

ETSI TS 102 240 V18.1.0 (2024-10)

Smart Cards;
UICC Application Programming Interface and

Loader Requirements;
Service description

(Release 18)

TECHNICAL SPECIFICATION

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)2Release 18

Reference
RTS/SET-R102240vi10

Keywords
API, SIM, smart card, test, UICC

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2024.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)3Release 18

Contents

Intellectual Property Rights .. 5

Foreword ... 5

Modal verbs terminology .. 6

1 Scope .. 7

2 References .. 7

2.1 Normative references ... 7

2.2 Informative references .. 8

3 Definition of terms, symbols and abbreviations ... 8

3.1 Terms .. 8

3.2 Symbols .. 9

3.3 Abbreviations ... 9

4 Description ... 10

4.0 System overview .. 10

4.1 Design of UICC based applications using the UICC API .. 11

4.2 UICC API architecture ... 12

4.3 UICC file data access ... 13

4.4 UICC BER-TLV file access ... 13

5 Card interoperability... 13

5.1 Loader requirements ... 13

5.2 Application transport .. 14

6 Applet activation .. 14

6.1 Applet triggering .. 14

6.2 Applet selection .. 15

7 Applet life cycle management .. 15

7.0 Overview .. 15

7.1 Applet preparation .. 15

7.2 Loading .. 16

7.2.0 Overview .. 16

7.2.1 Arbitration... 16

7.2.2 Transport ... 16

7.2.3 Verification ... 16

7.2.4 Linking .. 16

7.3 Installation/registration/reactivation ... 16

7.4 Configuration ... 17

7.5 Execution .. 17

7.6 Deactivation ... 17

7.7 Removal ... 17

8 Security management ... 17

8.1 Management of applets .. 17

8.2 Applet certification ... 17

9 API compatibility ... 17

9.1 Level of compatibility .. 17

9.2 Compatibility at the interface ... 17

9.3 Compatibility at the programming interface .. 18

9.4 Accessibility of the programming interface ... 18

10 API extensibility ... 18

10.0 General requirements ... 18

10.1 Evolution of UICC/terminal interface (ETSI TS 102 221) ... 18

10.2 Evolution of CAT application toolkit (ETSI TS 102 223) ... 18

10.3 Interworking with other systems .. 18

10.4 Evolution of UICC/terminal contactless interface (ETSI TS 102 622 and ETSI TS 102 613)......................... 18

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)4Release 18

10.5 HCI low-level support .. 19

10.5.1 Use case .. 19

10.5.2 Requirements .. 19

10.6 Application API for Secure messaging over HTTPS ... 20

10.6.1 Use Cases (informative) .. 20

10.6.2 Requirements for HTTPS (normative) .. 20

10.6.3 Requirements for CoAP/DTLS (normative) ... 20

10.7 Machine to Machine (M2M) UICC applications.. 21

10.8 Secure Channel between UICC and terminal ... 21

11 Data and function sharing and access control .. 21

11.1 Sharing resources between applets ... 21

11.2 Access to data ... 22

12 Technology considerations ... 22

12.1 UICC hardware requirements ... 22

12.2 Technology limitations ... 22

12.2.1 Memory recovery .. 22

12.3 Evolution .. 22

12.3.1 Remote Procedure Call (RPC) .. 22

13 Enhanced Runtime Environment .. 22

13.0 Overview .. 22

13.1 Interworking between multiple hardware and logical UICC/terminal interfaces ... 23

13.2 Support for TCP and UDP .. 23

13.3 Support for HTTP ... 23

13.4 Support for Card Application Toolkit (CAT) ... 23

13.5 Secure communication ... 23

13.6 Events ... 24

13.7 Access to the enhanced UICC API framework .. 24

13.8 Inter-application communication .. 24

13.9 Backward compatibility ... 24

14 Support of Multiple Secure Elements and Multiplexed Logical Interfaces ... 24

Annex A (normative): Test Toolkit Events .. 25

A.1 Overview (informative) .. 25

A.2 Use cases (informative) .. 25

A.2.1 Introduction .. 25

A.2.2 Use case - Monitor file read APDUs .. 25

A.2.3 Use case - Monitor APDU received for a given INS code ... 25

A.3 Requirements .. 25

A.3.1 Availability of the test toolkit events functionality .. 25

A.3.2 Read file event for test purposes .. 26

A.3.3 APDU content monitoring event for test purposes ... 26

Annex B (informative): Change history ... 28

History .. 29

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)5Release 18

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee Secure Element Technologies
(SET).

It is based on work originally done by the 3GPP group in "TSG-Terminals WG3" and by "ETSI Special Mobile Group
(SMG)".

The present document details the stage 1 aspects (overall service description) for the support of a UICC Application
Programming Interface (API).

The contents of the present document are subject to continuing work within TC SET and may change following formal
TC SET approval. If TC SET modifies the contents of the present document, it will then be republished by ETSI with
an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

0 early working draft;

1 presented to TC SET for information;

2 presented to TC SET for approval;

3 or greater indicates TC SET approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

https://ipr.etsi.org/

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)6Release 18

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)7Release 18

1 Scope
The present document defines the service description of the UICC Application Programming Interface (UICC API)
internal to the UICC. Stage one is an overall service description, and does not deal with the implementation details of
the API.

The present document includes information applicable to network operators, service providers and terminal, UICC,
Network Access Application (NAA) providers, switch and database manufacturers.

The present document contains the core requirements, which are sufficient to provide a complete service.

It is highly desirable however, that technical solutions for a UICC API should be sufficiently flexible to allow for
possible enhancements. Additional functionalities not documented in the present document may implement
requirements which are considered outside the scope of the present document. This additional functionality may be on a
network wide basis, nation-wide basis or particular to a group of users. It is expected that such additional functionality
does not compromise conformance to the core requirements of the service.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

• In the case of a reference to a TC SET document, a non specific reference implicitly refers to the latest version
of that document in the same Release as the present document.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI TS 102 221: "Smart Cards; UICC-Terminal interface; Physical and logical characteristics".

[2] ETSI TS 102 223: "Smart Cards; Card Application Toolkit (CAT)".

[3] ISO/IEC 7816-4: "Identification cards - Integrated circuit cards - Part 4: Organization, security and
commands for interchange".

[4] ETSI TS 102 622: "Smart Cards; UICC - Contactless Front-end (CLF) Interface; Host Controller
Interface (HCI)".

