ETSITS 102 523 vi1.1.1 (2006-09)

Technical Specification

Digital Video Broadcasting (DVB);
Portable Content Format (PCF) specification 1.0

European Broadcasting Unior) (Union Européenne de Radio-Télévision
EBU-UER

Digital Video
Broadcasting

D

2 ETSI TS 102 523 V1.1.1 (2006-09)

Reference
DTS/JTC-DVB-173

Keywords
broadcasting, digital, DVB, TV, video

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2006.
© European Broadcasting Union 2006.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI TS 102 523 V1.1.1 (2006-09)

Contents

Intellectual Property RIGNES.........oo bbb r e 16
0] Yo (o SRS 16
gLl [H o1 o] o ISP 16
1 000 RS SSPR 18
2 L= £ 101 ST RSSP 18
3 Definitions and @DDreVIELiONS...........coveieieieieee ettt 19
31 (D= T o T] (0] TPV PRT USRS 19
3.2 ADDIEVIBLIONS ...ttt et e bt b e ae et e e e eE e b e e bt e he e b e et et e bt eh e e Rt e e e b e eb e bt eneene e e re e 23
4 L0 0177 0110 L3S 23
5 Service author guide (INFOMMBEIVE).........coeiierieiriere ettt n e 23
51 T goT0 W 1ol BT P U PR PR USTORRPP 23
5.2 An overview Of a PCF SErViCe dESCIIPLIONeieeiieieeie e see sttt et teeste s s e e e saeeeesneesaeenaesseesneas 24
5.3 (O] .00 0 g T= 0| 1 USRS 25
531 THE SErVICE COMPONENTeovieiieie e ete st e st et e e e ree s e st e s te e teesteesaesseesteesseeseensesseesseesneenseenseenseensensennseesses 25
5.3.2 THE SCEMNE COMPONENTeeitieeieeieeeesteesteeteeeseeseesreesteesseaseasseaseesseesseenteessesseesseesseesseeseenseenseansessenssenssens 25
533 L8YOUL COMPONEIES. ...ttt s s e s e sae e e s e e ae s a e e s b e e s b e e b e e n e s n e s an e e 26
5331 EXPHICIT TAYOUL ...ttt b et b e et b e et b e et eb e s b e e b e sb e e b e sbenneneas 26
5332 FLOW TAYOULcveeete ettt b e et b e et b e s e et b e et eb e sb e e et e sb e e ebesbennene s 26
534 RELUrN Path COMPONENES ...ttt ettt b bbbt b e s b et b e bt b n s 27
535 CUSEOM COMPONENTS. ... ettt sttt e st sb e et se e se s s bt er e e e e e e e se e R e se e erees e e s e resreeresreenn e e ennes 28
54 L0 01 o | AP SRRSO 28
55 BBIAVIOUI ...ttt bbb h et e e et bbb R e e a e e e e R e bRt R e Rt eh e e e e R e bt eReebe Rt ene e e nr s 28
55.1 Y= 01 SO TTSRTS 29
5.,5.2 e ox o g I T 1o T OSSR 29
5.6 Structuring @ PCF ServiCe JESCIIPLIONo..ee ettt e e te e ee s e sneeenteesaeenaesreenreas 30
56.1 I 2T= = SO SS 30
5.6.2 (@] oY PSPSSN 30
5.7 Managing differences between target PlatfOrmIS..........covieiiiriererr s 31
571 DEgreES OF FIEEOOIM.cuiitiieeieete ettt et b e bbbt b bt et b e s et b et et b b 31
5.7.2 (0 1= P RTS 31
58 TranSPOrt QNG PACKAGINGverveuerrereeierterietertere ettt sttt st et et sb e b e sb et ebese e e eb e se et ebeseeseebesaeseebeebesee e ebesbeneebesbennenens 32
6 N ot 01 = o (ST 33
6.1 T goT0 W 1o o BTSSP U PP STORPP 33
6.1.1 RS 0] 10 1 Y o1 o R 33
6.1.2 S = o= o ot AV (= o T o o I 34
6.1.3 SENVICE FEPIESENLALION......ccveeveeieeieseesee st esteeeeseesteesteeeeeseesse e se e teestesseesseesseeseaneesseesseeasaesseessensseesenneennes 35
6.1.4 REFEIENCING MOUE!oeiieic e bbbt b et b e et b e et b et eb e e 35
6.1.5 Data partitioning @N0 FEUSE.........coueieeiiierieierie ettt sttt bttt st bt bbbt bese et ebe e et eb e b 36
6.2 Dz = R4 0= TP PP 37
6.2.1 (D =AY 010 (= o] (o H OSSOSO PSP UTSTR U T 37
6.21.1 DAta tYPE MOTEoivieeieteeee ettt e et bt e b b et b e b e e eb e sb et eb e s be e bt sb e ene 37
6.2.1.2 (D1 o g (0] R ot SR 38
6.2.1.3 W BIUB TTEIMIS ...t b e h et et bbbt e h e et e b e se e b e sbeeh e e ae e e e e e sbeebeeaees e e e eneees 39
6.2.2 T E Y7 0] == 40
6.2.2.1 BOOIEAN ...ttt e e bR Rt R e et b e Rt R e et et e be et b e e eneenen 40
6.2.2.2 1010 [S SRS 40
6.2.2.3 ENUMIEIELION ...ttt bttt b bbbt e e s e e e b e bt sheeb e e st e s e e e e e e besbesbenaeennennen 40
6.2.24 S (1o [OOSR PSRRI 41
6.2.3 (@00 L= 1Y/ o= TP U PP PR SORR 42
6.2.3.1 Lo o PR PSR 42
6.2.32 LGN 1= 1 (o T TS OOR PP PPT PRV PRSOSPN 42
6.2.3.3 D TSRO 43

ETSI

4 ETSI TS 102 523 V1.1.1 (2006-09)

6.2.34 (D (=10 o (] 0O TP TSSO U ORURPRRSUSPN 44
6.2.35 0] 1 =10 0 S 45
6.2.3.6 FrONE SIZE ..ttt b ettt h bbb R R Rt Rt R Rt e h e e e et e bt nheeb e e e enneeen 45
6.2.3.7 Y= 15 = o T oI = SR 46
6.2.3.8 NBITIE ... ottt et sttt e et s e e st e st e st et e st e st e b e s Ae st eb e s e e e e b e e b e e eb e e R e e eb e e b e et e b e nE et ebenEe e ebenee e ebenreneerens 46
6.2.3.9 POSITION ...ttt bbbt b e e bbbt h e e e e Rt R Rt Rt R e Rt R e e e et e bt eheebe e e neneens 47
6.2.3.10 PIOPOMTION ...ttt et b et b e bt b e b e e bt e b s e beeb e se e bt ee et eb e s b e e et e nbe e b e nbennene s 47
6.2.3.11 S 7SR 48
6.2.3.12 10 PSSR 49
6.2.3.13 IS0 o L= PP S 49
6.2.3.14 URI ottt sttt sttt e st e s e e se et e seeseebe s e ese e b e s e e se e b e sa e st e b e e A eneeE e eAe s e eEeeR et eEeeRe e eteate e etenaensetenrennerens 50
6.2.3.15 USET KEYS.. ettt sttt sttt sttt e sttt st et be e e Rt b e se e st b e st e st e b e s A e ne b e e e et e b e s e et e b e e Ee e ebenae e ebenreneerens 50
6.2.4 OCLEE AR TTEIMS ...ttt ettt et bbbt h et e s e e se et e se e eb e ebeemb e e e nb et e sbeebeeneenne e ennes 51
6.24.1 Octet data INTFOOUCTION.......c.eeeiie ettt ettt e bbbt b e st ese e e e e e b e seesbesaeebe e e ennennens 51
6.2.4.2 OCtet dALA MOE ...ttt st b et h et e e e b e e e ke sbeebe e e ennennen 51
6.2.4.3 OCLEL AEA CONTAINEIS. ... eueeeeeeete ettt sttt ettt et b e bt s e e e s et seeebe s bt ebeeaeeae e besbesbesneebe e e ennennen 52
6.2.4.3.1 POMEDIE MIME LYPES ...ttt ettt ettt b et b et e bt se e b et et enesbesteneenas 52
6.2.4.3.2 IMELA PIOPEITY TTEIMIS. ...ttt ettt b et b bbbt e eb e st b bbb enis 53
6.2.4.3.3 Embedded plain tEXE GaEAciveererieieir ettt 53
6.2434 Embedded DIiNary ata...........cccoeriiie e 54
6.2.4.35 Embedded DaSE64 ata...........coeieeeeieee et et 54
6.2.4.3.6 Embedded hexadecimal DIiNary data............ccoeiiieiriinereee s 54
6.2.4.3.7 Embedded quoted printable data...........ccoireeiririeiiereeeee s 54
6.2.4.3.8 == 010 VT 0 54
6.2.4.3.9 U] o= A =1 = 1 = 55
6.2.4.4 (@0t =0 v = W= 8 0= TS 56
6.24.4.1 S g gTe o oL R0 = = 1= 0 1SS 56
6.2.4.4.2 Marked up teXt OCtEt data itEMIS........c.eieiieeciee ettt et e ae e enes 56
6.2.4.4.3 Fagr=Te SN oL R0 = = L= 0 1 56
6.24.4.4 SEreamM OCLEL HAA ITEIMS.ot sttt s sae e s e e e s eesnesae e e eneeneens 57
6.2.5 COMPOUNG LYPES ...tttk sttt ettt et et b e bt e b stk eb e seeheeb e se e st eb e se e st e b e sb et eb e sb e e ebesbe e ebesbeneebenbennenen 57
6.251 COMPOUNG TBEALYE ...ttt ettt ettt b bbb s bbbt b e e e e eb e e b b et et nn e e nnis 57
6.252 MBD TYPE AN TTEIML ...t b et b e et b e et b e se et eb e s e e e eb e sbe e b e sbennenea 58
6.25.3 Typed array datatype and @rray iTEIMSceiiieereere bbb 59
6.3 SErVICE AESCITPLION SITUCIUIE ...ttt ettt ettt e e s e s te e te e teetesneesaeesaeesseenseenseenseeneesneesseessnns 60
6.3.1 DTS o g 100 E 1= 0 T 60
6.3.2 (@0 001010 0T= 0 RN 1 1= 0 01 SR 61
6.3.3 (000 11=oi (o W =14 ST USSP U PP USRS 61
6.34 PO CONMTAINEY ...ttt ettt b bt ae st e st e e b e eh e e bt e bt eb e e e e s s e e e eb e seeae e e e ebenbesbesbe e e ennenrea 61
6.3.5 SCENE ITEIMIS ...ttt ettt ettt e bbbkt a e e e s e b SR e e b e e Reeh e e et e e et e sE e b e ARt eh e et e b e b e eheebeeneennenenras 61
6.3.6 S Yo T 1= o 1P 62
6.3.7 SCOPING FUIES ..tttk b e bt et b e et eb e s e e aeeb e se e s e e bt se e R e e bt seeneeb e sb e e eb e sb e e ebe st e neebenbennenea 62
6.4 REFEreNCE aNd NAVIGALIONoeeuiriiieieit ettt eb et b et b et b et b e bt b a b e e b b e e e bt e ens 63
6.4.1 REFEIENCING MOUE! ...ttt bbbt b et b et b e et b e et st n e 64
6.4.2 TYPEA FEFEIEINCE ...ttt b bbbt b bbb et b et st b e et b e e e 64
6.4.2.1 PO 10N FEfEIENCES ... ettt ettt et e e e e besbeeneeseestesbeseesseeneeneeneens 64
6.4.2.2 Reference path format and reSOIULIONeeieeiieii e e e sreennees 64
6.4.3 CONLEXTUBL FESOIULTON ...ttt sttt sttt a et e et et b bt bt et et e b se e bt s bt eb e et e b e besbeebesaeenne e ennes 66
6.4.4 M AP FEFEIEINCE ITEIMS. ...t e e e te s e s e e sae e teenaeenseeseessaesteesse e seenseeneenneennes 67
6.4.5 PArBMELEL TTEIMIS ...t bt s e bbbt s bt ae st e e e bese e e bt e b e e ae et e ne e besbeeb e e e ennennea 68
6.4.6 NE Vo= e gl = L= 1 S =0 LS 69
6.5 UNifOrm RESOUNCE TABNLITIENS........iteieiieieeeee ettt skt b et e et bt sbe e e e e e e 70
6.5.1 GENETEl USAJ. ...tttk sttt sttt et b et b e e st b e s e e st eb e s e e st eb e sE e s e eb e sE e st e b e seeaeeb e sb e e eb e s b e e eb e s b e e eneebeneenea 70
6.5.2 URN SYNEAX INTHE PCE ...ttt bbbt bbb et et 70
6.6 Marked Up tEXE FEPIESENTALIONeoveuertereeiertere ettt sttt se et se bbbt b et b e bbb e b et e ebe e e ens 71
7 General compPoNENt SPECITICALTIONccueieeiise ettt ese e tesreeeesreeneeneesreenes 72
7.1 OVEBIVIBWW ...ttt etttk bt bt ae et eee e e e h e e b e e h e e R £ e a e a8 e a b e £E e e E e A Reeh e e R e e s em b e HE e eb e e Rt eh e e e en b e benbeebesbeenne e ennas 72
7.2 Component SPECifiCatioN MOAE!ueiieiieeee e sre e ae e e e et e eseeenaesreenreas 72
721 OVEIVIBW ..ottt sttt sttt sttt st s e st e be s e e st e ke s e e st e b e s e e st ebeseese e b e sees e eEeneeseebeseene e b e sbeneebenbe e ebenbeneesenbenennens 72
722 INEEITACE AEFINITION. ... ettt bbbttt e e bbbt bt e st e e e e e st e besbeeb e e e enneneens 73
7221 LT (01001 SRR OPRRRR 74

ETSI

5 ETSI TS 102 523 V1.1.1 (2006-09)

7222 Property SPECITICALIONS.iiieiee ettt te e s sre e s ae e aeeeeenteeneeenaennaenreenrees 76
7.2.2.3 ENUMeration SPECITICALIONSciiiieeie ettt e e sae e te e teeneeeneeenaesneesneas 76
7224 Handled event SPECITICAIONS.ciieeieee ettt esaeenae et e eseesnaesnaesraesenes 77
7.2.25 Generated event SPECITICALTIONS.cci i st e st e e naesraesreenrees 78
7.2.2.6 Handled action SPECITICALIONS..........ciceieece ettt e esre e teenteesaesnaesreesaees 78
7.2.2.7 Generated error SPECITICALIONS.........ccueieeieeiie st e et e et e et e e te s e e saeesae e teenreennesneesseeseeas 79
7228 INtended iMPIEMENLELION.........ccciiiieee et ettt et b et sb e e 79
7.2.29 L@ QYT L (= o P RRSSN 79
7.2.3 TEXTUAl TESCIIPLION ..ttt b bbb e bt b e e b e et nb e bt b n s 79
724 BeENaVIOUr SPECITICATIONottt bbbt b et b e et et 80
7.3 Component iNStaNtiatiON MOELcoeoiiie bbb et 80
7.3.1 (0] 10100107 o | S PP P PRSPPI 8l
7.3.2 (001 1 1= 8l
733 (0= S o= (<o [o0 o<1 1= 82
734 Component implementation tOIEIANCEccie it et be e reeeesneeenes 82
74 (@0 ag]070] 1= 01 B o= 7= 1Y/ o U S 83
74.1 BENAVIOUI OVEIVIEW ...ttt sttt ettt etk a e bt et e e s et e bt eheeh e e e e e e e e ne e besbeebe e e ennennea 83
742 ACCESSING COMPONENE PIrOPEITIEScvieeiirtieeiesterteeeie bttt b et b et b bt b ettt sbe b st sbe e e 83
743 HANAIEO EVENES......ceeeeeeeee ettt et e et e ettt et et e eeseeebesaeebeeseeneeneeseesbesneeseeneenseseens 84
744 [P20 o ok o) 1SRN 84
745 (€1 (0 =Y (SO 84
7.4.6 (€1 10 = 1 o] O RR 85
1.4.7 COMPONENE SCOPE.......eeurerrerreeresieete et sttt r e st e e s s e s et s resb e e et e s e ae e R e s R er e eb e e e e e e ne e Rt s beer e e e e s e nesneeresaeene e e eanes 85
75 Defined PCF COMPONENT ClaSSESiiuieiiieriieee e seeseete e ette st e s eetestessaesaeesreeteenteaseesseasseesseesseesesnsenneesnns 85
751 OVEBIVIBI ..ttt bbbt h et s et b bt eh e eh e e ae e s e e eE e b oAb eh e eh £ e aeea b e nE e b e e heehe et et e besbeebesneense s ennas 85
75.2 VISUBI COMPONENES.....cteeieeeiteeieete et e et e ste e e e e eeeseesaeesaeesaeeaseaseeesaesseesseenseensesseesseesseesseenseenseenseansensenssensses 86
753 NON ViSUBI COMPONENTS. ... ecitieieiieieeiee st esteeteeeesseestee e e teestesseesseesseesseessesssesseesseesseenseessenssensessessesnsesnes 88
7531 FUNCLION@l COMPONENLESeeivieiieieeie ettt ettt et e e e e e s stesseesaeesreenteeseeneesnseensesnaenneesseenrens 88
7.5.3.2 Variable and COOKI€ COMPONENLSccueieerieeieeeseseeseeseesteesteeteeseessaesseesreesseesseesesnsesseesseenseensenns 88
754 CONLAINET COMPONENESeeteteseeteete sttt se ettt se ettt eb et et ebeebeseebesbeseeb e s b e seeb e e b e neebesbeseebeebesbe e ebesbe e ebesbennenens 89
7.6 CUSEOM COMPONENES ...ttt sttt sr s st a e s e e b sh e E e s bt e s e e e e s e e se e e r e s bt eh e e e e s e resreereneeeen e e ennes 90
7.7 SCREIME COMPONENTS. ...ttt ettt ettt sttt sttt st b e et b e et b e s e e st eb e s e e st e b e s e et eb e s b e me e b e seeneebeseeneebe st et ebenneneeee 91
8 LAYOUL SPECITICAEION ...ttt ettt b bbb e e e e e eb e b e nb e n e e s e 91
8.1 T goT0 W 1o o BT P TP PRURTORPP 91
8.2 (o) et o | 93
821 1100 (0o (o] o FEO OO STOTPRURTURURPRRRI 93
8.2.2 Explicit layout container elements and CharaCteristiCSccvvvuvveerieii e 93
8.3 o 10T = o1 95
831 11 0o 1 ') P RTSR 95
832 FIOW [GYOUL BIEIMENES......eceeiteeeee ettt b e et b et b et b e et b e bbb 96
833 The flow [ayout DOX MOGE ..o bbbt 97
834 FIOW [QYOUL DOX TYIES. ...ttt ettt sttt sttt st b et b et b e bt et e b e e et b bbb 97
8341 OVEBIVIBW ...ttt ettt et e e ettt s et ea e e ne et et e et e besaeeheemeemee e e eeabeeeeeeeeneeneeneenseeeseesbesneeneeneeneensans 97
8.34.2 (o1 7= 11 0T [o] o ot 1< SRS 98
8343 BIOCK-1EVE BIEMENTS........eieeie et b et b e e bbb e ne e 99
8.34.4 (23 Lol Q8 {0 g 7= 1T g0 o] 1 = S 99
8.345 INHNE-TEVE]L BIEMENLS ... it b et b e e b e nn e 100
8.34.6 INiNE FOrMALTING CONLEXL.......ecvieiieeieseesiees e se et s et ee s et e st e e teetesneesneesseeseenseensessenssnesneas 100
8.35 LIS Yo 10 oo 0= g = PR 101
8351 GENETEl PIOPEITIES.. ..tttk b et b et b e et b e s st b e st h e e bt se e bt b e seese e b e se e e ek e s be e ebenbeneeneas 101
8352 SidE-SPECITIC PrOPEITIES. ... ettt b e et b e et b e e et s b e b e sbe s 102
84 L= RS 103
8.5 TADIETAYOUL......ceeeeee et b bbbt b e et b e s e et bt s bbb e b et e b e e e et b b e b b 103
851 11 0o 1 ' o R 103
852 Table layout @lgOrTNMS ..ot b et n s 103
8521 FiXEA TADIE TAYOUL ...ttt et b et b ettt sb b saeeae e e b e 103
8.5.2.2 Automatic table 1ayout (OPLIONA)ceiee e er e nraenneas 104
8.5.2.3 I o] L= 1= Ko 1= To] 11 1 o 1SS 105
8.5.24 0TV 1= Ko L= o 11 o o 105
8.5.25 L0= I oT= o {1 =0 To 11 [0 PSS 105
8.5.2.6 Intra-cell CONLENt @ligNIMIENLccviiieiieceer et ee e e sre e sreesae e e e eneeenaeeneesnaesreas 106

ETSI

6 ETSI TS 102 523 V1.1.1 (2006-09)

8.5.26.1 HOFZONtal @ligNMENLoceieeeie e e et te e e sre e sreesse e beenseeneeenaesraesnens 106
8.5.26.2 VA= Lo = T]2 01 | OSSR 107
853 70 0 L= £SO PR PRORPRT 107
8.6 Flow layout CONtai NEr COMPONENTS..........eiieiieesieereesieeseereeeeese e s e et e e e e estessaessaesseesaeesseeseenseenseeseesseessansanns 108
8.7 REFErENCE SCrEeN MOGELoeii e bbbt r bbb seenas 109
8.7.1 TNE FEFEIEINCE SCIBEN ...ttt ettt sttt bkt e bbbt ae e ae et e ne e b e s Rt e bt s bt eh e e se e e e besbeebeeneenne e entes 109
8.7.2 Mapping the reference screen to atarget EVICE. ..o e 109
8721 Target device display resolution Same as refErenCe SCrEEN ..o 109
8.7.2.2 Target device display resolution different to reference SCreen.........coovveeeeeeeesesese e 109
8.7.23 Scaling the reference screen (INfFOrMEaLIVE)oociiiiieiiiere e 110
8.8 Registration of Video and graphiCS.........c.coiieiitiriiinie ettt s s b e bbb e ene s 111
8.9 TS o] = YA = o 111 o = S 111
8.9.1 INitializing the diSPlay SLACKecieeeeiiee et e e st et e e ssaesaesneesaeesaeenseesenns 111
8.9.2 Manipulating the diSPlay SEACKc.ccceerieiiiciice et e e e e aesaesrnesaeesaeenreeseens 112
8.10 FFONE SEIECTION ...t bt bt a e e e et s bt bt e bt eb e et e e e nb e sbeebeenees e e e e e e 113
9 Behaviour SPECITICALION.........cciiii ettt sre e s be e e e resneeneesreenes 113
9.1 0100 1 1 o o TR S 114
911 Intrinsic comMPOoNENt BENAVIOUNoiuiiiiie bbb 114
912 INAEPENTENE DENAVIOU ...t e bbb et 114
9.2 Y T PP PP P TTPTUPROT 115
9.21 RUN-TIME EVENE MOEL ...ttt e et et e sae st sneene e e eneeee 115
922 EVENt 8CCESS HECIAIaIIONc.viieeeeeieeee ettt ettt b et et e e sb et st ene e e 115
9.3 Event propagatiion MOUEL...........ceoiieiee et te e et e st e s te e teetesaeenteenseenteeneesraesanas 115
931 L1100 (0o (oo FEO OSSP URURUR PR 115
9311 OBJECE MOGEL ...t b et a e bbbt b st e ae e e b e 115
9.3.1.2 Component contaiNMENt NIEIAICNYcccveiieiice e sre e sreenaeereens 116
9313 EVENE PIrOPAGELION ...ttt ettt et b e st b e s et b e b se e b e bt b e s et b e sb et be b 117
932 SYSEEIM EUVENLS ...ttt et h e et R s bt bt e e e b se e R e s Rt e be e e e n e e r e sr e r e e e nrea 117
9321 L@ oSS 117
9322 System event ProPagati ON FUIES...........ceiirieiiereei ettt st eb bbb e b b e bt b see e ebesreneeneas 117
9.33 USEF INPUL BVENESceeeieetetee ettt h bbb e b st bt b et b e s ae e bt e b e e et et et n b e b e 118
9331 L@ oSS 118
9332 FFOCUS COMEIO ...ttt bbbt a e e b e s bt eb e e bt e se e e e sb e b e sbeene e e e e e 118
9.3.33 User input event propagation FUIES.........cceeiieeeieeseese et e et e e s saeete e sne e e eeeneeneeenes 119
9.34 COMPONENT BVEIES ...ttt eiee ettt ettt sb e e sbe e e be e e b e e et e e e be e e sbeeebe e e b eeebeeeabeeesabeesabeesnbeesnbeesnben s 120
9341 OVEBIVIBW ...ttt ettt e bt btk e e e e b e e b e b4 h e eh e e st e ae e e e R e bt eh e eb e e ae e s e e e e e e b e sbeebeeneene e e enbenes 120
9.34.2 Component event Propagalion TUIES............ccueeiereie e seeseeste e e e e e teeaesaesaeesreesseenseeseens 121
9.35 EITOr EVENES. ..ot ae e sh e e Rt Rt an e R e n e e e s e e e nne e reereen 122
9351 Execution error levels and default FESPONSEScviiieirireere bbb 122
9352 EITON TYPES. ... e e e e e 122
9.4 ACHON TBNQUBGE. ...ttt ettt et b e et b etk b e e bt b e e bt b et eb e e b e e e btk e e b e neeb e e b e st ebe s e et st e be e e 123
94.1 11 0o 1 ' o SR 123
94.2 RePresentation @nd EXECULIONc.ciirieirierieerieree sttt b et b et sb e b b 123
94.3 V= Lo = o o g I o 0 o = S 125
944 Action language data type and action [anguage iteMSc.ceveieereeriere e see e eee e 125
945 RUN-tIME ABLA MAPPING. ... vt eteeitieiteesteereeee et e et e s e e e e e etesaesseesreesaeeseeseeseeaseasseeseesseensesneesnnesaeesseensennsenns 126
9451 EXECULTON CONEEXL........eveeeetieeet ettt sttt et b bt ae et e e e b sb e b e e bt e ae e e e sb e b e saeeae e e e e e 126
945.2 U T =0 = Y 0= 127
9.4.6 RUN-TIME EXECULTION MOTE ..ottt ettt ae e sr et bt sne e e e e 128
946.1 RSz <001 0 TSP 128
9.4.6.2 ASSIGNMENE SEAEEIMIENT ... vttt b et b et b et b et et s b et nb e b 128
9.4.6.3 D= o ol 0] R = = 0= | S 129
9464 W (o) g o = =0 | P 130
9.4.6.5 (000 [N L0 g7z IR = 0= | O 131
9.4.6.6 Loop statement and 100D CONEFOLcoueiiiierieerie ettt 131
9.4.6.7 EXECULTON BITOFS ...ttt ettt ettt bbbkttt e bt s bt bt et e e e e e e b e e bt e bt eh e e e e e e e e sb e et e eaeene e e ennenes 132
9.4.7 EXPressions and CONTITIONS.........cciiiieiieies et ste et e s e e e et e ss e ssaesteesseeeesnnesneesaeenseensenns 132
94.7.1 EVAIUBLTON ...ttt bbbttt e bt b e b e e st e st e e e e e e ekt s bt eb e e st e e e e e eb e e b e eneene e e et e 132
94.7.2 ATTTNMELIC OPEIALOIS. ... eeiteecteeie e ee s ee st e e e et e st e s ae e te e bt e tesseesseesaeesseesseeneesneesneenseenseantenneensensneas 133
9.4.7.3 [0 Lo 0] 1< =1 (0] £ 134
94.74 e AV 0] o = 0] 6 134

