

ETSI TS 101 903 V1.4.2 (2010-12)

Technical Specification

Electronic Signatures and Infrastructures (ESI);
XML Advanced Electronic Signatures (XAdES)

�

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)2

Reference
RTS/ESI-000112

Keywords
e-commerce, electronic signature, security,

XAdES

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2010.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered
for the benefit of its Members.

3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered

for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)3

Contents

Intellectual Property Rights .. 6

Foreword ... 6

Introduction .. 6

Editorial conventions .. 7

1 Scope .. 8

2 References .. 9

2.1 Normative references ... 9

2.2 Informative references .. 10

3 Definitions and abbreviations ... 10

3.1 Definitions .. 10

3.2 Abbreviations ... 10

4 Overview .. 11

4.1 Major Parties .. 11

4.2 Signatures policies .. 12

4.3 Signature properties and signature forms ... 12

4.4 Electronic signature forms .. 14

4.4.1 Basic electronic signature (XAdES-BES) ... 14

4.4.2 Explicit policy electronic signatures (XAdES-EPES) .. 17

4.4.3 Electronic signature formats with validation data ... 18

4.4.3.1 Electronic signature with time (XAdES-T) ... 18

4.4.3.2 Electronic signature with complete validation data references (XAdES-C) ... 19

4.5 Validation process .. 21

4.6 Arbitration .. 21

5 XML namespaces for the present document .. 22

5.1 Namespace for elements specified in XAdESv1.3.2 .. 22

5.2 Namespace for new elements defined in V1.4.1 .. 23

6 Syntax overview ... 23

6.1 Technical criteria .. 23

6.2 The QualifyingProperties element ... 24

6.2.1 The SignedProperties element ... 24

6.2.2 The UnsignedProperties element... 25

6.2.3 The SignedSignatureProperties element .. 25

6.2.4 The SignedDataObjectProperties element ... 26

6.2.5 The UnsignedSignatureProperties element ... 26

6.2.6 The UnsignedDataObjectProperties element ... 27

6.3 Incorporating qualifying properties into an XML signature ... 27

6.3.1 Signing properties ... 28

6.3.2 The QualifyingPropertiesReference element .. 28

7 Qualifying properties syntax .. 28

7.1 Auxiliary syntax ... 29

7.1.1 The AnyType data type ... 29

7.1.2 The ObjectIdentifierType data type .. 29

7.1.3 The EncapsulatedPKIDataType data type ... 30

7.1.4 Types for time-stamp tokens management ... 31

7.1.4.1 Time-stamp properties in XAdES ... 31

7.1.4.2 The GenericTimeStampType data type ... 31

7.1.4.3 The XAdESTimeStampType data type ... 33

7.1.4.3.1 Include mechanism .. 33

7.1.4.4 The OtherTimeStampType data type .. 34

7.2 Properties for XAdES-BES and XAdES-EPES forms ... 35

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)4

7.2.1 The SigningTime element ... 35

7.2.2 The SigningCertificate element... 35

7.2.3 The SignaturePolicyIdentifier element .. 36

7.2.3.1 Signature Policy qualifiers .. 38

7.2.4 Countersignatures ... 38

7.2.4.1 Countersignature identifier in Type attribute of ds:Reference ... 38

7.2.4.2 Enveloped countersignatures: the CounterSignature element ... 39

7.2.5 The DataObjectFormat element ... 40

7.2.6 The CommitmentTypeIndication element .. 41

7.2.7 The SignatureProductionPlace element .. 42

7.2.8 The SignerRole element .. 43

7.2.9 The AllDataObjectsTimeStamp element ... 44

7.2.10 The IndividualDataObjectsTimeStamp element .. 44

7.3 The SignatureTimeStamp element .. 45

7.4 Properties for references to validation data .. 45

7.4.1 The CompleteCertificateRefs element ... 46

7.4.2 The CompleteRevocationRefs element ... 46

7.4.3 The AttributeCertificateRefs element .. 48

7.4.4 The AttributeRevocationRefs element ... 49

7.5 Time-stamps on references to validation data .. 49

7.5.1 The SigAndRefsTimeStamp element .. 49

7.5.1.1 Not distributed case ... 50

7.5.1.2 Distributed case ... 50

7.5.2 The RefsOnlyTimeStamp element ... 51

7.5.2.1 Not distributed case ... 51

7.5.2.2 Distributed case ... 52

7.6 Properties for validation data values .. 52

7.6.1 The CertificateValues Property element .. 52

7.6.2 The RevocationValues property element ... 53

7.6.3 The AttrAuthoritiesCertValues element .. 54

7.6.4 The AttributeRevocationValues Property element ... 55

7.7 The ArchiveTimeStamp element ... 55

8 New unsigned properties in XAdESv1.4.1... 55

8.1 The new XAdESv141:TimeStampValidationData element ... 56

8.1.1 Use of URI attribute ... 56

8.2 The new xadesv141:ArchiveTimeStamp element ... 57

8.2.1 Not distributed case .. 58

8.2.2 Distributed case .. 59

9 Conformance requirements .. 60

9.1 Basic Electronic Signature (XAdES-BES) ... 60

9.2 Explicit policy based Electronic Signature (XAdES-EPES) .. 60

9.3 Verification using time-stamping ... 61

9.4 Verification using secure records ... 61

Annex A (informative): Definitions ... 62

Annex B (informative): Extended electronic signature forms .. 63

B.1 Extended signatures with time forms (XAdES-X) ... 63

B.2 Extended long electronic signatures with time (XAdES-X-L) ... 64

B.3 Archival electronic signatures (XAdES-A) .. 65

Annex C (informative): concepts and rationales ... 67

C.1 Multiple signatures and countersignatures ... 67

Annex D (normative): Schema definitions ... 68

Annex E (informative): Main changes to XAdESv1.4.1 .. 77

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)5

Annex F (informative): Incorporation of qualifying properties .. 79

Annex G (informative): Details on XAdES signatures validation .. 84

G.1 Signatures evolution example .. 84

G.1.1 Example of path to archival form with validation data references ... 87

G.1.2 Example of path to archival form without validation data references .. 90

G.2 Verification technical rules .. 91

G.2.1 Relationship with other standard verification procedures .. 91

G.2.2 Verification procedure .. 91

G.2.2.1 General Checks ... 91

G.2.2.2 Getting certificates for verification ... 91

G.2.2.3 Getting certificates status information for verification ... 92

G.2.2.4 Checking SigningTime .. 92

G.2.2.5 Checking SigningCertificate ... 92

G.2.2.6 Checking SignaturePolicyIdentifier .. 93

G.2.2.7 Checking Countersignatures ... 93

G.2.2.8 Checking DataObjectFormat .. 94

G.2.2.9 Checking CommitmentTypeIndication ... 94

G.2.2.10 Checking SignatureProductionPlace ... 94

G.2.2.11 Checking SignerRole .. 94

G.2.2.12 Checking CompleteCertificateRefs and AttributeCertificateRefs 94

G.2.2.13 Checking CompleteRevocationRefs and AttributeRevocationRefs 95

G.2.2.14 Checking CertificateValues and AttrAuthoritiesValues ... 96

G.2.2.15 Checking RevocationValues and AttributeRevocationValues ... 96

G.2.2.16 Checking time-stamp tokens ... 96

G.2.2.16.1 Containers using one identification mechanism .. 97

G.2.2.16.1.1 Checking AllDataObjectsTimeStamp .. 97

G.2.2.16.1.2 Checking IndividualDataObjectsTimeStamp .. 97

G.2.2.16.1.3 Checking SignatureTimeStamp .. 98

G.2.2.16.2 Containers using two/both identification mechanism ... 98

G.2.2.16.2.1 Common rules ... 98

G.2.2.16.2.2 Checking RefsOnlyTimeStamp .. 99

G.2.2.16.2.3 Checking SigAndRefsTimeStamp ... 100

G.2.2.16.2.4 Checking xadesV141:ArchiveTimeStamp .. 100

Annex H (informative): Versioning rules ... 102

Annex I (informative): Bibliography ... 103

History .. 104

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)6

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee Electronic Signatures and
Infrastructures (ESI).

Introduction
Electronic commerce is emerging as the future way of doing business between companies across local, wide area and
global networks. Trust in this way of doing business is essential for the success and continued development of
electronic commerce. It is therefore important that companies using this electronic means of doing business have
suitable security controls and mechanisms in place to protect their transactions and to ensure trust and confidence with
their business partners. In this respect the electronic signature is an important security component that can be used to
protect information and provide trust in electronic business.

The European Directive on a community framework for Electronic Signatures (also denoted as "the Directive" or the
"European Directive" in the rest of the present document) defines an electronic signature as: "data in electronic form
which is attached to or logically associated with other electronic data and which serves as a method of authentication".

The present document is intended to cover electronic signatures for various types of transactions, including business
transactions (e.g. purchase requisition, contract and invoice applications). Thus the present document can be used for
any transaction between an individual and a company, between two companies, between an individual and a
governmental body, etc. The present document is independent of any environment. It can be applied to any environment
e.g. smart cards, GSM SIM cards, special programs for electronic signatures, etc.

TS 101 733 [1] defines formats for advanced electronic signatures that remain valid over long periods, are compliant
with the European Directive and incorporate additional useful information in common use cases (like indication of the
commitment got by the signature production). Currently, it uses Abstract Syntax Notation 1 (ASN.1) and is based on the
structure defined in RFC 3852 [2] (in the present document the signatures aligned with this RFC will be denoted as
CMS signatures).

TS 101 733 [1]:

• Defines new ASN.1 types able to contain information for qualifying the CMS signatures so that they fulfil the
aforementioned requirements.

• Specifies how this qualifying information must be incorporated to the CMS signatures.

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)7

Currently, the IETF W3C XML-Signature Working Group has developed a syntax for XML signatures:
"XML-Signature Core Syntax and Processing" [3] (denoted as XMLDSIG in the present document). This syntax
provides a basic functionality for digitally signing several data objects at the same time. It also provides basic means to
incorporate any kind of needed qualifying information.

The present document:

• specifies XML schema [5] definitions for new XML types that can be used to generate properties that further
qualify XMLDSIG signatures with information able to fulfil a number of common requirements such as the
long term validity of the signature by usage of time-stamps, etc.;

• defines mechanisms for incorporating the aforementioned qualifying information;

• specifies formats for XML advanced electronic signatures that, by using the specified new XML types, remain
valid over long periods and incorporate additional useful information in common use cases. These signatures
will be built on XMLDSIG by addition of these properties as specified in [3], using the ds:Object XML
element defined there (here, as for the rest of the document, ds has been used as the prefix denoting the
namespace defined in [3]. Its value is defined in clause 4);

• defines a set of conformance requirements to claim endorsement to the present document.

The present document specifies two main types of properties: signed properties and unsigned properties. The first ones
are additional data objects that are also secured by the signature produced by the signer on the ds:SignedInfo
element, which implies that the signer gets these data objects, computes a hash for all of them and generates the
corresponding ds:Reference element. The unsigned properties are data objects added by the signer, by the verifier
or by other parties after the production of the signature. They are not secured by the signature in the ds:Signature
element (the one computed by the signer); however they can be actually signed by other parties (time-stamps,
countersignatures, certificates and CRLs are also signed data objects).

The XML advanced electronic signatures defined in the present document will be built by incorporating to the XML
signatures as defined in [3] XMLDSIG one new ds:Object XML element containing the additional qualifying
information.

NOTE: The present TS 101 903 V1.4.2 is published for fixing some errors (see annex E for details) in
TS 101 903 V1.4.1 and one of the two formerly published XML Schema files (the one named
"XAdESv141.xsd"). Implementers are warned that the new XML Schema file will substitute the old one.
They are also strongly adviced to use the new version of this XML Schema file as reference for their
implementations.

Editorial conventions
As it has been anticipated in the former clause, throughout the rest of the document the term XMLDSIG will refer to
XML signatures with basic functionality, i.e. to XML signatures that do not incorporate the qualifying information on
the signature, the signer or the signed data object(s) specified in the present document.

Throughout the rest of the document the terms "qualifying information", "properties" or "qualifying properties" will be
used to refer to the information added to the XMLDSIG to get an XML advanced electronic signature as specified in the
European Directive and with long term validity.

For the present document the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in the present document are to be
interpreted as described in RFC 2119 [9].

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)8

1 Scope
The present document defines XML formats for advanced electronic signatures that remain valid over long periods, are
compliant with the European Directive and incorporate additional useful information in common uses cases. This
includes evidence as to its validity even if the signer or verifying party later attempts to deny (repudiates) the validity of
the signature.

The present document is based on the use of public key cryptography to produce digital signatures, supported by public
key certificates.

The present document uses a signature policy, implicitly or explicitly referenced by the signer, as one possible basis for
establishing the validity of an electronic signature.

The present document uses time-stamps or trusted records (e.g. time-marks) to prove the validity of a signature long
after the normal lifetime of critical elements of an electronic signature and to support non-repudiation. It also specifies
the optional use of additional time-stamps to provide very long-term protection against key compromise or weakened
algorithms.

The present document then, specifies the use of the corresponding trusted service providers (e.g. time-stamping
authorities), and the data that needs to be archived (e.g. cross certificates and revocation lists). An advanced electronic
signature aligned with the present document can, in consequence, be used for arbitration in case of a dispute between
the signer and verifier, which may occur at some later time, even years later.

The present document builds on the standards for Electronic Signatures defined in:

• IETF W3C [3]: "XML-Signature Syntax and Processing";

• TS 101 733 [1]: "Electronic Signature Formats";

• ITU-T Recommendation X.509 [6]: "Information technology - Open Systems Interconnection - The Directory:
Authentication framework";

• RFC 3161 [10]: "Internet X.509 Public Key Infrastructure Time-Stamp protocol (TSP)".

NOTE: See clause 2 for a full set of references.

The present document, being built on the framework defined in [3] makes use of the terms defined there. Some of the
definitions in [3] are repeated in the present document for the sake of completeness.

The present document:

• shows a taxonomy of the qualifying information (properties) that have to be present in an electronic signature
to remain valid over long periods, to satisfy common use cases requirements, and to be compliant with the
European Directive;

• specifies XML schema definitions for new elements able to carry or to refer to the aforementioned properties;

• specifies two ways for incorporating the qualifying information to XMLDSIG, namely either by direct
incorporation of the qualifying information or using references to such information. Both ways make use of
mechanisms defined in XMLDSIG.

Clause 2 contains references to relevant documents and standards.

Clause 4 gives an overview of the various types of advanced electronic signatures defined in the present document.

Clause 5 contains the namespace specification for the XML schema definitions appearing in the present document.

Clause 6 describes how the qualifying information is added to XMLDSIG.

Clause 7 contains the details (including schema definitions) of the elements where the qualifying information is
included.

Clause 8 defines specifies new XAdES properties that are defined in a new XML Namespace.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)9

Clause 9 specifies conformance requirements for claiming endorsement to the present document.

Annex A is informative. It contains definitions for relevant concepts used throughout the present document.

Annex B is informative. It defines extended formats of advanced electronic signatures that include validation data and
time-stamps for archival.

Annex C is informative. It presents details on some concepts used in the present document.

Annex D is normative. It contains the whole set of schema definitions for the elements defined in the present document.

Annex E is informative. It contains a list of the most relevant changes since XAdES (V1.3.2) [12].

Annex F is informative. It shows examples of how to incorporate qualifying information leading to the XML Advanced
Electronic Signatures.

Annex G is informative. It presents certain technical rules that verifiers should take into account when verifying XAdES
signatures.

Annex H is informative and provides rules that have been and will be followed in the future for versioning.

Annex I is informative and contains bibliography.

2 References
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

[1] ETSI TS 101 733: "Electronic Signatures and Infrastructures (ESI); CMS Advanced Electronic
Signatures (CAdES)".

[2] IETF RFC 3852: "Cryptographic Message Syntax (CMS)".

NOTE: Obsoletes RFC 3369.

[3] W3C Recommendation: "XML-Signature Syntax and Processing".

[4] W3C Recommendation Part 1 (28 October 2004): "XML Schema Part 1: Structures".

[5] W3C Recommendation Part 2 (28 October 2004): "XML Schema Part 2: Datatypes".

[6] ITU-T Recommendation X.509: "Information technology - Open Systems Interconnection - The
Directory: Public-key and attribute certificate frameworks".

[7] W3C Recommendation (26 November 2008): "Extensible Markup Language (XML) 1.0".

[8] IETF RFC 2560: "X.509 Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP".

[9] IETF RFC 2119: "Key words for use in RFCs to Indicate Requirement Levels".

[10] IETF RFC 3161: "Internet X.509 Public Key Infrastructure Time Stamp Protocol (TSP)".

http://docbox.etsi.org/Reference

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)10

[11] IETF RFC 5280: "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile".

NOTE: Obsoletes RFC 3280.

[12] ETSI TS 101 903 (V1.3.2): "XML Advanced Electronic Signatures (XAdES)".

2.2 Informative references
The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI TR 102 038: "TC Security - Electronic Signatures and Infrastructures (ESI); XML format for
signature policies".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

arbitrator: entity that arbitrates in disputes between a signer and a verifier

attributes authorities: provide users with attributes linked to public key certificates

Certification Authorities (CA): provide users with public key certificates

registration authorities: allow the identification and registration of entities before a CA generates certificates

repository authorities: publish CRLs issued by CAs, signature policies issued by signature policy issuers and
optionally public key certificates

signature policy issuers: define the technical and procedural requirements for electronic signature creation and
validation, in order to meet a particular business need

signer: entity that creates the electronic signature

NOTE: When the signer digitally signs data object(s) using the prescribed format, this represents a commitment
on behalf of the signing entity to the data object(s) being signed.

Time-Stamping Authorities (TSA): attest that some data object was formed before a given trusted time

time-marking authorities: record that some data was formed before a given trusted time

Trusted Service Providers (TSPs): one or more entities that help to build trust relationships between the signer and
verifier

NOTE: They support the signer and verifier by means of supporting services including user certificates,
cross-certificates, time-stamping tokens, CRLs, AARLs, OCSP responses.

verifier: entity that verifies the electronic signature

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AARL Attribute Authority Revocation List
AC Attribute Certificate
ASN.1 Abstract Syntax Notation 1
BER Basic Encoding Rules

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)11

CA Certification Authority
CER Canonical Encoding Rules
CMS Cryptographic Message Syntax
CRL Certificate Revocation List
DER Distinguished Encoding Rules
DTD Document Type Definition
ES Electronic Signature
HTTP Hyper Text Transfer Protocol
OCSP Online Certificate Status Protocol
OID Object IDentifier
PER Packed Encoding Rules
PKC Public Key Certificate
TSA Time-Stamping Authorities
TSP Trusted Service Providers
TSU Time Stamping Unit
URI Uniform Resource Identifier
URN Uniform Resource Name
XAdES XML Advanced Electronic Signature
XAdES-A XAdES Archiving validation data
XAdES-BES XAdES Basic Electronic Signature
XAdES-C XAdES Complete validation data
XAdES-EPES XAdES Explicit Policy based Electronic Signature
XAdES-T XAdES with Time-stamp
XAdES-X XAdES eXtended validation data
XER XML Encoding Rules
XML eXtensible Markup Language
XMLDSIG eXtensible Markup Language Digital SIGnature
XSLT eXtensible Stylesheet Language Transformations

4 Overview

4.1 Major Parties
The following are the major parties involved in a business transaction supported by electronic signatures as defined in
the present document:

• the Signer;

• the Verifier;

• Trusted Service Providers (TSP);

• the Arbitrator.

The following TSPs are used to support the functions defined in the present document:

• Certification Authorities;

• Registration Authorities;

• Repository Authorities (e.g. a directory);

• Time-Stamping Authorities;

• Time-Marking Authorities;

• Signature Policy Issuers;

• Attribute Authorities.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)12

4.2 Signatures policies
The present document includes the concept of signature policies that can be used to establish technical consistency
when validating electronic signatures. When a comprehensive signature policy used by the verifier is either explicitly
indicated by the signer or implied by the data being signed, then a consistent result can be obtained when validating an
electronic signature. When the signature policy being used by the verifier is neither indicated by the signer nor can be
derived from other data, or the signature policy is incomplete then verifiers, including arbitrators, may obtain different
results when validating an electronic signature. Therefore, comprehensive signature policies that ensure consistency of
signature validation are recommended from both the signers and verifiers point of view.

Specification of the contents of signature policies is outside the scope of the present document. Further information on
signature policies is provided in TR 102 038 [i.1].

4.3 Signature properties and signature forms
The present document defines a set of signature properties that MAY be combined to obtain electronic signature forms
providing satisfaction of different requirements. Below follows a short overview of the properties:

• SignaturePolicyIdentifier. This property contains information being an unambiguous way for
identifying the signature policy under which the electronic signature has been produced. This will ensure that
the verifier will be able to use the same signature policy during the verification process. A signature policy is
useful to clarify the precise role and commitments that the signer intends to assume with respect to the signed
data object, and to avoid claims by the verifier that a different signature policy was implied by the signer.
Details on this property can be found in clause 7.2.3.

• Validation data properties. The present document defines a number of XML types able to contain both
validation data (certificate chains, CRLs, OCSP responses, etc.) and references to them (identifiers of
certificates, CRLs, OCSP responses, etc.). Properties of these types allow to incorporate all material used for
validation into the signature. They can be jointly used with time-stamp properties to provide long term
validity. Below follows the list of properties:

- CompleteCertificateRefs. It contains references to the CA certificates used to validate the
signature. Details on this property can be found in clause 7.4.1.

- CompleteRevocationRefs. It contains references to the full set of revocation information used for
the verification of the electronic signature. Details on this property can be found in clause 7.4.2.

- AttributeCertficateRefs. It contains references to the full set of Attribute Authorities
certificates that have been used to validate the attribute certificate. Details on this property can be found
in clause 7.4.3.

- AttributeRevocationRefs. It contains references to the full set of references to the revocation
data that have been used in the validation of the attribute certificate(s) present in the signature. Details on
this property can be found in clause 7.4.4.

- CertificateValues. It contains the values of certificates used to validate the signature. Details on
this property can be found in clause 7.6.1.

- RevocationValues. It contains the full set of revocation information used for the verification of the
electronic signature. Details on this property can be found in clause 7.6.2.

- AttrAuthoritiesCertValues. It contains values of the Attribute Authorities certificates that have
been used to validate the attribute certificate when present in the signature. Details on this property can
be found in clause 7.6.3.

- AttributeRevocationValues. It contains the full set of revocation data that have been used to
validate the attribute certificate when present in the signature. Details on this property can be found in
clause 7.6.4.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)13

• Time-stamp token container properties. The present document defines an abstract and two concrete XML
types (GenericTimeStampType, XAdESTimeStampType and OtherTimeStampType) for allowing
the inclusion of time-stamp tokens in a XMLDSIG signature. These types are defined in clause 7.1.4. The
present document uses XAdESTimeStampType for defining several time-stamp token container properties,
each one containing one or more time-stamp tokens covering different parts of the signature (common
elements defined in XMLDSIG, validation data, qualifying properties, etc.). Below follows the list:

- SignatureTimeStamp. Each time-stamp token within this property covers the digital signature value
element. Details on this property can be found in clause 7.3.

- AllDataObjectsTimeStamp. Each time-stamp token within this property covers all the signed data
objects. Details on this property can be found in clause 7.2.9.

- IndividualDataObjectsTimeStamp. Each time-stamp token within this property covers selected
signed data objects. Details on this property can be found in clause 7.2.10.

- SigAndRefsTimeStamp. Each time-stamp token within this property covers the signature and
references to validation data. Details on this property can be found in clause 7.5.1.

- RefsOnlyTimeStamp. Each time-stamp token within this property covers only references to
validation data. Details on this property can be found in clause 7.5.2.

- ArchiveTimeStamp. This element is deprecated by a new element having the same name but defined
in a different namespace. Details on this property can be found in clause 7.7.

- xadesv141:TimeStampValidationData. New property within new XML Namespace
http://uri.etsi.org/01903/v1.4.1# for incorporating validation data for a time-stamp token embedded in
one of the XAdES time-stamp token containers. Details on this property can be found in clause 8.1.

- xadesv141:ArchiveTimeStamp. New property defined within new XML Namespace
http://uri.etsi.org/01903/v1.4.1# that deprecates the old ArchiveTimeStamp defined in XML
Namespace http://uri.etsi.org/01903/v1.3.2#. Each time-stamp token within this property covers
signature and other properties required for providing long-term validity. Details on this property can be
found in clause 8.2.

• Other properties. The present document defines a number of additional properties that can be useful in a wide
range of environments, namely:

- SigningCertificate. This property contains an unambiguous reference to the signer's
certificate, formed by its identifier and the digest value of the certificate. Its usage is particularly
important when a signer holds a number of different certificates containing the same public key, to avoid
claims by a verifier that the signature implies another certificate with different semantics. This is also
important when the signer holds different certificates containing different public keys in order to provide
the verifier with the correct signature verification data. Finally, it is also important in case the issuing key
of the CA providing the certificate would be compromised. Details on this property can be found in
clause 7.2.2.

- SigningTime. This property contains the time at which the signer claims to have performed the
signing process. Details on this property can be found in clause 7.2.1.

- DataObjectFormat. This property identifies the format of a signed data object (when electronic
signatures are not exchanged in a restricted context) to enable the presentation to the verifier or use by
the verifier (text, sound or video) in exactly the same way as intended by the signer. Details on this
property can be found in clause 7.2.5.

- CommitmentTypeIndication. This property identifies the commitment undertaken by the signer in
signing (a) signed data object(s) in the context of the selected signature policy (when an explicit
commitment is being used). This will be required where a signature policy specifies more than a single
commitment type, each of which might have different legal interpretations of the intent of the signature
(e.g. proof of origin, proof of receipt, proof of creation, etc.). Details on this property can be found in
clause 7.2.6.

http://uri.etsi.org/01903/v1.4.1
http://uri.etsi.org/01903/v1.4.1
http://uri.etsi.org/01903/v1.3.2

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)14

- SignatureProductionPlace. This property contains the indication of the purported place where
the signer claims to have produced the signature. Details on this property can be found in clause 7.2.7.

- SignerRole. This property contains claimed or certified roles assumed by the signer in creating the
signature. Details on this property can be found in clause 7.2.8.

- CounterSignature. This property contains signature(s) produced on the signature. Details on this
property can be found in clause 7.2.4.

The aforementioned properties are defined in the normative part of the present document. They can be combined to
generate different electronic signature forms. Some of them are defined in clause 4.4 of its normative part. Additional
extended forms are defined in the informative annex B. Clause 8 specifies conformance requirements for claiming
endorsement to the present document.

4.4 Electronic signature forms
The current clause specifies four forms of XML advanced electronic signatures, namely the Basic Electronic
Signature (XAdES-BES), the Explicit Policy based Electronic Signature (XAdES-EPES), and the Electronic
Signature with Validation Data (XAdES-T and XAdES-C). Conformance to the present document mandates the
signer to create one of these formats.

The informative annex B defines extended forms of XAdES. Conformance to the present document does not mandate
the signer to create any of the forms defined in annex B.

4.4.1 Basic electronic signature (XAdES-BES)

A Basic Electronic Signature (XAdES-BES) in accordance with the present document will build on a XMLDSIG by
incorporating qualifying properties defined in the present document. They will be added to XMLDSIG within one
ds:Object acting as the bag for the whole set of qualifying properties, or by using the mechanism defined in
clause 6.3.2 that allows further distribution of the properties.

Some properties defined for building up this form will be covered by the signer's signature (signed qualifying
information grouped within one new element, SignedProperties, see clause 6.2.1). Other properties will be not
covered by the signer's signature (unsigned qualifying information grouped within one new element,
UnsignedProperties, see clause 6.2.2).

In a XAdES-BES the signature value SHALL be computed in the usual way of XMLDSIG over the data object(s) to be
signed and on the whole set of signed properties when present (SignedProperties element).

For this form it is mandatory to protect the signing certificate with the signature, in one of the two following ways:

• either incorporating the SigningCertificate signed property; or

• not incorporating the SigningCertificate but incorporating the signing certificate within the
ds:KeyInfo element and signing at least the signing certificate.

A XAdES-BES signature MUST, in consequence, contain at least one of the following elements with the specified
contents:

• The SigningCertificate signed property. This property MUST contain the reference and the digest
value of the signing certificate. It MAY contain references and digests values of other certificates (that MAY
form a chain up to the point of trust). In the case of ambiguities identifying the actual signer's certificate the
applications SHOULD include the SigningCertificate property.

• The ds:KeyInfo element. If SigningCertificate is present in the signature, no restrictions apply to
this element. If SigningCertificate element is not present in the signature, then the following
restrictions apply:

- the ds:KeyInfo element MUST include a ds:X509Data containing the signing certificate;

- the ds:KeyInfo element also MAY contain other certificates forming a chain that MAY reach the
point of trust;

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)15

- the ds:SignedInfo element MUST contain a ds:Reference element referencing ds:KeyInfo.
That ds:Reference element SHALL be built in such a way that at least the signing certificate is actually
signed.

NOTE 1: Signing the whole ds:KeyInfo, readers are warned that this locks the element: any addition of a
certificate or validation data would make signature verification fail. Applications may, alternatively, use
XPath transforms for signing at least the signing certificate, leaving the ds:KeyInfo element open for
addition of new data after signing.

By incorporating one of these elements, XAdES-BES prevents the simple substitution of the signer's certificate
(see clause 7.2.2).

A XAdES-BES signature MAY also contain the following properties:

• the SigningTime signed property;

• the DataObjectFormat signed property;

• the CommitmentTypeIndication signed property;

• the SignerRole signed property;

• the SignatureProductionPlace signed property;

• one or more IndividualDataObjectsTimeStamp or AllDataObjectTimeStamp signed
properties;

• one or more CounterSignature unsigned properties.

Below follows the structure of the XAdES-BES built by direct incorporation of the qualifying information in the
corresponding new XML elements to the XMLDSIG (see clause 6.3.1 for further details). In the example "?" denotes
zero or one occurrence; "+" denotes one or more occurrences; and "*" denotes zero or more occurrences.

