

ETSI TS 102 114 V1.6.1 (2019-08)

DTS Coherent Acoustics;
Core and Extensions

with Additional Profiles

TECHNICAL SPECIFICATION

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)2

Reference
RTS/JTC-DTS-R5

Keywords
audio, broadcast, codec, DVB

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2019.

© European Broadcasting Union 2019.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.

3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.

oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.

GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)3

Contents

Intellectual Property Rights .. 16

Foreword ... 16

Modal verbs terminology .. 16

1 Scope .. 17

2 References .. 17

2.1 Normative references ... 17

2.2 Informative references .. 18

3 Definition of terms, symbols, abbreviations and document conventions ... 18

3.1 Terms .. 18

3.2 Symbols .. 19

3.3 Abbreviations ... 20

3.4 Document Conventions .. 20

4 Summary .. 21

4.1 Overview .. 21

4.2 Organization of the present document .. 22

5 Core Audio ... 22

5.1 Introduction .. 22

5.2 Frame structure and decoding procedure .. 23

5.3 Synchronization .. 24

5.4 Frame header .. 24

5.4.1 General Information about the Frame Header .. 24

5.4.2 Bit stream header .. 25

5.4.3 Primary Audio Coding Header ... 32

5.5 Unpack Subframes ... 36

5.5.1 Primary Audio Coding Side Information .. 36

5.6 Primary Audio Data Arrays .. 39

5.7 Unpack Optional Information... 41

5.8 Optional Information .. 42

5.8.1 About Optional Information ... 42

5.8.2 Auxiliary Data .. 42

5.8.3 Rev2 Auxiliary Data Chunk.. 45

5.8.3.1 About the REV2 Aux Data Chunk .. 45

5.8.3.2 Rev2 Auxiliary Data Chunk structure ... 45

5.8.3.3 Description of Rev2 Auxiliary Data Chunk fields .. 46

6 Core Extensions .. 49

6.1 About the Core Extensions ... 49

6.2 X96 Extension .. 50

6.2.1 About the X96 Extension .. 50

6.2.2 DTS Core + 96 kHz-Extension Encoder ... 51

6.2.3 DTS Core + 96 kHz Extension Decoder ... 52

6.2.4 Extension (X96) Bitstream Components .. 52

6.2.4.1 About the X96 Bitstream Components ... 52

6.2.4.2 DTS_BCCORE_X96 Frame Header ... 53

6.2.4.3 DTS_EXSUB_STREAM_X96 Frame Header ... 54

6.2.4.4 X96 Channel Set Header ... 56

6.2.4.5 96 kHz Extension Side Information .. 60

6.2.4.6 96 kHz Extension Audio Data Arrays ... 60

6.2.4.7 Interpolation of the LFE Channel Samples ... 63

6.3 XBR - Extended Bit Rate Extension .. 64

6.3.1 About the XBR Extension .. 64

6.3.2 DTS Core Substream Encoder + XBR Extension Encoder... 65

6.3.3 DTS XBR Bit Rate Extension Decoder .. 65

6.3.4 Extension (XBR) Bitstream Components ... 66

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)4

6.3.5 XBR Frame Header .. 67

6.3.6 XBR Channel Set Sub-Header .. 68

6.3.7 XBR Channel Set Data ... 68

6.3.7.1 XBR Channel Set Syntax .. 68

6.3.7.2 Subframe Side Information ... 69

6.3.7.3 XBR Extension Residual Audio Data Arrays ... 69

6.3.8 Assembly of XBR subbands ... 70

6.4 Extension to 6.1 Channels (XCh) ... 72

6.4.1 About the XCh Extension ... 72

6.4.2 Unpack Frame Header .. 72

6.4.3 Unpack Audio Header .. 72

6.4.4 Unpack Subframes .. 74

6.4.4.1 Side Information ... 74

6.4.4.2 Data Arrays ... 77

6.5 Extension to More Than 5.1 Channels (XXCH) .. 79

6.5.1 About the XXCH Extension ... 79

6.5.2 XXCH Frame Header ... 80

6.5.3 XXCH Channel Set Header .. 83

6.5.4 Unpack Subframes .. 86

6.5.4.1 Unpack Subframes Syntax .. 86

6.5.4.2 Side Information ... 87

6.5.4.3 Data Arrays ... 89

7 DTS Extension Substream Construction .. 91

7.1 About the DTS Extension Substream ... 91

7.2 Relationship Between Core and Extension Substreams ... 91

7.3 Audio Presentations and Audio Assets ... 92

7.3.1 Overview of Extension Substream Architecture ... 92

7.3.2 Channel Sets ... 93

7.4 Synchronization and Navigation of the Substream .. 94

7.4.1 Synchronization .. 94

7.4.2 Substream Navigation ... 94

7.5 Parsing Core Substream and Extension Substream Data .. 95

7.5.1 General Information on Parsing Substreams .. 95

7.5.2 Extension Substream Header .. 96

7.5.3 Audio Asset Descriptor ... 101

7.5.3.1 General Information About the Audio Asset Descriptor ... 101

7.5.3.2 Static Metadata .. 104

7.5.3.3 Dynamic Metadata .. 109

7.5.3.4 Decoder Navigation Data .. 112

8 DTS Lossless Extension (XLL) ... 118

8.1 General Information About the XLL Extension ... 118

8.2 Lossless Frame Structure .. 119

8.2.1 General Information About the Lossless Frame Structure .. 119

8.2.2 Header Structure ... 119

8.2.2.1 General Information About the Header Structure ... 119

8.2.2.2 Common Header ... 120

8.2.3 Channel Set Sub-Header ... 120

8.2.4 Navigation Index .. 120

8.2.5 Frequency Band Structure .. 120

8.2.6 Segments and Channel Sets .. 121

8.3 Lossless Stream Syntax .. 121

8.3.1 Common Header ... 121

8.3.2 Channel Set Sub-Header ... 124

8.3.3 Navigation Index Table .. 134

8.3.4 Frequency Bands .. 135

8.4 Lossless Stream Synchronization & Navigation .. 135

8.4.1 Overview of XLL Navigation ... 135

8.4.2 Navigation Index .. 135

8.4.3 Stream Navigation .. 137

8.4.4 Error Detection ... 137

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)5

8.4.5 Error Resilience .. 138

8.5 Lossless Stream Decoding .. 138

8.5.1 Overview of Lossless Decoding ... 138

8.5.2 Band Data ... 139

8.5.2.1 General Information About Band Data ... 139

8.5.2.2 Unpacking Frequency Band Data ... 140

8.5.2.3 Entropy Codes Unpacking and Decoding ... 141

8.5.2.4 Decimator History Unpacking .. 143

8.5.2.5 LSB Residual Unpacking .. 143

8.5.3 Fixed Coefficient Prediction ... 143

8.5.4 Inverse Adaptive Prediction on the Decode Side .. 144

8.5.5 Inverse Pairwise Channel Decorrelation ... 147

8.6 Lossless Processes .. 148

8.6.1 Assembling the MSB and LSB Parts .. 148

8.6.2 Channel Sets Post-Processing ... 151

8.6.2.1 Overview of Channel Set Post-Processing .. 151

8.6.2.2 Performing and Reversing Channel Set Downmixing .. 151

8.6.2.3 Parallel Downmix ... 152

8.6.2.4 Hierarchical Downmix .. 153

9 LBR .. 155

9.1 General Information about the LBR Extension .. 155

9.2 The LBR Decoder Environment ... 155

9.2.1 General Information About the LBR Decoder .. 155

9.2.2 Persistent Constants and Variables ... 155

9.3 LBR Extension Substream Header ... 156

9.4 LBR Audio Data Organization ... 159

9.4.1 General Information About LBR Structure .. 159

9.4.2 Chunks .. 159

9.4.2.1 General Information About LBR Chunks ... 159

9.4.2.2 Chunk ID ... 160

9.4.2.3 Extended ID Chunks ... 160

9.4.2.4 Chunk Length .. 160

9.4.2.5 Data ... 161

9.4.2.6 Checksum Verification and Descrambling .. 161

9.5 LBR Frame Chunk ... 162

9.6 LBR Decoding .. 162

9.6.1 Overview of LBR Decoding ... 162

9.6.2 Tonal Decoding .. 164

9.6.2.1 Overview of Tonal Decoding .. 164

9.6.2.2 Tonal Scale Factors Chunk ... 165

9.6.2.2.1 Tonal Scale Factor Chunk Syntax ... 165

9.6.2.2.2 Tonal scale factor processing .. 165

9.6.2.3 Tonal Chunks .. 165

9.6.2.3.1 About Tonal Chunks .. 165

9.6.2.3.2 Tonal components processing ... 168

9.6.2.3.3 Base-functions synthesis.. 169

9.6.3 Residual Decoding .. 170

9.6.3.1 About Residual Decoding ... 170

9.6.3.2 Residual Decoding Overview.. 170

9.6.3.3 Unpacking and Decoding Residuals ... 171

9.6.3.3.1 Decoding Residuals Syntax ... 171

9.6.3.3.2 Quantization Profiles ... 181

9.6.3.3.3 Scale Factor Processing ... 182

9.6.3.3.4 Decoding of Grid 1 scale factors ... 183

9.6.3.3.5 Decoding of Grid 2 scale factors ... 183

9.6.3.3.6 Decoding of Grid 3 scale factors ... 183

9.6.3.4 Reconstruction of Hi resolution scale factors grid .. 183

9.6.3.5 LPC synthesis .. 183

9.6.3.6 Timesamples Processing ... 184

9.6.4 Inverse Filterbank ... 184

9.6.5 LFE Chunk.. 185

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)6

9.6.5.1 LFE Chunk Syntax .. 185

9.6.5.2 LFE decoding .. 187

9.6.6 Embedded Channel Sets Chunk .. 188

9.6.6.1 About the Embedded Channel Sets Chunk ... 188

9.6.6.2 Embedded channel sets ... 188

9.6.6.3 Stereo downmix case... 188

9.7 Program Associated Data Chunk .. 190

9.8 Null Chunk ... 191

9.9 Tables ... 191

9.9.1 Quantized Amplitude to Linear Amplitude Conversion ... 191

9.9.2 Wave synthesis envelope table ... 192

9.9.3 Base function synthesis correction coefficients .. 193

9.9.4 Grid1 mapping tables .. 194

9.9.5 Quantization Levels for Residuals .. 194

9.9.6 Long window for filterbank .. 195

9.9.7 Delta Index for LFE ADPCM ... 196

9.9.8 Step Size for LFE ADPCM encoding ... 197

9.9.9 Scaling coefficients lookup table .. 199

9.9.10 Index Hopping Huffman Tables ... 199

Annex A (informative): Bibliography ... 203

Annex B (normative): CRC Algorithm .. 204

Annex C (informative): Example Pseudocode ... 205

C.1 About Annex C ... 205

C.2 Overview of main function calls .. 205

C.3 Decoding Algorithms ... 206

C.3.1 About Decoding Algorithms .. 206

C.3.2 Block Code ... 206

C.3.3 Inverse ADPCM ... 207

C.3.4 Joint Subband Coding .. 208

C.3.5 Sum/Difference Decoding .. 208

C.3.6 Filter Bank Reconstruction ... 208

C.3.7 Interpolation of LFE Channel ... 209

C.4 Coefficients for Remapping Loudspeaker Locations ... 210

C.5 Post Mix Gain Adjustment ... 210

C.6 Coefficients for Mixing Audio Assets .. 211

C.7 Smoothing the Coefficient Transitions ... 211

C.8 Entropy Coding .. 212

C.9 Downmix Coefficients ... 213

Annex D (normative): Large Tables ... 215

D.1 Scale Factor Quantization Tables ... 215

D.1.1 6-bit Quantization (Nominal 2,2 dB Step) .. 215

D.1.2 7-bit Quantization (Nominal 1,1 dB Step) .. 215

D.2 Quantization Step Size ... 217

D.2.1 Lossy Quantization ... 217

D.2.2 Lossless Quantization ... 218

D.3 Scale Factor for Joint Intensity Coding .. 219

D.4 Dynamic Range Control ... 219

D.5 Huffman Code Books ... 222

D.5.1 3 Levels .. 222

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)7

D.5.2 4 Levels (For TMODE) .. 222

D.5.3 5 Levels .. 223

D.5.4 7 Levels .. 223

D.5.5 9 Levels .. 224

D.5.6 12 Levels (for BHUFF) .. 224

D.5.7 13 Levels .. 226

D.5.8 17 Levels .. 226

D.5.9 25 Levels .. 228

D.5.10 33 Levels .. 230

D.5.11 65 Levels .. 233

D.5.12 129 Levels .. 241

D.6 Block Code Books .. 253

D.6.1 3 Levels .. 253

D.6.2 5 Levels .. 253

D.6.3 7 Levels .. 254

D.6.4 9 Levels .. 255

D.6.5 13 Levels .. 255

D.6.6 17 Levels .. 256

D.6.7 25 Levels .. 257

D.7 Interpolation FIR .. 258

D.8 32-Band Interpolation and LFE Interpolation FIR ... 260

D.9 1 024 tap FIR for X96 Synthesis QMF .. 268

D.10 VQ Tables .. 275

D.10.1 ADPCM Coefficients ... 275

D.10.2 High Frequency Subbands .. 275

D.11 Look-up Table for Downmix Scale Factors ... 275

Annex E (normative): DTS and DTS-HD formats in ISO Media Files ... 280

E.1 Overview .. 280

E.2 Signalling ... 280

E.2.1 Track Header .. 280

E.2.2 SampleDescription Box .. 280

E.2.2.1 Overview of SampleDescription Box ... 280

E.2.2.2 DTS_SampleEntry .. 280

E.2.2.3 DTSSpecificBox ... 281

E.2.2.3.1 Syntax of DTSSpecificBox ... 281

E.2.2.3.2 Semantics .. 281

E.2.2.3.3 ReservedBox ... 283

E.3 Storage of DTS-HD Elementary Streams... 283

E.4 Restrictions on DTS Formats ... 284

E.5 Implementation of DTS Sample Entry ... 284

Annex F (normative): Application of DTS formats to MPEG-2 Streams..................................... 285

F.1 Overview of Annex F ... 285

F.2 Buffering Model ... 285

F.3 Signalling ... 285

F.3.1 PSI Signalling in the PMT .. 285

F.3.1.1 Overview of PSI Signalling for DTS and DTS-HD .. 285

F.3.1.2 Stream Type .. 285

F.4 Elementary Stream Encapsulation .. 286

F.4.1 Stream ID ... 286

F.4.2 Calculation of PTS from the elementary stream ... 286

F.4.2.1 Calculating Time Duration ... 286

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)8

F.4.2.2 Frame Duration from Core Substream Metadata .. 286

F.4.2.3 Frame Duration from Extension Substream Metadata .. 286

F.4.3 Audio Access Unit Alignment in the PES packet .. 286

F.5 Implementation of DTS and DTS-HD Audio Stream Descriptors ... 287

Annex G (normative): DTS-HD Streaming with Using ISO/IEC 23009-1 (DASH) 288

G.1 Summary .. 288

G.2 MPEG DASH ... 288

G.2.1 Overview .. 288

G.3 Media Presentation Description ... 288

G.3.1 Representation Base Type .. 288

G.3.2 Audio Channel Configuration Descriptor ... 289

G.3.3 Representation .. 290

G.3.4 Coding Constraints ... 290

G.3.4.1 Coding Constraints for Seamless Stream Switching ... 290

G.3.4.2 Coding Constraints for Smooth Stream Switching ... 290

G.3.4.3 Consideration for Switching of Audio Channel Arrangement (Informative) ... 291

G.4 Media Presentation Description Examples (Informative) .. 291

G.4.1 Example MPD for ISO Base media file format On Demand profile .. 291

Annex H (normative): DTS-HD Track Compliance with ISO/IEC 23000-19 (CMAF) 293

H.1 General guidelines for DTS-HD CMAF tracks .. 293

H.1.1 DTS-HD Conformance to Common Media Applications Format (CMAF) ... 293

H.1.2 Codecs profiles and levels .. 293

H.1.3 Media access unit mapping to media samples .. 293

H.1.4 Media access unit sequence mapping to CMAF fragments .. 293

H.1.5 CMAF track constraints for CMAF switching sets .. 293

H.1.6 CMAF media profile internet media type ... 294

H.1.7 CMAF media profile brand .. 294

H.2 Guidelines for DTS-HD CMAF media profiles ... 294

H.2.1 General ... 294

H.2.2 Audio track format ... 294

H.2.3 Loudness and dynamic range control ... 294

H.2.4 Audio parameters ... 294

H.2.5 Audio presentation time adjustment ... 294

H.3 Delivery Considerations for DTS-HD CMAF Tracks .. 295

H.4 Playback Considerations for DTS-HD CMAF Tracks ... 295

Annex I (normative): DTS-HD Basic Profile .. 296

I.1 Overview .. 296

I.2 Basic Profile Decoder ... 296

I.3 Basic Profile Bitstream ... 296

Annex J (Informative): Other Registrations.. 297

J.1 Overview .. 297

J.2 MP4RA... 297

J.3 IANA .. 297

History .. 298

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)9

List of tables
Table 5-1: Bit-stream header ...25

Table 5-2: Frame Type ..25

Table 5-3: Deficit Sample Count ...26

Table 5-4: Audio channel arrangement (AMODE) ...26

Table 5-5: Core audio sampling frequencies ...27

Table 5-6: Sub-sampled audio decoding for standard sampling rates ...27

Table 5-7: RATE parameter versus targeted bit-rate ...28

Table 5-8: Embedded Dynamic Range Flag..28

Table 5-9: Embedded Time Stamp Flag ..28

Table 5-10: Auxiliary Data Flag ...29

Table 5-11: Extension Audio Descriptor Flag ...29

Table 5-12: Extended Coding Flag..29

Table 5-13: Audio Sync Word Insertion Flag ...29

Table 5-14: Flag for LFE channel ...30

Table 5-15: Multirate interpolation filter bank switch ..30

Table 5-16: Encoder software revision ..30

Table 5-17: Quantization resolution of source PCM samples ...31

Table 5-18: Sum/difference decoding status of front left and right channels ..31

Table 5-19: Sum/difference decoding status of left and right surround channels ...31

Table 5-20: Dialog Normalization Parameter ...31

Table 5-21: Primary audio coding header ...32

Table 5-22: Joint Subband Coding Status and Source Channels ...33

Table 5-23: Selection of Huffman Codebook for Encoding TMODE ...34

Table 5-24: Code Books and Square Root Tables for Scale Factors ...34

Table 5-25: Codebooks for Encoding Bit Allocation Index ABITS ...34

Table 5-26: Selection of Quantization Levels and Codebooks..35

Table 5-27: Scale Factor Adjustment Index ..35

Table 5-28: Core side information ..36

Table 5-29: Core audio data arrays ...39

Table 5-30: Core optional information ..41

Table 5-31: Core AUX data ..42

Table 5-32: Downmix Channel Groups ..44

Table 5-33: Rev2 Auxiliary Data Chunk Structure ...45

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)10

Table 5-34: Number of Rev2AUX DRC bytes transmitted per frame length ...47

Table 5-35: Rev2AUX DRC bits per frame ..48

Table 5-36: Rev2AUX Dialog Normalization Parameter ...48

Table 6-1: DTS_ BCCORE _X96 Frame Header Structure ..53

Table 6-2: REVNO..54

Table 6-3: DTS_EXSUB_STREAM_X96 Frame Header Structure ...54

Table 6-4: X96 Channel Set Header Structure ..56

Table 6-5: High Resolution Flag ...57

Table 6-6: Scale Factor Encoder Select SHUFF96 ...57

Table 6-7: Bit Allocation Encoder Select BHUFF96 ..57

Table 6-8: Quantization Index Codebook Select SEL96 ...58

Table 6-9: X96 Channel Subframe Processing..59

Table 6-10: Extension Audio Data Arrays ..60

Table 6-11: LFE 2x Interpolation Filter Coefficients ..64

Table 6-12: XBR Frame Header Structure ..67

Table 6-13: XBR Channel Set Sub-Header Structure ...68

Table 6-14: XBR Channel Set Data Syntax ..68

Table 6-15: XBR Extension Residual Audio Data ..69

Table 6-16: XBR Assembling Subbands ...70

Table 6-17: XCH Frame header ..72

Table 6-18: XCH Audio header ..72

Table 6-19: XCH side information ..74

Table 6-20: XCH audio data arrays ...77

Table 6-21: XXCH Frame Header Structure ...80

Table 6-22: Loudspeaker Masks - nuXXChSpkrLayoutMask/nuCoreSpkrActivityMask/DownMixChMapMask82

Table 6-23: XXCh Channel Set Header Structure ...83

Table 6-24: XXCH Unpack Subframes ...86

Table 6-25: XXCH - Data Arrays ...89

Table 7-1: Sync Words ..94

Table 7-2: Extension Substream Header Structure ..96

Table 7-3: Reference Clock Period ...98

Table 7-4: Allowed Mixing Metadata Adjustment Level ..99

Table 7-5: Audio Asset Descriptor Syntax: Size, Index and Per Stream Static Metadata ..101

Table 7-6: Audio Asset Descriptor Syntax: Dynamic Metadata - DRC, DNC and Mixing Metadata102

Table 7-7: Audio Asset Descriptor Syntax: Decoder Navigation Data ...103

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)11

Table 7-8: Audio Asset Type Descriptor Table ...105

Table 7-9: Source Sample Rate Table ...106

Table 7-10: Loudspeaker Bit Masks for nuSpkrActivityMask, nuStndrSpkrLayoutMask, nuMixOutChMask108

Table 7-11: Representation Type ..109

Table 7-12: Dynamic Range Compression Prior to Mixing ..110

Table 7-13: Limit for Dynamic Range Compression Prior to Mixing ..111

Table 7-14: Coding Mode ...112

Table 7-15: Core/Extension Mask ...113

Table 8-1: Common Header ..121

Table 8-2: CRC Presence in Frequency Band ...123

Table 8-3: Representation Types ...123

Table 8-4: Channel Set Sub-Header ..124

Table 8-5: sFreqIndex Sample Rate Decoding ..128

Table 8-6: Sampling Rate Interpolation ..129

Table 8-7: Replacement Set Association ...129

Table 8-8: Downmix Type ..129

Table 8-9: Frequency Bands..135

Table 8-10: Error Handling ...138

Table 9-1: LBR Extension Substream Header Structure ...156

Table 9-2: ucFmtInfoCode values ...156

Table 9-3: nLBRSampleRateCode Sample Rate Decoding ..157

Table 9-4: FreqRange ..157

Table 9-5: Parameter nLBRCompressedFlags ..158

Table 9-6: LBRFlags from bLBRCompressedFlags ...158

Table 9-7: LBR band limit flags from nLBRCompressed Flags ...158

Table 9-8: Chunk ID Table ...160

Table 9-9: ChunkLengthInfo ...161

Table 9-10: ChecksumVerify ..161

Table 9-11: Sample Rate to Frame Size Relationship ...163

Table 9-12: Decode Frame ..163

Table 9-13: Decode SubFrame ..164

Table 9-14: ScalefactorsChunk() ...165

Table 9-15: TonalChunk() ...165

Table 9-16: TonalChunk() (with scalefactors) ..166

Table 9-17: Decode Tonal ...166

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)12

Table 9-18: getVariableParam() ..168

Table 9-19: Subframe Resolution ..168

Table 9-20: Residual parameter initialization ...171

Table 9-21: Residual Chunks Part 1 ..171

Table 9-22: TimeSamples 1 Chunk ...172

Table 9-23: Grid1 Chunk ..172

Table 9-24: High Resolution Grid Chunk ...173

Table 9-25: TimeSamples 2 Chunk ...173

Table 9-26: Decode Grid1 ...173

Table 9-27: Decode Grid2 ...174

Table 9-28: DecodeTS ..175

Table 9-29: Decode Scalefactors ...177

Table 9-30: Decode Grid3 ...178

Table 9-31: DecodeLPC ..179

Table 9-32: Decode Residual Chunks Part 2 ...179

Table 9-33: Quantizer levels ...182

Table 9-34: Short window filter ..184

Table 9-35: LFE Chunk ...185

Table 9-36: Decode LFE ...185

Table 9-37: Init LFE Decoding ...187

Table 9-38: Embedded Channel Set Chunk ..188

Table 9-39: Pad Chunk ..190

Table 9-40: Null Chunk ...191

Table 9-41: Quantized Amplitude to Linear Amplitude Conversion ..191

Table 9-42: Wave synthesis envelope table ..192

Table 9-43: Base function synthesis correction coefficients ...193

Table 9-44: Grid1 mapping table ..194

Table 9-45: ResidualLevels16 ...194

Table 9-46: ResidualLevels8 ...194

Table 9-47: ResidualLevels3 ...194

Table 9-48: ResidualQuantizednLevel10 ..194

Table 9-49: ResidualLevels5 ...194

Table 9-50: ResidualQuantizednLevel16 ..194

Table 9-51: Long window for filterbank ...195

Table 9-52: Delta Index for 16-bit samples ...196

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)13

Table 9-53: Delta Index for 24-bit samples ...196

Table 9-54: StepSize table for 16-bit samples ...197

Table 9-55: StepSize table for 24-bit samples ...198

Table 9-56: DMixScaling_IndexTodB ..199

Table 9-57: DMixContribution_IndexTodB ...199

Table 9-58: Codebook for Tonal Groups ..199

Table 9-59: Codebook for Amplitude and Phase ..201

Table 9-60: Code book for Grid Reconstruction ...202

Table C-1: 3-level 4-element 7-bit Block Code Book ...206

Table A3 ..222

Table A4 ..222

Table B4 ..222

Table C4 ..222

Table D4 ..222

Table A5 ..223

Table B5 ..223

Table C5 ..223

Table A7 ..223

Table B7 ..223

Table C7 ..223

Table A9 ..224

Table B9 ..224

Table C9 ..224

Table A12 ..224

Table B12 ..224

Table C12 ..225

Table D12 ..225

Table E12 ..225

Table A17 ..226

Table B17 ..226

Table C17 ..227

Table D17 ..227

Table E17 ..227

Table F17 ..227

Table G17 ..227

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)14

Table A25 ..228

Table B25 ..228

Table C25 ..228

Table D25 ..228

Table E25 ..229

Table F25 ..229

Table G25 ..229

Table A33 ..230

Table B33 ..230

Table C33 ..230

Table D33 ..231

Table E33 ..231

Table F33 ..232

Table G33 ..232

Table A65 ..233

Table B65 ..234

Table C65 ..235

Table D65 ..236

Table E65 ..237

Table F65 ..238

Table G65 ..239

Table SA129 ..241

Table SB129 ..242

Table SC129 ..243

Table SD129 ..244

Table SE129 ..245

Table A129 ..246

Table B129 ..247

Table C129 ..248

Table D129 ..249

Table E129 ..250

Table F129 ..251

Table G129 ..252

Table V.3: 3-level 4-element 7-bit Block Code Book ...253

Table V.5: 5-level 4-element 10-bit Block Code Book ...253

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)15

Table V.7: 7-level 4-element 12-bit Block Code Book ...254

Table V.9: 9-level 4-element 13-bit Block Code Book ...255

Table V.13: 13-level 4-element 15-bit block...255

Table V.17: 17-level 4-element 17-bit Block Code Book ...256

Table V.25: 25-level 4-element 19-bit Block Code Book ...257

Table E-1: Defined Audio Formats ...280

Table E-2: StreamConstruction ...282

Table E-3: CoreLayout ..282

Table E-4: RepresentationType ...283

Table E-5: ChannelLayout ..283

Table F-1: DTS-HD Sync Words ..286

Table G-1: Common attributes ..289

Table G-2: AudioChannelConfiguration attributes ...290

Table H-1: Maximum Bitrates ..293

Table H-2: Valid codingname values for DTS-HD CMAF Tracks ...293

Table H-3: Recommended Test Vector Parameters ..294

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)16

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Technical Specification (TS) has been produced by Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

NOTE: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standards in the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body
by including in the Memorandum of Understanding also CENELEC, which is responsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active members in about 60
countries in the European broadcasting area; its headquarters is in Geneva.

European Broadcasting Union
CH-1218 GRAND SACONNEX (Geneva)
Switzerland
Tel: +41 22 717 21 11
Fax: +41 22 717 24 81

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)17

1 Scope
The present document describes the key components of the DTS Coherent Acoustics technology which is known in the
market as DTS-HD™. Prior editions of the present document added Annexes describing stream encapsulations of the
bitstreams defined herein for MPEG-2 Transport Stream (based on ISO/IEC 13818-1) and ISO Based Media Files
(using ISO/IEC 14496-12 [5]). This edition has been extended with two new Annexes that describe particular methods
of network distribution of the defined bitstreams using MPEG-DASH (ISO/IEC 23009-1 [3]) and MPEG-CMAF
(ISO/IEC 23000-19 [4]).

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI EN 300 468: "Digital Video Broadcasting (DVB); Specification for Service Information (SI)
in DVB systems".

[2] ETSI TS 101 154: "Digital Video Broadcasting (DVB); Specification for the use of Video and
Audio Coding in Broadcast and Broadband Applications".

[3] ISO/IEC 23009-1 (2014): 'Information technology - Dynamic adaptive streaming over HTTP
(DASH) -Part 1: Media presentation description and segment formats'.

NOTE: Available at International Standards Organization, www.iso.ch; International Electrotechnical
Commission, www.iec.ch.

[4] ISO/IEC 23000-19 (2018): "Information technology - Multimedia application format (MPEG-A) --
Part 19: Common media application format (CMAF) for segmented media'.

NOTE: Available at International Standards Organization, www.iso.ch; International Electrotechnical
Commission, www.iec.ch.

[5] ISO/IEC 14496-12: "Information technology - Coding of audio-visual objects - Part 12: ISO Base
Media File Format".

NOTE: Available at International Standards Organization, www.iso.ch; International Electrotechnical
Commission, www.iec.ch.

[6] Recommendation ITU-T H.222.0/ISO/IEC 13818-1: "Information Technology - Generic coding of
moving pictures and associated audio information: Systems".

NOTE: Available at International Standards Organization, www.iso.ch; International Electrotechnical
Commission, www.iec.ch.

[7] Void.

[8] Void.

https://docbox.etsi.org/Reference/
http://www.iso.ch/
http://www.iec.ch/
http://www.iso.ch/
http://www.iec.ch/
http://www.iso.ch/
http://www.iec.ch/
http://www.iso.ch/
http://www.iec.ch/

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)18

[9] ISO 639-2:1998: "Codes for the representation of names of languages - Part 2: Alpha-3 code".

NOTE: Available at International Standards Organization, www.iso.ch; International Electrotechnical
Commission, www.iec.ch.

[10] ISO/IEC 8859-1 (1998): "Information technology - 8-bit single-byte coded graphic character sets -
Part 1: Latin alphabet No. 1".

NOTE: Available at International Standards Organization, www.iso.ch; International Electrotechnical
Commission, www.iec.ch.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] DTS Document #9302J81100: "DTS-HD® PBR API Library Description".

NOTE: Available from DTS, Inc., www.dts.com.

3 Definition of terms, symbols, abbreviations and
document conventions

3.1 Terms
For the purposes of the present document, the following terms apply:

audio frame: complete logical access unit of an audio stream that corresponds to a defined number of decodable PCM
audio samples for a given time segment of the audio presentation

audio stream: sequence of synchronized audio frames

bit(n): pseudo type where the parameter n represents consecutive bits in the stream

NOTE: Padding is never assumed where this is used. All stream parameters described using bit() are unsigned
and MSB first aligned in the stream.

ByteAlign(): pseudo function to pad to the end of the current byte with from 0 to 7 bits

boolean: value which resolves to either a logical 1 or 0

core substream: audio stream component that adheres to the original DTS Coherent Acoustics definition

dependent substream: specific type of extension substream that is associated with a core substream

DTS Core Audio Stream: carries the coding parameters of up to 5.1 channels of the original LPCM audio at up to
24 bits per sample with the sampling frequency of up to 48 kHz

DTS Extended Audio Stream: channel or frequency extension appended to the core audio component in the core
substream

DTS XCH Stream: DTS extended audio stream that carries the coding parameters for 1 additional channel, located in
the centre rear position, of original LPCM audio at up to 24 bits per sample with the sampling frequency of up to
48 kHz

http://www.iso.ch/
http://www.iec.ch/
http://www.iso.ch/
http://www.iec.ch/
http://www.dts.com/

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)19

DTS X96 Stream: DTS extended audio stream that enables encoding of original LPCM audio at up to 24 bits per
sample with the sampling frequency of up to 96 kHz

NOTE: The stream carries the coding parameters used for the representation of all remaining audio components
that are present in the original LPCM audio and are not represented in the core audio stream.

duration: time represented by one decoded audio frame, may be represented in audio samples per channel at a specific
audio sampling frequency or in seconds

extension: audio stream component providing a specific enhancement or coding profile

extension substream: audio stream component that adheres to the definitions described in clause 7

ExtractBits (n): pseudo-function that extracts next n consecutive bits from the stream

false: Boolean logic value = 0

LBR: DTS-HD extension used to implement the low bit rate coding profile

Linear Pulse Code Modulated (LPCM): sequence of digital audio samples

main audio: default audio presentation

PES payload: portion of the PES packet following the PES header

primary audio channels: audio channels encoded in the DTS core

primary audio presentation: synonymous with main audio

QMF bank: specific filtering structure that provides the means of translating the time domain signal into the multiple
subband domain signals

secondary audio: auxiliary or supplemental program

SPDIF: generically referring to S/PDIF or TOSLINK serial audio interfaces

substream: sequence of synchronized frames comprising one of the logical components of the audio stream

true: Boolean logic value = 1

uimsbf: unsigned integer most significant bit first

vector quantization: joint quantization of a block of signal samples or a block of signal parameters

X96: extension that contains the spectrum beyond 24 kHz to compliment a specific set of coded audio stored at a
sampling frequency of 48 kHz, permitting source material originally sampled at 96 kHz to be played back on both
4 kHz and 96 kHz capable systems

XBR: extension containing resolution enhancements to the audio elements stored in the core substream

XCH: extension that adds a centre surround channel

XLL: lossless audio coding extension

XXCH: extension that can add up to 32 channels at arbitrary locations to a DTS core (which is limited to up to
5.1 channels) in either the core substream, or in an extension substream

3.2 Symbols
Void.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)20

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ADPCM Adaptive Differential Pulse Code Modulation
ASPF Audio Sync Word Insertion Flag
CA Coherent Acoustics
CBR Constant Bit Rate
CRC Cycle Redundancy Check
DNG Dialog Normalization Gain
DRC Dynamic Range Control
DSP Digital Signal Processor
ES Extended Surround
FIR Finite Impulse Response
HCRC Header CRC Check Bytes
HFLAG Predictor History Flag Switch
LAR Linear Area Ratios (as defined in clause 8.5.4 prior to usage)
LFE Low Frequency Effects
LFF Low Frequency Effects Flag
LPCM Linear Pulse Code Modulation
LR Left Right
LSB Least Significant Bit
MDCT Modified Discrete Cosine Transform
MIPS Million Instructions per Second
MSB Most Significant Bit
PCM Pulse Code Modulation
PES Packetized Elementary Stream
PID Package Identifier
PMT Program Map Table
QMF Quadrature Mirror Filter
VBR Variable Bit Rate
VQ Vector-Quantized

3.4 Document Conventions
A number of conventions are applied throughout the present document:

• In parameter descriptions, most significant byte and most significant bit first, (big endian), convention is
utilized unless otherwise specified.

• The existence of many bit fields is determined by conditions of prior bits in the stream. As such, in many cases
the bit stream elements are described using standard 'C' conventions, with a pseudo function
ExtractBits() representing the bit field of interest for that description.

• Bit field descriptions are described in presentation order.

• In many cases, variable names are assigned to fields as they are being described. In some cases, the variable
may be modified during definition, such as:

nuFieldSize = ExtractBits(4)+1

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)21

4 Summary

4.1 Overview
The DTS Coherent Acoustics coding system is designed to deliver advanced features while supporting compatibility to
a large installed base of decoders. The addition of the extension substream to the coding system permits a great deal of
flexibility in defining new coding profiles and major feature enhancements. By adding a low bit rate profile and a
lossless coding extension, the augmented system is able to address a broader range of applications. Metadata and new
extensions increase versatility, such as embedded replacement channels, dynamic mixing coefficients and alternate
channel maps. Instantiations of this new coding system exist in the market today and are known as DTS-HD™,
including DTS-HD High Resolution Audio™ and DTS-HD Master Audio™.

Due to the popularity of the 5.1 channel sound tracks in the movie industry and in the multi-channel home audio
market, DTS Coherent Acoustics is delivered in the form of a core audio (for the 5.1 channels) plus optional extended
audio (for the rest of the DTS Coherent Acoustics). The 5.1 channel audio consists of up to five primary audio channels
with frequencies lower than 24 kHz plus a possible Low Frequency Effect (LFE) channel (the 0.1 channel). This
implies that the frequency components higher than 24 kHz for the five primary audio channels and all frequency
components of the remaining two channels are carried in the extended audio.

• Core Audio:

- Up to 5 primary audio channels (frequency components below 24 kHz).

- Up to 1 low frequency effect (LFE) channel.

- Optional information such as time stamps and user information.

- One channel extension ((XCH or XXCH) up to 7.1 channels) or a frequency extension (X96) for up to
5.1 channel.

• Extended Audio:

- Up to 32 additional full bandwidth channels (frequency components below 24 kHz).

- Frequency components above 24 kHz for the primary and extended audio channels.

- Resolution enhancement for primary channels in the core audio, including up to bit exact replication of
the audio source material (lossless compression).

- Hierarchically embedded downmix capability.

• Lossless coding algorithm:

- Capable of extending the original DTS core to render a bit-exact reproduction of the studio master in a
bit-stream with inherent legacy compatibility.

- Capable of operating in a stand-alone mode for maximum efficiency when legacy compatibility is not
required.

With the core + extension structure, the core is always coded without a reference to the extension, allowing the core
substream to be decoded independently. A sophisticated decoder, however, can first decode the 5.1 core audio bits and
then proceed to decode the extension substream to enhance sonic accuracy (up to and including lossless), add channels
and extend the audio sampling frequency.

When bit efficiency is paramount and legacy compatibility is not an issue, the use of the extension substream with the
LBR extension provides a flexible and robust solution. Some of the advantages of the low bit rate profile are:

• Optimized for bit rate sensitive broadcasting and internet streaming.

• 5.1 channels of broadcast quality audio in as low as 192 Kbits/s.

• Up to 7.1 channel capability.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)22

• Same rich metadata feature set as is available for other DTS formats.

4.2 Organization of the present document
The present document will describe the fundamental elements of this coding system, including:

• Clause 5: Core Audio - Bit stream syntax of the DTS core header and coding of DTS Coherent Acoustics
(a.k.a. core, or core audio) and DTS core metadata extensions.

• Clause 6: Core Extensions - Bit-stream syntax of DTS core extensions used to enhance channel count and
sampling frequency.

• Clause 7: Extension Substream - Bit stream syntax of the header and metadata components.

• Clause 8: Lossless Coding Extension - Bit stream syntax and coding.

• Clause 9: LBR Coding Extension - Bit stream syntax and coding.

• In the annexes:

- Supplemental algorithms useful in decoding the DTS bitstream.

- Look-up tables.

- Information necessary to embed the DTS core and extension substream components into ISO media files
(in accordance with ISO/IEC 14496-12 [5]).

- Guidance on embedding the DTS core and extension substream components into MPEG-2 broadcast
streams, referring to ETSI TS 101 154 [2] and ETSI EN 300 468 [1] and in accordance with
ISO/IEC 13818-1 [6].

- Transmission of the described bitstream in a digital network using MPEG standards.

5 Core Audio

5.1 Introduction
The DTS core encoder delivers 5.1 channel audio at 24 bits per sample with a sampling frequency of up to 48 kHz. As
shown in Figure 5-1, the audio samples of a primary channel are split and decimated by a 32-band QMF bank into
32 subbands. The samples of each subband goes through an adaptive prediction process to check if the resultant
prediction gain is large enough to justify the overhead of transferring the coefficients of prediction filter. The prediction
gain is obtained by comparing the variance of the prediction residual to that of the subband samples. If the prediction
gain is big enough, the prediction residual is quantified using mid-tread scalar quantization and the prediction
coefficients are Vector-Quantized (VQ). Otherwise, the subband samples themselves are quantized using mid-tread
scalar quantization. In the case of low bit rate applications, the scalar quantization indexes of the residual or subband
samples are further encoded using Huffman code. When the bit rate is low, Vector Quantization (VQ) may also be used
to quantize samples of the high-frequency subbands for which the adaptive prediction is disabled. In very low bit rate
applications, joint intensity coding and sum/difference coding may be employed to further improve audio quality. The
optional LFE channel is compressed by: low-pass filtering, decimation and mid-tread scalar quantization.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)23

NOTE: The dotted lines indicate optional operations and dash dot lines bit allocation control.

Figure 5-1: Compression of a primary audio channel

5.2 Frame structure and decoding procedure
DTS bit stream is a sequence of synchronized frames, each consisting of the following fields (see Figure 5-2). A pseudo
code overview of the main function calls is listed in clause C.3:

• Synchronization Word: Synchronize the decoder to the bit stream.

• Frame Header: Carries information about frame construction, encoder configuration, audio data arrangement
and various operational features. See clause 5.4 for details of the Frame Header.

• Subframes: Carries core audio data for the 5.1 channels. Each frame may have up to 16 subframes. See
clause 5.5 for details of the primary audio coding header routines.

• Optional Information: Carries auxiliary data such as time code, which is not intrinsic to the operation of the
decoder but may be used for post processing routines. Some optional metadata has been defined in clause 5.8.

• Extended Audio: Carries possible extended channels and frequency bands of the primary audio channels as
well as all frequency components of channels beyond 5.1. These extensions are described in clause 6.

Each subframe contains data for audio samples of the 5.1 channels covering a time duration of up to that of the subband
analysis window and can be decoded entirely without reference to any other subframes. A subframe consists of the
following fields (see Figure 5-3):

• Side Information: Relays information about how to decode the 5.1 channel audio data. Information for joint
intensity coding is also included here.

• High Frequency VQ: A small number of high frequency subbands of the primary channels may be encoded
using VQ. In this case, the samples of each of those subbands within the subframe are encoded as a single VQ
address.

• Low Frequency Effect Channel: The decimated samples of the LFE channel are carried as 8-bit words.

• Subsubframes: All subbands, except those high-frequency VQ encoded ones, are encoded here in up to
4 subsubframes.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)24

Figure 5-2: DTS frame structure

Figure 5-3: Subframe structure

5.3 Synchronization
DTS bit streams consist of a sequence of audio frames, usually of equal size and each frame begins with a 32-bit
synchronization word.

The first decoding step is to search the input bit stream for SYNC. In order to reduce the probability of false
synchronization, 6 bits after SYNC in the bit stream may be further checked, (FTYPE and SHORT), since they usually
do not change for normal frames (they do carry useful information about frame structure). These 6 bits should be 0x3f
(the binary 111111) for normal frames and are called synchronization word extension. Concatenating them with SYNC
gives an extended synchronization word (32 + 6 = 38 bits).

5.4 Frame header

5.4.1 General Information about the Frame Header

The frame header consists of a bit stream header and a primary audio coding header. The bit stream header provides
information about the construction of the frame, the encoder configuration such as core source sampling frequency and
various optional operational features such as embedded dynamic range control. The primary audio coding header
specifies the packing arrangement and coding formats used at the encoder to assemble the audio coding side
information. Many elements in the headers are repeated for each separate audio channel.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)25

5.4.2 Bit stream header

Table 5-1: Bit-stream header

Core Frame Header Size (bits)
SYNC = ExtractBits(32); //0x7FFE8001 32
FTYPE = ExtractBits(1); 1
SHORT = ExtractBits(5); 5
CPF = ExtractBits(1); 1
NBLKS = ExtractBits(7); 7
FSIZE = ExtractBits(14); 14
AMODE = ExtractBits(6); 6
SFREQ = ExtractBits(4); 4
RATE = ExtractBits(5); 5
FixedBit = ExtractBit(1); 1
DYNF = ExtractBits(1); 1
TIMEF = ExtractBits(1); 1
AUXF = ExtractBits(1); 1
HDCD = ExtractBits(1); 1
EXT_AUDIO_ID = ExtractBits(3); 3
EXT_AUDIO = ExtractBits(1); 1
ASPF = ExtractBits(1); 1
LFF = ExtractBits(2); 2
HFLAG = ExtractBits(1); 1
if (CPF == 1) // Present only if CPF=1.

 HCRC = ExtractBits(16);
16

FILTS = ExtractBits(1); 1
VERNUM = ExtractBits(4); 4
CHIST = ExtractBits(2); 2
PCMR = ExtractBits(3); 3
SUMF = ExtractBits(1); 1
SUMS = ExtractBits(1); 1
switch (VERNUM){

case 6:

 DIALNORM = ExtractBits(4);

 DNG = -(16+DIALNORM);

 break;

case7:

 DIALNORM = ExtractBits(4);

 DNG = -DIALNORM;

 break;

default:

 UNSPEC = ExtractBits(4);

 DNG = DIALNORM = 0;

 break;

}

4

SYNC (Sync word)

The sync word denotes the start of an audio frame, or a component thereof. For a core substream, the sync word is
0x7ffe8001. A core frame can also exist in an extension substream, where the sync word is 0x02b9261.

FTYPE (Frame type)

This field indicates the type of current frame:

Table 5-2: Frame Type

FTYPE Frame Type
1 Normal frame
0 Termination frame

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)26

Termination frames are used when it is necessary to accurately align the end of an audio sequence with a video frame
end point. A termination block carries n×32 core audio samples where block length n is adjusted to just fall short of the
video end point. Two termination frames may be transmitted sequentially to avoid transmitting one excessively small
frame.

SHORT (Deficit Sample Count)

This field defines the number of core samples by which a termination frame falls SHORT of the normal length of a
block. A block = 32 PCM core samples per channel, corresponding to the number of PCM core samples that are fed to
the core filter bank to generate one subband sample for each subband. A normal frame consists of blocks of 32 PCM
core samples, while a termination frame provides the flexibility of having a frame size precision finer than the 32 PCM
core sample block. On completion of a termination frame, (SHORT+1) PCM core samples shall be padded to the output
buffers of each channel. The padded samples may be zeros or they may be copies of adjacent samples.

Table 5-3: Deficit Sample Count

SHORT Valid Value or Range of SHORT
1 [0,30]
0 31 (indicating a normal frame).

CPF (CRC Present Flag)

This field should always be set to 0. In the event that a bitstream was created prior to the occlusion of this bit from the
bitstream definition, all decoders are required to test this flag.

NBLKS (Number of PCM Sample Blocks)

This field indicates that there are (NBLKS+1) blocks (a block = 32 PCM core samples per channel, corresponding to
the number of PCM samples that are fed to the core filter bank to generate one subband sample for each subband) in the
current frame (see note). The actual core encoding window size is 32 × (NBLKS+1) PCM samples per channel. Valid
range for NBLKS: 5 to 127. Invalid range for NBLKS: 0 to 4. For normal frames, this indicates a window size of either
4 096, 2 048, 1 024, 512, or 256 samples per channel. For termination frames, NBLKS can take any value in its valid
range.

NOTE: When frequency extension stream (X96) is present, the PCM core samples represent the samples at the
output of the decimator that precedes the core encoder. This k-times decimator translates the original
PCM source samples with the sampling frequency of Fs_src= k×SFREQ to the core PCM samples
(Fs_core=SFREQ) suitable for the encoding by the core encoder. The core encoder can handle sampling
frequencies SFREQ ≤ 48 kHz and consequently:

 k=2 for 48 kHz < Fsrc ≤ 96 kHz; and

 k=4 for 96 kHz < Fsrc ≤ 192 kHz

FSIZE (Primary Frame Byte Size)

(FSIZE+1) is the total byte size of the current frame including primary audio data as well as any extension audio data.
Valid range for FSIZE: 95 to 16 383. Invalid range for FSIZE: 0 to 94.

AMODE (Audio Channel Arrangement)

Audio channel arrangement that describes the number of audio channels (CHS) and the audio playback arrangement
(see Table 5-4). Unspecified modes may be defined at a later date (user defined code) and the control data required to
implement them, i.e. channel assignments, down mixing etc., can be uploaded from the player platform.

Table 5-4: Audio channel arrangement (AMODE)

AMODE CHS Arrangement
0b000000 1 A
0b000001 2 A + B (dual mono)
0b000010 2 L + R (stereo)
0b000011 2 (L+R) + (L-R) (sum-difference)
0b000100 2 LT +RT (left and right total)
0b000101 3 C + L + R

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)27

AMODE CHS Arrangement
0b000110 3 L + R+ S
0b000111 4 C + L + R+ S
0b001000 4 L + R+ SL+SR
0b001001 5 C + L + R+ SL+SR
0b001010 6 CL + CR + L + R + SL + SR
0b001011 6 C + L + R+ LR + RR + OV
0b001100 6 CF+ CR + LF+ RF+LR + RR
0b001101 7 CL + C + CR + L + R + SL + SR
0b001110 8 CL + CR + L + R + SL1 + SL2+ SR1 + SR2
0b001111 8 CL + C+ CR + L + R + SL + S+ SR

0b010000 - 0b111111 User defined
NOTE: L = left, R = right, C = centre, S = surround, F = front, R = rear, T = total, OV = overhead, A = first

mono channel, B = second mono channel.

SFREQ (Core Audio Sampling Frequency)

This field specifies the sampling frequency of audio samples in the core encoder, based on Table 5-5. When the source
sampling frequency is beyond 48 kHz the audio is encoded in up to 3 separate frequency bands. The base-band audio,
for example, 0 kHz to 16 kHz, 0 kHz to 22,05 kHz or 0 kHz to 24 kHz, is encoded and packed into the core audio data
arrays. The SFREQ corresponds to the sampling frequency of the base-band audio. The audio above the base-band (the
extended bands), for example, 16 kHz to 32 kHz, 22,05 kHz to 44,1 kHz, 24 kHz to 48 kHz, is encoded and packed into
the extended coding arrays which reside at the end of the core audio data arrays. If the decoder is unable to make use of
the high sample rate data this information may be ignored and the base-band audio converted normally using a standard
sampling rates (32 kHz, 44,1 kHz or 48 kHz). If the decoder is receiving data coded at sampling rates lower than that
available from the system then interpolation (2× or 4×) will be required (see Table 5-6).

Table 5-5: Core audio sampling frequencies

SFREQ Source Sampling Frequency TimeStamp SampleRate
0b0000 Invalid
0b0001 8 kHz 8 000
0b0010 16 kHz 16 000
0b0011 32 kHz 32 000
0b0100 Invalid
0b0101 Invalid
0b0110 11,025 kHz 11 025
0b0111 22,05 kHz 22 050
0b1000 44,1 kHz 44 100
0b1001 Invalid
0b1010 Invalid
0b1011 12 kHz 12 000
0b1100 24 kHz 24 000
0b1101 48 kHz 48 000
0b1110 Invalid
0b1111 Invalid

Table 5-6: Sub-sampled audio decoding for standard sampling rates

Core Audio Sampling Frequency Hardware Sampling Frequency Required Filtering
8 kHz 32 kHz 4 × Interpolation
16 kHz 32 kHz 2 × Interpolation
32 kHz 32 kHz none
11 kHz 44,1 kHz 4 × Interpolation

22,05 kHz 44,1 kHz 2 × Interpolation
44,1 kHz 44,1 kHz none
12 kHz 48 kHz 4 × Interpolation
24 kHz 48 kHz 2 × Interpolation
48 kHz 48 kHz none

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)28

RATE (Transmission Bit Rate)

RATE specifies the targeted transmission data rate for the current frame of audio (see Table 5-7). The open mode
allows for bit rates not defined by the table.

Table 5-7: RATE parameter versus targeted bit-rate

RATE Targeted Bit Rate [Kbits/s]
0b00000 32
0b00001 56
0b00010 64
0b00011 96
0b00100 112
0b00101 128
0b00110 192
0b00111 224
0b01000 256
0b01001 320
0b01010 384
0b01011 448
0b01100 512
0b01101 576
0b01110 640
0b01111 768
0b10000 960
0b10001 1 024
0b10010 1 152
0b10011 1 280
0b10100 1 344
0b10101 1 408
0b10110 1 411,2
0b10111 1 472
0b11000 1 536
0b11101 open

other codes invalid

The targeted transmission rate may be greater than or equal to the actual bit rate.

FixedBit (reserved field)

This field is always set to 0.

DYNF (Embedded Dynamic Range Flag)

DYNF indicates if embedded dynamic range coefficients are included at the start of each subframe. Dynamic range
correction may be implemented on all channels using these coefficients for the duration of the subframe.

Table 5-8: Embedded Dynamic Range Flag

DYNF Dynamic Range Coefficients
0 not present
1 present

TIMEF (Embedded Time Stamp Flag)

This field indicates if embedded time stamps are included at the end of the core audio data.

Table 5-9: Embedded Time Stamp Flag

TIMEF Time Stamps
0 not present
1 present

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)29

AUXF (Auxiliary Data Flag)

This field indicates if auxiliary data bytes are appended at the end of the core audio data.

Table 5-10: Auxiliary Data Flag

AUXF Auxiliary Data Bytes
0 not present
1 present

HDCD

The source material is mastered in HDCD format if HDCD = 1 and otherwise HDCD = 0.

EXT_AUDIO_ID (Extension Audio Descriptor Flag)

This flag has meaning only if the EXT_AUDIO = 1 (see Table 5-11) and then it indicates the type of data that has been
placed in the extended audio.

Table 5-11: Extension Audio Descriptor Flag

EXT_AUDIO_ID Type of Extension Data
0 Channel Extension (XCH)
1 Reserved
2 Frequency Extension (X96)
3 Reserved
4 Reserved
5 Reserved
6 Channel Extension (XXCH)
7 Reserved

EXT_AUDIO (Extended Coding Flag)

Indicates if extended audio coding data are present after the core audio data. Extended audio data will include the data
for the extended bands of the 5 normal primary channels as well as all bands of additional audio channels. To simplify
the process of implementing a 5.1 channel 48 kHz decoder, the extended coding data arrays are placed at the end of the
core audio array.

Table 5-12: Extended Coding Flag

EXT_AUDIO Extended Audio Data
0 not present
1 present

ASPF (Audio Sync Word Insertion Flag)

Indicates how often the audio data check word DSYNC (0xFFFF Extension Audio Descriptor Flag) occurs in the data
stream. DSYNC is used as a simple means of detecting the presence of bit errors in the bit stream and is used as the
final data verification stage prior to transmitting the reconstructed PCM words to the DACs.

Table 5-13: Audio Sync Word Insertion Flag

ASPF DSYNC Placed at End of Each
0 Subframe
1 Subsubframe

LFF (Low Frequency Effects Flag)

Indicates if the LFE channel is present and the choice of the interpolation factor to reconstruct the LFE channel (see
Table 5-14).

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)30

Table 5-14: Flag for LFE channel

LFF LFE Channel Interpolation Factor
0 not present
1 Present 128
2 Present 64
3 Invalid

HFLAG (Predictor History Flag Switch)

If frames are to be used as possible entry points into the data stream or as audio sequence\start frames the ADPCM
predictor history may not be contiguous. Hence these frames can be coded without the previous frame predictor history,
making audio ramp-up faster on entry. When generating ADPCM predictions for current frame, the decoder will use
reconstruction history of the previous frame if HFLAG = 1. Otherwise, the history will be ignored.

HCRC (Header CRC Check Bytes)

If CPF = 1 then HCRC shall be extracted from the bitstream. The CRC value test shall not be applied.

FILTS (Multirate Interpolator Switch)

Indicates which set of 32-band interpolation FIR coefficients is to be used to reconstruct the subband audio (see
Table 5-15).

Table 5-15: Multirate interpolation filter bank switch

FILTS 32-band Interpolation Filter
0 Non-perfect Reconstruction
1 Perfect Reconstruction

VERNUM (Encoder Software Revision)

VERNUM indicates of the revision status of the encoder software (see Table 5-16). In addition, it is used to indicate the
presence of the dialog normalization parameters (see Table 5-20).

Table 5-16: Encoder software revision

VERNUM Encoder Software Revision
0 to 6 Future revision (compatible with the present document)

7 Current
8 to 15 Future revision (incompatible with the present document)

NOTE: If the decoder encounters the DTS stream with the VERNUM>7 and the
decoder is not designed for that specific encoder software revision then it
shall mute its outputs.

CHIST (Copy History)

This field indicates the copy history of the audio. Because of the copyright regulations, the exact definition of this field
is deliberately omitted.

PCMR (Source PCM Resolution)

This field indicates the quantization resolution of source PCM samples (see Table 5-17). The left and right surrounding
channels of the source material are mastered in DTS ES format if ES = 1 and otherwise if ES = 0.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)31

Table 5-17: Quantization resolution of source PCM samples

PCMR Source PCM Resolution ES
0b000 16 bits 0
0b001 16 bits 1
0b010 20 bits 0
0b011 20 bits 1
0b110 24 bits 0
0b101 24 bits 1
Others Invalid invalid

SUMF (Front Sum/Difference Flag)

This parameter indicates if front left and right channels are sum-difference encoded prior to encoding (see Table 5-18).
If set to zero no decoding post processing is required at the decoder.

Table 5-18: Sum/difference decoding status of front left and right channels

SUMF Front Sum/Difference Encoding
0 L = L, R = R
1 L = L + R, R = L - R

SUMS (Surrounds Sum/Difference Flag)

This parameter indicates if left and right surround channels are sum-difference encoded prior to encoding (see
Table 5-19). If set to zero no decoding post processing is required at the decoder.

Table 5-19: Sum/difference decoding status of left and right surround channels

SUMS Surround Sum/Difference Encoding
0 Ls = Ls, Rs = Rs
1 Ls = Ls + Rs, Rs = Ls - Rs

DIALNORM/UNSPEC (Dialog Normalization /Unspecified)

For the values of VERNUM = 6 or 7 this 4-bit field is used to determine the dialog normalization parameter. For all
other values of the VERNUM this field is a place holder that is not specified at this time.

The Dialog Normalization Gain (DNG), in dB, is specified by the encoder operator and is used to directly scale the
decoder outputs samples. In the DTS stream the information about the DNG value is transmitted by means of combined
data in the VERNUM and DIALNORM fields (see Table 5-20).

For all other values of the VERNUM (i.e. 0, 1, 2, 3, 4, 5, 8, 9, …15) the UNSPEC 4-bit field should be extracted but
ignored by the decoder. In addition, for these VERNUM values, the Dialog Normalization Gain should be set to 0
i.e. DNG=0 indicates No Dialog Normalization.

Table 5-20: Dialog Normalization Parameter

DIALNORM VERNUM DNG (dB)
0 7 0
1 7 -1
2 7 -2
3 7 -3
4 7 -4
5 7 -5
6 7 -6
7 7 -7
8 7 -8
9 7 -9

10 7 -10
11 7 -11
12 7 -12
13 7 -13

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)32

DIALNORM VERNUM DNG (dB)
14 7 -14
15 7 -15
0 6 -16
1 6 -17
2 6 -18
3 6 -19
4 6 -20
5 6 -21
6 6 -22
7 6 -23
8 6 -24
9 6 -25

10 6 -26
11 6 -27
12 6 -28
13 6 -29
14 6 -30
15 6 -31

5.4.3 Primary Audio Coding Header

Table 5-21: Primary audio coding header

Core audio coding header Size (bits)
SUBFS = ExtractBits(4);
nSUBFS = SUBFS + 1; 4
PCHS = ExtractBits(3);
nPCHS = PCHS + 1; 3
for (ch=0; ch<nPCHS; ch++) {
 SUBS[ch] = ExtractBits(5);
 nSUBS[ch] = SUBS[ch] + 2;
}

5 bits per
channel

for (ch=0; ch<nPCHS; ch++) {
 VQSUB[ch] = ExtractBits(5);
 nVQSUB[ch] = VQSUB[ch] + 1;
}

5 bits per
channel

for (ch=0; ch<nPCHS; ch++) {
 JOINX[ch] = ExtractBits(3);
}

3 bits per
channel

for (ch=0; ch<nPCHS; ch++) {
 THUFF[ch] = ExtractBits(2);
}

2 bits per
channel

 for (ch=0; ch<nPCHS; ch++) {
 SHUFF[ch] = ExtractBits(3);
}

3 bits per
channel

for (ch=0; ch<nPCHS; ch++) {
 BHUFF[ch] = ExtractBits(3);
}

3 bits per
channel

// ABITS=1:
n=0;
for (ch=0; ch<nPCHS; ch++)
 SEL[ch][n] = ExtractBits(1);
// ABITS = 2 to 5:
for (n=1; n<5; n++)
 for (ch=0; ch<nPCHS; ch++)
 SEL[ch][n] = ExtractBits(2);
// ABITS = 6 to 10:
for (n=5; n<10; n++)
 for (ch=0; ch<nPCHS; ch++)
 SEL[ch][n] = ExtractBits(3);
// ABITS = 11 to 26:
for (n=10; n<26; n++)
 for (ch=0; ch<nPCHS; ch++)

 SEL[ch][n] = 0; // Not transmitted, set to zero.

variable bits

n = 0; // ABITS = 1 :
for (ch=0; ch<nPCHS; ch++)
 if (SEL[ch][n] == 0) { // Transmitted only if SEL=0 (Huffman code
used)
 // Extract ADJ index

2 bits per
occasion

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)33

Core audio coding header Size (bits)
 ADJ = ExtractBits(2);
 // Look up ADJ table
 arADJ[ch][n] = AdjTable[ADJ];
 }
for (n=1; n<5; n++){ // ABITS = 2 to 5:
 for (ch=0; ch<nPCHS; ch++){
 if (SEL[ch][n] < 3) { // Transmitted only when SEL<3
 // Extract ADJ index
 ADJ = ExtractBits(2);
 // Look up ADJ table
 arADJ[ch][n] = AdjTable[ADJ];
 }
 }
}
for (n=5; n<10; n++){ // ABITS = 6 to 10:
 for (ch=0; ch<nPCHS; ch++){
 if (SEL[ch][n] < 7) { // Transmitted only when SEL<7
 // Extract ADJ index
 ADJ = ExtractBits(2); Look up ADJ table
 arADJ[ch][n] = AdjTable[ADJ]; //
 }
 }
}
 if (CPF==1) // Present only if CPF=1
 AHCRC = ExtractBits(16); 16

SUBFS (Number of Subframes)

This field indicates that there are nSUBFS = SUBFS+1 audio subframes in the core audio frame. SUBFS is valid for all
audio channels.

PCHS (Number of Primary Audio Channels)

This field indicates that there are nPCHS = PCHS+1 < 5 primary audio channels in the current frame. If AMODE flag
indicates more than five channels apart from LFE, the additional channels are the extended channels and are packed
separately in the extended data arrays.

SUBS (Subband Activity Count)

This field indicates that there are nSUBS[ch] = SUBS[ch]+2 active subbands in the audio channel ch. Samples in
subbands above nSUBS[ch] are zero, provided that intensity coding in that subband is disabled.

VQSUB (High Frequency VQ Start Subband)

This field indicates that high frequency samples starting from subband nVQSUB[ch]=VQSUB[ch]+1 are VQ encoded.
High frequency VQ is used only for high frequency subbands, but it may go down to low frequency subbands for such
audio episodes as silence. In case of insufficient MIPS, the VQs for the highest frequency subbands may be ignored
without causing audible distortion.

JOINX (Joint Intensity Coding Index)

JOINX[ch] indicates if joint intensity coding is enabled for channel ch and which audio channel is the source channel
from which channel ch will copy subband samples (Table 5-22). It is assumed that the source channel index is smaller
than that of the intensity channel.

Table 5-22: Joint Subband Coding Status and Source Channels

JOINX[ch] Joint Intensity Source Channel
0 Disabled

> 0 Enabled JOINX[ch]

THUFF (Transient Mode Code Book)

This field indicates which Huffman codebook was used to encode the transient mode data (see Table 5-23).

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)34

Table 5-23: Selection of Huffman Codebook for Encoding TMODE

THUFF[ch] Huffman Codebook
0 A4
1 B4
2 C4
3 D4

SHUFF (Scale Factor Code Book)

The scale factors of a channel are quantized nonlinearly using either a 6-bit (64-level, 2,2 dB per step) or a 7-bit
(128-level, 1,1 dB per step) square root table, depending on the application. The quantization indexes may be further
compressed by one of the five Huffman codes and this information is transmitted to the decoder by SHUFF[ch] (see
Table 5-24).

Table 5-24: Code Books and Square Root Tables for Scale Factors

SHUFF[ch] Code Book Square Root Table
0 SA129 6 bit (clause D.1.1)
1 SB129 6 bit (clause D.1.1)
2 SC129 6 bit (clause D.1.1)
3 SD129 6 bit (clause D.1.1)
4 SE129 6 bit (clause D.1.1)
5 6-bit linear 6 bit (clause D.1.1)
6 7-bit linear 7 bit (clause D.1.2)
7 Invalid Invalid

BHUFF (Bit Allocation Quantizer Select)

Indicates the codebook that was used to encode the bit allocation index ABITS (to be transmitted later) (see
Table 5-25).

Table 5-25: Codebooks for Encoding Bit Allocation Index ABITS

BHUFF[ch] Codebook (clause D.5.6)
0 A12
1 B12
2 C12
3 D12
4 E12
5 Linear 4-bit
6 Linear 5-bit
7 Invalid

SEL (Quantization Index Codebook Select)

After subband samples are quantized using a mid-tread linear quantizer, the quantization indexes may be further
encoded using either entropy (Huffman) or block coding in order to reduce bit rate. Therefore, the subband samples
may appear in the bitstream as plain quantization indexes (no further encoding), entropy (Huffman) codes, or block
codes. For channel ch, the selection of a particular codebook for a mid-tread linear quantizer indexed by ABITS[ch] is
transmitted to the decoder as SEL[ch][ABITS[ch]]. No SEL is transmitted for ABITS[ch]>11, because no further
encoding is used for those quantizers. The decoder can find out the particular codebook that was used using ABITS[ch]
and SEL[ch][ABITS[ch]] to look up Table 5-26.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)35

Table 5-26: Selection of Quantization Levels and Codebooks

Quantizer Index
(ABITS)

Number of Index
Quantization Levels

Codebook Select (SEL)
0 1 2 3 4 5 6 7

0 0 Not transmitted
1 3 A3 V3
2 5 A5 B5 C5 V5
3 7 A7 B7 C7 V7
4 9 A9 B9 C9 V9
5 13 A13 B13 C13 V13
6 17 A17 B17 C17 D17 E17 F17 G17 V17
7 25 A25 B25 C25 D25 E25 F25 G25 V25
8 33 or 32 A33 B33 C33 D33 E33 F33 G33 NFE
9 65 or 64 A65 B65 C65 D65 E65 F65 G65 NFE
10 129 or 128 A129 B129 C129 D129 E129 F129 G129 NFE
11 256 NFE
12 512 NFE
13 1 024 NFE
14 2 048 NFE
15 4 096 NFE
16 8 192 NFE
17 16 384 NFE
18 32 768 NFE
19 65 536 NFE
20 131 072 NFE
21 262 144 NFE
22 524 288 NFE
23 1 048 576 NFE
24 2 097 152 NFE
25 4 194 304 NFE
26 8 388 608 NFE

27-32 Invalid Invalid
NOTE: NFE = No further encoding is used to encode the linearly quantized subband samples. A,B,C,D,E,F,G =

Subband samples are encoded by Huffman code. V = 4 subband samples are grouped and encoded using
4-element block code.

ADJ (Scale Factor Adjustment Index)

A scale factor adjustment index is transmitted whenever a SEL value indicates a Huffman codebook. This index points
to the adjustment values shown in Table 5-27. This adjustment value should be multiplied by the scale factor (SCALE).

Table 5-27: Scale Factor Adjustment Index

Scale Factor Adjustment Index (ADJ) Adjustment Value
0 1,0000
1 1,1250
2 1,2500
3 1,4375

NOTE: This table shows the scale factor adjustment index values if Huffman
coding is used to encode the subband quantization indexes.

AHCRC (Audio Header CRC Check Word)

If CPF = 1 then AHCRC shall be extracted from the bitstream. The CRC value test shall not be applied.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)36

5.5 Unpack Subframes

5.5.1 Primary Audio Coding Side Information

Table 5-28: Core side information

Primary audio side information Size (bits)
SSC = ExtractBits(2);

 nSSC = SSC+1; 2

PSC = ExtractBits(3); 3
for (ch=0; ch<nPCHS; ch++)
 for (n=0; n<nSUBS[ch]; n++)
 PMODE[ch][n] = ExtractBits(1);

1 bit per
subband

for (ch=0; ch<nPCHS; ch++)
for (n=0; n<nSUBS[ch]; n++)
 if (PMODE[ch][n]>0) { // Transmitted only when ADPCM active
 // Extract the VQindex
 nVQIndex = ExtractBits(12);
 // Look up the VQ table for prediction coefficients.
 ADPCMCoeffVQ.LookUp(nVQIndex, PVQ[ch][n]) // 4 coefficients
 }

12 bits per
occurrence

for (ch=0; ch<nPCHS; ch++) {
 // BHUFF tells which codebook was used

 nQSelect = BHUFF[ch];
 // Use this codebook to decode the bit stream for ABITS[ch][n]

 for (n=0; n<nVQSUB[ch]; n++) // Not for VQ encoded subbands.
 QABITS.ppQ[nQSelect]->InverseQ(InputFrame, ABITS[ch][n])

 }

variable bits

for (ch=0; ch<nPCHS; ch++){
 for (n=0; n<NumSubband; n++)
 TMODE[ch][n] = 0;
 // Decode TMODE[ch][n]
 if (nSSC>1) {// Transient possible only if more than one subsubframe.
 for (ch=0; ch<nPCHS; ch++) {
 // TMODE[ch][n] is encoded by a codebook indexed by THUFF[ch]
 nQSelect = THUFF[ch];
 for (n=0; n<nVQSUB[ch]; n++) // No VQ encoded subbands
 if (ABITS[ch][n] >0) // Present only if bits allocated
 // Use codebook nQSelect to decode TMODE from the bit stream
 QTMODE.ppQ[nQSelect]->InverseQ(InputFrame,TMODE[ch][n])
 }
 }
}

variable bits

for (ch=0; ch<nPCHS; ch++){

 // Clear SCALES

 for (n=0; n<NumSubband; n++){

 SCALES[ch][n][0] = 0;

 SCALES[ch][n][1] = 0;

 }
 nQSelect = SHUFF[ch]; // SHUFF indicates which codebook was used to encode SCALES

 // Select the root square table (SCALES were nonlinearly quantized).
 if (nQSelect == 6)

 pScaleTable = &RMS7Bit; // 7-bit root square table
 else

 pScaleTable = &RMS6Bit; // 6-bit root square table
 // Clear accumulation (if Huffman code was used, the difference of SCALES was

encoded).
 nScaleSum = 0;
 // Extract SCALES for Subbands up to VQSUB[ch]
 for (n=0; n<nVQSUB[ch]; n++)
 if (ABITS[ch][n] >0) { // Not present if no bit allocated
 // First scale factor
 // Use the (Huffman) code indicated by nQSelect to decode the quantization
 // index of SCALES from the bit stream
 QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
 // Take care of difference encoding
 if (nQSelect < 5) // Huffman encoded, nScale is the difference
 nScaleSum += nScale; // of the quantization indexes of SCALES.
 else // Otherwise, nScale is the quantization
 nScaleSum = nScale; // level of SCALES.

variable bits

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)37

Primary audio side information Size (bits)
 // Look up SCALES from the root square table
 pScaleTable->LookUp(nScaleSum, SCALES[ch][n][0])
 // Two scale factors transmitted if there is a transient
 if (TMODE[ch][n]>0) {
 // Use the (Huffman) code indicated by nQSelect to decode the
 // quantization index of SCALES from the bit stream
 QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
 // Take care of difference encoding
 if (nQSelect < 5) // Huffman encoded, nScale is the
 nScaleSum += nScale; // of SCALES.
 else // Otherwise, nScale is SCALES
 nScaleSum = nScale; // itself.
 // Look up SCALES from the root square table
 pScaleTable->LookUp(nScaleSum, SCALES[ch][n][1])
 }
 }
 //
 // High frequency VQ subbands
 //
 for (n=nVQSUB[ch]; n<nSUBS[ch]; n++) {
 // Use the code book indicated by nQSelect to decode
 // the quantization index of SCALES from the bit stream
 QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
 // Take care of difference encoding
 if (nQSelect < 5) // Huffman encoded, nScale is the
 nScaleSum += nScale; // of SCALES.
 else // Otherwise, nScale is SCALES
 nScaleSum = nScale; // itself.
 // Look up SCALES from the root square table
 pScaleTable->LookUp(nScaleSum, SCALES[ch][n][0])
 }
}
for (ch=0; ch<nPCHS; ch++)

 if (JOINX[ch]>0) // Transmitted only if joint subband coding enabled.
 JOIN_SHUFF[ch] = ExtractBits(3);

3 bits per
channel

for (ch=0; ch<nPCHS; ch++)
 if (JOINX[ch]>0) { // Only if joint subband coding enabled.

 nSourceCh = JOINX[ch]-1; // Get source channel. JOINX counts
 // channels as 1,2,3,4,5, so minus 1.

 nQSelect = JOIN_SHUFF[ch]; // Select code book.
 for (n=nSUBS[ch]; n<nSUBS[nSourceCh]; n++){

 // Use the code book indicated by nQSelect to decode
 // the quantization index of JOIN_SCALES

 QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nJScale);
 // Bias by 64

 nJScale = nJScale + 64;
 // Look up JOIN_SCALES from the joint scale table;

 JScaleTbl.LookUp(nJScale, JOIN_SCALES[ch][n]);
 }

 }

variable bits

if (DYNF != 0) {

 nIndex = ExtractBits(8);

 RANGEtbl.LookUp(nIndex,RANGE);

 // The following range adjustment is to be performed

 // after QMF reconstruction

 for (ch=0; ch<nPCHS; ch++)
 for (n=0; n<nNumSamples; n++)

 AudioCh[ch].ReconstructedSamples[n] *= RANGE;
 }

8

if (CPF==1) // Present only if CPF=1.
 SICRC = ExtractBits(16); 16

SSC (Subsubframe Count)

Indicates that there are nSSC = SSC+1 subsubframes in the current audio subframe.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)38

PSC (Partial Subsubframe Sample Count)

PSC indicates the number of subband samples held in a partial subsubframe for each of the active subbands. A partial
subsubframe is one which has less than 8 subband samples. It exists only in a termination frame and is always at the end
of last normal subsubframe. A DSYNC word will always occur after a partial subsubframe.

PMODE (Prediction Mode)

PMODE[ch][n]=1 indicates that ADPCM prediction is used (active) for subband n of primary audio channel [ch] and
PMODE[ch][n]=0 otherwise. ADPCM shall be extracted from the bit stream for all subbands, but ADPCM
reconstruction can be limited to the lowest 20 subbands if DSP does not have enough MIPS.

PVQ (Prediction Coefficients VQ Address)

Indexes to the vector code book (clause D.10.1) to obtain ADPCM prediction coefficients. PVQ is transmitted only for
subbands where ADPCM is active.

ABITS (Bit Allocation Index)

ABITS[ch][n] is the index to the mid-tread linear quantizer that was used to quantize the subband samples for the nth
subband of channel ch. ABITS[ch][n] may be transmitted as either a 4-bit or 5-bit word. In the case of a 4-bit word, it
may be further encoded using one of the 5 Huffman codes. This encoding is the same for all subbands of each channel
and is conveyed by BHUFF as shown in Table 5-25. There is obviously no need to allocate bits for the high frequency
subbands because they are encoded using VQ.

TMODE (Transition Mode)

TMODE[ch][n] indicates if there is a transient inside a subframe (subband analysis window) for subband n of channel
ch. If there is a transient (TMODE[ch][n]>0), it further indicates that the transition occurred in subsubframe (subband
analysis subwindow) TMODE[ch][n] + 1. TMODE[ch][n] is encoded by one of the 4 Huffman codes and the selection
of which is conveyed by THUFF (see Table 5-23). The decoder assumes that there is no transition (TMODE[ch][n]=0)
for all subbands of all channels unless it is told otherwise by the bit stream. Transient does not occur in the following
situations, so TMODE is not transmitted when:

• Only one subsubframe within the current subframe. This is because the time resolution of transient analysis is
a subsubframe (subband analysis subwindow).

• VQ encoded high frequency subbands. If there is a transient for a subband, it would not have been VQ
encoded.

• Subbands without bit allocation. If no bits are allocated for a subband, there is no need for transient.

SCALES (Scale Factors)

One scale factor is transmitted for subbands without transient. Otherwise two are transmitted, one for the episode before
the transient and the other for after the transient. The quantization indexes of the scale factors may be encoded by
Huffman code as shown in Table 5-24. If this is the case, they are difference-encoded before Huffman coding. The scale
factors are finally obtained by using the quantization indexes to look up either the 6-bit or 7-bit square root quantization
table according to Table 5-24.

JOIN SHUFF (Joint Subband Codebook Select)

If joint subband coding is enabled (JOINX[ch]>0), JOIN SHUFF[ch] selects which code book was used to encode the
scale factors (JOIN SCALES) which will be used when copying subband samples from the source channel to the
current channel ch. These scale factors are encoded in exactly the same way as that for SCALES, using Table 5-24 to
look up the codebook.

JOIN SCALES (Scale Factors for Joint Subband Coding)

The scale factors are used to scale the subband samples copied from the source channel (JOINX[ch]-1) to the current
channel. The index of the scale factor is encoded using the code book indexed by JOIN SHUFF[ch]. After this index is
decoded, it is used to look up the table in clause D.4, to get the scale factor. No transient is permitted for jointly encoded
subbands, so a single scale factor is included. The joint subbands start from the nSUBS of the current channel until the
nSUBS of the source channel.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)39

RANGE (Dynamic Range Coefficient)

Dynamic range coefficient is to allow for the convenient compression of the audio dynamic range at the output of the
decoder. Dynamic range compression is particularly important in listening environments where high ambient noise
levels make it impossible to discriminate low level signals without risking damaging the loudspeakers during loud
passages. This problem is further compounded by the growing use of 20-bit PCM audio recordings which exhibit
dynamic ranges as high as 110 dB.

Each coefficient is 8-bit signed fractional Q2 binary and represents a logarithmic gain value as shown in clause D.4
giving a range of ±31,75 dB in steps of 0,25 dB. Dynamic range compression is affected by multiplying the decoded
audio samples by the linear coefficient.

The degree of compression can be altered with the appropriate adjustment to the coefficient values at the decoder and
can be switched off completely by ignoring the coefficients.

SICRC (Side Information CRC Check Word)

If CPF = 1 then SICRC shall be extracted from the bitstream. The CRC value test shall not be applied.

5.6 Primary Audio Data Arrays

Table 5-29: Core audio data arrays

Primary audio data Size (bits)
for (ch=0; ch<nPCHS; ch++)
 for (n=nVQSUB[ch]; n<nSUBS[ch]; n++) {
 // Extract the VQ address from the bit stream
 nVQIndex = ExtractBits(10);
 // Look up the VQ code book for 32 subband samples.
 HFreqVQ.LookUp(nVQIndex, HFREQ[ch][n])
 // Scale and take the samples
 Scale = (real)SCALES[ch][n][0]; // Get the scale factor
 for (m=0; m<nSSC*8; m++, nSample++)
 aPrmCh[ch].aSubband[n].raSample[m] = rScale*HFREQ[ch][n][m];
 }

10 bits per
subband

if (LFF>0) { // Present only if flagged by LFF
 // extract LFE samples from the bit stream
 for (n=0; n<2*LFF*nSSC; n++)
 LFE[n] = (signed int)(signed char)ExtractBits(8);
 // Use char to get sign extension because it is 8-bit 2's compliment.
 // Extract scale factor index from the bit stream
 LFEscaleIndex = ExtractBits(8);
 // Look up the 7-bit root square quantization table
 pLFE_RMS->LookUp(LFEscaleIndex,nScale);
 // Account for the quantizer step size which is 0.035
 rScale = nScale*0.035;
 // Get the actual LFE samples
 for (n=0; n<2*LFF*nSSC; n++)
 LFECh.rLFE[k] = LFE[n]*rScale;
 // Interpolation LFE samples
 LFECh.InterpolationFIR(LFF); // LFF indicates which interpolation filter to use
}

8 bits per
sample

Audio Data
// Select quantization step size table
if (RATE == 0x1f)
 pStepSizeTable = &StepSizeLossLess; // Lossless quantization
else
 pStepSizeTable = &StepSizeLossy; // Lossy
// Unpack the subband samples
for (nSubSubFrame=0; nSubSubFrame<nSSC; nSubSubFrame++) {
 for (ch=0; ch<nPCHS; ch++)
 for (n=0; n<nVQSUB[ch]; n++) { // Not high frequency VQ subbands
 // Select the mid-tread linear quantizer
 nABITS = ABITS[ch][n]; // Select the mid-tread quantizer
 pCQGroup = &pCQGroupAUDIO[nABITS-1];// Select the group of
 // code books corresponding to the
 // the mid-tread linear quantizer.
 nNumQ = pCQGroupAUDIO[nABITS-1].nNumQ-1;// Number of code
 // books in this group
 // Determine quantization index code book and its type
 // Select quantization index code book
 nSEL = SEL[ch][nABITS-1];

variable bits

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)40

 // Determine its type
 nQType = 1; // Assume Huffman type by default
 if (nSEL==nNumQ) { // Not Huffman type
 if (nABITS<=7)
 nQType = 3; // Block code
 else
 nQType = 2; // No further encoding
 }
 if (nABITS==0) // No bits allocated
 nQType = 0;
 // Extract bits from the bit stream
 switch (nQType) {
 case 0: // No bits allocated
 for (m=0; m<8; m++)
 AUDIO[m] = 0;
 break;
 case 1: // Huffman code
 for (m=0; m<8; m++)
 pCQGroup->ppQ[nSEL]->InverseQ(InputFrame, AUDIO[m]);
 break;
 case 2: // No further encoding
 for (m=0; m<8; m++) {
 // Extract quantization index from the bit stream
 pCQGroup->ppQ[nSEL]->InverseQ(InputFrame, nCode)
 // Take care of 2's compliment

 AUDIO[m] = pCQGroup->ppQ[nSEL]->SignExtension(nCode);
 }
 break;
 case 3: // Block code
 pCBQ = &pCBlockQ[nABITS-1]; // Select block code book
 m = 0;
 for (nBlock=0; nBlock<2; nBlock++) {
 // Extract the block code index from the bit stream
 pCQGroup->ppQ[nSEL]->InverseQ(InputFrame, nCode)
 // Look up 4 samples from the block code book
 pCBQ->LookUp(nCode,&AUDIO[m])
 m += 4;
 }
 break;
 default: // Undefined
 printf("ERROR: Unknown AUDIO quantization index code book.");
 }
 }
 // Account for quantization step size and scale factor
 // Look up quantization step size
 nABITS = ABITS[ch][n];
 pStepSizeTable->LookUp(nABITS, rStepSize);
 // Identify transient location
 nTmode = TMODE[ch][n];
 if (nTmode == 0) // No transient
 nTmode = nSSC;
 // Determine proper scale factor
 if (nSubSubFrame<nTmode) // Pre-transient
 rScale = rStepSize * SCALES[ch][n][0]; // Use first scale factor
 else // After-transient
 rScale = rStepSize * SCALES[ch][n][1]; // Use second scale factor
 // Adjustmemt of scale factor
 rScale *= arADJ[ch][SEL[ch][nABITS-1]]; // arADJ[][] are assumed 1
 // unless changed by bit
 // stream when SEL indicates
 // Huffman code.
 // Scale the samples
 nSample = 8*nSubSubFrame; // Set sample index
 for (m=0; m<8; m++, nSample++)
 aPrmCh[ch].aSubband[n].aSample[nSample] = rScale*AUDIO[m];
 // Inverse ADPCM
 if (PMODE[ch][n] != 0) // Only when prediction mode is on.
 aPrmCh[ch].aSubband[n].InverseADPCM();
 // Check for DSYNC
 if ((nSubSubFrame==(nSSC-1)) || (ASPF==1)) {
 DSYNC = ExtractBits(16);
 if (DSYNC != 0xffff)
 printf("DSYNC error at end of subsubframe #%d", nSubSubFrame);
 }
}

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)41

HFREQ (VQ Encoded Subbands)

At low bit rates, some high frequency subbands are encoded using Vector Quantization (VQ). Each vector from this
code book consists of 32 subband samples, corresponding to the maximum possible subframe (4 normal subsubframes):

4 subsubframe × 8 samples/subsubframe = 32 samples:

If the current subframe is short of 32 samples, the remaining samples are padded with either zeros or "don't care" and
then vector-quantized. The vector address is then included in the bit stream. After the decoder picks up the vector
address, it looks up the vector code book to get the 32 samples. But the decoder will only pick nSSC x 8 out of the
32 samples and scale them with the scale factor SCALES.

LFE (Low Frequency Effect Data)

The presence of a LFE channel and its interpolation filter selection are flagged by LFF in the frame header (see
Table 5-14). The number of decimated LFE samples in the current subframe is 2 × LFF × nSSC, corresponding to the
decimation factor and the subframe size. The LFE samples are normalized with a scale factor and then quantized with a
step size of 0,035, before being included in the bit stream as 8-bit 2's compliment. This scale factor is nonlinearly
quantized using the 7-bit root square and then directly included in the bit stream right after the decimated LFE samples.
Therefore, on the decoder side, these decimated LFE samples need to be adjusted by the quantization step size and scale
factor. After this adjustment, they are used to interpolate the other samples. The choice of the interpolation filter is
indicated by LFF as shown in Table 5-14.

AUDIO (Audio data)

The audio data are grouped as nSSC subsubframes, each consisting of 8 samples for each subband. Each sample was
quantized by a mid-tread linear quantizer indexed by ABITS. The resultant quantization index may further be encoded
by either a Huffman or block code. If it is not, it is included in the bit stream as 2's compliment. All this information is
indicated by SEL. The (ABITS,SEL) pair then tells how the subband samples should be extracted from the bit stream
(Table 5-26).

The resultant subband samples are then compensated by their respective quantization step sizes and scale factors.
Special care shall be paid to possible transient in the subframe. If a transient is flagged by TMODE, one scale factor
should be used for samples before the transient and the other one for the after the transient.

For some of the subbands that are ADPCM encoded, the samples of these subbands thus far obtained are actually the
difference signals. Their real values shall be recovered through a reverse ADPCM process.

At end of each subsubframe there may be a synchronization check word DSYNC = 0xffff depending on the flag ASPF
in the frame header, but there shall be at least a DSYNC at the end of each subframe.

5.7 Unpack Optional Information
The optional information may be included at the end of the frame following completion of the audio data arrays,
depending on the status of the optional header flags. This data is not intrinsic to the operation of the decoder but may be
used for post processing routines.

Table 5-30: Core optional information

Optional information Size (bits)
if (TIMEF==1) // Present only when TIMEF=1.
 TIMES = ExtractBits(32); 32
if (AUXF==1) // Present only if AUXF=1.
 AUXCT = ExtractBits(6);
else
 AUXCT = 0; // Clear it.

6

ByteAlign = ExtractBits (0 ... 7) 0 to 7
for (int n=0; n<AUXCT; n++)
 AUXD[n] = ExtractBits(8);

8×AUXCT
bits

if ((CPF==1) && (DYNF!=0)))
 OCRC = ExtractBits(16); 16

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)42

TIMES (Time Code Stamp)

Time code may be used to align audio to video.

AUXCT (Auxiliary Data Byte Count)

The number of auxiliary data bytes to be transmitted in the following AUXD array. It shall be in the range of 1 to 63.

ZeroPadAux (Pad for nSYNCAUX)

The beginning of auxiliary data bytes is aligned on the 32-bit boundary from the beginning of the core stream (DWORD
aligned). This is achieved by inserting a necessary number of zero bits after the AUXCT data.

AUXD (Auxiliary Data Bytes)

Unpacking of the auxiliary data is detailed in clause 5.8.2.

OCRC (Optional CRC Check Bytes)

If CPF = 1 then OCRC shall be extracted from the bitstream. The CRC value test shall not be applied.

Additional optional metadata chunks may follow in an arbitrary order. This version of the specification defines one
additional metadata chunk denoted by Rev2 Auxiliary Data Chunk. The structure of this chunk is described in
clause 5.8.3. The existence of Rev2 Auxiliary Data Chunk is not dependent on the value of the AUXF flag, i.e. the Rev2
Auxiliary Data Chunk may be encoded in the stream even when AUXF=FALSE.

5.8 Optional Information

5.8.1 About Optional Information

This clause describes metadata blocks that may optionally be included in the bitstream.

5.8.2 Auxiliary Data

Table 5-31: Core AUX data

Auxiliary data Size (bits)

// Advance to DWORD boundary

InputFrame.Advance2NextDWord();

// Extract AUX Sync Word

nSYNCAUX = InputFrame.ExtractBits(32);

32

// Extract AUX decode time stamp flag
bAUXTimeStampFlag = (ExtractBits(1)==1) ? true : false; 1
// Extract AUX decode time stamp
if (bAUXTimeStampFlag) {
 InputFrame.Advance2Next4BitPos();
 nMSByte = ExtractBits(8);
 nMarker = ExtractBits(4); // nMaker==1011
 nLSByte28 = ExtractBits(28);
 nMarker = ExtractBits(4); // nMaker==1011
 nAUXTimeStamp = (nMSByte << 28) | nLSByte28;
}

36

// Extract AUX dynamic downmix flag
bAUXDynamCoeffFlag = (ExtractBits(1)==1) ? true : false;
bInitDwnMixCoeff = false;

1

DeriveNumDwnMixCodeCoeffs()
{
 unsigned int nPriCh, nNumCoeffs = 0;
 nPriCh = anNumCh[AMODE];
 if (LFF > 0)
 nPriCh++;
 // recall these tables do NOT include a scale row!
 // Check m_nPrmChDownMixType
 switch (m_nPrmChDownMixType)

3

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)43

Auxiliary data Size (bits)
 {
 case DTSDOWNMIXTYPE_1_0:
 nNumCoeffs = nPriCh;
 m_nNumChPrevHierChSet = 1;
 break;
 case DTSDOWNMIXTYPE_LoRo:
 case DTSDOWNMIXTYPE_LtRt:
 nNumCoeffs = 2*nPriCh;
 m_nNumChPrevHierChSet = 2;
 break;
 case DTSDOWNMIXTYPE_3_0:
 case DTSDOWNMIXTYPE_2_1:
 nNumCoeffs = 3*nPriCh;
 m_nNumChPrevHierChSet = 3;
 break;
 case DTSDOWNMIXTYPE_2_2:
 case DTSDOWNMIXTYPE_3_1:
 nNumCoeffs = 4*nPriCh;
 m_nNumChPrevHierChSet = 4;
 break;
 default:
 nNumCoeffs = 0;
 m_nNumChPrevHierChSet = 0;
 break;
 }
 return nNumCoeffs;
}
// Unpack the coefficients
 if (bAUXDynamCoeffFlag)
 {
 // Extract the downmix type for primary ch
 nPrmChDownMixType = ExtractBits(3);
 // Extract the downmix code coeffs
 nNumDwnMixCodeCoeffs = DeriveNumDwnMixCodeCoeffs();
 }

// Extract AUX dynamic downmix coeff codes
if (bAUXDynamCoeffFlag) {
 if (! ReallocDwnMixCodeCoeff(nNumDwnMixCodeCoeffs))
 return false;
 for (n=0; n < nNumDwnMixCodeCoeffs; n++)
 {
 nTmp = ExtractBits(9);
 panDwnMixCodeCoeffs[n] = nTmp;
 }
} for (nIndPrmCh=0, n=0; nIndPrmCh<m_nNumChPrevHierChSet; nIndPrmCh++){
 for (nIndXCh=0; nIndXCh<nPriCh; nIndXCh++, n++){
 nTmp = m_panDwnMixCodeCoeffs[n];
 // Extract and test the MSB (NBITSFORDMIXCOEFFWORD-bit words)
 // If 1 - > in phase (+1); if 0 -> Out of phase (-1)
 nSign = (nTmp & nMask1) ? 1 : -1;
 nTmp = (nTmp & nMask2);
 if (nTmp>0){
 nTmp--; // -Infinity is not part of the table so decrement index
 if (nTmp>nTblSize)
 return false;
 // convert 24-bit signed coeffs in Q15 to real
 m_panCoreDwnMixCoeffs[n] = (nSign*DmixCoeffTable[nTmp]);
 }
 else
 m_panCoreDwnMixCoeffs[n] = 0.0;
} }

variable

ByteAlign = ExtractBits(0 ... 7); 0 to 7
nRev2AUXCRC16 = ExtractBits(16); 16

Navigation to the start location of the auxiliary data is achieved by either reading the AUXCT variable and traversing to
the next DWORD or by searching for the DWORD aligned AUX sync word 0x9A1105A0 from the end of the audio
frame. Since the data in the auxiliary may be required prior to unpacking the subframe data, the latter approach of
searching for the AUX sync word is the suggested method. The auxiliary data may include a 36-bit time-stamp for
decode synchronization and any dynamic downmix coefficients.

nSYNCAUX (Auxiliary Sync Word)

The auxiliary sync word is 0x9A1105A0 and is DWORD aligned.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)44

bAUXTimeStampFlag (Auxiliary Decode Time Stamp Flag)

Indicates if a decode time stamp is present in auxiliary data.

nAUXTimeStamp (Auxiliary Decode Time Stamp)

Decode time stamp for synchronizing core audio with another audio stream such as a DTS substream.

The timestamp data is a 36 bit field composed as follows:

where:

Hours has range 0 to 23,

Mins has range 0 to 59,

Sec has range 0 to 59,

SampleRate may be 32 000, 44 100 or 48 000 as deduced from the SFREQ table (see Table 5-5),

SampleOffset has range of 0 to 31 999, 44 099 or 47 999.

The timestamp of an encoded frame (N) corresponds to that time at the first edge of the first sample period at the start of
an audio frame N entering into the encoder. The time stamp may also be thought of as a sample counter in which case a
value of 0 or other initial value corresponds to the beginning of the first sample period within the first audio frame as
processed by the encoder.

bAUXDynamCoeffFlag (Auxiliary Dynamic Downmix Flag)

If this flag is true, it indicates that the down mixing coefficients are included in the stream.

nPrmChDownMixType (Auxiliary Primary Channel Downmix Type)

Designates the dynamic downmix type for the primary channels when bAUXDynamCoeffFlag is true. The downmix
type is defined by the parameters in Table 5-32.

Table 5-32: Downmix Channel Groups

nPrmChDownMixType Downmix primary
Channel group to:

000 1/0
001 Lo/Ro
010 Lt/Rt
011 3/0
100 2/1
101 2/2
110 3/1
111 Unused

The downmix coefficients are packed as a NxM table of coefficients. To determine the total number of downmix
coefficients packed in the stream, use the nPrmChDownMixType to determine the M (number of resultant downmix
channels and the total number of channels encoded to determine N).

panDwnMixCodeCoeffs (Dynamic Downmix Code Coefficients)

Use the nPrmChDownMixType (designated number of fold down channels) and the number of primary channels + LFE
channel (if included in audio frame) to determine the number of dynamic downmix code coefficients to extract. Each
code coefficient is 9 bits.

See clause D.11 for table lookup to convert encoded downmix coefficient to actual coefficient values.

etSampleOffsSampleRateSecMinsHoursTimeStamp +×××=)(

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)45

ByteAlign for nAUXCRC16 (Pad to BYTE Boundary)

This ensures that the nAUXCRC16 field that follows is aligned to a byte boundary to allow fast table-based CRC16
calculation. Append '0's until the bit position is a multiple of 8.

nAUXCRC16 (Auxiliary CRC-16 value)

An auxiliary CRC-16 value is provided to verify both the detection of the auxiliary sync word and the contents of the
auxiliary data. Traverse to next byte boundary and read out auxiliary CRC value. This CRC value is calculated for the
auxiliary data from positions bAUXTimeStampFlag to the byte prior to the start of the CRC inclusive.

Reserved (Reserved)

This field is reserved for additional auxiliary information. The decoder shall assume that this field is present and of
unspecified duration. Therefore in order to continue unpacking the stream, the decoder shall skip over this field using
the auxiliary data start pointer and the auxiliary data byte size AUXCT.

5.8.3 Rev2 Auxiliary Data Chunk

5.8.3.1 About the REV2 Aux Data Chunk

The Rev2AUX data chunk contains broadcast metadata such as Dynamic Range Control (DRC) and dialog
normalization (dialnorm). Navigation to the start location of the Rev2 auxiliary data chunk is achieved by searching for
the DWORD-aligned nSYNCRev2AUX sync word (0x7004C070) by using one of the two following methods:

• searching forward starting after all auxiliary data bytes AUXD are extracted; or

• searching backward starting from the end of the audio frame.

The detected sync word shall be verified by checking the CRC check sum nRev2AUXCRC16. Currently the Rev2
auxiliary data may include an ES metadata flag and a corresponding down-mix attenuation level. In the future,
additional metadata may be added in reserved field of the Rev2 Auxiliary Data Chunk.

Padding for nSYNCRev2AUX (ZeroPadRev2Aux)

The beginning of Rev2 Auxiliary Data Chunk is aligned on the 32-bit boundary from the beginning of the core stream
(DWORD aligned). This is achieved by inserting a necessary number of zero bits prior to the nSYNCRev2AUX data.

5.8.3.2 Rev2 Auxiliary Data Chunk structure

The Rev2 Auxiliary Data Chunk structure is shown in Table 5-33.