ETSI

7 ETSI TS 102 523 V1.1.1 (2006-09)

94.8 YL a1 o (o T L o] =Y SRS 134
9.4.9 EXPression fUNCHION [HDIarycovoeoie ettt e s saeeaesnaesaeesneenseenseens 134
9.5 ACLON [ANQUAGE SNOTCULSveeiee e ceees ettt et ae st e e ae e e e ese e st e e teen e ensesssesneesnnesaeesseansennsenns 134
9.6 S 1 1070 11 =S R PSR U TP URUP PSPPI 135
9.6.1 TNEFOOUCTION. ...ttt bbbttt e bt h e e b e et e e e e e eh e eb e e Rt eb e e ae e e e e e ab et e sbeene e e ennenes 135
9.6.1.1 S = (=X 0 (< 1T 0] (o] o TSP U TP PP USTURRPO 135
9.6.1.2 PO SEBIE LY. ettt et r et r e r e r e e 135
9.6.1.3 OBJECE MO ...ttt b ettt b e et eb e s b et b e sb e e eb e s b e neebeebenneneas 136
9.6.14 Transition and onevent ObjECE MOTE!ccoiiriiiiiie e 138
9.6.2 SEBEEMBCIINE. ...ttt e e st e st e ste e s aeebeeaseeaaeebeesbe e beeabesaeesaeesheesaeebeenbeeabeentesseesrnesanas 138
9.6.3 TraNSITION CONBCHION ...ttt ettt e e et e e e e ne et et e seeseesaeeneeneeneeneas 139
9.6.3.1 THANSITION ..ttt h et e b bbb e e st e s e e e e b e s Rt eh e eb e eh e e s e e e eae e e e ne e e bt eheene e e ennennea 139
9.6.3.2 I 0 = PSSR 140
9.6.3.3 LU= 1 o PP PSPRPN 140
9.6.34 X 1o TSRS 140
9.6.4 o] 6= = (PSPPSR 140
9.6.4.1 TR S = (TSRS 141
9.6.4.2 FINBI SEBLE ...ttt ettt ettt e et et e e be e besaeesaeesaeesbeenseeateeaeeeaseebeesbeesbeeareeneenreanns 142
9.6.4.3 HISIONY ST ...ttt b et b e et b e bbbt b e bt e b e bbb et et be e 142
9.6.5 SEAEE COHBCTION. ...ttt et et b e et e e ab e s bee s be e beebesaaesaeesaeesaeeabeenbeeateenteeseessnesanas 145
9.65.1 S (= TP 145
9.65.1.1 SEBEE ENIEIY ..ttt R e r e r Rt n e ne e 146
9.6.5.1.2 SEBLE EXIT ...veeuteetie et tee ettt ettt e et e e et b e et e e et e et e e be e beeatesheeeheeaheebeeateeaeeebeebeeabeeabeeteereereenreenns 147
9.6.5.1.3 INEEINAL TrANSITIONS.eveieeeeee ettt st b et b e bt e e et e b seesbesaeene e e ennas 147
9.6.5.2 JUNCEION SEBEE. ...ttt ettt b ettt et bbb et e e e b e s e e ke sb e eb e e ae et e e e nbenbesheene e e ennenneas 148
9.6.5.3 CROICE SEALE....c.eeeeeee ettt bbbt bt et e e e e e e b e e bt s bt eb e e ae e s s e st e e e b e shesbeene e s e e e et e 150
9.7 ONEVveNt - StatemMaChiNg SNOMCUL.........coeiieieie ettt e et st b et e e bbb sbe s e enne e 152
9.8 USEr-defined DENAVIOUo.uiii et e bbbt bbb b bt s e e e 153
98.1 Scope Of user-defined DENAVIOUccuviieie ettt et e e sraesneas 153
982 Event propagation involving user-defined DENAVIOUNcccoi e 153
O = (04 0 7= 1 TSSOSO PRP 155
101 INEFOTUCTION ...ttt st e st e s te e b e et e et e e ateeaeesaeesbeesteeseensesaeesaeesbeenseensesnsesseeareessaentens 155
10.2 RELUIN Path COMPONENES. ... oot te et e e e s e e ae e te e teestesstesseesaeesseesaeenseenseentesnsesnansnnas 155
10.2.1 RELUrNPAtN COMPONENTecieiie e e s e s te e te e e st e sre e aeenseesseeseesseesnaesnnesneesseanseensenns 155
10.2.2 TrANSFEN COHBCTION ...ttt bbbttt bbbt bttt e e b e b sb e e bt et e e e e enres 157
10.2.3 I 0= oo g o] o] 1= o | S 157
10.2.4 [T Lo = oo 010101 | PR 158
10.25 SecurereturnPath COMPONENTcceiueiee e erte e e e e e e ste e esreesaeesseeeeeseeeseesseenseenseeseeseeneeneeenes 159
10.3 RELUIN PALh traNSFEr PrOCESS......cviuiitiieeiet ettt bbbt a et b b nn e ens 159
104 Return path ObJECE MOGE] ..o bbb 160
105 SeCuUrity Of FEtUIN PEEN ABEAL........coeeeieiieee e bbbt 160
1051 I OAUCTION. ...ttt ettt e et e et e e ae e saeesheesheesbeeaseeaeeeaeaebeebaesteensesneesneesaeesseenseensenns 160
10.5.2 S o [0c o e = = OO U P SOS PSSR PTSTR PR 161
10.5.3 SECUNE AAEA LFANSTEN ...ttt et b bbb et b e s bt bt bt e s e b e sbesbesaeebe e e enbennen 161
10.6 Return Path Transaction FOrMEL (RPTF).......cciiiiie et eee sttt e s s saeeae e enaesnaesnaesnees 161
10.7 Connection USAge diSPlay tO VIBWETccueiee ettt ettt steeae e e sseesseete e be e teeteeneeeneennns 162
T = o1 =SS 162
111 INEFOTUCTION ...ttt st e st e s te e b e et e et e e ateeaeesaeesbeesteeseensesaeesaeesbeenseensesnsesseeareessaentens 162
11.2 Profil@ EfINITION ...ttt et e et e st e et e et e s aeesaeesaeesbeebeenbeeabeeneesraesanas 163
11.3 PrOfil@ @SSOCIALION ...ttt ettt ebe et e et eeaaesbaesbe e beenbesasesaeesaeesaeebeenreeateenreeraesaeas 164
S o= o 0= S 164
121 T gL goTo ¥ 1o o B ST P PR URUSTOSUP 164
12.2 [0 7=-S 0 (= 1T o1 oo SR 164
123 Profile @lias defiNitiONcooiiiie et et r bt e e e 165
124 EXAMPIE PCF SErVICE QIgESIS . eiiuiiiieie ettt ee st sttt ettt e st e b teestessaesaeesaeeaeeseenseenseeneennaesanns 166
13 Mechanism for transport and packaging (OPtioNal)..........cccceiiiieriiie e e 166
131 PCF data €XChange MOTELc.ooviieirieiiterieeet ettt b et e bbb bbb nn e ens 166
1311 Assets, transactions and aCCEPLADITTYcoeiiiriie e 166
13.1.2 PUSH UPAEEE MOTE ...ttt bbb et b bbb 167

ETSI

8 ETSI TS 102 523 V1.1.1 (2006-09)

13.1.3 LU LI = = g0 o = S PR 167
13.14 ONliNE UPAALE MOTELeeeeieceie ettt e e e st e st e st e e te et e saeesreesseeteanseesseesseeseeneeneennes 167
13.15 AASSEL T ...ttt bt e st b e e st bt en bR e st bR et Rt b et e Rt bt eneeneneeneenn 167
13.1.6 Service packaging @Nd FEFEIENCES.ccueiieieee ettt e ae e e s e sse e teenseeneeenaesreesneas 167
13.1.7 SEIVICE CONBIEINCE ...ttt a et e et et b e s bt bt et e s e e e sbeebesaeebe e e ennennens 168
13.1.8 THANSCOORN NINES.....e.eeieiitieeee et e e bt bt h b e et et e s et b e s bt e s e e e e b e nbesbeeb e et ennennenras 168
13.2 Detailed MOdel SPECITICALTONc.eivieeiiriieet ettt e ens 169
13.21 O 1ol [SR 169
13.2.2 SEIVICEREGISITALION.....e.ee ettt b et b e et b e s et b e s et b e se e bt b et e st eb et e et e b e e eb b 170
13.2.3 IS YKo I =T 1 o o TSP 170
13.24 O S o RS 171
13.25 PCFASSEt aNd SPECIAlIZALIONSeeciieiecie et ste e e et e e e tessaessaesteesesaesneesaeesneenseensenns 171
13.26 EXEEINAIRESOUITE........ ettt e b bttt s et b e s et b e b e et et e sb e e b e saeene e e enee e 172
13.2.7 HiNt @Nd SPECTAITIZALIONS..........eeieeieeeie e e st s et e e st e te e teetesnaesseesaeeneesneesneesaeenseensenns 172
13.3 PCF data exchange sequence for transCOder iINPULcceoieeireee e s e e snees 173
Annex A (nor mative): Component SPECITICALIONS.........cureriririerieei e 174
ALl CONtANEr COMPONENES.....ccviitietiitieee st st este st eee st e sreetesbe e e e s reese e besreessesbeeaeessesaeensesreeaeenbesaeensesneenseseeanes 174
All (= Y01 o0 401 070] =01 K= PSPPSR 174
Al11 S Yo U PRRRN 174
A.l112 o 0 SRR 175
A.1.13 Static explicit layout contaiNer SPECITICALTONco.eiiiiieiiireeereee bbb 176
A.ll4 Explicit layout container SPECITICALTION.c.ciuiieirieeriere e b 176
A.1.15 Flow layout container component SPECIfiCaLIONS..........cviirieiririere e 176
A.1.151 TruncateFl OWCONLEI NEr COMPONENTcoveeeuertireeiertereete sttt se ettt e e sb e s b e s s e ese b e eneens 176
A.115.2 SCrollFlowCONtai NEr COMPONENL..........cceiiieeieeteesteesee e eseesee e e e see e e e e se e e eseesessaesnsesseesseenseensenns 178
A.1.153 [O o0] 110001 o | TP 179
A.l2 FIOW COMPONENLESeovieieeie e cee sttt e e e s e st e s aeesaeeaaeeaeeese e beenteentesseesseesseesaeesaeenseanseensennsesnansnnns 181
Al21 FLOW .ttt bR e R £ R e R e R et Re e be e Rt b e tene et e e 181
Al211 INEFOOUCTION.....e ettt b bt b e bt s bt b e e st ebe e e et e sbe b e sbeeneenneneenas 181
A.l1212 THE CONLENT PrOPEITY ..veeveeieceeeteetee s ee st e e e e s e s e sreesreesae e e aaseesaessaesse e teenteensesseesnneenseenseeneessaessessnens 182
A.1.2.13 The direCtioNality PrOPEITYc.cive ittt sb bbb eb e n s 182
A.l122 QL= 0SSP 182
Al1221 gL 0o (1 1o o PR RSR 182
A.1.222 THE CONEENT PIOPEITY ...ttt ettt b e b e bt bbbt b s e s b e e b e e ens 183
A.1.2.2.3 The direCtioNality PrOPEITYcc.eoeee ittt sb et e e eb e e 183
A.123 BLIR= o LR oo g 000 07 o1 S 183
A.1231 The Table COMPONENL.......ooii e et te st e e e sre e saeesaeeneeeneeenaeenaesseesraesneas 183
A.12311 The table-1ayOUL PrOPEITYoceeeieecieeceec ettt e s e aeete e e teeteereeneeenes 184
A.12312 I (ST e o1 Lo gl o] 0] o= Y7 184
A.1.23.13 The tahl €-COlUMNS PIrOPEITYveceieieee ettt et sre e te e e reente e te e e eteeneeeneeenes 184
A.12314 The rOW-NEIGNE PIrOPEITYeeceeeeieece et sre e sr e e ae et e e seeeteesre e reereeneeneeenes 184
A.1.23.15 The colUMNWIAEN PIrOPEITY ..o 184
A.1.23.2 Table FOW group COMPONENES.........cvetereeeetertireeterteseet sttt ss b e e bt st e s b e s es e sb e s se s b sseseebenneneens 185
A.12321 THE TH COMPONENT.......ceieitiieie ettt bbbt b st sb e b 185
A.1.2322 THE TB COMPONENLctiueeiiitieeiietert ettt bbbt b et b st b e b 185
A.1.23.23 THE TF COMPONENL ...ttt b ettt b et b et b et eb e b 185
A.1.233 Table column group COMPONENEScoiieiriereeiertesiei sttt b et se e eb e e s e se b e neens 186
A.1.2331 LI (ST I o 110 1o 1= o | 186
A.1.23.3.2 The TCG COMPONENTuvieeeeeeeeeteesteeieeeseeseesreesteeteetees e ssaesseesseesseesesneesseesseanseenseensensenseenennnes 186
A.1234 THE TR COMPONENT.......eiieeie ettt ettt s et e e e s e e st e e te e e eteestesaeesneesneesseenseenseenseeneesseessensnens 187
A.1.2.35 THE TD COMPONENLveeveeieeeeeeteette st ee st e st e steesteeeesaeesseesse e se e te e seesseestesneesaeesneesseeseenseanseansensenssensres 187
A.1.235.1 RSN (0TS o=l o o] o= £/ 188
A.1.2352 THE COISPAN PIrOPEITY ...ttt b et b et et b et nb e b 188
A.1.2353 THE WIBD PIOPEITY ...ttt bbbttt b et bbb st sbe b 188
A2 ViSUEl COMPONENLSecueeiieeiieeisteeeestesteesteseeeseestesseesesseesessesseesesseaseeasesneessesseensesseensessesseensessesnsesensnes 188
A21 BACKGIOUNT ...ttt bbb bt bt e h bt e s bt e et b e bt bt b e bbbt e st e bt et e a b e e enis 188
A.22 LSS o =T oSSR 189
A221 Notes on basic shapesin general (INfOrMBaLIVE)ccveieiieieeiee e sreeneens 189
A222 F = T 1 1= TSR 189
A.223 T oS STS 189

ETSI

9 ETSI TS 102 523 V1.1.1 (2006-09)

A.2.24 [T OO PRPRURRPT 190
A.2.25 PEXE e b e bR e R AR e E e e e Ee R e Rt Rt R e e aE e e e e e eR e be Rt ene e e e s 190
A.2.2.6 (0] Y/0 oo F TSSO P R URURORPRT 190
A.22.7 S =01 | = PSR 191
A.2.3 102 o ox QTP P USSR U P UPTUPPRURROTI 191
A.24 100]p101c o IStz (DS 0 17210 L= TP POPRTOPRTRP 193
A.241 11 0o 1 o TR 193
A.25 L LT 0 =1 = o P 193
A.251 11 0o 1 o T 193
A.25.2 Properties defined EISEBWNEIE ..o 194
A.2.6 L0720 TP ORI PR 194
A.27 T gr= e oY] 0 7= = o S 195
A.2.8 T 7= 0 oS or= = oSS 197
A.29 L= =0 USRS U PP PRTURTOSRP 199
y N L0 T o (= ST P R PRTUROSORP 200
N B R 1 0T o0 A o0 01070 1K TP 202
A.2111 (10110 o [P O T SE PO UR PRSP 202
A.2.112 0 PR 205
A.2.11.3 RAOIOBUITONGIOUD ...ttt ettt bbb et b bbb e et b et e b b 207
A.2114 SPINCONLIO ...ttt bt b e et b et b s bt b e s e et e bt s b et e bt e b e st et eb e s e et e b e nb et eb e b e e 207
A.2.115 TEXIINPUL ... e e e b e bbb e s e s e sre e e e ae e n e ne 209
Nt b /1< o LSRR 212
A.2121 1 0o 1 o T 212
A.2.12.2 Properties defiNed €lSEWHENEcoeei et ee e e s e e saeenreereens 213
A.2.12.3 R SR = 1 N A = A o o] o= o 7SS 214
A.2124 I SN T Tc AN g Y o1 0] = SR 214
A.2.12.5 I SN L L= o1 I oo o= S 214
A.2.12.6 BN SN 100 (=T o] 0] o= S 214
A.2.12.7 QI SN =T 1= o] (0] o Y2 214
A.2.12.8 THE MENUATTGN PIOPEITY ...ttt b e bt b e bt b e bt b e e e b s b e s e st b et e e eb e b e e ens 214
A.2.129 THE MENULOOP PIOPEITYeeveteeeiestereeieete sttt sttt se ettt e s b s e e bt se s eb e s e e eb e s b e s e s e e bt s ese s b et e neebesrennens 214
A.212.10 The SEIECHMOUE PIOPEITYeeeuertieetirteiet sttt sttt sttt e et b et b et b e bt se et b e bt s b e b e e ene b eneens 214
A.212.01 THEIMAOE PrOPEITY . .evieeiiitireetertere ettt sttt b et b et bt et b e s e bt s e e e bt b e e eb e e b e s e st eb s e s e b e b e e eneneennenes 214
A.212.12 TheimageAT TGN PrOPEITYccciiirieirtirieiert sttt ettt et b bbbt b e s b e st b et e e b b s e e b et e e ene b eneens 214
AN 20 G T = T= o= Y T LU s o 1= o = 1o) o TS 215
0t B N[00 1= 0t NP Y o = o TS 216
A.2.131 100 [0 o (oo OO OSSP PRSP 216
A.2.13.2 Properties defiNed €lSEWHENEcoeeieee et te s ae e e s e e sneenreereens 217
A.2.13.3 I SRz LU S (o] o 1= /2SS 217
A.2.13.4 I SRV LSS = o o o= S 217
A.2.135 THE VAIUBATTAY PIOPEITY ...c.veueeterteeeterter ettt sttt sttt st eb e bt e bbbt s e bt b e s eb e s b et e se bt st e e ebene e ens 217
A.2.13.6 THE taIrgELATTAY PIOPEITYveeeeeitieeeeetere ettt ettt ettt b et b e bt e e eb b e e bt s b e e e bt s b et e st b e nb e e ebenneneens 217
A.2.13.7 The desCriptiONATTAY PIOPEITYcoveeertiiet ettt b et b st b s bt ebese e s ese bt e e ebesee e enis 217
A.2.13.8 T B TBI L PIOPEITY ...ttt bbbtk b b b e bt b e st bt e et b e bt bt b e e e bt e e bt ne s ens 217
A.2.139 The iNValidM ESSA0E PrOPEITYeireieririeeete ettt sttt b et eb e bbbt st e et b et ne b sn e e ens 218
A.21310 The desCription PrOPEITYcocceiereeeterieeet sttt sttt e e bt se e bbb st b e s b et e se s b e e e e b e s b e e esenaeneenes 218
N0 T B R = 1= o = Y T TU g o= o = (o) o PSS 218
AL2L4 SUBLITIES.....cee et e b bttt et bbb e h e e e e s e e sR e b e Rt b e et et e Rt eh b aeenn e et e 219
y N T VA Ve (= o PP S PP PRTUROSOR 219
A3 NON-VISUAl COMPONENTS......ccuiiiiitiiieiteiteeite st eteestesteete s e e seesresteesbesreeeeabesaeessesseensesbesseebesseensesneenseseennes 221
A31 N o o S 221
A.32 100l LR = T == O PRRSR 222
A321 (200 == g (0o o (= SR 222
A.322 (D= =] [T 1= 00 (L= S 222
A.3.2.3 INEEOEI COOKIE ...ttt ettt bbbt h bbb Rt bbb et b et bt e b e st b et et e b b e 223
A324 IS o oo) (=TSRSS 223
A.33 LT 1< o0 11T PP U PO URPRUROTI 223
A.34 Lz 070 (o] o OSSP U PR ROTRRR 224
A.35 RELUIN Path COMPONENTS. ... eeiiieieee ettt te et e e s e e ae et e enteestesstesseesseesseesaeenseenseentesnsessansnnns 224
A35.1 1o (o= =TSO URURURPR 224
A.35.2 RELUMNPELN ...t et b et e b s et e b e et e e e b e sb e be bt ene e e et es 225

