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Intellectual Property Rights 
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (http://webapp.etsi.org/IPR/home.asp). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Foreword 
This Technical Specification (TS) has been produced by ETSI Technical Committee Electronic Signatures and 
Infrastructures (ESI). 

The present document is part 1 of a multi-part deliverable covering the Algorithms and Parameters for Secure 
Electronic Signatures, as identified below: 

Part 1: "Hash functions and asymmetric algorithms"; 

Part 2: "Secure channel protocols and algorithms for signature creation devices". 

Introduction 
The present document provides for security and interoperability for the application of the underlying mathematical 
algorithms and related parameters for electronic signatures in accordance with the Directive 1999/93/EC [1] of the 
European Parliament and of the Council of 13 December 1999 on a Community framework for electronic signatures. 

On the other side the present document is not a legal document answering the question which key lengths or use dates 
are sufficient to ensure a certain level of liability. In particular the reader is warned that some national signature laws or 
regulations may demand a higher level of security for qualified electronic signatures than recommended here by the key 
lengths and use dates in the present document. 

The present document defines a list of hash functions, as well as a list of signature schemes together with the 
requirements on their parameters, as well as the recommended combinations of these schemes with hash functions and 
padding method in the form of "signature suites" to be used with the data structures defined in the documents developed 
under the EESSI (European Electronic Signature Standardization Initiative). The present document contains several 
informative annexes which provide useful information on a number of subjects mentioned in the text. 

The present document is not a general purpose document dealing with hash functions and asymmetrical algorithms in 
general. The goal of the present document is not to list all "good" signature algorithms but those that are most important 
to be used in the context of advanced electronic signatures. In addition, the intent of the present document is not to have 
a catalog of all algorithms suitable for advanced electronic signatures, but to limit the list to a reasonable set so that 
interoperability can be achieved. Interoperability with security is the main issue. 

The primary criteria for inclusion of an algorithm in the document is "Secure, widely used and deployed in practice". 
Whereas all listed algorithms have been checked for security by cryptographic experts, it cannot be concluded from the 
document, that an algorithm not listed would be insecure. 

http://webapp.etsi.org/IPR/home.asp
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The second part of this technical standard (protocols and algorithms for SCDev secure channels) defines protocols and 
symmetric algorithms that may optionally be used to construct a secure channel providing either only integrity or both 
integrity and confidentiality between an application and a signature creation device (SCDev). Such a secure channel 
may be used during the operational phase of a signature creation device: 

•  when the key pair is not generated by the SCDev, to remotely download in the SCDev both a private key and 
the associated public key certificate; 

•  when the key pair is generated by the SCDev, to remotely download in the SCDev a public key certificate and 
associate it with the previously generated private key. 
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1 Scope 
The present document is targeted to support advanced electronic signatures and the related infrastructure.  

The present document defines a list of hash functions and a list of signature schemes, as well as the recommended 
combinations of hash functions and signatures schemes in the form of "signature suites". 

The primary criteria for inclusion of an algorithm in the present document are: 

•  the algorithm is considered as secure; 

•  the algorithm is commonly used; and 

•  the algorithm can easily be referenced (for example by means of an OID). 

This does not mean that other hash functions and signature suites cannot be used, but either they do not correspond to 
the above criteria or their security have not been assessed. 

The document also provides guidance on the hash functions, signature schemes and signature suites to be used with the 
data structures used in the context of electronic signatures. For each data structure, the set of algorithms to be used are 
specified. Each set is identified by an identifier which is either an OID (Object IDentifier) or a URI /URN. 

The use of such identifiers is necessary so that interoperability can be achieved. In order to allow for data interchange, 
the document references algorithms in terms of OIDs and URIs / URNs together with algorithm parameters. 

Different requirements apply to the issuers and to the users of the data structures in order to allow for interoperability. 

RFCs documents use the terms SHALL, SHOULD, MAY, RECOMMENDED in order to allow for interoperability. 
The same terminology is used in the present document (see RFC 2119 [25]). 

Issuers of the data structures (e.g. CSPs, CRL Issuers, OCSP responders, TSUs) need to know the algorithms and key 
sizes they SHOULD or MAY support. There SHOULD be at least one algorithm recommended to support, but may be 
more than one. 

Users of the data structures (i.e. signers or verifiers of electronic signatures) need to know the algorithms and key sizes 
they SHALL, SHOULD or MAY support. For users and for each data structure, there must be at least one algorithm to 
support, but may be more than one. 

These requirements are listed in annex A. 

Annex B provides historical information on the recommended hash functions, algorithms and key sizes for the 
generation and verification of electronic signatures. This annex will be periodically updated. 

Annex C provides more information on the generation of RSA modulus. 

Annex D provides more information on the generation of elliptic curve domain parameters. 

Annex E addresses the generation of random data. 

Annex F lists the algorithm identifiers defined in various documents. 

Annex G provides a short abstract of ISO/IEC 10118-3 [3] and ISO/IEC 9796-2 [17]. 

Annex H provides some guidance on signature maintenance. 

Annex I lists the major changes from the previous versions. 

The present document defines a set of algorithms (i.e. hash functions, signature schemes and signature suites) and the 
corresponding parameters that are recommended to be used. If such algorithms are used according to the context where 
they are expected to be used, then a reasonable security level can be assumed. 



 

ETSI 

ETSI TS 102 176-1 V1.2.1 (2005-07) 9  

The algorithms defined in the present document are usable in particular with the following documents: 

•  TS 101 733 [18]: "Electronic Signatures and Infrastructures (ESI); Electronic Signature Formats"; 

•  TS 101 903 [19]: "XML Advanced Electronic Signatures (XAdES)"; 

NOTE:  XML language is defined in RFC 3275 [10]. 

•  TS 101 861 [20]: "Time stamping profile"; 

•  TS 101 456 [33]: "Electronic Signatures and Infrastructures (ESI); Policy requirements for certification 
authorities issuing qualified certificates"; 

•  TS 102 042 [34]: "Electronic Signatures and Infrastructures (ESI); Policy requirements for certification 
authorities issuing public key certificates"; 

•  CWA 14169 [35]: "Secure Signature-Creation Devices "EAL 4+""; 

•  CWA 14170 [36]: "Security requirements for signature creation applications"; 

•  CWA 14171 [37]: "Procedures for electronic signature verification"; 

•  CWA 14167-1 [38]: "Security Requirements for Trustworthy Systems Managing Certificates for Electronic 
Signatures - Part 1: System Security Requirements"; 

•  CWA 14167-2 [39]: "Security Requirements for Trustworthy Systems Managing Certificates for Electronic 
Signatures - Part 2: Cryptographic module for CSP Signing Operations with Backup - Protection Profile"; 

•  CWA 14167-3 [40]: "Security Requirements for Trustworthy Systems Managing Certificates for Electronic 
Signatures - Part 3: Cryptographic module for CSP key generation services - Protection profile 
(CMCKG-PP)"; 

•  CWA 14167-4 [41]: "Security Requirements for Trustworthy Systems Managing Certificates for Electronic 
Signatures - Part 4: Cryptographic module for CSP signing operations - Protection profile - CMCSO PP"; 

•  RFC 3280 [2]: "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) 
Profile"; 

•  RFC 3281 [21]: "An Internet Attribute Certificate profile for authorization"; 

•  RFC 3161 [9]: (2001): "Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP)"; 

•  RFC 2560 [22]: "X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP". 

Patent related issues are out of the scope of the present document. 

2 References 
The following documents contain provisions which, through reference in this text, constitute provisions of the present 
document. 

•  References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. 

•  For a specific reference, subsequent revisions do not apply. 

•  For a non-specific reference, the latest version applies. 

Referenced documents which are not found to be publicly available in the expected location might be found at 
http://docbox.etsi.org/Reference. 

[1] Directive 1999/93/EC of the European Parliament and of the Council of 13 December 1999 on a 
Community framework for electronic signatures. 

http://docbox.etsi.org/Reference


 

ETSI 

ETSI TS 102 176-1 V1.2.1 (2005-07) 10 

[2] IETF RFC 3280 (2002): "Internet X.509 Public Key Infrastructure Certificate and Certificate 
Revocation List (CRL) Profile". 

[3] ISO/IEC 10118-3 (2004): "Information technology - Security techniques - Hash functions - 
Part 3: Dedicated hash functions". 

NOTE: See annex G for main content description. 

[4] FIPS Publication 180-2 (2002): "Secures Hash Standard". 

NOTE: Change Notice to include SHA-224. 

[5] IEEE P1363 (2000): "Standard Specifications for Public-Key Cryptography". 

[6] FIPS Publication 186-2 (2000): "Digital Signature Standard (DSS)". 

NOTE: With change notice from October 5, 2001. 

[7] ANSI X9.62 (1998): "Public Key Cryptography for the Financial Services Industry: The Elliptic 
Curve Digital Signature Algorithm (ECDSA)". 

[8] ISO/IEC 15946-2 (2002): "Information technology - Security techniques - Cryptographic 
techniques based on elliptic curves - Part 2: Digital signatures". 

NOTE: This IS is confirmed until the update of ISO/IEC 14888-3 is ready. 

[9] IETF RFC 3161 (2001): "Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP)". 

[10] IETF RFC 3275 (2002): "(Extensible Markup Language) XML-Signature Syntax and Processing". 

[11] IETF RFC 3278 (2002): "Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic 
Message Syntax (CMS)". 

[12] IETF RFC 3279 (2002): "Algorithms and Identifiers for the Internet X.509 Public Key 
Infrastructure Certificate and Certificate Revocation List (CRL) Profile". 

[13] IETF RFC 3370 (2002): "Cryptographic Message Syntax (CMS) Algorithms". 

[14] IETF RFC 3447 (2003): "Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography 
Specifications Version 2.1". 

[15] IETF RFC 4055 (2005): "Additional Algorithms and Identifiers for RSA Cryptography for use in 
the Internet X.509 Public Key Infrastructure - Certificate and Certificate Revocation List (CRL) 
Profile". 

[16] DIN V 66291-1: "Chip cards with digital signature application/function according to SigG and 
SigV". 

NOTE: See CWA 14890-1 section 13.3.1 for an English translation: "Application Interface for smart cards used 
as Secure Signature Creation Devices - Part 1: Basic requirements". 

[17] ISO/IEC 9796-2: "Information technology - Security techniques - Digital signature schemes giving 
message recovery - Part 2: Integer factorization based mechanisms". 

NOTE: See annex G for main content description. 

[18] ETSI TS 101 733: "Electronic Signatures and Infrastructures (ESI); Electronic Signature Formats". 

[19] ETSI TS 101 903: "XML Advanced Electronic Signatures (XAdES)". 

[20] ETSI TS 101 861: "Time stamping profile". 

[21] IETF RFC 3281 (2002): "An Internet Attribute Certificate profile for Authorization". 

[22] IETF RFC 2560 (1999): "X.509 Internet Public Key Infrastructure Online Certificate Status 
Protocol - OCSP". 
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[23] IETF RFC 3852 (2004): "Cryptographic Message Syntax (CMS)". 

[24] IETF RFC 3270 (2002): "Multi-Protocol Label Switching (MPLS) Support of Differentiated 
Services". 

[25] IETF RFC 2119 (1997): "Key words for use in RFCs to Indicate Requirement Levels". 

[26] ISIS-MTT Interoperability Specification (2004), TeleTrusT e.V. Deutschland, www.isis-mtt.de. 

[27] IETF RFC 3874 (2005): "A 224-bit One-way Hash Function: SHA-224". 

[28] IETF RFC 4050 (2005): "Using the Elliptic Curve Signature Algorithm (ECDSA) for XML 
Digital Signatures". 

[29] IETF RFC 4051 (2005): "Additional XML Security Uniform Resource Identifiers (URIs)". 

[30] W3C Recommendation - 12 February 2002: "XML-Signature Syntax and Processing". 

NOTE: http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/ 

[31] W3C Recommendation - 10 December 2002: "XML Encryption Syntax and Processing". 

NOTE: http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/ 

[32] ISO/IEC 14888-3 (1999): "Information technology - Security techniques - Digital signatures with 
appendix - Part 3: Certificate-based mechanisms". 

[33] ETSI TS 101 456: "Electronic Signatures and Infrastructures (ESI); Policy requirements for 
certification authorities issuing qualified certificates". 

[34] ETSI TS 102 042: "Electronic Signatures and Infrastructures (ESI); Policy requirements for 
certification authorities issuing public key certificates". 

[35] CWA 14169: "Secure Signature-Creation Devices "EAL 4+"". 

[36] CWA 14170: "Security requirements for signature creation applications". 

[37] CWA 14171: "Procedures for electronic signature verification". 

[38] CWA 14167-1: "Security Requirements for Trustworthy Systems Managing Certificates for 
Electronic Signatures - Part 1: System Security Requirements". 

[39] CWA 14167-2: "Security Requirements for Trustworthy Systems Managing Certificates for 
Electronic Signatures - Part 2: Cryptographic module for CSP Signing Operations with Backup - 
Protection Profile". 

[40] CWA 14167-3: "Security Requirements for Trustworthy Systems Managing Certificates for 
Electronic Signatures - Part 3: Cryptographic module for CSP key generation services - Protection 
profile (CMCKG-PP)". 