Table 5-33: Rev2 Auxiliary Data Chunk Structure

Rev2 Auxiliary Data Chunk Structure Size (Bits)
nSYNCRev2AUX = ExtractBits(32); 32
nRev2AUXDataByteSize = ExtractBits(7) + 1; 7
if ((nRev2AUXDataByteSize < 3) || (nRev2AUXDataByteSize > 128))
{
 Error: Invalid range of Rev 2 Auxiliary Data Chunk Size
}

bESMetaDataFlag = (ExtractBits(1) == 1) ? TRUE : FALSE; 1
if (bESMetaDataFlag==TRUE)
{
 // Extract Embedded ES Downmix Scale Index
 nEmbESDownMixScaleIndex = ExtractBits(8);

8

 // Check index range
 if ((nEmbESDownMixScaleIndex < 40) || (nEmbESDownMixScaleIndex >240)){
 // Handle error: Invalid Index For a ES Downmix Scaling Parameter
 // Look up the scale factor
 ESDmixScale = DmixTable[nEmbESDownMixScaleIndex];
}

if (nRev2AUXDataByteSize>4)
 bBroadcastMetadataPresent = (ExtractBits(1) == 1) ? TRUE : FALSE;
else
 bBroadcastMetadataPresent = FALSE;

1

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)46

Rev2 Auxiliary Data Chunk Structure Size (Bits)
If (bBroadcastMetadataPresent == TRUE)
{
 bDRCMetadataPresent = (ExtractBits(1) == 1) ? TRUE : FALSE;

1

 bDialnormMetadata = (ExtractBits(1) == 1) ? TRUE : FALSE; 1
 if (bDRCMetaDataPresent == TRUE) {
 // Extract the DRC Version Number
 DRCversion_Rev2AUX = ExtractBits(4);

4

 }
 // Byte align to next field
 nByteAlign0 = ExtractBits(…);

1,…,7

 // Extract the Rev2AUX DRC values, if present
 if (bDRCMetaDataPresent == TRUE){
 // assumes DRCversion_Rev2AUX == 1:
 for (subSubFrame=0; subSubFrame < nSSC; subSubFrame++)
 subsubFrameDRC_Rev2AUX[subSubFrame] = dts_dynrng_to_db(ExtractBits(8));
 }

8×subsubframes

 // Extract DIALNORM_rev2aux, if present
if (bDialnormMetadata == TRUE){
 DIALNORM_rev2aux = ExtractBits(5);
 DNG = - (DIALNORM_rev2Aux);
 }
}

5

ReservedRev2Aux = ExtractBits(…); See description
ByteAlignforRev2AuxCRC = ExtractBits(…); 0,…,7
nRev2AUXCRC16 = ExtractBits(16); 16

5.8.3.3 Description of Rev2 Auxiliary Data Chunk fields

nSYNCRev2AUX (Rev2 Auxiliary Data Chunk Sync Word)

The DWORD-aligned Rev2 Auxiliary Data Chunk synchronization word has the value 0x7004C070.

nRev2AUXDataByteSize (Rev2 Auxiliary Data Byte Size)

The nRev2AUXDataByteSize is equal to the size of the Rev2 Auxiliary Data Chunk in bytes from the
nRev2AUXDataByteSize to nRev2AUXCRC16 inclusive. This marker also designates the end of the field
nRev2AUXCRC16 and allows quick location of the checksum at byte position nRev2AUXDataByteSize - 2 offset from
the nRev2AUXDataByteSize inclusive. The nRev2AUXDataByteSize is an unsigned integer with a valid range
between 3 and 128 inclusive.

bESMetaDataFlag (ES Metadata Flag)

When the bESMetaDataFlag is TRUE, metadata related to the embedded down-mix from an extended surround (ES)
layout is present in the stream, namely nEmbESDownMixScaleIndex which is an index into DmixTable[]. When the
bESMetaDataFlag is TRUE, it informs the core decoder that the channels encoded in the core stream represent a
down-mix from some extended surround (ES) layout with > 5.1 channels. If the bESMetaDataFlag is FALSE or
bESMetaDataFlag is not encoded in the stream (i.e. Rev2 Auxiliary Data Chunk), then either no embedded ES
downmix metadata exists or should not be used.

nEmbESDownMixScaleIndex (Embedded ES Downmix Scale Index)

This field is encoded in the stream only if the bESMetaDataFlag is TRUE. It corresponds to the amount of attenuation
that is applied to the core encoded channels during the process of embedded ES down-mixing. This information is only
needed when the core decoded audio represents primary audio that is going to be mixed with the secondary audio. In
this case, the mixer needs to obtain this attenuation information from the core decoder in order to adjust the level of
secondary audio prior to mixing. The core decoder may choose to combine this scaling with the scaling required by
dialog normalization parameter.

The encoded parameter nEmbESDownMixScaleIndex represents an 8-bit index into the DmixTable[], which is a scale
factors look-up table listed in clause D.11. Although the ESDmixScale parameters are obtained from the DmixTable[],
their range is limited on the encode side to [-40 dB, 0 dB]. This corresponds to the valid range for
nEmbESDownMixScaleIndex to be between 40 and 240 inclusive.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)47

The entries in DmixTable[] are unsigned 16-bit integer numbers representing the numbers in column AbsValues[]
(from the same table), after multiplication by 215 and rounding to the nearest integer value. The ESDmixScale values
are unsigned integer numbers obtained from the entries of DmixTable[].

To obtain the actual ES down-mix scale factor (ESDmixScale), the logic shown in Table 5-33 shall be followed.

bBroadcastMetaDataPresent (Broadcast Metadata Present Flag)

When the bBroadcastMetaDataPresent flag is TRUE, metadata related to the application of DRC and Dialnorm are both
present in the Rev2AUX chunk. Therefore, bDRCMetaDataPresent and bDialnormMetadataPresent flags shall be
checked and any associated metadata shall be applied to the core stream channels.

Presence of the bBroadcastMetaDataPresent flag and the associated metadata may NOT be guaranteed even when the
Rev2AUX data chunk is present in the stream. Decoders that use this metadata SHALL determine the presence of the
bBroadcastMetaDataPresent flag based on the nRev2AUXDataByteSize. In particular the bBroadcastMetaDataPresent
flag is present in the stream if and only if the nRev2AUXDataByteSize > 4.

bDRCMetaDataPresent (DRC Metadata Present Flag)

This flag will be present if bBroadcastMetaDataPresent flag is TRUE. When the bDRCMetaDataPresent flag is TRUE,
metadata related to the application of DRC will be present in the Rev2AUX chunk and the DRC values in the
Rev2AUX data chunk should be used instead of any dynamic range control coefficients found in the legacy core stream
(indicated by flag DYNF). In addition, channels encoded in the core stream should apply the subsequent DRC values to
subsubframes. If the bBroadcastMetaDataPresent flag is FALSE, no subsubframe DRC values are present in the
Rev2AUX data chunk.

bDialnormMetaDataPresent (Dialnorm Metadata Present Flag)

This flag will be present if bBroadcastMetaDataPresent flag is TRUE. When the bDialnormMetaDataPresent flag is
TRUE, metadata related to the application of dialnorm will be present in the Rev2AUX chunk and the dialog
normalization values in the Rev2AUX data chunk should be used instead of the DIALNORM field found in the legacy
core stream. In addition, the Rev2AUX dialnorm value should be smoothed and applied to the channels encoded in the
core stream. If the bBroadcastMetaDataPresent flag is FALSE, no dialnorm values are present in the Rev2Aux data
chunk.

DRCversion_Rev2AUX (DRC Version)

This field will be present only if bBroadcastMetaDataPresent flag is TRUE and if bDRCMetaDataPresent flag is TRUE.
DRCversion_Rev2AUX is a four bit field which is used to determine the version of DRC algorithm which the encoder
used. The first version starts at 0x1. Decoders will support DRC version 0x1 up to the latest version which they support.
Currently only DRCversion_Rev2AUX = 1 is supported in the Rev2Aux chunk. If the encoder is supplying DRC
information with a version number higher than that which is supported by the decoder, the supplied Rev2Aux DRC
values should be ignored and no DRC should be applied.

nByteAlign0 (ByteAlignvaries)

This 0-bit padding ensures that the field that follows is aligned to a byte boundary. Append '0' bits until the bit position
is a multiple of 8. This field will be 1 bit if the DRCversion_Rev2AUX field was present and will be 5 bits if the
DRCversion_Rev2AUX field was not present.

subsubFrameDRC_Rev2AUX[] (DRC Values)

This field will be present only if bBroadcastMetaDataPresent flag is TRUE and if bDRCMetaDataPresent flag is TRUE.
Each subsubFrameDRC_Rev2AUX[] field falls on a byte boundary. Currently only DRC version 1 is supported, which
is single band mode. In single band mode, one 8 bit value is transmitted for each subsubframe, as detailed in Table 5-34.

Table 5-34: Number of Rev2AUX DRC bytes transmitted per frame length

Frame Length DRC bytes (1 per subsubframe)
512 2

1 024 4
2 048 8

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)48

In the CA stream, each subsubframe is 256 samples in length, corresponding to 5,33 ms at 48 000 samples per second
(5,33 ms = subsubframe length in sample/ sampling rate). Table 5-35 shows the relationship between the frame sizes
and number of bits used for DRC values:

Table 5-35: Rev2AUX DRC bits per frame

Frame
length in
samples

Number of
subsubframes

per frame
Frames/sec

No. of bits
used for

DRC values
per frame

Bits/sec
for DRC
values
only

DRC
extension
overhead

(bits/frame)

DRC
extension total
not including
zero padding
(bits/frame)

DRC
extension
total not
including

zero
padding
(bits/sec)

512 2 9 375 16 1 500 10 26 2 438
1 024 4 46 875 32 1 500 10 42 1 969
2 048 8 234 375 64 1 500 10 74 1 808

Each DRC byte value is extracted from the bitstream and converted into a dB gain by function
dts_dynrng_to_db().

DIALNORM_rev2aux (Dialog Normalization Parameter)

The DIALNORM_rev2aux field will be present only if bBroadcastMetaDataPresent flag is TRUE and if
bDialnormMetaDataPresent flag is TRUE. Field DIALNORM_rev2aux falls on a byte boundary. If the encoded stream
contains both a DIALNORM field and a DIALNORM_rev2aux field, DIALNORM_rev2aux takes priority.
DIALNORM_rev2aux is a 5-bit field which is used to determine the dialog normalization parameter.

The dialog normalization gain (DNG), in dB, is specified by the encoder operator and is used to directly scale the
decoder output samples. In the DTS stream, the information about the DNG value is transmitted as described in
Table 5-36.

Table 5-36: Rev2AUX Dialog Normalization Parameter

Dialog Normalization Gain (DNG)
Applied to the Decoder Outputs

[dB]

DIALNORM_rev2aux
(binary)

DIALNORM_rev2aux
(unsigned int)

0 0b00000 0
-1 0b00001 1
-2 0b00010 2
-3 0b00011 3
-4 0b00100 4
-5 0b00101 5
-6 0b00110 6
-7 0b00111 7
-8 0b01000 8
-9 0b01001 9
-10 0b01010 10
-11 0b01011 11
-12 0b01100 12
-13 0b01101 13
-14 0b01110 14
-15 0b01111 15
-16 0b10000 16
-17 0b10001 17
-18 0b10010 18
-19 0b10011 19
-20 0b10100 20
-21 0b10101 21
-22 0b10110 22
-23 0b10111 23
-24 0b11000 24

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)49

Dialog Normalization Gain (DNG)
Applied to the Decoder Outputs

[dB]

DIALNORM_rev2aux
(binary)

DIALNORM_rev2aux
(unsigned int)

-25 0b11001 25
-26 0b11010 26
-27 0b11011 27
-28 0b11100 28
-29 0b11101 29
-30 0b11110 30
-31 0b11111 31

ReservedRev2Aux (Reserved bits)

This field is reserved for additional metadata information that may be added in the future. The decoder shall assume that
this field is present and of unspecified duration. Therefore, in order to continue unpacking the stream, the decoder shall
skip over this field skipping nRev2AUXDataByteSize bytes from the bESMetaDataFlag inclusive.

ByteAlignforRev2AuxCRC (Pad for nRev2AUXCRC16)

This zero-padding field ensures that the nRev2AUXCRC16 field that follows is aligned to a byte boundary to allow fast
table-based CRC16 calculation. Append '0' bits until the bit position is a multiple of 8.

nRev2AUXCRC16 (Rev2 Auxiliary CRC-16 value)

A Rev2 auxiliary CRC-16 value is provided to verify both the detection of the Rev2 auxiliary sync word and the
contents of Rev2 Auxiliary Data Chunk. To locate the position of the nRev2AUXCRC16 data field, start from the
beginning position of field nRev2AUXDataByteSize and jump forward (nRev2AUXDataByteSize - 2) bytes. This CRC
value is calculated for the Rev2 Auxiliary Data Chunk from the position of nRev2AUXDataByteSize to the
ByteAlignforRev2AuxCRC, inclusive.

6 Core Extensions

6.1 About the Core Extensions
The generalized concept of core + extension coding is well established in the context of DTS encoding. The present
document describes the extensions (components) found in any DTS stream. These components include:

• XCH - Extra centre surround (Cs) channel with 6.1->5.1 down-mix embedded in the core stream using default
down-mix coefficients (Lsdm = Ls+0,7071Cs; Rsdm = Rs+0,7071Cs).

• X96 - High frequency components introduced by higher sampling rates (88,2/96 kHz).

• XBR - Extended resolution for the channels encoded in the core sub-stream (requires bit-rates > 1,5 Mbps but
guarantees backward compatibility of a 1,5 Mbps core sub-stream).

• XXCH - Extra channels beyond 5.1.

Some of these components may exist in either the core sub-stream or the extension sub-stream. The extension
substream is defined in clause 7.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)50

6.2 X96 Extension

6.2.1 About the X96 Extension

The generalized concept of core+96 kHz-extension coding is illustrated in Figure 6-1. To encode 96 kHz LPCM, the
input audio stream is fed to a 96 to 48 kHz down sampler and the resulting 48 kHz signal is encoded using a standard
core encoder as in Figure 6-1, Section A, as follows:

• In the "Preprocess Input Audio" block, the original 96 kHz/24-bit LPCM audio is first delayed and then passed
through the extension 64-band analysis filter bank. Signal "1" in this case consists of the extension subband
samples at 96 kHz/64.

• The core data consists of the core audio codes in 32 subbands. In the "Reconstruct Core Audio Components"
block, the core audio codes are inversely quantized to produce the reconstructed core subband samples at
48 kHz/32. These subband samples correspond to signal "2".

• In the "Generate Residuals" block, the reconstructed core subband samples are subtracted from the extension
subband samples in the lower 32 subbands. The extension subband samples in the upper 32 bands remain
unaltered. These residual subband samples in the 64 bands correspond to signal "3".

• The "Generate Extension Data" block processes the residual subband samples and generates the extension data
that, along with the core data, is assembled in a packer to produce a core + extension bitstream.

In the 96 kHz decoder, as in Figure 6-1, Section B, the unpacker first separates the core + extension stream into the core
and extension data. The core subband decoder, in the Reconstruct Core Audio Components block, processes the core
data and produces the reconstructed core subband samples (same as signal "2" generated in the encoder). Next, in the
Reconstruct Residual Components block, the extension subband decoder uses the extension data to generate the
reconstructed residual subband samples in the 64 bands. In the Recombine Core and Residual Components block the
core subband samples are added to the lower 32 bands of residual subband samples to produce the extension subband
samples in the 64 bands. In the same block, the synthesis 64-band filter bank processes the extension subband samples
and generates the 96 kHz 24-bit LPCM audio. The combining of reconstructed residuals and core signals on the decoder
side, as in Figure 6-1, Section B, is also done in subband domain.

Figure 6-1: The Concept of Core + Extension Coding Methodology

Packer

DTS
Core+Extension

Bit Stream

Decim.
LPF

2

Preprocess
Input Audio

Core
Encoder

Reconstruct
Core Audio
Components

Generate
Residuals

Generate
Extension

Data

Extension
 Data

Core
Data

2

31

96 kHz 24-bit
LPCM

A) Backward Compatible 96kHz Encoder

Unpacker

Reconstructed
96 kHz 24 -bit

LPCM

Reconstruct
Residual

Components

Reconstruct
Core Audio
Com ponents

Recombine
Core and
Residual

Components

DTS
Core+Extension

Bit Stream

Unpacker Core Decoder

DTS Core+Extension
Bit Stream

Reconstructed
48 kHz 24-bit LPCM

B) 96 kHz Decoder

C) 48 kHz (Legacy) Decoder

Core
Data

Core
Data

Extension
Data

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)51

When a 48 kHz-only (legacy) decoder is fed the core + extension bitstream, as in Figure 6-1, Section C, the extension
data fields are ignored and only the core data is decoded. This results in 48 kHz core LPCM audio output.

6.2.2 DTS Core + 96 kHz-Extension Encoder

The block diagram in Figure 6-2 shows the main components of the encoding algorithm. The input digital audio signal
with a sampling frequency up to 96 kHz and a word length up to 24 bits is processed in the core branch and extension
branch. In the core branch input audio is low-pass filtered (LPF) to reduce its bandwidth to below 24 kHz and then
decimated by a factor of two, resulting in a 48 kHz sampled audio signal. The purpose of this LPF decimation is to
remove signal components that cannot be represented by the core algorithm. The down sampled audio signal is
processed in a 32-band analysis cosine modulated filter bank (QMF) that produces the core subband samples. The core
bit allocation routine based on the energy contained in each of the subbands and configuration of the core encoder
determines the desired quantization scheme for each of the subbands. The core subband encoder performs quantization
and encoding after which the audio codes and side information are delivered to the packer. The packer assembles this
data into a core bitstream. The X96 extension can either be an extension of the core audio frame or included with a DTS
substream.

In the extension branch the delayed version of input audio is processed in a 64-band analysis cosine modulated filter
bank (QMF) that produces the extension subband samples. Inverse quantization of the core audio codes produces the
reconstructed core subband samples. Subtracting these samples from the extension subband samples in the lower
32 bands generates the residual subband samples. The residual signals in the upper 32 subbands are unaltered extension
subband samples in corresponding bands. The delay of input audio is such that reconstructed core subband samples and
extension subband samples in the lower 32 bands are time-aligned before the residual signals are produced i.e.:

Delay = DelayDecimationLPF + DelayCoreQMF - DelayExtensionQMF.

The extension bit allocation routine based on the energy of residuals in each of the subbands and configuration of the
extension encoder determines the desired quantization scheme for each of 64 subbands. The residual samples in
subbands are encoded using a multitude of adaptive prediction, scalar/vector quantization and/or Huffman coding to
produce the residual codes and extension side information. The packer assembles this data into an extension bitstream.

Figure 6-2: The Block Diagram of DTS Core + Extension Encoder

DTS
Core Plus
Extension
Bit Stream

Packer

64
Band
QMF

Extension Bit Allocation

Scalar or
Vector

Quantization

Huffman
Code

Scalar or
Vector

Quantization

Huffman
Code

Extension Sub-band
Encoding

+

-

Delay

96 kHz
24 bits
Audio

Scalar or
Vector

Quantization

Huffman
Code

Scalar or
Vector

Quantization

Subband 63

Adaptive
Prediction

Subband 31

Adaptive
Prediction

Subband 0

Adaptive
Prediction

Subband 32

Adaptive
Prediction

Huffman
Code

+

-

Subband 0

Decim.
LPF

2
32

Band
QMF

Core
Sub-band
Encoding

Core Bit Allocation

Subband 31

Inverse
Quantization

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)52

6.2.3 DTS Core + 96 kHz Extension Decoder

On the decoder side, the core and extension parts of the encoded bitstream are fed to their respective subband decoders.
The reconstructed core subband samples are added to the corresponding residual subband samples in lower 32 bands.
The reconstructed residual subband samples in the upper 32 bands remain unaltered. Passing the resulting extension
subband samples through the synthesis 64-band QMF filter bank produces the 96 kHz sampled PCM audio. Figure 6-3
shows the block diagram of the core + extension decoder.

If the encoded bit-stream does not contain the extension data, the decoder, based on its hardware configuration, uses:

• a 32-band QMF with core subband samples as inputs to synthesize the 48 kHz sampled PCM audio;

• a 64-band QMF with inputs being core subband samples in the lower 32 bands and "zero" samples in the upper
32 bands to synthesize the interpolated PCM audio sampled at 96 kHz.

The existing DTS core decoders when receiving the core + extension bitstream will extract and decode the core data to
produce the 48 kHz sampled PCM audio. The decoder ignores the extension data by skipping the extraction until the
next DTS synchronization word.

Figure 6-3: The Block Diagram of DTS Core + extension Decoder

6.2.4 Extension (X96) Bitstream Components

6.2.4.1 About the X96 Bitstream Components

The X96 extension may be a part of the core substream (denoted by the DTS_BCCORE_X96) or a part of the extension
substream (denoted by the DTS_EXSUB_STREAM_X96). During the synchronization procedure, the decoder will
determine whether the DTS_BCCORE_X96 or DTS_EXSUB_STREAM_X96 is being decoded.

Unpacker

Reconstructed
96 kHz/24 bits

Audio

DTS
Core Plus
Extension
Bit Stream

64
Band
QMF
Bank

Q-1
or

VQ-1

Inverse
ADPCM

Subband 63

Huffman
Decode

Q-1
or

VQ-1

Inverse
ADPCM

Subband 32

Huffman
Decode

Q-1
or

VQ-1

Inverse
ADPCM

Subband 31

Huffman
Decode

Q-1
or

VQ-1

Inverse
ADPCM

Subband 0

Huffman
Decode

+

+

Core
Sub-band
Decoding

Subband 31

Subband 0

+

+

Extension Sub-band Decoding

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)53

The frame of X96 data is divided into a frame header and up to four channel sets. The frame header structure is different
for the case of DTS_BCCORE_X96 extension and the case of DTS_EXSUB_STREAM_X96 extension. In case of the
DTS_BCCORE_X96 only one channel set may exist in the X96 stream.

Each channel set has its own channel set header as shown in Figure 6-4. In the case of DTS_EXSUB_STREAM_X96,
the Cycle Redundancy Check (CRC) word is included at the end of frame header to allow detection of errors in the
frame header data. In addition, the CRC words may be included at the end of each channel set header to allow detection
of errors in the channel set header data.

Figure 6-4: X96 data frame structure

The channel set data is subdivided into the subframes. Each subframe consists of a subframe header and the audio data.
The audio data is organized in subsubframes as shown in Figure 6-5. The number of subframes is the same for all
channel sets and is equal to the number of subframes in the core frame. Similarly, the number of subsubframes is the
same for all subframes of all channel sets and is equal to the number of subsubframes within each subframe of the core
frame. In other words, the subframe and subsubframe partitioning within the X96 frame follows the partitioning present
in the core frame.

Figure 6-5: Channel Set Data Structure

6.2.4.2 DTS_BCCORE_X96 Frame Header

This clause describes the X96 extension when it is present in the core extension of the core extension substream.

Table 6-1: DTS_ BCCORE _X96 Frame Header Structure

DTS_ BCCORE _X96 Frame Header Syntax Size (Bits)
SYNC96= ExtractBits(32); 32
FSIZE96 = ExtractBits(12)+1; 12
REVNO = ExtractBits(4); 4

Channel Set Data

Sub frame 0

Sub
frame

Header

SubSub
frame
Audio
Data

...
SubSub
frame
Audio
Data

...

Sub frame n

Sub
frame

Header

SubSub
frame
Audio
Data

...
SubSub
frame
Audio
Data

Header Data
C
R
C

ChSet
Header

ChSet
Data

Channel
Set k

...

S
Y
N
C

C
R
C

ChSet
Header

ChSet
Data

C
R
C

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)54

SYNC96 (DTS_BCCORE_X96 Extension Sync Word)

The synchronization word SYNC96 = 0x1D95F262 for the DTS_BCCORE_X96 extension data comes after the core
audio data within the core substream. For 16-bitstreams the sync word is aligned to 32-bit word boundary. In the case of
14-bitstreams SYNC96 is aligned to both 32-bit and 28-bit word boundaries meaning that 28 MSBs of the SYNC96
appear as 0x07651F26.

To reduce the probability of false synchronization caused by the presence of pseudo sync words, it is imperative to
check the distance between the detected sync word and the end of current frame (as indicated by FSIZE). This distance
in bytes shall match the value of FSIZE96 (see below).

After the synchronization is established a flag nX96Present is set and the output sampling frequency is selected as:

OutSamplingFreq = SFREQ;
 if (nX96Present)
OutSamplingFreq = 2*OutSamplingFreq;

NOTE: SFREQ corresponds to a sampling frequency of reconstructed audio in the core decoder.

FSIZE96 (DTS_BCCORE_X96 Extension Frame Byte Data Size)

FSIZE96 is the byte size of DTS_ BCCORE _X96 extension data. Valid range for FSIZE96: 96 - 4 096.

REVNO (Revision Number)

The revision number for the high-frequency extension processing algorithm.

Table 6-2: REVNO

REVNO Frequency Extension Encoder Software Revision Number
0 Reserved
1 Currently in use (compatible with the Rev1.0 specification)
2 - 7 Future revision (compatible with the Rev1.0 specification)
8 Currently in use (incompatible with the original Rev1.0 specification)
9 - 15 Future revision (incompatible with the original Rev1.0 specification)

Decoders designed using this Rev3.0 specification shall be able to decode all streams when REVNO < 9. If decoder is
not compatible with some algorithm revisions (REVNO > 8), it shall ignore the DTS_ BCCORE_X96 extension stream.

6.2.4.3 DTS_EXSUB_STREAM_X96 Frame Header

This clause describes the X96 extension when it is present in the extension substream of the DTS-HD stream.

Table 6-3: DTS_EXSUB_STREAM_X96 Frame Header Structure

DTS_EXSUB_STREAM_X96 Frame Header Syntax Size (Bits)
SYNCX96 = ExtractBits(32); 32
nHeaderSizeX96 = ExtractBits(6)+1; 6
REVNO = ExtractBits(4); 4
bCRCPresent4ChSetHeaderX96 = ExtractBits(1); 1
nNumChSetsInX96 = ExtractBits(2)+1; 2
for (nChSet=0; nChSet < nNumChSetsInX96; nChSet ++)
 pnuChSetFsizeX96[nChSet] = ExtractBits(12)+1; 12
for (nChSet=0; nChSet < nNumChSetsInX96; nChSet ++)
 nuChInChSetX96[nChSet] = ExtractBits(3) + 1; 3

ReservedHeaderX96 = ExtractBits(…); …
ByteAlignHeaderX96 = ExtractBits(0 … 7); 0...7
nCRC16HeaderX96 = ExtractBits(16); 16

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)55

SYNCX96 (DTS_EXSUB_STREAM_X96 Sync Word)

The DWORD aligned DTS_ EXSUB_STREAM _X96 synchronization word has a value SYNCX96 = 0x1D95F262.
During sync detection, the nCRC16HeaderX96 checksum is used to further verify that the detected sync pattern is not a
random alias. After the synchronization is established, the flag (nX96Present) is set and the output sampling frequency
is selected as:

OutSamplingFreq = SFREQ;
if (nX96Present)

NOTE: SFREQ corresponds to a sampling frequency of reconstructed audio in the core decoder.

nHeaderSizeX96 (DTS_EXSUB_STREAM_X96 frame header length)

The size of the header in bytes from SYNCX96 to nCRC16HeaderX96 inclusive. This value determines the location of
the first channel set header. This marker also designates the end of the field, nCRC16HeaderX96 and allows quick
location of the checksum at byte position nHeaderSizeX96-2.

REVNO (Revision Number)

The revision number for the high frequency extension processing algorithm has the same coding and interpretation as
described in Table 6-2.

bCRCPresent4ChSetHeaderX96 (CRC presence flag for channel set header)

When bCRCPresent4ChSetHeaderX96 = true the 16-bit CRC word for the channel set header is present at the end of
each channel set header. For the case of DTS_BCCORE_X96 the default value for the bCRCPresent4ChSetHeaderX96
is false.

nNumChSetsInX96 (Number of Channel Sets)

All channels within the DTS_EXSUB_STREAM_X96 extension are organized into individually decodable channel
sets. The nNumChSetaInX96 is the number of channel sets that are present in X96 component.

pnuChSetFsizeX9 (Channel Set Data Byte Size)

The pnuChSetFsizeX96[nChSet] indicates the total number of data bytes in each nChSet channel set of the
DTS_EXSUB_STREAM_X96 frame. Starting from the SYNCX96 and using the cumulative sum of nHeaderSizeX96
and pnuChSetFsizeX96[k] (over all channel sets k=0, … nChSet -1) as offset, the decoder may traverse to the beginning
of channel set header data in the channel set nChSet.

nuChInChSetX9 (Number of channels in a channel set)

Indicates the number of channels in the channel set.

ReservedHeaderX96 (Reserved)

This field is reserved for additional DTS_EXSUB_STREAM_X96 header information. The decoder shall assume that
this field is present and of unspecified length. Therefore, in order to continue unpacking the stream, the decoder shall
skip over this field using the DTS_EXSUB_STREAM_X96 header start pointer and the DTS_EXSUB_STREAM_X96
header size nHeaderSizeX96.

ByteAlignHeaderX96 (Pad to BYTE boundary)

This field ensures that the CRC16 field that follows is aligned to a byte boundary to allow fast table based CRC16
calculation. Append '0's until bit position is a multiple of 8.

nCRC16HeaderX96 (CRC16 of X96 frame header)

This field represents the 16-bit CRC check word of the entire DTS_EXSUB_STREAM_X96 header from position
nHeaderSizeX96 to ByteAlignHeaderX96 inclusive.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)56

6.2.4.4 X96 Channel Set Header

Table 6-4: X96 Channel Set Header Structure

X96 Channel Set Header Syntax Size (Bits)
if (m_nuCoreExtensionMask & DTS_EXSUB_STREAM_X96)
 nuChSetHeaderSizeX96 = ExtractBits(7)+1; 7

HIGHRES-FLAG96K = ExtractBits(1); 1
if (REVNO<8){
 nSBS96 = ExtractBits(5);
 if (nSBS96<0 || nSBS96>27)
 return SYNC_ERROR_DEF;
}
else
 nSBS96=32;

5

// For DTS_EXSUB_STREAM_X96: nPCHS=nuChInChSetX96[ChSet];
// For DTS_BCCore_X96 nPCHS is obtained from the core
for (ch=0; ch<nPCHS; ch++){
 SBE96[ch] = ExtractBits(6);
 anSBE96[ch] = SBE96[ch] + 1;
}

6

for (ch=0; ch<nPCHS; ch++)
 JOINX96[ch] = ExtractBits(3); 3
for (ch=0; ch<nPCHS; ch++)
 SHUFF96[ch] = ExtractBits(3); 3
for (ch=0; ch<nPCHS; ch++)
 BHUFF96[ch] = ExtractBits(3); 3
// ABITS96=2:
n=0;
for (ch=0; ch<nPCHS; ch++)
 SEL96[ch][n] = ExtractBits(1);
// ABITS96 = 3 to 6:
for (n=1; n<5; n++){
 for (ch=0; ch<nPCHS; ch++)
 SEL96[ch][n] = ExtractBits(2);
}
// ABITS96 = 7
for (ch=0; ch<nPCHS; ch++)
 SEL96[ch][n] = ExtractBits(3);

if (HIGHRESFLAG96K == 1){
 // ABITS96 = 8 to 11:
 for (n=5; n<10; n++){
 for (ch=0; ch<nPCHS; ch++)
 SEL96[ch][n] = ExtractBits(3);
 }
 // ABITS96 = 12 to 15:
 for (n=10; n<16; n++){
 for (ch=0; ch<nPCHS; ch++)
 SEL96[ch][n] = 0; // Not transmitted, set to 0
 }
}

Variable bits

if (m_nuCoreExtensionMask & DTS_EXSUB_STREAM_X96){
 ReservedHeaderChSet = ExtractBits(…); …

 ByteAlignHeaderChSet = ExtractBits(0 … 7); 0...7
 If (bCRCPresent4ChSetHeaderX96==true)
 nCRC16CheSetHeader = ExtractBits(16); 16
else{
 if (CPF==1)
 AHCRC96 = ExtractBits(16);
}

16

NuChSetHeaderSizeX96 (Channel set header length)

This field is present only for the case of DTS_EXSUB_STREAM_X96 stream. The size of the channel set header in
bytes from the nuChSetHeaderSizeX96 to either ByteAlignHeaderChSet (when bCRCPresent4ChSetHeaderX96 =
false) or nCRC16HeaderChSet (when bCRCPresent4ChSetHeaderX96 = true), inclusive. This value determines the
beginning of the channel set audio data. If the bCRCPresent4ChSetHeaderX96 = true, this marker also designates the
end of the field nCRC16HeaderChSet and allows quick location of the checksum at byte position
nuChSetHeaderSizeX96 - 2.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)57

HIGHRESFLAG96K (High Resolution Flag)

The high resolution flag determines the upper limit on ABITS96 and consequently, the maximum number of
quantization levels for the audio samples as described in Table 6-5.

Table 6-5: High Resolution Flag

HIGHRESFLAG96K ABIT
0 0 - 7
1 0 - 15

nSBS96 (First encoded subband transmitted only if REVNO<8)

This field indicates the first active extension subband in each primary channel. Extension subband samples in subbands
[0 : (nSBS96-1)] are assumed to be zeros.

SBE96 and anSBE96 (Last encoded subband)

This field indicates the last subband in the audio channel, ch, that is encoded without the use of joint intensity coding
(31 ≤ SBE96[ch] ≤ 63). When the joint intensity coding in the audio channel, ch, is disabled, the extension subband
samples in subbands above SBE96[ch] are assumed to be zeros (anSBE96 is used in the extension substream
processing).

JOINX96 (Joint Intensity Coding Index)

This field indicates if joint intensity coding is enabled for channel, ch and which audio channel is the source channel
from which channel ch will copy subband samples. The construction of JOINX96 is done according to Table 5-22.

SHUFF96 (Scale Factor Encoder Select)

The scale factors of a channel are quantized nonlinearly using 6-bit (64-level, 2,2 dB per step) square root table. The
quantization indices may be further compressed by one of the five Huffman codes (129 levels) and this information is
transmitted to the decoder by SHUFF96[ch]. Scale factors are differentially encoded prior to the Huffman encoding.

Table 6-6: Scale Factor Encoder Select SHUFF96

SHUFF96 Code Book Square-root Table
0 SA129 6 bit (clause D.1.1)
1 SB129 6 bit (clause D.1.1)
2 SC129 6 bit (clause D.1.1)
3 SD129 6 bit (clause D.1.1)
4 SE129 6 bit (clause D.1.1)
5 linear 6 bit (clause D.1.1)

BHUFF96 (Bit Allocation Quantizer Select)

This field indicates which codebook should be used to encode the bit allocation index ABITS96. The bit allocation
indices may be further compressed by one of the seven Huffman codes. This information is transmitted to the decoder
by BHUFF96[ch]. When Huffman encoding is used the bit allocation indices are first differentially encoded.

Table 6-7: Bit Allocation Encoder Select BHUFF96

BHUFF96 Code Book for HIGHRESFLAG96K=0 Code Book for HIGHRESFLAG96K=1
0 A17 A33
1 B17 B33
2 C17 C33
3 D17 D33
4 E17 E33
5 F17 F33
6 G17 G33
7 3-bit linear 4-bit linear

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)58

SEL96 (Quantization Index Codebook Select)

After subband samples are quantized using a mid-tread linear quantizer, the quantization indices are further encoded
using entropy (Huffman) coding in order to reduce the bit rate. For channel ch, the selection of a particular codebook
for a mid-tread linear quantizer indexed by ABITS96[ch] is transmitted to the decoder as SEL96[ch][ABITS96[ch]-2].
Table 6-8 depicts the quantization index codebook values.

Table 6-8: Quantization Index Codebook Select SEL96

ABIT Quantization Type # bits for
SEL

Quantization Index Code-book Select SEL

 0 1 2 3 4 5 6 7
0 No Bits Allocated 0 Not Transmitted
1 16 element VQ 0 VQ16
2 3-level SQ 1 A3 V3
3 5-level SQ 2 A5 B5 C5 V5
4 7-level SQ 2 A7 B7 C7 V7
5 9-level SQ 2 A9 B9 C9 V9
6 13-level SQ 2 A13 B13 C13 V13
7 17-level SQ 3 A17 B17 C17 D17 E17 F17 G17 V17

In case of HIGHRESFLAG96K = 1 ABIT takes values from 0 to 15
8 25-level SQ 3 A25 B25 C25 D25 E25 F25 G25 V25
9 33 or 32 level SQ 3 A33 B33 C33 D33 E33 F33 G33 NFE

10 65 or 64 level SQ 3 A65 B65 C65 D65 E65 F65 G65 NFE
11 129 or 128 level SQ 3 A129 B129 C129 D129 E129 F129 G129 NFE
12 256-level SQ 0 NFE
13 512-level SQ 0 NFE
14 1 024-level SQ 0 NFE
15 2 048-level SQ 0 NFE

NOTE: NFE = No further encoding is used to encode the linearly quantized subband samples. A,B,C,D,E,F,G =
Subband samples are encoded by Huffman code. V = 4 subband samples are grouped and encoded using
4-element block code.

ReservedHeaderChSet (Reserved)

This field is present only for the case of DTS_EXSUB_STREAM_X96 stream. This field is reserved for additional
channel set header information. The decoder shall assume that this field is present and of unspecified duration.
Therefore in order to continue unpacking the stream, the decoder shall skip over this field using the channel set header
start pointer and the channel set header size nuChSetHeaderSizeX96.

ByteAlignHeaderChSet (Pad to BYTE boundary)

This field is present only for the case of the DTS_EXSUB_STREAM_X96 stream. This field ensures that the CRC16
field that follows is aligned to a byte boundary to allow fast table based CRC16 calculation. Append '0's until bit
position is a multiple of 8.

nCRC16CheSetHeader (Channel Set Header CRC Check Word)

This field is present only for the case of the DTS_EXSUB_STREAM_X96 stream and only when the
bCRCPresent4ChSetHeaderX96 is true. It checks if there is any error in the bitstream from the beginning of channel set
header data up to this point.

AHCRC96 (Audio Header CRC Check Word)

This field is present only for the case of the DTS_ BCCORE _X96 and only when the core parameter CPF is 1. If this
field is present, the value shall be extracted from the bitstream. This value will not be used.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)59

Unpack 96 kHz Extension Subframes

Table 6-9: X96 Channel Subframe Processing

X96 Extension Subframes Size (Bits)
for (ch=0; ch<nPCHS; ch++){
 for (n=nSBS96; n<anSBE96[ch]; n++){
 PMODE96[ch][n] = ExtractBits(1);
 }
}

1 bit per active subband

for (ch=0; ch<nPCHS; ch++){
 for (n=nSBS96; n<anSBE96[ch]; n++){
 if (PMODE96[ch][n]>0) {
 // Extract the PVQs
 nVQIndex = ExtractBits(12);
 // Look-up 4 ADPCM coefficients
 ADPCMCoeffVQ.LookUp(nVQIndex,raADPCMcoeff[ch][n], 4)
 }
 }
}

12 bits per occurrence

for (ch=0; ch<nPCHS; ch++) {
 nQSelect = BHUFF96[ch];
 // Undo differential encoding
 QABITS96->ppQ[nQSelect]->ClearDeltaSum();

for (n=nSBS96; n<anSBE96[ch]; n++)
 QABITS96->ppQ[nQSelect]->InverseQ(InputFrame, ABITS96[ch][n])
}

Variable bits per each
active subband

for (ch=0; ch<nPCHS; ch++) {
 // Reset SCALES
 for (n=0; n<NumSubband; n++) {
 SCALES96[ch][n] = 0;
 }
 // Select RMS table
 pScaleTable = &RMS6Bit;

 // Select quantizer
 nQSelect = SHUFF96[ch];

 // Clear differential accumulation.
 QSCALES.ppQ[nQSelect]->ClearDeltaSum();
 for (n=nSBS96; n<anSBE96[ch]; n++) {
 // Scale factor index
 QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
 // RMS look up
 pScaleTable->LookUp(nScale, SCALES96[ch][n]);
 }
}

Variable bits per each
active subband

for (ch=0; ch<nPCHS; ch++)
 if (JOINX96[ch]>0)
 JOIN_SHUFF96[ch] = ExtractBits(3);

3 bits per ch. Assuming
JOINX96[ch]>0

for (ch=0; ch<nPCHS; ch++){
 if (JOINX96[ch]>0) {
 // Get source channel.
 nSourceCh = JOINX96[ch]-1;
 // Select quantizer.
 nQSelect = JOIN_SHUFF96[ch];
 for (n=anSBE96[ch]; n<anSBE96[nSourceCh]; n++) {
 // Extract joint scale factors
 pQJOIN_SCALES->ppQ[nQSelect]->InverseQ(InputFrame, nJscale);
 // Biased by midpoint
 nJscale += 64;
 // Look up scale factor of joint intensity coding
 JScaleTbl.LookUp(nJscale,JOIN_SCALES96[ch][n]);
 }
 }
}

Variable bits

if (CPF == 1)
 SICRC96 = ExtractBits(16); 16 bits (if CPF=1)

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)60

6.2.4.5 96 kHz Extension Side Information

PMODE96

PMODE96 Indicates if ADPCM prediction is used (active) for each encoded subband of each primary audio channel. It
is transmitted even for VQ encoded subbands.

PVQ

PVQ indexes to the vector codebook, (i.e. the same code book as in the core), to get the ADPCM prediction
coefficients. It is transmitted only for subbands whose ADPCM is active.

ABITS96

ABITS96[ch][n] are first difference-encoded. If HIGHRESFLAG96K = 0, the ABITS96 are then Huffman encoded
using the 17 level codebooks, (clause D.5.8), otherwise they use the 33 level codebooks (clause D.5.10). This encoding
is the same for all subbands (including the subbands that are VQ encoded) of each channel and is conveyed by
BHUFF96. The index obtained after Huffman decoding indicates the quantizer that was used to quantize the subband
samples for the nth subband of channel ch.

SCALES96

The quantization indices of the scale factors are encoded by 129-level Huffman codebooks (clause D.5.12). They are
also difference-encoded before Huffman coding. The scale factors are obtained by using the quantization indexes to
look up the 6-bit square-root quantization table (see Table 5-24). Single scale factor is transmitted per each active
extension subband. The scale factors are transmitted even for the subbands with ABIT=0.

JOIN_SHUFF96

If joint subband coding is enabled, (JOINX96[ch]>0),then JOIN_SHUFF96[ch] selects which code book was used to
encode JOIN_SCALES96 which will be used when copying subband samples from the source channel to the current
channel ch. The extension joint scale factors are encoded in the same way as the extension SCALES and the codebook
is obtained by Table 6-6.

JOIN_SCALES96

The scale factors are used to scale the subband samples copied from the source channel (JOINX96[ch]-1) to the current
channel. The joint subbands start from the anSBE96 of the current channel until the anSBE96 of the source channel.
Prior to its quantization the joint subband scale factors are normalized by the source channel scale factors in the
corresponding subbands. The quantization index of the joint scale factor is encoded using the Huffman codebook
indexed by JOIN_SHUFF96[ch]. The scale factors are obtained by using the quantization indexes to look up the 6-bit
square root quantization in Table 5-24.

SICRC96

If CPF = 1 then SICRC96 shall be extracted from the bitstream. The CRC value test shall not be applied.

6.2.4.6 96 kHz Extension Audio Data Arrays

Table 6-10: Extension Audio Data Arrays

X96 Extension Audio Data Arrays Size (Bits)
 HFREQ96

 for (ch=0; ch<nPCHS; ch++) {
 nNumSamplSub-subFr = 8;
 nSsfIter = nSSC/2;
 if ((nNumSamplSub-subFr*nSSC-nSsfIter*16) !=0)
 nSsfIter++;

 for (n=nSBS96; n<anSBE96[ch]; n++) {
 rScale = real(SCALES96[ch][n][0]);

 switch (ABITS96[ch][n]) {
 case 0:
 // No bits allocated
 // Generate uniformly distributed random samples in range
 // [-0.5 , 0.5] and scale them with the extracted scale factor rScale

10 bits per
applicable
subband

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)61

X96 Extension Audio Data Arrays Size (Bits)
 aPrmCh[ch].aSubband[n].
 GenRandomSamples(nNumSamplSub-subFr*nSSC, rScale);
 break;
 case 1:
 prSample=aPrmCh[ch].aSubband[n].raSample[NumADPCMCoeff];
 for (m=0; m<nSsfIter; m++) {
 // Unpack
 nVQIndex = ExtractBits(10);
 nNumElementVQ = nSSC*nNumSamplSub-subFr - m*16;
 nNumElementVQ=
 (nNumElementVQ>16) ? 16 : nNumElementVQ;
 // Look up
 HFreqVQ.LookUp(nVQIndex, prSample, nNumElementVQ);
 // Scale up
 for (Ssfiter=0; Ssfiter<nNumElementVQ; Ssfiter++)
 *(prSample++) *= rScale;
 }
 break;
 default:
 } } }

AUDIO DATA
// Sub-sub-frame Loop
 for (nSub-sub-frame=0; nSub-sub-frame<nSSC; nSub-sub-frame++) {
 // Channel Loop
 for (ch=0; ch<nPCHS; ch++) {
 // Subband Loop
 for (n=nSBS96; n<anSBE96[ch]; n++) {
 nSample = nSub-sub-frame*nNumSamplSub-subFr;
 nABITS = ABITS96[ch][n]-1;

 switch (nABITS){
 case -1:
 // No bits allocated
 nQType = 0;
 break;
 case 0:
 // VQ in current subband
 nQType = 0;
 break;
 default:
 // Quantizer select
 nSEL = SEL96[ch][nABITS-1]; // Number of quantizers
 nNumQ = pCQGroupAUDIO[nABITS-1].nNumQ-1; // Determine quantizer type
 nQType = 1; // Assume Huffman quantizers as default
 if (nSEL==nNumQ) {
 if (nABITS<=7)
 nQType = 3; // Block quantizers
 else
 nQType = 2; // Linear quantizer
 }
 pCQGroup = &pCQGroupAUDIO[nABITS-1]; // Select quantizer group
 }

VARIABLE BITS

 // Extract bits
 switch (nQType) {
 case 0 :
 // Case of VQ or ABIT=0
 break;
 case 1 : // Huffman quantizers
 for (m=0; m<nNumSamplSub-subFr; m++, nSample++)
 pCQGroup->ppQ[nSEL]-> InverseQ(InputFrame,AUDIO[ch][n][nSample]);
 break;
 case 2 : // Linear quantizers
 for (m=0; m<nNumSamplSub-subFr; m++, nSample++) {
 pCQGroup->ppQ[nSEL]->InverseQ(InputFrame, nCode);
 AUDIO[ch][n][nSample] = pCQGroup->ppQ[nSEL]->SignExtension(nCode);
 }
 break;
 case 3 : // Block quantizers
 int nResidue;
 CBlockQ *pCBQ;
 pCBQ = &pCBlockQ[nABITS-1]; // Select block quantizer
 for (m=0; m<nNumSamplSub-subFr/4; m++) {
 // Get block code
 pCQGroup->ppQ[nSEL]->InverseQ(InputFrame, nCode);
 // Lookup 4 samples for a single block code
 nResidue=pCBQ->LookUp(nCode,&AUDIO[ch][n][nSample]);

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)62

X96 Extension Audio Data Arrays Size (Bits)
 nSample += 4;
 }
 break;
 default: // No bits allocated
 } // End of Switch
 } // End of subband Loop
 } // End of channel Loop

// Check for DSYNC
 if ((nSub-sub-frame==(nSSC-1)) || (ASPF==1)) {
 SYNC = InputFrame.ExtractBits(16);
 if (DSYNC != 0xffff) {
 nErrorFlag = 5; // 5 = sync error
 printf("Wrong DSYNC %x detected at end of sub-frame %d sub-sub-frame %d\n\n",
DSYNC, nSub-frame, nSub-sub-frame);
 }
 }
 } // End of sub-sub-frame loop

 N = 16*nSSC;
 // Select step size table
 if (RATE == 0x1f)
 pStepSizeTable = &StepSizeLossLess;
 else
 pStepSizeTable = &StepSizeLossy;

 //
 // Scale factor and step size
 for (ch=0; ch<nPCHS; ch++) { // Channels
 for (n=nSBS96; n<anSBE96[ch]; n++) { // Subbands
 pSubband = &aPrmCh[ch].aSubband[n];
 // Reset assembled sample index
 nAssembledSampleIndex = NumADPCMCoeff;
 // Bit allocation
 nABITS = ABITS96[ch][n]-1;

 if (nABITS>0) {
 // Look up step size
 pStepSizeTable->LookUp(nABITS, rStepSize);
 // Scale factor
 rStepRMS = rStepSize * (real)SCALES96[ch][n][0];
 for (m=0; m<N; m++, nAssembledSampleIndex++)
 pSubband->raSample[nAssembledSampleIndex]= rStepRMS*AUDIO[ch][n][m];
 }
 // Inverse ADPCM
 if (PMODE[ch][n] != 0)// Only when prediction mode is on.
 pSubband->InverseADPCM(2*CSubband::nNumSample);

 } // End of subband loop
 } // End of channel Loop

 // Update ADPCM history
 for (ch=0; ch<nPCHS; ch++)
 aPrmCh[ch].UpdateADPCMHistory();

 // Joint intensity coding and clear unused subbands
 for (ch=0; ch<nPCHS; ch++) { // Channels
 if (JOINX96[ch]>0) { // Joint subbands
 // Copy joint subbands
 nSourceCh = JOINX96[ch]-1;
 for (n=anSBE96[ch]; n<anSBE96[nSourceCh]; n++) {

 rJScale = JOIN_SCALES96[ch][n];
 pSSubband= &(aPrmCh[nSourceCh].aSubband[n]); // Source subband
 pSubband = &(aPrmCh[ch].aSubband[n]); // Joint subband
 for (m=0; m<NumADPCMCoeff+N; m++)
 pSubband->raSample[m] = rJScale*pSSubband->raSample[m];
 }
 // Clear unused subbands
 for (n=anSBE96[nSourceCh]; n<NumSubband; n++) { // Subbands
 pSubband = &(aPrmCh[ch].aSubband[n]);
 for (m=0; m<NumADPCMCoeff+N; m++)
 pSubband->raSample[m] = (real)0;
 }
 }
 else { // No joint subbands
 // Clear unused subbands
 for (n=anSBE96[ch]; n<NumSubband; n++) { // Subbands
 pSubband = &(aPrmCh[ch].aSubband[n]);

10 bits per
applicable
subband

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)63

X96 Extension Audio Data Arrays Size (Bits)
 for (m=0; m<NumADPCMCoeff+N; m++)
 pSubband->raSample[m] = (real)0;
 }
 }
 } // End channel loop
 //
 // Clear unused subbands
 for (ch=0; ch<nPCHS; ch++) { // Channels
 for (n=0; n<nSBS96; n++) { // Subbands
 pSubband = &(aPrmCh[ch].aSubband[n]);
 for (m=0; m<NumADPCMCoeff+N; m++)
 pSubband->raSample[m] = (real)0;
 }
 }

HFREQ96

Some high frequency extension subbands are encoded using vector quantization (VQ). The encoder searches for the
32-element vector with elements 0 to 15 that best matches the vector of 16 subband samples, corresponding to the
16 samples (at 96 kHz/64) from the current subsubframe. This vector is indexed by HFREQ96. One HFREQ06 is
transmitted per one VQ encoded extension subband in each subsubframe. The 10-bit index HFREQ96 points to one of
1 024 vectors each consisting of 32 elements (the VQ table used here is the same as the one used in the core HFREQ
VQ see Page 78).

NOTE: In the subbands with no allocated bits (ABIT=0) the subband samples are generated from the random
samples and this operation is included in the pseudo code in Table 6-10.

AUDIO

The audio data are grouped as nSSC subsubframes, each consisting of 16 samples for each subband. A mid-tread linear
quantizer indexed by ABITS quantizes each sample. The resultant quantization index may further be encoded by either
a Huffman or block code. If it is not, it is included in the bitstream as 2's compliment. All this information is indicated
by SEL. The (ABITS, SEL) pair then tells how the subband samples should be extracted from the bitstream.

The resultant subband samples are then compensated by their respective quantization step sizes and scale factors. For
the subbands that are ADPCM encoded, the samples of these subbands thus far obtained are actually the difference
signals. Their real values shall be recovered through a reverse ADPCM process. In the subbands with ABIT=0, no audio
codes are transmitted.

At the end of each subsubframe, there may be a synchronization check word DSYNC = 0xffff depending on the flag
ASPF in the frame header, but there shall be at least a DSYNC at the end of each subframe.

6.2.4.7 Interpolation of the LFE Channel Samples

On the DTS encoder side, the LFE channel samples are encoded in the core encoder. No effort is made to represent
higher frequency components or higher resolution in the extension encoder. Encoder first decimates input LFE samples
by a factor of 64x resulting in an effective channel bandwidth of 375 Hz (352 Hz in case of 44,1 kHz sampling). These
samples are furthermore quantized and transmitted in a DTS core bit-stream. Core decoder performs inverse
quantization and 64x interpolation that generates reconstructed LFE samples at 48 kHz (44,1 kHz). The reconstructed
LFE samples have significant frequency components of up to 375 Hz (352 Hz) and all other frequency components are
at least 100 dB lower in levels. The LFE samples at 96 kHz (88,2 kHz) are generated in an extension decoder using
interpolation by factor of 2x. The goal of this filter is to remove an image introduced by interpolation. Significant
frequency components of this image lie between 47,625 kHz (43,748 kHz) and 48 kHz (44,1 kHz). Thus, a simple 5-tap
linear phase FIR filter with a magnitude response shown in Figure 6-6 is used as the 2x interpolation filter in LFE
channel.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)64

Figure 6-6: Magnitude Response of LFE Interpolation 2x Filter at 96 kHz

The coefficients of 2x LFE interpolation filter scaled by an interpolation factor of 2 are given in Table 6-11.

Table 6-11: LFE 2x Interpolation Filter Coefficients

1,2553677676342990e-001
4,9999913800216800e-001
7,4892817046880420e-001
4,9999913800216800e-001
1,2553677676342990e-001

The near-perfect reconstruction 64-band cosine modulated filter bank is obtained by modulating the 1 024-tap FIR
linear phase prototype filter. The signs of these filter coefficients were changed in a manner appropriate for an efficient
implementation of polyphase filtering. In particular, the signs of all coefficients in every even indexed block of
128 coefficients are changed, e.g. coefficients in ranges 129 to 256, 385 to 512, 641 to 768 and 897 to 1 024 changed
their signs. The modified prototype filter coefficients are given in clause D.9.

6.3 XBR - Extended Bit Rate Extension

6.3.1 About the XBR Extension

The original DTS core encoder allowed 5.1 channels of high quality audio (sampling frequency Fs up to 48 kHz) to be

encoded and subsequent 'extensions' to the core were added to allow (a) additional channels to be encoded and (b) high
frequency elements to be encoded (Fs up to 96 kHz).

This clause describes a Bit-rate Extension (XBR) that allows for the total core + extensions bit-rates to be larger than
1,5 Mbps. This in itself is nothing new, but the difference is a guaranteed backward compatibility with the DTS core
decoders already in the market (which can only handle DTS bit streams up to rates of 1,5 Mbps). This is achieved by
the inclusion of the core substream at 1,5 Mbps, along with the extension substream that carries the XBR extension. The
XBR extension enhances the quality of audio that has been encoded in the core substream, by means of allocating
additional bit-pool for the encoding of residual signals. The residual signals carry the information about the original
audio that has not been represented by the core substream data.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)65

6.3.2 DTS Core Substream Encoder + XBR Extension Encoder

Figure 6-7: DTS Core Substream + XBR Extension Encoder

The XBR extension involves encoding the residuals that are the difference between the original subband samples and
the subband samples reconstructed by decoding the core substream data.

The XBR encoding only occurs after the core substream encoding has completed. Therefore the XBR encoding has NO
effect on the core substream encoding.

The XBR encoding process is as follows:

• Generate residuals. These values are just the difference between the original subband samples and the
subband samples reconstructed by decoding the core substream data.

• Bit allocation. Bits are then allocated in the bit rate extension. The subband power of the residuals is
calculated and based on the XBR bit-pool. It divides it to nNumSbFrm by nXBRChannels, bit-pools one per
subframe, in each channel. Division is uniform between the subframes and proportional to the channel power.
The residual samples overwrite the core subband samples in psub_band_samples.

• Quantize scales. The scale factors are then quantized using Table 5-24.

• Quantize samples. The (residual) subband samples are then quantized.

• Pack XBR extension. The encoded XBR data is then packed into the DTS frame.

6.3.3 DTS XBR Bit Rate Extension Decoder

In the decoder, the unpack block first separates the core substream and the extension subs-stream. Next the core
substream data is decoded and the corresponding subband samples are reconstructed. The XBR decoder then assembles
the residual subband samples carried in the XBR extension and adds them to the corresponding subband samples that
have been reconstructed from the core substream data, as illustrated in Figure 6-8. The resulting subband samples are
fed to the synthesis filter bank, where the decoded PCM audio samples are synthesized. For legacy decoders, which are
not capable of decoding the XBR extension, the XBR data is ignored and the subband samples that have been
reconstructed from the core substream data are fed to the synthesis filter bank, where the core substream decoded PCM
audio samples are synthesized.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)66

Figure 6-8: DTS XBR decoder preliminary unpacking

Code operation:

UnpackHeaderXBR - extract XBR header information including TMODE bit. Set up pointers for the audio samples
that follow.

UnpackXBRSub-frame - unpack ABITS information and generate scale factors. Extract audio samples and scale them.

AssembleXBRSubbands - assemble together residual subband samples adding them to the corresponding subband
samples reconstructed from the core substream data.

6.3.4 Extension (XBR) Bitstream Components

The frame of XBR data is divided into a frame header and up to four channel sets. Each channel set has its own channel
set header, which are all grouped together at the end of the frame header as shown in Figure 6-9. The CRC word is
included at the end of frame header to allow detection of errors in the frame header.

Figure 6-9: XBR Data Frame Structure

The channel set data is further subdivided into the subframes. Each subframe consists of a subframe header and the
audio data. The audio data is organized in subsubframes as shown in Figure 6-10. The number of subframes is the same
for all channel sets and is equal to the number of subframes in the core frame. Similarly the number of subsubframes is
the same for all subframes of all channel sets and is equal to the number of subsubframes within each subframe of the
core frame. In other words, the subframe and subsubframe partitioning within the XBR frame follows the partitioning
present in the core frame.

Figure 6-10: Channel Set Data Structure

XBR Frame

Channel
Set 0

XBR Frame
Header

Frame Header
Data

C
R
C

ChSet Data ...
S
Y
N
C

ChSet 0
Header

Channel
Set k

ChSet Data... ChSet k
Header

Channel Set Data

Sub frame 0

Sub
frame

Header

SubSub
frame
Audio
Data

...
SubSub
frame
Audio
Data

...

Sub frame n

Sub
frame

Header

SubSub
frame
Audio
Data

...
SubSub
frame
Audio
Data

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)67

6.3.5 XBR Frame Header

Table 6-12: XBR Frame Header Structure

XBR Frame Header Syntax Size (Bits)
SYNCXBR = ExtractBits(32); 32
nHeaderSizeXBR = ExtractBits(6)+1; 6
nuNumChSetsInXBR = ExtractBits(2)+1; 2
for (nChSet=0; nChSet < nuNumChSetsInXBR; nChSet ++)
 pnuChSetFsize[nChSet] = ExtractBits(14)+1; 14

nXBRTMODEFlag = (ExtractBits(1) == 1) ? true : false; 1
for (nChSet=0; nChSet < nuNumChSetsInXBR; nChSet ++)
 Extract ChannelSetSubHeaderXBR{}

See XBR Channel Set
Sub-Header Table

ReservedHeaderXBR = ExtractBits(…); …
ByteAlignHeaderXBR = ExtractBits(0 … 7); 0...7
nCRC16HeaderXBR = ExtractBits(16); 16

SYNCXBR (XBR Sync Word)

The DWORD aligned XBR synchronization word has value 0x655e315e. During sync detection the
nCRC16HeaderXBR checksum is used to further verify that the detected sync pattern is not a random alias.

nHeaderSizeXBR (XBR frame header length)

The size of the header in bytes from the SYNCXBR to the nCRC16HeaderXBR inclusive. This value determines the
location of the channel set data block in the first channel set. This marker also designates the end of the field
nCRC16HeaderXBR and allows quick location of the checksum at byte position nHeaderSizeXBR-2.

nuNumChSetsInXBR (Number of Channel Sets)

All channels within the XBR extension are organized in individually decodable channel sets. The nNumChSetaInXBR
is the number of channel sets that are present in XBR.

pnuChSetFsize (Channel Set Data Byte Size)

The pnuChSetFsize[nChSet] indicates the total number of bytes in the data portion of the channel set (nChSet) in the
XBR frame. Starting from the SYNCXBR and using the cumulative sum of nHeaderSizeXBR and the
pnuChSetFsize[k] (over all channel sets k=0, … nChSet -1) as offset, decoder may traverse to the beginning of channel
set data block in the channel set nChSet.

XBRTMODEFlag (TMODE used flag)

If the XBRTMODEFlag is true, the TMODES that are present in the core stream (and if present in the XCH stream or
XXCH stream) shall be used for extraction of the XBR stream.

If XBRTMODEFlag is false, the TMODES present in the core channel extension stream shall be ignored by the XBR
decoder.

ReservedHeaderXBR (Reserved)

This field is reserved for additional XBR header information. The decoder shall assume that this field is present and of
unspecified length. Therefore, in order to continue unpacking the stream, the decoder shall skip over this field using the
XBR header start pointer and the XBR header size nHeaderSizeXBR.

ByteAlignHeaderXBR (Pad to BYTE boundary)

This field ensures that the CRC16 field that follows is aligned to a byte boundary to allow fast table based CRC16
calculation. Append '0's until bit position is a multiple of 8.

nCRC16HeaderXBR (CRC16 of XBR frame header)

It represents the 16-bit CRC check word of the entire XBR header from positions nHeaderSizeXBR to
ByteAlignHeaderXBR inclusive.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)68

6.3.6 XBR Channel Set Sub-Header

Table 6-13: XBR Channel Set Sub-Header Structure

XBR Channel Set Sub-Header Syntax Size (Bits)
nXBRCh = ExtractBits(3) + 1; 3
nBits4MaxSubbands = ExtractBits(2) + 5; 2
for (nCh=0; nCh< nXBRCh ; nCh++)
 naXBRActiveBands = ExtractBits(nBits4MaxSubbands) + 1; nBits4MaxSubbands

nXBRCh (Number of XBR channels)

nXBRCh indicates the number of channels that are encoded in this XBR channel set.

nBits4MaxSubbands (Max subbands flag)

The nBits4MaxSubbands flag indicates the number of bits used to indicate the number of active subbands in the XBR
channel set. From this, the number of bits used for indicating the number of active subbands in each channel
(naXBRActiveBands[ch]) can be calculated. This is a 2-bit field with [0,1,2,3] corresponding to values [5,6,7,8].

naXBRActiveBands (XBR Active subbands)

This field indicates the number of subbands that are encoded in a particular channel of the XBR channel set. Encoding
always starts from subband 0 and it goes up to the subband XBR_ActiveBands-1 (XBR_ActiveBands ≤ 32 for Fs ≤ 48 k
or XBR_ActiveBands ≤ 64 for 48 kHz < Fs ≤ 96 kHz).

6.3.7 XBR Channel Set Data

6.3.7.1 XBR Channel Set Syntax

Table 6-14: XBR Channel Set Data Syntax

XBR Channel Set Data Syntax Size (Bits)
for (nCh=0; nCh<nXBRCh; nCh++) {
 nNumABITSbits [nCh] = ExtractBits(2)+2;
}

2 bits per channel

// Unpack ABITSH
 nChSBIndex = 0;
 for (nCh=0; nCh<nXBRCh; nCh++){
 nTmp = nNumABITSbits [nCh];
 for (nSB=0; nSB<naXBRActiveBands[nCh]; nSB++, nChSBIndex++){
 ancAbitsHigh[nChSBIndex] = ExtractBits(nTmp);
 }
 } // end of channel loop

Variable bits per
channel

for (nCh=0; nCh<nXBRCh; nCh++){
 ancTemp[nCh] = InputFrame.ExtractBits(3);
 if (ancTemp[nCh]<1)
 return SYNC_ERROR_DEF;
}

3 bits per channel

// Generate scale factors
 nChSBIndex = 0;
 for (nCh=0; nCh<nXBRCh; nCh++){
 // Select RMS table
 if (SHUFF[nCh] == 6)
 pScaleTable = &RMS7Bit;
 else
 pScaleTable = &RMS6Bit;
 // nTmp is the number of bits used for each scale index
 nTmp = ancTemp[nCh];

 for (nSB=0; nSB<naXBRActiveBands[nCh]; nSB++, nChSBIndex++){
 if (ancAbitsHigh[nChSBIndex]>0){
 // Pre-transient scale
 // Unpack Scale index
 nScaleInd = ExtractBits(nTmp);

 // Look-up scale factor
 if (pScaleTable->LookUp(nScaleInd, anScalesHigh[nChSBIndex<<1])==NULL
) {

Variable per subband

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)69

XBR Channel Set Data Syntax Size (Bits)
 return SYNC_ERROR_DEF;
 }
 // Post-transient scale
 if (nXBRTMODEFlag*TMODE[nCh][nSB]>0){
 // Unpack Scale index
 nScaleInd = ExtractBits(nTmp);

 // Look-up scale factor
 if (pScaleTable->LookUp(nScaleInd,
anScalesHigh[(nChSBIndex<<1)+1])==NULL) {
 return SYNC_ERROR_DEF;
 }
 } // if (ancAbitsHigh[nChSBIndex]>0)
 else{
 anScalesHigh[nChSBIndex<<1] = 0;
 anScalesHigh[(nChSBIndex<<1)+1] = 0;
 }
 }
 }

6.3.7.2 Subframe Side Information

The pseudo code for the subframe side information is depicted in Table 6-14.

Number of bits for ABITS nNumABITSbits

Indicates the number of bits used for encoding ABITSH. This is a 2-bit field with [0,1,2,3] corresponding to
values [2,3,4,5].

XBR Bit allocation Index (ABITSH)

ABITSH indicates the bit allocation indexes for all channels in the channel set and all subbands in the Bit-rate
extension.

Number of bits for Scale indices (nNumScalesbits)

nNumScalesbits indicates the number of bits used for encoding Scale indices (3-bit field). The encoder uses either 6-bit
or 7-bit square-root quantization table (as indicated by SHUFF[nCh]) to quantize the scale factors. The quantization
indexes (6-bit or 7-bit) values are further analysed to determine the largest index value (Max_Scale_Ind) for each
channel in the current subframe. The efficient transmission of scale indexes is achieved by using nNumScalesbits =
ceil(log2(Max_Scale_Ind)) bits per index.

XBR Scales indices (nScaleInd)

First the scale factor quantization indexes are extracted as the nNumScalesbits bit words. The scale factors are obtained
by using the quantization indexes to look up the square-root quantization table (this is the same table as for the core
scale factors). Two scale factors are transmitted per each active extension subband if TMODE and nXBRTMODEFlag
are set. The scale factors are not transmitted for the subbands with ABITSH=0.

6.3.7.3 XBR Extension Residual Audio Data Arrays

Table 6-15: XBR Extension Residual Audio Data

XBR Extension Residual Audio Data Size (Bits)
AUDIO

// Unpack residual audio codes
for (nSub-sub-frame=0; nSub-sub-frame<nSSC; nSub-sub-frame++) {
 nChSBIndex = 0;
 for (nCh=0; nCh<nXBRCh; nCh++){ // Channels
 // Subbands
 for (nSB=0; nSB<naXBRActiveBands[nCh]; nSB++, nChSBIndex++) {
 nXBR_ABITS = ancAbitsHigh[nChSBIndex];
 nSmpl = nSub-sub-frame<<3;
 if (nXBR_ABITS>0){ // Audio codes are present only for nIndex>0
 if (nXBR_ABITS>7){
 // Linear quantizers
 nTmp = nXBR_ABITS-3; // Number of bits used for packing

Variable per
subband

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)70

XBR Extension Residual Audio Data Size (Bits)
 nShift = 32 - nTmp;
 for (nn=0; nn<8; nn++, nSmpl++) {
 // Extract audio residuals and do the sign extension
 nCode = InputFrame.ExtractBits(nTmp)<<nShift;
 AUDIO[nCh][nSB][nSmpl] = nCode>>nShift;
 }
 } // end of nXBR_ABITS>7
 else{
 // Block encoded quantizers
 pCBQ = &pCBlockQ[nXBR_ABITS-1]; // Select block quantizer
 // Get the length of one block code
 nTmp = nLenBlockCode[nXBR_ABITS-1];
 for (nn=0; nn<2; nn++) {
 nCode = InputFrame.ExtractBits(nTmp);
 nResidue = pCBQ->LookUp(nCode,&AUDIO[nCh][nSB][nSmpl]);
 // Lookup 4 samples for a single block code
 if (nResidue != 0) {
 printf("XBR AUDIO: Block code error\n");
 return SYNC_ERROR_DEF;
 }
 nSmpl += 4;
 }
 } // end of nXBR_ABITS<=7
 } // end of nXBR_ABITS>0
 else{ // nXBR_ABITS=0
 for (nn=0; nn<8; nn++, nSmpl++)
 AUDIO[nCh][nSB][nSmpl] = 0;
 } // end of nIndex condition
 } // End nSB loop
 } // End nCh loop
 // Check for DSYNC which is used to verify end of sub-frame or sub-sub-frame
position
 if ((nSub-sub-frame==(nSSC-1)) || (ASPF==1)) {
 DSYNC = InputFrame.ExtractBits(16);
 if (DSYNC != 0xffff) {
 return SYNC_ERROR_DEF;
 }
 }
} // end nSub-sub-frame loop

AUDIO (Audio Data)

The residual audio samples are grouped as nSSC subsubframes, each consisting of eight samples for each subband. All
samples in each subband of each channel may have been linear quantized, or block encoded - this is indicated by
nXBR_ABITS. If nXBR_ABITS = 0 then no audio residuals are present in the DTS stream for this subsubframe of this
channel and subband. The corresponding residual array entries should be filled with zeros.

At the end of each subsubframe there may be a synchronization check word DSYNC = 0xffff depending on the flag
ASPF in the frame header, but there shall be at least a DSYNC at the end of each subframe.

6.3.8 Assembly of XBR subbands

As per Figure 6-8, once the XBR information has been extracted, it shall be recombined with the 1,5 Mbps backward
compatible 'core + extensions' stream prior to decoding of these streams. Table 6-16 shows the pseudo code
implementation.

Table 6-16: XBR Assembling Subbands

XBR Assembling Subbands

//Assembling subbands following XBR extraction and prior to core + extensions decoding

// This function assembles together residual subband samples
// and adds them to the corresponding core+XCh+X96 subband samples
// stored in CSB.naSample[] arrays
AssembleXBRSubbands(unsigned int nBands2Use)
{
 DTS__int64 dAcc;

 // Select step size table
 pStepSizeTable = &StepSizeLossLess;

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)71

XBR Assembling Subbands

 // Assemble subbands
 nAccChSBInd = 0;
 for (nCh=0; nCh<nXBRCh; nCh++) { // Channels
 nBands2Use = (nBands2Use>naXBRActiveBands[nCh]) ? naXBRActiveBands[nCh] : nBands2Use;
 nChSBIndex = nAccChSBInd;
 for (nSB=0; nSB<nBands2Use; nSB++, nChSBIndex++) { // Subbands
 switch (nX96Present){
 case 0:
 pSubbandSmpls = aPrmCh[nCh].aSubband[nSB].naSampleCore;
 break;
 default:
 pSubbandSmpls = aPrmCh[nCh].aSubband[nSB].naSampleExt;
 break;
 }
 // Look up step size
 nABITS = ancAbitsHigh[nChSBIndex];
 if (pStepSizeTable->LookUp(nABITS, nStepSize)==NULL)
 printf("ERROR: StepSize lookup failure --- ABITS=%d", nABITS);

 // Set transient (sub-sub-frame) location
 nTmode = nXBRTMODEFlag*TMODE[nCh][nSB];

 nSmplLim = (nTmode == 0) ? CSubband::nNumSample : 8*nTmode;

 // Reconstruct residuals and add them to the existing (in naSample array)
 // subband samples; Store results back to the naSample array

 nRawSampleIndex=0; // Reset raw sample index
 nAssembledSampleIndex = NumADPCMCoeff; // Reset assembled sample index
 // PreTransient
 dAcc = (DTS__int64) nStepSize * anScalesHigh[nChSBIndex<<1];

 // Find location of the most significant "1"
 m=0;
 while (dAcc>0){
 m++;
 dAcc=dAcc>>1;
 }
 nShift = (m>SUBBSAMPLS_QRES) ? (m-SUBBSAMPLS_QRES) : 0;
 nStepRMS = (int) ((((DTS__int64) nStepSize * anScalesHigh[nChSBIndex<<1]))>>nShift);
 nShift = 22-nShift;
 nRoundF = (nShift>0) ? 1<<(nShift-1) : 0;

 for (m=0; m<nSmplLim; m++, nRawSampleIndex++, nAssembledSampleIndex++){
 dAcc = nRoundF + (DTS__int64) nStepRMS*AUDIO[nCh][nSB][nRawSampleIndex];
 //limits check
 nTmp = (int) (dAcc>>nShift);
 if (nTmp>nHigh)
 nTmp = nHigh;
 else if (nTmp<nLow)
 nTmp = nLow;

 //write assembled value
 pSubbandSmpls[nAssembledSampleIndex] += nTmp;
 }
 // AfterTransient complete the same process as for pretransient
 } // SB loop
 nAccChSBInd += naXBRActiveBands[nCh];
 } // channel loop
 return 1;

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)72

6.4 Extension to 6.1 Channels (XCh)

6.4.1 About the XCh Extension

The XCh extension expands the core capability to encoding of 6.1 discrete channels in the configuration that assumes
standard 5.1 layout plus the additional surround channel positioned directly behind the listener (180º) and denoted as a
centre surround (Cs) channel. Additional requirement for the valid XCh stream is that 6.1 to 5.1 down-mix is embedded
in the stream, i.e. the Cs channel is mixed into the left surround (Ls) and right surround (Rs) channels with the
attenuation of -3 dB exclusively. This 5.1 down-mix is encoded in the core stream and the Cs channel is encoded in the
XCh stream. This way in the 5.1 listening environment the Cs channel will be reproduced as the phantom image
between the Ls and Rs speakers. The Cs channel in the XCh stream is compressed using exactly the same technology as
the core audio channels. The audio data representing this extension channel (XCh stream) is appended to the end of the
core audio data (core stream). This extension audio data is automatically ignored by first generation DTS decoders but
can be decoded by second generation DTS decoders.

6.4.2 Unpack Frame Header

Table 6-17: XCH Frame header

XCH Frame Header Size (Bits)
XChSYNC = ExtractBits(32); 32
XChFSIZE = ExtractBits(10); 10
AMODE = ExtractBits(4); 4

XChSYNC (Channel Extension Sync Word)

The synchronization word XChSYNC = 0x5a5a5a5a for the channel extension audio comes after all other extension
streams (i.e. in case of multiple extension streams the XCh stream is always the last). For 16-bit streams, XChSYNC is
aligned to a 32-bit word boundary. For 14-bit streams, it is aligned to both 32-bit and 28-bit word boundaries, meaning
that the sync word appears as 0x1696e5a5 in the 28-bit stream and as 0x5a5a5a5a after this stream is packed into a
32-bit stream.

Since the pseudo sync word might appear in the bitstream, it is MANDATORY to check the distance between this sync
and the end of the encoded bitstream. This distance in bytes should be equal to XChFSIZE+1. The parameter
XChFSIZE is described below.

NOTE: For compatibility reasons with legacy bitstreams the estimated distance in bytes is checked against the
XChFSIZE+1 as well as the XChFSIZE. The XCh synchronization is pronounced if the distance matches
either of these two values.

XChFSIZE (Primary Frame Byte Size)

(XChFSIZE+1) is the distance in bytes from current extension sync word to the end of the current audio frame. Valid
range for XChFSIZE: 95 to 1 023. Invalid range: 0 to 94.

AMODE (Extension Channel Arrangement)

Audio channel arrangement which describes the number of audio channels (CHS) and the audio playback arrangement.
It is set to represent the number of extension channels.

6.4.3 Unpack Audio Header

Table 6-18: XCH Audio header

XCH Audio Header Size (Bits)
PCHS = ExtractBits(3);
nPCHS = PCHS + 1; 3

for (ch=0; ch<nPCHS; ch++) {
 SUBS[ch] = ExtractBits(5);
 nSUBS[ch] = SUBS[ch] + 2;
}

5 bits per
channel

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)73

XCH Audio Header Size (Bits)
for (ch=0; ch<nPCHS; ch++) {
 VQSUB[ch] = ExtractBits(5);
 nVQSUB[ch] = VQSUB[ch] + 1;
}

5 bits per
channel

for (ch=0; ch<nPCHS; ch++)
 JOINX[ch] = ExtractBits(3);

3 bits per
channel

for (ch=0; ch<nPCHS; ch++)
 THUFF[ch] = ExtractBits(2);

2 bits per
channel

for (ch=0; ch<nPCHS; ch++)
 SHUFF[ch] = ExtractBits(3);

3 bits per
channel

for (ch=0; ch<nPCHS; ch++)
BHUFF[ch] = ExtractBits(3);

3 bits per
channel

// ABITS=1:
n=0;
for (ch=0; ch<nPCHS; ch++)
 SEL[ch][n] = ExtractBits(1);
// ABITS = 2 to 5:
for (n=1; n<5; n++)
 for (ch=0; ch<nPCHS; ch++)
 SEL[ch][n] = ExtractBits(2);
// ABITS = 6 to 10:
for (n=5; n<10; n++)
 for (ch=0; ch<nPCHS; ch++)
 SEL[ch][n] = ExtractBits(3);
// ABITS = 11 to 26:
for (n=10; n<26; n++)
 for (ch=0; ch<nPCHS; ch++)
 SEL[ch][n] = 0; // Not transmitted, set to zero.

variable bits

// ABITS = 1 :
n = 0;
for (ch=0; ch<nPCHS; ch++)
 if (SEL[ch][n] == 0) { // Transmitted only if SEL=0 (Huffman code used)
 // Extract ADJ index
 ADJ = ExtractBits(2);
 // Look up ADJ table
 arADJ[ch][n] = AdjTable[ADJ];
 }
// ABITS = 2 to 5:
for (n=1; n<5; n++)
 for (ch=0; ch<nPCHS; ch++)
 if (SEL[ch][n] < 3) { // Transmitted only when SEL<3
 // Extract ADJ index
 ADJ = ExtractBits(2);
 // Look up ADJ table
 arADJ[ch][n] = AdjTable[ADJ];
 }
// ABITS = 6 to 10:
for (n=5; n<10; n++)
 for (ch=0; ch<nPCHS; ch++)
 if (SEL[ch][n] < 7) { // Transmitted only when SEL<7
 // Extract ADJ index
 ADJ = ExtractBits(2);
 // Look up ADJ table
 arADJ[ch][n] = AdjTable[ADJ];
 }

2 bits per
occasion

if (CPF==1) // Present only if CPF=1.
 AHCRC = ExtractBits(16); 16

PCHS (Number of Extension Channels)

This field indicates that there are nPCHS = PCHS+1 < 5 extension audio channels in the current frame. If AMODE flag
indicates more than 5 channels apart from LFE, the additional channels are the extended channels and are packed
separately in the extended data arrays.

SUBS (Subband Activity Count)

This field indicates that there are nSUBS[ch] = SUBS[ch]+2 active subbands in the audio channel ch. Samples in
subbands above nSUBS[ch] are zero, provided that intensity coding in that subband is disabled.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)74

VQSUB (High Frequency VQ Start Subband)

This field indicates that high frequency samples starting from subband nVQSUB[ch]=VQSUB[ch]+1 are VQ encoded.
High frequency VQ is used only for high frequency subbands, but it may go down to low frequency subbands for such
audio episodes as silence. In case of insufficient MIPS, the VQs for the highest frequency subbands may be ignored
without causing audible distortion.

JOINX (Joint Intensity Coding Index)

This field, JOINX[ch], indicates if joint intensity coding is enabled for channel ch and which audio channel is the
source channel from which channel ch will copy subband samples. It is assumed that the source channel index is
smaller than that of the intensity channel, (see Table 5-23).

THUFF (Transient Mode Code Book)

This field indicates which Huffman codebook was used to encode the transient mode data TMODE (See Table 5-23).

SHUFF (Scale Factor Code Book)

The scale factors of a channel are quantized nonlinearly using either a 6-bit (64-level, 2,2 dB per step) or a 7-bit
(128-level, 1,1 dB per step) square root table, depending on the application. The quantization indexes may be further
compressed by one of the five Huffman codes and this information is transmitted to the decoder by SHUFF[ch]
(Table 5-24).

BHUFF (Bit Allocation Quantizer Select)

This field indicates the codebook that was used to encode the bit allocation index ABITS (to be transmitted later). See
(Table 5-25).

SEL (Quantization Index Codebook Select)

After subband samples are quantized using a mid-tread linear quantizer, the quantization indexes may be further
encoded using either entropy (Huffman) or block coding in order to reduce bit rate. Therefore, the subband samples
may appear in the bit stream as plain quantization indexes (no further encoding), entropy (Huffman) codes, or block
codes. For channel ch, the selection of a particular codebook for a mid-tread linear quantizer indexed by ABITS[ch] is
transmitted to the decoder as SEL[ch][ABITS[ch]]. No SEL is transmitted for ABITS[ch]>11, because no further
encoding is used for those quantizers. The decoder can find out the particular codebook that was used using ABITS[ch]
and SEL[ch][ABITS[ch]] to look up (see Table 5-26).

ADJ (Scale Factor Adjustment Index)

A scale factor adjustment index is transmitted whenever a SEL value indicates a Huffman codebook. This index points
to the adjustment values shown in Table 5-27. This adjustment value should be multiplied by the scale factor (SCALE).

AHCRC (Audio Header CRC Check Word)

If CPF = 1 then AHCRC shall be extracted from the bitstream. The CRC value test shall not be applied.

6.4.4 Unpack Subframes

6.4.4.1 Side Information

Table 6-19: XCH side information

XCH audio side information Size (Bits)
for (ch=0; ch<nPCHS; ch++)
 for (n=0; n<nSUBS[ch]; n++)
 PMODE[ch][n] = ExtractBits(1);

1 bit per
subband

 int nVQIndex;
for (ch=0; ch<nPCHS; ch++)
 for (n=0; n<nSUBS[ch]; n++)
 if (PMODE[ch][n]>0) { // Transmitted only when ADPCM active
 // Extract the VQindex
 nVQIndex = ExtractBits(12);
 // Look up the VQ table for prediction coefficients.
 ADPCMCoeffVQ.LookUp(nVQIndex, PVQ[ch][n]) // 4 coefficients

12 bits per
occurrence

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)75

XCH audio side information Size (Bits)
 }

for (ch=0; ch<nPCHS; ch++) {
 // BHUFF tells which codebook was used
 nQSelect = BHUFF[ch];
 // Use this codebook to decode the bit stream for ABITS[ch][n]
 for (n=0; n<nVQSUB[ch]; n++) // Not for VQ encoded subbands.
 QABITS.ppQ[nQSelect]->InverseQ(InputFrame, ABITS[ch][n])
}

variable bits

// Always assume no transition unless told
 for (ch=0; ch<nPCHS; ch++)

 for (n=0; n<NumSubband; n++)
 TMODE[ch][n] = 0;

 // Decode TMODE[ch][n]
 if (nSSC>1) {// Transient possible only if more than one sub-sub-frame.

 for (ch=0; ch<nPCHS; ch++) {
 // TMODE[ch][n] is encoded by a codebook indexed by THUFF[ch]

 nQSelect = THUFF[ch];
 for (n=0; n<nVQSUB[ch]; n++) // No VQ encoded subbands

 if (ABITS[ch][n] >0) // Present only if bits allocated
 // Use codebook nQSelect to decode TMODE from the bitstream

 QTMODE.ppQ[nQSelect]>InverseQ(InputFrame,TMODE[ch][n])
 }

 }

variable bits

for (ch=0; ch<nPCHS; ch++) {
 // Clear SCALES
 for (n=0; n<NumSubband; n++) {

 SCALES[ch][n][0] = 0;
 SCALES[ch][n][1] = 0;
 }
 // SHUFF indicates which codebook was used to encode SCALES
 nQSelect = SHUFF[ch];
 // Select the root square table (SCALES were nonlinearly
 // quantized).
 if (nQSelect == 6)
 pScaleTable = &RMS7Bit; // 7-bit root square table
 else
 pScaleTable = &RMS6Bit; // 6-bit root square table
 //
 // Clear accumulation (if Huffman code was used, the difference
 // of SCALES was encoded).
 //
 nScaleSum = 0;
 //
 // Extract SCALES for Subbands up to VQSUB[ch]
 //
 for (n=0; n<nVQSUB[ch]; n++)
 if (ABITS[ch][n] >0) { // Not present if no bit allocated
 //
 // First scale factor
 //
 // Use the (Huffman) code indicated by nQSelect to decode
 // the quantization index of SCALES from the bit stream
 QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
 // Take care of difference encoding
 if (nQSelect < 5) // Huffman encoded, nScale is the difference
 nScaleSum += nScale; // of the quantization indexes of SCALES.
 else // Otherwise, nScale is the quantization
 nScaleSum = nScale; // level of SCALES.
 // Look up SCALES from the root square table
 pScaleTable->LookUp(nScaleSum, SCALES[ch][n][0])
 //
 // Two scale factors transmitted if there is a transient
 //
 if (TMODE[ch][n]>0) {
 // Use the (Huffman) code indicated by nQSelect to decode
 // the quantization index of SCALES from the bit stream
 QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
 // Take care of difference encoding
 if (nQSelect < 5) // Huffman encoded, nScale is the
 nScaleSum += nScale; // of SCALES.
 else // Otherwise, nScale is SCALES
 nScaleSum = nScale; // itself.
 // Look up SCALES from the root square table
 pScaleTable->LookUp(nScaleSum, SCALES[ch][n][1])
 }
 }

variable bits

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)76

XCH audio side information Size (Bits)
 //
 // High frequency VQ subbands
 //
 for (n=nVQSUB[ch]; n<nSUBS[ch]; n++) {
 // Use the code book indicated by nQSelect to decode
 // the quantization index of SCALES from the bit stream
 QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
 // Take care of difference encoding
 if (nQSelect < 5) // Huffman encoded, nScale is the
 nScaleSum += nScale; // of SCALES.
 else // Otherwise, nScale is SCALES
 nScaleSum = nScale; // itself.
 // Look up SCALES from the root square table
 pScaleTable->LookUp(nScaleSum, SCALES[ch][n][0]);
 }
 }
for (ch=0; ch<nPCHS; ch++)
 if (JOINX[ch]>0) // Transmitted only if joint subband coding enabled.
 JOIN_SHUFF[ch] = ExtractBits(3);

3 bits per
channel

int nSourceCh;
for (ch=0; ch<nPCHS; ch++)
 if (JOINX[ch]>0) { // Only if joint subband coding enabled.
 nSourceCh = JOINX[ch]-1; // Get source channel. JOINX counts
 // channels as 1,2,3,4,5, so minus 1.
 nQSelect = JOIN_SHUFF[ch]; // Select code book.
 for (n=nSUBS[ch]; n<nSUBS[nSourceCh]; n++) {
 // Use the code book indicated by nQSelect to decode
 // the quantization index of JOIN_SCALES
 QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nJScale);
 // Bias by 64
 nJScale = nJScale + 64;
 // Look up JOIN_SCALES from the joint scale table
 JScaleTbl.LookUp(nJScale, JOIN_SCALES[ch][n]);
 }
 }

variable bits

 if (CPF==1) // Present only if CPF=1.
 SICRC = ExtractBits(16); 16

PMODE (Prediction Mode)

When PMODE[ch][n]=1, it indicates that ADPCM prediction is used (active) for subband n of extension audio channel
[ch] and PMODE[ch][n]=0 otherwise. ADPCM shall be extracted from the bit stream for all subbands, but ADPCM
reconstruction can be limited to the lowest 20 subbands if DSP does not have enough MIPS.

PVQ (Prediction Coefficients VQ Address)

This field indexes to the vector code book (clause D.10.1) to get the ADPCM prediction coefficients. It is transmitted
only for subbands whose ADPCM is active.

ABITS (Bit Allocation Index)

This field, ABITS[ch][n], is the index to the mid-tread linear quantizer that was used to quantize the subband samples
for the nth subband of channel ch. ABITS[ch][n] may be transmitted as either a 4-bit or 5-bit word. When ABITS is
encoded in a 4-bit word, it may be further encoded using one of the five Huffman codes. This encoding is the same for
all subbands of each channel and is conveyed by BHUFF as shown in Table 5-25. There is no need to allocate bits for
the high frequency subbands because they are encoded using VQ.

TMODE (Transition Mode)

This field, TMODE[ch][n], indicates if there is a transient inside a subframe (subband analysis window) for subband n
of channel ch. If there is a transient (TMODE[ch][n]>0), it further indicates that the transition occurred in subsubframe
(subband analysis subwindow) TMODE[ch][n] + 1. TMODE[ch][n] is encoded by one of the four Huffman codes and
the selection of which is conveyed by THUFF (see Table 5-24). The decoder assumes that there is no transition
(TMODE[ch][n]=0) for all subbands of all channels unless it is told otherwise by the bit stream. Transient does not
occur in the following situations, so TMODE is not transmitted:

• Only one subsubframe within the current subframe. This is because the time resolution of transient analysis is
a subsubframe (subband analysis subwindow).

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)77

• VQ encoded high frequency subbands. If there is a transient for a subband, it would not have been VQ
encoded.

• Subbands without bit allocation. If there is no need to allocate bits for a subband, there is no need to care about
transient for it.

SCALES (Scale Factors)

One scale factor is transmitted for subbands without transient. Otherwise, two are transmitted, one for the episode
before the transient and the other for after the transient. The quantization indexes of the scale factors may be encoded by
Huffman code as shown in Table 5-24. If this is the case, they are difference-encoded before Huffman coding. The scale
factors are finally obtained by using the quantization indexes to look up either the 6-bit or 7-bit square root quantization
table according to Table 5-24.

JOIN_SHUFF (Joint Subband Scale Factor Codebook)

If joint subband coding is enabled (JOINX[ch]>0), JOIN_SHUFF[ch] selects which code book was used to encode the
scale factors (JOIN_SCALES) which will be used when copying subband samples from the source channel to the
current channel ch. These scale factors are encoded in exactly the same way as that for SCALES. Use Table 5-24 to
look up the codebook.

JOIN_SCALES (Scale Factors for Joint Subband Coding)

The scale factors are used to scale the subband samples copied from the source channel (JOINX[ch]-1) to the current
channel. The index of the scale factor is encoded using the code book indexed by JOIN_SHUFF[ch]. After this index is
decoded, it is used to look up the table in clause D.3 to get the scale factor. No transient is permitted for jointly encoded
subbands, so a single scale factor is included. The joint subbands start from the nSUBS of the current channel until the
nSUBS of the source channel.

SICRC (Side Information CRC Check Word)

If CPF = 1 then SICRC shall be extracted from the bitstream. The CRC value test shall not be applied.

6.4.4.2 Data Arrays

Table 6-20: XCH audio data arrays

XCH Data Arrays Size (Bits)
for (ch=0; ch<nPCHS; ch++)
 for (n=nVQSUB[ch]; n<nSUBS[ch]; n++) {
 // Extract the VQ address from the bit stream
 nVQIndex = ExtractBits(10);
 // Look up the VQ code book for 32 subband samples.
 HFreqVQ.LookUp(nVQIndex, HFREQ[ch][n]);
 // Scale and take the samples
 rScale = (real)SCALES[ch][n][0]; // Get the scale factor
 for (m=0; m<nSSC*8; m++, nSample++)
 aPrmCh[ch].aSubband[n].raSample[m] = rScale*HFREQ[ch][n][m];

10 bits per
applicable sub

band

Audio Data
// Select quantization step size table
if (RATE == 0x1f)
 pStepSizeTable = &StepSizeLossLess; // Lossless quantization
 else
 pStepSizeTable = &StepSizeLossy; // Lossy
// Unpack the subband samples
for (nSub-sub-frame=0; nSub-sub-frame<nSSC; nSub-sub-frame++) {
 for (ch=0; ch<nPCHS; ch++)
 for (n=0; n<nVQSUB[ch]; n++) { // Not high frequency VQ subbands
 //
 // Select the mid-tread linear quantizer
 //
 nABITS = ABITS[ch][n]; // Select the mid-tread quantizer
 pCQGroup = &pCQGroupAUDIO[nABITS-1];// Select the group of
 // code books corresponding to the
 // the mid-tread linear quantizer.
 nNumQ = pCQGroupAUDIO[nABITS-1].nNumQ-1;// Number of code
 // books in this group
 //
 // Determine quantization index code book and its type
 //

variable bits

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)78

XCH Data Arrays Size (Bits)
 // Select quantization index code book
 nSEL = SEL[ch][nABITS-1];
 // Determine its type
 nQType = 1; // Assume Huffman type by default
 if (nSEL==nNumQ) { // Not Huffman type
 if (nABITS<=7)
 nQType = 3; // Block code
 else
 nQType = 2; // No further encoding
 }
 if (nABITS==0) // No bits allocated
 nQType = 0;
 //
 // Extract bits from the bit stream
 //
 switch (nQType) {
 case 0 : // No bits allocated
 for (m=0; m<8; m++)
 AUDIO[m] = 0;
 break;
 case 1 : // Huffman code
 for (m=0; m<8; m++)
 pCQGroup->ppQ[nSEL]->InverseQ(InputFrame,AUDIO[m]);
 break;
 case 2 : // No further encoding
 for (m=0; m<8; m++) {
 // Extract quantization index from the bit stream
 pCQGroup->ppQ[nSEL]->InverseQ(InputFrame, nCode)
 // Take care of 2's compliment

 AUDIO[m] = pCQGroup->ppQ[nSEL]->SignExtension(nCode);
 }
 break;
 case 3 : // Block code
 pCBQ = &pCBlockQ[nABITS-1]; // Select block code book
 m = 0;
 for (nBlock=0; nBlock<2; nBlock++) {
 // Extract the block code index from the bit stream
 pCQGroup->ppQ[nSEL]->InverseQ(InputFrame, nCode)
 // Look up 4 samples from the block code book
 pCBQ->LookUp(nCode,&AUDIO[m])
 m += 4;
 }
 break;
 default: // Undefined
 print ("ERROR: Unknown AUDIO quantization index code book.");
 }
 }

// Account for quantization step size and scale factor
 // Look up quantization step size
 nABITS = ABITS[ch][n];
 pStepSizeTable->LookUp(nABITS, rStepSize);
 // Identify transient location
 nTmode = TMODE[ch][n];
 if (nTmode == 0) // No transient
 nTmode = nSSC;
 // Determine proper scale factor
 if (nSub-sub-frame<nTmode) // Pre-transient
 rScale = rStepSize * SCALES[ch][n][0]; // Use first scale factor
 else // After-transient
 rScale = rStepSize * SCALES[ch][n][1]; // Use second scale factor
 // Adjustmemt of scale factor
 rScale *= arADJ[ch][SEL[ch][nABITS-1]]; // arADJ[][] are assumed 1
 // unless changed by bit
 // stream when SEL indicates
 // Huffman code.
 // Scale the samples
 nSample = 8*nSub-sub-frame; // Set sample index
 for (m=0; m<8; m++, nSample++)
 aPrmCh[ch].aSubband[n].aSample[nSample] = rScale*AUDIO[m];
 // Inverse ADPCM
 if (PMODE[ch][n] != 0) // Only when prediction mode is on.
 aPrmCh[ch].aSubband[n].InverseADPCM();
 // Check for DSYNC
 if ((nSub-sub-frame==(nSSC-1)) || (ASPF==1)) {
 DSYNC = ExtractBits(16);
 if (DSYNC != 0xffff)
 printf("DSYNC error at end of sub-sub-frame #%d", nSub-sub-frame);

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)79

XCH Data Arrays Size (Bits)
 }
 }
}

HFREQ (VQ Encoded High Frequency Subbands)

At low bit rates, some high frequency subbands are encoded using vector quantization (VQ). The code book is given in
clause D.10.2. Each vector from this code book consists of 32 subband samples, corresponding to the maximum
possible subframe (4 normal subsubframes):

4 subsubframe × 8 samples/subsubframe = 32 samples

If the current subframe is short of 32 samples, the remaining samples are padded with zeros and then vector-quantized.
The vector address is then included in the bit stream. After the decoder picks up the vector address, it looks up the
vector code book to get the 32 samples. But the decoder will only pick nSSC×8 out of the 32 samples and scale them
with the scale factor SCALES.

AUDIO (Audio Data)

The audio data are grouped as nSSC subsubframes, each consisting of 8 samples for each subband. Each sample was
quantized by a mid-tread linear quantizer indexed by ABITS. The resultant quantization index may further be encoded
by either a Huffman or block code. If it is not, it is included in the bit stream as 2's compliment. All this information is
indicated by SEL. The (ABITS, SEL) pair then tells how the subband samples should be extracted from the bit stream
(Table 5-26).

The resultant subband samples are then compensated by their respective quantization step sizes and scale factors.
Special care is to be paid to possible transient in the subframe. If a transient is flagged by TMODE, one scale factor will
be used for samples before the transient and the other one for the after the transient.

For some of the subbands that are ADPCM encoded, the samples of these subbands thus far obtained are actually the
difference signals. Their real values are recovered through a reverse ADPCM process:

• At end of each subsubframe there may be a synchronization check word DSYNC = 0xffff depending on the
flag ASPF in the frame header, but there shall be at least a DSYNC at the end of each subframe.

6.5 Extension to More Than 5.1 Channels (XXCH)

6.5.1 About the XXCH Extension

The XXCH extension supports lossy encoding of more than 5.1 channels by combining the backward compatible core
(of up to 5.1 channels) with up to 32 additional channels. The extended channels are compressed using the same
technology as the core audio channels. The audio data representing these extension channels may be included either into
a core substream or into an extension substream. The XXCH data within the core substream is automatically ignored by
all DTS legacy decoders but can be decoded by DTS-HD decoders.

The frame of XXCH data is divided into a frame header and up to four channel sets. Each channel set has its own
channel set header as shown in Figure 6-11.The CRC word is included at the end of frame header to allow detection of
errors in the frame header data. In addition, the CRC words may be included at the end of each channel set header to
allow detection of errors in the channel set header data.

Figure 6-11: XXCH Data Frame Structure

XXCh Frame

Channel
Set 0

XXCh Frame
Header

Header Data
C
R
C

ChSet
Header

ChSet
Data

Channel
Set k

...
S
Y
N
C

C
R
C

ChSet
Header

ChSet
Data

C
R
C

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)80

The channel set data is furthermore subdivided into the subframes. Each subframe consists of a subframe header and the
audio data. The audio data is organized in subsubframes as shown in Figure 6-12. The number of subframes is the same
for all channel sets and is equal to the number of subframes in the core frame. Similarly the number of subsubframes is
the same for all subframes of all channel sets and is equal to the number of subsubframes within each subframe of the
core frame. In other words the subframe and subsubframe partitioning within the XXCH frame follows the partitioning
present in the core frame.

Figure 6-12: Channel Set Data Structure

6.5.2 XXCH Frame Header

Table 6-21: XXCH Frame Header Structure

XXCH Frame Header Syntax Size (Bits)
SYNCXXCh = ExtractBits(32); 32
nuHeaderSizeXXCh = ExtractBits(6)+1; 6
bCRCPresent4ChSetHeaderXXCh = (ExtractBits(1)==1) ? true :
false; 1

nuBits4SpkrMaskXXCh = ExtractBits(5)+1; 5
nuNumChSetsInXXCh = ExtractBits(2)+1; 2
for (nChSet=0; nChSet < nuNumChSetsInXXCh; nChSet ++)
 pnuChSetFsizeXXCh[nChSet] = ExtractBits(14)+1; 14*nuNumChSetsInXXCh

nuCoreSpkrActivityMask = ExtractBits(nuBits4SpkrMaskXXCh); nuBits4SpkrMaskXXCh
ReservedHeaderXXCh = ExtractBits(…); …
ByteAlignHeaderXXCh = ExtractBits(0 … 7); 0...7
nCRC16HeaderXXCh = ExtractBits(16); 16

SYNCXXCh (XXCH Sync Word)

The DWORD aligned XXCH synchronization word has value 0x47004a03.

nuHeaderSizeXXCh (XXCH frame header length)

nuHeaderSizeXXCh is the size of the header in bytes from the SYNCXXCh to the nCRC16HeaderXXCh inclusive.
This value determines the location of the first channel set header. This marker also designates the end of the field
nCRC16HeaderXXCh and allows quick location of the checksum at byte position nuHeaderSizeXXCh-2.

bCRCPresent4ChSetHeaderXXCh (CRC presence flag for channel set header)

When bCRCPresent4ChSetHeaderXXCh = true the 16-bit CRC word for the channel set header is present at the end of
each channel set header.

nuBits4SpkrMaskXXCh (Number of bits for loudspeaker mask)

nuBits4SpkrMaskXXCh indicates how many bits are used for packing the loudspeaker layout mask
nuXXChSpkrLayoutMask (packed using nuBits4SpkrMaskXXCh - 6 bits) and the nDownMixChMapMask (packed
using nuBits4SpkrMaskXXCh bits).

nuNumChSetsInXXCh (Number of Channel Sets)

All channels within the XXCH extension are organized in individually decodable channel sets. The
nNumChSetaInXXCh is the number of channel sets that are present in XXCH.