The XML schema definition in clause 5 defines the prefix "ds" for all the XML elements already defined in
XMLDSIG, and states that the default namespace is the one defined for the present document. In consequence, in the
example of this clause, the elements already defined in XMLDSIG appear with the prefix "ds", whereas the new XML
elements defined in the present document appear without prefix.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)16

 XMLDSIG
 |
<ds:Signature ID?>- - - - - - - - -+- - - - -+
 <ds:SignedInfo> | |
 <ds:CanonicalizationMethod/> | |
 <ds:SignatureMethod/> | |
 (<ds:Reference URI? > | |
 (<ds:Transforms>)? | |
 <ds:DigestMethod/> | |
 <ds:DigestValue/> | |
 </ds:Reference>)+ | |
 </ds:SignedInfo> | |
 <ds:SignatureValue/> | |
 (<ds:KeyInfo>)?- - - - - - - - - + |
 |
 <ds:Object> |
 |
 <QualifyingProperties> |
 |
 <SignedProperties> |
 |
 <SignedSignatureProperties> |
 (SigningTime)? |
 (SigningCertificate)? |
 (SignatureProductionPlace)? |
 (SignerRole)? |
 </SignedSignatureProperties> |
 |
 <SignedDataObjectProperties> |
 (DataObjectFormat)* |
 (CommitmentTypeIndication)* |
 (AllDataObjectsTimeStamp)* |
 (IndividualDataObjectsTimeStamp)* |
 </SignedDataObjectProperties> |
 |
 </SignedProperties> |
 |
 <UnsignedProperties> |
 |
 <UnsignedSignatureProperties> |
 (CounterSignature)* |
 </UnsignedSignatureProperties> |
 |
 </UnsignedProperties> |
 |
 </QualifyingProperties> |
 |
 </ds:Object> |
 |
</ds:Signature>- - - - - - - - - - - - - - - +
 |
 XAdES-BES

Other XMLDSIG ds:Object elements with different contents MAY be added within the structure shown above to
satisfy requirements other than the ones expressed in the present document. This also applies to the rest of the examples
of structures of XAdES forms shown in this clause.

The signer's conformance requirements of a XAdES-BES are defined in clause 8.1.

NOTE 2: The XAdES-BES is the minimum format for an electronic signature to be generated by the signer. On its
own, it does not provide enough information for it to be verified in the longer term. For example,
revocation information issued by the relevant certificate status information issuer needs to be available for
long term validation (see clause 4.4.3).

The XAdES-BES satisfies the legal requirements for electronic signatures as defined in the European Directive on
electronic signatures. It provides basic authentication and integrity protection.

The semantics of the signed data of a XAdES-BES or its context may implicitly indicate a signature policy to the
verifier.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)17

4.4.2 Explicit policy electronic signatures (XAdES-EPES)

An Explicit Policy based Electronic Signature (XAdES-EPES) form in accordance with the present document,
extends the definition of an electronic signature to conform to the identified signature policy. A XAdES-EPES builds up
on a XMLDSIG or XAdES-BES forms by incorporating the SignaturePolicyIdentifier element. This signed
property indicates that a signature policy MUST be used for signature validation. It MAY explicitly identify the
signature policy. Other properties may be required by the mandated policy.

Clause 7.2.3 provides details on the specification of SignaturePolicyIdentifier property. Specification of the
actual signature policies is outside the scope of the present document. Further information on signature policies is
provided in TR 102 038 [i.1].

The structure of the XAdES-EPES (created by direct incorporation of the qualifying information to a XAdES-BES
form) is illustrated below.

 XMLDSIG
 |
<ds:Signature ID?>- - - - - - - - -+- - - - -+
 <ds:SignedInfo> | |
 <ds:CanonicalizationMethod/> | |
 <ds:SignatureMethod/> | |
 (<ds:Reference URI? > | |
 (<ds:Transforms>)? | |
 <ds:DigestMethod/> | |
 <ds:DigestValue/> | |
 </ds:Reference>)+ | |
 </ds:SignedInfo> | |
 <ds:SignatureValue/> | |
 (<ds:KeyInfo>)?- - - - - - - - - + |
 |
 <ds:Object> |
 |
 <QualifyingProperties> |
 |
 <SignedProperties> |
 |
 <SignedSignatureProperties> |
 (SigningTime)? |
 (SigningCertificate)? |
 (SignaturePolicyIdentifier) |
 (SignatureProductionPlace)? |
 (SignerRole)? |
 </SignedSignatureProperties> |
 |
 <SignedDataObjectProperties> |
 (DataObjectFormat)* |
 (CommitmentTypeIndication)* |
 (AllDataObjectsTimeStamp)* |
 (IndividualDataObjectsTimeStamp)* |
 </SignedDataObjectProperties> |
 |
 </SignedProperties> |
 |
 <UnsignedProperties> |
 |
 <UnsignedSignatureProperties> |
 (CounterSignature)* |
 </UnsignedSignatureProperties> |
 |
 </UnsignedProperties> |
 |
 </QualifyingProperties> |
 |
 </ds:Object> |
 |
</ds:Signature>- - - - - - - - - - - - - - - +
 |
 XAdES-EPES

The signer's conformance requirements of XAdES-EPES are defined in clause 8.2.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)18

4.4.3 Electronic signature formats with validation data

Validation of an electronic signature in accordance with the present document requires additional data needed to
validate the electronic signature. This additional data is called validation data; and includes:

• Public Key Certificates (PKCs) and Attributes Certificates (ACs);

• revocation status information for each PKC and AC;

• trusted time-stamps applied to the digital signature or a time-mark that shall be available in an audit log;

• when appropriate, the details of a signature policy to be used to verify the electronic signature.

The validation data may be collected by the signer and/or the verifier. When the signature policy identifier is present, it
shall meet the requirements of the signature policy. Validation data includes CA certificates as well as revocation status
information in the form of Certificate Revocation Lists (CRLs) or certificate status information (OCSP) provided by an
on-line service. Validation data also includes evidence that the signature was created before a particular point in time.
This may be either a time-stamp token or time-mark.

The present document defines properties able to contain validation data. Clauses below summarize some signature
formats that incorporate them and their most relevant characteristics.

4.4.3.1 Electronic signature with time (XAdES-T)

XML Advanced Electronic Signature with Time (XAdES-T) is a signature for which there exists a trusted time
associated to the signature. The trusted time may be provided by two different means:

• the SignatureTimeStamp as an unsigned property added to the electronic signature;

• a time mark of the electronic signature provided by a trusted service provider.

A time-mark provided by a Trusted Service would have similar effect to the SignatureTimeStamp property but in
this case no property is added to the electronic signature as it is the responsibility of the TSP to provide evidence of a
time mark when required to do so. The management of time marks is outside the scope of the present document.

Trusted time provides the initial steps towards providing long term validity. The XAdES-T trusted time indications
MUST be created before a certificate has been revoked or expired.

Below follows the structure of a XAdES-T form built on a XAdES-BES or a XAdES-EPES, by direct incorporation of a
time-stamp token within the SignatureTimeStamp element. A XAdES-T form based on time-marks MAY exist
without such an element.

 XMLDISG
 |
<ds:Signature ID?>- - - - - - - - +- - - - +- - - +
 <ds:SignedInfo> | | |
 <ds:CanonicalizationMethod/> | | |
 <ds:SignatureMethod/> | | |
 (<ds:Reference URI? > | | |
 (<ds:Transforms>)? | | |
 <ds:DigestMethod/> | | |
 <ds:DigestValue/> | | |
 </ds:Reference>)+ | | |
 </ds:SignedInfo> | | |
 <ds:SignatureValue/> | | |
 (<ds:KeyInfo>)? - - - - - - - - + | |
 | |
 <ds:Object> | |
 | |
 <QualifyingProperties> | |
 | |
 <SignedProperties> | |
 | |
 <SignedSignatureProperties> | |
 (SigningTime)? | |
 (SigningCertificate)? | |
 (SignaturePolicyIdentifier)? | |
 (SignatureProductionPlace)? | |
 (SignerRole)? | |

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)19

 </SignedSignatureProperties> | |
 | |
 <SignedDataObjectProperties> | |
 (DataObjectFormat)* | |
 (CommitmentTypeIndication)* | |
 (AllDataObjectsTimeStamp)* | |
 (IndividualDataObjectsTimeStamp)*| |
 </SignedDataObjectProperties> | |
 | |
 </SignedProperties> | |
 | |
 <UnsignedProperties> | |
 | |
 <UnsignedSignatureProperties> | |
 (CounterSignature)*- - - - - - - + |
 (SignatureTimeStamp)+ |
 </UnsignedSignatureProperties>- - -+ |
 | |
 </UnsignedProperties> | |
 | |
 </QualifyingProperties> | |
 | |
 </ds:Object> | |
 | |
</ds:Signature>- - - - - - - - - - - - - - +- - - +
 | |
 XAdES-BES(-EPES) |
 |
 XAdES-T

4.4.3.2 Electronic signature with complete validation data references (XAdES-C)

XML Advanced Electronic Signature with Complete validation data references (XAdES-C) in accordance with the
present document adds to the XAdES-T the CompleteCertificateRefs and CompleteRevocationRefs
unsigned properties as defined by the present document. If attribute certificates appear in the signature, then XAdES-C
also incorporates the AttributeCertificateRefs and the AttributeRevocationRefs elements.

CompleteCertificateRefs element contains a sequence of references to the full set of CA certificates that have
been used to validate the electronic signature up to (but not including) the signing certificate.

CompleteRevocationRefs element contains a full set of references to the revocation data that have been used in
the validation of the signer and CA certificates.

AttributeCertificateRefs and AttributeRevocationRefs elements contain references to the full set of
Attribute Authorities certificates and references to the full set of revocation data that have been used in the validation of
the attribute certificates present in the signature, respectively.

Storing the references allows the values of the certification path and revocation data to be stored elsewhere, reducing
the size of a stored electronic signature format.

Below follows the structure for XAdES-C built by direct incorporation of properties on a XAdES-T containing the
SignatureTimeStamp signed property. A XAdES-C form based on time-marks MAY exist without such element.

 XMLDISG
 |
<ds:Signature ID?>- - - - - - - - +- - - - - - +-+-+
 <ds:SignedInfo> | | | |
 <ds:CanonicalizationMethod/> | | | |
 <ds:SignatureMethod/> | | | |
 (<ds:Reference URI? > | | | |
 (<ds:Transforms>)? | | | |
 <ds:DigestMethod/> | | | |
 <ds:DigestValue/> | | | |
 </ds:Reference>)+ | | | |
 </ds:SignedInfo> | | | |
 <ds:SignatureValue/> | | | |
 (<ds:KeyInfo>)? - - - - - - - - + | | |
 | | |
 <ds:Object> | | |
 | | |
 <QualifyingProperties> | | |
 | | |
 <SignedProperties> | | |

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)20

 | | |
 <SignedSignatureProperties> | | |
 (SigningTime)? | | |
 (SigningCertificate)? | | |
 (SignaturePolicyIdentifier)? | | |
 (SignatureProductionPlace)? | | |
 (SignerRole)? | | |
 </SignedSignatureProperties> | | |
 | | |
 <SignedDataObjectProperties> | | |
 (DataObjectFormat)* | | |
 (CommitmentTypeIndication)* | | |
 (AllDataObjectsTimeStamp)* | | |
 (IndividualDataObjectsTimeStamp)* | | |
 </SignedDataObjectProperties> | | |
 | | |
 </SignedProperties> | | |
 | | |
 <UnsignedProperties> | | |
 | | |
 <UnsignedSignatureProperties> | | |
 (CounterSignature)*- - - - - - - - - + | |
 (SignatureTimeStamp)+- - - - - - - - - + |
 (CompleteCertificateRefs) |
 (CompleteRevocationRefs) |
 (AttributeCertificateRefs)? |
 (AttributeRevocationRefs)? |
 </UnsignedSignatureProperties>- - - - +-+ |
 | | |
 </UnsignedProperties> | | |
 | | |
 </QualifyingProperties> | | |
 | | |
 </ds:Object> | | |
 | | |
</ds:Signature>- - - - - - - - - - - - - - - -+-+-+
 | | |
 XAdES-BES(-EPES)| |
 | |
 XAdES-T |
 |
 XAdES-C

NOTE 1: As a minimum, the signer will provide the XAdES-BES or when indicating that the signature conforms to
an explicit signing policy the XAdES-EPES.

NOTE 2: To reduce the risk of repudiating signature creation, the trusted time indication needs to be as close as
possible to the time the signature was created. The signer or a TSP could provide the XAdES-T. If the
signer did not provide it, the verifier SHOULD create the XAdES-T on first receipt of an electronic
signature, because the XAdES-T provides independent evidence of the existence of the signature prior to
the trusted time indication.

NOTE 3: The signer or the TSP MAY provide the XAdES-C to minimize this risk and when the signer does not
provide the XAdES-C, the verifier SHOULD create the XAdES-C when the required components of
revocation and validation data become available. This MAY require a grace period.

NOTE 4: A grace period permits certificate revocation information to propagate through the revocation processes.
This period could extend from the time an authorized entity requests certificate revocation, to when
relying parties may be expected to have accessed the revocation information (for example, by contractual
requirements placed on relying parties). In order to make sure that the certificate was not revoked at the
time the signature was time-marked or time-stamped, verifiers SHOULD wait until the end of the grace
period. An illustration of a grace period is provided figure 1.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)21

Time-stamp or
time-mark over

signature

Signature
creation time

Certification
path

construction
and verification

First
revocation

status
checking

Second
revocation

status
checking

Build
ES - C

Grace period

Figure 1: Illustration of a Grace Period

The verifier's conformance requirements are defined in clause 8.3 for time stamped XAdES-C and clause 8.4 for time
marked XAdES-C signatures.

4.5 Validation process
The Validation Process validates an electronic signature, the output status of the validation process can be:

• invalid;

• incomplete validation;

• valid.

An Invalid response indicates that either the signature format is incorrect or that the digital signature value fails
verification (e.g. the integrity check on the digital signature value fails or any of the certificates on which the digital
signature verification depends is known to be invalid or revoked).

An Incomplete Validation response indicates that the format and digital signature verifications have not failed but
there is insufficient information to determine if the electronic signature is valid (for example when all the required
certificates are not available or the grace period is not completed). In the case of Incomplete Validation, the electronic
signature may be checked again at some later time when additional validation information becomes available. Also, in
the case of incomplete validation, additional information may be made available to the application or user, thus
allowing the application or user to decide what to do with partially correct electronic signatures.

A Valid response indicates that the signature has passed verification and it complies with the signature validation
policy.

Informative annex G gives details on technical rules that verifiers should follow for verifying XAdES signatures.

4.6 Arbitration
In case of arbitration, a XAdES-C form provides reliable evidence for a valid electronic signature, provided that:

• the arbitrator knows where to retrieve the signer's certificate (if not already present), all the required
certificates and CRLs, ACRLs or OCSP responses referenced in the XAdES-C;

• when time-stamping in the XAdES-T is being used, the certificate from the TSU that has issued the
time-stamp token in the XAdES-T format is still within its validity period;

• when time-stamping in the XAdES-T is being used, the certificate from the TSU that has issued the
time-stamp token in the XAdES-T format is not revoked at the time of arbitration;

• when time-marking in the XAdES-T is being used, a reliable audit trail from the Time-Marking Authority is
available for examination regarding the time;

Grace period

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)22

• none of the private keys corresponding to the certificates used to verify the signature chain have ever been
compromised;

• the cryptography used at the time the XAdES-C was built has not been broken at the time the arbitration is
performed.

If the signature policy can be explicitly or implicitly identified then an arbitrator is able to determine the rules required
to validate the electronic signature.

5 XML namespaces for the present document

5.1 Namespace for elements specified in XAdESv1.3.2
The present document is backwards compatible with XAdESv1.3.2 and builds on the XML Schema defined for
XAdESv1.3.2 [12]. For this schema the XML namespace URI is defined as follows:

• http://uri.etsi.org/01903/v1.3.2#

NOTE 1: The XML Schema file may be found at the following URL:

� http://uri.etsi.org/01903/v1.3.2/XAdES.xsd.

The following namespace declarations apply for the XML Schema definitions throughout the present document, except
for the new unsigned properties defined in clause 8 of the present document.

<?xml version="1.0"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://uri.etsi.org/01903/v1.3.2#"
 targetNamespace="http://uri.etsi.org/01903/v1.3.2#"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 elementFormDefault="qualified">
<xsd:import namespace="http://www.w3.org/2000/09/xmldsig#"
schemaLocation="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd"/>

NOTE 2: Three defects were reported in the XAdESv1.3.2 XML Schema, which have been fixed in the XML
Schema version specified in the present document (XAdES V1.4.1). Below follow the defects that have
been fixed:

1) The XML Schema definitions of GenericTimeStampType and XAdESTimeStampType
resulted in an invalid restriction, which has been fixed by adding a minOccurs="0" facet within
the definition of GenericTimeStampType. This change does not affect backwards
compatibility, as it only affects an abstract type and keeps unchanged the definition of
XAdESTimeStampType.

2) A minOccurs="0" facet has been added in the SignedSignatureProperties element
within SignedProperties. All the signed properties are optional, even the the
SigningCertificate if the signer's certificate is protected in the alternative way described in
clause 4.1.1.

3) The minOccurs="0" facet has been deleted in the UnsignedDataObjectProperty
element within the definition of UnsignedDatatObjectsPropertiesType. This facet
would allow to have empty UnsignedDatatObjectsProperties elements.

http://uri.etsi.org/01903/v1.3.2/
http://uri.etsi.org/01903/v1.3.2/XAdES.xsd

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)23

5.2 Namespace for new elements defined in V1.4.1
TS 101 903 V1.4.1 defined two new unsigned properties making use of the extension mechanism specified in
xades:UnsignedSignatureProperties, namely the <xsd:any namespace="##other"> element.

The new properties are defined within a different XML namespace, whose URI is as follows:

• http://uri.etsi.org/01903/v1.4.1#.

NOTE: A new XML Schema file is, in consequence, required for containing the definition of the two new
elements, which may be found at http://uri.etsi.org/01903/v1.4.1/XAdESv141.xsd.

Namespace declarations for this second XML Schema file may be found in clause 8 and in the normative annex D.

The following notation will be used for qualified names of the different XML elements:

• For the elements already defined within XAdESv1.3.2 XML Namespace (whose value is
http://uri.etsi.org/01903/v1.3.2#) qualified names with empty prefix or with prefix "xades" will be used (for
example: xades:UnsignedSignatureProperties or UnsignedSignatureProperties will be
undistincly used for identifying the parent element containing all the unsigned properties qualifying the
signature).

• For the new elements defined within the XML Namespace whose URI value is http://uri.etsi.org/01903/v1.4.1
qualified names will be used with the prefix "xadesv141". Outside the XML Schema excerpts showing
their definition, the two new elements will be identified by xadesv141:TimeStampValidationData
and xadesv141:ArchiveTimeStamp.

6 Syntax overview
This clause introduces the syntax for adding qualifying information to an XML signature.

Clause 6.1 lists a set of technical criteria that has been taken into account for this syntax proposal.

Clause 6.2 specifies an XML element that acts as a container for the qualifying information. Additionally it describes
the connection between the XML signature and this container element.

Clause 6.3 shows two ways of incorporating such qualifying information to XMLDSIG.

6.1 Technical criteria
The following considerations have been taken into account for the syntax specification for qualifying information on
XML signatures:

• The present document specifies how to add qualifying information to an XML signature such that it satisfies
both the requirements for an Advanced Electronic Signature according to the European Directive on Electronic
Signatures and for remaining valid over long period of time. TS 101 733 [1] identifies all the required
information to be added in order to satisfy those requirements. Additionally it defines appropriate data
structures for those qualifying properties using ASN.1, that fit for CMS [2] style electronic signatures. The aim
of the present document is to specify similar XML qualifying properties that carry such qualifying information
and are used to amend XMLDSIG.

• The new XML qualifying properties should not be the result of a stubborn translation process from ASN.1 to
XML. This would mean neglecting syntactic differences between CMS [2] and XMLDSIG such as the
possible number of signers and multiple signed data objects covered by a single signature, as well as ignoring
powerful features of the XML environment such as linking information by using Uniform Resource Identifiers
(URI).

• XML Schema as specifies in [4] and [5] has been chosen as the normative language for defining the new XML
structures in the present document rather than the DTD vocabulary defined in XML 1.0 [7], since it is
namespace aware, allows reuse of existing structures and allows a stricter definition of the allowed contents.

http://uri.etsi.org/01903/v1.4.1
http://uri.etsi.org/01903/v1.4.1/XAdESv141.xsd
http://uri.etsi.org/01903/v1.3.2
http://uri.etsi.org/01903/v1.4.1

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)24

• XML structures that have been defined in related XML standards such as XML Schema [5] and
XMLDSIG [3] have been reused where appropriate.

6.2 The QualifyingProperties element
The QualifyingProperties element acts as a container element for all the qualifying information that should be
added to an XML signature. The element has the following structure.

<xsd:element name="QualifyingProperties" type="QualifyingPropertiesType"/>
<xsd:complexType name="QualifyingPropertiesType">
 <xsd:sequence>
 <xsd:element name="SignedProperties" type="SignedPropertiesType"
 minOccurs="0"/>
 <xsd:element name="UnsignedProperties"
 type="UnsignedPropertiesType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="Target" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

The qualifying properties are split into properties that are cryptographically bound to (i.e. signed by) the XML signature
(SignedProperties), and properties that are not cryptographically bound to the XML signature
(UnsignedProperties). The SignedProperties MUST be covered by a ds:Reference element of the
XML signature.

The mandatory Target attribute MUST refer to the Id attribute of the corresponding ds:Signature. Its value
MUST be an URI with a bare-name XPointer fragment. When this element is enveloped by the XAdES signature, its
not-fragment part MUST be empty. Otherwise, its not-fragment part MAY NOT be empty.

The optional Id attribute can be used to make a reference to the QualifyingProperties container.

It is strongly recommended not to include empty xades:SignedProperties or empty
xades:UnsignedProperties elements within the signature. Applications verifying XAdES signatures MUST
ignore empty xades:SignedProperties and empty xades:UnsignedProperties elements.

6.2.1 The SignedProperties element

The SignedProperties element contains a number of properties that are collectively signed by the XMLDSIG
signature.

Below follows the schema definition for SignedProperties element.

<xsd:element name="SignedProperties" type="SignedPropertiesType" />

<xsd:complexType name="SignedPropertiesType">
 <xsd:sequence>
 <xsd:element name="SignedSignatureProperties"
 type="SignedSignaturePropertiesType" minOccurs="0"/>
 <xsd:element name="SignedDataObjectProperties"
 type="SignedDataObjectPropertiesType" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

The SignedProperties element MAY contain properties that qualify the XMLDSIG signature itself or the signer.
If present, they are included as content of the SignedSignatureProperties element.

NOTE: If the ds:KeyInfo element is build according as specified in clause 4.4.1, it could happen that no
signed signature property is required, and no SignedSignatureProperties element would be
needed in the XAdES signature.

The SignedProperties element MAY also contain properties that qualify some of the signed data objects. These
properties appear as content of the SignedDataObjectProperties element.

The optional Id attribute can be used to make a reference to the SignedProperties element.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)25

6.2.2 The UnsignedProperties element

The UnsignedProperties element contains a number of properties that are not signed by the XMLDSIG
signature.

<xsd:element name="UnsignedProperties" type="UnsignedPropertiesType" />

<xsd:complexType name="UnsignedPropertiesType">
 <xsd:sequence>
 <xsd:element name="UnsignedSignatureProperties"
 type="UnsignedSignaturePropertiesType" minOccurs="0"/>
 <xsd:element name="UnsignedDataObjectProperties"
 type="UnsignedDataObjectPropertiesType" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

The UnsignedProperties element MAY contain properties that qualify XML signature itself or the signer. They
are included as content of the UnsignedSignatureProperties element.

The UnsignedProperties element MAY also contain properties that qualify some of the signed data objects.
These properties appear as content of the UnsignedDataObjectProperties element.

The optional Id attribute can be used to make a reference to the UnsignedProperties element.

6.2.3 The SignedSignatureProperties element

This element contains properties that qualify the XML signature that has been specified with the Target attribute of
the QualifyingProperties container element.

<xsd:element name="SignedSignatureProperties"
 type="SignedSignaturePropertiesType" />

<xsd:complexType name="SignedSignaturePropertiesType">
 <xsd:sequence>
 <xsd:element name="SigningTime" type="xsd:dateTime"
 minOccurs="0"/>
 <xsd:element name="SigningCertificate" type="CertIDListType"
 minOccurs="0"/>
 <xsd:element name="SignaturePolicyIdentifer"
 type="SignaturePolicyIdentifierType" minOccurs="0"/>
 <xsd:element name="SignatureProductionPlace"
 type="SignatureProductionPlaceType"
 minOccurs="0"/>
 <xsd:element name="SignerRole" type="SignerRoleType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

The optional Id attribute can be used to make a reference to the SignedSignatureProperties element.

The qualifying property SigningTime is described in detail in clause 7.2.1, SigningCertificate in
clause 7.2.2, SignaturePolicyIdentifier in clause 7.2.3, SignatureProductionPlace in clause 7.2.7,
and SignerRole in clause 7.2.8.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)26

6.2.4 The SignedDataObjectProperties element

This element contains properties that qualify some of the signed data objects.

<xsd:element name="SignedDataObjectProperties"
 type="SignedDataObjectPropertiesType"/>

<xsd:complexType name="SignedDataObjectPropertiesType">
 <xsd:sequence>
 <xsd:element name="DataObjectFormat" type="DataObjectFormatType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="CommitmentTypeIndication"
 type="CommitmentTypeIndicationType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="AllDataObjectsTimeStamp" type="XAdESTimeStampType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="IndividualDataObjectsTimeStamp"
 type="XAdESTimeStampType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

The optional Id attribute can be used to make a reference to the SignedDataObjectProperties element.

The qualifying property AllDataObjectsTimeStamp is described in detail in clause 7.2.9,
IndividualDataObjectsTimeStamp in clause 7.2.10, DataObjectFormat in clause 7.2.5, and
CommitmentTypeIndication in clause 7.2.6.

All these properties qualify the signed data object after all the required transforms have been made.

6.2.5 The UnsignedSignatureProperties element

This element contains properties that qualify the XML signature that has been specified with the Target attribute of
the QualifyingProperties container element. The content of this element is not covered by the XML signature.

<xsd:element name="UnsignedSignatureProperties"
 type="UnsignedSignaturePropertiesType"/>

<xsd:complexType name="UnsignedSignaturePropertiesType">
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="CounterSignature" type="CounterSignatureType" />
 <xsd:element name="SignatureTimeStamp" type="XAdESTimeStampType/>
 <xsd:element name="CompleteCertificateRefs"
 type="CompleteCertificateRefsType"/>
 <xsd:element name="CompleteRevocationRefs"
 type="CompleteRevocationRefsType"/>
 <xsd:element name="AttributeCertificateRefs"
 type="CompleteCertificateRefsType"/>
 <xsd:element name="AttributeRevocationRefs"
 type="CompleteRevocationRefsType"/>
 <xsd:element name="SigAndRefsTimeStamp" type="XAdESTimeStampType"/>
 <xsd:element name="RefsOnlyTimeStamp" type="XAdESTimeStampType"/>
 <xsd:element name="CertificateValues" type="CertificateValuesType"/>
 <xsd:element name="RevocationValues" type="RevocationValuesType"/>
 <xsd:element name="AttrAuthoritiesCertValues"
 type="CertificateValuesType"/>
 <xsd:element name="AttributeRevocationValues"
 type="RevocationValuesType"/>
 <xsd:element name="ArchiveTimeStamp" type="XAdESTimeStampType"/>
 <xsd:any namespace="##other" />
 </xsd:choice>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

The optional Id attribute can be used to make a reference to the UnsignedSignatureProperties element.

The xsd:any element MUST be used only for ensuring compatibility among different versions of XAdES. By using
this element, applications MAY add any unsigned signature property defined in any other version of XAdES. It MUST
NOT contain elements whose types and contents are defined outside of a XAdES specification. This would allow, for
instance, the inclusion, of a time-stamp container of one version within an element of another version.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)27

The qualifying property CounterSignature is described in detail in clause 7.2.4, SignatureTimeStamp in
clause 7.3, CompleteCertificateRefs in clause 7.4.1, CompleteRevocationRefs in clause 7.4.2,
AttributeCertificateRefs in clause 7.4.3, AttributeRevocationRefs in clause 7.4.4,
SigAndRefsTimeStamp in clause 7.5.1, RefsOnlyTimeStamp in clause 7.5.2, CertificateValues in
clause 7.6.1, RevocationValues in clause 7.6.2, AttrAuthoritiesCertValues in clause 7.6.3,
AttributeRevocationValues in clause 7.6.4, and ArchiveTimeStamp in clause 7.7.1. These clauses give
details on additional restrictions in the number of times that a certain property MAY appear in the different XAdES
forms. The present document defines two new unsigned properties within the XML namespace whose URI is
http://uri.etsi.org/01903/v1.4.1#, namely: xadesv141:TimeStampValidationData and
xadesv141:ArchiveTimeStamp, which are defined in a different XML Schema file (see clause 8 and annex D
for details of their definitions).

6.2.6 The UnsignedDataObjectProperties element

This element contains properties that qualify some of the signed data objects. The signature generated by the signer
does not cover the content of this element.

<xsd:element name="UnsignedDataObjectProperties"
 type="UnsignedDataObjectPropertiesType" />

<xsd:complexType name="UnsignedDataObjectPropertiesType">
 <xsd:sequence>
 <xsd:element name="UnsignedDataObjectProperty" type="AnyType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

The optional Id attribute can be used to make a reference to the UnsignedDataObjectProperties element.

TS 101 733 [1] does not specify the usage of any unsigned property qualifying the signed data object. The present
document, however, incorporates this element for the sake of completeness and to cope with potential future needs for
inclusion of such kind of properties. The schema definition leaves open the definition of the contents of this type. The
type AnyType is defined in clause 7.1.1.

6.3 Incorporating qualifying properties into an XML signature
The present document utilizes the ds:Object auxiliary element from XMLDSIG [3]. It MUST be used to incorporate
the qualifying properties into the XMLDSIG signature. In principle, two different means are provided for this
incorporation:

• direct incorporation means that a QualifyingProperties element is put as a child of the ds:Object;

• indirect incorporation means that one or more QualifyingPropertiesReference elements appear as
children of the ds:Object. Each one contains information about one QualifyingProperties element
that is stored in place different from the signature (see clause 6.3.2).

However, the following restrictions apply for using ds:Object, QualifyingProperties and
QualifyingPropertiesReference:

• all instances of the QualifyingProperties and the QualifyingPropertiesReference elements
MUST occur within a single ds:Object element;

• at most one instance of the QualifyingProperties element MAY occur within this ds:Object
element;

• all signed properties MUST occur within a single QualifyingProperties element. This element can
either be a child of this ds:Object element (direct incorporation), or it can be referenced by a
QualifyingPropertiesReference element. See clause 6.3.1 for information how to sign properties;

• zero or more instances of the QualifyingPropertiesReference element MAY occur within this
ds:Object element.

http://uri.etsi.org/01903/v1.4.1

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)28

No restrictions apply to the relative position of the ds:Object containing the QualifyingProperties or
QualifyingPropertiesReference with respect to others ds:Object elements present within
ds:Signature.

