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Modal verbs terminology 
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and 
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of 
provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 

https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx
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1 Scope 
The present document defines the service description of the UICC Application Programming Interface (UICC API) 
internal to the UICC. Stage one is an overall service description, and does not deal with the implementation details of 
the API. 

The present document includes information applicable to network operators, service providers and terminal, UICC, 
Network Access Application (NAA) providers, switch and database manufacturers. 

The present document contains the core requirements, which are sufficient to provide a complete service. 

It is highly desirable however, that technical solutions for a UICC API should be sufficiently flexible to allow for 
possible enhancements. Additional functionalities not documented in the present document may implement 
requirements which are considered outside the scope of the present document. This additional functionality may be on a 
network wide basis, nation-wide basis or particular to a group of users. It is expected that such additional functionality 
does not compromise conformance to the core requirements of the service. 

2 References 

2.1 Normative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

• In the case of a reference to a TC SET document, a non specific reference implicitly refers to the latest version 
of that document in the same Release as the present document. 

Referenced documents which are not found to be publicly available in the expected location might be found at 
https://docbox.etsi.org/Reference/. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are necessary for the application of the present document. 

[1] ETSI TS 102 221: "Smart Cards; UICC-Terminal interface; Physical and logical characteristics". 

[2] ETSI TS 102 223: "Smart Cards; Card Application Toolkit (CAT)". 

[3] ISO/IEC 7816-4: "Identification cards - Integrated circuit cards - Part 4: Organization, security and 
commands for interchange". 

[4] ETSI TS 102 622: "Smart Cards; UICC - Contactless Front-end (CLF) Interface; Host Controller 
Interface (HCI)". 

[5] ETSI TS 102 613: "Smart Cards; UICC - Contactless Front-end (CLF) Interface; Physical and data 
link layer characteristics". 

[6] ETSI TS 102 600: "Smart Cards; UICC-Terminal interface; Characteristics of the USB interface". 

[7] ETSI TS 102 483: "Smart cards; UICC-Terminal interface; Internet Protocol connectivity between 
UICC and terminal". 

[8] ETSI TS 102 484: "Smart Cards; Secure channel between a UICC and an end-point terminal". 

[9] Open Mobile Alliance OMA-AD-Smartcard_Web_Server-V1-0-20070209-C: "Smartcard Web 
Server Enabler Architecture". 

[10] ETSI TS 102 412: "Smart Cards; Smart Card Platform Requirements Stage 1". 

[11] ETSI TS 102 127: "Smart Cards; Transport protocol for CAT applications; Stage 2". 

https://docbox.etsi.org/Reference/
https://www.etsi.org/deliver/etsi_ts/102200_102299/102221/
https://www.etsi.org/deliver/etsi_ts/102200_102299/102223/
https://www.iso.org/advanced-search/x/title/status/P/docNumber/7816/docPartNo/4/docType/0/langCode/ics/currentStage/true/searchAbstract/true/stage/stageDateStart/stageDateEnd/committee/sdg
https://www.etsi.org/deliver/etsi_ts/102600_102699/102622/
https://www.etsi.org/deliver/etsi_ts/102600_102699/102613/
https://www.etsi.org/deliver/etsi_ts/102600_102699/102600/
https://www.etsi.org/deliver/etsi_ts/102400_102499/102483/
https://www.etsi.org/deliver/etsi_ts/102400_102499/102484/
https://www.openmobilealliance.org/release/SCWS/V1_0-20070209-C/OMA-AD-Smartcard_Web_Server-V1_0-20070209-C.pdf
https://www.etsi.org/deliver/etsi_ts/102400_102499/102412/
https://www.etsi.org/deliver/etsi_ts/102100_102199/102127/
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[12] ETSI TS 102 225: "Smart Cards; Secured packet structure for UICC based applications". 

[13] ETSI TS 102 226: "Smart Cards; Remote APDU structure for UICC based applications". 

[14] ETSI TS 131 130 (17.1.0): "Digital cellular telecommunications system (Phase 2+) (GSM); 
Universal Mobile Telecommunications System (UMTS); LTE; 5G; (U)SIM Application 
Programming Interface (API); (U)SIM API for Java™ Card (3GPP TS 31.130 version 17.1.0 
Release 17)". 

[15] ETSI TS 102 267: "Smart Cards; Connection Oriented Service API for the Java Card™ platform". 

[16] ETSI TS 102 241: "Smart Cards; UICC Application Programming Interface (UICC API) for 
Java Card™". 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

• In the case of a reference to a TC SET document, a non specific reference implicitly refers to the latest version 
of that document in the same Release as the present document. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] GlobalPlatform: "GlobalPlatform Technology, Remote Application Management over HTTP, Card 
Specification v2.3 - Amendment B", Version 1.2. 

[i.2] GlobalPlatform: "GlobalPlatform Technology, Remote Application Management over CoAP, Card 
Specification v2.3 - Amendment M", Version 1.0. 