[41] CWA 14167-4: "Security Requirements for Trustworthy Systems Managing Certificates for 
Electronic Signatures - Part 4: Cryptographic module for CSP signing operations - Protection 
profile - CMCSO PP". 

http://www.isis-mtt.de/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
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3 Definitions and abbreviations 

3.1 Definitions 
For the purposes of the present document, the following terms and definitions apply: 

bit length: bit length of an integer p is r if 2r-1 ≤  p < 2r 

signature policy: set of rules for the creation and validation of an electronic signature, that defines the technical and 
procedural requirements for electronic signature creation and validation, in order to meet a particular business need, and 
under which the signature can be determined to be valid 

signature scheme: triplet of three algorithms composed of a signature creation algorithm, a signature verification 
algorithm and a key generation algorithm 

NOTE: The key generation algorithm generates the keys for the two others algorithms. 

signature suite: combination of a signature scheme with a padding method and a cryptographic hash function 

3.2 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

AA Attribute Authority 
CRL Certificate Revocation List 
CRT Chinese Remainder Theorem 
CSP Certification-Service-Provider 
CWA CEN Workshop Agreement 
DRNG Deterministic Random Number Generator 
DSA Digital Signature Algorithm 
ECDSA Elliptic Curve Digital Signature Algorithm 
ECGDSA Elliptic Curve German Digital Signature Algorithm 
EESSI European Electronic Signature Standardization Initiative 
MGF Mask Generation Function 
NRNG Non-deterministic Random Number Generator 
OCSP Online Certificate Status Protocol 
OID Object IDentifier 
RfC Request for Comments 
RNG Random Number Generator 
RSA Rivest, Shamir and Adleman algorithm 
SAGE Security Algorithms Group of Experts 
SCDev Secure Signature Creation Device 
TST Time-Stamp Token 
TSU Time-Stamping Unit 
URI Uniform Resource Identifier 
URN Uniform Resource Number 

4 Maintenance of the document 
As a response to relevant developments in the area of cryptography and technology, activities for the maintenance of the 
present document shall enable dynamic updating of the lists of recommended algorithms and signature suites. An initial 
list of recommended cryptographic hash functions and signature algorithms is given in the present document. 
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The maintenance activities will introduce new cryptographic hash functions and signature algorithms and will lead to 
remove cryptographic hash functions and signature algorithms from the list and need to respond to the following 
situations: 

1) The need to introduce new algorithms and relevant parameters will call for a mechanism that is rather 
dynamic. Since it is important to maintain interoperability, updates may result from the adoption or removal of 
an algorithm in a document on which an EESSI is based upon. 

2) Advances in cryptography will call for a phasing out of some algorithms or parameters. Such phasing out will 
normally be known well in advance. 

3) In the case of new attacks the immediate need to remove an algorithm could arise. 

The maintenance activity will be carried by ETSI. 

In order to allow an easy follow up of the present document, an history of the tables provided in the main body of the 
document will be maintained and kept as annexes. 

5 Hash functions 

5.1 General 
A hash function takes as input a variable-length message and produces as output a fixed-length hash value. 

NOTE: In the present document, "hash function" means a hash function with the three properties defined in this 
clause (i.e. clause 5.1). 

Hash functions may be used in a variety of cases, such as: 

•  Advanced Electronic Signatures include the identifier of the hash function used to compute the digital 
signature. 

•  Time-Stamp tokens include the identifier of the hash algorithm used to compute the hash value for the 
time-stamped data. 

•  Public key certificates include the identifier of a signature suite which defines the hash function used to 
compute the digital signature. 

For the purpose of generating signatures the following (informally defined) three properties are required from the hash 
function h. 

1) Pre-image resistance: Given y = h(m) (but not m) it is practically infeasible to find m. Without this property, 
a signature scheme may otherwise be vulnerable to an attack based on generating the signature "backwards", 
applying the verification function to a randomly chosen signature value. 

2) 2nd pre-image resistance: Given h(m) and m, it is practically infeasible to find another m'≠ m such that 
h(m) = h(m'). For signatures, this property protects from re-using an already existing signature for another 
message. 

3) Collision resistance: It is practically infeasible to find any pair of distinct values m, m' such that 
h(m) = h(m'). This property is obviously needed to protect signature against chosen message attacks. 

While one can construct examples of functions that are collision resistant, but not pre-image resistant, one would for 
practical purposes nevertheless expect that the above list of properties is ordered by difficulty for an attacker, 
i.e. breaking pre-image resistance is the most difficult. Recently some new attacks against hash function MD5 
succeeded, it was shown that MD5 is not collision resistant by constructing classes of messages-pairs with the same 
hash value. Whereas the loss of collision resistance does not imply that a pre-image or second pre-image can easier be 
constructed, it is recommended to migrate to other hash functions, if the collision resistance becomes weaker. 
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In addition to this, more subtle properties are often required as a consequence of mathematical properties of the 
signature scheme itself. For instance, h should not preserve algebraic structure. The perhaps best known example is the 
multiplicativity of the (naive) RSA scheme, which would otherwise give a valid signature for a*b from two valid 
signatures of a and b. 

The above properties have led to some signature schemes being defined and proven secure in the so-called Random 
Oracle Model, where one assume h "behaves" like a completely random function. Intuitively, a completely random 
function should have all of the above properties so long as the range of the function is large enough. 

The list of currently recommended hash functions is given in table 1. Each hash function has a unique entry index 
represented by a string beginning with "1." followed by a two-digit entry number. 

Table 1: The list of recommended hash functions 

Hash function entry index Short hash function entry name Adoption date Normative references 
1.01 sha1 01.01.2001 ISO/IEC 10118-3 [3] and 

FIPS Publication 180-2 [4] 
1.02 ripemd160 01.01.2001 ISO/IEC 10118-3 [3] 
1.03 sha-224 2004 FIPS Publication 180-2 [4] 
1.04 sha-256 2004 ISO/IEC 10118-3 [3] and 

FIPS Publication 180-2 [4] 
1.05 Whirlpool 2004 ISO/IEC 10118-3 [3] 

NOTE 1: Additional secure hash algorithms, beside the SHA-2 family, was needed. For that reason the Whirlpool 
algorithm has been added. This algorithm has been reviewed by NESSIE experts. 

NOTE 2: SHA-384 and SHA-512, defined in ISO/IEC 10118-3 [3], may also be used, the security level they are supposed 
to provide is above SHA-224 and SHA-256, therefore they are not mentioned here. 

 

5.2 Recommended one way hash functions 

5.2.1 SHA1 

1) SHA-1 MAY be used to hash a message, M, having a length of up to 264-1 bits. 

The final result of SHA-1 is a 160-bits message digest. The SHA-1 algorithm is described in ISO/IEC 10118-3 [3] and 
FIPS Publication 180-2 [4]. 

NOTE: Recently an attack against SHA-1 has been announced that allegedly can produce collisions with an effort 
of 269 which would be a (theoretical) break of this hash function. Analogy with former attacks against 
hash functions suggests that probably the attack is well suited for parallelization and that the effort for 
finding meaningful collisions is not notable higher. A necessary effort of 269 operations can still be 
regarded as not feasible at this moment but more effective methods may perhaps be found soon. Because 
of this, at least SHA-224 and SHA-256 SHOULD be implemented for any new product for electronic 
signatures. One should also develop plans how to switch quickly to other hash functions for electronic 
signatures in the case that SHA-1 and/or RIPEMD160 in fact turn out to be too weak. 

5.2.2 RIPEMD-160 

RIPEMD-160 MAY be used to hash a message. RIPEMD-160 is a 160-bit cryptographic hash function, designed by 
Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. It is described in ISO/IEC 10118-3 [3]. It is replacing the 128-bit 
hash function RIPEMD. The maximal message size is to 264-1. 

NOTE: RIPEMD-320 is constructed from RIPEMD-160 by initializing the two parallel lines with different initial 
values, omitting the combination of the two lines at the end of every application of the compression 
function, and exchanging a chaining variable between the 2 parallel lines after each round. The security 
level of the 320-bit extension of RIPEMD-160 is the same as that of RIPEMD-160 itself. Similarly the 
256-bit extension of RIPEMD-128, i.e. RIPEMD-256 is the same as that of RIPEMD-128. 
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5.2.3 SHA-224 

SHA-224 MAY be used to hash a message, M, having a length of up to 264-1 bits and the output size is 224 bit. The 
function is defined in the exact same manner as SHA-256 (clause 6.2), except for two operations in the formation of the 
initial and final hash values. The SHA-224 algorithm is described in FIPS Publication 180-2 [4]. 

5.2.4 SHA-256 

1) SHA-256 MAY be used to hash a message, M, having a length of up to 264-1bits. 

The final result of SHA-256 is a 256-bit message digest. The SHA-256 algorithm is described in FIPS Publication 
180-2 [4]. 

5.2.5 WHIRLPOOL 

WHIRLPOOL is a hash function designed by Vincent Rijmen and Paulo S. L. M. Barreto that operates on messages 
less than 2256-1 bits in length, and produces a message digest of 512 bits. 

Whirlpool MAY be used to compute the imprint of a message placed in a time-stamp token. 

Whirlpool MAY only be used with a secure signature scheme supporting key sizes that match the Whirlpool output, 
i.e. 512 bits. DSA and ECDSA cannot be used with Whirlpool. However, it MAY be used with the RSA algorithm. The 
WHIRLPOOL algorithm is described in ISO/IEC 10118-3 [3]. 

NOTE: The Whirlpool output, i.e. 512 bits, is much more than what is needed, but there is currently no definition 
of a Whirlpool algorithm variant with an output less than 512 bits. Whirlpool has been included as an 
alternative to the SHA-2 family and can be used either to compute a hash value (for a time-stamp token) 
or with the RSA algorithm.  

6 Signature schemes 
A signature scheme consists of three algorithms: a key generation algorithm and a signature creation algorithm and a 
signature verification algorithm. The later are identified hereafter as a pair of algorithms. Each pair has its own name. 

6.1 Signature algorithms 

6.1.1 General 

The list of currently recommended signature algorithms is given in table 2. Each signature algorithm has a unique entry 
index represented by a string beginning with "2." followed by a two-digit entry number. 

Table 2: The list of recommended signature algorithms 

Signature algorithm 
entry index 

Short signature algorithm 
entry name 

Key and Parameter 
generation algorithms 

Normative references 

2.01 RSA Rsagen1 RFC 3447 [14] 
2.02 DSA Dsagen1 FIPS Publication 186-2 [6] 
2.03 ecdsa-Fp Ecgen1 ANSI X9.62 [7] 
2.04 ecdsa-F2m Ecgen2 ANSI X9.62 [7] 
2.05 ecgdsa-Fp Ecgen1 [8] 
2.06 ecgdsa-F2m Ecgen2 [8] 

 

The following clauses describe the parameters and key generation algorithms for the signature algorithms listed in 
table 2. 
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6.1.2 Recommended signature algorithms 

6.1.2.1 RSA 

The RSA algorithm's security is based on the difficulty of factoring large integers. The RSA computations SHALL be 
performed as described in RFC 3447 [14]. To generate the key pair two prime numbers, p and q, are generated 
randomly and independently, satisfying the following requirements: 

•  the bit length of the modulus n = p q must be at least MinModLen; its length is also referred to as ModLen; 

•  p and q should have roughly the same length, e.g. set a range such as 0,1 < | log2p - log2q | < 30; 

•  the set of primes from which p and q are (randomly and independently) selected SHALL be sufficiently large 
and reasonably uniformly distributed. 

The private key consists of a positive integer d (the private exponent) and the modulus n. 

The public key consists of a positive integer e (the public exponent) and the modulus n. 

CRT (Chinese Remainder Theorem) implementations are also allowed, in which case the private key will contain more 
values derived from the factorization of the modulus n. 

For RSA signatures also a padding method has to be specified. 

6.1.2.2 DSA 

The DSA algorithm's security is based on the difficulty of computing the discrete logarithm in the multiplicative group 
of a prime field Fp. The DSA computations SHALL be performed as described in FIPS Publication 186-2 [6] with the 

change notice. The public parameters p, q and g MAY be common to a group of users. The prime modulus p SHALL be 
at least pMinLen bits long. q, which is a prime divisor of (p-1), SHALL be at least qMinLen bits long. g SHALL be 
computed as indicated in FIPS Publication 186-2 [6] with the change notice. 

The private key consists of: 

•  the public parameters p, q and g; 

•  a statistically unique and unpredictable integer x, 0 < x < q, which is signatory-specific; and 

•  a statistically unique and unpredictable integer k, 0 < k < q, which must be regenerated for each signature. 

If the distribution of k is significantly different from uniform within the interval then there may be weaknesses. 
Bleichenbacher has presented an attack which can be sub-exhaustive depending on the size of the bias and the number 
of signatures produced using a single secret key. The value of k must be kept secret as well as the private key, even if k 
is only partially known there exists an attack (Nguyen/Shparlinski). 

The public key consists of p, q, g and an integer y computed as y = gx mod p. 

When computing a signature of a message M, no padding of the hashcode is necessary. However, the hashcode must be 
converted to an integer by applying the method described in appendix 2.2 of FIPS Publication 186-2 [6] with the change 
notice. 

6.1.2.3 Elliptic curve analogue of DSA based on a group E(Fp) 

This signature algorithm is referred to as ecdsa-Fp. The algorithm SHALL be applied as specified in ANSI X9.62 [7]. 
The same algorithm is also specified in ISO/IEC 14888-3 [32], IEEE P1363 [5] and ISO/IEC 15946-2 [8] which can be 
used for information. The security of the ecdsa-Fp algorithm is based on the difficulty of computing the elliptic curve 
discrete logarithm. 
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The public parameters are as follows: 

•  p prime; 

•  q large prime at least qMinLen bits long, p ≠ q; 

•  E elliptic curve over a finite field Fp whose order n is divisible by q; and 

•  P point on E(Fp) of order q. 

The public parameters MAY be common to a group of users. The quotient h of the group order n divided by q may be 
considered as a public parameter too. 

The class number of the maximal order of the endomorphism ring of E SHALL be at least MinClass=200. 

The value r0: = min (r: q divides pr-1) SHALL be greater than r0Min=104. 

h = n/q must be less or equal 4. (see http://www.secg.org/collateral/sec1.pdf). 

In FIPS Publication 186-2 [6] five curves over a prime field are defined. All these curves fulfil the above requirements. 

The private key consists of: 

•  the public parameters E, m, q and P; 

•  a statistically unique and unpredictable integer x, 0 < x < q, which is signatory-specific; and 

•  a statistically unique and unpredictable integer k, 0 < k < q, which must be regenerated for each signature. 

The public key consists of E, q, P and Q, a point of E, which is computed as Q = xP. 

6.1.2.4 Elliptic curve analogue of DSA based on a group E(F2m) 

This signature algorithm is referred to as ecdsa-F2m. The algorithm SHALL be applied as specified in ANSI X9.62 [7]. 
The same algorithm is also specified in ISO/IEC 14888-3 [32], IEEE P1363 [5], and ISO/IEC 15946-2 [8] which can be 
used for information. The security of the ecdsa-F2m algorithm is based on the difficulty of computing the elliptic curve 
discrete logarithm. 

The public parameters are as follows: 

•  m prime number; 

•  q large prime at least qMinLen bits long; 

•  E elliptic curve over a finite field F2m whose n order is divisible by q; 

•  it must not be possible to define E over F2; and 

•  P point on E(F2
m) of order q. 

h = n/q must be less or equal 4 (see http://www.secg.org/collateral/sec1.pdf). 