Channel Set Data

Sub frame 0

Sub
frame

Header

SubSub
frame
Audio
Data

...
SubSub
frame
Audio
Data

...

Sub frame n

Sub
frame

Header

SubSub
frame
Audio
Data

...
SubSub
frame
Audio
Data

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)81

pnuChSetFsizeXXCh (Channel Set Data Byte Size)

The pnuChSetFsizeXXCh[nChSet] indicates the total number of data bytes in nChSet channel set of the XXCH frame.
Starting from the SYNCXXCh and using the cumulative sum of nuHeaderSizeXXCh and the pnuChSetFsizeXXCh[k]
(over all channel sets k=0, … nChSet -1) as offset, decoder may traverse to the beginning of channel set header data in
the channel set nChSet.

nuCoreSpkrActivityMask (Core Loudspeaker Activity Mask)

The nuCoreSpkrActivityMask indicates which of the pre-defined loudspeaker positions apply to the audio channels
encoded in the core portion of DTS-HD stream. In nominal case the core channel layout as indicated by the AMODE
core parameter will agree with the layout indicated by the nuCoreSpkrActivityMask. However there may be cases
where the two layouts are not identical and:

• the information in the AMODE field of the core stream is used to determine the intended speaker layout for
5.1 playback;

• the information in nuCoreSpkrActivityMask and nuXXChSpkrLayoutMask when combined together is used to
determine the intended speaker layout for 8 channel playback.

As an example consider the channel layout, that is coded in DTS-HD stream, to be C, L, R, LFE1, Lss, Rss, Lsr and Rsr.

In this case channels are organized in two channels sets with the C, L, R, LFE1, Lss, Rss, being in the first (core) channel

set and the Lsr and Rsr being in the second (XXCH) channel set. During the encode process the 7.1 to 5.1 down-mix will

be embedded such that the Lsr and Rsr channels are mixed into the Lss and Rss channels. The resulting mixed channels

are encoded in the core stream as Ls and Rs channels (AMODE=9 ≥ C, L, R, Ls and Rs layout). A 5.1 decoder uses this
AMODE to configure its decoded outputs to C, L, R, Ls and Rs layout. On the other hand a 7.1 decoder ignores the

AMODE information from the core stream and uses instead the nuCoreSpkrActivityMask (C, L, R, LFE1, Lss and Rss)

and the nuXXChSpkrLayoutMask (Lsr and Rsr) from the XXCh stream to get the original 7.1 speaker layout (C, L, R,

LFE1, Lss, Rsr, Lsr and Rsr) and configures its outputs accordingly.

Each core encoded channel or channel pair, depending on the corresponding speaker position(s), sets the appropriate bit
in a loudspeaker activity mask. Predetermined loudspeaker positions are described in Table 6-22. For example,
nuSpkrActivityMask = 0xF indicates activity of C, L, R, Ls, Rs and LFE1 loudspeakers.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)82

Table 6-22: Loudspeaker Masks -
nuXXChSpkrLayoutMask/nuCoreSpkrActivityMask/DownMixChMapMask

Notation Location Description
(Approximate angle in horizontal plane)

Corresponding bit in
nuXXChSpkrLayoutMask

Corresponding bit in
nuCoreSpkrActivityMask/

DownMixChMapMask
C Centre in front of listener (0) N/A 0x00000001
L Left in front (-30) N/A 0x00000002
R Right in front (30) N/A 0x00000004
Ls Left surround on side in rear (-110) N/A 0x00000008
Rs Right surround on side in rear (110) N/A 0x00000010

LFE1 Low frequency effects subwoofer N/A 0x00000020
Cs Centre surround in rear (180) 0x00000040 0x00000040
LSr Left surround in rear (-150) 0x00000080 0x00000080
Rsr Right surround in rear (150) 0x00000100 0x00000100
Lss Left surround on side (-90) 0x00000200 0x00000200
Rss Right surround on side (90) 0x00000400 0x00000400
Lc Between left and centre in front (-15) 0x00000800 0x00000800
Rc Between right and centre in front (15) 0x00001000 0x00001000
Lh Left height in front 0x00002000 0x00002000
Ch Centre Height in front 0x00004000 0x00004000
Rh Right Height in front 0x00008000 0x00008000

LFE2 Second low frequency effects subwoofer 0x00010000 0x00010000
Lw Left on side in front (-60) 0x00020000 0x00020000
Rw Right on side in front (60) 0x00040000 0x00040000
Oh Over the listener's head 0x00080000 0x00080000
Lhs Left height on side 0x00100000 0x00100000
Rhs Right height on side 0x00200000 0x00200000
Chr Centre height in rear 0x00400000 0x00400000
Lhr Left height in rear 0x00800000 0x00800000
Rhr Right height in rear 0x01000000 0x01000000
Cl Centre in the plane lower then listener's ears 0x02000000 0x02000000
Ll Left in the plane lower then listener's ears 0x04000000 0x04000000
Rl Right in the plane lower then listener's ears 0x08000000 0x08000000

Reserved 0x10000000 to
0x80000000

0x10000000 to
0x80000000

ReservedHeaderXXCh (Reserved)

This field is reserved for additional XXCH header information. The decoder shall assume that this field is present and
of unspecified duration. Therefore, in order to continue unpacking the stream, the decoder shall skip over this field
using the XXCH header start pointer and the XXCH header size nuHeaderSizeXXCh.

ByteAlignHeaderXXCh (Pad to BYTE boundary)

This field ensures that the CRC16 field that follows is aligned to a byte boundary to allow fast table based CRC16
calculation. Append '0's until bit position is a multiple of 8.

nCRC16HeaderXXCh (CRC16 of XXCH frame header)

It represents the 16-bit CRC check word of the entire XXCH header from position nuHeaderSizeXXCh to
ByteAlignHeaderXXCh inclusive.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)83

6.5.3 XXCH Channel Set Header

Table 6-23: XXCh Channel Set Header Structure

XXCH Channel Set Header Syntax Size (Bits)
nuXXChChSetHeaderSize = ExtractBits(7)+1; 7
nuChInChSetXXCh= ExtractBits(3) + 1; 3
nuXXChSpkrLayoutMask = ExtractBits(nuBits4SpkrMaskXXCh-6) << 6; nuBits4SpkrMaskXXCh-6
bDownMixCoeffCodeEmbedded = (ExtractBits(1) == 1) ? true :
false; 1
if (bDownMixCoeffCodeEmbedded){
 bDownMixEmbedded = (ExtractBits(1) == 1) ? true : false; 1
 nDmixScaleFactor = ExtractBits(6); 6
 for (nCh=0; nCh<nuChInChSet; nCh++)
 DownMixChMapMask[nCh] = ExtractBits(nuBits4SpkrMaskXXCh); nuBits4SpkrMaskXXCh
 for (nCh=0; nCh<nuChInChSet; nCh++){
 for (n=0, nCoef=0; n<nuBits4SpkrMaskXXCh; n++,
nCoef++){
 if ((DownMixChMapMask[nCh]>>n) & 0x1)
 DownMixCoeffs[nCh][nCoef] = ExtractBits(7);
 }
 }

7

} // End condition on bDownMixCoeffCodeEmbedded
for (nCh=0; nCh<nuChInChSet; nCh++)
 SUBS[nCh] = ExtractBits(5); 5
for (nCh=0; nCh<nuChInChSet; nCh++)
 VQSUB[nCh] = ExtractBits(5); 5
for (nCh=0; nCh<nuChInChSet; nCh++)
 JOINX[nCh] = ExtractBits(3); 3
for (nCh=0; nCh<nuChInChSet; nCh++)
 THUFF[nCh] = ExtractBits(2); 2
for (nCh=0; nCh<nuChInChSet; nCh++)
 SHUFF[nCh] = ExtractBits(3); 3
for (nCh=0; nCh<nuChInChSet; nCh++)
 BHUFF[nCh] = ExtractBits(3); 3
// ABITS=1:
n=0;
for (ch=0; ch<nuChInChSetXXCh; ch++)
 SEL[ch][n] = ExtractBits(1);
// ABITS = 2 to 5:
for (n=1; n<5; n++)
 for (ch=0; ch<nuChInChSetXXCh; ch++)
 SEL[ch][n] = ExtractBits(2);
// ABITS = 6 to 10:
for (n=5; n<10; n++)
 for (ch=0; ch<nuChInChSetXXCh; ch++)
 SEL[ch][n] = ExtractBits(3);
// ABITS = 11 to 26:
for (n=10; n<26; n++)
 for (ch=0; ch<nuChInChSetXXCh; ch++)
 SEL[ch][n] = 0; // Not transmitted, set to zero.

Variable bits

// ABITS = 1 :
n = 0;
for (ch=0; ch<nuChInChSetXXCh; ch++){
 if (SEL[ch][n] == 0)
 arADJ[ch][n] = AdjTable[ExtractBits(2)];
}
// ABITS = 2 to 5:
for (n=1; n<5; n++){
 for (ch=0; ch<nuChInChSetXXCh; ch++){
 if (SEL[ch][n] < 3)
 arADJ[ch][n] = AdjTable[ExtractBits(2)];
}
// ABITS = 6 to 10:
for (n=5; n<10; n++){
 for (ch=0; ch<nuChInChSetXXCh; ch++)
 if (SEL[ch][n] < 7)
 arADJ[ch][n] = AdjTable[ExtractBits(2)];
}

2

ReservedHeaderChSet = ExtractBits(…); …
ByteAlignHeaderChSet = ExtractBits(0 … 7); 0...7
if (bCRCPresent4ChSeHeader)
 nCRC16HeaderChSet = ExtractBits(16); 16

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)84

nuXXChChSetHeaderSize (Channel set header length)

The size of the channel set header in bytes from the nuXXChChSetHeaderSize to either ByteAlignHeaderChSet (when
bCRCPresent4ChSetHeaderXXCh = false) or nCRC16HeaderChSet (when bCRCPresent4ChSetHeaderXXCh = true)
inclusive. This value determines the beginning of the channel set audio data. In case when the
bCRCPresent4ChSetHeaderXXCh = true this marker also designates the end of the field nCRC16HeaderChSet and
allows quick location of the checksum at byte position nuXXChChSetHeaderSize -2.

nuChInChSetXXCh (Number of channels in a channel set)

Indicates the number of channels in the channel set.

nuXXChSpkrLayoutMask (Loudspeaker Layout Mask)

The nuXXChSpkrLayoutMask indicates which of the pre-defined loudspeaker positions apply to the audio channels
encoded in a XXCh channel set. Each encoded channel/channel pair, depending on the corresponding speaker
position/positions, sets the appropriate bit in a loudspeaker layout mask. Predetermined loudspeaker positions are
described in Table 6-22. For example nuXXChSpkrLayoutMask =0x4040 indicates activity of Cs and Ch loudspeakers.
This is in addition to the speakers encoded in the core portion of the DTS-HD stream.

bDownMixCoeffCodeEmbedded (Downmix coefficients present in stream)

If true it indicates that a matrix of downmix coefficients has been defined and is embedded in the stream.

bDownMixEmbedded (Downmix already performed by encoder)

Present only if bDownMixCoeffEmbedded is true. When bDownMixEmbedded=true this indicates to the decoder that
on the encode side, audio in the channels of the current channel set (nChSet) have been down mixed to the core
channels and to the channels in the lower indexed channel sets (ChSetIndex<nChSet). After decoding the current
channel set the above mentioned encoder downmix operation needs to be undone in the decoder. If
bDownMixEmbedded=false the encoder did not perform the downmixing operation on the current channel set.

nDmixScaleFactor (Downmix scale factor)

Present only if bDownMixCoeffEmbedded is true. The nDmixScaleFactor is a scaling coefficient that prevents an
overflow and is applied to all output channels of the downmix. In the case when bDownMixCoeffEmbedded is true the
nDmixScaleFactor has already been applied, on the encode side, to the output downmix channels.

DownMixChMapMask (Downmix channel mapping mask)

Present only if bDownMixCoeffEmbedded is true. Each channel of the current channel set may be mapped to any of the
core and the channels in the lower indexed channel sets. For each channel (nCh) of the current channel set, the
DownMixChMapMask[nCh] indicates the core channels and the channels in the lower indexed channel sets to which
the channel nCh is going to be downmixed into.

The DownMixChMapMask[nCh] has a dedicated bit (according to Table 6-22) for each of the core channels and each
of the channels in the lower indexed channels sets. A channel nCh of the current channel set is mapped exclusively to
those channels that have their bits in DownMixChMapMask [nCh] set to "1". Mapping to all other channels assumes
downmix coefficient equal to -Infinity.

DownMixCoeffs (Downmix coefficients)

Present only if bDownMixCoeffEmbedded is true. For each channel (nCh) of the current channel set there is one
downmix coefficient for each bit that is set to "1" in the corresponding channel mapping mask
DownMixChMapMask[nCh]. These coefficients are used to multiply each sample of the channel nCh and add the
product to the corresponding sample of the channel indicated by the DownMixChMapMask[nCh].

Coding of the downmix coefficients is described in clause D.11.

SUBS (Subband Activity Count)

This field indicates that there are nSUBS[ch] = SUBS[ch]+2 active subbands in the audio channel ch. Samples in
subbands above nSUBS[ch] are zero, provided that intensity coding in that subband is disabled.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)85

VQSUB (High Frequency VQ Start Subband)

This field indicates that high frequency samples starting from subband nVQSUB[ch]=VQSUB[ch]+1 are VQ encoded.
High frequency VQ is used only for high frequency subbands, but it may go down to low frequency subbands for such
audio episodes as silence. In case of insufficient MIPS, the VQs for the highest frequency subbands may be ignored
without causing audible distortion.

JOINX (Joint Intensity Coding Index)

This field indicates if joint intensity coding is enabled for channel ch and which audio channel is the source channel
from which channel ch will copy subband samples (see Table 5-22). It is assumed that the source channel index is
smaller than that of the intensity channel.

THUFF (Transient Mode Code Book)

This field indicates which Huffman codebook was used to encode the transient mode data TMODE (see Table 5-23).

SHUFF (Scale Factor Code Book)

The scale factors of a channel are quantized nonlinearly using either a 6-bit (64-level, 2,2 dB per step) or a 7-bit
(128-level, 1,1 dB per step) square root` table, depending on the application. The quantization indexes may be further
compressed by one of the five Huffman codes and this information is transmitted to the decoder by SHUFF[ch] (see
Table 5-24).

BHUFF (Bit Allocation Quantizer Select)

This field indicates the codebook that was used to encode the bit allocation index ABITS (see Table 5-25).

SEL (Quantization Index Codebook Select)

After subband samples are quantized using a mid-tread linear quantizer, the quantization indexes may be further
encoded using either entropy (Huffman) or block coding in order to reduce bit rate. Therefore, the subband samples
may appear in the bitstream as plain quantization indexes (no further encoding), entropy (Huffman) codes, or block
codes. For channel ch, the selection of a particular codebook for a mid-tread linear quantizer indexed by ABITS[ch] is
transmitted to the decoder as SEL[ch][ABITS[ch]]. No SEL is transmitted for ABITS[ch]>11, because no further
encoding is used for those quantizers. The decoder can find out the particular codebook that was used using ABITS[ch]
and SEL[ch][ABITS[ch]] to look up the table (see Table 5-26).

ADJ (Scale Factor Adjustment Index)

A scale factor adjustment index is transmitted whenever a SEL value indicates a Huffman codebook. This index points
to the adjustment values shown in the table (see Table 5-27). This adjustment value should be multiplied by the scale
factor (SCALE).

ReservedHeaderChSet (Reserved)

This field is reserved for additional channel set header information. The decoder shall assume that this field is present
and of unspecified length. Therefore, in order to continue unpacking the stream, the decoder shall skip over this field
using the channel set header start pointer and the channel set header size nuXXChChSetHeaderSize.

ByteAlignHeaderChSet (Pad to BYTE boundary)

This field ensures that the CRC16 field that follows is aligned to a byte boundary to allow fast table based CRC16
calculation. Append '0's until bit position is a multiple of 8.

nCRC16HeaderChSet (CRC16 of channel set header)

This field is present only if the bCRCPresent4ChSetHeaderXXCh is true. It represents the 16-bit CRC check word of
the entire channel set header from positions nuXXChChSetHeaderSize to ByteAlignHeaderChSet inclusive.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)86

6.5.4 Unpack Subframes

6.5.4.1 Unpack Subframes Syntax

Table 6-24: XXCH Unpack Subframes

XXCH Unpack Subframes Size (Bits)
for (ch=0; ch<nuChInChSetXXCh; ch++)
 for (n=0; n<nSUBS[ch]; n++)
 PMODE[ch][n] = ExtractBits(1);

1 bit per subband

int nVQIndex;
for (ch=0; ch<nuChInChSetXXCh; ch++) {
 for (n=0; n<nSUBS[ch]; n++)
 if (PMODE[ch][n]>0) { // Transmitted only when ADPCM active
 // Extract the VQindex
 nVQIndex = ExtractBits(12);
 // Look up the VQ table for prediction coefficients.
 ADPCMCoeffVQ.LookUp(nVQIndex, PVQ[ch][n]); // 4 coefficients
 }
}

12 bits per
occurrence

for (ch=0; ch<nuChInChSetXXCh; ch++) {
 // BHUFF tells which codebook was used
 nQSelect = BHUFF[ch];
 // Use this codebook to decode the bitstream for ABITS[ch][n]
 for (n=0; n<nVQSUB[ch]; n++) // Not for VQ encoded subbands.
 QABITS.ppQ[nQSelect]->InverseQ(InputFrame, ABITS[ch][n]);
}

Variable bits

// Always assume no transition unless told
for (ch=0; ch<nuChInChSetXXCh; ch++)
 for (n=0; n<NumSubband; n++)
 TMODE[ch][n] = 0;
// Decode TMODE[ch][n]
if (nSSC>1) {// Transient possible only if more than one sub-sub-frame.
 for (ch=0; ch<nuChInChSetXXCh; ch++) {
// TMODE[ch][n] is encoded by a codebook indexed by THUFF[ch]
nQSelect = THUFF[ch];
for (n=0; n<nVQSUB[ch]; n++) // No VQ encoded subbands
 if (ABITS[ch][n] >0) { // Present only if bits allocated
 // Use codebook nQSelect to decode TMODE from the bitstream
 QTMODE.ppQ[nQSelect]->InverseQ(InputFrame,TMODE[ch][n])

Variable bits

Scale Factors Variable bits
for (ch=0; ch<nuChInChSetXXCh; ch++) {
 // Clear SCALES
 for (n=0; n<NumSubband; n++) {

 SCALES[ch][n][0] = 0;
 SCALES[ch][n][1] = 0;
 }
 // SHUFF indicates which codebook was used to encode SCALES
 nQSelect = SHUFF[ch];
 // Select the root square table (SCALES were nonlinearly
 // quantized).
 if (nQSelect == 6)
 pScaleTable = &RMS7Bit; // 7-bit root square table
 else
 pScaleTable = &RMS6Bit; // 6-bit root square table
 //
 // Clear accumulation (if Huffman code was used, the difference
 // of SCALES was encoded).
 //
 nScaleSum = 0;
 //
 // Extract SCALES for Subbands up to VQSUB[ch]
 //
 for (n=0; n<nVQSUB[ch]; n++)
 if (ABITS[ch][n] >0) { // Not present if no bit allocated
 //
 // First scale factor
 //
 // Use the (Huffman) code indicated by nQSelect to decode
 // the quantization index of SCALES from the bitstream
 QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
 // Take care of difference encoding
 if (nQSelect < 5) // Huffman encoded, nScale is the difference
 nScaleSum += nScale; // of the quantization indexes of SCALES.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)87

XXCH Unpack Subframes Size (Bits)
 else // Otherwise, nScale is the quantization
 nScaleSum = nScale; // level of SCALES.
 // Look up SCALES from the root square table
 pScaleTable->LookUp(nScaleSum, SCALES[ch][n][0])
 //
 // Two scale factors transmitted if there is a transient
 //
 if (TMODE[ch][n]>0) {
 // Use the (Huffman) code indicated by nQSelect to decode
 // the quantization index of SCALES from the bitstream
 QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
 // Take care of difference encoding
 if (nQSelect < 5) // Huffman encoded, nScale is the
 nScaleSum += nScale; // of SCALES.
 else // Otherwise, nScale is SCALES
 nScaleSum = nScale; // itself.
 // Look up SCALES from the root square table
 pScaleTable->LookUp(nScaleSum, SCALES[ch][n][1]);
 }
 }
 //
 // High frequency VQ subbands
 //
 for (n=nVQSUB[ch]; n<nSUBS[ch]; n++) {
 // Use the code book indicated by nQSelect to decode
 // the quantization index of SCALES from the bitstream
 QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
 // Take care of difference encoding
 if (nQSelect < 5) // Huffman encoded, nScale is the
 nScaleSum += nScale; // of SCALES.
 else // Otherwise, nScale is SCALES
 nScaleSum = nScale; // itself.
 // Look up SCALES from the root square table
 pScaleTable->LookUp(nScaleSum, SCALES[ch][n][0]);
 }

for (ch=0; ch<nuChInChSetXXCh; ch++)
 if (JOINX[ch]>0) // Transmitted only if joint subband coding enabled.
 JOIN_SHUFF[ch] = ExtractBits(3);

3 bits per channel

int nSourceCh;
for (ch=0; ch<nuChInChSetXXCh; ch++) {
 if (JOINX[ch]>0) { // Only if joint subband coding enabled.
 nSourceCh = JOINX[ch]-1; // Get source channel. JOINX counts
 // channels as 1,2,3,4,5, so minus 1.
 nQSelect = JOIN_SHUFF[ch]; // Select code book.
 for (n=nSUBS[ch]; n<nSUBS[nSourceCh]; n++) {
 // Use the code book indicated by nQSelect to decode
 // the quantization index of JOIN_SCALES
 QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nJScale);
 // Bias by 64
 nJScale = nJScale + 64;
 // Look up JOIN_SCALES from the joint scale table
 JScaleTbl.LookUp(nJScale, JOIN_SCALES[ch][n]);
 }
 }

Variable bits

if (CPF==1) // Present only if CPF=1.
 SICRC = ExtractBits(16);

6.5.4.2 Side Information

Prediction Mode (PMODE)

PMODE[ch][n]=1 (1 bit per subband) indicates that ADPCM prediction is used (active) for subband n of extension
audio channel [ch] and PMODE[ch][n]=0 otherwise. ADPCM shall be extracted from the bitstream for all subbands,
but ADPCM reconstruction can be limited to the lowest 20 subbands if DSP does not have enough MIPS.

Prediction Coefficients VQ Address (PVQ)

This field (12 bits per active occurrence) indexes to the vector code book to get the ADPCM prediction coefficients,
(see clause D.10.2). It is transmitted only for subbands whose ADPCM is active.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)88

Bit Allocation Index (ABITS)

ABITS[ch][n] (variable bits) is the index to the mid-tread linear quantizer that was used to quantize the subband
samples for the nth subband of channel ch. ABITS[ch][n] may be transmitted as either a 4-bit or 5-bit word. When
ABITS is encoded in a 4-bit word, it may be further encoded using one of the five Huffman codes. This encoding is the
same for all subbands of each channel and is conveyed by BHUFF as shown in Table 5-26. There is no need to allocate
bits for the high frequency subbands because they are encoded using VQ.

Transition Mode (TMODE)

TMODE[ch][n] (variable bits) indicates if there is a transient inside a subframe (subband analysis window) for subband
n of channel ch. If there is a transient (TMODE[ch][n]>0), it further indicates that the transition occurred in
subsubframe (subband analysis subwindow) TMODE[ch][n] + 1. TMODE[ch][n] is encoded by one of the four
Huffman codes and the selection of which is conveyed by THUFF (see Table 6-7). The decoder assumes that there is no
transition (TMODE[ch][n]=0) for all subbands of all channels unless it is told otherwise by the bitstream. Transient
does not occur in the following situations, so TMODE is not transmitted:

• Only one subsubframe within the current subframe. This is because the time resolution of transient analysis is
a subsubframe (subband analysis subwindow).

• VQ encoded high frequency subbands. If there is a transient for a subband, it would not have been VQ
encoded.

• Subbands without bit allocation. If there is no need to allocate bits for a subband, there is no need to care about
transient for it.

Scale Factors (SCALES)

One scale factor (variable bits) is transmitted for subbands without transient. Otherwise two are transmitted, one for the
episode before the transient and the other for after the transient. The quantization indexes of the scale factors may be
encoded by Huffman code as shown in Table 5-24. If this is the case, they are difference-encoded before Huffman
coding. The scale factors are finally obtained by using the quantization indexes to look up either the 6-bit or 7-bit square
root quantization table according to Table 5-24.

Joint Subband Scale Factor Codebook Select (JOIN SHUFF)

If joint subband coding is enabled (JOINX[ch]>0), JOIN_SHUFF[ch] (3 bits per channel) selects which code book was
used to encode the scale factors (JOIN_SCALES) which will be used when copying subband samples from the source
channel to the current channel ch. For now, these scale factors are encoded in exactly the same way as that for
SCALES, so use Table 5-24 to look up the codebook.

Scale Factors for Joint Subband Coding (JOIN SCALES)

The scale factors (variable bits) are used to scale the subband samples copied from the source channel (JOINX[ch]-1) to
the current channel. The index of the scale factor is encoded using the code book indexed by JOIN SHUFF[ch]. After
this index is decoded, it is used to look up the table in clause D.3 in to get the scale factor. No transient is permitted for
jointly encoded subbands, so a single scale factor is included. The joint subbands start from the nSUBS of the current
channel until the nSUBS of the source channel.

Side Information CRC Check Word (SICRC)

If CPF = 1 then SICRC shall be extracted from the bitstream. The CRC value test shall not be applied.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)89

6.5.4.3 Data Arrays

Table 6-25: XXCH - Data Arrays

XXCH Data Arrays Size (Bits)
for (ch=0; ch<nPCHS; ch++)
 for (n=nVQSUB[ch]; n<nSUBS[ch]; n++) {
 // Extract the VQ address from the bitstream
 nVQIndex = ExtractBits(10);
 // Look up the VQ code book for 32 subband samples.
 HFreqVQ.LookUp(nVQIndex, HFREQ[ch][n])
 // Scale and take the samples
 Scale = (real)SCALES[ch][n][0]; // Get the scale factor
 for (m=0; m<nSSC*8; m++, nSample++)
 aPrmCh[ch].aSubband[n].raSample[m] = rScale*HFREQ[ch][n][m];
 }

10 bits per subband

AUDIO Section Variable bits
// Select quantization step size table
if (RATE == 0x1f)
 pStepSizeTable = &StepSizeLossLess; // Lossless quantization
 else
 pStepSizeTable = &StepSizeLossy; // Lossy

//
// Unpack the subband samples
for (nSub-sub-frame=0; nSub-sub-frame<nSSC; nSub-sub-frame++) {
 for (ch=0; ch<nPCHS; ch++)
 for (n=0; n<nVQSUB[ch]; n++) { // Not high frequency VQ subbands
 //
 // Select the mid-tread linear quantizer
 //
 nABITS = ABITS[ch][n]; // Select the mid-tread quantizer
 pCQGroup = &pCQGroupAUDIO[nABITS-1];// Select the group of
 // code books corresponding to the
 // the mid-tread linear quantizer.
 nNumQ = pCQGroupAUDIO[nABITS-1].nNumQ-1;// Number of code
 // books in this group
 //
 // Determine quantization index code book and its type
 //
 // Select quantization index code book
 nSEL = SEL[ch][nABITS-1];
 // Determine its type
 nQType = 1; // Assume Huffman type by default
 if (nSEL==nNumQ) { // Not Huffman type
 if (nABITS<=7)
 nQType = 3; // Block code
 else
 nQType = 2; // No further encoding
 }
 if (nABITS==0) // No bits allocated
 nQType = 0;

 //
 // Extract bits from the bitstream
 //
 switch (nQType) {
 case 0 : // No bits allocated
 for (m=0; m<8; m++)
 AUDIO[m] = 0;
 break;
 case 1 : // Huffman code
 for (m=0; m<8; m++)
 pCQGroup->ppQ[nSEL]->InverseQ(InputFrame,AUDIO[m]);
 break;
 case 2 : // No further encoding
 for (m=0; m<8; m++) {
 // Extract quantization index from the bitstream
 pCQGroup->ppQ[nSEL]->InverseQ(InputFrame, nCode)
 // Take care of 2's compliment

 AUDIO[m] = pCQGroup->ppQ[nSEL]->SignExtension(nCode);
 }
 break;
 case 3 : // Block code
 pCBQ = &pCBlockQ[nABITS-1]; // Select block code book
 m = 0;
 for (nBlock=0; nBlock<2; nBlock++) {
 // Extract the block code index from the bitstream

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)90

 pCQGroup->ppQ[nSEL]->InverseQ(InputFrame, nCode)
 // Look up 4 samples from the block code book
 pCBQ->LookUp(nCode,&AUDIO[m])
 m += 4;
 }
 break;
 default: // Undefined
 printf("ERROR: Unknown AUDIO quantization index code book.");
 }
 }
 //
 // Account for quantization step size and scale factor
 //
 // Look up quantization step size
 nABITS = ABITS[ch][n];
 pStepSizeTable->LookUp(nABITS, rStepSize);
 // Identify transient location
 nTmode = TMODE[ch][n];
 if (nTmode == 0) // No transient
 nTmode = nSSC;
 // Determine proper scale factor
 if (nSub-sub-frame<nTmode) // Pre-transient
 rScale = rStepSize * SCALES[ch][n][0]; // Use first scale factor
 else // After-transient
 rScale = rStepSize * SCALES[ch][n][1]; // Use second scale factor
 // Adjustmemt of scale factor
 rScale *= arADJ[ch][SEL[ch][nABITS-1]]; // arADJ[][] are assumed 1
 // unless changed by bit
 // stream when SEL indicates
 // Huffman code.
 // Scale the samples
 nSample = 8*nSub-sub-frame; // Set sample index
 for (m=0; m<8; m++, nSample++)
 aPrmCh[ch].aSubband[n].aSample[nSample] = rScale*AUDIO[m];

 //
 // Inverse ADPCM
 //
 if (PMODE[ch][n] != 0) // Only when prediction mode is on.
 aPrmCh[ch].aSubband[n].InverseADPCM();
 //
 // Check for DSYNC
 if ((nSub-sub-frame==(nSSC-1)) || (ASPF==1)) {
 DSYNC = ExtractBits(16);
 if (DSYNC != 0xffff)
 printf("DSYNC error at end of sub-sub-frame #%d", nSub-sub-frame);
 }
 }
}

VQ Encoded High Frequency Subbands (HFREQ)

At low bit rates, some high frequency subbands are encoded using vector quantization (VQ). The code book is given in
clause D.10.2. Each vector from this code book consists of 32 subband samples, corresponding to the maximum
possible subframe (4 normal subsubframes):

4 subsubframe × 8 samples/subsubframe = 32 samples

If the current subframe is short of 32 samples, the remaining samples are padded with zeros and then vector- s, it looks
up the vector code book to get the 32 samples. But the decoder will only pick nSSC×8 out of the 32 samples and scale
them with the scale factor SCALES.

Audio Data (AUDIO)

The audio data are grouped as nSSC subsubframes, each consisting of eight samples for each subband. Each sample
was quantized by a mid-tread linear quantizer indexed by ABITS. The resultant quantization index may be further
encoded by either a Huffman or block code. If it is not, it is included in the bitstream as 2's compliment. All this
information is indicated by SEL. The (ABITS, SEL) pair then tells how the subband samples should be extracted from
the bitstream (see Table 6-8).

The resultant subband samples are then compensated by their respective quantization step sizes and scale factors.
Special care is to be paid to possible transient in the subframe. If a transient is flagged by TMODE, one scale factor is
used for samples before the transient and the other one for the after the transient.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)91

For some of the subbands that are ADPCM encoded, the samples of these subbands thus far obtained are actually the
difference signals. Their real values shall be recovered through a reverse ADPCM process:

At the end of each subsubframe there may be a synchronization check word DSYNC = 0xffff depending on the flag
ASPF in the frame header, but there shall be at least a DSYNC at the end of each subframe.

ReservedChSet (Reserved)

This field is reserved for additional channel set information. The decoder shall assume that this field is present and of
unspecified duration. In order to continue unpacking the stream, the decoder shall skip over this field by navigating
nuXXChChSetHeaderSize bytes from the beginning of the XXCH header.

ByteAlignChSet (Pad to BYTE boundary)

This field insures that the XXCH extension ends on a byte boundary. 0 to 7 bits which are set to 0 are added to force
byte boundary alignment.

7 DTS Extension Substream Construction

7.1 About the DTS Extension Substream
Building upon the foundation established by the original DTS codec technology, the DTS extension substream formats
have added a modular architecture to include support for advanced features such as alternate channel maps, the ability
to include replacement channels and metadata to permit authored control in the play back environment of how these
streams are selected or combined. Additionally, the ability to support resolution enhancements and a new coding profile
designed for higher efficiency, bring together a new comprehensive suite of technologies into one package.

This expanded coding system, of which an implementation is currently commercialized as DTS-HD™, can support
compatibility with pre-existing audio decoding systems through the presence of the core substream, enhancing
performance of the core substream, or attain higher efficiency or a combination of efficiency and performance when
direct compatibility with the original DTS core is not required.

7.2 Relationship Between Core and Extension Substreams
Organization into the core substream and the extension substreams is illustrated in Figure 7-1.

Figure 7-1: Organization of the DTS-HD stream

The core substream carries a DTS Coherent Acoustics component which is referred to as the core and may carry one
extension as indicated in clause 5.

An extension substream may consist of one or more of these components:

• Coding components that represent the extensions to the core coding component present in the core substream.
The use of these extensions enhances an audio presentation by providing features such as higher resolution and
additional channels.

• Additional audio assets that are mixed with the audio asset represented by the core substream and/or other
assets from the extension substreams, creating a new audio presentation.

DTS-HD Stream

Extension
Substream 0

Core
Substream

Core
Coding

Component

Extension
Coding

Componert

Extension
Substream

Header

Extension
Substream

Data

Extension
Substream n

Extension
Substream

Header

Extension
Substream

Data
...

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)92

• Stand-alone audio assets that represent an entire audio presentation.

When compatibility to previously deployed DTS decoders is not required, the audio stream may consist of one or more
extension substreams.

7.3 Audio Presentations and Audio Assets

7.3.1 Overview of Extension Substream Architecture

An extension substream has an architecture that allows several different audio presentations to be coded within a single
extension substream. At the first level, each extension substream is organized in up to eight audio assets. Some
examples are:

• An integral part of an audio presentation that is mixed with another audio asset to create the complete audio
presentation. For example, one audio asset may carry the music, effects and dialog while another asset may
carry a director's commentary. The complete audio presentation is prepared by mixing the director's
commentary asset with the music, effects and dialog asset. The instructions for mixing are transmitted in the
associated metadata fields.

• A set of loudspeaker signal feeds for a corresponding loudspeaker layout, such as, feed for left, right, left
surround, right surround, centre and LFE loudspeakers in 5.1 loudspeaker layout.

• A set of signals that describe the sound field but are not actual loudspeaker feeds. The actual loudspeaker feeds
are derived from these signals using stream-embedded metadata and/or some signal processing, i.e. Ambisonic
B-format where signals W, X, Y and Z are transmitted and the actual loudspeaker feeds are derived on the
decoder side using linear mixing equations.

Note that by default the core substream data belongs to the asset 0.

The layout of an extension substream is illustrated in Figure 7-2.

Figure 7-2: Organization of the Extension Substream

It is not necessary that all of the audio assets present in an audio stream be active at the same time. In particular,
different audio presentations are defined by activating specific audio assets. The active assets are combined together as
instructed by the stream metadata to create a particular audio presentation. For example:

• Audio asset 0 carries the primary audio presentation.

• Audio asset 1 carries a director's commentary in English.

• Audio asset 2 carries a director's commentary in Spanish.

With this configuration of audio assets, one can define the following three audio presentations:

• Activate the asset 0 to create the primary audio presentation.

• Activate the assets 0 and 1 to create the primary audio presentation mixed with the director's commentary in
English.

Extension
Substream

Extension Substream
Header

Common
Extension
Substream

Header

Asset 0
Descriptor

Asset m
Descriptor...

C
R
C

Extension Substream
Data

Asset 0
Data ... Asset m

Data

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)93

• Activate the assets 0 and 2 to create the primary audio presentation mixed with the director's commentary in
Spanish.

Furthermore, an audio presentation may consist of the active assets that are transmitted within different extension
substreams. In particular, each extension substream can define up to eight different audio presentations. An audio
presentation that is defined in the extension substream with index nExSS may include any audio asset from all of the
extension substreams with an index less than or equal to nExSS.

For example:

• Extension substream with index 0:

- Audio asset 0 carries primary audio presentation.

- Audio asset 1 carries a director's commentary in English.

• Extension substream with index 1:

- Audio asset 0 carries a director's commentary in Spanish.

With the configuration of extension substreams and the audio assets within each of them (shown above), the following
audio presentations can be created:

• Audio presentations defined in extension substream 0:

- Primary audio presentation by activating the asset 0 of extension substream 0.

- Primary audio + Secondary English by activating the assets 0 and 1 of extension substream 0.

• Audio presentations defined in extension substream 1:

- Primary audio + Secondary Spanish by activating the asset 0 of extension substream 0 and asset 0 of
extension substream 1.

Note that different coding components of asset 0 may be either in the core substream or in the extension substream. All
assets other than asset 0 shall have all their coding components within the same extension substream.

The organization of an audio asset data is illustrated in Figure 7-3.

Figure 7-3: Organization of the Audio Asset Data

7.3.2 Channel Sets

In order to achieve scalability, the architecture of the extension substream allows the channels within the coding
components to be organized into channel sets. Each channel set can be separately extracted and decoded as needed. An
example of this would be when the intended speaker layout for a channel set, e.g. a 7.1 mix can be encoded in three
channel sets such that all three of the following apply:

• Decoding of a channel set 0 produces a stereo downmix.

• Decoding and combining of the channel sets 0 and 1 produces a 5.1 downmix.

• Decoding and combining of the channel sets 0, 1 and 2 produces the original 7.1 mix.

Asset Data

Coding
Component 0

Coding
Component

Header

Channel
Set 0
Data

Channel
Set l
Data

...

Coding
Component k

Coding
Component

Header

Channel
Set 0
Data

Channel
Set l
Data

...
...

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)94

7.4 Synchronization and Navigation of the Substream

7.4.1 Synchronization

The list of possible sync words for core and substream components is provided in Table 7-1.

Table 7-1: Sync Words

DTS_SYNCWORD_CORE 0x7ffe8001
DTS_SYNCWORD_XCH 0x5a5a5a5a

DTS_SYNCWORD_XXCH 0x47004a03
DTS_SYNCWORD_X96 0x1d95f262
DTS_SYNCWORD_XBR 0x655e315e
DTS_SYNCWORD_LBR 0x0a801921
DTS_SYNCWORD_XLL 0x41a29547

DTS_SYNCWORD_SUBSTREAM 0x64582025
DTS_SYNCWORD_SUBSTREAM_CORE 0x02b09261

DTS_SYNCWORD_SUBSTREAM_CORE, which is located in the extension substream, has a sync word that is
remapped from 0x7ffe8001 to 0x02b09261. This makes the core substream synchronization simpler and more robust.
When this backward compatible core component is to be delivered to a legacy DTS decoders, (e.g. via SPDIF), its sync
word needs to be restored from 0x02b09261 to 0x7ffe8001 prior to the transmission to the legacy decoders.

7.4.2 Substream Navigation

Parsing of the substream data depends on the error-free determination of the size (FSIZE) of each component. This
FSIZE value, when accumulated, helps rapidly locate the start of each component. To ensure error free location, the
FSIZE values in the substream header are protected by a checksum and, at a minimum, the decoder should attempt to
decode the legacy core component to ensure some minimal level of audio output.

Navigation through the individual components within the substream is achieved by extracting and accumulating the
FSIZE of each component. An index table is gradually constructed allowing a decoder to rapidly locate the start of any
data stream. After offsetting the pointer from the present position, the checksum field is immediately found and the data
present at that location is verified for integrity before any further parsing and processing, as shown in Figure 7-4.

If a component fails a checksum field-and if the substream header was intact-the index table allows the decoder to
locate the next useful packet of data. However, interdependency between the data may be such that any extra data can
no longer be utilized. At a minimum, the decoder should always attempt to decode the legacy core where present and
augment it with relevant component data.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)95

Figure 7-4: NAVI Synchronization

7.5 Parsing Core Substream and Extension Substream Data

7.5.1 General Information on Parsing Substreams

Core substream and extension substream(s) need to be composed in a specific manner when being presented to a
decoder, as depicted in Figure 7-5.

When the data is sent to the decoder, both the sync words that define the start of the legacy core substream and the
extension substream shall be aligned to 32-bit boundaries. The length of the core substream is byte-aligned, so the
system layer may need to introduce from one to three null bytes between the core substream and the extension
substream. If any additional substream, such as from an external file, is sent to the decoder, proper SYNC word
alignment shall be maintained.

NAVI Chunk

NAVI ChSet0 NAVI ChSetN-1

CRC16

Band0:Segment0:
ChSet0
 FSIZE

Band0:Segment0:
ChSetN-1

 FSIZE

Shaded blocks indicate
Stored values

S
Y
N
C

HEADER

...
SUB-

HEADER
ChSET0

Common
SUB-

HEADER
ChSET(N-1)

NAVI

Byte Aligned

Frequency
Band 0

NAVI
Segment 0

NAVI
Segment

M-1
...

Frequency
Band K-1

NAVI
Segment 0

NAVI
Segment

M-1
...

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)96

Figure 7-5: DWORD alignment of substream

7.5.2 Extension Substream Header

The extension substream header describes the audio assets that are present in the extension substream and the
instructions for manipulating the various assets. The syntax of the extension substream header is described in Table 7-2,
which follows.

Table 7-2: Extension Substream Header Structure

Extension Substream Header Structure Size (Bits)

// Extract the sync word

SYNCEXTSSH = ExtractBits (32);

32

UserDefinedBits = ExtractBits(8); 8

nExtSSIndex = ExtractBits(2); 2

// Unpack the num of bits to be used to read header size
bHeaderSizeType = ExtractBits(1);
if (bHeaderSizeType == 0){
 nuBits4Header = 8;
 nuBits4ExSSFsize = 16
}
else{
 nuBits4Header = 12;
 nuBits4ExSSFsize = 20;
}

1

// Unpack the substream header size
nuExtSSHeaderSize = ExtractBits(nuBits4Header) + 1; nuBits4Header

nuExtSSFsize = ExtractBits(nuBits4ExSSFsize) + 1; nuBits4ExSSFsize
bStaticFieldsPresent = ExtractBits(1); 1
if (bStaticFieldsPresent){
 nuRefClockCode = ExtractBits(2); 2
 nuExSSFrameDurationCode = 512*(ExtractBits(3)+1); 3
 bTimeStampFlag = ExtractBits(1); 1
 if (bTimeStampFlag)
 {
 nuTimeStamp = ExtractBits(32);
 nLSB = ExtractBits(4);
 nuTimeStamp = ((DTS__int64) (nuTimeStamp<<4)) | nLSB;
 }

36

 nuNumAudioPresnt = ExtractBits(3)+1; 3
 nuNumAssets = ExtractBits(3)+1; 3
 for (nAuPr=0; nAuPr<nuNumAudioPresnt; nAuPr++)
 nuActiveExSSMask[nAuPr] = ExtractBits(nExtSSIndex+1); nExtSSIndex+1
 for (nAuPr=0; nAuPr<nuNumAudioPresnt; nAuPr++){
 for (nSS=0; nSS<nExtSSIndex+1; nSS++){
 if (((nuActiveExSSMask[nAuPr]>>nSS) & 0x1) == 1)
 nuActiveAssetMask[nAuPr][nSS] = ExtractBits(8);
 else

8

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)97

Extension Substream Header Structure Size (Bits)
 nuActiveAssetMask[nAuPr][nSS]= 0;
 }
 }
 bMixMetadataEnbl = ExtractBits(1); 1
 if (bMixMetadataEnbl){
 nuMixMetadataAdjLevel = ExtractBits(2); 2
 nuBits4MixOutMask = (ExtractBits(2)+1)<<2; 2
 nuNumMixOutConfigs = ExtractBits(2) + 1; 2
 // Output Mixing Configuration Loop
 for (ns=0; ns<nuNumMixOutConfigs; ns++){
 nuMixOutChMask[ns]= ExtractBits(nBits4MixOutMask);
 nNumMixOutCh[ns] =
 NumSpkrTableLookUp(nuMixOutChMask[ns]);
 }

nuBits4MixOutMask

 } // End of if (bMixMetadataEnbl)
} // End of if (bStaticFieldsPresent)
else // bStaticFieldsPresent==false
{
 nuNumAudioPresnt = 1;
 nuNumAssets = 1;
}

for (nAst=0; nAst< nuNumAssets; nAst++)
 nuAssetFsize[nAst] = ExtractBits(nuBits4ExSSFsize)+1; nuBits4ExSSFsize×nuNumAssets
for (nAst=0; nAst< nuNumAssets; nAst++)
 AssetDescriptor{} See Asset Descriptor in Table 7-5.
for (nAuPr=0; nAuPr<nuNumAudioPresnt; nAuPr++)
 bBcCorePresent[nAuPr] = ExtractBits(1); 1
for (nAuPr=0; nAuPr<nuNumAudioPresnt; nAuPr++){
 if (bBcCorePresent[nAuPr])
 nuBcCoreExtSSIndex[nAuPr] = ExtractBits(2);

2

 nuBcCoreAssetIndex[nAuPr]= ExtractBits(3);
} 3

Reserved = ExtractBits(…); …
ByteAlign = ExtractBits(0 … 7); 0...7
nCRC16ExtSSHeader = ExtractBits(16); 16

SYNCEXTSSH (Extension Substream Sync Word)

The extension substream has a DWORD-aligned synchronization word with the hexadecimal value of 0x64582025.
During sync detection, the nCRC16Header checksum (see Annex B) is used to further verify that the detected sync
pattern is not a random alias.

UserDefinedBits (User Defined Field)

This field is reserved and may be used by an encoder operator. This field is not included in the Metadata CRC check
and as such can be freely altered post encoding. This field represents the beginning of the metadata block and it is
assumed that its start location within the encoded bit-stream is at the byte boundary.

nExtSSIndex (Extension Substream Index)

It is possible to have up to four extension substreams, originating from different sources, e.g. disc, Ethernet, broadcast,
hard drive, etc., that are concatenated one after another. The nExtSSIndex parameter indicates an index of each
extension substream and helps the decoder to differentiate between the different extension substreams. Its range is from
0 to 3.

bHeaderSizeType (Flag Indicating Short or Long Header Size)

If bHeaderSizeType is 0, the header size is short (up to 256 Bytes) and is expressed using 8 bits. If the
bHeaderSizeType is 1, the header size is long (up to 4 kBytes) and is expressed using 12 bits.

nuExtSSHeaderSize (Extension Substream Header Length)

This is the size of the extension substream header in bytes from the SYNCEXTSSH to nCRC16ExtSSHeader inclusive.
This value determines the location of the first component of the first audio asset of the extension substream. This
marker also designates the end of the field nCRC16ExtSSHeader and makes it possible to quickly locate the checksum
at byte position nuExtSSHeaderSize-2.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)98

nuExtSSFsize (Number of Bytes of Extension Substream)

This is the number of bytes in the current frame of extension substream. This value is used to traverse to the end of the
extension substream frame.

bStaticFieldsPresent (Per Stream Static Fields Presence Flag)

If this field is true, it indicates that the current frame includes the metadata fields that are static over the duration of an
encoded stream. If the bStaticFieldsPresent is false, the metadata fields that are static over the duration of an encoded
stream are omitted from the extension substream header. In this case, decoders should set the number of assets to 1 and
the number of audio presentations to 1.

nuRefClockCode (Reference Clock Code)

This field indicates the reference clock period. The reference clock period is used for calculating a frame duration and a
decoder presentation time of an extension substream, as shown below in Table 7-3. The reference clock period
(RefClockPeriod) is calculated from the extracted unsigned integer 2-bit field (nuRefClockCode) using a look-up table,
as shown in Table 7-3.

Table 7-3: Reference Clock Period

nuRefClockCode RefClockPeriod [seconds]
0 1,0 / 32 000,0
1 1,0 / 44 100,0
2 1,0 / 48 000,0
3 Unused

nuExSSFrameDurationCode (Extension Substream Frame Duration)

This field indicates the time duration between the two consecutive occurrences of the extension substream header. This
duration is expressed by the number of clock cycles using the reference clock indicated by the value in RefClockPeriod.
The number of clock cycles (nuExSSFrameDurationCode) is derived from the extracted unsigned integer 3-bit field by
multiplying its value by 512. The actual duration in seconds (ExSSFrameDuration)is calculated from the
nuExSSFrameDurationCode and the RefClockPeriod in the following manner:

ExSSFrameDuration = nuExSSFrameDurationCode × RefClockPeriod.

bTimeStampFlag (Timecode presence Flag)

This is present only if bStaticFieldsPresent is true. When bTimeStampFlag = 1, the time code field is present.

nuTimeStamp (Timecode data)

This is present only if bStaticFieldsPresent and bTimeStampFlag are true. The timestamp data is a 36-bit field
composed as follows:

Where all of the following are true:

• The Hours has range 0 to 23

• The Mins has range 0 to 59

• The Sec has range 0 to 59

• The 1/ RefClockPeriod may be 32 000, 44 100, or 48 000, as deduced from Table 7-3

• The SampleOffset has range of 0 to 31 999, 44 099, or 47 999 respectively

The timestamp of an encoded frame (N) corresponds to that time when the first edge of the first bit of the encoded
frame (N) shall be clocked to the decoder; i.e. it is decoder presentation time for frame (N).

etSampleOffs
SecMinsHours

pnuTimeStam ++×+×=
riodRefClockPe

603600

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)99

nuNumAudioPresnt (Number of Defined Audio Presentations)

This is present only if bStaticFieldsPresent is true. It indicates the number of audio presentations that are defined in this
extension substream. The audio presentations are defined in terms of active extension substreams-which may have an
index from 0 to nExtSSIndex-and active assets within each active extension substream. From one to eight audio
presentations may be defined.

nuNumAssets (Number of Audio Assets in Extension Substream)

This is present only if bStaticFieldsPresent is true. It indicates the total number of audio assets that are encoded in an
extension substream. An extension substream may consist of up to eight audio assets.

nuActiveExSSMask (Active Extension Substream Mask for an Audio Presentation)

This is present only if bStaticFieldsPresent is true. The audio assets from different extension substreams may be
combined together to create an audio presentation. The location of "1" bits in nuActiveExSSMask indicates the indices
of the active extension substreams that are used to create an audio presentation. If more than two extension substreams
are to be combined together, the process of combining them is performed in stages, starting from the lowest index assets
in the lowest index extension substream. Only the current and the lower indexed extension substreams may be
combined into an audio presentation defined in the current extension substream.

nuActiveAssetMask (Active Audio Asset Mask)

This is present only if bStaticFieldsPresent is true. The audio assets from all active substreams are combined together to
create an audio presentation. The location of "1" bits in nuActiveAssetMask[nAuPr][nSS] indicates the indices of audio
assets in the extension substream with index nSS that are used to create the audio presentation with index nAuPr.

If more than two audio assets are to be combined together, the process of combining them is performed in stages,
starting from the lowest index assets.

bMixMetadataEnbl (Mixing Metadata Enable Flag)

This is present only if bStaticFieldsPresent is true. This field is true if at least one of the audio assets present in this
substream extension is encoded for mixing or replacement. If bMixMetadataEnbl is false, all audio assets of this
substream extension are encoded as standalone audio presentations.

nuMixMetadataAdjLevel (Mixing Metadata Adjustment Level)

This is present only if bStaticFieldsPresent and bMixMetadataEnbl are true. Both the system metadata, which includes
the listener's preferences and the bit-stream metadata, can be present in a mixing audio application. The audio asset
mixing features that can be adjusted by system metadata are:

• Feature 1: The level of an audio asset, relative to the level of other audio assets involved in mixing.

• Feature 2: The placement of an audio asset within the sound field by means of altering the mixing coefficients.

The mixing metadata adjustment level (nuMixMetadataAdjLevel) specifies which feature(s) (1 and/or 2 above), if any,
may be adjusted, as described in Table 7-4. nuMixMetadataAdjLevel=3 is reserved for an additional level of adjustment
that may be specified in the future. If nuMixMetadataAdjLevel=3, all decoders shall assume that, at minimum, the
adjustment of features 1 and 2 is allowed.

Table 7-4: Allowed Mixing Metadata Adjustment Level

NuMixMetadataAdjLevel Metadata Usage
0 Use only bitstream metadata
1 Allow system metadata to adjust feature 1
2 Allow system metadata to adjust both feature 1 and feature 2
3 Reserved

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)100

nuBits4MixOutMask (Number of Bits for Mixer Output Speaker Activity Mask)

This is present only if both bStaticFieldsPresent and bMixMetadataEnbl are true. Its value indicates how many bits are
used for packing a mixer output speaker activity mask nuMixOutChMask. Valid values for nuBits4MixOutMask are 4,
8, 12 and 16 and are obtained from the extracted 2-bit code using the following mapping:

nuBits4MixOutMask = (code+1)<<2.

nuNumMixOutConfigs (Number of Mixing Configurations)

This is present only if both bStaticFieldsPresent and bMixMetadataEnbl are true. nuNumMixOutConfigs indicates the
number of metadata sets (each corresponding to a different mixer output speaker configuration) included in the
metadata of each mixing audio asset.

The content provider can transmit mixing metadata that controls the mixing for several speaker configurations that can
be extracted from the main audio stream. For example, within a 10.2 channels main audio presentation, it is likely that
5.1 and 7.1 downmixes are already embedded in the main audio stream. In this case, the content provider may choose to
provide two or even three sets of mixing metadata to do one or more of the following:

• Control mixing of the 5.1 main audio asset downmix with the supplemental audio asset.

• Control mixing of the 7.1 main audio asset downmix with the supplemental audio asset.

• Control mixing of the 10.2 main audio asset with the supplemental audio asset.

A mixer in its minimal implementation may perform the mixing outlined in case 1, above, followed by the downmix to
2 channels. However an advanced player may be able to support the mixing outlined in case 2 or 3, above.

nuMixOutChMask (Speaker Layout Mask for Mixer Output Channels)

This is present only if both bStaticFieldsPresent and bMixMetadataEnbl are true. This field defines the channel layout
for mixer output channels. This information is needed to associate the mixing coefficients with appropriate channels.
(See description of a nuSpkrActivityMask in Table 7-10.)

nuAssetFsize (Size of Encoded Asset Data in Bytes)

This is the number of bytes for an encoded audio asset in current frame. The audio asset descriptor metadata is not
included in nuAssetFsize.

In particular, the beginning of data that is included in the nuAssetFsize[0] for audio asset 0 is at the offset of
nuExtSSHeaderSize bytes from the beginning of the extension substream header. The beginning of encoded data for
audio asset 1 is at the offset of nuExtSSHeaderSize+nuAssetFsize[0] bytes, etc.

Notice that when an audio asset's data is split between the core substream and the extension substream, the
nuAssetFsize does not include the core data.

AssetDescriptor (Audio Asset Descriptor)

This is the audio asset descriptor is present for each encoded audio asset. Each audio asset may represent different audio
asset types, such as Music and Effects, Dialog and Commentary. Each audio asset may be encoded with a different
number of channels, a different sampling frequency and a different bit-width. The audio asset descriptor is a block of
metadata that describes each of these parameters. Details are described in clause 7.5.3.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)101

bBcCorePresent (Backward Compatible Core Present)

By default, the core substream is sent over SPDIF to guarantee backward compatibility. However, in the case of a
stream with multiple presentations, an alternate audio presentation may have a backward compatible core component
that resides in an extension substream. When the bBcCorePresent flag is true for a particular audio presentation, the
backward compatible core is present in the stream. In this case, the field nuBcCoreExtSSIndex and the field
nuBcCoreAssetIndex indicate, respectively, the index of an extension substream and the index of an audio asset that
contains the backward compatible core. By default the core sub-stream data, if present, has the
nuBcCoreExtSSIndex = 0 and the nuBcCoreAssetIndex = 0. Based on the active presentation, the internal decoder shall
determine which backward compatible core shall be parsed out of the DTS-HD stream and delivered via SPDIF to the
backward compatible decoder. If the backward compatible core has been extracted from the extension sub-stream then
prior to sending it via SPDIF the internal decoder shall replace its existing sync word by the value of 0x7FFE8001
(backward compatible sync word). The amount of data that is to be transmitted via SPDIF is determined from:

• the core frame header parameter FSIZE, for the case when the backward compatible core is obtained from the
core sub-stream;

• the asset descriptor parameter nuExSSCoreFsize parameter, for the case when the backward compatible core is
obtained from the extension sub-stream.

nuBcCoreExtSSIndex (Backward Compatible Core Extension Substream Index)

This field is present only when bBcCorePresent is true. This field indicates the index of the extension substream that
contains an asset with a backward compatible core for a specific audio presentation.

nuBcCoreAssetIndex (Backward Compatible Core Asset Index)

This field is present only when bBcCorePresent is true. This field indicates the index of an audio asset that contains the
backward compatible core for a specific audio presentation.

Reserved (Reserved)

This field is reserved for additional extension substream header information. The decoder shall assume that this field is
present and of unspecified duration. Therefore in order to continue unpacking the stream, the decoder shall skip over
this field using the extension substream header start pointer and the extension substream header size
nuExtSSHeaderSize.

nCRC16ExtSSHeader (CRC16 of Extension Substream Header)

nCRC16ExtSSHeader is the CRC16 of the entire extension substream header from positions nExtSSIndex to ByteAlign,
inclusive. See Annex B for details of the CRC algorithm used.

7.5.3 Audio Asset Descriptor

7.5.3.1 General Information About the Audio Asset Descriptor

The audio asset descriptor is present for each encoded audio asset. The audio asset descriptor is a block of metadata that
describes each of these parameters. Its syntax is provided in Table 7-5, Table 7-6 and Table 7-7.

Note that a new pseudo-function, 'unsigned int CountBitsSet_to_1(unsigned int nuWord)' is introduced, first appearing
in Table 7-5. The function calculates the number of bits that are set to "1" in the parameter nuWord.

Table 7-5: Audio Asset Descriptor Syntax:
Size, Index and Per Stream Static Metadata

Audio asset Descriptor Syntax Size (Bits)
nuAssetDescriptFsize = ExtractBits(9)+1; 9
nuAssetIndex = ExtractBits(3); 3
if (bStaticFieldsPresent){
 bAssetTypeDescrPresent = ExtractBits(1); 1
 if (bAssetTypeDescrPresent)
 nuAssetTypeDescriptor = ExtractBits(4); 4

 bLanguageDescrPresent = ExtractBits(1); 1
 if (bLanguageDescrPresent)
 LanguageDescriptor = ExtractBits(24); 24

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)102

Audio asset Descriptor Syntax Size (Bits)
 bInfoTextPresent = ExtractBits(1); 1
 if (bInfoTextPresent)
 nuInfoTextByteSize = ExtractBits(10)+1; 10
 if (bInfoTextPresent)
 InfoTextString = ExtractBits(nuInfoTextByteSize*8); nuInfoTextByteSize×8

 nuBitResolution = ExtractBits(5) + 1; 5
 nuMaxSampleRate = ExtractBits(4) 4
 nuTotalNumChs = ExtractBits(8)+1; 8
 bOne2OneMapChannels2Speakers = ExtractBits(1); 1
 if (bOne2OneMapChannels2Speakers){
 if (nuTotalNumChs>2)
 bEmbeddedStereoFlag = ExtractBits(1);
 else
 bEmbeddedStereoFlag = 0;

1

 if (nuTotalNumChs>6)
 bEmbeddedSixChFlag = ExtractBits(1);
 else
 bEmbeddedSixChFlag = 0;

1

 bSpkrMaskEnabled = ExtractBits(1); 1
 if (bSpkrMaskEnabled)
 nuNumBits4SAMask = (ExtractBits(2)+1)<<2; 2
 if (bSpkrMaskEnabled)
 nuSpkrActivityMask = ExtractBits(nuNumBits4SAMask); nuNumBits4SAMask

 nuNumSpkrRemapSets = ExtractBits(3); 3
 for (ns=0; ns<nuNumSpkrRemapSets; ns++)
 nuStndrSpkrLayoutMask[ns] = ExtractBits(nuNumBits4SAMask); nuNumBits4SAMask
 for (ns=0;ns<nuNumSpkrRemapSets; ns++){
 nuNumSpeakers = NumSpkrTableLookUp(nuStndrSpkrLayoutMask[ns]);

 nuNumDecCh4Remap[ns] = ExtractBits(5)+1; 5
 for (nCh=0; nCh<nuNumSpeakers; nCh++){ // Output channel loop
 nuRemapDecChMask[ns][nCh] = ExtractBits(nuNumDecCh4Remap[ns]);
 nCoef = CountBitsSet_to_1(nuRemapDecChMask[ns][nCh]); nuNumDecCh4Remap[ns]
 for (nc=0; nc<nCoef; nc++)
 nuSpkrRemapCodes[ns][nCh][nc] = ExtractBits(5);
 } // End output channel loop

5

 } // End nuNumSpkrRemapSets loop
 } // End of if (bOne2OneMapChannels2Speakers)
 else{ // No speaker feed case
 bEmbeddedStereoFlag = false;
 bEmbeddedSixChFlag = false;

 nuRepresentationType = ExtractBits(3);
 } 3

} // End of if (bStaticFieldsPresent)

Table 7-6: Audio Asset Descriptor Syntax:
Dynamic Metadata - DRC, DNC and Mixing Metadata

Audio asset Descriptor Syntax Size (Bits)
bDRCCoefPresent = ExtractBits(1); 1
if (bDRCCoefPresent)
 nuDRCCode = ExtractBits(8); 8

bDialNormPresent = ExtractBits(1); 1
if (bDialNormPresent)
 nuDialNormCode = ExtractBits(5); 5
if (bDRCCoefPresent && bEmbeddedStereoFlag)
 nuDRC2ChDmixCode = ExtractBits(8); 8
if (bMixMetadataEnbl)
 bMixMetadataPresent = ExtractBits(1);
else
 bMixMetadataPresent = false;

1

if (bMixMetadataPresent){
1 bExternalMixFlag = ExtractBits(1);

 nuPostMixGainAdjCode = ExtractBits(6); 6
 nuControlMixerDRC = ExtractBits(2); 2
 if (nuControlMixerDRC <3)
 nuLimit4EmbeddedDRC = ExtractBits(3); 3
 if (nuControlMixerDRC ==3)
 nuCustomDRCCode = ExtractBits(8); 8

 bEnblPerChMainAudioScale = ExtractBits(1); 1
 for (ns=0; ns<nuNumMixOutConfigs; ns++){
 if (bEnblPerChMainAudioScale){
 for (nCh=0; nCh<nNumMixOutCh[ns]; nCh++)

6

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)103

Audio asset Descriptor Syntax Size (Bits)
 nuMainAudioScaleCode[ns][nCh] = ExtractBits(6);
 }
 else
 nuMainAudioScaleCode[ns][0] = ExtractBits(6);
 }
 nEmDM = 1;
 nDecCh[0] = nuTotalNumChs;
 if (bEmbeddedSixChFlag){
 nDecCh[nEmDM] = 6;
 nEmDM = nEmDM + 1;
 }
 if (bEmbeddedStereoFlag){
 nDecCh[nEmDM] = 2;
 nEmDM = nEmDM + 1;
 }
 for (ns=0; ns<nuNumMixOutConfigs; ns++){ //Configuration Loop
 for (nE=0; nE<nEmDM; nE++){ // Embedded downmix loop
 for (nCh=0; nCh<nDecCh[nE]; nCh++){ //Supplemental Channel Loop

 nuMixMapMask[ns][nE][nCh]= ExtractBits(nNumMixOutCh[ns]);
 nuNumMixCoefs[ns][nE][nCh] =
CountBitsSet_to_1(nuMixMapMask[ns][nE][nCh]);

nNumMixOutCh[ns]

 for (nC=0; nC<nuNumMixCoefs[ns][nE][nCh]; nC++)
 nuMixCoeffs[ns][nE][nCh][nC] = ExtractBits(6); 6

 } // End supplemental channel loop
 } // End of Embedded downmix loop
 } // End configuration loop
} // End if (bMixMetadataPresent)

Table 7-7: Audio Asset Descriptor Syntax: Decoder Navigation Data

Audio asset Descriptor Syntax Size (Bits)
nuCodingMode = ExtractBits(2); 2
switch (nuCodingMode){
case 0:

 nuCoreExtensionMask = ExtractBits(12); 12
 If (nuCoreExtensionMask & DTS_EXSUBSTREAM_CORE)
 nuExSSCoreFsize = ExtractBits(14)+1; 14
 bExSSCoreSyncPresent = ExtractBits(1); 1
 if (bExSSCoreSyncPresent)
 nuExSSCoreSyncDistInFrames = 1<<(ExtractBits(2)); 2

 }
 If (nuCoreExtensionMask & DTS_EXSUBSTREAM_XBR)
 nuExSSXBRFsize = ExtractBits(14)+1; 14
 If (nuCoreExtensionMask & DTS_EXSUBSTREAM_XXCH)
 nuExSSXXCHFsize = ExtractBits(14)+1; 14
 If (nuCoreExtensionMask & DTS_EXSUBSTREAM_X96)
 nuExSSX96Fsize = ExtractBits(12)+1; 12

 If (nuCoreExtensionMask & DTS_EXSUBSTREAM_LBR){
 nuExSSLBRFsize = ExtractBits(14)+1; 14
 bExSSLBRSyncPresent = ExtractBits(1); 1
 if (bExSSLBRSyncPresent)
 nuExSSLBRSyncDistInFrames = 1<<(ExtractBits(2)); 2

 }
 If (nuCoreExtensionMask & DTS_EXSUBSTREAM_XLL){
 nuExSSXLLFsize = ExtractBits(nuBits4ExSSFsize)+1; nuBits4ExSSFsize
 bExSSXLLSyncPresent = ExtractBits(1); 1
 if (bExSSXLLSyncPresent){
 nuPeakBRCntrlBuffSzkB = ExtractBits(4)<<4; 4
 nuBitsInitDecDly = ExtractBits(5)+1; 5
 nuInitLLDecDlyFrames=ExtractBits(nuBitsInitDecDly); nuBitsInitDecDly
 nuExSSXLLSyncOffset=ExtractBits(nuBits4ExSSFsize); nuBits4ExSSFsize
 }
 }
 If (nuCoreExtensionMask & RESERVED_1)
 Ignore = ExtractBits(16); 16
 If (nuCoreExtensionMask & RESERVED_2)
 Ignore = ExtractBits(16); 16
 Break;
case 1:

 nuExSSXLLFsize = ExtractBits(nuBits4ExSSFsize)+1; nuBits4ExSSFsize
 bExSSXLLSyncPresent = ExtractBits(1); 1

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)104

Audio asset Descriptor Syntax Size (Bits)
 If (bExSSXLLSyncPresent){
 nuPeakBRCntrlBuffSzkB = ExtractBits(4)<<4; 4
 NuBitsInitDecDly = ExtractBits(5)+1; 5
 nuInitLLDecDlyFrames = ExtractBits(nuBitsInitDecDly); nuBitsInitDecDly
 nuExSSXLLSyncOffset=ExtractBits(nuBits4ExSSFsize); nuBits4ExSSFsize
 }
 break;
case 2:

 nuExSSLBRFsize = ExtractBits(14)+1; 14
 bExSSLBRSyncPresent = ExtractBits(1); 1
 if (bExSSLBRSyncPresent)
 nuExSSLBRSyncDistInFrames = 1<<(ExtractBits(2)); 2
 Break;
case 3:

 nuExSSAuxFsize = ExtractBits(14)+1; 14
 nuAuxCodecID = ExtractBits(8); 8
 bExSSAuxSyncPresent = ExtractBits(1); 1
 if (bExSSAuxSyncPresent)
 nuExSSAuxSyncDistInFrames = ExtractBits(3)+1; 3
 Break;
default:
 break;
}

if (((nuCodingMode==0) && (nuCoreExtensionMask & DTS_EXSUBSTREAM_XLL))
|| (nuCodingMode==1)){
 nuDTSHDStreamID = ExtractBits(3);
} 3
if (bOne2OneMapChannels2Speakers ==true && bMixMetadataEnbl ==true &&
bMixMetadataPresent==false)
 bOnetoOneMixingFlag = ExtractBits(1);

1

if (bOnetoOneMixingFlag) {
 bEnblPerChMainAudioScale = ExtractBits(1); 1
 for (ns=0; ns<nuNumMixOutConfigs; ns++){
 if (bEnblPerChMainAudioScale){
 for (nCh=0; nCh<nNumMixOutCh[ns]; nCh++)
 nuMainAudioScaleCode[ns][nCh] = ExtractBits(6);
 }
 else
 nuMainAudioScaleCode[ns][0] = ExtractBits(6);
 }
} // End of bOnetoOneMixingFlag==true condition

6

bDecodeAssetInSecondaryDecoder = ExtractBits(1); 1
bDRCMetadataRev2Present = (ExtractBits(1) == 1) ? TRUE : FALSE; 1
if (bDRCMetadataRev2Present == TRUE)
 {

 DRCversion_Rev2 = ExtractBits(4); 4
 // one DRC value for each block of 256 samples
 nRev2_DRCs = nuExSSFrameDurationCode / 256;
 // assumes DRCversion_Rev2 == 1:
 for (subSubFrame=0; subSubFrame < nRev2_DRCs; subSubFrame++)
 {

 DRCCoeff_Rev2[subSubFrame] = dts_dynrng_to_db(ExtractBits(8)); 8 * nRev2_DRCs

 }
 }

Reserved = ExtractBits(…); …
ZeroPadForFsize = ExtractBits(0 … 7); 0...7

7.5.3.2 Static Metadata

nuAssetDescriptFsize (Size of Audio Asset Descriptor in Bytes)

This field indicates the size of the audio asset descriptor in bytes, from nuAssetDescriptFsize to ZeroPadForFsize
inclusive. If there are multiple audio assets, nuAssetDescriptFsize is used to navigate to the location of the next audio
asset descriptor.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)105

nuAssetIndex (Audio Asset Identifier)

This parameter represents the unique audio asset index. Its range is from 0 to nuNumAssets - 1. If the current asset is to
be mixed into some lower index asset and the current extension substream index is zero (nExtSSIndex = 0), the current
asset index shall be greater than zero (nuAssetIndex > 0), even if it is the first asset to be encoded in the extension
substream 0. This condition guarantees correct decoder behaviour when the primary audio does not contain a DTS-HD
extension substream. This can be either DTS core substream only or non-DTS primary audio. It is assumed that primary
audio is carried as the audio asset 0 in the extension substream 0.

bAssetTypeDescrPresent (Asset Type Descriptor Presence)

This field is present only if bStaticFieldsPresent is true. When set, it indicates that the audio asset type descriptor field
follows.

nuAssetTypeDescriptor (Asset Type Descriptor)

This field is present only if bStaticFieldsPresent and bAssetTypeDescrPresent are true. This field represents the index
into the audio asset type descriptor lookup table shown in Table 7-8. The value of nuAssetTypeDescriptor = 15 is
reserved for future expanded audio asset types. Decoders that do not have an expanded asset type table definition shall
treat this case as an "Unknown" audio asset type.

Table 7-8: Audio Asset Type Descriptor Table

nuAssetTypeDescriptor Comment
0 Music
1 Effects
2 Dialog
3 Commentary
4 Visually impaired
5 Hearing impaired
6 Isolated music object (group of instruments/voices)
7 Music and Effects
8 Dialog and Commentary
9 Effects and Commentary

10 Isolated music object and Commentary
11 Isolated music object and Effects
12 Karaoke
13 Music, Effects and Dialog
14 Complete Audio Presentation
15 RESERVED

bLanguageDescrPresent (Language Descriptor Presence)

This field is present only if bStaticFieldsPresent is true. When set, it indicates that a language descriptor field follows.

LanguageDescriptor (Language Descriptor)

This field is present only if bStaticFieldsPresent and bLanguageDescrPresent are true. It denotes that a language code is
associated with the audio asset.

The code represents a 3-character language identifier according to the ISO 639-2 [9]. Each character is coded using 8
bits according to ISO/IEC 8859-1 [10] (ISO Latin-1) and inserted in order into the 24-bit field
(1st character = 8 MSBs … 3rd character = 8 LSBs).

bInfoTextPresent (Additional Textual Information Presence)

This field is present only if bStaticFieldsPresent is true. When set, it indicates that additional textual information fields
are present.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)106

nuInfoTextByteSize (Byte Size of Additional Text Info)

This field is present only if bStaticFieldsPresent and bInfoTextPresent are true. The value indicates the size in bytes of
the text information field.

InfoTextString (Additional Textual Information String)

This field is present only if bStaticFieldsPresent and bInfoTextPresent are true. This character string may be used as a
textual description of the audio asset. Each character in the string is encoded with 1-byte using the ISO Latin-1 alphabet
(ISO/IEC 8859-1 [10]).

nuBitResolution (PCM Bit Resolution)

This field is present only if bStaticFieldsPresent is true. It expresses the original resolution of the PCM audio source as
output by an A/D converter. If the sample resolution differs between the channels, nuBitResolution indicates the
maximum value among all channels in the audio asset.

nuMaxSampleRate

This field is present only if bStaticFieldsPresent is true. This field contains the index to the sample frequency, as
defined in Table 7-9. It allows the system to quickly ascertain the maximum sample frequency among all channels
present in the audio asset.

Table 7-9: Source Sample Rate Table

nuMaxSampleRate Sample Frequency (Hz)
0 8 000
1 16 000
2 32 000
3 64 000
4 128 000
5 22 050
6 44 100
7 88 200
8 176 400
9 352 800

10 12 000
11 24 000
12 48 000
13 96 000
14 192 000
15 384 000

nuTotalNumChs

This field is present only if bStaticFieldsPresent is true. It represents the total number of channels that might be decoded
individually. This field can range from 0 to 255 and the total number of channels can range from 1 to 256.

bOne2OneMapChannels2Speakers

This field is present only if bStaticFieldsPresent is true. If true, this flag indicates that each encoded channel within this
audio asset represents a signal feed to a corresponding loudspeaker on the decode side. If this flag is false, it indicates
that channels within this audio asset carry the signals that describe the sound field, but are not actual loudspeaker feeds.
The actual loudspeaker feeds shall be derived on the decode side using the stream-embedded coefficients and possible
user-provided adjustment factors.

bEmbeddedStereoFlag

This is present only when bStaticFieldsPresent and bOne2OneMapChannels2Speakers are true and the total number of
channels is greater than two (nuTotalNumChs > 2). When this flag is true, an embedded stereo downmix, generated
during encoding, exists in the asset as a separate channel set in the front left and right channel pair (LR). When this is
true, a decoder attempting to decode only two channels shall extract and decode the LR pair that already contains the
stereo downmix and ignore all other channels. If the bEmbeddedStereoFlag = false, no embedded downmix is generated
by the encoder.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)107

bEmbeddedSixChFlag

This is present only when bStaticFieldsPresent and bOne2OneMapChannels2Speakers are true and if the total number
of channels is greater than six (nuTotalNumChs > 6). When bEmbeddedSixChFlag = true, this indicates to the decoder
that on the encode side, all relevant channels have been mixed:

• into the standard 5.1 layout L, R, C, Ls, Rs, LFE; or

• into the L, R, C, Lss, Rss, LFE layout when the 7.1 layout is in the L, R, C, Lss, Rss, LFE, Lsr and Rsr
configuration.

In this case, the decoder that attempts to decode only six channels may extract and decode the 5.1 channel downmix and
ignore all other channels. If the bEmbeddedSixChFlag = false, the encoder did not perform the downmix to
six channels' operation.

The bEmbeddedSixChFlag field is part of the overview information and may be used by the system for quick access to
the format description. All decoders shall extract and use this information during the extraction of the remaining
extension substream header fields. After the extension substream header extraction, all decoders shall ignore this
information, since more detailed information is available within the channel set sub-headers.

bSpkrMaskEnabled

This is present only when bStaticFieldsPresent and bOne2OneMapChannels2Speakers are true. When
bSpkrMaskEnabled is true, all loudspeaker locations are specified using predefined locations as listed in Table 7-10.

nuNumBits4SAMask (Number of Bits for Speaker Activity Mask)

This is present only if bStaticFieldsPresent, bOne2OneMapChannels2Speakers and bSpkrMaskEnabled are true. The
value indicates how many bits are used for packing the loudspeaker activity mask nuSpkrActivityMask and the standard
speaker layout mask nuStndrSpkrLayoutMask. Valid values for nuNumBits4SAMask are 4, 8, 12 and 16 and are
obtained from the extracted 2-bit code using the following mapping:

nuNumBits4SAMask = (code + 1) << 2

nuSpkrActivityMask (Loudspeaker Activity Mask)

This is present only if bStaticFieldsPresent, bOne2OneMapChannels2Speakers and bSpkrMaskEnabled are true. The
nuSpkrActivityMask indicates which of the pre-defined loudspeaker positions apply to the audio channels encoded in
DTS-HD stream. Each encoded channel or channel pair, depending on the corresponding speaker position(s), sets the
appropriate bit in a loudspeaker activity mask. Predetermined loudspeaker positions are described in Table 7-10. For
example, nuSpkrActivityMask = 0xF indicates activity of C, L, R, Ls, Rs and LFE1 loudspeakers.

When the decoder supports up to a MaxSpeakers number of speakers and when that number is less than the number
indicated by the total number of channels, i.e. MaxSpeakers < nuTotalNumChs, the decoder decodes channel sets, in
increasing channel set index order, such that the total number of decoded channels is less or equal to MaxSpeakers
channels. A channel set with index k, which brings the cumulative number of decoded channels, in all channel sets from
0 to k, to be greater than MaxSpeakers is ignored and not decoded. All channel sets with index >k are also ignored and
not decoded. In other words only channel sets with index from 0 to k-1 are decoded.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)108

Table 7-10: Loudspeaker Bit Masks for nuSpkrActivityMask,
nuStndrSpkrLayoutMask, nuMixOutChMask

Notation Loudspeaker Location Description Bit Mask Number of Channels
C Centre in front of listener 0x0001 1

LR Left/Right in front 0x0002 2
LsRs Left/Right surround on side in rear 0x0004 2
LFE1 Low frequency effects subwoofer 0x0008 1

Cs Centre surround in rear 0x0010 1
LhRh Left/Right height in front 0x0020 2
LsrRsr Left/Right surround in rear 0x0040 2

Ch Centre Height in front 0x0080 1
Oh Over the listener's head 0x0100 1

LcRc Between left/right and centre in front 0x0200 2
LwRw Left/Right on side in front 0x0400 2
LssRss Left/Right surround on side 0x0800 2
LFE2 Second low frequency effects subwoofer 0x1000 1

LhsRhs Left/Right height on side 0x2000 2
Chr Centre height in rear 0x4000 1

LhrRhr Left/Right height in rear 0x8000 2

nuNumSpkrRemapSets (Number of Speaker Remapping Sets)

This is present only if bStaticFieldsPresent and bOne2OneMapChannels2Speakers are true. This parameter indicates the
number of standard loudspeaker layouts for which remapping coefficients are provided in the stream.

nuStndrSpkrLayoutMask (Standard Loudspeaker Layout Mask)

This is present only if bStaticFieldsPresent and bOne2OneMapChannels2Speakers are true and if the number of speaker
remapping sets is greater than zero, (nuNumSpkrRemapSets > 0). nuStndrSpkrLayoutMask indicates the standard
speaker layout for which the remapping coefficients are provided. Coding of this field follows the same format as used
for nuSpkrActivityMask, described in Table 7-10.

nuNumDecCh4Remap (Number of Channels to be Decoded for Speaker Remapping)

This is present only if bStaticFieldsPresent and bOne2OneMapChannels2Speakers are true and if the number of speaker
remapping sets is greater than zero (nuNumSpkrRemapSets > 0). For each loudspeaker remapping coefficient set that
maps to a particular standard loudspeaker configuration, there are a specific number of encoded channels involved in
the remapping. This is the number of channels that needs to be decoded in order to produce the speaker feeds for the
standard loudspeaker configurations.

nuRemapDecChMask (Decoded Channels to Output Speaker Mapping Mask)

This is present only if bStaticFieldsPresent and bOne2OneMapChannels2Speakers are true and if the number of speaker
remapping sets is greater than zero (nuNumSpkrRemapSets > 0). Usually, a sub-set of all decoded channels is involved
in remapping to a particular output loudspeaker and the bit-mask that defines this sub-set is transmitted in the parameter
nuRemapDecChMask. Location of bits set to "1" indicates that the corresponding decoded channel is involved in
mapping to the particular loudspeaker. The ordering of the channels is first according to the channel set index and next
according to the channel mask nuSpkrActivityMask within each channel set. The location of a least significant bit
corresponds to the first decoded channel.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)109

nuSpkrRemapCodes (Loudspeaker Remapping Codes)

This is present only if bStaticFieldsPresent and bOne2OneMapChannels2Speakers are true and if the number of speaker
remapping sets is greater than zero (nuNumSpkrRemapSets > 0). It indicates the mapping from the encoded channels
that are arranged in some non-standard loudspeaker configuration to the specified "standard" loudspeaker configuration.
For each output speaker location, there is a sub-set of encoded channels that are contributing to the output speaker feed.
This sub-set is described by nuRemapDecChMask and the number of coefficients per each output loudspeaker is equal
to the number of bits that are set to "1" in each corresponding nuRemapDecChMask. The transmitted loudspeaker
remapping coefficients are obtained from the extracted 5-bit codes according to the procedure that is described in
clause C.4. The decoded channels that have their corresponding bits in nuRemapDecChMask set to "0" are not mapped
to a specific speaker; in other words, their mapping coefficient is assumed to be -∞ on a log scale or 0 on a linear scale.

nuRepresentationType (Representation Type)

This is present only if bStaticFieldsPresent is true and bOne2OneMapChannels2Speakers is false. It describes the type
of representation according to Table 7-11. This information may be useful in some post-processing tasks. The decoder
shall export this information to post-processing functions.

Table 7-11: Representation Type

nuRepresentationType Description
0b000 Audio Asset for Mixing/Replacement
0b001 Not Applicable
0b010 Lt/Rt Encoded for matrix surround decoding implies nuTotalNumChs=2

0b011 Lh/Rh Audio processed for headphone playback implies nuTotalNumChs=2

0b100 Not Applicable
0b101 - 0b111 Reserved

7.5.3.3 Dynamic Metadata

bDRCCoefPresent (Dynamic Range Coefficient Presence Flag)

When bDRCCoefPresent is true, the Dynamic Range Coefficient(s) (DRC) for a current audio asset is present in the
stream.

nuDRCCode (Code for Dynamic Range Coefficient)

This field is present only if bDRCCoefPresent is true. Each 8-bit code is an unsigned integer and it indicates a
logarithmic gain value in a range from -31,75 dB to 32 dB in steps of 0,25 dB. This format is identical to the DRC
coefficients used for the DTS core.

The calculation of the logarithmic gain value (DRC_dB) from the extracted code (DRC_Code) is:

DRC_dB = -32 + (DRC_Code + 1) × 0,25

To perform the dynamic range compression, the decoder multiplies the decoded audio samples by a linear coefficient
obtained from the logarithmic gain value (DRC_dB). All channels of an audio asset are scaled by the same value.

nuDRC2ChDmixCode (DRC for Stereo Downmix)

This field is present only if bDRCCoefPresent and bEmbeddedStereoFlag are true. The calculation of the logarithmic
gain value (DRC_dB) from the extracted code (nuDRC2ChDmixCode) is as follows:

DRC_dB = -32 + (nuDRC2ChDmixCode + 1) × 0,25

Dynamic range compression applied to the two-channel downmix may differ considerably from the dynamic range
compression applied to multi-channel mixes. Consequently, when a two-channel downmix has been embedded on the
encoder side, a separate dynamic range coefficient is transmitted for the two-channel downmix. The coding of this field
is identical to the coding used for the nuDRCCode. When the decoder outputs a two-channel downmix, the decoder
shall use the nuDRC2ChDmixCode for the dynamic range compression.

bDialNormPresent (Dialog Normalization Presence Flag)

When bDialNormPresent is true, the dialog normalization parameter for a current audio asset is present in the stream.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)110

nuDialNormCode (Dialog Normalization Code)

This field is present only if the bDialNormPresent is true. nuDialNormCode indicates the dialog normalization gain and
is transmitted as a 5-bit unsigned integer in the range from 0 to 31. The dialog normalization gain (DNG), in dB, is
specified by the encoder operator and is used to directly scale the decoder output samples in all channels of an audio
asset. The dialog normalization gain (DNG) is obtained from the dialog normalization code (nuDialNormCode) simply
by inverting the sign, i.e.

DNG = -nuDialNormCode

The allowed range for DNG is from 0 dB to -31 dB in steps of -1 dB. In case of lossless decoding, the value of
DNG = 0 dB shall enable the lossless reconstruction. When nuDialNormCode is updated, the transition from the
previous value to the new value is described in clause C.7.

bMixMetadataPresent (Mixing Metadata Presence Flag)

This field is present only if bMixMetadataEnbl is true. When true, the mixing metadata for this audio asset is present in
the stream. When bMixMetadataPresent is false, there is no mixing metadata after the bMixMetadataPresent field and
the metadata parameters maintain their values from the previous frame. This field allows the rate of metadata
transmission to be controlled. When bMixMetadataEnbl is false, the value for bMixMetadataPresent shall be false.

bExternalMixFlag (External Mixing Flag)

This is present only if bMixMetadataPresent is true. Secondary audio assets in some applications may be exported for
mixing outside of the DTS-HD decoder. This field indicates whether the asset is exported (flag is true) or the asset is
mixed within the DTS-HD decoder (flag is false). The decoder uses this flag to determine which assets shall be
exported.

nuPostMixGainAdjCode (Post Mixing/Replacement Gain Adjustment)

This field is present only if bMixMetadataPresent is true. When mixing multiple assets, the overall mixture is
additionally scaled by the post-mix adjustment coefficient obtained from the nuPostMixGainAdjCode that is transmitted
in the highest-indexed active asset of the desired audio presentation. All nuPostMixGainAdjCode values that are
transmitted in lower-indexed active assets of the desired audio presentation are extracted and ignored. This scaling
factor is applied to all speaker outputs after combining the last audio asset with the mixture of all lower-indexed active
assets. The scale factor is in the range between -14,5 dB and +15 dB in steps of 0,5 dB. It is coded as a 6-bit unsigned
index with a valid range from 1 to 60. The interpretation of the index and the calculation of the linear scale factor are
described in clause C.5. When nuPostMixGainAdjCode is updated, the transition from the previous value to the new
value is described in clause C.7.

nuControlMixerDRC (Dynamic Range Compression Prior to Mixing)

This is present only if bMixMetadataPresent is true. If bMixMetadataPresent=false the nuControlMixerDRC shall be set
to its default value of 2.

This is a 2-bit field that represents an index described in Table 7-12.

Table 7-12: Dynamic Range Compression Prior to Mixing

nuControlMixerDRC Description

0
Prior to mixing, perform dynamic range compression on the mixture of all lower
indexed active assets, using corresponding DRC code limited by the value
indicated by nuLimit4EmbeddedDRC

1
Prior to mixing, perform dynamic range compression on the current audio asset
only using associated DRC code limited by the value indicated by
nuLimit4EmbeddedDRC

2
Prior to mixing, perform dynamic range compression on both the mixture of all
lower indexed active assets and the current audio asset, each using its own DRC
code limited by the value indicated by nuLimit4EmbeddedDRC

3
Prior to mixing, perform dynamic range compression on both the mixture of all
lower indexed active assets and the current audio asset, each using the DRC
code transmitted in the field nuCustomDRCCode

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)111

nuLimit4EmbeddedDRC (Limit for Mixing Dynamic Range Compression)

This field is present only if bMixMetadataPresent is true and nuControlMixerDRC < 3. It is coded as a 3-bit value
representing an index in Table 7-13. If parameter nuLimit4EmbeddedDRC is not transmitted in a stream, its value shall
be set to 7.

Table 7-13: Limit for Dynamic Range Compression Prior to Mixing

nuLimit4EmbeddedDRC Limit for DRC code in % (ScaleDRC × 100)
0 0 (disable prior to mixing DRC)
1 15
2 30
3 45
4 60
5 75
6 90
7 100

By specifying a value for nuLimit4EmbeddedDRC a content provider may limit the dynamic range compression that is
applied to audio assets prior to the mixing. In particular a listener may specify the desired amount (DesDRC) of
dynamic range compression in the range of 0 % to 100 %. The value (ScaleDRC × 100) coded in the parameter
nuLimit4EmbeddedDRC represents the upper limit for the original listener requested amount of dynamic range
compression (DesDRC). Therefore the decoder shall adjust its logarithmic gain value (DRC_dB corresponding to a
DRCCode extracted from a stream) as follows:

if (DesDRC>ScaleDRC*100)
 DRC_dB = DRC_dB*ScaleDRC
else
 DRC_dB = DRC_dB*(DesDRC/100).

nuCustomDRCCode (Custom Code for Mixing Dynamic Range Coefficient)

This field is present only if bDRCCoefPresent is true and nuControlMixerDRC = 3. When mixing audio assets, if
custom dynamic range compression is required, an encoder operator may provide a custom DRC code that is
transmitted in nuCustomDRCCode field.

Each code is an 8-bit unsigned integer and indicates a logarithmic gain value in a range from -31,75 dB to 32 dB in
steps of 0,25 dB.

The calculation of the logarithmic gain value (DRC_dB) from the extracted code (nuCustomDRCCode) is as follows:

DRC_dB = -32 + (nuCustomDRCCode + 1)×0,25

To perform dynamic range compression, the decoder multiplies the decoded audio samples by a linear coefficient
obtained from the logarithmic gain value (DRC_dB). All channels of the mixture of all lower indexed active assets and
the current audio asset are scaled by the same value.

bEnblPerChMainAudioScale (Scaling Type for Channels of Main Audio)

This field is present in one of the two cases. if:

1) bMixMetadataPresent is true; or

2) bOnetoOneMixingFlag is true.

The above two cases are mutually exclusive since bMixMetadataPresent=true implies that bOnetoOneMixingFlag=false
and also bOnetoOneMixingFlag=true implies that bMixMetadataPresent=false.

If bEnblPerChMainAudioScale is false, a single scale factor is present for all main audio channels that are being mixed
with the channels of this audio asset. If bEnblPerChMainAudioScale is true, each main audio channel that is being
mixed with the channels of the current audio asset has its own scale factor.

nuMainAudioScaleCode (Scaling Parameters of Main Audio)

This is present only if bMixMetadataPresent is true or if bOnetoOneMixingFlag is true for each mixing configuration
independently.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)112

It modifies the gain of the audio program that is being mixed with the current audio program. The number of main
audio scale factors is equal to the number of mixer output channels that are defined for a particular mixing
configuration. This number is derived by looking at Table 7-10, cumulatively adding the entries in column denoted by
"Number of Channels" for each set ("1") bit of nuMixOutChMask. The ordering of the coefficients is derived by
checking the bits that are set in the nuMixOutChMask, starting from the LSB and by looking into Table 7-10 for the
corresponding channel labels. In case of the channel label that indicates a channel pair, the coefficient for the left
channel of the pair comes first. For example the nuSpkrActivityMask = 0x2F indicates a 7.1
(C+LR+LsRs+LFE1+LhRh) mixer configuration and consequently the main audio scale factors for this configuration

will be ordered as C, L, R, Ls, Rs, LFE1, Lh and Rh. The scale factors are obtained from the extracted 6-bit codes

(nuMainAudioScaleCode) according to the procedure described in clause C.6. When nuMainAudioScaleCode is
updated, the transition from the previous value to the new value is described in clause C.7.

nuMixMapMask (Mix Output Mask)

This is present only if bMixMetadataPresent is true, for each of the output mixing configurations, for each embedded
downmix configuration present in the current audio asset and for each channel of a specific embedded downmix
configuration. This mask defines the mixing map from each channel of current audio asset to output mixer. Note that, in
this context, the full mix is categorized as one of the embedded downmix configurations with the number of channels
equal to the nuTotalNumChs.

The number of mixer output channels that are defined for a particular mixing configuration is derived from the
nuMixOutChMask. Each channel of the current audio asset may be mapped to any of the mixer output channels using
the mixing coefficients described in nuMixCoeffs.

The nuMixMapMask has a dedicated bit (channel flag) for each nNumMixOutCh mixer output channel, keeping them
in the same order as defined by the nuMixOutChMask. In particular the order of channel flags in the nuMixMapMask,
when starting from the LSB, is derived by checking the bits that are set in the nuMixOutChMask starting from the LSB
and by looking into Table 7-10 for the corresponding channel labels. In case of the channel label that indicates a
channel pair, the channel flag for the left channel of the pair comes first.

A channel of the current audio asset is mapped exclusively to those mixer output channels that have their bits in
nuMixMapMask set to "1". Mapping to all other output channels assumes mixing coefficient equal to -∞ dB.

nuMixCoeffs (Mixing Coefficients)

This is present only if bMixMetadataPresent is true, for each of the output mixing configurations, each embedded
downmix configuration present in the current audio asset and each channel of a specific embedded downmix
configuration. Note that, in this context, the full mix is categorized as one of the embedded downmix configurations,
with the number of channels equal to the nuTotalNumChs.

The scale factors are obtained from the extracted 6-bit codes according to the procedure that is described in clause C.6.
The transition from the previous value to the new value when nuMixCoeffs is updated is described in clause C.7.

7.5.3.4 Decoder Navigation Data

nuCodingMode (Coding Mode for the Asset)

This is a 2-bit field that represents an index into a look-up table. The look-up table, Table 7-14, describes the audio
coding modes that may be used for compression of audio in the asset.

Table 7-14: Coding Mode

nuCodingMode Description
0 DTS-HD Coding Mode that may contain multiple coding components
1 DTS-HD Loss-less coding mode without CBR component
2 DTS-HD Low bit-rate mode
3 Auxiliary coding mode

The auxiliary coding mode is reserved for future applications.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)113

nuCoreExtensionMask (Coding Components Used in Asset)

This field is present only when nuCodingMode = 0. This is an array of 12 bits indicating the core and the extensions
that are used for coding the current audio asset. A '1' in the mask at the bit location reserved for a specific coding
component indicates that the particular coding component is used in this audio asset. A '0' in the mask at the bit location
reserved for a specific coding component indicates that the particular coding component is NOT used in this audio
asset. The association of bit locations within nuCoreExtensionMask to the specific coding components is described in,
Table 7-15, shown below. Data for each substream type within an audio asset will appear in the same order (LSB first)
as the bit mask position.

Table 7-15: Core/Extension Mask

Notation Core/Extension Type Description CBR or
VBR nuCoreExtensionMask

DTS_CORESUB_STREAM_COR
E

Core component within the core
substream CBR 0x001

DTS_BCCORE_XXCH

XXCH extension, when combined
with associated core, may be sent
via SPDIF for backward
compatibility

CBR 0x002

DTS_ BCCORE _X96
X96 extension, when combined with
associated core, may be sent via
SPDIF for backward compatibility

CBR 0x004

DTS_ BCCORE_XCH

XCH extension, when combined
with associated core, may be sent
via SPDIF for backward
compatibility

CBR 0x008

DTS_EXSUB_STREAM_CORE Core component within the current
extension substream CBR 0x010

DTS_EXSUB_STREAM_XBR
XBR extension within the current
extension substream CBR 0x020

DTS_EXSUB_STREAM_XXCH XXCH extension within the current
extension substream CBR 0x040

DTS_EXSUB_STREAM_X96 X96 extension within the current
extension substream CBR 0x080

DTS_EXSUB_STREAM_LBR
Low bit rate component within the
current extension substream CBR 0x100

DTS_EXSUB_STREAM_XLL Lossless extension within the
current extension substream VBR 0x200

RESERVED_1 0x400
RESERVED_2 0x800

The bit locations 0x400 and 0x800 within the nuCoreExtensionMask are reserved for future use and all the decoders
that comply with this version of the specification shall ignore all coding components that have any of these 2 bits set to
"1".

nuExSSCoreFsize (Size of Core Component in Extension Substream)

This field is present only when nuCodingMode = 0 and the DTS_EXSUB_STREAM_CORE bit of
nuCoreExtensionMask is set to "1".

This field indicates per frame payload size, in bytes, of a core component of the audio asset present in the extension
substream. When the asset consists of core and extension(s) that are carried in the extension substream, the
nuExSSCoreFsize is used to navigate to the location of a first extension as indicated by the nuCoreExtensionMask.

bExSSCoreSyncPresent (Core Sync Word Present Flag)

This field is present only when nuCodingMode = 0 and the DTS_EXSUB_STREAM_CORE bit of
nuCoreExtensionMask is set to "1".

If bExSSCoreSyncPresent is true, the sync word for the associated core component is present. This indicates to the asset
decoder that it should attempt to establish/verify synchronization in the current frame.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)114

If bExSSCoreSyncPresent is false, no core sync word is present in the current frame of extension substream. If the asset
decoder is not synchronized, it is not able to establish synchronization. If the asset decoder is synchronized, it consumes
the nuExSSCoreFsize bytes of the core data.

nuExSSCoreSyncDistInFrames (Core Sync Distance)

This 2-bit field is present only if bExSSCoreSyncPresent is true. The nuExSSCoreSyncDistInFrames represents the
distance between the two sync words in the core stream of the current asset measured in number of extension substream
frames. The nuExSSCoreSyncDistInFrames takes values 1, 2, 4 and 8, which are obtained from the transmitted 2-bit
codes 0, 1, 2 and 3 respectively.

nuExSSXBRFsize (Size of XBR Extension in Extension Substream)

This field is present only when nuCodingMode = 0 and the DTS_EXSUB_STREAM_XBR bit of
nuCoreExtensionMask is set to "1".

This field indicates per frame payload size, in bytes, of XBR extension of the audio asset present in the extension
substream. When the asset contains additional extensions that follow the XBR extension in the extension substream, the
nuExSSXBRFsize is used to navigate to the location of the next extension as indicated by the nuCoreExtensionMask.

nuExSSXXChFsize (Size of XXCH Extension in Extension Substream)

This field is present only when nuCodingMode = 0 and DTS_EXSUB_STREAM_XXCH in nuCoreExtensionMask is
set to "1".

This field indicates per frame payload size, in bytes, of XXCH extension of the audio asset present in the extension
substream. When the asset contains additional extensions that follow the XXCH extension in the extension substream,
the nuExSSXXCHFsize is used to navigate to the location of the next extension as indicated by the
nuCoreExtensionMask.

nuExSSX96Fsize (Size of X96 Extension in Extension Substream)

This field is present only when nuCodingMode = 0 and the DTS_EXSUB_STREAM_X96 bit of nuCoreExtensionMask
is set to "1".

This field indicates per frame payload size, in bytes, of X96 extension of the audio asset present in the extension
substream. When the asset contains additional extensions that follow the X96 extension in the extension substream, the
nuExSSX96Fsize is used to navigate to the location of the next extension as indicated by the nuCoreExtensionMask.

nuExSSLBRFsize (Size of LBR Component in Extension Substream)

This field is present when:

• nuCodingMode = 0 and DTS_EXSUB_STREAM_LBR in nuCoreExtensionMask is set to "1"; or

• nuCodingMode = 2, which indicates that the asset is coded using only a low bit rate component.

This field indicates per frame payload size, in bytes, of LBR component of the audio asset present in the extension
substream. When the asset contains additional extensions that follow the LBR component in the extension substream,
the nuExSSLBRFsize is used to navigate to the location of the next extension as indicated by the
nuCoreExtensionMask.

bExSSLBRSyncPresent (LBR Sync Word Present Flag)

This field is present when:

• nuCodingMode = 0 and DTS_EXSUB_STREAM_LBR in nuCoreExtensionMask is set to "1"; or

• nuCodingMode = 2, indicating the asset is coded using only a low bit rate component.