[5] ETSI TS 102 613: "Smart Cards; UICC - Contactless Front-end (CLF) Interface; Physical and data
link layer characteristics".

[6] ETSI TS 102 600: "Smart Cards; UICC-Terminal interface; Characteristics of the USB interface".

[7] ETSI TS 102 483: "Smart cards; UICC-Terminal interface; Internet Protocol connectivity between
UICC and terminal".

[8] ETSI TS 102 484: "Smart Cards; Secure channel between a UICC and an end-point terminal".

[9] Open Mobile Alliance OMA-AD-Smartcard_Web_Server-V1-0-20070209-C: "Smartcard Web
Server Enabler Architecture".

[10] ETSI TS 102 412: "Smart Cards; Smart Card Platform Requirements Stage 1".

[11] ETSI TS 102 127: "Smart Cards; Transport protocol for CAT applications; Stage 2".

https://docbox.etsi.org/Reference/
https://www.etsi.org/deliver/etsi_ts/102200_102299/102221/
https://www.etsi.org/deliver/etsi_ts/102200_102299/102223/
https://www.iso.org/advanced-search/x/title/status/P/docNumber/7816/docPartNo/4/docType/0/langCode/ics/currentStage/true/searchAbstract/true/stage/stageDateStart/stageDateEnd/committee/sdg
https://www.etsi.org/deliver/etsi_ts/102600_102699/102622/
https://www.etsi.org/deliver/etsi_ts/102600_102699/102613/
https://www.etsi.org/deliver/etsi_ts/102600_102699/102600/
https://www.etsi.org/deliver/etsi_ts/102400_102499/102483/
https://www.etsi.org/deliver/etsi_ts/102400_102499/102484/
https://www.openmobilealliance.org/release/SCWS/V1_0-20070209-C/OMA-AD-Smartcard_Web_Server-V1_0-20070209-C.pdf
https://www.etsi.org/deliver/etsi_ts/102400_102499/102412/
https://www.etsi.org/deliver/etsi_ts/102100_102199/102127/

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)8Release 18

[12] ETSI TS 102 225: "Smart Cards; Secured packet structure for UICC based applications".

[13] ETSI TS 102 226: "Smart Cards; Remote APDU structure for UICC based applications".

[14] ETSI TS 131 130 (17.1.0): "Digital cellular telecommunications system (Phase 2+) (GSM);
Universal Mobile Telecommunications System (UMTS); LTE; 5G; (U)SIM Application
Programming Interface (API); (U)SIM API for Java™ Card (3GPP TS 31.130 version 17.1.0
Release 17)".

[15] ETSI TS 102 267: "Smart Cards; Connection Oriented Service API for the Java Card™ platform".

[16] ETSI TS 102 241: "Smart Cards; UICC Application Programming Interface (UICC API) for
Java Card™".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

• In the case of a reference to a TC SET document, a non specific reference implicitly refers to the latest version
of that document in the same Release as the present document.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] GlobalPlatform: "GlobalPlatform Technology, Remote Application Management over HTTP, Card
Specification v2.3 - Amendment B", Version 1.2.

[i.2] GlobalPlatform: "GlobalPlatform Technology, Remote Application Management over CoAP, Card
Specification v2.3 - Amendment M", Version 1.0.

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

applet: application built up using a number of modules which will run under the control of a virtual machine

application: in the scope of the present document either an applet or a web-application

bytecode: machine independent code generated by a bytecode compiler and executed by a bytecode interpreter

data structure: collection of related data values such as the age, birth date and height of an individual

framework: set of Application Programming Interface (API) functions and data structures for developing applications
and for providing system services to those applications

function: callable and executable body of computer instructions which perform a specific computation or data
processing task

logical Secure Element (SE): SE functionalities, applications and files grouped together to act like a SE (e.g. UICC)
when multiple logical SE interfaces are supported

logical SE interface: logical connection between an endpoint in the terminal and one logical SE

module: collection of functions and data structures which implement an entire application or a particular application
feature or capability

https://www.etsi.org/deliver/etsi_ts/102200_102299/102225/
https://www.etsi.org/deliver/etsi_ts/102200_102299/102226/
https://www.etsi.org/deliver/etsi_ts/131100_131199/131130/17.01.00_60/
https://www.etsi.org/deliver/etsi_ts/102200_102299/102267/
https://www.etsi.org/deliver/etsi_ts/102200_102299/102241/
https://globalplatform.org/specs-library/remote-application-management-over-http-amendment-b/
https://globalplatform.org/specs-library/remote-application-management-over-http-amendment-b/
https://globalplatform.org/specs-library/amendment-m-remote-application-mgmt-over-coap/
https://globalplatform.org/specs-library/amendment-m-remote-application-mgmt-over-coap/

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)9Release 18

Secure Element (SE): tamper-resistant dedicated platform, consisting of hardware and software, capable of securely
hosting applications and their confidential and cryptographic data and providing a secure application execution
environment, e.g. the UICC

servlet: application built up using a number of modules responding to incoming Internet protocol request (e.g. TCP,
HTTP, HTTPS, etc.)

NOTE: A Servlet runs under the control of a Servlet engine.

servlet engine: part of the enhanced UICC API framework, responsible for handling incoming requests via the TCP/IP
protocol (e.g. HTTP/HTTPS) and dispatching them to the web-application

test capability: capability of the UICC to support the test configuration state

test configuration: UICC configuration fulfilling the test configuration criterion

test configuration criterion: first level application (e.g. NAA) specific criterion defined in the first level application
specific extension of the UICC platform, and includes one or more conditions necessary to activate a test configuration
state

test configuration state: state of test configuration on a UICC after evaluating the test configuration criterion

test toolkit events: events on the internal interface between the card runtime environment and the second level
application for testing purposes

test toolkit events capability: support of test capability and the test toolkit events within the UICC

toolkit applet: applet loaded onto the UICC seen by the mobile as being part of the UICC toolkit application and
containing only the code necessary to run the application

NOTE: These applets might be downloaded over the radio interface.

trusted party: entity trusted by the card issuer with respect to security related services and activities

Universal Integrated Circuit Card Application Programming Interface (UICC API) framework: part of the UICC
responsible for the handling of applications (including triggering and loading)

NOTE: It also contains the library for the proactive API.

virtual machine: part of the run-time environment responsible for interpreting the bytecode

web-application: at least one Servlet or a combination of one or more Servlets, additional modules, applets, and static
content