ETSI

10 ETSI TS 102 523 V1.1.1 (2006-09)

A.353 SECUIERELUIMPELN ...t ettt et e e b b saesbe e e et e 225
A.354 I 0= oo g o] o] 1= o | S 226
A.3.6 S == [SRS T STTS 226
A37 S = 4] o SRS 230
A.38 1T 11 SRS 230
A.39 TraNSIENE VAITADIES ... e bbbttt e b st eb et et e b b e sbesaeenee e eneas 231
A391 2700 == 0N R 231
A.39.2 (D= (=] [T 1= £ RS 231
A.3.9.3 INEEOEIV AN ... et s e b s e s e e s b e e b e s e e s e e e e saeeneeneea 232
A.3.94 SUTNGV @I ettt b et b e et b e e et bt e b e Rt bt e R et b et ke Rene b et bbb re e 232
Annex B (normative): EVENIS AN BT OIS, ittt 233
B.1 SYSIEM BUVENLS. ...t R e e r e R e R R e n e R e e nnes 233
B.1.1 SEIVICE BVENT ...ttt et bbbt b et e b e s e oo bt e b e e h e eh e e R e e R e e eE e e R e ARt eRe b e e Rt e R e e e e b e e Rt eheehe e e ennennen 233
B.1.2 SEIEAM EVENL ...ttt s e s r e a e et ae e eh e e e R e e b e e R e e e e s ae e sRe e aR e e Rt e et ea et eR e e nR e e e Re e Re e reeneenneenes 233
B.1.3 ProgramChange EVENToieeiiie ettt e e st e st e et e s e e e aeaste e tees e entesaeesaeesaeesae e teenteenteentenraenneas 234
B.1.4 RUNNINGSEBLUS EVENL.......cceieiie ettt e s e ee s e e e ste e te e teestessaesseesseeseenseeneesaeesseenseensennseansesnansnnns 234
B.2 USEl BVENES ... ottt et bt h e b bRt bt a e e et ehe et bt ea e e b ereeeeeheeeeseeenes 235
B.2.1 KIBY BVENL. ... e e e e h e s e e s e e e a e e e sree e 235
B.2.2 RABWKEBY BVENL ... e s e e s s e e e n e s e e nae s 235
B.3 COMPONENT BVENES..... ottt r e s e s r e e et e e s r e sreenesrenne e e e ane e e e neennes 235
B.3.1 NE 0= oI = oSS 235
B.3.2 SCENE EVENES ...ttt ettt et st e e s he e s Rt e bt e st e ae e eh e e e b oo b e e R e e e e s ae e £Re e eRe e R e e an e enn e eR e e eR e e e Re e Re e reeneenne s 236
B.3.3 BULTON BVENES. ...t et r e et et a e s b e s R e e R e e R e e e e sae e she e sRe e neenreennenneenreenreas 236
B.34 CROICE BVENES ...ttt ettt ettt bbbt ae e e se e b e s et e b e e bt e heea e e s e nbeseeeb e eae e s e e s e b e besheebeeneennennens 236
B.3.5 IMIBATBLEVENES ...t et b h et et se e e bbb e e h e e e e b e se e b e s bt eh e e e e e e nbesbeebeenees e e e e e e 236
B.3.6 TEXIINPUL BVEINES......ciee e e e b e b e e e e s e san e e e sneesneeneea 237
B.3.7 ANTMALTON EVENES. ...ttt e ettt ettt eae et e e e eeseesbesaeeaeeseeneesee e enseseeabesmeeneensesesbeseeeseeneenseneenes 237
B.3.8 PAgECONTAINET EVENESccvitiueetiieee ettt ettt ettt b et ebe s et eb e s e e e eb e e e e eb e s e e eb e b ea b e b e e bt s eseebenb e e e st nnennens 237
B.3.9 QLI 0= == | SR 238
B.3.10 NUMENICNAVIGAIOr BVENES.eitiieeirtitetirtiiee sttt sttt se b e se b e bt b e s ese e b e e e bt sae st e b eaeeb e be st ebe b e ens 238
R T B R (== g 1YL 1S SRR 238
B.3.12 REUMPEIN BVENES.......otiieiitieeee ettt bbbt s e e bbbt e bt et e e e ne e ke s aeea e e e e b e ekt sbeebe e e ennenren 238
2 4 (o] TSP 238
B.4.1 T Or BUVENTS ...ttt e et s et e R e e e e e et e R e e e R e e e e sRe e e Re e R e Rt e r e rennrennnennees 238
B.4.2 L2 S o= 1 (0] £ TP 239
B.4.3 =0 = =TS 239
B.4.4 S =21 € (0] £ TR 240
B.4.5 LS (= = o] €S 240
B.4.6 (o U 1o g1 = 5 o £ 240
Annex C (normative): Property GIrOUPS.....ccoiiieieciecie ettt st besreenesre e e sreens 241
(O R 1 (1S o o0 0= 1= 241
Cl1 ViSIDIE COMPONENLScoiuieie ettt s e ettt e et e et e be e te e teentesneesneesaeesaeeseenseenseentesneesnensneas 241
Cl1i1 ENUMIBIBLION. ...ttt bttt b e e bt bt ae st e e e e s bt e bt e bt e he e bt e ae et e e e sb e b e sbeene e e ennenes 241
Cl12 0] 0= Y011 o PP OP R U PRSP 241
C.2 BaCKground PrOPEITIEScccuiiieeiesiecteee sttt este st e e st e te st e te e testeeaaesbesae e besbeensestesaeetesteeasensesreensenrens 242
c21 BaCKgrouNd_ProPertiE@S-iMAGES.cveuertereeuertereeieet sttt sttt re ettt se s bttt eb e e bt b e bt bt n e nb et eenenn e ens 242
C22 BaCKGrOUNU_PIOPEITIESeiveeeeirtireettetert ettt ettt bbbt b e bbbt bt e e st b e bt b et e st eb e b e e eaenn e s enis 242
c221 PropertieS defined EISEBWNEIE ..o bbb 242
(O B o [0l g o 70] 1< 11> TSP U USSP VRTUPPPTPPN 242
C31 (o Fo] gl oo o<1 1= T 242
C32 (0! Fo) gl oo o< £ 1= 2 1T 07 oo o] 243
C33 (o1 Fo gl oo o< F 1= 7 oT0] £ (= {o{o] o] CH 244
C34 (@01 Fo) gl o fo o< 1 11=== 2 {11 oxe] o o 244
C35 COlOr_ProPErtiES-TEXICOIONeitieeiirtieeeerte ettt bbbt bt b e e bbb st b e bt s b b 245
C.4 BOUEr PrOPEITIES. ...ttt sttt ettt e et s e st b e b e sb b e e s e e e e e s e e ae e bt eb e e b e nb e s eaeebenb e enenb e nennennas 245

ETSI

11 ETSI TS 102 523 V1.1.1 (2006-09)

c41 BOrderPropertieS €NUMETELIONSccoieeiieitieieeeseesee st e steeste e e s e sseeste e te e teestesseesseesreesaeeseenseensesnsessansans 247
Cc411 BorderSingleColorLinestyl€ ENUMErELIONcccuveieiiesie e see s e e e see e e et esee e s ae e e steesaeenseenneens 247
C4.1.2 BordermulticolorLinestyl€ eNUMEIELiONccueiieiiesece e see sttt ete e s ae e e s e e saeenseeneens 247
c4.2 BOorderPropertieS SPECITICALIONc.vcie ettt et e e e e sre e saeeteenreentesneesnaesanas 247
C4.21 2700 = VLY o 1o OSSPSR 247
C4.22 Side-specific property apPliCALIONcc.eeiieece et ae e nneas 247
C43 BorderProperties defined ElSEBWNENE..........oov s 247
C.5 CornerRadiUS PrOPEITIES.ocueeiieieeeieeieeie st eeesie st e et eeeste et e teseeeseesaesseessesseesesteenseseesseeneensesseensessens 248
C.6 LiNESIYIE PrOPEITIES ...ttt bttt s bbb b e n e e st nb e n e e nenn e 248
C6.1 LiNESLYI@ ENMUMEIALIONS.........eeiieeieeesie e ee et e e e e st e e s e sae e te et eestessaesseesseesseenseeneesseesaeenseenseenseensesnansnnas 248
C6.2 LineStyle properties SPECITICALIONccuieece et sre e s ae e teeteenteeneenraenneas 249
C.6.21 I g7 Y ST SRS 249
C.6.22 I 0 Y7o 14 o TSRS 249
C.7 Positioning and [ayOUL PrOPEITIES.c.cieeeere et et e e saesre e teeseenaesreeneesnens 249
c71 POSItiONINGPrOPErtiESADSOIULE ...ttt e 249
C711 (@ T o TSSOSO OO PSOTR PSSP 249
C71.2 S 4= ST SRT 249
C172 L 0T Yo | o 0] =1 =TSR 250
Cr721 WhiteSpaceHaNdliNG PrOPEITYcvieieeieciesee et se et e et e e st e te e te e tessaesaaesreesreesneesseenseensenns 250
C722 Flow layout properties defined ElSBWNEIEooeiiieie e ere e 250
C73 y Y FTe 001 g1 o o= 1= SS 250
C731 AligNment PropertieS ENUMETEEIONS.cciirieeeierieietert ettt b e b s sb e bt se s e eneens 251
C7311 Horizontal alignmeNt ENUMEIELION.coi ettt sttt b e 251
C73.12 Vertical aignmENt ENUMEIEEIONccviiriiieirteeeie ettt n e 251
C.73.2 H-@lIGN PrOPEITY ...ttt bbb bbbt b e b bbbt b b 252
C.7.33 V= Lo gl o o= YOS 252
C.8 Padding and mMargin PrOPEITIES.eivieereieeeeseeee st e et eeste e e nte e e seesbeeseestesseeeeseeeneessesneensessenns 252
Cc81 L= 0 [0 [aTo 0 oL (-SSP 252
c811 L= 0 [0 1 0o TSP STRPRS 252
C81.2 Side-specific padding @PPIICALIONcc.veiieece et e e et e e e eneeeraesraenneas 252
C82 Y= 0T g 0 o= 1 1= S 252
cs8z21 IVLBIGIIN <.ttt h ek b e h b kR R R AR R e AR e Rt bR Rt b e Rt b ne e 253
c8.22 Side-specific Margin apPIICALTION.cociiieee et b et b et 253
(O3 0 0 01 (0] 01 1= TP TSRS PR VROPPRTPN 253
Cco1 0] 1 =10 0 SR 253
Co92 L0 0= .010] 7= S S 253
Cco93 0] 1 Y = S 253
Co4 FFONE VBITANT ...ttt b bttt et bbb e s e et e b se ekt s bt ehe e e e e e nbeebeebeenees e e e ennenes 253
C95 0] R o | o | USSP 254
C.9.6 FFONE SETEECI ... bttt et bbb e i e et e b se e bt e bt eb e e e e b e sbeebeebeenees e e e e b e 254
co7 0] 10 7SR 254
c.9o8 FONE-SIZE-BOJUSL ...ttt bbbt b e bt e bt bbbt et b et e e nenn e ens 254
C.10 The Label Properties PrOPertY GrOUD.......ccieeeerereeeesteeeeseeseeeseeseeeseessesseessesseessessesssessessesssesseseessessenns 254
C.11 The lmagePropertieS PrOPETY OrOUD......ccciiierreiieieesieieesresteessesressaessesseessesseessessesssessessesssessesseessessenns 255
C.12 The AnimationProperties ProPErtY GrOUD.........cceieieeireiteeiesieeeesteeeestesreessesseessesresssesresseessesseessesessenns 255
C.12.1 The FramePeriod PrOPEITYcc ittt sttt b e et b e e bt bt sb e bbbt b b 255
C.12.2 The RUNNING PIOPEITY ...ueitiieietertetete sttt sttt sttt s be e bt b e bt s bese st b se e st b e s e e st e b e s e e st ebeseeaeebesb et ebesbe e ebenbe e ens 255
C.12.3 TheNUumberOfLOOPS COMPONENL........ccuiiitireeteite st sttt ettt sbe bt ebe st st ebe st se st s be e esesbese et sbeseenesbesbe e b e b e ens 255
C.12.4 The LOOPPAELISE COMPOMNENLcuieeuirtereeueateseesteteseeesreseeseesesseeesesbeseesesbeseesesbeseesesbeseesesbeseeseabessenesbesseneebennenens 255
Annex D (normative): Profile SpeCifiCations.........cccoeiiiieii e 256
D.1 DVB PrOFIIES ..ttt b et h bt bt st e s et ne b nen s 256
D.11 100 W 1ol BT PP P PR PRSP 256
D.1.2 L0V oo e Lo ox 1 o o) T =1 o T o 256
D.1.2.1 OVEIVIBW ..ttt sttt st sttt se et et s e e st et s e e Rt e he s e e me e bese e st e bese e Rt e bese e Rt e EeneeReebeneeneebeseeneebeneeneebeseeneens 256
D.1.2.2 D 1T o] o OSSPSR 256

ETSI

12 ETSI TS 102 523 V1.1.1 (2006-09)

D.1.3 01V oo e Lo o1 1 o (o) 11 =) oo T 256
D.1.3.1 OVEIVIBIW ..ttt bbbtk b b6 £ E bbb bbb £ b bbbttt bbbt 256
D.1.3.2 DEFIMITION ..tttk b bbb bbbt b bbbt 256
D.14 LoV oo e T4 o ox 1 o (o) 11 =" U S 257
D.14.1 OVEIVIBIW ..ttt bbbtk b b6 £ E bbb bbb e £ bbbttt ettt b bbb 257
D.14.2 DEFIMITION ..tttk b bbb bbbt b bbbt 257
Annex E (normative): Portable hintsfor PCF data exchange.........ccccooveeeveiieie e 258
Annex F (nor mative): Marked up texXt FOrmMaLccoooeiiieiieee s 259
F.1 BIOCK BlEMENES. ..ot 259
F.2 FONEStYIE EEMENTS......oceecie et sttt e e st e e ae e b e s aeeaesteeaeesbesbesreesesneeneesreanes 260
G T = S S e = 01] SR 260
S = W= = =0 01] TS 261
T = o L= R (o U] = ST 262
e ST 1= o] = 0= 263
Annex G (normative): XML FESOUI CES.....veuieneenieneeiesiestestestesteseesse et ssessestesbestesaese e e e seesessessenrens 265
T R O a4 | = QPP OSSPSR 265
G.11 01 10 o OOV 265
G.1.2 DENBVTOUI XSO ...t e b h e e bbbt bt s bt bt et e e e sbeseeebesaeeb e e e e e s 265
G.13 S 1 0 010 0100] 1 £ o 265
G.l14 103 1 0TS0 o S 265
G.15 D0 1Y/ 0 57 o 265
G.16 S AV Terc o [0 s 5 o 265
G.2 Component AefiNITION SYNMEAXccererirririereeieiee ettt ss e e e es st bbb sn e s e e e e seerenreanenne e 265
Gz21 COMPONENE-SYNEBX XSO ...ttt ettt bt h b st b e st b e et b bt e bt b e bt b et e bt e b e s e st e b e b et e b e b 265
G.2.2 COMPONENESXIMI ...ttt bt b bbbt bt bbb e s bt et b e b e bt b e e e bt e b et e bt e b e s et et e st e 265
G.2.3 10 0= 1101010030 g 1 S 266
G.24 LS Y= 1100 (0003 | S 266
G.25 LS VS 01K (1 | OO P U ST PSP PR URURURRRROPN 266
G.3 Trangport and PACKBGINGcceiueiieieceeie st sttt et e st e s teeaesresreesbesseesesteentesteeseensestesreessenrens 266
G31 EFANSPOTTVSTL ...t b e bt bbb e bt bt e he b e s b et eb e b et e b e s b e e e b e b 266
Annex H (normative): Action language expression function library..........cccoceevvveeveincceveseenen, 267
H.1 Type CONVErSION FUNCLIONSccuiiuieie ettt st et re et e s re e et ereeresneeneeseeenes 267
H.1.1 AVEIBDI € TYPE CONVEISIONS..... .ottt ettt ettt et bbb st bt b e bt b et e st eb e b et ebe s b e e ebenbe e 267
H.1.2 0] a8 7o) =" o TSRS 268
H.121 =Tele] L= ol (ol 010 o = STV PE PSSP SRTR U 268
H.1.2.2 [ToTa == I (0351 o USSR 268
H.1.3 L (0] 1 gl ee] Lo ST PO P TSP PP 268
H.1.3.1 (00 [0 g (o T 1= 1= gl o (S 268
H.1.3.2 Lo o] g (T 1 o RS 269
H.14 0] e[010}V P P OPR 269
H.1.4.1 LT = 0oy Y (o] 1o = RS 269
H.1.4.2 CUITENCY 1O SN -e.tteeteete sttt sttt sttt sttt sttt et et b e s e et b s b et b e se et e b e e b et eb e e s e st eb e s b et ebenbe e ebe b e e 269
H.1.5 0] 00 = (= ST RST 269
H.15.1 (D= (R (o N0 = 1= T 0= 269
H.1.5.2 B SR (] 10 e (< 7= g (TP PSSP 269
H.1.5.3 D R (oI (] oo TPV P PSSP TSP UTP 270
H.1.6 0Tl 0r= 1= I 0PRSS 270
H.1.6.1 DEIETIME L0 TBLE.....c..eeueeieeeeterte ettt ettt st b bt b e he et e st e se e b e sb e e b e e ae e s e neesbeebesaeene e e et e 270
H.1.6.2 DateTimME 0 INTEGEN PAITS ...eveeieeie e et e e ee e e e et e s e s e s e e s re et e eaaesseesse e beentesnseeneesneesneesneenseensenns 270
H.1.6.3 (D= (=] I T 0T (o IRt o USSR 271
H.1.6.4 (D= (=] T 0 =R (ol (] 04 TP R VRSSO 271
H.1.7 (0 T 1= T USSR 271

ETSI

13 ETSI TS 102 523 V1.1.1 (2006-09)

H.1.7.1 L1100 = (o o0 To = T S PS 271
H.1.7.2 L1 0 = g 7= i K (o oo o PR 271
H.1.7.3 100 Te g 7= RS (o o = (S PR 271
H.1.7.4 g1 Tc o= g RS (o0 = 1= N1 1= PR 272
H.1.7.5 L1100 =g 7= i K (o N 01 1 o o PR 272
H.1.7.6 1100 e 7= K (0 R = J USSR 273
H.1.7.7 INEEYEY PAITS IO SEING .e.viueevitiietirteeet ettt b bbbttt b et b et b bbb 273
H.1.7.8 INEEOEY PAITS IO TIMIE ...c.eieieiitereeeee ettt bbbt b et b e bbb 273
H.1.8 From MarKEO UP TEXE ..ottt sttt e b e et b e et b e se et b e se et b e s b e e b e sb e e ebeebeneeneas 274
H.1.8.1 Marked UP TEXE 1O SEFTMQeiveeeterteeeeirtee ettt bbbt b bbb 274
H.1.9 FPOM POSITION ...ttt b et b e et b e e et bt s e e e eb e s e et eb e s e e e eb e s b et ebesbeneebenbeneeneas 274
H.1.9.1 O S (o R (o T 0100 T gl o = i PR 274
H.1.9.2 0L T (0] R (o 1= {1 o S PR 274
[100t O T 10 1 = TP U ST SOPT PR UPTURUROSRPRIN 274
H.1.10.1 IS o (o I U = oo S 274
H.1.10.2 I T o (o I T] = = USSR 274
H.1.10.3 S glo Rl 0= (0 [o = RS 275
[00t O 70 o 1 0SSP 275
H.1111 Time and date 1O HALETIIMEc..e ettt b e b e st se e e e eeseeeeseeseesaeeneeneeneeneas 275
H.1.11.2 THIME L0 INEEOEN PAITS....etieeterteeet ettt bbbt b bt e b bbbt bbb b e bbb e e bt b e ebenn e s ens 275
H.1.11.3 THME L0 SEFITIG ettt ettt b et bbb b b e bt E e bbb e b bt e e s e Rt e bt b e s e s e b et e e b e nn e e nns 275
[00 0 1 1 0= T L= PPN 276
H.1.12.1 TiMECOUE L0 INTEOEY PAITSe.veueeverteeeteriee ettt ettt ettt ettt et b bbb bbbt b s bt b s eseeb e st e e b e nr e e ens 276
H.1.12.2 BN T 1= oo L= (0I5 1 T o S 276
H.2 ANThmELiC FUNCLIONS. ..ottt b e e bt enes 276
[TG T N 4 = Y 111 o LSS 276
H.3.1 ATTAY TEBNGEN. ...t b et b et b e e st bt e st b e s e e ae s b e e e Rt e b e s b et eb e b et e be s b e e eb e b e 276
(o B o N 0 o SR 276
H.4.1 I o 1= |1 o 276
H.4.2 S o oo] o 7= = 277
H.4.3 g To oo 7= 277
H.4.4 0 1 = o 277
Annex | (normative): Action language NOtation SYNTAXccceeerererrereereeieeesese e 278
[R €1 7= a0 o=l T L [FTox o) o S 278
0 N (= = TR 278
.2.1 T a0 o 1 (SR 278
.2.2 (D (=10 M (T 10 SN L= = RSP 278
[.2.3 CharaCter-NASEA [ITEIAISeie ittt e et e e bbbt sbe e e e b seen 278
.2.4 GEOMELITC LITEIEIS ...t e bbbt e e bbbt b e st e s e e e e b e nbeshesbe e e ennennens 279
[.2.5 == o L1 o o o S 279
[.2.6 Lol g 1) = £ PP P R URTSTRPTPTO 279
[.3 SITUCLUIE 8NGO SLELEIMENTS. ... ettt sttt b et se e b et et ne b nbenbeneenenes 279
.3.1 Goal Production aNG SEAEEMENEScoueeiirieeri ettt b et b e st b e b b 279
1.3.2 F NS T 01 1< oL TP SO PR PTOOPURPRPUN 280
1.3.3 o o) o o S 280
.34 (<o =0 o SRR 280
1.3.5 1670010 [1 o]0 7= PP U TT PR UPURURRRRTN 280
1.3.6 00 o LR OPR 280
B 0 (=S o 1SS 280
R = 107 Yo 0= = o] CO USRS 280
1.5.1 Logical and relatiVe EXPIESSIONSoiucuiitirieiertieete ettt et b e ese bt e et b st s b e s es e b e b e b eseeb e b e s e e sennensens 280
1.5.2 ATTENMELIC EXPIESSIONS. ...ttt ettt sttt s bt e st e b e se e st bt se e st eb e seeheebese et ebesbeneebesbeseesesbeneenea 280
1.5.3 UN@IY EXPIESSIONSveveueetereeieete sttt se et ebese et sese st et e s s eseebese e s e ehese e s e eb e seea e eb e e eaeeh e e e e e eh e e e b ehe e b et ene s b et e e enenneneenis 281
1.5.4 L= A= (01T o] S 281
Annex J (normative): SyStEmM ACtiON lIDFraryc.coeeeee e 282

ETSI

14 ETSI TS 102 523 V1.1.1 (2006-09)

S N I =0 S] (0] 1SS 282
J11 Forward Navigate t0 @NOLNEr SCENE.........ui et e e s ae e s re e beente et e esaesneesraesaeas 282
J1.2 Historical Navigate tO @ PrEVIOUS SCENEcciueereerieeeeeeeereesteestee e sstessaesseesseesseasesssssseesseesseenseessesssnsssessesssees 282
J1.3 Erasing the NiStOry SLACK.........ccceeiiiieeieetere ettt et b e st b bbb e b b e 283
J14 Reading the NiStOry SEACKcoeiiiieiie ettt sttt sb e sbe e 283
J15 NAVIGALE 10 ANOINES SEIVICE ...ttt ettt b bbb b bttt s b et bt s b e e ebesbeneenesbeneeneas 283
S | RSSO 284
J21 EXITiNG the SEIVICE SESSION.....cuuiiiiieieiteesees e et s te e seeste e te et e e e e e seeste e te e teestesseesaeesseesseesseeseenseensennsesneesnansnnns 284
B T 1S 4 (o SRRSO 284
J31 L0 a1 ge I TT 0o = 0To (< AT oTe [PPSR U PTUPTURURRRPN 284
B (V7T (0011 | SRR 284
J4.1 GEELING TNE TIMIE ...t bbbt b e bt bt b e b e e st b e bbb 284
J4.2 Getting the PlatfOrmM IdENTITIEN ..o bbb 284
J4.3 GEtting the reCEIVEr THENLITIENcii ettt e esr e s reesreesreenneenneenes 285
Ja4 Getting the default [aNQUAGE.oe ettt e st e e e eneesraesreesreesreeseenneenes 285
J5 XML SNOMCULS.......eiitiiieiie ettt ettt sttt e e b s ae e e e et e e e e sbesbeentesbeeseeteeneessesaeensesresneensenrens 285
J5.1 SCENE NAVIGALE SNOMTCUL ... eeuieeiecie ettt e s et e et e e e sreesae e aeeneeesseeneeeseesseesseesseeeeenneenns 285
J5.2 SErVICE NAVIGALE SNOMCUL.e.ecvitieeiert ettt bbbt b et b et b b e st b e bt s b b 286
J5.3 HiStOry NAVIGAE SNOTTCUL.ceeueitiieetiite ettt sttt b et b bbb e bt b et b e s b et ebesb e e ebeebesreneas 286
J54 EXIT @CION SNOMCUL. ..ottt et e et e e e be e s beesbe e besabesaeesaeesaeesteenseenteentesasesseesraesanes 286
Annex K (normative): USEEN KEYS. .ottt sttt ettt sttt et s ae et e e ne e resneetesreerennes 287
KL ViIrTUBI KEY COUBS......ueiieeeeie ettt sttt e sttt see et e st et eseeeneesteeseentensesreeeesneeneeneennen 287
K.2 KEY COUB UESCIIPLIONS ...ttt ettt sttt b bbb e st bbb e e s 287
K.2.1 N T 0T ol S 287
K.2.2 N F= YT = 0 I =Y £ SR 287
K.2.3 (0o 1U =0 2, 287
K.24 SEIVICE-EVE] CONIIOI KEYS ...ttt e st st e e s te e te e e e sreesneeeraesteesseenseeeeeneeenns 287
K.25 UNKNOWIN KEY ..ottt ettt b bt b s h et h 82 b e 8 e s bR seb bbbt e b et et eb et e e e n e ennenis 288
Annex L (informative): Scalability tEChNIQUESc.eeiiecece et 289
Annex M (normative): Service announcement and DOOLcocviieieiinerie s 290
Annex N (informative): Independent authoring of elements of a service description.................... 291
Annex O (infor mative): StreamEVvent DINAINGS ..o 292
0.1 XML document DINAINGccoiieieieeee ettt sneeeeseeeneesaesreeeesne e 292
0.2 MXF document DiNAINGccooiiieiiiice ettt s re b e e s e s tesaaesbesreensesresreennesreens 292
(@ TV o (oot U1 0101 1 B o] oo 1 oo SRS 293
Annex P (informative): Receiver handling of aspect ratio........ccccceeceveeveiiecesece e 294
Annex Q (normative): Standard PCF URNS ..ottt 296
Annex R (informative): Example PCF Service desCriplionS.......coccevveeeiereeeese e 297
o I o 1= 1 o I VY4 o | 297
R.1.1 Simplest POSSIDIE AESCIIPLIONoveeiee e e e te e e sre e sreesseeeraesreesreenreeneeneeanes 297
R.1.2 EXEEINAl CONLENE.eteiteeiece ettt e et e st e st e s te e ebe e beeateeasesbeesbe e beenbesasesaeesaeesaeenseentesnsesssesraesanes 297
R.1.3 Service and scene defined in Separate SOUrCE AOCUMENES........coirieeririeereriee ettt 298
A = 0010 = =0 = 011] oo SR 298
R.2.1 Scene item defined USING AtEMPIALEooui it neen 298
R.2.2 Scene item defined using MUItiple tEMPIELESoo i e 299
R.3 Presenting Streamed CONLENE..........c.ocie ettt st e et e e saa et e s reetesreeseesesreeneesreenes 300
R.3.1 Default elementary mediastreams USINg @URNocciiiiiieiinicsece e e e snees 300

ETSI

15 ETSI TS 102 523 V1.1.1 (2006-09)

R.3.2 From specific broadcast service USINg @URNL..........cooiiiiiie it esraennees 300
R.3.3 From specific broadcast Service USINg @URLcooiiiiiee it 301
R.3.4 From 10Cal fil@ USING @ URLociiiiecicice ettt te st e st e e e e neesaeesneesaeeteenteenteensesnaesnnas 301
R4 MiSCEIlaNEOUS EXAMPIES.....c.ui ittt et st st re et e e st e saeetesbeeaeesbesreesesneeneesreenes 302
R.4.1 Service item contains "boilerplate” Visible COMPONENES...........coviirieiiirierere e 302
Annex S (informative): Bibliography ..o e 303
[1S 0] YOS 304

ETSI

16 ETSI TS 102 523 V1.1.1 (2006-09)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation EL ECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

NOTE: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standardsin the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body
by including in the Memorandum of Understanding also CENELEC, which isresponsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active membersin about
60 countries in the European broadcasting area; its headquartersisin Geneva.