If bExSSLBRSyncPresent is true for an asset in the current frame of the extension substream, the sync word for the
associated LBR component is present. This indicates to the asset decoder that it should attempt to establish/verify
synchronization in the current frame.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)115

If bExSSLBRSyncPresent is false for an asset, no LBR sync word is present in the current frame of extension substream
and the asset decoder is not capable, when starting from unsynchronized state, to establish the synchronization with the
LBR data present in this frame. If the asset decoder is in a synchronized state, it consumes the nuExSSLBRFsize bytes
of the LBR data.

nuExSSLBRSyncDistInFrames (LBR Sync Distance)

This 2-bit field is present only if bExSSLBRSyncPresent is true. The nuExSSLBRSyncDistInFrames represents the
distance between the two sync words in the LBR stream of the current asset measured in number of extension substream
frames. The nuExSSLBRSyncDistInFrames takes values 1, 2, 4 and 8, which are obtained from the transmitted
2-bit codes 0, 1, 2 and 3 respectively.

nuExSSXLLFsize (Size of XLL Data in Extension Substream)

This field is present when either:

• nuCodingMode = 0 and DTS_EXSUB_STREAM_XLL in nuCoreExtensionMask is set to "1"; or

• nuCodingMode = 1, which indicates that asset is coded using only a lossless component.

This field indicates the size, in bytes, of XLL extension of the audio asset present in the extension substream.

bExSSXLLSyncPresent (XLL Sync Word Present Flag)

This field is present when either:

• nuCodingMode = 0 and DTS_EXSUB_STREAM_XLL in nuCoreExtensionMask is set to "1"; or

• nuCodingMode = 1, which indicates that asset is coded using only a lossless component.

If the bExSSXLLSyncPresent is true for an asset in current frame of the extension substream, the sync word for the
associated XLL component is present. This indicates to the asset decoder that it should attempt to establish/verify
synchronization in the current frame.

If bExSSXLLSyncPresent is false for an asset, no XLL sync word is present in the current frame of extension substream
and the asset decoder is not capable, when starting from unsynchronized state, to establish the synchronization with the
XLL data present in this frame. If the asset decoder is in a synchronized state it consumes the nuExSSXLLFsize bytes
of the XLL data.

nuPeakBRCntrlBuffSzkB (Peak bit rate smoothing buffer size)

This field is present when bExSSXLLSyncPresent is true and when either:

• nuCodingMode = 0 and DTS_EXSUB_STREAM_XLL in nuCoreExtensionMask is set to "1"; or

• nuCodingMode = 1.

This field represents the size, in kBytes, of the peak bit rate smoothing buffer, which has been assumed to exist on the
decode side during a lossless encoding/authoring of the current asset.

The available sizes are from 0 Kbyte to 240 kBytes in steps of 16 kBytes.

Each lossless encoded asset has its corresponding smoothing buffer and nominally the sum of buffer sizes for all active
assets shall not exceed the specified decoder's buffer size. However, next-generation streams may be created such that
for a certain subset of all active assets, all decoders meet the buffer size requirements, but for decoding of all active
assets, the new generation decoders are required. Decoders capable of decoding only a subset of all active assets
(because of limitation in available buffer size) shall ignore all other assets that do not belong to the specified subset.
This subset consists of the lowest index active assets that jointly do not require more than available decoder buffer size.

nuBitsInitDecDly (Size of field nuInitLLDecDlyFrames)

This field is present when bExSSXLLSyncPresent is true and when either:

• nuCodingMode = 0 and DTS_EXSUB_STREAM_XLL in nuCoreExtensionMask is set to "1"; or

• nuCodingMode = 1.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)116

The nuBitsInitDecDly is the number of bits used to extract the parameter nuInitLLDecDlyFrames (Initial XLL
Decoding Delay in Frames).

nuInitLLDecDlyFrames (Initial XLL Decoding Delay in Frames)

This field is present when bExSSXLLSyncPresent is true and when either:

• nuCodingMode = 0 and DTS_EXSUB_STREAM_XLL in nuCoreExtensionMask is set to "1"; or

• nuCodingMode = 1.

The nuInitLLDecDlyFrames is the number of frames to delay lossless decoding of the current asset after the initial
synchronization is established. It instructs the decoder to wait 'nuInitLLDecDlyFrames' frames before decoding the first
frame of the current asset, after establishing/re-establishing the synchronization. For all consecutive frames, as long as
the decoder is synchronized, the decoder ignores the nuInitLLDecDlyFrames.

This value tells the decoder how many frames the lossless frame in question needs to be delayed until it can be decoded.
The frame is placed into the decoder's buffer and interprets the offset as a time stamp of the delay. The decoder receives
the data, detects the offset number and does not decode the frame until the specified offset number of frames intervals
has elapsed.

The frame offset specifies a schedule of when the data is in the buffer and when it is to be decoded. If the stream
consists of both lossy and lossless substreams the decoder shall decode lossy data and output the lossy decoded audio
while waiting for 'nuInitLLDecDlyFrames' delay to expire. If the stream consists of lossless data only, decoder outputs
shall be muted until the 'nuInitLLDecDlyFrames' delay expires.

nuExSSXLLSyncOffset (Number of Bytes Offset to XLL Sync)

This field is present when bExSSXLLSyncPresent is true and when either:

• nuCodingMode = 0 and DTS_EXSUB_STREAM_XLL in nuCoreExtensionMask is set to "1"; or

• nuCodingMode = 1.

This specifies the number of bytes offset (from start of XLL data in current asset) to locate the first XLL sync word in
the current asset.

nuExSSAuxFsize (Size of Auxiliary Coded Data)

This field is present only when nuCodingMode = 3.

This field indicates the size, in bytes, of auxiliary coded data present in the extension substream for the current audio
asset.

nuAuxCodecID (Auxiliary Codec Identification)

This 8-bit field is present only if nuCodingMode = 3. Its value represents an index into the auxiliary codec lookup table.
This feature is not supported in the current version of DTS-HD.

bExSSAuxSyncPresent (Aux Sync Word Present Flag)

This field is present only when nuCodingMode = 3.

If the bExSSAuxSyncPresent is true for an asset in the current frame of the extension substream, the sync word for the
associated auxiliary component is present. This indicates to the asset decoder that it should attempt to establish/verify
synchronization in the current frame.

If bExSSAuxSyncPresent is false for an asset, no auxiliary sync word is present in the current frame of extension
substream and the asset decoder is not capable, when starting from unsynchronized state, to establish the
synchronization with the auxiliary coded data present in this frame. If the asset decoder is in a synchronized state, it
consumes the nuExSSAuxFsize bytes of the auxiliary coded data.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)117

nuExSSAuxSyncDistInFrames (Aux Sync Distance)

This 3-bit field is present only if bExSSAuxSyncPresent is true. The nuExSSAuxSyncDistInFrames represents the
distance between the two sync words in the auxiliary stream of the current asset measured in number of extension
substream frames. The nuExSSAuxSyncDistInFrames takes values in a range from 1 to 8.

nuDTSHDStreamID (DTS-HD Stream ID)

This 3-bit field is present only if the XLL coding component is present in the asset. It represents the unique ID number
(ranging from 0 to 7) of a DTS-HD stream that carries the asset data. All assets within the same DTS-HD stream would
have the same value for the nuDTSHDStreamID. This parameter is used to indicate to the decoder that seamless
switching between the two DTS-HD streams, both carrying an asset with the XLL coding components, has occurred in
the player.

If the value of nuDTSHDStreamID changes from the value present in the previous frame, the XLL stream decoding is
disabled in the current (transition) frame and the XLL receive and output buffers are zeroed out.

When the lossy component is used together with the XLL extension, the decoding of the lossy stream is uninterrupted.
The audio decoded from the lossy component of the new stream will be played out during the transition frame. The
XLL decoding will continue in the following frame according to the buffering delay obtained from the new stream.
After the expiration of imposed delay on the XLL decoding, both the lossy and the XLL components are decoded and
combined together to generate lossless decoded audio.

When the XLL is used in standalone mode (without lossy component), the audio will be muted in the transition frame
and the audio in the frame after the transition frame will be faded in.

bOnetoOneMixingFlag

This flag is present only when bOne2OneMapChannels2Speakers and bMixMetadataEnbl are true and
bMixMetadataPresent is false.

This flag when true indicates a simplistic asset mixing scenario in which the current audio asset channels are directly
added to the corresponding audio asset, with appropriate scaling of the primary audio channels or appropriate scaling of
the current audio asset channels depending upon the bDecodeAssetInSecondaryDecoder flag.

When bOnetoOneMixingFlag is true and bDecodeAssetInSecondaryDecoder is true, the simplistic asset mixing
scenario has the current audio asset channels directly added to the corresponding primary audio channels with
appropriate scaling of the primary audio channels. In the case of a 5.1 primary audio asset and a 2.0 secondary audio
asset, the left secondary audio channel will only be added to the left primary audio channel. Similarly, the right
secondary audio channel will only be added to the right primary audio channel. Primary audio channels may be
individually scaled prior to the addition of secondary audio channels using the coefficients that are obtained from the
codes (nuMainAudioScaleCode) transmitted immediately after the bOnetoOneMixingFlag.

When bOnetoOneMixingFlag is true and bDecodeAssetInSecondaryDecoder is false, the simplistic asset mixing
scenario has the current audio asset channels directly added to corresponding audio channels of all active assets with
appropriate scaling of the current audio channels. In the case of active audio assets with 5.1 channels, the left audio
channel of the current asset will only be added to the left audio channel of other active assets. Similarly, the right audio
channel of the current asset will only be added to the right audio channel of other active assets. The current audio
channels may be individually scaled prior to the addition with other active asset audio channels using the coefficients
that are obtained from the codes (nuMainAudioScaleCode) transmitted immediately after the bOnetoOneMixingFlag.

The mixing scenario described above minimizes the amount of mixing metadata that needs to be transmitted.

bDecodeAssetInSecondaryDecoder

This flag when true indicates that the current asset is to be decoded by the secondary decoder. In particular the primary
decoder shall be able to decode at least one active audio asset (with bDecodeAssetInSecondaryDecoder =false) and the
secondary decoder decodes up to one active audio asset. This is a guarantee that the solutions implementing both
primary and secondary decoders will at least be able to decode two audio assets. It is the responsibility of the external
post-process to combine the audio obtained from the primary and secondary decoder. This external process is either
controlled by the external metadata or by the metadata present in the audio asset with
bDecodeAssetInSecondaryDecoder = true and bExternalMixFlag = true. In later case the external process will request
the metadata from the secondary decoder.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)118

bDRCMetadataRev2Present

When the bDRCMetaDataRev2Present flag is TRUE, the Rev2 DRC metadata that enables dynamic range control with
a time resolution of one value for every period of 256*RefClockPeriod seconds, will be present. This Rev2 DRC
metadata shall be used for controlling the dynamic range of all decoded channels in the current asset instead of:

• the nuDRCCode and the nuDRC2ChDmixCode metadata that may be present in the current asset descriptor; or

• the subsubFrameDRC_Rev2AUX that may be present in a DTS core associated with the current asset.

If the bDRCMetaDataRev2Present flag is FALSE, no Rev2 DRC metadata is present in the current asset descriptor.

DRCversion_Rev2

This field will be present only if bDRCMetaDataRev2Present flag is TRUE. The DRCversion_Rev2 is a four bit field
which is used to determine the version of DRC algorithm which the encoder used. The first version starts at 0x1.
Decoders will support DRC version 0x1 up to the latest version which they support. Currently only DRCversion_Rev2
= 1 is supported. If the encoder is supplying DRC information with a version number higher than that which is
supported by the decoder, the supplied Rev2 DRC values should be ignored and no DRC should be applied.

DRCCoeff_Rev2

This field will be present only if bDRCMetaDataRev2Present flag is TRUE. Currently only DRC version 1 is
supported, which is single band mode. In single band mode, one 8 bit value is transmitted every 256*RefClockPeriod
seconds. Consequently in a single band mode in each frame there will be nuExSSFrameDurationCode/256 values for
DRCCoeff_Rev2.

Each 8-bit value for DRCCoeff_Rev2 is extracted from the bitstream and converted into a dB gain by function
dts_dynrng_to_db().

Reserved (Reserved)

This field is reserved for extending the information present in the audio asset descriptor. The decoder shall assume that
this field is present and of unspecified duration. Therefore, in order to continue unpacking the stream, the decoder shall
skip over this field using the extension substream header start pointer and the audio asset descriptor size
nuAssetDescriptFsize.

ZeroPadForFsize (Make nuAssetDescriptFsize a multiple of 8 bits)

This field ensures that the size of an audio asset descriptor is an integer number of bytes. Encoder appends '0's until the
current bit position relative to the first packed bit of nuAssetDescriptFsize is a multiple of 8 bits.

8 DTS Lossless Extension (XLL)

8.1 General Information About the XLL Extension
The DTS lossless coding extension (XLL) results in a bit for bit accurate reproduction of the input signal. The lossless
encoding system has provisions to support a maximum audio sample rate of 384 kHz and the capability to support high
channel counts when used in the DTS-HD framework, which also permits nearly arbitrary speaker mapping.

Since this is a bit accurate system, XLL may be used alone, or it may be used as a residual coder in conjunction with a
lossy coding system, as in the current commercial application of DTS-HD Master Audio™. This clause describes the
XLL extension.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)119

8.2 Lossless Frame Structure

8.2.1 General Information About the Lossless Frame Structure

As depicted in Figure 8-1, an XLL lossless frame consists of a header and one or more frequency bands. Furthermore,
each frequency band consists of one or more data segments. The number of data segments in each frequency band is the
same. Time duration of each segment is the same for all segments in the frame.

Figure 8-1: XLL Lossless Frame

Both the header and the segments are each further sub-divided by the channel set information. The channel set
information is a representation of the source material in either downmixed or unmixed form. Similar to the segments,
each expresses the same duration in seconds, but not necessarily the same number of samples, because each channel set
can represent different sample rates.

By way of example, in a given segment the first set (ChSET0) could represent 5.1 downmixed primary channels with

the second set (ChSET1) representing two extra ES channels for reversing the downmix to define a 7.1 discrete

environment.

8.2.2 Header Structure

8.2.2.1 General Information About the Header Structure

As shown in Figure 8-2, the lossless frame header consists of a sync word, common setup data (such as the number of
frequency bands, the number of segments in the frame, the number of samples in each segment), information specific to
each of the channel sets (such as number of channels, channel layout and sampling frequency) and the navigation
indices. For example, a frame containing two channel sets consisting of a primary 5.1 set and an ES channel set would
be specified by data consisting of the common header field plus two specific channel set sub-headers and a navigation
index (NAVI) table.

Figure 8-2: XLL Header Structure

XLL

Frequency
Band 0

Segment 0 Segment q... ...Header

Frequency
Band p

Segment 0 Segment q...

S
Y
N
C

HEADER

...
SUB-

HEADER
ChSET0

Common
SUB-

HEADER
ChSET(k-1)

NAVI

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)120

8.2.2.2 Common Header

The common header area indicates the header size, which helps locate the first channel set sub-header and the checksum
field. It also contains flags indicating if a core is present, if the core should be interpolated, the total size of the entire
frame and a frame offset designating the number of frames by which to delay the decoding in order to facilitate buffer
management at the decoder. The common header also includes the number of segments per frame and the number of
samples in each segment of channel set 1. (All other channel sets scale the number of samples in a segment using the
ratio of their sampling frequency and the sampling frequency of the first channel set).

A checksum is included at the end of the common header as a verification measure and to help detect erroneous sync
word caused by alias occurrences of the sync word. Since aliases of the sync word are a concern, the decoder shall
always calculate the header checksum fields to verify the validity of the detected sync word. To this end, when a valid
checksum pattern is discovered, decoding can begin immediately. See Annex B for a complete discussion on Cycle
Redundancy Checking (CRC).

8.2.3 Channel Set Sub-Header

Specific header data for each channel set is stored within the channel set sub-header. The channel set sub-header field
includes its size, the number of channels in the set, the sampling rate and specific data, such as the replacement flag and
downmixing coefficients.

The first channel set sub-header is read by indexing its start position, which is reached by computing the offset frame
start position plus the size of the common header. From this position the sub-header data for the first channel set is
unpacked. The next channel set sub-header is located by extracting the mChSetHeaderFSize of the current channel
set and advancing by mChSetHeaderFSize bytes from the start of the current channel set.

8.2.4 Navigation Index

The NAVI table consists of the sizes of individual frequency bands. It is described in more detail in clause 8.4.2.

8.2.5 Frequency Band Structure

The frequency band 0 is considered to be a base band and it is always present in the stream. Up to three extended
frequency bands may also be present in the stream, supporting the sampling frequency of up to four times the sampling
frequency of the base band. For example, all channel sets that have the sampling frequency less than or equal to 96 kHz
are coded entirely within the frequency band 0. The channel sets that have a sampling frequency of 192 kHz are coded
using both the frequency band 0 and the frequency band 1. Finally, the channel sets that have a sampling frequency of
384 kHz are coded using all frequency bands: 0, 1, 2 and 3.

The number of extended frequency bands is part of the header information. After adding the number of extended bands,
the total number of frequency bands can be 1, 2, or 4. On the encode side, the number of frequency bands is determined
simply by the underlying maximum sampling frequency among all of the channel sets. In particular, for sampling
frequency Fs, the number of encoded frequency bands is determined as follows:

• Number of frequency bands is 1 for Fs ≤ Base_Fs

• Number of frequency bands is 2 for Base_Fs < Fs ≤ 2 × Base_Fs

• Number of frequency bands is 4 for 2 × Base_Fs < Fs ≤ 4 × Base_Fs

where Base_Fs denotes the base sampling frequency i.e. 64 kHz, 88.2 kHz, or 96 kHz.

A decoder that supports only sampling frequencies up to the Base_Fs shall decode only the frequency band 0 and skip

over the remaining bands. Similarly, a decoder that supports only sampling frequencies up to the 2×Base_Fs, shall

decode only the frequency bands 0 and 1 and skip over the remaining bands.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)121

8.2.6 Segments and Channel Sets

The segments and channel sets further subdivide the frequency band data. A segment within a frequency band contains
the encoded frequency band samples, over a specific period of time (segment duration), for all channel sets present in
the frequency band.

As shown in Figure 8-3, the encoded and packed channel set data are interleaved into a segment. There are no headers
associated with these two levels of abstraction. A segment represents the same time duration for all channels sets when
unpacked.

Figure 8-3: Segment with Encoded and Packed Channel Sets

8.3 Lossless Stream Syntax

8.3.1 Common Header

Table 8-1 describes the composition of the common header.

Table 8-1: Common Header

Syntax Size (Bits)
SYNCXLL = ExtractBits(32); 32
nVersion = ExtractBits(4) + 1; 4
nHeaderSize = ExtractBits(8) + 1; 8
nBits4FrameFsize = ExtractBits(5) + 1 5
nLLFrameSize = ExtractBits(nBits4FrameFsize) + 1; nBits4FrameFsize
nNumChSetsInFrame = ExtractBits(4) + 1; 4
tmp = ExtractBits(4);
nSegmentsInFrame = 1 << tmp; 4

tmp = ExtractBits(4);
nSmplInSeg = 1 << tmp; 4

nBits4SSize = ExtractBits(5) + 1; 5
nBandDataCRCEn = ExtractBits(2); 2
bScalableLSBs = ExtractBits(1); 1
nBits4ChMask = ExtractBits(5) + 1; 5
if (bScalableLSBs)
 nuFixedLSBWidth = ExtractBits(4); 4

Reserved = ExtractBits(…); …
ByteAlign = ExtractBits(0 … 7) 0...7
nCRC16Header = ExtractBits(16); 16

SYNCXLL (XLL extension sync word)

The lossless DWORD aligned synchronization word has value 0x41A29547. During sync detection the nCRC16Header
checksum is used to further verify that the detected sync pattern is not a random alias. The DWORD alignment makes it
necessary to append a total of from 1 to 3 extra zero bytes after the last band data of the previous frame.

nVersion (Version number)

This is the lossless stream syntax version identification. If the version indicated here is greater than the version of the
decoder, the decoder should not attempt to process the stream further.

...

SEGMENT

ChSET0 ChSET1 ChSET(k-1)

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)122

nHeaderSize (Lossless frame header length)

This is the size of the common header in bytes from the SYNCXLL to nCRC16Header inclusive. This value determines
the location of the first channel set header. This marker also designates the end of the field nCRC16Header and allows
quick location of the checksum at byte position nHeaderSize-2.

nBits4FrameFsize (Size of field nBytesFrameLL)

This is the number of bits less one used to store the lossless frame size parameter nLLFrameSize.

nLLFrameSize (Number of bytes in a lossless frame)

This is the total number of bytes in a lossless frame. This value is used to traverse to the end of the frame.

nNumChSetsInFrame (Number of Channel Sets per Frame)

This is the number of channel sets. It is used to loop through the channel set sub-headers, the channel sets in each
segment and the NAVI index.

nSegmentsInFrame (Number of Segments per Frame)

This is the number of segments in the current frame. Representing a binary exponent, the actual segment count is 1 left
shifted by the extracted value.

nSmplInSeg (Samples in a segment per one frequency band for the first channel set)

This is the number of samples in a segment per one frequency band in the first channel set. Representing a binary
exponent, the actual number of samples in a segment is 1 left shifted by the extracted value. All subsequent channel sets
determine their nSmplInSeg by first determining the sampling frequency scaling factor against the first channel set. For
example, assume:

• the first channel set with the sampling rate Fs1 and the number of frequency bands equal to
m_nNumFreqBands1 (see page 132 for the definition of m_nNumFreqBands);

• the second channel set with the sampling rate Fs2 and the number of frequency bands equal to
m_nNumFreqBands2;

• then the second channel set will have the number of segment samples per frequency band equal to:

In order to control the required audio output buffer size, the maximum number of samples in a segment per each
frequency band is limited as follows:

• Maximum nSmplInSeg is 256 for sampling frequencies Fs ≤ 48 kHz.

• Maximum nSmplInSeg is 512 for sampling frequencies Fs > 48 kHz.

NOTE: Notice that for sampling frequencies greater than 96 kHz, the data is split uniformly into 2 frequency
bands (for 96 kHz < Fs ≤ 192 kHz) or into 4 frequency bands (for 192 kHz < Fs ≤ 384 kHz). Therefore
the maximum sampling frequency in one frequency band is 96 kHz and consequently the maximum
nSmplInSeg is the same for all sampling frequencies Fs > 48 kHz.

nBits4SSize (Number of bits used to read segment size)

nBits4SSize+1 is the bit size of the field that contains the size of all data fields in the NAVI table.

Bands2m_nNumFreqFs1

Bands1m_nNumFreqFs2
 nSmplInSeg

×
××

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)123

nBandDataCRCEn (Presence of CRC16 within each frequency band)

When set, this field indicates that checksums were embedded in the frequency band data. This field shall be decoded as
follows:

Table 8-2: CRC Presence in Frequency Band

nBandDataCRCEn CRC Presence
00 No CRC16 within band
01 CRC16 placed at the end of MSB0
10 CRC16 placed at end of MSB0 and at end of LSB0

11 CRC placed at end of MSB0 and at end of LSB0 and at the end of
bands 1, 2 and 3 where they exist

bScalableLSBs (MSB/LSB split flag)

This indicates whether MSB/LSB split has been enabled. When bScalableLSBs is true, the MSB/LSB split has been
performed in frequency band 0. The MSB/LSB split in extension frequency band nBand has been performed only when
both bScalableLSBs and bMSBLSBSplitEnInExtBands[nBand] are true.

bOne2OneMapChannels2Speakers (Channels to speakers mapping type flag)

This flag is transmitted as a part of program descriptor within the extension substream header and its definition is
repeated here for reference. This flag, if true, indicates that each encoded channel represents a signal feed to a
corresponding loudspeaker on the decode site. If false, it indicates that channels carry the signals that describe the sound
field but are not the actual loudspeaker feeds. The actual loudspeaker feeds are derived on the decode side using the
stream embedded coefficients and possibly user-provided adjustment factors. One example of using this mode of
operation is to carry Ambisonic first-order signals (B-format) W, X, Y and Z.

m_RepresentationType (Representation Type)

This field is transmitted as a part of program descriptor within the extension substream header and its definition is
repeated here for reference.

The field is present if bOne2OneMapChannels2Speakers is false. It describes the type of representation according to the
table below. This information may be useful in some post processing tasks. The decoder shall export this information to
post-processing functions.

Table 8-3: Representation Types

m_RepresentationType Description
0b000 Audio Asset for Mixing/Replacement
0b001 Reserved
0b010 Lt/Rt Encoded for matrix surround decoding implies nTotalNumCHs=2

0b011 Lh/Rh Audio processed for headphone playback implies nTotalNumCHs=2

0b100 Reserved
0b101 - 0b111 Reserved

nBits4ChMask (Channel Position Mask)

This is the number of bits used to extract the channel mask for each channel set. 'OR'-ing individual channel masks for
all channel sets yields the overall channel mask for the frame.

nuFixedLSBWidth (MSB/LSB split)

This field only exists if bScalableLSBs is TRUE.

• if nuFixedLSBWidth = 0 then length of the LSB part is variable according to pnScalableLSBs[nBand][nCh];

• if nuFixedLSBWidth > 0 then length of the LSB part is fixed and equal to nuFixedLSBWidth.

In both cases the pnScalableLSBs[nBand][nCh] indicates the number of bits used to pack the binary codes representing
the samples of LSB part.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)124

Reserved (Reserved)

This is reserved for supplemental header information. The decoder shall assume that this field is present and of
unspecified duration. Therefore, in order to continue unpacking the stream, the decoder shall skip over this field using
the header start pointer and the header size nHeaderSize.

nCRC16Header (Header CRC16 Protection)

CRC16 is calculated for the header from positions VersionNum to ByteAlign inclusive.

8.3.2 Channel Set Sub-Header

Table 8-4: Channel Set Sub-Header

Syntax Size (Bits)
// Unpack the header size
nByteOffset += m_nChSetHeaderSize = ExtractBits(10) + 1; 10
// Extract the number of channels
m_nChSetLLChannel = ExtractBits(4) + 1; 4
// Extract the residual channel encoding
m_nResidualChEncode = (DTS__int64) ExtractBits(m_nChSetLLChannel); nChSetLLChannel
// Extract the input sample bit-width
m_nBitResolution = ExtractBits(5) + 1; 5
// Extract the original input sample bit-width
m_nBitWidth = ExtractBits(5) + 1; 5
// Extract the sampling frequency index
sFreqIndex = ExtractBits(4);
// Find the actual sampling frequency
m_nFs = m_pnFsTbl[sFreqIndex];

4

// Extract nFs interpolation multiplier
m_nFsInterpolate = ExtractBits(2); 2

// Extract the replacement channel set group
m_nReplacementSet = ExtractBits(2); 2
// Extract the active replacement channel set flag
if (m_nReplacementSet > 0)
 {
 m_bActiveReplaceSet = (ExtractBits(1) == 1) ? true : false;
 if (!m_bActiveReplaceSet)
 m_bSkipDecode = true;
 }

1

// Downmix is allowed only when the encoded channel represents a signal //
feed to a corresponding loudspeaker (bOne2OneMapChannels2Speakers=true)
if (m_bOne2OneMapChannels2Speakers){

 // Extract the primary channel set flag
 m_bPrimaryChSet = (ExtractBits(1) == 1) ? true : false; 1
 // Extract the downmix flag
 m_bDownmixCoeffCodeEmbedded = (ExtractBits(1) == 1) ? true : false; 1
 // Extract the Embedded Downmix flag
 if (m_bDownmixCoeffCodeEmbedded)
 m_bDownmixEmbedded = (ExtractBits(1) == 1) ? true : false;

1

 // Extract the Downmix type
 if (m_bDownmixCoeffCodeEmbedded && m_bPrimaryChSet)
 m_nLLDownmixType = ExtractBits(3);

3

 // Extract the hierarchical channel set flag
 m_bHierChSet = (ExtractBits(1) == 1) ? true : false; 1
 if (bDownmixCoeffCodeEmbedded)
 DownmixCoeffs = ExtractBits(nDownmixCoeffs * 9); nDownmixCoeffs×9

 bChMaskEnabled = (ExtractBits(1)==1)? true:false; 1
 // Extract the ch mask
 if (bChMaskEnabled)
 {
 m_nChMask = ExtractBits(nBits4ChMask);
 }

nBits4ChMask

 if (!bChMaskEnabled) {
 for (ch = 0; ch < nChSetLLChannel; ch++) {
 RadiusDelta[ch] = ExtractBits(9);
 Theta[ch] = ExtractBits(9);
 Phi[ch] = ExtractBits(7);
 }
 }

25 per Ch

}
else{ // Case when bOne2OneMapChannels2Speakers=false. No downmixing is
 // allowed and each channel set is the primary channel set
 bPrimaryChSet = true;

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)125

Syntax Size (Bits)
 m_bDownmixCoeffCodeEmbedded = false;
 m_bHierChSet = true;
 m_nNumChPrevHierChSet = 0;
 m_nNumDwnMixCodeCoeffs = 0;
 bMappingCoeffsPresent = ExtractBits(1); 1
 if (bMappingCoeffsPresent){
 m_nBitsCh2SpkrCoef = ExtractBits(3);
 // Map 0->6, 1->8 , … 7->20
 m_nBitsCh2SpkrCoef =6+2*m_nBitsCh2SpkrCoef

3

 m_nNumSpeakerConfigs = ExtractBits(2)+ 1; 2
 nCofInd=0;
 for (nSpkrConf =0; nSpkrConf <nNumSpeakerConfigs; nSpkrConf ++){

 m_pnActiveChannelMask[nSpkrConf] = ExtractBits(nChSetLLChannel); nChSetLLChannel
 m_pnNumSpeakers[nSpkrConf] = ExtractBits(6)+ 1; 6
 bSpkrMaskEnabled = (ExtractBits(1)==1)? true:false; 1
 // Extract the mask
 if (bSpkrMaskEnabled)
 m_nSpkrMask[nSpkrConf]=ExtractBits(nBits4ChMask);

nBits4ChMask

 for (nSpkr=0; nSpkr<m_pnNumSpeakers[nSpkrConf]; nSpkr++){
 // Extract speaker locations in polar coordinates
 if (!bSpkrMaskEnabled){
 RadiusDelta[nSpkrConf][nCh] = ExtractBits(9);
 Theta[nSpkrConf][nCh] = ExtractBits(9);
 Phi[nSpkrConf][nCh] = ExtractBits(7);
 }

25 per speaker

 // Extract channel to speaker mapping
 // coefficients for each active channel
 for (nCh=0; nCh< nChSetLLChannel; nCh++){
 if (m_nActiveChannelMask[nSpkrConf]&(1<< nCh))
 m_pnCh2SpkrMapCoeff[nCofInd++] =
 ExtractBits(m_nBitsCh2SpkrCoef);
 }

m_nBitsCh2SpkrCoef
per active channel

 } // End speaker loop indexed by nSpkr
 } // End speaker configuration loop indexed by nSpkrConf
 } // if (bMappingCoeffsPresent)
} // End of bOne2OneMapChannels2Speakers=false case
// Extract the num of frequency bands
if (m_nFs > 96000) {
 bXtraFreqBands = ExtractBits(1);
 if (bXtraFreqBands == 1)
 m_nNumFreqBands = 4;
 else
 m_nNumFreqBands = 2;
}
else
 m_nNumFreqBands = 1;

1

// Unpack the pairwise channel decorrelation enable flag
// for Band 0

nBand = 0;
bPWChDecorEnabled[nBand] = ExtractBits(1);

1

// Unpack the original channel order
for (ncBits4ChOrder = 0, n = 1; n < m_nChSetLLChannel; ncBits4ChOrder++, n *=
2){
 NULL;
 }
if (bPWChDecorEnabled[nBand] == 1)
 {
 // Unpack the original channel order
 for (nCh = 0; nCh < m_nChSetLLChannel; nCh++)
 m_nOrigChanOrder[nBand][nCh] = ExtractBits(ncBits4ChOrder);
 }

Calculated

// The code for bChPFlag is embedded within nPWChPairsCoeffs below
// For nBand 0 unpack the channel pairwise flags and coefficients
if (bPWChDecorEnabled[nBand] == 1)
 for (nCh = 0; nCh < (m_nChSetLLChannel >> 1); nCh++) {
 bChPFlag[nBand] = ExtractBits(1);

1

 if (bChPFlag[nBand] == 1){
 nTmp = ExtractBits(7); // Unpack as unsigned
 // Map to signed
 m_anPWChPairsCoeffs[nBand][nCh] =
 (Tmp & 0x1) ? -(nTmp >> 1) - 1 : nTmp >> 1;
 }
 else
 // Zero out coefficients when channel decorrelation is disabled

7 per Ch pair
(Conditional)

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)126

Syntax Size (Bits)
 m_anPWChPairsCoeffs[nBand][nCh] = 0;
 }
// Unpack the optimal adaptive predictor order;
// one per channel on the frame basis, 0 indicates no prediction
m_nCurrHighestLPCOrder[nBand] = 0;
for (nCh = 0; nCh < m_nChSetLLChannel; nCh++)
 {
 m_pnAdaptPredOrder[nBand][nCh] = ExtractBits(4);
 m_nCurrHighestLPCOrder[nBand] =
 (m_pnAdaptPredOrder[nBand] [nCh] >
 m_nCurrHighestLPCOrder[nBand]) ? m_pnAdaptPredOrder[nBand] [nCh] :
 m_nCurrHighestLPCOrder[nBand];
 }

4 per Ch

// Unpack the optimal fixed predictor order per channel
// on the frame basis
// Only for channels where m_pnAdaptPredOrder[0][nCh]=0
// 0 indicates no prediction
for (nCh = 0; nCh < m_nChSetLLChannel; nCh++)
 {
 if (m_pnAdaptPredOrder[nCh] == 0)
 m_pnFixedPredOrder[0][nCh] = ExtractBits(2);
 else
 m_pnFixedPredOrder[0][nCh] = 0;
 }

2 per Ch
(Conditional)

// Unpack adaptive predictor quantized
// reflection coefficients
pnTemp = m_pnLPCReflCoeffsQInd[nBand];
for (nCh = 0; nCh < m_nChSetLLChannel; nCh++){
 for (n = 0; n < m_pnAdaptPredOrder[nBand][nCh]; n++){
 nTmp = ExtractBits(8); // Unpack as unsigned
 // Map to signed
 *pnTemp++ = (nTmp & 0x1) ? -(nTmp >> 1) - 1 : nTmp >> 1;
 }
 }

8 bits per coefficient

if (bScalableLSBs)
 nLSBFsize[0] = ExtractBits(nBits4SSize);

nBits4Ssize
(Conditional)

if (m_nBitWidth > 16)
 m_nBits4ABIT = 5;
else if (m_nBitWidth > 8)
 m_nBits4ABIT = 4;
else
 m_nBits4ABIT = 3; // for m_nBits4ABIT=5 case it has been taken care by
 // LSB/MSB spliting
if (nNumChSetsInFrame > 1 && m_nBits4ABIT < 5)
 m_nBits4ABIT += 1; // to take care of ES saturation
if (bScalableLSBs){
 for (nCh = 0; nCh < m_nChSetLLChannel; nCh++)
 m_pnScalableLSBs[0][nCh] = ExtractBits(4);
}
else {
 for (nCh = 0; nCh < m_nChSetLLChannel; nCh++)
 m_pnScalableLSBs[0][nCh] = 0;
}

4 per Ch
(Conditional)

if (bScalableLSBs){
 for (nCh = 0; nCh < m_nChSetLLChannel; nCh++)
 m_pnBitWidthAdjPerCh[0][nCh] = ExtractBits(4);
}
else {
 for (nCh = 0; nCh < m_nChSetLLChannel; nCh++)
 m_ pnBitWidthAdjPerCh [0][nCh] = 0;
}

4 per Ch (Conditional)

// Extract extra frequency band parameters
for (nBand = 1; nBand < m_nNumFreqBands; nBand++){
 // Unpack the pairwise channel decorrelation enable
 // flag for extension bands
 bPWChDecorEnabled[nBand] = ExtractBits(1);

1

 // Unpack the original channel order
 if (bPWChDecorEnabled[nBand] == 1){
 for (nCh = 0; nCh < m_nChSetLLChannel; nCh++)
 m_nOrigChanOrder[nBand][nCh]= ExtractBits(ncBits4ChOrder);
 }

Calculated

 // The code for bChPFlag is embedded within
 // nPWChPairsCoeffs below 1 per Ch pair

 // For an extension band unpack the channel pairwise
 // flags and if true the corresponding coefficients

7 per Ch pair
(Conditional)

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)127

Syntax Size (Bits)
 if (bPWChDecorEnabled[nBand] == 1){
 for (nCh = 0; nCh < (m_nChSetLLChannel >> 1); nCh++){
 bChPFlag[nBand] = ExtractBits(1);
 if (bChPFlag[nBand] == 1){
 nTmp = ExtractBits(7); // Unpack as unsigned
 m_anPWChPairsCoeffs[nBand][nCh] =
 (nTmp & 0x1) ? -(nTmp >> 1) - 1 : nTmp >> 1; // Map to signed
 }
 else
 // Zero out coefficients when channel decorrelation is disabled
 m_anPWChPairsCoeffs[nBand][nCh] = 0;
 }
 }
 // Unpack the optimal adaptive predictor order;
 // one per channel on the frame basis
 // 0 indicates no prediction
 m_nCurrHighestLPCOrder[nBand] = 0;
 for (nCh = 0; nCh < m_nChSetLLChannel; nCh++){
 m_pnAdaptPredOrder[nBand][nCh] = ExtractBits(4);
 m_nCurrHighestLPCOrder[nBand] =
 (m_pnAdaptPredOrder[nBand][nCh] > m_nCurrHighestLPCOrder[nBand]) ?
 m_pnAdaptPredOrder[nBand][nCh]:m_nCurrHighestLPCOrder[nBand];
 }

4 per Ch

 // Unpack the optimal fixed predictor order per
 // channel on the frame basis
 // Only for channels where m_pnAdaptPredOrder[nCh]=0
 // 0 indicates no prediction
 for (nCh = 0; nCh < m_nChSetLLChannel; nCh++){
 if (m_pnAdaptPredOrder[nBand][nCh] == 0)
 m_pnFixedPredOrder[nBand][nCh] = ExtractBits(2);
 else
 m_pnFixedPredOrder[nBand][nCh] = 0;
 }

2 per Ch
(Conditional)

 // Unpack adaptive predictor quantized
 // reflection coefficients
 pnTemp = m_pnLPCReflCoeffsQInd[nBand];
 for (nCh = 0; nCh < m_nChSetLLChannel; nCh++){
 for (n=0; n<m_pnAdaptPredOrder[nBand][nCh]; n++){
 nTmp = ExtractBits(8); // Unpack as unsigned
 *pnTemp++ = (nTmp & 0x1) ? -(nTmp >> 1) - 1 : nTmp >> 1;
 }
 }

8*
pnAdaptPredOrder[ch

] per Ch

 if (m_bDownmixEmbedded)
 m_bEmbDMixInExtBand[nBand] = ExtractBits(1); 1 (Conditional)

 m_bMSBLSBSplitEnInExtBands[nBand] = ExtractBits(1); 1 (Conditional)
 if (bMSBLSBSplitEnInExtBands[nBand])
 nLSBFsize[nBand] = ExtractBits(nBits4SSize);
 else
 nLSBFsize[nBand] = 0;

nBits4Ssize
(Conditional)

 if (bMSBLSBSplitEnInExtBands[nBand]){
 for (nCh = 0; nCh < m_nChSetLLChannel; nCh++)
 m_pnScalableLSBs[nBand][nCh] = ExtractBits(4);
 }
 else{
 for (nCh = 0; nCh < m_nChSetLLChannel; nCh++)
 m_pnScalableLSBs[nBand][nCh] = 0;
 }

4 per Ch
(Conditional)

 m_bFlagScalableResExtBand[nBand] = ExtractBits(1); 1
 if (m_bFlagScalableResExtBand[nBand]){
 for (nCh = 0; nCh < m_nChSetLLChannel; nCh++)
 m_pnBitWidthAdjPerCh[nBand][nCh] = ExtractBits(4);
 }
 else{
 for (nCh = 0; nCh < m_nChSetLLChannel; nCh++)
 m_pnBitWidthAdjPerCh[nBand][nCh] = 0;
 }

4 per Ch (Conditional)

} // End Extra frequency band loop
Reserved = ExtractBits(…); …
ByteAlign = ExtractBits(0 … 7); 0...7
nCRC16SubHeader = ExtractBits(16); 16

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)128

nChSetHeaderSize (Size of Channel Set Sub-header)

nChSetHeaderSize+1 is the size of the channel set sub-header in bytes. Use this to locate the sub-header of the next
channel set.

nChSetLLChannel (Number of Channels in Set)

This indicates the number of channels in the channel set.

nResidualChEncode (Residual Type)

This is an array of bits (one bit per encoded channel) indicating the nature of the residual signal that is encoded in each
of the encoded channels. For a particular encoded channel the value of corresponding bit in nResidualChEncode equal
to '0' indicates that the residual in that channel is obtained by subtracting the lossy decoded audio from the original
audio. For a particular encoded channel the value of corresponding bit in nResidualChEncode equal to '1' indicates that
the residual in that channel is the original audio. Bits in the array nResidualChEncode are ordered according to the
channel numbers where the highest channel number corresponds to the most significant bit.

nBitResolution (PCM Bit Resolution)

This expresses the original resolution of the PCM audio source as output by an A/D converter.

nBitWidth (Storage Unit Width)

This specifies the bit width of the storage media. For example, the PCM audio with nBitResolution=20 would be stored
in wav files with the nBitWidth equal to 24. In the lossless decoder, in order to recreate the wav file that matches the
original wav file, the decoded samples shall be shifted to the right by the amount equal to nBitWidth - nBitResolution.

sFreqIndex (original sampling frequency)

This is the sample rate of audio in a channel set. It corresponds to the resulting sampling frequency after interpolation
by the nFsInterpolate factor, on the encode side. The 4-bit sFreqIndex field is interpreted as described in Table 8-5.
Remember that certain extra fields are encountered in the data stream once the sample rate is greater than 96 kHz.

Table 8-5: sFreqIndex Sample Rate Decoding

sFreqIndex Sample Frequency (kHz)
0 8 000
1 16 000
2 32 000
3 64 000
4 128 000
5 22 050
6 44 100
7 88 200
8 176 400
9 352 800
10 12 000
11 24 000
12 48 000
13 96 000
14 192 000
15 384 000

nFsInterpolate (sampling frequency modifier)

This specifies the sampling rate interpolation factor of the original signal. The sampling rate adjustment when mixing
channel sets with different sampling rates, it specifies the interpolation factor applied to the original sampling
frequency. This 2-bit code (see Table 8-6) encodes the Mvalue or Interpolation factor applied to the original sampling
frequency.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)129

Table 8-6: Sampling Rate Interpolation

nFsInterpolate Mvalue
00 1
01 2
10 4
11 8

NReplacementSet

This is an indicator of which replacement set this set is a member of, (see Table 8-7). There is a maximum of 3
replacement sets.

Table 8-7: Replacement Set Association

nReplacementSet Association
00 Not a replacement
01 Member of set 1
10 Member of set 2
11 Member of set 3

bActiveReplaceSet (Default replacement set)

This is present only if nReplacementSet != 0. In particular, bActiveReplaceSet =true indicates that the current channel
set is the active channel set.

bPrimaryChSet

This is present only if bOne2OneMapChannels2Speakers is true. The bPrimaryChSet=true indicates that the set is a
primary channel set. The primary channel sets represent the subset of all encoded channels, i.e. it contains data for 5.1
audio or a stereo downmix.

bDownmixCoeffCodeEmbedded (Downmix coefficients present in stream)

This is present only if bOne2OneMapChannels2Speakers is true. It indicates whether a matrix of downmix coefficients
has been defined and is embedded in the stream.

bDownmixEmbedded (Downmix already performed by encoder)

This is present only if bOne2OneMapChannels2Speakers is true. If bDownmixCoeffEmbedded is set, then extract
bDownmixEmbedded. When bDownmixEmbedded=true this indicates to the decoder that on the encode side, audio in
the channels of the current channel set has been downmixed to channels in the lower channels sets indexed. After
decoding the current channel set, the above mentioned encoder downmix operation needs to be undone in the decoder.
If bDownmixEmbedded=false, the encoder did not perform the downmixing operation on the current channel.

nLLDownmixType

This is present only if bOne2OneMapChannels2Speakers is true. It indicates the downmix processing type for the
primary ChSet group. The downmix action is defined in Table 8-8.

Table 8-8: Downmix Type

nLLDownmixType Downmix primary ChSet group to
000 1/0
001 Lo/Ro
010 Lt/Rt
011 3/0
100 2/1
101 2/2
110 3/1
111 Unused

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)130

BHierChSet

This is present only if bOne2OneMapChannels2Speakers is true. It indicates whether the channel set is part of a
hierarchy.

DownmixCoeffs

This is present only if bOne2OneMapChannels2Speakers is true. If bDownmixCoefCodeEmbedded SetDownmix =
true, then extract nDownmixCoeffs. To extract the coefficients, the decoder needs to determine the number of downmix
coefficients (NDownmixCoeffs) by calculating the size of the NxM table of coefficients. N is defined as
nChSetLLChannel+1 rows, where the extra row represents the down scaling coefficients that prevent overflow.
Conversely, the number of columns M (the number of channels that the current channel set is mixed into) is determined
when the decoder decodes the channel set hierarchy down to the primary channel set.

Consider the case where there are 2 extended channel sets and 1 primary channel set (a total of 3 channel sets). When
the decoder is currently unpacking the downmix coefficients defined in the second extended channel set (4 channels), N
is 4+1=5. To determine M, the decoder shall traverse the channel set hierarchy and count the number of channels within
each channel set. Hence, there are 6 channels in the primary set and 2 channels in the first extended channel set.
Therefore M=8 and thus 5*8 coefficients.

When downmix coefficients are defined for the primary channel group, use the nLLDownmixType to determine M
(number of resultant fold down channels) and the total number of channels in the primary channel group to determine
N.

Coding of the downmix coefficients is described in clause C.9.

bChMaskEnabled (Channel Mask Enabled)

This is present only if bOne2OneMapChannels2Speakers is true. When set, it indicates that the channel set is using a
predefined channel mask. Otherwise a user specified polar coordinate speaker configuration is applied.

nChMask (Channel Mask for Set)

This is present only if bOne2OneMapChannels2Speakers is true. When bChMaskEnabled is set, this field indicates
which pre-defined channel positions apply. (See clause C.8 for details.)

ChSetSpeakerConfiguration (Angular Speaker Position Table)

This is present only if bOne2OneMapChannels2Speakers is true. If bChMaskEnabled==false, extract the
speaker/channel configuration for the channel set. Each speaker (or channel) location is expressed in spherical
coordinates (delta, theta, phi), where the origin is the location of the listener. The centre of each speaker is ideally
located on the surface of the sphere surrounding the listener. Differences in speaker radii are stored as deltas from this
imaginary spherical surface. The radius has a range [-510, 510] with resolution of 2 cm (9 bits). The angle theta is
expressed as [-180, 180] with a resolution of 1 degree (9 bits). The angle phi is [-90, 90] with a resolution of 2 degrees
(7 bits). The speakers each correspond to channels defined in the previous channel reference. After all objects have been
extracted, the master speaker configuration can be created. The first speaker in the channel set defines the spherical
surface and all other speakers have radii expressed as deltas relative to this first channel.

bMappingCoeffsPresent (Mapping Coefficient Present Flag)

The bMappingCoeffsPresent is present only if bOne2OneMapChannels2Speakers is false. When
bMappingCoeffsPresent is true, it indicates that channel-to-speaker mapping coefficients are present in the stream.

When the bOne2OneMapChannels2Speakers is false, the encoded channels carry the signals that describe the sound
field but are not necessarily the actual loudspeaker feeds. The actual loudspeaker feeds are derived on the decode side
using the channel-to-speaker mapping coefficients and possibly user-provided adjustment factors. For certain types of
representation, the channel-to-speaker mapping coefficients are not needed (i.e. Lh/Rh) or channel-to-speaker mapping

coefficients are provided by some other metadata fields (like mixing data for audio assets). In those cases, the parameter
bMappingCoeffsPresent may be set to false. Consequently no channel-to-speaker mapping coefficients and associated
bit fields will be present in the stream.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)131

nBitsCh2SpkrCoef

This is present only if bOne2OneMapChannels2Speakers is false and bMappingCoeffsPresent is true. This parameter
represents a code for a number of bits used to pack each channel-to-speaker mapping coefficient. The actual number of
bits is obtained from mapping:

 �_������ℎ2�	
���� = 6 + 2 ∗�_������ℎ2�	
����

nNumSpeakerConfigs (Number of Loudspeaker Configurations)

This is present only if bOne2OneMapChannels2Speakers is false and bMappingCoeffsPresent is true. Generally, the
signals that describe the sound field- and are transmitted in a stream as channels-may be used to create speaker feeds for
an arbitrary 3D speaker configuration. In some cases there exist exact mathematical relationships between the
coefficients for different loudspeaker configurations. However, the content creators may wish to perform small
adjustments to these relationships. In that case, it is beneficial to transmit separate sets of channel-to-speaker mapping
coefficients for different speaker configurations (e.g. one set for 5.1 and one set for 7.1). The parameter
nNumSpeakerConfigs indicates this number of different speaker configurations and consequently, the number of sets of
channel-to-speaker mapping coefficients.

pnActiveChannelMask (Active channel mask for current loudspeaker configuration)

This is present only if bOne2OneMapChannels2Speakers is false and bMappingCoeffsPresent is true. This bit mask
indicates the activity of each channel in the particular speaker configuration mapping. The least significant bit
corresponds to channel 0 and the most significant bit corresponds to channel nChSetLLChannel -1. For some speaker
configurations, not all of the encoded channel signals are used in channel-to-speaker mappings. For example, in
Ambisonic B-format there are four signals (W, X, Y and Z) that would be coded as four channels. The signal Z, in
particular, carries information about the sound field component along the z-axis in Cartesian coordinates. Therefore,
mapping to a standard 5.1 loudspeaker layout would not involve the Z channel. Consequently the mask would be 0111.

pnNumSpeakers

This is present only if bOne2OneMapChannels2Speakers is false and bMappingCoeffsPresent is true. This parameter
represents a number of speakers in a current loudspeaker configuration.

bSpkrMaskEnabled

This is present only if bOne2OneMapChannels2Speakers is false and bMappingCoeffsPresent is true.

Each of the nNumSpeakerConfigs speaker configurations, for which the channel-to-speaker mapping coefficients are
defined, may be described using either:

• the predefined loudspeaker mask (bSpkrMaskEnabled is true); or

• the speaker positions in polar coordinates (bSpkrMaskEnabled is false).

nSpkrMask (Speaker mask for current loudspeaker configuration)

This is present only if bOne2OneMapChannels2Speakers is false, bMappingCoeffsPresent is true and the
bSpkrMaskEnabled is true. It indicates which pre-defined loudspeaker positions define the current speaker
configuration. See clause C.8 for details. One of the available configurations shall be a standard 5.1 layout (C, L, R, Ls,
Rs, LFE1).

ChSetSpeakerConfiguration (Angular speaker position table for current loudspeaker configuration)

This is present only if bOne2OneMapChannels2Speakers is false and bMappingCoeffsPresent is true. If
bSpkrMaskEnabled is false, extract the speaker position for the current loudspeaker configuration. Coding of
loudspeaker location parameters is described in clause C.4.

pnCh2SpkrMapCoeff (Channel to loudspeaker mapping coefficients)

This is present only if bOne2OneMapChannels2Speakers is false and bMappingCoeffsPresent is true.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)132

The pnCh2SpkrMapCoeff represents the set of channel-to-speaker mapping coefficients, one for each speaker of each
loudspeaker configuration and for each active channel. Coefficients are represented as signed numbers in
Q3.(m_nBitsCh2SpkrCoef-4) fixed point format, i.e. the actual coefficients in range from -8 to 8 are related to the

transmitted coefficient pnCh2SpkrMapCoeff [n] as . The mapping equation for the

loudspeaker Sk and active channels Chj , j=0,1, …, M is as follows:

where the Coeffkj denotes the coefficient corresponding to the mapping from j-th active channel to the k-th loudspeaker

in the current loudspeaker configuration.

bXtraFreqBands (Indicates extra frequency bands when the sample rate is greater than 96 kHz)

If the sample frequency (m_nFs) is greater than 96 kHz, then this boolean flag exists and it indicates the number of
extra frequency bands present in the stream.

A value of '1' indicates that full bandwidth is preserved. In particular, the number of frequency bands that are present in
the stream (m_nNumFreqBands) is:

A value of '0' indicates that only one-half of the original bandwidth is preserved. In this case:

For sample frequencies below or equal to 96 kHz, this field is not present and the number of frequency bands is one by
default.

bPWChDecorEnabled[0] (Pairwise Channel Decorrelation for frequency band 0)

When this is set, one or more channel pairs have been processed with pairwise channel decorrelation. This type of
processing is performed separately for each frequency extension band.

nOrigChanOrder[0] (Original channel order for frequency band 0)

If bPWChDecorEnabled[0] is set, unpack the original channel order for each channel in the channel set. If
bPWChDecorEnabled[0] is set (at the encoder), the input channels have been grouped into pairs for the channel
decorrelation process. In this case the original channel order is included in the bit stream. After lossless residual
decoding, the original channel order shall be restored before either combining with the lossy output or outputting the
residual itself when no core is present. The width of this field is calculated based on examining the first bit set size of
nChSetLLChannel.

bChPFlag[0] (Channel pairwise flags in frequency band 0)

If bPWChDecorEnabled[0] is set, unpack the channel pairwise flags for each channel in the set. If bChPFlag is set, then
a coefficient is included in the stream.

nPWChPairsCoeffs[0] (Pairwise Channel Coefficients for frequency band 0)

If bChPFlag for channel is set, unpack the pairwise decorrelation coefficients for that channel. This coefficient should
be converted to a signed number and used to scale the source channel before adding the scaled version to the destination
channel.

pnAdaptPredOrder[0] (Adaptive predictor order in frequency band 0 for each channel)

This is an adaptive predictor order per channel. A zero indicates no prediction.

4) -2SpkrCoef(m_nBitsCh2

apCoeff[n]pnCh2SpkrM

=

=

⋅=
Mj

j

jkjk ChCoeffS

0

≤<
≤<

=
kHz 384 m_nFs kHz 192for 4

kHz 192 m_nFs kHz 96for 2
 Bandsm_nNumFreq

≤<
≤<

=
kHz 384 m_nFs kHz 192for 2

kHz 192 m_nFs kHz 96for 1
 Bandsm_nNumFreq

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)133

pnFixedPredOrder[0] (Fixed predictor order for frequency band 0)

This is a fixed predictor order per channel in frequency band 0. A zero indicates no prediction.

pnLPCReflCoeffsQInd[0] (Adaptive predictor quantized reflection coefficients in frequency band 0)

This is present only if the adaptive prediction order is not zero.

nLSBFsize[0] (Size of the LSB section in any segment of frequency band 0)

When bScalableLSBs is set, the size of the LSB data, which is the same in all segments of frequency band 0, will be
present in the stream. Since the size of the entire channel set in a particular segment of frequency band 0 is already
defined in the NAVI table, the difference will indicate the size of the MSB section for that segment.

pnScalableLSBs[0] (Number of bits used to represent the samples in LSB part of frequency band 0; one per
channel)

If bScalableLSBs is set, extract the pnScalableLSBs[0][nCh] for each channel nCh in a channel set. This is the number
of bits used for representing the samples in LSB part of frequency band 0 in channel nCh.

pnBitWidthAdjPerCh[0] (Number of bits discarded by authoring in frequency band 0)

This is the number of bits that an authoring tool discarded from the frequency band 0 for bit rate management. If
bScalableLSBs is set, extract pnBitWidthAdjPerCh for each channel in the channel set. Normally, in the encoded
master, this field has value 0. After bit rate management, this value is used to pad out the decoded audio to ensure the
number formats of all decoded audio are alike before downmix reversal.

bPWChDecorEnabled[nBand] (Pairwise Channel Decorrelation for frequency extension band nBand)

This is present only when m_nNumFreqBands>1. When set for a particular frequency extension band, one or more
channel pairs have been processed with pairwise channel decorrelation. This type of processing is performed separately
for each frequency extension band.

nOrigChanOrder[nBand] (Original channel order for extension frequency band)

If bPWChDecorEnabled[nBand] is set, unpack the original channel order for each channel in the channel set. If
bPWChDecorEnabled[nBand] is set (at the encoder), the input channels have been grouped into pairs for the channel
decorrelation process. In this case the original channel order is included in the bit stream. After lossless residual
decoding, the original channel order shall be restored before either combining with the lossy output or outputting the
residual itself when no core is present. The width of this field is calculated based on examining the first bit set size of
nChSetLLChannel.

bChPFlag[nBand] (Channel pairwise flags in frequency extension band nBand)

When the m_nNumFreqBands>1 and when the bPWChDecorEnabled[nBand] is set, unpack the channel pairwise flags
for each channel in the set.

nPWChPairsCoeffs[nBand] (Pairwise Channel Coefficients for frequency extension band nBand)

When the m_nNumFreqBands>1 and when bChPFlag[nBand[nCh] for channel nCh is set, unpack the pairwise
decorrelation coefficients for that channel. This coefficient should be converted to a signed number and used to scale
the source channel before adding the scaled version to the destination channel.

pnAdaptPredOrder[nBand] (Adaptive predictor order for extra frequency band nBand)

This is present only when m_nNumFreqBands>1. It indicates the adaptive predictor order per channel. A zero indicates
no prediction.

pnFixedPredOrder[nBand] (Fixed predictor order for extra frequency band nBand)

This is present only when m_nNumFreqBands>1 and the pnAdaptPredOrder[nBand][nCh]=0. It indicates the fixed
predictor order per channel nCh in extra frequency band nBand. A zero indicates no prediction.

pnLPCReflCoeffsQInd[nBand] (Adaptive predictor quantized reflection coefficients in extra frequency band
nBand)

This is present only if the adaptive prediction order is not zero.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)134

bEmbDMixInExtBand[nBand] (MSB/LSB split flag in extension frequency band)

This is present only when the m_nNumFreqBands>1 and the bDownmixEmbedded is true. When the
bEmbDMixInExtBand[nBand] is true, it indicates that the embedded downmix has been performed in frequency band
nBand. If bEmbDMixInExtBand is false for all extension frequency bands, then the downmix is embedded only in
frequency band 0 and the samples in extension frequency bands are scaled accordingly.

bMSBLSBSplitEnInExtBands[nBand] (MSB/LSB split flag in extension frequency band)

This is present only when the m_nNumFreqBands>1 and it indicates whether the MSB/LSB split has been performed in
frequency band nBand.

nLSBFsize[nBand] (Size of the LSB section in extension frequency band nBand)

This is present only when the bMSBLSBSplitEnInExtBands[nBand] is true and it indicates the size of the LSB data,
which is the same in all segments of one frequency band. Since the size of the entire channel set in a particular segment
of a frequency band (indexed by nBand) is already defined in the NAVI table, the difference will indicate the size of the
MSB section in a particular segment of the nBand-th frequency band.

pnScalableLSBs[nBand] (Number of bits used to represent the samples in LSB part of frequency band nBand;
one per channel)

If bMSBLSBSplitEnInExtBands[nBand] is true, extract the pnScalableLSBs[nBand][nCh] for each channel nCh in a
channel set. This is the number of bits used for representing the samples in the LSB part of frequency band nBand in
channel nCh.

bFlagScalableResExtBand[nBand] (Scalable Resolution in Extension Band Enable Flag)

When the m_nNumFreqBands>1 and when the bFlagScalableResExtBand is set, the reduction of bit width of extension
band data may be performed during the authoring process in order to reduce the bit rate requirements.

pnBitWidthAdjPerCh[nBand] (Number of bits discarded by authoring in extra frequency band nBand)

This field is present only in the case when m_nNumFreqBands>1 and bFlagScalableResExtBand[nBand] is true. This is
the count of the number of bits that an authoring tool discarded for bit-rate management from the extra frequency band
nBand. Notice that unlike the case of frequency band 0, where the bit width reduction is only allowed in the LSB part of
the data, the bit width reduction of extension frequency band data may occur in LSB as well as the MSB parts.
Consequently, in extension frequency bands the bit-rate management may be performed even when the MSB/LSB split
is not enabled (bFlagScalableResExtBand[nBand] is false).

For each extra frequency band (nBand), read pnBitWidthAdjPerCh[nBand] for each channel in the channel set.
Normally, in the encoded master this field has value 0. After bit-rate management, this value is used to pad out the
decoded audio to ensure the number formats of all decoded frequency bands are alike before final filter bank
interpolation.

Reserved (Reserved)

This is reserved for supplemental channel set header information. The decoder shall assume that this field is present and
of unspecified duration. Therefore in order to continue unpacking, the stream decoder shall skip over this field using the
channel set header start pointer and the channel set header size nChSetHeaderSize.

nCRC16SubHeader (CRC16 of channel set sub-header)

This is the CRC16 of the entire channel set header from positions nChSetHeaderFSize to ByteAlign inclusive.

8.3.3 Navigation Index Table

The navigation index table, or NAVI, is comprised of the sizes of individual frequency bands. It is described in more
detail in clause 8.4.2.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)135

8.3.4 Frequency Bands

Table 8-9 details the composition of the frequency bands.

Table 8-9: Frequency Bands

Syntax Size (Bits)
FreqBandData = ExtractBits(var); Var
ByteAlign = ExtractBits(0 … 7); 0...7

FreqBandData (Frequency Band Data)

This contains the frequency band data.

8.4 Lossless Stream Synchronization & Navigation

8.4.1 Overview of XLL Navigation

Intrinsic features of the DTSXLL stream format are its synchronization, navigation, error handling and recovery
abilities. The following issues are addressed:

• Navigation Index

• Stream Navigation

• Error Detection

• Error Resilience

8.4.2 Navigation Index

The navigation index (NAVI) depicted in Figure 8-4 contains the size of each of the individual components contained in
the lossless stream. The number of entries in the NAVI table is determined by the number of frequency bands, the
number of segments and the number of channel sets. Also note that NOT all channel sets will have components for all
frequency bands. As a result, the number of frequency bands designated for each channel set sub-header should be used
in the calculation of the overall number of entries. Additionally the nBits4Ssize field globally determines the bit width
of each individual entry in the index.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)136

Figure 8-4: Navigation Index

Since the NAVI data is essential to reliable decoding of the frame and error recovery, the data is protected by a CRC16
checksum. It is easy to see that random access to any point in the stream can be achieved by the summation of prior
entries in the index. For example, pseudo-code to illustrate the index packing order is given below.

M = number_of_segments;
N = number_of_channelsets;
P = number_of_frequency_bands;

for (Band=0; Band<P; Band++){
 BandSize[Band]=0;
 for(Seg=0;Seg<M;Seg++){
 SegmentSize[Band][Seg]=ExtractBits(nBits4Ssize);
 for(ChSET=0; ChSET<N; ChSET++){
 if (GetNumFreqBand4ChSet[ChSET] > Band){
 BandChSetSize[Band][Seg][ChSET]=ExtractBits(nBits4Ssize)+1;
 SegmentSize[Band][Seg] += BandChSetSize[Band][Seg][ChSET];
 }

NAVI Chunk

NAVI ChSet0 NAVI ChSetN-1

CRC16

Band0:Segment0:
ChSet0
 FSIZE

Band0:Segment0:
ChSetN-1

 FSIZE

Shaded blocks indicate
Stored values

S
Y
N
C

HEADER

...
SUB-

HEADER
ChSET0

Common
SUB-

HEADER
ChSET(N-1)

NAVI

Byte Aligned

Frequency
Band 0

NAVI
Segment 0

NAVI
Segment

M-1
...

Frequency
Band K-1

NAVI
Segment 0

NAVI
Segment

M-1
...

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)137

 }
 BandSize[Band] += SegmentSize[Band][Seg];
 }
}
// Re-align bit pointer to byte position
bitptr = next_byte_position_in_stream();
Checksum = ExtractBits(16);

The NAVI CRC16 is computed for all data expressed in the listing above, inclusive of any byte alignment fields. When
byte alignment is applied, the value inserted in the stream shall be zero.

8.4.3 Stream Navigation

Navigation to the checksums in both the header and channel set sub header is achieved by reading the size and
subtracting the width of the checksum field. After offsetting the pointer from the present position, the checksum field is
then immediately found.

Navigation to the start position of the first segment in the frame is obtained by summing the size of the header, the size
of each channel set sub-header and the computed size of the NAVI table.

At the segment level, all channel sets are packed in numerically-increasing sequential order. For instance, the first
channel set in the segment is the primary channel set (5.1) and the second set in the segment contains the extended
channel (ES) set.

Navigation from one frequency band to the next sequential frequency band is achieved by computing the sum of all
bands (or all segments) within the current frequency band and advancing by this offset to the next frequency band.

Navigation from one segment of a frequency band to the next sequential segment in the same frequency band is
achieved by computing the sum of all bands for all channel sets in the present segment set and advancing by this offset
to the next segment.

Navigation from one packed channel set to the next sequential channel set in the same frequency band and segment is
achieved by using the band size of the current channel set and advancing by this offset to the next channel set.

Navigation within a band to the start of an LSB band data is achieved by subtracting the LSB band size located in the
channel set sub-header from the frequency band size indicated in the navigation index.

8.4.4 Error Detection

Checksums are the principle mode for verifying that data is intact. Error detection is assisted by the presence of CRC
fields at key points within the lossless data stream. The CRC fields validate the data just read, but they also play a
significant role in verifying that the stream synchronization is correct. The checksum of the headers is handled as
described below. Note that when a checksum is included in the validation check, the result is zero.

The common headers, channel set sub-header and NAVI table are protected by performing a CRC16 checksum
generation across all the header data, inclusive of byte alignment. When the checksum is included as part of the
evaluation range, the output from the CRC16 detection algorithm will be zero if no fault condition is present. Any
non-zero value indicates a fault.

The frequency bands can be checked for errors in two ways:

• First, by ensuring that-after unpacking-the bit position travelled expressed as a whole number of bytes
correlates with the band size extracted from NAVI; and/or

• Second, by computing a CRC16 for the entire frequency band data and comparing with an optional stored
CRC16 checksum. This checksum when flagged by nBandDataCRCEn could be positioned in the frequency
band data at one of three locations:

1) the end of MSB0;

2) the end of MSB0 and at end of LSB0; or

3) the end of MSB0 and at end of LSB0 and at the end of bands 1, 2 and 3, where they exist.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)138

Each frequency band terminates on a byte boundary and is zero padded until this condition is met. The optional
checksum (CRC16) may then be placed at this position. The value stored in the NAVI table will be representative of the
size for all frequency band data and byte alignments and will indicate whether the checksum is present or not.

8.4.5 Error Resilience

When an error condition has occurred, the decoder behaviour shall be according to Table 8-10 for the fault conditions
listed.

Table 8-10: Error Handling

Fault Solution
Header is corrupt Advance to the next frame by returning to sync detection
Any channel set header is corrupt Advance to the next frame by returning to sync detection
NAVI is corrupt Advance to the next frame by returning to sync detection
Invalid entry in any header field Advance to the next frame by returning to sync detection

1st frequency band data is corrupt
Advance to next segment if possible. Otherwise, advance to the
next frame

2nd frequency band data is corrupt Render the 1st frequency band and zero all subsequent
frequency band data

3rd frequency band data is corrupt
Render the 1st and 2nd frequency bands and zero all
subsequent frequency band data

4th frequency band data is corrupt Render the 1st, 2nd and 3rd frequency bands and zero the 4th
frequency band data

Any other fault condition Advance to the next frame by returning to sync detection

8.5 Lossless Stream Decoding

8.5.1 Overview of Lossless Decoding

The data stream input to the decoder consists of both lossy (core) and lossless content. If the stream contains both lossy
and lossless components, a core decoder will decode only the lossy part, whereas a lossless decoder will reconstruct the
residual signal and combine it with the lossy part before output. If the stream does not contain a backward-compatible
lossy stream, then only the lossless decoder will be active.

There can be additional frequency band data that contain information for increasing the sample rate. The total number
of frequency bands is deduced from the field bXtraFreqBands, which is only present in the channel set sub-header when
sFreqIndex is greater than 96 kHz. When this field is set, it will indicate that the total number of frequency bands
(m_nNumFreqBands) is:

Otherwise, if clear, it indicates that the total number of frequency bands is:

The following diagram illustrates how to unpack frequency band 0 data.

A decoder capable of decoding the lossless extension (Figure 8-5) will perform the following tasks:

• Unpack frequency band 0 data - stream parsing.

• Inverse fixed prediction - linear signal reconstruction.

• Inverse adaptive prediction - adaptive signal reconstruction.

• Inverse pairwise channel de-correlation - scaling and reordering of channels.

≤<
≤<

=
kHz 384 m_nFs kHz 192for 4

kHz 192 m_nFs kHz 96for 2
 Bandsm_nNumFreq

≤<
≤<

=
kHz 384 m_nFs kHz 192for 2

kHz 192 m_nFs kHz 96for 1
 Bandsm_nNumFreq

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)139

• Reconstruct PCM samples - summation of core and lossless samples.

Figure 8-5: DTS Lossless Decoder

8.5.2 Band Data

8.5.2.1 General Information About Band Data

By default, the first band in a channel set contains the encoded data for sampling frequencies less than or equal to
96 kHz.

There are two types of data packing, as indicated by ncSegtype:

• Type 0, for which the coding parameters (bit allocation, etc.) are unique for each channel in the frequency
band. The block of Rice code flags for each channel in the channel set comes first. The block of corresponding
coding parameters for each channel in the channel set comes next. This is followed by the block of entropy
codes for all residual samples in the segment for all channels of the channel set.

• Type 1, for which all channels in the frequency band use a common set of coding parameters. The Type 1
segment is unpacked in a similar way to Type 0, except that for all channels in the channel set, a common Rice
code flag and the common ABIT value(s) appear in the stream before the block of entropy codes.

Regardless of the data packing type, the data in segment 0 is further sub-divided into two parts:

• Part 1 - Start of PCM.

• Part 2 - ADPCM.

Parse

XLL Extension

Core

Lossless
PCM

Reconstructed
Residual

PCM Error

DTS
Encoded
Lossless
Stream

Reconstruct
PCM

Samples

Unpack Frame

Inverse Fixed
Prediction

Inverse Adaptive
Prediction

Inverse Joint
Channel

Decorrelation

Core Decoder

Core
PCM

Lo
ss

le
ss

 E
xt

en
si

on
 D

ec
od

er

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)140

To ensure that frames can be edited independently, ADPCM history is not carried between the frames. Instead, at the
beginning of each frame (in the Part 1 section of segment 0), adaptive prediction is disabled and re-enabled only after a
sufficient number of PCM samples are available for initialization of the predictor's delay line. The prediction residuals
obtained after enabling adaptive prediction constitute the Part 2 section. Only segment 0 is permitted to have both Part 1
and Part 2 sections. All other segments shall be entirely comprised of Part 2 data. The number of samples in Part 1 is
dependent on the order of the adaptive predictor that is used in each particular channel and the segment type
(ncSegtype). In particular, the number of samples in Part 1 of segment 0 is determined as follows:

• ncSegtype = 0; pnAdaptPredOrder[nCh] for nCh=0,… nChSetLLChannel;

• ncSegtype = 1; m_nCurrHighestLPCOrder for all channels in the current channel set;

where nCurrHighestLPCOrder denotes the highest ADPCM order among all the channels of the current channel set.

8.5.2.2 Unpacking Frequency Band Data

The data in all bands is packed according to the same stream syntax.

The following flowcharts and code detail the syntax of the band data whose composition dynamically varies as the data
is read.

The band data can consist of four formats:

• Linear-encoded MSBs.

• RICE-encoded MSBs.

• "Hybrid" RICE-encoded MSBs.

• Linear-encoded LSBs.

The following pseudo-code illustrates this procedure:

// Start unpacking MSB portion of segment
if (nSeg != 0)
 bUseSegStateCodeParm = (ExtractBits(1) == 1) ? true : false;
// Unpack segment type:
// - 0 --> implies use of distinct coding parameter for each channel
// - 1 --> implies use of common coding parameter for all channel
if (! bUseSegStateCodeParm)
 m_ncSegType = ExtractBits(1);
// Determine num of coding parameter sets encoded in segment
// For segment type == 0, distinct coding parameter for each channel
// For segment type == 1, same coding parameter for all channel
nNumParmSets = (m_ncSegType == 0) ? m_nChSetLLChannel : 1;

if (! bUseSegStateCodeParm)
{
// Allocate resources to store coding parameters
 ReallocCodingParm(nNumParmSets);
 // Unpack Rice coding flag false->linear code; true-> Rice code
 for (nParmIndex = 0; nParmIndex < nNumParmSets; nParmIndex++){
 m_pabRiceCodeFlag[nParmIndex] = (ExtractBits(1) == 1) ? true : false;
 if (m_ncSegType==0 && m_pabRiceCodeFlag[nParmIndex]==true){
 // Unpack Hybrid Rice coding flag 0->Rice code; 1-> Hybrid Rice code
 if (ExtractBits(1) == 1)
 // Unpack binary code length for isolated max samples in Hybrid Rice coding
 m_pancAuxABIT[nParmIndex] = ExtractBits(m_nBits4ABIT)+1;
 else
 m_pancAuxABIT[nParmIndex] = 0; // 0 indicates no Hybrid Rice coding
 }
 }
 // Unpack coding parameter
 for (nParmIndex = 0; nParmIndex < nNumParmSets; nParmIndex++)
 {
 if (nSeg==0)
 {
 // Unpack coding parameter for part 1 of segment 0
 m_pancABIT0[nParmIndex] = ExtractBits(m_nBits4ABIT);
 if (m_pabRiceCodeFlag[nParmIndex]==false) // Adjustement for the linear code
 m_pancABIT0[nParmIndex] = (m_pancABIT0[nParmIndex]==0) ? 0 : m_pancABIT0[nParmIndex]+1;
 if (m_ncSegType == 0)

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)141

 m_panSamplPart0[nParmIndex] = m_pnAdaptPredOrder[nParmIndex];
 else
 m_panSamplPart0[nParmIndex] = m_nCurrHighestLPCOrder;
 }
 else
 m_panSamplPart0[nParmIndex] = 0;

 // Unpack coding parameter for part 2 of segment
 m_pancABIT[nParmIndex] = ExtractBits(m_nBits4ABIT);
 if (m_pabRiceCodeFlag[nParmIndex]==false) // Adjust for the linear code
 m_pancABIT[nParmIndex] = (m_pancABIT[nParmIndex]==0) ? 0 : m_pancABIT[nParmIndex]+1;
 }
} // ! bUseSegStateCodeParm

NOTE: For linear encoding, any non-zero ABIT code is incremented by one.

After the RICE coding flags and the corresponding coding parameters (ABIT) have been unpacked, the remainder of
the data is unpacked. This is described in clauses 8.5.2.3 and 8.5.2.5 of the present document.

After unpacking and byte alignment, the position of the bit pointer in bytes shall equal the data section Fsize-1.

8.5.2.3 Entropy Codes Unpacking and Decoding

For each channel, a RICE code flag, a sample bit allocation and residual entropy codes are extracted from the stream.
The entropy codes are either binary or RICE codes. Furthermore RICE codes may be either 'Straight' RICE codes
(referred to as RICE codes) or 'Hybrid' RICE codes.

The RICE code consists of a variable length unary part (all '0') followed by the stop '1' bit and followed by a binary part
of length m_pancABIT[nParmIndex].

The 'Hybrid' RICE coding is employed to guarantee an upper bound (nBits4SamplLoci +
m_pancAuxABIT[nParmIndex]) on the length of the unary part of RICE codes. In case of 'Hybrid' RICE codes, some
samples are isolated and coded as linear codes of length m_pancAuxABIT[nParmIndex], while the remaining samples
are coded as RICE codes. The number and the location index of isolated samples are transmitted in the stream
immediately before the residual entropy codes. The residual buffer is initialized to '1' at all locations of isolated samples
and to '0' at all remaining locations. This initial state of residual buffer ('0' or '1') is used to indicate the type of
extraction that needs to be performed for each residual sample. The two types of extraction are:

• '1' implies extraction of linear code of length m_pancAuxABIT[nParmIndex]; and

• '0' implies extraction of RICE code with coding parameter equal to m_pancABIT[nParmIndex]).

The 'Hybrid' RICE codes can only exist in segments with m_ncSegType = 0. More details about the RICE codes may be
found in clause C.8.

The corresponding code is:

// Unpack Entropy codes
for (nCh=0; nCh<m_nChSetLLChannel; nCh++){
 pResBuffer = pnInputBuffer[nCh] + m_nSamplFrameIndex;
 // For segment type == 0, distinct coding parameter for each channel
 // For segment type == 1, same coding parameter for all channel
 nParmIndex = (m_ncSegType==0) ? nCh : 0;

 if (m_pabRiceCodeFlag[nParmIndex] == false){
 // ========================== Linear Code =================================
 if (m_pancABIT0[nParmIndex]>0){
 //=========== Unpack all residuals in one channel of part one of segment 0
 for (n=0; n<m_panSamplPart0[nParmIndex]; n++){
 nTmp = ExtractBits(m_pancABIT0[nParmIndex]); // Unpack as unsigned
 // Map to signed
 *pResBuffer++ = (nTmp & 0x1) ? -(nTmp>>1)-1 : nTmp>>1;
 }
 }
 else{
 for (n=0; n<m_panSamplPart0[nParmIndex]; n++)
 *pResBuffer++ = 0;
 }
 if (m_pancABIT[nParmIndex]>0){
 // Unpack all residuals in one channel of part 2 of segment 0 and all other segments
 for (n=0; n<m_nSmplInSeg-m_panSamplPart0[nParmIndex]; n++){

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)142

 nTmp = ExtractBits(m_pancABIT[nParmIndex]); // Unpack as unsigned
 // Map to signed
 pResBuffer[n] = (nTmp & 0x1) ? -(nTmp>>1)-1 : nTmp>>1;
 }
 }
 else{
 for (n=0; n<m_nSmplInSeg-m_panSamplPart0[nParmIndex]; n++)
 pResBuffer[n] = 0;
 }
 }
 else{ // ======================Rice code ==================================
 // ============ Unpack all residuals in one channel of part 1 of segment 0
 if (m_pancABIT0[nParmIndex]>0){
 for (n=0; n<m_panSamplPart0[nParmIndex]; n++){
 ExtractUnary(nuTmp); // Extract the unary part
 // Extract the binary part and assemble the unsigned word
 nuTmp = (nuTmp<<m_pancABIT0[nParmIndex]) | ExtractBits(m_pancABIT0[nParmIndex]);
 // Map to signed
 *pResBuffer++ = (nuTmp & 0x1) ? -((int)(nuTmp>>1))-1 : nuTmp>>1;
 }
 }
 else{
 // For k=0 there is only unary code plus the stop bit
 for (n=0; n<m_panSamplPart0[nParmIndex]; n++){
 ExtractUnary(nuTmp); // Extract the unary part
 // Assemble the Signed word
 // Map to signed
 *pResBuffer++ = (nuTmp & 0x1) ? -((int)(nuTmp>>1))-1 : nuTmp>>1;
 }
 } // end ncABIT0 condition
 // Set all locations to 0
 memset(pResBuffer,0,sizeof(int)*m_nSmplInSeg-m_panSamplPart0[nParmIndex]);
 // Unpack the number of isolated max samples when Hybrid Rice coding
 if (m_pancAuxABIT[nParmIndex]>0){
 nCountIsMax = ExtractBits(nBits4SamplLoci);
 for (n=0; n<nCountIsMax; n++){
 // Extract the location of isolated max samples and
 // flag the location by 1
 pResBuffer[ExtractBits(nBits4SamplLoci)] = 1;
 }
 }

 // Unpack all residuals in one channel of part 2 of segment 0 and all other segments
 if (m_pancABIT[nParmIndex]>0){
 for (n=0; n<m_nSmplInSeg-m_panSamplPart0[nParmIndex]; n++){
 if (pResBuffer[n]==0){
 // Pure Rice
 ExtractUnary(nuTmp); // Extract the unary part
 // Extract the binary part and assemble the unsigned word
 nuTmp = (nuTmp<<m_pancABIT[nParmIndex]) | ExtractBits(m_pancABIT[nParmIndex]);
 }
 else
 // Isolated max binary coded;
 nuTmp = ExtractBits(m_pancAuxABIT[nParmIndex]);

 // Map to signed
 pResBuffer[n] = (nuTmp & 0x1) ? -((int)(nuTmp>>1))-1 : nuTmp>>1;
 }
 }
 else{
 // Unpack all residuals in one channel of current segment
 // For k=0 there is only unary code plus the stop bit
 for (n=0; n<m_nSmplInSeg-m_panSamplPart0[nParmIndex]; n++){
 if (pResBuffer[n]==0){
 // Pure Rice
 ExtractUnary(nuTmp); // Extract the unary part
 }
 else
 // Isolated max binary coded;
 nuTmp = ExtractBits(m_pancAuxABIT[nParmIndex]);
 // Map to signed
 pResBuffer[n] = (nuTmp & 0x1) ? -((int)(nuTmp>>1))-1 : nuTmp>>1;
 }
 } // end ncABIT condition
 } // end bRiceCodeFlag condition
}

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)143

If the Rice code flag is false, indicating the use of linear codes and the ABIT allocation is zero, then the residual
samples are all zero and the decoder should fill the unpacked array with zeroes. In the case of linear codes that have a
non-zero ABIT(s) allocation, the ABIT value is incremented by 1 to accommodate the sign bit of residual that is located
at the least significant bit and which is removed prior to sign conversion. The linear-encoded residuals should be
extracted using the adjusted bit allocation and converted to a signed value using:

*pResBuffer++= (nTmp) & 01) ? -(nTmp>>1) - 1 : (nTmp>>1)

Each RICE-encoded residual contains a unary part and a binary part that are extracted separately before combining. For
zero bit allocation, the code consists of only the unary part and is extracted by finding the number of zeros preceding
the stop bit (1).

The remainder of the RICE code, the binary part, is extracted using ABIT and is converted to a signed value in the same
way as the linearly coded residuals. Both unary and binary parts are then combined by shifting the unary part left by
(ABIT) places before performing a bit wise logical 'OR' with the binary part.

8.5.2.4 Decimator History Unpacking

Within the MSB data for the first segment of frequency bands 1 and 3, a set of decimator frequency band history
coefficients shall be extracted after unpacking the entropy codes.

// Unpack decimator history
if (nSeg == 0 && (nFreqBand==1 || nFreqBand==3))
{
 int nNumBitsForHistSampl;
 nNumBitsForHistSampl = ExtractBits(5)+1; // Unpack m_unNumBitsFBTxHistSamples

for (nCh=0; nCh<m_nChSetLLChannel; nCh++)
 {
 for(n=0;n<7;n++)
 pnDeciHistoryFreqBand[nCh][n] = ExtractBits(nNumBitsForHistSampl);
 }
}

The value of nNumBitsForHistSampl will always be 32 bits.

8.5.2.5 LSB Residual Unpacking

If FlagScalableLSBs is set, the LSB part of residuals shall also be extracted. The beginning of the LSB data can be
found at:

LSB_Start = Start of current channel set in current frequency band + BandChSetSize[Band][Seg][ChSET] -
nLSBFsize[nBand].

If channel sets CRCs are embedded, then LSB_Start is reduced by the width of the checksum field.

The parameter nLSBFsize[nBand] is the same size for all segments of frequency band nBand and it is obtained from the
transmitted parameter in a channel set's sub header.

The LSB part is linearly coded and should be extracted using the corresponding bit allocation
(pnScalableLSB[nBand][ch]) for all segments of frequency band nBand in the current frame. The remaining LSB
residuals are simply unpacked as linear codes.

8.5.3 Fixed Coefficient Prediction

The inverse fixed coefficient prediction process, on the decode side, is defined by an order recursive formula for the
calculation of kth order residual at sampling instance n:

where the desired original signal s[n] is given by:

[] [] []11 −+= + nenene kkk

[] []nens 0=

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)144

and where for each kth order residual ek[-1] = 0.

In the following example, recursions for the 3rd order fixed coefficient prediction, where the residuals are coded,

are transmitted in the stream and unpacked on the decode side:

The following code demonstrates inverse fixed prediction in the frequency band nBand.

for (nCh=0; nCh<m_nNumCh; nCh++){

 // for m_pnFixedPredOrder[nBand][nCh]=0 e0=input sample
 if (m_pnFixedPredOrder[nBand][nCh]>0){
 // Zero out channel working buffer
 memset(&pnWorkResBuffer[0], 0, SIZE_WORK_RES_BUFFER*sizeof(int));
 pnInTemp = pnInputBuffer[nCh];
 for (n=0; n<m_nFrmSize; n++){
 pnBuffTemp = pnWorkResBuffer;
 *pnBuffTemp = pnInTemp[n]; // load residual
 for (nOrd=0; nOrd< m_pnFixedPredOrder[nBand][nCh]; nOrd++){
 // Calculate the ek[n] = ek+1[n] + ek[n-1]
 pnBuffTemp[2] = pnBuffTemp[0] + pnBuffTemp[1];
 // Save the current residuals for the next sample iteration
 pnBuffTemp[1] = pnBuffTemp[2];
 pnBuffTemp += 2;
 }
 // Save the regenerated sample
 pnInTemp[n] = *pnBuffTemp;
 } // end sample loop in the frame
 } // end if (m_pnFixedPredOrder[nBand][nCh]>0)
} // end channel loop

8.5.4 Inverse Adaptive Prediction on the Decode Side

The block diagram in Figure 8-6 depicts the inverse adaptive prediction process on the decoder side.

The first step in performing inverse adaptive prediction is to extract adaptive prediction orders PrOr[Ch] for each
channel Ch=1, … NumCh. Next, for the channels with PrOr[Ch]>0, the unsigned version of linear area ratios
(LAR) quantization indices (PackLARInd[n] for n=1, … PrOr[Ch]) are extracted. For each channel Ch with
prediction order PrOr[Ch]>0, the unsigned PackLARInd[n] are mapped to the signed values QLARInd[n] using
the following mapping:

where the >> denotes an integer right shift operation.

[]ne3

[] [] []1232 −+= nenene

[] [] []1121 −+= nenene

[] [] []1010 −+= nenene

[] []nens 0=

][Pr...,,1

][1)1][(

][1][
][

ChOrnfor

nPackLARIndnumberedoddnPackLARInd

nPackLARIndnumberedevennPackLARInd
nQLARInd

=

∀−>>−
∀>>

=

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)145

Figure 8-6: Inverse Adaptive Prediction

In the 'Table Look-up of quantized RC' block, an inverse quantization of LAR parameters and a translation to reflection
coefficient (RC) parameters is done in a single step using a look-up table TABLE{} defined as:

TABLE ={0, 3070, 5110, 7140, 9156, 11154, 13132, 15085, 17010,
 18904, 20764, 22588, 24373, 26117, 27818, 29474, 31085, 32648,
 34164, 35631, 37049, 38418, 39738, 41008, 42230, 43404, 44530,
 45609, 46642, 47630, 48575, 49477, 50337, 51157, 51937, 52681,
 53387, 54059, 54697, 55302, 55876, 56421, 56937, 57426, 57888,
 58326, 58741, 59132, 59502, 59852, 60182, 60494, 60789, 61066,
 61328, 61576, 61809, 62029, 62236, 62431, 62615, 62788, 62951,
 63105, 63250, 63386, 63514, 63635, 63749, 63855, 63956, 64051,
 64140, 64224, 64302, 64376, 64446, 64512, 64573, 64631, 64686,
 64737, 64785, 64830, 64873, 64913, 64950, 64986, 65019, 65050,
 65079, 65107, 65133, 65157, 65180, 65202, 65222, 65241, 65259,
 65275, 65291, 65306, 65320, 65333, 65345, 65357, 65368, 65378,
 65387, 65396, 65405, 65413, 65420, 65427, 65434, 65440, 65446,
 65451, 65456, 65461, 65466, 65470, 65474, 65478, 65481, 65485,
 65488, 65491}.

The quantized reflection coefficients for each channel Ch (QRC[n] for n= 1, … PrOr[Ch]) are calculated from the
TABLE{} and the quantization LAR indices QLARInd[n], as:

Table Look-up of
quantized RC

Quant. Indices Quant. RC

Translate from
RC to LP (Linear

Prediction
Parameters)

Inverse Linear
Prediction

LP

Ad-LP Residuals

Pair Wise Decorrelated PCM Audio

Predictor Orders - PrOr’

Unpack
Header

Info

][Pr...,,1

0][]][[

0][]][[
][

ChOrnfor

nQLARIndnQLARIndTABLE

nQLARIndnQLARIndTABLE
nQRC

=

<∀−−
≥∀

=

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)146

In the next block, for each channel Ch, the quantized RC parameters QRCord for ord = 1, … PrOr[Ch] are translated

to the quantized linear prediction parameters (LPord for ord = 1, … PrOr[Ch]) according to the following algorithm:

Any possibility of saturation of intermediate results is removed on the encode side. Therefore on the decode side, there
is no need to perform saturation check after calculation of each .

Finally, for each channel with PrOr[Ch]>0, an inverse adaptive linear prediction is performed. Assuming that prediction
residuals e(n) are previously extracted and entropy decoded, the reconstructed original signals s(n) are calculated
according to the following equations:

Since the sample history is not persistent between the frames, the inverse adaptive prediction shall start from the
(PrOr[Ch]+1) sample in the frame.

The first of two related function calls show the conversion of reflection coefficients.

// Read the quantized reflection coefficients from the table
for (nOrd = 0; nOrd < nLPCOrder; nOrd++){
 nTmp = pReflCofQind[nOrd];
 nRcq[nOrd] = (nTmp>=0) ? m_pnTanhTbl[nTmp] : -m_pnTanhTbl[-nTmp];
}

// Conversion from reflection coefficients to direct form coefficients
pnRcq = nRcq;
for (nOrd = 1; nOrd <= nLPCOrder; nOrd++){
 pn_F_Coef = naCoeffs;
 pn_B_Coef = naCoeffs + nOrd - 2;
 for (n = 1; n <= (nOrd>>1); n++)
 {
 nTmp = *pn_F_Coef;
 nTmp1 = *pn_B_Coef;
 // No need to check for saturation; prevented in the encoder
 *pn_F_Coef++ = nTmp + (int)((((DTS__int64)(*pnRcq) * nTmp1) + nRound) >> Q_LL_PREDCOEFFS);
 *pn_B_Coef-- = nTmp1 + (int)((((DTS__int64)(*pnRcq) * nTmp) + nRound) >> Q_LL_PREDCOEFFS);
 }
 naCoeffs[nOrd-1] = *pnRcq++;
}

// Reverse the order of coefficients
pn_B_Coef = naCoeffs + nLPCOrder -1;
for (nOrd=0; nOrd<nLPCOrder; nOrd++)
 pnLPCCoef[nOrd] = *pn_B_Coef--;
Inverse adaptive prediction is covered below.
pReflCofQind = m_pnLPCReflCoeffsQInd;
for (nCh=0; nCh<m_nNumCh; nCh++){
 nPredOrd=m_pnAdaptPredOrder[nCh];
 if (nPredOrd>0){

end

C LP

do 1-PrOr to0ordFor

end

QRC C

end

16))151(C (QRC C C

do ord to1mFor

do 1-PrOr to0ordFor

1ord PrOr,1ord

1ord 1ord 1,ord

m-1ord , ord1ordm ord,m 1,ord

++

+++

+++

=
=

=

>><<+×+=
=

=

 C m 1,ord +

()

()
FrameNumSamplInChOrnfor

nsnsne

torangebittonsLimit

knsLPns
ChOr

k

k

...,1][Pr

)()()(

12224)(

16)151()(

2323

][Pr

1

+=
−=

−−−

>>

<<+

−×=

=

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)147

 // Get the prediction coefficients
 if (!RCInd2Coeffs(nPredOrd, pReflCofQind, pnAdCoeffs))
 return false;
 // Second part of the frame where the residuals need to be
// replaced with actual samples
 nStartResOut = nPredOrd;
 pnInTemp = pnInputBuffer[nCh]+nStartResOut;
 pnFiltBuffer = pnInTemp-nPredOrd;
 for (n=nStartResOut; n<m_nFrmSize; n++){
 ndErr = 0;
 for (nCoefInd=0; nCoefInd<nPredOrd; nCoefInd++){
 ndErr += ((DTS__int64) pnFiltBuffer[nCoefInd])*pnAdCoeffs[nCoefInd];
 }
 // Round and scale the prediction; Coefficients are in Q_LL_PREDCOEFFS
 nxhat = (int) ((ndErr + (1<<(Q_LL_PREDCOEFFS-1)))>>Q_LL_PREDCOEFFS);
 if (nxhat>nHigh)
 nxhat = nHigh;
 else if (nxhat<nLow)
 nxhat = nLow;
 // Calculate the original sample x(n) = err - xhat(n)
 // The saturation check is not needed; it has been taken
// care on the encode side
 nRes = *pnInTemp;
 *pnInTemp++ = nRes - nxhat;

 pnFiltBuffer++;
 } // End sample loop in the frame
 } // end of if(nPredOrd>0)
 pReflCofQind += nPredOrd;
} // end channel loop

8.5.5 Inverse Pairwise Channel Decorrelation

When a channel pair has a non-zero pairwise channel decorrelation coefficient, pairwise channel de-correlation
(PWChD) shall be applied to the channel pair. The current channel is the basis (BCh) and the next channel is the
decorrelated channel (DecCh). To recover the original channel data (CorCh), each of the samples/residuals in the basis
channel are scaled by the pairwise channel decorrelation coefficient (α) and then added to the corresponding
samples/residuals of the decorrelated channel:

The original channel order should also be restored before the lossless residuals are combined with the lossy output. (The
channel order may have been changed at the encoder to make best use of Pairwise Channel Decorrelation).

Individual channels in a channel set are numbered beginning from 0. The matrix field OrigChanOrder indicates the
reordering. The following sample code illustrates the decoded buffers being copied and scaled and then reordered.

// Inverse channel decorrelation
for (nCh=0; nCh<(m_nNumCh>>1); nCh++){
 ndCoeff = (DTS__int64) pnJRChPairsCoeffs[nCh];
 if (ndCoeff != 0){
 pnB = pnInputBuffer[nCh<<1];
 pnJ = pnInputBuffer[(nCh<<1)+1];
 for (n=0; n<m_nFrmSize; n++)
 pnJ++ += (int) ((ndCoeff(*pnB++) + nRound)>>nQ);
 }
}

// Reorder channel pointers to the original order
for (nCh=0; nCh<m_nNumCh; nCh++)
 ppSaveInBuffPntrs[nCh] = pnInputBuffer[nCh];
for (nCh=0; nCh<m_nNumCh; nCh++)
 pnInputBuffer[pncOriginalChOrder[nCh]] = ppSaveInBuffPntrs[nCh] ;

BChDecChCorCh α+=

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)148

8.6 Lossless Processes

8.6.1 Assembling the MSB and LSB Parts

Since the residuals in a frequency band may have been encoded using an MSB/LSB split, the MSBs of the residuals will
have been scaled as part of the lossless encoding algorithm and the LSBs will appear as binary codes width length equal
to NumScalableLSBs[nCh]. The use of this MSB/LSB split is indicated per frequency band and per channel on a
frame-by-frame basis in the bScalableLSB (for frequency band 0) and bFlagScalableResExtBand[] (for each frequency
extension band) fields of the header.

When a MSB/LSB split is enabled in a frequency band each channel set of each segment consists of two components
namely the MSB and the LSB part, as shown in Figure 8-7. For lossless operation both the MSB and LSB components
are required.

Figure 8-7: Layout of MSB and LSB Data Within One Frequency Band

The MSB component alone represents the most significant portion of the output. The decoder needs to know the width
(in bits) of the output and the width of the MSB part in order to properly scale the MSB component before inserting it
into the output.

The MSB/LSB split on the encode side may employ either variable or fixed-split point method. The fixed split point
method has fixed lengths of the MSB and LSB parts for the entire stream duration and for all channels. The split point is
determined by a parameter nuFixedLSBWidth > 0 that represents the length of the LSB part prior to a possible bit width
adjustment performed at the authoring stage. Notice that nuFixedLSBWidth > 0 implies the LSB width > 0, which
consequently allows for bit-width adjustment in every frame. Although the original MSB/LSB split point is fixed for all
channels and all frames, the bit-width adjustment may be variable over the channels and the frames as carried in
nBitWidthReduction[nCh]. After performing a variable bit-width adjustment to the stream that has been originally
created using the fixed split method (nuFixedLSBWidth > 0) the resulting stream will have variable length LSB parts
and consequently nuFixedLSBWidth will be adjusted to be equal to 0.

In contrast, the variable-split point method allows the lengths of the MSB and LSB parts to vary from frame to frame
and between the channels. In this case, where parameter nuFixedLSBWidth=0, the split point in each channel nCh, is
determined by the NumScalableLSBs[nCh]. This number represents the original width of the LSB part as used during
the encode process and prior to a possible bit width adjustment at the authoring stage. Notice, in this case, some frames
may have NumScalableLSBs[nCh]=0 and consequently the bit-width adjustment is not possible. This situation may
occur for the low levels of input audio signal. However, at the low levels of input audio signal, the variable output bit
rate is already low and usually there is no need for bit-width adjustment at the authoring stage.

Both methods allow for dynamic bit-width adjustment. For example, the peak bit rate of some encoded material may
exceed the allowed peak bit rate of the medium at very few instances and the peak bit-rate need to be reduced only at
those instances; therefore, sacrificing the lossless reconstruction at very few moments of the entire presentation. Unlike
the variable split method, the fixed-split point method allows for uniform bit-width adjustment over the entire stream
duration and in all channels. As a result, it can guarantee non-varying noise floor in all channels, producing the output
audio equivalent to the audio obtained from uniformly reducing the bit-width to the desired number of bits (after
applying appropriate dither). The variable-split point method usually gives a better compression performance then the
fixed-split point method.

In both, the fixed-split and the variable-split point methods, the NumScalableLSBs[nCh] denotes the length of binary
codes that correspond to the samples of the LSB part in channel nCh.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)149

Beginning with an array of assembled MSB sample data and the LSB sample data, the reconstruction of the lossless
output (with bit-width equal to nBitResolution) of particular channel nCh, in case when no bit-width adjustment has
been performed during the authoring stage, is shown in Figure 8-8. The NumScalableLSBs[nCh] reflects the number of
bits that are used to binary code the LSB samples in channel nCh.

Figure 8-8: Output Word Assembly for Channels Without Bit-width
Adjustment (nBitWidthReduction[nCh]=0)

The bit-width management process performed at the authoring stage may reduce the resolution of the samples
corresponding to the LSB part of channel nCh by a reduction factor carried in a stream as nBitWidthReduction[nCh].
During this bit-width adjustment process a dither signal is added to the LSB samples. As a consequence the remaining
LSB samples after removal of the nBitWidthReduction[nCh] lower significant bits require NumScalableLSBs[nCh] -
nBitWidthReduction[nCh] + 1 bits for their transmission. An additional bit corresponding to the + 1 term in the above
expression, is a result of adding a dither signal.

