specifies the number of characters that form the keyword entry
string. The length octet is followed by the actual characters of the entry string.

The sequence of entries within a dictionary needs to be known by both coder and decoder. Thus keyword entries in a
Keyword Group needs to be sorted in ascending sequence of the actual characters of the entry string. Furthermore if a
dictionary defines multiple Keyword Groups, the combined set of entries needs to be resorted as part of initialization of
the Keyword processor so that the ascending alphanumeric sequence of entries is achieved for all entries in the
combined set.

A further requirement is that all entries in the combined set shall be unique.

TS 101 032 V5.2.0 (1997-11)25GSM 03.42 version 5.2.0

6.4.3 Matches

A Keyword Match specifies how a sequence of characters in the input stream is represented by a keyword dictionary
entry. A Keyword Match is a bit stream that is interpreted left to right as described on the table below wherein Bit 0
refers to the most significant, left most bit.

Table 17:

Bits Description
0 to N1 Case conversion.

If bit 0 of the Dictionary Match Options is set (i.e. Exact matching is enabled), the Case
conversion bits are omitted and the Keyword Match starts with the Keyword Entry ID
described below.

Otherwise, if the match involves a lower case conversion, a single Case conversion bit
with value 0 is used.

Otherwise, 2 case conversion bits are used with the following value:
10 Upper Case.
11 1st character Upper case, remainder Lower case.

N1+1 to N2 Keyword Entry ID.

This value represents the position in the list of keyword dictionary entries of the entry
with which a match has been found. A value of 0 indicates the first entry.

The number of bits used to express the Keyword Entry ID is minimum number of bits
required to represent the total number of keyword dictionary entries defined for the
Keyword Dictionary minus 1.

N2+1 to N3 Prefix Match.

If bit 4 of the Dictionary Match Options is set (i.e. Prefix matching is enabled), a single
bit is used to indicate whether a prefix match applies (1) or not (0).

If prefix matching is not enabled, this bit is omitted from the Keyword Match.
N3+1 to N4 Partial Match.

If bit 6 of the Dictionary Match Options is set (i.e. Partial matching is enabled), a single
bit is used to indicate whether a partial match has occurred (1) or not (0).

If partial matching is not enabled, this bit is omitted from the Keyword Match.

If partial matching is enabled and a full match has occurred, no further bits are
required to describe the match.
If partial matching is enabled and a partial match has occurred, it is necessary to
encode the length of the partial match as follows:

The partial match length equals the total number of characters in the input stream
represented by the Keyword Match (excluding any characters represented by any
prefix and suffix matches) less the value of the partial match threshold (i.e. Keyword
Threshold +2).

If the partial match length is less than 8 a single bit (0) is added to the bit stream to
indicate this fact followed by 3 bits containing the partial match length.

Otherwise a single bit (1) is added to the bit stream to indicate that more than 3 bits
follow containing the partial match length. In this case the number of bits used to
represent the partial match length is the minimum number of bits required to represent
the value (Maximum Partial Match Length - (Keyword Threshold +2))

N4+1 to N5 Suffix Match.

If bit 5 of the Dictionary Match Options is set (i.e. Suffix matching is enabled), a single
bit is used to indicate whether a suffix match applies (1) or not (0).

If suffix matching is not enabled, this bit is omitted from the Keyword Match.

TS 101 032 V5.2.0 (1997-11)26GSM 03.42 version 5.2.0

6.4.4 Initialization

Initialization of the Keyword processor involves loading the various parameters specified by the KD-ID contained in the
CH.

As noted above, if the dictionary is composed on more than 1 Keyword Group, the combined set of keyword entries
needs to be resorted so that the full set conforms to an ascending alphanumeric sequence.

Clearly,as it is the total combined and sorted set of keyword entries that is required, implementors may choose to
construct this from the component keyword groups at run time or to produce such a combination and use it directly as
indicated by the constituent keyword group ID’s.

6.4.5 Compression

For compression, the Keyword processor operates as follows:

Table 18: compression Keyword processor

Input A offset into the input stream of characters from which a matching keyword is to be
found.

Step 1 Set the current character position to the input offset.
Step 2 If Prefix matching is not enabled goto Step 3.

If the string starting at the current character position exactly matches Keyword Prefix,
record this fact and increment the current character position by the length of the prefix
string.

Step 3 Identify the Keyword Entry ID and if enabled Case Conversion and Partial Match details
for the longest match (i.e. that what whereby the greatest number of characters in the
input stream are represented) between a dictionary entry and the string starting at the
current character position subject to the following rules:

1) An exact match shall be greater than or equal to the Keyword Threshold to be
considered.

2) A partial match shall be greater than or equal to the Keyword Threshold +2 to be
considered.

3) If more than 1 partial match of equal length is found, the one with the greater
Keyword Entry ID is used.

4) If an exact match and a partial match are found, the length of the partial match shall
be at least 2 greater than that of the exact match for it to be used.

5) Although the case of more than 1 exact match of equal length being found is not
possible as entries are unique, should such a case arise, the one with the greater
Keyword Entry ID is used.

If the longest match is a partial match with length greater than the Maximum Partial
Match Length, the match length is limited to the Maximum Partial Match Length.

If no match has been found goto Step 5.
Step 4 If Suffix matching is not enabled goto Step 5.

If the string starting at the current character position exactly matches Keyword Prefix,
record this fact and increment the current character position by the length of the prefix
string.

Step 5 If a matching keyword has been found, construct the Keyword Match bitstream.
Output A Keyword Match bitstream or an indication that no suitable match is available.

TS 101 032 V5.2.0 (1997-11)27GSM 03.42 version 5.2.0

6.4.6 Decompression

For decompression, the Keyword processor operates as follows:

Table 19: decompression Keyword processor

Input A Keyword Match bitstream.
Step 1 Interpret the Keyword Match bitstream to determine if there is a Prefix match. If so add

the Keyword Prefix string to the string to be output.
Step 2 Interpret the Keyword Match bitstream to identify the dictionary entry or part thereof as

indicated by any Partial Match details.

Perform any case conversion (indicated by the Keyword Match bitstream) on the
dictionary entry string and add the resulting string to the string to be output.

Step 3 Interpret the Keyword Match bitstream to determine if there is a Suffix match. If so add
the Keyword Suffix string to the string to be output.

Output The character string represented by the input Keyword Match bitstream.