European Broadcasting Union

CH-1218 GRAND SACONNEX (Geneva)
Switzerland

Tel: +41227172111

Fax: +4122717 2481

Founded in September 1993, the DVB Project is a market-led consortium of public and private sector organizationsin
thetelevision industry. Its aim is to establish the framework for the introduction of MPEG-2 based digital television
services. Now comprising over 200 organizations from more than 25 countries around the world, DVB fosters
market-led systems, which meet the real needs, and economic circumstances, of the consumer electronics and the
broadcast industry.

Introduction

The DVB Portable Content Format (PCF) is a standard means to describe an interactive digital television (iTV) service.
It provides the industry with a platform-independent format for the busi ness-to-business interchange of interactive
content, and consequently a means to increase the interoperability of authoring tools, head-end systems and broadcast
networks.

The PCF alows an iTV service description to be authored independently of specific target platforms. Thisis achieved
by capturing the intended viewer experience rather than how it shall be implemented, allowing the greatest possible
portability.

A description captured using the PCF is not intended for actual transmission in adigital television network and the form
of the PCF reflects this. Rather, it is an intermediate form that needs to be converted to some platform-specific
representation prior to transmission.

The PCF will allow abroad range of interactive services to be deployed on multiple target platforms, including MHP
and legacy platforms, with a minimum of re-authoring. A description captured using the PCF will be practica to
convert by machine, providing application developers with a degree of independence from target platforms.

ETSI

http://webapp.etsi.org/IPR/home.asp

17 ETSI TS 102 523 V1.1.1 (2006-09)

The PCF is adata format for the description of an interactive service. It is not an authoring tool, though authoring tools
may be devel oped that write output data according to the PCF. It is not the specification of atechnology to be deployed
inadigital television receiver; DVB aready has such atechnology, the Multimedia Home Platform (MHP).

The development of a proposition to be delivered to multiple target platforms can be challenging because of the
variation between platforms. This can be due to:

. Physical constraints, such as a platform not having areturn path.

. Commercial constraints, such as applications from a particular provider not having permission to access
certain platform resources (e.g. persistent storage).

. Operational constraints, such as part of the screen being reserved by a platform operator for specia navigation
features or branding.

. Inherent differences between platforms, such as the available fonts and text rendering rules.

The consequence is that for some interactive servicesit is currently difficult to deliver an identical experience to the
viewer independent of platform, no matter how authored. However, it is generally possible to offer, as determined by
the interactive service provider, a sufficiently similar experience to the viewer independent of platform. The PCF
provides a means to allow application authors to describe the intended experience, along with additional facilitiesto
assist in dealing with platform-to-platform variations.

The PCF provides the industry with atool to facilitate co-existence with and migration to MHP by enabling the
exchange of interactive television service descriptions across multiple platforms. Thiswill aso minimize the total
end-to-end cost of deployment of interactive digital television services across multiple platforms, increasing the reach
of an interactive digital television service authored to the format.

ETSI

18 ETSI TS 102 523 V1.1.1 (2006-09)

1

Scope

The present document specifies the DVB Portable Content Format (PCF) which provides an interactive television (iTV)
service description format. This has been designed in response to the commercial requirements given in DVB
CM-MHP-0651 v2.0.

2

References

The following documents contain provisions which, through reference in thistext, constitute provisions of the present

document.

. References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

. For a specific reference, subsequent revisions do not apply.

. For anon-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

[1]

(2]
(3]

[4]

NOTE:

(5]

NOTE:

(6]

[7]

8]

NOTE:

[9]

[10]
[11]
[12]

NOTE:

IETF RFC 2045: "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies'.

IETF RFC 2046: "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types".

IETF RFC 2048: "Multipurpose Internet Mail Extensions (MIME) Part Four: Registration
Procedures’.

W3C XML Schema 2: "XML Schema Part 2: Datatypes second edition”.

http://www.w3.org/TR/2004/REC-xml schema-2-20041028/

W3C XML 1.0:"Extensible Markup Language (XML) 1.0 (third edition)”. .

http://www.w3c.org/TR/2004/REC-xml-20040204/

SO 10646-1: "Information technology - Universal Multiple-Octet Coded Character Set (UCS) -
Part 1: Architecture and Basic Multilingual Plane".

ETSI TS 102 812: "Digital Video Broadcasting (DVB); Multimedia Home Platform (MHP)
Specification 1.1".

W3C HTML 4.01: "HTML 4.01 Specification".

http://www.w3.0rg/TR/1999/REC-html401-19991224

IETF RFC 2396: "Uniform Resource Identifiers (URI): Generic Syntax".
IETF RFC 2141: "URN Syntax".
GIF Compuserve Incorporated Version 89a: " Graphics Interchange Format™; Columbus, Ohio.

W3C PNG: "Portable Network Graphics (PNG) Specification (Second Edition) Information
technology - Computer graphics and image processing - Portable Network Graphics (PNG):
Functional specification. |SO/IEC 15948:2003 (E)".

http://www.w3.org/TR/PNG/

ETSI

http://docbox.etsi.org/Reference
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3c.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/PNG/

19 ETSI TS 102 523 V1.1.1 (2006-09)

[13] ISO/IEC 10918-1: "Information technology -- Digital compression and coding of continuous-tone
still images: Requirements and guidelines”.

NOTE: http://www.w3.org/Graphics/JPEG/itu-t81.pdf

[14] IETF RFC 3003: "The audio/mpeg Media Type".

[15] I SO/IEC 13818-2: Information technology - Generic coding of moving pictures and associated
audio information: Video (MPEG-2 Video)".

[16] IETF RFC 3339: "Date and time on the Internet: Timestamps'.

[17] EBU TS N12-1999: "Time-and-control codes for television recording”.

[18] ANSI/SMPTE 12M-1999: "Television, Audio and Film - Time and Control Code".

[19] W3C SOAP: "SOAP Version 1.2 Part 1: Messaging Framework”.

NOTE: http://www.w3.org/TR/2003/REC-soap12-part1-20030624/

[20] ETSI ES 201 812: "Digital Video Broadcasting (DVB); Multimedia Home Platform (MHP)
Specification 1.0.3".

[21] IETF RFC 2616: "Hypertext Transfer Protocol - HTTP/1.1".

[22] W3C CSS2: "Cascading Style Sheets, level 2: CSS2 Specification”.

NOTE: http://www.w3.0rg/TR/1998/REC-CSS2-19980512/

[23] W3C Canonical XML: "Canonical XML: Version 1.0". .

NOTE: http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315

[24] Openwave WM RF-13-002 (Openwave Systems Inc. October 2001): "WML 1.3 Language
Reference”.

NOTE: http://devel oper.openwave.com/docs/51/wml_ref.pdf

[25] W3C XSL 1.0: "Extensible Stylesheet Language (XSL) Version 1.0".

NOTE: http://www.w3c.org/TR/2001/REC-xd/-20011015/

[26] IETF RFC 1505: "Encoding Header Field for Internet Messages'.

[27] ETSI EN 300 468: "Digital Video Broadcasting (DVB); Specification for Service Information (S)
in DVB systems”.

[28] W3C XML: "Extensible Markup Language(XML) 1.1", clause 6.

NOTE: http://www.w3.org/TR/xml11

[29] IETF RFC 1591: "Domain Name System Structure and Delegation”.

NOTE: ftp:/ftp.rfc-editor.org/in-notes/rfc1591.txt

3 Definitions and abbreviations
3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

announcement: invitation displayed to the end user to initiate the PCF service

broadcast stream event: event delivered synchronously with the broadcast stream

ETSI

http://www.w3.org/Graphics/JPEG/itu-t81.pdf
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://developer.openwave.com/docs/51/wml_ref.pdf
http://www.w3c.org/TR/2001/REC-xsl-20011015/
http://www.w3.org/TR/xml11
ftp://ftp.rfc-editor.org/in-notes/rfc1591.txt

20 ETSI TS 102 523 V1.1.1 (2006-09)
coherence: condition whereby all direct and indirect references within the loaded assets of a PCF service description
can be resolved

component: functional unit within a service description that can be uniquely referred to, and whose state may be
accessed and in some cases modified

NOTE: Example components may include:
" high-level structural units such as scenes and tables;
" lower-level functional units such as menus, images and text boxes;
L] custom units, typically with platform-dependent behaviour.
constant: value immutable for the life of the enclosing PCF service
container component: component that can contain other components
content: data available for presentation
datatype: set of values from which avariable, constant or some other expression may take its value
evaluation: resolution of an expression into avalue
event: occurrence during the lifetime of a service that any number of interested components may respond to

NOTE: Events may have associated parameters. Example events include user key press, change of state of return
path connection, broadcast stream event.

information set; infoset: set of definitions for use in other specifications, including other parts of the PCF specification
itself, that need to refer to information in the PCF description of an interactive service

NOTE: Aninfoset consists of information items which have information item properties.

interaction; interactivity; interactive: activity by which a viewer can influence the data and processing of an
application

interactive engine: technology that is present in the receiver that supports the rendering of the interactive service,
e.g. presentation engines, execution engines, middlewares etc.

interactive service; interactive digital television service: collection of audio-visual perceivable units, typically
bundled together into a coherent entity, that can be rendered by an interactive digital television platform

NOTE: The content to be rendered may change over time in response to user interaction and other stimuli. The
interactive service may form an essential or optional aspect of aDVB Service, may span a number of
DVB Servicesor may beaDVB Serviceinitsown right.

intrinsic: not directly under the control of the service author
layout: visual arrangement of screen elements within a scene

NOTE: Layout can be absolutely defined, where the service author defines pixel positioning for visible elements,
or automatic, where the transcoder or user agent will determine layout at run-time, according to rules and
behaviours.

loaded asset: PCF asset that has been successfully passed to a service registration context on a PCF transcoder viaa
service transaction

master asset: PCF source document within which the root component of the PCF service description is found
Octet data: packaging unit for non-XML PCF content

online update: periodic retrieval of a PCF asset by the transcoder during the lifetime of that asset

operator : mathematical operation such as +, -, x, / etc. used in expressions to combine values

PCF asset: union of PCF source document and octet data

ETSI

21 ETSI TS 102 523 V1.1.1 (2006-09)

PCF entity: PCF item or octet data
PCF item: value of any PCF datatype
PCF sour ce document: packaging unit for PCF items

per ceivable unit: set of material which, when rendered, may be perceived by aviewer and with which interaction may
be possible

NOTE: Most perceivable units provide both presentation and the means for interaction. However, on some types
of device, such as printers, perceivable units might contain only presentation.

platform; interactive digital television platform: combination of receiver and network infrastructure capabilities that
enable the rendering of interactive services

profile: defined sub-set of the PCF specification that provides an easy way to describe the minimum capabilities, i.e.
the minimum profile, that a platform must provide in order to achieve the authorial intent captured in the PCF
description of an interactive service

NOTE: Thisalows an author to have confidence that their service description will work on a particular target
platform, or more precisely a particular target device, without having to meticulously match up every
feature they have used with the features provided by that target.

property: quantifiable characteristic of a component that may be referenced, and that may potentially be read and/or
modified

NOTE: Example properties may include:
= Thesize and position of avisible component.
L] The value of an integer variable.
] The text within a TextBox component.
push update: delivery of a PCF asset with a transaction message to a transcoder
pull update: retrieval of a PCF asset by the transcoder subsequent to a transaction message

receiver; interactive digital television receiver: device deployed within a particular interactive digital television
platform capable of rendering an interactive service

NOTE: Depending on the platform, the device may have access to a unidirectional, e.g. broadcast, and/or a bi-
directional, e.g. return path connection.

rendering: act of converting perceivable unitsinto physical effectsthat can be perceived by a viewer and which may be
interacted with

resour ce: can be anything that has an identity

resour ce resolver: function, typically residing within a PCF transcoder, that identifies and maps the portable resource
references of a PCF-authored interactive service to the specific resources available on the target platform

NOTE: For example, "video_stream 2" in generic PCF may be transcoded by a resource resolver in atranscoder
to "Transport_Stream |ID; Service_ID; Event; VideoElementary Stream; Component_Tag 2" for a
particular target platform.

return path: communications mechanism that provides a connection between areceiver and a remote server
run-time: duration of time between instantiation and termination of the user session with a PCF service
scene: components, content and layout that appear and remain on screen for a " discernable period of calm”

NOTE: A scenewill generally not consist of arandom collection of visible screen furniture, but rather will
display qualities of graphic and visual internal consistency. A sceneis not necessarily static. It is possible
that some elements may change in a screen update without a scene transition occurring. For example,
activation of a select box may be represented by a new popup object appearing on screen, but this would
not be considered to represent a scene transition.

ETSI

22 ETSI TS 102 523 V1.1.1 (2006-09)

scenetransition; transition: act of moving between scenes

NOTE: A scenetransition will normally involve a screen refresh, where the screen will blank, then redraw to
display the new scene, although it is aso possible that some new piece of screen furniture could appear,
or avisible piece could disappear, without afull screen refresh.

screen: physical viewing area of atelevision set

NOTE: Itispossiblethat ascreen may be physically smaller or larger (i.e. contain fewer or more pixels) than the
scenes that comprise an interactive service.

script: sequence of combined actions and control statements including expression evaluations that is executed to
change the state of a service, including any associated change to visual components displayed as part of the current
scene

NOTE: A script may betriggered by an event or be executed as the result of another action.

service; interactive service: Anoverall user experience that display internally consistency from the user's point of
view

NOTE: A single user experience may be built from a variety of sub services, which may provide discrete
functional components.

service component; pcf service component: PCF component containing an internally consistent collection of PCF
scenes, describing the author's intent

service provider; interactive digital television service provider: party responsible for the provision of an interactive
service including any dynamic aspects such as real-time assets, e.g. video, sports scores, and personalized information,
e.g. regional weather, bank statement.

session: duration of time in which a viewer interacts with a service

NOTE: Within that duration, the service would normally maintain arecord of the state of the interaction to ensure
presentation of appropriate content and scenes at the appropriate moments for each user's interaction.

table: tabular layout for content
NOTE: Two kinds of tables are supported in PCF - the PCF Table component, and tables within marked-up text.
target; target device; target platform: platform or device intended to deliver the interactive service described by PCF
NOTE: Itisintended that PCF service descriptions should be transcoded into a native format for a target device.

transcoder : target platform specific functionality that is capable of ingesting a PCF service description, and
automatically outputting a version of that service suitable for delivery to a specific viewing apparatus, such as digital
TV set-top-box

Uniform Resour ce | dentifier (URI): string that identifies aresource
user agent: client within an interactive digital television receiver that performs rendering
NOTE: Browsersare examples of user agents.
variable: quantity that can assume any of a set of values according to its data type and can be uniquely identified

NOTE: A variable can beinstantiated at some point during an interactive service and is likely to vary in response
to actions. A variable forms part of the state of a service.

visual component: visible screen object that delivers defined functionality

NOTE: Standard visual components include TextBox, Image and Video.
volatile asset: PCF asset that changes aperiodically over the service registration lifetime
x-height: measure of height of atypeface, based on the height of the lower case "x" character

NOTE: Asdefined in CSS2 http://www.w3.org/TR/REC-CSS2.

ETSI

http://www.w3.org/TR/REC-CSS2

23 ETSI TS 102 523 V1.1.1 (2006-09)

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
DVB Digital Video Broadcasting
iTV interactive TeleVision
MHP Multimedia Home Platform
PCF Portable Content Format
STB Set-Top Box
TV TeleVision
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
XML eXtensible Markup Language
ELC Explicit Layout Container
TFC Truncate Flow Container
MIME Multipurpose Internet Mail Extensions
(OX'D) On Screen Display
RPTF Return Path Transaction Format
4 Conventions

All example XML service description fragments in the present document are assumed to have the following namespace
declarations unless otherwise stated:

. xmlns="http://www.dvb.org/pcf/pcf" (pcf)
. xmins:mut="http://www.dvb.org/pcf/x-dvb-pcf" (marked up text)

All example XML service digest fragments in the present document are assumed to have to following namespace
declaration:

. xmins="http://www.dvb.org/pcf/servicedigest” (service digest)

All components, property group, event and error specification XML fragments in the present document are assumed to
have to following namespace declarations:

. xmins="http://www.dvb.org/pcf/components’ (component specification)
. xmins:pcf="http://www.dvb.org/pcf/pcf” (pcf)

Grammar production syntax is specified in the present document using Extended Backus-Naur Form (EBNF)
notation [28].

5 Service author guide (informative)

5.1 Introduction

This clause of the specification isintended to provide a high-level overview of the various elements available for use
within the PCF, and how these are combined to form a complete interactive TV service description.

The PCF is an interactive television (iTV) service description format designed to be platform independent. A service
described using the PCF can be automatically converted into aformat suitable for any target platform.

ETSI

24 ETSI TS 102 523 V1.1.1 (2006-09)

The PCF accomplishes this by allowing the iTV service to be described using a high-level declarative syntax. The
format describes the intended viewer experience without prescribing exactly how it should be rendered on a target
platform. This means that any automatic conversion process has sufficient freedom to transform the description into the
execution model required by the target platform. To enable a service to be described most efficiently, and in away that
best conveys the author's intent, the format uses a referencing mechanism. This allows the service description to be
flexibly partitioned and gives the transcoder considerable freedom to decide the best way of packaging the service
optimally to suit the target platform.

The form of the PCF reflects the fact that it is not intended as an actual transmission format, but rather as an
intermediate format that will need conversion to a platform-specific representation prior to transmission. It is primarily
intended for business-to-business interchange, and as such is meant to facilitate interoperability between authoring
tools, head-end systems and broadcast networks.

To assist adoption of the PCF itself, the PCF specification describes standardized (but non-mandatory) mechanisms for
profiling the PCF into sub-sets of features and for the interchange of service descriptions.

In addition to the rest of this clause a number of example PCF service description are provided in annex R.

5.2 An overview of a PCF service description

The following is an example of asimple PCF service:

<PCF xm ns="http://ww. dvb. or g/ pcf/pcf">
<Servi ce nane="hel |l o_worl d">
<String name="pcf SpecVersi on" val ue="1.0"/>
<URI name="firstScene" val ue="#hell o_scene"/>
<Scene nane="hel | o_scene">
<Conponent cl ass="TextBox" name="hel | o_text">
<Si ze name="si ze" val ue="100 40"/ >
<String nane="content" value="Hello, World!"/>
</ Conponent >
<OnEvent name="exit">
<Trigger eventtype="KeyEvent">
<User Key name="key" val ue="VK_PREV"/>

</ Tri gger >
<Exi t Action/ >
</ OnEvent >
</ Scene>
</ Servi ce>
</ PCF>

Whilst this serviceis very small, it uses many of the key PCF structures. The Ser vice element provides the entry point
into the service, and the rest of the service description is either contained, or referenced from, within this element.

Immediately within the Service element is a single Scene element. All PCF services are sub-divided into one or more
Scenes, and each Scene represents a destination that may be navigated to within the service. The visual appearance of a
Scene is defined by the set of Components the Scene contains. In this case there is only a single component, a
TextBox, which is used to display the message "Hello, World!". PCF defines atoolkit of standard components that may
be included within a Scene description to describe the desired appearance and behaviour.

All component types have a number of Properties. For the TextBox component, only its size, and its content are being
explicitly set. A TextBox has a number of other properties that have not been explicitly set, and in this case their default
values will be used.

Thelast element within the Scene describes an event handler, OnEvent. For this Scene the event handler responds to
the viewer pressing the virtual key "VK_PREV" that will be mapped to a platform specific remote control key, e.g. the
"Backup", "Back", "Previous’, "Cancel". The event handler contains a single action, ExitAction, that instructs the
service to exit.

Whilst thisisavery simple service it doesillustrate core aspects of a PCF service description:
. Components - the building blocks of a PCF service description.
. Content - managed and presented using PCF components.

. Behaviour - the response to events generated at run-time.

ETSI

25 ETSI TS 102 523 V1.1.1 (2006-09)

5.3 Components

Components are the building blocks of a PCF service description. Many components are visua "widgets' used to
describe the visual appearance of the service at a particular point, for example TextBox, Video and Menu. There are
aso non-visual components, which can be used for the presentation of non-visual content or providing other aspects of
service functionality, for example Audio, Stream and Random.

All component types may be declared using a generic component item. This has a class property to specify the type of
component and a provider property to identify the body that has specified the component. For standard DVB
components specified within the present document the provider is"dvb.org". However, for such components the
provider property may be omitted from their declaration, since "dvb.org" isthe default value for this property.

Each class of component has a set of associated named properties, and setting these properties defines how a particular
instance of a component will look and behave. The following is an example of a standard DVB TextBox component
declaration (where the provider attribute is omitted and so by default takes the value "dvb.org"):

<Conponent cl ass="Text Box" name="Mi nText">
<Si ze nanme="si ze" val ue="100 40"/ >
<Col or name="fillcol or" val ue="#0000AA"/ >
<Col or nanme="textcol or" val ue="#FFFFFF"/>
<String name="content" value="Hello, World!l"/>
</ Conponent >

It should be noted that the provider property has not been explicitly stated in the declaration, since "dvb.org" isthe
default value for this property.