Notice that after the bit-width adjustment process, the NumScalableLSBs[nCh], that are transmitted in the stream, are
altered such that they still represent the binary code length that is used to code the adjusted samples of the LSB part,
i.e.:

 NumScalableLSBs[nCh] = NumScalableLSBs[nCh] - nBitWidthReduction[nCh] +1

The reconstruction of the lossless output of particular channel nCh, in case when a bit-width adjustment has been
performed during the authoring stage, is shown in Figure 8-9. The NumScalableLSBs[nCh] reflects the number of bits
that are used to binary code the LSB samples after the bit-width reduction process (denoted as "Remaining LSBs"). The
nBitWidthReduction[nCh], indicates the number of lower significant bits that were removed from the LSB samples
during the bit-width adjustment process.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)150

Figure 8-9: Output Word Assembly for Channels with Bit-width Adjustment
(nBitWidthReduction[nCh]>0)

The following pseudo-code illustrates assembling MSB and LSB parts:

for (nCh=0; nCh<nNumCh; nCh++)
{
nShiftAdj=m_pnBitWidthAdjPerCh[nBandIndex][nCh];
 if (nuFixedLSBWidth==0){
nShift = (nShiftAdj>0 && m_pnScalableLSBs[nBandIndex][nCh]>0) ?
m_pnScalableLSBs[nBandIndex][nCh]-1 : m_pnScalableLSBs[nBandIndex][nCh];
 nShift += nShiftAdj;
 }
else
 {
 nShift = nuFixedLSBWidth;
}

 if (nShift>0){
 pnInSamples = pnInputBuffer[nCh];
 punLSBPart = pnInResAllChLSBs[nCh];
 for (n=0; n<m_nFrmSize; n++){
 nTmp = (*pnInSamples)<<nShift;
 *pnInSamples++ = (nTmp + ((*punLSBPart++)<<nShiftAdj));
 }
 }
}

To obtain the output words, the resulting samples still need to be shifted left by NumEmptyLSBs places.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)151

8.6.2 Channel Sets Post-Processing

8.6.2.1 Overview of Channel Set Post-Processing

In order to achieve scalability of the stream and the decoding process, all channels presented to the encoder are
organized into channel sets. There can be up to 16 channel sets, each with up to 16 channels. Each channel set can be
separately extracted from the stream and decoded as desired. The main factors that determine the formation of the
channel sets are the following:

1) An intended speaker layout for a channel set, i.e. a 7.1 mix, can be encoded in these 3 channel sets:

a) Decoding of a channel set 0 produces a stereo downmix.

b) Decoding and combining of the channel sets 0 and 1 produces a 5.1 downmix.

c) Decoding and combining of the channel sets 0, 1 and 2 produces the original 7.1 mix.

2) All channels in a channel set always have the same sampling frequency. In a 5.1 stream where the C, L and R
channels are at 96 kHz and the Ls, Rs and LFE channels are at 48 kHz, the channels may be organized in two
channel sets, where channel set 0 consists of all channels sampled at 96 kHz and channel set 1 consists of all
channels sampled at 48 kHz.

3) All channels in a channel set always have the same bit-width. For example, for a 5.1 stream where the L and R
channels are 24-bit and the C, Ls, Rs and LFE channels are 16-bit, the channels may be organized in two
channel sets, where channel set 0 consists of all channels with 24-bit samples and channel set 1 consists of all
channels with 16-bit samples.

4) An intended version of a sound object for a channel set where one version of a sound object can be replaced by
another version of the same sound object. For example, there may be a set of channels supporting one version
of some sound object (V1_Sound1) and another set of channels supporting a different version of the same
sound object (V2_Sound1). The V1_Sound1 and V2_Sound1 channels sets are replacements for each other
and they belong to the same replacement group. Only one of the V1_Sound1 or V2_Sound1 channel sets may
be designated as the active set. In addition to designating both the V1_Sound1 and V2_Sound1 channel sets as
replacement sets, the header will also indicate they are both members of the same replacement group. There is
a maximum of three replacement groups.

Primary channels represent the subset of all encoded channels. The primary channels may contain the downmixed
version of other non-primary channels. However the primary channels themselves cannot be further used for
encoder-embedded downmixing.

The decoding of primary channels is mandatory. An example is a 7.1 stream with an embedded 5.1 downmix that is
encoded in two channel sets, where channel set 0 contains a 5.1 downmix and channel set 1 contains two additional
surround channels. In this case, the channels that correspond to the 5.1 downmix are primary channels and channel set 0
is denoted as a primary channel set.

The primary channels may be split to a maximum of four primary channel sets with differing sampling frequencies
and/or bit widths. This makes it possible to have a scenario where, for the 5.1 stream, the Centre (C), Left (L) and Right
(R) channels have a different bit width and/or sampling frequency than the Left Surround (Ls), Right Surround (Rs) and
Low Frequency Effects (LFE) channels. In this example, the C, L and R channels are part of one primary channel set
and the Ls, Rs and LFE channels are part of another primary channel set.

Although in general, the primary channels in different primary channel sets can have different sampling frequencies,
there are restrictions to this rule, which depend on the existence of the lossy core data. When the lossless stream
includes the lossy core, all the channels that are coded using both lossy and lossless codecs always have the same
sampling frequency. Consequently the primary channels that are coded with both lossy and lossless codecs can only be
split into different primary channel sets based on differing bit-widths.

8.6.2.2 Performing and Reversing Channel Set Downmixing

To allow for the scalability of decoder complexity, the audio in the compressed data stream may be organized in
multiple channel sets with the intermediate downmix formats (i.e. 10.2 7.1 5.1 stereo) embedded in a particular
channel set(s).

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)152

For example for a 10.2 encoded stream with two embedded downmix configurations (5.1 downmix and stereo
downmix), at least three channel sets would be needed, organized such that:

• decoding of a channel set 0 produces a stereo downmix;

• decoding and combining of channel sets 0 and 1 produces a 5.1 downmix; and

• decoding and combining of channel sets 0, 1 and 2 produces the original 10.2 mix.

In the example above, the reconstruction of a 5.1 downmix requires the reversal of the 5.1 stereo downmix process
that has been performed on the encode side. Similarly, the reconstruction of a 10.2 original mix requires the reversal of
first 5.1 stereo and then 10.2 5.1 downmix processes that have been performed on the encode side.

Two types of channel-set downmixing are supported: parallel and hierarchical.

8.6.2.3 Parallel Downmix

The parallel type of downmix is performed for non-primary channel sets which have:

• a downmix-embedded enabled flag (bDownmixEmbedded=true);

• a hierarchical-downmix flag disabled (bHierChSet=false); and

• nReplacementSet = 0.

The parallel downmix is performed directly to the primary channel set(s), as shown in Figure 8-10. They are applied in
sequential channel-set index order from the first defined parallel (non-primary) channel set to the last defined parallel
(non-primary) channel set.

Figure 8-10: Parallel Downmix

On the decode side, the reversal of the parallel downmix is performed in the opposite order - that is, from the last
defined parallel (non-primary) channel set to the first defined parallel (non-primary) channel set, as shown in
Figure 8-11.

ChSet0’

ChSet0"ChSet0'

ChSet0

ChSet1

ChSet2

ChSet1

ChSet2

ChSet0"
L,R

C

Ls,Rs,LFE

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)153

Figure 8-11: Parallel Downmix Reversal

A 5.1 stream organized into three channel sets with the following characteristics provides an example of parallel
channel set downmixing and reversal:

1) channel set 0 carries the stereo downmix with 24-bit resolution at 48 kHz;

2) channel set 1 carries C channel with 24-bit resolution at 48 kHz; and

3) channel set 2 carries the Ls, Rs and LFE channels with 16-bit resolution at 48 kHz.

In this example, channel set 0 is a primary channel set. Both channel set 1 and channel set 2 are non-primary channel
sets in which bDownmixEmbedded=true, bHierChSet=false and nReplacementSet=0. First channel set 1 is downmixed
to channel set 0 and then channel set 2 is downmixed to channel set 0.

On the decode side, the steps are reversed. First channel set 2 is downmixed to channel set 0. Then channel set 1 is
downmixed to channel set 0.

8.6.2.4 Hierarchical Downmix

The hierarchical type of downmix, shown in Figure 8-12, is performed for non-primary channel sets that have these
three characteristics:

1) a downmix-embedded enabled flag (bDownmixEmbedded=true);

2) a hierarchical downmix flag enabled (bHierChSet=true); and

3) nReplacementSet=0.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)154

Figure 8-12: Hierarchical Downmix

The hierarchical downmix is performed in a hierarchical manner, moving from the channel set with the highest index to
the channel set with the lowest index (primary set(s)). The non-primary channel set may be downmixed in a hierarchical
manner, to either:

• the lower-indexed non-primary channel set; or

• the lower-indexed primary channel set.

An example is provided by a 10.2 channel stream with two hierarchically embedded downmix configurations
(10.2 7.1 5.1) organized in three channel sets with the following characteristics:

• decoding of a channel set 0 produces a 5.1 downmix;

• decoding and combining channel sets 0 and 1 produces a 7.1 downmix; and

• decoding and combining channel sets 0, 1 and 2 produces the original 10.2 mix.

Figure 8-12 illustrates the order in which the downmixing occurs. First the 10.2 stream is downmixed to 7.1 (defined in
the channel set 2 downmix matrix). Then the 7.1 stream is downmixed to 5.1 (defined in the channel set 1 downmix
matrix). If the 7.1 to 5.1 downmix is not defined and a 5.1 output is not requested, no downmixing occurs.

On the decode side (Figure 8-13), the 7.1 5.1 process is reversed, by subtracting the channel set 1 contribution (by
means of the channel set 1 downmix matrix) from channel set 0. The resulting modified channel set 0 data is to replace
the transmitted channel set data. Next the 10.2 to 7.1 process is reversed by subtracting the channel set 2 contribution
(by means of the channel set 2 downmix matrix) from both channel set 1 and modified channel set 0.

Figure 8-13: Hierarchical Downmix Reversal

ChSet2

ChSet0

ChSet1

ChSet0"

{0,1,2}

{0',1'} {0',1'}

{0"}ChSet0'

ChSet1'

ChSet2

10.2>7.1 7.1>5.1

10.2
Channels

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)155

9 LBR

9.1 General Information about the LBR Extension
This clause addresses the LBR extension. LBR is a low bit rate coding system used in place of the core and extensions
previously described, but operating in the same ecosystem. The LBR payload is used in conjunction with the extension
substream header to provide the necessary start-up elements and optional metadata elements required for a complete
audio elementary stream.

9.2 The LBR Decoder Environment

9.2.1 General Information About the LBR Decoder

In addition to codec initialization constants carried in, or derived from, information provided in the LBR header, the
LBR memory map stores a number of other variable session parameters. Header initialized parameters relate to the
audio sampling frequency and the channel map information, which sets up the frame duration, length of a subframe,
channel pairing, etc. Other persistent parameters are variables that are usually set to zero at the start of a new decoding
session, then are updated by the various algorithms from consecutive coding blocks. Some of these constants and
variables are referred to in the decoding block descriptions, so they are described in the following clause.

9.2.2 Persistent Constants and Variables

The following symbols and variable names are used throughout clause 9 describing the LBR extension.

nChannels Total number of encoded channels.

nPair Number of channel pairs in the audio stream. nPair is calculated as:

nSampleRate The audio sampling frequency. (see Table 9-3).

FreqRange A coded parameter derived from nSampleRate (see Table 9-4).

nFrameDuration The number of rendered audio samples per channel per audio frame (Table 9-11).

nBitsLeft The number of bits yet to be extracted from the chunk being processed (initialized by the
chunk length parameter then decremented as bits are parsed).

Qlevels Quantization levels, this array is configured in the High Resolution chunk.

SecChPres This is a flag indicating that a secondary channel is present. This flag is set in DecodeTS() if
a secondary channel can be decoded.

TSCodingMethod TSCodingMethod is a flag that indicates whether time samples are packed using Huffman
codes or packed directly. This parameter is configured in DecodeTS().

 +=
2

1nChannels
nPair

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)156

9.3 LBR Extension Substream Header
The syntax of the LBR audio header is described in Table 9-1.

Table 9-1: LBR Extension Substream Header Structure

Syntax Size (Bits)
 // Extract sync word 0x0a801921
 SYNCEXTLBR = ExtractBits (32) 32
 // Extract LBR header type:
 ucFmtInfoCode = ExtractBits(8) 8
 if (ucFmtInfoCode == 2)
 { // LBR decoder initialization data follows:
 nLBRSampleRateCode = ExtractBits(8)

8

 usLBRSpkrMask = ExtractBits(16) 16
 nLBRversion = ExtractBits(16) 16
 nLBRCompressedFlags = ExtractBits(8) 8
 nLBRBitRateMSnybbles = ExtractBits(8) 8
 nLBROriginalBitRate_LSW = ExtractBits(16) 16
 nLBRScaledBitRate_LSW = ExtractBits(16) 16
} // end if (ucFmtInfoCode == 2)
else if (ucFmtInfoCode != 1)
{
 // unknown ucFmtInfoCode: resync to next SYNCEXTSSH
}

// LBR compressed audio data follows

Extends to next SYNCEXTSSH
sync word, as determined by
nuExtSSFsize in Extension
SubstreamHeader

SYNCEXTLBR (extension substream sync word for LBR)

The extension substream has a DWORD-aligned synchronization word DTS_SYNCWORD_LBR with the hexadecimal
value of 0x0a801921. By default the sync word (DWORD) will only occur on a DWORD boundary (4 Bytes).

ucFmtInfoCode

This unsigned 8-bit value declares the LBR header type. Currently two LBR header types are defined
(LBR_HDRCODE_SYNC_ONLY and LBR_HDRCODE_DECODERINIT). If an undefined header type is
encountered, the decoder should resync to the next DTS-HD Extension Substream sync word. The first header type that
a decoder should handle is LBR_HDRCODE_DECODERINIT because this header is necessary to initialize the LBR
decoder with bitrate, samplerate, channel count and flags.

Table 9-2: ucFmtInfoCode values

LBR header type Value Description

LBR_HDRCODE_SYNC_ONLY 1 Header consists only of LBR sync word and this
ucFmtInfoCode byte; thus raw LBR audio data follows.

LBR_HDRCODE_DECODERINIT 2
Header consists of LBR sync word, this ucFmtInfoCode byte
and LBR decoder initialization data. Raw LBR audio data will
follow the LBR decoder initialization data.

Reserved All undeclared values are reserved for future use.

nLBRSampleRateCode (sample rate of LBR audio samples)

The sample rate of the LBR decoded audio. This 8 bit value is a lookup into a sample rate table and defines the sample
frequency of the decoded audio samples. nSampleRate, as shown in Table 9-3.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)157

Table 9-3: nLBRSampleRateCode Sample Rate Decoding

nLBRSampleRateCode nSampleRate
0 8 000
1 16 000
2 32 000
3 reserved
4 reserved
5 22 050
6 44 100
7 reserved
8 reserved
9 reserved

10 12 000
11 24 000
12 48 000
13 reserved
14 reserved
15 reserved

If a valid frame is encountered in which the nLBRSampleRateCode sample rate differs from the nLBRSampleRateCode
sample rate of the previous valid frame, it would indicate that a new stream has been encountered. In this case, the
existing LBR decoder would need to be re-initialized with the new header values (including the new
nLBRSampleRateCode sample rate) and decoding input and output buffers re-allocated to accommodate the new
sample rate.

The decoder parameter FreqRange is set according to nSampleRateCode according to Table 9-4.

Table 9-4: FreqRange

Range of Source Sampling Frequency FreqRange
nSampleRate < 16 000 0

16 000 ≤ nSampleRate < 32 000 1
32 000 ≤ nSampleRate < 50 000 2

usLBRSpkrMask (LBR speaker mask)

This 16-bit value little-endian value describes the speaker mask for the LBR audio asset. usLBRSpkrMask follows the
same convention as the nuSpkrActivityMask defined in Table 7-10.

nLBRversion (LBR bitstream version)

This 16-bit field represents the LBR bitstream version number, (distinct from the overall DTS-HD version). The version
is represented in little-endian format as:

0xMMmm ,

where:

• 'MM' is the major version number expressed in the high order byte; and

• 'mm' is the minor revision number expressed in the low order byte.

A decoder should reject LBR substreams whose LBR bitstream major version number does not match the decoder's
LBR bitstream major version number.

nLBRCompressedFlags (flags for LBR decoder initialization)

This 8-bit field is a compressed version of the LBR initialization flags. Table 9-5 shows the bit positions of the flags
within nLBRCompressedFlags.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)158

Table 9-5: Parameter nLBRCompressedFlags

Bit 7
(MSB) 6 5 4 3 2 1 0

Reserved

Multi-channel
downmix:
0=none

1=present

Stereo
downmix:
0=none

1=present

Bandlimit
Flag MSB

Bandlimit
Flag

Bandlimit
Flag LSB

LFE
Channel:
0=none

1=present

Sample
Size:

0=16 bits
1=24 bits

The flag descriptions may be found in Table 9-6.

Table 9-6: LBRFlags from bLBRCompressedFlags

nLBRCompressedFlag
s Corresponding LBR Flags Description

0b00000001 LBR_FLAG_24_BIT_SAMPLES
If 1: the input/output PCM audio samples are 24
bits in length. Otherwise the samples are 16 bits
in length.

0b00000010 LBR_FLAG_USE_LFE If 1: LFE channel is present.

0b00011100 LBR_FLAG_BANDLMT_MASK
Mask to isolate flags which describe bandlimit
factors, which enhance audio quality with certain
sample rate/bitrate combinations.

0b00100000 LBR_FLAG_STEREO_DOWNMIX If 1: Stereo downmix is present within bitstream.

0b01000000
LBR_FLAG_MULTICHANNEL_DOWNMI
X

If 1: Multi-channel downmix is present within
bitstream.

The bandlimit flag bits indicate upsampling in the decoder is necessary to restore the original sampling frequency. The
supported resampling ratios are shown in Table 9-7.

Table 9-7: LBR band limit flags from nLBRCompressed Flags

nLBRCompressedFlags Corresponding LBR Flag values Description
0b00000100 LBR_FLAG_BANDLMT_FACTOR_2_3 Limit bandwidth to 2/3 of original bandwidth.
0b00001000 LBR_FLAG_BANDLMT_FACTOR_1_2 Limit bandwidth to1/2 of original bandwidth.
0b00001100 LBR_FLAG_BANDLMT_FACTOR_1_3 Limit bandwidth to 1/3 of original bandwidth.
0b00010000 LBR_FLAG_BANDLMT_FACTOR_1_4 Limit bandwidth to 1/4 of original bandwidth.
0b00011000 LBR_FLAG_BANDLMT_FACTOR_1_8 Limit bandwidth to 1/8 of original bandwidth.
0b00010100 LBR_FLAG_BANDLMT_FACTOR_NONE Do not change bandwidth.

all unused values Reserved for future use

nLBRBitRateMSnybbles (most-significant nibbles of LBR stream original and scaled bitrates)

The LBR bitstream header carries two bitrates:

• the original bitrate;

• the scaled bitrate which may be used when scaling has been performed on the LBR audio frame after it was
encoded.

Each bitrate is expressed as a 20-bit value. The 8-bit nLBRBitRateMSnybbles bitstream value carries the
most-significant 4-bit nibble of the original bitrate and the most-significant 4-bit nibble of the scaled bitrate.

The LBR original bitrate is determined by the following equation:

nOriginalBitRate = nLBROriginalBitRate_LSW | ((nLBRBitRateMSnybbles & 0x0F) << 16).

The LBR scaled bitrate is determined by the following equation:

nScaledBitRate = nLBRScaledBitRate_LSW | ((nLBRBitRateMSnybbles & 0xF0) << 12).

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)159

nLBROriginalBitRate_LSW (least significant word of LBR original bitrate)

The LBR original bitrate is expressed as a 20-bit value.

nLBROriginalBitRate-LSW is a little-endian 16 bit field which contains the least-significant 16 bits of the encoded
LBR stream's original bitrate.

The LBR original bitrate is determined by the following equation:

 nOriginalBitRate = nLBROriginalBitRate_LSW | ((nLBRBitRateMSnybbles & 0x0F) << 16).

nLBRScaledBitRate_LSW (least significant word of LBR scaled bitrate)

The LBR scaled bitrate is expressed as a 20-bit value.

nLBRScaledBitRate-LSW is a little-endian 16 bit field which contains the least-significant 16 bits of the encoded LBR
stream's scaled bitrate.

The LBR scaled bitrate is determined by the following equation:

 nScaledBitRate = nLBRScaledBitRate_LSW | ((nLBRBitRateMSnybbles & 0xF0) << 12).

9.4 LBR Audio Data Organization

9.4.1 General Information About LBR Structure

The LBR audio payload is organized in a modular form referred to here as a "chunk". All audio data is contained within
a chunk or series of chunks.

9.4.2 Chunks

9.4.2.1 General Information About LBR Chunks

The chunk is the basic building block of the LBR bitstream. An LBR chunk is composed of three fields: the chunk ID,
chunk length and chunk data.

ID length data

Figure 9-1: Basic Chunk Description

Organization of the LBR stream into chunks allows for:

• simplification of adding new bitstream features;

• forward compatibility. As new techniques and enhancements are developed, old decoders will still be able to
play the frame portions that they are aware of;

• scalable bitstream. Simplified post-encode bit-rate scaling of the LBR bitstream;

• separation of coding components to implement robust interleaving and unequal error protection.

Chunks may be nested. The higher level chunk is referred to as the "parent" of the chunks it contains. Likewise the
chunks contained within a parent chunk are referred to as a "child chunk" of the parent. The LBR Frame Chunk, for
example, is the highest level chunk in the LBR bitstream.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)160

9.4.2.2 Chunk ID

The chunkID is used to identify the type of data stored in the chunk. The chunk ID is an 8-bit value providing a total
of 256 unique chunk IDs. An extension ID is defined to allow for an additional 256 chunk types after the initial 256
have been used. The most significant bit of the chunk ID is used to indicate whether the chunk is a short chunk
(maximum data size of 255 bytes) or a standard chunk (maximum data size of 65 535 bytes). A zero bit indicates a short
chunk while a one bit indicates a standard chunk.

Table 9-8 lists the binary values of the Chunk IDs that have been defined.

Table 9-8: Chunk ID Table

ID Value Name Description
x000 0000 nullID Null Chunk
x000 0001 padID Program Associated Data Chunk
x000 0100 LBR_ID LBR Frame Chunk with checksum
x000 0110 LBR_ID_no_checksum LBR Frame Chunk without checksum
x000 1010 LFE_ADPCM_ID LFE Chunk
x000 1011 EmbLevels_ID Embedded Channel Sets Chunk
x000 1100 WmarkID1 Reserved
x000 1101 WmarkID2 Reserved
x000 1110 scalefactor_ID Tonal Scale Factors Chunk
x001 0000 tonal_ID Tonal Data Chunk (combined)
x001 0001 tonalGroup1_ID Tonal Data Chunk Group 1
x001 0010 tonalGroup2_ID Tonal Data Chunk Group 2
x001 0011 tonalGroup3_ID Tonal Data Chunk Group 3
x001 0100 tonalGroup4_ID Tonal Data Chunk Group 4
x001 0101 tonalGroup5_ID Tonal Data Chunk Group 5
x001 0110 tnlScf_ID Tonal Data Chunk (combined, scalefactors used)
x001 0111 tnlScf_Group1_ID Tonal Data Chunk Group 1 (scalefactors used)
x001 1000 tnlScf_Group2_ID Tonal Data Chunk Group 2 (scalefactors used)
x001 1001 tnlScf_Group3_ID Tonal Data Chunk Group 3 (scalefactors used)
x001 1010 tnlScf_Group4_ID Tonal Data Chunk Group 4 (scalefactors used)
x001 1011 tnlScf_Group5_ID Tonal Data Chunk Group 5 (scalefactors used)
x011 pppp grid1ID Residual Data Chunk. 1st scalefactors grid
x100 pppp hiGridsID Residual Data Chunk. High resolution scalefactor grids
x101 pppp tsmp1ID Residual Data Chunk. Timesamples, 1st part
x110 pppp tsmp2ID Residual Data Chunk. Timesamples, 2nd part
x111 1111 extensionID Extension ID

The most significant bit of the chunk ID (x) is used to indicate whether the chunk is a short chunk (0) or a standard (1)
chunk. 'pppp' in residual chunk ID values is used to indicate channel pair number (0 to 15).

9.4.2.3 Extended ID Chunks

To allow for an additional 256 chunk IDs, an extended ID mechanism is defined. When chunkID is equal to
extensionID, the 8 bits following the Length field are the extended ID.

Extended ID Chunk
extensionID length extID data

Figure 9-2: Extended ID Chunk

9.4.2.4 Chunk Length

The chunkLength indicates the length of the data portion of the chunk in bytes. The chunk length is 8-bits for short
chunks and 16-bits for standard chunks, thus the maximum data size of a short and standard chunk is 255 and
65 535 bytes respectively.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)161

Table 9-9: ChunkLengthInfo

Syntax Size (Bits)
ChunkLengthInfo()
{
 chunkID = ExtractBits(8) 8
 if((chunkID & 0x80) == 0){
 chunkLength = ExtractBits(8)
 return (1)
 }

8

 else {
 chunkLength = ExtractBits(16)
 return (2)
 }

16

}

If chunkID byte has the most-significant bit clear, the following 8 bits are an unsigned integer representing the chunk
length. If chunkID byte has the most-significant bit set, the following 16 bits (most significant byte first) are an
unsigned integer representing the chunk length.

9.4.2.5 Data

The data field contains the data of the chunk. The format of the data is specific to the type of chunk.

9.4.2.6 Checksum Verification and Descrambling

The checksum is the 16-bit sum of all the bytes in the frame except for two checksum bytes. The LBR Frame
Chunk does not always carry all types of tabulated chunks. Some chunks may be missing due to bitstream fitting
operations, transmission channel losses, or may be intentionally not coded during encoding. The decoder still should be
able to recover remaining information from chunks present.

If chunkID equals LBR_CID, a checksum has been computed and is stored in the bitstream in the 2 bytes following
the chunk length. chunkHeaderBytelen will be 2 if ChunkLengthInfo() is 8 bits long, or 3 if ChunkLengthInfo() is
16 bits long.

Table 9-10: ChecksumVerify

SYNTAX Size (Bits)
ChecksumVerify (chunk)
{
 nChecksum = 0
 nHeaderLength = ChunkLengthInfo()+1 Table 9-9
 nChunkLength -= 2
 // Get checksum stored in the bit stream (MSBF)
 nStoredChecksum = ExtractBits(16) 16
 // Calculate the checksum on the header
 for (i = nHeaderLength-1; i >= 0; i--)
 nChecksum += chunk[i]
 // Calculate the checksum on the frame data
 // Note: the stored checksum is not included in the calcuation
 i = nHeaderLength + 2
 count = nHeaderLength + nDataLength
 for (; i < count; i++){
 nChecksum += chunk[i]
 bCheckSumSuccess = (nChecksum == nStoredChecksum)
 return bCheckSumSuccess ? SUCCESS : FAILURE
}

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)162

9.5 LBR Frame Chunk
The LBR bitstream is organized in audio frames, each representing a uniform time period. The number of audio
samples generated from each frame is dependent on the sample rate of the decoded audio. The LBR Frame Chunk is the
parent chunk to contain all coded audio and side information chunks for a given audio frame.

The coded audio chunks within the frame are organized in a sequence. A chunk may be either an elemental component
of the encoded audio or a collection of these elementary component chunks.

Tonal chunks and residual chunks comprise the two main component chunk types. If a Low Frequency Effects (LFE)
channel exists, it is coded using a special LFE chunk type.

Both the tonal and residual chunks have multiple resolutions of components and the residual chunks are further coded in
a multi-resolution grid structure.

A typical LBR frame is shown in Figure 9-3.

Figure 9-3: Example LBR Frame

9.6 LBR Decoding

9.6.1 Overview of LBR Decoding

The decoding process is illustrated in Figure 9-4. The input data for the decoding process consists of the input bitstream
containing packed data frames and minimal side-band information consisting of:

• Sample rate (Hz)

• Number of channels

• Bit rate of the input bitstream (bits/sec)

Decoding can be done on a frame-by-frame basis or at a smaller subframe granularity. The entire decoding process can
be divided into number of separate decoding sub-processes:

• Bitstream parsing

• Tonal part decoding

• Residual decoding

• LFE channel decoding (if LFE is present)

The output of each decoding sub-process (other than bitstream parsing) is a sequence of time domain samples
corresponding to the data in the current frame (or subframe). These output time-samples should be added together (no
shift or alignment required) to obtain the complete decoded signal data. Note that unpacking each packed frame
provides samples for the current frame plus additional samples which should be added to the results of the next frame
that is decoded.

Decoding of LFE channels is independent of the other channels.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)163

Figure 9-4: LBR Decoder Overview

The encoded data stream is composed of a sequence of individual frames. The number of samples resulting from
decoding a frame depends on the sample rate of the audio signal and nominal values are shown in Table 9-11.

Table 9-11: Sample Rate to Frame Size Relationship

Sample Rate Number of input samples
< 16 kHz 1 024 samples

≥ 16 kHz but < 32 kHz 2 048 samples
≥ 32 kHz but < 50 kHz 4 096 samples

The LBR decodes each input frame as 16 smaller subframes.

Table 9-12: Decode Frame

Syntax Size (Bits)
DecodeFrame(){
 if (chunkID == LBR_ID){
 if(FAILURE == ChecksumVerify(chunk)) Table 9-10
 return
 }

 for (sf=0; sf < 16; sf++)
 DecodeSubFrame(sf) Table 9-13
}

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)164

Table 9-13: Decode SubFrame

Syntax Size (Bits)
DecodeSubFrame(nSubFrameCount){
 InitializeParameters() Table 9-20
 if (bLBRCompressedFlags && (LBR_FLAG_STEREO_DOWNMIX ||
LBR_FLAG_MULTICHANNEL_DOWNMIX))

 ECSChunk() Table 9-38
 if (bLBRCompressedFlags && (LBR_FLAG_USE_LFE))
 LFEChunk() Table 9-36
 if (nSubFrameCount == 0)
 ResidualChunksPart1() Table 9-21
 // Grid1Chunk
 // HiResGridChunk
 // TimeSamples1Chunk
 // TimeSamples2Chunk

 // tonal vs residual shift is 11 subframes
 if (nSubFrameCount == 11){
 ScaleFactorChunk() Table 9-14
 TonalChunk() Table 9-15
 }
 for (ch=0, ch < nPair, ch+=2){
 ResidualChunksPart2(ch, nSubFrameCount) Table 9-32
 // complete decoding of residual subbands
 }
 padChunk() Table 9-39
 nullChunk() Table 9-40
}

9.6.2 Tonal Decoding

9.6.2.1 Overview of Tonal Decoding

The tonal chunks are used to store the tonal coding information of the LBR algorithm. Either a separate chunk is used
for each different transform size (also called 'group'), or all transform sizes together with tonal scale factors are
collected into one chunk.

The information for tonal decoding process consists of base functions divided into groups by length. Base functions are
spread by time in the frame and only some of them have non-zero values in a given subframe. There are 5 tonal groups
in total. The length of the base functions in each of the groups, measured in terms of subframes, is as follows:

• 1st group (nGroup=0) length is 2 subframes;

• 2nd group (nGroup=1) length is 4 subframes;

• 3rd group (nGroup=2) length is 8 subframes;

• 4th group (nGroup=3) length is 16 subframes;

• 5th group (nGroup=4) length is 32 subframes.

The difference values obtained from the bitstream for the secondary audio channels (for stereo and multi-channel
signals) should be converted to absolute values. The amplitude component on the secondary channel is always lower
than the amplitude of the primary channel. Quantized amplitudes should be converted to linear values using the
quantized amplitude to linear amplitude conversion table in clause 9.9.1.

Tonal decoding steps are as follows:

• Initialize frequency domain subframe with zero values.

• Unpack tonal scale factors.

• Unpack tonal components and adjust each with the corresponding scale factor.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)165

• Synthesize and add required portions of 1st-5th group of base functions into same subframe.

• Convert frequency domain subframe data into the time domain using an inverse MDCT followed by
windowing. This step can be combined with residual reconstruction in the second stage of the hybrid
filterbank.

Note that the base function synthesis operations (step 4) can be performed in any order.

9.6.2.2 Tonal Scale Factors Chunk

9.6.2.2.1 Tonal Scale Factor Chunk Syntax

The Scale Factors Chunk is used to store scale factors for tonal components.

Table 9-14: ScalefactorsChunk()

Syntax Size (Bits)
ScaleFactorsChunk()
{
 if (chunkID != scalefactor_ID) { 8
 return
 ChunkLengthInfo() Table 9-9
 for (scfBand=0; scfBand < 6; scfBand++)
 nScaleFactor[scfBand] = ExtractBits(6) 6
 ByteAlign() 0..7
}

9.6.2.2.2 Tonal scale factor processing

At the encoder, the minimum amplitude out of all components within a correspondent frequency range is selected as its
scale factor, so each component belonging to this frequency range is then adjusted with the scale factor before packing.

At the decoder, it is not necessary to de-quantize the tonal scale factors; instead, the unpacked value should be added to
the quantized amplitude of all tonal components within the correspondent frequency range before de-quantization. In
the case when more than one channel having a component at the same frequency, amplitude of the channel with highest
level should be treated as described above and the quantized amplitude difference of all secondary channels (channels at
lower level) should be subtracted from treated maximum amplitude before quantization, see clause 9.6.2.3 for details.

Correspondence between frequency and scalefactor index is described in Table 9-4 (see 'FreqToSf').

9.6.2.3 Tonal Chunks

9.6.2.3.1 About Tonal Chunks

Two different versions of chunks exist, depending on whether scale factors are used. Those versions are identical from
the bitstream point of view, except for the chunkID field. All tonal chunks have the syntax shown below.

When a separate chunk is used for each different transform size, or group:

Table 9-15: TonalChunk()

Syntax Size (Bits)
TonalChunk()
{
 if (chunkID == tonalGroupX_ID || chunkID == tnlScf_GroupX_ID) {
 // where X is a digit between 1 and 5 which represents transform
size

8

 ChunkLengthInfo() Table 9-9
 DecodeTonal(X-1) Table 9-17
 ByteAlign() 0..7
} }

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)166

When all transform sizes together with tonal scale factors collected into one chunk:

Table 9-16: TonalChunk() (with scalefactors)

Syntax Size (Bits)
TonalChunk()
{
 if (chunkID != tnlScf_ID) { 8
 return
 ChunkLengthInfo() Table 9-9
 for (i=0, i < 5; ++i)
 switch (nChunkID)
 {
 default:
 case tnlScf_Group5_ID:
 case tonalGroup5_ID:
 nGroup = 0
 break;
 case tnlScf_Group4_ID:
 case tonalGroup4_ID:
 nGroup = 1
 break;
 case tnlScf_Group3_ID:
 case tonalGroup3_ID:
 nGroup = 2
 break;
 case tnlScf_Group2_ID:
 case tonalGroup2_ID:
 nGroup = 3
 break;
 case tnlScf_Group1_ID:
 case tonalGroup1_ID:
 nGroup = 4
 break;
 }

 DecodeTonal(nGroup) Table 9-17
 ByteAlign() 0..7
}

Code common to both types of tonal chunk types:

Table 9-17: Decode Tonal

Syntax Size (Bits)
DecodeTonal(nGroup)
{
 nSubFrame = 1
 nFrequency = 1
 nFrequencyDiff = 0
 RemainingTonesForThisGroup = 1
 iterations = 1

 while(RemainingTonesForThisGroup){
 while (iterations){
 nFrequencyDiff = getVariableParam(prsDist[4-nGroup]) Table 9-18
 if (nFrequencyDiff>>2 > 0){
 bitlength = nFrequencyDiff >> 2
 nFrequencyDiff = ExtractBits(bitlength) + fstAmp[nFrequencyDiff] bitlength
 }
 else{
 nFrequencyDiff = fstAmp[nFrequencyDiff]
 }
 if (nFrequencyDiff > 1) {
 iterations = 0
 break
 }
 nFrequency = 1
 if (nFrequencyDiff = 0)
 nSubFrame += 1
 else
 nSubFrame += 8

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)167

Syntax Size (Bits)
 if(nSubFrame > (1 << nGroup))
 RemainingTonesForThisGroup = 0
 }
 nFrequency += nFrequencyDiff – 2
 if (nChannels > 1)

 mainChIdx = ExtractBits(BitsForChNum[nChannels] – 1) variable
 else
 mainChIdx = 0
 tonalAmplitudeMain = getVariableParam(tnlScf) +
nScalefactors[FreqToSf[nFrequency >> (7-nGroup)]]

Table 9-18

 tonalPhaseMain = ExtractBits(3)
 for (ch = 1; ch < nChannels; ch++) {
 if (ch != mainChIdx) {

3

 chPresence = ExtractBits(1) 1
 if (chPresence){
 nAmplitudeDiff = getVariableParam(dAmp) Table 9-18
 nPhaseDiff = getVariableParam(dPh) Table 9-18
 tonalAmplitudeSecondaryDiff = TonalAmplitudeMain – nAmplitudeDiff
 tonalPhaseSecondaryDiff = tonalPhaseMain – nPhaseDiff
 } } }
 nFrequency++
} }

where:

tables for prsDist[n], tnlScf, dAmp and dPh are defined in clause 9.9.10,

fstAmp [44] =
{
 0, 1, 2, 4,
 4, 6, 8, 10,
 12, 16, 20, 24,
 28, 36, 44, 52,
 60, 76, 92, 108,
 124, 156, 188, 220,
 252, 316, 380, 444,
 508, 636, 764, 892,
 1020, 1276, 1532, 1788,
 2044, 2556, 3068, 3580,
 4092, 5116, 6140, 7164
}

FreqToSf [32] =
{
 0,
 1,
 2, 2,
 3, 3, 3, 3,
 4, 4, 4, 4, 4, 4, 4, 4,
 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
}

BitsForChNum[10] =
{ // channel number
 1, // 0
 1, // 1
 2, // 2
 2, // 3
 3, // 4
 3, // 5
 3, // 6
 3, // 7
 4, // 8
 4 // 9
}

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)168

Table 9-18: getVariableParam()

syntax Size (Bits)
getVariableParam (table)
{

 index = 1
 nbits = 0

 while(table[index].A != 0xFF){
 Nvalue = table[index].ExtractBits(1) //0 == A, 1 == B 1
 index += Nvalue
 }

 Nvalue = table[index].B
 if (nValue = 0){
 nbits = ExtractBits(3)+4 3
 return (ExtractBits(nbits)) nbits
 }
 else
 return (Nvalue -1)
}

GetVariableParam() is used by both Tonal and Residual functions to fetch variable bit length parameters from the
bitstream. The table entries each have a sub-index referring to column A (0) or column B (1) and result in a table walk
or "index hopping" to arrive at the correct offset in statistically the fewest number of bits.

The tables passed into this function are all in clause 9.9.10. The resulting index is used to locate a base value in
FstAmp[] which also determines the number of additional bits required to extract from the bitstream to code the residual
value.

9.6.2.3.2 Tonal components processing

In the bit stream, the components are packed in ascending frequency order and each active bin position may contain
component from one or more channels. In the multi-channel case, the channel with the highest amplitude would appear
first, coded using absolute amplitude (with scale factor adjustment) and phase. All secondary channels at lower levels
are then difference-encoded against the maximum channel.

Bitstream parsing provides the following values (see clause 9.4):

• quantized amplitude (LogAmplitude);

• quantized phase (Phase);

• spectral line number (Freq);

• position of base function in the frame;

• per-channel 'presence' of the component - the bit map of the channels where component has non-zero
amplitude.

After the scale factor/maximum channel adjustment, quantized amplitudes should be converted to linear values using
the quantized amplitude to linear conversion table in clause 9.9.1.

Frequency domain subframe data consists of a number of MDCT spectral lines. The number of lines (N) used depends
on the sample rate according to Table 9-19.

Table 9-19: Subframe Resolution

Sample rate Number of spectral lines in subframe
< 16 kHz 64

≥ 16 kHz but < 32 kHz 128
≥ 32 kHz but < 50 kHz 256

NOTE: This frequency domain data results in 2 × N time domain samples. The first half of these samples should
be added to the last half from the previously decoded subframe (which is automatically done by hybrid
filterbank). The resulting N samples are the output of the tonal decoding process.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)169

9.6.2.3.3 Base-functions synthesis

The Base function is a finite-length time-domain function used in tonal encoding and decoding. The base function is
described by the formula:

 where

where:

A amplitude;

t time variable ();

φ phase;

l function length, power of 2 (=128..8192);

f frequency

Real functions used in the algorithm are approximations of this function and described by fast-synthesis algorithm
below. This formula is also used to create the table 'wavSynEnvelope[]' which is used to shape the tonal components
(base functions) in tonal coding.

Tonal base functions are spread over a number of subframes. The output of synthesizing these base functions is applied
to all subframes where the synthesized base function has non-zero values. The synthesis is done by updating Amplitude
and Phase values according to the frequency and the length of the base function. A number of neighbour spectral lines
are also modified by 'CorrCf[][]' to reduce distortions produced by this synthesis method. Pseudo-code below illustrates
the process:

ph0_shift[8] = {-32, +96, -96, +32, +96, -32, +32, -96};
xFreq = Freq >> (nGroup + 1);
F_dlt = Freq & (1<<(nGroup+1)-1) << (4-nGroup);
PhaseRotation = 256 - ((F_dlt + (xFreq&1)*32)*4);
CurPhase = 128 - 64*Phase - ((PhaseRotation << nGroup+1)-PhaseRotation) +
 ph0_shift[(xFreq&3)*2 + ((Freq &1))] + (xFreq>>1);
for (index = 0; index < Length; index = index+1) {
 CurAmplitude = Amplitude * wavSynEnvelope[index];
 WavSyn[index][xFreq-5] += CurAmplitude*CorrCf[F_dlt][0] * sin(2*Pi*CurPhase/256 - 5*Pi/2);
 WavSyn[index][xFreq-4] += CurAmplitude*CorrCf[F_dlt][1] * sin(2*Pi*CurPhase/256 - 4*Pi/2);
 WavSyn[index][xFreq-3] += CurAmplitude*CorrCf[F_dlt][2] * sin(2*Pi*CurPhase/256 - 3*Pi/2);
 WavSyn[index][xFreq-2] += CurAmplitude*CorrCf[F_dlt][3] * sin(2*Pi*CurPhase/256 - 2*Pi/2);
 WavSyn[index][xFreq-1] += CurAmplitude*CorrCf[F_dlt][4] * sin(2*Pi*CurPhase/256 - 1*Pi/2);
 WavSyn[index][xFreq] += CurAmplitude*CorrCf[F_dlt][5] * sin(2*Pi*CurPhase/256);
 WavSyn[index][xFreq+1] += CurAmplitude*CorrCf[F_dlt][6] * sin(2*Pi*CurPhase/256 + 1*Pi/2);
 WavSyn[index][xFreq+2] += CurAmplitude*CorrCf[F_dlt][7] * sin(2*Pi*CurPhase/256 + 2*Pi/2);
 WavSyn[index][xFreq+3] += CurAmplitude*CorrCf[F_dlt][8] * sin(2*Pi*CurPhase/256 + 3*Pi/2);
 WavSyn[index][xFreq+4] += CurAmplitude*CorrCf[F_dlt][9] * sin(2*Pi*CurPhase/256 + 4*Pi/2);
 WavSyn[index][xFreq+5] += CurAmplitude*CorrCf[F_dlt][10]* sin(2*Pi*CurPhase/256 + 5*Pi/2);
 CurPhase += PhaseRotation;
}

where:

WavSyn spectral line of MDCT

Freq values obtained from the bitstream (see Table 9-17)

Amplitude linear amplitude of base function, derived from LogAmplitude by using the
table in clause 9.9.1

wavsynEnvelope[index] envelope values obtained from the table in clause 9.9.2

nGroup group number (0 for shortest base functions, 4 for longest)

Length length of base function (Length = 1 << nGroup+1)

)
2

sin(
2

)
2

cos(1
),,,;(ϕπ

π

ϕ +⋅⋅⋅
⋅−

⋅= tf
l

t
lAflAtF),0[lt∈

;0),,,;(=ϕflAtF

Nt ∈

)
2

,1[
l

f ∈

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)170

CorrCf[F_dlt][] correction coefficient given by the table in clause 9.9.3 (corresponding table
should be used for each given group)

F_dlt difference between original frequency and center frequency of the spectral
line used for synthesis

As the synthesis is done on a subframe basis only one iteration of the cycle should be done and CurPhase and
CurAmplitude should be stored for synthesizing the next subframe.

If the spectral line number referred to by the algorithm appears to be negative (this occurs when xFreq is 0 to 4 and the
calculation refers to the terms [xFreq-5] to [xFreq-1]), a mirroring effect takes place. The mirrored spectral line (the
number of this spectral line is the absolute value of the negative spectral line number) should be corrected using the
negative of the complex tabulated coefficient.

9.6.3 Residual Decoding

9.6.3.1 About Residual Decoding

Residual decoding is a scalable scheme. Each residual frame produces the same number of samples as one LBR frame.

9.6.3.2 Residual Decoding Overview

At the encoder, the residual samples of each primary channel are processed by filters producing 32 uniform frequency
subbands, each containing 128 time samples. From the subband samples, scale factors are calculated to normalize the
samples before quantization.

There are potentially 4 different residual coding chunks, in each LBR frame:

• Grid1 chunk - contains low resolution grid of scale factors.

• High resolution grids chunks (two types) - contains high-time resolution grid of scale factors and high-
frequency resolution grid of scale factors (Grid2 and Grid3).

• Timesamples chunks - time sample information for each of the filterbank subbands.

Residual decoding involves the following steps:

1) Unpack and decode Grid1, Grid2, Grid3 scale factors, then use them to reconstruct the high resolution
(Hi Res) scale factor grid.

2) Unpack LPC coefficients and use them with the prediction error unpacked in step 3 to synthesize the subband
samples.

3) Unpack LPC errors and time samples using quantizers specified by the quantization profile.

4) Rescale with corresponding Hi Res scale factors.

5) Reconstruct residual time samples with inverse filterbank.

These steps are further described in the following clauses.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)171

9.6.3.3 Unpacking and Decoding Residuals

9.6.3.3.1 Decoding Residuals Syntax

Table 9-20: Residual parameter initialization

Syntax
InitializeParameters()
{
 FrequencyRange = SAMPLERATE_TO_FREQRANGE(nSampleRate)
 nTotalSubbands = 8 << (FrequencyRange)
 nBaseBitRate = (500+250 * nChannels)
 if (nBitRate >= 176 * nBaseBitRate)
 nResProfile = 2
 else if (nBitRate >= 100 * nBaseBitRate)
 nResProfile = 1
 else
 nResProfile = 0
 G3AvgOnlyStartSB = nTotalSubbands * 1000 * Profiles[nResProfile].nAvgGrid3Frequency /
(nSampleRate/2)
 if (G3AvgOnlyStartSB > nTotalSubbands)
 G3AvgOnlyStartSB = nTotalSubbands
 MinMonoSubband = nTotalSubbands * 1000 * Profiles[nResProfile].nMinMonoFrequency /
(nSampleRate/2)
 if (MinMonoSubband > nTotalSubbands)
 MinMonoSubband = nTotalSubbands
 MaxMonoSubband = nTotalSubbands * 1000 * 14 / (nSampleRate/2)
 if (MaxMonoSubband > nTotalSubbands)
 MaxMonoSubband = nTotalSubbands
 SecChPres = 0
 TSCodingMethod = 0
}

where:

Profiles[] = {nMinMonoFrequency,nAvgGrid3Frequency}
Profiles[3] =

{
 { 2, 16 },
 { 2, 18 },
 { 2, 24 }
}

SAMPLERATE_TO_FREQRANGE() is defined by Table 9-4 and other persistent parameters are defined in
clause 9.2.2.

Table 9-21: Residual Chunks Part 1

syntax Size (Bits)
ResidualChunksPart1(){
 for (ch=0, ch < nPair, ch+=2){
 // the last pair of channel is mono
 // when the number of fullband channel is odd
 if ((ch+2) = nChannels){
 oneChPair = TRUE
 }else{
 oneChPair = FALSE
 }
 Grid1Chunk(ch, oneChPair) Table 9-23
 HiResGridChunk(ch, oneChPair) Table 9-24
 TimeSamples1Chunk(ch, oneChPair) Table 9-22
 TimeSamples2Chunk(ch, oneChPair) Table 9-25
} }

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)172

Table 9-22: TimeSamples 1 Chunk

syntax Size (Bits)
TimeSamples1Chunk(ch, oneChPair){
 DecodeLPC(2, 3) Table 9-31
 DecodeTS(ch, 2, 4, 0, oneChPair) Table 9-28
 DecodeGrid2(0, 1)
 DecodeTS(ch, 4, 6, 0, oneChPair) Table 9-28
}

Table 9-23: Grid1 Chunk

syntax
Grid1Chunk(ch,oneChPair){
 // decode scale factors nSubbandScfGrid1
 nTotalSubbandsG1 = ScalefactorToGrid1[nTotalSubbands-1] + 1
 for (nSubband = 2; nSubband < nTotalSubbandsG1; nSubband++){
 DecodeScaleFactors(nSubbandScfGrid1[ch][nSubband][]) Table 9-29
 }
 // decode average values for 3rd grid
 if (nTotalSubbands > 4)
 nTotalSubbandsG3 = nTotalSubbands-4 + 1
 else
 nTotalSubbandsG3 = 1
 for (nSubband = 0; nSubband < nTotalSubbandsG3; nSubband++){
 nSubbandAvgGrid3[ch][nSubband] = getVariableParam(avgG3) Table 9-18
 nSubbandAvgGrid3[ch][nSubband] -= 16
 if (oneChPair=FALSE){ // "stereo" pair
 if ((nSubband+4) >= 2){
 // copy primary to secondary
 nSubbandAvgGrid3[ch+1][nSubband] = nSubbandAvgGrid3[ch][nSubband];
 }
 else{ // read data from bitstream for the 2 first subbands
 nSubbandAvgGrid3[ch+1][nSubband] = getVariableParam(avgG3); Table 9-18
 nSubbandAvgGrid3[ch+1][nSubband] -= 16;
 } } }
 // get stereo image for partial mono mode
 if (nBitsLeft >= 8){
 if (oneChPair=FALSE){
 nPartialStereoSubband = 0
 nMin[0] = ExtractBits(4); 4
 nMin[1] = ExtractBits(4); 4
 for (nSubband = 2, nSubband < nTotalSubbands; nSubband += 4){
 for (nCh = ch; nCh <= (ch+1); nCh++){
 for (nSubSample = 3; nSubSample >=0; nSubSample--){
 nSubbandPartStereo[nCh][nPartialStereoSubband][nSubSample] =
getVariableParam(stGrid) + nMin[nCh-ch]

Table 9-18

 } }
 nPartialStereoSubband++
 } } }
 // get low-resolution spatial information
 for (nCh = 2; nCh < nChannels; nCh++){
 nMin[0] = ExtractBits(4) 4
 nPartialStereoSubband = 0
 for (nSubband = 0, nSubband < nTotalSubbands; nSubband += 4){
 for (nSubSample = 3; nSubSample >=0; nSubSample--){
 nSubbandPartStereo[nCh][nPartialStereoSubband][nSubSample] =
getVariableParam(stGrid) + nMin[nCh-ch]

Table 9-18

 }
 nPartialStereoSubband++
} } }

where

stGrid and avgG3 are defined in clause 9.9.10.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)173

Table 9-24: High Resolution Grid Chunk

syntax Size (Bits)
HiResGridChunk(ch, oneChPair) {
 // quantizer profile is read from bitstream
 nQuantizerProfile = ExtractBits(8) 8
 // calculate quantization levels for each subband
 OL = (nQuantizerProfile & 0x38) >> 3 // OL: overall level
 ST = (nQuantizerProfile & 0xC0) >> 6 // ST: steepness
 maxSB = nQuantizerProfile & 0x07
 // calculate levels according to a formula
 for (sb=0; sb<nTotalSubbands; ++sb){
 F = sb*nSampleRate/nTotalSubbands
 A = 18000/(12*F/1000+100+40*ST) + 20*OL
 // translate dB into quantization level indices
 if (A <= 95)
 QLevels[sb] = 1 // 1.0 bits
 else if (A <= 140)
 QLevels[sb] = 2 // 1.6 bits
 else if (A <= 180)
 QLevels[sb] = 3 // 2.4 bits
 else if (A <= 230)
 QLevels[sb] = 4 // 3.0 bits
 else
 QLevels[sb] = 5 // 4.0 bits
 }
 // reorder quantization levels for lower subbands according to maxSB
 QLevels[maxSB] = QLevels[0]
 // get LPC for the first two subbands
 DecodeLPC(0, 2) Table 9-31
 // get time-samples for the first two subbands of main channel
 DecodeTS(ch, 0, 2, 0, oneChPair) Table 9-28
 // get the first two bands of the first grid from bitstream
 for (nSubband = 0; nSubband < 2; nSubband++)
 {
 for (nCh = ch; nCh <= (ch+1); nCh++){
 DecodeScaleFactors(nSubbandScfGrid1[nCh][nSubband][]) Table 9-29
} } }

Table 9-25: TimeSamples 2 Chunk

syntax Size (Bits)
TimeSamples2Chunk(ch, oneChPair){
 DecodeGrid2(1, 4)
 DecodeTS(ch, 6, nMaxMonoSubband, 0, oneChPair) Table 9-28
 if (oneChPair = FALSE){
 DecodeGrid1(ch)
 DecodeGrid2(ch, 0, 4)
 }
 DecodeTS(ch, nMinMonoSubband, nTotalSubbands, 1, oneChPair) Table 9-28
}

Table 9-26: Decode Grid1

syntax Size (Bits)
DecodeGrid1(ch){
 nTotalSubbandsG1 = ScalefactorToGrid1[nTotalSubbands-1] + 1
 for (nSubband = 2; nSubband < nTotalSubbandsG1; nSubband++){
 DecodeScaleFactors(nSubbandScfGrid1[ch+1][nSubband][]) Table 9-29
} }

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)174

where:

ScalefactorToGrid1[64] =
{
 0,1,2,3,4,4,5,5,6,6,6,6,7,7,7,7,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10,10,
 11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,
 12,12,12,12,12,12,12,12
}

Table 9-27: Decode Grid2

syntax Size (Bits)
DecodeGrid2(ch, startSB, endSB){
 nTotalSubbands = ScalefactorToGrid2[nTotalSubbands-1] + 1
 if (endSB > nTotalSubbands)
 endSB = nTotalSubbands
 for (nSubband = startSB; nSubband < endSB; nSubband++){
 for (nCh = ch; nCh <= (ch+1); nCh++){
 for (i = 63; i >= 0; i -= 8){
 nValue = ExtractBits(1) 1
 if (nValue){
 for (j = 7; j >= 0; j--){
 nValue = ExtractBits(5) 5
 r = Grid2Codes[nValue]
 r &= 31
 if(r<31)
 nSubbandScfGrid2[nCh][nSubband][j] = r
 if(ExtractBits(1)){ 1
 nSubbandScfGrid2[nCh][nSubband][j] = 6
 break
 if(ExtractBits(1)){ 1
 nSubbandScfGrid2[nCh][nSubband][j] = 7
 break
 }
 if(ExtractBits(1)){ 1
 nSubbandScfGrid2[nCh][nSubband][j] = 8
 break
 }
 if(ExtractBits(1)){ 1
 nSubbandScfGrid2[nCh][nSubband][j] = 9
 break
 }
 if(ExtractBits(3) = 3){ 3
 nSubbandScfGrid2[nCh][nSubband][j] = 0xa
 break
 }
 if(ExtractBits(3) = 3){ 3
 nSubbandScfGrid2[nCh][nSubband][j] = 0xb
 break
 }
 if(ExtractBits(7) = 2){ 7
 nSubbandScfGrid2[nCh][nSubband][j] = 0xc
 break
 }
 if(ExtractBits(7) = 6){ 7
 nSubbandScfGrid2[nCh][nSubband][j] = 0x10
 break
 }
 if(ExtractBits(15) = 5){ 15
 nSubbandScfGrid2[nCh][nSubband][j] = 0xe
 break
 }
 if(ExtractBits(15) = 9){ 15
 nSubbandScfGrid2[nCh][nSubband][j] = 0x11
 break
 }
 if(ExtractBits(31) = 1){ 31
 nSubbandScfGrid2[nCh][nSubband][j] = 0x12
 break

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)175

syntax Size (Bits)
 }
 if(ExtractBits(31) = 17){ 31
 nSubbandScfGrid2[nCh][nSubband][j] = 0xd
 break
 }
 if(ExtractBits(31) = 0xd){ 31
 nSubbandScfGrid2[nCh][nSubband][j] = 0xf
 break
 }
 // rare value case
 nBits = ExtractBits(3) + 4 3
 r = ExtractBits(nBits) nbits
 if(r > 56)
 nSubbandScfGrid2[nCh][nSubband][j] = 0
 nSubbandScfGrid2[nCh][nSubband][j] = r
 }
 }else{
 for (j = 7; j >= 0; j--){
 nSubbandScfGrid2[nCh][nSubband][j] = 0
} } } } } }

where:

ScalefactorToGrid2[64] =
{
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 1, 1, 1, 1, 1, 1,
 1, 1, 2, 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2, 2, 2, 2,
 3, 3, 3, 3, 3, 3, 3, 3,
 3, 3, 3, 3, 3, 3, 3, 3,
 3, 3, 3, 3, 3, 3, 3, 3,
 3, 3, 3, 3, 3, 3, 3, 3
}

Grid2Codes[32] =
{
 66, 99, 65, 64, 66, 132, 65, 64, 66, 99, 65, 64, 66, 165, 65, 64,
 66, 99, 65, 64, 66, 132, 65, 64, 66, 99, 65, 64, 66, 191, 65, 64
}

Table 9-28: DecodeTS

syntax Size (Bits)
DecodeTS(ch,startSB,endSB,channelFlag, oneChPair){
 for (nSubbandIndex = startSB; nSubbandIndex < endSB ; nSubbandIndex++){
 nSbReordered = 0
 if (nSubbandIndex > 6){
 if ((channelFlag=0) | (nSubbandIndex >= nMaxMonoSubband))
 nSbReordered = ExtractBits(5) 5
 }else{
 nSbReordered = nSubbandIndex
 }
 // get grid3 scf
 if (nSubbandIndex = 12){
 if (G3AvgOnlyStartSB > 4)
 nEndSubbandG3 = G3AvgOnlyStartSB-4
 else
 nEndSubbandG3 = 0
 for (nSubbandG3 = 0; nSubbandG3 < nEndSubbandG3; nSubbandG3++)
 {
 for (nCh = ch; nCh <= (ch+1); nCh++)
 nSubbandScfGrid3[nCh][nSubbandIndex][nSubbandG3] = DecodeGrid3() Table 9-30

 }
 }else if ((nSbReordered >= 4) & (nSubbandIndex < 12)){
 if (nSbReordered > 4)

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)176

syntax Size (Bits)
 nSubbandG3 = nSbReordered-4
 else
 nSubbandG3 = 0
 for (nCh = ch; nCh <= (ch+1); nCh++){
 nSubbandScfGrid3[nCh][nSubbandIndex][nSubbandG3] = DecodeGrid3() Table 9-30
 } }
 // stereo matrix
 if (oneChPair=FALSE){
 if (nBitsLeft >= 20)

 nSubbandMidSide[nSbReordered] = ExtractBits(8) 8
 if ((channelFlag = 1) & (nSbReordered >= nMinMonoSubband))
 nLRMS = ExtractBits(8) 8
 }
 nStartChannel = ch
 nEndChannel = ch+2
 if ((nSbReordered >= nMinMonoSubband) & (nSubbandIndex < nMaxMonoSubband))
 {
 if (channelFlag = 0)
 nEndChannel = ch+1
 else
 nStartChannel = ch+1
 }
 for (nCh = nStartChannel; nCh < nEndChannel; nCh++){
 overCoded = 0
 sbCodingFetched = 0
 for (nSubFrame = 0; nSubFrame < 4; nSubFrame++){
 // timesample coding method is fetched from the bitstream only once
 if (!sbCodingFetched){
 TSCodingMethod[nCh][nSbReordered][nSubFrame] = ExtractBits(1) 1
 sbCodingFetched = 1
 }
 switch (QLevels[nSubbandIndex]) {
 case 1:
 nBitsToExtract = min(nBitsLeft, 32)
 break
 case 2:
 if (TSCodingMethod[nCh][nSbReordered][nSubFrame] == 0){
 // in the first method, 5 samples are combined to form an
 // 8-bit number (3^5 = 243 which fits into 8 bits)
 if ((32-overCoded) % 5)
 nBitsToExtract = min(nBitsLeft, 8 * ((32-overCoded) / 5 + 1))
 else
 nBitsToExtract = min(nBitsLeft, 8 * ((32-overCoded) / 5))
 overCoded = max(0, 5*nBitsToExtract/8 - (32-overCoded))
 }else{
 i = 0
 j = nBitPosition
 nValue = ExtractBits(j) variable
 while (j > 0){
 tmv = (nValue & 1) + 1
 nValue = nValue >> tmv
 j -= tmv
 i++
 }
 nBits = nBitsLeft
 for (i=0;i < 16 & (nBits >= 16); nBits -= 16){
 nValue = ExtractBits(1) 1
 nValue |= ExtractBits(1) << 8 1
 if (j < 0)
 nValue = nValue >> 1
 j += 16
 while (j > 0){
 tmv = (nValue & 1) + 1
 nValue = nValue >> tmv
 j -= tmv
 i++
 } }
 nBitsLeft = nBits

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)177

syntax Size (Bits)
 if (j < 0)
 ExtractBits(1) 1
 for (i=0;i < 32;i++){
 if (nBitsLeft >= 10){
 for (j = 0; j < 5; j++){
 if (i + j >= 32)
 break
 if (ExtractBits(1)) 1
 ExtractBits(1) 1
 } }
 i += j
 } }
 break
 case 3:
 if ((32-overCoded) % 3)
 nBitsToExtract = min(nBitsLeft, 7 * (32-overCoded) / 3 + 1)
 else
 nBitsToExtract = min(nBitsLeft, 7 * (32-overCoded) / 3)

 overCoded = max(0, 3*nBitsToExtract/7 - (32-overCoded))
 break
 case 4:
 for (i = 0; i < 32; i++)
 nCodeVal[ExtractBits(8) & 63] 8

 break
 case 5:
 nBitsToExtract = min(nBitsLeft, 4 * 32)
 break
 }
 if (nBitsToExtract){
 if (nBitsToExtract >= 16){
 nBitsLeft -= ((nBitsToExtract >> 3) - 2) << 3
 ExtractBits(16) 16
 ExtractBits(nBitsToExtract & 7) variable
 }else{
 ExtractBits(nBitsToExtract) variable
 } } } }
 if (!oneChPair & (nSubbandIndex >= nMinMonoSubband) & (nBitsLeft >= 20))
 SecChPres = 1
} }

where:

nCodeVal[64]=
{
 1, 2, 4, 3, 5, 2, 0, 3, 1, 2, 4, 3, 6, 2, 0, 3, 1, 2, 4, 3, 5, 2, 0, 3, 1, 2, 4, 3, 7, 2, 0, 3,
 1, 2, 4, 3, 5, 2, 0, 3, 1, 2, 4, 3, 6, 2, 0, 3, 1, 2, 4, 3, 5, 2, 0, 3, 1, 2, 4, 3, 4, 2, 0, 3
}

Table 9-29: Decode Scalefactors

syntax Size (Bits)
DecodeScaleFactors(*nSubbandScf){
 subframe = 0
 nPrevious = getVariableParam(fstRsdAmp) Table 9-18
 nSubbandScf[subframe] = nPrevious
 while (subframe != 7){
 // get subframe distance to next interpolation point
 nextSubframeDistance = getVariableParam(rsdAppx) + 1 Table 9-18
 // get value of next interpolation point
 nNext = getVariableParam(rsdAmp) Table 9-18
 if (nNext & 1)
 nNext = nPrevious + ((nNext + 1) >> 1)
 else
 nNext = nPrevious - (nNext >> 1)
 // perform linear interpolation on missing values

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)178

syntax Size (Bits)
 if (nextSubframeDistance = 2){
 if (nNext > nPrevious)
 nSubbandScf[subframe + 1] = nPrevious + (nNext - nPrevious) >> 1
 else
 nSubbandScf[subframe + 1] = nPrevious - (nPrevious - nNext) >> 1
 }
 else if (nextSubframeDistance = 4){
 if (nNext > nPrevious){
 nSubbandScf[subframe + 1] = nPrevious + (nNext - nPrevious) >> 2
 nSubbandScf[subframe + 2] = nPrevious + (nNext - nPrevious) >> 1
 nSubbandScf[subframe + 3] = nPrevious + ((nNext - nPrevious) * 3) >> 2
 }
 else{
 nSubbandScf[subframe + 1] = nPrevious - (nPrevious - nNext) >> 2
 nSubbandScf[subframe + 2] = nPrevious - (nPrevious - nNext) >> 1
 nSubbandScf[subframe + 3] = nPrevious - ((nPrevious - nNext) * 3) >> 2
 } }
 else{
 for (i = 1; i < nextSubframeDistance; i++){
 nSubbandScf[subframe + i] = nPrevious + (nNext - nPrevious)
 * i / nextSubframeDistance
 } }
 // final interpolation point
 nSubbandScf[subframe + nextSubframeDistance] = nNext
 // move on to next subframe
 subframe += nextSubframeDistance
 // update
 nPrevious = nNext
} }

where:

fstRsdAmp, rsdAppx and rsdAmp are defined in clause 9.9.10.

Table 9-30: Decode Grid3

syntax Size (Bits)
DecodeGrid3(){
 for (i = 0; i < 8; i++){
 nValue = ExtractBits(5) 5
 r = Grid3Codes[nValue]
 r &= 31
 if(r<31)
 return r
 if(ExtractBits(1) = 0) 1
 return 0xd
 if(ExtractBits(3) = 3) 3
 return 0x13
 if(ExtractBits(7) = 1) 7
 return 0xc
 if(ExtractBits(1) = 1) 1
 return 0x14
 if(ExtractBits(3) = 0) 3
 return 0xb
 if(ExtractBits(7) = 6) 7
 return 0x15
 if(ExtractBits(15) = 2) 15
 return 0xa
 // rare value
 nBits = ExtractBits(3) + 4 3
 r = ExtractBits(nBits) nbits
 if(r > 56)
 return 16
 return r
} }

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)179

where:

Grid3Codes[32] =
{
 113, 48, 79, 48, 142, 48, 79, 48,113, 48, 79, 48, 178, 48, 79, 48,
 113, 48, 79, 48, 142, 48, 79, 48,113, 48, 79, 48, 191, 48, 79, 48
}

Table 9-31: DecodeLPC

syntax Size (Bits)
DecodeLPC(startSB,endSB){
 nOrder = 8
 for (nSubband = startSB; nSubband < endSB; nSubband++){
 for (nCh = ch; nCh <= (ch+1); nCh++){
 if (nSubband < 2){ // LPC subbands
 for (j = 0; j < 2; j++){ // LPC frames
 if (nBitsLeft >= nOrder * 4){
 for (i = 0; i < nOrder; i++){
 LpcQtd[i] = ExtractBits(4) 4
 } } } }
 else{
 if (nBitsLeft >= nOrder * 4)
 {
 for (i = 0; i < nOrder; i++){
 LpcQtd[i] = ExtractBits(4) 4
} } } } } }

Table 9-32: Decode Residual Chunks Part 2

syntax Size (Bits)
ResidualChunksPart2(ch, nSubFrameCount)
{
 nSampleOffset = nSubFrameCount << 3
 nTotalSubbands = 8 << nFrequencyRange
 nSubFrame4 = nSubFrameCount/4
 for (nSubband = 0; nSubband < nTotalSubbands ; nSubband++){
 if ((nSubband >= nMinMonoSubband) & (SecChPres = 0))
 nCodedChannels = ch
 else
 nCodedChannels = ch+1
 for (nCh = ch; nCh <= nCodedChannels; nCh++){
 nLevel = QLevels[nCh][nSubband][nSubFrame4]
 ModuloOrigin = 0
 if(nLevel = 2){
 if (nBitsLeft >= 16){
 if (TSCodingMethod[nCh][nSubband][nSubFrame4] = 0){
 nValue = nPackedSamples[nCh][nSubband]
 for (j = 0; j < 8; j++){
 nCount = mod(5, nSampleOffset - ModuloOrigin + j)
 if (nCount=0){
 if (nBitsLeft >= 24)
 nValue = ExtractBits(8) 8
 else if (nBitsLeft >= 8){
 nValue = ExtractBits(8) 8
 if (nValue > 242) nValue = 121
 }else
 nValue = 121
 }
 xValue[j] =
ResidualLevels3[(ResidualPack5In8[nValue]>>(nCount*2))&3]

 }
 nPackedSamples[nCh][nSubband] = nValue
 }else{
 for (j = 0; j < 8; j++){

 nValue = ExtractBits(1) 1
 if (nValue = 0)

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)180

syntax Size (Bits)
 xValue[j] = 0
 else
 xValue[j] = ResidualQuantizednLevel16[nValue]
 } } }
 }else if (nLevel = 3){
 if (nBitsLeft >= 7){
 nValue = nPackedSamples[nCh][nSubband]
 if (nValue > 124) nValue = 124
 for (j = 0; j < 8; j++){
 nCount = mod(3,[nSampleOffset - ModuloOrigin + j])
 if (nCount=0){
 if (nBitsLeft >= 24)
 nValue = ExtractBits(7) 7
 }else if (nBitsLeft >= 7){
 nValue = ExtractBits(7) 7
 if (nValue > 124) nValue = 62
 }else{
 nValue = 62
 } }
 xValue[j] = ResidualLevels5[ResidualPack3In7[nValue][nCount]]
 }
 nPackedSamples[nCh][nSubband] = nValue
 } }
 else {
 switch (nLevel) {
 default:
 case 0:
 break
 case 1:
 if (nBitsLeft >= 8){
 nValue = ExtractBits(8) 8
 xValue[0] = ResidualQuantizednLevel10[nValue & 1]
 nValue >>= 1
 xValue[1] = ResidualQuantizednLevel10[nValue & 1]
 nValue >>= 1
 xValue[2] = ResidualQuantizednLevel10[nValue & 1]
 nValue >>= 1
 xValue[3] = ResidualQuantizednLevel10[nValue & 1]
 nValue >>= 1
 xValue[4] = ResidualQuantizednLevel10[nValue & 1]
 nValue >>= 1
 xValue[5] = ResidualQuantizednLevel10[nValue & 1]
 nValue >>= 1
 xValue[6] = ResidualQuantizednLevel10[nValue & 1]
 nValue >>= 1
 xValue[7] = ResidualQuantizednLevel10[nValue & 1]
 }
 break
 case 4:
 for (j=0; j < 8; j++){
 if (nBitsLeft >= 24)
 xValue[j] = ResidualLevels8[nCodeVal[nValue & 63]]
 }
 break
 case 5:
 for (j=0; j < 8; j++){
 if (nBitsLeft >= 4)
 xValue[j] = ResidualLevels16[ExtractBits(4)] 4
 }
 break
} } } } }

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)181

where:

The ResidualLevels and ResidualQuantizednLevel tables are in clause 9.9.5.

mod(x,y) is the modulo of y to the rank of x, so mod(x,y) is the integer remainder of y/x

ResidualPack5In8[256] =
{
 0x0000, 0x0100, 0x0200, 0x0040, 0x0140, 0x0240, 0x0080, 0x0180, 0x0280, 0x0010, 0x0110, 0x0210,
 0x0050, 0x0150, 0x0250, 0x0090, 0x0190, 0x0290, 0x0020, 0x0120, 0x0220, 0x0060, 0x0160, 0x0260,
 0x00a0, 0x01a0, 0x02a0, 0x0004, 0x0104, 0x0204, 0x0044, 0x0144, 0x0244, 0x0084, 0x0184, 0x0284,
 0x0014, 0x0114, 0x0214, 0x0054, 0x0154, 0x0254, 0x0094, 0x0194, 0x0294, 0x0024, 0x0124, 0x0224,
 0x0064, 0x0164, 0x0264, 0x00a4, 0x01a4, 0x02a4, 0x0008, 0x0108, 0x0208, 0x0048, 0x0148, 0x0248,
 0x0088, 0x0188, 0x0288, 0x0018, 0x0118, 0x0218, 0x0058, 0x0158, 0x0258, 0x0098, 0x0198, 0x0298,
 0x0028, 0x0128, 0x0228, 0x0068, 0x0168, 0x0268, 0x00a8, 0x01a8, 0x02a8, 0x0001, 0x0101, 0x0201,
 0x0041, 0x0141, 0x0241, 0x0081, 0x0181, 0x0281, 0x0011, 0x0111, 0x0211, 0x0051, 0x0151, 0x0251,
 0x0091, 0x0191, 0x0291, 0x0021, 0x0121, 0x0221, 0x0061, 0x0161, 0x0261, 0x00a1, 0x01a1, 0x02a1,
 0x0005, 0x0105, 0x0205, 0x0045, 0x0145, 0x0245, 0x0085, 0x0185, 0x0285, 0x0015, 0x0115, 0x0215,
 0x0055, 0x0155, 0x0255, 0x0095, 0x0195, 0x0295, 0x0025, 0x0125, 0x0225, 0x0065, 0x0165, 0x0265,
 0x00a5, 0x01a5, 0x02a5, 0x0009, 0x0109, 0x0209, 0x0049, 0x0149, 0x0249, 0x0089, 0x0189, 0x0289,
 0x0019, 0x0119, 0x0219, 0x0059, 0x0159, 0x0259, 0x0099, 0x0199, 0x0299, 0x0029, 0x0129, 0x0229,
 0x0069, 0x0169, 0x0269, 0x00a9, 0x01a9, 0x02a9, 0x0002, 0x0102, 0x0202, 0x0042, 0x0142, 0x0242,
 0x0082, 0x0182, 0x0282, 0x0012, 0x0112, 0x0212, 0x0052, 0x0152, 0x0252, 0x0092, 0x0192, 0x0292,
 0x0022, 0x0122, 0x0222, 0x0062, 0x0162, 0x0262, 0x00a2, 0x01a2, 0x02a2, 0x0006, 0x0106, 0x0206,
 0x0046, 0x0146, 0x0246, 0x0086, 0x0186, 0x0286, 0x0016, 0x0116, 0x0216, 0x0056, 0x0156, 0x0256,
 0x0096, 0x0196, 0x0296, 0x0026, 0x0126, 0x0226, 0x0066, 0x0166, 0x0266, 0x00a6, 0x01a6, 0x02a6,
 0x000a, 0x010a, 0x020a, 0x004a, 0x014a, 0x024a, 0x008a, 0x018a, 0x028a, 0x001a, 0x011a, 0x021a,
 0x005a, 0x015a, 0x025a, 0x009a, 0x019a, 0x029a, 0x002a, 0x012a, 0x022a, 0x006a, 0x016a, 0x026a,
 0x00aa, 0x01aa, 0x02aa, 0x0003, 0x0103, 0x0203, 0x0043, 0x0143, 0x0243, 0x0083, 0x0183, 0x0283,
 0x0013, 0x0113, 0x0213, 0x0053
}

ResidualPack3In7[128][3] =
{
 { 0, 0, 0 }, { 0, 0, 1 }, { 0, 0, 2 }, { 0, 0, 3 }, { 0, 0, 4 }, { 0, 1, 0 }, { 0, 1, 1 },
 { 0, 1, 2 }, { 0, 1, 3 }, { 0, 1, 4 }, { 0, 2, 0 }, { 0, 2, 1 }, { 0, 2, 2 }, { 0, 2, 3 },
 { 0, 2, 4 }, { 0, 3, 0 }, { 0, 3, 1 }, { 0, 3, 2 }, { 0, 3, 3 }, { 0, 3, 4 }, { 0, 4, 0 },
 { 0, 4, 1 }, { 0, 4, 2 }, { 0, 4, 3 }, { 0, 4, 4 }, { 1, 0, 0 }, { 1, 0, 1 }, { 1, 0, 2 },
 { 1, 0, 3 }, { 1, 0, 4 }, { 1, 1, 0 }, { 1, 1, 1 }, { 1, 1, 2 }, { 1, 1, 3 }, { 1, 1, 4 },
 { 1, 2, 0 }, { 1, 2, 1 }, { 1, 2, 2 }, { 1, 2, 3 }, { 1, 2, 4 }, { 1, 3, 0 }, { 1, 3, 1 },
 { 1, 3, 2 }, { 1, 3, 3 }, { 1, 3, 4 }, { 1, 4, 0 }, { 1, 4, 1 }, { 1, 4, 2 }, { 1, 4, 3 },
 { 1, 4, 4 }, { 2, 0, 0 }, { 2, 0, 1 }, { 2, 0, 2 }, { 2, 0, 3 }, { 2, 0, 4 }, { 2, 1, 0 },
 { 2, 1, 1 }, { 2, 1, 2 }, { 2, 1, 3 }, { 2, 1, 4 }, { 2, 2, 0 }, { 2, 2, 1 }, { 2, 2, 2 },
 { 2, 2, 3 }, { 2, 2, 4 }, { 2, 3, 0 }, { 2, 3, 1 }, { 2, 3, 2 }, { 2, 3, 3 }, { 2, 3, 4 },
 { 2, 4, 0 }, { 2, 4, 1 }, { 2, 4, 2 }, { 2, 4, 3 }, { 2, 4, 4 }, { 3, 0, 0 }, { 3, 0, 1 },
 { 3, 0, 2 }, { 3, 0, 3 }, { 3, 0, 4 }, { 3, 1, 0 }, { 3, 1, 1 }, { 3, 1, 2 }, { 3, 1, 3 },
 { 3, 1, 4 }, { 3, 2, 0 }, { 3, 2, 1 }, { 3, 2, 2 }, { 3, 2, 3 }, { 3, 2, 4 }, { 3, 3, 0 },
 { 3, 3, 1 }, { 3, 3, 2 }, { 3, 3, 3 }, { 3, 3, 4 }, { 3, 4, 0 }, { 3, 4, 1 }, { 3, 4, 2 },
 { 3, 4, 3 }, { 3, 4, 4 }, { 4, 0, 0 }, { 4, 0, 1 }, { 4, 0, 2 }, { 4, 0, 3 }, { 4, 0, 4 },
 { 4, 1, 0 }, { 4, 1, 1 }, { 4, 1, 2 }, { 4, 1, 3 }, { 4, 1, 4 }, { 4, 2, 0 }, { 4, 2, 1 },
 { 4, 2, 2 }, { 4, 2, 3 }, { 4, 2, 4 }, { 4, 3, 0 }, { 4, 3, 1 }, { 4, 3, 2 }, { 4, 3, 3 },
 { 4, 3, 4 }, { 4, 4, 0 }, { 4, 4, 1 }, { 4, 4, 2 }, { 4, 4, 3 }, { 4, 4, 4 }, { 5, 0, 0 },
 { 5, 0, 1 }, { 5, 0, 2 }
}

nCodeVal[64]=
{
 1, 2, 4, 3, 5, 2, 0, 3, 1, 2, 4, 3, 6, 2, 0, 3, 1, 2, 4, 3, 5, 2, 0, 3, 1, 2, 4, 3, 7, 2, 0, 3,
 1, 2, 4, 3, 5, 2, 0, 3, 1, 2, 4, 3, 6, 2, 0, 3, 1, 2, 4, 3, 5, 2, 0, 3, 1, 2, 4, 3, 4, 2, 0, 3
}

9.6.3.3.2 Quantization Profiles

The amount of bits available to store (quantized) information on individual values of subband samples varies from
frame to frame. The actual amount depends on many variables: bitrate, number of bits occupied by tonal information,
number of bits occupied by residual scalefactor grids. In these conditions it is feasible to use individual quantization
profile in each frame. For multi-channel files, a quantization profile can be selected individually for each channel pair.
The quantization profile is characterized by 8 bit value with the following fields:

• 3 bits - overall level;

• 2 bits - steepness;

• 3 bits - subband with maximum energy out of the first 8 subbands.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)182

Quantization level for a given subband can be calculated with the following formulas:

where:

SNR - desired signal-to-noise ratio for given subband, in dB × 10

SampleRate - sampling rate in Hz;

ST - steepness;

OL - overall level.

A quantizer is then selected that give SNR value closest to calculated by the equation above according to:

Table 9-33: Quantizer levels

SNR, dB × 10 Number of levels in quantizer
≤ 95 2

> 95 and ≤ 140 3
> 140 and ≤ 180 5
> 180 and ≤ 230 8

> 230 16

9.6.3.3.3 Scale Factor Processing

At the encoder, the initial scale factor grid is referred to as the high resolution grid and is constructed by selecting the
larger amplitude out of each pair of successive samples. This results in 32 bands by 64 scale factors per primary
channel, but this grid is not transmitted due to its large size. Instead, 3 separate lower resolution grids are derived from
it and encoded for packing into the bit stream.

At the decoder, the low resolution grids are decoded, re-assembled and then used to reconstruct a high resolution scale
factor grid for sample scaling. If the 'high resolution grids' chunk is present, it is possible to construct scalefactors with
better resolution. This chunk contains the 1st subband from Grid1 which should be processed first. Both Grid2 and
Grid3 information is used to correct the results calculated using only Grid1 information. That is, Grid2 and Grid3
contain difference information for the Grid1 information.

Below is a summary of the frequency and time resolution of each grid at 44,1/48 KHz, (refer to the appropriate tables to
derive 96 KHz values.)

Grid 1 has 10 bands of 8 scale factors, (see clause 9.9.4, Grid1 mapping table, for details). It should be noted that a skip
and interpolate technique is also used at the encoder to improve coding efficiency, so the actual number of Grid1 factors
in the stream could be less than 10 by 8:

• Bands 0 to 3 correspond to frequency subband 0 to 3 respectively

• Band 4: frequency subbands 4 to 5

• Band 5: frequency subbands 6 to 9

• Band 6: frequency subbands 7 to 12

• Band 7: frequency subbands 10 to 17

• Band 8: frequency subbands 14 to 23

• Band 9: frequency subbands 19 to 29

L
S

ndsTotalSubba

SampleRatenSubband
SNR ×+

×++

×
××

= 20
40100

1000

12
18000

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)183

Grid 2 has 3 bands of 64 scale factors:

• Band 1: frequency subbands 4 to 9

• Band 2: frequency subbands 10 to 17

• Band 3: frequency subbands 18 to 31

Grid 3 has 26 bands of 8 scale factors:

• Mapping to frequency subbands 4 to 29

9.6.3.3.4 Decoding of Grid 1 scale factors

Grid1 has overlapping subbands (as opposed to Grid2 and Grid3). The bitstream contains amplitudes of selected Grid1
scalefactors and the distances between them. Any factors missing from the bit stream should be linearly interpolated
from these values to produce 8 scalefactors per subband.

These values should further be mapped to the high-resolution grid using the weights from the tables in clause 9.9.4. The
Grid1 chunk in the bit stream has information about all the Grid1 subbands except the first and second subband because
for coding at low bitrates where there are no high resolution grids and no TimeSamples chunks in the bitstream, this
subband is always zero.

9.6.3.3.5 Decoding of Grid 2 scale factors

Grid2 scalefactors are stored in groups of 8. There is a 1bit flag stored before each group - if this flag is 0 - the whole
group has 0 values. Otherwise individual values are stored. These values should be subtracted from the high-resolution
grid. Grid2 has the same time resolution as the high-resolution grid, but there are only three subbands. These three
subbands are mapped without weighting to high-resolution bands 4 to 7; 8 to 15; and 16 to 31 respectively.

9.6.3.3.6 Decoding of Grid 3 scale factors

Grid3 has the same frequency resolution as the high-resolution grid but has low time-resolution - there are only 8 time
intervals. Since Grid1 already has the highest possible frequency resolution for the lowest 4 subbands, there is no data
for these subbands in Grid3. Due to this, Grid3 contains only 28 subbands which should be mapped to subbands 4 to 31
of the high resolution grid.

9.6.3.4 Reconstruction of Hi resolution scale factors grid

High-resolution scalefactors are constructed from Grid1 and 'high resolution grids' chunks. In this step all the grids
obtained from the bitstream are mapped onto a grid of scalefactors which has enough time and frequency resolution to
include information from all the grids. A grid 64 time intervals is sufficient. In the clauses that follow, this grid will be
referred as the 'high-resolution grid'.

9.6.3.5 LPC synthesis

The synthesis process contains the following steps (for each subband):

1) Getting reflection coefficients (LpcQtd[] in Table 9-31) from bitstream.

2) Dequantizing coefficients to direct linear representation.

3) Running predictor over the samples in a form of IIR filter.

For each primary channel, prediction is applied to the first two subbands only and each frame is divided into two blocks
for processing. So there would be two groups of 8 coefficients per subband in the bit stream and each set should be used
to synthesize samples for half of the frame.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)184

9.6.3.6 Timesamples Processing

There are several methods for packing time sample information into the bitstream. These methods are indicated with
flags that apply to a single subband for the entire residual frame:

• If nLRMS (Mid/Side)is set, the time samples are used for both channels.

• If nSubbandMidSide is set in conjunction with nLRMS , the time samples for the right channel should be
inverted.

• The TSCodingMethod flag determines whether time samples are packed using Huffman codes or packed
directly as 5 values in 8 bits for 3-level quantization or as 3 values in 7 bits for 5-level quantization. This flag
is effective only for 3- and 5-level quantization. 9- and 8-level quantization always uses Huffman codes. 2-
level quantization always uses direct packing (1bit/sample).

De-quantized values are described in the tables found in clause 9.9.5.

The quantization levels allocation scheme used to quantize the time-samples depends on quantization profile that is
selected individually for each frame and each channel pair. A procedure of assignment of quantization levels to
subbands is described in clause 9.6.3.3.2.

When no information about specific sample value is found in the bitstream, a pseudo-random value with the range
[-1…1] is substituted. This process is referred to as white noise substitution.

After de-quantization, the time samples are scaled with the high-resolution scale factors (see clause 9.6.3.3.3). There are
2 samples for each scale factor in the high-resolution scale factors grid. Each time sample should be multiplied by the
linear scale factor value obtained from the Grid 1, 2 and 3 scale factor extraction.

9.6.4 Inverse Filterbank

The inverse filterbank is constructed of evenly spaced critically downsampled subbands. The filterbank is a hybrid
structure performed with the following steps:

1) Windowing input data in each subband:

- 8-point forward MDCT

- Grouping 8-point MDCT results into a single set of MDCT coefficients

- Aliasing cancellation for high frequencies, described by the following pseudo-code:

AL1 = 0.30865828381746
AL2 = 0.03806023374436
a = mdct_band[i][3] * AL1
b = mdct_band [i+1][0] * AL1
mdct_band [i][3] = mdct_band [i][3] + b-a
mdct_band [i+1][0] = mdct_band [i+1][0] + b+a
a = mdct_band [i][2] * AL2
b = mdct_band [i+1][1] * AL2
mdct_band [i][2] = mdct_band [i][2] + b-a
mdct_band [i+1][1] = mdct_band [i+1][1] + b+a

Where mdct_band[i] is ith band of MDCT coefficients, and the short window filter is shown in Table 9-34.

Table 9-34: Short window filter

0,02281089288256
0,41799773023326
0,90844807089885
0,99973979773034
0,99973979773034
0,90844807089885
0,41799773023326
0,02281089288256

N-point inverse MDCT. N depends on sample-rate as shown in Table 9-19.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)185

2) Window (Long Window in clause 9.9.6).

3) Overlap-add.

This inverse filterbank structure allows an optimized implementation to use the same filterbank for both residual coding
and tonal components reconstruction, which speeds-up the decoding process considerably.

9.6.5 LFE Chunk

9.6.5.1 LFE Chunk Syntax

The LFE Chunk is used to store ADPCM-encoded LFE channel samples.

Table 9-35: LFE Chunk

Syntax Size (Bits)
LFEChunk()
{
 if (chunkID != LFE_ADPCM_ID) 8
 return
 ChunkLengthInfo() Table 9-9
 DecodeLFE()
 ByteAlign() 0..7
}

Table 9-36: Decode LFE

Syntax Size (Bits)
DecodeLFE(){
 InitLFE() Table 9-37
 vp = 0
 nsamples = 4
 stepindex = 0
 if (nSampleRate<14000){
 upsampleFactor = 16
 }else if (nSampleRate<28000){
 upsampleFactor = 32
 }else if (nSampleRate<50000){
 upsampleFactor = 64
 }else{
 upsampleFactor = 128
 }
 nScale = upsampleFactor * 0x7fff
 vp = predictedSampleInit
 stepindex = stepSizeIndexInit
 if (bLFEinput24Bit){
 stepsize = lfe_StepSizeTable24[stepindex]
 for (nsample = 0; nsample<nsamples; nsample++){
 code = ExtractBits(6) 6
 // Calculate predicted delta as ((code+0.5)*step)/16
 pdelta = stepsize/32
 if (code & 16)
 pdelta += stepsize
 if (code & 8)
 pdelta += stepsize/2
 if (code & 4)
 pdelta += stepsize/4
 if (code & 2)
 pdelta += stepsize/8
 if (code & 1)
 pdelta += stepsize/16
 // Update predicted value
 if (code & 32){
 vp -= pdelta
 if (vp < -1.3f)

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)186

Syntax Size (Bits)
 vp = -1.3f
 }else{
 vp += pdelta
 if (vp > 1.3f)
 vp = 1.3f
 }
 // Adjust step size
 stepindex += lfe_DeltaIndex24[code & 31]
 if (stepindex < 0){
 stepindex = 0
 }else if (stepindex > 143){
 stepindex = 143
 }
 stepsize = lfe_StepSizeTable24[stepindex]
 // Output data
 LFEdata[nsample] = vp * nScale
 } }
 else
 {

 stepsize = lfe_StepSizeTable16[stepindex]
 for (nsample = 0; nsample<nsamples; nsample++){
 code = ExtractBits(4) 4
 // Calculate predicted delta as ((code+0.5)*step)/4
 pdelta = stepsize/8
 if (code & 4)
 pdelta += stepsize
 if (code & 2)
 pdelta += stepsize/2
 if (code & 1)
 pdelta += stepsize/4
 // Update predicted value
 if (code & 8){
 vp -= pdelta
 if (vp < -1.3f)
 vp = -1.3f
 }else{
 vp += pdelta
 if (vp > 1.3f)
 vp = 1.3f
 }
 // Adjust step size
 stepindex += lfe_DeltaIndex16[code & 7]
 if (stepindex < 0){
 stepindex = 0
 }else if (stepindex > 100){
 stepindex = 100
 }
 stepsize = lfe_StepSizeTable16[stepindex]
 // Output data
 LFEdata[nsample] = vp * nScale
} }

where:

lfe_DeltaIndex16[] and lfe_DeltaIndex24[] are in clause 9.9.7,

lfe_StepSizeTable16[] and lfe_StepSizeTable24[] are in clause 9.9.8.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)187

Table 9-37: Init LFE Decoding

Syntax Size (Bits)
InitLFE(){
 // determining input bit depth from chunk size
 bLFEinput24Bit = (bLBRCompressedFlags &&
LBR_FLAG_24_BIT_SAMPLES)

 if (bLFEinput24Bit){
 int_ps = ExtractBits(8) 8
 int_ps |= ExtractBits(16) << 8 16
 ps_mult = 0x007fffff
 if (int_ps & 0x00800000){
 int_ps &= 0x007fffff
 ps_mult = -ps_mult
 }
 }else{
 int_ps = ExtractBits(16) 16
 ps_mult = 0x007fff
 if (int_ps & 0x008000){
 int_ps &= 0x007fff
 ps_mult = -ps_mult
 }
 }
 predictedSampleInit = int_ps/ps_mult
 stepSizeIndexInit = ExtractBits(8) 8
}

The number of bits used for DeltaValue and StartStepSizeIndex depends on the source data resolution: 3 bits for 16-bit
source, 5 bits for 24-bit source.

9.6.5.2 LFE decoding

LFE decoding is performed whenever LFE channel information is present in the bitstream. ADPCM-encoded LFE
coefficients are extracted from the bitstream and ADPCM synthesis is performed. A further upsampling is required to
match the LFE channel sample rate to the rest of the channels:

• 64 times for sample rates ≤ 48 kHz;

• 128 times for sample rates > 48 kHz and ≤ 96 kHz; and

• 256 times for sample rates > 96 kHz.

ADPCM synthesis process

ADPCM samples are stored to the bitstream as fixed-length numbers. 4 bits are used for 16-bit source samples and
6 bits are used for 24-bit samples. A simple ADPCM method, linearly predicting DPCM step size from the difference
between previous two samples is implemented.

The current sample value V is calculated by one of the following formula:

 for 16-bit samples

 for 24-bit samples

where:

Code is the part of encoded sample which shows the absolute ratio of the difference between the current and the
previous samples to StepSize.

Sign is the sign of the difference between the current and the previous samples.

Vp is the value of the previous decoded sample.

4

)5,0(
)1(

StepSizeCode
SignVpV

×+×−+=

16

)5,0(
)1(

StepSizeCode
SignVpV

×+×−+=

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)188

StepSize is the step size

StepSizeIndex is the index of the StepSize in the Step Size Table.

At the end of the step, new Vp and StepSize values are calculated:

Vp' = V.

StepSizeIndex' = StepSizeIndex + DeltaIndexTable[Code].

StepSize' = StepSizeTable[StepSizeIndex'].

See the appropriate tables in clause 9.9.7 for DeltaIndex table values and in clauses 9.9.8 for StepSize table values.

StepSizeIndex and Vp are read at the start of each frame to ensure frame-drop tolerance.

Initial StepSize is StepSize Table[0].

9.6.6 Embedded Channel Sets Chunk

9.6.6.1 About the Embedded Channel Sets Chunk

The Embedded Channel Sets (ECS) chunk holds residual samples inter-channel replacement information in the case of
stereo downmix (LBR_FLAG_STEREO_DOWNMIX is set) and downmix scaling and contribution coefficients in the
case of multi-channel downmix (LBR_FLAG_MULTICHANNEL_DOWNMIX is set).

9.6.6.2 Embedded channel sets

Whenever the embedded channel sets chunk is present in the bitstream, additional operations are needed to extract the
original channels. The required information is obtained directly from the embedded channel sets chunk.

There are two possible scenarios:

• Decoders capable of decoding no more than 2 channels: will decode the first two channels, ignoring irrelevant
information in the tonal chunk and irrelevant residual chunks.

• Decoders capable of decoding 5.1 channels: will decode 5 channels plus the LFE channel.

9.6.6.3 Stereo downmix case

Whenever a non-zero number is present for replacementChannel in ECSChunk(), a corresponding number of
timesamples have to be taken from that replacementChannel (which is one of the downmixed channels). For each
channel and for each subband there is a single entry in ECSChunk which covers a quarter of a frame e.g. four
replacementChannel values per frame duration.

Table 9-38: Embedded Channel Set Chunk

Syntax Size (Bits)
ECSChunk()
{
 if (chunkID != EmbLevels_ID) 8
 return
 ChunkLengthInfo() Table 9-9
 if (LBR_FLAG_USE_LFE)
 nFullbandChannels = nChannels + 1
 else
 nFullbandChannels = nChannels
 // there are two types of information in this chunk:
 // - replacement information for stereo downmix, or
 // - scaling/contribution info for multi-channel downmix
 if (replacementPair){
 stSB = ExtractBits(7) 7
 enSB = ExtractBits(7) 7
 for (c=0; c < nChannels * nTotalSubbands * 4; ++c){

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)189

Syntax Size (Bits)
 nValue = ExtractBits(1) 1
 if(nValue){
 canReplace = c
 nValue = ExtractBits(1) 1
 if(nValue){
 replaceChannel = c
 } } } }
 else
 {

 if (LBR_FLAG_MULTICHANNEL_DOWNMIX)
 bMultichannelDownMix = TRUE
 else
 bMultichannelDownMix = FALSE

 if (LBR_FLAG_CS_IS_LAST_DOWNMIX)
 nCsIsLast = 1
 else
 nCsIsLast = 0

 nContChAenc = ExtractBits(4) 4
 nContChBenc = ExtractBits(4) 4

 if (nChannels >= 2+6)
 nContChA = ContChOrderForDecode[nFullbandChannels-2-6][nChannels -
nFullbandChannels][nContChAenc]

 if (nContChBenc >= (nFullbandChannels + (bMultichannelDownMix)?0:2)){
 nContChB = -1
 nContChBenc = -1
 }else{
 // there is no need to compute indexes of contributed channels for decoder
 // if we're only decoding 5.x (or 4.x) embedded downmix
 if (nFullbandChannels >= 2+6)
 nContChB = ContChOrderForDecode[nFullbandChannels-2-6][nChannels -
nFullbandChannels][nContChBenc]

 }
 // Read 4 contribution coeffs
 for (c = 0; c < 4-(2*nCsIsLast); c++){
 nDMixCoeffIndex = ExtractBits(6) 6
 DMixContributedCoeffs[c] = DMixContribution_IndexTodB[nDMixCoeffIndex]
 }
 // Read 1 or all down-mix channels scaling coeffs
 nValue = ExtractBits(1) 1
 if (nValue){
 for (c=0; c < nChannels - ((bMultichannelDownMix)?4:0); c++){
 nDMixCoeffIndex = ExtractBits(5) 5
 DMixScalingCoeffs[c] = DMixContribution_IndexTodB[nDMixCoeffIndex]
 DMixScalingCoeffs_dB[c] = DMixScalingCoeffs[c]
 if((DMixScalingCoeffs[c] = -200.0f) | (DMixScalingCoeffs[c] = 0.0f)){
 DMixScalingCoeffs[c] = 1.0f
 DMixScalingCoeffs_K[c] = 1.0f
 }else{
 DMixScalingCoeffs[c] = pow(10.0f, -DMixScalingCoeffs[c] / 20.0f)
 DMixScalingCoeffs_K[c] = DMixScalingCoeffs[c]
 } } }
 else {
 nDMixCoeffIndex = ExtractBits(5) 5
 DMixScalingCoeffs[0] = DMixScaling_IndexTodB[nDMixCoeffIndex]
 for (c=0; c < nChannels - ((bMultichannelDownMix)?4:0); c++)
 DMixScalingCoeffs_dB[c] = DMixScalingCoeffs[0]
 if((DMixScalingCoeffs[0] = -200.0f) | (DMixScalingCoeffs[0] = 0.0f)){
 DMixScalingCoeffs[0] = 1.0f
 DMixScalingCoeffs_K[0] = DMixScalingCoeffs[0]
 }
 else {
 DMixScalingCoeffs[0] = pow(10.0f, -DMixScalingCoeffs[0] / 20.0f)
 DMixScalingCoeffs_K[0] = DMixScalingCoeffs[0]
 }
 for (c=1; c < nChannels - ((bMultichannelDownMix)?4:0); c++){

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)190

Syntax Size (Bits)
 DMixScalingCoeffs[c] = DMixScalingCoeffs[0]
 DMixScalingCoeffs_K[c] = DMixScalingCoeffs[0]
 }
 }
 // LFE channel
 if (nFullbandChannels != nChannels)
 {
 lfecoeff = DMixScalingCoeffs[nChannels - ((bMultichannelDownMix)?4:0)-1]
 lfecoeff_K = DMixScalingCoeffs_K[nChannels - ((bMultichannelDownMix)?4:0)-1]
 lfecoeff_dB = DMixScalingCoeffs_dB[nChannels -((bMultichannelDownMix)?4:0)-1]
 for (c = nChannels - ((bMultichannelDownMix)?4:0)-1; c > 3; --c){
 DMixScalingCoeffs[c] = DMixScalingCoeffs[c-1]
 DMixScalingCoeffs_K[c] = DMixScalingCoeffs_K[c-1]
 DMixScalingCoeffs_dB[c] = DMixScalingCoeffs_dB[c-1]
 }
 DMixScalingCoeffs[3] = lfecoeff
 DMixScalingCoeffs_K[3] = lfecoeff_K
 DMixScalingCoeffs_dB[3] = lfecoeff_dB
 } }
 ByteAlign() 0..7
}

where:

DMixScaling_IndexTodB[] and DMixContribution_IndexTodB[] are presented in clause 9.9.9:

ContChOrderForDecode[2][2][6] =
{
 // Number of Dmix channels == 6
 {
 // no LFE
 {0, 1, 2, 3, 4, 5},
 // LFE exists
 {0, 1, 2, 4, 3, 5}
 },
 // Number of Dmix channels == 7
 {
 // no LFE
 {0, 1, 4, 2, 3, 5},
 // LFE exists
 {0, 1, 4, 5, 2, 3}
 }
}

9.7 Program Associated Data Chunk
The Program Associated Data Chunk can be used to store any data that is associated with the audio frame but is not
required for decoding of the audio frame.