It is out of the scope of the present document to specify the mechanisms required to guarantee the correct storage of the
distributed QualifyingProperties elements (i.e. that the properties are stored by the entity that has to store them
and that they are not undetectable modified).

6.3.1 Signing properties

As has already been stated, all the properties that should be protected by the signature have to be collected in a single
instance of the QualifyingProperties element. Actually these properties are children of the
SignedProperties child of this element.

In order to protect the properties with the signature, a ds:Reference element MUST be added to the XMLDSIG
signature. This ds:Reference element MUST be composed in such a way that it uses the SignedProperties
element mentioned above as the input for computing its corresponding digest.

Additionally, the present document MANDATES the use of the Type attribute of this particular ds:Reference
element, with its value set to:

• http://uri.etsi.org/01903#SignedProperties.

This value indicates that the data used for hash computation is a SignedProperties element and therefore helps a
verifying application to detect the signed properties of a signature conforming to the present document.

6.3.2 The QualifyingPropertiesReference element

This element contains information about a QualifyingProperties element that is stored in place different from
the signature, for instance in another XML document.

<xsd:element name="QualifyingPropertiesReference"
 type="QualifyingPropertiesReferenceType"/>

<xsd:complexType name="QualifyingPropertiesReferenceType">
 <xsd:attribute name="URI" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

The mandatory URI attribute contains a bare-name XPointer fragment and references an external QualifyingProperties
element. Its not-fragment part identifies the enclosing document and its bare-name XPointer fragment identifies the
aforementioned element.

The optional Id attribute can be used to make a reference to the QualifyingPropertiesReference element.

7 Qualifying properties syntax
This clause describes in detail all qualifying properties which have been introduced in clause 4.3. It provides a rationale
for each property as well as its XML Schema definition together with explanatory textual information.

Clause 7.1 summarizes a set of auxiliary structures that will be needed later on, while each of the remaining clauses
corresponds to a certain qualifying property.

Clause 7.2 describes in detail the qualifying properties that can appear in XAdES-BES and XAdES-EPES electronic
signatures forms as described in clause 4.

Clause 7.3 describes in detail the SignatureTimeStamp.

Clause 7.4 describes in detail properties that contain references to validation data.

Clause 7.5 describes in detail properties that can contain time-stamps covering references to validation data.

http://uri.etsi.org/01903

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)29

Clause 7.6 describes in detail properties that can contain validation data values.

Clause 7.7 describes in detail the ArchivalTimeStamp.

7.1 Auxiliary syntax
Certain auxiliary XML structures, utilized in several cases, are described in the subsequent clauses.

7.1.1 The AnyType data type

The AnyType Schema data type has a content model that allows a sequence of arbitrary XML elements that (mixed
with text) is of unrestricted length. It also allows for text content only. Additionally, an element of this data type can
bear an unrestricted number of arbitrary attributes. It is used throughout the remaining parts of this clause wherever the
content of an XML element has been left open.

<xsd:complexType name="AnyType" mixed="true">
 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
 <xsd:any namespace="##any" processContents="lax"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##any"/>
</xsd:complexType>

7.1.2 The ObjectIdentifierType data type

The ObjectIdentifierType data type can be used to identify a particular data object.

It allows the specification of a unique and permanent identifier of an object. In addition, it may also contain, a textual
description of the nature of the data object, and a number of references to documents where additional information
about the nature of the data object can be found.

<xsd:complexType name="ObjectIdentifierType">
 <xsd:sequence>
 <xsd:element name="Identifier" type="IdentifierType"/>
 <xsd:element name="Description" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DocumentationReferences"
 type="DocumentationReferencesType" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

The Identifier element contains a permanent identifier. Once the identifier is assigned, it can never be
re-assigned again. It supports both the mechanism that is used to identify objects in ASN.1 and the mechanism that is
usually used to identify objects in an XML environment:

• in a XML environment objects are typically identified by means of a Uniform Resource Identifier, URI. In this
case, the content of Identifier consists of the identifying URI, and the optional Qualifier attribute
does not appear;

• in ASN.1 an Object IDentifier (OID) is used to identify an object. To support an OID, the content of Identifier
consists of an OID, either encoded as Uniform Resource Name (URN) or as Uniform Resource Identifier
(URI). The optional Qualifier attribute can be used to provide a hint about the applied encoding (values
OIDAsURN or OIDAsURI).

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)30

Should an OID and an URI exist identifying the same object, the present document encourages the use of the URI as
explained in the first bullet above.

<xsd:complexType name="IdentifierType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:anyURI">
 <xsd:attribute name="Qualifier" type="QualifierType"
 use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>
<xsd:simpleType name="QualifierType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="OIDAsURI"/>
 <xsd:enumeration value="OIDAsURN"/>
 </xsd:restriction>
</xsd:simpleType>

The optional Description element contains an informal text describing the object identifier.

The optional DocumentationReferences element consists of an arbitrary number of references pointing to
further explanatory documentation of the object identifier.

<xsd:complexType name="DocumentationReferencesType">
 <xsd:sequence maxOccurs="unbounded">
 <xsd:element name="DocumentationReference" type="xsd:anyURI"/>
 </xsd:sequence>
</xsd:complexType>

7.1.3 The EncapsulatedPKIDataType data type

The EncapsulatedPKIDataType is used to incorporate non XML pieces of PKI data into an XML structure.
Examples of such PKI data that are widely used at the time being include X.509 certificates and revocation lists, OCSP
responses, attribute certificates and time-stamp tokens.

<xsd:complexType name="EncapsulatedPKIDataType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:base-64Binary">
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 <xsd:attribute name="Encoding" type="xsd:anyURI"
 use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

The content of this data type is the piece of PKI data, base-64 encoded as defined in [3].

The Encoding attribute is an URI identifying the encoding used in the original PKI data. So far, the following URIs
have been identified:

• http://uri.etsi.org/01903/v1.2.2#DER for denoting that the original PKI data were ASN.1 data encoded in
DER.

• http://uri.etsi.org/01903/v1.2.2#BER for denoting that the original PKI data were ASN.1 data encoded in BER.

• http://uri.etsi.org/01903/v1.2.2#CER for denoting that the original PKI data were ASN.1 data encoded in CER.

• http://uri.etsi.org/01903/v1.2.2#PER for denoting that the original PKI data were ASN.1 data encoded in PER.

• http://uri.etsi.org/01903/v1.2.2#XER for denoting that the original PKI data were ASN.1 data encoded in
XER.

If the Encoding attribute is not present, then it is assumed that the PKI data is ASN.1 data encoded in DER.

NOTE: The present document restricts the encoding options to only one for certain types of the aforementioned
PKI data in those sections that specify XAdES properties related to these data.

The optional ID attribute can be used to make a reference to an element of this data type.

http://uri.etsi.org/01903/v1.2.2
http://uri.etsi.org/01903/v1.2.2
http://uri.etsi.org/01903/v1.2.2
http://uri.etsi.org/01903/v1.2.2
http://uri.etsi.org/01903/v1.2.2

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)31

7.1.4 Types for time-stamp tokens management

XAdES uses time-stamp tokens in a number of use cases. The present document defines:

• A XML schema definition of an abstract base type and two concrete derived types used as containers for
time-stamp tokens.

• A number of properties of one of the aforementioned concrete types. Time-stamp tokens included in these
properties will cover a specific set of elements and properties of XAdES signature forms and will satisfy, in
this way, different requirements.

A time-stamp token is obtained by sending the digest value of the given data to the Time-Stamp Authority (TSA). The
returned time-stamp token is a signed data that contains the digest value, the identity of the TSA, and the time of
stamping. This proves that the given data existed before the time of stamping.

NOTE: readers should note that the term time-stamp token used thorought the present document does NOT refer
to the TSA's response to a requesting client, but the token generated by the TSA, which is present within
this response. In the case of RFC 3161 [10] protocol, the time-stamp token term is referring to the
timeStampToken field within the TimeStampResp element (the TSA's response returned to the
requesting client).

XAdES time-stamp tokens container properties contain time-stamp tokens computed on both elements defined in
XMLDSIG [3] and properties defined in the present document. The present document uses the term time-stamped data
objects for indistinctly denoting any of them.

7.1.4.1 Time-stamp properties in XAdES

Below follows the list of the properties containing time-stamps that are defined by the present document:

• Properties that contain time-stamp tokens proving that some or all the data objects to be signed have been
created before some time: AllDataObjectsTimeStamp and
IndividualDataObjectsTimeStamp.

• SignatureTimeStamp: it is a container for a time-stamp token over the SignatureValue element to
protect against repudiation in case of a key compromise.

• Two properties contain time-stamp tokens provided for protection against fraudulence in case of a CA key
compromise:

- RefsOnlyTimeStamp: it contains a time-stamp token only over all certificate and revocation
information references.

- SigAndRefsTimeStamp: it contains a time-stamp token computed over the signature value, the
signature time-stamp and the certificate and revocation information references.

• To provide for long term validity of an XML signature, the signature and validation data values are
time-stamped. xadesv141:ArchiveTimeStamp is defined for this purpose. More than one instance of
this property can be added as time goes on to the archived electronic signature.

7.1.4.2 The GenericTimeStampType data type

The abstract base container type for time-stamp tokens specified by the present document does have the following
features:

• It may contain encapsulated RFC 3161 [10] time-stamp tokens as well as XML time-stamp tokens.

• It may contain more than one time-stamp token generated for the same XAdES data objects (each one issued
by different TSAs, for instance).

• It provides means for managing time-stamp tokens computed on XAdES data objects (as for the
aforementioned XAdES properties) or time-stamp tokens computed on external data.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)32

• It may use specific elements for identifying what is time-stamped and how to generate the input data for the
computation of the digest value to be sent to the TSA. For certain XAdES data objects under certain
circumstances this information may be implicit.

Below follows the schema definition for the data type.

 <xsd:complexType name="IncludeType">
 <xsd:attribute name="URI" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="referencedData" type="xsd:boolean"
 use="optional"/>
 </xsd:complexType>

 <xsd:element name="ReferenceInfo" type="ReferenceInfoType"/>
 <xsd:complexType name="ReferenceInfoType">
 <xsd:sequence>
 <xsd:element ref="ds:DigestMethod"/>
 <xsd:element ref="ds:DigestValue"/>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 <xsd:attribute name="URI" type="xsd:anyURI" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="GenericTimeStampType" abstract="true">
 <xsd:sequence>
 <xsd:choice minOccurs="0">
 <xsd:element ref="Include" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="ReferenceInfo" maxOccurs="unbounded"/>
 </xsd:choice>
 <xsd:element ref="ds:CanonicalizationMethod" minOccurs="0"/>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="EncapsulatedTimeStamp"
 type="EncapsulatedPKIDataType"/>
 <xsd:element name="XMLTimeStamp" type="AnyType"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 </xsd:complexType>

When present, the optional ds:CanonicalizationMethod element will indicate the canonicalization method
used for canonicalizing XML node sets resulting after retrieving (and processing when required) the data objects
covered by the time-stamp token(s). When not present, the standard canonicalization method as specified by XMLDSIG
MUST be used.

The time-stamp token generated by the TSA can be either an ASN.1 data object (as defined in [10], use
EncapsulatedTimeStamp), or it can be encoded as XML (use XMLTimeStamp).

Details on the different elements and supporting types are given in the clauses that define the two concrete types:
XAdESTimeStampType and OtherTimeStampType.

NOTE: By specifying <xsd:element ref="Include" minOccurs="0" maxOccurs="unbounded" />,
the present document fixes an Occurrence Range OK problem identified in XAdESv1.3.2 [12] XML
schema and preserves compatibility in XAdES signatures.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)33

7.1.4.3 The XAdESTimeStampType data type

This concrete derived type is provided for containing time-stamp tokens computed on data objects of XAdES
signatures. Applications claiming alignment with the present document MUST implement it because all the properties
listed in clause 7.1.4.1 are elements of this type.

Below follows the schema definition for the data type.

 <xsd:element name="XAdESTimeStamp" type="XAdESTimeStampType"/>

 <xsd:complexType name="XAdESTimeStampType">
 <xsd:complexContent>
 <xsd:restriction base="GenericTimeStampType">
 <xsd:sequence>
 <xsd:element ref="Include" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element ref="ds:CanonicalizationMethod" minOccurs="0"/>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="EncapsulatedTimeStamp"
 type="EncapsulatedPKIDataType"/>
 <xsd:element name="XMLTimeStamp" type="AnyType"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

This type provides two mechanisms for identifying data objects that are covered by the time-stamp token present in the
container, and for specifying how to use them for computing the digest value that is sent to the TSA:

• Explicit. This mechanism uses the Include element for referencing specific data objects and for indicating
their contribution to the input of the digest computation.

• Implicit. For certain time-stamp container properties under certain circumstances, applications do not require
any additional indication for knowing that certain data objects are covered by the time-stamp tokens and how
they contribute to the input of the digest computation. The present document specifies, in the clauses defining
such properties (clauses 7.2.9, 7.2.10, 7.3, 7.5 and 7.7), how applications MUST act in these cases without
explicit indications.

Clause 7.1.4.3.1 shows the principles that govern the explicit indication mechanism.

7.1.4.3.1 Include mechanism

Include elements explicitly identify data objects that are time-stamped. Their order of appearance indicates how the
data objects contribute in the generation of the input to the digest computation. The following time-stamp token
container properties use this mechanism:

• IndividualDataObjectsTimeStamp. In this case each Include element contains an URI to one of
the ds:Reference elements in the XAdES signature.

• SigAndRefsTimeStamp, RefsOnlyTimeStamp and xadesv141:ArchiveTimeStamp only and
only if these elements and some of the unsigned properties covered by their time-stamp tokens do not have the
same parent (i.e. some of them are in different QualifyingProperties elements and the XAdES
signature contains QualifyingPropertiesReference elements - see clause 6.3).

The URI attribute in Include element identifies one time-stamped data object. Its value MUST follow the rules
indicated below:

• It MUST have an empty not-fragment part and a bare-name XPointer fragment when the Include and the
time-stamped data object are in the same document.

• It MUST have a not empty not-fragment part and a bare-name XPointer fragment when the Include and the
time-stamped data object are not in the same document.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)34

• When not empty, its not-fragment part MUST be equal to:

- the not-fragment part of the Target attribute of the QualifyingProperties enclosing the
Include element if the time-stamped data object is enveloped by the XAdES signature; or

- the not-fragment part of the URI attribute of the QualifyingPropertiesReference element
referencing the QualifyingProperties element enveloping the time-stamped data object if this
QualifyingProperties element is not enveloped by the XAdES signature.

Applications aligned with the present document MUST parse the retrieved resource, and then process the bare-name
XPointer as explained below to get a XPath node-set suitable for use by Canonical XML. For processing the bare-name
XPointer applications MUST use as XPointer evaluation context the root node of the XML document that contains the
element referenced by the not-fragment part of URI. Applications MUST derive an XPath node-set from the resultant
location-set as indicated below:

1) Replace the element node E retrieved by the bare-name XPointer with E plus all descendants of E (text,
comments, PIs, elements) and all namespace and attribute nodes of E and its descendant elements.

2) Delete all the comment nodes.

In time-stamps that cover ds:Reference elements, the attribute referencedData MAY be present. If present
with value set to "true", the time-stamp is computed on the result of processing the corresponding ds:Reference
element according to the XMLDSIG processing model. If the attribute is not present or is present with value "false",
the time-stamp is computed on the ds:Reference element itself. When appearing in a time-stamp container
property, each Include element MUST be processed in order as detailed below:

1) Retrieve the data object referenced in the URI attribute following the referencing mechanism indicated above.

2) If the retrieved data is a ds:Reference element and the referencedData attribute is set to the value
"true", take the result of processing the retrieved ds:Reference element according to the reference
processing model of XMLDSIG; otherwise take the ds:Reference element itself.

3) If the resulting data is an XML node set, canonicalize it. If ds:Canonicalization is present, the
algorithm indicated by this element is used. If not, the standard canonicalization method specified by
XMLDSIG is used.

4) Concatenate the resulting octets to those resulting from previous processing as indicated in the corresponding
time-stamp container property.

7.1.4.4 The OtherTimeStampType data type

This concrete derived type is provided for containing time-stamp tokens computed on a collection of data objects that
are not present in the XAdES signature.

Below follows the schema definition for the data type.

<xsd:element name="OtherTimeStamp" type="OtherTimeStampType"/>

<xsd:complexType name="OtherTimeStampType">
 <xsd:complexContent>
 <xsd:restriction base="GenericTimeStampType">
 <xsd:sequence>
 <xsd:element ref="ReferenceInfo" maxOccurs="unbounded"/>
 <xsd:element ref="ds:CanonicalizationMethod" minOccurs="0"/>
 <xsd:choice>
 <xsd:element name="EncapsulatedTimeStamp"
 type="EncapsulatedPKIDataType"/>
 <xsd:element name="XMLTimeStamp" type="AnyType"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 </xsd:restriction>
 </xsd:complexContent>
</xsd:complexType>

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)35

Each ReferenceInfo element contains the digest of one external data object. Attribute URI identifies the data
object. As in XMLDSIG, if it is omitted, the application is expected to know the identity of the referenced object.
Attribute Id permits this element to be referenced from elsewhere. Element ds:DigestMethod identifies the digest
algorithm applied to the external data object. Element ds:DigestValue contains the base-64 encoded value of the
digest of the referenced data object.

Attribute Id and elements ds:CannonicalizationMethod, EncapsulatedTimeStamp and
XMLTimeStamp will be used exactly as in XAdESTimeStampType.

For this type the actual input to the computation of the digest value that will be sent to the TSA is the concatenation of
the canonicalized present ReferenceInfo elements. If ds:Canonicalization is present, the algorithm
indicated by this element is used. If not, the standard canonicalization method specified by XMLDSIG is used.

The implementation of such a type is NOT MANDATORY for applications that claim alignment with the present
document, as it does not define any property of this type.

7.2 Properties for XAdES-BES and XAdES-EPES forms
This clause describes in detail the qualifying properties that can appear in XAdES-BES and XAdES-EPES forms as
described in clauses 4.4.1 and 4.4.2.

7.2.1 The SigningTime element

The SigningTime property specifies the time at which the signer (purportedly) performed the signing process.

The XML Schema recommendation [5] defines an XML type xsd:dateTime that allows for the inclusion of the
required information. This is the type selected for the SigningTime element.

This is an optional signed property that qualifies the whole signature.

There SHALL be at most one occurence of this property in the signature.

Below follows the Schema definition for this element.

<xsd:element name="SigningTime" type="xsd:dateTime"/>

7.2.2 The SigningCertificate element

In many real life environments users will be able to get from different CAs or even from the same CA, different
certificates containing the same public key for different names. The prime advantage is that a user can use the same
private key for different purposes. Multiple use of the private key is an advantage when a smart card is used to protect
the private key, since the storage of a smart card is always limited. When several CAs are involved, each different
certificate may contain a different identity, e.g. as a national or as an employee from a company. Thus when a private
key is used for various purposes, the certificate is needed to clarify the context in which the private key was used when
generating the signature. Where there is the possibility of multiple uses of private keys it is necessary for the signer to
indicate to the verifier the precise certificate to be used.

Many current schemes simply add the certificate after the signed data and thus are subject to various substitution
attacks. An example of a substitution attack is a "bad" CA that would issue a certificate to someone with the public key
of someone else. If the certificate from the signer was simply appended to the signature and thus not protected by the
signature, any one could substitute one certificate by another and the message would appear to be signed by some one
else. In order to counter this kind of attack, the identifier of the certificate has to be protected by the digital signature
from the signer.

The SigningCertificate property is designed to prevent the simple substitution of the certificate. This property
contains references to certificates and digest values computed on them.

The certificate used to verify the signature SHALL be identified in the sequence; the signature policy MAY mandate
other certificates be present, that MAY include all the certificates up to the point of trust.

This is a signed property that qualifies the signature.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)36

At most one SigningCertificate element MAY be present in the signature.

Below follows the Schema definition.

<xsd:element name="SigningCertificate" type="CertIDListType"/>

<xsd:complexType name="CertIDListType">
 <xsd:sequence>
 <xsd:element name="Cert" type="CertIDType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="CertIDType">
 <xsd:sequence>
 <xsd:element name="CertDigest" type="DigestAlgAndValueType"/>
 <xsd:element name="IssuerSerial" type="ds:X509IssuerSerialType"/>
 </xsd:sequence>
 <xsd:attribute name="URI" type="xsd:anyURI" use="optional"/>
</xsd:complexType>

<xsd:complexType name="DigestAlgAndValueType">
 <xsd:sequence>
 <xsd:element ref="ds:DigestMethod"/>
 <xsd:element ref="ds:DigestValue"/>
 </xsd:sequence>
</xsd:complexType>

The SigningCertificate element contains the aforementioned sequence of certificate identifiers and digests
computed on the certificates (Cert elements).

The element IssuerSerial contains the identifier of one of the certificates referenced in the sequence. Should the
ds:X509IssuerSerial element appear in the signature to denote the same certificate, its value MUST be
consistent with the corresponding IssuerSerial element.

The element CertDigest contains the digest of one of the certificates referenced in the sequence. It contains two
elements: ds:DigestMethod indicates the digest algorithm and ds:DigestValue contains the base-64 encoded
value of the digest computed on the DER-encoded certificate.

The optional URI attribute indicates where the referenced certificate can be found.

7.2.3 The SignaturePolicyIdentifier element

The signature policy is a set of rules for the creation and validation of an electronic signature, under which the signature
can be determined to be valid. A given legal/contractual context MAY recognize a particular signature policy as
meeting its requirements.

The signature policy needs to be available in human readable form so that it can be assessed to meet the requirements of
the legal and contractual context in which it is being applied.

To facilitate the automatic processing of an electronic signature the parts of the signature policy which specify the
electronic rules for the creation and validation of the electronic signature also need to be in a computer processable
form.

If no signature policy is identified then the signature may be assumed to have been generated/verified without any
policy constraints, and hence may be given no specific legal or contractual significance through the context of a
signature policy.

The present document specifies two unambiguous ways for identifying the signature policy that a signature follows:

• The electronic signature can contain an explicit and unambiguous identifier of a signature policy together with
a hash value of the signature policy, so it can be verified that the policy selected by the signer is the one being
used by the verifier. An explicit signature policy has a globally unique reference, which, in this way, is bound
to an electronic signature by the signer as part of the signature calculation. In these cases, for a given explicit
signature policy there shall be one definitive form that has a unique binary encoded value. Finally, a signature
policy identified in this way MAY be qualified by additional information.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)37

• Alternatively, the electronic signature can avoid the inclusion of the aforementioned identifier and hash value.
This will be possible when the signature policy can be unambiguously derived from the semantics of the type
of data object(s) being signed, and some other information, e.g. national laws or private contractual
agreements, that mention that a given signature policy MUST be used for this type of data content. In such
cases, the signature will contain a specific empty element indicating that this implied way to identify the
signature policy is used instead the identifier and hash value.

The signature policy identifier is a signed property qualifying the signature.

At most one SignaturePolicyIdentifier element MAY be present in the signature.

Below follows the Schema definition for this type.

<xsd:element name="SignaturePolicyIdentifier" type="SignaturePolicyIdentifierType"/>

<xsd:complexType name="SignaturePolicyIdentifierType">
 <xsd:choice>
 <xsd:element name="SignaturePolicyId" type="SignaturePolicyIdType"/>
 <xsd:element name="SignaturePolicyImplied"/>
 </xsd:choice>
</xsd:complexType>

<xsd:complexType name="SignaturePolicyIdType">
 <xsd:sequence>
 <xsd:element name="SigPolicyId" type="ObjectIdentifierType"/>
 <xsd:element ref="ds:Transforms" minOccurs="0"/>
 <xsd:element name="SigPolicyHash" type="DigestAlgAndValueType"/>
 <xsd:element name="SigPolicyQualifiers"
 type="SigPolicyQualifiersListType" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="SigPolicyQualifiersListType">
 <xsd:sequence>
 <xsd:element name="SigPolicyQualifier" type="AnyType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

The SignaturePolicyId element will appear when the signature policy is identified using the first alternative. The
SigPolicyId element contains an identifier that uniquely identifies a specific version of the signature policy.

The SigPolicyHash element contains the identifier of the hash algorithm and the hash value of the signature policy.

The SigPolicyQualifier element can contain additional information qualifying the signature policy identifier.
The optional ds:Transforms element can contain the transformations performed on the signature policy document
before computing its hash. The processing model for these transformations is described in [3].

Alternatively, the SignaturePolicyImplied element will appear when the second alternative is used. This empty
element indicates that the data object(s) being signed and other external data imply the signature policy.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)38

7.2.3.1 Signature Policy qualifiers

Two qualifiers for the signature policy have been identified so far:

• a URL where a copy of the signature policy MAY be obtained;

• a user notice that should be displayed when the signature is verified.

Below follows the Schema definition for these two elements.

<xsd:element name="SPURI" type="xsd:anyURI"/>
<xsd:element name="SPUserNotice" type="SPUserNoticeType"/>

<xsd:complexType name="SPUserNoticeType">
 <xsd:sequence>
 <xsd:element name="NoticeRef" type="NoticeReferenceType"
 minOccurs="0"/>
 <xsd:element name="ExplicitText" type="xsd:string"
 minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="NoticeReferenceType">
 <xsd:sequence>
 <xsd:element name="Organization" type="xsd:string"/>
 <xsd:element name="NoticeNumbers" type="IntegerListType"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="IntegerListType">
 <xsd:sequence>
 <xsd:element name="int" type="xsd:integer" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

The SPUserNotice element is intended for being displayed whenever the signature is validated. The
ExplicitText element contains the text of the notice to be displayed. Other notices could come from the
organization issuing the signature policy. The NoticeRef element names an organization and identifies by numbers
(NoticeNumbers element) a group of textual statements prepared by that organization, so that the application could
get the explicit notices from a notices file.

7.2.4 Countersignatures

Annex C, in its clause C.1, includes a description and discussion on multiple signatures and countersignatures. This
clause defines two standard mechanisms for managing countersignatures. Details are given in clauses below.

7.2.4.1 Countersignature identifier in Type attribute of ds:Reference

The present document defines the following URI value:

• http://uri.etsi.org/01903#CountersignedSignature.

A XAdES signature containing a ds:Reference element whose Type attribute has this value will indicate that it is,
in fact, a countersignature of the signature referenced by this element. The ds:Reference element MUST be built so
that the countersignature actually signs the ds:SignatureValue element of the countersigned signature. All the
XMLDSIG rules apply in the processing of the aforementioned ds:Reference element. The only purpose of this
definition is to serve as an easy identification of a signature as actually being a countersignature.

http://uri.etsi.org/01903

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)39

7.2.4.2 Enveloped countersignatures: the CounterSignature element

The CounterSignature is an unsigned property that qualifies the signature. A XAdES signature MAY have more
than one CounterSignature properties. As indicated by its name, it contains one countersignature of the qualified
signature.

The content of this property is a XMLDSIG or XAdES signature whose ds:SignedInfo MUST contain one
ds:Reference element referencing the ds:SignatureValue element of the embedding and countersigned
XAdES signature. The content of the ds:DigestValue in the aforementioned ds:Reference element of the
countersignature MUST be the base-64 encoded digest of the complete (and canonicalized) ds:SignatureValue
element (i.e. including the starting and closing tags) of the embedding and countersigned XAdES signature.
Applications MUST build this ds:Reference accordingly, using any of the mechanisms specified by XMLDSIG for
achieving this objective. By doing this the countersignature actually signs the ds:SignatureValue element of the
embedding XAdES signature.

Applications MAY add other ds:Reference elements referencing the ds:SignatureValue elements of
previously existent CounterSignature elements. This allows for building arbitrarily long chains of explicit
countersignatures.

A countersignature MAY itself be qualified by a CounterSignature property, which will have a ds:Reference
element referencing the ds:SignatureValue of the first countersignature, built as described above. This is an
alternative way of constructing arbitrarily long series of countersignatures, each one signing the
ds:SignatureValue element of the one where it is directly embedded.

If the countersignature is a XAdES signature, its production MUST follow the rules dictated by the present document.
As for its verification they MUST be verified as any regular XAdES signature. Below follows the schema definition for
this element.

<xsd:element name="CounterSignature" type="CounterSignatureType" />

<xsd:complexType name="CounterSignatureType">
 <xsd:sequence>
 <xsd:element ref="ds:Signature"/>
 </xsd:sequence>
</xsd:complexType>

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)40

Figure 2: Use of CounterSignature element

7.2.5 The DataObjectFormat element

When presenting signed data to a human user it may be important that there is no ambiguity as to the presentation of the
signed data object to the relying party. In order for the appropriate representation (text, sound or video) to be selected
by the relying party a content hint MAY be indicated by the signer. If a relying party system does not use the format
specified to present the data object to the relying party, the electronic signature may not be valid. Such behaviour may
have been established by the signature policy, for instance.

The DataObjectFormat element provides information that describes the format of the signed data object. This
element SHOULD be present when the signed data is to be presented to human users on verification if the presentation
format is not implicit within the data that has been signed. This is a signed property that qualifies one specific signed
data object. In consequence, an XML electronic signature aligned with the present document MAY contain more than
one DataObjectFormat elements, each one qualifying one signed data object.

Below follows the schema definition for this element.

<xsd:element name="DataObjectFormat" type="DataObjectFormatType"/>

<xsd:complexType name="DataObjectFormatType">
 <xsd:sequence>
 <xsd:element name="Description" type="xsd:string" minOccurs="0"/>
 <xsd:element name="ObjectIdentifier" type="ObjectIdentifierType"
 minOccurs="0"/>
 <xsd:element name="MimeType" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Encoding" type="xsd:anyURI" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="ObjectReference" type="xsd:anyURI"
 use="required"/>
</xsd:complexType>

The mandatory ObjectReference attribute MUST reference the ds:Reference element of the ds:Signature
corresponding with the data object qualified by this property.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)41

This element can convey:

• textual information related to the signed data object in element Description;

• an identifier indicating the type of the signed data object in element ObjectIdentifier;

• an indication of the MIME type of the signed data object in element MimeType;

• an indication of the encoding format of the signed data object in element Encoding.

At least one element of Description, ObjectIdentifier and MimeType MUST be present within the
property.

7.2.6 The CommitmentTypeIndication element

The commitment type can be indicated in the electronic signature either:

• explicitly using a commitment type indication in the electronic signature;

• implicitly or explicitly from the semantics of the signed data object.

If the indicated commitment type is explicit by means of a commitment type indication in the electronic signature,
acceptance of a verified signature implies acceptance of the semantics of that commitment type. The semantics of
explicit commitment types indications shall be specified either as part of the signature policy or MAY be registered for
generic use across multiple policies.

If a signature includes a commitment type indication other than one of those recognized under the signature policy the
signature shall be treated as invalid.