The class number of the maximal order of the endomorphism ring of E SHALL be at least MinClass=200. The value 
r0:=min(r: q divides 2mr-1) SHALL be greater than r0Min=104. 

In FIPS Publication 186-2 [6] five pseudorandomly generated curves over F2m are defined. All these curves satisfy the 

above requirements. Note that the Koblitz curves given in FIPS Publication 186-2 [6] are defined over F2 and hence do 

not fulfil the fourth requirement. 

http://www.secg.org/collateral/sec1.pdf
http://www.secg.org/collateral/sec1.pdf
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A field representation is required, common to both the signatory and the verifier, so that signatures can be interpreted 
correctly. The representations given in IEEE P1363 [5] and FIPS Publication 186-2 [6] are recommended. Thus if a 
polynomial basis is required then an irreducible trinomial of the form xm + xa + 1 with minimal a should be used. If 
such a polynomial does not exist then an irreducible pentanomial of the form xm + xa + xb + xc + 1 should be used; a 
should be minimal, b should be minimal given a and c should be minimal given a and b. 

The private key consists of: 

•  the public parameters E, m, q and m; 

•  a statistically unique and unpredictable integer x, 0 < x < q, which is signatory-specific; and 

•  a statistically unique and unpredictable integer k, 0 < k < q, which must be regenerated for each signature. 

The public key consists of E, q, m and Q, a point of E which is computed as Q=xP. 

6.1.2.5 EC-GDSA based on a group E(Fp) 

This signature algorithm is referred to as ecgdsa-Fp. The algorithm SHALL be applied as specified in 
ISO/IEC 15946-2 [8]. The security of the ecgdsa-Fp algorithm is based on the difficulty of computing the elliptic curve 
discrete logarithm. 

The ecgdsa-Fp algorithm is a variant of the ecdsa-Fp algorithm with a modified signature creation equation and 
verification method. The parameters are the same as for ecdsa-Fp and therefore should satisfy all the constraints given 
in clause 6.2.3. 

NOTE: The basic difference between ECDSA and EC-GDSA is that during signature creation k does not need to 
be inverted for ECGDSA. Under certain circumstances this can be advantageous for the design and 
performance of the SCDev. 

6.1.2.6 EC-GDSA based on a group E(F2
m) 

This signature algorithm is referred to as ecgdsa-F2m. The algorithm SHALL be applied as specified in 
ISO/IEC 15946-2 [8]. The security of the ecgdsa-F2m algorithm is based on the difficulty of computing the elliptic 
curve discrete logarithm. 

The ecgdsa-F2m algorithm is a variant of the ecdsa-F2m algorithm with a modified signature creation equation and 
verification method. The parameters are the same as for ecdsa-F2m and therefore should satisfy all the constraints given 
in clause 6.2.4. 

NOTE: For the difference between ECDSA and ECGDSA see the note in clause 6.1.2.5. 

6.2 Recommended key pair generation methods 

6.2.1 General 

Key pair generation methods are not part of the definition of a signature suite and may evolve without the need to 
change the identifier of the signature suite. 

Table 3 summarizes the recommended key pair generation methods for all signature algorithms considered in the 
present document. Each key pair generation method has a unique entry index represented by a string beginning with "3" 
followed by a two-digit entry number. 
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Table 3: The list of recommended key pair generation methods 

Key 
generator 

entry index 

Short key 
generator 

entry name 

Signature 
algorithm 

Random number 
generation 

method 

Random generator 
parameters 

Adoption 
date 

Normative 
references 

3.01 rsagen1 rsa trueran or pseuran Up to 2010: 
EntropyBits ≥80 or 
SeedEntropy ≥ 80 
Beyond 2010: 
EntropyBits ≥100 or 
SeedEntropy ≥ 100 

01.01.2001  

3.02 dsagen1 dsa trueran or pseuran Up to 2010: 
EntropyBits ≥ 80 or 
SeedEntropy ≥80  
Beyond 2010: 
EntropyBits ≥100 or 
SeedEntropy ≥ 100 

01.01.2001 FIPS Publication 
186-2 [6] 

3.03 ecgen1 ecdsa-Fp, 
ecgdsa-Fp 

trueran or pseuran Up to 2010: 
EntropyBits ≥ 80 or 
SeedEntropy ≥ 80 
Beyond 2010: 
EntropyBits ≥100 or 
SeedEntropy ≥ 100 

01.01.2001  

3.04 ecgen2 ecdsa-F2m, 
ecgdsa-F2m 

trueran or pseuran Up to 2010: 
EntropyBits ≥80 or 
SeedEntropy ≥ 80 
Beyond 2010: 
EntropyBits ≥100 or 
SeedEntropy ≥ 100 

01.01.2001  

 

6.2.2 Recommended key pair generation methods 

6.2.2.1 Key and parameter generation algorithm rsagen1 

Generate p and q as indicated in clause 6.1.2.1 by applying a random number generation method satisfying the 
requirements trueran (see clause 8.2.1) or using a method satisfying pseuran (see clause 8.2.2) with an appropriate size 
seed. Each prime SHALL effectively be influenced by EntropyBits bits of true randomness or a seed of entropy 
SeedEntropy bit. Random numbers SHALL be tested for primality until one of them is found to be prime with a 
probability of error (i.e. of actually being composite) of at most 2 -80. Details on generating random primes can be found 
in ISO/IEC 18032 (see bibliography), in particular section 8.2. Examples of algorithms to produce RSA moduli, 
i.e. pairs of primes satisfying the condition 0,1 < | log2p - log2q | < 30 are given in annex C. 

NOTE 1: Annex A of ISO/IEC 18032 (see bibliography) contains a table of error probabilities for different 
probabilistic primality tests. 

EXAMPLE: For a random number of 1 024 bit tested with three successful iterations of the Miller-Rabin test 
the probability that this number is not a prime is about 2-93. 

The private exponent d and the public exponent e must satisfy ed ≡ 1 (mod lcm (p-1, q-1)) which is automatically the 
case if ed ≡ 1 (mod (p-1)(q-1)). The private exponent d must not be too small (Wiener 1990, Boneh and Durfee 1999, 
Durfee and Nguyen 1999, see bibliography); it is sufficient to choose d in a range at least n  from its minimum and 
maximum values. 

In practice by randomly choosing the public exponent e (subject to the condition gcd(e,(p-1)(q-1))=1) the corresponding 
private exponent d will satisfy that condition with very high probability. If e is chosen small (e.g. less than n0,125) the 
condition on d will automatically be satisfied. 

NOTE 2: It may also be recommendable to choose e not too small (e > 216+1) as for example results of Boneh and 
Venkatesan suggest that for very small e the RSA problem could be easier than factoring. Nevertheless in 
contrast to RSA encryption small public exponents generally are not a direct threat for RSA signatures. 
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A small public exponent (e.g. e = 3) MAY be used if performance is critical, otherwise e ≥ 216+1 is RECOMMENDED. 

A new modulus has to be produced for each user of the signature scheme even if different public exponents are used. In 
practice if the moduli and public exponents are produced as described above (i.e. random modulus and choosing the 
public exponent) the probability of producing the same modulus or secret exponent is negligible. 

NOTE 3: It is not recommended to use a prime selection algorithm which prefers a special class of primes.  
For example according to Rivest and Silverman (see bibliography) the use of "strong" primes would not 
improve security in practice. 

6.2.2.2 Key and parameter generation algorithm dsagen1 

p and q SHALL be generated as described in appendix 2.2 of FIPS Publication 186-2 [6]. 

Generate x by applying a random number generation method satisfying the requirements trueran (see clause 8.2.1) or 
using a method satisfying pseuran (see clause 8.2.2) with an appropriate size seed. Each value of x SHALL effectively 
be influenced by EntropyBits bits of true randomness or a seed of entropy SeedEntropy bit. Generate k using one of 
these methods; k does not have to be generated using exactly the same method as x. Possible methods for this can be 
found in FIPS Publication 186-2 [6] which contains a Change Notice (due to Bleichenbacher's attack). 

6.2.2.3 Key and parameter generation algorithm ecgen1 for ecdsa-Fp 

The prime numbers p and q, and the point P on E(Fp) SHALL be selected so that the conditions in clause 6.1.2.3 are 

satisfied with primality of an integer regarded as satisfied if the probability that it is composite is at most 2-100. 
Clause D.1 specifies a possible method to generate p, q, E and P. 

In situations where an intentional choice of weak public parameters (subject to an unknown "insider" attack) seems to 
be possible a countermeasure is to request that these parameters are generated verifiably at random. In such situations it 
is recommended to do so at least for the generation of the curve E. In clause D.1 a possible method for this is described. 

Generate x by applying a random number generation method satisfying the requirements trueran (see clause 8.2.1) or 
using a method satisfying pseuran (see clause 8.2.2) with an appropriate size seed. Each value of x SHALL effectively 
be influenced by EntropyBits bits of true randomness or a seed of entropy SeedEntropy bit. Generate k using one of 
these methods; k does not have to be generated using exactly the same method as x. 

6.2.2.4 Key and parameter generation algorithm ecgen2 for ecdsa-F2
m 

The prime numbers m and q, the elliptic curve E over F2
m and the point P on E(F2) SHALL be selected so that the 

conditions in 6.1.2.4 are satisfied with primality of an integer regarded as satisfied if the probability that it is composite 
is at most 2-100. Clause D.2 specifies a possible method to generate m, q, E and P. 

In situations where an intentional choice of weak public parameters (subject to an unknown "insider" attack) seems to 
be possible a countermeasure is to demand that these parameters are generated verifiably at random. In such situations it 
is recommended to do so at least for the generation of the curve E. In clause D.2 a possible method for this is described. 

Generate x by applying a random number generation method satisfying the requirements trueran (see clause 8.2.1) or 
using a method satisfying pseuran (see clause 8.2.2) with an appropriate size seed. Each value of x SHALL effectively 
be influenced by EntropyBits bits of true randomness or a seed of entropy SeedEntropy bit. Generate k using one of 
these methods; k does not have to be generated using exactly the same method as x. 

6.2.2.5 Key and parameter generation algorithm ecgen1 for ecgdsa-Fp 

The parameter and key generation methods should be the same as the ecdsa-F2m methods described in clause 6.2.2.3. 

6.2.2.6 Key and parameter generation algorithm ecgen2 for ecgdsa-F2
m 

The parameter and key generation methods should be the same as the ecdsa-F2m methods described in clause 6.2.2.4. 



 

ETSI 

ETSI TS 102 176-1 V1.2.1 (2005-07) 21 

7 Signature suites 

7.1 General 
To meet this security requirement and to allow signing of more or less arbitrary long messages, a signature suite 
requires a hash function, so that the signing/verification algorithms operate on a fixed-size hash of the message. An 
important issue is to tie the hash function to the signature scheme. Without this, the weakest available hash function 
could define the overall security level. 

Due to possible interactions which may influence security of electronic signatures, algorithms and parameters for secure 
electronic signatures SHALL be used only in predefined combinations referred to as the signature suites. A signature 
suite consists of the following components: 

•  a hash function; 

•  a padding method; 

•  a signature algorithm and its associated parameters. 

If any of the components of a suite is modified, then the suite must be modified accordingly. 

The list of recommended hash functions is defined in clause 5.2. 

The list of recommended padding methods is defined in clause 7.2. 

The list of recommended signature algorithms is defined in clause 6.2. 

The list of currently recommended signature suites is given in clause 7.3. 

Key generation is not part of the way to identify a signature suite and may change over time. Key generation methods 
are addressed in clause 6.2. 

Some key generation methods and some signature suites require to generate a (pseudo-) random number. The 
(pseudo)-random number generation method is not part of the way to identify a signature suite and may change over 
time. (Pseudo) random number methods are addressed in clause 8. 

7.2 Padding methods 
Padding is algorithm dependent and some algorithms need non-trivial padding. This is the case for the RSA algorithm. 
Signature algorithms with appendix require methods that encode a message into an integer message representative that 
will be the input for the signature primitive. This encoding method can be deterministic, for example a padding of a 
fixed string to the hash value computed from the message, but may be also randomized, incorporating a (randomly 
generated) salt value, which are converted to and from message representatives. Although these latter encodings are not 
true padding schemes, they are listed here. 

The list of currently recommended padding methods is given in table 4. Each padding method has a unique entry index 
represented by a string beginning with "4" followed by a two-digit entry number. 

Table 4: The list of recommended padding methods 

Padding 
method entry 

index 

Short padding function entry 
name 

Random number 
generation method 

Random generator 
parameters 

Normative references 

4.01 emsa-pkcs1-v1.5 - - RFC 3447 [14] 
4.02 emsa-pkcs1-v2.1 - - RFC 3447 [14], 

section 9.2 
4.03 emsa-pss trueran/pseuran EntropyBits ≥ 64 or 

SeedEntropy ≥ 64 
RFC 3447 [14], 
section 9.1 
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Padding 
method entry 

index 

Short padding function entry 
name 

Random number 
generation method 

Random generator 
parameters 

Normative references 

4.04 iso9796ds2 trueran/pseuran EntropyBits ≥ 64 or 
SeedEntropy ≥ 64 

RFC 3447 [14] 

4.05 iso9796-din-rn trueran/pseuran EntropyBits ≥ 64 or 
SeedEntropy ≥ 64 

DIN 66291-1 [16] 

4.06 iso9796ds3 - - RFC 3447 [14] 
 

Each salt value SHALL effectively be influenced by at least 64 bits of true randomness or a seed of entropy at least 
64 bit. This rule implies that the salt length is at least 64 bit. 

NOTE 1: The above rule of 64 bit salt entropy is not meant in the strict and exclusive manner as the demand for 
80 bits of entropy for key generation in clause 6.2, it is a recommendation. For example Coron (see 
bibliography) showed that for emsa-pss already a significantly shorter salt length than 64 bit allows a 
reduction of the security of the signature scheme to the RSA problem under realistic assumptions. 
Nevertheless such a reduction analysis does not take into account every kind of possible weaknesses 
e.g. side channels. So the salt length should not be too short in particular when high security shall be 
achieved. 

The emsa-pkcs1-v1.5 padding method is included, but it is NOT RECOMMENDED for new implementations, since it 
will be phased out. 

NOTE 2: Up to December 2004, no real attack on emsa-pkcs1-v1.5 has been publicized. 