3 Definition of terms, symbols and abbreviations 

3.1 Terms 
For the purposes of the present document, the following terms apply: 

applet: application built up using a number of modules which will run under the control of a virtual machine 

application: in the scope of the present document either an applet or a web-application 

bytecode: machine independent code generated by a bytecode compiler and executed by a bytecode interpreter 

data structure: collection of related data values such as the age, birth date and height of an individual 

framework: set of Application Programming Interface (API) functions and data structures for developing applications 
and for providing system services to those applications 

function: callable and executable body of computer instructions which perform a specific computation or data 
processing task 

logical Secure Element (SE): SE functionalities, applications and files grouped together to act like a SE (e.g. UICC) 
when multiple logical SE interfaces are supported 

logical SE interface: logical connection between an endpoint in the terminal and one logical SE 

module: collection of functions and data structures which implement an entire application or a particular application 
feature or capability 

https://www.etsi.org/deliver/etsi_ts/102200_102299/102225/
https://www.etsi.org/deliver/etsi_ts/102200_102299/102226/
https://www.etsi.org/deliver/etsi_ts/131100_131199/131130/17.01.00_60/
https://www.etsi.org/deliver/etsi_ts/102200_102299/102267/
https://www.etsi.org/deliver/etsi_ts/102200_102299/102241/
https://globalplatform.org/specs-library/remote-application-management-over-http-amendment-b/
https://globalplatform.org/specs-library/remote-application-management-over-http-amendment-b/
https://globalplatform.org/specs-library/amendment-m-remote-application-mgmt-over-coap/
https://globalplatform.org/specs-library/amendment-m-remote-application-mgmt-over-coap/
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Secure Element (SE): tamper-resistant dedicated platform, consisting of hardware and software, capable of securely 
hosting applications and their confidential and cryptographic data and providing a secure application execution 
environment, e.g. the UICC 

servlet: application built up using a number of modules responding to incoming Internet protocol request (e.g. TCP, 
HTTP, HTTPS, etc.) 

NOTE: A Servlet runs under the control of a Servlet engine. 

servlet engine: part of the enhanced UICC API framework, responsible for handling incoming requests via the TCP/IP 
protocol (e.g. HTTP/HTTPS) and dispatching them to the web-application 

test capability: capability of the UICC to support the test configuration state 

test configuration: UICC configuration fulfilling the test configuration criterion 

test configuration criterion: first level application (e.g. NAA) specific criterion defined in the first level application 
specific extension of the UICC platform, and includes one or more conditions necessary to activate a test configuration 
state 

test configuration state: state of test configuration on a UICC after evaluating the test configuration criterion 

test toolkit events: events on the internal interface between the card runtime environment and the second level 
application for testing purposes 

test toolkit events capability: support of test capability and the test toolkit events within the UICC 

toolkit applet: applet loaded onto the UICC seen by the mobile as being part of the UICC toolkit application and 
containing only the code necessary to run the application 

NOTE: These applets might be downloaded over the radio interface. 

trusted party: entity trusted by the card issuer with respect to security related services and activities 

Universal Integrated Circuit Card Application Programming Interface (UICC API) framework: part of the UICC 
responsible for the handling of applications (including triggering and loading) 

NOTE: It also contains the library for the proactive API. 

virtual machine: part of the run-time environment responsible for interpreting the bytecode 

web-application: at least one Servlet or a combination of one or more Servlets, additional modules, applets, and static 
content 

3.2 Symbols 
Void. 

3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

AID Applet IDentifier 
APDU Application Protocol Data Unit 
API Application Programming Interface 
AVN Applet Version Number 
BER Bit Error Rate 
CAD Card Acceptance Device 
CAT Card Application Toolkit 
CLF ContactLess Front-end 
CoAP Constrained Application Protocol 
DF Dedicated File 
DTLS Datagram Transport Layer Security 



 

ETSI 

ETSI TS 102 240 V18.1.0 (2024-10)10Release 18 

EF Elementary File 
EPOS Electronic Point Of Sale 
HCI Host Controller Interface 
HTTP Hypertext Transfer Protocol 
ID IDentifier 
IFD InterFace Device 
IP Internet Protocol 
LSE Logical SE 
LSI Logical SE Interface 
MExE Mobile Execution Environment 
NAA Network Access Application 
OTA Over The Air 
P2P Peer to Peer 
PSK Pre shared Secret Key 
RF Radio Frequency technology 
RPC Remote Procedure Call 
SE Secure Element 
SSL Secure Socket Layer 
TAG nominal datum that encodes the name of a data object 
TCP Transmission Control Protocol 
TLS Transport Layer Security 
TLV Tag, Length, Value 
UDP User Datagram Protocol 
URI Uniform Resource Identifier 
WAP Wireless Application Protocol 

4 Description 

4.0 System overview 
The present document describes the high level requirements for an API for the UICC. This API shall allow application 
programmers easy access to the functions and data described in ETSI TS 102 221 [1] and ETSI TS 102 223 [2], such 
that UICC based services can be developed and loaded onto UICCs, quickly and, if necessary, remotely, after the UICC 
has been issued. Figure 1 shows a high level system architecture. 
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Figure 1: Toolkit applet management and communication 
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4.1 Design of UICC based applications using the UICC API 
Figure 2 shows how UICC applications can be developed in a standard development environment and converted into an 
interpreted format, then loaded into the UICC. 

Development 
Environment API; 
(e.g. Visual Basic 
API, C API, Java 
API) 

Smart Card 
Application 
platform; 
( e.g. Java Card™, 
Multos, Smart Card 
for Windows) 

Source code; e.g. C,  
Java, Visual Basic, etc. 

Bytecode 

Toolkit 
Applet File 

Applet file stored in non volatile 
memory 

Execution 
environment 

Runnable (activated) 
applet 

Executed applet 

compile (including 
libraries) 

optimise 
(optional) 

download 

install 

activate 

trigger 

Terminal 

 

Figure 2: Flow diagram of the development of a UICC application 
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4.2 UICC API architecture 
The UICC API shall consist of APIs for ETSI TS 102 223 [2] (pro-active functions) and ETSI TS 102 221 [1] (transport 
functions). Figure 3 illustrates the interactions between these APIs. 