How commitment is indicated using the semantics of the data object being signed is outside the scope of the present
document.

The commitment type MAY be:

• defined as part of the signature policy, in which case the commitment type has precise semantics that is
defined as part of the signature policy;

• a registered type, in which case the commitment type has precise semantics defined by registration, under the
rules of the registration authority. Such a registration authority may be a trading association or a legislative
authority.

The definition of a commitment type includes:

• the object identifier for the commitment;

• a sequence of qualifiers.

The qualifiers can provide more information about the commitment, it could provide, for example, information about
the context be it contractual/legal/application specific.

If an electronic signature does not contain a recognized commitment type then the semantics of the electronic signature
is dependent on the data object being signed and the context in which it is being used.

This is a signed property that qualifies signed data object(s). In consequence, an XML electronic signature aligned with
the present document MAY contain more than one CommitmentTypeIndication elements.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)42

Below follows the schema definition for this element.

<xsd:element name="CommitmentTypeIndication" type="CommitmentTypeIndicationType"/>

<xsd:complexType name="CommitmentTypeIndicationType">
 <xsd:sequence>
 <xsd:element name="CommitmentTypeId"
 type="ObjectIdentifierType"/>
 <xsd:choice>
 <xsd:element name="ObjectReference" type="xsd:anyURI"
 maxOccurs="unbounded"/>
 < xsd:element name="AllSignedDataObjects"/>
 </xsd:choice>
 <xsd:element name="CommitmentTypeQualifiers"
 type="CommitmentTypeQualifiersListType" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="CommitmentTypeQualifiersListType">
 <xsd:sequence>
 <xsd:element name="CommitmentTypeQualifier"
 type="AnyType" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

The CommitmentTypeId element univocally identifies the type of commitment made by the signer. A number of
commitments have been already identified in TS 101 733 [1], namely:

• Proof of origin indicates that the signer recognizes to have created, approved and sent the signed data object.
The URI for this commitment is http://uri.etsi.org/01903/v1.2.2#ProofOfOrigin.

• Proof of receipt indicates that signer recognizes to have received the content of the signed data object. The
URI for this commitment is http://uri.etsi.org/01903/v1.2.2#ProofOfReceipt.

• Proof of delivery indicates that the TSP providing that indication has delivered a signed data object in a local
store accessible to the recipient of the signed data object. The URI for this commitment is
http://uri.etsi.org/01903/v1.2.2#ProofOfDelivery.

• Proof of sender indicates that the entity providing that indication has sent the signed data object (but not
necessarily created it). The URI for this commitment is http://uri.etsi.org/01903/v1.2.2#ProofOfSender.

• Proof of approval indicates that the signer has approved the content of the signed data object. The URI for
this commitment is http://uri.etsi.org/01903/v1.2.2#ProofOfApproval.

• Proof of creation indicates that the signer has created the signed data object (but not necessarily approved, nor
sent it). The URI for this commitment is http://uri.etsi.org/01903/v1.2.2#ProofOfCreation.

One ObjectReference element refers to one ds:Reference element of the ds:SignedInfo corresponding
with one data object qualified by this property. If some but not all the signed data objects share the same commitment,
one ObjectReference element MUST appear for each one of them. However, if all the signed data objects share
the same commitment, the AllSignedDataObjects empty element MUST be present.

The CommitmentTypeQualifiers element provides means to include additional qualifying information on the
commitment made by the signer.

7.2.7 The SignatureProductionPlace element

In some transactions the purported place where the signer was at the time of signature creation MAY need to be
indicated. In order to provide this information a new property MAY be included in the signature.

This property specifies an address associated with the signer at a particular geographical (e.g. city) location.

This is a signed property that qualifies the signer.

http://uri.etsi.org/01903/v1.2.2
http://uri.etsi.org/01903/v1.2.2
http://uri.etsi.org/01903/v1.2.2
http://uri.etsi.org/01903/v1.2.2
http://uri.etsi.org/01903
http://uri.etsi.org/01903/v1.2.2

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)43

There SHALL be at most one occurence of this property in the signature. Below follows the schema definition for this
element.

<xsd:element name="SignatureProductionPlace" type="SignatureProductionPlaceType"/>

<xsd:complexType name="SignatureProductionPlaceType">
 <xsd:sequence>
 <xsd:element name="City" type="xsd:string" minOccurs="0"/>
 <xsd:element name="StateOrProvince" type="xsd:string"
 minOccurs="0"/>
 <xsd:element name="PostalCode" type="xsd:string" minOccurs="0"/>
 <xsd:element name="CountryName" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

7.2.8 The SignerRole element

While the name of the signer is important, the position of the signer within a company or an organization can be even
more important. Some contracts may only be valid if signed by a user in a particular role, e.g. a Sales Director. In many
cases who the sales Director really is, is not that important but being sure that the signer is empowered by his company
to be the Sales Director is fundamental.

The present document defines two different ways for providing this feature:

• using a claimed role name;

• using an attribute certificate containing a certified role.

The signer MAY state his own role without any certificate to corroborate this claim, in which case the claimed role can
be added to the signature as a signed qualifying property.

Unlike public key certificates that bind an identifier to a public key, Attribute Certificates bind the identifier of a
certificate to some attributes of its owner, like a role. The Attribute Authority will be most of the time under the control
of an organization or a company that is best placed to know which attributes are relevant for which individual. The
Attribute Authority MAY use or point to public key certificates issued by any CA, provided that the appropriate trust
may be placed in that CA. Attribute Certificates MAY have various periods of validity. That period may be quite short,
e.g. one day. While this requires that a new Attribute Certificate is obtained every day, valid for that day, this can be
advantageous since revocation of such certificates may not be needed. When signing, the signer will have to specify
which Attribute Certificate it selects.

This is an optional signed property that qualifies the signer.

There SHALL be at most one occurence of this property in the signature.

Below follows the Schema definition for this element.

<xsd:element name="SignerRole" type="SignerRoleType"/>

<xsd:complexType name="SignerRoleType">
 <xsd:sequence>
 <xsd:element name="ClaimedRoles" type="ClaimedRolesListType"
 minOccurs="0"/>
 <xsd:element name="CertifiedRoles" type="CertifiedRolesListType"
 minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ClaimedRolesListType">
 <xsd:sequence>
 <xsd:element name="ClaimedRole" type="AnyType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="CertifiedRolesListType">
 <xsd:sequence>
 <xsd:element name="CertifiedRole" type="EncapsulatedPKIDataType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)44

This property contains a sequence of roles that the signer can play (element SignerRole). At least one of the two
elements ClaimedRoles or CertifiedRoles MUST be present.

The ClaimedRoles element contains a sequence of roles claimed by the signer but not certified. Additional contents
types MAY be defined on a domain application basis and be part of this element. The namespaces given to the
corresponding XML schemas will allow their unambiguous identification in the case these roles use XML.

The CertifiedRoles element contains the base-64 encoding of one or more DER-encoded attribute certificates for
the signer.

7.2.9 The AllDataObjectsTimeStamp element

The AllDataObjectsTimeStamp element contains the time-stamp computed before the signature production, over
the sequence formed by ALL the ds:Reference elements within the ds:SignedInfo referencing whatever the
signer wants to sign except the SignedProperties element.

The AllDataObjectsTimeStamp element is a signed property. Several instances of this property from different
TSAs can occur within the same XAdES.

Below follows the schema definition for this element.

<xsd:element name="AllDataObjectsTimeStamp" type="XAdESTimeStampType"/>

This property uses the Implicit mechanism. The input to the computation of the digest value MUST be the result of
processing the aforementioned suitable ds:Reference elements in their order of appearance within
ds:SignedInfo as follows:

1) Process the retrieved ds:Reference element according to the reference processing model of XMLDSIG.

2) If the result is a XML node set, canonicalize it. If ds:Canonicalization is present, the algorithm
indicated by this element is used. If not, the standard canonicalization method specified by XMLDSIG is used.

3) Concatenate the resulting octets to those resulting from previously processed ds:Reference elements in
ds:SignedInfo.

7.2.10 The IndividualDataObjectsTimeStamp element

The IndividualDataObjectsTimeStamp element contains the time-stamp computed before the signature
production, over a sequence formed by SOME ds:Reference elements within the ds:SignedInfo. Note that this
sequence cannot contain a ds:Reference computed on the SignedProperties element.

The IndividualDataObjectsTimeStamp element is a signed property that qualifies the signed data object(s).

Several instances of this property can occur within the same XAdES.

Below follows the schema definition for this element.

<xsd:element name="IndividualDataObjectsTimeStamp"
 type="XAdESTimeStampType"/>

This property uses the explicit (Include) mechanism. Generating applications MUST compose the Include
elements to refer to those ds:Reference elements that are to be time-stamped. Their corresponding
referencedData attribute MUST be present and set to "true".

The digest computation input MUST be the result of processing the selected ds:Reference within
ds:SignedInfo as follows:

1) Process the retrieved ds:Reference element according to the reference processing model of XMLDSIG.

2) If the result is a XML node set, canonicalize it. If ds:Canonicalization is present, the algorithm
indicated by this element is used. If not, the standard canonicalization method specified by XMLDSIG is used.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)45

3) Concatenate the resulting octets to those resulting from previously processed ds:Reference elements in
ds:SignedInfo.

7.3 The SignatureTimeStamp element
An important property for long standing signatures is that a signature, having been found once to be valid, shall
continue to be so months or years later.

A signer, verifier or both MAY be required to provide on request, proof that a digital signature was created or verified
during the validity period of all the certificates that make up the certificate path. In this case, the signer, verifier or both
will also be required to provide proof that all the user and CA certificates used were not revoked when the signature was
created or verified.

It would be quite unacceptable to consider a signature as invalid even if the keys or certificates were only compromised
later. Thus there is a need to be able to demonstrate that the signature key was valid around the time that the signature
was created to provide long term evidence of the validity of a signature. Time-stamping by a Time-Stamping Authority
(TSA) can provide such evidence.

Time-stamping an electronic signature before the revocation of the signer's private key and before the end of the
validity of the certificate provides evidence that the signature has been created while the certificate was valid and before
it was revoked.

If a recipient wants to keep the result of the validation of an electronic signature valid, he will have to ensure that he has
obtained a valid time-stamp for it, before that key (and any key involved in the validation) is revoked. The sooner the
time-stamp is obtained after the signing time, the better.

It is important to note that signatures MAY be generated "off-line" and time-stamped at a later time by anyone, for
example by the signer or any recipient interested in the signature. The time-stamp can thus be provided by the signer
together with the signed data object, or obtained by the recipient following receipt of the signed data object.

The validation mandated by the signature policy can specify a maximum acceptable time difference which is allowed
between the time indicated in the SigningTime element and the time indicated by the SignatureTimeStamp
element. If this delay is exceeded then the electronic signature shall be considered as invalid.

The SignatureTimeStamp encapsulates the time-stamp over the ds:SignatureValue element.

This property uses the implicit mechanism as the time-stamped data object is always the same. For building the input to
the digest computation, applications MUST:

1) Take the ds:SignatureValue element and its contents.

2) If the ds:Canonicalization element is present canonicalize it using the indicated algorithm. If not, use
the standard canonicalization method specified by XMLDSIG.

The SignatureTimeStamp element is an unsigned property qualifying the signature. A XAdES-T form MAY
contain several SignatureTimeSamp elements, obtained from different TSAs.

Below follows the schema definition for this element.

<xsd:element name="SignatureTimeStamp" type="XAdESTimeStampType"/>

7.4 Properties for references to validation data
The following clauses describe in detail qualifying properties that can contain references to certificates and revocation
values that have been used in the validation of the electronic signature.

When dealing with long term electronic signatures, all the data used in the verification (namely, certificate path and
revocation information) of such signatures MUST be stored and conveniently time-stamped for arbitration purposes.
Similar considerations apply to attribute certificates if they appear within the signature.

In some environments, it can be convenient to add these data to the electronic signature (as unsigned properties) for
archival purposes (see electronic signature form for archival in clause B.3).

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)46

Systems implementing the present document may consider to archive validation data outside the XAdES e.g. to prevent
redundant storage and to reduce the size of the signatures. In such cases each electronic signature MUST incorporate
references to all these data within the signature, reducing accordingly the size of the stored electronic signature. This
format builds up taking XAdES-T signature by incorporating additional data required for validation:

• the sequence of references to the full set of CA certificates that have been used to validate the electronic
signature up to (but not including) the signer's certificate;

• the sequence of references to the full set of revocation data that have been used in the validation of the signer
and CA certificates;

• the references to the full set of Attribute Authorities certificates that have been used to validate the attribute
certificate, if present;

• the references to the full set of revocation data that have been used in the validation of the attribute certificate,
if present.

7.4.1 The CompleteCertificateRefs element

This clause defines the XML element able to carry the aforementioned references to the CA certificates: the
CompleteCertificateRefs element.

This is an optional unsigned property that qualifies the signature.

There SHALL be at most one occurence of this property in the signature.

<xsd:element name="CompleteCertificateRefs" type="CompleteCertificateRefsType"/>

<xsd:complexType name="CompleteCertificateRefsType">
 <xsd:sequence>
 <xsd:element name="CertRefs" type="CertIDListType" />
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

The CertRefs element contains a sequence of Cert elements already defined in clause 7.2.2, incorporating the
digest of each certificate and the issuer and serial number identifier.

Should XML time-stamp tokens based in XMLDSIG be standardized and spread, this type could also serve to contain
references to the certification chain for any TSUs providing such time-stamp tokens. In this case, an element of this type
could be added as an unsigned property to the XML time-stamp token using the incorporation mechanisms defined in
the present document.

7.4.2 The CompleteRevocationRefs element

As it was stated in the previous clause, the addition, to an electronic signature, of the full set of references to the
revocation data that have been used in the validation of the signer and CAs certificates, provide means to retrieve the
actual revocation data archived elsewhere in case of dispute and, in this way, to illustrate that the verifier has taken due
diligence of the available revocation information.

Currently two major types of revocation data are managed in most of the systems, namely CRLs and responses of
on-line certificate status servers, obtained through protocols designed for these purposes, like OCSP protocol.

This clause defines the CompleteRevocationRefs element that will carry the full set of revocation information
used for the verification of the electronic signature.

This is an optional unsigned property that qualifies the signature.

There SHALL be at most one occurence of this property in the signature. This occurrence SHALL NOT be empty.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)47

Below follows the Schema definition for this element.

<xsd:element name="CompleteRevocationRefs"
 type="CompleteRevocationRefsType"/>

<xsd:complexType name="CompleteRevocationRefsType">
 <xsd:sequence>
 <xsd:element name="CRLRefs" type="CRLRefsType" minOccurs="0"/>
 <xsd:element name="OCSPRefs" type="OCSPRefsType" minOccurs="0"/>
 <xsd:element name="OtherRefs" type="OtherCertStatusRefsType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

<xsd:complexType name="CRLRefsType">
 <xsd:sequence>
 <xsd:element name="CRLRef" type="CRLRefType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="CRLRefType">
 <xsd:sequence>
 <xsd:element name="DigestAlgAndValue"
 type="DigestAlgAndValueType"/>
 <xsd:element name="CRLIdentifier" type="CRLIdentifierType"
 minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="CRLIdentifierType">
 <xsd:sequence>
 <xsd:element name="Issuer" type="xsd:string"/>
 <xsd:element name="IssueTime" type="xsd:dateTime" />
 <xsd:element name="Number" type="xsd:integer" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="URI" type="xsd:anyURI" use="optional"/>
</xsd:complexType>

<xsd:complexType name="OCSPRefsType">
 <xsd:sequence>
 <xsd:element name="OCSPRef" type="OCSPRefType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="OCSPRefType">
 <xsd:sequence>
 <xsd:element name="OCSPIdentifier" type="OCSPIdentifierType"/>
 <xsd:element name="DigestAlgAndValue"
 type="DigestAlgAndValueType"
 minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ResponderIDType">
 <xsd:choice>
 <xsd:element name="ByName" type="xsd:string"/>
 <xsd:element name="ByKey" type="xsd:base-64Binary"/>
 </xsd:choice>
</xsd:complexType>

<xsd:complexType name="OCSPIdentifierType">
 <xsd:sequence>
 <xsd:element name="ResponderID" type="ResponderIDType"/>
 <xsd:element name="ProducedAt" type="xsd:dateTime"/>
 </xsd:sequence>
 <xsd:attribute name="URI" type="xsd:anyURI" use="optional"/>
</xsd:complexType>

<xsd:complexType name="OtherCertStatusRefsType">
 <xsd:sequence>
 <xsd:element name="OtherRef" type="AnyType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)48

The CompleteRevocationRefs element can contain:

• sequences of references to CRLs (CRLRefs element);

• sequences of references to OCSPResponse data as defined in RFC 2560 [8] (OCSPRefs element);

• other references to alternative forms of revocation data (OtherRefs element).

Each element in a CRLRefs sequence (CrlRef element) references one CRL. Each reference contains:

• the digest of the entire DER encoded CRL (DigestAlgAndValue element);

• a set of data (CRLIdentifier element) including the issuer (Issuer element), the time when the CRL
was issued (IssueTime element) and optionally the number of the CRL (Number element).
CRLIdentifier element contents MUST follow the rules established by XMLDSIG [3] in its clause 4.4.4
for strings representing Distinguished Names. In addition, this element can be dropped if the CRL could be
inferred from other information. Its URI attribute could serve to indicate where the identified CRL is archived.

NOTE: The number element is an optional hint helping applications to get the CRL whose digest matches the
value present in the reference.

Each element in an OCSPRefs sequence (OcspRef element) references one OCSP response. Each reference contains:

• a set of data (OCSPIdentifier element) that includes an identifier of the responder and an indication of the
time when the response was generated. The responder may be identified by its name, using the Byname
element within ResponderID. It may also be identified by the digest of the server's public key computed as
mandated in RFC 2560 [8], using the ByKey element. In this case the content of the ByKey element will be
the DER value of the byKey field defined in RFC 2560, base-64 encoded. The contents of ByName element
MUST follow the rules established by XMLDSIG [8] in its clause 4.4.4 for strings representing Distinguished
Names. The generation time indication appears in the ProducedAt element and corresponds to the
"ProducedAt" field of the referenced response. The optional URI attribute could serve to indicate where the
OCSP response identified is archived;

• the digest computed on the DER encoded OCSPResponse defined in RFC 2560 [8], appearing within
DigestAlgAndValue element. Applications claiming alignment with the present document SHOULD
include the DigestAlgAndValue element within each OCSPRef element.

Alternative forms of validation data can be included in this property making use of the OtherRefs element, a
sequence whose items (OtherRef elements) can contain any kind of information.

Should XML time-stamp tokens based in XMLDSIG be standardized and spread, this type could also serve to contain
references to the full set of CRL or OCSP responses that have been used to verify the certification chain for any TSUs
providing such time-stamp tokens. In this case, an element of this type could be added as an unsigned property to the
XML time-stamp token using the incorporation mechanisms defined in the present document.

7.4.3 The AttributeCertificateRefs element

This clause defines the AttributeCertificateRefs element that will carry the references to the full set of
Attribute Authorities certificates that have been used to validate the attribute certificate.

This property MAY be used only when a user attribute certificate is present in the signature within the signature. It is an
unsigned property that qualifies the signature.

There SHALL be at most one occurence of this property in the signature.

Below follows the schema definition for this element.

<xsd:element name="AttributeCertificateRefs" type="CompleteCertificateRefsType"/>

NOTE: Copies of the certificates referenced in this property may be held using the
AttrAuthoritiesCertValues property.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)49

7.4.4 The AttributeRevocationRefs element

This clause defines the AttributeRevocationRefs element able to carry the references to the full set of
revocation data that have been used in the validation of the attribute certificate(s) present in the signature. This is an
unsigned property that qualifies the signature.

This property MAY be used only when a user attribute certificate is present in the signature within the signature.

There SHALL be at most one occurence of this property in the signature.

Below follows the schema definition for this element.

<xsd:element name="AttributeRevocationRefs" type="CompleteRevocationRefsType"/>

NOTE: Copies of the revocation values referenced in this property may be held using the
AttributeRevocationValues property.

7.5 Time-stamps on references to validation data
This clause describes the incorporation into XAdES signature of time-stamp tokens on the references to validation data
defined in clause 7.4.

Electronic signatures incorporating time-stamps on validation data references are needed when there is a requirement to
safeguard against the possibility of a CA key in the certificate chain ever being compromised. A verifier MAY be
required to provide, on request, proof that the certification path and the revocation information used at the time of the
signature were valid, even in the case where one of the issuing keys or OCSP responder keys is later compromised.

The present document defines two ways of using time-stamps to protect against this compromise:

• Time-stamp the sequence formed by the digital signature (ds:SignatureValue element), the
SignatureTimeStamp element when present in the XAdES-T form, the certification path references, the
Attribute Authorities certificate references and the revocation data references (for both the certificates in the
certification path and in the list of Attribute Authorities certificate.

• Time-stamp only the references.

The signer, verifier or both MAY obtain the time-stamp.

7.5.1 The SigAndRefsTimeStamp element

When an OCSP response is used, it is necessary to time-stamp in particular that response in the case the key from the
responder would be compromised. Since the information contained in the OCSP response is user specific and time
specific, an individual time-stamp is needed for every signature received. Instead of placing the time-stamp only over
the certification path references and the revocation information references, which include the OCSP response, the
time-stamp is placed on the digital signature (ds:SignatureValue element), the signature time-stamp(s) present in
the XAdES-T form, the certification path references and the revocation status references. For the same cryptographic
price, this will provide an integrity mechanism over the electronic signature. Any modification can be immediately
detected. It should be noticed that other means of protecting/detecting the integrity of the electronic signature exist and
could be used.

The present document also allows to use this element when CRLs are used.

The SigAndRefsTimeStamp element is an unsigned property qualifying the signature. Clause B.1 proposes a
XAdES form that can incorporate one or more SigAndRefsTimeStamp elements.

Below follows the schema definition for this element.

<xsd:element name="SigAndRefsTimeStamp" type="XAdESTimeStampType"/>

This property contains a time-stamp token that covers the following data objects: ds:SignatureValue element, all
present SignatureTimeStamp elements, CompleteCertificateRefs, CompleteRevocationRefs, and
when present, AttributeCertificateRefs and AttributeRevocationRefs.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)50

Depending whether all the aforementioned time-stamped unsigned properties and the SigAndRefsTimeStamp
property itself have the same parent or not, its contents may be different. Details are given in clauses below.

7.5.1.1 Not distributed case

When SigAndRefsTimeStamp and all the unsigned properties covered by its time-stamp token have the same
parent, this property uses the Implicit mechanism. The input to the computation of the digest value MUST be the result
of taking in order each of the data objects listed below, canonicalize each one and concatenate the resulting octet
streams:

1) The ds:SignatureValue element.

2) Those among the following unsigned properties that appear before SigAndRefsTimeStamp, in their order
of appearance within the UnsignedSignatureProperties element:

- SignatureTimeStamp elements.

- The CompleteCertificateRefs element.

- The CompleteRevocationRefs element.

- The AttributeCertificateRefs element if this property is present.

- The AttributeRevocationRefs element if this property is present.

Below follows the list -in order- of data objects that contribute to the digest computation. Elements within [] contribute
in their order of appearance within the UnsignedSignatureProperties element, not in the order they are
enumerated below:

(ds:SignatureValue, [SignatureTimeStamp+, CompleteCertificateRefs, CompleteRevocationRefs,
AttributeCertificateRefs?, AttributeRevocationRefs?]).

7.5.1.2 Distributed case

When SigAndRefsTimeStamp and some of the unsigned properties covered by its time-stamp token DO NOT have
the same parent, applications MUST build this property as indicated below:

1) No Include element will be added for ds:SignatureValue. All applications MUST implicitly assume
its contribution to the digest input (see below in this clause).

2) Generate one Include element per each unsigned property that MUST be covered by the time-stamp token
in the order they appear listed below:

- The SignatureTimeStamp elements.

- The CompleteCertificateRefs element.

- The CompleteRevocationRefs element.

- The AttributeCertificateRefs element if this property is present.

- The AttributeRevocationRefs element if this property is present.

Applications MUST build URI attributes following the rules stated in clause 7.1.4.3.1.

Generating applications MUST build digest computation input as indicated below:

1) Initialize the final octet stream as an empty octet stream.

2) Take the ds:SignatureValue element and its content. Canonicalize it and put the result in the final octet
stream.

3) Take each unsigned property listed above in the order they have been listed above(this order MUST be the
same as the order the Include elements appear in the property). For each one extract comment nodes,
canonicalize and concatenate the resulting octet string to the final octet stream.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)51

Validating applications MUST build digest computation input as indicated below:

1) Initialize the final octet stream to empty.

2) Take the ds:SignatureValue. Canonicalize it and put the result in the final octet stream.

3) Process in order each Include element present as indicated in clause 7.1.4.3.1. Concatenate the resulting octet
strings to the final octet stream.

Below follows the list of the data objects that contribute to the digest computation. Super index
e
 means that this

property is referenced using explicit mechanism, i.e. that the property contains an Include element that references it:

(ds:SignatureValue, SignatureTimeStamp
e
+, CompleteCertificateRefs

e
, CompleteRevocationRefs

e
,

AttributeCertificateRefs
e
?, AttributeRevocationRefs

e
?).

7.5.2 The RefsOnlyTimeStamp element

Time-Stamping each ES with Complete Validation Data as defined above may not be efficient, particularly when the
same set of CA certificates and CRL information is used to validate many signatures.

Time-Stamping CA certificates will stop any attacker from issuing bogus CA certificates that could be claimed to exist
before the CA key was compromised. Any bogus time-stamped CA certificates will show that the certificate was
created after the legitimate CA key was compromised. In the same way, time-stamping CA CRLs, will stop any attacker
from issuing bogus CA CRLs which could be claimed to exist before the CA key was compromised.

Time-Stamping of commonly used certificates and CRLs can be done centrally, e.g. inside a company or by a service
provider. This method reduces the amount of data the verifier has to time-stamp, for example it could reduce to just one
time-stamp per day (i.e. in the case were all the signers use the same CA and the CRL applies for the whole day). The
information that needs to be time-stamped is not the actual certificates and CRLs but the unambiguous references to
those certificates and CRLs.

The present document also allows to use this element when OCSP responses are used.

The hash sent to the TSA will be computed then over the concatenation of CompleteCertificateRefs and
CompleteRevocationRefs elements.

The RefsOnlyTimeStamp element is an unsigned property qualifying the signature.

Clause B.3.1 proposes a XAdES form that can incorporate one or more RefsOnlyTimeStamp elements.

Below follows the schema definition for this element.

<xsd:element name="RefsOnlyTimeStamp" type="XAdESTimeStampType"/>

This property contains a time-stamp token that covers the following data objects: CompleteCertificateRefs,
CompleteRevocationRefs, and when present, AttributeCertificateRefs and
AttributeRevocationRefs.

Depending whether all the aforementioned time-stamped unsigned properties and the SigAndRefsTimeStamp
property itself have the same parent or not, its contents may be different. Details are given in clauses below.

7.5.2.1 Not distributed case

When RefsOnlyTimeStamp and all the unsigned properties covered by its time-stamp token have the same parent,
this property uses the Implicit mechanism. The input to the computation of the digest value MUST be the result of
taking those of the unsigned properties listed below that appear before the RefsOnlyTimeStamp in their order of
appearance within the UnsignedSignatureProperties element, canonicalize each one and concatenate the
resulting octet streams:

• The CompleteCertificateRefs element.

• The CompleteRevocationRefs element.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)52

• The AttributeCertificateRefs element if this property is present.

• The AttributeRevocationRefs element if this property is present.

Below follows the list of data objects that contribute to the digest computation:

([CompleteCertificateRefs, CompleteRevocationRefs, AttributeCertificateRefs?,
AttributeRevocationRefs?]).

7.5.2.2 Distributed case

When RefsOnlyTimeStamp and some of the unsigned properties covered by its time-stamp token DO NOT have
the same parent, applications MUST build this property generating one Include element per each unsigned property
that must be covered by the time-stamp token in the order they appear listed below:

• The CompleteCertificateRefs element.

• The CompleteRevocationRefs element.

• The AttributeCertificateRefs element if this property is present.

• The AttributeRevocationRefs element if this property is present.

Applications MUST build URI attributes following the rules stated in clause 7.1.4.3.1.

Generating applications MUST build digest computation input as indicated below:

1) Initialize the final octet stream as an empty octet stream.

2) Take each unsigned property listed above in the order they have been listed above (this order MUST be the
same as the order the Include elements appear in the property). For each one extract comment nodes,
canonicalize and concatenate the resulting octet stream to the final octet stream.

Validating applications MUST build digest computation input as indicated below:

1) Initialize the final octet stream as an empty octet stream.

2) Process in order each Include element present as indicated in clause 7.1.4.3.1. Concatenate the resulting octet
stream to the final octet stream.

Below follows the list -in order- of the data objects that contribute to the digest computation. Superindex
e
 means that

this property is referenced using explicit mechanism, i.e. that the property contains a Include element that references it:

(CompleteCertificateRefs
e
, CompleteRevocationRefs

e
, AttributeCertificateRefs

e
?,

AttributeRevocationRefs
e
?).

7.6 Properties for validation data values
This clause describes in detail those properties that allow the incorporation of validation data values to the electronic
signature. Clause B.2 proposes a XAdES form for adding these values to the electronic signature.

7.6.1 The CertificateValues Property element

A verifier will have to prove that the certification path was valid, at the time of the validation of the signature, up to a
trust point according to the naming constraints and the certificate policy constraints from an optionally specified
signature validation policy. It will be necessary to capture all the certificates from the certification path, starting with
those from the signer and ending up with those of the certificate from one trusted root.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)53

When dealing with long term electronic signatures, all the data used in the verification (including the certificate path)
MUST be conveniently archived. In principle, the CertificateValues element contains the full set of certificates
that have been used to validate the electronic signature, including the signer's certificate. However, it is not necessary to
include one of those certificates into this property, if the certificate is already present in the ds:KeyInfo element of
the signature.

If CompleteCertificateRefs and CertificateValues are present, all the certificates referenced in
CompleteCertificateRefs MUST be present either in the ds:KeyInfo element of the signature or in the
CertificateValues property element.

The CertificateValues is an optional unsigned property and qualifies the XML signature.

There SHALL be at most one occurence of this property in the signature.

<xsd:element name="CertificateValues" type="CertificateValuesType"/>

<xsd:complexType name="CertificateValuesType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="EncapsulatedX509Certificate"
 type="EncapsulatedPKIDataType"/>
 <xsd:element name="OtherCertificate" type="AnyType"/>
 </xsd:choice>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

The EncapsulatedX509Certificate element is able to contain the base-64 encoding of a DER-encoded X.509
certificate. The OtherCertificate element is a placeholder for potential future new formats of certificates.