Table 9-39: Pad Chunk

Syntax Size (Bits)
padChunk()
{
 chunkID == padID 8
 ChunkLengthInfo() Table 9-9
 ProgramAssociatedData variable
 ByteAlign() 0..7
}

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)191

9.8 Null Chunk
The Null Chunk is used to pad out the parent chunk. It is typically used when the parent chunk needs to be a constant
size and the child chunks vary in size. The Null Chunk is different from other chunks in that the chunkLength field
is optional if the Null Chunk is the last chunk within the parent chunk. It is recommended that the data field be filled
with bytes of zero value.

Table 9-40: Null Chunk

Syntax Size (Bits)
nullChunk()
{
 NullID 8
 [chunkLength] 16
 NullData
}

9.9 Tables

9.9.1 Quantized Amplitude to Linear Amplitude Conversion

Table 9-41: Quantized Amplitude to Linear Amplitude Conversion

Quantized

Linear

 Quantized Linear Quantized Linear
0 0,17678 16 76 32 19456
1 0,42678 17 107,75 33 27584
2 0,60355 18 152 34 38912
3 0,85355 19 215,5 35 55168
4 1,20711 20 304 36 77824
5 1,68359 21 431 37 110336
6 2,375 22 608 38 155648
7 3,36719 23 862 39 220672
8 4,75 24 1216 40 311296
9 6,73438 25 1724 41 441344
10 9,5 26 2432 33 27584
11 13,46875 27 3448 42 622592
12 19 28 4864 43 882688
13 26,9375 29 6896 44 1245184
14 38 30 9728 45 1765376
15 53,875 31 13792 46 2490368

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)192

9.9.2 Wave synthesis envelope table

Table 9-42: Wave synthesis envelope table

index wavSynEnvelope index wavSynEnvelope
0 0,00240763666390 32 0,99759236333610
1 0,00960735979838 33 0,99039264020162
2 0,02152983213390 34 0,97847016786610
3 0,03806023374436 35 0,96193976625564
4 0,05903936782582 36 0,94096063217418
5 0,08426519384873 37 0,91573480615127
6 0,11349477331863 38 0,88650522668137
7 0,14644660940673 39 0,85355339059327
8 0,18280335791818 40 0,81719664208182
9 0,22221488349020 41 0,77778511650980

10 0,26430163158700 42 0,73569836841300
11 0,30865828381746 43 0,69134171618255
12 0,35485766137277 44 0,64514233862723
13 0,40245483899194 45 0,59754516100806
14 0,45099142983522 46 0,54900857016478
15 0,50000000000000 47 0,50000000000000
16 0,54900857016478 48 0,45099142983522
17 0,59754516100806 49 0,40245483899194
18 0,64514233862723 50 0,35485766137277
19 0,69134171618254 51 0,30865828381745
20 0,73569836841300 52 0,26430163158700
21 0,77778511650980 53 0,22221488349020
22 0,81719664208182 54 0,18280335791818
23 0,85355339059327 55 0,14644660940673
24 0,88650522668137 56 0,11349477331863
25 0,91573480615127 57 0,08426519384873
26 0,94096063217418 58 0,05903936782582
27 0,96193976625564 59 0,03806023374436
28 0,97847016786610 60 0,02152983213390
29 0,99039264020162 61 0,00960735979838
30 0,99759236333610 62 0,00240763666390
31 1,00000000000000 63 0

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)193

9.9.3 Base function synthesis correction coefficients

Table 9-43: Base function synthesis correction coefficients

 Spectral line offset
F_dlt -5 -4 -3 -2 -1 0 1 2 3 4 5

0 -0,01179 0,04281 0,46712 0,46345 -3,94525 3,94525 -0,46345 -0,46712 -0,04281 0,01179 -0,00299

1 -0,00929 0,04882 0,45252 0,37972 -3,85446 4,03189 -0,55069 -0,4804 -0,03599 0,01445 -0,00229

2 -0,00696 0,05403 0,43674 0,29961 -3,75975 4,11413 -0,64135 -0,49221 -0,02834 0,01726 -0,00156

3 -0,00481 0,05847 0,41993 0,22319 -3,66138 4,19175 -0,73529 -0,50241 -0,01983 0,02021 -0,0008

4 -0,00284 0,06216 0,40224 0,15053 -3,55963 4,26452 -0,83239 -0,51085 -0,01047 0,02328 -0,00003

5 -0,00105 0,06515 0,38378 0,08168 -3,45475 4,33225 -0,93249 -0,51738 -0,00024 0,02646 0,00074

6 0,00054 0,06745 0,36471 0,01668 -3,34703 4,39475 -1,03543 -0,52184 0,01085 0,02973 0,00152

7 0,00195 0,06912 0,34515 -0,04445 -3,23676 4,45185 -1,14105 -0,5241 0,0228 0,03306 0,00228

8 0,00318 0,07017 0,32521 -0,10168 -3,12422 4,50339 -1,24914 -0,524 0,03561 0,03643 0,00302

9 0,00422 0,07065 0,30503 -0,15503 -3,00969 4,54921 -1,35952 -0,52141 0,04925 0,03981 0,00373

10 0,00508 0,07061 0,28471 -0,2045 -2,89348 4,58919 -1,47197 -0,51618 0,0637 0,04319 0,0044

11 0,00577 0,07007 0,26436 -0,25013 -2,77587 4,62321 -1,58627 -0,50818 0,07895 0,04652 0,00501

12 0,00629 0,06909 0,2441 -0,29194 -2,65716 4,65118 -1,70219 -0,49727 0,09494 0,04979 0,00556

13 0,00666 0,06769 0,224 -0,33 -2,53764 4,67302 -1,81949 -0,48335 0,11166 0,05295 0,00604

14 0,00687 0,06592 0,20416 -0,36435 -2,4176 4,68866 -1,93791 -0,46627 0,12904 0,05597 0,00642

15 0,00694 0,06383 0,18468 -0,39506 -2,29732 4,69806 -2,0572 -0,44593 0,14705 0,05881 0,00671

16 0,00689 0,06144 0,16561 -0,42223 -2,1771 4,7012 -2,1771 -0,42223 0,16561 0,06144 0,00689

17 0,00671 0,05881 0,14705 -0,44593 -2,0572 4,69806 -2,29732 -0,39506 0,18468 0,06383 0,00694

18 0,00642 0,05597 0,12904 -0,46627 -1,93791 4,68865 -2,41759 -0,36435 0,20416 0,06592 0,00687

19 0,00604 0,05295 0,11166 -0,48334 -1,81949 4,67301 -2,53763 -0,33 0,224 0,06769 0,00666

20 0,00556 0,04979 0,09494 -0,49727 -1,70219 4,65117 -2,65715 -0,29194 0,24409 0,06909 0,00629

21 0,00501 0,04652 0,07894 -0,50818 -1,58627 4,62321 -2,77587 -0,25013 0,26436 0,07007 0,00577

22 0,0044 0,04319 0,0637 -0,51618 -1,47197 4,58919 -2,89348 -0,2045 0,28471 0,07061 0,00508

23 0,00373 0,03981 0,04925 -0,52141 -1,35952 4,54921 -3,0097 -0,15503 0,30503 0,07065 0,00422

24 0,00302 0,03643 0,03561 -0,524 -1,24915 4,50339 -3,12422 -0,10168 0,32521 0,07017 0,00318

25 0,00228 0,03306 0,0228 -0,5241 -1,14105 4,45186 -3,23677 -0,04445 0,34515 0,06912 0,00195

26 0,00152 0,02973 0,01085 -0,52184 -1,03544 4,39477 -3,34704 0,01668 0,36471 0,06745 0,00054

27 0,00074 0,02646 -0,00024 -0,51738 -0,93249 4,33226 -3,45476 0,08168 0,38378 0,06515 -0,00105

28 -0,00003 0,02328 -0,01047 -0,51085 -0,83239 4,26452 -3,55963 0,15053 0,40224 0,06216 -0,00284

29 -0,0008 0,02021 -0,01983 -0,50241 -0,73529 4,19174 -3,66138 0,22319 0,41993 0,05847 -0,00481

30 -0,00156 0,01726 -0,02834 -0,49221 -0,64135 4,11413 -3,75974 0,29961 0,43674 0,05403 -0,00696

31 -0,00229 0,01445 -0,03599 -0,4804 -0,55069 4,03188 -3,85445 0,37972 0,45251 0,04882 -0,00929

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)194

9.9.4 Grid1 mapping tables

Table 9-44: Grid1 mapping table

High-resolution
Grid subband

Grid1 subband number
0 1 2 3 4 5 6 7 8 9

0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0
4 0 0 0 0 0,5 0 0 0 0 0
5 0 0 0 0 0,5 0 0 0 0 0
6 0 0 0 0 0 0,5 0 0 0 0
7 0 0 0 0 0 0,33333 0,09524 0 0 0
8 0 0 0 0 0 0,16667 0,19048 0 0 0
9 0 0 0 0 0 0 0,28571 0 0 0
10 0 0 0 0 0 0 0,21429 0,05556 0 0
11 0 0 0 0 0 0 0,14286 0,11111 0 0
12 0 0 0 0 0 0 0,07143 0,16667 0 0
13 0 0 0 0 0 0 0 0,22222 0 0
14 0 0 0 0 0 0 0 0,17778 0,03636 0
15 0 0 0 0 0 0 0 0,13333 0,07273 0
16 0 0 0 0 0 0 0 0,08889 0,10909 0
17 0 0 0 0 0 0 0 0,04444 0,14545 0
18 0 0 0 0 0 0 0 0 0,18182 0
19 0 0 0 0 0 0 0 0 0,15152 0,02778
20 0 0 0 0 0 0 0 0 0,12121 0,05556
21 0 0 0 0 0 0 0 0 0,09091 0,08333
22 0 0 0 0 0 0 0 0 0,06061 0,11111
23 0 0 0 0 0 0 0 0 0,03030 0,13889
24 0 0 0 0 0 0 0 0 0 0,16667
25 0 0 0 0 0 0 0 0 0 0,13889
26 0 0 0 0 0 0 0 0 0 0,11111
27 0 0 0 0 0 0 0 0 0 0,08333
28 0 0 0 0 0 0 0 0 0 0,05556
29 0 0 0 0 0 0 0 0 0 0,02778

9.9.5 Quantization Levels for Residuals

Table 9-45: ResidualLevels16

 Table 9-46: ResidualLevels8

 Table 9-47: ResidualLevels3

Residual Code Dequantized Value

Residual Code Dequantized Value Residual Code Dequantized Value

0 -1,3125 0 -1,0 0 -0,645
1 -1,1375 1 -0,625 1 0
2 -0,9625 2 -0,291666667 2 0,645
3 -0,7875 3 0,0
4 -0,6125 4 0,25 Table 9-48:

ResidualQuantizednLevel10 5 -0,4375 5 0,5
6 -0,2625 6 0,75 Residual Code Dequantized Value

7 -0,0875 7 1,0 0 -0,47
8 0,0875 1 0,47
9 0,2625 Table 9-49: ResidualLevels5
10 0,4375 Residual Code Dequantized Value Table 9-50:

ResidualQuantizednLevel16 11 0,6125 0 -0,875
12 0,7875 1 -0,375 Residual Code Dequantized Value
13 0,9625 2 0 0 -0,645
14 1,1375 3 0,375 1 0,645
15 1,3125 4 0,875

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)195

9.9.6 Long window for filterbank

Only first 128 coefficients are tabulated since the rest of the table is symmetric.

Table 9-51: Long window for filterbank

1 0,00000073053931 44 0,33635272474356 87 0,95342765540680
2 0,00001971603402 45 0,35413199603255 88 0,95860796025748
3 0,00009120922576 46 0,37214605748681 89 0,96336611304655
4 0,00024999557063 47 0,39036305659014 90 0,96771950078316
5 0,00053053202896 48 0,40875045535117 91 0,97168635950719
6 0,00096681736288 49 0,42727515721822 92 0,97528563632273
7 0,00159226421635 50 0,44590363613336 93 0,97853684779033
8 0,00243957342599 51 0,46460206721486 94 0,98145993589285
9 0,00354061104012 52 0,48333645854690 95 0,98407512287726
10 0,00492628851495 53 0,50207278354759 96 0,98640276634975
11 0,00662644654387 54 0,52077711337935 97 0,98846321606187
12 0,00866974296265 55 0,53941574886118 98 0,99027667386693
13 0,01108354515765 56 0,55795535133868 99 0,99186305834592
14 0,01389382738765 57 0,57636307196621 100 0,99324187559754
15 0,01712507341094 58 0,59460667885545 101 0,99443209765490
16 0,02080018478972 59 0,61265468154600 102 0,99545204993079
17 0,02494039522219 60 0,63047645225724 103 0,99631930900172
18 0,02956519123018 61 0,64804234338508 104 0,99705061191921
19 0,03469223950626 62 0,66532380071377 105 0,99766177808460
20 0,04033732119902 63 0,68229347182117 106 0,99816764454334
21 0,04651427338908 64 0,69892530916529 107 0,99858201534882
22 0,05323493798151 65 0,71519466735162 108 0,99891762541818
23 0,06050911821199 66 0,73107839409342 109 0,99918611905815
24 0,06834454293557 67 0,74655491439262 110 0,99939804308295
25 0,07674683883740 68 0,76160430748517 111 0,99956285418553
26 0,08571951067489 69 0,77620837611373 112 0,99968893996391
27 0,09526392963020 70 0,79035070771131 113 0,99978365275329
28 0,10537932982169 71 0,80401672710242 114 0,99985335517798
29 0,11606281299140 72 0,81719374035394 115 0,99990347612183
30 0,12730936135520 73 0,82987096943593 116 0,99993857562689
31 0,13911185857091 74 0,84203957738371 117 0,99996241707224
32 0,15146111874875 75 0,85369268368674 118 0,99997804486209
33 0,16434592339804 76 0,86482536966764 119 0,99998786576711
34 0,17775306617356 77 0,87543467365609 120 0,99999373201709
35 0,19166740525504 78 0,88551957580828 121 0,99999702423632
36 0,20607192316413 79 0,89508097247291 122 0,99999873234653
37 0,22094779379428 80 0,90412164005964 123 0,99999953263198
38 0,23627445640116 81 0,91264618842693 124 0,99999985926787
39 0,25202969627406 82 0,92066100387146 125 0,99999996875111
40 0,26818973178253 83 0,92817418187376 126 0,99999999584044
41 0,28472930746762 84 0,93519544983175 127 0,99999999980564
42 0,30162179282255 85 0,94173608009759 128 0,99999999999973
43 0,31883928638529 86 0,94780879372230

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)196

9.9.7 Delta Index for LFE ADPCM

Table 9-52: Delta Index for 16-bit samples

Code Index Adjustment
0 -4
1 -3
2 -2
3 -1
4 2
5 4
6 6
7 8

 Table 9-53: Delta Index for 24-bit samples

Code Index Adjustment
0 -8
1 -8
2 -7
3 -7
4 -6
5 -6
6 -5
7 -5
8 -4
9 -4

10 -3
11 -3
12 -2
13 -2
14 -1
15 -1
16 1
17 1
18 2
19 2
20 3
21 3
22 4
23 4
24 5
25 5
26 6
27 6
28 7
29 7
30 8
31 8

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)197

9.9.8 Step Size for LFE ADPCM encoding

Table 9-54: StepSize table for 16-bit samples

0 2,1362956633198035e-004 34 5,5543687246314890e-003 68 1,4209418012024294e-001
1 2,4414807580797754e-004 35 6,1037018951994385e-003 69 1,5628528702658162e-001
2 2,7466658528397473e-004 36 6,7445905941953795e-003 70 1,7191076387829218e-001
3 2,7466658528397473e-004 37 7,4159978026673177e-003 71 1,8912320322275461e-001
4 3,0518509475997192e-004 38 8,1484420300912512e-003 72 2,0804467909787286e-001
5 3,3570360423596911e-004 39 8,9419232764671782e-003 73 2,2882778405102694e-001
6 3,9674062318796350e-004 40 9,8574785607470940e-003 74 2,5171666615802485e-001
7 4,2725913266396069e-004 41 1,0834070863979004e-002 75 2,7689443647572254e-001
8 4,5777764213995788e-004 42 1,1932737205114903e-002 76 3,0457472457045198e-001
9 5,1881466109195227e-004 43 1,3122959074678793e-002 77 3,3503219702749720e-001
10 5,7985168004394665e-004 44 1,4435254982146673e-002 78 3,6854152043214211e-001
11 6,1037018951994385e-004 45 1,5869624927518540e-002 79 4,0537736136967073e-001
12 6,7140720847193823e-004 46 1,7456587420270394e-002 80 4,4593646046327096e-001
13 7,6296273689992981e-004 47 1,9196142460402233e-002 81 4,9052400280770286e-001
14 8,2399975585192419e-004 48 2,1118808557390057e-002 82 5,3956724753563035e-001
15 9,1555528427991577e-004 49 2,3224585711233862e-002 83 5,9352397228919340e-001
16 1,0071108127079073e-003 50 2,5543992431409649e-002 84 6,5288247322000792e-001
17 1,0986663411358989e-003 51 2,8107547227393413e-002 85 7,1816156498916595e-001
18 1,2207403790398877e-003 52 3,0915250099185155e-002 86 7,9000213629566329e-001
19 1,3428144169438765e-003 53 3,4028138065736867e-002 87 8,6898403881954400e-001
20 1,4648884548478652e-003 54 3,7415692617572556e-002 88 9,5590075380718409e-001
21 1,6174810022278512e-003 55 4,1169469283120215e-002 89 1,0514847254860074e+000
22 1,7700735496078372e-003 56 4,5258949552903834e-002 90 1,1566209906308176e+000
23 1,9531846064638203e-003 57 4,9806207464827418e-002 91 1,2722861415448470e+000
24 2,1362956633198035e-003 58 5,4780724509414958e-002 92 1,3995178075502792e+000
25 2,3499252296517838e-003 59 6,0274056215094456e-002 93 1,5394756920072024e+000
26 2,5940733054597613e-003 60 6,6286202581865905e-002 94 1,6934110538041323e+000
27 2,8687398907437361e-003 61 7,2908719138157288e-002 95 1,8627582628864405e+000
28 3,1434064760277108e-003 62 8,0202642902920618e-002 96 2,0490432447279274e+000
29 3,4485915707876827e-003 63 8,8229010895107887e-002 97 2,2539445173497725e+000
30 3,7842951750236518e-003 64 9,7048860133671075e-002 98 2,4793237098300120e+000
31 4,1810357982116153e-003 65 1,0675374614703818e-001 99 2,7272865993224893e+000
32 4,6082949308755760e-003 66 1,1743522446363720e-001 100 3,0000000000000000e+000
33 5,0660725730155339e-003 67 1,2918485061189611e-001

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)198

Table 9-55: StepSize table for 24-bit samples

0 3,5762791128491298e-006 48 3,5059456236297636e-004 96 3,4014586688826884e-002
1 3,9339070241340428e-006 49 3,8564209766889782e-004 97 3,7415985753057691e-002
2 4,4107442391805934e-006 50 4,2426591208766842e-004 98 4,1157608170224208e-002
3 4,7683721504655064e-006 51 4,6670442422681142e-004 99 4,5273428591898514e-002
4 5,2452093655120570e-006 52 5,1331526199761173e-004 100 4,9800759530157987e-002
5 5,8412558843202453e-006 53 5,6469447191887759e-004 101 5,4780847404104160e-002
6 6,4373024031284336e-006 54 6,2108047259813216e-004 102 6,0258872539862694e-002
7 7,0333489219366219e-006 55 6,8318851985794547e-004 103 6,6284783635709721e-002
8 7,7486047445064479e-006 56 7,5149545091336386e-004 104 7,2913297762071824e-002
9 8,4638605670762738e-006 57 8,2671652158695713e-004 105 8,0204615617348624e-002
10 9,4175349971693751e-006 58 9,0932856909377204e-004 106 8,8225017574431602e-002
11 1,0252000123500839e-005 59 1,0002852678639017e-003 107 9,7047578936526643e-002
12 1,1324883857355578e-005 60 1,1003018737199156e-003 108 1,0675228914645780e-001
13 1,2516976894971954e-005 61 1,2103320610919071e-003 109 1,1742748229831246e-001
14 1,3709069932588331e-005 62 1,3314487137137310e-003 110 1,2917031397465634e-001
15 1,5139581577727983e-005 63 1,4646055060154803e-003 111 1,4208735729305236e-001
16 1,6570093222867636e-005 64 1,6109945310347714e-003 112 1,5629603341770570e-001
17 1,8239023475530564e-005 65 1,7721655097205054e-003 113 1,7192568444319778e-001
18 2,0146372335716766e-005 66 1,9493105351102991e-003 114 1,8911816944100493e-001
19 2,2053721195902969e-005 67 2,1442177467605765e-003 115 2,0803001022696618e-001
20 2,4318697967374082e-005 68 2,3586752842277626e-003 116 2,2883310661710579e-001
21 2,6702884042606836e-005 69 2,5945904963720436e-003 117 2,5171640535788598e-001
22 2,9444698029124504e-005 70 2,8539899413573674e-003 118 2,7688804589367461e-001
23 3,2305721319403807e-005 71 3,1393770145627278e-003 119 3,0457679087839018e-001
24 3,5643581824729662e-005 72 3,4533743206708813e-003 120 3,3503452957088109e-001
25 3,9100651633817152e-005 73 3,7987236736683454e-003 121 3,6853794676517804e-001
26 4,3034558657951193e-005 74 4,1785245154529228e-003 122 4,0539174144169587e-001
27 4,7326093593370149e-005 75 4,5963531251374630e-003 123 4,4593089174400469e-001
28 5,2094465743835655e-005 76 5,0560242004423382e-003 124 4,9052399283933557e-001
29 5,7339675109347712e-005 77 5,5617100669992049e-003 125 5,3957635636047796e-001
30 6,3061721689906320e-005 78 6,1178214690472445e-003 126 5,9353406352210802e-001
31 6,9379814789273121e-005 79 6,7296036159519689e-003 127 6,5288742219059737e-001
32 7,6293954407448102e-005 80 7,4025401356864135e-003 128 7,1817609288407480e-001
33 8,3923349848192912e-005 81 8,1428299120461841e-003 129 7,8999373793527339e-001
34 9,2268001111507552e-005 82 8,9571486660419298e-003 130 8,6899314749159184e-001
35 1,0156632680491529e-004 83 9,8527681652031147e-003 131 9,5589243839889027e-001
36 1,1169911762465449e-004 84 1,0838033060793050e-002 132 1,0514817299225008e+000
37 1,2290479217824841e-004 85 1,1921884050593860e-002 133 1,1566298194682383e+000
38 1,3518335046569711e-004 86 1,3114096297513997e-002 134 1,2722928848615747e+000
39 1,4865400179076216e-004 87 1,4425517848195773e-002 135 1,3995221137430804e+000
40 1,6355516476096688e-004 88 1,5868069633015350e-002 136 1,5394743131964581e+000
41 1,7988683937631122e-004 89 1,7454864675386508e-002 137 1,6934218041207556e+000
42 1,9788744424431852e-004 90 1,9200327301064409e-002 138 1,8627639845328312e+000
43 2,1767618866875036e-004 91 2,1120431556753107e-002 139 2,0490403233814627e+000
44 2,3949149125713007e-004 92 2,3232462791498040e-002 140 2,2539444272451910e+000
45 2,6345256131321922e-004 93 2,5555613703204836e-002 141 2,4793389414952922e+000
46 2,8979781744454115e-004 94 2,8111222757246822e-002 142 2,7272728356448215e+000
47 3,1876567825861912e-004 95 3,0922297349250002e-002 143 2,9999998807906962e+000

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)199

9.9.9 Scaling coefficients lookup table

Table 9-56: DMixScaling_IndexTodB

0 -200 dB 8 -3,5 dB 16 -7,5 dB 24 -11,5 dB
1 0 dB 9 -4,0 dB 17 -8,0 dB 25 -12,0 dB
2 -0,5 dB 10 -4,5 dB 18 -8,5 dB 26 -12,5 dB
3 -1,0 dB 11 -5,0 dB 19 -9,0 dB 27 -13,0 dB
4 -1,5 dB 12 -5,5 dB 20 -9,5 dB 28 -13,5 dB
5 -2,0 dB 13 -6,0 dB 21 -10,0 dB 29 -14,0 dB
6 -2,5 dB 14 -6,5 dB 22 -10,5 dB 30 -14,5 dB
7 -3,0 dB 15 -7,0 dB 23 -11,0 dB 31 -15,0 dB

Table 9-57: DMixContribution_IndexTodB

0 -200 dB 11 -5,0 dB 22 -10,5 dB 33 -16,0 dB 44 -23,0 dB 56 -35,0 dB
1 0 dB 12 -5,5 dB 23 -11,0 dB 34 -16,5 dB 45 -24,0 dB 57 -36,0 dB
2 -0,5 dB 13 -6,0 dB 24 -11,5 dB 35 -17,0 dB 46 -25,0 dB 58 -37,0 dB
3 -1,0 dB 14 -6,5 dB 25 -12,0 dB 36 -17,5 dB 47 -26,0 dB 59 -38,0 dB
4 -1,5 dB 15 -7,0 dB 26 -12,5 dB 37 -18,0 dB 48 -27,0 dB 60 -39,0 dB
5 -2,0 dB 16 -7,5 dB 27 -13,0 dB 38 -18,5 dB 49 -28,0 dB 61 -40,0 dB
6 -2,5 dB 17 -8,0 dB 28 -13,5 dB 39 -19,0 dB 50 -29,0 dB
7 -3,0 dB 18 -8,5 dB 29 -14,0 dB 40 -19,5 dB 51 -30,0 dB
8 -3,5 dB 19 -9,0 dB 30 -14,5 dB 41 -20,0 dB 52 -31,0 dB
9 -4,0 dB 20 -9,5 dB 31 -15,0 dB 42 -21,0 dB 53 -32,0 dB
10 -4,5 dB 21 -10,0 dB 32 -15,5 dB 43 -22,0 dB 54 -33,0 dB

9.9.10 Index Hopping Huffman Tables

Table 9-58: Codebook for Tonal Groups

Index
prsDist [nGroup]

tnlScf
0 1 2 3 4

A B A B A B A B A B A B
0 0x01 0x00 0x01 0x00 0x01 0x00 0x01 0x00 0x01 0x00 0x01 0x00
1 0x01 0x38 0x01 0x30 0x01 0x38 0x01 0x36 0x01 0x2C 0x01 0x1A
2 0x01 0x04 0x01 0x16 0x01 0x1C 0x01 0x22 0x01 0x02 0x01 0x16
3 0x01 0x02 0x01 0x04 0x01 0x18 0x01 0x0C 0xFF 0x02 0x01 0x02
4 0xFF 0x05 0x01 0x02 0x01 0x16 0x01 0x0A 0x01 0x12 0xFF 0x03
5 0xFF 0x04 0xFF 0x04 0x01 0x14 0x01 0x04 0x01 0x10 0x01 0x12
6 0x01 0x26 0xFF 0x07 0x01 0x04 0x01 0x02 0x01 0x08 0x01 0x10
7 0x01 0x24 0x01 0x02 0x01 0x02 0xFF 0x08 0x01 0x06 0x01 0x02
8 0x01 0x22 0xFF 0x0A 0xFF 0x0E 0xFF 0x02 0x01 0x02 0xFF 0x0B
9 0x01 0x20 0x01 0x0E 0xFF 0x11 0x01 0x02 0xFF 0x07 0x01 0x0C

10 0x01 0x18 0x01 0x0C 0x01 0x02 0xFF 0x07 0x01 0x02 0x01 0x0A
11 0x01 0x02 0x01 0x0A 0xFF 0x0F 0x01 0x02 0xFF 0x0F 0x01 0x02
12 0xFF 0x13 0x01 0x08 0x01 0x0C 0xFF 0x17 0xFF 0x15 0xFF 0x10
13 0x01 0x14 0x01 0x04 0x01 0x02 0xFF 0x0C 0xFF 0x03 0x01 0x02
14 0x01 0x06 0x01 0x02 0xFF 0x17 0xFF 0x05 0x01 0x02 0xFF 0x11
15 0x01 0x04 0xFF 0x03 0x01 0x02 0x01 0x10 0xFF 0x06 0x01 0x02
16 0x01 0x02 0xFF 0x1B 0xFF 0x1C 0x01 0x0E 0x01 0x02 0xFF 0x12
17 0xFF 0x21 0x01 0x02 0x01 0x02 0x01 0x02 0xFF 0x0D 0x01 0x02
18 0xFF 0x1F 0xFF 0x1D 0xFF 0x1D 0xFF 0x0A 0x01 0x02 0xFF 0x13
19 0xFF 0x1C 0xFF 0x1C 0x01 0x04 0x01 0x0A 0xFF 0x0E 0xFF 0x00
20 0x01 0x0C 0xFF 0x16 0x01 0x02 0x01 0x02 0xFF 0x12 0xFF 0x0F
21 0x01 0x0A 0xFF 0x15 0xFF 0x1E 0xFF 0x14 0xFF 0x04 0xFF 0x0E
22 0x01 0x04 0xFF 0x0F 0xFF 0x00 0x01 0x02 0x01 0x08 0xFF 0x09
23 0x01 0x02 0xFF 0x0E 0xFF 0x1F 0xFF 0x19 0x01 0x02 0xFF 0x07

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)200

Index
prsDist [nGroup]

tnlScf
0 1 2 3 4

A B A B A B A B A B A B
24 0xFF 0x22 0x01 0x18 0xFF 0x19 0x01 0x02 0xFF 0x05 0x01 0x02
25 0xFF 0x25 0x01 0x02 0xFF 0x0A 0xFF 0x1A 0x01 0x04 0xFF 0x02
26 0x01 0x04 0xFF 0x08 0xFF 0x08 0x01 0x02 0x01 0x02 0xFF 0x04
27 0x01 0x02 0x01 0x14 0x01 0x02 0xFF 0x1B 0xFF 0x0B 0x01 0x04
28 0xFF 0x23 0x01 0x02 0xFF 0x09 0xFF 0x00 0xFF 0x0A 0x01 0x02
29 0xFF 0x00 0xFF 0x10 0xFF 0x04 0xFF 0x16 0xFF 0x14 0xFF 0x01
30 0xFF 0x24 0x01 0x02 0x01 0x1A 0xFF 0x09 0x01 0x0C 0xFF 0x05
31 0xFF 0x20 0xFF 0x13 0x01 0x0E 0x01 0x04 0x01 0x0A 0x01 0x08
32 0xFF 0x1E 0x01 0x02 0x01 0x0C 0x01 0x02 0x01 0x08 0x01 0x06
33 0xFF 0x18 0xFF 0x17 0x01 0x0A 0xFF 0x0D 0x01 0x02 0x01 0x04
34 0x01 0x02 0x01 0x02 0x01 0x04 0xFF 0x11 0xFF 0x0C 0x01 0x02
35 0xFF 0x16 0xFF 0x1A 0x01 0x02 0xFF 0x04 0x01 0x02 0xFF 0x0C
36 0x01 0x02 0x01 0x02 0xFF 0x16 0x01 0x12 0xFF 0x10 0xFF 0x0D
37 0xFF 0x17 0xFF 0x1E 0xFF 0x03 0x01 0x0A 0x01 0x02 0xFF 0x0A
38 0x01 0x02 0x01 0x08 0x01 0x02 0x01 0x06 0xFF 0x16 0xFF 0x08
39 0xFF 0x1D 0x01 0x06 0xFF 0x15 0x01 0x02 0xFF 0x00 0xFF 0x06
40 0xFF 0x1B 0x01 0x02 0x01 0x02 0xFF 0x0E 0xFF 0x11
41 0xFF 0x11 0xFF 0x21 0xFF 0x1A 0x01 0x02 0xFF 0x13
42 0xFF 0x0E 0x01 0x02 0xFF 0x1B 0xFF 0x13 0x01 0x02
43 0xFF 0x07 0xFF 0x22 0xFF 0x0C 0xFF 0x18 0xFF 0x08
44 0x01 0x0C 0xFF 0x00 0xFF 0x0B 0x01 0x02 0xFF 0x09
45 0x01 0x02 0xFF 0x20 0x01 0x0A 0xFF 0x03 0xFF 0x01
46 0xFF 0x0C 0xFF 0x1F 0x01 0x04 0xFF 0x0B
47 0x01 0x02 0xFF 0x0C 0x01 0x02 0x01 0x04
48 0xFF 0x01 0xFF 0x05 0xFF 0x10 0x01 0x02
49 0x01 0x06 0x01 0x0E 0xFF 0x12 0xFF 0x15
50 0x01 0x04 0x01 0x02 0x01 0x04 0xFF 0x12
51 0x01 0x02 0xFF 0x09 0x01 0x02 0x01 0x02
52 0xFF 0x1A 0x01 0x02 0xFF 0x14 0xFF 0x10
53 0xFF 0x03 0xFF 0x01 0xFF 0x18 0xFF 0x0F
54 0xFF 0x19 0x01 0x08 0xFF 0x13 0xFF 0x06
55 0xFF 0x14 0x01 0x06 0xFF 0x0D 0xFF 0x01
56 0xFF 0x08 0x01 0x02 0xFF 0x05
57 0x01 0x0E 0xFF 0x14 0x01 0x02
58 0x01 0x04 0x01 0x02 0xFF 0x01
59 0x01 0x02 0xFF 0x19 0x01 0x02
60 0xFF 0x0A 0xFF 0x18 0xFF 0x06
61 0xFF 0x0D 0xFF 0x12 0xFF 0x07
62 0x01 0x08 0xFF 0x11
63 0x01 0x04 0x01 0x02
64 0x01 0x02 0xFF 0x06
65 0xFF 0x0F 0x01 0x02
66 0xFF 0x10 0xFF 0x0B
67 0x01 0x02 0xFF 0x0D
68 0xFF 0x12
69 0xFF 0x15
70 0xFF 0x0B
71 0x01 0x02
72 0xFF 0x09
73 0xFF 0x06

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)201

Table 9-59: Codebook for Amplitude and Phase

Index
rsdAmp fstRsdAmp dPH dAmp rsdAmp

A B A B A B A B A B
0 0x01 0x00 0x01 0x00 0x01 0x00 0x01 0x00 0x01 0x00
1 0x01 0x20 0x01 0x26 0x01 0x0C 0x01 0x0C 0x01 0x02
2 0x01 0x04 0x01 0x1C 0x01 0x02 0x01 0x02 0xFF 0x01
3 0x01 0x02 0x01 0x04 0xFF 0x02 0xFF 0x02 0x01 0x02
4 0xFF 0x02 0x01 0x02 0x01 0x02 0x01 0x02 0xFF 0x02
5 0xFF 0x01 0xFF 0x0C 0xFF 0x03 0xFF 0x03 0x01 0x02
6 0x01 0x02 0xFF 0x11 0x01 0x02 0x01 0x02 0xFF 0x03
7 0xFF 0x05 0x01 0x06 0xFF 0x04 0xFF 0x04 0x01 0x02
8 0x01 0x18 0x01 0x04 0x01 0x02 0x01 0x02 0xFF 0x04
9 0x01 0x16 0x01 0x02 0xFF 0x05 0xFF 0x05 0x01 0x02

10 0x01 0x12 0xFF 0x01 0x01 0x02 0x01 0x02 0xFF 0x05
11 0x01 0x0C 0xFF 0x08 0xFF 0x06 0xFF 0x06 0xFF 0x00
12 0x01 0x02 0xFF 0x09 0xFF 0x00 0xFF 0x00
13 0xFF 0x0E 0x01 0x06 0xFF 0x01 0xFF 0x01
14 0x01 0x02 0x01 0x04 0xFF 0x05
15 0xFF 0x14 0x01 0x02 0xFF 0x00
16 0x01 0x02 0xFF 0x14 0xFF 0x04
17 0xFF 0x1A 0xFF 0x03 0xFF 0x08
18 0x01 0x04 0xFF 0x05
19 0x01 0x02 0x01 0x02
20 0xFF 0x19 0xFF 0x06
21 0xFF 0x20 0x01 0x02
22 0xFF 0x13 0xFF 0x02
23 0x01 0x02 0x01 0x06
24 0xFF 0x10 0x01 0x02
25 0x01 0x02 0xFF 0x16
26 0xFF 0x18 0x01 0x02
27 0xFF 0x11 0xFF 0x17
28 0x01 0x02 0xFF 0x00
29 0xFF 0x0C 0xFF 0x15
30 0xFF 0x0D 0x01 0x08
31 0xFF 0x09 0x01 0x02
32 0xFF 0x07 0xFF 0x0B
33 0x01 0x02 0x01 0x02
34 0xFF 0x03 0xFF 0x13
35 0x01 0x02 0x01 0x02
36 0xFF 0x04 0xFF 0x07
37 0x01 0x1C 0xFF 0x04
38 0x01 0x04 0xFF 0x10
39 0x01 0x02 0x01 0x06
40 0xFF 0x08 0x01 0x04
41 0xFF 0x0B 0x01 0x02
42 0x01 0x16 0xFF 0x0A
43 0x01 0x04 0xFF 0x12
44 0x01 0x02 0xFF 0x0F
45 0xFF 0x12 0x01 0x02
46 0xFF 0x0F 0xFF 0x0D
47 0x01 0x10 0xFF 0x0E
48 0x01 0x0C
49 0x01 0x0A
50 0x01 0x02
51 0xFF 0x1E
52 0x01 0x04
53 0x01 0x02
54 0xFF 0x24
55 0xFF 0x22
56 0x01 0x02
57 0xFF 0x1D

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)202

Index
rsdAmp fstRsdAmp dPH dAmp rsdAmp

A B A B A B A B A B
58 0xFF 0x00
59 0xFF 0x15
60 0x01 0x02
61 0xFF 0x1C
62 0xFF 0x17
63 0xFF 0x16
64 0xFF 0x0A
65 0xFF 0x06

Table 9-60: Code book for Grid Reconstruction

Index
stGrid avgG3

A B A A
0 0x01 0x00 0x01 0x00
1 0x01 0x2A 0x01 0x20
2 0x01 0x28 0x01 0x1E
3 0x01 0x04 0x01 0x0A
4 0x01 0x02 0x01 0x02
5 0xFF 0x04 0xFF 0x0E
6 0xFF 0x03 0x01 0x06
7 0x01 0x02 0x01 0x02
8 0xFF 0x08 0xFF 0x0B
9 0x01 0x20 0x01 0x02

10 0x01 0x0A 0xFF 0x13
11 0x01 0x08 0xFF 0x09
12 0x01 0x02 0xFF 0x0D
13 0xFF 0x0E 0x01 0x12
14 0x01 0x02 0x01 0x10
15 0xFF 0x07 0x01 0x02
16 0x01 0x02 0xFF 0x0A
17 0xFF 0x09 0x01 0x04
18 0xFF 0x16 0x01 0x02
19 0xFF 0x0C 0xFF 0x14
20 0x01 0x14 0xFF 0x08
21 0x01 0x0E 0x01 0x08
22 0x01 0x02 0x01 0x06
23 0xFF 0x10 0x01 0x02
24 0x01 0x02 0xFF 0x06
25 0xFF 0x0B 0x01 0x02
26 0x01 0x02 0xFF 0x17
27 0xFF 0x0D 0xFF 0x00
28 0x01 0x04 0xFF 0x15
29 0x01 0x02 0xFF 0x07
30 0xFF 0x11 0xFF 0x0C
31 0xFF 0x0F 0xFF 0x12
32 0x01 0x02 0xFF 0x10
33 0xFF 0x18 0x01 0x02
34 0xFF 0x00 0xFF 0x0F
35 0x01 0x02 0xFF 0x11
36 0xFF 0x12
37 0x01 0x02
38 0xFF 0x14
39 0xFF 0x02
40 0xFF 0x05
41 0xFF 0x0A
42 0xFF 0x01
43 0xFF 0x06

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)203

Annex A (informative):
Bibliography
Zoran Fejzo: "DTS Coherent Acoustics; Core and Extensions, Overview of Technology and Description of DTS Stream
Frame Headers".

DTS, Inc. (5220 Las Virgenes Rd., Calabasas, CA 91302): "DTS Coherent Acoustics Core" (DTS Document
#9302F33500).

DTS, Inc. (5220 Las Virgenes Rd., Calabasas, CA 91302): "Coherent Acoustics Extensions" (DTS Document
#9302F41300).

DTS, Inc. (5220 Las Virgenes Rd., Calabasas, CA 91302): "DTS-HD Substream and Decoder Interface Description"
(DTS Document No.: 9302F30400).

DTS, Inc. (5220 Las Virgenes Rd., Calabasas, CA 91302): "DTS-HD Lossless Extension" (DTS Document
#9301E96800).

DTS, Inc. (5220 Las Virgenes Rd., Calabasas, CA 91302): "DTS LBR Bitstream Format Specification"(DTS Document
#9302F27600).

IETF RFC 2119: "Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March 1997.

NOTE: Available at http://www.ietf.org/rfc/rfc2119.txt.

ISO 639-3: "Codes for the representation of names of language - Part 3: Alpha-3 code for comprehensive coverage of
languages".

NOTE: Available at International Standards Organization, www.iso.ch; International Electrotechnical
Commission, www.iec.ch.

http://www.ietf.org/rfc/rfc2119.txt
http://www.iso.ch/
http://www.iec.ch/

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)204

Annex B (normative):
CRC Algorithm
A number of CRC algorithms are in use throughout the world. This Annex described the CRC method used by all of the
DTS algorithms. This algorithm of CRC is also known as CRC-CCITT.

The CRC is used for two purposes: to verify the correctness of header data and to greatly reduce the probability of false-
alias sync-word detection. When flagged, a CRC checksum is added to each packet within the stream. CRCs are used to
verify the data of various components within the frame. It is important to verify the header information, since the
mechanism for traversing through the frame is by reading the size of a component from the NAVI table and locating the
start position of the component based on its value.

The CRC16 polynomial is:

The CRC16 is initialized to the value of 0xFFFF before checksum computation commences.

1)(51216 +++= xxxxG

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)205

Annex C (informative):
Example Pseudocode

C.1 About Annex C
This annex provides detail on various processing algorithms that will assist the reader by providing a top level view of
critical processes, as well as examples to aid in correctly interpreting the bitstream.

C.2 Overview of main function calls
This clause outlines in detail pseudocode examples to clarify the details of the main function calls, unpacking of the
frame and primary audio coding headers.

Based on this subframe structure, the procedure of decoding a subframe may be illustrated by the following
pseudocode:

DecodeSubframe() {

// Unpack Side Information.
UnpackSideInformation();

// Inverse VQ to extract high frequency subbands.
for (nChannel=0; nChannel<nNumPrimaryChannels; nChannel++) {
 for (nSubband=nHFreqVQBegin; nSubband<nHFreqVQEnd; nSubband++) {
 VQIndex = ExtractVQIndex();
 InverseVQ(VQIndex); // One index looks up 32 samples in one subband analysis window.
} }

// Unpack the LFE channel
ExtractLFEDecimatedSamples(); // Extract the decimated samples.
InterpolateLFESamples(); // Interpolate for all LFE samples.

// Unpack subsubframes.
for (nSubsubframe=0; nSubsubframe<nNumOfSubsubframes; nSubsubframe++) {
 UnpackSubsubframe();
}

// Reconstruct all primary channels through filter bank interpolation
for (nChannel=0; nChannel<nNumPrimaryChannels; nChannel++) {
 ReconstructChannel();
}}

A subsubframe consists of eight subband samples (a subband analysis subwindow) for each subband of all primary
channels, so its decoding procedure may be described as:

UnpackSubsubframe() {
 for (nChannel=0; nChannel<nNumPrimaryChannels; nChannel++)
 for (nSubband=0; nSubband<nHFreqVQBegin; nSubband++)
 UnpackOneSubwindow(); // Get 8 subband samples.
}

An example of synchronization and decoding procedure may be described as follows:

START_SYNC: InSyncFlag = 0; // Search for extend sync word (38-bit sync word +
extension)
SearchForExtSync();

// Search for another sync word (32-bit sync word)
SearchForSync();

// Count the distance between the two sync words and check if it is within the
// limits. The next sync word is expected at this distance.
InSyncFlag = CountSyncDist();
 if (InSyncFlag==1)
 DecodeOneFrame(); // Decode the received frame
 else
 Goto START_SYNC; // Decode the remaining frames
while (NotEndOfBitStream) { // Check if sync word occurred at the expected interval
 InSyncFlag = CheckSync();

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)206

 if (InSyncFlag==1)
 DecodeOneFrame();
 else
 Goto START_SYNC;
}

C.3 Decoding Algorithms

C.3.1 About Decoding Algorithms
This clause outlines the decoding routines utilized by Coherent Acoustics.

C.3.2 Block Code
Two versions of the block code decoder are presented here based on:

• the table look-up method;

• the arithmetic method that requires one modulus division and one integer division per one decoded
quantization index.

The table look-up based decoding of a block code may be best illustrated by an example. Suppose a code of 64 is
received as a three level block code. This code can be decoded as follows:

1st Element: 64 = 3 × 21 + 1; so quantization index = 0

2nd Element: 21 = 3 × 7 + 0; so quantization index = -1

3rd Element: 7 = 3 × 2 + 1; so quantization index = 0

4th Element: 2 = 3 × 0 + 2; so quantization index = +1

where the quantization indexes are obtained by using the residuals to look up the quantization index table [-1, 0, 1]. In
summary, the quantization indexes of the four samples are (0, -1, 0, +1).

The same code can be decoded using the code book of table V.3 in clause D.6.1. In order to facilitate the decoding
process, this table is rearranged to give Table C-1. Then this code of 64 is decoded as follows:

4th Element: 64 - 54 = 10 > 0; so quantization index = +1

3rd Element: 10 - 9 = 1 > 0; so quantization index = 0

2nd Element: 1 - 0 = 1 > 0; so quantization index = -1

1st Element: 1 - 1 = 0 > 0; so quantization index = 0

Therefore, the quantization indexes of the four samples are (0, -1, 0, +1). A general decoding procedure is given in the
following pseudocode, assuming that the block codes in clause D.6 are rearranged as in Table C-1.

Table C-1: 3-level 4-element 7-bit Block Code Book

 Quantization Level index -1 0 +0
Code 1st Element 0 1 2
For 2nd Element 0 3 6 0 3 6

 3rd Element 0 9 18 0 9 18
 4th Element 0 27 54 0 27 54

int DecodeBlockCode(int nCode, int *pnValue) {
 // nCode: Input code to be decoded.
 // nNumElement: Number of elements (samples) encoded
 // in a block.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)207

 // nNumLevel: Number of quantization levels.
 // *pnValue: Array of decoded sample values.
 // *pnTable: Pointer to the code book. The code book is
 // organized as an array, each row of which contains
 // the code book for a particular element (sample).
 pnValue += 3;
 nOffset = (nNumLevel-1)/2;
 int *pnEntry; // Pointer to the entries in the code book.
 for (int n=nNumElement; n>0; n--) {
 pnEntry = pnTable + n*nNumLevel; // Point to the last entry

 // in the code book.
 for (int m=0; m<nNumLevel; m++) {
 pnEntry--;
 if (nCode >= *pnEntry) {
 nCode -= *pnEntry;
 *pnValue = nOffset-m; // quantization index is calculated.
 if (nCode<0) {
 printf("ERROR: block code look-up fail.\n");
 return NULL;
 }
 break;
 }
 }
 pnValue--;
 }

 // Check if look-up successful
 if (nCode == 0)
 return 1;
 else {
 printf("ERROR: block code lock-up fail.\n");
 return NULL;
 }
}

Very compact version of the block code decoder that does not use table look-up can be obtained using the modulus and
integer division. The pseudocode that implements this version of the decoder is listed below:

int DecodeBlockCode(int nCode, int *pnValue) {
 // nCode: Input code to be decoded.
 // nNumElement: Number of elements (samples) encoded in a block.
 // nNumLevel: Number of quantization levels.
 // *pnValue: Array of decoded sample values.
 nOffset = (nNumLevel-1)>>1;
 for (int n=0; n< nNumElement; n++) {
 pnValue[n] = (nCode % nNumLevel) - nOffset;
 nCode /= nNumLevel;
 }
 if (nCode == 0)
 return 1;
 else {
 printf("ERROR: block code lock-up fail.\n");
 return NULL;
 }
}

C.3.3 Inverse ADPCM
Inverse ADPCM process is executed for each sample in a subband whose PMODE=1:

void InverseADPCM(void) {
// NumADPCMCoeff =4, the number of ADPCM coefficients.
// raADPCMcoeff[] are the ADPCM coefficients extracted
// from the bit stream.
// raSample[NumADPCMCoeff], ..., raSample[-1] are the
// history from last subframe or subsubframe. It is
// updated each time before reverse ADPCM is run for a
// block of samples for each subband.
for (m=0; m<nNumSample; m++)
 for (n=0; n<NumADPCMCoeff; n++)
 raSample[m] += raADPCMcoeff[n]*raSample[m-n-1];
}

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)208

C.3.4 Joint Subband Coding
for (ch=0; ch<nPCHS; ch++)
 if (JOINX[ch]>0){ // Joint subband coding enabled.
 nSourceCh = JOINX[ch]-1; // Get source channel. JOINX counts

 // channels as 1,2,3,4,5, so minus 1.
 for (n=nSUBS[ch]; n<nSUBS[nSourceCh]; n++)
 for (nSample=0; n<8*nSSC; nSample++)
 aPrmCh[ch].aSubband[n].aSample[nSample] = JOIN_SCALES[ch][n] *
aPrmCh[nSourceCh].aSubband[n].aSample[nSample];
 }
}

C.3.5 Sum/Difference Decoding
If flag SUMF is set, the front left and right channels are sum/difference encoded and are therefore appropriately
decoded to produce the correct signals for the front left and right channels. Decoding is achieved by operating on the
reconstructed subband samples:

for (n=0; n<nSUBS; n++) // All active subbands.
 for (nSample=0; nSample<8*nSSC; nSample++) { // Samples in all subsubframes
 FrontLeft[nSample] = Fleft[nSample] + Fright[nSample];
 Frontright[nSample] = Fleft[nSample] - Fright[nSample];
 }

This decoding is also required when AMODE = 3.

Similarly when SUMS is set the reconstructed subband samples of the Left and right surround channels are decoded as:

 for (n=0; n<nSUBS; n++) // All active subbands.
 for (nSample=0; nSample<8*nSSC; nSample++) { // Samples in all subsubframes
 SurroundLeft[nSample] = Sleft[nSample] + Sright[nSample];
 Surroundright[nSample] = Sleft[nSample] - Sright[nSample];
 }

C.3.6 Filter Bank Reconstruction
Having prepared all the subband samples, it is time to go through subband interpolation to reconstruct the PCM samples
for each primary channel. As discussed before, there are two filter banks, one for perfect reconstruction and the other
for non-perfect. The encoder indicates its choice to the decoder through the FILTS flag in the frame header.

for (ch=0; ch<nPCHS; ch++)
 aPrmCh[ch].QMFInterpolation(FILTS, nSUBS[ch]);

// FILTS indicates which filter bank to use
// nSUBS[ch] indicates the number of active subbands. Subbands
// above it are all zeros. For joint intensity coded subbands,
// it is set to that of the source channel, in order to
// reflect the true subband activity.

There are many methods to efficiently implement the reconstruction filter bank. Presented here is one possible solution.
The two sets of 512 FIR coefficients are tabulated in clause D.8 to include both perfect reconstruction and nonperfect
reconstruction and the selection is flagged by FILTS in the frame header.

The first step is to pre-calculate the cosine modulation coefficients:

PreCalCosMod() {

 for (j=0,k=0;k<16;k++)
 for (i=0;i<16;i++)
 raCosMod[j++] = (real)cos((2*i+1)*(2*k+1)*Pi/64);
 for (k=0;k<16;k++)
 for (i=0;i<16;i++)
 raCosMod[j++] = (real)cos((i)*(2 * k + 1)*Pi / 32);
 for (k=0;k<16;k++)
 raCosMod[j++] = real(0.25/(2 * cos((2 * k + 1)*Pi / 128)));
 for (k=0;k<16;k++)
 raCosMod[j++] = real(-0.25/(2 * sin((2 * k + 1)*Pi / 128)));
}

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)209

The filter bank reconstruction is illustrated by the following pseudocode:

QMFInterpolation(FILTS, int nSUBS) {
 // Select filter
 if (FILTS==0) // Non-perfect reconstruction
 prCoeff = raCoeffLossy;
 else // Perfect reconstruction
 prCoeff = raCoeffLossLess;

 // Interpolation begins
 nChIndex = 0; // Reconstructed channel sample index
 for (nSubIndex=nStart; nSubIndex<nEnd; nSubIndex++) { // Subband samples

 // Load in one sample from each subband
 for (i=0; i<nSUBS; i++)
 raXin[i] = aSubband[i].raSample[nSubIndex];
 for (i=nSUBS; i<NumSubband; i++) // Clear inactive subbands
 raXin[i] = 0.0;

 //Multiply by cosine modulation coefficients and
 // Create temporary arrays SUM and DIFF.
 for (j=0,k=0;k<16;k++) {
 A[k] = (real)0.0;
 for (i=0;i<16;i++)
 A[k]+=(raXin[2*i]+raXin[2*i+1])*raCosMod[j++];
 }
 for (k=0;k<16;k++) {
 B[k] = (real)0.0;
 for (i=0;i<16;i++) {
 if(i>0)
 B[k]+=(raXin[2*i]+raXin[2*i-1])*raCosMod[j++];
 else
 B[k]+=(raXin[2*i])*raCosMod[j++];
 }
 SUM[k]=A[k]+B[k];
 DIFF[k]=A[k]-B[k];
 }

 // Store history
 for (k=0;k<16;k++)
 raX[k]=raCosMod[j++]*SUM[k];
 for (k=0;k<16;k++)
 raX[32-k-1]=raCosMod[j++]*DIFF[k];

 // Multiply by filter coefficients
 for(k=31,i=0;i<32;i++,k--)
 for(j=0;j<512;j+=64)
 raZ[i] += prCoeff[i+j]*(raX[i+j]-raX[j+k]);
 for(k=31,i=0;i<32;i++,k--)
 for(j=0;j<512;j+=64)
 raZ[32+i] += prCoeff[32+i+j]*(-raX[i+j]-raX[j+k]);

 // Create 32 PCM output samples
 for(i=0;i<32;i++)
 naCh[nChIndex++] = int(rScale*raZ[i]);

 // Update working arrays
 for(i=511;i>=32;i--)
 raX[i] = raX[i-32];
 for(i=0;i<NumSubband;i++)
 raZ[i] = raZ[i+32];
 for(i=0;i<NumSubband;i++)
 raZ[i+32] = (real)0.0;
 }
}

C.3.7 Interpolation of LFE Channel
void InterpolationFIR(int nDecimationSelect) {
 // rLFE: An array holding decimated samples.
 // Samples in current subframe starts from rLFE[0],
 // while rLFE[-1], rLFE[-2], ..., stores samples
 // from last subframe as history.
 // naCh: An array holding interpolated samples
 // Select decimation filter
 if (nDecimationSelect==1) {// 128 decimation

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)210

 nDeciFactor = 128; // Decimation factor = 128
 prCoeff = raCoeff128; // Point to the 128X FIR coefficient array
 }
 else { // 64 decimation
 nDeciFactor = 64;
 prCoeff = raCoeff64;
 }
 // Interpolation
 NumFIRCoef = 512; // Number of FIR coefficients
 nInterpIndex = 0; // Index to the interpolated samples
 for (nDeciIndex=0; nDeciIndex<nNumDeciSample; nDeciIndex++) {
 // One decimated sample generates nDeciFactor interpolated ones.
 for (k=0; k<nDeciFactor; k++) {
 // Clear accumulation
 rTmp = 0.0;
 // Accumulate
 for (J=0; J<NumFIRCoef/nDeciFactor; J++)
 rTmp += rLFE[nDeciIndex-J]*prCoeff[k+J*nDeciFactor];
 // Save interpolated samples as integer
 naCh[nInterpIndex++] = (int)rTmp;
 }
 nDeciIndex++; // Next decimated sample
 }
}

C.4 Coefficients for Remapping Loudspeaker Locations
The coefficients that control the remapping of loudspeaker locations are transmitted using the 5 bit codes, each
corresponding to an index into a scale factor lookup table.

The range of coefficients is between -15 dB and 0 dB in steps of 0,5 dB. A subset of the Scale Factor Table (see
clause D.11) is used to map the 5-bit codes to 16-bit fixed point values. The table entries are unsigned 16 bit integer
numbers representing the numbers in column AbsValues of the same table, after multiplication by 215 and rounding to
the nearest integer value.

The coefficients (SpkrRemapCoeff) are obtained from the transmitted 5 bit codes (SpkrRemapCodes) in the following
manner:

TblIndex = (nuSpkrRemapCodes << 2) + 120;
if (TblIndex > 240){
 Error: Invalid Index For a Speaker Remapping Coefficient
}
SpkrRemapCoeff = LinScalesTable[TblIndex];

C.5 Post Mix Gain Adjustment
The scale factors that adjust the gain in all channels after combining audio assets are transmitted using the 6 bit codes,
each corresponding to an index into a scale factor lookup table. The range of scale factors is between -15 dB and 15 dB
in steps of 0,5 dB.

The Scale Factor Table (see clause D.11) is the lookup table used to map the 6-bit codes to values available in the
LinScalesTable column. The table entries are unsigned 16-bit integers representing the numbers in column AbsValues
of the same table, after multiplication by 215 and rounding to the nearest integer value.

The coefficient (PostMixGainAdj) is obtained from the transmitted 6-bit code (nuPostMixGainAdjCode) in the
following manner:

if (nuPostMixGainAdjCode > 60){
 Error: Invalid Index For a Post Mix Gain Adjustment Code
}
if (nuPostMixGainAdjCode == 30)

 // 0 dB gain adjustment
 PostMixGainAdj = 1 << 20;
else
{
 // Look-up linear scale corresponding to range from -60 dB to -30 dB
 PostMixGainAdj = LinScalesTable[nuPostMixGainAdjCode];

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)211

 // Translate from range [-60 dB, -30 dB] to [-15 dB, +15 dB]
 // 5827066 (Q15) -> 177.8279 -> +45 dB
 // Also translate the PostMixGainAdj from 16-bit in Q15 to 24-bit in Q20
 PostMixGainAdj = (PostMixGainAdj *5827066 + (1 << 9)) >> 10;
}

The resulting coefficient PostMixGainAdj is a 24-bit unsigned fixed-point number in Q20 format.

C.6 Coefficients for Mixing Audio Assets
The coefficients that control the mixing audio assets are transmitted using the 6-bit codes, each corresponding to an
index into a scale factor lookup table.

The range of scale factors is between -60 dB and 0 dB with addition of -∞ (ScaleFactor = 0) which is coded with a code
0. Furthermore the range [-60 to 0] is subdivided into 3 regions each with different grid resolution:

1) [-60 to -30] with resolution of 2 dB

2) [-29 to -15] with resolution of 1 dB

3) [-14,5 to 0] with resolution of 0,5 dB

A subset of the Scale Factor Table (see clause D.11) is used to correlate the index to the integer scalars. The table
entries are unsigned 16 bit integers representing the numbers in column AbsValues of the same table, after
multiplication by 215 and rounding to the nearest integer value.

The coefficients (ScaleFactors) are obtained from the transmitted 6-bit codes (CoeffCodes) in the following manner:

if (CoeffCodes == 0)
 ScaleFactors = 0
else {
 ScaleFactorsTblIndex = (CoeffCodes - 1) << 2;
 if (ScaleFactorsTblIndex > 240)
 Error: Invalid Index For a Scale Factor
 ScaleFactors = LinScalesTable[ScaleFactorsTblIndex];
}

C.7 Smoothing the Coefficient Transitions
The downmix coefficients, mixing and scaling coefficients may change their values from frame to frame. In order to
ensure a smooth transition, the coefficient interpolation is performed over the frame that carries the new values for the
coefficients. The interpolation is performed on all coefficients in a similar manner. In particular the coefficient linear
interpolation is performed over the nFrmSize sample intervals. The value of actual coefficient Coeff(n) to be used at the
time instance n (n = 0 corresponds to the first sample in the current frame) is obtained using the procedure outlined
below:

Deltak = ScaleFactorsk - ScaleFactorsk-1;

nShift = log2(nFrmSize); // nFrmSize = 2nShift
if (|Deltak| > 0){
 Ramp = 0; // Ramp needs to be 32-bit variable
 for (n=0; n<nFrmSize; n++){
 Coeff[n++] = ScaleFactorsk-1 + (Ramp + (1<<(nShift-1)))>>nShift;
 Ramp += Deltak;
 }
}
else{
 for (n=0; n<nFrmSize; n++)
 Coeff[n] = ScaleFactorsk;
}

where the >> indicates the right shift operation, the << indicates the left shift operation and the ScaleFactorsk are the

coefficients transmitted in the stream in the frame k.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)212

The resulting values of Coeff(n) are in the same fixed-point number format as the original ScaleFactorsk. The new

coefficient value (ScaleFactorsk) is reached over the period that corresponds to nFrmSize samples.

C.8 Entropy Coding
Entropy coding removes redundancy from the residual signal e(n) without any loss of information. In DTS-HD lossless
codec, two types of codes-Rice codes and Binary codes-are used. Both codes are simple to implement on the encoder
and the decoder side. Binary codes are optimal codes for a uniform distribution of numbers that are to be coded. On the
other hand, the Rice codes are Huffman codes for a Laplacian distribution of numbers that need to be coded. As it turns
out, the distribution of the most of the residual signals obtained after linear prediction are close to the Laplacian. Highly
uncorrelated input audio signals are an exception; their residual distribution is closer to uniform.

Binary code is characterized by a single parameter BitWidth that represents the number of bits used for each code word.
The code word is just a binary representation of unsigned integer numbers in the range between 0 and
2BitWidth - 1.

The Rice codes are also characterized by a single parameter, denoted as KRice. The Rice code with parameter KRice for
an unsigned integer valued residual e(n) is constructed from two parts:

1) A unary representation of {u(n)>>KRice } where >> denotes a right shift operation and a unary representation
of number k consisting of k "0" bits followed by a single stop bit "1" (i.e. unary representation of 5 is 000001).

2) KRice least significant bits of e(n), i.e. KRice bit binary representation of {u(n) & (1<< KRice -1)} where <<
denotes a left shift operation and & denotes a bitwise AND operation.

The above definitions for both Binary and Rice codes assume coding of the unsigned integer numbers. Audio samples,
as well as the prediction residual samples (both denoted by e(n)) in our codec, are signed integers and prior to the
entropy coding, these samples need to be translated to the unsigned integer representation u(n) using the following
mapping:

<∀−<<−
≥∀<<

=
0)(,1)1))(((

0)(,1)(
)(

nene

nene
nu

where << denotes the left shift operation.

The coding parameter for both types of codes is determined for the duration of one segment. The choice of the code
(Binary or Rice) is also determined for one segment.

In a channel set, the code selection (bRiceCodeFlag) and the corresponding coding parameter (ncABIT) can be chosen:

1) For each channel separately (ncSegType = 0) i.e. all samples in the segment of channel 1 are coded using
(bRiceCodeFlag1, ncABIT1), all samples in the segment of channel 2 are coded using (bRiceCodeFlag2,
ncABIT2).

2) For all channels jointly (ncSegType = 1) i.e. all samples in the segment for all channels in the channel set are
coded using single bRiceCodeFlag and single ncABIT.

As indicated above, the selection between 1) and 2) is carried in the parameter ncSegType.

For one channel set in one segment, the following components are packed:

1) ncSegType

2) bRiceCodeFlag[] (1 per channel when ncSegType=0 or single for all channels when ncSegType =1)

3) ncABIT[] (1 per channel when ncSegType=0 or single for all channels when ncSegType =1)

4) the entropy codes for all samples in one segment of channel 1

5) the entropy codes for all samples in one segment of channel 2

6) the entropy codes for all samples in one segment of channel 3

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)213

On the decode side the entropy codes are extracted, as unsigned numbers u(n), according to the previously extracted
coding parameters (ncSegType, bRiceCodeFlag[] and ncABIT[]).

To reconstruct signed integer representation of residual samples e(n) from the extracted unsigned integer numbers u(n),
the following mapping is performed:

∀−>>−
∀>>

=
)(,1)1)((

)(,1)(
)(

nunumberedoddnu

nunumberedevennu
ne

C.9 Downmix Coefficients
The remainder of this text defines the following parameters:

1) DmixCoeff as the fixed-point representation for entries of matrix Dmix_Mtrx

2) DmixScale as the fixed-point representation for entries of matrix Scale_Mtrx

3) InvDmixScale as the fixed-point representation for entries of matrix InvScale_Mtrx

Both the DmixCoeff and DmixScale parameters are transmitted using 9-bit codes DmixCoeffCodes and
DmixScaleCodes respectively. Each consists of a sign and an index for the table lookup of its absolute value
|DmixCoeff| or |DmixScale|.

Since both the DmixScale and the InvDmixScale are needed on the decode side. there are two look-up tables, as defined
in clause D.11:

• DmixTable[] is used for finding the absolute value of both DmixCoeff and DmixScale parameters

• InvDmixTable[] is used for finding the absolute value of InvDmixScale parameter

Note that the range of the entries in DmixTable[] is between -60 dB and 0 dB with addition of -∞ (|DMixCoeff| =0),
which is coded with a DmixCode=0. Furthermore, the range [-60 to 0] is subdivided into 3 regions, each with a different
grid resolution:

1) [-60 to -30] with resolution of 0,5 dB

2) [-29,75 to -15] with resolution of 0,25 dB

3) [-14,875 to 0] with resolution of 0,125 dB

Although the DmixScale parameters are obtained from the DmixTable[], their range is limited, on the encode side, to
[-40 dB, 0 dB]. Consequently the InvDmixTable[], the look-up table for the InvDmixScale parameters, has entries that
correspond to the inverse of |DmixScale| over the limited range [-40 dB to 0 dB].

The entries in DmixTable column of clause D.11 are unsigned 16-bit integer numbers representing the numbers in
column AbsValues of clause D.11, after multiplication by 215 and rounding to the nearest integer value. The
DMixCoeff are signed integer numbers obtained from the entries of DmixTable after multiplication by the sign value
DmixSign.

The DmixCoeff parameters are obtained from the transmitted 9-bit codes DmixCoeffCodes in the following manner:

1) Extract Sign Bit: the most significant bit represents the sign bit such that:

- (DmixCoeffCodes and 0x100)>>8 = 1 → DmixSign = 1

- (DmixCoeffCodes and 0x100)>>8 = 0 → DmixSign = -1

2) Look up the |DmixCoeff|: the lower 8 bits of the DmixCoeffCodes represent the index into the DmixTable [];
the DMixCoeff parameters are calculated in the following manner:

if ((DmixCoeffCodes & 0xFF) == 0)
 DMixCoeff = 0;
else {
 DmixTblIndex = (DmixCoeffCodes & 0xFF) - 1;

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)214

 if (DmixTblIndex > 240)
 Error: Invalid Index for a Downmix Coefficient

 DMixCoeff = DmixSign *DmixTable[DmixTblIndex];
}

The DmixScale parameters are obtained from the transmitted 9-bit codes DmixScaleCodes in the following manner:

1) 1) Extract Sign Bit: the most significant bit represents the sign bit such that:

- (DmixScaleCodes and 0x100)>>8 = 1 → DmixScaleSign = 1

- (DmixScaleCodes and 0x100)>>8 = 0 → DmixScaleSign = -1

2) Look up the |DmixScale|: the lower 8 bits of the DmixScaleCodes represent the index into the DmixTable[];

a) the DmixScale parameters are calculated in the following manner:

DmixScaleTblIndex = (DmixScaleCodes & 0xFF) - 1
If ((DmixScaleTblIndex < 40) || (DmixScaleTblIndex >240))
 Error: Invalid Index for a Downmix Scaling Parameter
DmixScale = DmixScaleSign × DmixTable[DmixScaleTblIndex];

The entries in column InvDmixTable of clause D.11 are unsigned 24-bit integer numbers representing the numbers from
column InvAbsValues of clause D.11, after multiplication by 216 and rounding to the nearest integer value. The
InvDmixScale are signed 24-bit integer numbers obtained from the entries of InvDmixTable[] after multiplication by
the sign value DmixScaleSign.

The InvDmixScale parameters are obtained from already calculated DmixScaleSign and DmixScaleTblIndex
parameters as follows:

InvDmixScale = DmixScaleSign * InvDmixTable [DmixScaleTblIndex-40];

The decoder does not use DmixCoeff and InvDmixScale separately. It uses their product instead. The resulting
UndoDmixScale parameter is calculated using fixed-point arithmetic as follows:

 UndoDmixScale = (InvDmixScale * DmixCoeff + (1<<15)) >>16

where << and >> denote left and right integer shift operators. The UndoDmixScale is a 24-bit signed integer
represented in Q15 fixed point representation (i.e. all its values are scaled by 215).

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)215

Annex D (normative):
Large Tables

D.1 Scale Factor Quantization Tables

D.1.1 6-bit Quantization (Nominal 2,2 dB Step)
Index Quantization level Quantization level

in dB
 Index Quantization level Quantization level

in dB
0 1 0,0 32 4169 72,4
1 2 6,0 33 5370 74,6
2 2 6,0 34 6918 76,8
3 3 9,5 35 8913 79,0
4 3 9,5 36 11482 81,2
5 4 12,0 37 14791 83,4
6 6 15,5 38 19055 85,6
7 7 17,0 39 24547 87,8
8 10 20,0 40 31623 90,0
9 12 21,5 41 40738 92,2
10 16 24,0 42 52481 94,4
11 20 26,0 43 67608 96,6
12 26 28,3 44 87096 98,8
13 34 30,6 45 112202 101,0
14 44 32,8 46 144544 103,2
15 56 35,0 47 186209 105,4
16 72 37,2 48 239883 107,6
17 93 39,4 49 309030 109,8
18 120 41,6 50 398107 112,0
19 155 43,8 51 512861 114,2
20 200 46,0 52 660693 116,4
21 257 48,2 53 851138 118,6
22 331 50,4 54 1096478 120,8
23 427 52,6 55 1412538 123,0
24 550 54,8 56 1819701 125,2
25 708 57,0 57 2344229 127,4
26 912 59,2 58 3019952 129,6
27 1175 61,4 59 3890451 131,8
28 1514 63,6 60 5011872 134,0
29 1950 65,8 61 6456542 136,2
30 2512 68,0 62 8317638 138,4
31 3236 70,2 63 invalid invalid

D.1.2 7-bit Quantization (Nominal 1,1 dB Step)

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)216

Index Quantization level Quantization Level (dB)
0 1 0,0
1 1 0,0
2 2 6,0
3 2 6,0
4 2 6,0
5 2 6,0
6 3 9,5
7 3 9,5
8 3 9,5
9 4 12,0
10 4 12,0
11 5 14,0
12 6 15,5
13 7 17,0
14 7 17,0
15 8 18,0
16 10 20,0
17 11 21,0
18 12 21,5
19 14 23,0
20 16 24,0
21 18 25,1
22 20 26,0
23 23 27,2
24 26 28,3
25 30 29,5
26 34 30,6
27 38 31,6
28 44 32,8
29 50 34,0
30 56 35,0
31 64 36,1
32 72 37,2
33 82 38,3
34 93 39,4
35 106 40,5
36 120 41,6
37 136 42,7
38 155 43,8
39 176 44,9
40 200 46,0
41 226 47,1
42 257 48,2
43 292 49,3
44 331 50,4
45 376 51,5
46 427 52,6
47 484 53,7
48 550 54,8
49 624 55,9
50 708 57,0
51 804 58,1
52 912 59,2
53 1035 60,3
54 1175 61,4
55 1334 62,5
56 1514 63,6
57 1718 64,7
58 1950 65,8
59 2213 66,9
60 2512 68,0
61 2851 69,1
62 3236 70,2
63 3673 71,3

Index Quantization level Quantization Level (dB)
64 4169 72,4
65 4732 73,5
66 5370 74,6
67 6095 75,7
68 6918 76,8
69 7852 77,9
70 8913 79,0
71 10116 80,1
72 11482 81,2
73 13032 82,3
74 14791 83,4
75 16788 84,5
76 19055 85,6
77 21627 86,7
78 24547 87,8
79 27861 88,9
80 31623 90,0
81 35892 91,1
82 40738 92,2
83 46238 93,3
84 52481 94,4
85 59566 95,5
86 67608 96,6
87 76736 97,7
88 87096 98,8
89 98855 99,9
90 112202 101,0
91 127350 102,1
92 144544 103,2
93 164059 104,3
94 186209 105,4
95 211349 106,5
96 239883 107,6
97 272270 108,7
98 309030 109,8
99 350752 110,9
100 398107 112,0
101 451856 113,1
102 512861 114,2
103 582103 115,3
104 660693 116,4
105 749894 117,5
106 851138 118,6
107 966051 119,7
108 1096478 120,8
109 1244515 121,9
110 1412538 123,0
111 1603245 124,1
112 1819701 125,2
113 2065380 126,3
114 2344229 127,4
115 2660725 128,5
116 3019952 129,6
117 3427678 130,7
118 3890451 131,8
119 4415704 132,9
120 5011872 134,0
121 5688529 135,1
122 6456542 136,2
123 7328245 137,3
124 8317638 138,4
125 invalid invalid
126 invalid invalid
127 invalid invalid

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)217

D.2 Quantization Step Size

D.2.1 Lossy Quantization
ABITS Index Step-size×222 Nominal Step-size
0 0 0,0
1 6710886 1,6
2 4194304 1,0
3 3355443 0,8
4 2474639 0,59
5 2097152 0,50
6 1761608 0,42
7 1426063 0,34
8 796918 0,19
9 461373 0,11
10 251658 0,06
11 146801 0,035
12 79692 0,019
13 46137 0,011
14 27263 0,0065
15 16777 0,0040
16 10486 0,0025
17 5872 0,0014
18 3355 0,0008
19 1887 0,00045
20 1258 0,00030
21 713 0,00017
22 336 0,00008
23 168 0,00004
24 84 0,00002
25 42 0,00001
26 21 0,000005
27 invalid invalid
28 invalid invalid
29 invalid invalid
30 invalid invalid
31 invalid invalid

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)218

D.2.2 Lossless Quantization
ABITS Index Step-size×222 Nominal Step-size
0 0 0,0
1 4194304 1,0
2 2097152 0,5
3 1384120 0,33
4 1048576 0,25
5 696254 0,166
6 524288 0,125
7 348127 0,083
8 262144 0,0625
9 131072 0,03125
10 65431 0,0156
11 33026 7,874e-3
12 16450 3,922e-3
13 8208 1,957e-3
14 4100 9,775e-4
15 2049 4,885e-4
16 1024 2,442e-4
17 512 1,221e-4
18 256 6,104e-5
19 128 3,052e-5
20 64 1,526e-5
21 32 7,629e-6
22 16 3,815e-6
23 8 1,907e-6
24 4 9,537e-7
25 2 4,768e-7
26 1 2,384e-7
27 invalid invalid
28 invalid invalid
29 invalid invalid
30 invalid invalid
31 invalid invalid

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)219

D.3 Scale Factor for Joint Intensity Coding
Index Scale Factor Index Scale Factor Index Scale Factor Index Scale Factor

0 0,025088 32 0,158464 64 1 96 6,30957
1 0,026624 33 0,167872 65 1,05926 97 6,68346
2 0,02816 34 0,177856 66 1,12205 98 7,07949
3 0,029824 35 0,188352 67 1,18848 99 7,49894
4 0,031616 36 0,199552 68 1,25894 100 7,9433
5 0,033472 37 0,211328 69 1,3335 101 8,41395
6 0,035456 38 0,223872 70 1,41254 102 8,91251
7 0,037568 39 0,23712 71 1,49626 103 9,44064
8 0,039808 40 0,2512 72 1,5849 104 10
9 0,042176 41 0,266048 73 1,67878 105 10,5925

10 0,044672 42 0,281856 74 1,7783 106 11,2202
11 0,047296 43 0,29856 75 1,88365 107 11,885
12 0,050112 44 0,316224 76 1,99526 108 12,5892
13 0,05312 45 0,334976 77 2,11347 109 13,3352
14 0,056256 46 0,354816 78 2,23872 110 14,1254
15 0,059584 47 0,375808 79 2,37139 111 14,9624
16 0,063104 48 0,39808 80 2,51187 112 15,849
17 0,066816 49 0,421696 81 2,66074 113 16,788
18 0,070784 50 0,446656 82 2,81837 114 17,7828
19 0,075008 51 0,473152 83 2,98541 115 18,8365
20 0,079424 52 0,501184 84 3,1623 116 19,9526
21 0,08416 53 0,53088 85 3,34963 117 21,1349
22 0,089152 54 0,562368 86 3,54816 118 22,3872
23 0,0944 55 0,595648 87 3,7584 119 23,7137
24 0,099968 56 0,630976 88 3,98106 120 25,1188
25 0,10592 57 0,668352 89 4,21696 121 26,6072
26 0,112192 58 0,707968 90 4,46682 122 28,1838
27 0,118848 59 0,749888 91 4,73152 123 29,8538
28 0,125888 60 0,794304 92 5,0119 124 31,6228
29 0,133376 61 0,841408 93 5,30886 125 33,4965
30 0,141248 62 0,891264 94 5,62342 126 35,4813
31 0,149632 63 0,944064 95 5,95661 127 37,5837

 128 39,8107

D.4 Dynamic Range Control

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)220

Index Q18 binary Multiplier Log Multiplier (dB)
0 0,00040394 0,0259 -31,7500
1 0,00041574 0,0266 -31,5000
2 0,00042788 0,0274 -31,2500
3 0,00044037 0,0282 -31,0000
4 0,00045323 0,0290 -30,7500
5 0,00046647 0,0299 -30,5000
6 0,00048009 0,0307 -30,2500
7 0,00049411 0,0316 -30,0000
8 0,00050853 0,0325 -29,7500
9 0,00052338 0,0335 -29,5000

10 0,00053867 0,0345 -29,2500
11 0,00055440 0,0355 -29,0000
12 0,00057058 0,0365 -28,7500
13 0,00058725 0,0376 -28,5000
14 0,00060439 0,0387 -28,2500
15 0,00062204 0,0398 -28,0000
16 0,00064021 0,0410 -27,7500
17 0,00065890 0,0422 -27,5000
18 0,00067814 0,0434 -27,2500
19 0,00069794 0,0447 -27,0000
20 0,00071832 0,0460 -26,7500
21 0,00073930 0,0473 -26,5000
22 0,00076089 0,0487 -26,2500
23 0,00078311 0,0501 -26,0000
24 0,00080597 0,0516 -25,7500
25 0,00082951 0,0531 -25,5000
26 0,00085373 0,0546 -25,2500
27 0,00087866 0,0562 -25,0000
28 0,00090432 0,0579 -24,7500
29 0,00093072 0,0596 -24,5000
30 0,00095790 0,0613 -24,2500
31 0,00098587 0,0631 -24,0000
32 0,00101466 0,0649 -23,7500
33 0,00104429 0,0668 -23,5000
34 0,00107478 0,0688 -23,2500
35 0,00110617 0,0708 -23,0000
36 0,00113847 0,0729 -22,7500
37 0,00117171 0,0750 -22,5000
38 0,00120592 0,0772 -22,2500
39 0,00124114 0,0794 -22,0000
40 0,00127738 0,0818 -21,7500
41 0,00131468 0,0841 -21,5000
42 0,00135307 0,0866 -21,2500
43 0,00139258 0,0891 -21,0000
44 0,00143324 0,0917 -20,7500
45 0,00147510 0,0944 -20,5000
46 0,00151817 0,0972 -20,2500
47 0,00156250 0,1000 -20,0000
48 0,00160813 0,1029 -19,7500
49 0,00165508 0,1059 -19,5000
50 0,00170341 0,1090 -19,2500
51 0,00175315 0,1122 -19,0000
52 0,00180435 0,1155 -18,7500
53 0,00185703 0,1189 -18,5000
54 0,00191126 0,1223 -18,2500
55 0,00196707 0,1259 -18,0000
56 0,00202451 0,1296 -17,7500
57 0,00208363 0,1334 -17,5000
58 0,00214447 0,1372 -17,2500
59 0,00220709 0,1413 -17,0000
60 0,00227154 0,1454 -16,7500
61 0,00233787 0,1496 -16,5000
62 0,00240614 0,1540 -16,2500
63 0,00247640 0,1585 -16,0000

Index Q18 binary Multiplier Log Multiplier (dB)
64 0,00254871 0,1631 -15,7500
65 0,00262313 0,1679 -15,5000
66 0,00269973 0,1728 -15,2500
67 0,00277856 0,1778 -15,0000
68 0,00285970 0,1830 -14,7500
69 0,00294320 0,1884 -14,5000
70 0,00302914 0,1939 -14,2500
71 0,00311760 0,1995 -14,0000
72 0,00320863 0,2054 -13,7500
73 0,00330233 0,2113 -13,5000
74 0,00339876 0,2175 -13,2500
75 0,00349800 0,2239 -13,0000
76 0,00360015 0,2304 -12,7500
77 0,00370527 0,2371 -12,5000
78 0,00381347 0,2441 -12,2500
79 0,00392482 0,2512 -12,0000
80 0,00403943 0,2585 -11,7500
81 0,00415738 0,2661 -11,5000
82 0,00427878 0,2738 -11,2500
83 0,00440372 0,2818 -11,0000
84 0,00453231 0,2901 -10,7500
85 0,00466466 0,2985 -10,5000
86 0,00480087 0,3073 -10,2500
87 0,00494106 0,3162 -10,0000
88 0,00508534 0,3255 -9,7500
89 0,00523383 0,3350 -9,5000
90 0,00538667 0,3447 -9,2500
91 0,00554396 0,3548 -9,0000
92 0,00570585 0,3652 -8,7500
93 0,00587246 0,3758 -8,5000
94 0,00604394 0,3868 -8,2500
95 0,00622042 0,3981 -8,0000
96 0,00640206 0,4097 -7,7500
97 0,00658901 0,4217 -7,5000
98 0,00678141 0,4340 -7,2500
99 0,00697943 0,4467 -7,0000

100 0,00718323 0,4597 -6,7500
101 0,00739299 0,4732 -6,5000
102 0,00760887 0,4870 -6,2500
103 0,00783105 0,5012 -6,0000
104 0,00805972 0,5158 -5,7500
105 0,00829507 0,5309 -5,5000
106 0,00853729 0,5464 -5,2500
107 0,00878658 0,5623 -5,0000
108 0,00904316 0,5788 -4,7500
109 0,00930722 0,5957 -4,5000
110 0,00957900 0,6131 -4,2500
111 0,00985871 0,6310 -4,0000
112 0,01014659 0,6494 -3,7500
113 0,01044287 0,6683 -3,5000
114 0,01074781 0,6879 -3,2500
115 0,01106165 0,7079 -3,0000
116 0,01138466 0,7286 -2,7500
117 0,01171710 0,7499 -2,5000
118 0,01205924 0,7718 -2,2500
119 0,01241138 0,7943 -2,0000
120 0,01277380 0,8175 -1,7500
121 0,01314680 0,8414 -1,5000
122 0,01353069 0,8660 -1,2500
123 0,01392580 0,8913 -1,0000
124 0,01433244 0,9173 -0,7500
125 0,01475095 0,9441 -0,5000
126 0,01518169 0,9716 -0,2500
127 0,01562500 1,0000 0,0000

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)221

Index Q18 binary Multiplier Log Multiplier (dB)
128 0,01608126 1,0292 0,2500
129 0,01655084 1,0593 0,5000
130 0,01703413 1,0902 0,7500
131 0,01753154 1,1220 1,0000
132 0,01804347 1,1548 1,2500
133 0,01857035 1,1885 1,5000
134 0,01911261 1,2232 1,7500
135 0,01967071 1,2589 2,0000
136 0,02024510 1,2957 2,2500
137 0,02083627 1,3335 2,5000
138 0,02144470 1,3725 2,7500
139 0,02207090 1,4125 3,0000
140 0,02271538 1,4538 3,2500
141 0,02337868 1,4962 3,5000
142 0,02406135 1,5399 3,7500
143 0,02476396 1,5849 4,0000
144 0,02548708 1,6312 4,2500
145 0,02623131 1,6788 4,5000
146 0,02699728 1,7278 4,7500
147 0,02778562 1,7783 5,0000
148 0,02859697 1,8302 5,2500
149 0,02943202 1,8836 5,5000
150 0,03029145 1,9387 5,7500
151 0,03117597 1,9953 6,0000
152 0,03208633 2,0535 6,2500
153 0,03302327 2,1135 6,5000
154 0,03398756 2,1752 6,7500
155 0,03498002 2,2387 7,0000
156 0,03600145 2,3041 7,2500
157 0,03705271 2,3714 7,5000
158 0,03813467 2,4406 7,7500
159 0,03924823 2,5119 8,0000
160 0,04039429 2,5852 8,2500
161 0,04157383 2,6607 8,5000
162 0,04278781 2,7384 8,7500
163 0,04403723 2,8184 9,0000
164 0,04532314 2,9007 9,2500
165 0,04664660 2,9854 9,5000
166 0,04800871 3,0726 9,7500
167 0,04941059 3,1623 10,0000
168 0,05085340 3,2546 10,2500
169 0,05233835 3,3497 10,5000
170 0,05386666 3,4475 10,7500
171 0,05543959 3,5481 11,0000
172 0,05705846 3,6517 11,2500
173 0,05872459 3,7584 11,5000
174 0,06043938 3,8681 11,7500
175 0,06220425 3,9811 12,0000
176 0,06402064 4,0973 12,2500
177 0,06589008 4,2170 12,5000
178 0,06781410 4,3401 12,7500
179 0,06979431 4,4668 13,0000
180 0,07183234 4,5973 13,2500
181 0,07392988 4,7315 13,5000
182 0,07608868 4,8697 13,7500
183 0,07831051 5,0119 14,0000
184 0,08059721 5,1582 14,2500
185 0,08295069 5,3088 14,5000
186 0,08537290 5,4639 14,7500
187 0,08786583 5,6234 15,0000
188 0,09043156 5,7876 15,2500
189 0,09307221 5,9566 15,5000
190 0,09578997 6,1306 15,7500
191 0,09858709 6,3096 16,0000

Index Q18 binary Multiplier Log Multiplier (dB)
192 0,10146588 6,4938 16,2500
193 0,10442874 6,6834 16,5000
194 0,10747811 6,8786 16,7500
195 0,11061653 7,0795 17,0000
196 0,11384659 7,2862 17,2500
197 0,11717097 7,4989 17,5000
198 0,12059242 7,7179 17,7500
199 0,12411379 7,9433 18,0000
200 0,12773797 8,1752 18,2500
201 0,13146799 8,4140 18,5000
202 0,13530693 8,6596 18,7500
203 0,13925796 8,9125 19,0000
204 0,14332436 9,1728 19,2500
205 0,14750951 9,4406 19,5000
206 0,15181687 9,7163 19,7500
207 0,15625000 10,0000 20,0000
208 0,16081258 10,2920 20,2500
209 0,16550839 10,5925 20,5000
210 0,17034133 10,9018 20,7500
211 0,17531538 11,2202 21,0000
212 0,18043469 11,5478 21,2500
213 0,18570347 11,8850 21,5000
214 0,19112611 12,2321 21,7500
215 0,19670710 12,5893 22,0000
216 0,20245105 12,9569 22,2500
217 0,20836272 13,3352 22,5000
218 0,21444703 13,7246 22,7500
219 0,22070899 14,1254 23,0000
220 0,22715381 14,5378 23,2500
221 0,23378682 14,9624 23,5000
222 0,24061352 15,3993 23,7500
223 0,24763956 15,8489 24,0000
224 0,25487077 16,3117 24,2500
225 0,26231313 16,7880 24,5000
226 0,26997281 17,2783 24,7500
227 0,27785616 17,7828 25,0000
228 0,28596970 18,3021 25,2500
229 0,29432017 18,8365 25,5000
230 0,30291447 19,3865 25,7500
231 0,31175974 19,9526 26,0000
232 0,32086329 20,5353 26,2500
233 0,33023266 21,1349 26,5000
234 0,33987563 21,7520 26,7500
235 0,34980018 22,3872 27,0000
236 0,36001453 23,0409 27,2500
237 0,37052714 23,7137 27,5000
238 0,38134673 24,4062 27,7500
239 0,39248225 25,1189 28,0000
240 0,40394294 25,8523 28,2500
241 0,41573829 26,6073 28,5000
242 0,42787807 27,3842 28,7500
243 0,44037233 28,1838 29,0000
244 0,45323144 29,0068 29,2500
245 0,46646603 29,8538 29,5000
246 0,48008709 30,7256 29,7500
247 0,49410588 31,6228 30,0000
248 0,50853404 32,5462 30,2500
249 0,52338350 33,4965 30,5000
250 0,53866657 34,4747 30,7500
251 0,55439592 35,4813 31,0000
252 0,57058457 36,5174 31,2500
253 0,58724594 37,5837 31,5000
254 0,60439384 38,6812 31,7500
255 0,62204245 39,8107 32,0000

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)222

D.5 Huffman Code Books

D.5.1 3 Levels

Table A3

Quantization level Code length Code
0 1 0
1 2 2
-1 2 3

D.5.2 4 Levels (For TMODE)

Table A4

Quantization level Code length Code
0 1 0
1 2 2
2 3 6
3 3 7

Table B4

Quantization level Code length Code
0 2 2
1 3 6
2 3 7
3 1 0

Table C4

Quantization level Code length Code
0 3 6
1 3 7
2 1 0
3 2 2

Table D4

Quantization level Code length Code
0 2 0
1 2 1
2 2 2
3 2 3

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)223

D.5.3 5 Levels

Table A5

Quantization level Code length Code
0 1 0
1 2 2
-1 3 6
2 4 14
-2 4 15

Table B5

Quantization level Code length Code
0 2 2
1 2 0
-1 2 1
2 3 6
-2 3 7

Table C5

Quantization level Code length Code
0 1 0
1 3 4
-1 3 5
2 3 6
-2 3 7

D.5.4 7 Levels

Table A7 Table B7 Table C7

Quantization
level

Code
length

Code Quantization
level

Code
length

Code Quantization
level

Code
length

Code

0 1 0 0 2 3 0 2 3
1 3 6 1 2 1 1 2 2
-1 3 5 -1 2 0 -1 2 1
2 3 4 2 3 4 2 4 3
-2 4 14 -2 4 11 -2 4 2
3 5 31 3 5 21 3 4 1
-3 5 30 -3 5 20 -3 4 0

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)224

D.5.5 9 Levels

Table A9 Table B9 Table C9

Quantization
level

Code
length

Code Quantization
level

Code
length

Code Quantization
level

Code
length

Code

0 1 0 0 2 2 0 2 2
1 3 7 1 2 0 1 2 0
-1 3 5 -1 3 7 -1 3 7
2 4 13 2 3 3 2 3 6
-2 4 9 -2 3 2 -2 3 2
3 4 8 3 5 27 3 4 6
-3 5 25 -3 5 26 -3 5 15
4 6 49 4 5 25 4 6 29
-4 6 48 -4 5 24 -4 6 28

D.5.6 12 Levels (for BHUFF)

Table A12

ABITS Code length Code
1 1 0
2 2 2
3 3 6
4 4 14
5 5 30
6 6 62
7 8 255
8 8 254
9 9 507

10 9 506
11 9 505
12 9 504

Table B12

ABITS Code length Code
1 1 1
2 2 0
3 3 2
4 5 15
5 5 12
6 6 29
7 7 57
8 7 56
9 7 55

10 7 54
11 7 53
12 7 52

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)225

Table C12

ABITS Code length Code
1 2 0
2 3 7
3 3 5
4 3 4
5 3 2
6 4 13
7 4 12
8 4 6
9 5 15

10 6 29
11 7 57
12 7 56

Table D12

ABITS Code length Code
1 2 3
2 2 2
3 2 0
4 3 2
5 4 6
6 5 14
7 6 30
8 7 62
9 8 126

10 9 254
11 10 511
12 10 510

Table E12

ABITS Code length Code
1 1 1
2 2 0
3 3 2
4 4 6
5 5 14
6 7 63
7 7 61
8 8 124
9 8 121

10 8 120
11 9 251
12 9 250

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)226

D.5.7 13 Levels
Table A13 Table B13 Table C13

Quantization
level

Code
length

Code Quantization
level

Code
length

Code Quantization
level

Code
length

Code

0 1 0 0 2 0 0 3 5
1 3 4 1 3 6 1 3 4
-1 4 15 -1 3 5 -1 3 3
2 4 13 2 3 2 2 3 2
-2 4 12 -2 4 15 -2 3 0
3 4 10 3 4 9 3 4 15
-3 5 29 -3 4 7 -3 4 14
4 5 22 4 4 6 4 4 12
-4 6 57 -4 5 29 -4 4 3
5 6 47 5 5 17 5 5 27
-5 6 46 -5 5 16 -5 5 26
6 7 113 6 6 57 6 5 5
-6 7 112 -6 6 56 -6 5 4

D.5.8 17 Levels

Table A17 Table B17

Quantization level Code length Code Quantization level Code length Code
0 2 1 0 2 0
1 3 7 1 3 6
-1 3 6 -1 3 5
2 3 4 2 3 2
-2 3 1 -2 4 15
3 4 11 3 4 9
-3 4 10 -3 4 8
4 4 0 4 5 29
-4 5 3 -4 5 28
5 6 4 5 5 14
-5 7 11 -5 5 13
6 8 20 6 6 30
-6 9 43 -6 6 25
7 10 84 7 6 24
-7 11 171 -7 7 63
8 12 341 8 8 125
-8 12 340 -8 8 124

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)227

Table C17 Table D17

Quantization level Code length Code Quantization level Code length Code
0 3 6 0 1 0
1 3 4 1 3 7
-1 3 3 -1 3 6
2 3 0 2 4 11
-2 4 15 -2 4 10
3 4 11 3 5 19
-3 4 10 -3 5 18
4 4 4 4 6 35
-4 4 3 -4 6 34
5 5 29 5 7 67
-5 5 28 -5 7 66
6 5 10 6 8 131
-6 5 5 -6 8 130
7 5 4 7 9 259
-7 6 23 -7 9 258
8 7 45 8 9 257
-8 7 44 -8 9 256

Table E17 Table F17

Quantization level Code length Code Quantization level Code length Code
0 1 0 0 3 6
1 3 5 1 3 5
-1 3 4 -1 3 4
2 4 12 2 3 2
-2 5 31 -2 3 1
3 5 28 3 4 15
-3 5 27 -3 4 14
4 6 60 4 4 6
-4 6 59 -4 4 1
5 6 53 5 5 14
-5 6 52 -5 5 1
6 7 122 6 6 31
-6 7 117 -6 6 30
7 8 247 7 6 0
-7 8 246 -7 7 3
8 8 233 8 8 5
-8 8 232 -8 8 4

Table G17

Quantization level Code length Code
0 2 2
1 3 7
-1 3 6
2 3 1
-2 3 0
3 4 5
-3 4 4
4 5 14
-4 5 13
5 6 30
-5 6 25
6 7 62
-6 7 49
7 8 127
-7 8 126
8 8 97
-8 8 96

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)228

D.5.9 25 Levels

Table A25 Table B25

Quantization level Code length Code Quantization level Code length Code
0 3 6 0 3 5
1 3 4 1 3 2
-1 3 3 -1 3 1
2 3 1 2 4 15
-2 3 0 -2 4 14
3 4 15 3 4 9
-3 4 14 -3 4 8
4 4 5 4 4 6
-4 4 4 -4 4 1
5 5 22 5 5 26
-5 5 21 -5 5 25
6 6 47 6 5 15
-6 6 46 -6 5 14
7 7 83 7 6 55
-7 7 82 -7 6 54
8 8 163 8 6 49
-8 8 162 -8 6 48
9 8 160 9 6 1
-9 9 323 -9 6 0
10 10 644 10 7 6
-10 11 1 291 -10 7 5
11 12 2 580 11 7 4
-11 13 5 163 -11 8 15
12 14 10 325 12 9 29
-12 14 10 324 -12 9 28

Table C25 Table D25

Quantization level Code length Code Quantization level Code length Code
0 3 1 0 2 2
1 4 15 1 3 7
-1 4 14 -1 3 6
2 4 12 2 3 1
-2 4 11 -2 3 0
3 4 9 3 4 5
-3 4 8 -3 4 4
4 4 6 4 5 13
-4 4 5 -4 5 12
5 4 1 5 6 29
-5 4 0 -5 6 28
6 5 26 6 7 62
-6 5 21 -6 7 61
7 5 15 7 8 126
-7 5 14 -7 8 121
8 5 8 8 9 255
-8 6 55 -8 9 254
9 6 41 9 10 483
-9 6 40 -9 10 482
10 6 18 10 11 963
-10 7 109 -10 11 962
11 7 108 11 12 1 923
-11 7 39 -11 12 1 922
12 8 77 12 12 1 921
-12 8 76 -12 12 1 920

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)229

Table E25 Table F25

Quantization level Code length Code Quantization level Code length Code
0 2 3 0 3 1
1 3 3 1 3 0
-1 3 2 -1 4 15
2 4 11 2 4 14
-2 4 10 -2 4 13
3 4 1 3 4 11
-3 4 0 -3 4 10
4 5 17 4 4 8
-4 5 16 -4 4 7
5 5 5 5 4 5
-5 5 4 -5 4 4
6 6 38 6 5 24
-6 6 37 -6 5 19
7 6 14 7 5 13
-7 6 13 -7 5 12
8 7 79 8 6 37
-8 7 78 -8 6 36
9 7 72 9 7 102
-9 7 31 -9 7 101
10 7 25 10 8 207
-10 7 24 -10 8 206
11 8 147 11 8 200
-11 8 146 -11 9 403
12 8 61 12 10 805
-12 8 60 -12 10 804

Table G25

Quantization level Code length Code
0 2 1
1 3 6
-1 3 5
2 3 0
-2 4 15
3 4 8
-3 4 3
4 5 28
-4 5 19
5 5 4
-5 6 59
6 6 36
-6 6 11
7 7 116
-7 7 75
8 7 21
-8 7 20
9 8 149
-9 8 148
10 9 470
-10 9 469
11 10 943
-11 10 942
12 10 937
-12 10 936

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)230

D.5.10 33 Levels

Table A33

Quantization
level

Code
length Code

0 3 2
1 3 1
-1 3 0
2 4 14
-2 4 13
3 4 12
-3 4 11
4 4 9
-4 4 8
5 4 6
-5 5 31
6 5 20
-6 5 15
7 6 61
-7 6 60
8 6 29
-8 6 28
9 7 85
-9 7 84
10 8 174
-10 8 173
11 9 351
-11 9 350
12 10 691
-12 10 690
13 11 1 379
-13 11 1 378
14 12 2 755
-14 12 2 754
15 13 5 507
-15 13 5 506
16 13 5 505
-16 13 5 504

Table B33

Quantization
level

Code
length

Cod
e

0 3 1
1 4 15
-1 4 14
2 4 11
-2 4 10
3 4 8
-3 4 7
4 4 4
-4 4 1
5 5 27
-5 5 26
6 5 19
-6 5 18
7 5 12
-7 5 11
8 5 1
-8 5 0
9 6 50
-9 6 49
10 6 26
-10 6 21
11 7 103
-11 7 102
12 7 96
-12 7 55
13 7 41
-13 7 40
14 8 194
-14 8 109
15 8 108
-15 9 391
16 10 781
-16 10 780