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AID Applet IDentifier
APDU Application Protocol Data Unit
API Application Programming Interface
AVN Applet Version Number
BER Bit Error Rate
CAD Card Acceptance Device
CAT Card Application Toolkit
CLF ContactLess Front-end
CoAP Constrained Application Protocol
DF Dedicated File
DTLS Datagram Transport Layer Security

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)10Release 18

EF Elementary File
EPOS Electronic Point Of Sale
HCI Host Controller Interface
HTTP Hypertext Transfer Protocol
ID IDentifier
IFD InterFace Device
IP Internet Protocol
LSE Logical SE
LSI Logical SE Interface
MExE Mobile Execution Environment
NAA Network Access Application
OTA Over The Air
P2P Peer to Peer
PSK Pre shared Secret Key
RF Radio Frequency technology
RPC Remote Procedure Call
SE Secure Element
SSL Secure Socket Layer
TAG nominal datum that encodes the name of a data object
TCP Transmission Control Protocol
TLS Transport Layer Security
TLV Tag, Length, Value
UDP User Datagram Protocol
URI Uniform Resource Identifier
WAP Wireless Application Protocol

4 Description

4.0 System overview
The present document describes the high level requirements for an API for the UICC. This API shall allow application
programmers easy access to the functions and data described in ETSI TS 102 221 [1] and ETSI TS 102 223 [2], such
that UICC based services can be developed and loaded onto UICCs, quickly and, if necessary, remotely, after the UICC
has been issued. Figure 1 shows a high level system architecture.

…

…

Card

Operator

Management

Communication

Applet1 AID1,TAR1

Applet2 TAR2

Trusted

Appletn AIDn,TARn

AIDx. ↔ TARx Application
AID

Application

Application
AID

…

Card

Trusted

UICC
AIDx ↔ TARx Terminal

Figure 1: Toolkit applet management and communication

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)11Release 18

4.1 Design of UICC based applications using the UICC API
Figure 2 shows how UICC applications can be developed in a standard development environment and converted into an
interpreted format, then loaded into the UICC.

Development
Environment API;
(e.g. Visual Basic
API, C API, Java
API)

Smart Card
Application
platform;
(e.g. Java Card™,
Multos, Smart Card
for Windows)

Source code; e.g. C,
Java, Visual Basic, etc.

Bytecode

Toolkit
Applet File

Applet file stored in non volatile
memory

Execution
environment

Runnable (activated)
applet

Executed applet

compile (including
libraries)

optimise
(optional)

download

install

activate

trigger

Terminal

Figure 2: Flow diagram of the development of a UICC application

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)12Release 18

4.2 UICC API architecture
The UICC API shall consist of APIs for ETSI TS 102 223 [2] (pro-active functions) and ETSI TS 102 221 [1] (transport
functions). Figure 3 illustrates the interactions between these APIs.

Toolkit

Applet 1 Applet 2
Toolkit

Applet 3 Applet n

Proactive
command manager

UICC Kernel Files

UICC API Framework

Applet
install/uninstall

Security

Applet
triggering

Applet security
manager

Activation

Proactive
commands

P/C
responses

Install
Uninstall

APDU

Interface to terminal

APDU
e.g.
Envelopes

Proactive polling, 91XX, Fetch,
Proactive commands,
Terminal Response

File
access

File access

UICC-API

…

 (see note)

NOTE: The install/uninstall process does not form part of the API. Its requirements are outlined in clause 7.

Figure 3: UICC API architecture

In this model, the UICC data field structure is viewed as a series of data structures and data access functions to the API.
In the physical model of course, they may still be stored in elementary files, but the functions will access these data as
values within those data structures.

A general requirement of the UICC API is that applets should not interfere with the basic UICC services.

The UICC API framework shall prevent the toolkit applets from sending proactive commands which would interfere
with the correct execution of the UICC operating system and/or other toolkit applets.

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)13Release 18

4.3 UICC file data access
The following methods shall be offered by the API to UICC applets, to allow access to the UICC data:

activateFile This function reactivates a deactivated EF. In case of successful execution of the command, the EF
on which the command was applied becomes the current EF. After an unsuccessful execution, the
current EF and current DF shall remain the same as prior to the execution.

deactivateFile This function initiates a reversible deactivation of an EF. In case of successful execution of the
command, the EF on which the command was applied becomes the current EF. After an
unsuccessful execution, the current EF and current DF shall remain the same as prior to the
execution.

increase This function adds the value given in an array of bytes to the value of the last increased/updated
record of the current cyclic EF, and stores the result into the oldest record. The record pointer is set
to this record and this record becomes record number 1. The function does not perform the
increase if the result would exceed the maximum value of the record (represented by all bytes set
to "FF").

readBinary This function reads an array of bytes from the current transparent EF.
readRecord This function reads one complete record in the current linear fixed or cyclic EF into an array of

bytes.
SearchRecord This function searches through a linear fixed or cyclic EF to find record(s) containing a specific

pattern.
select Select a file without changing the current file of any other applet or of the subscriber session.
status This function returns information concerning the current directory.
updateBinary This function updates the current transparent EF with an array of bytes.
updateRecord This function updates one specific, complete record in the current linear fixed or cyclic EF with an

array of bytes.

4.4 UICC BER-TLV file access
The following methods shall be offered by the API to UICC applets, to allow access to the data stored in BER-TLV
files as defined in ETSI TS 102 221 [1]:

• Retrieve a list of objects stored in the BER-TLV file identified by the TAG values of the objects.

• Select a TLV object in the BER-TLV file.

• Read data from a TLV object in the BER-TLV file.

• Write data to a TLV object in a BER-TLV file.

• Delete a TLV object in a BER-TLV file.

• Add a TLV object in a BER-TLV file.

5 Card interoperability

5.1 Loader requirements
There are a number of requirements for the loader which are seen as being vital to the successful deployment of UICC
API based UICCs:

• The Applet format shall be common to all compliant UICCs, such that a card issuer can deploy UICC API
based service applets to any UICC API compliant UICC.

• The loader environment that allows the loading of applets to the UICC shall be common to all UICC API
compliant UICCs. This loader shall be able to send applets to UICCs in three distinct ways:

- During the personalization of the UICC, prior to the issue of the UICC to the user.

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)14Release 18

- During the life of the UICC using the UICC Data Download mechanism defined in ETSI TS 102 223 [2]
or using other standardized application dependent mechanisms.

- During the life of the UICC using an Interface Device (IFD) or Card Accepting Device (CAD) (e.g. an
EPOS terminal).