6.5 UCS2

6.5.1 Initialization

Initialization of the USC2 processor involves storing the default UCS2 row as specified by the CH.

6.5.2 Compression

For compression, the UCS2 processor operates as follows:

Table 20:

Input A 16 bit UCS2 character value.
Step 1 If the row octet of the input character is different from the "current UCS2 row" store the

row octet of the input character as the new "current UCS2 row".
Output A Boolean value indicating whether the current UCS2 row has been changed.

6.5.3 Decompression

For decompression, the USC2 processor needs to set and sense the "current UCS2 row" as required by the higher level
software described in subclause 6.1.2 above.

6.6 Character group processing
The operation of the Character Group processor is controlled by the set of parameters defined by a Character Group that
is uniquely defined (within a CLC) by the value of the Character Group ID (CG-ID) specified in the CH.

Character grouping operates by defining 2 or more subsets (groups) of characters within the character set used for
compression with the following properties:

- Each sub set contains the same number of characters.

- One subset (referred to as Group 0 or the "base group" contains the characters expected to have higher
frequencies in a input stream than those of the characters in other subsets.

- Input stream are expected to contain contiguous sequences of characters belonging to a single group.

Compression is achieved by assigning a 1:1 mapping between the characters in the base group and those in the other
groups and when appropriate signalling a transition between groups and then continuing to encode base group

TS 101 032 V5.2.0 (1997-11)28GSM 03.42 version 5.2.0

characters. This has the effect of improving the performance of the Huffman encoder by reducing the need to add new
characters to the tree and by maintaining a smaller overall tree with a more distinct frequency distribution.

For example, assume that we have a character set that comprises just the numeric digits 0 to 9 and the letters A to B and
3 groups containing the digits 1 to 3, 4 to 6 and 0 and 7 to 9. The digits 1 to 3 are considered to be the most frequent and
are therefore the base group. The digit 0 is defined to exist in all the groups and the letters A and B do not occur in any
group.

Encoding and decoding of characters is achieved using the various items in table 21.

Table 21: Encoding and decoding of characters

Item Element Comment
Value 0 1 2 3 4 5 6 7 8 9 10 11 Decimal character value
Character 0 1 2 3 4 5 6 7 8 9 A B Character symbol
Group 0 1 1 1 1 0 0 0 0 0 0 0 0 Bit flags for Group 0
Group 1 1 0 0 0 1 1 1 0 0 0 0 0 Bit flags for Group 1
Group 2 1 0 0 0 0 0 0 1 1 1 0 0 Bit flags for Group 2
Fold 0 0 1 2 3 1 2 3 1 2 3 A B Group 0 Conversions
Fold 1 0 4 5 6 4 5 6 7 8 9 A B Group 1 Conversions
Fold 2 0 7 8 9 4 5 6 7 8 9 A B Group 2 Conversions

The items Group 0, Group 1 and Group 2 simply enable the determination of whether a given character is a member of
the given group by checking the value of the Group x element associated with the value of the character.

The elements of the Fold 0 item associated with the members of a given group represent the characters within Group 0
to which the characters of the given group are mapped. For example character 4 in Group 1 is mapped to character 1 in
Group 0.

The elements of the Fold 1 and Fold 2 items provide the reverse mapping in that the elements associated with
membership of Group 0 represent the characters in Groups 1 or 2 that are associated with the Group 0 characters.

Thus if the "current group" is Group x, a character with value c can be encoded as follows:

- If c is a member of Group x or not a member of any group, element c of Fold 0 is output.

- If c is not a member of Group x it can be output as a "literal" which is element c of Fold y where Group y has c as
a member alternatively a change of group can be signalled.

Similarly, if the "current group" is Group x, a character with value c can be decoded as follows:

- If c is a member of Group x or x is not 0 then, element c of Fold x is output.

- Otherwise the value c is output unchanged.

The detailed operation of the Character Group processor (described below) primarily extends these simple rules to
optimize the case where a choice between a "literal" or a group change arises.

6.6.1 Character Groups

A Character Group specifies the following items:

1) Character Set ID

This is the character set in which the character group is composed and shall therefore be equal to the character set
to be used for compression as specified in the CH.

2) Number of Groups

This value specifies the number of groups to be defined. The maximum value is 8.

3) Group Transition Controls

TS 101 032 V5.2.0 (1997-11)29GSM 03.42 version 5.2.0

Group transitions are signalled through the use of the Character Group Transition symbols in the decimal range
259 to 265.

If the Number of Groups is N, (N-1) Character Group Transition symbols shall be specified such that if the
"current group" is x one Character Group Transition symbol is allocated to signify a transition to each of the
other (N-1) groups.

4) Fold Tables

These are the inter-group character conversion tables described above. One is required for each group defined.

5) Group Membership

This is an array of octets, one for each character in the character set. The 1st octet in the array contains bit flags
indicating the group membership of the character value 0 and so on.

Within each octet, bit 0 (least significant) indicates membership of Group 0, bit 1 that of Group 1 and so on.

6.6.2 Initialization

Initialization of the Character Group processor involves loading the various parameters specified by the CG-ID
contained in the CH.

Additionally on initialization, the "current group" is assumed to be Group 0.

6.6.3 Compression

For compression, the Character Group processor operates as follows:

TS 101 032 V5.2.0 (1997-11)30GSM 03.42 version 5.2.0

Table 22: compression Character Group processor

Input 1) A single symbol to be encoded.
2) An indication that this is the last symbol to be encoded.

Step 1 Set the number of output symbols to zero.
Step 2 If the input symbol is not the Keyword symbol, goto Step 3.

If a previous input symbol is being held, add this as a "literal" to the output sequence by
calculating the value of the element indicated by the value of the previous symbol in the
fold table associated with the group of the previous symbol and increment the number
of output symbols and clear the previous symbol.

Goto Step 9.
Step 3 If the input symbol is a member of no group or a member of the current group, set the

group for the input symbol to be the current group.

Otherwise, if a previous input symbol is being held and the input symbol is a member of
the group of the previous symbol, set the group for the input symbol to be that of the
previous symbol.

Otherwise, test the input symbol for membership of each group in ascending order of
groups starting with group 0 and set the group for the input symbol to be that for which
membership is first detected.

Step 4 If a previous input symbol is not being held goto Step 5.

If the input symbol group equals the previous symbol group:

- Add the Character Group Transition symbol that indicates a transition from the
current group to the previous symbol group to the output sequence and increment
the number of output symbols.