Should XML time-stamp tokens based in XMLDSIG be standardized and spread, this type could also serve to contain
the certification chain for any TSUs providing such time-stamp tokens, if these certificates are not already present in the
time-stamp tokens themselves as part of the TSUs' signatures. In this case, an element of this type could be added as an
unsigned property to the XML time-stamp token using the incorporation mechanisms defined in the present document.

7.6.2 The RevocationValues property element

One way of dealing with long term electronic signatures (for instance for arbitration purposes), is to store and
conveniently time-stamp all the revocation data used in the verification of such signatures.

Currently two major types of revocation data are managed in most of the systems, namely CRLs and responses of
on-line certificate status servers, obtained through protocols designed for these purposes, like OCSP protocol.

When using CRLs to get revocation information, a verifier will have to make sure that he or she gets at the time of the
first verification the appropriate certificate revocation information from the signer's CA. This should be done as soon as
possible, after the grace period (clause 4.4.3.2 - note 5), to minimize the time delay between the generation and
verification of the signature. This involves checking that the signer certificate serial number is not included in the CRL.
The signer, the verifier or any other third party may obtain either this CRL. If obtained by the signer, then it shall be
conveyed to the verifier. Additional CRLs for the CA certificates in the certificate path MUST also be checked by the
verifier. It MAY be convenient to archive these CRLs within an archived electronic signature for ease of subsequent
verification or arbitration.

When using OCSP to get revocation information, a verifier will have to make sure that she or he gets at the time of the
first verification an OCSP response that contains the status "valid". This should be done as soon as possible after the
generation of the signature, after the grace period (clause 4.4.3.2 - note 5). The signer, the verifier or any other third
party MAY fetch this OCSP response. Since OCSP responses are transient and thus are not archived by any TSP
including CA, it is the responsibility of every verifier to make sure that it is stored in a safe place.

The RevocationValues property element is used to hold the values of the revocation information which are to be
shipped with the electronic signature. If CompleteRevocationRefs and RevocationValues are present, all
the revocation data referenced in RevocationRefs MUST be present either in the ds:KeyInfo element of the
signature or in the RevocationValues property element.

This is an optional unsigned property that qualifies the signature.

There SHALL be at most one occurence of this property in the signature.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)54

Below follows the Schema definition for this element.

<xsd:element name="RevocationValues" type="RevocationValuesType"/>

<xsd:complexType name="RevocationValuesType">
 <xsd:sequence>
 <xsd:element name="CRLValues" type="CRLValuesType"
 minOccurs="0"/>
 <xsd:element name="OCSPValues" type="OCSPValuesType"
 minOccurs="0"/>
 <xsd:element name="OtherValues" type="OtherCertStatusValuesType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

Revocation information can include Certificate Revocation Lists (CRLValues) or responses from an online certificate
status server (OCSPValues). Additionally a placeholder for other revocation information (OtherValues) is
provided for future use.

<xsd:complexType name="CRLValuesType">
 <xsd:sequence>
 <xsd:element name="EncapsulatedCRLValue"
 type="EncapsulatedPKIDataType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

Certificate Revocation Lists (CRLValues) consist of a sequence of at least one Certificate Revocation List. Each
EncapsulatedCRLValue will contain the base-64 encoding of a DER-encoded X.509 CRL.

<xsd:complexType name="OCSPValuesType">
 <xsd:sequence>
 <xsd:element name="EncapsulatedOCSPValue"
 type="EncapsulatedPKIDataType" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

OCSP Responses (OCSPValues) consist of a sequence of at least one OCSP Response. The
EncapsulatedOCSPValue element contains the base-64 encoding of a DER-encoded OCSPResponse defined
in RFC 2560 [8].

<xsd:complexType name="OtherCertStatusValuesType">
 <xsd:sequence>
 <xsd:element name="OtherValue" type="AnyType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

The OtherValues element provides a placeholder for other revocation information that can be used in the future.

Should XML time-stamp tokens based in XMLDSIG be standardized and spread, this type could also serve to contain
the values of revocation data including CRLs and OCSP responses for any TSUs providing such time-stamp tokens, if
they are not already present in the time-stamp tokens themselves as part of the TSUs' signatures. In this case, an element
of this type could be added as an unsigned property to the XML time-stamp token using the incorporation mechanisms
defined in the present document.

7.6.3 The AttrAuthoritiesCertValues element

This property contains the certificate values of the Attribute Authorities that have been used to validate the attribute
certificate when present in the signature. Should any of the certificates present within CertificateValues
property have been used for validate the attribute certificate, they do not need to appear within the
AttrAuthoritiesCertValues.

If AttributeCertificateRefs and AttrAuthoritiesCertValues are present,
AttrAuthoritiesCertValues and CertificateValues properties MUST contain all the certificates
referenced in AttributeCertificateRefs.

This is an optional unsigned property that qualifies the signature.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)55

There SHALL be at most one occurence of this property in the signature.

Below follows the Schema definition for this element.

<xsd:element name="AttrAuthoritiesCertValues" type="CertificateValuesType"/>

7.6.4 The AttributeRevocationValues Property element

This property contains the set of revocation data that have been used to validate the attribute certificate when present in
the signature. Should any of the revocation data present within RevocationValues property have been used for
validate the attribute certificate, they do not need to appear within the AttributeRevocationValues.

If AttributeRevocationRefs and AttributeRevocationValues are present,
AttributeRevocationValues and RevocationValues MUST contain the values of all the objects
referenced in AttributeRevocationRefs.

This is an optional unsigned property that qualifies the signature.

There SHALL be at most one occurence of this property in the signature.

Below follows the Schema definition for this element.

<xsd:element name="AttributeRevocationValues" type="RevocationValuesType"/>

7.7 The ArchiveTimeStamp element
This property was specified in XAdESv1.3.2 [12].

This property is DEPRECATED by the new xadesv141:ArchiveTimeStamp specified in clause 8.1.
Applications claiming alignment with the present document SHALL not generate XAdES signatures including this
element.

8 New unsigned properties in XAdESv1.4.1
TS 101 903 V1.4.1 defined new unsigned properties making use of the extension mechanism specified in
xades:UnsignedSignatureProperties, namely the <xsd:any namespace="##other"> element.

The new properties are defined within a different XML namespace, whose URI is as follows:
http://uri.etsi.org/01903/v1.4.1#.

NOTE 1: A new XML Schema file is, in consequence, required, which may be found at:
http://uri.etsi.org/01903/v1.4.1/XAdESv141.xsd.

NOTE 2: TS 101 903 V1.4.2 is published for fixing some errors (see annex E for details) in TS 101 903 V1.4.1 and
the formerly published XML Schema file mentioned in the previous note. Implementers are warned that
the new XML Schema file will substitute the old one. They are also strongly adviced to use the new
version of this XML Schema file as reference for their implementations.

The following namespace declarations apply for the XML Schema definitions of the new properties.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://uri.etsi.org/01903/v1.4.1#"
xmlns="http://uri.etsi.org/01903/v1.4.1#" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xades="http://uri.etsi.org/01903/v1.3.2#" elementFormDefault="qualified">
 <xsd:import namespace="http://uri.etsi.org/01903/v1.3.2#"
schemaLocation="http://uri.etsi.org/01903/v1.3.2/XAdES.xsd"/>

http://uri.etsi.org/01903/v1.4.1
http://uri.etsi.org/01903/v1.4.1/XAdESv141.xsd

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)56

8.1 The new XAdESv141:TimeStampValidationData
element

The TimeStampValidationData element is an optional unsigned property qualifying the signature. When present
it SHALL be child of xades:UnsignedSignatureProperties element.

Several occurrences of this element MAY be present within a XAdES signature.

This element is specified to serve as an optional container for validation data required for carrying a full verification of
time-stamp tokens embedded within any of the different time-stamp containers defined in the present document.

Below follows the schema definition for this element.

<xsd:element name="TimeStampValidationData" type="ValidationDataType"/>

<xsd:complexType name="ValidationDataType">
 <xsd:sequence>
 <xsd:element ref="xades:CertificateValues" minOccurs="0" />
 <xsd:element ref="xades:RevocationValues" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 <xsd:attribute name="URI" type="xsd:anyURI" use="optional"/>
</xsd:complexType>

The structure of xades:CertificateValues child is defined in clause 7.6.1. When present, it shall contain
certificates used in the full verification of time-stamp tokens embedded in one XAdES time-stamp container. This
element MAY contain all the certificates required for a full verification of the time-stamp tokens, but it MAY also
contain only a part of them if the rest are present in other place of the XAdES signature (like within the time-stamp
token itself, or even in other xadesv141:TimeStampValidationData created for other time-stamp tokens).

The structure of xades:RevocationValues child is defined in clause 7.6.2. When present, it shall contain the
revocation information used in the full verification of time-stamp tokens embedded in one XAdES time-stamp
container. This element MAY contain all the revocation information pieces (for instance CRLs or OCSP responses)
required for a full verification of the time-stamp tokens, but it MAY also contain only a part of them if the rest are
present in other place of the XAdES signature (like within the time-stamp token itself, or even in other
xadesv141:TimeStampValidationData created for other time-stamp tokens).

Optional Id attribute allows to reference this element.

Optional URI attribute MAY be used for referencing the time-stamp container of the time-stamp token whose
validation data is contained within this element.

8.1.1 Use of URI attribute

When a XAdES signature requires to include all the validation data required for a full verification of a time-stamp token
embedded in any of the following containers: SignatureTimeStamp, RefsOnlyTimeStamp,
SigAndRefsTimeStamp, or ArchiveTimeStamp, and that validation data is not present in other parts of the
signature, a new xadesv141:TimeStampValidationData element SHALL be created containing the missing
validation data information and it SHALL be added as a child of UnsignedSignatureProperties elements
immediately after the respective time-stamp token container element. Under these circumpstances there is no need to
use URI attribute as the identification of the related time-stamp token container is implicit in the relative position of
both elements the container and the xadesv141:TimeStampValidationData element.

When a XAdES requires to include all the validation data required for a full verification of a time-stamp token
embedded in any of the following containers: IndividualDataObjectsTimeStamp or
AllDataObjectTimeStamp, the treatment is different because first, there may be more than one signed time-
stamp tokens containers, and second they are signed properties whereas the corresponding
xadesv141:TimeStampValidationData elements are unsigned and they appear as children of different
parents. Under these circumpstances the URI attribute within the corresponding
xadesv141:TimeStampValidationData element SHALL be used to reference the specific signed container
embedding time-stamp tokens whose validation data that element actually contains.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)57

8.2 The new xadesv141:ArchiveTimeStamp element
Advances in computing increase the probability of being able to break algorithms and compromise keys. There is
therefore a requirement to be able to protect electronic signatures against this possibility.

Over a period of time weaknesses may occur in the cryptographic algorithms used to create an electronic signature
(e.g. due to the time available for cryptanalysis, or improvements in crypto analytical techniques). Before such
weaknesses become likely, a verifier should take extra measures to maintain the validity of the electronic signature.
Several techniques could be used to achieve this goal depending on the nature of the weakened cryptography. In order
to simplify matters, a single technique, called Archive validation data, covering all the cases is being presented in the
present document.

Archive validation data consists of the complete validation data and the complete certificate and revocation data,
time-stamped together with the electronic signature. The Archive validation data is necessary if the hash function and
the crypto algorithms that were used to create the signature are no longer secure. Also, if it cannot be assumed that the
hash function used by the Time-Stamping Authority is secure, then nested time-stamps of archived electronic signature
are required.

The potential for Trusted Service Provider (TSP) key compromise should be significantly lower than for user keys,
because TSP(s) are expected to use stronger cryptography and better key protection. It can be expected that new
algorithms (or old ones with greater key lengths) will be used. In such a case, a sequence of time-stamps will protect
against forgery. Each time-stamp needs to be affixed before either the compromise of the signing key or of the cracking
of the algorithms used by the TSA. TSAs (Time-Stamping Authorities) should have long keys and/or a "good" or
different algorithm.

Nested time-stamps will also protect the verifier against key compromise or cracking the algorithm on the old electronic
signatures.

The process will need to be performed and iterated before the cryptographic algorithms used for generating the previous
time-stamp are no longer secure. Archive validation data MAY thus bear multiple embedded time-stamps.

The xadesv141:ArchiveTimeStamp element is an unsigned property qualifying the signature. Below follows the
schema definition for this element.

<xsd:element name="ArchiveTimeStamp" type="XAdESTimeStampType"/>

Should a CounterSignature unsigned property be time-stamped by the xadesv141:ArchiveTimeStamp,
any ulterior change of their contents (by addition of unsigned properties if the counter-signature is a XAdES signature,
for instance) would make the validation of the xadesv141:ArchiveTimeStamp, and in consequence of the
countersigned XAdES signature, fail. Implementers SHOULD, in consequence, not change the contents of the
CounterSignature property once it has been time-stamped by the xadesv141:ArchiveTimeStamp.
Implementors MAY, in these circumstances, to make use of the detached counter-signature mechanism specified in
clause 7.2.4.1.

In addition it has to be noted that the present document allows to counter-sign a previously time-stamped
countersignature with another CounterSignature property added to the embedding XAdES signature after the
time-stamp container.

Depending whether all the unsigned properties covered by the time-stamp token and the
xadesv141:ArchiveTimeStamp property itself have the same parent or not, its contents may be different. Details
are given in clauses below.

NOTE 1: Readers are warned that once an xadesv141:ArchiveTimeStamp property is added to the
signature, any ulterior addition of a ds:Object to the signature would make the verification of such
time-stamp fail.

NOTE 2: A new version of the XML Schema file named "XAdESv141.xsd" is issued with the present document,
which fixes an error existing in the previous version of this XML Schema file, where the
ArchiveTimeStamp element was wrongly named "ArchiveTimeStampV2". The new XML Schema file
names this attribute as specified in the present document, i.e. "ArchiveTimeStamp".

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)58

8.2.1 Not distributed case

When xadesv141:ArchiveTimeStamp and all the unsigned properties covered by its time-stamp token have the
same parent, this property uses the Implicit mechanism for all the time-stamped data objects. The input to the
computation of the digest value MUST be built as follows:

1) Initialize the final octet stream as an empty octet stream.

2) Take all the ds:Reference elements in their order of appearance within ds:SignedInfo referencing
whatever the signer wants to sign including the SignedProperties element. Process each one as indicated
below:

- Process the retrieved ds:Reference element according to the reference processing model of
XMLDSIG.

- If the result is a XML node set, canonicalize it. If ds:Canonicalization is present, the algorithm
indicated by this element is used. If not, the standard canonicalization method specified by XMLDSIG is
used.

- Concatenate the resulting octets to the final octet stream.

3) Take the following XMLDSIG elements in the order they are listed below, canonicalize each one and
concatenate each resulting octet stream to the final octet stream:

- The ds:SignedInfo element.

- The ds:SignatureValue element.

- The ds:KeyInfo element, if present.

4) Take the unsigned signature properties that appear before the current xadesv141:ArchiveTimeStamp
in the order they appear within the xades:UnsignedSignatureProperties, canonicalize each one
and concatenate each resulting octet stream to the final octet stream. While concatenating the following rules
apply:

- The xades:CertificateValues property MUST be added if it is not already present and the
ds:KeyInfo element does not contain the full set of certificates used to validate the electronic signature.

- The xades:RevocationValues property MUST be added if it is not already present and the
ds:KeyInfo element does not contain the revocation information that has to be shipped with the electronic
signature.

- The xades:AttrAuthoritiesCertValues property MUST be added if not already present and
the following conditions are true: there exist an attribute certificate in the signature AND a number of
certificates that have been used in its validation do not appear in CertificateValues. Its content
will satisfy with the rules specified in clause 7.6.3.

- The xades:AttributeRevocationValues property MUST be added if not already present and
there the following conditions are true: there exist an attribute certificate AND some revocation data that
have been used in its validation do not appear in RevocationValues. Its content will satisfy with the
rules specified in clause 7.6.4.

5) Take all the ds:Object elements except the one containing xades:QualifyingProperties element.
Canonicalize each one and concatenate each resulting octet stream to the final octet stream. If
ds:Canonicalization is present, the algorithm indicated by this element is used. If not, the standard
canonicalization method specified by XMLDSIG is used.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)59

NOTE: XAdESv1.3.2 [12] specified a different strategy for concatenating ds:Object elements present within
the signature. Following that strategy, when the last transformation of a certain ds:Reference is not
a canonicalization transformation and its output is an octet stream, it is, in the general case, unfeasible to
ascertain that this reference actually makes the signature to sign a certain ds:Object. The present
document overcomes this situation by forcing that all the ds:Object elements other than the one
containing the qualifying properties, are canonicalized and concatenated, which is simple although in
enveloping signatures may lead to certain degree of redundancy in the digest computation input. fail.

8.2.2 Distributed case

When xadesv141:ArchiveTimeStamp and some of the unsigned properties covered by its time-stamp token DO
NOT have the same parent, applications MUST use the explicit (based on xades:Include elements) mechanism
only for referencing the unsigned properties. Applications SHALL build one xades:Include element for each
unsigned property that is covered by the time-stamp token. These xades:Include elements will be added in the
same order as the unsigned properties are processed for contributing to the digest computation input.

No xades:Include elements are generated for any other XMLDSIG element present in the signature and listed in
clause 7.5.2.1, although they are actually time-stamped as it is discussed in the next clause.

Generating applications MUST build digest computation input as for the Implicit case (clause 7.7.1) substituting step 4
by the one specified below:

1) Take the unsigned signature properties present in the signature, extract comment nodes, canonicalize each one
and concatenate each resulting octet stream to the final octet stream. While concatenating, the following rules
apply:

- The xades:CertificateValues property MUST be added if it is not already present and the
ds:KeyInfo element does not contain the full set of certificates used to validate the electronic signature.

- The xades:RevocationValues property MUST be added if it is not already present and the
ds:KeyInfo element does not contain the revocation information that has to be shipped with the electronic
signature.

- The xades:AttrAuthoritiesCertValues property MUST be added if not already present and
the following conditions are true: there exist an attribute certificate in the signature AND a number of
certificates that have been used in its validation do not appear in CertificateValues. Its content
will satisfy with the rules specified in clause 7.6.3.

- The xades:AttributeRevocationValues property MUST be added if not already present and
the following conditions are true: there exist attribute certificates AND some revocation data that have
been used in its validation do not appear in RevocationValues. Its content will satisfy with the rules
specified in clause 7.6.4.

Verifying applications MUST build digest computation input as detailed below:

1) Initialize the final octet stream as an empty octet stream.

2) Take all the ds:Reference elements in their order of appearance within ds:SignedInfo referencing
whatever the signer wants to sign including the SignedProperties element. Process each one as indicated
below:

a) Process the retrieved ds:Reference element according to the reference processing model of
XMLDSIG.

b) If the result is a XML node set, canonicalize it. If ds:Canonicalization is present, the algorithm
indicated by this element is used. If not, the standard canonicalization method specified by XMLDSIG is
used.

c) Concatenate the resulting octets to the final octet stream.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)60

3) Take the following XMLDSIG elements in the order they are listed below, canonicalize each one and
concatenate each resulting octet stream to the final octet stream:

a) The ds:SignedInfo element.

b) The ds:SignatureValue element.

c) The ds:KeyInfo element if this element is present.

4) Process in order each Include element present as indicated in clause 7.1.4.3.1. Concatenate the resulting octet
streams to the final octet stream.

5) Take any ds:Object element in the signature except the one containing the
xades:QualifyingProperties element. Canonicalize each one and concatenate each resulting octet
stream to the final octet stream. If ds:Canonicalization is present, the algorithm indicated by this
element is used. If not, the standard canonicalization method specified by XMLDSIG is used.

9 Conformance requirements
The present document defines conformance requirements for the generation of XAdES-BES and XAdES-EPES. At
least one of these two forms must be implemented.

The present document defines conformance requirements for the verification of XAdES-BES and XAdES-EPES. At
least one of the two forms must be implemented.

The present document only defines conformance requirements up to a XAdES electronic signature with complete
validation data (XAdES-C). This means that none of the extended and archive forms of Electronic Signature, specified
in annex B, need to be implemented to get conformance to the present document.

On verification the inclusion of optional signed and unsigned properties must be supported only to the extended that the
signature is verifiable. The semantics of optional properties may be unsupported, unless specified otherwise by a
signature policy.

9.1 Basic Electronic Signature (XAdES-BES)
A system supporting XAdES-BES signers according to the present document shall, at a minimum, support generation of
a XML electronic signature consisting of the following components:

• The ds:Signature element as specified in [3].

• At least one of the following:

- the SigningCertificate signed property (as defined in clause 7.2.2) incorporated to the signature
as defined in clause 6.3;

- the ds:KeyInfo element whose contents satisfy the restrictions specified in clause 4.4.1.

9.2 Explicit policy based Electronic Signature (XAdES-EPES)
A system supporting policy based signers according to the present document shall, at a minimum, support generation of
XAdES-BES, plus:

• The SignaturePolicyIdentifier signed property (as defined in clause 7.2.3).

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)61

9.3 Verification using time-stamping
A system supporting verifiers according to the present document with time-stamping facilities shall, at a minimum,
support:

• Verification of the mandated components of a XAdES-BES electronic signature, as defined in clause 8.1.

• SignatureTimeStamp unsigned property, as defined in clause 7.3.

• CompleteCertificateRefs unsigned property as defined in clause 7.4.1.

• CompleteRevocationRefs unsigned property, as defined in clause 7.4.2.

• Public Key Certificates, as defined in ITU-T Recommendation X.509 [6] (see clause 8.1).

• Either of:

- Certificate Revocation Lists, as defined in ITU-T Recommendation X.509 [6] (see clause 8.2); or

- On-line Certificate Status Protocol, as defined in RFC 2560 [8] (see clause 8.3).

9.4 Verification using secure records
A system supporting verifiers according to the present document shall, at a minimum, support:

• Verification of the mandated components of a XAdES-BES, as defined in clause 8.1.

• CompleteCertificateRefs unsigned property as defined in clause 7.4.1.

• CompleteRevocationRefs unsigned property, as defined in clause 7.4.2.

• A record must be maintained and cannot be undetectable modified, of the electronic signature and the time
when the signature was first validated using the referenced certificates and revocation information.

• Public Key Certificates, as defined in ITU-T Recommendation X.509 [6] (see clause 8.1).

• Either of:

- Certificate Revocation Lists, as defined in ITU-T Recommendation X.509 [6] (see clause 8.2); or

- On-line Certificate Status Protocol, as defined in RFC 2560 [8] (see clause 8.3).

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)62

Annex A (informative):
Definitions
Data Object (Content/Document) (source W3C/IETF Recommendation [3]: "XML-Signature Si=yntax and
Processing")

The actual binary/octet data being operated on (transformed, digested or signed) by an application, frequently an HTTP
entity. Note that the proper noun Object designates a specific XML element. Occasionally we refer to a data object as a
document or as a resource's content. The term element content is used to describe the data between XML start and end
tags. The term XML document is used to describe data objects which conform to the XML specification.

Signature (source W3C/IETF Recommendation February 2002 [3]: "XML-Signature Syntax and Processing")

Formally speaking, a value generated from the application of a private key to a message via a cryptographic algorithm
such that it has the properties of signer authentication and message authentication (integrity). (However, we sometimes
use the term signature generically such that it encompasses AuthenticationCode values as well, but we are careful to
make the distinction when the property of AuthenticationSigner is relevant to the exposition.) A signature may be
(non-exclusively) described as detached, enveloping or enveloped.

Transform (source W3C/IETF Recommendation February 2002 [3]: "XML-Signature Syntax and Processing")

The processing of a data from its source to its derived form. Typical transforms include XML Canonicalization, XPath
and XSLT.

Attribute Certificate (source ITU-T Recommendation X.509 [6]: "Data networks and open system
communication directory")

A set of attributes of a user together with some other information, rendered unforgeable by the digital signature created
using the private key of the certification authority which issued it.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)63

Annex B (informative):
Extended electronic signature forms
The XAdES forms specified in clause 4.4 can be extended by addition of certain unsigned properties that are defined in
the present document. These properties are applicable for very long term verification, and for preventing some disaster
situations which have been identified in the normative part of the present document. The clauses below give an
overview of the various forms of extended signature formats in the present document.

B.1 Extended signatures with time forms (XAdES-X)
Extended signatures with time indication forms (XAdES-X) in accordance with the present document build on
signatures containing CompleteCertificateRefs and CompleteRevocationRefs properties, by adding one
or more time-stamps unsigned properties.

Depending of what is time-stamped, there are two different types of XAdES-X signatures, namely, XAdES-X type 1
and XAdES-X type 2. Time-stamps in both types cover, among other elements, CompleteCertificateRefs and
CompleteRevocationRefs properties. Time-stamps provide an integrity and trusted time protection over
everything that is time-stamped. They protect the referenced certificates, CRLs and OCSP responses in case of a later
compromise of a CA key, CRL key or OCSP issuer key.

XAdES-X type 1 is built by adding one or more SigAndRefsTimeStamp properties each containing one time-stamp
obtained from different TSAs. These time-stamps are computed on the SignatureValue element,
SignatureTimeStamp if present, CompleteCertificateRefs and CompleteRevocationRefs
properties.

XAdES-X type 2 is built by adding one or more RefsOnlyTimeStamp properties each containing one time-stamp
obtained from different TSAs. These time-stamps are computed on the CompleteCertificateRefs and
CompleteRevocationRefs properties.

Below follows the most complete XAdES-X structure, which builds on a XAdES-C signature.

 XMLDISG
 |
<ds:Signature ID?>- - - - - - - - +- - - - - - +-+-+-+
 <ds:SignedInfo> | | | | |
 <ds:CanonicalizationMethod/> | | | | |
 <ds:SignatureMethod/> | | | | |
 (<ds:Reference URI? > | | | | |
 (<ds:Transforms/>)? | | | | |
 <ds:DigestMethod/> | | | | |
 <ds:DigestValue/> | | | | |
 </ds:Reference>)+ | | | | |
 </ds:SignedInfo/> | | | | |
 <ds:SignatureValue> | | | | |
 (<ds:KeyInfo>)? - - - - - - - - + | | | |
 | | | |
 <ds:Object> | | | |
 | | | |
 <QualifyingProperties> | | | |
 | | | |
 <SignedProperties> | | | |
 | | | |
 <SignedSignatureProperties> | | | |
 (SigningTime)? | | | |
 (SigningCertificate)? | | | |
 (SignaturePolicyIdentifier)? | | | |
 (SignatureProductionPlace)? | | | |
 (SignerRole)? | | | |
 </SignedSignatureProperties> | | | |
 | | | |
 <SignedDataObjectProperties> | | | |
 (DataObjectFormat)* | | | |
 (CommitmentTypeIndication)* | | | |
 (AllDataObjectsTimeStamp)* | | | |
 (IndividualDataObjectsTimeStamp)* | | | |

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)64

 </SignedDataObjectPropertiesSigned> | | | |
 | | | |
 </SignedProperties> | | | |
 | | | |
 <UnsignedProperties> | | | |
 | | | |
 <UnsignedSignatureProperties> | | | |
 (CounterSignature)*- - - - - - - - - + | | |
 (SignatureTimeStamp)*- - - - - - - - + | |
 (CompleteCertificateRefs) | |
 (CompleteRevocationRefs) | |
 (AttributeCertificateRefs)? | |
 (AttributeRevocationRefs)? - - - - - - - + |
 ((SigAndRefsTimeStamp)* | |
 (RefsOnlyTimeStamp)*) |
 </UnsignedSignatureProperties>- - - - -+-+-+ |
 | | | |
 </UnsignedProperties> | | | |
 | | | |
 </QualifyingProperties> | | | |
 | | | |
 </ds:Object> | | | |
</ds:Signature>- - - - - - - - - - - - - - - - +-+-+-+
 | | | |
 XAdES-BES(-EPES)| | |
 | | |
 XAdES-T | |
 | |
 XAdES-C |
 |
 XAdES-X

B.2 Extended long electronic signatures with time
(XAdES-X-L)

Extended long electronic signatures with time (XAdES-X-L) forms in accordance with the present document build up
on XAdES-X types 1 or 2 by adding the CertificateValues and RevocationValues unsigned properties
aforementioned.

The structure for the most complete XAdES-X-L, built on the most complete XAdES-X signature, is shown below.

 XMLDISG
 |
<ds:Signature ID?>- - - - - - - - +- - - - - +-+-+-+-+
 <ds:SignedInfo> | | | | | |
 <ds:CanonicalizationMethod/> | | | | | |
 <ds:SignatureMethod/> | | | | | |
 (<ds:Reference URI? > | | | | | |
 (<ds:Transforms/>)? | | | | | |
 <ds:DigestMethod/> | | | | | |
 <ds:DigestValue/> | | | | | |
 </ds:Reference>)+ | | | | | |
 </ds:SignedInfo> | | | | | |
 <ds:SignatureValue/> | | | | | |
 (<ds:KeyInfo>)? - - - - - - - -+ | | | | |
 | | | | |
 <ds:Object> | | | | |
 | | | | |
 <QualifyingProperties> | | | | |
 | | | | |
 <SignedProperties> | | | | |
 | | | | |
 <SignedSignatureProperties> | | | | |
 (SigningTime)? | | | | |
 (SigningCertificate)? | | | | |
 (SignaturePolicyIdentifier)? | | | | |
 (SignatureProductionPlace)? | | | | |
 (SignerRole)? | | | | |
 </SignedSignatureProperties> | | | | |
 | | | | |
 <SignedDataObjectProperties> | | | | |
 (DataObjectFormat)* | | | | |
 (CommitmentTypeIndication)* | | | | |

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)65

 (AllDataObjectsTimeStamp)* | | | | |
 (IndividualDataObjectsTimeStamp)* | | | | |
 </SignedDataObjectPropertiesSigned> | | | | |
 | | | | |
 </SignedProperties> | | | | |
 | | | | |
 <UnsignedProperties> | | | | |
 | | | | |
 <UnsignedSignatureProperties> | | | | |
 (CounterSignature)*- - - - - - - - + | | | |
 (SignatureTimeStamp)*- - - - - - - - + | | |
 (CompleteCertificateRefs) | | |
 (CompleteRevocationRefs) | | |
 (AttributeCertificateRefs)? | | |
 (AttributeRevocationRefs)? - - - - - - + | |
 ((SigAndRefsTimeStamp)* | | |
 (RefsOnlyTimeStamp)*)- - - - - - - - - - + |
 (CertificatesValues) |
 (RevocationValues) |
 (AttrAuthoritiesCertValues)? |
 (AttributeRevocationValues)? |
 </UnsignedSignatureProperties>- - - -+-+-+-+ |
 | | | | |
 </UnsignedProperties> | | | | |
 | | | | |
 </QualifyingProperties> | | | | |
 | | | | |
 </ds:Object> | | | | |
</ds:Signature>- - - - - - - - - - - - - - - +-+-+-+-+
 | | | | |
 XAdES-BES(-EPES)| | | |
 | | | |
 XAdES-T | | |
 | | |
 XAdES-C | |
 | |
 XAdES-X |
 |
 XAdES-X-L

B.3 Archival electronic signatures (XAdES-A)
Archival signatures in accordance with the present document incorporate CertificateValues unless the
ds:KeyInfo element does contain the full set of certificates used to validate the electronic signature. They also
incorporate RevocationValues unless the ds:KeyInfo element contains the revocation information that has to be
shipped with the electronic signature. Archival signatures also incorporate one or more
xadesv141:ArchiveTimeStamp unsigned properties. Thet MAY contain other properties. Each
xadesv141:ArchiveTimeStamp element contains time-stamp tokens covering among other elements, those ones
that contain validation data (see clause 7.7). These forms are used for archival of signatures. Successive time-stamps
protect the whole material against vulnerable hashing algorithms or the breaking of the cryptographic material or
algorithms.