5.2 Application transport
The transport of applications shall be transparent to the terminal. Applications may be transported via several different
bearers.

6 Applet activation

6.1 Applet triggering
The application triggering portion of the UICC Framework is responsible for the activation of toolkit applets, based on
the APDU received by the UICC. The inputs and outputs could be represented in figure 4.

APDU
Applet Triggering

Menu

Terminal

...

Figure 4: Applet triggering module

Entry points to the applet shall be provided in two ways:

• High level entry points, in order to have a simple programming of the UICC.

• Low level entry points to support the evolution of the ETSI TS 102 223 [2] specification.

Some of the high level entry points are listed below:

• Application loading.

• Application removal.

• Terminal profile.

• Menu selection.

• Events upon file system operations by the terminal or by application(s) in the card:

- read file;

- update file;

- set data;

- retrieve data;

- search record;

- create file;

- delete file;

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)15Release 18

- resize file;

- terminate file;

- activate file;

- deactivate file.

• Test toolkit events for monitoring APDU for test purposes:

- read file for test purposes (as defined in Annex A);

- APDU monitoring at the UICC for test purposes (as defined in Annex A).

6.2 Applet selection
Applet activation through selection shall follow the rules defined in ETSI TS 102 221 [1] for application selection.

7 Applet life cycle management

7.0 Overview
The applet life cycle management as shown on figure 5 concerns the applet preparation, loading, installation,
registration, configuration, execution and removal/deactivation.

Figure 5: Applet life cycle

7.1 Applet preparation
"Applet preparation" refers to the optional phase of verifying the compliance of the applet code with card issuer or other
standards.

The applet is to be identified through an Applet IDentifier (AID) which is assigned through the procedure detailed in
ISO/IEC 7816-4 [3] and an Applet Version Number (AVN). Both AID and AVN are assigned during the applet
preparation phase.

The minimum requirements for the applet (such as API versions, UICC capabilities, resource requirements) shall be
specified.

Server Card Applet Status

Preparation

Arbitration
Transport

Verification
Linking

Installation
Registration

Activation
Deactivation

Removal

Loaded

Installed
Registered

Activated
Deactivated

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)16Release 18

7.2 Loading

7.2.0 Overview

"Loading" refers to the process of transporting the applet code from a load server to the UICC and generating the loaded
code on the UICC.

The process shall be under the principle control of the card issuer, who may choose to delegate this responsibility to one
or more trusted parties, possibly while imposing resource restrictions (e.g. maximum memory allowance) or access
restrictions (e.g. limited or reduced functionality).

The loading process involves four distinct phases: Arbitration, Transport, Verification and Linking. The UICC shall
provide acknowledgement of success or failure (including error identification code) to the load server if the load server
requires this.

7.2.1 Arbitration

This phase is accomplished by mutual authentication between the UICC and the load server, and by establishing
appropriate session keys for ensuring security during the data transfer, which is to follow.

The minimum applet requirements are verified with regard to the environment present on the UICC (e.g. API version,
UICC capabilities and available memory). If this fails, the loading process shall be aborted.

The Applet IDentifiers (AIDs) and Version Numbers (AVNs) of any applets already installed on the UICC are
compared to the AID and AVN of the applet, which is to be downloaded. If an identical applet is already installed on
the UICC (i.e. both applet identifier and version number match), the phases Transport, Verification and Linking are
skipped. If an applet with an Identical Applet IDentifier (AID) but different Version Number (AVN) is available on the
UICC, that applet is removed (see clause 7.7).

7.2.2 Transport

This stage shall encompass the transport of the data packets from the load server to the UICC, and may be done with
optionally additional encryption using session keys generated/exchanged during the arbitration phase.

7.2.3 Verification

This stage shall encompass the verification of the received data and may involve byte-code level or applet-specific
verification. Should the verification stage fail, the applet shall be discarded.

7.2.4 Linking

This stage shall encompass the linking of the received code against the runtime environment present on the UICC.

7.3 Installation/registration/reactivation
This stage refers to the execution of applet-code regarding to the installation and registration of the applet with respect
to the UICC runtime environment and is out of scope for the present document. It may require additional procedures
depending on the UICC/terminal environment (e.g. this may involve the generation of an applet-specific menu entry in
the terminal's user interface through the appropriate toolkit command, and the generation of applet-specific data
structures in UICC memory).

If the applet already exists on the UICC and is deactivated (see clause 7.6), the installation request shall reactivate the
applet. Other methods of reactivation are possible via a separate command.

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)17Release 18

7.4 Configuration
This stage may involve any necessary configuration of the applet code with regard to a particular
user/set-up/environment. This stage is driven through code provided with the applet itself and may be executed
repeatedly.

7.5 Execution
At this stage, providing the applet is activated, the applet is in a state where its execution may be triggered by any event
as specified in clause 6.

7.6 Deactivation
This stage involves disabling the ability to execute applet code in the UICC and may be triggered by the user, the card
issuer or any third party, providing sufficient access rights are granted to them. Deactivation may include the release of
any applet reserved resources (e.g. memory resources, etc.).

7.7 Removal
This stage follows the deactivation of the applet and prevents the applet's reactivation. This may be followed by the
release of the applet's memory. For security reasons, the memory may be overwritten by null data.

8 Security management

8.1 Management of applets
Security might be required during the loading of the applet from a load server onto the UICC, and the communications
between the applet and any remote server during the execution of the applet code. In both cases security may involve
the authentication of the communicating entities and the encryption of the data traffic between those entities.

A hierarchy of keys may be bootstrapped by initializing a set of keys by the card issuer during card personalization.
Additional keys may be generated, distributed using existing keys, and equipped with limited authority. Such keys may
be passed on to trusted parties and subsequently used for authentication and encryption.

8.2 Applet certification
The role of certification is to ensure that only the authorized entities are able to download an application on to the
UICC. Based on this certificate, the UICC shall decide whether or not to accept the downloaded application.

9 API compatibility

9.1 Level of compatibility
The commands and features supported by the API shall be as specified in the same Release year of ETSI
TS 102 221 [1] and ETSI TS 102 223 [2].

9.2 Compatibility at the interface
In order to provide compatibility with the UICC/terminal interface, a UICC using the UICC API shall provide full
functional compatibility with the structure and content of ETSI TS 102 221 [1] and ETSI TS 102 223 [2] commands as
specified in those documents.

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)18Release 18

9.3 Compatibility at the programming interface
All commands (at the functional level) shall be presented in a manner consistent with the customary or recommended
use of the programming language at the programming level.