- Set the current group to the previous symbol group.

- Encode the previous symbol by calculating the value of the element indicated by
the value of the previous symbol in the fold table associated with the base group
and add this value to the output sequence and increment the number of output
symbols.

- Encode the input symbol by calculating the value of the element indicated by the
value of the input symbol in the fold table associated with the base group and add
this value to the output sequence and increment the number of output symbols.

- Clear the previous symbol.

- Goto Step 9.

Otherwise, encode the previous symbol as a "literal" by calculating the value of the
element indicated by the value of the previous symbol in the fold table associated with
the group of the previous symbol group and add this value to the output sequence and
increment the number of output symbols and clear the previous symbol.

Step 5 If the input symbol group is the base group and the current group is not the base group,
add the Character Group Transition symbol that indicates a transition from the current
group to the base group to the output sequence and increment the number of output
symbols. Set the current group to be the base group.

Step 6 If the input symbol group is the base group or the current group:

- Encode the input symbol by calculating the value of the element indicated by the
value of the input symbol in the fold table associated with the base group and add
this value to the output sequence and increment the number of output symbols.

- Goto Step 9.
Step 7 If the input symbol is the last symbol to be encoded:

- Encode the input symbol as a "literal" by calculating the value of the element
indicated by the value of the input symbol in the fold table associated with the
group of the input symbol and add this value to the output sequence and increment
the number of output symbols.

- Goto Step 9.
Step 8 Set the previous symbol to be the value of the input symbol and set the group for the

previous symbol to be that of the input symbol.
Step 9 Output the number of output symbols and the associated symbols.
Output A count of the number of encoded symbols output and a sequence of encoded

symbols.

TS 101 032 V5.2.0 (1997-11)31GSM 03.42 version 5.2.0

6.6.4 Decompression

For decompression, the Character Group processor operates as follows:

Table 23: Decompression Character Group processor

Input A single symbol to be decoded.
Step 1 If the symbol is a Character Group Transition symbol, update the "current group" to be

that indicated by the Character Group Transition.

Goto Step 3.
Step 2 If the input symbol is a member of the "current group" or the "current group" is not the

base group, calculate the value of the decoded symbol as that given by the element
indicated by the value of the input symbol in the fold table associated with the "current
group".

Otherwise set the value of the decoded symbol to that of the input symbol.
Step 3 If a decoded symbol has been generated indicate this fact.
Output The decoded symbol or an indication that no symbol has been generated.

6.7 Huffman coding
As described in subclause 4.2, Huffman encoding requires the set of characters that may be encoded to be represented
within a binary tree structure. The tree is constructed of "nodes" which have the following properties:

- A Parent node. A node that has no parent is the "root" node.

- Up to 2 Child nodes. A node that has no children is a "leaf" node.

- Character value. If the node is a leaf node it represents a character represented within the tree.

- Weight. If the node is a leaf node, the weight is the frequency with which the associated character has occurred in
the input stream. Otherwise the weight is simply the sum of the weights of the nodes children.

Typically, a tree will be implemented as an array of node structures and parent / child details for a given node will be
represented by the index of the appropriate node within the array.

Every node in the tree (except the root node or in the case where the tree contains just a single leaf node) has a "sibling"
- the other node that shares the same parent node.

For the binary tree to be a Huffman tree its construction needs to display a further property. This is that the nodes can be
listed in ascending order of weight and in so doing every node is adjacent to its sibling in the list. This property needs to
be preserved at all times - when the tree is initially created, when a new leaf node is added to the tree to represent a new
character and when the frequency of a leaf node is incremented as a new instance of that character is processed.

The ordering of nodes is also significant in that it will determine which of the siblings is the "left-hand" as opposed to
"right-hand" of the sibling pair. Encoding a symbol involves navigating the tree from leaf to root and emitting a bit to
the encoded stream the value of which depends on whether the current node is the left or right hand sibling. If the node
is a left hand node, the bit value is 0 and if it is a right hand node, the bit value is 1. Assuming that the 1st element of the
array of nodes has an index value of 0, this means that left hand nodes will have even numbered indices and right hand
nodes will have odd numbered indices.

Node weights are assumed to be 16 bit unsigned values and this means that the potential exists for these values to
overflow. To handle this case, the algorithm defines a maximum weight value for the root node. If this is to be exceeded,
the weights of all leaf nodes are divided by 2 and the tree is rebuilt. The maximum value for the root weight is defined to
be 8000 (hex).

TS 101 032 V5.2.0 (1997-11)32GSM 03.42 version 5.2.0

Although the bit sequence representing the encoded symbol is discovered in the order of traversing the tree from leaf to
root, for decoding the bit sequence needs to be processed in the order that describes the navigation of the tree from root
to leaf. Thus the entire encoding bit sequence needs to be collected in some temporary variable and emitted to the output
stream in reverse order. For example if the passage from leaf to root is described by the sequence 010011, the bits added
to the output stream would be 110010. The need to collect the bits in a temporary variable also introduces the potential
for this value to overflow. Given the maximum value for the root node weight described above, a 32bit variable is
suitable of containing all possible bit sequences.

If a symbol that does not already exist in the tree is to be encoded, either the "New 7bit Character" or the "New 8bit
Character" is encoded, the lower 7 bits of the new character value are then added literally to the out put stream and the
new character needs to be added to the tree. This is done by splitting the "lightest" node (the first node in the list ordered
by ascending weight) such that it becomes a parent node whose right hand child is the leaf node that was originally
represented by the node being split and the left hand child is a new leaf node representing the new character. The new
leaf is initially created with a weight of 0 but this is immediately updated as described below.

If a new symbol has been added to the tree or a new instance of an existing symbol processed, the weight for the
associated leaf node needs to be incremented and the tree updated to preserve the "sibling" property.

The tree is updated in the following manner. If the node a position x in the ascending weight ordered list has had its
weight incremented by 1, the list needs to be scanned from position x in ascending weight order to identify the node at
position y such that the node at position (y+1) is the first node encountered that has a weight greater than or equal to the
new weight of the node at position x. The nodes at x and y are then "swapped" in terms of their position in the list and
their parents while maintaining all other attributes. This process of weight increment and swapping is then repeated for
the parent of the node at position y until the root node is reached.