 
Toolkit 

Applet 1 Applet 2 
Toolkit 

Applet 3 Applet n 

Proactive 
command manager 

UICC Kernel Files 

UICC API Framework 

Applet 
install/uninstall 

Security 

Applet 
triggering 

Applet security 
manager 

Activation 

Proactive 
commands 

P/C 
responses 

Install 
Uninstall 

APDU 

Interface to terminal 

APDU 
e.g. 
Envelopes 

Proactive polling, 91XX, Fetch, 
Proactive commands, 
Terminal Response 

File 
access 

File access 

UICC-API 

… 

 (see note) 

 

NOTE: The install/uninstall process does not form part of the API. Its requirements are outlined in clause 7. 
 

Figure 3: UICC API architecture 

In this model, the UICC data field structure is viewed as a series of data structures and data access functions to the API. 
In the physical model of course, they may still be stored in elementary files, but the functions will access these data as 
values within those data structures. 

A general requirement of the UICC API is that applets should not interfere with the basic UICC services. 

The UICC API framework shall prevent the toolkit applets from sending proactive commands which would interfere 
with the correct execution of the UICC operating system and/or other toolkit applets. 
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4.3 UICC file data access 
The following methods shall be offered by the API to UICC applets, to allow access to the UICC data: 

activateFile This function reactivates a deactivated EF. In case of successful execution of the command, the EF 
on which the command was applied becomes the current EF. After an unsuccessful execution, the 
current EF and current DF shall remain the same as prior to the execution. 

deactivateFile This function initiates a reversible deactivation of an EF. In case of successful execution of the 
command, the EF on which the command was applied becomes the current EF. After an 
unsuccessful execution, the current EF and current DF shall remain the same as prior to the 
execution. 

increase This function adds the value given in an array of bytes to the value of the last increased/updated 
record of the current cyclic EF, and stores the result into the oldest record. The record pointer is set 
to this record and this record becomes record number 1. The function does not perform the 
increase if the result would exceed the maximum value of the record (represented by all bytes set 
to "FF"). 

readBinary This function reads an array of bytes from the current transparent EF. 
readRecord This function reads one complete record in the current linear fixed or cyclic EF into an array of 

bytes. 
SearchRecord This function searches through a linear fixed or cyclic EF to find record(s) containing a specific 

pattern. 
select Select a file without changing the current file of any other applet or of the subscriber session. 
status This function returns information concerning the current directory. 
updateBinary This function updates the current transparent EF with an array of bytes. 
updateRecord This function updates one specific, complete record in the current linear fixed or cyclic EF with an 

array of bytes. 

4.4 UICC BER-TLV file access 
The following methods shall be offered by the API to UICC applets, to allow access to the data stored in BER-TLV 
files as defined in ETSI TS 102 221 [1]: 

• Retrieve a list of objects stored in the BER-TLV file identified by the TAG values of the objects. 

• Select a TLV object in the BER-TLV file. 

• Read data from a TLV object in the BER-TLV file. 

• Write data to a TLV object in a BER-TLV file. 

• Delete a TLV object in a BER-TLV file. 

• Add a TLV object in a BER-TLV file. 

5 Card interoperability 

5.1 Loader requirements 
There are a number of requirements for the loader which are seen as being vital to the successful deployment of UICC 
API based UICCs: 

• The Applet format shall be common to all compliant UICCs, such that a card issuer can deploy UICC API 
based service applets to any UICC API compliant UICC. 

• The loader environment that allows the loading of applets to the UICC shall be common to all UICC API 
compliant UICCs. This loader shall be able to send applets to UICCs in three distinct ways: 

- During the personalization of the UICC, prior to the issue of the UICC to the user. 
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- During the life of the UICC using the UICC Data Download mechanism defined in ETSI TS 102 223 [2] 
or using other standardized application dependent mechanisms. 

- During the life of the UICC using an Interface Device (IFD) or Card Accepting Device (CAD) (e.g. an 
EPOS terminal). 

5.2 Application transport 
The transport of applications shall be transparent to the terminal. Applications may be transported via several different 
bearers. 

6 Applet activation 

6.1 Applet triggering 
The application triggering portion of the UICC Framework is responsible for the activation of toolkit applets, based on 
the APDU received by the UICC. The inputs and outputs could be represented in figure 4. 

 

APDU 
Applet Triggering 

Menu 

Terminal 

... 

 

Figure 4: Applet triggering module 

Entry points to the applet shall be provided in two ways: 

• High level entry points, in order to have a simple programming of the UICC. 

• Low level entry points to support the evolution of the ETSI TS 102 223 [2] specification. 

Some of the high level entry points are listed below: 

• Application loading. 

• Application removal. 

• Terminal profile. 

• Menu selection. 

• Events upon file system operations by the terminal or by application(s) in the card: 

- read file; 

- update file; 

- set data; 

- retrieve data; 

- search record; 

- create file; 

- delete file; 
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- resize file; 

- terminate file; 

- activate file; 

- deactivate file. 

• Test toolkit events for monitoring APDU for test purposes: 

- read file for test purposes (as defined in Annex A); 

- APDU monitoring at the UICC for test purposes (as defined in Annex A). 

6.2 Applet selection 
Applet activation through selection shall follow the rules defined in ETSI TS 102 221 [1] for application selection. 

7 Applet life cycle management 

7.0 Overview 
The applet life cycle management as shown on figure 5 concerns the applet preparation, loading, installation, 
registration, configuration, execution and removal/deactivation. 

 

Figure 5: Applet life cycle 

7.1 Applet preparation 
"Applet preparation" refers to the optional phase of verifying the compliance of the applet code with card issuer or other 
standards. 

The applet is to be identified through an Applet IDentifier (AID) which is assigned through the procedure detailed in 
ISO/IEC 7816-4 [3] and an Applet Version Number (AVN). Both AID and AVN are assigned during the applet 
preparation phase. 