In this case four of the TextBox's properties are being explicitly set: its size, itsfillcolor (background colour), its
textcolor and the content string. As well as being defined during instantiation, many component properties can be
dynamically changed at run-time. In the above example, the TextBox's content property can be updated to display a
different block of text, or one of its colour properties can be updated to change that aspect of the component's
presentation.

Using the generic Component provides a number of advantages regarding the extensibility of the PCF format, and the
ability to declare custom components using the same syntax as standard PCF components. However, a number of
standard components exist that may also be declared in a class specific way. These components are known as schema
components, and always have the "dvb.org" provider. For example, the following example describes a TextBox that is
equivalent to the Component of the TextBox class:

<Text Box nane="Mai nText">
<Si ze nane="si ze" val ue="100 40"/ >
<Col or nanme="fillcolor" val ue="#0000AA"/ >
<Col or nane="textcol or" val ue="#FFFFFF"/>
<String name="content" value="Hello, Wrld"/>
</ Text Box>

Component types can be specified to have intrinsic behaviour that will cause them to change in response to external
events, such as key presses, broadcast stream events, or a change in state of the return path connection. For example, a
Menu component will react to specified key presses by changing the position of its menu item highlight.

Components can also be specified to generate events to signal some internal change. This provides a mechanism to
allow the service description to contain some custom behaviour beyond that defined in the component specification. For
example, if avisual component receives the focusit will generate an "OnFocus' event, that could be used to drive some
custom "roll-over" behaviour, so that contextual information is presented in a TextBox (somewhere else in the Scene).

5.3.1 The Service component

The service component is aform of explicit layout container (see clause 5.3.3.1) within which scene components and
other components that are required to persist between different Scenes may be described, for example, an IntegerVar
component used to store a high-score. In addition to this, the Service component provides the entry point into the
service by specifying theinitial Scene to be presented.

5.3.2 The Scene component

The scene component is also aform of explicit layout container (see clause 5.3.3.1) within which other components
may be described.

ETSI

26 ETSI TS 102 523 V1.1.1 (2006-09)

Normally, the lifetime of all components within a scene is the same as the lifetime of the sceneitself. A transition from
ascene will cause all child components and accompanying state to disappear. For this reason, any components that need
to persist between scenes (for example, a background image or a high-score variable) must be included in the service
component.

5.3.3 Layout components

5.3.3.1 Explicit layout

Explicit layout is described using the ELC (Explicit Layout Container) component. This component has no visual
appearance of its own. It isinstead a container for other components that need to be positioned at an exact location.

An ELC component has an origin property, but no size. Components declared within an ELC component have their
positions specified relative to this origin. Consequently, moving the parent ELC component's origin will cause all the
child components to move by the same relative amount. Thisisillustrated in figure 1. Diagram A shows three
components which are contained within an ELC, the origin of which is aso shown. In diagram B, the origin of the ELC
has been moved, which has resulted in all its child components moving as well.

Origin
;/ .'

A B
Figure 1: Moving an Explicit Layout Container

The z-order of child components contained within an ELC component isimplicit from the order in which the child
components are declared. This order can be modified at run-time.

When the visible property of an ELC is"true", all of its child components are visible. Similarly, when the visible
property of an ELC is"false", none of its child components are visible.

Thereisavariant of the ELC component called the StaticELC component that does not support run-time modification
to the position or z-order of child components. Whilst the StaticEL C component is less capable than the ELC
component it is more portable.

5.3.3.2 Flow layout
Flow layout is described using a combination of Flow components and flow layout container components.

Flow components are used to manage the content to be presented, which may be a mixture of text and other PCF
components.

Flow container components are used to position the content described by a Flow component. Thisis achieved using
"flow" rules, so that the content described by a Flow component is presented without requiring the service author to
specify exact positions. This mechanismis very similar to the way the content within an HTML pageis flowed by an
HTML browser.

There are three type of flow container component:

. A SFC (Scroll Flow Container) component presents flowed content in a rectangular area of fixed width,
height and origin. Flowed content that exceeds the limits of the SFC can be viewed by scrolling the content up
and down.

ETSI

27 ETSI TS 102 523 V1.1.1 (2006-09)

. A PFC (Page Flow Container) component presents flowed content in a rectangular area of fixed width, height
and origin. Flowed content that exceeds the limits of the PFC can be viewed by "paging” forward and back
through the content.

. A TFC (Truncate Flow Container) component presents flowed content in a rectangular area of fixed width
and origin, but variable height. The TFC may stretch, within author-specified limits, only in a downward
direction as required to accommodate flowed content. Flowed content that exceeds the maximum size of the
stretch container shall be truncated.

The content to be presented in any of the flow container components is described using one of the following flow
components:

. A Flow component can contain a mixture of text and other PCF visual components.

. A Table component isa special instance of Flow where the flowed content is organized into a tabular
structure.

. A TextFlow component is arestricted form of Flow that is limited to containing simple marked-up text.

5.34 Return path components

There are many instances when a service must send some data back to the head-end or content provider. Thisis
accomplished, where possible, using some form of return path. These broadly fall into two categories:

. Always On Return Path (e.g. as seen in many xDSL / Cable Modem systems).
. Intermittent / On Request / Dial Up (e.g. as seen in many Satellite systems).
Both of these are catered for by the PCF.

Clearly there will be platforms where no return path exists and in such instances there are alternative methods by which
alimited set of return path functionality can be achieved. For instance, the viewer using a particular service could be
asked to phone a number, or send a text message using their mobile phone, which could be used at the head end to
gather data from the interactive service. An example of this may be an interactive voting service. The ideal desired
behaviour would be that the service returns the user's vote transparently, via an always on or dial up return path.
However, on platforms where such return paths do not exist, or are not available, the user could be prompted to send an
SM Stext message stating "A", "B" or "C" to a given number using their mobile phone. The PCF, however, does not
consider thisto be return path functionality asit could equally be applied to al platforms, including those with always
on and dial up return paths.

The standard return path implementation is built around three items: a ReturnPath component, a Transaction component
and atransfer collection. A fourth component, the Indicate component, is a cut down version of the ReturnPath
component, whose purpose is to a enable very simple return path functionality whereby a connection is made but no
transaction occurs, such asis used in a very simple voting application. A fifth component, the SecureReturnPath
component allows for the secure transfer of data to take place.

The data transfer collection defines a sequence of information to be transferred over the return path. Only serialized data
can be transferred through the return path. Serialized datais arestricted set of data types, appropriate for transfer
through the return path, for example integers, strings, variables, dates but not Rectangles, Buttons, Menus etc. The PCF
specification defines whether or not a component type is serializable. The transfer of graphics images through the return
path is not required in the initial version of the PCF and therefore images are not defined as serializable.

The ReturnPath component embodies the return path itself and manages the actual data transfer exchange process. This
component has no visual representation and implements return path functionality for both always-on and dial-up return
path platforms. Its properties incorporate information to define the target application server and the current status of the
return path connection (i.e. "closed", "open", "opening", "closing"). At run-time the ReturnPath component is passed a
reference to a data Transaction component that contains the source and/or destination data transfer collections. The
Transaction component embodies the status of an actual data transfer exchange process. (i.e. "idl€", "busy") and upon

completion it generates an outcome event which defines the success or failure of the transaction.

PCF Profiles and levels, as described in clause 5.7.2 and clause 11 can be used to identify a platform's return path
capabilities.

ETSI

28 ETSI TS 102 523 V1.1.1 (2006-09)

5.3.5 Custom components
The set of component classes standardized by DVB can be augmented by the creation of custom components.

A custom component can be created for atarget platform to exploit platform capabilities that are not available through
the use of standard PCF components alone. When using a custom component, the provider property must always be set
explicitly.

NOTE: Ascustom components use the same component declaration as standard components they can be
integrated seamlessly into the PCF service declaration. The responsibility then lies with the publication
process to implement the component on the target platform correctly.

PCF service descriptions containing custom components will only work on target platforms that implement these
components, and so are likely to be less portable than PCF services that use only standard components.

54 Content

Content is managed within a PCF service description using a set of standard PCF data types as follows:
. Primitive types - basic data types such as integer and Boolean.

. Coretypes - core data types such as Size, Colour or MarkedUpText, that incorporate one or more primitive
data values, but which are core to the PCF.

. Octet data - thisis encoded binary data. For example, octet data may be used to handle image data, stream
data and character datain various encodings.

. Compound Types - These types contain a number of other values, ordered and accessed in a particular way.
For example, key-value pairs, whereby the value may be looked up using the key.

The PCF provides means for items to be grouped together and referenced in the form of structures and arrays.
Structures, such as the Collection data type, provide a mechanism for related data itemsto be accessed asa single
logical unit. Arrays alow multiple items of the same data type to be grouped so they can be easily indexed and iterated
over.

5.5 Behaviour

All run-time behaviour that contributes to the viewer experience of a PCF service is event-driven.

When an event occurs it may be consumed by a component resulting in the execution of behaviour defined as part of
that component class specification. For example, the Menu component is specified such that it will react to the
UP/DOWN user keys by moving its highlight up and down over its menuitems. The service author need not describe
this behaviour.

Alternatively, the event may be consumed by a custom handler declared within the service description. This might be
used to create custom behaviour that is not an inherent part of an available component's functionality, or for linking the
behaviour of one component to that of another. For example, when a menuitem in the same Menu component receives
focusit will generate an "OnFocus' event, that could be used to drive some custom "roll-over" behaviour, so that
contextual information is presented in a TextBox (somewhere else in the Scene).

Many of the features available for defining behaviour within the PCF, whether as part of a component specification or
declaring custom behaviour, are derived from the statemachine-oriented features available in UML statecharts. A set of
states can be defined alongside a set of rules to define the conditions for making transitions between these states. A set
of actions may then be defined for execution in response to specific events, or in response to a specific state transition.

ETSI

29 ETSI TS 102 523 V1.1.1 (2006-09)

5.5.1 Events

There are three categories of events:

. System events - occur without the viewer's intervention, for examplebroadacst stream events, error conditions
etc.

. Component events - generated by a component to indicate a change to itsinterna state.

. User input events - generated in response to the viewer doing something, e.g. pressing a key on the remote
control.

Depending upon the type of event and the state of the service, a generated event will be made available for consumption
to certain components within the service description according to defined set of event propagation rules.

The PCF supports the concept of focus. Focus effectively represents where the viewer's attention is currently focused,
and so user input events areinitially directed at the focused component. If the focused component is not interested then
the event is propagated up to its parent, and if not consumed there then to that component's parent and so on until itis
consumed.

5.5.2 Action language

The PCF includes an action language to specify sequences of actions to be executed either in direct response to an event
occurring, or as aresult of a state transition caused by an event. The PCF Action Language consists of actions,
variables, conditions and controls. These may be combined to form simple scripts.

Actions are essentially commands directed at specific components, including potentially the current scene and service
components. For example, an action may query a component's property or set it to a specific value. In addition to
reading and modifying component properties, the PCF action language supports actions for making scene transitions,
performing simple mathematical and logical operations, manipulating strings and for executing component-specific
commands.

Variables are used to store and retrieve data that is required to persist during the execution of a sequence of actions, or
between successive seguences.

Conditions are used to make the execution of a particular sequence dependent upon some Boolean condition being met,
allowing a choice of execution paths to be specified.

Controls are used in conjunction with conditions to further affect the flow of an action sequence's execution by
specifying loop and jump behaviour. For example, atransition to the "Game Over" scene that occurs only once the
value of the IntegerVar component containing the number of remaining lives equals zero.

By default, an action is executed within the scope of its parent component and can only "see" (i.e. access and modify)
components that are also within the same scope. There are some situations where it is necessary to be able to access
components that are outside this normal scope. For example, an action may need to access an integerVar component
defined in the service component to update a game score that must persist between scenes. The PCF provides a
mechanism, in the form of parameter items, to achieve this.

The following shows example use of some simple action language:

<Scene nane="scene">
<Col | ecti on name="vari abl es">
<I nt eger Var nanme="counter">
<I nteger name="val ue" val ue="1"/>
</ | nt eger Var >
</ Col | ecti on>
<OnEvent >
<Trigger eventtype="KeyEvent">
<User Key nanme="key" val ue="VK_ENTER'/ >
</ Tri gger>
<Acti onLanguage nane="junmpCounter">
vari abl es. counter. val ue += 10;
</ Acti onLanguage>
</ OnEvent >
</ Scene>

ETSI

30 ETSI TS 102 523 V1.1.1 (2006-09)

Alongside the notation for the full PCF Action Language syntax, as used in the example above, there is a " shortcuts’
notation that provides an aternative way of describing certain commonly used actions. For example, the following are
equivalent:

<Acti onLanguage name="j unpCounter" >
SceneNavi gate(<uri>#../../../next_scene</uri>, <enunmpforget</enum, nil);
</ Acti onLanguage>

<SceneNavi gat e>
<URI nanme="target" value="#../../../next_scene"/>
<String name="type" value="forget"/>

</ SceneNavi gat e>

5.6 Structuring a PCF service description

For asimple service it may be appropriate that all aspects of the service description are in one PCF source document,
and all relationships between elements are explicitly described through the nesting of elements within the description
hierarchy.

For larger services, however, it may not be feasible to locate the entire service description in a single PCF source
document, for reasons of efficient description of authorial intent and/or the modularity required in some
busi ness-to-business interchange situations.

The PCF provides flexible referencing mechanisms to accommodate these extremes of service description structure.

56.1 The href

In order to provide the flexibility to partition a service description in the most appropriate way, the PCF uses a
referencing scheme to allow an element to remotely include other PCF items, or groups of PCF items. Such areference
can be described using the href property. The value of this property describes a path to the item to be referenced, using
the values of the name property within the structural hierarchy of the service. In the following example, the TextBox
does not include the content text directly, but instead contains a reference. This reference then points to the actual
content text, which is declared separately:

<Conponent type="TextBox" nane="hello_text">
<String name="content" href="#../mycontent/nsg"/>
</ Conponent >

<Col | ecti on name=nycontent">
<String name="nsg" val ue="Hello, World!l"/>
</ Col | ecti on>

The benefits of such referencing include:

. The same set of components can be populated with multiple sets of content. A set of components can be used
as a presentation "template”, which can be combined with different sets of content in different scenes.

. A set of components declared once can be included within multiple Scenes. This allows "boilerplate” scene
furniture to be reused multiple times, and also alows new complex components to be created, by allowing a
set of simple components and some additional behaviour to be declared in one place, and then included
wherever it isrequired.

5.6.2 Copy

A second method of referencing uses the copy item. This enables the referencing of items contained within some other
item. The copy item is effectively replaced with the items contained within the item it refersto.

For example, the collection "MyContent” below contains two string items. The Scene declaration includes a Copy in
order to "pull in" these string items so that they are now described within the scene. The TextBox components contain
Sring items that use the href functionality to identify the individual piece of text to use asits content.

<Col | ecti on name="M/Cont ent" >
<String name="Ilteml" val ue="Mbzart"/>
<String name="I|tenmR" val ue="Beet hoven"/>
</ Col | ecti on>

ETSI

31 ETSI TS 102 523 V1.1.1 (2006-09)

<Scene nane="Conposers">
<l-- Include referenced content within collection -->
<Copy href="#../MContent"/>

<Text Box name="Box1">
<l-- Refer to included content item-->
<String name="content" href="#. ./Item"/>
<Si ze nane="si ze" val ue="100 40"/ >

</ Text Box>

<Text Box name="Box2">
<l-- Refer to included content item-->
<String name="content" href="#. ./Item"/>
<Si ze nane="si ze" val ue="100 40"/ >
</ Text Box>
</ Scene>

5.7 Managing differences between target platforms

The PCF provides arich toolkit of functionality to alow interactive television servicesto be described in a platform
independent manner. The PCF removes the requirement for a service author to have a detailed knowledge of the
programming languages embodied in the various interactive middlewares deployed. This does not mean that the
inherent differences between platforms simply disappear: if a particular platform does not have, say, an integrated
return path, there is no way that the PCF, or indeed any other approach to authoring, can enable secure bi-directional
communication. To give the service author a way of dealing with this, the PCF embodies two concepts, degrees of
freedom and profiles.

5.7.1 Degrees of freedom

Despite the very different nature of various deployed interactive technologies it is often possible to deliver the same
viewer experience on a number of platforms, to the point where it isindistinguishable to all but the expert. Thisis
mainly due to the fact that underneath the different interactive middlewares there are very similar hardware
architectures, in some cases implemented using the same chipsets. In general the problem is not instantiating a
particular component, such as a TextBox, on a number of platforms. Rather, the challenge for the PCF isto create
component definitions that strike a balance between:

. capturing authorial intent of sufficient precision to deliver a consistent viewer experience;
. ensuring the portability of each component to a wide range of targets;

. minimizing component specialization as a means of maximizing the exploitation of each platform, to avoid a
proliferation of very similar components.

The PCF addresses this by allowing a degree of freedomin the definition of each PCF component. Wherever possible
the degree of freedom is minimized, ideally to zero. However, where a degree of freedom is defined it may indicate if
thereisan ideal and a minimum acceptable implementation or if any implementation within the degree of freedomisas
good as any other.

As an example, consider a TextBox component. This might be defined such that aline of text content will always be
completely rendered within the visible area of the component. However, it might be defined with a degree of freedom
such that the exact placement of each rendered character does not matter as long as the rendered line of text is
completely visible. In this case no particular implementation can be considered more "ideal" than any other. I nstead,
this degree of freedom is essential simply because there is no standard for text rendering across interactive middlewares,
i.e. afundamental problem.

57.2 Profiles

To ensure that the PCF isrelevant to as many platforms as possibleit is deliberately designed to be unconstrained by the
abilities of the least powerful target device being considered, i.e. the lowest common denominator. This characteristic of
the PCF is essential if the increasing capabilities and diversity of target devices, which can be expected as platforms
evolve over time, are to be accommodated. However, this inevitably means that not all the functionality that may be
expressed using the PCF can be transcoded to work on al platforms, or even all devices within a particular platform.

ETSI

32 ETSI TS 102 523 V1.1.1 (2006-09)

So that an author can have confidence that their service description will work on a particular target platform, or more
precisely a particular target device, without having to meticulously match up every feature they have used with the
features provided by that target, the concept of PCF profiles has been defined.

Typically, each profile will embody a set of PCF features such that it maps well to a particular application area, very
much as profiles have been used within MHP, e.g. enhanced broadcast, return path enabled, PVR enabled etc. In
addition, to increase adoptability of the PCF, profiles have been designed to reflect stepsin complexity of the PCF
transcoder that is required.

In this way profiles provide a more manageable level of granularity for determining the feature support of a particular
target and hence whether a particular service can be successfully deployed so asto deliver the intended viewer
experience.

5.8 Transport and packaging

The PCF isintended primarily for business-to-business interchange, so it isimportant that it can be exchanged easily
between different tools, content systems and networks. Although not mandatory, the PCF specification provides a
business interface model that describes the encapsulation and workflow for this interchange. This means that systems
implementing the model can, in addition to understanding a PCF service description itself, exchange the service's assets
easily, in away that guarantees service integrity.

To alow multiple PCF assets (PCF source documents and other content assets referenced by this source) within a
service to be updated atomically, they can be grouped together into transactions for submission across the business
interface. Each transaction carries apriority and thisisto assist the receiving process in allocating resources to the task
of processing the contents of the transaction. For example, if parts of a PCF service contain rapidly updating live sport
scores, whilst another part of the service contains slowly updating, but sizeable, news stories, it is desirable to specify
that the sport score content should be processed more quickly, and in preference to, the less latency-sensitive news
content.

Each transaction must result in a coherent PCF service at the receiving end. Assets within a transaction may reference
other assets defined within the scope of that transaction or assets that are known about already from previous
transactions within the same service. All references within a transaction must be resolvable, and thisimplies that the
state of the entire service persists at the receiving end for the entire duration of the interchange. Should a transaction
contain unresolved references or syntax errors, that transaction will fail and all its contained assets will be discarded. In
such a case a suitable error report is returned to the process at the sending end.

Transactions may be initiated either by the sending process (the push model) or the receiving process (the pull model).
Generally, the push model is more efficient, as the sender will know when aspects of a PCF service have changed,
rather than the receiving process needing to poll the sender. However, there are situations where pull operation is
required, for instance when atransaction isinitiated by areturn path transfer.

PCF Services within transactions are identified by a service identifier and an organization identifier that has been
previously agreed between the sender and receiver. Thisisto ensure that the receiving processis able to correctly
identify which service atransaction relates to, as it may be processing a number of services concurrently. This
mechanism may be augmented with additional security measures, for example SSL certificates, but thisis not specified
by the PCF.

Transactions may contain hintsto assist the transcoder operation. Some hints, such as the priority of a particular scene
transition, potentially apply to all target platforms. Other hints are target platform specific, in which case they are
known as directives. The PCF specifies a syntax for exchanging hints and a set of portable hint types that a transcoder
should support.

Some PCF services may require references to entities that only exist in the domain of the network operator, for example
AV components, or entities whose details are not under the control of the PCF author, for example the return path
configuration or linksto other PCF service entry points. These must be specified by a PCF service asalist of external
references. These references are abstract URNs that can be resolved during transcoding into actual assets or data. These
URNs must also be portable, so the PCF specifies a syntax and recommends that a registered naming authority process
be put in place for managing their allocation.

ETSI

33 ETSI TS 102 523 V1.1.1 (2006-09)

6 Architecture

The architecture of aformat is the framework and structure that the format provides to an author so asto enable his
description of a portable interactive service. Included in the format's architecture are: data types, data structures, item
identification and a referencing model. The architecture describes foundational elements of PCF from which other areas
of the PCF are constructed. The format's architecture is not a deployment system architecture, which describes the
deployment environment for a PCF transcoder.

The specification of the architecture for PCF startsin clause 6.1 with an introduction to the architectural concepts that
are the foundation of PCF. The technical specification of each architectural feature followsin clauses 6.2 to 6.6.

6.1 Introduction

The aim of specifying PCF architecture independently from all other aspects of PCF isto ensure that a consistent and
interoperable framework description exists for all parts of a PCF service. The PCF architecture:

. describes compl ete interactive services;

. enables aspects of a service description to be created and modified independently;
. has an extensible syntax to support the creation of new features,

. expresses features at different levels of granularity;

. is practical to convert by machine;

. is an unconstrai ned service description that exploits features of al systems;

. encapsulates descriptions of additional capabilities;

. supports efficient validation and verification of a service.

Each of these affects all aspects of a PCF service description and so the underlying architecture of the format provides
centralized and consistent solutions. Common architectural structures simplify the authoring process and provide a
framework for building PCF extensions.

NOTE 1: A consistent underlying PCF architecture will simplify the implementation of authoring tools and
transcoders. Thisis because these tools will be able to make use of a common and shared library of code
for all aspects of PCF. For example, this library could contain common functions for parsing lexical
valuesinto internal representations according to rules for a given data type.

The PCF needs to be easy to adopt by the industry and, where possible, based on existing published standards. The PCF
architecture is based on a set of standardsin common use and from respected organizations such as DVB and W3C.
These standards have been selected as appropriate for the description of interactive TV services. In this way, an author
can use a description format that is consistent across both PCF service descriptions and other content formats.

NOTE 2: All PCF tool implementations may be able to incorporate or reuse both existing tools and code libraries
that implement the standards that form part of the PCF architecture.

6.1.1 Strong typing

The PCF architecture supports a strong typing model to enable portability and extensibility. This provides a
PCF-compliant platform-specific transcoder the ability to convert data to the most platform-appropriate type for
rendering, either at a head-end system or on areceiver. It aso provides extensibility, enabling the creation of new
features within the framework of a pre-built set of datatypes.

An author shall explicitly state the data type of every value, thus enabling a transcoder the choice of mechanism that is
used to convert a value to a platform-appropriate type. The data type for a value shall not be determined implicitly, for
example the location where avalue is defined in a service description. Validation of the type of avalue by atranscoder
is essential, as an author cannot assume anything about whether a particular value will be converted to its realizable
form on the head-end or receiver.

ETSI

34 ETSI TS 102 523 V1.1.1 (2006-09)

EXAMPLE: Consider what would happen in a weakly typed environment where a string representing a colour
value contains an error. For example, the value "#7F7F7" is missing a necessary digit. Without
strong typing, how would atranscoder: recognize the error; realize that it needed conversion to a
palette index on certain platforms; prevent its broadcast for interpretation at a receiver, which may
cause arun-time error.