Below follows the structure of a XAdES-A built on a XAdES-X-L, as an example of the most complete archival form.
In the figure below, the prefix "ds" corresponds to the XML Namespace "http://www.w3.org/2000/09/xmldsig#", the
"xadesv141" prefix corresponds to XML Namespace "http://uri.etsi.org/01903/v1.4.1#".

 XMLDISG
 |
<ds:Signature ID?>- - - - - - - - +- - - - - - - - - +
 <ds:SignedInfo> | |
 <ds:CanonicalizationMethod/> | |
 <ds:SignatureMethod/> | |
 (<ds:Reference URI? > | |
 (<ds:Transforms/>)? | |
 <ds:DigestMethod/> | |
 <ds:DigestValue/> | |
 </ds:Reference>)+ | |
 </ds:SignedInfo> | |
 <ds:SignatureValue/> | |
 (<ds:KeyInfo>)? - - - - - - - -+ |
 |
 <ds:Object> |

http://www.w3.org/2000/09/xmldsig
http://uri.etsi.org/01903/v1.4.1/

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)66

 |
 <QualifyingProperties> |
 |
 <SignedProperties> |
 |
 <SignedSignatureProperties> |
 (SigningTime)? |
 (SigningCertificate)? |
 (SignaturePolicyIdentifier)? |
 (SignatureProductionPlace)? |
 (SignerRole)? |
 </SignedSignatureProperties> |
 |
 <SignedDataObjectProperties> |
 (DataObjectFormat)* |
 (CommitmentTypeIndication)* |
 (AllDataObjectsTimeStamp)* |
 (IndividualDataObjectsTimeStamp)* |
 </SignedDataObjectPropertiesSigned> |
 |
 </SignedProperties> |
 |
 <UnsignedProperties> |
 |
 <UnsignedSignatureProperties> |
 (xadesv141:TimeStampValidationData)* + <- These elements may contain revocation
 | information of time-stamp tokens embedded
 | in AllDataObjectsTimeStamp or
 | IndividualDataObjectsTimeStamp
 (CounterSignature)* |
 ((SignatureTimeStamp) |
 (xadesv141:TimeStampValidationData)?)* |
 (CompleteCertificateRefs) |
 (CompleteRevocationRefs) |
 (AttributeCertificateRefs)? |
 (AttributeRevocationRefs) |
 ((SigAndRefsTimeStamp |
 xadesv141:TimeStampValidationData?) | |
 (RefsOnlyTimeStamp |
 xadesv141:TimeStampValidationData?))* |
 (CertificatesValues) |
 (RevocationValues) |
 (AttrAuthoritiesCertValues)? |
 (AttributeRevocationValues)? |
 ((xadesv141:ArchiveTimeStamp |
 xadesv141:TimeStampValidationData?)+ |
 </UnsignedSignatureProperties>- - - - |
 |
 </UnsignedProperties> |
 |
 </QualifyingProperties> |
 |
 </ds:Object> |
</ds:Signature>- - - - - - - - - - - - - - - - - - - +
 |
 XAdES-A

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)67

Annex C (informative):
concepts and rationales
This annex presents details on some of the concepts used in the standard. It also provides the rationale for certain
normative parts of the present document.

C.1 Multiple signatures and countersignatures
Some electronic signatures may only be valid if they bear more than one signature. This is generally the case, for
example, when a contract is signed between two parties. The ordering of the signatures may or may not be important,
i.e. one may or may not need to be applied before the other. This allows establishing two basic categories for multiple
signatures:

• independent signatures;

• countersignatures.

Independent signatures are parallel signatures where the ordering of the signatures is not important. The computation of
these signatures is performed on exactly the same input but using different private keys.

Countersignatures are signatures that are applied one after the other and are used where the order the signatures are
applied is important. In these situations the first signature signs the signed data object. Each additional signature may
sign in turn the latest previously generated signature, or all the previously generated signatures and the signed
document.

The referencing mechanism present in XMLDSIG gives full support to countersignatures. Using them, the
countersignatures may be placed and kept in different ways: they may be embedded one within the other, or they may
be detached from the rest as long as their corresponding <ds:Reference> elements ensure that each signature
actually signs the previously generated signature (or all the previously generated signatures and the signed document if
this is the requirement). While XMLDSIG supports these features, it does not propose any standard format for
countersignatures as it considers this topic being out of its scope.

The present document defines a new URI value, which, when assigned as value of the Type attribute of a
ds:Reference element, denotes that the enclosing XAdES signature is in fact, a countersignature of another
signature.

In addition the present document defines with the CounterSignature property a standard way of managing
countersignatures that:

• are computed on the values of the latest previously generated signatures;

• are embedded within the signatures that they countersign so that the first electronic signature (the one
computed on the data objects actually signed) contains all the additional countersignatures that have to be
verified.

This proposal does not, of course, satisfy all the potential requirements that real situations may pose in terms of
relationships among electronic signatures and documents. This would require more complexity and likely the need to
define new XML containers for the signatures, which is currently out of scope of XAdES.

Independent signatures will not appear as CounterSignature properties of another independent one.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)68

Annex D (normative):
Schema definitions
Content of schema file (which may be found at http://uri.etsi.org/01903/v1.4.1/XAdESv141.xsd) containing the
definition of the new elements:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://uri.etsi.org/01903/v1.4.1#"
xmlns="http://uri.etsi.org/01903/v1.4.1#" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xades="http://uri.etsi.org/01903/v1.3.2#" elementFormDefault="qualified">
 <xsd:import namespace="http://uri.etsi.org/01903/v1.3.2#"
schemaLocation="http://uri.etsi.org/01903/v1.3.2/XAdES.xsd"/>
 <!-- Start CertificateValues -->
 <xsd:element name="TimeStampValidationData" type="ValidationDataType"/>
 <xsd:complexType name="ValidationDataType">
 <xsd:sequence>
 <xsd:element ref="xades:CertificateValues" minOccurs="0" />
 <xsd:element ref="xades:RevocationValues" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 <xsd:attribute name="URI" type="xsd:anyURI" use="optional"/>
 </xsd:complexType>

 <xsd:element name="ArchiveTimeStamp" type="xades:XAdESTimeStampType"/>
</xsd:schema>

Content of the schema file (which may be found at http://uri.etsi.org/01903/v1.3.2/XAdES.xsd) containing the
definition of the elements as in XAdESv1.3.2 [12]:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://uri.etsi.org/01903/v1.3.2#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://uri.etsi.org/01903/v1.3.2#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#" elementFormDefault="qualified">

 <xsd:import namespace="http://www.w3.org/2000/09/xmldsig#"
schemaLocation="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd"/>

<!-- Start auxiliary types definitions: AnyType, ObjectIdentifierType,
EncapsulatedPKIDataType and containers for time-stamp tokens -->

<!-- Start AnyType -->

 <xsd:element name="Any" type="AnyType"/>
 <xsd:complexType name="AnyType" mixed="true">
 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
 <xsd:any namespace="##any" processContents="lax"/>
 </xsd:sequence>
 <xsd:anyAttribute namespace="##any"/>
 </xsd:complexType>

<!-- End AnyType -->

<!-- Start ObjectIdentifierType-->

 <xsd:element name="ObjectIdentifier" type="ObjectIdentifierType"/>
 <xsd:complexType name="ObjectIdentifierType">
 <xsd:sequence>
 <xsd:element name="Identifier" type="IdentifierType"/>
 <xsd:element name="Description" type="xsd:string" minOccurs="0"/>
 <xsd:element name="DocumentationReferences"
 type="DocumentationReferencesType" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="IdentifierType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:anyURI">
 <xsd:attribute name="Qualifier" type="QualifierType" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:simpleType name="QualifierType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="OIDAsURI"/>

http://uri.etsi.org/01903/v1.4.1/XAdESv141.xsd
http://uri.etsi.org/01903/v1.3.2/XAdES.xsd

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)69

 <xsd:enumeration value="OIDAsURN"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="DocumentationReferencesType">
 <xsd:sequence maxOccurs="unbounded">
 <xsd:element name="DocumentationReference" type="xsd:anyURI"/>
 </xsd:sequence>
 </xsd:complexType>

<!-- End ObjectIdentifierType-->

<!-- Start EncapsulatedPKIDataType-->

 <xsd:element name="EncapsulatedPKIData" type="EncapsulatedPKIDataType"/>
 <xsd:complexType name="EncapsulatedPKIDataType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:base-64Binary">
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 <xsd:attribute name="Encoding" type="xsd:anyURI" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- End EncapsulatedPKIDataType -->

 <!-- Start time-stamp containers types -->

 <!-- Start GenericTimeStampType -->

 <xsd:element name="Include" type="IncludeType"/>
 <xsd:complexType name="IncludeType">
 <xsd:attribute name="URI" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="referencedData" type="xsd:boolean" use="optional"/>
 </xsd:complexType>
 <xsd:element name="ReferenceInfo" type="ReferenceInfoType"/>
 <xsd:complexType name="ReferenceInfoType">
 <xsd:sequence>
 <xsd:element ref="ds:DigestMethod"/>
 <xsd:element ref="ds:DigestValue"/>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 <xsd:attribute name="URI" type="xsd:anyURI" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="GenericTimeStampType" abstract="true">
 <xsd:sequence>
 <xsd:choice minOccurs="0">
 <xsd:element ref="Include" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="ReferenceInfo" maxOccurs="unbounded"/>
 </xsd:choice>
 <xsd:element ref="ds:CanonicalizationMethod" minOccurs="0"/>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="EncapsulatedTimeStamp"
 type="EncapsulatedPKIDataType"/>
 <xsd:element name="XMLTimeStamp" type="AnyType"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 </xsd:complexType>

 <!-- End GenericTimeStampType -->

 <!-- Start XAdESTimeStampType"/>

 <xsd:element name="XAdESTimeStamp" type="XAdESTimeStampType"/>
 <xsd:complexType name="XAdESTimeStampType">
 <xsd:complexContent>
 <xsd:restriction base="GenericTimeStampType">
 <xsd:sequence>
 <xsd:element ref="Include" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="ds:CanonicalizationMethod" minOccurs="0"/>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="EncapsulatedTimeStamp"
 type="EncapsulatedPKIDataType"/>
 <xsd:element name="XMLTimeStamp" type="AnyType"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)70

 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- End XAdESTimeStampType -->

 <!-- Start OtherTimeStampType"/>

 <xsd:element name="OtherTimeStamp" type="OtherTimeStampType"/>
 <xsd:complexType name="OtherTimeStampType">
 <xsd:complexContent>
 <xsd:restriction base="GenericTimeStampType">
 <xsd:sequence>
 <xsd:element ref="ReferenceInfo" maxOccurs="unbounded"/>
 <xsd:element ref="ds:CanonicalizationMethod" minOccurs="0"/>
 <xsd:choice>
 <xsd:element name="EncapsulatedTimeStamp"
 type="EncapsulatedPKIDataType"/>
 <xsd:element name="XMLTimeStamp" type="AnyType"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- End OtherTimeStampType -->

 <!-- End time-stamp containers types -->

<!-- End auxiliary types definitions-->

<!-- Start container types -->

<!-- Start QualifyingProperties -->

 <xsd:element name="QualifyingProperties" type="QualifyingPropertiesType"/>

 <xsd:complexType name="QualifyingPropertiesType">
 <xsd:sequence>
 <xsd:element name="SignedProperties" type="SignedPropertiesType"
 minOccurs="0"/>
 <xsd:element name="UnsignedProperties" type="UnsignedPropertiesType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="Target" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 </xsd:complexType>

<!-- End QualifyingProperties -->

<!-- Start SignedProperties-->

 <xsd:element name="SignedProperties" type="SignedPropertiesType"/>

 <xsd:complexType name="SignedPropertiesType">
 <xsd:sequence>
 <xsd:element name="SignedSignatureProperties"
 type="SignedSignaturePropertiesType" minOccurs="0"/>
 <xsd:element name="SignedDataObjectProperties"
 type="SignedDataObjectPropertiesType" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 </xsd:complexType>

<!-- End SignedProperties-->

<!-- Start UnsignedProperties-->

<xsd:element name="UnsignedProperties" type="UnsignedPropertiesType" />

 <xsd:complexType name="UnsignedPropertiesType">
 <xsd:sequence>
 <xsd:element name="UnsignedSignatureProperties"
 type="UnsignedSignaturePropertiesType" minOccurs="0"/>
 <xsd:element name="UnsignedDataObjectProperties"
 type="UnsignedDataObjectPropertiesType" minOccurs="0"/>
 </xsd:sequence>

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)71

 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
 </xsd:complexType>

<!-- End UnsignedProperties-->

<!-- Start SignedSignatureProperties-->

<xsd:element name="SignedSignatureProperties"
 type="SignedSignaturePropertiesType" />

<xsd:complexType name="SignedSignaturePropertiesType">
 <xsd:sequence>
 <xsd:element name="SigningTime" type="xsd:dateTime" minOccurs="0"/>
 <xsd:element name="SigningCertificate" type="CertIDListType"
 minOccurs="0"/>
 <xsd:element name="SignaturePolicyIdentifier"
 type="SignaturePolicyIdentifierType" minOccurs="0"/>
 <xsd:element name="SignatureProductionPlace"
 type="SignatureProductionPlaceType"
 minOccurs="0"/>
 <xsd:element name="SignerRole" type="SignerRoleType" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

<!-- End SignedSignatureProperties-->

<!-- Start SignedDataObjectProperties-->

<xsd:element name="SignedDataObjectProperties"
 type="SignedDataObjectPropertiesType"/>

<xsd:complexType name="SignedDataObjectPropertiesType">
 <xsd:sequence>
 <xsd:element name="DataObjectFormat" type="DataObjectFormatType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="CommitmentTypeIndication"
 type="CommitmentTypeIndicationType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="AllDataObjectsTimeStamp" type="XAdESTimeStampType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="IndividualDataObjectsTimeStamp"
 type="XAdESTimeStampType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

<!-- End SignedDataObjectProperties-->

<!-- Start UnsignedSignatureProperties-->

<xsd:element name="UnsignedSignatureProperties"
 type="UnsignedSignaturePropertiesType"/>

<xsd:complexType name="UnsignedSignaturePropertiesType">
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="CounterSignature" type="CounterSignatureType"/>
 <xsd:element name="SignatureTimeStamp" type="XAdESTimeStampType"/>
 <xsd:element name="CompleteCertificateRefs"
 type="CompleteCertificateRefsType"/>
 <xsd:element name="CompleteRevocationRefs"
 type="CompleteRevocationRefsType"/>
 <xsd:element name="AttributeCertificateRefs"
 type="CompleteCertificateRefsType"/>
 <xsd:element name="AttributeRevocationRefs"
 type="CompleteRevocationRefsType"/>
 <xsd:element name="SigAndRefsTimeStamp" type="XAdESTimeStampType"/>
 <xsd:element name="RefsOnlyTimeStamp" type="XAdESTimeStampType"/>
 <xsd:element name="CertificateValues"
 type="CertificateValuesType"/>
 <xsd:element name="RevocationValues" type="RevocationValuesType"/>
 <xsd:element name="AttrAuthoritiesCertValues"
 type="CertificateValuesType"/>
 <xsd:element name="AttributeRevocationValues"
 type="RevocationValuesType"/>

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)72

 <xsd:element name="ArchiveTimeStamp" type="XAdESTimeStampType"/>
 <xsd:any namespace="##other" />
 </xsd:choice>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

<!-- End UnsignedSignatureProperties-->

<!-- Start UnsignedDataObjectProperties-->

<xsd:element name="UnsignedDataObjectProperties"
 type="UnsignedDataObjectPropertiesType" />

<xsd:complexType name="UnsignedDataObjectPropertiesType">
 <xsd:sequence>
 <xsd:element name="UnsignedDataObjectProperty" type="AnyType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

<!-- End UnsignedDataObjectProperties-->

<!-- Start QualifyingPropertiesReference-->

<xsd:element name="QualifyingPropertiesReference"
 type="QualifyingPropertiesReferenceType"/>

<xsd:complexType name="QualifyingPropertiesReferenceType">
 <xsd:attribute name="URI" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

<!-- End QualifyingPropertiesReference-->

<!-- End container types -->

<!-- Start SigningTime element -->
 <xsd:element name="SigningTime" type="xsd:dateTime"/>

<!-- End SigningTime element -->

<!-- Start SigningCertificate -->
 <xsd:element name="SigningCertificate" type="CertIDListType"/>
 <xsd:complexType name="CertIDListType">
 <xsd:sequence>
 <xsd:element name="Cert" type="CertIDType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="CertIDType">
 <xsd:sequence>
 <xsd:element name="CertDigest" type="DigestAlgAndValueType"/>
 <xsd:element name="IssuerSerial" type="ds:X509IssuerSerialType"/>
 </xsd:sequence>
 <xsd:attribute name="URI" type="xsd:anyURI" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="DigestAlgAndValueType">
 <xsd:sequence>
 <xsd:element ref="ds:DigestMethod"/>
 <xsd:element ref="ds:DigestValue"/>
 </xsd:sequence>
 </xsd:complexType>

<!-- End SigningCertificate -->

<!-- Start SignaturePolicyIdentifier -->

 <xsd:element name="SignaturePolicyIdentifier"
 type="SignaturePolicyIdentifierType"/>
 <xsd:complexType name="SignaturePolicyIdentifierType">
 <xsd:choice>
 <xsd:element name="SignaturePolicyId" type="SignaturePolicyIdType"/>
 <xsd:element name="SignaturePolicyImplied"/>
 </xsd:choice>
 </xsd:complexType>

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)73

 <xsd:complexType name="SignaturePolicyIdType">
 <xsd:sequence>
 <xsd:element name="SigPolicyId" type="ObjectIdentifierType"/>
 <xsd:element ref="ds:Transforms" minOccurs="0"/>
 <xsd:element name="SigPolicyHash" type="DigestAlgAndValueType"/>
 <xsd:element name="SigPolicyQualifiers"
 type="SigPolicyQualifiersListType" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="SigPolicyQualifiersListType">
 <xsd:sequence>
 <xsd:element name="SigPolicyQualifier" type="AnyType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="SPURI" type="xsd:anyURI"/>
 <xsd:element name="SPUserNotice" type="SPUserNoticeType"/>
 <xsd:complexType name="SPUserNoticeType">
 <xsd:sequence>
 <xsd:element name="NoticeRef" type="NoticeReferenceType"
 minOccurs="0"/>
 <xsd:element name="ExplicitText" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="NoticeReferenceType">
 <xsd:sequence>
 <xsd:element name="Organization" type="xsd:string"/>
 <xsd:element name="NoticeNumbers" type="IntegerListType"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="IntegerListType">
 <xsd:sequence>
 <xsd:element name="int" type="xsd:integer" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

<!-- End SignaturePolicyIdentifier -->

<!-- Start CounterSignature -->
 <xsd:element name="CounterSignature" type="CounterSignatureType"/>
 <xsd:complexType name="CounterSignatureType">
 <xsd:sequence>
 <xsd:element ref="ds:Signature"/>
 </xsd:sequence>
 </xsd:complexType>

<!-- End CounterSignature -->

<!-- Start DataObjectFormat -->

 <xsd:element name="DataObjectFormat" type="DataObjectFormatType"/>
 <xsd:complexType name="DataObjectFormatType">
 <xsd:sequence>
 <xsd:element name="Description" type="xsd:string" minOccurs="0"/>
 <xsd:element name="ObjectIdentifier" type="ObjectIdentifierType"
 minOccurs="0"/>
 <xsd:element name="MimeType" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Encoding" type="xsd:anyURI" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="ObjectReference" type="xsd:anyURI" use="required"/>
 </xsd:complexType>

<!-- End DataObjectFormat -->

<!-- Start CommitmentTypeIndication -->

 <xsd:element name="CommitmentTypeIndication" type="CommitmentTypeIndicationType"/>
 <xsd:complexType name="CommitmentTypeIndicationType">
 <xsd:sequence>
 <xsd:element name="CommitmentTypeId" type="ObjectIdentifierType"/>
 <xsd:choice>
 <xsd:element name="ObjectReference" type="xsd:anyURI"
 maxOccurs="unbounded"/>
 <xsd:element name="AllSignedDataObjects"/>
 </xsd:choice>
 <xsd:element name="CommitmentTypeQualifiers"

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)74

 type="CommitmentTypeQualifiersListType" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="CommitmentTypeQualifiersListType">
 <xsd:sequence>
 <xsd:element name="CommitmentTypeQualifier" type="AnyType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

<!-- End CommitmentTypeIndication -->

<!-- Start SignatureProductionPlace -->

 <xsd:element name="SignatureProductionPlace"
 type="SignatureProductionPlaceType"/>
 <xsd:complexType name="SignatureProductionPlaceType">
 <xsd:sequence>
 <xsd:element name="City" type="xsd:string" minOccurs="0"/>
 <xsd:element name="StateOrProvince" type="xsd:string" minOccurs="0"/>
 <xsd:element name="PostalCode" type="xsd:string" minOccurs="0"/>
 <xsd:element name="CountryName" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

<!-- End SignatureProductionPlace -->

<!-- Start SignerRole -->

<xsd:element name="SignerRole" type="SignerRoleType"/>
<xsd:complexType name="SignerRoleType">
 <xsd:sequence>
 <xsd:element name="ClaimedRoles" type="ClaimedRolesListType"
 minOccurs="0"/>
 <xsd:element name="CertifiedRoles" type="CertifiedRolesListType"
 minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ClaimedRolesListType">
 <xsd:sequence>
 <xsd:element name="ClaimedRole" type="AnyType" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="CertifiedRolesListType">
 <xsd:sequence>
 <xsd:element name="CertifiedRole" type="EncapsulatedPKIDataType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<!-- End SignerRole -->

 <xsd:element name="AllDataObjectsTimeStamp" type="XAdESTimeStampType"/>

 <xsd:element name="IndividualDataObjectsTimeStamp"
 type="XAdESTimeStampType"/>

 <xsd:element name="SignatureTimeStamp" type="XAdESTimeStampType"/>

<!-- Start CompleteCertificateRefs -->

<xsd:element name="CompleteCertificateRefs"
type="CompleteCertificateRefsType"/>

<xsd:complexType name="CompleteCertificateRefsType">
 <xsd:sequence>
 <xsd:element name="CertRefs" type="CertIDListType" />
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

<!-- End CompleteCertificateRefs -->

<!-- Start CompleteRevocationRefs-->

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)75

<xsd:element name="CompleteRevocationRefs"
type="CompleteRevocationRefsType"/>

<xsd:complexType name="CompleteRevocationRefsType">
 <xsd:sequence>
 <xsd:element name="CRLRefs" type="CRLRefsType" minOccurs="0"/>
 <xsd:element name="OCSPRefs" type="OCSPRefsType" minOccurs="0"/>
 <xsd:element name="OtherRefs" type="OtherCertStatusRefsType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

<xsd:complexType name="CRLRefsType">
 <xsd:sequence>
 <xsd:element name="CRLRef" type="CRLRefType" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="CRLRefType">
 <xsd:sequence>
 <xsd:element name="DigestAlgAndValue" type="DigestAlgAndValueType"/>
 <xsd:element name="CRLIdentifier" type="CRLIdentifierType"
 minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="CRLIdentifierType">
 <xsd:sequence>
 <xsd:element name="Issuer" type="xsd:string"/>
 <xsd:element name="IssueTime" type="xsd:dateTime" />
 <xsd:element name="Number" type="xsd:integer" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="URI" type="xsd:anyURI" use="optional"/>
</xsd:complexType>

<xsd:complexType name="OCSPRefsType">
 <xsd:sequence>
 <xsd:element name="OCSPRef" type="OCSPRefType" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="OCSPRefType">
 <xsd:sequence>
 <xsd:element name="OCSPIdentifier" type="OCSPIdentifierType"/>
 <xsd:element name="DigestAlgAndValue" type="DigestAlgAndValueType"
 minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

 <xsd:complexType name="ResponderIDType">
 <xsd:choice>
 <xsd:element name="ByName" type="xsd:string"/>
 <xsd:element name="ByKey" type="xsd:base-64Binary"/>
 </xsd:choice>
 </xsd:complexType>

<xsd:complexType name="OCSPIdentifierType">
 <xsd:sequence>
 <xsd:element name="ResponderID" type="ResponderIDType"/>
 <xsd:element name="ProducedAt" type="xsd:dateTime"/>
 </xsd:sequence>
 <xsd:attribute name="URI" type="xsd:anyURI" use="optional"/>
</xsd:complexType>

<xsd:complexType name="OtherCertStatusRefsType">
 <xsd:sequence>
 <xsd:element name="OtherRef" type="AnyType" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<!-- End CompleteRevocationRefs-->

<xsd:element name="AttributeCertificateRefs"
 type="CompleteCertificateRefsType"/>

<xsd:element name="AttributeRevocationRefs"

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)76

 type="CompleteRevocationRefsType"/>
<xsd:element name="SigAndRefsTimeStamp" type="XAdESTimeStampType"/>

<xsd:element name="RefsOnlyTimeStamp" type="XAdESTimeStampType"/>

<!-- Start CertificateValues -->

<xsd:element name="CertificateValues" type="CertificateValuesType"/>

<xsd:complexType name="CertificateValuesType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="EncapsulatedX509Certificate"
 type="EncapsulatedPKIDataType"/>
 <xsd:element name="OtherCertificate" type="AnyType"/>
 </xsd:choice>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

<!-- End CertificateValues -->

<!-- Start RevocationValues-->

<xsd:element name="RevocationValues" type="RevocationValuesType"/>

<xsd:complexType name="RevocationValuesType">
 <xsd:sequence>
 <xsd:element name="CRLValues" type="CRLValuesType" minOccurs="0"/>
 <xsd:element name="OCSPValues" type="OCSPValuesType" minOccurs="0"/>
 <xsd:element name="OtherValues" type="OtherCertStatusValuesType" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="Id" type="xsd:ID" use="optional"/>
</xsd:complexType>

<xsd:complexType name="CRLValuesType">
 <xsd:sequence>
 <xsd:element name="EncapsulatedCRLValue" type="EncapsulatedPKIDataType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="OCSPValuesType">
 <xsd:sequence>
 <xsd:element name="EncapsulatedOCSPValue"
 type="EncapsulatedPKIDataType" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="OtherCertStatusValuesType">
 <xsd:sequence>
 <xsd:element name="OtherValue" type="AnyType" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<!-- End RevocationValues-->

<xsd:element name="AttrAuthoritiesCertValues" type="CertificateValuesType"/>

<xsd:element name="AttributeRevocationValues" type="RevocationValuesType"/>

<xsd:element name="ArchiveTimeStamp" type="XAdESTimeStampType"/>

</xsd:schema>

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)77

Annex E (informative):
Main changes to XAdESv1.4.1
The present document implements a minor change that fixes one error in TS 101 903 V1.4.1 specification, as detailed
below:

1) Within TS 101 903 V1.4.1, in its clause 8.1, the XML Schema definition of the type ValidationDataType
wrongly defines an attribute with name "UR", which should have been named "URI". The present document
fixes such a mistake.

The present document is accompanied by a new version of the XML Schema file named "XAdESv141.xsd", modified
as detailed below for fixing two errors:

1) Within the aforementioned XML Schema file the ValidationDataType was defined with an attribute wrongly
named "UR". The new XML Schema file fixes the error and names this attribute "URI".

2) Within the aforementioned XML Schema file a new element was wrongly named as "ArchiveTimeStampV2",
in contradiction with the name given in clause 8.2, where the name given was "ArchiveTimeStamp". The new
XML Schema file fixes the error and names this element "ArchiveTimeStamp".

NOTE: These changes were decided after consulting with participants to the XAdES/CAdES remote Plugtest
Event organized by ETSI CTI that took place in October/November 2010.

Main changes to XAdESv1.3.2

The present document implements a number of changes derived from comments raised since the publication of
XAdESv1.3.2 [12]. A relevant number of these comments have been raised and discussed within a set of Remote
PlugtestTM Events organized by ETSI and supported by the so-called XAdES PlugtestTM Portal, where participants
performed XAdESv1.3.2 signatures interoperability tests. At the time of writing XAdESv1.4.1 the public part of this
portal may be accessed at the following address:

• http://xades-portal.etsi.org/pub/index.shtml.

The most relevant changes are summarized below.

Deffects fixed in XAdESv1.3.2 schema:

1) The XML Schema definitions of GenericTimeStampType and XAdESTimeStampType resulted in an
invalid restriction, which has been fixed by adding a minOccurs="0" facet within the definition of
GenericTimeStampType. This change does not affect backwards compatibility, as it only affects an
abstract type and keeps unchanged the definition of XAdESTimeStampType.

2) A minOccurs="0" facet has been added in the SignedSignatureProperties element within SignedProperties. All
the signed properties are optional, even the the SigningCertificate if the signer's certificate is protected
in the alternative way described in clause 4.1.1.

3) The minOccurs="0" facet has been deleted in the sequen UnsignedDataObjectProperty element
within the definition of UnsignedDatatObjectsPropertiesType. This facet would allow to have
empty UnsignedDatatObjectsProperties elements.

Other changes:

4) Bad references to RFC 3161 [10] have been fixed.

5) Text has been added clarifying how the digest value enclosed within a CertDigest element has to be
computed.

6) Rules for checking SigningTime value during the validation process have left to the signature policy if any.
Rules for comparisons between time values within time-stamp tokens and the value of this property have been
removed from annex G.

http://xades-portal.etsi.org/pub/index.shtml

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)78

7) Wording in certain optional properties has been improved for aligning it with RFC 2119 [9] semantics.

8) Text of clause 6.2.1 in XAdESv1.3.2 [12] requiring occurrence of SigningCertificate has been
removed, as this is not needed in certain cases.