The minimum requirements for the applet (such as API versions, UICC capabilities, resource requirements) shall be 
specified. 
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7.2 Loading 

7.2.0 Overview 

"Loading" refers to the process of transporting the applet code from a load server to the UICC and generating the loaded 
code on the UICC. 

The process shall be under the principle control of the card issuer, who may choose to delegate this responsibility to one 
or more trusted parties, possibly while imposing resource restrictions (e.g. maximum memory allowance) or access 
restrictions (e.g. limited or reduced functionality). 

The loading process involves four distinct phases: Arbitration, Transport, Verification and Linking. The UICC shall 
provide acknowledgement of success or failure (including error identification code) to the load server if the load server 
requires this. 

7.2.1 Arbitration 

This phase is accomplished by mutual authentication between the UICC and the load server, and by establishing 
appropriate session keys for ensuring security during the data transfer, which is to follow. 

The minimum applet requirements are verified with regard to the environment present on the UICC (e.g. API version, 
UICC capabilities and available memory). If this fails, the loading process shall be aborted. 

The Applet IDentifiers (AIDs) and Version Numbers (AVNs) of any applets already installed on the UICC are 
compared to the AID and AVN of the applet, which is to be downloaded. If an identical applet is already installed on 
the UICC (i.e. both applet identifier and version number match), the phases Transport, Verification and Linking are 
skipped. If an applet with an Identical Applet IDentifier (AID) but different Version Number (AVN) is available on the 
UICC, that applet is removed (see clause 7.7). 

7.2.2 Transport 

This stage shall encompass the transport of the data packets from the load server to the UICC, and may be done with 
optionally additional encryption using session keys generated/exchanged during the arbitration phase. 

7.2.3 Verification 

This stage shall encompass the verification of the received data and may involve byte-code level or applet-specific 
verification. Should the verification stage fail, the applet shall be discarded. 

7.2.4 Linking 

This stage shall encompass the linking of the received code against the runtime environment present on the UICC. 

7.3 Installation/registration/reactivation 
This stage refers to the execution of applet-code regarding to the installation and registration of the applet with respect 
to the UICC runtime environment and is out of scope for the present document. It may require additional procedures 
depending on the UICC/terminal environment (e.g. this may involve the generation of an applet-specific menu entry in 
the terminal's user interface through the appropriate toolkit command, and the generation of applet-specific data 
structures in UICC memory). 

If the applet already exists on the UICC and is deactivated (see clause 7.6), the installation request shall reactivate the 
applet. Other methods of reactivation are possible via a separate command. 
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7.4 Configuration 
This stage may involve any necessary configuration of the applet code with regard to a particular 
user/set-up/environment. This stage is driven through code provided with the applet itself and may be executed 
repeatedly. 

7.5 Execution 
At this stage, providing the applet is activated, the applet is in a state where its execution may be triggered by any event 
as specified in clause 6. 

7.6 Deactivation 
This stage involves disabling the ability to execute applet code in the UICC and may be triggered by the user, the card 
issuer or any third party, providing sufficient access rights are granted to them. Deactivation may include the release of 
any applet reserved resources (e.g. memory resources, etc.). 

7.7 Removal 
This stage follows the deactivation of the applet and prevents the applet's reactivation. This may be followed by the 
release of the applet's memory. For security reasons, the memory may be overwritten by null data. 

8 Security management 

8.1 Management of applets 
Security might be required during the loading of the applet from a load server onto the UICC, and the communications 
between the applet and any remote server during the execution of the applet code. In both cases security may involve 
the authentication of the communicating entities and the encryption of the data traffic between those entities. 

A hierarchy of keys may be bootstrapped by initializing a set of keys by the card issuer during card personalization. 
Additional keys may be generated, distributed using existing keys, and equipped with limited authority. Such keys may 
be passed on to trusted parties and subsequently used for authentication and encryption. 

8.2 Applet certification 
The role of certification is to ensure that only the authorized entities are able to download an application on to the 
UICC. Based on this certificate, the UICC shall decide whether or not to accept the downloaded application. 

9 API compatibility 

9.1 Level of compatibility 
The commands and features supported by the API shall be as specified in the same Release year of ETSI 
TS 102 221 [1] and ETSI TS 102 223 [2]. 

9.2 Compatibility at the interface 
In order to provide compatibility with the UICC/terminal interface, a UICC using the UICC API shall provide full 
functional compatibility with the structure and content of ETSI TS 102 221 [1] and ETSI TS 102 223 [2] commands as 
specified in those documents. 



 

ETSI 

ETSI TS 102 240 V18.1.0 (2024-10)18Release 18 

9.3 Compatibility at the programming interface 
All commands (at the functional level) shall be presented in a manner consistent with the customary or recommended 
use of the programming language at the programming level. 

The UICC API shall be provided in two ways: 

• an easy to use high level interface (proactive commands level); and 

• a low level interface (i.e. the TLV parameters) to maximize scope without the need to extend the UICC API. 

9.4 Accessibility of the programming interface 
The UICC API shall be accessible by any UICC application (e.g. Java Card™ applet). 

10 API extensibility 

10.0 General requirements 
The UICC API shall support applications written for previous versions of the UICC API. 

There shall be means to manage versions of the UICC API. 

At installation of an applet the required UICC API version shall be checked as described in clause 7. 

The ability to extend the UICC API to add functionality may be possible without reissuing the card. 

10.1 Evolution of UICC/terminal interface (ETSI TS 102 221) 
As the UICC/terminal interface is handled by the UICC kernel any evolution of the interface may require the 
introduction of a new UICC API version. 