As a consequence of the strongly typed nature of PCF, the specification of alarge number of datatypesis necessary and
these are presented in clause 6.2. These are categorized as follows:

. primitive types - The atoms of the data type system, including integer and string.

. coretypes - Values with afixed structure constructed from a mixture of types. For example, a position
coordinate is constructed from two integer values.

. octet data items - Wrappers around a block of octet data, with parameters that are used by a transcoder to
decode and interpret that data. The model is based on the Multipurpose Internet Mail Extensions (MIME)
standards[1], [2] and [3]. These wrappers are used for data such asimages, sound clips and references to video
streams.

. compound types - Structures of data established by collecting together values of any datatypein a service
description. Compound types have constraints stating how items of data within a collection are identified and
referred to. For example, in an array compound type, items are identified and referred to by their index.

One of the core typesis a data type for representing marked up text content. This content contains style and structure
information embedded within the flow of the text. Thisis described in detail in clause 6.6. Included with the present
document isan XML Schema [4] for this mark up and all PCF tools can implement a parser for this format.

NOTE: Thetext mark up schemais defined independently from other PCF schemasin annex .

All values within PCF shall be identifiable as a member of one of the PCF datatypes. A data type's specification
includes constraining facets that characterize and constrain the values of that data type, such as the maximum val ue or
alowable lexical patterns for the representation of values.

6.1.2 Static and active description

A service description written using PCF can be used for business-to-business interchange of interactive services that, by
their very nature, describe a user-experience including interactivity. Therefore, items of a PCF service description shall
comprise:

. static description - scene items and their content described as they are first presented to a user;

. active description - the portable description of activity that may occur during the lifetime of a service, in
terms of states, state transitions and action language.

The two kinds of description shall be compatible so that run-time modifications can be made to a defined subset of
features of the static description. To achieve this, the PCF action language shall be strongly typed so that avalue of a
particular data type in the static description can be manipulated at run-time from the active description.

EXAMPLE: Thefill colour of arectangle in a PCF static description will be specified according to the PCF
colour data type. The value's data type will be explicitly stated in the static description, as this
enables appropriate conversion by atranscoder to map to atarget platform's native colour
representation.

It will be possible to change the fill colour of the rectangle, in response to a user key press say, in
the active description. The new colour is provided within some action language and this value
needs to be converted to its platform-specific form. The action language must explicitly state the
data type of the colour value, rather than implicitly represent the value as a string, to enable the
transcoder to carry out the same value mapping process for the static and interactive descriptions.

ETSI

35 ETSI TS 102 523 V1.1.1 (2006-09)

6.1.3 Service representation

The high-level anatomy of a PCF service description is consistent with the information necessary to represent an
interactive service. PCF enables an author to express their intended user experience in terms of an interactive service, its
congtituent high-level component parts and the scenes that provide a unit of presentation and interactivity to a user.

The architecture is specified as a PCF infor mation set, which is independent of the format's representation. For
example, it isintended that a service description in the format is independent of representation as.

. afile or files (text or binary);
. instantiated objects to a PCF object model;
. tablesin arelational database.

However, where values are represented in a PCF service description in alexical form, the format of these valuesis
specified by the PCF architecture. For data exchange between PCF-compliant systems, a standardized way of
representing PCF description data as an XML document [5] is provided. Version 1.0 of the schemas accompany the
present document and are contained in archive ts_102523v010101p0.zip.

PCF service descriptions consist of information items, many of which are represented as PCF components as described
in clause 7. The root item of a PCF description is a service item. Each service item shall contain one or more scene items
and may specify which one of these scene items is first displayed to a user.

A PCF service description shall provide a clearly bounded set of al the information, whether directly or by resolvable
reference, required to create a complete service. No more than one scene item shall be presented to a user at any point
during the lifetime of an active service item on a single receiver. The currently presented scene can be changed with a
scene havigation system action. All scene items available for rendering within a service item shall be contained within
the root service item or one of its sub-containers. It shall not be possible to carry out an internal scene transitionto a
scene item that is not contained within the currently active service item. In thisway, it shall always be possible to
determine if an internal scene transition is valid.

NOTE 1: Containment of a scene item within a service item does not imply that they have to exist within the same
file. See clause 6.1.4.

NOTE 2: Transcoders can permit the dynamic update of services. One possible on-the-fly modificationisto add a
new sceneitem to a service item prior to creating an internal transition that targets the scene item.

Service items and scene items are all derived from the PCF map compound type, as described in clause 6.2.5.2. Each of
these elements can contain a grouping of other PCF items, with the constraint that each item shall have a unigue name.
Collection items also derive from the map type and contain author-defined groupings of other PCF items. Therefore, a
PCF description shall be hierarchical structure of PCF items.
6.1.4 Referencing model
The referencing model within PCF enables links to be made, in absolute or relative specification, between any:

. identifiable item within a PCF service description;

. PCF item defined in any local file or equivalent data container;

. PCF item defined in alocation given by a URI [9];

. resolvable resource associated with the service description.

NOTE: PCF itemreferences, map reference items and navigation reference items provide details of a connection
that exists between service items. These links can be resolved in a platform-dependent way, for example
on a head-end system or at areceiver, aslong as this resolution isin accordance with the rulesin the
present document.

ETSI

36 ETSI TS 102 523 V1.1.1 (2006-09)

6.1.5 Data partitioning and reuse

Many external factors will affect the way in which the items of a PCF service description are partitioned into assets.
These include:

. the way in which a service may be delivered, e.g. with dynamic updates or as a one-off static description;
. the different roles of those describing the service, e.g. agraphic designer or ajournalist;
. the systems deployed to produce a service, e.g. cooperating content management systems.

To enable those responsible for writing and deploying PCF systems the freedom to describe a service in the most
appropriate way to their business, the architecture of the format is specifically designed to support flexible partitioning
of descriptions. This enables the reuse of items by reference and the arbitrary distribution of itemsinto files. The
minimum unit that defines the granularity of this partitioning shall be a PCF information item.

business exchange
file
structure

service
structure
user experience

description

structure
author intent

Figure 2: Axes of PCF description

Figure 2 shows the three degrees of freedom for expression of a service description that the PCF architecture provides.
Each degree of freedom allows an author to express a service in a different way and the most effective description is
likely to be a combination of all three. The degrees of freedom are characterized as:

. service structure - Service is described entirely consistently with the hierarchy of components that defines the
rendering of the service. This allows an author explicit control of every aspect and parameter of the definition
of every part of a service as rendered and experienced by a user. A service expressed using only service
structureis:

- a complete and verbose-everywhere description of the user-experience of a service;
- represented in one file only;
- makes no use of PCF reference items.

. description structure - Service is expressed in a modular way, enabling items to be defined once and reused
by reference. This allows an author to indicate their intended service framework, such asto state that the same
presentation template should be defined once in one place and repeated on several scenes. A service expressed
using mainly description structureis:

- defined by stating all non-structural items once at a high-level, with the hierarchy of components that
make the service defined separately and predominantly by intra-file reference;

- represented in one file only;

- makes use of PCF reference items for specifying intra-file connections.

ETSI

37 ETSI TS 102 523 V1.1.1 (2006-09)

. file structure - Service description is partitioned into several files. Files are useful collections of PCF
information items that suit the transfer of PCF data for busi ness-to-business interchange or transcoder
deployment. This can be used to minimize the impact of service updates and allows an author to distribute data
into the most appropriate collections for management of data on a particular system. A service expressed
entirely as separatefilesis:

NOTE:

6.2

6.2.1

6.2.1.1

described with one information item per file with inter-file references used to determine the component
hierarchy of the service;

represented in many files;
makes use of PCF reference items for specifying inter-file connections.

The use of the term file in the examples above isintended in an abstract sense to imply alogical
collection of data according to an available storage unit on a system implementing a PCF interpreter. For
example, this could be afile on disk, a PCF object in memory, a database table or a serialized data
structure for transfer over a network socket.

Data types

Data type description

Data type model

The PCF data type model is a meta-model that describes the sets of values for instances of PCF items. The high-level
classification of PCF data types and the PCF items that are members of those data types are shown in figure 3.

PCF data type

I

primitive type| |constructed type compound type
containment
0..7 -copy
value |4 octet data item map reference map item |array item

item item

threft 1

reference

_€7 * aggregation
PCF item 5 dered)

* membership
0..1'-href -element
reference {ordered}

Figure 3: Data type model

A PCF item shall represent a value of any PCF datatype. A PCF item may have the following three properties:

. name - An optional name for the value that can be used to identify it within a PCF service description. The
name shall be of the "NCName" datatype defined in clause 3.3.7 of XML Schema Part 2 [4], which isalso the
PCF name data type described in clause 6.2.3.8.

ETSI

38 ETSI TS 102 523 V1.1.1 (2006-09)

. href - A path to define that the value of the PCF item is defined by the resolution of a reference, as described
in clause 6.4.1. Where the href property is non-empty, the value of the PCF item shall be established by
resolving areference and replacing the item, otherwise the value shall be defined as part of the PCF item.

. context - Valueis an enumeration either shall be set to "original" or "derived”, defining the context is which a
non-empty href reference associated with the item shall be resolved. The default valueis"original". This
property is described further in clause 6.4.3.

Each of the data typesisintroduced in clause 6.1.1 and further described in clauses 6.2.2t0 6.2.5. A PCF itemis either a
value that is a member of one of the sets defined by a PCF data type or areference to avalue. A PCF service description
shall consist of four different specializations of a PCF item, as listed below:

. valueitem - A single value of any PCF primitive datatype, or asingle value of any PCF core datatype. Value
items are defined in clause 6.2.1.3.

. octet data item - An item defined by a block of octet data that specifies either its content or location, its type
and encoding. Octet data items are defined in clause 6.2.4.

. map item - An item containing a collection of other PCF items, where each item within the map item shall be
identified by its unique name within the collection. Map items are defined in clause 6.2.5.2.

. array item - An item containing an ordered collection of other PCF items, where each item within the
sequence shall be identified by itsindex within the collection. Array items are defined in clause 6.2.5.3.

The map reference item and its href attribute, a means for providing reuse and common templates, are defined in
clause 6.4.4.

6.2.1.2 Description space

Each data type within PCF is described by a value space, alexical space and a set of constraining facets, in asimilar
way to the data types of an XML schema [4]. These spaces and sets are defined as:

. value space - The set of possible values for a given data type. Each value is denoted by one or more literalsin
itslexica space. A PCF-compliant tool, such as an authoring tool or transcoder, shall be capable of
representing all values of any PCF data type.

. lexical space - The set of valid literals for adata type. All literalsin the lexical space shall have a
corresponding value in the val ue space. Data types also have a canonical lexical representation that is a subset
of the lexical space. Every value in the value space shall have exactly one corresponding representation in the
canonical lexical space.

NOTE: Canonica representations are used whenever it is necessary to represent the value of a PCF itemin a
textual formin away that is unambiguous. A tool that supports PCF should print out internal stored
values using their canonical lexical representation.

. set of constraining facets - A facet is a single defining aspect of the value space. Generally spesaking, each
facet characterizes a value space along an independent axis or dimension. Constraining facets include the
minimum and maxi mum values of a countable data type, acceptable patterns for an enumeration. A
PCF-compliant tool shall only represent values that satisfy a data type within the bounds of the stated
constraining facets. A validating PCF interpreter shall not accept avalue that isinconsistent with the
constraining facets of its data type.

Each normative data type is described according these terms. In the present document, this description is represented in
atabular form, asillustrated and described in table 1.

ETSI

39 ETSI TS 102 523 V1.1.1 (2006-09)

Table 1: Example data type description table

Name [data type name

Value space |allowable values of the data type
Lexical space [<regular expression for literal> and further
description
Canonical lexical rep. |<regular expression for canonical literal> and
further description
Constraining facets |Facet 1
Facet 2
Facet 3, etc.

NOTE 1: Inthe case of adatatype such as string, the value space is defined by its literal representation, a sequence
of allowable characters.

Regular expressions are used to specify the sequence of characters that make up the allowable lexical representation and
canonical lexical representation of avalue of adatatype. These regular expressions use the same format as specified for
regular expressionsin appendix F of XML Schema part 2 [4]. All regular expressions are shown enclosed within left
and right angles brackets, "<" and ">".

NOTE 2: To make regular expressions easier to read, white space and new line characters appear in the printed
regular expressions shown here. These should be ignored.

6.2.1.3 Value items

Every PCF primitive and core data type has a corresponding value item that enables an author to represent avalue of a
data type within a PCF structure. For each datatype, each value item shall consist of the following propertiesin addition
to those specified for a PCF item in clause 6.2.1.1:

. type - The name of the PCF data type represented by the value item.
. value - The value represented according to the data type.

. exact - A Boolean value, set to true to indicate that a user must be presented with an exact representation of
the value and false if a platform is allowed to present an approximation of the value. The default valueis fal se.

. nil - Indicates that a PCF item has no value. Where avalue is provided and nil istrue, the value shall be
ignored. The default value for this parameter is false.

NOTE 1: When written in service descriptions according to the PCF XML schema, value items are represented as
elements with element names matching the data type name they correspond to. The XML elements do not
have atype attribute. This allows a system that is validating a PCF XML service description check value
attributes are consistent with their data type.

EXAMPLE 1. Using the PCF core types XML Schema, avalue of ten according to the integer datatypeis
represented as a value item using the integer element as follows:

<I nt eger name="nunber_ten" val ue="10"/>

When the exact property is set to true, a user should be presented with arendering that is not an approximation of the
value property of the value item. In the case where an exact representation of the value cannot be achieved on atarget
platform, the platform shall report an error. When the exact property is set to false, no error shall be reported.

NOTE 2: The mechanism by which an error is reported is dependent on the transport and packaging mechanism
used to communicate with a PCF tool or trandator. PCF defines an optional transport and packaging
mechanism in clause 13.

EXAMPLE 2. Any component that includes the following fill colour specification must, when transcoded, be
rendered with a 24-bit representation. Any platform that cannot achieve an exact presentation
should report an error.

<Col or nane="fill Col or" val ue="#F9EDC5" exact="true"/>

ETSI

40 ETSI TS 102 523 V1.1.1 (2006-09)

6.2.2 Primitive types

The primitive data types of the PCF are the building blocks for al other types of the format. Vaues are atomic and not
expressible in terms of other constructs within the format.

NOTE: The PCF does not have a floating point or decimal numeric type.

6.2.2.1 Boolean

The Boolean data type shall be used for values that can be in one of two states, either true or false. This supports the
mathematical concept of binary-valued logic. The Boolean data type is defined according to table 2.

Table 2: Boolean data type

Name [Boolean
Value space [{true, false }
Lexical space |<true|false |01 >
Canonical lexical rep. |<true | false >
Constraining facets |No white space permitted.
Pattern must match lexical space.

Thelexical representations " 1" and "true" shall be interpreted as the value true. The lexical representations 0" and
"false”" shall be interpreted as the value false.

6.2.2.2 Integer

The integer datatypeis defined in table 3 and is based on the "int" data type as described in clause 3.3.17 of XML
Schemal4].

Table 3: Integer data type

Name |integer
Value space |{-2147483648, ...,-1,0,1, ..., 2147483647}
Lexical space |< (\+]-)? [0-9]+ >
Canonical lexical rep. [< 0] (-?[1-9][0-9]*) >
Constraining facets |No white space permitted.

Pattern must match lexical space.

Minimum value inclusive is -2147483648.
Maximum value inclusive is 2147483647.

NOTE: Theinteger datatype is based on asigned 32-bit representation of an integer. Some platforms may exist
that are unable to support this representation directly. Such platforms may substitute integer
representations with a smaller numeric range.

When the exact property is set to true for an integer value item, a full 32-bit integer representation must be provided by
the platform. The minimum acceptable word size for a platform implementation shall be 16 bits.

6.2.2.3 Enumeration

The enumeration data type provides an abstract mechanism for properties to be defined using a semantically appropriate
set of labels. Inthisway, it is possible to define a set of data types that can be extended in future versions of PCF. A
bijective mapping containing X enumeration items shall define an enumeration called e. Each enumeration item consists
of amap from an integer in therange 0 to (x - 1) and aliteral from the sequence Iq to I« - 1). Given this mapping, the
enumeration data type is defined according to table 4.

ETSI

41 ETSI TS 102 523 V1.1.1 (2006-09)

Table 4: Enumeration data types

Name [enumeratione

Value space [{0, ..., (x-1)}
Lexical space [{lo, ..., l1) }. A sequence of "NCName"
values according to XML schema [4].
Canonical lexical rep. |Same as the lexical space.

Constraining facets |No white space permitted in labels.
Pattern must match a literal in the lexical
space.

NOTE: Theliteralsthat form part of the literal sequence are case sensitive.
The mechanism used to specify enumerations is described as part of the component meta-model in clause 7.2.2.3.

EXAMPLE: A text component has a property for representing horizontal alignment called "h-align”. The
following bijective mapping is defined for the enumeration that is the data type of this property:
{ 0« "left", 1 < "center”, 2 < "right", 3 <> "justify" }. Only literals represented in this set can
be used to specify values for the property.

6.2.2.4 String
The string data type shall represent a sequence of Unicode [6] characters. The string data type is defined in table 5.

Table 5: String data type

Name |string
Value space |A seguence of any Unicode characters.
Lexical space [<(.]\n]\r)*>
Canonical lexical rep. [<(.[\n]\r)*>
Constraining facets |Length defined by number of characters.

The PCF does not define its own escape sequence. In PCF service description written according to the PCF XML

Schemas provided with the present document, standard XML character markup shall be used, as specified in clause 2.4
of XML [5].

NOTE 1: Itisintended that PCF services can be represented as XML documentsin the UTF-8, UTF-16 and
UTF-32 encodings, as specified in Unicode [6].

NOTE 2: Other forms of service descriptions, for example those based on Java (see bibliography), should use
escape sequences native to their representation.

NOTE 3: Where a specified Unicode character is not supported on a particular platform, atranscoder is responsible
for mapping each character to either:

L] the closest character or appropriate string substitution in the character sets available on the
platform;

" a single white-space character.

When the exact property of a string datatype is set to true, every character in the string shall have arepresentation on a
platform according to the Unicode specification. If no representation exists on a platform, an error shall be reported.

A string value item shall also be akind of octet data item, as described in clause 6.2.4.4.1.

EXAMPLE: Using the PCF XML schemaincluded with the present document, a string value item can be
represented in two ways. The following two string value items are equivalent.

<String nanme="eg" val ue="Exanpl e string value."/>
<String name="eg">

<Pl ai nText Dat a>Exanpl e string val ue. </ Pl ai nText Dat a>
</ String>

ETSI

42 ETSI TS 102 523 V1.1.1 (2006-09)

6.2.3 Core types

6.2.3.1 Colour

The colour datatype provides a means for an author to describe a colour in a platform-independent way. The lexical
representation is based on acceptable colour values from HTML [8], extended to support transparency values as
available within the MHP Java class "org.dvb.ui.DVBColor" [7]. The colour datatypeis defined in table 6 in terms of
red, green, and blue components of the colour, with an additional value representing the transparency level for the
colour.

The minimum value for the red, green or blue component of a colour is 0, which shall represent the case where none of
the component colour is present. This value rises on alinear scale to a maximum value 255 that shall represent the
maximum intensity for the colour component. For the transparency of a colour, 0 shall represent fully transparent rising
on alinear scale to 255 that shall indicate the colour isfully opague.

Inthe lexical form, al values for colour components and transparency shall be represented as two digit hexadecimal
numbers. For each two digit hexadecimal number, a value of less than 16 shall be expressed with aleading "0", with the
value 0 represented by "00".

Table 6: Colour data type

Name [color
Value space |{ A sequence of 4 integer values between 0
and 255, representing red, green, blue
components and the transparency of a colour
respectively. }

Lexical space [<# [0-9A-Fa-fl{6} ([0-9A-Fa-fl{2})? >.
Canonical lexical rep. |< # [0-9A-F|{8} > All hexadecimal digits
expressed in uppercase and transparency
value must be shown.

Constraining facets [Minimum inclusive value of "#00000000".
Maximum inclusive value of "#FFFFFFFF".
No white space allowed within colour values.

EXAMPLE: Full intensity opaque white is "#FFFFFFFF" and opaque black is "#000000FF".

NOTE 1: All colourswith atransparency value of 0 ("00") appear fully transparent and so, effectively, the values
for the red, green and blue components can be ignored in this case.

Where a specified colour value is not available and the exact property is set to false, the colour may be approximated.

NOTE 2: It isanticipated that many platforms will not be able to represent every colour value expressible using the
PCF colour data type. In this case, atranscoder should implement a consistent mapping strategy from the
PCF specified colour to the closest colour available on a platform. The advantage of including a colour
datatype in PCF isthat atranscoder can easily distinguish colour values from strings and apply
appropriate transformations.

6.2.3.2 Currency

The currency data type represents numerical values, such as amountsin money, that are normally expressed using a
decimal point and two decimal digits. The PCF does not have a floating-point data type. The currency data type
providing a means to represent commonly required figures in many currencies that contain adecimal point. The
currency datatype isdefined in table 7.

ETSI

43 ETSI TS 102 523 V1.1.1 (2006-09)

Table 7: Currency data type

Name

currency

Value space

{-21474836.48, ..., -0.01, 0.00, 0.01, ...,
21474836.47 }

Lexical space

< (\+[)? [0-9]+ \. [0-9] [0-9] >

Canonical lexical rep.

< (0]-? [1-9] [0-9T*) \. [0-9] [0-9] >

Constraining facets

Minimum inclusive value is -21474836.48.
Maximum inclusive value is 21474836.47.
No white space allowed within currency
values.

Precision is 2 decimal places at all times.

EXAMPLE: Zero isrepresented as "0.00",

NOTE: The currency datatype is designed for representation within networks as a 32-bit integer value, which is
then displayed to a user of a service asif a point has been added and the value has been shifted two places
to the right. Transcoders can make the most appropriate decision as to how to map currency valuesto
appropriate platform specific variations and, within a network, whether this occurs at the head-end or

receiver.

Where afull 32-bit representation of a currency value cannot be achieved on a particular platform and the exact
property isfalse, arepresentation that uses fewer bits may be substituted. The minimum number of bits that shall be

used for a currency value is 16 hits.

6.2.3.3 Date

The date data type represents atop-open interval of exactly one day in length. This shall represent a value according to
the "date" datatype defined in clause 3.2.9 of XML Schema Part 2 [4], restricted to the current era as according to [16].

ten as"10.00".

These are both based on 1SO 8601 (see bibliography). The date data type is described in table 8.

Table 8: Date data type

Name

date

Value space

All valid dates according to the Gregorian
calendar between 1* January 0000 up to 31°
December 9999 within a specified timezone.
The timezone can range from +12:00 to
-11:59.

Lexical space

< [0-9K{4} - [0-1] [0-9] - [0-3] [0-9]

(((+-) [0-1][0-9] : [0-5] [0-9]) | 2)? >
Pattern represents: year, month and day in
the month are each separated by hyphens;
followed by an optional timezone. Where the
timezone is specified, "Z" shall represent
UTC or any numerical value can be specified
as an offset from UTC in the range +14:00 to
-14:00.

Canonical lexical rep.

As lexical representation, except that the
timezone shall be shown in the normalized
form, ranging from +12:00 to -11:59. The
canonical form of the zero-length timezone
+00:00, -00:00 or "Z" shall be "Z".

Constraining facets

No white space is allowable within a date.
The year zero ("0000") is valid.

Month and day representations must be valid
Gregorian dates.

The minimum inclusive date is
"0000-01-01+12:00".

The maximum inclusive data is
"9999-12-31-11:59".

ETSI

NOTE: Current versions of the XML Schema specification [4] do not include the year "0000". However, asthe
year "0000" isincluded in the latest second edition of 1SO 8601 (see bibliography), the XML
specification may be updated to include "0000" in the near future. PCF tools may support the year "0000"

44 ETSI TS 102 523 V1.1.1 (2006-09)

where it is available, otherwise the minimum inclusive date is "0001-01-01".

EXAMPLE: Thefirst day of the current millennium in London England is represented as "2000-01-01Z",
where asin Sydney Australia this date was "2000-01-01+11:00" and in New Y ork USA this was

""2000-01-01-05:00".

No part of a date value can be approximated and so the exact property of a date value shall be ignored.