The UICC API shall be provided in two ways:

• an easy to use high level interface (proactive commands level); and

• a low level interface (i.e. the TLV parameters) to maximize scope without the need to extend the UICC API.

9.4 Accessibility of the programming interface
The UICC API shall be accessible by any UICC application (e.g. Java Card™ applet).

10 API extensibility

10.0 General requirements
The UICC API shall support applications written for previous versions of the UICC API.

There shall be means to manage versions of the UICC API.

At installation of an applet the required UICC API version shall be checked as described in clause 7.

The ability to extend the UICC API to add functionality may be possible without reissuing the card.

10.1 Evolution of UICC/terminal interface (ETSI TS 102 221)
As the UICC/terminal interface is handled by the UICC kernel any evolution of the interface may require the
introduction of a new UICC API version.

10.2 Evolution of CAT application toolkit (ETSI TS 102 223)
The UICC API shall provide a low-level interface to support any further releases of ETSI TS 102 223 [2].

The UICC API should provide a high level interface to support specific features.

10.3 Interworking with other systems
If interworking at APDU and UICC API level with other systems (e.g. MExE, WAP) require some specific
functionality, it will first need to be defined either in the ETSI TS 102 221 [1] or ETSI TS 102 223 [2], and as a result it
will be taken into account in the API specification.

10.4 Evolution of UICC/terminal contactless interface
(ETSI TS 102 622 and ETSI TS 102 613)

The UICC API shall provide the following features:

• Transmit and receive messages to and from the CLF in card emulation mode according to ETSI
TS 102 622 [4].

• Transmit and receive messages to and from the CLF in reader emulation mode according to ETSI
TS 102 622 [4].

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)19Release 18

• Transmit and receive messages to and from the CLF in P2P mode according to ETSI TS 102 622 [4].

• Set and retrieve registry parameters defined in ETSI TS 102 622 [4] in the CLF.

• Subscribe and receive all the events defined in ETSI TS 102 622 [4] needed to operate in card emulation
mode.

• Subscribe and receive all the events defined in ETSI TS 102 622 [4] needed to operate in reader mode.

• Subscribe and receive all the events defined in ETSI TS 102 622 [4] needed to operate in P2P mode.

• Provide a mechanism to access non-volatile memory content which is not part of the file system or not
addressable by the UICC API framework (in order to support memory writing and memory reading
operations).

• Provide means to inform the UICC application of the phone status (availability of the end user interface,
availability of the network interface).

• Initiate events defined for the connectivity gate as defined in ETSI TS 102 622 [4].

• Provide the availability of contactless interface power mode in the CLF according to ETSI TS 102 613 [5] and
ETSI TS 102 622 [4]: i.e. low power mode/full power mode.

10.5 HCI low-level support

10.5.1 Use case

ETSI TS 102 622 [4] (HCI) supports the usage of proprietary gates that can be used to support application specific
functionality. An application residing on the UICC creates a proprietary gate to provide application specific
functionality, e.g. OTA services, to other hosts, e.g. an embedded secure element. An application residing on that
embedded secure element can create and open a pipe to the proprietary gate provided by the application on the UICC to
make use of services supported by the application.

This low-level API shall support this functionality and allow applications residing on the UICC to create proprietary
gates, manage pipes for these gates and to receive and send data over these pipes accordingly.

This low-level API shall be separated from the functionality provided by the higher-level API covering the Card
emulation mode, Reader mode, Connectivity functionality and P2P mode in that the gates and pipes used exclusively by
these modes shall not be affected.

10.5.2 Requirements

• Access to proprietary gates shall be supported whereas access to the gates (e.g. card RF gates, card application
gates. reader RF gates, reader application gates, connectivity gate, etc.) defined by the HCI specification in
ETSI TS 102 622 [4] shall be excluded by the low-level API.

• Support a Host discovery, by retrieving a list of available hosts in the system from the CLF.

• Modification of the host's own white list shall be supported.

• Allow notifications upon changes of the host list on the CLF.

• Support creation and deletion of proprietary, i.e. application specific, gates.

• Support creating, opening, closing, and deleting of pipes.

• Transmit and receive messages over pipes the applet created itself.

• Allow notifications upon pipe state changes.

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)20Release 18

• Support access control to gates and pipes:

- An application shall not be able to delete/close pipes it did not create/open.

- An application shall not be able to delete or modify a gate it did not create.

- An application shall not be able to create a gate with an already assigned gate ID.

- An application shall not be able to create a pipe with an already assigned pipe ID.

10.6 Application API for Secure messaging over HTTPS

10.6.1 Use Cases (informative)

An application residing in the UICC has several means to communicate with a remote server:

i) traditional SMS technology;

ii) CAT-TP protocol as described in ETSI TS 102 127 [11];

iii) TCP/IP;

iv) Secure messages over HTTPS;

v) Secure messages over CoAP/DTLS.

All those technologies and related security layers are described in the ETSI TS 102 225 [12] and ETSI TS 102 226 [13].

For the first two technologies, Java Card API is available for applications (for the SMS technology relying on a
combination of ETSI TS 102 241 [16] and ETSI TS 131 130 [14] and for the CAT-TP technology ETSI
TS 102 267 [15]) while no API is available for the secure messages over HTTPS and CoAP/DTLS.

When an application residing in the UICC would like to exchange data (opening a connection, receiving or sending
data) with a remote server is a secure way, the Secure Message structure as described in ETSI TS 102 225 [12]
(referencing the Amendment B of the Global Platform Card Specification [i.1] with some clarifications) may be
appropriate. Nevertheless, in order to ease the development of such services, it is expected that the application does not
have to manage the security and HTTP and/or CoAP related layers. As an example, an application managing some
phonebook data may need to back up the data on a remote server in a confidential way, without having to implement the
actual SSL/TLS and HTTP or CoAP and DTLS protocols.

10.6.2 Requirements for HTTPS (normative)

There shall be a means for an application residing in the UICC to receive and send messages according to the protocol
specified in Amendment B of the Global Platform Card Specification [i.1] (described as Secured Message for HTTPS in
ETSI TS 102 225 [12]).

The secure messaging over HTTPS API shall allow an application to manage message content, without managing the
HTTP and SSL/TLS protocols.

The secure messaging over HTTPS API shall allow an application to register and de-register the application to
incoming messages formatted as Secured Message for HTTPS.

The secure messaging over HTTPS API shall allow an application to provide data for outgoing messages formatted as
Secured Message for HTTPS.