Table C33

Quantization
Level

Code
length Code

0 4 13
1 4 11
-1 4 10
2 4 8
-2 4 7
3 4 4
-3 4 3
4 4 2
-4 4 1
5 5 30
-5 5 29
6 5 25
-6 5 24
7 5 19
-7 5 18
8 5 11
-8 5 10
9 5 0
-9 6 63
10 6 62
-10 6 57
11 6 27
-11 6 26
12 6 24
-12 6 3
13 7 113
-13 7 112
14 7 50
-14 7 5
15 7 4
-15 8 103
16 9 205
-16 9 204

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)231

Table D33

Quantization level Code length Code
0 2 1
1 3 6
-1 3 5
2 3 0
-2 4 15
3 4 8
-3 4 3
4 5 28
-4 5 19
5 5 4
-5 6 59
6 6 36
-6 6 11
7 7 116
-7 7 75
8 7 21
-8 7 20
9 8 149
-9 8 148
10 9 469
-10 9 468
11 10 941
-11 10 940
12 11 1 885
-12 11 1 884
13 12 3 773
-13 12 3 772
14 13 7 551
-14 13 7 550
15 14 15 099
-15 14 15 098
16 14 15 097
-16 14 15 096

Table E33

Quantization level Code length Code
0 2 2
1 3 2
-1 3 1
2 4 12
-2 4 7
3 4 0
-3 5 31
4 5 27
-4 5 26
5 5 3
-5 5 2
6 6 59
-6 6 58
7 6 27
-7 6 26
8 7 123
-8 7 122
9 7 120
-9 7 115
10 7 112
-10 7 51
11 7 49
-11 7 48
12 8 242
-12 8 229
13 8 227
-13 8 226
14 8 101
-14 8 100
15 9 487
-15 9 486
16 9 457
-16 9 456

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)232

Table F33

Quantization level Code length Code
0 4 13
1 4 12
-1 4 11
2 4 9
-2 4 8
3 4 7
-3 4 6
4 4 4
-4 4 3
5 4 1
-5 4 0
6 5 30
-6 5 29
7 5 21
-7 5 20
8 5 10
-8 5 5
9 6 63
-9 6 62
10 6 56
-10 6 23
11 6 9
-11 6 8
12 7 45
-12 7 44
13 8 230
-13 8 229
14 9 463
-14 9 462
15 9 456
-15 10 915
16 11 1 829
-16 11 1 828

Table G33

Quantization level Code length Code
0 3 6
1 3 3
-1 3 2
2 4 15
-2 4 14
3 4 9
-3 4 8
4 4 1
-4 4 0
5 5 22
-5 5 21
6 5 6
-6 5 5
7 6 46
-7 6 41
8 6 14
-8 6 9
9 7 94
-9 7 81
10 7 30
-10 7 17
11 8 191
-11 8 190
12 8 63
-12 8 62
13 8 32
-13 9 323
14 9 321
-14 9 320
15 9 67
-15 9 66
16 10 645
-16 10 644

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)233

D.5.11 65 Levels

Table A65

Quantization level Code length Code
0 4 6
1 4 5
-1 4 4
2 4 2
-2 4 1
3 4 0
-3 5 31
4 5 29
-4 5 28
5 5 27
-5 5 26
6 5 24
-6 5 23
7 5 21
-7 5 20
8 5 18
-8 5 17
9 5 14
-9 5 7
10 5 6
-10 6 61
11 6 50
-11 6 45
12 6 38
-12 6 33
13 6 31
-13 6 30
14 7 120
-14 7 103
15 7 89
-15 7 88
16 7 65
-16 7 64
17 8 205
-17 8 204
18 8 157
-18 8 156
19 9 486
-19 9 485
20 9 318
-20 9 317
21 10 975
-21 10 974
22 10 639
-22 10 638
23 11 1 939
-23 11 1 938
24 11 1 936
-24 11 1 267
25 11 1 264
-25 12 3 875
26 12 2 532
-26 12 2 531
27 13 7 749
-27 13 7 748
28 13 5 061
-28 13 5 060
29 14 10 133
-29 14 10 132

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)234

Quantization level Code length Code
30 15 20 269
-30 15 20 268
31 16 40 543
-31 16 40 542
32 16 40 541
-32 16 40 540

Table B65

Quantization level Code length Code
0 4 4
1 4 2
-1 4 1
2 5 30
-2 5 29
3 5 26
-3 5 25
4 5 23
-4 5 22
5 5 19
-5 5 18
6 5 16
-6 5 15
7 5 12
-7 5 11
8 5 7
-8 5 6
9 6 63
-9 6 62
10 6 56
-10 6 55
11 6 49
-11 6 48
12 6 41
-12 6 40
13 6 34
-13 6 29
14 6 26
-14 6 21
15 6 20
-15 6 3
16 6 0
-16 7 115
17 7 109
-17 7 108
18 7 86
-18 7 85
19 7 70
-19 7 57
20 7 56
-20 7 55
21 7 4
-21 7 3
22 8 229
-22 8 228
23 8 175
-23 8 174
24 8 143
-24 8 142
25 8 108
-25 8 11
26 8 10
-26 8 5

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)235

Quantization level Code length Code
27 9 339
-27 9 338
28 9 336
-28 9 219
29 9 9
-29 9 8
30 10 674
-30 10 437
31 10 436
-31 11 1 351
32 12 2 701
-32 12 2 700

Table C65

Quantization level Code length Code
0 5 28
1 5 25
-1 5 24
2 5 23
-2 5 22
3 5 19
-3 5 18
4 5 16
-4 5 15
5 5 13
-5 5 12
6 5 10
-6 5 9
7 5 7
-7 5 6
8 5 4
-8 5 3
9 5 1
-9 5 0
10 6 62
-10 6 61
11 6 59
-11 6 58
12 6 54
-12 6 53
13 6 43
-13 6 42
14 6 40
-14 6 35
15 6 29
-15 6 28
16 6 17
-16 6 16
17 6 11
-17 6 10
18 6 4
-18 7 127
19 7 121
-19 7 120
20 7 110
-20 7 105
21 7 83
-21 7 82
22 7 68
-22 7 47
23 7 46
-23 7 45

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)236

Quantization level Code length Code
24 7 11
-24 7 10
25 8 252
-25 8 223
26 8 209
-26 8 208
27 8 138
-27 8 89
28 8 88
-28 9 507
29 9 445
-29 9 444
30 9 278
-30 10 1013
31 10 1012
-31 10 559
32 11 1117
-32 11 1116

Table D65

Quantization level Code length Code
0 3 4
1 3 1
-1 3 0
2 4 13
-2 4 12
3 4 7
-3 4 6
4 5 31
-4 5 30
5 5 23
-5 5 22
6 5 11
-6 5 10
7 6 59
-7 6 58
8 6 43
-8 6 42
9 6 19
-9 6 18
10 7 115
-10 7 114
11 7 83
-11 7 82
12 7 35
-12 7 34
13 8 227
-13 8 226
14 8 163
-14 8 162
15 8 160
-15 8 67
16 8 64
-16 9 451
17 9 448
-17 9 323
18 9 132
-18 9 131
19 10 900
-19 10 899
20 10 644
-20 10 267

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)237

Quantization level Code length Code
21 10 261
-21 10 260
22 11 1 797
-22 11 1 796
23 11 533
-23 11 532
24 12 3 605
-24 12 3 604
25 12 2 582
-25 12 2 581
26 13 7 215
-26 13 7 214
27 13 5 167
-27 13 5 166
28 13 5 160
-28 14 14 427
29 14 10 323
-29 14 10 322
30 15 28 853
-30 15 28 852

Table E65

Quantization level Code length Code
0 3 4
1 3 0
-1 4 15
2 4 7
-2 4 6
3 5 29
-3 5 28
4 5 23
-4 5 22
5 5 10
-5 5 9
6 5 6
-6 5 5
7 6 54
-7 6 53
8 6 48
-8 6 43
9 6 40
-9 6 23
10 6 16
-10 6 15
11 6 9
-11 6 8
12 7 105
-12 7 104
13 7 100
-13 7 99
14 7 84
-14 7 83
15 7 45
-15 7 44
16 7 29
-16 7 28
17 8 221
-17 8 220
18 8 206
-18 8 205
19 8 202
-19 8 197

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)238

Quantization level Code length Code
20 8 171
-20 8 170
21 8 164
-21 8 71
22 8 69
-22 8 68
23 9 446
-23 9 445
24 9 415
-24 9 414
25 9 408
-25 9 407
26 9 393
-26 9 392
27 9 331
-27 9 330
28 9 141
-28 9 140
29 10 895
-29 10 894
30 10 889
-30 10 888
31 10 819
-31 10 818
32 10 813
-32 10 812

Table F65

Quantization level Code length Code
0 3 6
1 3 3
-1 3 2
2 4 15
-2 4 14
3 4 9
-3 4 8
4 4 1
-4 4 0
5 5 21
-5 5 20
6 5 5
-6 5 4
7 6 45
-7 6 44
8 6 13
-8 6 12
9 7 93
-9 7 92
10 7 29
-10 7 28
11 8 189
-11 8 188
12 8 61
-12 8 60
13 9 381
-13 9 380
14 9 125
-14 9 124
15 10 765
-15 10 764
16 10 252
-16 11 1 535

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)239

Quantization level Code length Code
17 11 1 532
-17 11 511
18 11 506
-18 12 3 069
19 12 3 067
-19 12 3 066
20 12 1 015
-20 12 1 014
21 13 6 136
-21 13 2 043
22 13 2 035
-22 13 2 034
23 14 12 275
-23 14 12 274
24 14 4 085
-24 14 4 084
25 14 4 083
-25 14 4 082
26 14 4 081
-26 14 4 080
27 14 4 079
-27 14 4 078
28 14 4 077
-28 14 4 076
29 14 4 075
-29 14 4 074
30 14 4 073
-30 14 4 072
31 14 4 067
-31 14 4 066
32 14 4 065
-32 14 4 064

Table G65

Quantization level Code length Code
0 4 14
1 4 11
-1 4 10
2 4 8
-2 4 6
3 4 4
-3 4 3
4 4 0
-4 5 31
5 5 26
-5 5 25
6 5 18
-6 5 15
7 5 10
-7 5 5
8 5 2
-8 6 61
9 6 54
-9 6 49
10 6 38
-10 6 29
11 6 22
-11 6 9
12 6 6
-12 7 121
13 7 110
-13 7 97

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)240

Quantization level Code length Code
14 7 78
-14 7 57
15 7 46
-15 7 17
16 7 14
-16 8 241
17 8 223
-17 8 222
18 8 159
-18 8 158
19 8 95
-19 8 94
20 8 31
-20 8 30
21 9 480
-21 9 387
22 9 384
-22 9 227
23 9 225
-23 9 224
24 9 65
-24 9 64
25 10 962
-25 10 773
26 10 771
-26 10 770
27 10 452
-27 10 135
28 10 133
-28 10 132
29 11 1 927
-29 11 1 926
30 11 1 545
-30 11 1 544
31 11 907
-31 11 906
32 11 269
-32 11 268

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)241

D.5.12 129 Levels

Table SA129

Quantization
level

Code
length

Code Quantization
level

Code
length

Code Quantization
level

Code
length

Code

0 2 1 23 13 1 347 -45 14 15 062
1 3 6 -23 13 1 346 46 14 15 061
-1 3 5 24 13 1 345 -46 14 15 060
2 3 0 -24 13 1 344 47 14 15 059
-2 4 15 25 14 15 103 -47 14 15 058
3 4 8 -25 14 15 102 48 14 15 057
-3 4 3 26 14 15 101 -48 14 15 056
4 5 28 -26 14 15 100 49 14 15 055
-4 5 19 27 14 15 099 -49 14 15 054
5 5 4 -27 14 15 098 50 14 15 053
-5 6 59 28 14 15 097 -50 14 15 052
6 6 36 -28 14 15 096 51 14 15 051
-6 6 11 29 14 15 095 -51 14 15 050
7 7 75 -29 14 15 094 52 14 15 049
-7 7 74 30 14 15 093 -52 14 15 048
8 8 233 -30 14 15 092 53 14 15 047
-8 8 232 31 14 15 091 -53 14 15 046
9 8 41 -31 14 15 090 54 14 15 045
-9 8 40 32 14 15 089 -54 14 15 044
10 9 87 -32 14 15 088 55 14 15 043
-10 9 86 33 14 15 087 -55 14 15 042
11 10 937 -33 14 15 086 56 14 15 041
-11 10 936 34 14 15 085 -56 14 15 040
12 11 1 877 -34 14 15 084 57 14 15 039
-12 11 1 876 35 14 15 083 -57 14 15 038
13 11 341 -35 14 15 082 58 14 15 037
-13 11 340 36 14 15 081 -58 14 15 036
14 12 686 -36 14 15 080 59 14 15 035
-14 12 685 37 14 15 079 -59 14 15 034
15 13 1 375 -37 14 15 078 60 14 15 033
-15 13 1 374 38 14 15 077 -60 14 15 032
16 13 1 369 -38 14 15 076 61 14 15 031
-16 13 1 368 39 14 15 075 -61 14 15 030
17 13 1 359 -39 14 15 074 62 14 15 029
-17 13 1 358 40 14 15 073 -62 14 15 028
18 13 1 357 -40 14 15 072 63 14 15 027
-18 13 1 356 41 14 15 071 -63 14 15 026
19 13 1 355 -41 14 15 070 64 14 15 025
-19 13 1 354 42 14 15 069 -64 14 15 024
20 13 1 353 -42 14 15 068
-20 13 1 352 43 14 15 067
21 13 1 351 -43 14 15 066
-21 13 1 350 44 14 15 065
22 13 1 349 -44 14 15 064
-22 13 1 348 45 14 15 063

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)242

Table SB129

Quantization
level

Code
length

Code Quantization
level

Code
length

Code Quantization
level

Code
length

Code

0 3 3 23 15 4 019 -45 15 3 974
1 3 2 -23 15 4 018 46 15 3 973
-1 3 1 24 15 4 017 -46 15 3 972
2 4 15 -24 15 4 016 47 15 3 971
-2 4 14 25 15 4 015 -47 15 3 970
3 4 12 -25 15 4 014 48 15 3 969
-3 4 11 26 15 4 013 -48 15 3 968
4 4 10 -26 15 4 012 49 15 3 967
-4 4 9 27 15 4 011 -49 15 3 966
5 4 0 -27 15 4 010 50 15 3 965
-5 5 27 28 15 4 009 -50 15 3 964
6 5 17 -28 15 4 008 51 15 3 963
-6 5 16 29 15 4 007 -51 15 3 962
7 6 53 -29 15 4 006 52 15 3 961
-7 6 52 30 15 4 005 -52 15 3 960
8 6 5 -30 15 4 004 53 15 3 959
-8 6 4 31 15 4 003 -53 15 3 958
9 7 13 -31 15 4 002 54 15 3 957
-9 7 12 32 15 4 001 -54 15 3 956
10 8 29 -32 15 4 000 55 15 3 955
-10 8 28 33 15 3 999 -55 15 3 954
11 9 60 -33 15 3 998 56 15 3 953
-11 10 127 34 15 3 997 -56 15 3 952
12 11 253 -34 15 3 996 57 15 3 951
-12 11 252 35 15 3 995 -57 15 3 950
13 12 491 -35 15 3 994 58 15 3 949
-13 12 490 36 15 3 993 -58 15 3 948
14 13 979 -36 15 3 992 59 15 3 947
-14 13 978 37 15 3 991 -59 15 3 946
15 14 1 955 -37 15 3 990 60 15 3 945
-15 14 1 954 38 15 3 989 -60 15 3 944
16 14 1 953 -38 15 3 988 61 15 3 943
-16 14 1 952 39 15 3 987 -61 15 3 942
17 15 4 031 -39 15 3 986 62 15 3 941
-17 15 4 030 40 15 3 985 -62 15 3 940
18 15 4 029 -40 15 3 984 63 15 3 939
-18 15 4 028 41 15 3 983 -63 15 3 938
19 15 4 027 -41 15 3 982 64 15 3 937
-19 15 4 026 42 15 3 981 -64 15 3 936
20 15 4 025 -42 15 3 980
-20 15 4 024 43 15 3 979
21 15 4 023 -43 15 3 978
-21 15 4 022 44 15 3 977
22 15 4 021 -44 15 3 976
-22 15 4 020 45 15 3 975

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)243

Table SC129

Quantization
level

Code
length

Code Quantization
level

Code
length

Code Quantization
level

Code
length

Code

0 3 4 23 11 540 -45 15 20 982
1 3 1 -23 11 539 46 15 20 981
-1 3 0 24 12 3 612 -46 15 20 980
2 4 13 -24 12 3 611 47 15 20 979
-2 4 12 25 12 2 613 -47 15 20 978
3 4 7 -25 12 2 612 48 15 20 977
-3 4 6 26 12 1 077 -48 15 20 976
4 5 31 -26 12 1 076 49 15 20 975
-4 5 30 27 13 7 226 -49 15 20 974
5 5 23 -27 13 7 221 50 15 20 973
-5 5 22 28 13 2 167 -50 15 20 972
6 5 11 -28 13 2 166 51 15 20 971
-6 5 10 29 13 2 164 -51 15 20 970
7 6 59 -29 14 14 455 52 15 20 969
-7 6 58 30 14 14 441 -52 15 20 968
8 6 43 -30 14 14 440 53 15 20 967
-8 6 42 31 14 4 331 -53 15 20 966
9 6 19 -31 14 4 330 54 15 20 965
-9 6 18 32 15 28 909 -54 15 20 964
10 7 115 -32 15 28 908 55 15 20 963
-10 7 114 33 15 28 879 -55 15 20 962
11 7 83 -33 15 28 878 56 15 20 961
-11 7 82 34 15 28 877 -56 15 20 960
12 7 35 -34 15 28 876 57 15 20 959
-12 7 34 35 15 28 875 -57 15 20 958
13 8 227 -35 15 28 874 58 15 20 957
-13 8 226 36 15 28 873 -58 15 20 956
14 8 162 -36 15 28 872 59 15 20 955
-14 8 161 37 15 28 871 -59 15 20 954
15 8 66 -37 15 28 870 60 15 20 953
-15 8 65 38 15 28 869 -60 15 20 952
16 9 450 -38 15 28 868 61 15 20 951
-16 9 449 39 15 28 867 -61 15 20 950
17 9 321 -39 15 28 866 62 15 20 949
-17 9 320 40 15 28 865 -62 15 20 948
18 9 129 -40 15 28 864 63 15 20 947
-18 9 128 41 15 20 991 -63 15 20 946
19 10 897 -41 15 20 990 64 15 20 945
-19 10 896 42 15 20 989 -64 15 20 944
20 10 652 -42 15 20 988
-20 10 271 43 15 20 987
21 10 268 -43 15 20 986
-21 11 1 807 44 15 20 985
22 11 1 308 -44 15 20 984
-22 11 1 307 45 15 20 983

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)244

Table SD129

Quantization
level

Code
length

Code Quantization
level

Code
length

Code Quantization
level

Code
length

Code

0 2 0 23 15 28 599 -45 15 28 554
1 3 5 -23 15 28 598 46 15 28 553
-1 3 4 24 15 28 597 -46 15 28 552
2 4 15 -24 15 28 596 47 15 28 551
-2 4 14 25 15 28 595 -47 15 28 550
3 4 7 -25 15 28 594 48 15 28 549
-3 4 6 26 15 28 593 -48 15 28 548
4 5 26 -26 15 28 592 49 15 28 547
-4 5 25 27 15 28 591 -49 15 28 546
5 5 10 -27 15 28 590 50 15 28 545
-5 5 9 28 15 28 589 -50 15 28 544
6 6 54 -28 15 28 588 51 15 28 543
-6 6 49 29 15 28 587 -51 15 28 542
7 6 22 -29 15 28 586 52 15 28 541
-7 6 17 30 15 28 585 -52 15 28 540
8 7 110 -30 15 28 584 53 15 28 539
-8 7 97 31 15 28 583 -53 15 28 538
9 7 46 -31 15 28 582 54 15 28 537
-9 7 33 32 15 28 581 -54 15 28 536
10 8 193 -32 15 28 580 55 15 28 535
-10 8 192 33 15 28 579 -55 15 28 534
11 8 65 -33 15 28 578 56 15 28 533
-11 8 64 34 15 28 577 -56 15 28 532
12 9 444 -34 15 28 576 57 15 28 531
-12 9 191 35 15 28 575 -57 15 28 530
13 9 188 -35 15 28 574 58 15 28 529
-13 10 895 36 15 28 573 -58 15 28 528
14 10 890 -36 15 28 572 59 15 28 527
-14 10 381 37 15 28 571 -59 15 28 526
15 10 378 -37 15 28 570 60 15 28 525
-15 11 1 789 38 15 28 569 -60 15 28 524
16 11 761 -38 15 28 568 61 15 28 523
-16 11 760 39 15 28 567 -61 15 28 522
17 12 3 577 -39 15 28 566 62 15 28 521
-17 12 3 576 40 15 28 565 -62 15 28 520
18 12 1 519 -40 15 28 564 63 15 28 519
-18 12 1 518 41 15 28 563 -63 15 28 518
19 12 1 516 -41 15 28 562 64 15 28 517
-19 13 7 151 42 15 28 561 -64 15 28 516
20 13 7 128 -42 15 28 560
-20 13 3 035 43 15 28 559
21 14 14 301 -43 15 28 558
-21 14 14 300 44 15 28 557
22 14 6 069 -44 15 28 556
-22 14 6 068 45 15 28 555

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)245

Table SE129

Quantization
level

Code
length

Code Quantization
level

Code
length

Code Quantization
level

Code
length

Code

0 4 14 23 9 189 -45 15 28 662
1 4 11 -23 9 188 46 15 28 585
-1 4 10 24 9 61 -46 15 28 584
2 4 7 -24 9 60 47 15 12 267
-2 4 6 25 10 892 -47 15 12 266
3 4 3 -25 10 639 48 15 4 073
-3 4 2 26 10 637 -48 15 4 072
4 5 31 -26 10 636 49 16 57 315
-4 5 30 27 10 381 -49 16 57 314
5 5 25 -27 10 380 50 16 57 313
-5 5 24 28 10 125 -50 16 57 312
6 5 17 -28 10 124 51 16 57 311
-6 5 16 29 11 1 788 -51 16 57 310
7 5 9 -29 11 1 787 52 16 57 309
-7 5 8 30 11 1 276 -52 16 57 308
8 5 1 -30 11 767 53 16 57 307
-8 5 0 31 11 764 -53 16 57 306
9 6 53 -31 11 255 54 16 57 305
-9 6 52 32 11 252 -54 16 57 304
10 6 37 -32 12 3 583 55 16 57 303
-10 6 36 33 12 3 579 -55 16 57 302
11 6 21 -33 12 3 578 56 16 57 301
-11 6 20 34 12 2 555 -56 16 57 300
12 6 5 -34 12 2 554 57 16 57 299
-12 6 4 35 12 1 531 -57 16 57 298
13 7 109 -35 12 1 530 58 16 57 297
-13 7 108 36 12 507 -58 16 57 296
14 7 77 -36 12 506 59 16 57 295
-14 7 76 37 13 7 160 -59 16 57 294
15 7 45 -37 13 7 147 60 16 57 293
-15 7 44 38 13 7 144 -60 16 57 292
16 7 13 -38 13 3 067 61 16 57 291
-16 7 12 39 13 3 065 -61 16 57 290
17 8 221 -39 13 3 064 62 16 57 289
-17 8 220 40 13 1 017 -62 16 57 288
18 8 157 -40 13 1 016 63 16 57 175
-18 8 156 41 14 14 330 -63 16 57 174
19 8 93 -41 14 14 329 64 16 57 173
-19 8 92 42 14 14 291 -64 16 57 172
20 8 29 -42 14 14 290
-20 8 28 43 14 6 132
21 9 445 -43 14 2 039
-21 9 444 44 14 2 038
22 9 317 -44 14 2 037
-22 9 316 45 15 28 663

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)246

Table A129

Quantization
level

Code
length

Code Quantization
level

Code
length

Code Quantization
level

Code
length

Code

0 4 8 23 8 231 -45 9 36
1 4 10 -23 8 230 46 10 950
-1 4 9 24 8 223 -46 10 945
2 4 0 -24 8 222 47 10 919
-2 5 31 25 8 211 -47 10 918
3 5 24 -25 8 210 48 10 912
-3 5 23 26 8 203 -48 10 887
4 5 12 -26 8 202 49 10 881
-4 5 11 27 8 123 -49 10 880
5 5 5 -27 8 122 50 10 818
-5 5 4 28 8 116 -50 10 817
6 6 60 -28 8 107 51 10 499
-6 6 58 29 8 84 -51 10 498
7 6 54 -29 8 83 52 10 469
-7 6 53 30 8 68 -52 10 468
8 6 45 -30 8 67 53 10 343
-8 6 44 31 8 60 -53 10 342
9 6 28 -31 8 51 54 10 329
-9 6 27 32 8 49 -54 10 328
10 6 19 -32 8 48 55 10 267
-10 6 18 33 8 17 -55 10 266
11 6 14 -33 8 16 56 10 245
-11 6 13 34 9 474 -56 10 244
12 6 6 -34 9 473 57 10 79
-12 6 5 35 9 458 -57 10 78
13 7 122 -35 9 457 58 10 77
-13 7 119 36 9 442 -58 10 76
14 7 113 -36 9 441 59 11 1 903
-14 7 112 37 9 411 -59 11 1 902
15 7 104 -37 9 410 60 11 1 889
-15 7 103 38 9 251 -60 11 1 888
16 7 100 -38 9 250 61 11 1 827
-16 7 63 39 9 248 -61 11 1 826
17 7 60 -39 9 235 62 11 1 773
-17 7 59 40 9 213 -62 11 1 772
18 7 52 -40 9 212 63 11 1 639
-18 7 43 41 9 170 -63 11 1 638
19 7 40 -41 9 165 64 11 1 633
-19 7 35 42 9 139 -64 11 1 632
20 7 32 -42 9 138
-20 7 31 43 9 132
21 7 15 -43 9 123
-21 7 14 44 9 101
22 8 247 -44 9 100
-22 8 246 45 9 37

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)247

Table B129

Quantization
level

Code
length

Code Quantization
level

Code
length

Code Quantization
level

Code
length

Code

0 5 10 23 7 89 -45 9 390
1 5 7 -23 7 88 46 9 388
-1 5 6 24 7 81 -46 9 335
2 5 4 -24 7 80 47 9 329
-2 5 3 25 7 74 -47 9 328
3 5 0 -25 7 73 48 9 269
-3 6 63 26 7 66 -48 9 268
4 6 60 -26 7 61 49 9 215
-4 6 59 27 7 59 -49 9 214
5 6 57 -27 7 58 50 9 184
-5 6 56 28 7 52 -50 9 139
6 6 53 -28 7 47 51 9 29
-6 6 52 29 7 37 -51 9 28
7 6 50 -29 7 36 52 10 934
-7 6 49 30 7 21 -52 10 929
8 6 46 -30 7 20 53 10 779
-8 6 45 31 7 6 -53 10 778
9 6 43 -31 7 5 54 10 668
-9 6 42 32 8 247 -54 10 583
10 6 39 -32 8 246 55 10 582
-10 6 38 33 8 223 -55 10 581
11 6 35 -33 8 222 56 10 371
-11 6 34 34 8 217 -56 10 370
12 6 32 -34 8 216 57 10 276
-12 6 31 35 8 189 -57 11 1 871
13 6 28 -35 8 188 58 11 1 857
-13 6 27 36 8 166 -58 11 1 856
14 6 25 -36 8 165 59 11 1 338
-14 6 24 37 8 151 -59 11 1 161
15 6 22 -37 8 150 60 11 1 160
-15 6 19 38 8 144 -60 11 555
16 6 16 -38 8 135 61 12 3 741
-16 6 11 39 8 121 -61 12 3 740
17 6 5 -39 8 120 62 12 2 678
-17 6 4 40 8 106 -62 12 1 109
18 7 125 -40 8 93 63 12 1 108
-18 7 124 41 8 71 -63 13 5 359
19 7 122 -41 8 70 64 14 10 717
-19 7 117 42 8 68 -64 14 10 716
20 7 110 -42 8 15
-20 7 109 43 8 9
21 7 103 -43 8 8
-21 7 102 44 9 466
22 7 96 -44 9 465
-22 7 95 45 9 391

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)248

Table C129

Quantization
level

Code
length

Code Quantization
level

Code
length

Code Quantization
level

Code
length

Code

0 6 58 23 7 113 -45 8 100
1 6 55 -23 7 112 46 8 66
-1 6 54 24 7 106 -46 8 65
2 6 52 -24 7 101 47 8 43
-2 6 51 25 7 95 -47 8 42
3 6 49 -25 7 94 48 8 17
-3 6 48 26 7 88 -48 8 16
4 6 46 -26 7 83 49 8 2
-4 6 45 27 7 77 -49 9 501
5 6 43 -27 7 76 50 9 479
-5 6 42 28 7 70 -50 9 478
6 6 40 -28 7 65 51 9 456
-6 6 39 29 7 64 -51 9 403
7 6 37 -29 7 63 52 9 357
-7 6 36 30 7 56 -52 9 356
8 6 34 -30 7 51 53 9 251
-8 6 33 31 7 45 -53 9 250
9 6 30 -31 7 44 54 9 228
-9 6 29 32 7 39 -54 9 135
10 6 27 -32 7 38 55 9 129
-10 6 26 33 7 31 -55 9 128
11 6 24 -33 7 30 56 9 6
-11 6 23 34 7 20 -56 10 1 001
12 6 21 -34 7 19 57 10 1 000
-12 6 20 35 7 18 -57 10 915
13 6 18 -35 7 9 58 10 805
-13 6 17 36 7 3 -58 10 804
14 6 14 -36 7 2 59 10 458
-14 6 13 37 7 0 -59 10 269
15 6 12 -37 8 251 60 10 268
-15 6 11 38 8 245 -60 10 15
16 6 8 -38 8 244 61 11 1 829
-16 6 7 39 8 238 -61 11 1 828
17 6 6 -39 8 229 62 11 918
-17 6 5 40 8 215 -62 11 29
18 6 3 -40 8 214 63 11 28
-18 6 2 41 8 200 -63 12 1 839
19 7 127 -41 8 179 64 13 3 677
-19 7 126 42 8 165 -64 13 3 676
20 7 124 -42 8 164
-20 7 123 43 8 143
21 7 121 -43 8 142
-21 7 120 44 8 124
22 7 118 -44 8 115
-22 7 115 45 8 101

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)249

Table D129

Quantization
level

Code
length

Code Quantization
level

Code
length

Code Quantization
level

Code
length

Code

0 4 9 23 8 116 -45 12 851
1 4 6 -23 8 75 46 12 849
-1 4 5 24 8 52 -46 12 848
2 4 2 -24 8 11 47 13 7 346
-2 4 1 25 9 501 -47 13 7 345
3 5 30 -25 9 500 48 13 6 322
-3 5 29 26 9 437 -48 13 5 309
4 5 26 -26 9 436 49 13 3 773
-4 5 25 27 9 373 -49 13 3 772
5 5 22 -27 9 372 50 13 3 762
-5 5 21 28 9 277 -50 13 1 701
6 5 16 -28 9 276 51 14 14 695
-6 5 15 29 9 149 -51 14 14 694
7 5 8 -29 9 148 52 14 14 688
-7 5 7 30 9 21 -52 14 12 647
8 5 0 -30 9 20 53 14 10 617
-8 6 63 31 10 917 -53 14 10 616
9 6 56 -31 10 916 54 14 10 596
-9 6 55 32 10 789 -54 14 7 527
10 6 48 -32 10 788 55 14 3 401
-10 6 47 33 10 661 -55 14 3 400
11 6 40 -33 10 660 56 15 29 378
-11 6 35 34 10 469 -56 15 25 293
12 6 28 -34 10 468 57 15 21 195
-12 6 19 35 10 214 -57 15 21 194
13 6 12 -35 10 213 58 15 15 053
-13 6 3 36 11 1 838 -58 15 15 052
14 7 124 -36 11 1 837 59 16 58 759
-14 7 115 37 11 1 582 -59 16 58 758
15 7 108 37 11 1 581 60 16 50 585
-15 7 99 38 11 1 326 -60 16 50 584
16 7 92 -38 11 1 325 61 16 42 399
-16 7 83 39 11 942 -61 16 42 398
17 7 68 -39 11 941 62 16 42 397
-17 7 59 40 11 431 -62 16 42 396
18 7 36 -40 11 430 63 16 42 395
-18 7 27 41 12 3 679 -63 16 42 394
19 7 4 -41 12 3 678 64 16 42 393
-19 8 251 42 12 3 167 -64 16 42 392
20 8 228 -42 12 3 166
-20 8 219 43 12 3 160
21 8 196 -43 12 2 655
-21 8 187 44 12 2 648
22 8 164 -44 12 1 887
-22 8 139 45 12 1 880

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)250

Table E129

Quantization
level

Code
length

Code Quantization
level

Code
length

Code Quantization
level

Code
length

Code

0 5 12 23 7 87 -45 11 1 059
1 5 11 -23 7 86 46 11 877
-1 5 10 24 7 79 -46 11 876
2 5 9 -24 7 78 47 12 3 197
-2 5 8 25 7 68 -47 12 3 196
3 5 7 -25 7 67 48 12 2 589
-3 5 6 26 7 60 -48 12 2 588
4 5 4 -26 7 55 49 12 2 117
-4 5 3 27 7 21 -49 12 2 116
5 5 2 -27 7 20 50 13 7 398
-5 5 1 28 8 230 -50 13 7 397
6 5 0 -28 8 229 51 13 6 374
-6 6 63 29 8 198 -51 13 6 373
7 6 61 -29 8 193 52 13 5 158
-7 6 60 30 8 163 -52 13 5 157
8 6 59 -30 8 162 53 14 14 799
-8 6 58 31 8 139 -53 14 14 798
9 6 56 -31 8 138 54 14 12 751
-9 6 55 32 8 123 -54 14 12 750
10 6 53 -32 8 122 55 14 10 318
-10 6 52 33 8 108 -55 14 10 313
11 6 51 -33 9 463 56 15 29 587
-11 6 50 34 9 457 -56 15 29 586
12 6 47 -34 9 456 57 15 29 584
-12 6 46 35 9 385 -57 15 25 491
13 6 45 -35 9 384 58 15 20 625
-13 6 44 36 9 321 -58 15 20 624
14 6 42 -36 9 320 59 16 59 171
-14 6 41 37 9 266 -59 16 59 170
15 6 38 -37 9 265 60 16 50 980
-15 6 37 38 9 218 -60 16 41 277
16 6 36 -38 10 925 61 16 50 981
-16 6 35 39 10 798 -61 16 41 278
17 6 32 -39 10 797 62 16 50 978
-17 6 31 40 10 646 -62 16 41 279
18 6 29 -40 10 645 63 16 50 979
-18 6 28 41 10 535 -63 16 50 976
19 6 26 -41 10 534 64 16 50 977
-19 6 11 42 10 528 -64 16 41 276
20 7 125 -42 10 439
-20 7 124 43 11 1 848
21 7 109 -43 11 1 599
-21 7 108 44 11 1 592
22 7 98 -44 11 1 295
-22 7 97 45 11 1 288

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)251

Table F129

Quantization
level

Code
length

Code Quantization
level

Code
length

Code Quantization
level

Code
length

Code

0 6 56 23 7 125 -45 9 473
1 6 55 -23 7 124 46 9 343
-1 6 54 24 7 123 -46 9 342
2 6 52 -24 7 122 47 9 340
-2 6 51 25 7 120 -47 9 223
3 6 50 -25 7 119 48 9 192
-3 6 49 26 7 116 -48 9 135
4 6 48 -26 7 115 49 9 129
-4 6 47 27 7 114 -49 9 128
5 6 46 -27 7 107 50 9 34
-5 6 45 28 7 84 -50 10 1 021
6 6 44 -28 7 75 51 10 951
-6 6 43 29 7 65 -51 10 950
7 6 41 -29 7 64 52 10 944
-7 6 40 30 7 54 -52 10 683
8 6 39 -30 7 49 53 10 445
-8 6 38 31 7 39 -53 10 444
9 6 36 -31 7 38 54 10 269
-9 6 35 32 7 27 -54 10 268
10 6 34 -32 7 26 55 10 71
-10 6 33 33 7 20 -55 10 70
11 6 31 -33 7 11 56 11 2 040
-11 6 30 34 7 10 -56 11 1 891
12 6 29 -34 7 9 57 11 1 364
-12 6 28 35 8 254 -57 11 775
13 6 26 -35 8 253 58 11 774
-13 6 25 36 8 243 -58 11 773
14 6 23 -36 8 242 59 12 4 083
-14 6 22 37 8 235 -59 12 4 082
15 6 21 -37 8 234 60 12 3 780
-15 6 20 38 8 213 -60 12 2 731
16 6 18 -38 8 212 61 12 1 545
-16 6 17 39 8 149 -61 12 1 544
17 6 15 -39 8 148 62 13 7 562
-17 6 14 40 8 110 -62 13 5 461
18 6 12 -40 8 97 63 13 5 460
-18 6 11 41 8 66 -63 14 15 127
19 6 9 -41 8 65 64 15 30 253
-19 6 8 42 8 43 -64 15 30 252
20 6 7 -42 8 42
-20 6 6 43 8 16
21 6 3 -43 9 511
-21 6 2 44 9 505
22 6 1 -44 9 504
-22 6 0 45 9 474

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)252

Table G129

Quantization
level

Code
length

Code Quantization
level

Code
length

Code Quantization
level

Code
length

Code

0 4 0 23 7 11 -45 10 328
1 5 29 -23 7 10 46 10 201
-1 5 28 24 7 8 -46 10 200
2 5 25 -24 8 243 47 10 198
-2 5 24 25 8 240 -47 10 73
3 5 21 -25 8 211 48 11 1 942
-3 5 20 26 8 208 -48 11 1 929
4 5 17 -26 8 179 49 11 1 675
-4 5 16 27 8 176 -49 11 1 674
5 5 13 -27 8 147 50 11 1 672
-5 5 12 28 8 144 -50 11 1 419
6 5 9 -28 8 115 51 11 1 165
-6 5 8 29 8 112 -51 11 1 164
7 5 5 -29 8 83 52 11 1 162
-7 5 4 30 8 80 -52 11 909
8 6 63 -30 8 51 53 11 655
-8 6 62 31 8 48 -53 11 654
9 6 55 -31 8 19 54 11 652
-9 6 54 32 9 484 -54 11 399
10 6 47 -32 9 483 55 11 145
-10 6 46 33 9 421 -55 11 144
11 6 39 -33 9 420 56 12 3 886
-11 6 38 34 9 357 -56 12 3 857
12 6 31 -34 9 356 57 12 3 347
-12 6 30 35 9 293 -57 12 3 346
13 6 23 -35 9 292 58 12 2 837
-13 6 22 36 9 229 -58 12 2 836
14 6 15 -36 9 228 59 12 2 327
-14 6 14 37 9 226 -59 12 2 326
15 6 7 -37 9 165 60 12 1 817
-15 6 6 38 9 162 -60 12 1 816
16 7 123 -38 9 101 61 12 1 307
-16 7 122 39 9 98 -61 12 1 306
17 7 107 -39 9 37 62 12 797
-17 7 106 40 10 970 -62 12 796
18 7 91 -40 10 965 63 13 7 775
-18 7 90 41 10 839 -63 13 7 774
19 7 75 -41 10 838 64 13 7 713
-19 7 74 42 10 711 -64 13 7 712
20 7 59 -42 10 710
-20 7 58 43 10 708
21 7 43 -43 10 583
-21 7 42 44 10 580
22 7 27 -44 10 455
-22 7 26 45 10 329

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)253

D.6 Block Code Books

D.6.1 3 Levels

Table V.3: 3-level 4-element 7-bit Block Code Book

Level index Code for 1st element
-1 0
0 1
1 2

Level index Code for 2nd element
-1 0
0 3
1 6

Level index Code for 3rd element
-1 0
0 9
1 18

Level index Code for 4th element
-1 0
0 27
1 54

D.6.2 5 Levels

Table V.5: 5-level 4-element 10-bit Block Code Book

Level index Code for 1st element
-2 0
-1 1
0 2
1 3
2 4

Level index Code for 2nd element
-2 0
-1 5
0 10
1 15
2 20

Level index Code for 3rd element
-2 0
-1 25
0 50
1 75
2 100

Level index Code for 4th element
-2 0
-1 125
0 250
1 375
2 500

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)254

D.6.3 7 Levels

Table V.7: 7-level 4-element 12-bit Block Code Book

Level index Code for 1st element
-3 0
-2 1
-1 2
0 3
1 4
2 5
3 6

Level index Code for 2nd element
-3 0
-2 7
-1 14
0 21
1 28
2 35
3 42

Level index Code for 3rd element
-3 0
-2 49
-1 98
0 47
1 196
2 245
3 294

Level index Code for 4th element
-3 0
-2 343
-1 686
0 1 029
1 1 372
2 1 715
3 2 058

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)255

D.6.4 9 Levels

Table V.9: 9-level 4-element 13-bit Block Code Book

Level index Code for 1st element Level index Code for 3rd element
-4 0 -4 0
-3 1 -3 81
-2 2 -2 162
-1 3 -1 243
0 4 0 324
1 5 1 405
2 6 2 486
3 7 3 567
4 8 4 648

Level index Code for 2nd element Level index Code for 4th element
-4 0 -4 0
-3 9 -3 729
-2 18 -2 1 458
-1 27 -1 2 187
0 36 0 2 916
1 45 1 3 645
2 54 2 4 374
3 63 3 5 103
4 72 4 5 832

D.6.5 13 Levels

Table V.13: 13-level 4-element 15-bit block

Level index Code for 1st element Level index Code for 3rd element
-6 0 -6 0
-5 1 -5 169
-4 2 -4 338
-3 3 -3 507
-2 4 -2 676
-1 5 -1 845
0 6 0 1 014
1 7 1 1 183
2 8 2 1 352
3 9 3 1 521
4 10 4 1 690
5 11 5 1 859
6 12 6 2 028

Level index Code for 2nd element Level index Code for 4th element
-6 0 -6 0
-5 13 -5 2 197
-4 26 -4 4 394
-3 39 -3 6 591
-2 52 -2 8 788
-1 65 -1 10 985
0 78 0 13 182
1 91 1 15 379
2 104 2 17 576
3 117 3 19 773
4 130 4 21 970
5 143 5 24 167
6 156 6 26 364

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)256

D.6.6 17 Levels

Table V.17: 17-level 4-element 17-bit Block Code Book

Level index Code for 1st element Level index Code for 3rd element
-8 0 -8 0
-7 1 -7 289
-6 2 -6 578
-5 3 -5 867
-4 4 -4 1 156
-3 5 -3 1 445
-2 6 -2 1 734
-1 7 -1 2 023
0 8 0 2 312
1 9 1 2 601
2 10 2 2 890
3 11 3 3 179
4 12 4 3 468
5 13 5 3 757
6 14 6 4 046
7 15 7 4 335
8 16 8 4 624

Level index Code for 2nd element Level index Code for 4th element
-8 0 -8 0
-7 17 -7 4 913
-6 34 -6 9 826
-5 51 -5 14 739
-4 68 -4 19 652
-3 85 -3 24 565
-2 102 -2 29 478
-1 119 -1 34 391
0 136 0 39 304
1 153 1 44 217
2 170 2 49 130
3 187 3 54 043
4 204 4 58 956
5 221 5 63 869
6 238 6 68 782
7 255 7 73 695
8 272 8 78 608

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)257

D.6.7 25 Levels

Table V.25: 25-level 4-element 19-bit Block Code Book

Level index Code for 1st element Level index Code for 3rd element
-12 0 -12 0
-11 1 -11 625
-10 2 -10 1 250
-9 3 -9 1 875
-8 4 -8 2 500
-7 5 -7 3 125
-6 6 -6 3 750
-5 7 -5 4 375
-4 8 -4 5 000
-3 9 -3 5 625
-2 10 -2 6 250
-1 11 -1 6 875
0 12 0 7 500
1 13 1 8 125
2 14 2 8 750
3 15 3 9 375
4 16 4 10 000
5 17 5 10 625
6 18 6 11 250
7 19 7 11 875
8 20 8 12 500
9 21 9 13 125

10 22 10 13 750
11 23 11 14 375
12 24 12 15 000

Level index Code for 2nd element Level index Code for 4th element
-12 0 -12 0
-11 25 -11 15 625
-10 50 -10 31 250
-9 75 -9 46 875
-8 100 -8 62 500
-7 125 -7 78 125
-6 150 -6 93 750
-5 175 -5 109 375
-4 200 -4 125 000
-3 225 -3 140 625
-2 250 -2 156 250
-1 275 -1 171 875
0 300 0 187 500
1 325 1 203 125
2 350 2 218 750
3 375 3 234 375
4 400 4 250 000
5 425 5 265 625
6 450 6 281 250
7 475 7 296 875
8 500 8 312 500
9 525 9 328 125

10 550 10 343 750
11 575 11 359 375
12 600 12 375 000

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)258

D.7 Interpolation FIR
Index FIR - 2 x

Interpolation
FIR - 4 x

Interpolation
0 3,305240000e-06 2,107630000e-06
1 -1,095500000e-07 1,094810000e-05
2 -1,133348000e-05 2,290807000e-05
3 -5,509460000e-06 2,839700000e-05
4 2,381930000e-05 1,428398000e-05
5 2,278368000e-05 -2,752976000e-05
6 -3,684078000e-05 -8,951150000e-05
7 -5,886791000e-05 -1,427962100e-04
8 4,053684000e-05 -1,435831500e-04
9 1,186829100e-04 -5,408613000e-05

10 -1,809484000e-05 1,283221800e-04
11 -2,002544900e-04 3,488978300e-04
12 -5,299183000e-05 4,982510600e-04
13 2,892986200e-04 4,505801800e-04
14 1,963655800e-04 1,306004900e-04
15 -3,546474000e-04 -4,182235900e-04
16 -4,285478200e-04 -1,004001470e-03
17 3,466888200e-04 -1,328857730e-03
18 7,476581400e-04 -1,108668630e-03
19 -2,011064500e-04 -2,332188200e-04
20 -1,121123670e-03 1,106532170e-03
21 -1,503691300e-04 2,405677920e-03
22 1,475675030e-03 2,994750860e-03
23 7,618262300e-04 2,327672210e-03
24 -1,693736650e-03 3,030619100e-04
25 -1,649267160e-03 -2,537531080e-03
26 1,620259490e-03 -5,075346680e-03
27 2,764807080e-03 -5,991244690e-03
28 -1,082837000e-03 -4,355599640e-03
29 -3,974851220e-03 -1,972305800e-04
30 -7,440893000e-05 5,237236150e-03
31 5,049238450e-03 9,746226480e-03
32 1,945910740e-03 1,096914243e-02
33 -5,668033380e-03 7,467648480e-03
34 -4,514896780e-03 -3,564674400e-04
35 5,450623580e-03 -9,986897000e-03
36 7,607854900e-03 -1,744846255e-02
37 -4,008148330e-03 -1,880371012e-02
38 -1,086365897e-02 -1,198318321e-02
39 1,015614490e-03 1,828493200e-03
40 1,372703910e-02 1,799243502e-02
41 3,704760920e-03 2,975338697e-02
42 -1,547267288e-02 3,083455376e-02
43 -1,010103151e-02 1,837555505e-02
44 1,526044402e-02 -5,042277280e-03
45 1,782309450e-02 -3,137993813e-02
46 -1,221452747e-02 -4,954963177e-02
47 -2,617896535e-02 -4,967092723e-02
48 5,509705280e-03 -2,767589502e-02
49 3,411839902e-02 1,166744903e-02
50 5,563403950e-03 5,492079630e-02
51 -4,023005813e-02 8,387579024e-02
52 -2,160109766e-02 8,227037638e-02
53 4,270342737e-02 4,309020936e-02
54 4,324966297e-02 -2,637432516e-02
55 -3,911506757e-02 -1,040880680e-01
56 -7,177370787e-02 -1,583629698e-01
57 2,557834797e-02 -1,573987603e-01
58 1,109383851e-01 -8,037899435e-02
59 6,777029020e-03 7,367454469e-02

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)259

Index FIR - 2 x
Interpolation

FIR - 4 x
Interpolation

60 -1,752302796e-01 2,826547325e-01
61 -9,289701283e-02 5,053876638e-01
62 3,630628884e-01 6,921411753e-01
63 8,234865069e-01 7,985475659e-01
64 8,234865069e-01 7,985475659e-01
65 3,630628884e-01 6,921411753e-01
66 -9,289701283e-02 5,053876638e-01
67 -1,752302796e-01 2,826547325e-01
68 6,777029020e-03 7,367454469e-02
69 1,109383851e-01 -8,037899435e-02
70 2,557834797e-02 -1,573987603e-01
71 -7,177370787e-02 -1,583629698e-01
72 -3,911506757e-02 -1,040880680e-01
73 4,324966297e-02 -2,637432516e-02
74 4,270342737e-02 4,309020936e-02
75 -2,160109766e-02 8,227037638e-02
76 -4,023005813e-02 8,387579024e-02
77 5,563403950e-03 5,492079630e-02
78 3,411839902e-02 1,166744903e-02
79 5,509705280e-03 -2,767589502e-02
80 -2,617896535e-02 -4,967092723e-02
81 -1,221452747e-02 -4,954963177e-02
82 1,782309450e-02 -3,137993813e-02
83 1,526044402e-02 -5,042277280e-03
84 -1,010103151e-02 1,837555505e-02
85 -1,547267288e-02 3,083455376e-02
86 3,704760920e-03 2,975338697e-02
87 1,372703910e-02 1,799243502e-02
88 1,015614490e-03 1,828493200e-03
89 -1,086365897e-02 -1,198318321e-02
90 -4,008148330e-03 -1,880371012e-02
91 7,607854900e-03 -1,744846255e-02
92 5,450623580e-03 -9,986897000e-03
93 -4,514896780e-03 -3,564674400e-04
94 -5,668033380e-03 7,467648480e-03
95 1,945910740e-03 1,096914243e-02
96 5,049238450e-03 9,746226480e-03
97 -7,440893000e-05 5,237236150e-03
98 -3,974851220e-03 -1,972305800e-04
99 -1,082837000e-03 -4,355599640e-03

100 2,764807080e-03 -5,991244690e-03
101 1,620259490e-03 -5,075346680e-03
102 -1,649267160e-03 -2,537531080e-03
103 -1,693736650e-03 3,030619100e-04
104 7,618262300e-04 2,327672210e-03
105 1,475675030e-03 2,994750860e-03
106 -1,503691300e-04 2,405677920e-03
107 -1,121123670e-03 1,106532170e-03
108 -2,011064500e-04 -2,332188200e-04
109 7,476581400e-04 -1,108668630e-03
110 3,466888200e-04 -1,328857730e-03
111 -4,285478200e-04 -1,004001470e-03
112 -3,546474000e-04 -4,182235900e-04
113 1,963655800e-04 1,306004900e-04
114 2,892986200e-04 4,505801800e-04
115 -5,299183000e-05 4,982510600e-04
116 -2,002544900e-04 3,488978300e-04
117 -1,809484000e-05 1,283221800e-04
118 1,186829100e-04 -5,408613000e-05
119 4,053684000e-05 -1,435831500e-04
120 -5,886791000e-05 -1,427962100e-04
121 -3,684078000e-05 -8,951150000e-05
122 2,278368000e-05 -2,752976000e-05

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)260

Index FIR - 2 x
Interpolation

FIR - 4 x
Interpolation

123 2,381930000e-05 1,428398000e-05
124 -5,509460000e-06 2,839700000e-05
125 -1,133348000e-05 2,290807000e-05
126 -1,095500000e-07 1,094810000e-05
127 3,305240000e-06 2,107630000e-06

D.8 32-Band Interpolation and LFE Interpolation FIR

Index
32-Band Interpolation FIR LFE Interpolation FIR

Perfect Reconstruction Non-Perfect Reconstruction 64 x Interpolation 128 x Interpolation
0 1,140033200e-10 -1,390191784e-07 2,658434387e-04 5,316857100e-04
1 7,138742100e-11 -1,693738625e-07 8,179365250e-05 1,635869100e-04
2 -8,358679600e-09 -2,030677564e-07 9,439323912e-05 1,887860900e-04
3 -2,529296600e-08 -2,404238444e-07 1,082170274e-04 2,164336300e-04
4 -9,130198800e-08 -2,818143514e-07 1,233371440e-04 2,466738200e-04
5 -2,771560000e-07 -3,276689142e-07 1,397485757e-04 2,794966000e-04
6 -5,746147600e-07 -3,784752209e-07 1,575958013e-04 3,151909600e-04
7 -3,712986200e-07 -4,347855338e-07 1,769922383e-04 3,539837500e-04
8 -4,468735700e-07 -4,972276315e-07 1,981738606e-04 3,963469100e-04
9 -5,697322600e-07 -5,665120852e-07 2,211847313e-04 4,423685900e-04

10 -6,300390500e-07 -6,434325428e-07 2,460231190e-04 4,920452500e-04
11 -6,677818900e-07 -7,288739425e-07 2,726115927e-04 5,452220800e-04
12 -6,770656500e-07 -8,238164355e-07 3,013863170e-04 6,027714100e-04
13 -6,601852300e-07 -9,293416952e-07 3,328395542e-04 6,656776500e-04
14 -6,193701600e-07 -1,046637067e-06 3,658991191e-04 7,317967800e-04
15 -5,586146700e-07 -1,176999604e-06 4,018281470e-04 8,036546600e-04
16 7,034745600e-07 -1,321840614e-06 4,401875485e-04 8,803732300e-04
17 8,348606100e-07 -1,482681114e-06 4,812776169e-04 9,625531400e-04
18 9,544782800e-07 -1,661159786e-06 5,252459669e-04 1,050489840e-03
19 1,052683900e-06 -1,859034001e-06 5,721592461e-04 1,144316160e-03
20 1,119829700e-06 -2,078171747e-06 6,222130032e-04 1,244423330e-03
21 1,144180200e-06 -2,320550948e-06 6,755515351e-04 1,351100280e-03
22 1,124542400e-06 -2,588257530e-06 7,324148901e-04 1,464826870e-03
23 9,822894700e-07 -2,883470643e-06 7,928516716e-04 1,585700080e-03
24 8,920065800e-07 -3,208459020e-06 8,570110658e-04 1,714018640e-03
25 1,560941800e-06 -3,565570978e-06 9,251192096e-04 1,850234690e-03
26 8,454480100e-07 -3,957220997e-06 9,974770946e-04 1,994950230e-03
27 3,167104300e-07 -4,385879038e-06 1,073930296e-03 2,147856400e-03
28 1,028149000e-07 -4,854050530e-06 1,155023579e-03 2,310042500e-03
29 4,147967800e-08 -5,364252502e-06 1,240676851e-03 2,481348810e-03
30 -6,821591800e-10 -5,918994248e-06 1,331258914e-03 2,662512240e-03
31 -1,611726200e-09 -6,520755960e-06 1,426893868e-03 2,853781920e-03
32 -2,668096400e-09 -7,171964626e-06 1,527829794e-03 3,055653300e-03
33 -3,377455500e-09 -7,874960829e-06 1,634211512e-03 3,268416510e-03
34 6,820855300e-09 -8,631964192e-06 1,746327500e-03 3,492647550e-03
35 3,715261200e-09 -9,445050637e-06 1,864377526e-03 3,728747140e-03
36 1,643020800e-08 -1,031611009e-05 1,988604199e-03 3,977200480e-03
37 1,007547900e-07 -1,124680875e-05 2,119151875e-03 4,238294900e-03
38 2,448299500e-07 -1,223855270e-05 2,256359672e-03 4,512710030e-03
39 1,306777300e-06 -1,329243969e-05 2,400433412e-03 4,800856580e-03
40 1,904890000e-06 -1,440921824e-05 2,551567042e-03 5,103122910e-03
41 2,555774300e-06 -1,558924305e-05 2,710093278e-03 5,420174920e-03
42 3,253336000e-06 -1,683242772e-05 2,876190469e-03 5,752369300e-03
43 3,953604500e-06 -1,813820381e-05 3,050152911e-03 6,100293250e-03
44 4,617880200e-06 -1,950545993e-05 3,232272575e-03 6,464532110e-03
45 5,210775600e-06 -2,093250441e-05 3,422776936e-03 6,845539900e-03
46 5,696789700e-06 -2,241701623e-05 3,621967277e-03 7,243919190e-03
47 6,046428700e-06 -2,395598858e-05 3,830091329e-03 7,660165890e-03
48 7,614387900e-06 -2,554569073e-05 4,047499038e-03 8,094980380e-03
49 7,678809700e-06 -2,718161704e-05 4,274417181e-03 8,548815730e-03

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)261

Index
32-Band Interpolation FIR LFE Interpolation FIR

Perfect Reconstruction Non-Perfect Reconstruction 64 x Interpolation 128 x Interpolation
50 7,533601500e-06 -2,885844333e-05 4,511159845e-03 9,022301060e-03
51 7,179758900e-06 -3,056998685e-05 4,758012015e-03 9,516004470e-03
52 6,629955000e-06 -3,230916263e-05 5,015311297e-03 1,003060210e-02
53 5,908209500e-06 -3,406793985e-05 5,283284001e-03 1,056654565e-02
54 5,044609200e-06 -3,583733633e-05 5,562345497e-03 1,112466771e-02
55 4,187209700e-06 -3,760734762e-05 5,852684379e-03 1,170534454e-02
56 3,139397100e-06 -3,936696885e-05 6,154712290e-03 1,230939943e-02
57 6,650809100e-07 -4,110412556e-05 6,468691397e-03 1,293735672e-02
58 3,073465500e-07 -4,280570283e-05 6,794991903e-03 1,358995494e-02
59 5,699348500e-08 -4,445751256e-05 7,133882027e-03 1,426773332e-02
60 1,510238900e-08 -4,604430433e-05 7,485736627e-03 1,497144438e-02
61 3,384827600e-08 -4,754976908e-05 7,850865833e-03 1,570170000e-02
62 -3,227406600e-08 -4,895655002e-05 8,229630999e-03 1,645922661e-02
63 -3,772031200e-08 -5,024627535e-05 8,622321300e-03 1,724460535e-02
64 8,454083600e-08 5,139957648e-05 9,029330686e-03 1,805862412e-02
65 6,479789100e-08 5,239612074e-05 9,450953454e-03 1,890186779e-02
66 1,236415900e-06 5,321469871e-05 9,887560271e-03 1,977507770e-02
67 2,480143600e-06 5,383323878e-05 1,033949479e-02 2,067894675e-02
68 3,694976800e-06 5,422891263e-05 1,080708485e-02 2,161412500e-02
69 3,742137100e-06 5,437819709e-05 1,129068248e-02 2,258131653e-02
70 3,262621300e-06 5,425697600e-05 1,179065090e-02 2,358125709e-02
71 7,476824700e-06 5,384063843e-05 1,230732165e-02 2,461459488e-02
72 9,321632700e-06 5,310418419e-05 1,284105983e-02 2,568206564e-02
73 1,121856000e-05 5,202236207e-05 1,339218579e-02 2,678431384e-02
74 1,317522400e-05 5,056979353e-05 1,396108977e-02 2,792212367e-02
75 1,505747500e-05 4,872112549e-05 1,454808749e-02 2,909611352e-02
76 1,676702500e-05 4,645117951e-05 1,515355054e-02 3,030703776e-02
77 1,819741000e-05 4,373511547e-05 1,577781141e-02 3,155555204e-02
78 1,925789500e-05 4,054862075e-05 1,642123051e-02 3,284239396e-02
79 1,987389300e-05 3,686808850e-05 1,708412915e-02 3,416819125e-02
80 -3,076839000e-05 3,267079956e-05 1,776690222e-02 3,553372994e-02
81 -3,254459900e-05 2,793515523e-05 1,846982725e-02 3,693958372e-02
82 -3,367812600e-05 2,264085742e-05 1,919330470e-02 3,838652745e-02
83 -3,411568400e-05 1,676913780e-05 1,993762329e-02 3,987516090e-02
84 -3,382472000e-05 1,030297699e-05 2,070316114e-02 4,140623659e-02
85 -3,280414400e-05 3,227306706e-06 2,149021253e-02 4,298033938e-02
86 -3,109003600e-05 -4,470633485e-06 2,229913883e-02 4,459818453e-02
87 -2,861654300e-05 -1,280130618e-05 2,313023806e-02 4,626038298e-02
88 -2,571454500e-05 -2,177240640e-05 2,398385666e-02 4,796761274e-02
89 -1,870056200e-05 -3,138873581e-05 2,486028522e-02 4,972046614e-02
90 -1,771374800e-05 -4,165195787e-05 2,575986087e-02 5,151961371e-02
91 -1,568432200e-05 -5,256036457e-05 2,668286115e-02 5,336561054e-02
92 -1,128458200e-05 -6,410864444e-05 2,762960829e-02 5,525910854e-02
93 -6,805568100e-06 -7,628766616e-05 2,860039286e-02 5,720067024e-02
94 -5,671807300e-07 -8,908427117e-05 2,959549613e-02 5,919086933e-02
95 -9,974569000e-07 -1,024810626e-04 3,061520495e-02 6,123027951e-02
96 -1,466421500e-06 -1,164562127e-04 3,165979683e-02 6,331945211e-02
97 -1,846174800e-06 -1,309833024e-04 3,272953629e-02 6,545893103e-02
98 7,763173700e-08 -1,460311323e-04 3,382468969e-02 6,764923781e-02
99 1,809597500e-06 -1,615635992e-04 3,494550660e-02 6,989086419e-02

100 4,157326000e-06 -1,775395358e-04 3,609224036e-02 7,218432426e-02
101 7,240269200e-06 -1,939126523e-04 3,726511076e-02 7,453006506e-02
102 1,073666400e-05 -2,106313768e-04 3,846437484e-02 7,692859322e-02
103 2,089583800e-05 -2,276388550e-04 3,969023004e-02 7,938029617e-02
104 2,647159500e-05 -2,448728774e-04 4,094288871e-02 8,188561350e-02
105 3,196094400e-05 -2,622658503e-04 4,222255200e-02 8,444493264e-02
106 3,698112500e-05 -2,797449124e-04 4,352942482e-02 8,705867827e-02
107 4,149260300e-05 -2,972317743e-04 4,486365616e-02 8,972713351e-02
108 4,534151200e-05 -3,146430245e-04 4,622544348e-02 9,245070815e-02
109 4,846834800e-05 -3,318900708e-04 4,761491716e-02 9,522963315e-02
110 5,081695700e-05 -3,488793736e-04 4,903224111e-02 9,806428105e-02
111 5,236303900e-05 -3,655125911e-04 5,047753453e-02 1,009548605e-01
112 3,803557300e-06 -3,816867538e-04 5,195093155e-02 1,039016470e-01

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)262

Index
32-Band Interpolation FIR LFE Interpolation FIR

Perfect Reconstruction Non-Perfect Reconstruction 64 x Interpolation 128 x Interpolation
113 7,916183300e-06 -3,972945851e-04 5,345252529e-02 1,069048345e-01
114 1,191309700e-05 -4,122247046e-04 5,498242006e-02 1,099646092e-01
115 1,561346600e-05 -4,263620067e-04 5,654069409e-02 1,130811572e-01
116 1,881671400e-05 -4,395879805e-04 5,812742189e-02 1,162546203e-01
117 2,131957100e-05 -4,517810594e-04 5,974265561e-02 1,194850579e-01
118 2,295038200e-05 -4,628172028e-04 6,138643622e-02 1,227726117e-01
119 2,354812700e-05 -4,725702747e-04 6,305878609e-02 1,261173040e-01
120 2,291622100e-05 -4,809123348e-04 6,475970894e-02 1,295191795e-01
121 2,497457200e-05 -4,877146275e-04 6,648923457e-02 1,329781860e-01
122 1,979628700e-05 -4,928477574e-04 6,824731827e-02 1,364943385e-01
123 1,390508100e-05 -4,961824161e-04 7,003392279e-02 1,400675476e-01
124 7,179248900e-06 -4,975944757e-04 7,184901088e-02 1,436977387e-01
125 -1,614022200e-07 -4,969481961e-04 7,369252294e-02 1,473847479e-01
126 -1,518084500e-05 -4,941228544e-04 7,556436211e-02 1,511284113e-01
127 -1,610369300e-05 -4,889960401e-04 7,746443897e-02 1,549285650e-01
128 1,994364800e-05 4,814492422e-04 7,939263433e-02 1,587849557e-01
129 1,774116500e-05 4,713678791e-04 8,134882897e-02 1,626973301e-01
130 4,511232400e-05 4,586426076e-04 8,333285898e-02 1,666653752e-01
131 5,311715600e-05 4,431701091e-04 8,534456789e-02 1,706887931e-01
132 6,144976200e-05 4,248536134e-04 8,738376945e-02 1,747671962e-01
133 7,052899300e-05 4,036037717e-04 8,945026249e-02 1,789001823e-01
134 7,984114900e-05 3,793396754e-04 9,154383838e-02 1,830873191e-01
135 8,597821200e-05 3,519894381e-04 9,366425127e-02 1,873281151e-01
136 9,341758200e-05 3,214911267e-04 9,581124038e-02 1,916220933e-01
137 1,002681400e-04 2,877934603e-04 9,798453748e-02 1,959686577e-01
138 1,064814700e-04 2,508567995e-04 1,001838669e-01 2,003673166e-01
139 1,119841200e-04 2,106537577e-04 1,024089083e-01 2,048173845e-01
140 1,165901700e-04 1,671699720e-04 1,046593264e-01 2,093182206e-01
141 1,202018700e-04 1,204049113e-04 1,069347933e-01 2,138691545e-01
142 1,226936800e-04 7,037253090e-05 1,092349365e-01 2,184694260e-01
143 1,237377900e-04 1,710198012e-05 1,115593687e-01 2,231182903e-01
144 1,200453700e-04 -3,936182839e-05 1,139076948e-01 2,278149277e-01
145 1,185602000e-04 -9,895755647e-05 1,162794977e-01 2,325585187e-01
146 1,152534400e-04 -1,616069785e-04 1,186743453e-01 2,373482138e-01
147 1,097435100e-04 -2,272142592e-04 1,210917681e-01 2,421830446e-01
148 1,018237000e-04 -2,956659591e-04 1,235313043e-01 2,470620573e-01
149 9,130172200e-05 -3,668301215e-04 1,259924471e-01 2,519843280e-01
150 7,793692700e-05 -4,405563814e-04 1,284746826e-01 2,569487989e-01
151 6,157321800e-05 -5,166754709e-04 1,309774816e-01 2,619544268e-01
152 4,214289700e-05 -5,949990009e-04 1,335003078e-01 2,670000792e-01
153 2,010055900e-05 -6,753197522e-04 1,360425949e-01 2,720846236e-01
154 -6,512868000e-06 -7,574109477e-04 1,386037618e-01 2,772069275e-01
155 -3,623958500e-05 -8,410271257e-04 1,411831975e-01 2,823657692e-01
156 -6,898332300e-05 -9,259034996e-04 1,437802613e-01 2,875599265e-01
157 -1,052143400e-04 -1,011756598e-03 1,463943720e-01 2,927881181e-01
158 -1,311540500e-04 -1,098284614e-03 1,490248144e-01 2,980490029e-01
159 -1,772621900e-04 -1,185167348e-03 1,516709626e-01 3,033412695e-01
160 -2,231129500e-04 -1,272067428e-03 1,543320864e-01 3,086635172e-01
161 -2,678985000e-04 -1,358630019e-03 1,570075154e-01 3,140144050e-01
162 -3,353960600e-04 -1,444484224e-03 1,596965194e-01 3,193923831e-01
163 -3,909221300e-04 -1,529243193e-03 1,623983532e-01 3,247960210e-01
164 -4,488403900e-04 -1,612505526e-03 1,651122719e-01 3,302238286e-01
165 -5,091327500e-04 -1,693855622e-03 1,678375006e-01 3,356742859e-01
166 -5,717321000e-04 -1,772865304e-03 1,705732346e-01 3,411457539e-01
167 -6,360244700e-04 -1,849094522e-03 1,733186990e-01 3,466366828e-01
168 -7,021067600e-04 -1,922092517e-03 1,760730892e-01 3,521454632e-01
169 -7,695597500e-04 -1,991399564e-03 1,788355410e-01 3,576703668e-01
170 -8,380918900e-04 -2,056547208e-03 1,816052496e-01 3,632097244e-01
171 -9,072555100e-04 -2,117061289e-03 1,843813360e-01 3,687619269e-01
172 -9,767158300e-04 -2,172462177e-03 1,871629506e-01 3,743250966e-01
173 -1,045985500e-03 -2,222266514e-03 1,899491698e-01 3,798975349e-01
174 -1,114606900e-03 -2,265989315e-03 1,927391142e-01 3,854774535e-01
175 -1,182107000e-03 -2,303145360e-03 1,955319196e-01 3,910630047e-01

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)263

Index
32-Band Interpolation FIR LFE Interpolation FIR

Perfect Reconstruction Non-Perfect Reconstruction 64 x Interpolation 128 x Interpolation
176 -1,251459700e-03 -2,333251061e-03 1,983266175e-01 3,966524303e-01
177 -1,314813200e-03 -2,355825622e-03 2,011223286e-01 4,022437930e-01
178 -1,375058300e-03 -2,370394068e-03 2,039180547e-01 4,078352153e-01
179 -1,431717500e-03 -2,376487479e-03 2,067128718e-01 4,134248793e-01
180 -1,484159500e-03 -2,373647178e-03 2,095058411e-01 4,190107882e-01
181 -1,531686400e-03 -2,361423569e-03 2,122959495e-01 4,245910645e-01
182 -1,573715600e-03 -2,339380793e-03 2,150822729e-01 4,301636219e-01
183 -1,609496400e-03 -2,307097195e-03 2,178637981e-01 4,357266724e-01
184 -1,638393400e-03 -2,264167881e-03 2,206395119e-01 4,412781000e-01
185 -1,659751400e-03 -2,210205887e-03 2,234084606e-01 4,468160272e-01
186 -1,672691700e-03 -2,144844970e-03 2,261696160e-01 4,523383081e-01
187 -1,676540900e-03 -2,067740774e-03 2,289219648e-01 4,578429461e-01
188 -1,670887400e-03 -1,978572691e-03 2,316644788e-01 4,633280039e-01
189 -1,654649800e-03 -1,877046190e-03 2,343961596e-01 4,687913656e-01
190 -1,632849400e-03 -1,762894331e-03 2,371159792e-01 4,742309451e-01
191 -1,592423900e-03 -1,635878929e-03 2,398228943e-01 4,796448052e-01
192 1,541196600e-03 1,495792647e-03 2,425158769e-01 4,850307405e-01
193 1,478566700e-03 1,342460280e-03 2,451938838e-01 4,903867543e-01
194 1,394017000e-03 1,175740734e-03 2,478559017e-01 4,957108200e-01
195 1,301623400e-03 9,955273708e-04 2,505008876e-01 5,010007620e-01
196 1,194737700e-03 8,017504588e-04 2,531278133e-01 5,062545538e-01
197 1,072608600e-03 5,943773431e-04 2,557355762e-01 5,114701390e-01
198 9,349224800e-04 3,734139318e-04 2,583232224e-01 5,166453719e-01
199 7,810380900e-04 1,389056415e-04 2,608896792e-01 5,217782855e-01
200 6,109076600e-04 -1,090620208e-04 2,634339035e-01 5,268667936e-01
201 4,241331700e-04 -3,703625989e-04 2,659549415e-01 5,319088101e-01
202 2,204804700e-04 -6,448282511e-04 2,684516609e-01 5,369022489e-01
203 -2,272228400e-07 -9,322494152e-04 2,709231377e-01 5,418450832e-01
204 -2,380696500e-04 -1,232374110e-03 2,733682692e-01 5,467353463e-01
205 -4,930996000e-04 -1,544908970e-03 2,757860720e-01 5,515710115e-01
206 -7,653038000e-04 -1,869517611e-03 2,781755328e-01 5,563499928e-01
207 -1,054538000e-03 -2,205822384e-03 2,805356979e-01 5,610702634e-01
208 -1,360519200e-03 -2,553403843e-03 2,828655839e-01 5,657299161e-01
209 -1,683383000e-03 -2,911801683e-03 2,851640880e-01 5,703269839e-01
210 -2,022614600e-03 -3,280514618e-03 2,874303460e-01 5,748594403e-01
211 -2,377899500e-03 -3,659002949e-03 2,896633744e-01 5,793255568e-01
212 -2,748797700e-03 -4,046686925e-03 2,918621898e-01 5,837231875e-01
213 -3,134797500e-03 -4,442950245e-03 2,940258980e-01 5,880505443e-01
214 -3,535329200e-03 -4,847140983e-03 2,961534858e-01 5,923057795e-01
215 -3,949734800e-03 -5,258570891e-03 2,982441187e-01 5,964869261e-01
216 -4,377291000e-03 -5,676518660e-03 3,002967536e-01 6,005923152e-01
217 -4,817122000e-03 -6,100233644e-03 3,023106754e-01 6,046201587e-01
218 -5,268542300e-03 -6,528933067e-03 3,042849004e-01 6,085684896e-01
219 -5,730478300e-03 -6,961807609e-03 3,062185347e-01 6,124358177e-01
220 -6,202005100e-03 -7,398022339e-03 3,081108034e-01 6,162202954e-01
221 -6,681936000e-03 -7,836719044e-03 3,099608123e-01 6,199202538e-01
222 -7,167914500e-03 -8,277016692e-03 3,117676973e-01 6,235341430e-01
223 -7,662045500e-03 -8,718019351e-03 3,135308027e-01 6,270602942e-01
224 -8,160839200e-03 -9,158811532e-03 3,152491748e-01 6,304970384e-01
225 -8,663190500e-03 -9,598465636e-03 3,169221282e-01 6,338429451e-01
226 -9,169050700e-03 -1,003604382e-02 3,185488880e-01 6,370964646e-01
227 -9,675131500e-03 -1,047059800e-02 3,201287389e-01 6,402561665e-01
228 -1,018101800e-02 -1,090117730e-02 3,216609657e-01 6,433205605e-01
229 -1,068536400e-02 -1,132682897e-02 3,231448531e-01 6,462883353e-01
230 -1,118674000e-02 -1,174659748e-02 3,245797157e-01 6,491580606e-01
231 -1,168377500e-02 -1,215953380e-02 3,259649575e-01 6,519285440e-01
232 -1,217496400e-02 -1,256469358e-02 3,272998929e-01 6,545983553e-01
233 -1,265891600e-02 -1,296114177e-02 3,285838962e-01 6,571664810e-01
234 -1,313420500e-02 -1,334795821e-02 3,298164308e-01 6,596315503e-01
235 -1,359941000e-02 -1,372423489e-02 3,309969604e-01 6,619924903e-01
236 -1,405313100e-02 -1,408908330e-02 3,321248591e-01 6,642482877e-01
237 -1,449398400e-02 -1,444163360e-02 3,331996202e-01 6,663978696e-01
238 -1,492061500e-02 -1,478104480e-02 3,342207968e-01 6,684402227e-01

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)264

Index
32-Band Interpolation FIR LFE Interpolation FIR

Perfect Reconstruction Non-Perfect Reconstruction 64 x Interpolation 128 x Interpolation
239 -1,533170500e-02 -1,510649733e-02 3,351879120e-01 6,703743935e-01
240 -1,572581500e-02 -1,541720331e-02 3,361004293e-01 6,721994877e-01
241 -1,610200000e-02 -1,571240649e-02 3,369580209e-01 6,739146709e-01
242 -1,645893800e-02 -1,599138230e-02 3,377602994e-01 6,755192280e-01
243 -1,679548100e-02 -1,625344716e-02 3,385068178e-01 6,770122051e-01
244 -1,711054800e-02 -1,649795473e-02 3,391972482e-01 6,783930659e-01
245 -1,740312600e-02 -1,672429405e-02 3,398312926e-01 6,796611548e-01
246 -1,767225900e-02 -1,693190821e-02 3,404086530e-01 6,808158755e-01
247 -1,791707200e-02 -1,712027565e-02 3,409290314e-01 6,818566918e-01
248 -1,813675700e-02 -1,728892699e-02 3,413922191e-01 6,827830076e-01
249 -1,833061700e-02 -1,743743755e-02 3,417979777e-01 6,835945249e-01
250 -1,849797400e-02 -1,756543480e-02 3,421461284e-01 6,842908263e-01
251 -1,863830100e-02 -1,767260395e-02 3,424364924e-01 6,848715544e-01
252 -1,875108700e-02 -1,775865816e-02 3,426689506e-01 6,853365302e-01
253 -1,883604000e-02 -1,782339066e-02 3,428434134e-01 6,856853962e-01
254 -1,889315300e-02 -1,786663756e-02 3,429597318e-01 6,859180331e-01
255 -1,892151600e-02 -1,788828894e-02 3,430179358e-01 6,860344410e-01
256 1,892151600e-02 1,788828894e-02 3,430179358e-01 6,860344410e-01
257 1,889315300e-02 1,786663756e-02 3,429597318e-01 6,859180331e-01
258 1,883604000e-02 1,782339066e-02 3,428434134e-01 6,856853962e-01
259 1,875108700e-02 1,775865816e-02 3,426689506e-01 6,853365302e-01
260 1,863830100e-02 1,767260395e-02 3,424364924e-01 6,848715544e-01
261 1,849797400e-02 1,756543480e-02 3,421461284e-01 6,842908263e-01
262 1,833061700e-02 1,743743755e-02 3,417979777e-01 6,835945249e-01
263 1,813675700e-02 1,728892699e-02 3,413922191e-01 6,827830076e-01
264 1,791707200e-02 1,712027565e-02 3,409290314e-01 6,818566918e-01
265 1,767225900e-02 1,693190821e-02 3,404086530e-01 6,808158755e-01
266 1,740312600e-02 1,672429405e-02 3,398312926e-01 6,796611548e-01
267 1,711054800e-02 1,649795473e-02 3,391972482e-01 6,783930659e-01
268 1,679548100e-02 1,625344716e-02 3,385068178e-01 6,770122051e-01
269 1,645893800e-02 1,599138230e-02 3,377602994e-01 6,755192280e-01
270 1,610200000e-02 1,571240649e-02 3,369580209e-01 6,739146709e-01
271 1,572581500e-02 1,541720331e-02 3,361004293e-01 6,721994877e-01
272 1,533170500e-02 1,510649733e-02 3,351879120e-01 6,703743935e-01
273 1,492061500e-02 1,478104480e-02 3,342207968e-01 6,684402227e-01
274 1,449398400e-02 1,444163360e-02 3,331996202e-01 6,663978696e-01
275 1,405313100e-02 1,408908330e-02 3,321248591e-01 6,642482877e-01
276 1,359941000e-02 1,372423489e-02 3,309969604e-01 6,619924903e-01
277 1,313420500e-02 1,334795821e-02 3,298164308e-01 6,596315503e-01
278 1,265891600e-02 1,296114177e-02 3,285838962e-01 6,571664810e-01
279 1,217496400e-02 1,256469358e-02 3,272998929e-01 6,545983553e-01
280 1,168377500e-02 1,215953380e-02 3,259649575e-01 6,519285440e-01
281 1,118674000e-02 1,174659748e-02 3,245797157e-01 6,491580606e-01
282 1,068536400e-02 1,132682897e-02 3,231448531e-01 6,462883353e-01
283 1,018101800e-02 1,090117730e-02 3,216609657e-01 6,433205605e-01
284 9,675131500e-03 1,047059800e-02 3,201287389e-01 6,402561665e-01
285 9,169050700e-03 1,003604382e-02 3,185488880e-01 6,370964646e-01
286 8,663190500e-03 9,598465636e-03 3,169221282e-01 6,338429451e-01
287 8,160839200e-03 9,158811532e-03 3,152491748e-01 6,304970384e-01
288 7,662045500e-03 8,718019351e-03 3,135308027e-01 6,270602942e-01
289 7,167914500e-03 8,277016692e-03 3,117676973e-01 6,235341430e-01
290 6,681936000e-03 7,836719044e-03 3,099608123e-01 6,199202538e-01
291 6,202005100e-03 7,398022339e-03 3,081108034e-01 6,162202954e-01
292 5,730478300e-03 6,961807609e-03 3,062185347e-01 6,124358177e-01
293 5,268542300e-03 6,528933067e-03 3,042849004e-01 6,085684896e-01
294 4,817122000e-03 6,100233644e-03 3,023106754e-01 6,046201587e-01
295 4,377291000e-03 5,676518660e-03 3,002967536e-01 6,005923152e-01
296 3,949734800e-03 5,258570891e-03 2,982441187e-01 5,964869261e-01
297 3,535329200e-03 4,847140983e-03 2,961534858e-01 5,923057795e-01
298 3,134797500e-03 4,442950245e-03 2,940258980e-01 5,880505443e-01
299 2,748797700e-03 4,046686925e-03 2,918621898e-01 5,837231875e-01
300 2,377899500e-03 3,659002949e-03 2,896633744e-01 5,793255568e-01
301 2,022614600e-03 3,280514618e-03 2,874303460e-01 5,748594403e-01

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)265

Index
32-Band Interpolation FIR LFE Interpolation FIR

Perfect Reconstruction Non-Perfect Reconstruction 64 x Interpolation 128 x Interpolation
302 1,683383000e-03 2,911801683e-03 2,851640880e-01 5,703269839e-01
303 1,360519200e-03 2,553403843e-03 2,828655839e-01 5,657299161e-01
304 1,054538000e-03 2,205822384e-03 2,805356979e-01 5,610702634e-01
305 7,653038000e-04 1,869517611e-03 2,781755328e-01 5,563499928e-01
306 4,930996000e-04 1,544908970e-03 2,757860720e-01 5,515710115e-01
307 2,380696500e-04 1,232374110e-03 2,733682692e-01 5,467353463e-01
308 2,272228400e-07 9,322494152e-04 2,709231377e-01 5,418450832e-01
309 -2,204804700e-04 6,448282511e-04 2,684516609e-01 5,369022489e-01
310 -4,241331700e-04 3,703625989e-04 2,659549415e-01 5,319088101e-01
311 -6,109076600e-04 1,090620208e-04 2,634339035e-01 5,268667936e-01
312 -7,810380900e-04 -1,389056415e-04 2,608896792e-01 5,217782855e-01
313 -9,349224800e-04 -3,734139318e-04 2,583232224e-01 5,166453719e-01
314 -1,072608600e-03 -5,943773431e-04 2,557355762e-01 5,114701390e-01
315 -1,194737700e-03 -8,017504588e-04 2,531278133e-01 5,062545538e-01
316 -1,301623400e-03 -9,955273708e-04 2,505008876e-01 5,010007620e-01
317 -1,394017000e-03 -1,175740734e-03 2,478559017e-01 4,957108200e-01
318 -1,478566700e-03 -1,342460280e-03 2,451938838e-01 4,903867543e-01
319 -1,541196600e-03 -1,495792647e-03 2,425158769e-01 4,850307405e-01
320 1,592423900e-03 1,635878929e-03 2,398228943e-01 4,796448052e-01
321 1,632849400e-03 1,762894331e-03 2,371159792e-01 4,742309451e-01
322 1,654649800e-03 1,877046190e-03 2,343961596e-01 4,687913656e-01
323 1,670887400e-03 1,978572691e-03 2,316644788e-01 4,633280039e-01
324 1,676540900e-03 2,067740774e-03 2,289219648e-01 4,578429461e-01
325 1,672691700e-03 2,144844970e-03 2,261696160e-01 4,523383081e-01
326 1,659751400e-03 2,210205887e-03 2,234084606e-01 4,468160272e-01
327 1,638393400e-03 2,264167881e-03 2,206395119e-01 4,412781000e-01
328 1,609496400e-03 2,307097195e-03 2,178637981e-01 4,357266724e-01
329 1,573715600e-03 2,339380793e-03 2,150822729e-01 4,301636219e-01
330 1,531686400e-03 2,361423569e-03 2,122959495e-01 4,245910645e-01
331 1,484159500e-03 2,373647178e-03 2,095058411e-01 4,190107882e-01
332 1,431717500e-03 2,376487479e-03 2,067128718e-01 4,134248793e-01
333 1,375058300e-03 2,370394068e-03 2,039180547e-01 4,078352153e-01
334 1,314813200e-03 2,355825622e-03 2,011223286e-01 4,022437930e-01
335 1,251459700e-03 2,333251061e-03 1,983266175e-01 3,966524303e-01
336 1,182107000e-03 2,303145360e-03 1,955319196e-01 3,910630047e-01
337 1,114606900e-03 2,265989315e-03 1,927391142e-01 3,854774535e-01
338 1,045985500e-03 2,222266514e-03 1,899491698e-01 3,798975349e-01
339 9,767158300e-04 2,172462177e-03 1,871629506e-01 3,743250966e-01
340 9,072555100e-04 2,117061289e-03 1,843813360e-01 3,687619269e-01
341 8,380918900e-04 2,056547208e-03 1,816052496e-01 3,632097244e-01
342 7,695597500e-04 1,991399564e-03 1,788355410e-01 3,576703668e-01
343 7,021067600e-04 1,922092517e-03 1,760730892e-01 3,521454632e-01
344 6,360244700e-04 1,849094522e-03 1,733186990e-01 3,466366828e-01
345 5,717321000e-04 1,772865304e-03 1,705732346e-01 3,411457539e-01
346 5,091327500e-04 1,693855622e-03 1,678375006e-01 3,356742859e-01
347 4,488403900e-04 1,612505526e-03 1,651122719e-01 3,302238286e-01
348 3,909221300e-04 1,529243193e-03 1,623983532e-01 3,247960210e-01
349 3,353960600e-04 1,444484224e-03 1,596965194e-01 3,193923831e-01
350 2,678985000e-04 1,358630019e-03 1,570075154e-01 3,140144050e-01
351 2,231129500e-04 1,272067428e-03 1,543320864e-01 3,086635172e-01
352 1,772621900e-04 1,185167348e-03 1,516709626e-01 3,033412695e-01
353 1,311540500e-04 1,098284614e-03 1,490248144e-01 2,980490029e-01
354 1,052143400e-04 1,011756598e-03 1,463943720e-01 2,927881181e-01
355 6,898332300e-05 9,259034996e-04 1,437802613e-01 2,875599265e-01
356 3,623958500e-05 8,410271257e-04 1,411831975e-01 2,823657692e-01
357 6,512868000e-06 7,574109477e-04 1,386037618e-01 2,772069275e-01
358 -2,010055900e-05 6,753197522e-04 1,360425949e-01 2,720846236e-01
359 -4,214289700e-05 5,949990009e-04 1,335003078e-01 2,670000792e-01
360 -6,157321800e-05 5,166754709e-04 1,309774816e-01 2,619544268e-01
361 -7,793692700e-05 4,405563814e-04 1,284746826e-01 2,569487989e-01
362 -9,130172200e-05 3,668301215e-04 1,259924471e-01 2,519843280e-01
363 -1,018237000e-04 2,956659591e-04 1,235313043e-01 2,470620573e-01
364 -1,097435100e-04 2,272142592e-04 1,210917681e-01 2,421830446e-01

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)266

Index
32-Band Interpolation FIR LFE Interpolation FIR

Perfect Reconstruction Non-Perfect Reconstruction 64 x Interpolation 128 x Interpolation
365 -1,152534400e-04 1,616069785e-04 1,186743453e-01 2,373482138e-01
366 -1,185602000e-04 9,895755647e-05 1,162794977e-01 2,325585187e-01
367 -1,200453700e-04 3,936182839e-05 1,139076948e-01 2,278149277e-01
368 -1,237377900e-04 -1,710198012e-05 1,115593687e-01 2,231182903e-01
369 -1,226936800e-04 -7,037253090e-05 1,092349365e-01 2,184694260e-01
370 -1,202018700e-04 -1,204049113e-04 1,069347933e-01 2,138691545e-01
371 -1,165901700e-04 -1,671699720e-04 1,046593264e-01 2,093182206e-01
372 -1,119841200e-04 -2,106537577e-04 1,024089083e-01 2,048173845e-01
373 -1,064814700e-04 -2,508567995e-04 1,001838669e-01 2,003673166e-01
374 -1,002681400e-04 -2,877934603e-04 9,798453748e-02 1,959686577e-01
375 -9,341758200e-05 -3,214911267e-04 9,581124038e-02 1,916220933e-01
376 -8,597821200e-05 -3,519894381e-04 9,366425127e-02 1,873281151e-01
377 -7,984114900e-05 -3,793396754e-04 9,154383838e-02 1,830873191e-01
378 -7,052899300e-05 -4,036037717e-04 8,945026249e-02 1,789001823e-01
379 -6,144976200e-05 -4,248536134e-04 8,738376945e-02 1,747671962e-01
380 -5,311715600e-05 -4,431701091e-04 8,534456789e-02 1,706887931e-01
381 -4,511232400e-05 -4,586426076e-04 8,333285898e-02 1,666653752e-01
382 -1,774116500e-05 -4,713678791e-04 8,134882897e-02 1,626973301e-01
383 -1,994364800e-05 -4,814492422e-04 7,939263433e-02 1,587849557e-01
384 1,610369300e-05 4,889960401e-04 7,746443897e-02 1,549285650e-01
385 1,518084500e-05 4,941228544e-04 7,556436211e-02 1,511284113e-01
386 1,614022200e-07 4,969481961e-04 7,369252294e-02 1,473847479e-01
387 -7,179248900e-06 4,975944757e-04 7,184901088e-02 1,436977387e-01
388 -1,390508100e-05 4,961824161e-04 7,003392279e-02 1,400675476e-01
389 -1,979628700e-05 4,928477574e-04 6,824731827e-02 1,364943385e-01
390 -2,497457200e-05 4,877146275e-04 6,648923457e-02 1,329781860e-01
391 -2,291622100e-05 4,809123348e-04 6,475970894e-02 1,295191795e-01
392 -2,354812700e-05 4,725702747e-04 6,305878609e-02 1,261173040e-01
393 -2,295038200e-05 4,628172028e-04 6,138643622e-02 1,227726117e-01
394 -2,131957100e-05 4,517810594e-04 5,974265561e-02 1,194850579e-01
395 -1,881671400e-05 4,395879805e-04 5,812742189e-02 1,162546203e-01
396 -1,561346600e-05 4,263620067e-04 5,654069409e-02 1,130811572e-01
397 -1,191309700e-05 4,122247046e-04 5,498242006e-02 1,099646092e-01
398 -7,916183300e-06 3,972945851e-04 5,345252529e-02 1,069048345e-01
399 -3,803557300e-06 3,816867538e-04 5,195093155e-02 1,039016470e-01
400 -5,236303900e-05 3,655125911e-04 5,047753453e-02 1,009548605e-01
401 -5,081695700e-05 3,488793736e-04 4,903224111e-02 9,806428105e-02
402 -4,846834800e-05 3,318900708e-04 4,761491716e-02 9,522963315e-02
403 -4,534151200e-05 3,146430245e-04 4,622544348e-02 9,245070815e-02
404 -4,149260300e-05 2,972317743e-04 4,486365616e-02 8,972713351e-02
405 -3,698112500e-05 2,797449124e-04 4,352942482e-02 8,705867827e-02
406 -3,196094400e-05 2,622658503e-04 4,222255200e-02 8,444493264e-02
407 -2,647159500e-05 2,448728774e-04 4,094288871e-02 8,188561350e-02
408 -2,089583800e-05 2,276388550e-04 3,969023004e-02 7,938029617e-02
409 -1,073666400e-05 2,106313768e-04 3,846437484e-02 7,692859322e-02
410 -7,240269200e-06 1,939126523e-04 3,726511076e-02 7,453006506e-02
411 -4,157326000e-06 1,775395358e-04 3,609224036e-02 7,218432426e-02
412 -1,809597500e-06 1,615635992e-04 3,494550660e-02 6,989086419e-02
413 -7,763173700e-08 1,460311323e-04 3,382468969e-02 6,764923781e-02
414 1,846174800e-06 1,309833024e-04 3,272953629e-02 6,545893103e-02
415 1,466421500e-06 1,164562127e-04 3,165979683e-02 6,331945211e-02
416 9,974569000e-07 1,024810626e-04 3,061520495e-02 6,123027951e-02
417 5,671807300e-07 8,908427117e-05 2,959549613e-02 5,919086933e-02
418 6,805568100e-06 7,628766616e-05 2,860039286e-02 5,720067024e-02
419 1,128458200e-05 6,410864444e-05 2,762960829e-02 5,525910854e-02
420 1,568432200e-05 5,256036457e-05 2,668286115e-02 5,336561054e-02
421 1,771374800e-05 4,165195787e-05 2,575986087e-02 5,151961371e-02
422 1,870056200e-05 3,138873581e-05 2,486028522e-02 4,972046614e-02
423 2,571454500e-05 2,177240640e-05 2,398385666e-02 4,796761274e-02
424 2,861654300e-05 1,280130618e-05 2,313023806e-02 4,626038298e-02
425 3,109003600e-05 4,470633485e-06 2,229913883e-02 4,459818453e-02
426 3,280414400e-05 -3,227306706e-06 2,149021253e-02 4,298033938e-02
427 3,382472000e-05 -1,030297699e-05 2,070316114e-02 4,140623659e-02

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)267

Index
32-Band Interpolation FIR LFE Interpolation FIR

Perfect Reconstruction Non-Perfect Reconstruction 64 x Interpolation 128 x Interpolation
428 3,411568400e-05 -1,676913780e-05 1,993762329e-02 3,987516090e-02
429 3,367812600e-05 -2,264085742e-05 1,919330470e-02 3,838652745e-02
430 3,254459900e-05 -2,793515523e-05 1,846982725e-02 3,693958372e-02
431 3,076839000e-05 -3,267079956e-05 1,776690222e-02 3,553372994e-02
432 -1,987389300e-05 -3,686808850e-05 1,708412915e-02 3,416819125e-02
433 -1,925789500e-05 -4,054862075e-05 1,642123051e-02 3,284239396e-02
434 -1,819741000e-05 -4,373511547e-05 1,577781141e-02 3,155555204e-02
435 -1,676702500e-05 -4,645117951e-05 1,515355054e-02 3,030703776e-02
436 -1,505747500e-05 -4,872112549e-05 1,454808749e-02 2,909611352e-02
437 -1,317522400e-05 -5,056979353e-05 1,396108977e-02 2,792212367e-02
438 -1,121856000e-05 -5,202236207e-05 1,339218579e-02 2,678431384e-02
439 -9,321632700e-06 -5,310418419e-05 1,284105983e-02 2,568206564e-02
440 -7,476824700e-06 -5,384063843e-05 1,230732165e-02 2,461459488e-02
441 -3,262621300e-06 -5,425697600e-05 1,179065090e-02 2,358125709e-02
442 -3,742137100e-06 -5,437819709e-05 1,129068248e-02 2,258131653e-02
443 -3,694976800e-06 -5,422891263e-05 1,080708485e-02 2,161412500e-02
444 -2,480143600e-06 -5,383323878e-05 1,033949479e-02 2,067894675e-02
445 -1,236415900e-06 -5,321469871e-05 9,887560271e-03 1,977507770e-02
446 -6,479789100e-08 -5,239612074e-05 9,450953454e-03 1,890186779e-02
447 -8,454083600e-08 -5,139957648e-05 9,029330686e-03 1,805862412e-02
448 3,772031200e-08 5,024627535e-05 8,622321300e-03 1,724460535e-02
449 3,227406600e-08 4,895655002e-05 8,229630999e-03 1,645922661e-02
450 -3,384827600e-08 4,754976908e-05 7,850865833e-03 1,570170000e-02
451 -1,510238900e-08 4,604430433e-05 7,485736627e-03 1,497144438e-02
452 -5,699348500e-08 4,445751256e-05 7,133882027e-03 1,426773332e-02
453 -3,073465500e-07 4,280570283e-05 6,794991903e-03 1,358995494e-02
454 -6,650809100e-07 4,110412556e-05 6,468691397e-03 1,293735672e-02
455 -3,139397100e-06 3,936696885e-05 6,154712290e-03 1,230939943e-02
456 -4,187209700e-06 3,760734762e-05 5,852684379e-03 1,170534454e-02
457 -5,044609200e-06 3,583733633e-05 5,562345497e-03 1,112466771e-02
458 -5,908209500e-06 3,406793985e-05 5,283284001e-03 1,056654565e-02
459 -6,629955000e-06 3,230916263e-05 5,015311297e-03 1,003060210e-02
460 -7,179758900e-06 3,056998685e-05 4,758012015e-03 9,516004470e-03
461 -7,533601500e-06 2,885844333e-05 4,511159845e-03 9,022301060e-03
462 -7,678809700e-06 2,718161704e-05 4,274417181e-03 8,548815730e-03
463 -7,614387900e-06 2,554569073e-05 4,047499038e-03 8,094980380e-03
464 -6,046428700e-06 2,395598858e-05 3,830091329e-03 7,660165890e-03
465 -5,696789700e-06 2,241701623e-05 3,621967277e-03 7,243919190e-03
466 -5,210775600e-06 2,093250441e-05 3,422776936e-03 6,845539900e-03
467 -4,617880200e-06 1,950545993e-05 3,232272575e-03 6,464532110e-03
468 -3,953604500e-06 1,813820381e-05 3,050152911e-03 6,100293250e-03
469 -3,253336000e-06 1,683242772e-05 2,876190469e-03 5,752369300e-03
470 -2,555774300e-06 1,558924305e-05 2,710093278e-03 5,420174920e-03
471 -1,904890000e-06 1,440921824e-05 2,551567042e-03 5,103122910e-03
472 -1,306777300e-06 1,329243969e-05 2,400433412e-03 4,800856580e-03
473 -2,448299500e-07 1,223855270e-05 2,256359672e-03 4,512710030e-03
474 -1,007547900e-07 1,124680875e-05 2,119151875e-03 4,238294900e-03
475 -1,643020800e-08 1,031611009e-05 1,988604199e-03 3,977200480e-03
476 -3,715261200e-09 9,445050637e-06 1,864377526e-03 3,728747140e-03
477 -6,820855300e-09 8,631964192e-06 1,746327500e-03 3,492647550e-03
478 3,377455500e-09 7,874960829e-06 1,634211512e-03 3,268416510e-03
479 2,668096400e-09 7,171964626e-06 1,527829794e-03 3,055653300e-03
480 1,611726200e-09 6,520755960e-06 1,426893868e-03 2,853781920e-03
481 6,821591800e-10 5,918994248e-06 1,331258914e-03 2,662512240e-03
482 -4,147967800e-08 5,364252502e-06 1,240676851e-03 2,481348810e-03
483 -1,028149000e-07 4,854050530e-06 1,155023579e-03 2,310042500e-03
484 -3,167104300e-07 4,385879038e-06 1,073930296e-03 2,147856400e-03
485 -8,454480100e-07 3,957220997e-06 9,974770946e-04 1,994950230e-03
486 -1,560941800e-06 3,565570978e-06 9,251192096e-04 1,850234690e-03
487 -8,920065800e-07 3,208459020e-06 8,570110658e-04 1,714018640e-03
488 -9,822894700e-07 2,883470643e-06 7,928516716e-04 1,585700080e-03
489 -1,124542400e-06 2,588257530e-06 7,324148901e-04 1,464826870e-03
490 -1,144180200e-06 2,320550948e-06 6,755515351e-04 1,351100280e-03