6.2.3.4 Date and time

The date and time data type represents an instant in time by combining a date representation with a time during the day
on that date in terms of hours, minutes, seconds and milliseconds from the start of that date. The date and time data type

isdefined in table 9 and is based on the "dateTime" data type defined in clause 3.2.7 of XML Schema Part 2 [4]. The

representation has been restricted to the Internet profile of 1S0 8601 that is defined in [16].

Table 9:

Date and time data type

Name

dateTime

Value space

All valid combined dates and times in the
Gregorian calendar between 1% January
0000 and 31% December 9999 within a
specified timezone. The timezone can range
from +12:00 to -11:59.

Lexical space

< [0-9){4} - [0-1] [0-9] - [0-3] [0-9] T [0-2] [0-9]
: [0-5] [0-9] : [0-5] [0-9]

(.[0-9][0-9]? [0-9]?)?

(((+-) [0-1] [0-9] ™" [0-5] [0-9]) | 2)? >
Values are written as: year, month and day
separated by hyphens ("-"); followed by "T";
followed by the hours, minutes and seconds
in the 24 hour clock separated by colons (":");
followed by an optional decimal fraction of a
second, with the default value when not
present of ".0"; followed by an optional
timezone that can be expressed as "Z" for
UTC or a value between +14:00 to -14:00 for
an offset from UTC.

Canonical lexical rep.

As lexical representation, with the following

restrictions:

1. if the decimal fraction of a second is
".000", then it shall not be shown,
otherwise the "." and all three digits shall
be shown.

2. the timezone shall be shown in the
normalized form, ranging from +12:00 to
-11:59. The canonical form of the
zero-length timezone +00:00, -00:00 or
"Z" shall be "Z".

Constraining facets

No white space is allowable within a date.
The year zero "0000" is valid.

Month and day representations must be valid
Gregorian dates.

The minimum inclusive date and time is
"0000-01-01T00:00:00+12:00".

The maximum inclusive date and time is
"0999-12-31723:59:59.999-11:59".

NOTE: Seethenotein clause 6.2.3.3 about the inclusion of year "0000".

If the exact property of a date and time value itemis set to false, the decimal fraction of a second may be approximated.

ETSI

45 ETSI TS 102 523 V1.1.1 (2006-09)

6.2.3.5 Font family

The font family data type represents font family descriptions that are compatible with the "font-family" specifications
described in clause 15.2.2 of CSS2 [22]. A font family value item shall specify a prioritized list of explicit font family
names and/or generic font family names, where the generic font family names shall be as specified in clause 15.2.6 of
CSS2[22]. The font family datatype is defined in table 10.

Table 10: Font family data type

Name [fontFamily
Value space [List of one or more font families identified by
explicit or generic font family names.
Lexical space |[Comma separated list of one or more explicit
or generic font family names.
Canonical lexical rep. |As lexical representation with normalized
white space.
Constraining facets |Font names shall not contain whitespace.
Explicit font families shall not have the same
names as the generic font family names.

NOTE: Generic font family names defined in the CSS2 specification are:
] serif eg. Times
" sans-serif e.g. Helvetica
L] cursive e.g. Zapf-Chancery
" fantasy e.g. Western
= monospace e.g. Courier

EXAMPLE: The following value item shows a font family description represented according to PCF XML
schema.

<font-famly value="Tiresias, Helvetica, sans-serif"/>

If the exact property of afont family value itemis set to true, an error should be reported if a platform cannot render an
item using any of the choices provided in the font-family description.

6.2.3.6 Fontsize

The font size data type represents font size descriptions that are compatible with the "font-size" specifications described
in clause 15.2.4 of CSS2 [22]. A font size value item shall specify an absolute size, relative size, length or percentage,
as specified in clause 15.2.4 of CSS2 [22]. The font size datatype is defined in table 11.

Table 11: Font size data type

Name [fontSize
Value space |See clause 15.2.4 of [22]
Lexical space |See clause 15.2.4 of [22]
Canonical lexical rep. |As lexical representation
Constraining facets [No negative integers

NOTE 1. Absolute font sizes defined in the CSS2 specification are:

= xx-small
L] x-small
] small

L] medium

ETSI

46 ETSI TS 102 523 V1.1.1 (2006-09)

L] large
= x-large
L] xx-large
NOTE 2: Relative font sizes defined in the CSS2 definition are:
] Larger
" Smaller

NOTE 3: Font sizesthat measure length use integer values representing pixels relative to a reference screen size, as
described by the PCF layout in clause 8.7. The PCF architecture does not currently define a separate data
type for representing font sizes.

If the exact property of afont size valueitemis set to true, an error should be reported if a platform cannot render an
item the specified size.

6.2.3.7 Marked up text

The marked up text data type contains values that are XML documents [5] according to the marked up text
representation defined in clause 6.6. The marked up text format enables strings of text content to be structured into

paragraphs and tables, with an option for an author to apply styling parameters. The marked up text type is described
further in table 12.

Table 12: Marked up text data type

Name [markedUpText
Value space |Instances of XML document objects that are
valid according to XML Schema
"X-dvb-pcf.xsd".
Lexical space |Well formed XML document according to
XML Schema "x-dvb-pcf.xsd".
Canonical lexical rep. |Marked up text shall be represented in its
Canonical XML form, as defined in [23].
Constraining facets |Consistent with standards for XML [5] and
XML Schema [4].

If the exact property is set to true, every character in a marked up text value item shall have a representation on a
platform according to the Unicode specification [6]. If no representation exists on a platform, an error shall be reported.

NOTE: All styling within marked up text content is optional and does not have to be rendered by a transcoder.
Therefore, the exact property of a marked up text value does not affect whether the rendering of the item
reports an error due to approximation of styling properties.

A value item representing a MarkedUpText shall also be an octet data item as defined in clause 6.2.4.4.2.

EXAMPLE: Using the PCF schema associated with the present document, a MarkedUpText value item
exampl e is shown below:

<Mar kedUpText name="mar kedUp" >
<body xm ns="http://ww. dvb. org/ pcf/x-dvb-pcf">
<p>Exanpl e text w th <enmpenphasis</enmp. </ p>
</ body>
</ Mar kedUpText >

6.2.3.8 Name

The PCF name data type defines values for all possible names that can be used within PCF. These are equivalent to
those defined as the "NCName" datatype in clause 3.3.7 of XML Schema Part 2 [4] and described in table 13.

ETSI

47 ETSI TS 102 523 V1.1.1 (2006-09)

Table 13: Name data type

Name [name
Value space |As lexical space.
Lexical space |< [\p{L}] \p{LNp{N} \\-]* >
Canonical lexical rep. |As lexical space.
Constraining facets |No white space allowed in names.

EXAMPLE: The following names are valid values of the name datatype: "_loop3", "_39.3-2". The following
names are not valid: "white space", "3degrees’, "namespace:like".

Name val ues cannot be approximated and so the exact property shall be ignored.

6.2.3.9 Position

The position data type shall be used to represent val ues that locate a visual component on the reference screen, as
defined in clause 8.7. Vaues are constructed from a pair of integer val ues as defined in table 14. For visual components,
aposition value should represent the top-most and left-most inclusive pixel of the reference screen. In the table,
"integer" corresponds to the integer value space defined in clause 6.2.2.2.

Table 14: Position data type

Name [position
Value space |{ (integer x integer) }

Lexical space [< (\+]-)? [0-9]+ \p{Zs} (\+]-)? [0-9]+ >
Canonical lexical rep. [< (0] -? [1-9] [0-9]*) \p{Zs}
(0]-?[1-9][0-9]*) >
Constraining facets |Integer sequence of length 2.

No white space allowed within integer values.

Thefirst value of the pair shall be a pixel coordinate along the horizontal axis, measured from left to right. The second
value of the pair shall be a pixel coordinate along the vertical access, measured from top to bottom. The value "0 0"
shall be the top-left-hand origin of the reference screen area and refers to the first pixel inside the reference screen at the
top-left-hand corner.

NOTE: Negative positions and large integer values greater than the dimensions of the reference screen may be
defined. Values of the position data type may locate visual components partly or completely outside the
reference screen area.

EXAMPLE: The pixel at the bottom-right-hand corner of the default reference screen areais at position
"719 575".

The precision of representation and the exact property for position valuesis defined to be: each integer value item that
defines the position should be represented according to the precision and exact property for integer values, as defined in
clause 6.2.2.2.

6.2.3.10 Proportion

The proportion data type represents scaling factors. These allow one value to be expressed as a proportion of another
value. The proportion data type is defined in table 15.

ETSI

48 ETSI TS 102 523 V1.1.1 (2006-09)

Table 15: Proportion data type

Name [proportion

Value space |{ (integer x integer) }
All proportions expressible within the range of
the integer values.

Lexical space [< (\+]-)? [0-9]+ \p{Zs} (\+]-)? [0-9]+ >
Canonical lexical rep. |< (0] -? [1-9] [0-9]*) \p{Zs} [0-9]+ >
All fractions are in irreducible form.
Constraining facets |Integer sequence of length 2.
No white space allowed within integer values.
Second integer must not be equal to 0.

NOTE: The proportion datatypeis expressed as two integer val ues rather than a proportional value as the PCF
does not support floating-point values. A proportional representation allows a proportion of one third
("1 3") to be expressed exactly.

EXAMPLE: Onethird can be expressed as "1 3", three-eights as "3 8" and three timeslarger as"3 1".
The precision of representation and the exact property for proportion values is defined to be: each integer value item

that defines the proportion should be represented according to the precision and exact property for integer values, as
defined in clause 6.2.2.2.

6.2.3.11 Size

Values of the size data type shall represent the axis aligned rectangular size of avisual component. Vaues are
constructed from a pair of integers as defined in table 16. In the table, "integer” refersto the corresponding spaces and
representations in the integer definitions from clause 6.2.2.2.

Table 16: Size data type

Name |Size
Value space |{ (integer x integer) }

Lexical space [< (\+]-)? [0-9]+ \p{Zs} (\+]-)? [0-9]+ >
Canonical lexical rep. [< (0] -? [1-9] [0-9]*) \p{Zs}
(0]-?[1-9][0-9]*) >
Constraining facets |Integer sequence of length 2.

No white space allowed within integer values.

The first number in the pair shall represent the inclusive size of avisual component in pixels when measured along the
horizontal axis. The second number of the pair shall represent the inclusive size of a visual component when measured
along the vertical axis.

Zero and negative values for both the horizontal and vertical size of avisual component shall be permitted. Any such
representation shall result in the visual component not being displayed to auser. A zero or negative size shall not be
used to represent the linear transformation of a visual component, including by rotation or reflection

NOTE 1: The size and position data types have been defined separately, rather than as a "pair of integers' datatype,
to assist atranscoder with validation and network specific transformations.

NOTE 2: A size value may be defined that specifies that a component is larger than the reference screen area.
EXAMPLE: The default size of the reference screen areais written as " 720 576"

The precision of representation and the exact property for size value itemsis defined to be: each integer value that
defines the size should be represented according to the precision and exact property for integer values, as defined in
clause 6.2.2.2.

ETSI

6.2.3.12 Time

49

ETSI TS 102 523 V1.1.1 (2006-09)

Values of the time data type represent an instant of time that recurs every day. The time data type shall represent avalue
according to the "time" data type defined in clause 3.2.8 of XML Schema Part 2 [4]. The time datatype is defined in

table 17.

Table 17: Time data type

Name

time

Value space

{ All zero duration daily time instances. }

Lexical space

< [0-2][0-9] : [0-5] [0-9] : [0-5] [0-9]

(\. [0-9] [0-9]? [0-9]?)?

(((+]-) [0-1] [0-9] : [0-5] [0-9]) | 2)? >
Values are written as: hours, minutes and
seconds in the 24 hour clock, separated by
colons (":"); followed by an optional decimal
fraction of a second, with the default value
when not present of ".0"; followed by an
optional timezone that can be expressed as
"Z" for UTC or a value between +14:00 to
-14:00 for an offset from UTC.

Canonical lexical rep.

As lexical space, with the restrictions that if
the decimal fraction of a second is ".000",
then it shall not be shown, otherwise the "."
and all three digits shall be shown. The
timezone shall be shown in the normalized
form, ranging from +12:00 to -11:59. The
canonical form of the zero-length timezone
+00:00, -00:00 or "Z" shall be "Z".

Constraining facets

No white space is allowable within a time.
The minimum inclusive time is
"00:00:00+12:00".

The maximum inclusive time is
"23:59:59.999-11:59".

If the exact property of atime value itemis set to false, the decimal fraction of a second may be approximated.

6.2.3.13 Timecode

Values of the timecode data type shall represent atemporal reference to apoint in alinear media stream, e.g. to identify
aframein a sequence of video. Timecode values shall be consistent with the EBU [17] / SMPTE [18] timecode

specifications, as defined in table 18.

Table 18: Timecode data type

Name

Timecode

Value space

References to frames of a sequence of video
or film that is anything up to 24 hours in
length.

Lexical space

< [0-2][0-9] : [0-5] [0-9] : [0-5] [0-9]

\. [0-5] [0-9] >
Timecode shall be written in the following
order: hour, minute, second and frame
through the second.

Canonical lexical rep.

As the lexical representation.

Constraining facets

Timecode shall not contain white space.
The minimum inclusive timecode is
"00:00:00.00".

The maximum inclusive timecode is
"23:59:59.59".

ETSI

50 ETSI TS 102 523 V1.1.1 (2006-09)

NOTE: The maximum frame number component of atimecode depends on the video system in use, e.g. PAL or
NTSC, asdescribed in [17] and [18]. PCF does not provide a data type for the representation of the time
base of timecode values as thisis resolvable from associated linear video and audio. Whenever linear
video and audio content is transcoded from one timebase to another, PCF timecode values should be
converted to appropriate values accordingly.

Timecode values cannot be approximated and so the exact property of a timecode value item shall be ignored.

6.2.3.14 URI

The URI data type shall represent values that are valid Uniform Resource Identifiers according to "anyURI" datatypein
clause 3.2.17 of the XML Schema specification [4], which is based on RFC 2396 [9]. The datatypeis defined in
table 19.

Table 19: URI data type

Name |URI
Value space [See clause 3.2.17 of [4].
Lexical space [See clause 3.2.17.1 of [4].
Canonical lexical rep. |As lexical representation.
Constraining facets |A URI value shall not contain white space.

See clause 6.5.2 for more details on the use of URIs within PCF service descriptions.

EXAMPLE: Thefollowing are valid URIs according to the PCF data type:

http://ww. etsi.org/
ftp://ftp.sourceforge. net/pub/sourceforge/
ur n: x- dvb- pcf: bbc. co. uk: bbc- one

6.2.3.15 User keys

The user key data type shall represent virtual keys available to a user. A PCF service author may use any virtual key and
assume that a PCF tool will match it to an appropriate key or feature available to a user. However, not al platforms will
provide a mapping from avirtual key to a platform-specific key or feature, and where no suitable mapping for akey is
available then a PCF tool should not render the service and shall report an error.

The virtual keys that shall be supported by PCF are listed in annex K and are based on those available in MHP [7] and
WTVML (see bibliography). The user key data type in defined in table 20.

Table 20: User keys data type

Name |userkey
Value space |All virtual keys listed in table 37.
Lexical space [Tokens matching those shown in table 37.
Lower case versions shall not be acceptable.
Canonical lexical rep. |All values in the lexical space.
Constraining facets [No white space is allowed within user key
names.

NOTE 1. Transcoders should implement a mapping table from virtual keys to the most appropriate key on adevice
such as aremote control. The names of the virtual keys will not necessarily match with those on aremote
control and, in this case, atranscoder should try to find the nearest equivalent. The most appropriate key
may change depending on which component currently has focus.

EXAMPLE: A transcoder for one network mapsthe "VK_CANCEL" virtual key in a PCF service description
to an actual remote control key labelled "backup” in one network. Another transcoder for a
different network maps the same virtual key to an actual remote control key marked "cancel”.

All virtual keys are approximated by the platform-specific equivalent. The exact property of user key value items shall
be ignored.

ETSI

51 ETSI TS 102 523 V1.1.1 (2006-09)

Keys entered by a user that are not listed in annex K, such as the keys on aremote control keyboard, shall be
represented by the value "VK_UNKNOWN".

NOTE 2: The user key event described in annex K contains a user key value and an actual platform-specific key
code. For all "VK_UNKNOWN" keys, an author can access the platform specific key code. However, it
is anticipated that complex components, such as those for text entry, will manage text entry and other
advanced user key featuresin a platform native way.

6.2.4 Octet data items

6.2.4.1 Octet data introduction

Many items of datafor PCF will be provided as sequences or streams of octet data, for example sound clips and image
data. Rather than creating specific PCF data types for each type of data, the PCF provides a framework for handling all
forms of octet datain a consistent way. The type of datais an attribute attached to the data rather than part of the data
itself. This mechanism is based on the Multipurpose Internet Mail Extensions (MIME) [1], [2] and [3] and alows data
to be:

. embedded within a PCF service description;

. in aseparate local file;

. by reference to an external resource, such asafile or stream.

6.2.4.2 Octet data model

value item

-value
-exact : boolean

octet data item

L 1
A

0.1 | -value

octet data container ‘string item‘ ‘markeduptext item‘ ‘imageitem‘ ‘stream item‘
-content-type

multipart item base 64 item quoted printable item hex binary item
-@content-type = multipart/alternative{frozen}

0.*

meta property external body plain text item |binary data item |
-name 0.% -content-transfer-encoding -@content-type = text/plain{frozen}
-value -uri

Figure 4: Octet data item model

Figure 4 shows the octet data item model. PCF has seven different kinds of octet data container that can represent the
value of an octet data item and these are described in clause 6.2.4.3. PCF has four data types that can be represented by
octet data items and these are described in clause 6.2.4.4.

The PCF octet data item provides an interface between value items and octet data. Octet dataitems shall be kinds of
value items where the value property of the value item is provided by a sequence or stream of octet data. Thisinterface
allows description of the metadata associated with the octet data, including what type or types of data the octet dataitem
provides and the data itself, either in an embedded form or by reference.

For any octet data item where a value is provided by octet data, the value provided shall be preferred over any other
mechanism for specifying avalue for the item.

ETSI

52 ETSI TS 102 523 V1.1.1 (2006-09)

EXAMPLE: In the following valid value for a string specified according to the PCF schema associated with the
present document, the preferred value of a string that shall be used by any transcoder is"l am
preferred.”.

<String name="whi chOne" val ue="| amignored.">

<Pl ai nText Dat a>l am preferred. </ Pl ai nText Dat a>
</ String>

Octet data items can also contain a collection of zero or more meta property items, as defined in clause 6.2.4.3.2.

6.2.4.3 Octet data containers

6.2.4.3.1 Portable MIME types

The PCF portable MIME types are a set of MIME types[1] that all PCF systems shall support. A service description
containing octet data items with content-type compatible with the portable MIME types shall be known as a portable

service description.

Octet data containers may have a " content-type" property. The value assigned to this property shall observe the
following:

« It shall be accurate with respect to the encoding of the octet data.

e It should be one of the MIME types[1] supported by PCF, as specified in table 21, to ensure portability. If the
encoding of the octet datais not known, such asin the case of an external resource, then the " content-type"
property may either be omitted or may be assigned a generic MIME type, such as "application/octet-stream".

NOTE: If the data contained or referred to within an octet data itemis encoded in aformat other than one of those
specified in table 21 then the service description shall not be considered portable with respect to the
present document.

» It shall be appropriate for the octet data item containing the octet data container. In most cases thisis obvious
and there are a number of "peer" MIME types that are equally valid data representations for a particular type of
octet data item. For example, image/png and image/jpeg for the image item. However, in some cases potential
MIME types are not peers and some mapping will need to be specified. For example, text/x-dvb-pcf and
text/plain for the marked up text item.

For the "text" major MIME type, character set specification using the optional "charset” parameter within the
content-type property shall be supported. See the examplein clause 6.2.4.4.1.

PCF defines a set of MIME types for the portable interchange of octet data between PCF systems. Table 21 shows the
portable MIME types that shall be supported by a PCF system. All other MIME types may be used within a PCF service
description but any service description that includes an unsupported MIME type shall not be considered as a portable

service description.

ETSI

53

Table 21: PCF portable MIME types

MIME type

Description

text/plain

Plain text data with no formatting commands or directives, as defined
in clause 4.1.3 of [1].

text/x-dvb-pcf

Text content according to the PCF's own mark up notation, as defined
in clause 6.6.

image/png

Octet data in the PNG image format [12].

image/jpeg

Octet data in the JPEG format [13].

image/
X-mpeg-iframe

Octet data that is an MPEG Intra-Frame (I-Frame), as defined in the
MPEG-2 specification [15].

audio/mpeg

A video elementary stream in MPEG format [14].

video/mpeg

A video elementary stream in MPEG format [1].

ETSI TS 102 523 V1.1.1 (2006-09)

audio/basic
multipart/alternative
application/octet-stream
video/x-MP2PS
video/x-MP2TS
video/x-MP2TS-P

Octet data in the basic audio format defined in clause 4.3 of [1].
See clause 6.2.4.3.9.

An octet stream of arbitrary binary data.

An octet stream that represents an MPEG-2 Program Stream.

An octet stream that represents an MPEG-2 Transport Stream.

An octet stream that represents an MPEG-2 Program within an
MPEG-2 Transport Stream.

An octet stream that represents an MPEG-2 Elementary Stream of
undefined type.

video/x-MP2ES

6.2.4.3.2 Meta property items

Meta property items are used for an author to provide additional information to the PCF system about how to interpret
the octet data provided. Meta property items themselves shall have the following properties:

. name - The name of the meta property, that isa member of the PCF name data type defined in clause 6.2.3.8.

. value - The value associated with the meta property. This shall be a string according to the string data type
defined in clause 3.2.1 of XML Schema Part 2 [4].

The names of all meta-property items contained within an octet data item shall be unique. Systems that do not support
meta property items or recognize the name of a particular meta property item shall ignore that meta property item.

NOTE: Metaproperty itemsare provided to alow authors to provide hints to transcoders as to how they may
want to interpret some octet data. Meta property items allow an author with knowledge of a particular set
of transcoders to provide these with additional information to enable them to optimize transcoding. It
should always be possible to ignore al meta property items and achieve avalid rendering of a service.

EXAMPLE: See the examplein clause 6.2.4.3.9.

6.2.4.3.3 Embedded plain text data

An embedded plain text dataitem shall contain octet data that is encoded as plain text according to the "text/plain”

MIME type as specified in the MIME specification [1]. Plain text data shall have a character encoding that matches that
of the PCF source document in which they are declared. When represented in an XML document, such as a PCF service
description, plain text cannot include XML mark up.

NOTE: Inmost cases, avalue item of the PCF string type is more appropriate than using an octet data item that
contains plain text data. The plain text data item is provided for compatibility with other systems.
EXAMPLE: The following two fragments of XML written according to the PCF XML schema are effectively

equivalent.
<String name="headl i nel" val ue="Tsunam Early Warning"/>
<StringData name="headl i nel">

<Pl ai nText Dat a>Tsunam Early Warni ng</ Pl ai nText Dat a>
</ StringDat a>

ETSI

54 ETSI TS 102 523 V1.1.1 (2006-09)

6.2.4.3.4 Embedded binary data
An embedded binary data item shall contain octet data that has no encoding and is 8-bit clean.

NOTE: Binary dataitems are difficult to encode as part of an XML representation. They are included so that
other PCF models, such as relational database representations of PCF, can represent binary dataitemsin a
system-native binary representation. For example, the Binary Large Objects supported in SQL (see

bibliography).

6.2.4.3.5 Embedded base64 data

An embedded base64 data item shall contain octet data that is encoded ccording to the method specified in clause 6.8 of
part 1 of the MIME specification [1].

NOTE: Base64 encoded data can be safely embedded into an XML document as it is guaranteed not to contain
left or right angle brackets"<" and ">", or any other special characters according to the XML
specification [5].

EXAMPLE: Image data for an upward pointing arrow can be encoded within a PCF service description using
the base64 encoding as follows:

<l mageDat a nanme="up_arrow'>
<Base64Dat a content-type="i mage/ png">
i VBORWOKGg0AAAANSUh EUg AAAACAAAAKCAI AAAACUF] qAAAABMI LROQA/ WY AP+gvae TAAAANUI E
QVRANGP8/ | 8/ A27 AhMKhZGRkZGTEKY1PN1wf sgHE6UazEs4l 0JsBj 8f +/ / / PSI KI MQEANb4MF+Di
r HVAAAAASUVORKSCYI | =
</ Base64Dat a>

</ | mageDat a>

6.2.4.3.6 Embedded hexadecimal binary data

An embedded hexadecimal binary data item shall contain octet data that is encoded according to the method allowed by
the "ietf-token" production of the MIME specification (Part 1) [1] is set to the value "hex". The "hex" encoding of
binary datais defined in clause 3.3 of [26].