10.6.3 Requirements for CoAP/DTLS (normative)

There shall be a means for an application residing in the UICC to receive and send messages according to the protocol
specified in Amendment M of the Global Platform Card Specification [i.2].

The secure messaging over CoAP/DTLS API shall allow an application to manage message content, without managing
the CoAP and DTLS protocols.

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)21Release 18

The secure messaging over CoAP/DTLS API shall allow an application to register and de-register the application to
incoming messages formatted as Secured Message for CoAP/DTLS.

The secure messaging over CoAP/DTLS API shall allow an application to provide data for outgoing messages
formatted as Secured Message for CoAP/DTLS.

10.7 Machine to Machine (M2M) UICC applications
A UICC application shall be able to indicate via the UICC API that specific application data shall support a specific life
time expectation based on the number of updates allowed for that specific data.

The UICC API shall provide a means allowing the notification of memory failure to UICC applications that a potential
loss of data reliability is detected. The notification may be generated only if the memory required to handle the
notification has itself not been affected.

10.8 Secure Channel between UICC and terminal
The API for UICC supporting the Secure Channel as defined in ETSI TS 102 484 [8] shall provide the following
features:

• Management of the establishment and the closure of a secure channel.

• Communication over an established secure channel.

• Management of application settings such as the mandating of the use of the secure channel.

• Remote configuration of Secure Channel settings: e.g. load a PSK or a certificate in the UICC.

• Management of the UICC endpoints.

• Inform applications of their Secure Channel communication status.

• The API applies to secured APDU platform to platform and application to application.

There shall be a mechanism to restrict access to this API to authorized applications only.

11 Data and function sharing and access control

11.1 Sharing resources between applets
The API shall provide a secure data structure and function sharing mechanism between applets and with the UICC
kernel.

The UICC kernel should be able to share with applets:

• files: to get file status, read and update data field;

• PIN1, PIN2: to get status.

A toolkit applet shall be able to share any kind of data with any other applet even a non-toolkit applet.

The data and function sharing mechanism and the access control management shall be common to all card issuers.

To ease the deployment, these requirements have the following priorities:

• high: UICC kernel data sharing;

• medium: inter industry sharing mechanism between applets.

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)22Release 18

11.2 Access to data
The UICC API shall provide a way to let each applet indicate:

• the shared data and functions;

• the associated access functions to these data and functions;

• the security or trust level required;

• the accepted certification authorities; and

• the identity of the applet provider.

The UICC API framework shall check all these parameters before granting an access to data.

12 Technology considerations

12.1 UICC hardware requirements
The UICC API requires a smart card device that is capable of implementing a virtual machine and the UICC API
framework. It is seen as necessary that there is sufficient non-volatile memory to contain UICC Applets alongside
mandatory application specific files and potentially many (if not all) of optional application specific files.

12.2 Technology limitations

12.2.1 Memory recovery

Although there is a requirement for UICC API compliant devices to allow reconfiguration, termination and removal of
Applets, it is recognized that UICC API devices may not be fully capable of reclaiming the memory freed up.

12.3 Evolution

12.3.1 Remote Procedure Call (RPC)

Some current technologies that meet the needs of the UICC API are not designed to allow RPC. Future alternative
technologies may be able to support this. It is seen as a future requirement of UICC API when interacting with terminal
based execution environments.

13 Enhanced Runtime Environment

13.0 Overview
For a UICC that supports multiple logical interfaces based on ETSI TS 102 600 [6], ETSI TS 102 622 [4] and ETSI
TS 102 483 [7] a runtime environment, called the enhanced UICC API framework, allowing applications concurrent
access to these multiple interfaces, may be implemented. This runtime environment shall have the following
characteristics.

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)23Release 18

13.1 Interworking between multiple hardware and logical
UICC/terminal interfaces

A UICC based on a combination of ETSI TS 102 221 [1], ETSI TS 102 600 [6], ETSI TS 102 622 [4], ETSI
TS 102 483 [7] and ETSI TS 102 484 [8] can have multiple active logical interfaces based on different protocol layers
(APDU, TCP, UDP, HCI) with the terminal. The enhanced UICC API framework shall manage all the communication
over these multiple interfaces concurrently and independently from each other. In order to handle these logical
interfaces independently, the UICC API framework shall be based on a technology allowing concurrent access to the
interfaces. The enhanced UICC API framework is responsible to manage the communication between the terminal and
the different applications via these logical interfaces. A reset of one of the interfaces, either hardware or logical, shall
not affect the communication via the other logical interfaces or hardware interfaces. The enhanced UICC API
framework shall provide information about the establishment as well as the reset of interfaces to registered applications
in the form of events.

13.2 Support for TCP and UDP
The functionality for applications to communicate concurrently via TCP/IP or UDP/IP according to ETSI
TS 102 483 [7] shall be provided by an enhanced UICC API framework. The enhanced UICC API framework shall
provide the functionality to applications to communicate over TCP/IP in server and client mode.

The enhanced UICC API framework shall provide a generic and extendable way to retrieve APIs for the different types
of the Internet protocol family as well as support any further releases of ETSI TS 102 483 [7].

The enhanced UICC API framework shall be able to concurrently activate applications upon incoming TCP/UDP
requests that are listening on a specific TCP/UDP port. The UICC API framework shall be able to manage several
incoming and outgoing requests via TCP/UDP concurrently. The UICC API framework shall provide the functionality
to establish a secure communication on this specific TCP/UDP port according to ETSI TS 102 484 [8].

13.3 Support for HTTP
The functionality for applications to receive and respond to HTTP requests shall be provided by a servlet engine that is
part of the enhanced UICC API framework. Applications that deal with the HTTP protocol are called Web applications.
This servlet engine shall be able to activate concurrently Web applications upon request to a URI. Web applications
shall be identified by a URI, see OMA [9]. The URI identifying a Web application shall be unique for the UICC on
which this Web application is loaded.

13.4 Support for Card Application Toolkit (CAT)
The enhanced UICC API framework shall provide the functionality to receive Toolkit events and send Proactive
commands as described in ETSI TS 102 223 [2].

13.5 Secure communication
The enhanced UICC API framework shall provide the means to establish a secure channel, by implementing the TLS
application to application secure channel, over TCP/IP according to ETSI TS 102 484 [8]. It shall be possible to assign
at least one TCP port, as an end point for a secure channel, per application. It shall be possible for applications to open a
secure channel in server-listen mode or in client mode. It shall be possible that several secure channel sessions are
active concurrently at the same time.