The emsa-pss method is included as, despite not being widely used, it has been stable for a long time and is a good 
improvement to the two emsa-pkcs1 schemes (i.e. -v1.5 and -v2.1 which only differ by the encoding method) and it is 
better suited for long term use. The padding method emsa-pss is parameterized by the choice of hash function and a 
mask generation function MGF, defined in PKCS#1 (RFC 3447 [14]). In this specification, MGF is based on the 
corresponding hash function used, i.e. SHA-1 or RIPEMD-160. 

iso9796ds2 is "digital signature scheme 2" in ISO/IEC 9796-2 [17]. 

iso9796-din-rn is the variant of a scheme from ISO/IEC 9796-2 [17] called "DSI according to ISO/IEC 9796-2 [17] 
with random numbers" in DIN V 66291-1 [16]. It is described in annex A of [16]. 

NOTE 3: This is a variant on Digital Signature Scheme 1 of ISO/IEC 9796-2 [17]. The Digital Signature Scheme 1 
has wide deployments and is secure but maybe in the future not be recommended for new systems. 

iso9796ds3 is "digital signature scheme 3" in ISO/IEC 9796-2 [17]. 

NOTE 4: iso9796ds1 does no longer represents state-of-the-art and in a paper presented by Coron, Naccache, Stern 
at Crypto 99 is shown that the effort to break this padding scheme is about 261 instead of 280. It could 
even be easier to forge signatures if the hash values are produced outside the SSCD, that means if an 
attacker would be given the ability to let "chosen prime numbers be signed". In that case it would no 
longer be required to solve a linear system of equations as in clause 3.1 of the paper of Coron et al. 

7.3 Recommended signature suites 
A signature suite is defined using three parameters: 

•  a hash function; 

•  a padding method; 

•  a signature algorithm and its associated parameters. 
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Table 4.a 

entry name of the 
signature suite 

entry name for the 
hash function 

entry name for the 
padding method 

entry name for the 
signature algorithm 

sha-1-with-rsa sha1 (see note) rsa 
sha-1-with-dsa sha1 no padding required dsa 

ripemd160-with-rsa ripemd160 (see note) rsa 
ripemd160-with-dsa ripemd160 no padding required dsa 

sha224-with-rsa sha224 (see note) rsa 
sha256-with-rsa sha256 (see note) rsa 

rsa-pss with 
mgf1SHA1Identifier 

mgf1SHA1 rsa 

rsa-pss  
with  

mgf1SHA224Identifier 

mgf1SHA224 rsa 

rsa-pss  
with mgf1SHA256 

Identifier 

mgf1SHA256 rsa 

sha-1-with-ecdsa sha1 no padding required ecdsa-Fp  
or  

ecdsa-F2m 
sha-1-with-ecgdsa sha1 no padding required ecdsa-Fp  

or  
ecgdsa-F2m 

NOTE: The padding scheme for the RSA signature algorithm SHOULD be selected from 
the list above. 

 

8 Random number generation methods 

8.1 General 
The key generation methods and some signature suites require to generate a random number. 

NOTE: For detailed information about random number generation and terminology see ISO/IEC FCD 18031 (see 
bibliography). Some basic information is also given in annex E. 

The random number generation methods combined with the key generation methods have to ensure that the expected 
effort of guessing a cryptographic key is at least equivalent to guessing a random value that is EntropyBits bit resp. 
SeedEntropy bit long. This can be satisfied with respect to different demands like information theoretic vs. just 
complexity theoretic security, backward secrecy and/or forward secrecy and so on. Clause 8.2 and annex E in particular 
specify by which RNGs these demands can be satisfied. 

8.2 Recommended random number generation methods 
Table 5 lists the recommended random number generation methods. Each random number generation method has a 
unique entry index represented by a string beginning with "5" followed by a two-digit entry number. The terms 
"trueran" and "pseuran" denote the requirements for NRNGs and DRNGs respectively (i.e. non-deterministic and 
deterministic random number generators). 

Table 5: The list of recommended random number generation methods 

Random generator 
entry index 

Short random generator 
entry name 

Random generator 
parameters 

Adoption date Normative 
references 

5.01 trueran EntropyBits 01.01.2001  
5.02 pseuran SeedEntropy 01.01.2001  

 

It is strongly recommended to use trueran methods for generating keys that are used more than once. In the case of the 
one-time keys k for DSA, ECDSA and ECGDSA there is less urgency for that. 
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8.2.1 Random generator requirements trueran 

A random number generator satisfying trueran has to be a pure or hybrid physical NRNG. 

NOTE 1: Non-physical NRNGs are excluded as the designer has no real control of the amount of the produced 
entropy. 

Thus a random number generator satisfying trueran is based on a physical primary entropy source and possibly a 
cryptographic or mathematical post-treatment of the output of the primary entropy source. 

The recommended requirements for these components are: 

•  (TR1): There is a stochastical model for the primary entropy source which is found consistent with thorough 
adapted tests of prototypes of the source. 

•  (TR2): The primary entropy source is subjected to an adapted statistical online test. "Online" means that the 
test will detect any non-tolerable loss of quality of the primary entropy source during operation sufficiently 
soon after such an event occurs and that there will then at once be suitable countermeasures (e.g. stop of the 
generator). "Adapted" means adapted to the statistical model of the primary entropy source. The original 
output of the primary entropy source should be tested not the output of the post-treatment instead of that (there 
may be justified exceptions to this general rule). 

See clause E.2 for some more information about tests for the primary entropy sources. 

The stochastical model and the tests should deliver an estimate for the amount of the produced entropy. The primary 
entropy source is regarded to be good if it produces nearly one bit entropy per output bit. For a good primary entropy 
source no post-treatment is necessary. 

•  (TR3): If the primary entropy source is not good a post-treatment is employed which by some (necessarily 
compressing) techniques delivers an output of nearly one bit entropy per output bit. There must be a 
reasonable stochastical model of the post-treatment as well which together with the stochastic model of the 
primary entropy source and the tests ensures this property of the output. 

Instead of this set of requirements (TR1) - (TR3) the following modified set of requirements is also sufficient although 
not recommended: 

•  (TR1"): There are mathematical models for the primary entropy source and the post-treatment that are 
plausible. 

•  (TR2"): The primary entropy source is subjected to an online test which will detect most defects of the noise 
source except for special unlikely events. 

•  (TR3"): There is a post-treatment (obligatory in this case) that under the assumption of the models (assuming 
that the primary entropy source works as expected) delivers an output of nearly one bit entropy per output bit 
and that even in the case of a complete breakdown of the primary entropy source (after there has been 
accumulated enough entropy at the beginning) satisfies the requirements pseuran including condition (PR3) of 
clause 8.2.2. 

NOTE 2: This alternative set of requirements is closer to the spirit of ANSI X9.82 (see bibliography) while the first 
set is more similar to AIS 31. In both cases the major target is to achieve forward and backward secrecy. 
In the latter case this secrecy can be completely complexity theoretic under certain circumstances and 
security relies rather on the post-treatment than on the primary entropy source in contrast to the first case 
which delivers information theoretical forward and backward secrecy. With the second set of 
requirements in the situation of a readout or manipulation of the internal state also forward secrecy is not 
ensured. 

NOTE 3: An example of a possible random number generator design based on a noisy diode is given in clause E.2 
of ISO/IEC FCD 18031 (see bibliography) although without the necessary details. 

8.2.2 Random generator requirements pseuran 

A random number generator satisfying pseuran is a pure or hybrid DRNG satisfying the following conditions: 

•  (PR1): The DRNG must be initialized by a seed with an entropy of at least SeedEntropy bits. 
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•  (PR2): Even with the knowledge of a partial output bit sequence of the DRNG and having all information 
about its initialization (and in the case of a hybrid DRNG also about the output of the additional entropy 
source) except for the seed there is no usable method to determine any other m bits of the output with a 
probability significantly larger then Max (2-m,2-SeedEntropy). 

NOTE 1: The second condition in particular implies that there is no information ascertainable a priori as to the 
output bits and that neither the seed nor any internal state of the DRNG can be recovered from a subset of 
the output. 

(PR1) is meant in the sense (or even implies) that the seed is produced using a NRNG. This NRNG does not need to be 
a physical one. Nevertheless to achieve high security it is recommended to use trueran (in particular physical, see 
clause 8.2.1) NRNGs for seeding. (PR1) does not exclude constructions in which the DRNG is seeded by a chain of 
DRNGs as described in clause 9.3.2 of ISO/IEC FCD 18031 (see bibliography). However the first DRNG in this chain 
must be seeded with the output of a NRNG and in the output of the last DRNG in the chain enough entropy (i.e. at least 
EntropyBits bits) has to be left over. Moreover of course the whole system (chain + DRNG to be seeded) regarded as a 
DRNG (including operational freedom like numbers of cycles before the next seeding of links regarded as non-physical 
additional entropy source) has to satisfy the second condition. The security of a DRNG is only complexity theoretic. 
With a known seed or a known internal state any future output can be calculated. So the seed has to be kept secret and 
seeding SHALL follow procedures similar to those for the generation of root keys. No backups of the seed or internal 
states of a pseuran generator are permitted. The internal state of the DRNG must be secured against any readout and any 
adversarial manipulation. 

In situations in which such readout or manipulation of an internal state of the DRNG does not seem to be completely 
excluded a re-seeding or a seed-update has to be executed from time to time. If re-seeding is employed the security of 
the re-seeding process SHALL be as strong as that of the original seeding. The frequency of this procedure (i.e. the 
amount of entropy that is fed in per output bit) depends on the actual risk of such readouts or manipulations. 

It is recommended to use DRNGs which in addition to the two above mentioned conditions satisfy the following 
additional condition ensuring backward secrecy even in the case of a known internal state: 

•  (PR3): Even with complete knowledge of an internal state there is no usable method to determine any 
previous m output bits with a probability significantly larger then Max(2-m,2-SeedEntropy). 

NOTE 2: AIS 20 (see bibliography) defines the classes K3 and K4 for DRNGs. Roughly said K3 DRNGs satisfy 
conditions (PR1) and (PR2), K4 DRNGs also satisfy (PR3). 

Depending on the environment it may further be recommendable to use hybrid DRNGs rather than pure ones. In the 
case of an hybrid DRNG according to (PR2) even with complete knowledge about the output of the additional entropy 
source or with a certain influence on this output it must not be feasible to determine any bits of the output with higher 
than the a priori probability.  

The following are examples of pseuran generators: 

•  ANSI X9.17 (see in bibliography) generator. This DRNG was designed to pseudo randomly generate keys and 
initialization vectors for use of DES. It uses the triple-DES algorithm with a fixed key to mix a 64-bit seed 
with the current date. Iterated encryption enables to generate as many output bits as needed. Condition (PR3) 
is not satisfied at least without any further assumptions about the clock input. Instead of triple-DES also other 
strong block ciphers could be used as building block of the generator. 

•  Example E.4 in AIS 20 is another DNRG based on a variable strong block cipher which as well does not 
satisfy condition (PR3). 

•  FIPS 186 generator (see FIPS Publication 186-2 [6]). 

•  RSA DRNG and Blum-Blum-Shub DRNG (see Menezes et al. 1997 in bibliography). Those DRNGs are based 
on iterated exponentiation modulo a composite modulus. The advantage is to base the security on the 
intractability of number theoretic problem (respectively RSA and the factorization problem) but the main 
drawback is the poor efficiency in comparison with the other DRNGs described above, the security of which is 
only heuristic. 
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9 Recommended hash functions and key sizes versus 
time 

In this clause recommendations are provided regarding the use of hash functions given in clause 5 and the key sizes to 
be used with the algorithms mentioned in clause 6. 

This clause is structured as follows: 

•  in the first two clauses, two different ways of looking at key length recommendations, that are called the 
"liberal view" and the "conservative view", are introduced; 

•  in clause 3, hash functions versus time are recommended; 

•  in clause 4, key sizes versus time are recommended. 

These recommendations were based upon current predictions in the literature [LenstraVerheul] as well as consultations 
with bodies such as ETSI SAGE. 

Two different views on the necessary key lengths are considered: the liberal and the conservative view. It can generally 
be stated that the liberal view reflects the smaller security margin and the conservative view the upper limit of several 
possible security margins. Based on the use and/or the context in which the signature algorithm, signature suite, or hash 
function is being used a particular user or implementer can choose the liberal and the conservative view (see clause 9 
about the use of hash functions, signature algorithms and signature suites). 

NOTE: The liberal as well as the conservative view recommendations may not be sufficient to satisfy certain 
legal demands imposed by some national signature laws. 

9.1 Liberal view 
The liberal view of algorithm and hash function strength is characterized by: 

•  An assumption that there will no unpredicted acceleration in the pace of development of techniques to break 
the algorithm or hash function. 

•  An assumption that breaking the algorithm or hash function will be based on either a current model or 
extrapolation of such. 

•  Taking a small margin above minimum key length based on both extrapolation of current trends as well as 
estimations based on the necessary computing power needed to break a given algorithm. 

NOTE: In practice, the key length estimates given for the liberal view are appropriate when the electronic 
signature formats that are being used cover the case of a key compromising or of a hash function 
exhibiting collisions. 

9.2 Conservative view 
The conservative view of algorithm and hash function strength is characterized by: 

•  An attempt to "predict" unforeseen advances in state of the art in analyzing the hash function or algorithm. 

•  An assumption that new models may be developed to break the hash function or algorithm. 

•  Taking a comfortable margin above minimum key length based on both extrapolation of current trends as well 
as estimations based on the necessary computing power needed to break a given algorithm. 

NOTE: In practice, the conservative view should be applied when measures to recover from an incorrect estimate 
are either not available (e.g. successful attack on a root key) or deemed to be complicated (e.g. collision 
for the hash function used by the signer). 
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9.3 Recommended hash functions versus time 
Tables 6 and 7 provides indication about recommended hash functions during X years. With respect to the above 
distinction between conservative and liberal views, the conservative view is first provided and then the liberal. 

Definitions: 

Usable: The algorithm with the given security parameters can be considered secure at the given time. 

Unknown: The security of the algorithm is unknown; use in this case is environment dependent. 

Table 6: Conservative view of recommended hash functions for a resistance during X years 

entry name of the hash function 3 years 
(2008) 

5 years 
(2010) 

10 years 
(2015) 

sha1 usable unknown unusable 
ripemd160 usable unknown unknown 
sha224 usable usable usable 
sha256 usable usable usable 
whirlpool usable usable unknown 

 

Table 7: Liberal view for recommended hash functions for a resistance during X years 

entry name of the hash function 3 years 
(2008) 

5 years 
(2010) 

10 years 
(2015) 

sha1 usable unknown unknown 
ripemd160 usable unknown unknown 
sha224 usable usable usable 
sha256 usable usable usable 
whirlpool usable usable unknown 

 

Table 8 predicts hash function resistance over 20 years. Due to the inherent uncertainty of such predictions, these 
predictions are largely speculative, and no distinction is made be between conservative and liberal. 