10.2 Evolution of CAT application toolkit (ETSI TS 102 223) 
The UICC API shall provide a low-level interface to support any further releases of ETSI TS 102 223 [2]. 

The UICC API should provide a high level interface to support specific features. 

10.3 Interworking with other systems 
If interworking at APDU and UICC API level with other systems (e.g. MExE, WAP) require some specific 
functionality, it will first need to be defined either in the ETSI TS 102 221 [1] or ETSI TS 102 223 [2], and as a result it 
will be taken into account in the API specification. 

10.4 Evolution of UICC/terminal contactless interface 
(ETSI TS 102 622 and ETSI TS 102 613) 

The UICC API shall provide the following features: 

• Transmit and receive messages to and from the CLF in card emulation mode according to ETSI 
TS 102 622 [4]. 

• Transmit and receive messages to and from the CLF in reader emulation mode according to ETSI 
TS 102 622 [4]. 
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• Transmit and receive messages to and from the CLF in P2P mode according to ETSI TS 102 622 [4]. 

• Set and retrieve registry parameters defined in ETSI TS 102 622 [4] in the CLF. 

• Subscribe and receive all the events defined in ETSI TS 102 622 [4] needed to operate in card emulation 
mode. 

• Subscribe and receive all the events defined in ETSI TS 102 622 [4] needed to operate in reader mode. 

• Subscribe and receive all the events defined in ETSI TS 102 622 [4] needed to operate in P2P mode. 

• Provide a mechanism to access non-volatile memory content which is not part of the file system or not 
addressable by the UICC API framework (in order to support memory writing and memory reading 
operations). 

• Provide means to inform the UICC application of the phone status (availability of the end user interface, 
availability of the network interface). 

• Initiate events defined for the connectivity gate as defined in ETSI TS 102 622 [4]. 

• Provide the availability of contactless interface power mode in the CLF according to ETSI TS 102 613 [5] and 
ETSI TS 102 622 [4]: i.e. low power mode/full power mode. 

10.5 HCI low-level support 

10.5.1 Use case 

ETSI TS 102 622 [4] (HCI) supports the usage of proprietary gates that can be used to support application specific 
functionality. An application residing on the UICC creates a proprietary gate to provide application specific 
functionality, e.g. OTA services, to other hosts, e.g. an embedded secure element. An application residing on that 
embedded secure element can create and open a pipe to the proprietary gate provided by the application on the UICC to 
make use of services supported by the application. 

This low-level API shall support this functionality and allow applications residing on the UICC to create proprietary 
gates, manage pipes for these gates and to receive and send data over these pipes accordingly. 

This low-level API shall be separated from the functionality provided by the higher-level API covering the Card 
emulation mode, Reader mode, Connectivity functionality and P2P mode in that the gates and pipes used exclusively by 
these modes shall not be affected. 

10.5.2 Requirements 

• Access to proprietary gates shall be supported whereas access to the gates (e.g. card RF gates, card application 
gates. reader RF gates, reader application gates, connectivity gate, etc.) defined by the HCI specification in 
ETSI TS 102 622 [4] shall be excluded by the low-level API. 

• Support a Host discovery, by retrieving a list of available hosts in the system from the CLF. 

• Modification of the host's own white list shall be supported. 

• Allow notifications upon changes of the host list on the CLF. 

• Support creation and deletion of proprietary, i.e. application specific, gates. 

• Support creating, opening, closing, and deleting of pipes. 

• Transmit and receive messages over pipes the applet created itself. 

• Allow notifications upon pipe state changes. 
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• Support access control to gates and pipes: 

- An application shall not be able to delete/close pipes it did not create/open. 

- An application shall not be able to delete or modify a gate it did not create. 

- An application shall not be able to create a gate with an already assigned gate ID. 

- An application shall not be able to create a pipe with an already assigned pipe ID. 

10.6 Application API for Secure messaging over HTTPS 

10.6.1 Use Cases (informative) 

An application residing in the UICC has several means to communicate with a remote server: 

i) traditional SMS technology; 

ii) CAT-TP protocol as described in ETSI TS 102 127 [11]; 

iii) TCP/IP; 

iv) Secure messages over HTTPS; 

v) Secure messages over CoAP/DTLS. 

All those technologies and related security layers are described in the ETSI TS 102 225 [12] and ETSI TS 102 226 [13]. 

For the first two technologies, Java Card API is available for applications (for the SMS technology relying on a 
combination of ETSI TS 102 241 [16] and ETSI TS 131 130 [14] and for the CAT-TP technology ETSI 
TS 102 267 [15]) while no API is available for the secure messages over HTTPS and CoAP/DTLS. 

When an application residing in the UICC would like to exchange data (opening a connection, receiving or sending 
data) with a remote server is a secure way, the Secure Message structure as described in ETSI TS 102 225 [12] 
(referencing the Amendment B of the Global Platform Card Specification [i.1] with some clarifications) may be 
appropriate. Nevertheless, in order to ease the development of such services, it is expected that the application does not 
have to manage the security and HTTP and/or CoAP related layers. As an example, an application managing some 
phonebook data may need to back up the data on a remote server in a confidential way, without having to implement the 
actual SSL/TLS and HTTP or CoAP and DTLS protocols. 

10.6.2 Requirements for HTTPS (normative) 

There shall be a means for an application residing in the UICC to receive and send messages according to the protocol 
specified in Amendment B of the Global Platform Card Specification [i.1] (described as Secured Message for HTTPS in 
ETSI TS 102 225 [12]). 

The secure messaging over HTTPS API shall allow an application to manage message content, without managing the 
HTTP and SSL/TLS protocols. 