9) Strongly recommendation included for incorporating digest of the OCSP responses in the OCSPRef elements.

10) Added text clarifying that what is actually encapsulated within time-stamp containers are the time-stamp
tokens (which in the specific case of RFC 3161 [10] would be CMS based), not the TSA responses.

11) Added text warning readers that once an archive time-stamp is added to the signature, no other ds:Object may
be added to the signature.

12) Clarification of rules governing checking verification of DataObjectFormat in relation with
ds:Object.

13) Backwards compatibility: kept XML Namespace URI as suggested by implementers. New elements defined in
a new XML Namespace (requiring a second XML Schema file).

14) Clarification that the specification does not ban combination of OCSP responses and use of
RefsOnlyTimeStamp property.

15) Clarification that the Attribute Certificates will always be DER encoded.

16) Text clarifying that the value of CRLIdentifier's Number optional child is a helping hint to identify the
CRL.

17) Added new optional unsigned property (xadesv141:TimeStampValidationData) in a new XML
Namespace for containing validation data for a time-stamp token.

18) Added new optional unsigned property (xadesv141:ArchiveTimeStamp) in the new XML Namespace
http://uri.etsi.org/01903/v1.4.1# that substitutes ArchiveTimeStamp in XML Namespace
http://uri.etsi.org/01903/v1.3.2#, which is deprecated. This new element deals with signatures incorporating
TimeStampValidationData elements are present. It also incorporates a new way of, dealing with
enveloped ds:Object elements that overcomes problems presented by the strategy defined for the
deprecated ArchiveTimeStamp element.

http://uri.etsi.org/01903/v1.4.1/
http://uri.etsi.org/01903/v1.3.2

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)79

Annex F (informative):
Incorporation of qualifying properties
As stated in the normative part of the present document, new elements have been defined to incorporate properties (both
signed and unsigned) that qualify the whole signature, the signer or individual signed data objects:
QualifyingProperties, SignedProperties, UnsignedProperties,
SignedSignatureProperties, UnsignedSignatureProperties, SignedDataObjectProperties
and UnsignedDataProperties.

Annex E shows an example of direct incorporation of qualifying properties and one example of indirect incorporation of
these properties.

Below follows the resulting general structure of direct incorporation.

<ds:Signature ID?>

 <ds:SignedInfo>
 <ds:CanonicalizationMethod/>
 <ds:SignatureMethod/>
 (<ds:Reference URI? >
 (<ds:Transforms>)?
 <ds:DigestMethod/>
 <ds:DigestValue/>
 </Reference>)+
 </ds:SignedInfo>

 <ds:SignatureValue/>

 (<ds:KeyInfo>)?

 <ds:Object>

 <QualifyingProperties>

 <SignedProperties>

 <SignedSignatureProperties>
 <!-- Collection of signed XML elements with
 properties qualifying the signature or the
 signer -->
 </SignedSignatureProperties>

 <SignedDataObjectProperties>
 <!-- Collection of signed XML elements with
 properties individually qualifying signed data
 objects -->
 </SignedDataObjectPropertiesSigned>

 </SignedProperties>

 <UnsignedProperties>

 </UnsignedSignatureProperties>
 <!-- Collection of unsigned XML elements with
 properties qualifying signature or signer -->
 </UnsignedSignatureProperties>

 <UnSignedDataObjectProperties>
 <!-- Collection of unsigned XML elements with
 properties individually qualifying signed
 data objects -->
 </UnSignedDataObjectProperties>

 </UnsignedProperties>

 </QualifyingProperties>

 </ds:Object>

</ds:Signature>

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)80

Below follows an example showing the inclusion of three sets of qualifying properties:

• The first one includes signed properties qualifying the signature, namely:

- the time of signature production (element SigningTime);

- a restricted set of references to certificates to be used in verifying a signature. This also includes a
reference to the certificate containing the public key corresponding to the private key used in the
signature computation (element SigningCertificate);

- an identification of the signature policy under which the signature has been produced and will have to be
verified (element SignaturePolicyIdentifier).

• The second one includes signed properties qualifying the signed data object, namely:

- a time-stamp of the signed data object, proving that the content has been produced before the time
indicated in the time-stamp (element AllDataObjectsTimeStamp);

- an indication of the format of the signed object (element DataObjectFormat).

• The third one includes unsigned properties qualifying the signature, namely:

- a time-stamp on the electronic signature itself, proving that the signature was produced before the time
indicated by such time-stamp (element SignatureTimeStamp);

- the references to the full set of CA certificates that the verifier of the electronic signature has used to
validate the electronic signature (element CompleteCertificateRefs);

- the references to the revocation material (CRLs or OCSP responses) used in the validation of the signer
and CA certificates used the full to validate the electronic signature (element
CompleteRevocationRefs);

- the time-stamp generated over the electronic signature with the aforementioned qualifying information
(element SigAndRefsTimeStamp);

- the full set of CA certificates that the verifier of the electronic signature has used to validate the
electronic signature (element CertificateValues);

- the revocation material (CRLs or OCSP responses) used in the validation of the signer and CA
certificates used the full to validate the electronic signature (element RevocationValues).

[s01]<ds:Signature Id="SignatureId" xmlns:ds="http://www.w3.org/2000/09/xmldsig#>
[s02] <ds:SignedInfo Id="SignedInfoId">
[s03] <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
[s04] <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
[s05] <ds:Reference URI="http://www.etsi.org/docToBeSigned" Id="FirstSignedDocument">
[s06] <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[s07] <ds:DigestValue>… … …</ds:DigestValue>
[s08] </ds:Reference>
[s09] <ds:Reference URI="#SignedPropertiesId"
Type="http://uri.etsi.org/01903#SignedProperties">
[s10] <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[s11] <ds:DigestValue>… … …</ds:DigestValue>
[s12] </ds:Reference>
[s13] </ds:SignedInfo>
[s14] <ds:SignatureValue Id="SignatureValueId">… … … </ds:SignatureValue>
[s15] <ds:KeyInfo>… … …</ds:KeyInfo>
[s16] <ds:Object >

[s17] <QualifyingProperties Id="QualifyingPropertiesId" Target="#SignatureId"
xmlns="http://uri.etsi.org/01903/v1.3.2#" xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

[s18] <SignedProperties Id="SignedPropertiesId">
[s19] <SignedSignatureProperties >
[s20] <SigningTime>… … …</SigningTime>
[s21] <SigningCertificate>… … …</SigningCertificate >
[s22] <SignaturePolicyIdentifier>… … …</ SignaturePolicyIdentifier >
[s23] </SignedSignatureProperties>
[s24] <SignedDataObjectProperties>
[s25] <DataObjectFormat>… … …</DataObjectFormat>

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)81

[s26] <AllDataObjectsTimeStamp Id="AllDataObjectsTimeStampId">… … …
</AllDataObjectsTimeStamp>
[s27] </SignedDataObjectProperties>
[s28] </SignedProperties>
[s29] <UnsignedProperties >
[s30] <UnsignedSignatureProperties>
[s31] <SignatureTimeStamp
Id="SignatureTimeStampId">… … …</SignatureTimeStamp>
[s32] <CompleteCertificateRefs Id="CompleteCertificateRefsId">… …
…</CompleteCertificateRefs>
[s33] <CompleteRevocationRefs
Id="CompleteRevocationRefsId">… … …</CompleteRevocationRefs>
[s34] <SigAndRefsTimeStamp
Id="SigAndRefsTimeStampId">… … …</SigAndRefsTimeStamp>
[s35] <CertificateValues
Id="CertificateValuesId">… … … …</CertificateValues>
[s36] <RevocationValues
Id="RevocationValuesId">… … …</RevocationValues>
[s37] </UnsignedSignatureProperties>
[s38] </UnsignedProperties>
[s39] </QualifyingProperties>
[s40] </ds:Object>
[s41]</ds:Signature>

[s01] Beginning of the XML signature. The namespace by default is the namespace defined in
XMLDSIG.

[s02]-[s13] The ds:SignedInfo element contains the information that is actually signed.

[s03] The ds:CanonicalizationMethod element indicates the algorithm used to get a canonical
representation of the ds:SignedInfo element before being signed.

[s04] The ds:SignatureMethod indicates the algorithms used to sign ds:SignedInfo.

[s05] to [s16] ds:Reference elements contain the digest value and indication on the digest algorithm for each
data object that has to be (indirectly) signed. Each one also has a reference to the corresponding
data object. These elements also have the Id attribute that can be used to make individual
references each one of them.

[s05-s08] The first ds:Reference element. Its URI attribute references the data object that has to be
signed. ds:DigestMethod indicates the digest algorithm (sha1 in this case) and
ds:DigestValue contains the base-64 encoded digest value.

[s09-s12] The second ds:Reference element. Its URI attribute points to the SignedProperties
element (using the URI attribute) that contains the whole set of signed properties.
ds:DigestMethod indicates the digest algorithm (sha1 in this case) and ds:DigestValue
contains the digest value filtered in base. This means that the digest value of that
SignedProperties is included in ds:SignedInfo and in consequence signed when this
element is signed. The Type attribute indicates that this element is a reference to the
SignatureProperties element as mandated in clause 6.3.1.

[s14] ds:SignatureValue contains the computed digital signature of ds:SignedInfo in base-
64.

[s15] ds:KeyInfo contains cryptographic material to verify the signature.

[s16-s40] ds:Object contains three elements with the properties qualifying both the signature and the
signed data object.

[s17-39] QualifyingProperties contains the full set of qualifying properties both signed
(SignedProperties) and unsigned (UnsignedProperties). The namespace by default is
changed for this element and its contents to the one defined as namespace by default in the schema
definition given in the present document in order not to have to qualify the whole set of elements.
Additionally, as elements already defined in [3] are used in the definitions, its namespace is also
defined (prefix ds).

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)82

[s18-s28] SignedProperties contains the whole set of qualifying properties that are signed grouped in
two sequences. The first one (SignedSignatureProperties) contains all the signed
properties that qualify the signature. The second one (SignedDataObjectProperties)
contains all the signed properties that individually qualify each signed data object.

[s19-ss23] SignedSignatureProperties contains all the signed properties that qualify the signature
(SigningTime, SigningCertificate, SignaturePolicyIdentifier).

[s20] signingTime contains the value of the signing instant when the signature has been computed.

[s21] SigningCertificate contains, as stated above, a restricted set of references to certificates to
be used in verifying a signature.

[s24-27] SignedDataObjectProperties contains all the signed properties that individually qualify
each signed data object (AllDataObjectsTimeStamp, DataObjectFormat).

[s25] DataObjectFormat identifies the format of the signed data object.

[s26] AllDataObjectsTimeStamp is a time-stamp issued for the signed data object.

[s29-38] UnsignedProperties contains the whole set of qualifying properties that are NOT signed.

[s30-s37] UnsignedSignatureProperties the whole set of unsigned properties that qualify the
signature.

[s31] SignatureTimeStamp contains a time-stamp for the signature itself.

[s32] CompleteCertificateRefs contains references to CA certificates in the certification path
used to verify the signature.

[s33] CompleteRevocationRefs contains references to revocation information used to verify the
signature.

[s34] SigAndRefsTimeStamp contains a time-stamp over the XAdES-C form of the electronic
signature.

[s35] CertificateValues contains the values of the certificates referenced in
CompleteCertificateRefs.

[s36] RevocationValues contains the revocation data used to validate the electronic signature.

NOTE: The tree shown in the example above does not explicitly show certain optional XML elements (like
ds:Transforms For a complete description of this tree see W3C/IETF Recommendation
"XML-Signature Core Syntax and Processing" [3].

Below follows the example of indirect incorporation of all the unsigned properties. In this example, the signed
properties will be directly incorporated into the ds:Signature element as in the previous example. However, the
unsigned properties will be separately stored in other place. To incorporate these properties use is made of the
QualifyingPropertiesReference element pointing to the element containing them.

Below follows the contents of the XAdES itself that could be located, for instance, at the URI
http://uri.etsi.org/01903/v1.3.2/Indirect-Incorporation/Signature2:

[s01]<ds:Signature Id="Signature2Id" xmlns:ds="http://www.w3.org/2000/09/xmldsig#>
[s02] <ds:SignedInfo Id="SignedInfoId">
 [s03] <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
[s04] <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
[s05] <ds:Reference URI="http://www.etsi.org/docToBeSigned" Id="FirstSignedDocument">
[s06] <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[s07] <ds:DigestValue>… … …</ds:DigestValue>
[s08] </ds:Reference>
[s09] <ds:Reference URI="#SignedPropertiesId"
Type=http://uri.etsi.org/01903#SignedProperties>
[s10] <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[s11] <ds:DigestValue>… … …</ds:DigestValue>
[s12] </ds:Reference>
[s13] </ds:SignedInfo>

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)83

[s14] <ds:SignatureValue Id="SignatureValueId">… … … </ds:SignatureValue>
[s15] <ds:KeyInfo>… … …</ds:KeyInfo>

[s16] <ds:Object >
[s17] <QualifyingProperties Id="QualifyingProperties" Target="#SignatureId"
xmlns="http://uri.etsi.org/01903/v1.3.2#" xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
[s18] <SignedProperties Id="SignedPropertiesId">
[s19] <SignedSignatureProperties >
[s20] <SigningTime>… … …</SigningTime>
[s21] <SigningCertificate>… … …</SigningCertificate >
[s22] <SignaturePolicyIdentifier>… … …</SignaturePolicyIdentifier >
[s23] </SignedSignatureProperties>
[s24] <SignedDataObjectProperties>
[s25] <DataObjectFormat>… … …</DataObjectFormat>
[s26] <AllDataObjectsTimeStamp Id="AllDataObjectsTimeStampId">… … …
</AllDataObjectsTimeStamp>
[s27] </SignedDataObjectProperties>
[s28] </SignedProperties>
[s29] </QualifyingProperties>

[s30] <QualifyingPropertiesReference
URI="http://uri.etsi.org/01903/v1.3.2/Indirect-Incorporation/example1#QualifyingPropertiesId">
[s31] </QualifyingPropertiesReference>
[s32] </ds:Object>
[s33]</ds:Signature>

[s1-s29] These lines are the same as in the first example. They show how the signed properties are directly
incorporated.

[s30-s32] These lines show how to indirectly incorporate the unsigned properties stored in other place using
the QualifyingPropertiesReference element.

[s30] The URI attribute contains the URI pointing to the QualifyingProperties element that
contains those qualifying properties that are being indirectly incorporated. In this case, it points to
a file that could be found in http://uri.etsi.org/01903/v1.3.2/Indirect-Incorporation/example1,
which contains this element.

This example ends showing that part of the file that could be found in
http://uri.etsi.org/01903/v1.3.2/Indirect-Incorporation/example1 that contains the QualifyingProperties element
referenced in the QualifyingPropertiesReference.

<!-- This is the part of the file found in
http://uri.etsi.org/01903/v1.3.2/Indirect-Incorporation/Signature2 that contains the
QualifyingProperties element containing the unsigned properties that are indirectly incorporated in
the advanced electronic signature -->

[si] <QualifyingProperties Id="QualifyingPropertiesId" Target="http://uri.etsi.org/01903/v1.3.2/
Indirect-Incorporation/Signature2#Signature2Id" xmlns="http://uri.etsi.org/01903/v1.3.2#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
[si+1] <UnsignedProperties >
[si+2] <UnsignedSignatureProperties>
[si+3] <SignatureTimeStamp
Id="SignatureTimeStampId">… … …</SignatureTimeStamp>
[si+4] <CompleteCertificateRefs Id="CompleteCertificateRefsId">… …
…</CompleteCertificateRefs>
[si+5] <CompleteRevocationRefs
Id="CompleteRevocationRefsId">… … …</CompleteRevocationRefs>
[si+6] <SigAndRefsTimeStamp
Id="SigAndRefsTimeStampId">… … …</SigAndRefsTimeStamp>
[si+7] <CertificateValues
Id="CertificateValuesId">… … … …</CertificateValues>
[si+8] <RevocationValues
Id="RevocationValuesId">… … …</RevocationValues>
[si+9] </UnsignedSignatureProperties>
[si+10] </UnsignedProperties>
[si+11] </QualifyingProperties>

<!-- Below would follow the rest of the file -->

In the example above the QualifyingProperties element is shown that is part of the file that could be found in
http://uri.etsi.org/01903/v1.3.2/Indirect-Incorporation/example1 and that is pointed by the URI element in the
QualifyingPropertiesReference in the advanced electronic signature.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)84

Annex G (informative):
Details on XAdES signatures validation
This annex does not aim at specifying normative procedures for validating XAdES signatures, as the eventual
acceptance or rejection of a specific electronic signature depends on both technical and non-technical considerations,
these last ones being highly dependent on specific contexts. Instead, this annex gives only informative details on
technical steps, which are likely to be common to most of the contexts where electronic signatures are used, and that
verifiers SHOULD perform during the validation of such signatures.

This annex is structured in two clauses.

The first one presents an example of how, after receiving a XAdES-EPES signature, a verifier could make to evolve it,
as the validation process advances, towards more advanced XAdES forms, namely, XAdES-T, XAdES-C, XAdES-X,
XAdES-X-L and XAdES-A. Other evolutions in the received signatures are, of course, possible, and it is expected to be
dependant on the rules applying in the specific contexts.

The second clause enumerates technical rules for verification of the different qualifying properties present in XAdES
that verifiers SHOULD follow while verifying XAdES electronic signatures.

G.1 Signatures evolution example
The present document does not preclude the signature generator to collect validation data and generate up to a
XAdES-C form if she may wait the time required for collecting such validation data and generate the corresponding
XAdES unsigned properties before sending the signature to its destine. Nevertheless, contexts where signers do not add
such validation data are more likely to occur.

This clause gives an overview of how a recipient of a XAdES-EPES signature could make to evolve it, as the validation
process advances, towards more advanced XAdES forms.

Figure G.1 shows the contents of the XAdES-EPES signature arrived to the verifier with an indication of the
incorporated signed properties.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)85

ds:Signature

ds:SignedInfo

ds:SignatureValue

ds:KeyInfo

ds:Object

QualifyingProperties

SignedProperties

SignedSignatureProperties

SigningTime

SigningCertificate

SignatureProductionPlace

SignaturePolicyIdentifier

XAdES-EPES

Figure G.1: Initial XAdES-EPES signature

Note that this is a XAdES-EPES signature built on a XAdES-BES because it contains SigningCertificate and
SignaturePolicyIdentifier properties.

As said before the verifier may collect all the additional data that forms the electronic signature. Figures below and
subsequent description, show how she may build up a complete electronic signature as she goes through the verification
process.

Soon after receiving the XAdES-EPES signature, the verifier may check the signature value (1). Afterwards the
validation process will at least add one time-stamp on the signature (2), generating a XAdES-T form. The validation
process may also validate the electronic signature, using additional data (e.g. certificates, CRL, etc.) provided by trusted
service providers, and check whether the signature meets the requirements specified in the signature policy indicated by
the SignaturePolicyIdentifier property. If the validation process result is validation incomplete, then the
output from this stage is the ES-T. This process is shown in figure G.2.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)86

ds:Signature

ds:SignedInfo

ds:SignatureValue

ds:KeyInfo

ds:Object

QualifyingProperties

SignedProperties

SignedSignatureProperties

SigningTime

SigningCertificate

SignatureProductionPlace

SigningnaturePolicyIdentifier

VALIDATION PROCESS

1

XAdES-EPES

UnsignedProperties

UnsignedSignatureProperties

SignatureTimeStamp

2

XAdES-T

Figure G.2: Generation of XAdES-T

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)87

G.1.1 Example of path to archival form with validation data
references

To ascertain the validity status as Valid or Invalid and communicate that to the user, all the additional validation data
will be made available, including the complete certificate and revocation information.

Once the verifier has got such information, she may complete the validation checks and generate the XAdES-C
form (3), adding CompleteCertificateRefs and CompleteRevocationRefs properties, as shown in
figure G.3.

ds:Signature

ds:SignedInfo

ds:SignatureValue

ds:KeyInfo

ds:Object

QualifyingProperties

SignedProperties

SignedSignatureProperties

SigningTime

SigningCertificate

SignatureProductionPlace

SigningnaturePolicyIdentifier

VALIDATION PROCESS

1

XAdES-EPES

UnsignedProperties

UnsignedSignatureProperties

SignatureTimeStamp

3

XAdES-T

XAdES-C

CompleteCertificateRefs

CompleteRevocationRefs

2

Figure G.3: Generation of XAdES-C

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)88

When the validation process creates the ES-C it may also create extended forms of validation data, namely XAdES-X,
in its two variants: the one including SigAndRefsTimeStamp or the one including RefsOnlyTimeStamp
properties (4) as shown in figure G.4.

ds:Signature

ds:SignedInfo

ds:SignatureValue

ds:KeyInfo

ds:Object

QualifyingProperties

SignedProperties

SignedSignatureProperties

SigningTime

SigningCertificate

SignatureProductionPlace

SigningnaturePolicyIdentifier

VALIDATION PROCESS

1

XAdES-EPES

UnsignedProperties

UnsignedSignatureProperties

SignatureTimeStamp

3

XAdES-T

XAdES-C

CompleteCertificateRefs

CompleteRevocationRefs

2

SigAndRefsTimeStamp
 XAdES-X

4

Figure G.4: Generation of XAdES-X

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)89

Before the algorithms used in any of electronic signature become or are likely, to be compromised or rendered
vulnerable in the future, it may be necessary to add all the values of the validation and user data and time-stamp the
whole signature, obtaining a XAdES-A form as shown in figure G.5.

ds:Signature

ds:SignedInfo

ds:SignatureValue

ds:KeyInfo

ds:Object

QualifyingProperties

SignedProperties

SignedSignatureProperties

SigningTime

SigningCertificate

SignatureProductionPlace

SigningnaturePolicyIdentifier

XAdES-EPES

UnsignedSignatureProperties

SignatureTimeStamp
XAdES-T

XAdES-C

CompleteCertificateRefs

CompleteRevocationRefs

2

SigAndRefsTimeStamp

UnsignedProperties

CertificateValues

RevocationValues

xadesv141:ArchiveTimeStamp

XAdES-A

XAdES-X

VALIDATION PROCESS

3

4

5

1

Figure G.5: Generation of XAdES-A

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)90

G.1.2 Example of path to archival form without validation data
references

Alternatively, the verifier could also generate an archival form without incorporating any reference to validation data,
with the addition of the validation values and the xadesv141:ArchiveTimeStamp property, as indicated in
figure G.6.

ds:Signature

ds:SignedInfo

ds:SignatureValue

ds:KeyInfo

ds:Object

QualifyingProperties

SignedProperties

SignedSignatureProperties

SigningTime

SigningCertificate

SignatureProductionPlace

SigningnaturePolicyIdentifier

XAdES-EPES

UnsignedSignatureProperties

SignatureTimeStamp
XAdES-T

2

UnsignedProperties

CertificateValues

RevocationValues

xadesv141:ArchiveTimeStamp

XAdES-A

VALIDATION PROCESS

3

1

Figure G.6

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)91

G.2 Verification technical rules
This clause presents a set of technical rules that verifiers of XAdES signatures should follow.

First a short description of the relationship of this annex with already existing standards that include verification
procedures and rules is given.

Then the technical rules for verification of the XAdES signatures are presented.

G.2.1 Relationship with other standard verification procedures
XAdES signatures build on XMLDSIG signatures. In consequence, verification rules described in XMLDSIG [3] also
apply to XAdES signatures.

As for the process of verification of validity of the certification path, the usual verification procedures already
standardized apply, like the one in RFC 5280 [11], clause 6 and the rules established in RFC 2560 [8] for OCSP
protocol.

G.2.2 Verification procedure
This clause provides technical rules that verifiers should follow in addition to the aforementioned ones, while verifying
the qualifying properties present in XAdES signatures. Throughouht this clause, the prefix "ds" corresponds to the
XML Namespace "http://www.w3.org/2000/09/xmldsig", and the "xadesv141" prefix corresponds to the XML
Namespace "http://uri.etsi.org/01903/v1.4.1#".

G.2.2.1 General Checks

The verification process should assess whether the signature is a XAdES signature and if so, identify the specific form,
by inspecting the different qualifying properties present. The verification process should not accept as XAdES signature
any combination not aligned with those established in the normative part of the present document or the extended forms
defined in the informative annex B.

As part of the aforementioned process, the verifier should check whether the ds:SigningCertificate property is
present. If not, she should check that the ds:KeyInfo contains the signing certificate and is referenced by one of the
ds:Reference elements in the signature, so that the signing certificate is protected by the signature value.

During the aforementioned process, the verifier should also assess whether the incorporation of properties is direct (all
the properties within one ds:Object element enveloped by the ds:Signature element) or indirect (denoted by the
presence of QualifyingPropertiesReference elements within one of the ds:Object elements enveloped by
the ds:Signature), and once this is done, check the correctness of incorporation of properties according to the rules
stated in clause 6.3 of the normative part.

The verification process should also check the presence and the value
("http://uri.etsi.org/01903#SignedProperties") of the Type attribute in the ds:Reference element
referencing the ds:Object, which encloses all the XAdES signed properties in the direct incorporation case, or the
QualifyingPropertiesReference elements in the indirect incorporation case. If no Type attribute is present with
such a value, the verification process should not accept the signature as a XAdES signature.

G.2.2.2 Getting certificates for verification

The normative part of the present document states that the CertificateValues element "contains the full set of
certificates that have been used to validate the electronic signature, including the signer's certificate" except those ones
that are already present within the ds:KeyInfo element. In consequence, if the XAdES signature contains the
CertificateValues property, then the verifier should use this property and the ds:KeyInfo for getting all the
certificates required for performing the verification. The verifier should also check that the contents of these two
elements actually form a valid certification path. If not, the verifier should assume that the verification process has
failed.

http://www.w3.org/2000/09/xmldsig
http://uri.etsi.org/01903/v1.4.1/
http://uri.etsi.org/01903

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)92

If CertificateValues is not present but CompleteCertificateRefs is present, the verifier should get the
certificates referenced there and check if they actually form a valid certification path. If not, the verifier should assume
that the verification process has failed.

If neither CertificateValues nor CompleteCertificateRefs are present, the specific means by which the verifier can get
the certification path are out of scope of the present document.

The same rules apply for the AttrAuthoritiesCertValues property regarding to the retrieval of Attribute
Authorities certificates and its usage in the validation of the attribute certificate(s) present in the SignerRole
property.

G.2.2.3 Getting certificates status information for verification

The normative part of the present document states that the RevocationValues element contains information on the
status of all certificates required for verifying the electronic signature. At the time of writing of this clause, CRLs and
OCSP responses are the only standardized contents of this property.

If the XAdES signature contains the RevocationValues property, then the verifier should use this property for
getting the information on the status of all the aforementioned certificates. The verifier should also check if they
actually provide adequate revocation information for all the certificates required for verifying the electronic signature. If
not, the verifier should assume that the verification process has failed.

If RevocationValues is not present but CompleteRevocationRefs is present, the verifier should get the
certificate status information data referenced there and check if they actually provide adequate revocation information
for all the certificates required for verifying the electronic signature. If not, the verifier should assume that the
verification process has failed.

If neither RevocationValues nor CompleteRevocationRefs are present, the specific means by which the
verifier can get this information is out of the scope of the present document.

The same rules apply for the AttributeRevocationValues property regarding to the retrieval of the status of the
attribute certificate(s) present in the SignerRole property and the Attribute Authorities certificates and its usage in its
validation.

G.2.2.4 Checking SigningTime

Should a signature policy (implicit or explicit) be in place, applications SHOULD follow its rules for checking this
signed property. Otherwise, the present document considers the verification of this signed property an application
dependant issue.

G.2.2.5 Checking SigningCertificate

If the CertificateValues is present, the verifier could get it from this property or from within the ds:KeyInfo
element. If the CertificateValues element is not present, the verifier may gain access to the signer's certificate
from within the ds:KeyInfo, if present, or by other means that are out of the scope of the present document. In
addition, the means allowing the verifier to identify the signer's certificate are out of scope of the present document.

Once the verifier has gotten the signing certificate, she should check it against the references present in the
ds:SigningCertificate property, if present. For doing this, and for each reference present in the property, the
verifier should perform the following tasks:

1) Compare the name of the issuer and the serial number of the certificate with those indicated in the IssuerSerial
element, following the indications given in in XMLDSIG clause 4.4.4 on how to generate the string
corresponding to the issuer"s distinguished name. If they do not match take the next reference and re-start
again in 1. If they match, continue with 2.

2) If the ds:KeyInfo contains the ds:X509IssuerSerial element, check that the issuer and the serial
number indicated in both, that one and IssuerSerial from SigningCertificate, are the same.

3) Check that the content of ds:DigestValue is the result of digesting the certificate with the algorithm
indicated in ds:DigestMethod and base-64 encoding this digest.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)93

If the verifier does not find any reference matching the signing certificate, the validation of this property should be
taken as failed.

If SigningCertificate contains references to other certificates in the path, the verifier should proceed to check
each of the certificates in the certification path against them.

Should this property contain one or more references to certificates other than those present in the certification path, the
verifier should assume that a failure has occurred during the verification.

Should one or more certificates in the certification path not be referenced by this property, the verifier should assume
that the verification is successful unless the signature policy mandates that references to all the certificates in the
certification path "must" be present.

G.2.2.6 Checking SignaturePolicyIdentifier

If this property is present and it is not implied, the verifier should:

1) Retrieve the electronic document containing the details of the policy, and identified by the contents of
SigPolicyId element. Apply the transformations indicated in the ds:Transforms element of
SignaturePolicyId, compute the digest of the resulting document using the algorithm indicated in
ds:DigestMethod and check its value with the digest value present in ds:DigestMethod.

2) Should the SignaturePolicyIdentifier element have qualifiers, the verifier should manage them
according to the rules that are stated by the policy applying within the specific scenario.

3) If the checks described before end successfully, the verifier should proceed to perform the checks mandated by
the specific signature policy. The way used by the signature policy for presenting them and their description
are out of the scope. TR 102 038 [i.1] specifies a "XML format for signature policies" that may be
automatically processed.

If the signature policy is implied, the verifier should perform the checks mandated by the implicit signature policy.

G.2.2.7 Checking Countersignatures

As stated in the normative part, countersignatures are managed in two ways:

1) XAdES signature contains a countersignature by using the CounterSignature property. When using direct
incorporation, this property is an enveloped countersignature. The content of such property may also be a
XAdES signature.

2) XAdES signature being a countersignature of one or more signatures. This is achieved by forcing the value
"http://uri.etsi.org/01903#CounterSignedSignature" for the Type attribute of one or several ds:Reference
elements.

If the CounterSignature property is present, the verifier should:

1) Check that the enclosed signature correctly references the ds:SignatureValue present in the countersigned
XAdES signature.