Additional definition: 

Unusable: The algorithm cannot be considered secure for any kind of use in the context of electronic signatures. 

Table 8: Speculated hash function resistance over 20 years,  
based on current trends and estimated computational power 

entry name of the hash function Speculated Usability in 20 years (2025) 
sha1 unusable 
ripemd160 unusable 
sha224 usable 
sha256 usable 
whirlpool usable 

 

9.4 Recommended key sizes versus time 
Tables 9 and 10 provides indication about recommended key lengths for a resistance of the algorithm or the signature 
suite during X years. A conservative view and a liberal view are provided. For explanations of these terms please refer 
to clauses 2 and 3 in this clause. These tables are provided for 3 years, 5 years and 10 years. 

Definitions: 

Unusable: The algorithm cannot be considered secure for any kind of use in the context of electronic signatures. 

Unknown: The security of the algorithm is unknown at this time. 
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Table 9: Conservative view of recommended key lengths for a resistance during X years 

entry name of the signature suite 3 years  
(2008) 

5 years  
(2010) 

10 years  
(2015) 

sha-1-with-rsa ≥ 768 unknown unusable 
sha224-with-rsa ≥ 768 1024 2048 
sha256-with-rsa ≥ 768 1024 2048 
RSASSA-PSS with mgf1SHA1Identifier ≥ 768 1024 unusable 
RSASSA-PSS with mgf1SHA224Identifier ≥ 768 1024 2048 
RSASSA-PSS with mgf1SHA256Identifier ≥ 768 1024 2048 
sha1-with-dsa ≥ 768 unknown unusable 
sha1-with-ecdsa 163 unknown unusable 
sha224-with-ecdsa 224 224 224 
sha256-with-ecdsa 256 256 256 

 

Table 10: Liberal view of recommended key lengths for a resistance during X years 

entry name of the signature suite 3 years  
(2008) 

5 years  
(2010) 

10 years  
(2015) 

sha-1-with-rsa ≥ 768 unknown unknown 
sha224-with-rsa ≥ 768 1024 2048 
sha256-with-rsa ≥ 768 1024 2048 
RSASSA-PSS with mgf1SHA1Identifier ≥ 768 1024 unknown 
RSASSA-PSS with mgf1SHA224Identifier ≥ 768 1024 2048 
RSASSA-PSS with mgf1SHA256Identifier ≥ 768 1024 2048 
sha1-with-dsa ≥ 768 unknown unknown 
sha1-with-ecdsa 163 unknown unknown 
sha224-with-ecdsa 224 224 224 
sha256-with-ecdsa 256 256 256 

 

An additional table with speculations regarding security over 20 years is provided. Due to the unpredictability in such 
long term statements, there is no distinction made between liberal and conservative for the 20 years prediction, and such 
information should be considered as largely speculative. 

Table 11: Speculated resistance of recommended algorithm parameters for the next 20 years,  
based on current trends and estimated computational power 

entry name of the signature suite 20 years  
(2025) 

sha-1-with-rsa Unusable 
sha224-with-rsa 2048 
sha256-with-rsa 2048 
RSASSA-PSS with mgf1SHA1Identifier unusable 
RSASSA-PSS with mgf1SHA224Identifier 2048 
RSASSA-PSS with mgf1SHA256Identifier 2048 
sha1-with-dsa unusable 
ecPublicKey unknown 
sha1-with-ecdsa unusable 

 

10 Time period resistance of hash functions and keys 
The hash functions and signature algorithms defined in the present document are suitable to be used in the context of 
advanced electronic signatures as defined by the EESSI documents (both ETSI TSs and CWAs). 

As a general rule, a private key SHALL resist during the validity period of certificates, (defined by the "notBefore" and 
"notAfter" elements of the validity period field) which contain the corresponding public key. 
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NOTE: The validity period is defined by the "notBefore" and "notAfter" elements of the validity period field from 
the certificate. 

Since key sizes are directly dependent upon the usage of the certificate, no single key size value may be given. 

The time period during which a given key SHALL or SHOULD resist depends on the usage of the key. To this respect 
different use cases will be explored. Once the time period is known, then the figures provided in clause 9 can be used to 
know the appropriate key size. 

10.1 Time period resistance for hash functions 
As a general rule, hash functions SHOULD resist as long as a signature verification still needs to be done. If not, a 
specific signature maintenance process SHALL be performed (see annex H for more information). 

A hash function used to compute the hash of a certificate, that is not a self-signed certificate, SHOULD resist during the 
validity period of that certificate. However, a hash function used to compute the hash of a self-signed certificate 
SHALL resist during the validity period of that self-signed certificate. 

A hash function used to compute the imprint of a message placed in a time-stamp token is not used in combination of a 
signature scheme. The length of its output is not dependent upon the size of the parameters of the signature scheme. It 
may be advisable, in order to reduce the signature maintenance process, to use a hash function that is presumed to be 
resistant over a very long time period. If the hash function that has been used the signature suite by the signer is also 
presumed to be resistant over a very long time period, then the signature maintenance process can be minimized. 

10.2 Time period resistance for signer's key 
The focus is very often placed on the resistance of signer's keys. 

Signer's keys SHOULD resist during the validity period (from notBefore to notAfter) of the associated 
certificate. If they do not, revocation will be necessary, and there would be a large burden to re-issue new keys and 
certificates. However, there is no security breach. 

If a signer's key does not resist during the validity period of its associated certificate, then the protection provided 
through the use of time-stamping is sufficient to provide an adequate protection. 

For signer's keys, the liberal view for the resistance SHOULD be chosen. 

10.3 Time period resistance for trust anchors 
For trust anchors, the conservative view for the resistance SHOULD be chosen.  

A trust anchor SHOULD remain secure during the whole time period during which advanced electronic signature needs 
to be verified. If it does not, it cannot be used anymore for immediate verifications. It can be used for subsequent 
verifications, if a specific maintenance process is performed before the trust anchor becomes insecure. 

10.4 Time period resistance for other keys 
All other keys (TSU keys, CA keys, CRL issuer keys, OCSP responder keys) SHOULD resist during the validity period 
of the associated certificate. 

If they do not, a maintenance process SHOULD be applied before the algorithm is broken. 

For these keys, the conservative view for the resistance SHOULD be chosen if no signature maintenance process is 
being envisaged, while the liberal view for resistance MAY be chosen if a signature maintenance process is applied. 
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11 Practical ways to identify hash functions and 
signature algorithms 

In order to be able to use a function or an algorithm with the EESSI documents, it is mandatory to be able to reference 
it, and when the algorithm has parameters to be able to define these parameters. An "object" needs to be defined to 
support these parameters. That object MUST be referenced using an OID and/or a URN. Only the owner of the OID or 
the URN is allowed to define its meaning and thus the meaning of the algorithm, usual referencing another document. It 
may be observed that ISO standards are not referenced in RFCs documents. The primary reason is that these documents 
are sold and the IETF always gives its preference to documents that can be obtained for free. 

As a general rule the "OID/URN criterion" may be applied: An algorithm to be included must be defined 
unambiguously by an OID/URN. If such an OID/URN is not available it may be useful to define it. 

11.1 Hash functions and signature algorithms objects identified 
using OIDs 

11.1.1 Hash functions 

The hash functions are defined using the following OIDs. 

Table 12 

Short object 
name 

OID Normative 
references 

id-sha1 { iso(1) identifiedOrganization(3) oIW(14) oIWSecSig(3) oIWSecAlgorithm(2) 26 } RFC 3279 [12] 
Id-sha224 { joint-iso-itu-t(2)country(16) us(840) organization(1) gov(101) csor(3) 

nistalgorithm(4) hashalgs(2) sha224(4) } 
RFC 4055 [15]  

id-sha256 { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) 
nistalgorithm(4) hashalgs(2) 1 } 

RFC 4055 [15] 

ripemd160 { iso(1) identifiedOrganization(3) teletrust(36) algorithm(3) hashAlgorithm(2) 
ripemd160(1) } 

ISIS-MTT  
Part 6 [26] 

whirlpool { iso(1) standard(0) encryption-algorithms(10118) part3(3) algorithm(0) 
whirlpool(55) } 

ISO/IEC 10118-3 
[3] 

 

11.1.2 Signature algorithms 

Table 13 

Short object name OID Normative 
references 

rsaEncryption { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 } RFC 3279 [12] 
id-dsa { iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 } RFC 3279 [12] 
id-ecPublicKey { iso(1) member-body(2) us(840) 10045 2 1 } RFC 3278 [11] 
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11.1.3 Signature suites 

Table 14 

Short object name OID Normative 
references 

sha-1withRSAEncryption { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 } RFC 3279 [12] 
sha224WithRSAEncryption { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 14 } RFC 4055 [15] 
sha256WithRSAEncryption { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 11 } RFC 4055 [15] 
id-RSASSA-PSS with 
mgf1SHA1Identifier 

{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 10 } RFC 4055 [15] 

id-RSASSA-PSS  
with mgf1SHA224Identifier 

{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 10 } RFC 4055 [15] 

id-RSASSA-PSS  
with mgf1SHA256Identifier 

{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 10 } RFC 4055 [15] 

rsaSignatureWithripemd160 {iso(1) identified-organization(3) teletrust(36) algorithm(3) 
signatureAlgorithm(3) rsaSignature(1) rsaSignatureWithripemd160(2)} 

ISIS-MTT [26] 

id-dsa-with-sha1 { iso(1) member-body(2) us(840) x9-57 (10040) x9cm(4) 3 } RFC 3279 [12] 
id-ecdsa-with-sha1 { iso(1) member-body(2) us(840) ansi-X9-62(10045) signatures(4) 1 } RFC 3279 [12] 
 

11.2 Hash functions and signature algorithms identified objects 
using URNs 

11.2.1 Hash functions 

The hash functions are defined using the following URNs. 

Table 15 

Short object 
name 

URN Normative references 

sha1 http://www.w3c.org/2000/09/xmldsig#sha1 W3C Recommendation XML-
Signature Syntax and Processing 
[30].  

ripemd160 http://www.w3.org/2001/04/xmlenc#ripemd160 W3C Recommendation XML 
Encryption Syntax and Processing.  
10 December 2002 [31] 

sha224 http://www.w3.org/2001/04/xmldsig-more#sha224 RFC 4050 [28] 
sha256 http://www.w3.org/2001/04/xmlenc#sha256 W3C Recommendation XML 

Encryption Syntax and Processing.  
10 December 2002 [31] 

 

11.2.2 Signature algorithms 

There is no need to define such URNs since XAdES uses the signature algorithms contained in X.509 certificates which 
are referenced using OIDs. 

http://www.w3c.org/2000/09/xmldsig
http://www.w3.org/2001/04/xmlenc
http://www.w3.org/2001/04/xmldsig-more
http://www.w3.org/2001/04/xmlenc
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11.2.3 Signature suites 

The signature suites are defined using the following URNs. 

Table 16 

Short object name URN Normative references 
dsa-sha1 http://www.w3.org/2000/09/xmldsig#dsa-sha1 XML-Signature Syntax and Processing. 

W3C Recommendation [30] 
rsa-sha1 http://www.w3.org/2000/09/xmldsig#rsa-sha1 XML-Signature Syntax and Processing. 

W3C Recommendation [30] 
ecdsa-sha1 http://www.w3.org/2001/04/xmldsig-

more#ecdsa-sha1 
RFC 4050 [28] 

rsa-ripemd160 http://www.w3.org/2001/04/xmldsig-more/rsa-
ripemd160 

RFC 4050 [28] 

rsa-sha256 http://www.w3.org/2001/04/xmldsig-more#rsa-
sha256 

RFC 4050 [28] 

 

11.3 Recommended hash functions and signature algorithms 
objects that do not yet have an OID or a description 

WHIRLPOOL 

Signature suites based on a combination of a hash algorithm based on Whirlpool and a signature scheme do not yet have 
an OID. It would be desirable to have variants of Whirlpool with an output less than 512 bits in order to match the 
requirements of Elliptic Curves algorithms. 

ECGDSA 

The ecgdsa signature scheme and signature suites based on ecgdsa have an OID but no normative reference for the data 
structures defined by these OIDs. 

ecgdsa 

"Elliptic Curve German DSA" 

{1(iso) 3(identified organization) 36(teletrust) 3(algorithm) 3(signature algorithm) 2(ecSign) 5(ecgdsa)},  

ecgdsaWithsha1 

"Elliptic Curve German DSA with SHA1" 

{1(iso) 3(identified organization) 36(teletrust) 3(algorithm) 3(signature algorithm) 2(ecSign) 6(ecgdsaWithsha1)},  

ecgdsaWithRipemd160 

"Elliptic Curve German DSA with RIPEMD160" 

{1(iso) 3(identified organization) 36(teletrust) 3(algorithm) 3(signature algorithm) 2(ecSign) 
7(ecgdsaWithRipemd160)} 

NOTE: TeleTrust OIDs are available at http://www.teletrust.de/. 

http://www.w3.org/2000/09/xmldsig
http://www.w3.org/2000/09/xmldsig
http://www.w3.org/2001/04/xmldsig-more
http://www.w3.org/2001/04/xmldsig-more
http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160
http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160
http://www.w3.org/2001/04/xmldsig-more
http://www.w3.org/2001/04/xmldsig-more
http://www.teletrust.de/
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11.4 Recommended hash functions and signature algorithms 
objects that do not yet have a URN or a description 

Whirlpool 

Whirlpool has currently no URN. In addition, it would be desirable to have variants of Whirlpool with an output less 
than 512 bits in order to match the requirements of Elliptic Curves algorithms. 

Signature suites based on a combination of a hash algorithm based on Whirlpool and a signature scheme do not yet have 
a URN. 

ECGDSA 

The ecgdsa signature scheme and signature suites based on ecgdsa do not have a URN, and thus no normative reference 
for the data structures. 
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Annex A (normative): 
Algorithms for various data structures 
TS 101 733 [18] and TS 101 903 [19] define the formats of advanced electronic signatures. These two documents 
reference other documents defining various standardized data structures. 