The enhanced UICC API framework shall provide the means to perform the following operations:

• the key agreement for the secure channel;

• the secure channel setup.

The enhanced UICC API framework shall provide the means to manage secure communication for the APDU
application to application protocol according to ETSI TS 102 484 [8].

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)24Release 18

13.6 Events
The enhanced UICC API framework shall support an extendable event framework, that allows the definition of events
that can be raised by the platform (UICC, Interfaces, Frameworks) or by applications deployed in the UICC. The
enhanced UICC API framework shall provide a mechanism to applications to subscribe and unsubscribe to these events.

13.7 Access to the enhanced UICC API framework
The enhanced UICC API framework shall support a permission based security mechanism as a means to restrict access
to the features of the framework, as requested by ETSI TS 102 412 [10].

13.8 Inter-application communication
The enhanced UICC API framework shall provide a mechanism allowing applications to share data in a secure and
authenticated way.

13.9 Backward compatibility
The enhanced UICC API framework shall provide the means allowing existing applications, based on the Release 7 or
earlier API specifications, to be deployed on new cards implementing the enhanced UICC API framework.

14 Support of Multiple Secure Elements and Multiplexed
Logical Interfaces

For a UICC supporting multiple LSEs and multiple LSIs, as defined by ETSI TS 102 412 [10] the following
requirements for the UICC API framework shall apply:

• The UICC API framework shall ensure that an applet is only deployed to a specific LSE, this LSE becomes the
hosting LSE of this applet.

• The UICC API framework shall ensure that applets are only triggered or activated by events and commands
that the hosting LSE receives via the LSI that is associated to this LSE.

• The UICC API framework shall ensure that applets can only access files and other data under the control of
the UICC kernel in the scope of their hosting LSE.

• The UICC API framework shall ensure that only applets can share data with other applets that are deployed in
the same LSE.

• To ensure the isolation of the different LSEs, data and services globally available at UICC level in previous
releases are only accessible in the scope of one LSE.

• For a UICC supporting LSEs, the rules defined in clause 7.2.1 "Arbitration" for AIDs and AVNs apply
separately for each LSE (i.e. applets with the same AID can be installed in multiple LSEs).

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)25Release 18

Annex A (normative):
Test Toolkit Events

A.1 Overview (informative)
For the test toolkit events-based terminal conformance test method, the CAT runtime environment supports test toolkit
events for applets to monitor a file read command for a given elementary file or an APDU with a given INS code (as
defined in ETSI TS 102 221 [1]) command. Depending on the test requirements test applets can register and deregister
for the required test toolkit events. Applet registration for the test toolkit events is successful only if the test
configuration state is active. The test toolkit events are not available in a commercial environment in which the UICC
configuration is not a test configuration and hence the test configuration state is not active.

Refer to ETSI TS 102 412 [10] to find an overview of the test configuration state.

A.2 Use cases (informative)

A.2.1 Introduction
Content in the test toolkit events can be used by the test applets to verify the APDU communication requirements
defined in the first level application (e.g. NAA) test specifications.

A.2.2 Use case - Monitor file read APDUs
UICC has a test configuration, the test configuration state is active. Test applet registers for the read file event for test
purposes with file identifier EF-UST (a file defined in the NAA specification). At terminal power-up, the terminal reads
the file EF-UST. Upon successfully executing the READ BINARY command CAT runtime environment triggers the
read file event with USIM ADF, file identifier of EF-UST, and the file read APDU sent by the terminal. The test applet
can verify the APDU content and the file identifier of the EF-UST as required by the test scenarios.

A.2.3 Use case - Monitor APDU received for a given INS code
UICC has a test configuration, the test configuration state is active. Test applet registers for the APDU monitoring event
for test purposes with INS code as GET IDENTITY (0 x 78) command. At device power-up, the device tries to register
to the network with the SUCI calculated from the USIM. The terminal sends the GET IDENTITY command to the
UICC. CAT runtime environment triggers the APDU monitoring event with USIM ADF, and the content of the GET
IDENTITY APDU that is sent by the terminal. The test applet can verify the APDU content as required by the test
scenarios.

A.3 Requirements

A.3.1 Availability of the test toolkit events functionality
The test toolkit events functionality shall be available only if the test configuration state is active. Otherwise, the test
toolkit events functionality shall not be available. A UICC with the test configuration state inactive shall behave as a
UICC without the support for test toolkit events functionality.

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)26Release 18

A.3.2 Read file event for test purposes
If the UICC supports test toolkit events capability, the CAT runtime environment shall support the following
requirements:

• provide a mechanism for an applet to register for this event to start monitoring the file read command for a
given list of files;

• support this event for the file read commands listed below:

- READ BINARY (as defined in ETSI TS 102 221 [1])

- READ RECORD (as defined in ETSI TS 102 221 [1])

- RETRIEVE DATA (as defined in ETSI TS 102 221 [1])

- SEARCH RECORD (as defined in ETSI TS 102 221 [1])

• support event registration for multiple file identities and trigger test toolkit events for each file separately;

• register test toolkit event only if the test toolkit events functionality is available;

• trigger the test toolkit event upon execution of a file read command that targets one of the registered files and
if the test toolkit event is available;

• include in the test toolkit event the device identity with source and destination, the file identifier of the file
read, the AID of the first level application (e.g. NAA) currently selected if any, and the APDU content of the
file read command;

• provide a mechanism for an applet to deregister this event to stop monitoring the file read command for a
registered list of files;

• deregister this event when the test configuration state becomes inactive, if the test configuration state is active
and the test toolkit event is registered.

A.3.3 APDU content monitoring event for test purposes
If the UICC supports test toolkit events capability, the CAT runtime environment shall support the following
requirements:

• provide a mechanism for an applet to register for this event to start monitoring the commands specified by the
instruction (INS) code list;

• support this event for at least the following list of APDUs whose instruction codes (INS as defined in
ETSI TS 102 221 [1]) are accepted for registration:

- VERIFY PIN (as defined in ETSITS 102 221 [1])

- CHANGE PIN (as defined in ETSI TS 102 221 [1])

- DISABLE PIN (as defined in ETSI TS 102 221 [1])

- ENABLE PIN (as defined in ETSI TS 102 221 [1])

- UNBLOCK PIN (as defined in ETSI TS 102 221 [1])

- AUTHENTICATE (as defined in ETSI TS 102 221 [1])

- GET IDENTITY (as defined in ETSI TS 102 221 [1])

• support event registration with multiple INS codes and the CAT runtime environment and trigger the test
toolkit events for each INS code separately;

• register the test toolkit event only if the test toolkit events functionality is available;

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)27Release 18

• trigger the test toolkit event upon execution of a command that is one of the registered INS codes and if the
test configuration state is active;

• include in the test toolkit event the device identity with source and destination, the AID of the first level
application currently selected if any, and the APDU content of the command;

• provide a mechanism for an applet to deregister this event to stop monitoring the commands for a registered
list of INS commands;

• deregister this event when the test configuration state becomes inactive, if the test configuration state is active
and the test toolkit event is registered.