The secure messaging over HTTPS API shall allow an application to register and de-register the application to 
incoming messages formatted as Secured Message for HTTPS. 

The secure messaging over HTTPS API shall allow an application to provide data for outgoing messages formatted as 
Secured Message for HTTPS. 

10.6.3 Requirements for CoAP/DTLS (normative) 

There shall be a means for an application residing in the UICC to receive and send messages according to the protocol 
specified in Amendment M of the Global Platform Card Specification [i.2]. 

The secure messaging over CoAP/DTLS API shall allow an application to manage message content, without managing 
the CoAP and DTLS protocols. 
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The secure messaging over CoAP/DTLS API shall allow an application to register and de-register the application to 
incoming messages formatted as Secured Message for CoAP/DTLS. 

The secure messaging over CoAP/DTLS API shall allow an application to provide data for outgoing messages 
formatted as Secured Message for CoAP/DTLS. 

10.7 Machine to Machine (M2M) UICC applications 
A UICC application shall be able to indicate via the UICC API that specific application data shall support a specific life 
time expectation based on the number of updates allowed for that specific data. 

The UICC API shall provide a means allowing the notification of memory failure to UICC applications that a potential 
loss of data reliability is detected. The notification may be generated only if the memory required to handle the 
notification has itself not been affected. 

10.8 Secure Channel between UICC and terminal 
The API for UICC supporting the Secure Channel as defined in ETSI TS 102 484 [8] shall provide the following 
features: 

• Management of the establishment and the closure of a secure channel. 

• Communication over an established secure channel. 

• Management of application settings such as the mandating of the use of the secure channel. 

• Remote configuration of Secure Channel settings: e.g. load a PSK or a certificate in the UICC. 

• Management of the UICC endpoints. 

• Inform applications of their Secure Channel communication status. 

• The API applies to secured APDU platform to platform and application to application. 

There shall be a mechanism to restrict access to this API to authorized applications only. 

11 Data and function sharing and access control 

11.1 Sharing resources between applets 
The API shall provide a secure data structure and function sharing mechanism between applets and with the UICC 
kernel. 

The UICC kernel should be able to share with applets: 

• files: to get file status, read and update data field; 

• PIN1, PIN2: to get status. 

A toolkit applet shall be able to share any kind of data with any other applet even a non-toolkit applet. 

The data and function sharing mechanism and the access control management shall be common to all card issuers. 

To ease the deployment, these requirements have the following priorities: 

• high: UICC kernel data sharing; 

• medium: inter industry sharing mechanism between applets. 
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11.2 Access to data 
The UICC API shall provide a way to let each applet indicate: 

• the shared data and functions; 

• the associated access functions to these data and functions; 

• the security or trust level required; 

• the accepted certification authorities; and 

• the identity of the applet provider. 

The UICC API framework shall check all these parameters before granting an access to data. 

12 Technology considerations 

12.1 UICC hardware requirements 
The UICC API requires a smart card device that is capable of implementing a virtual machine and the UICC API 
framework. It is seen as necessary that there is sufficient non-volatile memory to contain UICC Applets alongside 
mandatory application specific files and potentially many (if not all) of optional application specific files. 

12.2 Technology limitations 

12.2.1 Memory recovery 

Although there is a requirement for UICC API compliant devices to allow reconfiguration, termination and removal of 
Applets, it is recognized that UICC API devices may not be fully capable of reclaiming the memory freed up. 

12.3 Evolution 

12.3.1 Remote Procedure Call (RPC) 

Some current technologies that meet the needs of the UICC API are not designed to allow RPC. Future alternative 
technologies may be able to support this. It is seen as a future requirement of UICC API when interacting with terminal 
based execution environments. 

13 Enhanced Runtime Environment 

13.0 Overview 
For a UICC that supports multiple logical interfaces based on ETSI TS 102 600 [6], ETSI TS 102 622 [4] and ETSI 
TS 102 483 [7] a runtime environment, called the enhanced UICC API framework, allowing applications concurrent 
access to these multiple interfaces, may be implemented. This runtime environment shall have the following 
characteristics. 
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13.1 Interworking between multiple hardware and logical 
UICC/terminal interfaces 

A UICC based on a combination of ETSI TS 102 221 [1], ETSI TS 102 600 [6], ETSI TS 102 622 [4], ETSI 
TS 102 483 [7] and ETSI TS 102 484 [8] can have multiple active logical interfaces based on different protocol layers 
(APDU, TCP, UDP, HCI) with the terminal. The enhanced UICC API framework shall manage all the communication 
over these multiple interfaces concurrently and independently from each other. In order to handle these logical 
interfaces independently, the UICC API framework shall be based on a technology allowing concurrent access to the 
interfaces. The enhanced UICC API framework is responsible to manage the communication between the terminal and 
the different applications via these logical interfaces. A reset of one of the interfaces, either hardware or logical, shall 
not affect the communication via the other logical interfaces or hardware interfaces. The enhanced UICC API 
framework shall provide information about the establishment as well as the reset of interfaces to registered applications 
in the form of events. 

13.2 Support for TCP and UDP 
The functionality for applications to communicate concurrently via TCP/IP or UDP/IP according to ETSI 
TS 102 483 [7] shall be provided by an enhanced UICC API framework. The enhanced UICC API framework shall 
provide the functionality to applications to communicate over TCP/IP in server and client mode. 

The enhanced UICC API framework shall provide a generic and extendable way to retrieve APIs for the different types 
of the Internet protocol family as well as support any further releases of ETSI TS 102 483 [7]. 