These other documents or companion documents define the algorithms which SHOULD be supported by the issuers of 
the data structures and the algorithms which SHALL (for interoperability purposes) and SHOULD be supported by the 
users of the data structures. 

•  Signer Certificates (RFC 3280 [2] and RFC 3279 [12]); 

•  Certificate Revocation Lists (RFC 3280 [2] and RFC 3279 [12]); 

•  OCSP responses (RFC 2560 [22]); 

•  Certification Authority Certificates (RFC 3280 [2] and RFC 3279 [12]); 

•  Self-signed certificates for CA certificates (RFC 3280 [2] and RFC 3279 [12]); 

•  Time-Stamping Tokens (TSTs) (RFC 3161 [9] and TS 101 861 [20]); 

•  Time-Stamping Unit certificates (RFC 3161 [9] and TS 101 861 [20]); 

•  Self-signed certificates for TSU Certificates (RFC 3280 [2] and RFC 3279 [12]); 

•  Attribute Certificates (ACs) (RFC 3280 [2] and RFC 3279 [12]); 

•  Attribute Authority Certificates (RFC 3281 [21]). 

For each data structure, the set of algorithms to be used is specified. 

Since many of these documents have been published some years ago, they cannot be all up to date with the latest 
cryptographic advancements. In particular, some of the algorithms specified in the above documents exhibit weaknesses 
or, worse, are now broken. 

For that reason, when it is the case, algorithms that were initially recommended and that shall or should not be used 
anymore will be indicated. 

In the same way, more recent algorithms do not appear in these documents. This does not mean that they should not be 
used, but that at this time they do not yet fall into the SHALL or SHOULD categories. 

Each set is identified by an identifier which is either an OID (Object IDentifier) or a URI /URN. The use of such 
identifiers is necessary so that interoperability can be achieved. In order to allow for data interchange, the document 
references algorithms in terms of OIDs and URIs / URNs together with algorithm parameters. 

The algorithms which MAY be supported by issuers or users are NOT indicated. 

A.1 Advanced Electronic Signatures based on 
TS 101 733 

An advanced electronic signature contains an identifier of the hash function that has been used (contained in the 
digestAlgorithm element from the SignerInfo data structure) and an identifier of the signature algorithm that has 
been used (contained in the signatureAlgorithm element from the SignerInfo data structure) which must be 
consistent with the identifier of the signature algorithm contained in the signer's certificate. 

Requirements apply both to the hash function and the signature algorithm. 

Since TS 101 733 [18] is built upon RFC 3852 [23], the algorithm requirements defined in RFC 3270 [24] apply. At 
that time the MD5 hash functions was recommended. Since it has been broken in August 2004, it is no more mentioned. 
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Table A.1 

AdES based on TS 101 733 [18] Issuers of AdES Users of AdES 
Hash functions SHOULD support sha1 SHALL support sha1 
Signature algorithms SHOULD support RSA 

or SHOULD support DSA 
or SHOULD support ECDSA 

SHALL support RSA 
SHOULD support DSA 
SHOULD support ECDSA 

 

A.2 Advanced Electronic Signatures based on 
TS 101 903 

TS 101 903 [19] uses a URN to reference the hash function in the ds:DigestMethod element. Since TS 101 903 [19] is 
built upon XML DigSig, the algorithm requirements from XML DigSig apply. 

Table A.2 

AdES based on TS 101 903 [19] Issuers of AdES Users of AdES 
Hash functions SHOULD support sha1 SHALL support sha1 
Signature algorithms SHOULD support DSAwithSHA1 

MAY support RSAwithSHA1,  
or ECDSA 

SHALL support DSAwithSHA1 
SHOULD support RSAwithSHA1, 
or ECDSA 

 

NOTE: For canonicalization: 
1. Required Canonical XML (omits comments) 
  http://www.w3.org/TR/2001/REC-xml-c14n-20010315 
2. Recommended Canonical XML with Comments  
  http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments 

A.3 Signer's certificates 
A signer certificate contains a subject public key and is signed by a CA issuing key. The algorithm requirements from 
RFC 3279 [12] apply. These requirements apply to signer public keys and CA issuing keys. 

Table A.3 

Signer certificates Issuers of signer certificates Users of signer certificates 
Signer public keys SHOULD support RSA 

SHOULD support DSA 
SHOULD support ECDSA 

SHALL support RSA 
SHOULD support DSA 
SHOULD support ECDSA 

CA issuing keys SHOULD support RSA with SHA1 
SHOULD support DSA with SHA1 
SHOULD support ECDSA with SHA1 

SHALL support RSA with SHA1 
SHOULD support DSA with SHA1 
SHOULD support ECDSA with SHA1 

 

A.4 CRLs 
A CRL is signed by a CRL Issuer. The algorithm requirements from RFC 3279 [12] apply. These requirements apply to 
CRL Issuer public keys. 

Table A.4 

CRLs Issuers of CRLs Users of CRLs 
CRL issuer keys SHOULD support RSA with SHA1 

SHOULD support DSA with SHA1 
SHOULD support ECDSA with SHA1 

SHALL support RSA with SHA1 
SHOULD support DSA with SHA1 
SHOULD support ECDSA with SHA1 

 

http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
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A.5 OCSP responses 
A CRL is signed by an OCSP responder. The algorithm requirements from RFC 2560 [22] apply, i.e. "Clients that 
request OCSP services SHALL be capable of processing responses signed used DSA keys identified by the DSA sig-
alg-oid specified in clause 7.2.2 of RFC 3280 [2]. Clients SHOULD also be capable of processing RSA signatures as 
specified in clause 7.2.1 of RFC 3280 [2]. OCSP responders SHALL support the SHA1 hashing algorithm." These 
requirements apply to OCSP the hash algorithm and the signature algorithm used by OCSP responders. 

NOTE: RFC 2459 is mentioned in RFC 2560 [22], but has been obsoleted by RFC 3280 [2]. 

Table A.5 

OCSP response Issuers of OCSP responses Users of OCSP response 
OCSP responder keys SHOULD support sha1 with dsa 

SHOULD support sha1 with rsa 
SHALL support sha1 with dsa 
SHOULD support sha1 with rsa 

 

A.6 CA certificates 
A CA certificate contains a CA public key and is signed by a CA private key. The algorithm requirements from 
RFC 3279 [12] apply. These requirements apply to CA public keys (as subject) and CA public keys (as issuer). 

Table A.6 

CA certificates Issuers of CA certificates Users of CA certificates 
Subject CA public key SHOULD support RSA with SHA1 

SHOULD support DSA with SHA1 
SHOULD support ECDSA with SHA1 

SHALL support RSA with SHA1 
SHOULD support DSA with SHA1 
SHOULD support ECDSA with SHA1 

Issuer CA public keys SHOULD support RSA with SHA1 
SHOULD support DSA with SHA1 
SHOULD support ECDSA with SHA1 

SHALL support RSA with SHA1 
SHOULD support DSA with SHA1 
SHOULD support ECDSA with SHA1 

 

A.7 Self-signed certificates for CA issuing CA certificates 
A self-signed certificate contains a single root CA public key. The algorithm requirements from RFC 3279 [12] apply. 
Self-signed certificates need to resist quite long (e.g. more than 10 years). For that reason, the SHA-224, used in 
combination with RSA is also recommended. These requirements apply to root CA public keys. 

Table A.7 

Self-signed certificates Issuers of self-signed certificates  Users of self-signed certificates 
Root CA public keys SHOULD support RSA with SHA1 

SHOULD support DSA with SHA1 
SHOULD support ECDSA with SHA1 
SHOULD support RSA with SHA-224 

SHALL support RSA with SHA1 
SHOULD support DSA with SHA1 
SHOULD support ECDSA with SHA1 
SHOULD support RSA with SHA-224 

 

A.8 TSTs based on RFC 3161 and TS 101 861 
The following requirements apply to hash functions and TST signature algorithms. The algorithm requirements from 
TS 101 861 [20] apply. However, MD5 which was in the list has been dropped, since it has been broken in 
August 2004: 

•  for the requests: The following hash algorithms MAY be used to hash the information to be time-stamped: 
SHA-1, RIPEMD-160; 
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•  for the responses, the following signature algorithm must be supported: SHA-1 with RSA. 

However, for time-stamp tokens that need to resist quite long (e.g. more than 10 years), the SHA-2 family (SHA-256, 
SHA-384 and SHA-512) is recommended. 

Table A.8 

Time-Stamping Tokens TST requesters TST issuers TST verifiers 
Hash function SHOULD support Sha1 

SHOULD support 
ripemd160 

SHALL support Sha1 
SHOULD support 
ripemd160 

SHALL support Sha1 
SHOULD support 
ripemd160 

TST signature algorithms SHALL support  
sha1 with rsa 

SHALL support  
sha1 with rsa 

SHALL support  
sha1 with rsa 

 

A.9 TSU certificates 
A TSU certificate contains a TSU public key and is signed by a CA private key. The algorithm requirements from 
RFC 3279 [12] apply. These requirements apply to TSU public keys (as subject) and CA public keys (as issuer). 

Table A.9 

TSU certificates Issuers of TSU certificates Users of TSU certificates 
TSU public key SHOULD support RSA with SHA1 

SHOULD support DSA with SHA1 
SHALL support RSA with SHA1 
SHOULD support DSA with SHA1 

Issuer CA public keys SHOULD support RSA with SHA1 
SHOULD support DSA with SHA1 

SHALL support RSA with SHA1 
SHOULD support DSA with SHA1 

 

A.10 Self-signed certificates for CAs issuing TSU 
certificates 

A self-signed certificate contains a single root CA public key. The algorithm requirements from RFC 3279 [12] apply. 
Self-signed certificates need to resist quite long (e.g. more than 10 years). For that reason, the SHA-224, used in 
combination with RSA is also recommended. 

These requirements apply to root CA public keys. 

Table A.10 

Self-signed certificates Issuers of self-signed certificates  Users of self-signed certificates 
root CA public keys SHOULD support RSA with SHA1 

SHOULD support DSA with SHA1 
SHOULD support RSA with SHA-224 

SHALL support RSA with SHA1 
SHOULD support DSA with SHA1 
SHOULD support RSA with SHA-224 

 

A.11 Attribute certificates 
An Attribute Certificate is signed by an Attribute Authority. The algorithm requirements from RFC 3279 [12] apply. 
These requirements apply to Attribute Authority public keys. 
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Table A.11 

Attribute Certificates Issuers of OCSP Attribute 
Certificates 

Users of OCSP Attribute 
Certificates 

Attribute Authority public keys SHOULD support RSA with SHA1 
SHOULD support DSA with SHA1 

SHALL support RSA with SHA1 
SHOULD support DSA with SHA1 

 

A.12 AA certificates 
An AA certificate contains an Attribute Authority public key and is signed by a CA private key. The algorithm 
requirements from RFC 3279 [12] apply. These requirements apply to Attribute Authority public keys (as subject) and 
CA public keys (as issuer). 

Table A.12 

AA certificates Issuers of AA certificates Users of AA certificates 
Attribute Authority public key SHOULD support RSA with SHA1 

SHOULD support DSA with SHA1 
SHALL support RSA with SHA1 
SHOULD support DSA with SHA1 

Issuer CA public keys SHOULD support RSA with SHA1 
SHOULD support DSA with SHA1 

SHALL support RSA with SHA1 
SHOULD support DSA with SHA1 
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Annex B (informative): 
Recommended key sizes (historical) 
This annex will later on contain the outdated tables provided in clause 9 so that an history about previous recommended 
hash functions and key sizes can be easily be done at a given time and for a given time period. 

2005-04: Taking in consideration the recently published attacks on hash functions, the clause 9.3 in the main 
body is updated. The former text is provided here and the values that have been changed are printed in bold and 
underlined. 

10.3 (2005-04) Recommended hash functions versus time 

Tables 6 and 7 provides indication about recommended hash functions during X years. With respect to the above 
distinction between conservative and liberal views, the conservative view is first provided and then the liberal. 

Definitions: 

Usable: The algorithm with the given security parameters can be considered secure at the given time. 

Unknown: The security of the algorithm is unknown; use in this case is environment dependent. 

Table 6/clause 9.3: Conservative view of recommended hash functions 
for a resistance during X years 

entry name of the hash function 3 years 
(2008) 

5 years 
(2010) 

10 years 
(2015) 

sha1 usable unknown unknown 
ripemd160 usable usable unknown 
sha224 usable usable usable 
sha256 usable usable usable 
Whirlpool usable usable unknown 

 

Table 7/clause 9.3: Liberal view for recommended hash functions 
for a resistance during X years 

entry name of the hash function 3 years 
(2008) 

5 years 
(2010) 

10 years 
(2015) 

sha1 usable usable unknown 
ripemd160 usable usable unknown 
sha224 usable usable usable 
sha256 usable usable usable 
whirlpool usable usable unknown 

 

Table B.3 predicts hash function resistance over 20 years. Due to the inherent unpredictability of such predictions, these 
predictions are largely speculative, and no distinction is made be between conservative and liberal. 

Additional definition: 

Unusable: The algorithm cannot be considered secure for any kind of use in the context of electronic signatures. 
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Table 8/clause 9.3: Speculated hash function resistance over 20 years,  
based on current trends and estimated computational power 

entry name of the hash function Speculated Usability in 20 years 
(2025) 

sha1 unusable 
ripemd160 unusable 
sha224 usable 
sha256 usable 
whirlpool usable 

 

2005-04: Taking in consideration the recently published attacks on hash functions, the clause 9.4 in the main 
body is updated. The former text is provided here and the values that have been changed are printed in bold and 
underlined. 

10.4 (2005-04) Recommended key sizes versus time 

Tables B.4 and B.5 provides indication about recommended key lengths for a resistance of the algorithm or the 
signature suite during X years. A conservative view and a liberal view are provided. For explanations of these terms 
please refer to clauses 2 and 3 in this clause. These tables are provided for 3 years, 5 years and 10 years. 

Definitions: 

Unusable: The algorithm cannot be considered secure for any kind of use in the context of electronic signatures. 

Unknown: The security of the algorithm is unknown at this time. 