The operation of the Huffman processor is controlled by the set of parameters defined by a Huffman Initialization that is
uniquely defined (within a CLC) by the value of the Huffman Initialization ID (HI-ID) specified in the CH.

6.7.1 Initialization Overview

A Huffman Initialization specifies the following items:

1) Character Set ID

This is the character set in which the Huffman Initialization is composed and shall therefore be equal to the
character set to be used for compression as specified in the CH.

2) Options

This is a collection of bit flags that control how the processor is to operate. These are described in table 24 in
which Bit 0 is considered to be the lease significant bit of the Match Options value.

Table 24: collection of bit flags

Bit Description
0 If set, weights for leaf nodes representing control symbols (other than New 7 bit

character and New 8 bit character symbols) are to be updated.
1 If set, weights for leaf nodes representing control symbols are to be updated.
2 All other bits are reserved.

3) The Character Group ID with which these initializations may operate.

4) Number of initial symbol frequencies

2 values representing the cases where the Character Group processor is enabled or disabled.

These are counts of the number of characters or control symbols for which there are following initial frequencies
defined.

As this initializations will vary significantly depending on whether the Character Group processor is enabled 2
sets of initializations are provided to cover both cases.

5) Initial frequencies

TS 101 032 V5.2.0 (1997-11)33GSM 03.42 version 5.2.0

Two sets of initialization values are supplied as described above.

Any control symbol that may occur when processing an input stream needs to be represented within the tree,
prior to the first character of the input stream being processed. These symbols shall therefore be handled by the
initialization process. This is achieved by :

- The frequency initialization data will always include all control symbols that might occur for any stream.
Thus the New 7bit character, New 8bit character, New UCS2 Row and Keyword symbols will always be
included and if the initialization set is that for the case where the specified Character Group ID is enabled, the
associated Character Group Transition symbols will also be included.

- For a given input stream, the frequency initialization process (described in subclause 6.7.2 below) will
determine whether a control symbol contained in the frequency initialization data can occur in the input
stream based on the information contained in the CH. If it is determined that a control symbol contained in
the frequency initialization data can NOT occur in the input stream, this symbol will not be added to the
Huffman tree.

Frequency initialization data comprises the value of the character or symbol and the initial frequency for that
symbol.

- The order in which character or symbol values and their associated initial frequencies are stated is significant and
this order must be preserved when these items are loaded as part of the Huffman Initialisation process. Frequency
Initialisation data must be stated in ascending order of character or symbol initial frequency.

6.7.2 Initialization

Initialization of the Huffman processor involves loading the various parameters specified by the HI-ID contained in the
CH.

The appropriate set of frequency initialization data is selected depending on whether the Character Group processor is
enabled.

Leaf nodes are created for each symbol for which a frequency initialization is specified, subject to the following rules:

- Leaf nodes must be created within the array of Huffman tree nodes in exactly the same ascending order in which
they are stated in the Huffman Initialisation data.

- If the character set specified for compression is the GSM default alphabet, leaf nodes are not created for the New
8bit Character and the New UCS2 Row symbols.

- If the character set specified for compression is not UCS2 a leaf node is not created for the New UCS2 Row
symbol.

- If the Keyword processor is disabled, no leaf node is created for the Keyword symbol.

The initial tree is then built as described below - rescaling is not indicated.

TS 101 032 V5.2.0 (1997-11)34GSM 03.42 version 5.2.0

6.7.3 Build Tree

To build the tree, the Huffman processor operates as follows:

Table 25: Build Tree, Huffman processor operation

Input 1) The array of Huffman tree nodes.
2) A Boolean value indicating whether frequencies need to be rescaled as a result of
the root node weight becoming the maximum value.

Step 1 Assemble all leaf nodes, preserving their ascending weight order at the start of the
node array. This is achieved by setting the “current node” and “assembled leaf” node
position to the base of the array. If the current node is a leaf node, set the symbol and
frequency associated with assembled leaf node to those of the current node and
increment the assembled leaf node position. Increment the current node position and
repeat this process until the current node becomes the root node.

If rescaling is requested recalculate each leaf node weight as (current weight+1)/2.

Set the current node to the start of the array.
Step 2 Create a parent node for the current node and the next node and insert it into the array

at position x where the node at position (x+1) is the first node with a weight greater than
that of the newly created node.

If the newly created node is not the root node, increment the current node by 2 and
goto Step 2.

Output A completed Huffman tree.

6.7.4 Update Tree

To update the tree, the Huffman processor operates as follows:

Table 26: Update Tree, Huffman processor operation

Input The symbol whose frequency is to be incremented by 1.
Step 1 If the weight of the root node +1 is greater than 0 x 8000 build the tree indicating that

resealing is required.
Step 2 Increment the weight of the leaf node associated with the input symbol by 1 and "swap"

it with the node at position y such that the node at position (y+1) is the first node
encountered in the order list that has a weight greater than or equal to the new weight
of the incremented leaf node.

Repeat this process of weight increment and "swap" for the parent of the node at
position y until the node at position y becomes the root node.

Output An updated Huffman tree.

6.7.5 Add New Node

To add a new node, the Huffman processor operates as follows:

Table 27: Add New Node, Huffman processor operation

Input The symbol to be added to the tree.
Step 1 Splitting the "lightest" node (the first node in the list ordered by ascending weight) such

that it becomes a parent node whose right hand child is the leaf node that was originally
represented by the node being split and the left hand child is a new leaf node
representing the new input symbol. The new leaf node is initially created with a weight
of 0.

Step 2 Update the tree (as above) passing the new symbol as the input parameter.
Output An updated Huffman tree.

TS 101 032 V5.2.0 (1997-11)35GSM 03.42 version 5.2.0

6.7.6 Compression

For compression, the Huffman processor operates as follows:

Table 28: Compression, Huffman processor operation

Input A character from the input stream or control symbol.
Step 1 If there is no existing leaf node for the input symbol set the "source" symbol to be either

the New 7bit or New 8bit symbol depending on the value of the input symbol.

Otherwise set the source symbol to be the input symbol.
Step 2 Traverse the tree from the leaf node associated with the source symbol to the root node

while generating the Huffman bit sequence.
Step 3 Reverse the generated Huffman bit sequence and add it to the output bitstream.
Step 4 If the source symbol equals the input symbol goto Step 5.

Add the lower 7 bits of the input symbol to the output bitstream.

Add a new node for the input symbol.

Update the tree for the input symbol.