The enhanced UICC API framework shall be able to concurrently activate applications upon incoming TCP/UDP 
requests that are listening on a specific TCP/UDP port. The UICC API framework shall be able to manage several 
incoming and outgoing requests via TCP/UDP concurrently. The UICC API framework shall provide the functionality 
to establish a secure communication on this specific TCP/UDP port according to ETSI TS 102 484 [8]. 

13.3 Support for HTTP 
The functionality for applications to receive and respond to HTTP requests shall be provided by a servlet engine that is 
part of the enhanced UICC API framework. Applications that deal with the HTTP protocol are called Web applications. 
This servlet engine shall be able to activate concurrently Web applications upon request to a URI. Web applications 
shall be identified by a URI, see OMA [9]. The URI identifying a Web application shall be unique for the UICC on 
which this Web application is loaded. 

13.4 Support for Card Application Toolkit (CAT) 
The enhanced UICC API framework shall provide the functionality to receive Toolkit events and send Proactive 
commands as described in ETSI TS 102 223 [2]. 

13.5 Secure communication 
The enhanced UICC API framework shall provide the means to establish a secure channel, by implementing the TLS 
application to application secure channel, over TCP/IP according to ETSI TS 102 484 [8]. It shall be possible to assign 
at least one TCP port, as an end point for a secure channel, per application. It shall be possible for applications to open a 
secure channel in server-listen mode or in client mode. It shall be possible that several secure channel sessions are 
active concurrently at the same time. 

The enhanced UICC API framework shall provide the means to perform the following operations: 

• the key agreement for the secure channel; 

• the secure channel setup. 

The enhanced UICC API framework shall provide the means to manage secure communication for the APDU 
application to application protocol according to ETSI TS 102 484 [8]. 
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13.6 Events 
The enhanced UICC API framework shall support an extendable event framework, that allows the definition of events 
that can be raised by the platform (UICC, Interfaces, Frameworks) or by applications deployed in the UICC. The 
enhanced UICC API framework shall provide a mechanism to applications to subscribe and unsubscribe to these events. 

13.7 Access to the enhanced UICC API framework 
The enhanced UICC API framework shall support a permission based security mechanism as a means to restrict access 
to the features of the framework, as requested by ETSI TS 102 412 [10]. 

13.8 Inter-application communication 
The enhanced UICC API framework shall provide a mechanism allowing applications to share data in a secure and 
authenticated way. 

13.9 Backward compatibility 
The enhanced UICC API framework shall provide the means allowing existing applications, based on the Release 7 or 
earlier API specifications, to be deployed on new cards implementing the enhanced UICC API framework. 

14 Support of Multiple Secure Elements and Multiplexed 
Logical Interfaces 

For a UICC supporting multiple LSEs and multiple LSIs, as defined by ETSI TS 102 412 [10] the following 
requirements for the UICC API framework shall apply: 

• The UICC API framework shall ensure that an applet is only deployed to a specific LSE, this LSE becomes the 
hosting LSE of this applet. 

• The UICC API framework shall ensure that applets are only triggered or activated by events and commands 
that the hosting LSE receives via the LSI that is associated to this LSE. 

• The UICC API framework shall ensure that applets can only access files and other data under the control of 
the UICC kernel in the scope of their hosting LSE. 

• The UICC API framework shall ensure that only applets can share data with other applets that are deployed in 
the same LSE. 

• To ensure the isolation of the different LSEs, data and services globally available at UICC level in previous 
releases are only accessible in the scope of one LSE. 

• For a UICC supporting LSEs, the rules defined in clause 7.2.1 "Arbitration" for AIDs and AVNs apply 
separately for each LSE (i.e. applets with the same AID can be installed in multiple LSEs). 
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Annex A (normative): 
Test Toolkit Events 

A.1 Overview (informative) 
For the test toolkit events-based terminal conformance test method, the CAT runtime environment supports test toolkit 
events for applets to monitor a file read command for a given elementary file or an APDU with a given INS code (as 
defined in ETSI TS 102 221 [1]) command. Depending on the test requirements test applets can register and deregister 
for the required test toolkit events. Applet registration for the test toolkit events is successful only if the test 
configuration state is active. The test toolkit events are not available in a commercial environment in which the UICC 
configuration is not a test configuration and hence the test configuration state is not active.  

Refer to ETSI TS 102 412 [10] to find an overview of the test configuration state. 

A.2 Use cases (informative) 

A.2.1 Introduction 
Content in the test toolkit events can be used by the test applets to verify the APDU communication requirements 
defined in the first level application (e.g. NAA) test specifications. 

A.2.2 Use case - Monitor file read APDUs 
UICC has a test configuration, the test configuration state is active. Test applet registers for the read file event for test 
purposes with file identifier EF-UST (a file defined in the NAA specification). At terminal power-up, the terminal reads 
the file EF-UST. Upon successfully executing the READ BINARY command CAT runtime environment triggers the 
read file event with USIM ADF, file identifier of EF-UST, and the file read APDU sent by the terminal. The test applet 
can verify the APDU content and the file identifier of the EF-UST as required by the test scenarios. 

A.2.3 Use case - Monitor APDU received for a given INS code 
UICC has a test configuration, the test configuration state is active. Test applet registers for the APDU monitoring event 
for test purposes with INS code as GET IDENTITY (0 x 78) command. At device power-up, the device tries to register 
to the network with the SUCI calculated from the USIM. The terminal sends the GET IDENTITY command to the 
UICC. CAT runtime environment triggers the APDU monitoring event with USIM ADF, and the content of the GET 
IDENTITY APDU that is sent by the terminal. The test applet can verify the APDU content as required by the test 
scenarios. 