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)268

Index
32-Band Interpolation FIR LFE Interpolation FIR

Perfect Reconstruction Non-Perfect Reconstruction 64 x Interpolation 128 x Interpolation
491 -1,119829700e-06 2,078171747e-06 6,222130032e-04 1,244423330e-03
492 -1,052683900e-06 1,859034001e-06 5,721592461e-04 1,144316160e-03
493 -9,544782800e-07 1,661159786e-06 5,252459669e-04 1,050489840e-03
494 -8,348606100e-07 1,482681114e-06 4,812776169e-04 9,625531400e-04
495 -7,034745600e-07 1,321840614e-06 4,401875485e-04 8,803732300e-04
496 5,586146700e-07 1,176999604e-06 4,018281470e-04 8,036546600e-04
497 6,193701600e-07 1,046637067e-06 3,658991191e-04 7,317967800e-04
498 6,601852300e-07 9,293416952e-07 3,328395542e-04 6,656776500e-04
499 6,770656500e-07 8,238164355e-07 3,013863170e-04 6,027714100e-04
500 6,677818900e-07 7,288739425e-07 2,726115927e-04 5,452220800e-04
501 6,300390500e-07 6,434325428e-07 2,460231190e-04 4,920452500e-04
502 5,697322600e-07 5,665120852e-07 2,211847313e-04 4,423685900e-04
503 4,468735700e-07 4,972276315e-07 1,981738606e-04 3,963469100e-04
504 3,712986200e-07 4,347855338e-07 1,769922383e-04 3,539837500e-04
505 5,746147600e-07 3,784752209e-07 1,575958013e-04 3,151909600e-04
506 2,771560000e-07 3,276689142e-07 1,397485757e-04 2,794966000e-04
507 9,130198800e-08 2,818143514e-07 1,233371440e-04 2,466738200e-04
508 2,529296600e-08 2,404238444e-07 1,082170274e-04 2,164336300e-04
509 8,358679600e-09 2,030677564e-07 9,439323912e-05 1,887860900e-04
510 -7,138742100e-11 1,693738625e-07 8,179365250e-05 1,635869100e-04
511 -1,140033200e-10 1,390191784e-07 2,658434387e-04 5,316857100e-04

D.9 1 024 tap FIR for X96 Synthesis QMF

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)269

Coef # Coefficient Value
1 -7,1279389866041690e-8
2 -7,0950903150874990e-8
3 -7,9525034321375090e-8
4 -8,9326871281374790e-8
5 -9,7483190494874640e-8
6 -1,0586659510721950e-7
7 -1,1527363411865760e-7
8 -1,2523109645615350e-7
9 -1,3555636137971380e-7
10 -1,4640931821191640e-7
11 -1,5787424998123710e-7
12 -1,6994592926571220e-7
13 -1,8264184311018150e-7
14 -1,9600594587757850e-7
15 -2,1007899706006800e-7
16 -2,2489759047553620e-7
17 -2,4050245877923400e-7
18 -2,5693874615777660e-7
19 -2,7425370308549580e-7
20 -2,9249662541757600e-7
21 -3,1171981968268900e-7
22 -3,3197864040473180e-7
23 -3,5333134588843600e-7
24 -3,7583910465412180e-7
25 -3,9956628121669190e-7
26 -4,2458045296159330e-7
27 -4,5095249563698380e-7
28 -4,7875659112606760e-7
29 -5,0807031294631050e-7
30 -5,3897464223335550e-7
31 -5,7155423388793000e-7
32 -6,0589741192019800e-7
33 -6,4209580087853050e-7
34 -6,8024432849991400e-7
35 -7,2044165259013450e-7
36 -7,6279018172077200e-7
37 -8,0739610368280600e-7
38 -8,5436937020293650e-7
39 -9,0382333224895500e-7
40 -9,5587472540498280e-7
41 -1,0106437128213760e-6
42 -1,0682538906146330e-6
43 -1,1288323637155430e-6
44 -1,1925097184646100e-6
45 -1,2594193438633260e-6
46 -1,3296974052300520e-6
47 -1,4034829433780260e-6
48 -1,4809178634979940e-6
49 -1,5621465913980060e-6
50 -1,6473160377545360e-6
51 -1,7365751553971340e-6
52 -1,8300749104526120e-6
53 -1,9279680902322050e-6
54 -2,0304092660990760e-6
55 -2,1375541686662320e-6
56 -2,2495596253776460e-6
57 -2,3665828120950560e-6
58 -2,4887811970856540e-6
59 -2,6163120571644820e-6
60 -2,7493324266391140e-6
61 -2,8879984579501380e-6
62 -3,0324653639203880e-6
63 -3,1828867865974640e-6
64 -3,3394147240855820e-6

Coef # Coefficient Value
65 -3,5021985520037540e-6
66 -3,6713849262294680e-6
67 -3,8471166218015830e-6
68 -4,0295324657699800e-6
69 -4,2187670209852250e-6
70 -4,4149505043312320e-6
71 -4,6182073040543900e-6
72 -4,8286558658894680e-6
73 -5,0464076705003400e-6
74 -5,2715671455405850e-6
75 -5,5042307535458100e-6
76 -5,7444868785028750e-6
77 -5,9924142424804800e-6
78 -6,2480817863072800e-6
79 -6,5115476278604000e-6
80 -6,7828589565804950e-6
81 -7,0620507545154100e-6
82 -7,3491456697144900e-6
83 -7,6441525098592000e-6
84 -7,9470661364365490e-6
85 -8,2578666429227760e-6
86 -8,5765192154768100e-6
87 -8,9029718900122000e-6
88 -9,2371554195468400e-6
89 -9,5789825988253100e-6
90 -9,9283481667264540e-6
91 -1,0285127334608450e-5
92 -1,0649175634328590e-5
93 -1,1020327046334650e-5
94 -1,1398393880881060e-5
95 -1,1783166036693560e-5
96 -1,2174410889256530e-5
97 -1,2571871574469220e-5
98 -1,2975266858030310e-5
99 -1,3384289978242060e-5

100 -1,3798608540965960e-5
101 -1,4217863365843780e-5
102 -1,4641668383496450e-5
103 -1,5069609527679710e-5
104 -1,5501244597782600e-5
105 -1,5936101341640500e-5
106 -1,6373677426466900e-5
107 -1,6813441716539560e-5
108 -1,7254834143068570e-5
109 -1,7697261563607500e-5
110 -1,8140097714618200e-5
111 -1,8582686308483550e-5
112 -1,9024340970099240e-5
113 -1,9464340744880170e-5
114 -1,9901930030141080e-5
115 -2,0336321557464510e-5
116 -2,0766696417773940e-5
117 -2,1192201630574280e-5
118 -2,1611950084231910e-5
119 -2,2025021652894630e-5
120 -2,2430463239517170e-5
121 -2,2827288605503470e-5
122 -2,3214478371918170e-5
123 -2,3590980216497750e-5
124 -2,3955708939763280e-5
125 -2,4307547722489910e-5
126 -2,4645348200903720e-5
127 -2,4967930863542620e-5
128 -2,5274085082324960e-5

Coef # Coefficient Value
129 2,5562569399199020e-5
130 2,5832111724562040e-5
131 2,6081413415833200e-5
132 2,6309149390520640e-5
133 2,6513966535124460e-5
134 2,6694483850464800e-5
135 2,6849297239997120e-5
136 2,6976979753245170e-5
137 2,7076082153012070e-5
138 2,7145133103663890e-5
139 2,7182642746157720e-5
140 2,7187102980536760e-5
141 2,7156990105794550e-5
142 2,7090765064735940e-5
143 2,6986876191054700e-5
144 2,6843759539035120e-5
145 2,6659843389908530e-5
146 2,6433548592482960e-5
147 2,6163291550639320e-5
148 2,5847484577439320e-5
149 2,5484540698002960e-5
150 2,5072874052447260e-5
151 2,4610903957661350e-5
152 2,4097055300584120e-5
153 2,3529763128539150e-5
154 2,2907473117403740e-5
155 2,2228647280994560e-5
156 2,1491764461832140e-5
157 2,0695325418576370e-5
158 1,9837853265502040e-5
159 1,8917898053528080e-5
160 1,7934037335534700e-5
160 1,7934037335534700e-5
161 1,6884884022311310e-5
162 1,5769086921577900e-5
163 1,4585334740507920e-5
164 1,3332356590263080e-5
165 1,2008929083235120e-5
166 1,0613876973541650e-5
167 9,1460801506922300e-6
168 7,6044740757265500e-6
169 5,9880523825897000e-6
170 4,2958677847708840e-6
171 2,5270494199802070e-6
172 6,8080315386959900e-7
173 -1,2435990827839660e-6
174 -3,2468187066945930e-6
175 -5,3294268968052800e-6
176 -7,4919036559427900e-6
177 -9,7346407524871100e-6
178 -1,2057941408635810e-5
179 -1,4462010500550970e-5
180 -1,6946953848107710e-5
181 -1,9512772389215240e-5
182 -2,2159361597292710e-5
183 -2,4886504491416160e-5
184 -2,7693871041862060e-5
185 -3,0581012081916960e-5
186 -3,3547358765259040e-5
187 -3,6592216716540970e-5
188 -3,9714765485539260e-5
189 -4,2914052387856640e-5
190 -4,6188991961724560e-5
191 -4,9538360176954340e-5

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)270

Coef # Coefficient Value
192 -5,2960794000140600e-5
193 -5,6454787620185350e-5
194 -6,0018691972791050e-5
195 -6,3650708053788550e-5
196 -6,7348886525882700e-5
197 -7,1111125753722860e-5
198 -7,4935171411178040e-5
199 -7,8818609806320000e-5
200 -8,2758867628623800e-5
201 -8,6753213062403400e-5
202 -9,0798755482139240e-5
203 -9,4892437636254000e-5
204 -9,9031035415475500e-5
205 -1,0321116057304920e-4
206 -1,0742926070674010e-4
207 -1,1168161614264270e-4
208 -1,1596433966772030e-4
209 -1,2027337376184880e-4
210 -1,2460449089034750e-4
211 -1,2895330270761850e-4
212 -1,3331525983885840e-4
213 -1,3768563787408340e-4
214 -1,4205953760578120e-4
215 -1,4643190426323540e-4
216 -1,5079752791692290e-4
217 -1,5515103314094370e-4
218 -1,5948687909058970e-4
219 -1,6379937154642740e-4
220 -1,6808266356446820e-4
221 -1,7233075773584680e-4
222 -1,7653750646560020e-4
223 -1,8069661584612290e-4
224 -1,8480164638953740e-4
225 -1,8884602526638050e-4
226 -1,9282304696531290e-4
227 -1,9672587556804270e-4
228 -2,0054754547108610e-4
229 -2,0428097498957360e-4
230 -2,0791896735659270e-4
231 -2,1145421910491280e-4
232 -2,1487932080488700e-4
233 -2,1818676491655660e-4
234 -2,2136894706917190e-4
235 -2,2441818635854840e-4
236 -2,2732672676686290e-4
237 -2,3008674810081220e-4
238 -2,3269036653525150e-4
239 -2,3512963563507800e-4
240 -2,3739654799291240e-4
241 -2,3948307023621970e-4
242 -2,4138114593372380e-4
243 -2,4308272452941820e-4
244 -2,4457975717687980e-4
245 -2,4586407616017000e-4
246 -2,4692741569938220e-4
247 -2,4776199025177680e-4
248 -2,4836046092637280e-4
249 -2,4871461830381660e-4
250 -2,4881540457247040e-4
251 -2,4865471770248810e-4
252 -2,4822543333608940e-4
253 -2,4752008219951220e-4
254 -2,4653081794176570e-4
255 -2,4525003217524440e-4

Coef # Coefficient Value
256 -2,4367037437341020e-4
257 2,4178457457919800e-4
258 2,3958543985834340e-4
259 2,3706595356421380e-4
260 2,3421928008696620e-4
261 2,3103877007019660e-4
262 2,2751796132972940e-4
263 2,2365059385031200e-4
264 2,1943061159567880e-4
265 2,1485218733324290e-4
266 2,0990972538755550e-4
267 2,0459789739171640e-4
268 1,9891164424316180e-4
269 1,9284618337957900e-4
270 1,8639701070854740e-4
271 1,7955993578371750e-4
272 1,7233108395155490e-4
273 1,6470690840351980e-4
274 1,5668419239382670e-4
275 1,4826008597798460e-4
276 1,3943210818407590e-4
277 1,3019815804235450e-4
278 1,2055651618705740e-4
279 1,1050586906665980e-4
280 1,0004531116378850e-4
281 8,9174369623037550e-5
282 7,7893006105444910e-5
283 6,6201632959158800e-5
284 5,4101115008963200e-5
285 4,1592792755171040e-5
286 2,8678484003389880e-5
287 1,5360496520469550e-5
288 1,6416297019304470e-6
289 -1,2474801400564880e-5
290 -2,6984964757674160e-5
291 -4,1884506316022560e-5
292 -5,7168548169515050e-5
293 -7,2831653374563650e-5
294 -8,8867825335203200e-5
295 -1,0527052946041040e-4
296 -1,2203269185287530e-4
297 -1,3914664880465400e-4
298 -1,5660414556657680e-4
299 -1,7439635977956720e-4
300 -1,9251390142613000e-4
301 -2,1094678833176480e-4
302 -2,2968444457655940e-4
303 -2,4871569004884240e-4
304 -2,6802874127778880e-4
305 -2,8761124019708440e-4
306 -3,0745025297166030e-4
307 -3,2753221542219500e-4
308 -3,4784293347385130e-4
309 -3,6836764760397900e-4
310 -3,8909103335715320e-4
311 -4,0999714822829530e-4
312 -4,3106943097409840e-4
313 -4,5229073958127750e-4
314 -4,7364335350426610e-4
315 -4,9510898492628230e-4
316 -5,1666877822680600e-4
317 -5,3830328700499900e-4
318 -5,5999247625413450e-4
319 -5,8171579317559550e-4

Coef # Coefficient Value
320 -6,0345216810040500e-4
321 -6,2517996394886800e-4
322 -6,4687697763330650e-4
323 -6,6852052145861900e-4
324 -6,9008742526480550e-4
325 -7,1155400216196750e-4
326 -7,3289605035434600e-4
327 -7,5408892753413600e-4
328 -7,7510755325530950e-4
329 -7,9592638676398950e-4
330 -8,1651942936660300e-4
331 -8,3686029869896850e-4
332 -8,5692223230171550e-4
333 -8,7667809201044900e-4
334 -8,9610036547340950e-4
335 -9,1516119514986000e-4
336 -9,3383238324995840e-4
337 -9,5208547141354700e-4
338 -9,6989174214394400e-4
339 -9,8722217067251400e-4
340 -1,0040474297445790e-3
341 -1,0203380430448350e-3
342 -1,0360643900964910e-3
343 -1,0511966606168980e-3
344 -1,0657048556038330e-3
345 -1,0795588568782010e-3
346 -1,0927284332850520e-3
347 -1,1051833075734240e-3
348 -1,1168931605293980e-3
349 -1,1278276550234160e-3
350 -1,1379564405661050e-3
351 -1,1472492294891640e-3
352 -1,1556758000499310e-3
353 -1,1632059885511800e-3
354 -1,1698096960154200e-3
355 -1,1754570428998680e-3
356 -1,1801183720212010e-3
357 -1,1837641581852870e-3
358 -1,1863650153060240e-3
359 -1,1878919433902330e-3
360 -1,1883163316843900e-3
361 -1,1876097809178440e-3
362 -1,1857441072376680e-3
363 -1,1826916065321440e-3
364 -1,1784250628415020e-3
365 -1,1729176690707690e-3
366 -1,1661430294353880e-3
367 -1,1580752925519680e-3
368 -1,1486891568700730e-3
369 -1,1379598570807350e-3
370 -1,1258631690530700e-3
371 -1,1123755320313420e-3
372 -1,0974740543942100e-3
373 -1,0811365181610850e-3
374 -1,0633413819325920e-3
375 -1,0440678410743190e-3
376 -1,0232958338441730e-3
377 -1,0010061160103870e-3
378 -9,7718026613602800e-4
379 -9,5180072722007060e-4
380 -9,2485080945546600e-4
381 -8,9631470926558100e-4
382 -8,6617751390929650e-4
383 -8,3442528375666700e-4

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)271

Coef # Coefficient Value
384 -8,0104505655578600e-4
385 7,6602485902806300e-4
386 7,2935371157849700e-4
387 6,9102172032639350e-4
388 6,5102007948960100e-4
389 6,0934103180698750e-4
390 5,6597787244591100e-4
391 5,2092507454409450e-4
392 4,7417829303612970e-4
393 4,2573432329476060e-4
394 3,7559110239316400e-4
395 3,2374777823389440e-4
396 2,7020471361387040e-4
397 2,1496350652513040e-4
398 1,5802699163104190e-4
399 9,9399252442146460e-5
400 3,9085623279149610e-5
401 -2,2907279717153710e-5
402 -8,6571556658577800e-5
403 -1,5189801251884410e-4
404 -2,1887615668780720e-4
405 -2,8749420455512610e-4
406 -3,5773907519488100e-4
407 -4,2959633884346400e-4
408 -5,0305021853266900e-4
409 -5,7808367853976800e-4
410 -6,5467842279709950e-4
411 -7,3281477145293300e-4
412 -8,1247166091487090e-4
413 -8,9362676824381250e-4
414 -9,7625651350435400e-4
415 -1,0603359870796300e-3
416 -1,1458389497708370e-3
417 -1,2327379076720450e-3
418 -1,3210041125919850e-3
419 -1,4106074964587530e-3
420 -1,5015166759080980e-3
421 -1,5936991188210680e-3
422 -1,6871211446584360e-3
423 -1,7817477652804130e-3
424 -1,8775426862784720e-3
425 -1,9744684954557180e-3
426 -2,0724866717198650e-3
427 -2,1715575922482770e-3
428 -2,2716405301701940e-3
429 -2,3726935964105480e-3
430 -2,4746737418493600e-3
431 -2,5775368629845300e-3
432 -2,6812378156433060e-3
433 -2,7857306109716460e-3
434 -2,8909684129992950e-3
435 -2,9969032890820140e-3
436 -3,1034862132032660e-3
437 -3,2106673881690480e-3
438 -3,3183962566563890e-3
439 -3,4266214220855450e-3
440 -3,5352906520539890e-3
441 -3,6443510330122110e-3
442 -3,7537489709635930e-3
443 -3,8634300521859240e-3
444 -3,9733390588103910e-3
445 -4,0834204508378470e-3
446 -4,1936183686073460e-3
447 -4,3038762050876900e-3

Coef # Coefficient Value
448 -4,4141366059086620e-3
449 -4,5243418977567100e-3
450 -4,6344341075783170e-3
451 -4,7443549566589130e-3
452 -4,8540458565358850e-3
453 -4,9634478250060780e-3
454 -5,0725014978718950e-3
455 -5,1811474713480250e-3
456 -5,2893263173827950e-3
457 -5,3969785783205650e-3
458 -5,5040447592375600e-3
459 -5,6104651646665850e-3
460 -5,7161799140263450e-3
461 -5,8211294443412250e-3
462 -5,9252545216101900e-3
463 -6,0284959882028950e-3
464 -6,1307947602360250e-3
465 -6,2320920224565700e-3
466 -6,3323292492425800e-3
467 -6,4314484717364400e-3
468 -6,5293922762311450e-3
469 -6,6261035015351700e-3
470 -6,7215252466922100e-3
471 -6,8156013434509950e-3
472 -6,9082763630156450e-3
473 -6,9994952920827200e-3
474 -7,0892035490577050e-3
475 -7,1773476647806300e-3
476 -7,2638752839566550e-3
477 -7,3487345159041400e-3
478 -7,4318739341000500e-3
479 -7,5132432154309250e-3
480 -7,5927931627681400e-3
481 -7,6704755623721500e-3
482 -7,7462431738117650e-3
483 -7,8200496507836000e-3
484 -7,8918495587816850e-3
485 -7,9615988430090790e-3
486 -8,0292548409052500e-3
487 -8,0947760898363200e-3
488 -8,1581223027535600e-3
489 -8,2192540249893810e-3
490 -8,2781326752680240e-3
491 -8,3347217911436610e-3
492 -8,3889870206274740e-3
493 -8,4408946925453690e-3
494 -8,4904118087845760e-3
495 -8,5375073033623590e-3
496 -8,5821520672029750e-3
497 -8,6243182341614300e-3
498 -8,6639791627160300e-3
499 -8,7011097471794110e-3
500 -8,7356864659172800e-3
501 -8,7676881309490440e-3
502 -8,7970958152554810e-3
503 -8,8238905039462850e-3
504 -8,8480531477483150e-3
505 -8,8695681885783190e-3
506 -8,8884235927356400e-3
507 -8,9046080555685600e-3
508 -8,9181109318560050e-3
509 -8,9289234995380550e-3
510 -8,9370390010903460e-3
511 -8,9424522900292110e-3

Coef # Coefficient Value
512 -8,9451598223763610e-3
513 8,9451598223763610e-3
514 8,9424522900292110e-3
515 8,9370390010903460e-3
516 8,9289234995380550e-3
517 8,9181109318560050e-3
518 8,9046080555685600e-3
519 8,8884235927356400e-3
520 8,8695681885783190e-3
521 8,8480531477483150e-3
522 8,8238905039462850e-3
523 8,7970958152554810e-3
524 8,7676881309490440e-3
525 8,7356864659172800e-3
526 8,7011097471794110e-3
527 8,6639791627160300e-3
528 8,6243182341614300e-3
529 8,5821520672029750e-3
530 8,5375073033623590e-3
531 8,4904118087845760e-3
532 8,4408946925453690e-3
533 8,3889870206274740e-3
534 8,3347217911436610e-3
535 8,2781326752680240e-3
536 8,2192540249893810e-3
537 8,1581223027535600e-3
538 8,0947760898363200e-3
539 8,0292548409052500e-3
540 7,9615988430090790e-3
541 7,8918495587816850e-3
542 7,8200496507836000e-3
543 7,7462431738117650e-3
544 7,6704755623721500e-3
545 7,5927931627681400e-3
546 7,5132432154309250e-3
547 7,4318739341000500e-3
548 7,3487345159041400e-3
549 7,2638752839566550e-3
550 7,1773476647806300e-3
551 7,0892035490577050e-3
552 6,9994952920827200e-3
553 6,9082763630156450e-3
554 6,8156013434509950e-3
555 6,7215252466922100e-3
556 6,6261035015351700e-3
557 6,5293922762311450e-3
558 6,4314484717364400e-3
559 6,3323292492425800e-3
560 6,2320920224565700e-3
561 6,1307947602360250e-3
562 6,0284959882028950e-3
563 5,9252545216101900e-3
564 5,8211294443412250e-3
565 5,7161799140263450e-3
566 5,6104651646665850e-3
567 5,5040447592375600e-3
568 5,3969785783205650e-3
569 5,2893263173827950e-3
570 5,1811474713480250e-3
571 5,0725014978718950e-3
572 4,9634478250060780e-3
573 4,8540458565358850e-3
574 4,7443549566589130e-3
575 4,6344341075783170e-3

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)272

Coef # Coefficient Value
576 4,5243418977567100e-3
577 4,4141366059086620e-3
578 4,3038762050876900e-3
579 4,1936183686073460e-3
580 4,0834204508378470e-3
581 3,9733390588103910e-3
582 3,8634300521859240e-3
583 3,7537489709635930e-3
584 3,6443510330122110e-3
585 3,5352906520539890e-3
586 3,4266214220855450e-3
587 3,3183962566563890e-3
588 3,2106673881690480e-3
589 3,1034862132032660e-3
590 2,9969032890820140e-3
591 2,8909684129992950e-3
592 2,7857306109716460e-3
593 2,6812378156433060e-3
594 2,5775368629845300e-3
595 2,4746737418493600e-3
596 2,3726935964105480e-3
597 2,2716405301701940e-3
598 2,1715575922482770e-3
599 2,0724866717198650e-3
600 1,9744684954557180e-3
601 1,8775426862784720e-3
602 1,7817477652804130e-3
603 1,6871211446584360e-3
604 1,5936991188210680e-3
605 1,5015166759080980e-3
606 1,4106074964587530e-3
607 1,3210041125919850e-3
608 1,2327379076720450e-3
609 1,1458389497708370e-3
610 1,0603359870796300e-3
611 9,7625651350435400e-4
612 8,9362676824381250e-4
613 8,1247166091487090e-4
614 7,3281477145293300e-4
615 6,5467842279709950e-4
616 5,7808367853976800e-4
617 5,0305021853266900e-4
618 4,2959633884346400e-4
619 3,5773907519488100e-4
620 2,8749420455512610e-4
621 2,1887615668780720e-4
622 1,5189801251884410e-4
623 8,6571556658577800e-5
624 2,2907279717153710e-5
625 -3,9085623279149610e-5
626 -9,9399252442146460e-5
627 -1,5802699163104190e-4
628 -2,1496350652513040e-4
629 -2,7020471361387040e-4
630 -3,2374777823389440e-4
631 -3,7559110239316400e-4
632 -4,2573432329476060e-4
633 -4,7417829303612970e-4
634 -5,2092507454409450e-4
635 -5,6597787244591100e-4
636 -6,0934103180698750e-4
637 -6,5102007948960100e-4
638 -6,9102172032639350e-4
639 -7,2935371157849700e-4

Coef # Coefficient Value
640 -7,6602485902806300e-4
641 8,0104505655578600e-4
642 8,3442528375666700e-4
643 8,6617751390929650e-4
644 8,9631470926558100e-4
645 9,2485080945546600e-4
646 9,5180072722007060e-4
647 9,7718026613602800e-4
648 1,0010061160103870e-3
649 1,0232958338441730e-3
650 1,0440678410743190e-3
651 1,0633413819325920e-3
652 1,0811365181610850e-3
653 1,0974740543942100e-3
654 1,1123755320313420e-3
655 1,1258631690530700e-3
656 1,1379598570807350e-3
657 1,1486891568700730e-3
658 1,1580752925519680e-3
659 1,1661430294353880e-3
660 1,1729176690707690e-3
661 1,1784250628415020e-3
662 1,1826916065321440e-3
663 1,1857441072376680e-3
664 1,1876097809178440e-3
665 1,1883163316843900e-3
666 1,1878919433902330e-3
667 1,1863650153060240e-3
668 1,1837641581852870e-3
669 1,1801183720212010e-3
670 1,1754570428998680e-3
671 1,1698096960154200e-3
672 1,1632059885511800e-3
673 1,1556758000499310e-3
674 1,1472492294891640e-3
675 1,1379564405661050e-3
676 1,1278276550234160e-3
677 1,1168931605293980e-3
678 1,1051833075734240e-3
679 1,0927284332850520e-3
680 1,0795588568782010e-3
681 1,0657048556038330e-3
682 1,0511966606168980e-3
683 1,0360643900964910e-3
684 1,0203380430448350e-3
685 1,0040474297445790e-3
686 9,8722217067251400e-4
687 9,6989174214394400e-4
688 9,5208547141354700e-4
689 9,3383238324995840e-4
690 9,1516119514986000e-4
691 8,9610036547340950e-4
692 8,7667809201044900e-4
693 8,5692223230171550e-4
694 8,3686029869896850e-4
695 8,1651942936660300e-4
696 7,9592638676398950e-4
697 7,7510755325530950e-4
698 7,5408892753413600e-4
699 7,3289605035434600e-4
700 7,1155400216196750e-4
701 6,9008742526480550e-4
702 6,6852052145861900e-4
703 6,4687697763330650e-4

Coef # Coefficient Value
704 6,2517996394886800e-4
705 6,0345216810040500e-4
706 5,8171579317559550e-4
707 5,5999247625413450e-4
708 5,3830328700499900e-4
709 5,1666877822680600e-4
710 4,9510898492628230e-4
711 4,7364335350426610e-4
712 4,5229073958127750e-4
713 4,3106943097409840e-4
714 4,0999714822829530e-4
715 3,8909103335715320e-4
716 3,6836764760397900e-4
717 3,4784293347385130e-4
718 3,2753221542219500e-4
719 3,0745025297166030e-4
720 2,8761124019708440e-4
721 2,6802874127778880e-4
722 2,4871569004884240e-4
723 2,2968444457655940e-4
724 2,1094678833176480e-4
725 1,9251390142613000e-4
726 1,7439635977956720e-4
727 1,5660414556657680e-4
728 1,3914664880465400e-4
729 1,2203269185287530e-4
730 1,0527052946041040e-4
731 8,8867825335203200e-5
732 7,2831653374563650e-5
733 5,7168548169515050e-5
734 4,1884506316022560e-5
735 2,6984964757674160e-5
736 1,2474801400564880e-5
737 -1,6416297019304470e-6
738 -1,5360496520469550e-5
739 -2,8678484003389880e-5
740 -4,1592792755171040e-5
741 -5,4101115008963200e-5
742 -6,6201632959158800e-5
743 -7,7893006105444910e-5
744 -8,9174369623037550e-5
745 -1,0004531116378850e-4
746 -1,1050586906665980e-4
747 -1,2055651618705740e-4
748 -1,3019815804235450e-4
749 -1,3943210818407590e-4
750 -1,4826008597798460e-4
751 -1,5668419239382670e-4
752 -1,6470690840351980e-4
753 -1,7233108395155490e-4
754 -1,7955993578371750e-4
755 -1,8639701070854740e-4
756 -1,9284618337957900e-4
757 -1,9891164424316180e-4
758 -2,0459789739171640e-4
759 -2,0990972538755550e-4
760 -2,1485218733324290e-4
761 -2,1943061159567880e-4
762 -2,2365059385031200e-4
763 -2,2751796132972940e-4
764 -2,3103877007019660e-4
765 -2,3421928008696620e-4
766 -2,3706595356421380e-4
767 -2,3958543985834340e-4

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)273

Coef # Coefficient Value
768 -2,4178457457919800e-4
769 2,4367037437341020e-4
770 2,4525003217524440e-4
771 2,4653081794176570e-4
772 2,4752008219951220e-4
773 2,4822543333608940e-4
774 2,4865471770248810e-4
775 2,4881540457247040e-4
776 2,4871461830381660e-4
777 2,4836046092637280e-4
778 2,4776199025177680e-4
779 2,4692741569938220e-4
780 2,4586407616017000e-4
781 2,4457975717687980e-4
782 2,4308272452941820e-4
783 2,4138114593372380e-4
784 2,3948307023621970e-4
785 2,3739654799291240e-4
786 2,3512963563507800e-4
787 2,3269036653525150e-4
788 2,3008674810081220e-4
789 2,2732672676686290e-4
790 2,2441818635854840e-4
791 2,2136894706917190e-4
792 2,1818676491655660e-4
793 2,1487932080488700e-4
794 2,1145421910491280e-4
795 2,0791896735659270e-4
796 2,0428097498957360e-4
797 2,0054754547108610e-4
798 1,9672587556804270e-4
799 1,9282304696531290e-4
800 1,8884602526638050e-4
801 1,8480164638953740e-4
802 1,8069661584612290e-4
803 1,7653750646560020e-4
804 1,7233075773584680e-4
805 1,6808266356446820e-4
806 1,6379937154642740e-4
807 1,5948687909058970e-4
808 1,5515103314094370e-4
809 1,5079752791692290e-4
810 1,4643190426323540e-4
811 1,4205953760578120e-4
812 1,3768563787408340e-4
813 1,3331525983885840e-4
814 1,2895330270761850e-4
815 1,2460449089034750e-4
816 1,2027337376184880e-4
817 1,1596433966772030e-4
818 1,1168161614264270e-4
819 1,0742926070674010e-4
820 1,0321116057304920e-4
821 9,9031035415475500e-5
822 9,4892437636254000e-5
823 9,0798755482139240e-5
824 8,6753213062403400e-5
825 8,2758867628623800e-5
826 7,8818609806320000e-5
827 7,4935171411178040e-5
828 7,1111125753722860e-5
829 6,7348886525882700e-5
830 6,3650708053788550e-5
831 6,0018691972791050e-5

Coef # Coefficient Value
832 5,6454787620185350e-5
833 5,2960794000140600e-5
834 4,9538360176954340e-5
835 4,6188991961724560e-5
836 4,2914052387856640e-5
837 3,9714765485539260e-5
838 3,6592216716540970e-5
839 3,3547358765259040e-5
840 3,0581012081916960e-5
841 2,7693871041862060e-5
842 2,4886504491416160e-5
843 2,2159361597292710e-5
844 1,9512772389215240e-5
845 1,6946953848107710e-5
846 1,4462010500550970e-5
847 1,2057941408635810e-5
848 9,7346407524871100e-6
849 7,4919036559427900e-6
850 5,3294268968052800e-6
851 3,2468187066945930e-6
852 1,2435990827839660e-6
853 -6,8080315386959900e-7
854 -2,5270494199802070e-6
855 -4,2958677847708840e-6
856 -5,9880523825897000e-6
857 -7,6044740757265500e-6
858 -9,1460801506922300e-6
859 -1,0613876973541650e-5
860 -1,2008929083235120e-5
861 -1,3332356590263080e-5
862 -1,4585334740507920e-5
863 -1,5769086921577900e-5
864 -1,6884884022311310e-5
865 -1,7934037335534700e-5
866 -1,8917898053528080e-5
867 -1,9837853265502040e-5
868 -2,0695325418576370e-5
869 -2,1491764461832140e-5
870 -2,2228647280994560e-5
871 -2,2907473117403740e-5
872 -2,3529763128539150e-5
873 -2,4097055300584120e-5
874 -2,4610903957661350e-5
875 -2,5072874052447260e-5
876 -2,5484540698002960e-5
877 -2,5847484577439320e-5
878 -2,6163291550639320e-5
879 -2,6433548592482960e-5
880 -2,6659843389908530e-5
881 -2,6843759539035120e-5
882 -2,6986876191054700e-5
883 -2,7090765064735940e-5
884 -2,7156990105794550e-5
885 -2,7187102980536760e-5
886 -2,7182642746157720e-5
887 -2,7145133103663890e-5
888 -2,7076082153012070e-5
889 -2,6976979753245170e-5
890 -2,6849297239997120e-5
891 -2,6694483850464800e-5
892 -2,6513966535124460e-5
893 -2,6309149390520640e-5
894 -2,6081413415833200e-5
895 -2,5832111724562040e-5

Coef # Coefficient Value
896 -2,5562569399199020e-5
897 2,5274085082324960e-5
898 2,4967930863542620e-5
899 2,4645348200903720e-5
900 2,4307547722489910e-5
901 2,3955708939763280e-5
902 2,3590980216497750e-5
903 2,3214478371918170e-5
904 2,2827288605503470e-5
905 2,2430463239517170e-5
906 2,2025021652894630e-5
907 2,1611950084231910e-5
908 2,1192201630574280e-5
909 2,0766696417773940e-5
910 2,0336321557464510e-5
911 1,9901930030141080e-5
912 1,9464340744880170e-5
913 1,9024340970099240e-5
914 1,8582686308483550e-5
915 1,8140097714618200e-5
916 1,7697261563607500e-5
917 1,7254834143068570e-5
918 1,6813441716539560e-5
919 1,6373677426466900e-5
920 1,5936101341640500e-5
921 1,5501244597782600e-5
922 1,5069609527679710e-5
923 1,4641668383496450e-5
924 1,4217863365843780e-5
925 1,3798608540965960e-5
926 1,3384289978242060e-5
927 1,2975266858030310e-5
928 1,2571871574469220e-5
929 1,2174410889256530e-5
930 1,1783166036693560e-5
931 1,1398393880881060e-5
932 1,1020327046334650e-5
933 1,0649175634328590e-5
934 1,0285127334608450e-5
935 9,9283481667264540e-6
936 9,5789825988253100e-6
937 9,2371554195468400e-6
938 8,9029718900122000e-6
939 8,5765192154768100e-6
940 8,2578666429227760e-6
941 7,9470661364365490e-6
942 7,6441525098592000e-6
943 7,3491456697144900e-6
944 7,0620507545154100e-6
945 6,7828589565804950e-6
946 6,5115476278604000e-6
947 6,2480817863072800e-6
948 5,9924142424804800e-6
949 5,7444868785028750e-6
950 5,5042307535458100e-6
951 5,2715671455405850e-6
952 5,0464076705003400e-6
953 4,8286558658894680e-6
954 4,6182073040543900e-6
955 4,4149505043312320e-6
956 4,2187670209852250e-6
957 4,0295324657699800e-6
958 3,8471166218015830e-6
959 3,6713849262294680e-6

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)274

Coef # Coefficient Value
960 3,5021985520037540e-6
961 3,3394147240855820e-6
962 3,1828867865974640e-6
963 3,0324653639203880e-6
964 2,8879984579501380e-6
965 2,7493324266391140e-6
966 2,6163120571644820e-6
967 2,4887811970856540e-6
968 2,3665828120950560e-6
969 2,2495596253776460e-6
970 2,1375541686662320e-6
971 2,0304092660990760e-6
972 1,9279680902322050e-6
973 1,8300749104526120e-6
974 1,7365751553971340e-6
975 1,6473160377545360e-6
976 1,5621465913980060e-6
977 1,4809178634979940e-6
978 1,4034829433780260e-6
979 1,3296974052300520e-6
980 1,2594193438633260e-6
981 1,1925097184646100e-6
982 1,1288323637155430e-6
983 1,0682538906146330e-6
984 1,0106437128213760e-6
985 9,5587472540498280e-7
986 9,0382333224895500e-7
987 8,5436937020293650e-7
988 8,0739610368280600e-7
989 7,6279018172077200e-7
990 7,2044165259013450e-7
991 6,8024432849991400e-7
992 6,4209580087853050e-7
993 6,0589741192019800e-7
994 5,7155423388793000e-7
995 5,3897464223335550e-7
996 5,0807031294631050e-7
997 4,7875659112606760e-7
998 4,5095249563698380e-7
999 4,2458045296159330e-7

1 000 3,9956628121669190e-7
1 001 3,7583910465412180e-7
1 002 3,5333134588843600e-7
1 003 3,3197864040473180e-7
1 004 3,1171981968268900e-7
1 005 2,9249662541757600e-7
1 006 2,7425370308549580e-7
1 007 2,5693874615777660e-7
1 008 2,4050245877923400e-7
1 009 2,2489759047553620e-7
1 010 2,1007899706006800e-7
1 011 1,9600594587757850e-7
1 012 1,8264184311018150e-7
1 013 1,6994592926571220e-7
1 014 1,5787424998123710e-7
1 015 1,4640931821191640e-7
1 016 1,3555636137971380e-7
1 017 1,2523109645615350e-7
1 018 1,1527363411865760e-7
1 019 1,0586659510721950e-7
1 020 9,7483190494874640e-8
1 021 8,9326871281374790e-8
1 022 7,9525034321375090e-8
1 023 7,0950903150874990e-8

Coef # Coefficient Value
1 024 7,1279389866041690e-8

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)275

D.10 VQ Tables

D.10.1 ADPCM Coefficients
Each vector consists of four elements and the Codebook has 212 = 4 096 vectors. Each entry represents an element
multiplied by 213. Therefore, the actual value of each element is calculated as follows:

For example, the first entry in the table gives:

Due to its extensive size, this table is not included here.

D.10.2 High Frequency Subbands
Each vector consists of 32 elements and the Codebook has 210 = 1 024 vectors. Each entry is 16 bits, representing two
vector elements, so it takes 16 entries in the table to represent one vector of 32 elements. Each entry is first be split into
two 8-bit integers and then each divided by 24 to give two vector elements.

• Due to its extensive size, this table is not included here.

D.11 Look-up Table for Downmix Scale Factors
DmixTblIndex LogAbsValues (dB) AbsValues DmixTable InvDmixTblIndex InvDmixTbl

0 -60,0000 0,001000 33 N/A N/A
1 -59,5000 0,001059 35 N/A N/A
2 -59,0000 0,001122 37 N/A N/A
3 -58,5000 0,001189 39 N/A N/A
4 -58,0000 0,001259 41 N/A N/A
5 -57,5000 0,001334 44 N/A N/A
6 -57,0000 0,001413 46 N/A N/A
7 -56,5000 0,001496 49 N/A N/A
8 -56,0000 0,001585 52 N/A N/A
9 -55,5000 0,001679 55 N/A N/A

10 -55,0000 0,001778 58 N/A N/A
11 -54,5000 0,001884 62 N/A N/A
12 -54,0000 0,001995 65 N/A N/A
13 -53,5000 0,002113 69 N/A N/A
14 -53,0000 0,002239 73 N/A N/A
15 -52,5000 0,002371 78 N/A N/A
16 -52,0000 0,002512 82 N/A N/A
17 -51,5000 0,002661 87 N/A N/A
18 -51,0000 0,002818 92 N/A N/A
19 -50,5000 0,002985 98 N/A N/A
20 -50,0000 0,003162 104 N/A N/A
21 -49,5000 0,003350 110 N/A N/A
22 -49,0000 0,003548 116 N/A N/A
23 -48,5000 0,003758 123 N/A N/A
24 -48,0000 0,003981 130 N/A N/A
25 -47,5000 0,004217 138 N/A N/A
26 -47,0000 0,004467 146 N/A N/A
27 -46,5000 0,004732 155 N/A N/A
28 -46,0000 0,005012 164 N/A N/A
29 -45,5000 0,005309 174 N/A N/A

132

Entry
entValueActualElem =

2119140625.1
2

9928
13

=

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)276

DmixTblIndex LogAbsValues (dB) AbsValues DmixTable InvDmixTblIndex InvDmixTbl
30 -45,0000 0,005623 184 N/A N/A
31 -44,5000 0,005957 195 N/A N/A
32 -44,0000 0,006310 207 N/A N/A
33 -43,5000 0,006683 219 N/A N/A
34 -43,0000 0,007079 232 N/A N/A
35 -42,5000 0,007499 246 N/A N/A
36 -42,0000 0,007943 260 N/A N/A
37 -41,5000 0,008414 276 N/A N/A
38 -41,0000 0,008913 292 N/A N/A
39 -40,5000 0,009441 309 N/A N/A
40 -40,0000 0,010000 328 0 6553600
41 -39,5000 0,010593 347 1 6186997
42 -39,0000 0,011220 368 2 5840902
43 -38,5000 0,011885 389 3 5514167
44 -38,0000 0,012589 413 4 5205710
45 -37,5000 0,013335 437 5 4914507
46 -37,0000 0,014125 463 6 4639593
47 -36,5000 0,014962 490 7 4380059
48 -36,0000 0,015849 519 8 4135042
49 -35,5000 0,016788 550 9 3903731
50 -35,0000 0,017783 583 10 3685360
51 -34,5000 0,018836 617 11 3479204
52 -34,0000 0,019953 654 12 3284581
53 -33,5000 0,021135 693 13 3100844
54 -33,0000 0,022387 734 14 2927386
55 -32,5000 0,023714 777 15 2763630
56 -32,0000 0,025119 823 16 2609035
57 -31,5000 0,026607 872 17 2463088
58 -31,0000 0,028184 924 18 2325305
59 -30,5000 0,029854 978 19 2195230
60 -30,0000 0,031623 1036 20 2072430
61 -29,7500 0,032546 1066 21 2013631
62 -29,5000 0,033497 1098 22 1956500
63 -29,2500 0,034475 1130 23 1900990
64 -29,0000 0,035481 1163 24 1847055
65 -28,7500 0,036517 1197 25 1794651
66 -28,5000 0,037584 1232 26 1743733
67 -28,2500 0,038681 1268 27 1694260
68 -28,0000 0,039811 1305 28 1646190
69 -27,7500 0,040973 1343 29 1599484
70 -27,5000 0,042170 1382 30 1554103
71 -27,2500 0,043401 1422 31 1510010
72 -27,0000 0,044668 1464 32 1467168
73 -26,7500 0,045973 1506 33 1425542
74 -26,5000 0,047315 1550 34 1385096
75 -26,2500 0,048697 1596 35 1345798
76 -26,0000 0,050119 1642 36 1307615
77 -25,7500 0,051582 1690 37 1270515
78 -25,5000 0,053088 1740 38 1234468
79 -25,2500 0,054639 1790 39 1199444
80 -25,0000 0,056234 1843 40 1165413
81 -24,7500 0,057876 1896 41 1132348
82 -24,5000 0,059566 1952 42 1100221
83 -24,2500 0,061306 2009 43 1069005
84 -24,0000 0,063096 2068 44 1038676
85 -23,7500 0,064938 2128 45 1009206
86 -23,5000 0,066834 2190 46 980573
87 -23,2500 0,068786 2254 47 952752
88 -23,0000 0,070795 2320 48 925721
89 -22,7500 0,072862 2388 49 899456
90 -22,5000 0,074989 2457 50 873937
91 -22,2500 0,077179 2529 51 849141
92 -22,0000 0,079433 2603 52 825049
93 -21,7500 0,081752 2679 53 801641

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)277

DmixTblIndex LogAbsValues (dB) AbsValues DmixTable InvDmixTblIndex InvDmixTbl
94 -21,5000 0,084140 2757 54 778897
95 -21,2500 0,086596 2838 55 756798
96 -21,0000 0,089125 2920 56 735326
97 -20,7500 0,091728 3006 57 714463
98 -20,5000 0,094406 3093 58 694193
99 -20,2500 0,097163 3184 59 674497

100 -20,0000 0,100000 3277 60 655360
101 -19,7500 0,102920 3372 61 636766
102 -19,5000 0,105925 3471 62 618700
103 -19,2500 0,109018 3572 63 601146
104 -19,0000 0,112202 3677 64 584090
105 -18,7500 0,115478 3784 65 567518
106 -18,5000 0,118850 3894 66 551417
107 -18,2500 0,122321 4008 67 535772
108 -18,0000 0,125893 4125 68 520571
109 -17,7500 0,129569 4246 69 505801
110 -17,5000 0,133352 4370 70 491451
111 -17,2500 0,137246 4497 71 477507
112 -17,0000 0,141254 4629 72 463959
113 -16,7500 0,145378 4764 73 450796
114 -16,5000 0,149624 4903 74 438006
115 -16,2500 0,153993 5046 75 425579
116 -16,0000 0,158489 5193 76 413504
117 -15,7500 0,163117 5345 77 401772
118 -15,5000 0,167880 5501 78 390373
119 -15,2500 0,172783 5662 79 379297
120 -15,0000 0,177828 5827 80 368536
121 -14,8750 0,180406 5912 81 363270
122 -14,7500 0,183021 5997 82 358080
123 -14,6250 0,185674 6084 83 352964
124 -14,5000 0,188365 6172 84 347920
125 -14,3750 0,191095 6262 85 342949
126 -14,2500 0,193865 6353 86 338049
127 -14,1250 0,196675 6445 87 333219
128 -14,0000 0,199526 6538 88 328458
129 -13,8750 0,202418 6633 89 323765
130 -13,7500 0,205353 6729 90 319139
131 -13,6250 0,208329 6827 91 314579
132 -13,5000 0,211349 6925 92 310084
133 -13,3750 0,214412 7026 93 305654
134 -13,2500 0,217520 7128 94 301287
135 -13,1250 0,220673 7231 95 296982
136 -13,0000 0,223872 7336 96 292739
137 -12,8750 0,227117 7442 97 288556
138 -12,7500 0,230409 7550 98 284433
139 -12,6250 0,233749 7659 99 280369
140 -12,5000 0,237137 7771 100 276363
141 -12,3750 0,240575 7883 101 272414
142 -12,2500 0,244062 7997 102 268522
143 -12,1250 0,247600 8113 103 264685
144 -12,0000 0,251189 8231 104 260904
145 -11,8750 0,254830 8350 105 257176
146 -11,7500 0,258523 8471 106 253501
147 -11,6250 0,262271 8594 107 249879
148 -11,5000 0,266073 8719 108 246309
149 -11,3750 0,269929 8845 109 242790
150 -11,2500 0,273842 8973 110 239321
151 -11,1250 0,277811 9103 111 235901
152 -11,0000 0,281838 9235 112 232531
153 -10,8750 0,285924 9369 113 229208
154 -10,7500 0,290068 9505 114 225933
155 -10,6250 0,294273 9643 115 222705
156 -10,5000 0,298538 9783 116 219523
157 -10,3750 0,302866 9924 117 216386

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)278

DmixTblIndex LogAbsValues (dB) AbsValues DmixTable InvDmixTblIndex InvDmixTbl
158 -10,2500 0,307256 10068 118 213295
159 -10,1250 0,311709 10214 119 210247
160 -10,0000 0,316228 10362 120 207243
161 -9,8750 0,320812 10512 121 204282
162 -9,7500 0,325462 10665 122 201363
163 -9,6250 0,330179 10819 123 198486
164 -9,5000 0,334965 10976 124 195650
165 -9,3750 0,339821 11135 125 192855
166 -9,2500 0,344747 11297 126 190099
167 -9,1250 0,349744 11460 127 187383
168 -9,0000 0,354813 11627 128 184706
169 -8,8750 0,359956 11795 129 182066
170 -8,7500 0,365174 11966 130 179465
171 -8,6250 0,370467 12139 131 176901
172 -8,5000 0,375837 12315 132 174373
173 -8,3750 0,381285 12494 133 171882
174 -8,2500 0,386812 12675 134 169426
175 -8,1250 0,392419 12859 135 167005
176 -8,0000 0,398107 13045 136 164619
177 -7,8750 0,403878 13234 137 162267
178 -7,7500 0,409732 13426 138 159948
179 -7,6250 0,415671 13621 139 157663
180 -7,5000 0,421697 13818 140 155410
181 -7,3750 0,427809 14018 141 153190
182 -7,2500 0,434010 14222 142 151001
183 -7,1250 0,440301 14428 143 148844
184 -7,0000 0,446684 14637 144 146717
185 -6,8750 0,453158 14849 145 144621
186 -6,7500 0,459727 15064 146 142554
187 -6,6250 0,466391 15283 147 140517
188 -6,5000 0,473151 15504 148 138510
189 -6,3750 0,480010 15729 149 136531
190 -6,2500 0,486968 15957 150 134580
191 -6,1250 0,494026 16188 151 132657
192 -6,0000 0,501187 16423 152 130762
193 -5,8750 0,508452 16661 153 128893
194 -5,7500 0,515822 16902 154 127052
195 -5,6250 0,523299 17147 155 125236
196 -5,5000 0,530884 17396 156 123447
197 -5,3750 0,538580 17648 157 121683
198 -5,2500 0,546387 17904 158 119944
199 -5,1250 0,554307 18164 159 118231
200 -5,0000 0,562341 18427 160 116541
201 -4,8750 0,570493 18694 161 114876
202 -4,7500 0,578762 18965 162 113235
203 -4,6250 0,587151 19240 163 111617
204 -4,5000 0,595662 19519 164 110022
205 -4,3750 0,604296 19802 165 108450
206 -4,2500 0,613056 20089 166 106901
207 -4,1250 0,621942 20380 167 105373
208 -4,0000 0,630957 20675 168 103868
209 -3,8750 0,640103 20975 169 102383
210 -3,7500 0,649382 21279 170 100921
211 -3,6250 0,658795 21587 171 99479
212 -3,5000 0,668344 21900 172 98057
213 -3,3750 0,678032 22218 173 96656
214 -3,2500 0,687860 22540 174 95275
215 -3,1250 0,697831 22867 175 93914
216 -3,0000 0,707107 23170 176 92682
217 -2,8750 0,718208 23534 177 91249
218 -2,7500 0,728618 23875 178 89946
219 -2,6250 0,739180 24221 179 88660
220 -2,5000 0,749894 24573 180 87394
221 -2,3750 0,760764 24929 181 86145

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)279

DmixTblIndex LogAbsValues (dB) AbsValues DmixTable InvDmixTblIndex InvDmixTbl
222 -2,2500 0,771792 25290 182 84914
223 -2,1250 0,782979 25657 183 83701
224 -2,0000 0,794328 26029 184 82505
225 -1,8750 0,805842 26406 185 81326
226 -1,7500 0,817523 26789 186 80164
227 -1,6250 0,829373 27177 187 79019
228 -1,5000 0,841395 27571 188 77890
229 -1,3750 0,853591 27970 189 76777
230 -1,2500 0,865964 28376 190 75680
231 -1,1250 0,878517 28787 191 74598
232 -1,0000 0,891251 29205 192 73533
233 -0,8750 0,904170 29628 193 72482
234 -0,7500 0,917276 30057 194 71446
235 -0,6250 0,930572 30493 195 70425
236 -0,5000 0,944061 30935 196 69419
237 -0,3750 0,957745 31383 197 68427
238 -0,2500 0,971628 31838 198 67450
239 -0,1250 0,985712 32300 199 66486
240 0 1,000000 32768 200 65536

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)280

Annex E (normative):
DTS and DTS-HD formats in ISO Media Files

E.1 Overview
The audio format defined in the present specification will be broadly referred to as DTS-HD audio for the purposes of
this Annex. DTS-HD audio can be stored in a format compatible with the ISO Media File Format defined in
ISO/IEC 14496-12 [5]. This annex defines the signalling and encapsulation of DTS-HD audio in ISO Media Files.

E.2 Signalling

E.2.1 Track Header
DTS-HD tracks shall be compliant with audio tracks as defined in ISO/IEC 14496-12 [5]. The following rules shall be
applied to the boxes within the Media Box in a DTS-HD track:

• The handler_type field in the Handler Reference Box shall be set to 'soun'

• The Media Information Header Box shall be of type 'smhd'

• The Sample Description Box shall be derived from AudioSampleEntry as described in clause E.3.

• The timescale parameter in the Media Header Box shall be set to samplerate or an integer multiple
thereof. Configuration of samplerate is described in clause E.2.2.2.

• All DTS-HD samples are random access points, so the Sync Sample Box shall not be present in a DTS-HD
track.

E.2.2 SampleDescription Box

E.2.2.1 Overview of SampleDescription Box

The DTS SampleEntry box is derived from the AudioSampleEntry box defined in ISO/IEC 14496-12 [5]. The
dts-specific SampleEntry box shall be identified by a unique codingname value (see Table E-1). The codingname
corresponds to the DTS-HD stream composition as shown in Table E-2.

Table E-1: Defined Audio Formats

codingname Description
dtsc DTS formats prior to DTS-HD
dtsh DTS-HD audio formats
dtsl DTS-HD Lossless formats
dtse DTS Low Bit Rate (LBR) formats

E.2.2.2 DTS_SampleEntry

DTS_SampleEntry extends the AudioSampleEntry box defined in ISO/IEC 14496-12 [5]:

Class DTS_SampleEntry() extends AudioSampleEntry (codingname) {
 DTSSpecificBox() // 'ddts' box
}

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)281

For DTS_SampleEntry(), the following values inherited from AudioSampleEntry are set as follows:

codingname is according to table E-1.

channelcount is set to the number of decodable output channels in basic playback, as described in the 'ddts'
configuration box. Additional channel count as a result of future feature enhancements are defined in a box following
the 'ddts' box, where ReservedBox() is the placeholder.

samplesize is always set to 16.

samplerate is set according to DTSSamplingFrequency of either:

• 48 000 for original sampling frequencies of 24 000 Hz, 48 000 Hz, 96 000 Hz or 192 000 Hz;

• 44 100 for original sampling frequencies of 22 050 Hz, 44 100 Hz, 88 200 Hz or 176 400 Hz;

• 32 000 for original sampling frequencies of 16 000 Hz, 32 000 Hz, 64 000 Hz or 128 000 Hz.

E.2.2.3 DTSSpecificBox

E.2.2.3.1 Syntax of DTSSpecificBox

The syntax and semantics of the DTSSpecificBox ('ddts') are shown below:

class DTSSpecificBox extends Box ('ddts'){
 unsigned int(32) size;
 unsigned char type[4] = 'ddts';
 unsigned int(32) DTSSamplingFrequency;
 unsigned int(32) maxBitrate;
 unsigned int(32) avgBitrate;
 unsigned char pcmSampleDepth; // value is 16 or 24 bits
 bit(2) FrameDuration; // 0 = 512, 1 = 1024, 2 = 2048, 3 = 4096
 bit(5) StreamConstruction; // Table E-2
 bit(1) CoreLFEPresent; // 0 = none; 1 = LFE exists
 bit(6) CoreLayout; // Table E-3
 bit(14) CoreSize;
 bit(1) StereoDownmix // 0 = none; 1 = embedded downmix present
 bit(3) RepresentationType; // Table E-4
 bit(16) ChannelLayout; // Table E-5
 bit(1) MultiAssetFlag // 0 = single asset, 1 = multiple asset
 bit(1) LBRDurationMod // 0 = ignore, 1 = Special LBR duration modifier
 bit(1) ReservedBoxPresent // 0 = NoReservedBox, 1 = NoReservedBox present
 bit(5) Reserved // Reserved bits are set to 0
 ReservedBox() // optional, for future expansion
};

E.2.2.3.2 Semantics

DTSSamplingFrequency: The maximum sampling frequency stored in the compressed audio stream.

pcmSampleDepth: The bit depth of the rendered audio. For DTS formats this is usually 24-bits.

maxBitrate: The peak bit rate, in bits per second, of the audio elementary stream for the duration of the track, including
the core substream (if present) and all extension substreams. If the stream is a constant bit rate, this parameter has the
same value as avgBitrate. If the maximum bit rate is unknown, this parameter is set to 0.

avgBitrate: The average bit rate, in bits per second, of the audio elementary stream for the duration of the track,
including the core substream and any extension substream that may be present.

FrameDuration: This code represents the number of audio samples decoded in a complete audio access unit at
DTSSampling Frequency.

StreamConstructon: Provides complete information on the existence and of location of extensions in any
synchronized frame. See Table E-2. For any stream type not listed in Table E-2, this parameter is set to 0 and the coding
name defaults to dtsh.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)282

Table E-2: StreamConstruction

StreamConstruction
Core substream Extension substream

codingname
Core XCH X96 XXCH Core XXCH X96 XBR XLL LBR

1 dtsc

2 dtsc
3 dtsh
4 dtsc

5 dtsh
6 dtsh
7 dtsh

8 dtsh
9 dtsh
10 dtsh

11 dtsh
12 dtsh
13 dtsh

14 dtsh
15 dtsh
16 dtsh

17 dtsl
18 dtse
19 dtsh

20 dtsh
21 dtsh

CoreLFEPresent: Indicates the presence of an LFE channel in the core. If no core substream exists, this value is
ignored.

CoreLayout: This parameter represents the channel layout of the core within the core substream and is set according to
Table E-3. If no core substream exists, this parameter is ignored and ChannelLayout or RepresentationType is used to
determine channel configuration.

Table E-3: CoreLayout

Core Layout Description
0 Mono (1/0)
2 Stereo (2/0)
4 LT,RT (2/0)
5 L, C, R (3/0)
6 L, R, S (2/1)
7 L, C, R, S (3/1)
8 L, R, LS, RS (2/2)
9 L, C, R, LS, RS (3/2)

31 use ChannelLayout

For streams where StreamConstruction is undefined (i.e. StreamConstruction = 0), or a DTS core component only exists
in the extension substream (e.g. StreamConstruction = 19, 20 or 21), CoreLayout is set to 31.

All undefined values for CoreLayout are reserved for future use.

CoreSize: The size of a core substream AU in bytes. If no core substream exists CoreSize=0 and parameters
CoreLayout and CoreLFEPresent are ignored.

StereoDownmix: Indicates the presence of an embedded stereo downmix in the stream This parameter is not valid for
stereo or mono streams.

RepresentationType: This indicates special properties of the audio presentation, as indicated in Table E-4. This
parameter is only valid when all flags in ChannelLayout are set to 0. If ChannelLayout ≠ 0, this value is ignored.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)283

Table E-4: RepresentationType

RepresentationType Description
0 Audio asset designated for mixing with another audio asset

2 Lt/Rt Encoded for matrix surround decoding; it implies that total number of encoded
channels is 2

3 Audio processed for headphone playback; it implies that total number of encoded
channels is 2

1 and 4 through 7 Reserved

ChannelLayout: Provides complete information on channels coded in the audio stream including core and extensions.
The binary masks of the channels present, as shown in Table E-5, are added together to create ChannelLayout.

Table E-5: ChannelLayout

Bit Masks Loudspeaker Location Description Number of Channels
0001h Centre in front of listener 1

0002h Left/Right in front 2

0004h Left/Right surround on side in rear 2

0008h Low frequency effects subwoofer 1

0010h Centre surround in rear 1

0020h Left/Right height in front 2

0040h Left/Right surround in rear 2

0080h Centre Height in front 1

0100h Over the listener's head 1

0200h Between left/right and centre in front 2

0400h Left/Right on side in front 2

0800h Left/Right surround on side 2

1000h Second low frequency effects subwoofer 1

2000h Left/Right height on side 2

4000h Centre height in rear 1

8000h Left/Right height in rear 2

MultiAssetFlag: This flag is set if the stream contains more than one asset. This also implies that a DTS extension
substream is present. Multiple asset streams use the 'dtsh' coding type. When multiple assets exist, the remaining
parameters in the DTSSpecificBox only reflect the coding parameters of the first asset.

LBRDurationMod: This flag indicates a special case of the LBR coding bandwidth, resulting in 1/3 or 2/3 band
limiting. The result of this is the LBR frame duration is 50 % larger than indicated in FrameDuration. For example,
when this flag is set to 1, the FrameDuration is 6 144 samples instead of 4 096 samples.

Reserved: These bits are reserved for future definition. ISO media files created according to this version of
specification will have these bits set to 0.

E.2.2.3.3 ReservedBox

The reserved box is optional and serves as a placeholder for future expansion. Additional private boxes may follow the
'ddts' box in the DTS_SampleEntry(). Playback devices not equipped to support these additional extensions depend on
the 'ddts' box for basic playback capability.

E.3 Storage of DTS-HD Elementary Streams
One DTS-HD audio frame constitutes one sample. Samples shall be stored in the 'mdat' box in the same order in which
they are intended to be played back.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)284

E.4 Restrictions on DTS Formats
The following conditions shall remain constant in a core substream for seamless playback:

• Duration of Synchronized Frame

• Sampling Frequency

• Audio Channel Arrangement

• Low Frequency Effects flag

• Extension assignment as indicated in StreamConstruction.

The following conditions shall remain constant in an Extension substream for seamless playback:

• Duration of Synchronized Frame

• Sampling Frequency

• Audio Channel Arrangement including LFE

• Embedded stereo flag

• Extensions assignment indicated in StreamConstruction

E.5 Implementation of DTS Sample Entry

The information needed to derive the elements of the DTS Sample Entry box and boxes contained within it, may be
extracted from the respective elementary stream. DTS has tools available to implementers that will analyse DTS
elementary streams and extract the information necessary to populate these parameters. DTS document #9302J81100,
describes the function calls and return structures. To obtain this tool and additional documentation, please direct all
document requests to DTS Licensing at LicensingAdministration@dts.com.

mailto:LicensingAdministration@dts.com

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)285

Annex F (normative):
Application of DTS formats to MPEG-2 Streams

F.1 Overview of Annex F
This annex specifies how DTS and DTS-HD audio is applied in MPEG-2 systems and provides additional information
and references to the usage of DTS and DTS-HD elementary streams in DVB broadcast applications. While the use of
DTS formats in DVB broadcast is optional, if they are used, the present document should be followed.

This Annex is informative in that it is not required to use DTS or DTS-HD audio in an MPEG-2 system. However, if
the audio formats specified in the present document are implemented in MPEG-2 systems, this annex is to be followed.

Additional information pertaining to DTS formats in other MPEG-2 TS environments may be available at
www.dts.com.

F.2 Buffering Model
The DTS buffering model is designed in accordance with ISO/IEC 13818-1 [6]. Refer to the derivation of BSn for audio

elementary streams.

• For DTS core streams, the main audio buffer size (BSn) has a fixed value of 9 088 bytes, with a drain rate

(Rxn) of 2 Mbps. The fixed value above (9 088 bytes) was calculated from a double buffer (2 × 4 096 bytes)

plus jitter (384 bytes) + packet bursts (512 bytes).

• For DTS-HD Lossless formats, the value of BSn has a fixed value of 66 432 bytes, with an Rxn value of

32 Mbps.

• For all other DTS-HD formats, the value of BSn has a fixed value of 17 814 bytes, with an Rxn value of

8 Mbps.

F.3 Signalling

F.3.1 PSI Signalling in the PMT

F.3.1.1 Overview of PSI Signalling for DTS and DTS-HD

Two related generations of DTS formats exist, the original DTS core format and the expanded DTS-HD format. As a
result of this second generation of DTS formats, a new DTS-HD audio descriptor was created to accommodate the
expanded feature set. This new structures can accommodate core only formats as well as extension only and
core + extension combinations. If an MPEG-2 system supports DTS-HD, all DTS formats broadcast in that system may
use the DTS-HD signalling as described in clause G.3 in ETSI EN 300 468 [1].

F.3.1.2 Stream Type

In DVB systems, and systems that follow DVB convention, DTS and DTS-HD elementary streams are signalled as
private_stream_1 and therefore use a stream_type = 0x06, consistent with ETSI TS 101 154 [2], clause 4.1.6.1 and in
accordance with Recommendation ITU-T H.222.0/ISO/IEC 13818-1 [6].

In systems that follow ATSC convention, such as SCTE, DTS and DTS-HD have been assigned a value in the ATSC
registry, therefore stream_type is to be set to 0x88.

http://www.dts.com/

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)286

F.4 Elementary Stream Encapsulation

F.4.1 Stream ID
All DTS and DTS-HD elementary streams use a stream_id = 0xBD, indicating private stream 1, in accordance with
Recommendation ITU-T H.222.0/ISO/IEC 13818-1 [6]. Multiple DTS/DTS-HD streams may share the same value of
stream_id since each stream is carried with a unique PID value. The mapping of values of PID to stream_type is
indicated in the transport stream PMT.

F.4.2 Calculation of PTS from the elementary stream

F.4.2.1 Calculating Time Duration

The time duration of one audio access unit can be calculated by dividing the audio frame duration in samples by the
audio sampling frequency.

F.4.2.2 Frame Duration from Core Substream Metadata

In the case of a core substream, the audio frame duration for a normal (non-termination) frame is NBLKS, (described in
clause 5.4.2) and the audio sampling frequency can be determined from SFREQ which is described in Table 5-5. Thus
the frame duration in seconds is:

 frame duration(seconds) = (NBLKS + 1) × 32/Audio Sampling Frequency

F.4.2.3 Frame Duration from Extension Substream Metadata

The parameters nuRefClockCode and nuExSSFrameDurationCode are used to determine the audio frame duration
when an extension substream is present.

The frame duration is expressed by the number of clock cycles using the reference clock indicated by the value in
RefClockPeriod (Table 7-3). The number of clock cycles is derived from nuExSSFrameDurationCode (clause 7.4.1) in
the following manner:

 frame duration(seconds) = nuExSSFrameDurationCode × 512 × RefClockPeriod

F.4.3 Audio Access Unit Alignment in the PES packet
A valid sync word is aligned with the start of the PES packet data area. Valid DTS sync words are listed in Table F-1.
Data_Alignment_Indicator in the PES packet header will indicate sync word alignment.

Table F-1: DTS-HD Sync Words

name sync word description
DTS_SYNCWORD_CORE 0x7ffe8001 core substream
DTS_SYNCWORD_SUBSTREAM 0x64582025 extension substream

When a core substream is present, DTS_SYNCWORD_CORE is aligned to the beginning of the PES payload. When
only an extension substream is present, DTS_SYNCWORD_SUBSTREAM is aligned to the beginning of the PES
payload.

A PES packet of DTS audio will contain at least one complete audio access unit. Multiple complete access units are
permitted in a PES packet only when the Elementary Stream consists of a single substream.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)287

The DTS core substream header parameter FSIZE, (clause 5.4.2), indicates the number of bytes in a core frame as
FSIZE + 1 and the DTS-HD extension substream header parameter nuExtSSFsize, (clause 7.4.1), indicate the number
of bytes in each extension substream frame (respectively), as shown in Figure F-1. The total PES packet payload of a
single audio access unit will be the sum of these values for all substreams that are present.

If multiple substreams are present, the access units maintain an interleaved order of presentation, as illustrated in
Figure F-1.

Figure F-1: PES packet payload

F.5 Implementation of DTS and DTS-HD Audio Stream
Descriptors

The information needed to derive the elements within the audio descriptors can be derived from the respective
elementary stream. DTS has tools available to implementers that will analyse DTS elementary streams and extract the
information necessary to populate these parameters. DTS document #9302J81100 [i.1], describes the function calls and
return structures. To obtain this tool and additional documentation, please direct all document requests to DTS
Licensing at LicensingAdministration@dts.com.

mailto:LicensingAdministration@dts.com

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)288

Annex G (normative):
DTS-HD Streaming with Using ISO/IEC 23009-1 (DASH)

G.1 Summary
This annex describes the Media Presentation Description (MPD) requirements for delivering DTS-HD® audio streams
using MPEG DASH (Dynamic Adaptive Streaming over HTTP). In particular, the present document addresses the use
of DTS-HD in audio adaptation sets, providing examples to support for the following DASH profiles:

- ISO Base media file format On Demand profile

- ISO Base media file format live profile

- Mpeg-2 TS main profile

G.2 MPEG DASH

G.2.1 Overview
Dynamic Adaptive Streaming over HTTP (DASH) [3] provides a standard-based adaptive media streaming model
where chunks of media streams and file segments are requested with HTTP and spliced together by a client that controls
the media delivery. DASH reuses widely deployed HTTP servers and caches for efficient delivery over existing content
distribution infrastructure components such as Content Distribution Networks (CDNs), Network Address Translators
(NATs) and firewalls. It provides a rich set of features to support on-demand, live streaming and time-shift applications
and services to network-connected devices.

DASH is based on a hierarchical data model described by Media Presentation Description (MPD), which defines
formats to announce resource identifiers for a collection of encoded and deliverable versions of media content. Media
content is composed of single or multiple contiguous segments. The MPD provides sufficient information for a DASH
client to provide a streaming service to the user by requesting segments from an HTTP web server and de-multiplexing,
decoding and rendering the included media streams.

The segment formats specify the formats of the entity body of the HTTP response to an HTTP GET request or a partial
HTTP GET with the indicated byte range using HTTP/1.1 to a resource identified in the MPD. DASH reuses the
segment formats defined in ISO/IEC 14496-12 [5] and ISO/IEC 13818-1 [6]. Where values in the present document
differ depending on the segment format used, the values to use are listed under the segment format name to which they
correspond.

G.3 Media Presentation Description

G.3.1 Representation Base Type
Table G-1 is a summary of common attributes apply to Adaptation Set, Representation and Sub Representation
elements.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)289

Table G-1: Common attributes

Attribute Description

@codecs

This attribute specifies the codecs used to encode all representations within the
adaptation set and the value shall be one of "dtsc", "dtsh", "dtsl" or "dtse"
corresponding to the composition of the elementary stream.

ISO/IEC 14496-12 [5]
This value may be derived from the coding name used in DTSSampleEntry box
(Table E-2).

ISO/IEC 13818-1 [6]
For elementary streams signaled by the DTS audio descriptor, this value will always be
'dtsc'.
For elementary streams signaled by the DTS-HD audio descriptor, asset_construction
directly corresponds to StreamConstruction where the value can be looked up directly,
(see ETSI EN 300 468 [1], Annex G)

@mimeType

ISO/IEC 14496-12 [5]
For adaptation sets that conform to ISO/IEC 14496-12 [5], this value shall be set to
either:
"audio/mp4" for an ISO Base Media File that contains a DTS audio track but no

accompanying video track
"video/mp4" for an ISO Base Media File that contains a DTS audio track and one or

more accompanying video tracks

ISO/IEC 13818-1 [6]
For adaptation sets that conform to ISO/IEC 13818-1 [6], this value shall be set to:
"video/mp2t"

@audioSamplingRate

Sampling rate shall be equal to the maximum sampling frequency of the audio
encoded in the DTS-HD bitstream. This value shall be a whole decimal number
representing the sampling frequency in Hz.

ISO/IEC 14496-12 [5]
This value may be derived from DTSSamplingFrequency in the DTSSpecificBox (see
Annex E).

ISO/IEC 13818-1 [6]
For elementary streams signaled by the DTS audio descriptor, the value may be
derived from sample_rate_code in the descriptor (See ETSI EN 300 468 [1], Annex G).
For elementary streams signaled by the DTS-HD audio descriptor, if an extension
substream is present, this value may be derived from
substream_0.sampling_frequency, otherwise the value may be derived from
substream_core.sampling_frequency (see ETSI EN 300 468 [1], Annex G).

G.3.2 Audio Channel Configuration Descriptor
Audio channel configuration is used to identify the audio channel configuration scheme employed. Multiple
AudioChannelConfiguration elements may be present, indicating that the Representation supports multiple audio
channel configurations.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)290

Table G-2: AudioChannelConfiguration attributes

Attribute Description
@schemeIdUri Scheme as described in "tag:dts.com,2014:dash:audio_channel_configuration:2012".

@value

AudioChannelConfiguration shall be set to the total number of discrete output channels
represented in the stream, including LFE channels. The value shall be a whole decimal
number in the range of 1 to 32.

ISO/IEC 14496-12 [5]
The channelcount parameter in DTSSampleEntry may be used to set
AudioChannelConfiguration. (see Annex E).

ISO/IEC 13818-1 [6]
For elementary streams signaled by the DTS audio descriptor, this value may be derived
from surround_mode, lfe_flag and extended_surround_flag, defined in the descriptor.
For elementary streams signaled by the DTS-HD audio descriptor, if an extension substream
is present, this value may be derived from substream_0.channel_count, otherwise the value9
may be derived from substream_core. channel_count (see ETSI EN 300 468 [1], Annex G).

G.3.3 Representation
A Representation describes a deliverable encoded version of one or more media content components. A DASH client
may switch from Representation to Representation within an Adaptation Set to adapt to varying network bandwidth
conditions. For DTS, bit rates may differ across the same DTS stream type in one Adaptation Set.

G.3.4 Coding Constraints

G.3.4.1 Coding Constraints for Seamless Stream Switching

Seamless stream switching shall enable a DASH client to switch from one DTS stream to another without interruption
or muting between samples of the same encoded DTS audio content. To allow seamless stream switching between
multiple DTS streams encoded with the same content within one Adaptation Set, the following parameters shall be
constrained as follows:

- DTS audio coding name (@codecs) with the exception that for this purpose "dtsc" and "dtsh" may be
considered as the same.

- Audio sampling frequency differences shall only be allowed as integer multiples (e.g. 48 000, 96 000,
192 000).

NOTE: The player needs to make note of the maximum audio sampling frequency that it intends to render and set
its outputs accordingly, upsampling as necessary in order to facilitate seamless switching.

- Duration of synchronized frame.

- Audio channel arrangement.

G.3.4.2 Coding Constraints for Smooth Stream Switching

Smooth stream switching enables a DASH client to switch from one DTS stream to another by briefly fading out and
then fading in ("V-fade") without a decoder reset. To allow smooth stream switching between multiple DTS streams
encoded with the same content within an Adaptation Set, the following parameters shall be the same in all
representations:

- DTS audio coding name (@codecs) with the exception that for this purpose "dtsc" and "dtsh" may be
considered as the same.

- Audio sampling frequency differences shall only be allowed as integer multiples (e.g. 48 000, 96 000,
192 000). See the note regarding player behavior in clause G.3.4.1.

- Duration of synchronized frame.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)291

G.3.4.3 Consideration for Switching of Audio Channel Arrangement
(Informative)

Switching of audio channel arrangement can be achieved via smooth stream switching with V-fade. As frequent
switching of audio channel arrangement may be disruptive, a DASH client application may employ intelligent
algorithms to decide on switching of audio channel arrangement depending on user experience requirements and other
factors. For example, based on hysteresis and improving bandwidth conditions, a DASH client application may return to
a higher audio channel arrangement configuration after monitoring and adjusting media rates over a certain period of
time.

G.4 Media Presentation Description Examples
(Informative)

G.4.1 Example MPD for ISO Base media file format On Demand
profile

The following is an example of a static presentation with self-initializing Media Segments and multiple base URLs. It
describes the content available from two sources (cdn1 and cdn2) with four representations of the DTS-HD™ 5.1 audio
provided at bitrates between 192 kbps and 510 kbps. The media presentation complies with the ISO base media file
format On Demand profile, as defined in ISO/IEC 23009-1 [3].

<MPD
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:mpeg:DASH:schema:MPD:2011"
 xsi:schemaLocation="urn:mpeg:DASH:schema:MPD:2011 DASH-MPD.xsd"
 type="static"
 mediaPresentationDuration="PT0H0M21.35S"
 minBufferTime="PT1.5S"
 profiles="urn:mpeg:dash:profile:isoff-on-demand:2011">
 <BaseURL>http://cdn1.example.com/</BaseURL>
 <BaseURL>http://cdn2.example.com/</BaseURL>
 <Period start="PT0S" duration="PT0H0M21.35S">
 <!—DTS-HD 5.1 channel English -->
 <AdaptationSet
 mimeType="audio/mp4"
 codecs="dtse"
 lang="en"
 audioSamplingRate="48000"
 startWithSAP="1"
 subsegmentStartsWithSAP="1" >
 <AudioChannelConfiguration
 schemeIdUri="tag:dts.com,2014:dash:audio_channel_configuration:2012"
 value="6"/>
 <ContentComponent id="100" contentType="audio"/>
 <Representation id="a1" bandwidth="192000">
 <BaseURL>dtse_192_dash.mp4</BaseURL>
 <SegmentBase indexRangeExact="true" indexRange="852-920"/>
 </Representation>
 <Representation id="a2" bandwidth="256000">
 <BaseURL>dtse_256_dash.mp4</BaseURL>
 <SegmentBase indexRangeExact="true" indexRange="853-921"/>
 </Representation>
 <Representation id="a3" bandwidth="384000">
 <BaseURL>dtse_384_dash.mp4</BaseURL>
 <SegmentBase indexRangeExact="true" indexRange="852-920"/>
 </Representation>
 <Representation id="a4" bandwidth="510000">
 <BaseURL>dtse_510_dash.mp4</BaseURL>
 <SegmentBase indexRangeExact="true" indexRange="853-921"/>
 </Representation>
 </AdaptationSet>
 <!-- Video -->
 <AdaptationSet
 mimeType="video/mp4"
 codecs="avc1.640028"
 lang="en"
 startWithSAP="1"
 subsegmentStartsWithSAP="1" >

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)292

 <ContentComponent id="101" contentType="video"/>
 <Representation id="v1" width="640" height="360" bandwidth="1020000">
 <BaseURL>avc_360p_dash.mp4</BaseURL>
 <SegmentBase indexRangeExact="true" indexRange="1176-1244"/>
 </Representation>
 <Representation id="v2" width="1280" height="720" bandwidth="5250000">
 <BaseURL>avc_720p_dash.mp4</BaseURL>
 <SegmentBase indexRangeExact="true" indexRange="1177-1245"/>
 </Representation>
 <Representation id="v3" width="1920" height="1080" bandwidth="8450000">
 <BaseURL>avc_1080p_dash.mp4</BaseURL>
 <SegmentBase indexRangeExact="true" indexRange="1178-1246"/>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)293

Annex H (normative):
DTS-HD Track Compliance with ISO/IEC 23000-19 (CMAF)

H.1 General guidelines for DTS-HD CMAF tracks

H.1.1 DTS-HD Conformance to Common Media Applications
Format (CMAF)

This annex describes a media profile for DTS-HD to be used for CMAF applications. DTS-HD track files advertising
CMAF compliance shall conform to annex G and this annex.

H.1.2 Codecs profiles and levels
DTS-HD streams and DTS-HD devices shall conform to the DTS-HD Basic profile described in Annex I.

Table E-2 provides a summary of the DTS-HD stream constructions that are possible. Note that some entries do not
conform to the DTS-HD Basic profile and are therefore not included in the DTS-HD CMAF Media Profile, as indicated
in the bottom row of Table H-1.

The maximum bit rates according to StreamConstruction type is shown in Table H-1.

Table H-1: Maximum Bitrates

Value of StreamConstruction Maximum bitrate supported (Kits/sec)
1 to 4 1 536

5 to 13 6 144
14 to 16 24 576 (VBR)

18 768
17 to 19 – 21 Not permitted

H.1.3 Media access unit mapping to media samples
The SampleEntry for DTS-HD CMAF tracks shall conform to clause E.3. DTS-HD CMAF tracks shall be constrained
to the following codingnames in the SampleEntry listed in Table H-2.

Table H-2: Valid codingname values for DTS-HD CMAF Tracks

codingname
dtsc
dtse
dtsh

H.1.4 Media access unit sequence mapping to CMAF fragments
A DTS-HD audio sample is described in clause E.2. Each DTS-HD audio sample is a sync sample.

H.1.5 CMAF track constraints for CMAF switching sets
DTS-HD CMAF tracks shall be constrained according to clause E.4. The restrictions apply to all audio samples within a
track, and to tracks within a switching set where seamless switching is required.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)294

H.1.6 CMAF media profile internet media type
DTS-HD CMAF track files delivered using DASH shall be signaled with the internet media type as indicated in
Table G-1.

H.1.7 CMAF media profile brand
When the DTS-HD track conforms to clause H.2.2, the file type box ('ftyp') of a DTS-HD track may contain the brand
'dts1'. If the 'dts1' brand is present in the file type box, then the track shall comply with clause H.2.2.

H.2 Guidelines for DTS-HD CMAF media profiles

H.2.1 General
The frame duration of DTS-HD audio samples will be one of 512, 1 024, 2 048 or 4 096 decoded linear PCM samples
per frame. In testing CMAF players, examples of each frame duration should be included. Table H-3 provides a
summary of the recommended test vector properties to verify CMAF player compliance with the DTS-HD Media
Profile. This represents the combination of bitrate, StreamConstruction and frame durations possible with the DTS-HD
elementary stream.

Table H-3: Recommended Test Vector Parameters

StreamConstruction value codingname Audio frame duration Max Bit rate (see note)
1 dtsc 512 1 536
1 dtsc 1 024 1 536
1 dtsc 2 048 768
5 dtsh 512 6 144

14 dtsh 512 24 576 (VBR)
18 dtse 4 096 768

NOTE: Maximum bit rates are nominal, expressed in kilo bits per second.

H.2.2 Audio track format
A DTS-HD track conforming to the Media Profile defined by the 'dts1' brand shall conform to clause 10.2 of
ISO/IEC 23000-19 [4], Annex E of the present document and one of 'dtsc', 'dtsh', or 'dtse' sample entries as defined in
Table E-2, as constrained by clause H.1.2.

H.2.3 Loudness and dynamic range control
DTS-HD audio tracks should contain at least one set of DRC parameters, stored according to clause 5.8.3.

The DialNorm_rev2aux parameter stored in the Rev2Aux data block (described in clause 5.8.3) represents the loudness
of the encoded content.

H.2.4 Audio parameters
No specific parameters are needed to initialize the DTS-HD decoder. Every sample is a sync sample, and contains all
required metadata to begin decoding.

H.2.5 Audio presentation time adjustment
Delay can be compensated prior to stream encapsulation using the techniques specified in ISO/IEC 23000-19 [4],
Annex G.5. The use of EditListBox is not required and further delay compensation in the receiver is not required.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)295

H.3 Delivery Considerations for DTS-HD CMAF Tracks
The considerations for seamless switching and smooth switching for DASH, as described in Annex G, apply to the
delivery of CMAF tracks.

H.4 Playback Considerations for DTS-HD CMAF Tracks
When playing back DTS-HD tracks in a supported MSE (HTML 5 Web Browser) environment, no special
considerations are necessary for playback or segment boundaries.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)296

Annex I (normative):
DTS-HD Basic Profile

I.1 Overview
DTS-HD supports a number of bitstream options. This Annex describes a basic bitstream requirement and a minimum
decoder profile requirement as a minimum interoperability requirement. This Annex describes the requirements of each.

Note that DTS-HD profiles defined for specific consumer and broadcast applications, and specific commercial
implementations generally have additional requirements to this Basic Profile.

I.2 Basic Profile Decoder
All DTS-HD decoders and players shall support the following:

• Decoding of DTS core substreams

• Decoding of the DTS-HD Extension substream, including the following extensions

- LBR

• Decoding of 5.1 channels

• Downmixing of multi-channel output to stereo

• Optional extensions not supported by a decoder shall be ignored and not interfere with playback as described
in the above requirements

I.3 Basic Profile Bitstream
All DTS-HD bitstreams adhering to the Basic profile shall comply with the design rules of the present specification, and
meet the following additional requirements:

• Inclusion of a core substream and/or an extension substream.

• If a core substream is not present, the extension substream shall contain an LBR extension.

• When a multi-channel DTS-HD bitstream contains 5 or more full bandwidth channels, and the bitstream
includes a core, then the core shall contain 5 full bandwidth channels.

• When a DTS-HD bitstream includes a core, then a complete presentation shall be playable using only the core.
Decoding of additional extensions shall only enhance the core, such as increasing bandwith, coding accuracy
or adding output channels.

• In the case of a DTS-HD bitstream consisting of an LBR extension, the decoding and rendering beyond 5.1
channels shall be deemed optional.

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)297

Annex J (Informative):
Other Registrations

J.1 Overview
This clause lists some select registrations that may be of interest to users of the DTS-HD codec.

J.2 MP4RA
Registrations related to DTS-HD that are listed in the MPEG-4 Registration Authority, which can be found at
http://mp4ra.org are listed in this clause.

The following are listed as codecs with an assigned ObjectType:

dtsc

dtse

dtsh

dtsl

The following are listed as brands:

dts1

J.3 IANA
IANA registrations related to DTS-HD are listed in this clause.

The definition of vnd.dts can be found at https://www.iana.org/assignments/media-types/audio/vnd.dts

The definition of vnd.dts.hd can be found at https://www.iana.org/assignments/media-types/audio/vnd.dts.hd

http://mp4ra.org/
https://www.iana.org/assignments/media-types/audio/vnd.dts.hd
https://www.iana.org/assignments/media-types/audio/vnd.dts.hd

ETSI

ETSI TS 102 114 V1.6.1 (2019-08)298

History
Document history

V1.1.1 August 2002 Publication

V1.2.1 December 2002 Publication

V1.3.1 August 2011 Publication

V1.4.1 September 2012 Publication

V1.5.1 May 2018 Publication

V1.6.1 August 2019 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols, abbreviations and document conventions
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations
	3.4 Document Conventions

	4 Summary
	4.1 Overview
	4.2 Organization of the present document

	5 Core Audio
	5.1 Introduction
	5.2 Frame structure and decoding procedure
	5.3 Synchronization
	5.4 Frame header
	5.4.1 General Information about the Frame Header
	5.4.2 Bit stream header
	5.4.3 Primary Audio Coding Header

	5.5 Unpack Subframes
	5.5.1 Primary Audio Coding Side Information

	5.6 Primary Audio Data Arrays
	5.7 Unpack Optional Information
	5.8 Optional Information
	5.8.1 About Optional Information
	5.8.2 Auxiliary Data
	5.8.3 Rev2 Auxiliary Data Chunk
	5.8.3.1 About the REV2 Aux Data Chunk
	5.8.3.2 Rev2 Auxiliary Data Chunk structure
	5.8.3.3 Description of Rev2 Auxiliary Data Chunk fields

	6 Core Extensions
	6.1 About the Core Extensions
	6.2 X96 Extension
	6.2.1 About the X96 Extension
	6.2.2 DTS Core + 96 kHz-Extension Encoder
	6.2.3 DTS Core + 96 kHz Extension Decoder
	6.2.4 Extension (X96) Bitstream Components
	6.2.4.1 About the X96 Bitstream Components
	6.2.4.2 DTS_BCCORE_X96 Frame Header
	6.2.4.3 DTS_EXSUB_STREAM_X96 Frame Header
	6.2.4.4 X96 Channel Set Header
	6.2.4.5 96 kHz Extension Side Information
	6.2.4.6 96 kHz Extension Audio Data Arrays
	6.2.4.7 Interpolation of the LFE Channel Samples

	6.3 XBR - Extended Bit Rate Extension
	6.3.1 About the XBR Extension
	6.3.2 DTS Core Substream Encoder + XBR Extension Encoder
	6.3.3 DTS XBR Bit Rate Extension Decoder
	6.3.4 Extension (XBR) Bitstream Components
	6.3.5 XBR Frame Header
	6.3.6 XBR Channel Set Sub-Header
	6.3.7 XBR Channel Set Data
	6.3.7.1 XBR Channel Set Syntax
	6.3.7.2 Subframe Side Information
	6.3.7.3 XBR Extension Residual Audio Data Arrays

	6.3.8 Assembly of XBR subbands

	6.4 Extension to 6.1 Channels (XCh)
	6.4.1 About the XCh Extension
	6.4.2 Unpack Frame Header
	6.4.3 Unpack Audio Header
	6.4.4 Unpack Subframes
	6.4.4.1 Side Information
	6.4.4.2 Data Arrays

	6.5 Extension to More Than 5.1 Channels (XXCH)
	6.5.1 About the XXCH Extension
	6.5.2 XXCH Frame Header
	6.5.3 XXCH Channel Set Header
	6.5.4 Unpack Subframes
	6.5.4.1 Unpack Subframes Syntax
	6.5.4.2 Side Information
	6.5.4.3 Data Arrays

	7 DTS Extension Substream Construction
	7.1 About the DTS Extension Substream
	7.2 Relationship Between Core and Extension Substreams
	7.3 Audio Presentations and Audio Assets
	7.3.1 Overview of Extension Substream Architecture
	7.3.2 Channel Sets

	7.4 Synchronization and Navigation of the Substream
	7.4.1 Synchronization
	7.4.2 Substream Navigation

	7.5 Parsing Core Substream and Extension Substream Data
	7.5.1 General Information on Parsing Substreams
	7.5.2 Extension Substream Header
	7.5.3 Audio Asset Descriptor
	7.5.3.1 General Information About the Audio Asset Descriptor
	7.5.3.2 Static Metadata
	7.5.3.3 Dynamic Metadata
	7.5.3.4 Decoder Navigation Data

	8 DTS Lossless Extension (XLL)
	8.1 General Information About the XLL Extension
	8.2 Lossless Frame Structure
	8.2.1 General Information About the Lossless Frame Structure
	8.2.2 Header Structure
	8.2.2.1 General Information About the Header Structure
	8.2.2.2 Common Header

	8.2.3 Channel Set Sub-Header
	8.2.4 Navigation Index
	8.2.5 Frequency Band Structure
	8.2.6 Segments and Channel Sets

	8.3 Lossless Stream Syntax
	8.3.1 Common Header
	8.3.2 Channel Set Sub-Header
	8.3.3 Navigation Index Table
	8.3.4 Frequency Bands

	8.4 Lossless Stream Synchronization & Navigation
	8.4.1 Overview of XLL Navigation
	8.4.2 Navigation Index
	8.4.3 Stream Navigation
	8.4.4 Error Detection
	8.4.5 Error Resilience

	8.5 Lossless Stream Decoding
	8.5.1 Overview of Lossless Decoding
	8.5.2 Band Data
	8.5.2.1 General Information About Band Data
	8.5.2.2 Unpacking Frequency Band Data
	8.5.2.3 Entropy Codes Unpacking and Decoding
	8.5.2.4 Decimator History Unpacking
	8.5.2.5 LSB Residual Unpacking

	8.5.3 Fixed Coefficient Prediction
	8.5.4 Inverse Adaptive Prediction on the Decode Side
	8.5.5 Inverse Pairwise Channel Decorrelation

	8.6 Lossless Processes
	8.6.1 Assembling the MSB and LSB Parts
	8.6.2 Channel Sets Post-Processing
	8.6.2.1 Overview of Channel Set Post-Processing
	8.6.2.2 Performing and Reversing Channel Set Downmixing
	8.6.2.3 Parallel Downmix
	8.6.2.4 Hierarchical Downmix

	9 LBR
	9.1 General Information about the LBR Extension
	9.2 The LBR Decoder Environment
	9.2.1 General Information About the LBR Decoder
	9.2.2 Persistent Constants and Variables

	9.3 LBR Extension Substream Header
	9.4 LBR Audio Data Organization
	9.4.1 General Information About LBR Structure
	9.4.2 Chunks
	9.4.2.1 General Information About LBR Chunks
	9.4.2.2 Chunk ID
	9.4.2.3 Extended ID Chunks
	9.4.2.4 Chunk Length
	9.4.2.5 Data
	9.4.2.6 Checksum Verification and Descrambling

	9.5 LBR Frame Chunk
	9.6 LBR Decoding
	9.6.1 Overview of LBR Decoding
	9.6.2 Tonal Decoding
	9.6.2.1 Overview of Tonal Decoding
	9.6.2.2 Tonal Scale Factors Chunk
	9.6.2.2.1 Tonal Scale Factor Chunk Syntax
	9.6.2.2.2 Tonal scale factor processing

	9.6.2.3 Tonal Chunks
	9.6.2.3.1 About Tonal Chunks
	9.6.2.3.2 Tonal components processing
	9.6.2.3.3 Base-functions synthesis

	9.6.3 Residual Decoding
	9.6.3.1 About Residual Decoding
	9.6.3.2 Residual Decoding Overview
	9.6.3.3 Unpacking and Decoding Residuals
	9.6.3.3.1 Decoding Residuals Syntax
	9.6.3.3.2 Quantization Profiles
	9.6.3.3.3 Scale Factor Processing
	9.6.3.3.4 Decoding of Grid 1 scale factors
	9.6.3.3.5 Decoding of Grid 2 scale factors
	9.6.3.3.6 Decoding of Grid 3 scale factors

	9.6.3.4 Reconstruction of Hi resolution scale factors grid
	9.6.3.5 LPC synthesis
	9.6.3.6 Timesamples Processing

	9.6.4 Inverse Filterbank
	9.6.5 LFE Chunk
	9.6.5.1 LFE Chunk Syntax
	9.6.5.2 LFE decoding

	9.6.6 Embedded Channel Sets Chunk
	9.6.6.1 About the Embedded Channel Sets Chunk
	9.6.6.2 Embedded channel sets
	9.6.6.3 Stereo downmix case

	9.7 Program Associated Data Chunk
	9.8 Null Chunk
	9.9 Tables
	9.9.1 Quantized Amplitude to Linear Amplitude Conversion
	9.9.2 Wave synthesis envelope table
	9.9.3 Base function synthesis correction coefficients
	9.9.4 Grid1 mapping tables
	9.9.5 Quantization Levels for Residuals
	9.9.6 Long window for filterbank
	9.9.7 Delta Index for LFE ADPCM
	9.9.8 Step Size for LFE ADPCM encoding
	9.9.9 Scaling coefficients lookup table
	9.9.10 Index Hopping Huffman Tables

	Annex A (informative): Bibliography
	Annex B (normative): CRC Algorithm
	Annex C (informative): Example Pseudocode
	C.1 About Annex C
	C.2 Overview of main function calls
	C.3 Decoding Algorithms
	C.3.1 About Decoding Algorithms
	C.3.2 Block Code
	C.3.3 Inverse ADPCM
	C.3.4 Joint Subband Coding
	C.3.5 Sum/Difference Decoding
	C.3.6 Filter Bank Reconstruction
	C.3.7 Interpolation of LFE Channel

	C.4 Coefficients for Remapping Loudspeaker Locations
	C.5 Post Mix Gain Adjustment
	C.6 Coefficients for Mixing Audio Assets
	C.7 Smoothing the Coefficient Transitions
	C.8 Entropy Coding
	C.9 Downmix Coefficients

	Annex D (normative): Large Tables
	D.1 Scale Factor Quantization Tables
	D.1.1 6-bit Quantization (Nominal 2,2 dB Step)
	D.1.2 7-bit Quantization (Nominal 1,1 dB Step)

	D.2 Quantization Step Size
	D.2.1 Lossy Quantization
	D.2.2 Lossless Quantization

	D.3 Scale Factor for Joint Intensity Coding
	D.4 Dynamic Range Control
	D.5 Huffman Code Books
	D.5.1 3 Levels
	D.5.2 4 Levels (For TMODE)
	D.5.3 5 Levels
	D.5.4 7 Levels
	D.5.5 9 Levels
	D.5.6 12 Levels (for BHUFF)
	D.5.7 13 Levels
	D.5.8 17 Levels
	D.5.9 25 Levels
	D.5.10 33 Levels
	D.5.11 65 Levels
	D.5.12 129 Levels

	D.6 Block Code Books
	D.6.1 3 Levels
	D.6.2 5 Levels
	D.6.3 7 Levels
	D.6.4 9 Levels
	D.6.5 13 Levels
	D.6.6 17 Levels
	D.6.7 25 Levels

	D.7 Interpolation FIR
	D.8 32-Band Interpolation and LFE Interpolation FIR
	D.9 1 024 tap FIR for X96 Synthesis QMF
	D.10 VQ Tables
	D.10.1 ADPCM Coefficients
	D.10.2 High Frequency Subbands

	D.11 Look-up Table for Downmix Scale Factors

	Annex E (normative): DTS and DTS-HD formats in ISO Media Files
	E.1 Overview
	E.2 Signalling
	E.2.1 Track Header
	E.2.2 SampleDescription Box
	E.2.2.1 Overview of SampleDescription Box
	E.2.2.2 DTS_SampleEntry
	E.2.2.3 DTSSpecificBox
	E.2.2.3.1 Syntax of DTSSpecificBox
	E.2.2.3.2 Semantics
	E.2.2.3.3 ReservedBox

	E.3 Storage of DTS-HD Elementary Streams
	E.4 Restrictions on DTS Formats

	E.5 Implementation of DTS Sample Entry
	Annex F (normative): Application of DTS formats to MPEG-2 Streams
	F.1 Overview of Annex F
	F.2 Buffering Model
	F.3 Signalling
	F.3.1 PSI Signalling in the PMT
	F.3.1.1 Overview of PSI Signalling for DTS and DTS-HD
	F.3.1.2 Stream Type

	F.4 Elementary Stream Encapsulation
	F.4.1 Stream ID
	F.4.2 Calculation of PTS from the elementary stream
	F.4.2.1 Calculating Time Duration
	F.4.2.2 Frame Duration from Core Substream Metadata
	F.4.2.3 Frame Duration from Extension Substream Metadata

	F.4.3 Audio Access Unit Alignment in the PES packet

	F.5 Implementation of DTS and DTS-HD Audio Stream Descriptors

	Annex G (normative): DTS-HD Streaming with Using ISO/IEC 23009-1 (DASH)
	G.1 Summary
	G.2 MPEG DASH
	G.2.1 Overview

	G.3 Media Presentation Description
	G.3.1 Representation Base Type
	G.3.2 Audio Channel Configuration Descriptor
	G.3.3 Representation
	G.3.4 Coding Constraints
	G.3.4.1 Coding Constraints for Seamless Stream Switching
	G.3.4.2 Coding Constraints for Smooth Stream Switching
	G.3.4.3 Consideration for Switching of Audio Channel Arrangement (Informative)

	G.4 Media Presentation Description Examples (Informative)
	G.4.1 Example MPD for ISO Base media file format On Demand profile

	Annex H (normative): DTS-HD Track Compliance with ISO/IEC 23000-19 (CMAF)
	H.1 General guidelines for DTS-HD CMAF tracks
	H.1.1 DTS-HD Conformance to Common Media Applications Format (CMAF)
	H.1.2 Codecs profiles and levels
	H.1.3 Media access unit mapping to media samples
	H.1.4 Media access unit sequence mapping to CMAF fragments
	H.1.5 CMAF track constraints for CMAF switching sets
	H.1.6 CMAF media profile internet media type
	H.1.7 CMAF media profile brand

	H.2 Guidelines for DTS-HD CMAF media profiles
	H.2.1 General
	H.2.2 Audio track format
	H.2.3 Loudness and dynamic range control
	H.2.4 Audio parameters
	H.2.5 Audio presentation time adjustment

	H.3 Delivery Considerations for DTS-HD CMAF Tracks
	H.4 Playback Considerations for DTS-HD CMAF Tracks

	Annex I (normative): DTS-HD Basic Profile
	I.1 Overview
	I.2 Basic Profile Decoder
	I.3 Basic Profile Bitstream

	Annex J (Informative): Other Registrations
	J.1 Overview
	J.2 MP4RA
	J.3 IANA

	History