NOTE: The applet can register to monitor more than one INS code, but it is recommended to use only one INS
code to minimize any performance impact. Applet can deregister the event for a given INS code once the
event is received.

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)28Release 18

Annex B (informative):
Change history
This annex lists all change requests approved for the present document by ETSI TC SET (former ETSI TC SCP).

Date Meeting TC SET Doc. CR Rv Cat Subject/Comment Old New
2004-11 SCP#19 N4-040456 001 Clarification for non-specific references 6.0.0 6.1.0
2005-06 SCP#21 SCP-050157 002 F ISO/IEC update 6.1.0 6.2.0
2005-06 SCP#21 SCP-050157 B Requirements for large file support by the

API
6.1.0 6.2.0

2005-12 SCP#23 SCP-050521 003 B Requirements for system events 6.2.0 7.0.0
SCP-050522 004 1 B UICC API accessibility Requirement

2008-07 SCP#38 SCP-080347 005 B Addition of requirements for a Contactless
API

7.0.0 8.0.0

2009-01 SCP#40 SCP-090055 006 B Requirements for an enhanced Runtime
Environment

8.0.0 9.0.0

2010-03 SCP#44 SCP(10)0047 007 B Addition of contactless low-level API
functionality

9.0.0 10.0.0

2011-03 SCP#48 SCP(11)0130 008 B Definition of a new API allowing
application to manage Secure messaging
over HTTP(S)

10.0.0 11.0.0

2011-03 SCP#48 SCP(11)0131 009 B Addition of requirements for M2M
applications

10.0.0 11.0.0

2009-04 SCP#41 SCP-090176 - B Requirements for the Secure Channel API 11.0.0 11.1.0
2011-09 SCP#52 SCP(11)0325 010 C Update of requirements for M2M

applications
11.0.0 11.1.0

2021-09 SCP#101 SCP(21)000141 011 B Support of Multiple Logical SEs and
Interfaces by the UICC API framework

11.1.0 17.0.0

2021-09 SCP#101 SCP(21)000148r1 012 1 D Editorial changes requested by editHelp 11.1.0 17.0.0
2022-09 SET#107 SET(22)000204r1 013 1 B Update of reference to GlobalPlatform

specification
17.0.0 17.1.0

2023-03 SET#109 SET(23)000036r1 015 1 B Requirements for Test Toolkit Events for
terminal conformance testing

17.1.0 18.0.0

2024-06 SET#114 SET(24)000095 016 C Requirements for Connection Oriented
Service API to support RAM over CoAP
(GlobalPlatform Amendment-M)

18.0.0 18.1.0

ETSI

ETSI TS 102 240 V18.1.0 (2024-10)29Release 18

History
Document history

V18.0.0 July 2023 Publication

V18.1.0 October 2024 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Description
	4.0 System overview
	4.1 Design of UICC based applications using the UICC API
	4.2 UICC API architecture
	4.3 UICC file data access
	4.4 UICC BER-TLV file access

	5 Card interoperability
	5.1 Loader requirements
	5.2 Application transport

	6 Applet activation
	6.1 Applet triggering
	6.2 Applet selection

	7 Applet life cycle management
	7.0 Overview
	7.1 Applet preparation
	7.2 Loading
	7.2.0 Overview
	7.2.1 Arbitration
	7.2.2 Transport
	7.2.3 Verification
	7.2.4 Linking

	7.3 Installation/registration/reactivation
	7.4 Configuration
	7.5 Execution
	7.6 Deactivation
	7.7 Removal

	8 Security management
	8.1 Management of applets
	8.2 Applet certification

	9 API compatibility
	9.1 Level of compatibility
	9.2 Compatibility at the interface
	9.3 Compatibility at the programming interface
	9.4 Accessibility of the programming interface

	10 API extensibility
	10.0 General requirements
	10.1 Evolution of UICC/terminal interface (ETSI TS 102 221)
	10.2 Evolution of CAT application toolkit (ETSI TS 102 223)
	10.3 Interworking with other systems
	10.4 Evolution of UICC/terminal contactless interface (ETSI TS 102 622 and ETSI TS 102 613)
	10.5 HCI low-level support
	10.5.1 Use case
	10.5.2 Requirements

	10.6 Application API for Secure messaging over HTTPS
	10.6.1 Use Cases (informative)
	10.6.2 Requirements for HTTPS (normative)
	10.6.3 Requirements for CoAP/DTLS (normative)

	10.7 Machine to Machine (M2M) UICC applications
	10.8 Secure Channel between UICC and terminal

	11 Data and function sharing and access control
	11.1 Sharing resources between applets
	11.2 Access to data

	12 Technology considerations
	12.1 UICC hardware requirements
	12.2 Technology limitations
	12.2.1 Memory recovery

	12.3 Evolution
	12.3.1 Remote Procedure Call (RPC)

	13 Enhanced Runtime Environment
	13.0 Overview
	13.1 Interworking between multiple hardware and logical UICC/terminal interfaces
	13.2 Support for TCP and UDP
	13.3 Support for HTTP
	13.4 Support for Card Application Toolkit (CAT)
	13.5 Secure communication
	13.6 Events
	13.7 Access to the enhanced UICC API framework
	13.8 Inter-application communication
	13.9 Backward compatibility

	14 Support of Multiple Secure Elements and Multiplexed Logical Interfaces
	Annex A (normative): Test Toolkit Events
	A.1 Overview (informative)
	A.2 Use cases (informative)
	A.2.1 Introduction
	A.2.2 Use case - Monitor file read APDUs
	A.2.3 Use case - Monitor APDU received for a given INS code

	A.3 Requirements
	A.3.1 Availability of the test toolkit events functionality
	A.3.2 Read file event for test purposes
	A.3.3 APDU content monitoring event for test purposes

	Annex B (informative): Change history
	History