Goto Output.
Step 5 If the input symbol value is less than 256 and bit 0 of the Huffman Initialization Options

value is set, update the tree for the input symbol and goto Output.
Step 6 If the input symbol value is greater than or equal 256 and bit 1 of the Huffman

Initialization Options value is set, update the tree for the input symbol.
Output A Huffman bitstream.

6.7.7 Decompression

For decompression, the Huffman processor operates as follows:

Table 29: Decompression, Huffman processor operation

Input A bit stream.
Step 1 Traverse the tree from the root node to a leaf node as indicated by the value of the bits

read from the front of the input bitstream.
Step 2 If the symbol associated with the leaf node identified in step 1 is neither the New 7bit

nor New 8bit symbol, goto Step 3.

Set the lower 7 bits of the output symbol to be next 7 bits read from the input bitstream
and set bit 7 as indicated.

Add a new node for the output symbol.

Update the tree for the output symbol.

Goto Output.
Step 3 Set the output symbol to the symbol associated with the leaf node from Step 1.
Step 4 If the output symbol value is less than 256 and bit 0 of the Huffman Initialization

Options value is set, update the tree for the output symbol and goto Output.
Step 5 If the input symbol value is greater than or equal 256 and bit 1 of the Huffman

Initialization Options value is set update the tree for the output symbol.
Output A decoded symbol.

7 Test Vectors
In order to assist implementors of the compression algorithm described in this specification, a suite of test vectors and
‘help’ information are available in electronic format. The test vectors are supplied on a single diskette attached to this
specification.

TS 101 032 V5.2.0 (1997-11)36GSM 03.42 version 5.2.0

These test vectors provide checks for most of the commonly expected parameter value variants in this specification and
may be updated as the need arises.

TS 101 032 V5.2.0 (1997-11)37GSM 03.42 version 5.2.0

Annex A (normative):
German Language parameters
Annex under development

TS 101 032 V5.2.0 (1997-11)38GSM 03.42 version 5.2.0

Annex B (normative):
English language parameters

B.1 Compression Language Context
CLC Value: 1 (decimal)

This specifies the following items as defaults:

1) Language English

2) Character set Character Set ID 2 (decimal) = Code page 437

3) Punctuator ID 1 (decimal)

4) Keyword Dictionary ID 0 (decimal)

5) Character Group ID 1 (decimal)

6) Huffman Initialization ID 1 (decimal)

B.2 Punctuators
Punctuator ID 0 (decimal)

This punctuator ID has the special meaning that no punctuator is defined (or therefore enabled) and the value of bit 2 of
octet 1 of the CH is always to be interpreted as zero.

Punctuator ID 1 (decimal)

The punctuator is rendered in Character Set ID 2 (decimal) = Code Page 437.

The following characters have punctuator attributes set:

Table B.1: punctuator attributes set:

Char Value PU-IWS PU-LST PU-WSF PU-UCF PU-UCW PU-NSI

<LF> 010 0 0 0 1 0 0

<CR> 013 0 0 0 1 0 0

<SP> 032 1 0 0 0 0 0

! 033 0 0 1 1 0 0

, 044 0 0 1 0 0 0

. 046 0 1 1 1 0 0

0 048 0 0 0 0 0 1

1 049 0 0 0 0 0 1

2 050 0 0 0 0 0 1

3 051 0 0 0 0 0 1

4 052 0 0 0 0 0 1

(continued)

TS 101 032 V5.2.0 (1997-11)39GSM 03.42 version 5.2.0

Table B.1 (concluded): punctuator attributes set:

Char Value PU-IWS PU-LST PU-WSF PU-UCF PU-UCW PU-NSI

5 053 0 0 0 0 0 1

6 054 0 0 0 0 0 1

7 055 0 0 0 0 0 1

8 056 0 0 0 0 0 1

9 057 0 0 0 0 0 1

: 058 0 0 1 0 0 0

; 059 0 0 1 0 0 0

? 063 0 0 1 1 0 0

I 073 0 0 0 0 1 0
NOTE: The characters "<SP>" are used to represent the "space" character, the characters

"<LF>" the "line feed" character and "<CR>" the "carriage return" character.

Punctuator ID >1 (decimal)

No other punctuators are defined and all other values are reserved.

B.3 Keyword Dictionaries
Keyword Dictionary ID 0 (decimal)

This Keyword Dictionary ID has the special meaning that no Keyword Dictionary is defined (or therefore enabled) and
the value of bit 1 of octet 1 of the CH is always to be interpreted as zero.

Keyword Dictionary ID 1 (decimal)

The Keyword Dictionary is rendered in Character Set ID 2 (decimal) = Code Page 437.

The Match Options value is 94 (decimal) indicating the following:

- Partial matching is enabled.

- Suffix matching is not enabled.

- Prefix matching is enabled.

- 1st char upper case, remainder lower case matching is enabled.

- Upper case matching is enabled.

- Lower case matching is enabled.

- Exact matching is not enabled.

The Keyword Prefix Length is 1 and the prefix string contains a single character with value 32 decimal (a space).

The Keyword Suffix Length is 0.

The Keyword Threshold value is 4.

The Maximum Partial Match Length value is 46 (decimal).

The Key Word Group List contains only 1 Key Word Group ID. The value of this Key Word Group ID is 0.

Keyword Dictionary ID >1 (decimal)

TS 101 032 V5.2.0 (1997-11)40GSM 03.42 version 5.2.0

No other Keyword Dictionaries are defined and all other values are reserved.

Key Word Group ID 0 (decimal)

The entries within this Key Word Group are rendered in Character Set ID 2 (decimal) = Code Page 437.

The Number of Entries value is 128 (decimal).

The entries are defined in table B.2wherein the characters "<SP>" are used to represent the "space" character of decimal
value 32.