Table 9/clause 9.4: Conservative view of recommended key lengths 
for a resistance during X years 

entry name of the signature suite 3 years  
(2008) 

5 years  
(2010) 

10 years  
(2015) 

sha-1-with-rsa ≥ 768 unknown unknown 
sha224-with-rsa ≥ 768 1024 2048 
sha256-with-rsa ≥ 768 1024 2048 
RSASSA-PSS with mgf1SHA1Identifier ≥ 768 1024 unknown 
RSASSA-PSS with mgf1SHA224Identifier ≥ 768 1024 2048 
RSASSA-PSS with mgf1SHA256Identifier ≥ 768 1024 2048 
sha1-with-dsa ≥ 768 unknown unknown 
sha1-with-ecdsa 163 unknown unknown 
sha224-with-ecdsa 224 224 224 
sha256-with-ecdsa 256 256 256 

 

Table 10/clause 9.4: Liberal view of recommended key lengths 
for a resistance during X years 

entry name of the signature suite 3 years  
(2008) 

5 years  
(2010) 

10 years  
(2015) 

sha-1-with-rsa ≥ 768 1024 unknown 
sha224-with-rsa ≥ 768 1024 2048 
sha256-with-rsa ≥ 768 1024 2048 
RSASSA-PSS with mgf1SHA1Identifier ≥ 768 1024 unknown 
RSASSA-PSS with mgf1SHA224Identifier ≥ 768 1024 2048 
RSASSA-PSS with mgf1SHA256Identifier ≥ 768 1024 2048 
sha1-with-dsa ≥ 768 1024 unknown 
sha1-with-ecdsa 163 190 unknown 
sha224-with-ecdsa 224 224 224 
sha256-with-ecdsa 256 256 256 
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An additional table with speculations regarding security over 20 years is provided. Due to the unpredictability in such 
long term statements, there is no distinction made between liberal and conservative for the 20 year prediction, and such 
information should be considered as largely speculative. 

Table 11/clause 9.4: Speculated resistance of recommended algorithm parameters 
for the next 20 years, based on current trends and estimated computational power 

entry name of the signature suite 20 years  
(2025) 

sha-1-with-rsa unusable 
sha224-with-rsa 2048 
sha256-with-rsa 2048 
RSASSA-PSS with mgf1SHA1Identifier unusable 
RSASSA-PSS with mgf1SHA224Identifier 2048 
RSASSA-PSS with mgf1SHA256Identifier 2048 
sha1-with-dsa 2048 
ecPublicKey unknown 
sha1-with-ecdsa unknown 
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Annex C (informative): 
Generation of RSA modulus 
An RSA modulus is obtained by multiplying two prime numbers of roughly the same size. Furthermore, the two factors 
must not be too close in order to be far enough from the square root of the modulus. 

If we let p and q be the two prime factors of the modulus n, we can require that, for example: 

 0,1 < |log2(p) - log2(q)| < 30 

which means that none of the factors is small or close to the square root of the modulus. This condition implies that: 

 log2(n)/2 - 15 < log2(p), log2(q) < log2(n) / 2 + 15 

The generation of an RSA modulus of exactly k bits could be done with the following algorithm: 

•  Choose a random prime number p in the range ]2k/2-15, 2k/2+15[; 

•  Choose a random prime number q in the range [2k-1/p, 2k/p[; 

•  If the condition 0.1 < |log2(p)-log2(q)| < 30 is not satisfied, go back to the first step; 

•  Let n be the product of p and q. 

A more complicated method that avoids the third step altogether but produces differently distributed primes is: 

•  Choose a random prime number p in the range [2k/2-9/20, 2k/2+15[; 

•  Choose a random prime number q in the range]a,b[ where a=max(ceil(2k-1/p)-1, p.2-30) and 
b=min(2k/p, p.2-1/10); 

•  Let n be the product of p and q. 



 

ETSI 

ETSI TS 102 176-1 V1.2.1 (2005-07) 43 

Annex D (informative): 
Generation of elliptic curve domain parameters 
This annex describes possible ways to generate elliptic curve domain parameters for ECDSA and ECGDSA satisfying 
the conditions given in clauses 6.1.2.3 and 6.1.2.4 and also ways to select curves verifiably at random. 

For this, basically the algorithms described in ANSI X9.62 [7] annex A.3 can be used. The only necessary 
modifications are due to the fact that two of the conditions imposed on elliptic curves in this TS where not included in 
ANSI X9.62 [7]: In step 4. of algorithm A.3.2 only the condition about r0 (which is equivalent to the "MOV condition" 

of ANSI X9.62 [7]) and the condition p ≠ q of clause 6.1.2.3 (which follows from the "anomalous condition" of 
ANSI X9.62 [7]) are ensured while the condition on the class number of the maximal order of the endomorphism ring 
of the curve and (in the F2

m case) the condition that the curve must not be definable over F2 are not respected by the 

algorithm. These latter two conditions should also be checked during the generation of the curve. Clauses D.1 and D.2 
describe in more detail how the algorithm A.3.2 of ANSI X9.62 [7] can be modified accordingly. The 
algorithms A.3.3.1 and A.3.3.2 of ANSI X9.62 [7] for selecting curves verifiably at random which basically produce 
random j-invariants from a seed by means of a hash function only need to be modified in the case that the security of 
SHA-1 is no longer regarded to be sufficient. 

Clause D.3 gives more information about the class number condition and in particular describes how it can be checked. 
For checking the class number condition an integer M  has to be factorized and a certain triple (α,β,γ) of integers has to 
be found. To ease the validation of the domain parameters the prime factorization of M  and the triple (α,β,γ) should 
always be made public together with the domain parameters. Otherwise in particular the factorization of M  would 
consume much time. 

NOTE: Additional standard curves and further information about the class number condition can be found in the 
ECC Brainpool publication "ECC Brainpool Standard Curves and Curve Generation"; OID: 

� {1(iso) 3(identified organization) 36(teletrust) 3(algorithm) 3(signature algorithm) 2(ecSign) 
8(ecStdCurvesAndGeneration)}. 

D.1 ECDSA and ECGDSA based on a group E(Fp) 
The prime p can be generated by one of the algorithms described in ISO/IEC 18032 (see bibliography) in a way that the 
probability of being composite is at most 2-100. 

The generation of an appropriate curve E, the point P and the prime q can be done with the algorithm in annex A.3.2 of 
ANSI V9.62 [7] with lower bound rmin>2qMinLen, with MOV threshold B= r0Min and with Step 4. of algorithm A.3.2 

substituted by: "4. 

•  Check the MOV condition (see annex A.1.1) with inputs B, q and n. If the result is "false" go to Step 1. 

•  Check the Anomalous condition (see annex A.1.2). If the result is "false" go to Step 1. 

•  Find an element in the ideal class group of the number field K:=Q( d− ) of order at least MinClass where d  

is the squarefree factor of 2))(#1(4: pFEppM −+−= . If such an element of the class group cannot be found 

go to Step 1." 

The number M is always a positive integer and by the prime factorization of M  one determines uniquely defined 

positive integers ld ,  with 2dlM = . Then d is called the squarefree factor of M . 

If an element of the ideal class group of order at least MinClass can be found then the class number condition of 
clause 6.1.2.3 is satisfied. 

Elements of the ideal class group of K can effectively be represented by certain triples (α,β,γ) of integers. The details in 
particular about the group operation and the neutral element in this set of triples are given in clause D.3. 
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Here it is neither specified how to choose the elements in the ideal class group which are checked for sufficiently high 
order nor after how many unsuccessful selections of elements to decide that the demanded element "cannot be found". 
This is another reason to attach the triple (α,β,γ) (which has an order at least MinClass) to the domain parameters for 
validation. 

The algorithm to generate E, P and q can be successful only if p is chosen large enough, i.e. at least about as large as q 
which itself is greater than 2qMinLen-1. 

To select a curve verifiably at random one can use the algorithm given in annex A.3.3.1 of ANSI X9.62 [7]. The hash 
function SHA-1 has to be substituted by a more secure hash function after the recommended use date for SHA-1. 

D.2 ECDSA and ECGDSA based on a group E(F2
m) 

The selection of an appropriate curve E, the point P and the prime q can be done with the algorithm in annex A.3.2 of 
ANSI X9.62 [7] with lower bound rmin > 2qMinLen, with MOV threshold B=r0Min and with Step 4. of algorithm A.3.2 

substituted by: "4. 

•  Verify that b ≠ 1. If this is not the case go to Step 1. 

•  Check the MOV condition (see annex A.1.1) with inputs B, q and n. If the result is "false" go to Step 1. 

•  Find an element in the ideal class group of the number field K:=Q( d− ) of order at least MinClass where d  

is the squarefree factor of 2
2

2 ))(#12(2: mFEM mm −+−= + . If such an element in the ideal class group cannot 

be found go to Step 1". 

The parameter b is the constant term in the representation y2+xy=x3+ax2+b of the curve E used in the algorithm. b is the 
j-invariant of E and as in a former step of the algorithm b ≠ 0 was already checked b ≠ 1 means that the j-invariant is not 
contained in F2 and in particular that E cannot be defined over F2. 

The number M is always a positive integer and by the prime factorization of M  one determines the uniquely defined 

positive integers ld ,  with 2dlM = . Then d is called the squarefree factor of M . 

If an element of the ideal class group of order at least MinClass can be found then the class number condition of 
clause 6.1.2.4 is satisfied. 

Elements of the ideal class group of K can effectively be represented by certain triples (α,β,γ) of integers. The details in 
particular about the group operation and the neutral element in this set of triples are given in clause D.3. 

Here it is neither specified how to choose elements in the ideal class group which are checked for sufficiently high order 
nor after how many unsuccessful selections of elements to decide that the demanded element "cannot be found". This is 
another reason to attach the triple (α,β,γ) (which has an order at least MinClass) to the domain parameters for validation. 

The algorithm to generate E and P can be successful only if 2m is chosen large enough, i.e. at least about as large as q 
which itself is greater than 2qMinLen-1. 

To select a curve verifiably at random one can use the algorithm given in annex A.3.3.1 of ANSI X9.62 [7]. The hash 
function SHA-1 has to be substituted by a more secure hash function after the recommended use date for SHA-1. 
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D.3 The class number condition 
The class number condition was introduced because of the following reason: A hypothetical lift of the curve to an 
elliptic curve over a number field cannot exist if the degree of the number field is less then the class number of the 
endomorphism ring End(E) of E (regarded as order in the imaginary quadratic number field K:=Q( d− ) defined in 
clauses D.1 and D.2 respectively) and if the degree of the number field is large then a solution of the corresponding lift 
of the elliptic curve discrete logarithm problem is not feasible. The class number of End(E) is always a multiple of the 
class number of K so what is actually demanded is a sufficiently large class number of K. Also the recent results of 
Huang and Raskind (see bibliography) can be regarded as arguments for demanding a sufficiently large class number of 
K. 

Because the complexity of the best known algorithms for explicitly determining the class number of K is too high in 
practice one just tries to find elements of the ideal class group of K with a large order as the class number is not smaller 
than the order of an element. 

Randomly selected curves will violate the class number condition with very low probability. But the best known 
rigorously proven upper bounds do not exclude the possibility that the actual probability is significantly higher than 2-80 
and heuristic arguments show that this probability should be at least of about the same magnitude as 2-80 (for a key 
length of approximately 160 bits). So the class number condition should be checked also for randomly selected curves. 

We now briefly describe how the elements of the ideal class group of the number field K:=Q( d− ) for a positive 
squarefree integer d  can be represented, how to determine the product of two elements and what the representation of 
the neutral element with respect to this product looks like. Details can be found in the text book of Cohen (see 
bibliography). 

First define 
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A triple (α,β,γ) of integers satisfying =: 

•  gcd(α,β,γ)=1; 

•  α>0 and |β| ≤  α ≤  γ and if α=γ or |β|=α then also β ≥  0; 

•  β2-4αγ= D ; 

is called a primitive reduced triple of discriminant D . 

NOTE 1: (α,β,γ) is a primitive reduced triple of discriminant D  if and only if the quadratic form αx2+ βxy+γy2 is 
primitive reduced and has discriminant D  (which in particular implies that it is positive definite). 

The elements of the ideal class group of the number field K:=Q( d− ) correspond one-to-one to the primitive reduced 
triples of discriminant D . The group operation in this set of triples can be calculated as follows. 

Given two primitive reduced triples (α1,β1,γ1) and (α2,β2,γ2) the so called composition (α´,β´,γ´) of (α1,β1,γ1) and 

(α2,β2,γ2) can be determined by algorithm 5.4.7 of Cohen's book (see bibliography). This triple (α´,β´,γ´) is primitive 

and has discriminant D  but is not necessarily reduced. Applying the reduction algorithm 5.4.2 of the same book to this 
triple (α´,β´,γ´) delivers a primitive reduced triple (α,β,γ) with determinant D . This triple represents the product of the 
two elements representing (α1,β1,γ1) and (α2,β2,γ2). 

 (α1,β1,γ1) o  (α2,β2,γ2) := (α,β,γ) 

The neutral element is represented by the triple (1,0,- D /4) if )4(0≡D  and it is represented by the triple (1,1,(1- D )/4) 

if )4(1≡D . In either case the triple corresponding to the neutral element shall be denoted I.  
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The following is an algorithm that determines whether the order of an element of the ideal class group of the number 

field K:=Q( d− ) has an order of at least MinClass: 

Input: A primitive reduced triple (α,β,γ) of discriminant D . 

Output: The message "true" if the order of the corresponding element of the ideal class group is at least 
MinClass; the message "false" otherwise. 

1) Set t=I. 

2) For i from 1 to MinClass-1 do: 

- Set t:=t o (α,β,γ). 

- If t=I then output "false" and stop. 

3) Output "true". 

In 2. the triple t o (α,β,γ) is calculated by the procedure described above. 

NOTE 2: Most of the common computer algebra packages contain implementations for the described manipulations 
in the class group of K or in the set of primitive reduced quadratic forms respectively. 
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Annex E (informative): 
On the generation of random data 

E.1 Classes of random number generators 
Figure E.1 shows a schematic classification of random number generators according to ISO/IEC FCD 18031 (see 
bibliography) where more detailed information can be found. That document uses the term "random bit generator" 
while here the term "random number generator" is used. 

RNG

NRNG DRNG

 physical

 pure hybridd  pure hybridd  pure hybridd

non-phys.

 

Figure E.1: schematic classification of random number generators according to ISO/IEC FCD 18031 

Every random number generator RNG must have a primary entropy source. If this entropy source is non-deterministic 
which means unrepeatable and unpredictable the RNG is called non-deterministic or a NRNG. If this entropy source 
consists just of seed values it is called deterministic and also the RNG is called deterministic or a DRNG. 