2) Proceed to start a new verification process for the countersignature itself in the same way as for regular
signatures. Should the content of CounterSignature be a XAdES signature, the technical checks described
in the current annex should also be applied.

If a XAdES signature contains one or more ds:Reference elements with Type attributes whose values are
"http://uri.etsi.org/01903#CounterSignedSignature", the verifier should take into account that this is a countersignature of
another signature.

The specific rules that govern the relationships between signature(s) and countersignature(s) and that dictate when they
should be accepted as valid, are out of the scope of the present document as they will likely be established specifically
for each scenario.

http://uri.etsi.org/01903
http://uri.etsi.org/01903

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)94

G.2.2.8 Checking DataObjectFormat

The verifier should check that the ObjectReference element actually references one ds:Reference element from
the signature.

In addition, should this property refer to a ds:Reference that in turn refers to a ds:Object, the verifier should
check the values of attributes MimeType and Encoding as indicated below:

• If any of the aforementioned attributes is present in both xades:DataObjectFormat and in ds:Object
elements, the verifier should check that their values are equal.

• If any of the aforementioned attributes is present in xades:DataObjectFormat but NOT in ds:Object,
the verifier should act as if this attribute was present within the ds:Object with the same value.

Additional rules governing the acceptance of the XAdES signature as valid or not in the view of the contents of this
property are out of the scope of the present document.

G.2.2.9 Checking CommitmentTypeIndication

The verifier should check that all the ObjectReference elements actually reference ds:Reference elements from
the signature.

Additional rules governing the acceptance of the XAdES signature as valid or not in the view of the contents of this
property are out of the scope of the present document.

G.2.2.10 Checking SignatureProductionPlace

Specific rules governing the acceptance of the XAdES signature as valid or not in the view of the contents of this
property are out of the scope of the present document.

G.2.2.11 Checking SignerRole

Should this property contain claimed roles, the specific rules governing the acceptance of the XAdES signature as valid
or not in the view of the contents of this property are out of the scope of the present document.

If this property contains some certified role, the verifier should verify the validity of the attribute certificates present.
Additional rules the governing the acceptance of the XAdES signature as valid or not in the view of the contents of this
property, are out of the scope of the present document.

G.2.2.12 Checking CompleteCertificateRefs and
AttributeCertificateRefs

If CompleteCertificateRefs is present the verifier should:

1) Gain access to all the CA certificates that are part of the certification path, according to what has been stated in
clause G.2.2.2.

2) Check that for each certificate in the aforementioned set, the property contains its corresponding reference. For
doing this the values of the IssuerSerial, ds:DigestMethod and ds:DigestValue should be checked
as indicated in clause G.2.2.5 steps 1) and 3).

3) Check that there are no references to certificates out of those that are part of the certification path.

Rules for AttributeCertificateRefs are similar but instead CA certificates in the certification path of the
signature, the checks will be on the set containing all the Attribute Authorities certificates that are used for validating
the attribute certificate present in the signature.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)95

G.2.2.13 Checking CompleteRevocationRefs and AttributeRevocationRefs

Checking CompleteRevocationRefs requires that the verifier gains access to information of the status of all the
certificates used for the verification of the signature. Clause G.2.2.3 discusses different means that the verifier may use
for doing this. If this CompleteRevocationRefs is present the verifier should perform the following steps:

1) If RevocationValues is present, the verifier should check that they actually provide adequate revocation
information for all the certificates required for verifying the electronic signature. If so, the verifier should
check the references in CompleteRevocationRefs against the values in RevocationValues proceeding
as indicated in step 3).

2) If RevocationValues is not present, the verifier should get the revocation information data referenced in
the property and check if they actually provide adequate revocation information for all the certificates required
for verifying the electronic signature. If so, the verifier should check the references against this data
proceeding as indicated in step 3).

3) If the verifier has retrieved CRLs, the verifier should check that each CRL correctly matches its reference
within RevocationRefs. For doing this, for each CRL:

- If there is no CRLRefs element, the verifier should treat this signature as invalid. If there is a non-empty
list, the verifier should take the first CRLRef element in the list and:

a) Check that the string format of the issuer's DN of the CRL generated as stated in XMLDSIG, is the
same as the value present in the Issuer element.

b) Check that the time indicated by the thisUpdate field in the CRL is the same as the time
indicated by the IssueTime element.

c) If the CRL contains the cRLNumber extension, check that its value is the same as the value
indicated by the Number element.

d) If the aforementioned checks are successful, compute the digest of the CRL according to the
algorithm indicated in the ds:DigestMethod element, base-64 encode the result and check if
this is the same as the contents of the ds:DigestValue element.

- If any of these checks fails, repeat the process for the next CRLRef elements until finding one satisfying
them or finishing the list. If none of the references matches the CRL, the verifier should treat the
signature as invalid.

4) If the verifier has retrieved OCSP responses, check that each OCSP response correctly matches its reference
within RevocationRefs. For doing this, for each OCSP response:

- If there is no OCSPRefs element, the verifier should treat this signature as invalid. If there is a list and is
not empty, take the first OCSPRef element in the list and:

a) Check that the content of ResponderID element matches the content of the responderID field
within the OCSP response. If the content of this field is the byName choice, check if its string
format is the same. If the content of this field is the byKey choice, the ResponderID should
contain the base-64 encoded key digest. The verifier should check if this value matches the byKey
choice.

b) Check that the time indicated by the thisUpdate field in the OCSP response is the same as the
time indicated by the ProducedAt element.

c) If the aforementioned checks are successful, compute the digest of the OCSP response according to
the algorithm indicated in the ds:DigestMethod element, base-64 encode the result and check if
this is the same as the contents of the ds:DigestValue element.

- If any of the checks fails, repeat the process for the next OCSPRef elements until finding one satisfying
them or finishing the list. If none of the references matches the OCSP response, the verifier should treat
the signature as invalid.

5) Check that there are no CRLRef elements referencing other CRLs than those that have been retrieved in
steps 1) or 2).

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)96

6) Check that there are no OCSPRef elements referencing other OCSP responses than those that have been
retrieved in steps 1) or 2).

Rules for AttributeRevocationRefs are similar but instead of revocation data of certificates used for verifying
the signature, the checks will be on the set of all the revocation data that is used for validating the attribute certificate
present in the signature.

G.2.2.14 Checking CertificateValues and AttrAuthoritiesValues

Clause G.2.2.2 mandates that if CertificateValues is present, the verifier should check that the certificates present
there and within ds:KeyInfo, actually are all the required certificates for verifying the signature. It also states that if
AttrAuthoritiesValues is present, the verifier should check that the certificates present there, and within the
CertificateValues, actually are all the required certificates for validating the attribute certificate present in the signature.

In addition, clauses G.2.2.5 and G.2.2.12 have stated rules for the jointly usage of this property with
SigningCertificate and CompleteCertificateRefs and the AttributeCertificateRefs.

Additional rules governing the acceptance of the XAdES signature as valid or not in the view of the contents of this
property are out of the scope of the present document.

G.2.2.15 Checking RevocationValues and AttributeRevocationValues

Clause G.2.2.3 mandates that if RevocationValues is present, the verifier should check that the revocation
information data present there actually provide adequate revocation information for all the certificates required for
verifying the signature. In addition, if AttributeRevocationValues is present, the verifier should check that the
revocation data present there actually provide adequate revocation information for all the certificates required for
validating the attribute certificate present in the XAdES signature.

Clause G.2.2.13 has stated rules for the join usage of this property with CompleteRevocationRefs and
AttributeRevocationRefs.

In addition the verifier should check that the status of the certificates reported in these data is VALID.

Additional rules governing the acceptance of the XAdES signature as valid or not in the view of the contents of this
property are out of the scope of the present document.

G.2.2.16 Checking time-stamp tokens

The present clause presents the rules that should govern the verification of the time-stamp tokens encapsulated within
the containers defined by the present document.

As stated in the normative part, the present document allows using two mechanisms for identifying what data objects
are being time-stamped by the time-stamp token enclosed in a container property, namely implicit and explicit. The
normative part details which properties and under which circumstances to use the explicit mechanism.

Certain containers are specified to use only one mechanism; others are specified to use one or the other depending on
the circumstances, and that is why this clause is divided in two clauses, one for each group of containers.

Time-stamp tokens may contain accuracy information, ie, an indication of the time deviation around the time included
in the token. Rules dictating how to use this information when taking the decision whether a certain time is previous or
ulterior to the time within the time-stamp token, are a matter of policy and in consequence, out of the scope of the
present document. This applies to any mention done hereinafter to a comparison of time values where a time within a
time-stamp token is involved.

NOTE: If a TSA does not provide accuracy information in the time-stamp-token, it is recommended that
applications wait some time before getting a new time-stamp-token for avoiding falling in a corner-case.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)97

G.2.2.16.1 Containers using one identification mechanism

G.2.2.16.1.1 Checking AllDataObjectsTimeStamp

The time-stamp token contained within this property does not cover any unsigned property and the regular elements
within the signature that are mandated to be time-stamped are easily determined by inspecting the ds:SignedInfo
contents. That is why this container will exclusively use the implicit mechanism.

The verifier should perform the following steps:

1) Verify the signature present within the time-stamp token. Rules for acceptance of the validity of the signature
within the time-stamp, involving trust decisions, are out of the scope of the present document.

2) Take, the first ds:Reference element within ds:SignedInfo if and only if the Type attribute does not
have the value "http://uri.etsi.org/01903#SignedProperties".

3) Process it according to the reference processing model of XMLDSIG.

4) If the result is a node-set, canonicalize it using the algorithm indicated in CanonicalizationMethod
element of the property, if present. If not, the standard canonicalization method as specified by XMLDSIG
will be used.

5) Concatenate the resulting bytes in an octet stream.

6) Repeat steps 2) to 4) for all the subsequent ds:Reference elements (in their order of appearance) within
ds:SignedInfo if and only if Type attribute has not the value "http://uri.etsi.org/01903#SignedProperties".

7) For each time-stamp token encapsulated by the property, compute the digest of the resulting octet stream using
the algorithm indicated in the time-stamp token and check if it is the same as the digest present there.

8) Check for coherence in the value of the times indicated in the time-stamp tokens. All the time instants have to
be previous to the times indicated within the time-stamp tokens enclosed within all the rest of time-stamp
container properties except IndividualDataObjectsTimeStamp.

G.2.2.16.1.2 Checking IndividualDataObjectsTimeStamp

As before, the time-stamp token contained within this property does not cover any unsigned property, but now there is
need for explicit information of what of the signed data-objects are actually time-stamped. The consequences is that it
will exclusively use the explicit mechanism.

The verifier should perform the following steps:

1) Verify the signature present within the time-stamp token. Rules for acceptance of the validity of the signature
within the time-stamp, involving trust decisions, are out of the scope of the present document.

2) Take the first Include element.

3) Check the coherence of the value of the not-fragment part of the URI within its URI attribute according to the
rules stated in clause 7.1.4.3.1.

4) De-reference the URI according to the rules stated in clause 7.1.4.3.1.

5) Check that the retrieved element is actually a ds:Reference element of the ds:SignedInfo of the
qualified signature and that its Type attribute (if present) does not have the value
"http://uri.etsi.org/01903#SignedProperties".

6) Process it according to the reference processing model of XMLDSIG.

7) If the result is a node-set, canonicalize it using the algorithm indicated in CanonicalizationMethod
element of the property, if present. Otherwise use the standard canonicalization method as specified by
XMLDSIG.

8) Concatenate the resulting bytes in an octet stream.

http://uri.etsi.org/01903
http://uri.etsi.org/01903
http://uri.etsi.org/01903

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)98

9) Repeat steps 2) to 4) for all the subsequent Include elements (in their order of appearance) within the
time-stamp token container.

10) For each time-stamp token encapsulated by the property, compute the digest of the resulting byte stream using
the algorithm indicated in the time-stamp token and check if it is the same as the digest present there.

11) Check for coherence in the value of the times indicated in the time-stamp tokens. All the time instants have to
be previous to the time when the verification is being made, and to the times indicated within the time-stamp
tokens enclosed within all the rest of time-stamp container properties except AllDataObjectsTimeStamp.

G.2.2.16.1.3 Checking SignatureTimeStamp

As stated by clause 7.3, this container envelopes a time-stamp token on the ds:SignatureValue element and
exclusively uses the implicit mechanism.

The verifier should perform the following steps:

1) Verify the signature present within the time-stamp token. Rules for acceptance of the validity of the signature
within the time-stamp, involving trust decisions, are out of the scope of the present document.

2) Take the ds:SignatureValue element.

3) Canonicalize it using the algorithm indicated in CanonicalizationMethod element of the property, if
present. Otherwise use the standard canonicalization method as specified by XMLDSIG.

4) For each time-stamp token encapsulated by the property, compute the digest of the resulting byte stream using
the algorithm indicated in the time-stamp token and check if it is the same as the digest present there.

5) Check for coherence in the values of the times indicated in the time-stamp tokens. They have to be posterior to
the times indicated in the time-stamp tokens contained within AllDataObjectsTimeStamp or
IndividualDataObjectsTimeStamp, if present. Finally they have to be previous to the times indicated
in the time-stamp tokens enclosed by any RefsOnlyTimeStamp, SigAndRefsTimeStamp or/and
xadesv141:ArchiveTimeStamp present elements.

G.2.2.16.2 Containers using two/both identification mechanism

The rest of containers, namely SigAndRefsTimeStamp, RefsOnlyTimeStamp and
xadesv141:ArchiveTimeStamp may use both mechanisms.

First of all, a set of common rules for all these containers will be given, and afterwards, there will be specific clauses
that will particularize these rules for each property.

G.2.2.16.2.1 Common rules

When a time-stamp container incorporates Include elements (explicit identification mechanism), the verifier should
perform the following steps:

1) Verify the signature present within the time-stamp token. Rules for acceptance of the validity of the signature
within the time-stamp, involving trust decisions, are out of the scope of the present document.

2) Check that all the signed properties and not property elements of the signature that are mandated to be
time-stamped by the normative clause defining the time-stamp token container are present.

3) Take each one of the signed properties and not property elements in the signature that the normative part
dictates that must be time-stamped, in the order specified in the normative clause defining the time-stamp
token container type. Canonicalize them and concatenate the resulting bytes in one octet stream. If the
CanonicalizationMethod element of the property is present, use it for canonicalizing. Otherwise, use the
standard canonicalization method as specified by XMLDSIG.

4) For each Include element:

a) Check the coherence of the value of the not-fragment part of the URI within its URI attribute according
to the rules stated in clause 7.1.4.3.1.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)99

b) De-reference the URI according to the rules stated in clause 7.1.4.3.1.

c) Check that the retrieved element must actually be covered by the time-stamp token according to the
specification.

d) Proceed to process the data retrieved as specified in clause 7.1.4.3.1 and to concatenate the result to the
octet stream mentioned in step 2).

5) Check that all the Include elements actually refer to all the existing unsigned properties in XAdES signature
that must be covered by the time-stamp token.

6) For each time-stamp token encapsulated by the property, compute the digest of the resulting byte stream using
the algorithm indicated in the time-stamp token and check if it is the same as the digest present there.

7) Check for coherence in the values of the times indicated in the time-stamp tokens. This implies that the
indicated time instants have to be previous to the time when the verification is being made, and also certain
specific rules for each time-stamp token container type.

When a time-stamp container does not incorporates Include elements (implicit identification mechanism), the verifier
should perform the following steps:

1) Verify the signature present within the time-stamp token. Rules for acceptance of the validity of the signature
within the time-stamp, involving trust decisions, are out of the scope of the present document.

2) Check that all the signed properties and regular elements of the signature that are mandated to be time-stamped
by the normative clause defining the time-stamp token container, are present.

3) Take each one of the signed properties and not property elements in the signature that the normative part
dictates that must be time-stamped, in the order specified in the normative clause defining the time-stamp
token container type. Canonicalize them and concatenate the resulting bytes in one octet stream. If the
CanonicalizationMethod element of the property is present, use it for canonicalizing. Otherwise, use the
standard canonicalization method as specified by XMLDSIG.

4) Check that all the unsigned properties that are mandated to be time-stamped by the normative clause defining
the time-stamp token container, are present in the XAdES signature.

5) Take each of the unsigned properties that appear BEFORE the time-stamp token container within the
UnsigedSignatureProperties element if and only if that property is mandated to be time-stamped by
the normative clause defining such time-stamp token container. Canonicalize them and concatenate these
results to the aforementioned octet stream.

6) For each time-stamp token encapsulated by the property, compute the digest of the resulting byte stream using
the algorithm indicated in the time-stamp token and check if it is the same as the digest present there.

7) Check for coherence in the values of the times indicated in the time-stamp tokens. This implies that the
indicated time instants have to be previous to the time when the verification is being made, and also certain
specific rules for each time-stamp token container type.

G.2.2.16.2.2 Checking RefsOnlyTimeStamp

The following particular rules apply for this property no matter whether implicit or explicit mechanism is used:

1) Steps 2) and 3) of both cases do not apply, as the enclosed time-stamp tokens just cover unsigned properties of
the signature.

2) In step 7) of both cases, the verifier should check that all the times indicated by the time-stamp tokens in the
property are posterior to the times indicated in the time-stamp tokens contained within
AllDataObjectsTimeStamp, IndividualDataObjectsTimeStamp or SignatureTimeStamp, if
present. They have to also be previous to the times indicated in the time-stamp tokens enclosed by any
xadesv141:ArchiveTimeStamp present elements.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)100

The following particular rules apply when explicit mechanism is used:

1) In step 4), c) the verifier should check that each retrieved element is one of the following properties in the
signature: CompleteCertificateRefs, CompleteRevocationRefs,
AttributeCertificateRefs and AttributeRevocationRefs.

2) In step 5), the verifier should check that all the following properties: CompleteCertificateRefs,
CompleteRevocationRefs and, if present, AttributeCertificateRefs and
AttributeRevocationRefs, have actually been retrieved.

The following particular rules apply when implicit mechanism is used:

1) In step 4) the verifier should check that the CompleteCertificateRefs and
CompleteRevocationRefs properties are present in the signature. She should also check that they and, if
present, AttributeCertificateRefs and AttributeRevocationRefs,appear before
RefsOnlyTimeStamp.

2) In step 5), the verifier should take CompleteCertificateRefs and CompleteRevocationRefs and if
present, AttributeCertificateRefs and AttributeRevocationRefs in their order of appearance.

G.2.2.16.2.3 Checking SigAndRefsTimeStamp

The following particular rules apply for this property no matter whether implicit or explicit mechanism is used:

1) In step 3), the verifier should take ds:SignatureValue and process it as indicated in the aforementioned
step.

2) In step 7) of both cases, the verifier should check that all the times indicated by the time-stamp tokens in the
property are posterior to the times indicated in the time-stamp tokens contained within
AllDataObjectsTimeStamp, IndividualDataObjectsTimeStamp or SignatureTimeStamp, if
present. They have to also be previous to the times indicated in the time-stamp tokens enclosed by any
xadesv141:ArchiveTimeStamp present elements.

The following particular rules apply when explicit mechanism is used:

1) In step 4), c) the verifier should check that each retrieved element is one of the following elements in the
signature: ds:SignatureValue, CompleteCertificateRefs, SignatureTimeStamp,
CompleteRevocationRefs, AttributeCertificateRefs and AttributeRevocationRefs.

2) In step 5), the verifier should check that all the following elements: ds:SignatureValue,
CompleteCertificateRefs, CompleteRevocationRefs and, if present, SignatureTimeStamp,
AttributeCertificateRefs and AttributeRevocationRefs, have actually been retrieved.

The following particular rules apply when implicit mechanism is used:

1) In step 4) the verifier should check that the CompleteCertificateRefs and
CompleteRevocationRefs properties are present in the signature. She should also check that they and, if
present, SignatureTimeStamp, AttributeCertificateRefs and AttributeRevocationRefs,
appear before SigAndRefsTimeStamp.

2) In step 5), the verifier should take the aforementioned properties in their order of appearance within the
signature.

G.2.2.16.2.4 Checking xadesV141:ArchiveTimeStamp

The following particular rules apply for this property no matter whether implicit or explicit mechanism is used.

1) Substitute step 3) by the process indicated here. The verifier should take the following elements in the order
they are listed: all the ds:SignedReference in the order they appear within ds:SignedInfo,
ds:SignedInfo, ds:SignatureValue, and ds:KeyInfo if present. Afterwards, the verifier should
process each ds:Reference according to the reference processing model of XMLDSIG, canonicalize the
result and concatenate the resulting bytes in the final octet stream. After that the verifier should canonicalize
the rest of the elements and concatenate the resulting bytes to the final octet stream.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)101

2) In step 7), the verifier should check that all the times indicated by the time-stamp tokens in the property are
posterior to the times indicated in the time-stamp tokens contained within AllDataObjectsTimeStamp,
IndividualDataObjectsTimeStamp, SignatureTimeStamp if present, and RefsOnlyTimeStamp
or SigAndRefsTimeStamp, if present They have to also be previous to the times indicated in the time-stamp
tokens enclosed by any xadesv141:ArchiveTimeStamp that appear before the one that is being verified.

The following particular rules apply when explicit mechanism is used:

1) In step 4), c) the verifier should check that the retrieved element is one of the following signature elements:
SignatureTimeStamp, CounterSignature, CompleteCertificateRefs,
CompleteRevocationRefs, AttributeCertificateRefs, AttributeRevocationRefs,
CertificateValues, RevocationValues, SigAndRefsTimeStamp, RefsOnlyTimeStamp,
xadesv141:ArchiveTimeStamp, xadesv141:TimeStampDataValidation or any of the
ds:Object present elements different to the one containing the QualifyingProperties element.

2) In step 5), the verifier should check that the retrieved elements are: all the existing SignatureTimeStamp,
all the present CounterSignature, the CompleteCertificateRefs, and the
CompleteRevocationRefs if present, the AttributeCertificateRefs and
AttributeRevocationRefs if present, CertificateValues and RevocationValues, any existing
SigAndRefsTimeStamp or RefsOnlyTimeStamp, xadesv141:TimeStampDataValidation, all the
ds:Object present elementsdifferent to the one containing QualifyingProperties element, and certain
xadesv141:ArchiveTimeStamp.

The following particular rules apply when implicit mechanism is used.

1) Step 5) is performed as indicated. The verifier will take, among the unsigned properties that appear before the
property that is being verified, those that appear in the following list, and in their order of appearance:
SignatureTimeStamp, CounterSignature, CompleteCertificateRefs,
CompleteRevocationRefs, AttributeCertificateRefs, AttributeRevocationRefs,
CertificateValues, RevocationValues, SigAndRefsTimeStamp, RefsOnlyTimeStamp,
xadesv141:ArchiveTimeStamp, xadesv141:TimeStampDataValidation and all the ds:Object
elements different to the one containing the QualifyingProperties.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)102

Annex H (informative):
Versioning rules
The following rules have been applied when generating the present document and will be followed if new versions are
produced in the future:

• The XML namespace URI for elements defined in previous versions of XAdES is not changed. This
namespace value will also be kept in future updates of the present document as long as they do not include
major changes in the whole specification.

• Substantial changes in the generation or verification of any of the specified properties in previous versions, or
incorporation new features, results in the definition of new properties within a different namespace (which in
turn appears in another XML Schema file). The granularity of the changes is kept at the level of the specific
property that is changed or is newly defined. The present version defines two new XAdES unsigned properties,
namely xadesv141:TimeStampRevocationData and xadesv141:ArchiveTimeStamp.

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)103

Annex I (informative):
Bibliography

• ETSI TS 101 861: "Time stamping profile".

• Directive 1999/93/EC of the European Parliament and of the Council of 13 December 1999 on a Community
framework for electronic signatures.

• IETF RFC 2634: "Enhanced Security Services for S/MIME".

• IETF RFC 2396: "Uniform Resource Identifiers (URI): Generic Syntax".

• IETF RFC 3061: "A URN Namespace of Object Identifiers".

• W3C 12-2000 (W3C Candidate Recommendation, December 2000): "The Platform for Privacy
Preferences 1.0 (P3P1.0) Specification".

ETSI

ETSI TS 101 903 V1.4.2 (2010-12)104

History

Document history

V1.1.1 February 2002 Publication

V1.2.1 March 2004 Publication (Withdrawn)

V1.2.2 April 2004 Publication

V1.3.2 March 2006 Publication

V1.4.1 June 2009 Publication

V1.4.2 December 2010 Publication

	Intellectual Property Rights
	Foreword
	Introduction
	Editorial conventions
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview
	4.1 Major Parties
	4.2 Signatures policies
	4.3 Signature properties and signature forms
	4.4 Electronic signature forms
	4.4.1 Basic electronic signature (XAdES-BES)
	4.4.2 Explicit policy electronic signatures (XAdES-EPES)
	4.4.3 Electronic signature formats with validation data
	4.4.3.1 Electronic signature with time (XAdES-T)
	4.4.3.2 Electronic signature with complete validation data references (XAdES-C)

	4.5 Validation process
	4.6 Arbitration

	5 XML namespaces for the present document
	5.1 Namespace for elements specified in XAdESv1.3.2
	5.2 Namespace for new elements defined in V1.4.1

	6 Syntax overview
	6.1 Technical criteria
	6.2 The QualifyingProperties element
	6.2.1 The SignedProperties element
	6.2.2 The UnsignedProperties element
	6.2.3 The SignedSignatureProperties element
	6.2.4 The SignedDataObjectProperties element
	6.2.5 The UnsignedSignatureProperties element
	6.2.6 The UnsignedDataObjectProperties element

	6.3 Incorporating qualifying properties into an XML signature
	6.3.1 Signing properties
	6.3.2 The QualifyingPropertiesReference element

	7 Qualifying properties syntax
	7.1 Auxiliary syntax
	7.1.1 The AnyType data type
	7.1.2 The ObjectIdentifierType data type
	7.1.3 The EncapsulatedPKIDataType data type
	7.1.4 Types for time-stamp tokens management
	7.1.4.1 Time-stamp properties in XAdES
	7.1.4.2 The GenericTimeStampType data type
	7.1.4.3 The XAdESTimeStampType data type
	7.1.4.3.1 Include mechanism

	7.1.4.4 The OtherTimeStampType data type

	7.2 Properties for XAdES-BES and XAdES-EPES forms
	7.2.1 The SigningTime element
	7.2.2 The SigningCertificate element
	7.2.3 The SignaturePolicyIdentifier element
	7.2.3.1 Signature Policy qualifiers

	7.2.4 Countersignatures
	7.2.4.1 Countersignature identifier in Type attribute of ds:Reference
	7.2.4.2 Enveloped countersignatures: the CounterSignature element

	7.2.5 The DataObjectFormat element
	7.2.6 The CommitmentTypeIndication element
	7.2.7 The SignatureProductionPlace element
	7.2.8 The SignerRole element
	7.2.9 The AllDataObjectsTimeStamp element
	7.2.10 The IndividualDataObjectsTimeStamp element

	7.3 The SignatureTimeStamp element
	7.4 Properties for references to validation data
	7.4.1 The CompleteCertificateRefs element
	7.4.2 The CompleteRevocationRefs element
	7.4.3 The AttributeCertificateRefs element
	7.4.4 The AttributeRevocationRefs element

	7.5 Time-stamps on references to validation data
	7.5.1 The SigAndRefsTimeStamp element
	7.5.1.1 Not distributed case
	7.5.1.2 Distributed case

	7.5.2 The RefsOnlyTimeStamp element
	7.5.2.1 Not distributed case
	7.5.2.2 Distributed case

	7.6 Properties for validation data values
	7.6.1 The CertificateValues Property element
	7.6.2 The RevocationValues property element
	7.6.3 The AttrAuthoritiesCertValues element
	7.6.4 The AttributeRevocationValues Property element

	7.7 The ArchiveTimeStamp element

	8 New unsigned properties in XAdESv1.4.1
	8.1 The new XAdESv141:TimeStampValidationData element
	8.1.1 Use of URI attribute

	8.2 The new xadesv141:ArchiveTimeStamp element
	8.2.1 Not distributed case
	8.2.2 Distributed case

	9 Conformance requirements
	9.1 Basic Electronic Signature (XAdES-BES)
	9.2 Explicit policy based Electronic Signature (XAdES-EPES)
	9.3 Verification using time-stamping
	9.4 Verification using secure records

	Annex A (informative): Definitions
	Annex B (informative): Extended electronic signature forms
	B.1 Extended signatures with time forms (XAdES-X)
	B.2 Extended long electronic signatures with time (XAdES-X-L)
	B.3 Archival electronic signatures (XAdES-A)

	Annex C (informative): concepts and rationales
	C.1 Multiple signatures and countersignatures

	Annex D (normative): Schema definitions
	Annex E (informative): Main changes to XAdESv1.4.1
	Annex F (informative): Incorporation of qualifying properties
	Annex G (informative): Details on XAdES signatures validation
	G.1 Signatures evolution example
	G.1.1 Example of path to archival form with validation data references
	G.1.2 Example of path to archival form without validation data references

	G.2 Verification technical rules
	G.2.1 Relationship with other standard verification procedures
	G.2.2 Verification procedure
	G.2.2.1 General Checks
	G.2.2.2 Getting certificates for verification
	G.2.2.3 Getting certificates status information for verification
	G.2.2.4 Checking SigningTime
	G.2.2.5 Checking SigningCertificate
	G.2.2.6 Checking SignaturePolicyIdentifier
	G.2.2.7 Checking Countersignatures
	G.2.2.8 Checking DataObjectFormat
	G.2.2.9 Checking CommitmentTypeIndication
	G.2.2.10 Checking SignatureProductionPlace
	G.2.2.11 Checking SignerRole
	G.2.2.12 Checking CompleteCertificateRefs and AttributeCertificateRefs
	G.2.2.13 Checking CompleteRevocationRefs and AttributeRevocationRefs
	G.2.2.14 Checking CertificateValues and AttrAuthoritiesValues
	G.2.2.15 Checking RevocationValues and AttributeRevocationValues
	G.2.2.16 Checking time-stamp tokens
	G.2.2.16.1 Containers using one identification mechanism
	G.2.2.16.1.1 Checking AllDataObjectsTimeStamp
	G.2.2.16.1.2 Checking IndividualDataObjectsTimeStamp
	G.2.2.16.1.3 Checking SignatureTimeStamp

	G.2.2.16.2 Containers using two/both identification mechanism
	G.2.2.16.2.1 Common rules
	G.2.2.16.2.2 Checking RefsOnlyTimeStamp
	G.2.2.16.2.3 Checking SigAndRefsTimeStamp
	G.2.2.16.2.4 Checking xadesV141:ArchiveTimeStamp

	Annex H (informative): Versioning rules
	Annex I (informative): Bibliography
	History