TS 101 032 V5.2.0 (1997-11)41GSM 03.42 version 5.2.0

Table B.2: Key Word Group ID 0 (decimal)

Entry ID Entry Length Entry String
1 5 about

2 9 afternoon

3 5 again

4 6 agenda

5 6 agreed

6 4 and<SP>

7 11 appointment

8 4 are<SP>

9 7 arrange

10 6 arrive

11 6 attend

12 9 available

13 4 away

14 7 because

15 6 before

16 7 benefit

17 8 business

18 4 but<SP>

19 4 call

20 6 can't<SP>

21 6 cancel

22 6 commit

23 7 company

24 8 complete

25 7 confirm

26 7 contact

27 10 convenient

28 5 could

29 7 deliver

30 6 demand

31 10 department

32 6 dinner

33 7 discuss

34 6 don't<SP>

35 5 exist

36 6 flight

37 4 for<SP>

38 7 forward

39 6 friday

40 5 from<SP>

41 5 going

42 7 goodbye

43 8 hardware

44 5 have<SP>

45 4 hear

46 5 hello

47 4 help

48 4 home

49 5 hotel

50 4 how<SP>

51 9 immediate

52 9 important

53 11 information

54 4 its<SP>

55 5 later

56 6 letter

57 7 machine

58 5 make<SP>

59 6 manage

(continued)

TS 101 032 V5.2.0 (1997-11)42GSM 03.42 version 5.2.0

Table B.2 (continued): Key Word Group ID 0 (decimal)

Entry ID Entry Length Entry String
60 7 meeting

61 7 message

62 6 mobile

63 6 monday

64 7 morning

65 5 need<SP>

66 6 office

67 5 other

68 6 passed

69 8 personal

70 5 phone

71 6 please

72 8 possible

73 4 post

74 8 postpone

75 5 price

76 8 priority

77 7 product

78 7 project

79 5 quick

80 7 receive

81 9 reference

82 7 regards

83 8 remember

84 6 return

85 4 ring

86 8 saturday

87 4 send

88 7 service

89 6 should

90 5 since

91 8 software

92 4 soon

93 5 speak

94 5 still

95 7 subject

96 7 success

97 6 sunday

98 4 talk

99 9 telephone

100 5 thank

101 4 that

102 4 the<SP>

103 5 them<SP>

104 5 there

105 5 they<SP>

106 5 think

107 4 this

108 8 thursday

109 5 today

110 8 tomorrow

111 7 tonight

112 5 total

113 6 travel

114 7 tuesday

115 6 until<SP>

116 6 update

117 6 urgent

(continued)

TS 101 032 V5.2.0 (1997-11)43GSM 03.42 version 5.2.0

Table B.2 (concluded): Key Word Group ID 0 (decimal)

Entry ID Entry Length Entry String
118 5 using

119 4 want

120 9 wednesday

121 7 weekend

122 7 welcome

123 5 when<SP>

124 6 where<SP>

125 4 will

126 5 would

127 9 yesterday

128 4 you<SP>

Key Word Group ID >0 (decimal)

No other Key Word Groups are defined and all other values are reserved.

B.4 Character Groups
Character Group ID 0 (decimal)

This Character Group ID has the special meaning that no Character Group is defined (or therefore enabled) and the
value of bit 0 of octet 1 of the CH is always to be interpreted as zero.

Character Group ID 1 (decimal)

The Character Group is rendered in Character Set ID 2 (decimal) = Code Page 437.

The Number of Groups value is 3.

There are 2 Group Transition symbols used these have the decimal values 259 and 260. Their use in signalling
transitions between the 3 groups are shown in the table B.3.

Table B.3: Character Group ID 1 (decimal)

New Group

Current Group 0 1 2

0 260 259

1 260 259

2 260 259

The fold tables and Group Membership bit flags are set out in the following table B.4.

TS 101 032 V5.2.0 (1997-11)44GSM 03.42 version 5.2.0

Table B.4: fold tables and Group Membership bit flags

Char Value

Group 0
Fold
Table

Group 1
Fold
Table

Group 2
Fold Table Group 2

Member
Group 1
Member

Group 0
Member

012 034 012 012 1 0 0
<SP> 032 032 032 032 1 1 1

! 033 118 033 033 1 0 0
" 034 034 034 012 0 1 1
035 102 035 035 1 0 0
% 037 113 037 037 1 0 0
& 038 111 038 038 1 0 0
' 039 039 039 039 1 1 1
(040 116 040 040 1 0 0
) 041 117 041 041 1 0 0
* 042 110 042 042 1 0 0
+ 043 119 043 043 1 0 0
, 044 044 044 062 0 1 1
- 045 120 045 045 1 0 0
. 046 046 046 046 1 1 1
/ 047 114 047 047 1 0 0
0 048 101 048 048 1 0 0
1 049 097 049 049 1 0 0
2 050 105 050 050 1 0 0
3 051 099 051 051 1 0 0
4 052 112 052 052 1 0 0
5 053 100 053 053 1 0 0
6 054 107 054 054 1 0 0
7 055 104 055 055 1 0 0
8 056 103 056 056 1 0 0
9 057 109 057 057 1 0 0
: 058 098 058 058 1 0 0
; 059 106 059 059 1 0 0
< 060 122 060 060 1 0 0
= 061 121 061 061 1 0 0
> 062 044 062 062 1 0 0
? 063 063 063 093 0 1 1
A 065 097 065 065 0 1 0
B 066 098 066 066 0 1 0
C 067 099 067 067 0 1 0
D 068 100 068 068 0 1 0
E 069 101 069 069 0 1 0
F 070 102 070 070 0 1 0
G 071 103 071 071 0 1 0
H 072 104 072 072 0 1 0
I 073 105 073 073 0 1 0
J 074 106 074 074 0 1 0
K 075 107 075 075 0 1 0
L 076 108 076 076 0 1 0
M 077 109 077 077 0 1 0
N 078 110 078 078 0 1 0
O 079 111 079 079 0 1 0
P 080 112 080 080 0 1 0
Q 081 113 081 081 0 1 0
R 082 114 082 082 0 1 0
S 083 115 083 083 0 1 0
T 084 116 084 084 0 1 0
U 085 117 085 085 0 1 0
V 086 118 086 086 0 1 0
W 087 119 087 087 0 1 0
X 088 120 088 088 0 1 0

(continued)