The primary entropy source of a NRNG can either be physical or non-physical. A physical primary entropy source (also 
called physical primary noise source) uses dedicated hardware to measure the physical characteristics of a sequence of 
events in the physical world, e.g. radioactive emissions of atoms or the noise of diodes. Typical non-physical primary 
entropy sources are based for example on RAM contents, system clocks or "random user inputs" via PC-keyboard or 
PC-mouse. 

If the only entropy source for a RNG is the primary entropy source it is called pure RNG. A RNG can also have an 
additional entropy source. A NRNG with an additional deterministic entropy source (i.e. seed values) is called hybrid 
NRNG. A DRNG with an additional non-deterministic entropy source is called hybrid DRNG. 

A well constructed NRNG is information theoretically secure while (pure) DRNGs can only be complexity theoretically 
secure that means there is no feasible way to break its security. The advantage of the former is obviously that there is no 
(even theoretical) possibility to calculate future or previous outputs from known ones. The security of DRNGs depends 
on assumptions about the algorithmic complexity of certain problems which may turn out to be wrong sooner or later. 
So NRNGs are better suited for long term security. 

The following terminology for DRNGs is used in clause 8.2.2: 

•  A re-seeding of a DRNG is a complete new initialization of the DRNG with a newly produced seed. 

•  A seed-update of a DRNG is an external modification of the internal state (not by the regular updating 
function of the DRNG) in a way that: (i) After the modification the modifier has no more information about 
the internal state than before. (ii) Anybody else than the modifier having some information about the previous 
internal state has less information about the internal state after the modification. 

NOTE: The difference between these two possible ways to add new entropy to a DRNG is that if the new seed is 
known then the future output is known after re-seeding while this is not the case for a seed-update. 
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Of course it is desirable that after a seed-update the loss of information about the internal state in condition (ii) should 
be as large as possible. In an ideal case there remains no information. A typical example for that is an XOR of the 
internal state with a new seed produced with a strong NRNG. 

E.2 On tests for NRNGs 
Examples of generic test suites for the statistical properties of the primary entropy source can be found in Ruhkin et al. 
(see bibliography). But usually tests specifically adapted to the mathematical model of the source are more suitable. 

Online tests should be specific to the primary entropy source. An example for such an online test can be found in 
Example E7 of AIS 31 (see bibliography). 

To avoid a misunderstanding about tests and test suites it should be pointed out that: 

There is no test or test suite which can show that the output of a generator has a certain minimum entropy 
without certain additional statistical assumptions about the source. 

EXAMPLE: The term "universal" for Maurer's test (Maurer 1991, see bibliography) could cause some 
confusion about this fact. Actually in Maurer's article it is assumed that the source is a binary, 
stationary, ergodic source with finite memory. These assumptions are explicitly mentioned in that 
article. 

It should also be observed that an NRNG has to be evaluated as an entire system i.e. taking into account the interaction 
of the components. Thus it is not enough to regard the mathematical model, the online tests and the evaluation of the 
post-treatment separately. 
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Annex F (informative): 
Algorithms identifiers defined in various documents 

F.1 Algorithms identifiers defined in RFC 3278 
The title of the document is: "Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic Message Syntax 
(CMS)" by S. Blake-Wilson, D. Brown, P. Lambert [11]. 

Signature suite 

ECDSA with SHA1 

ecdsa-with-SHA1  OBJECT IDENTIFIER ::=  
{ iso(1) member-body(2) us(840) 10045 signatures(4) 1 } 
 

F.2 Algorithms identifiers defined in RFC 3279 
The title of the document is: "Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and 
Certificate Revocation List (CRL) Profile" by W. Polk, R. Housley, L. Bassham. [12] 

Signature suites for CA issuing keys and CRL issuing keys 

RSA with SHA1 

sha-1WithRSAEncryption OBJECT IDENTIFIER ::=  
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 } 
 

DSA with SHA1 

id-dsa-with-sha1 OBJECT IDENTIFIER ::=  
{ iso(1) member-body(2) us(840) x9-57 (10040) x9cm(4) 3 } 
 

ECDSA with SHA1 

ecdsa-with-SHA1  OBJECT IDENTIFIER ::=  
{ iso(1) member-body(2) us(840) 10045 signatures(4) 1 } 
 

Preferred signature algorithms for subject public keys (any is allowed) 

RSA 

rsaEncryption OBJECT IDENTIFIER ::=  
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 1} 
 

DSA 

id-dsa OBJECT IDENTIFIER ::=  
{ iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 } 
 

ECDSA 

id-ecPublicKey OBJECT IDENTIFIER ::=  
{ iso(1) member-body(2) us(840) 10045 2 1 } 
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F.3 Algorithms identifiers defined in RFC 3370 
The title of the document is: "Cryptographic Message Syntax (CMS) Algorithms" [13]. 

Hash-functions 

sha-1 OBJECT IDENTIFIER ::=  
{ iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) 26 } 
 

Signature suite 

DSA is always used with the SHA-1 message digest algorithm. The algorithm identifier for DSA is: 

id-dsa-with-sha1 OBJECT IDENTIFIER ::=   
{ iso(1) member-body(2) us(840) x9-57 (10040) x9cm(4) 3 } 
 

F.4 Algorithms identifiers defined in RFC 3447 
The title of the document is: "PKCS #1: RSA Cryptography Specifications" [14]. 

Signature algorithm 

The algorithm identifier for RSA is: 

rsaEncryption OBJECT IDENTIFIER ::=  
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 } 
 

F.5 Algorithm identifier defined in RFC 3874 
The title of the document is: "A 224-bit One-way Hash Function: SHA-224" [27]. 

id-sha224 

id-sha224  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) 
csor(3) nistalgorithm(4) hashalgs(2) sha224(4) } 
 

F.6 Algorithms identifiers defined in XML-Signature 
Syntax and Processing W3C Recommendation  

This recommendation from February 12, 2002 is about "XML-Signature Syntax and Processing" [30]. 

Hash-function 

SHA-1: http://www.w3.org/2000/09/xmldsig#sha1 

Signature suite  

DSAwithSHA1 (DSS): http://www.w3.org/2000/09/xmldsig#dsa-sha1 (Required) 

RSAwithSHA1 (RSA): http://www.w3.org/2000/09/xmldsig#rsa-sha1 (Recommended) 

http://www.w3.org/2000/09/xmldsig
http://www.w3.org/2000/09/xmldsig
http://www.w3.org/2000/09/xmldsig
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F.7 Algorithms identifiers defined in XML Encryption 
Syntax and Processing. W3C Recommendation 

This recommendation from December 10, 2002 is about "in XML Encryption Syntax and Processing " [31]. 

Hash-functions 

SHA1: http://www.w3.org/2000/09/xmldsig#sha1 

SHA256: http://www.w3.org/2001/04/xmlenc#sha256 

RIPEMD-160: http://www.w3.org/2001/04/xmlenc#ripemd160 

F.8 Algorithms identifiers defined in RFC 4050 
The title of the document is: "Using the Elliptic Curve Signature Algorithm (ECDSA) for XML Digital Signatures" 
[28]. 

Signature suite 

ECDSA: http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1 

NOTE: Like DSA, ECDSA incorporates the use of a hash function. Currently, the only hash function defined for 
use with ECDSA is the SHA-1 message digest algorithm. 

F.9 Algorithms identifiers defined in RFC 4051 
The title of the document is: "Additional XML Security Uniform Resource Identifiers (URIs)" [29] 

SHA-224 

http://www.w3.org/2001/04/xmldsig-more#sha224 

 

RSA-SHA256 

http://www.w3.org/2001/04/xmldsig-more#rsa-sha256 

RSA-RIPEMD160 

http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160 

ECDSA-SHA 

http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1 

http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha224 

http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256 

F.10 Algorithms identifiers defined in RFC 4055 
The title of the document is: "Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet X.509 
Public Key Infrastructure. Certificate and Certificate Revocation List (CRL) Profile". 

RFC 4055 [15] supplements RFC 3279 [12] to describe how to use some newer cryptographic algorithms. 

http://www.w3.org/2000/09/xmldsig
http://www.w3.org/2001/04/xmlenc
http://www.w3.org/2001/04/xmlenc
http://www.w3.org/2001/04/xmldsig-more
http://www.w3.org/2001/04/xmldsig-more
http://www.w3.org/2001/04/xmldsig-more
http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160
http://www.w3.org/2001/04/xmldsig-more
http://www.w3.org/2001/04/xmldsig-more
http://www.w3.org/2001/04/xmldsig-more
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Hash-functions 

id-sha224  OBJECT IDENTIFIER  ::=  {{ joint-iso-itu-t(2) country(16) us(840) organization(1) 
gov(101) csor(3) nistalgorithm(4) hashalgs(2) 4 }  
id-sha256  OBJECT IDENTIFIER  ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) 
csor(3) nistalgorithm(4) hashalgs(2) 1 }  
id-sha384  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) 
csor(3) nistalgorithm(4) hashalgs(2) 2 }  
id-sha512  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) 
csor(3) nistalgorithm(4) hashalgs(2) 3 } 
 

Mask Generation functions 

mgf1SHA1Identifier  AlgorithmIdentifier  ::= { id-mgf1, sha1Identifier }  
mgf1SHA224Identifier  AlgorithmIdentifier  ::= { id-mgf1, sha224Identifier }  
mgf1SHA256Identifier  AlgorithmIdentifier  ::= { id-mgf1, sha256Identifier }  
mgf1SHA384Identifier  AlgorithmIdentifier  ::= { id-mgf1, sha384Identifier }  
mgf1SHA512Identifier  AlgorithmIdentifier  ::= { id-mgf1, sha512Identifier }  
 

Signature algorithms  

id-RSASSA-PSS  OBJECT IDENTIFIER  ::=  { pkcs-1 10 }  
 

Signature suites  

sha224WithRSAEncryption  OBJECT IDENTIFIER  ::=  { pkcs-1 14 }  
sha256WithRSAEncryption  OBJECT IDENTIFIER  ::=  { pkcs-1 11 }  
sha384WithRSAEncryption  OBJECT IDENTIFIER  ::=  { pkcs-1 12 }  
sha512WithRSAEncryption  OBJECT IDENTIFIER  ::=  { pkcs-1 13 }  
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Annex G (informative): 
Abstracts of ISO/IEC 10118-3 and ISO/IEC 9796-2 
Abstract of ISO/IEC 10118-3 [3] 

ISO/IEC 10118-3 [3] specifies the following seven dedicated hash-functions, i.e. specially-designed hash-functions: 

1) RIPEMD-160 in clause 7 provides hash-codes of lengths up to 160 bits; 

2) RIPEMD-128 in clause 8 provides hash-codes of lengths up to 128 bits; 

3) SHA-1 in clause 9 provides hash-codes of lengths up to 160 bits; 

4) SHA-256 in clause 10 provides hash-codes of lengths up to 256 bits; 

5) SHA-512 in clause 11 provides hash-codes of lengths up to 512 bits; 

6) SHA-384 in clause 12 provides hash-codes of a fixed length, 384 bits; and 

7) WHIRLPOOL in clause 13 provides hash-codes of lengths up to 512 bits. 

For each of these dedicated hash-functions, ISO/IEC 10118-3 [3] specifies a round-function that consists of a sequence 
of sub-functions, a padding method, initializing values, parameters, constants, and an object identifier as normative 
information, and also specifies several computation examples as informative information. 

Abstract of ISO/IEC 9796-2 [17] 

ISO/IEC 9796-2 [17]:2002 specifies three digital signature schemes giving message recovery, two of which are 
deterministic (non-randomized) and one of which is randomized. The security of all three schemes is based on the 
difficulty of factorizing large numbers. All three schemes can provide either total or partial message recovery. 

The method for key production for the three signature schemes is specified in ISO/IEC 9796-2 [17]. However, 
techniques for key management and for random number generation (as required for the randomized signature scheme), 
are outside the scope of ISO/IEC 9796-2 [17]. 

Wherever possible, the second mechanism (Digital signature scheme 2) is RECOMMENDED. However, in 
environments where generation of random variables by the signer is deemed infeasible, then Digital signature scheme 3 
is RECOMMENDED. Digital signature scheme 1 SHALL only be used in environments where compatibility is 
required with systems implementing the first edition of this International Standard. 
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Annex H (informative): 
Signature maintenance 
An advanced electronic signatures SHOULD be verified according to a signature policy that meets the business needs. 

NOTE: There may exist valid reasons under particular circumstances to use a signature policy different from the 
one which should normally be used. In such a case, the full implications must be understood and carefully 
weighted by the verifier. 

A signature policy MAY include constraints about which algorithms and key lengths are deemed appropriate under that 
policy and/or define a time beyond which the algorithms/keys related to an advanced electronic signature should not be 
trusted anymore, unless additional security measures are taken. 

It may be needed to re-verify advanced electronic signatures (this is called a subsequent verification) well beyond the 
time they were initially verified. At the time of re-verification, trust anchors and algorithms that were initially defined in 
the signature policy may not be secure anymore. Additional security measures need to be taken so that this can be done. 

It may also happen that some keys were secure at the time the initial verification of an advanced electronic signature 
was performed, but due to some "accident" this is no more the case later on (e.g. due to a key compromise). 

In both cases, it is possible to maintain the security of an advanced electronic signature which has already been 
successfully verified. This may be done with security measures such as: 

•  the secure archival of both the definition of the signature policy (or an unambiguous reference to it) and all the 
data initially used to verify the advanced electronic signature according to that signature policy; or 

•  the secure archival of both the definition of the signature policy and the addition to the advanced electronic 
signature of other data (e.g. time-stamps) that will allow subsequent verifications. 

These measures may be defined in the signature policy itself or "elsewhere" in a set of rules called a "signature 
maintenance policy" which will allow to maintain the validity of advanced electronic signatures. 

When there is an interest to be able to re-verify advanced electronic signatures under a given signature policy at a time 
where it is possible or likely that the algorithms and key lengths originally used will not be secure anymore, then a 
signature maintenance process MUST be applied to these advanced electronic signatures. The sooner the process is 
applied, the better. This process MAY need to be performed again and again when advanced electronic signatures need 
to be verified during a very long time period. 
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Annex I (informative): 
Major changes from previous versions 
This annex is currently empty since it is the first version of the present document. It will later on contain a description 
of the major changes between the several versions so that an history can be easily be done. 
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