A.3 Requirements 

A.3.1 Availability of the test toolkit events functionality 
The test toolkit events functionality shall be available only if the test configuration state is active. Otherwise, the test 
toolkit events functionality shall not be available. A UICC with the test configuration state inactive shall behave as a 
UICC without the support for test toolkit events functionality. 
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A.3.2 Read file event for test purposes 
If the UICC supports test toolkit events capability, the CAT runtime environment shall support the following 
requirements: 

• provide a mechanism for an applet to register for this event to start monitoring the file read command for a 
given list of files; 

• support this event for the file read commands listed below: 

- READ BINARY (as defined in ETSI TS 102 221 [1]) 

- READ RECORD (as defined in ETSI TS 102 221 [1]) 

- RETRIEVE DATA (as defined in ETSI TS 102 221 [1]) 

- SEARCH RECORD (as defined in ETSI TS 102 221 [1]) 

• support event registration for multiple file identities and trigger test toolkit events for each file separately; 

• register test toolkit event only if the test toolkit events functionality is available; 

• trigger the test toolkit event upon execution of a file read command that targets one of the registered files and 
if the test toolkit event is available; 

• include in the test toolkit event the device identity with source and destination, the file identifier of the file 
read, the AID of the first level application (e.g. NAA) currently selected if any, and the APDU content of the 
file read command; 

• provide a mechanism for an applet to deregister this event to stop monitoring the file read command for a 
registered list of files; 

• deregister this event when the test configuration state becomes inactive, if the test configuration state is active 
and the test toolkit event is registered. 

A.3.3 APDU content monitoring event for test purposes 
If the UICC supports test toolkit events capability, the CAT runtime environment shall support the following 
requirements: 

• provide a mechanism for an applet to register for this event to start monitoring the commands specified by the 
instruction (INS) code list; 

• support this event for at least the following list of APDUs whose instruction codes (INS as defined in 
ETSI TS 102 221 [1]) are accepted for registration:  

- VERIFY PIN (as defined in ETSITS 102 221 [1]) 

- CHANGE PIN (as defined in ETSI TS 102 221 [1]) 

- DISABLE PIN (as defined in ETSI TS 102 221 [1]) 

- ENABLE PIN (as defined in ETSI TS 102 221 [1]) 

- UNBLOCK PIN (as defined in ETSI TS 102 221 [1]) 

- AUTHENTICATE (as defined in ETSI TS 102 221 [1]) 

- GET IDENTITY (as defined in ETSI TS 102 221 [1]) 

• support event registration with multiple INS codes and the CAT runtime environment and trigger the test 
toolkit events for each INS code separately; 

• register the test toolkit event only if the test toolkit events functionality is available;  
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• trigger the test toolkit event upon execution of a command that is one of the registered INS codes and if the 
test configuration state is active; 

• include in the test toolkit event the device identity with source and destination, the AID of the first level 
application currently selected if any, and the APDU content of the command; 

• provide a mechanism for an applet to deregister this event to stop monitoring the commands for a registered 
list of INS commands; 

• deregister this event when the test configuration state becomes inactive, if the test configuration state is active 
and the test toolkit event is registered. 

NOTE: The applet can register to monitor more than one INS code, but it is recommended to use only one INS 
code to minimize any performance impact. Applet can deregister the event for a given INS code once the 
event is received. 
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Annex B (informative): 
Change history 
This annex lists all change requests approved for the present document by ETSI TC SET (former ETSI TC SCP). 

Date Meeting TC SET Doc. CR Rv Cat Subject/Comment Old New 
2004-11 SCP#19 N4-040456 001   Clarification for non-specific references 6.0.0 6.1.0 
2005-06 SCP#21 SCP-050157 002  F ISO/IEC update 6.1.0 6.2.0 
2005-06 SCP#21 SCP-050157   B Requirements for large file support by the 

API 
6.1.0 6.2.0 

2005-12 SCP#23 SCP-050521 003  B Requirements for system events 6.2.0 7.0.0 
SCP-050522 004 1 B UICC API accessibility Requirement 

2008-07 SCP#38 SCP-080347 005  B Addition of requirements for a Contactless 
API 

7.0.0 8.0.0 

2009-01 SCP#40 SCP-090055 006  B Requirements for an enhanced Runtime 
Environment 

8.0.0 9.0.0 

2010-03 SCP#44 SCP(10)0047 007  B Addition of contactless low-level API 
functionality 

9.0.0 10.0.0 

2011-03 SCP#48 SCP(11)0130 008  B Definition of a new API allowing 
application to manage Secure messaging 
over HTTP(S) 

10.0.0 11.0.0 

2011-03 SCP#48 SCP(11)0131 009  B Addition of requirements for M2M 
applications 

10.0.0 11.0.0 

2009-04 SCP#41 SCP-090176 -  B Requirements for the Secure Channel API 11.0.0 11.1.0 
2011-09 SCP#52 SCP(11)0325 010  C Update of requirements for M2M 

applications 
11.0.0 11.1.0 

2021-09 SCP#101 SCP(21)000141 011  B Support of Multiple Logical SEs and 
Interfaces by the UICC API framework 

11.1.0 17.0.0 

2021-09 SCP#101 SCP(21)000148r1 012 1 D Editorial changes requested by editHelp 11.1.0 17.0.0 
2022-09 SET#107 SET(22)000204r1 013 1 B Update of reference to GlobalPlatform 

specification 
17.0.0 17.1.0 

2023-03 SET#109 SET(23)000036r1 015 1 B Requirements for Test Toolkit Events for 
terminal conformance testing 

17.1.0 18.0.0 

2024-06 SET#114 SET(24)000095 016  C Requirements for Connection Oriented 
Service API to support RAM over CoAP 
(GlobalPlatform Amendment-M) 

18.0.0 18.1.0 
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