TS 101 032 V5.2.0 (1997-11)45GSM 03.42 version 5.2.0

Table B.4 (concluded): fold tables and Group Membership bit flags

Char Value

Group 0
Fold
Table

Group 1
Fold
Table

Group 2
Fold Table Group 2

Member
Group 1
Member

Group 0
Member

Y 089 121 089 089 0 1 0
Z 090 122 090 090 0 1 0
[091 108 091 091 1 0 0
] 093 063 093 093 1 0 0
a 097 097 065 049 0 0 1
b 098 098 066 058 0 0 1
c 099 099 067 051 0 0 1
d 100 100 068 053 0 0 1
e 101 101 069 048 0 0 1
f 102 102 070 035 0 0 1
g 103 103 071 056 0 0 1
h 104 104 072 055 0 0 1
i 105 105 073 050 0 0 1
j 106 106 074 059 0 0 1
k 107 107 075 054 0 0 1
l 108 108 076 091 0 0 1

m 109 109 077 057 0 0 1
n 110 110 078 042 0 0 1
o 111 111 079 038 0 0 1
p 112 112 080 052 0 0 1
q 113 113 081 037 0 0 1
r 114 114 082 047 0 0 1
s 115 115 083 156 0 0 1
t 116 116 084 040 0 0 1
u 117 117 085 041 0 0 1
v 118 118 086 033 0 0 1
w 119 119 087 043 0 0 1
x 120 120 088 045 0 0 1
y 121 121 089 061 0 0 1
z 122 122 090 060 0 0 1
£ 156 115 156 156 1 0 0

NOTE: The characters "<SP>" are used to represent the "space" character.

Characters with any other value in the range 0 to 255 are not a member of any group and therefore the fold table values
will be equal to the character value in all cases.

Character Group ID >1 (decimal)

No other Character Groups are defined and all other values are reserved.

B.5 Huffman Initializations
Huffman Initialization ID 0 (decimal)

The Huffman Initialization is rendered in Character Set ID 2 (decimal) = Code Page 437.

The Options value indicates that both character and control symbol updating are enabled.

As described is subclause 6.7.1, the tables below include initialization values for all control symbols that might occur in
conjunction with the use of this Huffman Initialization. However, initialization values for control symbols that cannot
occur for a particular use of this Huffman Initialization are identified as part of the Huffman initialization process and
are not added to the Huffman tree as described in subclause 6.7.2.

The Character Group ID value is 1.

Character Group Processing is disabled:

TS 101 032 V5.2.0 (1997-11)46GSM 03.42 version 5.2.0

The number of frequency initializations is 4.

The initial frequencies are:

Table B.5: Character Group Processing is disabled: initial frequencies

Symbol Value Frequency
New UCS2 Row 266 1
Keyword 258 1
New 8bit 257 1
New 7bit 256 1

Character Group Processing is enabled:

The number of frequency initializations is 6.

The initial frequencies are:

Table B.6: Character Group Processing is enabled: initial frequencies

Symbol Value Frequency
New UCS2 Row 266 1
Change CG1 260 1
Change CG0 259 1
Keyword 258 1
New 8bit 257 1
New 7bit 256 1

Huffman Initialization ID 1 (decimal)

The Huffman Initialization is rendered in Character Set ID 2 (decimal) = Code Page 437.

The Options value indicates that both character and control symbol updating are enabled.

As described is subclause 6.7.1, the tables below include initialization values for all control symbols that might occur in
conjunction with the use of this Huffman Initialization. However, initialization values for control symbols that cannot
occur for a particular use of this Huffman Initialization are identified as part of the Huffman initialization process and
are not added to the Huffman tree as described in subclause 6.7.2.

The Character Group ID value is 1.

TS 101 032 V5.2.0 (1997-11)47GSM 03.42 version 5.2.0

Character Group Processing is disabled:

The number of frequency initializations is 32.

The initial frequencies are:

Table B.7: Character Group Processing is disabled: initial frequencies

Symbol Value Frequency
New UCS2 Row 266 00001
z 122 00001
Keyword 258 00001
q 113 00001
j 106 00003
x 120 00003
New 7bit 256 00003
New 8bit 257 00003
v 118 00008
w 119 00010
b 098 00010
y 121 00011
f 102 00011
u 117 00012
. 046 00014
m 109 00016
g 103 00017
k 107 00017
h 104 00018
d 100 00024
p 112 00029
c 099 00029
i 105 00030
r 114 00038
l 108 00038
s 115 00040
n 110 00048
t 116 00050
o 111 00055
<SP> 032 00060
a 097 00066
e 101 00079

NOTE: In the above table, the characters "<SP>" are used to represent the "space" character.

TS 101 032 V5.2.0 (1997-11)48GSM 03.42 version 5.2.0

Character Group Processing is enabled:

The number of frequency initializations is 34.

The initial frequencies are:

Table B.8: Character Group Processing is enabled: initial frequencies

Symbol Value Frequency
New UCS2 Row 266 00001
Change CG1 260 00001
z 122 00001
Keyword 258 00001
q 113 00002
j 106 00003
x 120 00003
New 7bit 256 00003
New 8bit 257 00003
v 118 00008
w 119 00010
b 098 00010
Change CG0 259 00010
y 121 00011
f 102 00013
u 117 00013
. 046 00015
m 109 00017
g 103 00017
k 107 00019
h 104 00020
d 100 00026
p 112 00030
c 099 00030
i 105 00031
r 114 00040
l 108 00040
s 115 00045
n 110 00050
t 116 00053
o 111 00054
<SP> 032 00058
a 097 00064
e 101 00077

Note in the above table, the characters "<SP>" are used to represent the "space" character.

Huffman Initialization ID >1 (decimal)

No other Huffman Initializations are defined and all other values are reserved.

TS 101 032 V5.2.0 (1997-11)49GSM 03.42 version 5.2.0

Annex C (normative):
Italian Language parameters
Annex under development

TS 101 032 V5.2.0 (1997-11)50GSM 03.42 version 5.2.0

Annex D (normative):
French Language parameters
Annex under development

TS 101 032 V5.2.0 (1997-11)51GSM 03.42 version 5.2.0

Annex E (normative):
Spanish Language parameters
Annex under development

TS 101 032 V5.2.0 (1997-11)52GSM 03.42 version 5.2.0

Annex F (normative):
Dutch Language parameters
Annex under development

TS 101 032 V5.2.0 (1997-11)53GSM 03.42 version 5.2.0

Annex G (normative):
Swedish Language parameters
Annex under development

TS 101 032 V5.2.0 (1997-11)54GSM 03.42 version 5.2.0

Annex H (normative):
Danish Language parameters
Annex under development

TS 101 032 V5.2.0 (1997-11)55GSM 03.42 version 5.2.0

Annex J (normative):
Portuguese Language parameters
Annex under development

TS 101 032 V5.2.0 (1997-11)56GSM 03.42 version 5.2.0

Annex K (normative):
Finnish Language parameters
Annex under development

TS 101 032 V5.2.0 (1997-11)57GSM 03.42 version 5.2.0

Annex L (normative):
Norwegian Language parameters
Annex under development

TS 101 032 V5.2.0 (1997-11)58GSM 03.42 version 5.2.0

Annex M (normative):
Greek Language parameters
Annex under development

TS 101 032 V5.2.0 (1997-11)59GSM 03.42 version 5.2.0

Annex N (normative):
Turkish Language parameters
Annex under development

TS 101 032 V5.2.0 (1997-11)60GSM 03.42 version 5.2.0

Annex P (normative):
Reserved
Annex under development

TS 101 032 V5.2.0 (1997-11)61GSM 03.42 version 5.2.0

Annex Q (normative):
Reserved
Annex under development

TS 101 032 V5.2.0 (1997-11)62GSM 03.42 version 5.2.0

Annex R (normative):
Default Parameters for Unspecified Language

R.1 Compression Language Context
CLC Value: 15 (decimal)

This specifies the following items as defaults:

1) Language Unspecified

2) Character set Character Set ID 1 (decimal) = GSM TS 03.38 default alphabet

3) Punctuator ID 0 (decimal)

4) Keyword Dictionary ID 0 (decimal)

5) Character Group ID 0 (decimal)

6) Huffman Initialization ID 0 (decimal)

R.2 Punctuators
Punctuator ID 0 (decimal)

This punctuator ID has the special meaning that no punctuator is defined (or therefore enabled) and the value of bit 2 of
octet 1 of the CH is always to be interpreted as zero.

Punctuator ID >0 (decimal)

No other punctuators are defined and all other values are reserved.

R.3 Keyword Dictionaries
Keyword Dictionary ID 0 (decimal)

This Keyword Dictionary ID has the special meaning that no Keyword Dictionary is defined (or therefore enabled) and
the value of bit 1 of octet 1 of the CH is always to be interpreted as zero.

Keyword Dictionary ID >0 (decimal)

No other Keyword Dictionaries are defined and all other values are reserved.

R.4 Character Groups
Character Group ID 0 (decimal)

This Character Group ID has the special meaning that no Character Group is defined (or therefore enabled) and the
value of bit 0 of octet 1 of the CH is always to be interpreted as zero.

Character Group ID >0 (decimal)

No other Character Groups are defined and all other values are reserved.

TS 101 032 V5.2.0 (1997-11)63GSM 03.42 version 5.2.0

R.5 Huffman Initializations
Huffman Initialization ID 0 (decimal)

Only control symbols are included in this initialization. It's rendition is therefore independent of character set.

The Options value indicates that both character and control symbol updating are enabled.

As described is subclause 6.7.1, the tables below include initialization values for all control symbols that might occur in
conjunction with the use of this Huffman Initialization. However, initialization values for control symbols that cannot
occur for a particular use of this Huffman Initialization are identified as part of the Huffman initialization process and
are not added to the Huffman tree as described in subclause 6.7.2.

Character Group Processing is always disabled:

The number of frequency initializations is 4.

The initial frequencies are:

Table R.1: Character Group Processing is always disabled: initial frequencies

Symbol Value Frequency
New UCS2 Row 266 1
Keyword 258 1
New 8bit 257 1
New 7bit 256 1

Character Group Processing can not be enabled therefore:

The number of frequency initializations is 0.

Huffman Initialization ID >0 (decimal)

No other Huffman Initializations are defined and all other values are reserved.

TS 101 032 V5.2.0 (1997-11)64GSM 03.42 version 5.2.0

History

Document history

V5.2.0 November 1997 Publication

ISBN 2-7437-1803-X
Dépôt légal : Novembre 1997

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Abbreviations
	4 Algorithms
	4.1 Huffman Coding
	4.2 Character Groups
	4.3 UCS2
	4.4 Keywords
	4.5 Punctuation
	4.6 Character Sets

	5 Compressed Data Streams
	5.1 Structure
	5.2 Compression Header
	5.2.1 Compression Header - Octet 1
	5.2.2 Compression Header - Octets 2 to n
	5.2.2.1 Compression Header reserved extension types and values

	5.2.3 Identifying unique parameter sets

	5.3 Compressed Data
	5.4 Compression Footer

	6 Compression processes
	6.1 Overview
	6.1.1 Compression
	6.1.2 Decompression

	6.2 Character sets
	6.2.1 Initialization
	6.2.2 Character set conversion
	6.2.3 Character case conversion

	6.3 Punctuation processing
	6.3.1 Initialization
	6.3.2 Compression
	6.3.3 Decompression

	6.4 Keywords
	6.4.1 Dictionaries
	6.4.2 Groups
	6.4.3 Matches
	6.4.4 Initialization
	6.4.5 Compression
	6.4.6 Decompression

	6.5 UCS2
	6.5.1 Initialization
	6.5.2 Compression
	6.5.3 Decompression

	6.6 Character group processing
	6.6.1 Character Groups
	6.6.2 Initialization
	6.6.3 Compression
	6.6.4 Decompression

	6.7 Huffman coding
	6.7.1 Initialization Overview
	6.7.2 Initialization
	6.7.3 Build Tree
	6.7.4 Update Tree
	6.7.5 Add New Node
	6.7.6 Compression
	6.7.7 Decompression

	7 Test Vectors
	Annex A (normative): German Language parameters
	Annex B (normative): English language parameters
	B.1 Compression Language Context
	B.2 Punctuators
	B.3 Keyword Dictionaries
	B.4 Character Groups
	B.5 Huffman Initializations

	Annex C (normative): Italian Language parameters
	Annex D (normative): French Language parameters
	Annex E (normative): Spanish Language parameters
	Annex F (normative): Dutch Language parameters
	Annex G (normative): Swedish Language parameters
	Annex H (normative): Danish Language parameters
	Annex J (normative): Portuguese Language parameters
	Annex K (normative): Finnish Language parameters
	Annex L (normative): Norwegian Language parameters
	Annex M (normative): Greek Language parameters
	Annex N (normative): Turkish Language parameters
	Annex P (normative): Reserved
	Annex Q (normative): Reserved
	Annex R (normative): Default Parameters for Unspecified Language
	R.1 Compression Language Context
	R.2 Punctuators
	R.3 Keyword Dictionaries
	R.4 Character Groups
	R.5 Huffman Initializations

	History