NOTE: Hexadecimal encoded data can be safely embedded into an XML document asit is guaranteed not to
contain left or right angle brackets "<" and ">", or any other special characters according to the XML
specification [5].

EXAMPLE: The string "PCF" in the UTF-8 character encoding is represented as "514346" as hexadecimal
binary data, where each character in the original string is mapped to two hexadecimal charactersin
the encoded string.

6.2.4.3.7 Embedded quoted printable data

An embedded quoted printable data item shall contain data that is encoded according to the method specified in
clause 6.7 of part 1 of the MIME specification [1].

NOTE: Itispossibleto represent datain a quoted printable formin such away that it is safe to embed it within an
XML document. Care must be taken to ensure that all specia characters according to the XML
specification [5] are encoded in their hexadecimal representation.

EXAMPLE: The following XML fragment is simple example of quoted printable encoding of datato the
UTF-8 character set [6]:

<Quot edPri nt abl eDat a>

This is a UK currency =C2=A3 synbol, and for =3D neasure ...
</ Quot edPri nt abl eDat a>

6.2.4.3.8 External body items

An external body item shall be used when octet datais defined in an external resource to the PCF service description,
rather than embedded within the service description. External body items are intended to provide a similar function
within PCF to the " message/external-body" MIME type defined in clause 5.2.3 of part 2 of the MIME specification [2].

ETSI

55 ETSI TS 102 523 V1.1.1 (2006-09)

External body items shall have the following properties:

. content-transfer-encoding - Defines the encoding used within the external body of the octet data, with these
encodings being those registered with IANA and as specified in part 4 of the MIME specification [3]. The
default value for this property shall be set to "binary”, and "binary" should be treated as the default value when
no other encoding is specified. The encodings are consistent with those available within PCF for embedded
data, as specified in clauses 6.2.4.3.3t0 6.2.4.3.7

. content-type - Type of content contained within the file. Thisis any MIME type registered with the Internet
Assigned Numbers Authority (IANA) as specified in part 4 of the MIME specification [3]. This property
should be specified but may be left blank for PCF systems to automatically determine the content type of the
external body's octet data.

. uri - ldentity of the resource containing the octet data for the external body item. This may be specified by a
PCF URN value, as defined in clause 6.5.2.

An external body item may contain one or more meta property items that indicate the location of the resource
containing the external octet data.

An external body item may also contain other meta property items to provide system-specific data about the external
body to a PCF transcoder. The names of all meta property items within an external body item shall be unique within the
external body item.

EXAMPLE: The following XML fragment illustrates an octet data item that contains an external body item
reference to the ETSI logo.

<l mageDat a name="1| ogo" >
<Ext er nal Body content-type="i nage/ png"
content -transfer-encodi ng="bi nary"
uri="http://ww.etsi.org/imges/|ogos/etsi-white-small.png">
<Met aProperty nanme="comrent" val ue="small ETSI |ogo"/>
</ Ext er nal Body>
</ | mageDat a>

6.2.4.3.9 Multipart data item

Multipart data items shall contain one or more octet data items, each of which shall be considered as part of the octet
dataitem in which the multipart dataitem is contained. The content-type property for a multipart dataitem shall be
"multipart/alternative’.

NOTE 1: Through the multipart data item, PCF supports the concept of the "multipart/aternative” MIME type.
This allows a number of different versions of the same asset to be declared in a PCF service description.
PCF tools can provide a service author with the ability to group a selection of alternative assets, such as
set of images, to enable a transcoder to choose the most appropriate version of an asset to present to a
viewer on a particular platform.

For amultipart data item to be considered portable, at least one of the octet dataitemsit contains shall be of one of the
supported PCF MIME types, as listed in table 21. If thisis not the case, it may not be possible for a service description
to be rendered.

NOTE 2: For each multipart data item, a PCF transcoder should use meta property items defined within octet data
items to select the most appropriate asset for the target platform. For portability, it is recommended that
these properties are named in a platform independent way so that a service can be targeted at platforms
that were not considered during the original authoring of a service.

EXAMPLE: A serviceisto betargeted at three platforms with different colour models. The first platform has a
fixed palette, the second has a dynamically assigned palette and the third supports full 24-bit
colour palettes. A service author provides two images. one image will work with the first and
second pal ette-based platforms; the other image is a true colour image that is suitable for rendering
on the third platform. Thisisillustrated in the following XML fragment:

<l| mageDat a name="| ogo" >
<Mul ti partData content-type="mnultipart/alternative">

<Ext er nal Body content-type="i mage/ png"

content -transfer-encodi ng="bi nary"
uri="file:///c:/imges/|ogo_pallette. png">

ETSI

56 ETSI TS 102 523 V1.1.1 (2006-09)

<Met aProperty name="pal ette" val ue="30"/>
</ Ext er nal Body>

<Ext er nal Body content-type="image/ png"
content-transfer-encodi ng="bi nary"
uri="file:///c:/imges/|ogo_original.png">
<Met aProperty name="col ours" val ue="full"/>
</ Ext er nal Body>

</ Mul ti part Dat a>
</ | mageDat a>

6.2.4.4 Octet data item types

6.2.4.4.1 String octet data items

Value items of the PCF string data type, as defined in clause 6.2.2.4, may have their value property represented by an
octet data container. The data provided in the octet data container shall have a content-type with the major MIME type
"text".

The only portable content type for string octet data items shall be MIME type "text/plain", with the same character set
encoding as the PCF source document in which the string value itemis declared. A PCF system may transform any
other character set encoding of a string to the PCF string representation in a platform-dependent way. The behaviour of
a PCF system when a character set is specified and not known by a PCF system is undefined in the present document.

EXAMPLE: The following string value item, which is represented according the PCF XML schema associated
with the present document, is a string octet data item defined by content in afile outside of the
containing PCF source document.

<String name="outside">
<Ext ernal Body content-type="text/plain; charset=utf-8"
content -transfer-encodi ng="bi nary"
uri="file:external _text.txt"/>
</ String>

6.2.4.4.2 Marked up text octet data items

Value items of the PCF marked up text datatype, as defined in clause 6.2.3.7, may have their value property represented
by an octet data container. The data provided in the octet data container shall have a content-type property of
"text/x-dvb-pcf" or "text/plain”.

If the content-type property is set to "text/plain™ then the octet data shall be treated asif it were a body element,
containing a single paragraph element, containing the octet dataitself, with each Carriage Return (0x0D) replaced by a
line break element.

EXAMPLE: The following marked up text value item, which is represented according the PCF XML schema
associated with the present document, is encoded using the base 64 [1] encoding. The value of this
octet dataitem is equivalent to that shown in the examplein clause 6.2.3.7.

<Mar kedUpText name="mar kedUp" >
<Base64Dat a content-type="text/x-dvb-pcf">
PQvZHkgeGlsbnMBXFxc XFxcXClodHRWO 8vd3d3LnR2Yi S5ventveGNnl3gt ZHZi L
XBj ZI xcXFxcXFwi PgOKI CA8cD5FeGFt cGxl | HRI eHQyd2l 0aCA8ZW+ZWiwaG
FzaXMBL2Vt Pi 48L3A+DQogPC9i b2R5Pg0K</ Base64Dat a>
</ Mar kedUpText >

6.2.4.4.3 Image octet data items

The image data type in PCF shall represent image media data according to the "image” MIME type as specified in the
MIME specification [1]. Image data shall be represented by an octet data container and shall not have any other form of
lexical representation in PCF.

Asdefined in clause 6.2.4.3.1, the only two portable MIME types for PCF octet data items are "image/png" and
"image/jpeg". A PCF system may be able to transform or make use of other types of data, as described in
clause 6.2.4.3.1.

ETSI

57 ETSI TS 102 523 V1.1.1 (2006-09)

EXAMPLE: The following image octet data item, which is represented according the PCF XML schema
associated with the present document, represents a small bitmap image arrow encoded as base 64
data.

<l mageDat a nanme="upArrow'>
<Base64Dat a content-type="i mage/ png">
| VBORWOKGg o AAAANSUN EUg AAAAOAAAAKCAI AAAACUF] GAAAABMILROQA WD AP+gv
aeTAAAANUI EQVRANGP8/ / 8/ A27 AhMkhZCGRkZGTEKY1PN1wf sgHE6UazEs4l 0JsBj 8
f+/ /1 PSI K MEANb4M-+Di r HVAAAAASUVORKSCYI | =
</ Base64Dat a>
</ | mageDat a>

6.2.4.4.4 Stream octet data items

The stream data type in PCF shall represent a composition of one or more elementary media streams, such as video,
audio, ancillary or other media data in a streamed format. Stream data shall be represented by an octet data container
and shall not have any other form of lexical representation in PCF.

Asdefined in clause 6.2.4.3.1, the portable MIME content-type values for stream data shall be "video/mpeg",
"audio/mpeg”, "audio/basic", "video/x-MP2PS"’, "video/x-MP2TS", "video/x-MP2TS-P", "video/x-MP2ES' and the
generic "application/octet-stream”.

NOTE: The generic MIME type "application/octet-stream” shall only be considered portable for stream data
items in PCF that identify an external resource, such as abroadcast TV service. It is assumed that such
stream data will be available within the platform in a format that is known to the platform-specific
transcoder.

EXAMPLE: The following stream octet dataitem, which is represented according the PCF XML schema
associated with the present document, represents a broadcast TV service ("BBC One") that is
delivered as part of an MPEG-2 Transport Stream. The broadcast TV service isidentified by a
PCF-compatible URN (see clause 6.5.2).

<StreanData name="tv">
<Ext er nal Body content-type="vi deo/ MP2TS- P"
content -transfer-encodi ng="bi nary"
uri ="urn: x-dvb- pcf: bbc. co. uk: bbc-one"/ >
</ St r eanDat a>

6.2.5 Compound types

PCF compound types represent data types that contain collections of other PCF items.

6.2.5.1 Compound data type

The compound data type of the PCF is the set of all containers for PCF items. The generic compound data typeis
specialized into other compound data types by:

. providing restrictions that describe the data types that can be contained in a container;

. specifying structures within the containers that enable reference to, and manipulation of, valuesin these
containers.

Two high-level compound data types are included with the PCF, map and array, as shown in figure 5. The map data
type isdescribed in clause 6.2.5.2 and the array datatypein clause 6.2.5.3.

ETSI

58 ETSI TS 102 523 V1.1.1 (2006-09)

{ordered} {ordered}
-child |pcFitem| -element
* *
aggregation membership
________ -parent -referential context
parent referential map item array item
context

Figure 5: Compound data type

The structural elements of a PCF service description that are described in clause 6.3 are derived from the compound
datatype.

Every PCF item that is an instance of the PCF compound data type shall have:
. All the properties of a PCF item as defined in clause 6.2.1.1.

. A content property that contains zero or more PCF items. PCF items represented by the content property shall
be known as the items within an instance of the PCF compound data type.

. A length property that isthe number of items in the content property of the map item container. This property
shall be aread-only property.

A PCF item that is of a compound data type shall provide areferential context for al theitemsthat it contains, as
described in clause 6.4.

6.2.5.2 Map type and item

The map data type shall be a compound data type that represents all possible sequences containing name and PCF item
pairs. A PCF map item is a sequence of zero or more hame and PCF item pairs and is an instance of the PCF map data

type.

NOTE 1. The PCF does not define a maximum length for the sequence of items within a PCF map item. The
behaviour of atranscoder when it receives a map item containing more PCF items that the transcoder's
maximum is undefined.

Every PCF item within a map item shall have a name associated with it, specified by the PCF item's name property.
That name shall be of the PCF name data type. All nhames within a map item shall be unique.

By means of PCF active description, it shall be possible to insert a PCF item into a map item at: the start of the
sequence; the end of the sequence; before another sequence item; after another sequence item.

NOTE 2: The ordering feature is supported to allow a z-ordering for the layout of visual components to be specified
in terms of the order that the components are defined within map items. Scene items are a kind of map
item and are described in clause 6.3.5.

Items shall be initially ordered within the sequence of a map item according to their order of declaration.

A map item shall have aread-only first property that represents the first PCF item in the sequence within the map item.
If the map item has zero items within it, the first property shall be set to a PCF item with its type property set to
boolean, value property set to "false" and nil property set to "true”.

A map item shall have a parameter-list property with avalue that isalist of value parameter items passed into the map
item, as described further in clause 6.4.5.

It shall be possible to iterate through the items contained within the content property of a map item according to their
relative order, starting with the first item.

ETSI

59 ETSI TS 102 523 V1.1.1 (2006-09)

It shall be possible to reference a PCF item within a map item using its unique name. As map items can be PCF items
contained within other map items, a path specification can be used to reference items in nested map item descriptions,
as described in clause 6.4.2.2.

It shall be possible to test references to two PCF items contained in a map item to determine the order in which the PCF
items occur in the map item.

6.2.5.3 Typed array data type and array items

The array data type shall be a set of all possible sequences containing PCF items that are each of the same type. Vaues
of the array datatype are called array items. An array item shall have within it a fixed-length sequence of zero or more
PCF items. All PCF items within the array item shall have the same data type.

The length property of an array item isafina parameter, as defined in clause 7.2.2.2, which is therefore read-only in
active description. The parameter is treated according to the following rules.

. If the length parameter is declared, the array declaration shall contain not more than this number of value
items, or an error shall be reported.

. If the length parameter is declared and the number of itemsis less than the length, the PCF items declared shall
be placed from the start of the array and the end of the array shall be padded with nil value items, as defined in
clause 6.2.1.3.

. Where the length parameter is not declared, the length of the array shall be the same as the number of PCF
items declared inside the array.

All array items are themselves PCF items and as such have a type parameter. This parameter shall be set to the name of
the data type of al of the PCF items within the array item with the word "array" appended onto the end. This parameter
is mandatory and final.

EXAMPLE 1: Anarray item containing PCF items of type string shall itself have the type name "stringarray". An
array of string arrays shall have the type name "stringarrayarray".

NOTE 1. Arrays can be of zero length.
It shall not be possible to have an array of map items.

NOTE 2: Asarray items are PCF items, it is possible to have an array of child array items. In this case, each child
array item shall have the same type parameter and length parameter.

PCF items within an array item shall be ordered and indexed according to their order of declaration. Index values shall
be inclusive and range from O for the first item in the list up to the length of the array minus 1.

By means of PCF active description, it shall be possible to:

. read the value of any items of an array by an index into the array;

. iterate through al the itemsin an array;

. change the value of any PCF item in an array to the value of another PCF item of the same type.
From active description, it shall not be possible to change either the type of the array or the length of the array.

EXAMPLE 2: Thefollowing fragment of XML shows two equivalent array item declarations of the string type
and is consistent with the PCF XML schema

<StringArray name="no_nil _val ues" | ength="4">
<String value="First"/>
<String val ue="Second"/ >

</ String>

<StringArray name="nil _val ues_i ncl uded" | ength="4">
<String value="First"/>
<String val ue="Second"/ >

<String nil="true"/>
<String nil="true"/>
</ String>

ETSI

60 ETSI TS 102 523 V1.1.1 (2006-09)

NOTE 3: Inthe PCF XML Schema, array items are represented by elements with an element name that starts with
the type parameter and ends with "Array". For example, array items of the integer type are represented by
the XML element "IntegerArray”. An "integerarrayarray” type is represented by an "IntegerArray”
element that contains only other "IntegerArray" elements.

6.3 Service description structure

PCF services are described in terms of PCF items, with certain high-level structural description items that must always
be present. The description items that make up a PCF service are introduced in clause 6.3.1 and described in more detail
in clause 6.3.2t0 6.3.6. Finally in this clause, scoping rules that define access to valuesin active description are defined
inclause 6.3.7.

6.3.1 Description items

The description items of a PCF service description are service items, scene items, other component items and collection
items. The relationship between these itemsis shown in the UML class diagram of figure 6.

PCFitem k——— map item

—
O"*
collection item component item
N N
PCFsource document 1|PCFcontainer service item scene item

Figure 6: The PCF structural items

All PCF service description shall be contained within a PCF container. A PCF container shall be the top-level itemina
PCF source document. Every PCF source document shall have exactly one PCF container. PCF containers are defined
in clause 6.3.4.

All the structural items of a PCF service description, PCF container, component item, collection item, Scene item and
service item, shall be kinds of map item, as described in clause 6.2.5.2.

EXAMPLE: An XML document stored in afile and with its schema set to be the PCF XML schemais a PCF
source document. It must have asits root element a PCF container, which is represented as the
element named "PCF". Thisis illustrated in the following example:

<?xm version="1.0" encodi ng="UTF-8"?>

<PCF xm ns="http://ww. dvb. org/ pcf/pcf"
xsi : schemaLocati on="http://ww. dvb. or g/ pcf/ pcf pcf.xsd">

<String name="exanpl e"
value="Only PCF itemin this PCF source docunent."/>
</ PCF>

Component items provide structured containers that correspond to a component description, according to the component
model described in clause 7. Component items are described in clause 6.3.2.

Thelow level containers of PCF service descriptions are collection items. These allow an author to group itemsinto
structures of their choosing in away that is useful for their particular service description. Collection items are described
in clause 6.3.3.

ETSI

61 ETSI TS 102 523 V1.1.1 (2006-09)

Service items and scene items are the highest level of structured description and can provide the entry points of a
user-experience of a PCF service. Service items are described in clause 6.3.6 and scene items in clause 6.3.4.

6.3.2 Component items

Component items provide a structured description of instances of PCF component types. PCF components are defined
in clause 7. PCF systems should interpret component items when rendering of a PCF service description. As such,
component items shall be known asrenderable items.

A renderable item can be active or inactive and can be activated and deactivated by active service description. When a
renderable item is active, it should be presented to a viewer and/or available within PCF active description according to
the rules defined for the renderable item.

NOTE: Therulesfor presenting each PCF component item type are defined in A and the model for defining these
rulesin clause 7.2.2.

Component items shall be members of the PCF map data type that is defined in clause 6.2.5.2. Aswell as providing a
referential context for the PCF items within a component item, a component item also provides arendering context for
all the PCF items they contain.

6.3.3 Collection items

Collection items are groups of PCF items. Collections may be defined by service authors to enable modular service
descriptions that provides hierarchical referential context and facilitates referencing, as described in clause 6.4.

Collection items shall be members of the PCF map data type.

EXAMPLE: An example of a PCF collection according to the PCF schema s shown below. The example
shows a collection of default properties to be applied to news story items throughout a service.
<Col | ecti on name="news_styl e">
<Col or name="textcol or" val ue="#DFDFDF"/ >
<String name="content" val ue="Mre news follows shortly ..."/>

<I nteger name="border-w dth" val ue="3"/>
</ Col | ecti on>

NOTE: Coallection items shall not be renderable items. Their only purpose is to structure data and provide
referential context.

Collection items shall not provide rendering context to the items they contain. A collection item shall provide the same
rendering context to the PCF items contained within it as the rendering context of the collection item itself.

6.3.4 PCF container

A PCF container shall be a collection item that is the root item of any PCF source document.

A PCF source document may be identified as a resource describing an interactive service that is to be rendered. In this
case, the PCF container in the PCF source document should contain within it exactly one service item that provides the
root rendering context for the service.

NOTE: The behaviour of a system interpreting a PCF container that does not contain exactly one serviceis
undefined in the present document.
6.3.5 Scene items

The purpose of the sceneitem isto describe a spatially and temporally coordinated unit of viewer experience
description. Scene items shall be component items and, therefore, are renderable items.

When arenderableitem is active, it is presented to a viewer and/or available to participate in viewer interaction through
active description.

ETSI

62 ETSI TS 102 523 V1.1.1 (2006-09)

Only one scene in an interactive service description shall be active at any one time. When a PCF scene item is activated,
it shall set its own state to active and activate all renderable items within its rendering context. When a PCF scene item
is deactivated, it shall deactivate al renderable items within its rendering context.

PCF items contained within a scene item shall only contribute to the viewer experience when the scene item they are
contained within is active. The state of such PCF items shall be maintained only whilst this sceneitem is active. Their
state shall be re-initialized on each activation of the scene item.

NOTE: PCF itemsthat need to have their state maintained independently of scene item activation must be
contained in a service item (see clause 6.3.6).

A scene item or any of a scene item's descendants shall not contain any service items or scene items.

A scene item is declared using the Scene component as specified in clause A.1.1.2.

6.3.6 Service items

A service item represents the complete description of an interactive service. A service item is acomponent item and
thereforeis arenderable item.

A serviceitem shall contain, either directly or by reference:
. al sceneitemsthat are part of the viewer experience of the service being described;
. any other PCF items that are common to all scene items.

The state of viewer experience session at a point in time shall be defined by the combination of al renderable items
within the rendering context of the service item and al the renderable items within the currently active scene item.

Exactly one scene item shall be active at any point in time. Navigation to another scene item shall cause the source
scene item to be deactivated and the target scene item to be activated.

A serviceitem shall not contain any other service items within itself or any of its descendants. All PCF items within a
service item except for scene items shall have their state maintained independently of scene item activation for the
duration of the service session.

Component items that contribute to the viewer experience described by all scene items should be included within the
service item. A service item can provide the root rendering content of a service description. When a PCF serviceis
initialized, the associated service item shall be activated and all renderable items, apart from scene items, within the
service item's rendering content shall be activated. These renderable items remain activated throughout an interactive
service session until the session exits. When the service exits, all descendant renderable items and the service item shall
be deactivated.

NOTE: Theinclusion of a PCF component item within a service item shall be interpreted by a PCF transcoder as
an indication that any contribution made to presentation by the component item shall be uninterrupted by
any navigation between scene items.

EXAMPLE: A Video component can be declared within the service item to describe seamless presentation of
video during navigation between scenes.

A serviceitem is declared using the Service component as specified in clause A.1.1.1.

6.3.7 Scoping rules

The PCF scoping rules determine the way in which components can access and manipulate properties within other
components in the component hierarchy using active description. The scoping rules reflect the run-time scope of
variables and component properties: the lifetime of a component item within a scene item shall be equal to the lifetime
of its parent scene. A scene, and therefore its descendant renderable items, are active only when the sceneitself is
currently active.

The scoping rules are:

. Behaviour within a component item may access its own properties and those of all of its descendant
component items.

ETSI

63 ETSI TS 102 523 V1.1.1 (2006-09)

. Behaviour at the service level shall not access properties of its child scenes or any components within those
scenes.

NOTE: Behaviour at the service level may access properties of any non-scene child components.

Service
Scene S1 Scene S2 Variable P
Component A Component B Component X Component Y Variable W
Component C Component Z

Figure 7. An example component hierarchy in PCF

Figure 7 illustrates a component hierarchy. A service contains two scenes, S1 and S2, and a

service-level variable component, P. Scene S1 contains components A and B, where B contains component C. Scene S2
contains components X and Y, where 'Y contains component Z, and a scene-level variable component W. The scoping
rules stipulate that component A is visible to component S1, and that components B and C are visible to S1. However,
C cannot access propertiesin either B or A.

EXAMPLE 1: Component C has a property called fillcolor. Component B can access the value of C.fillcolor
using appropriate action language.

None of the components in scene S1 are visible to S2. Should the author require such manipulation, the information can
be stored at the service-level, in this case in the variable component P.

EXAMPLE 2. When scene Sl is active, action language can write the value of C.fillcolor to the variable
component P. When scene S2 is active it cannot directly access the value of C.fillcolor from S1.
However, it can read the value of variable component P. In this way, information can be passed
from one scene to another.

Moreover, a variable component can be placed anywhere in the component hierarchy. A variable component can be
used to store values shared by two or more components provided it is declared in a scope outside of the participating
components.

EXAMPLE 3: Variable component W is declared within the scope of S2. Component X and Y can manipulate
variable W in order to share information because variable W is declared outside of component X
and Y. Variable W has alifetime that coincides with scene 2. Should this information also be
required by component A in scene S1, then a variable component outside of the scene scope
should be used, e.g. variable component P.

6.4 Reference and navigation

Clause 6.4.1 introduces the PCF referencing model. Clauses 6.4.2 to 6.5.2 specify the mechanisms for making and
resolving references that should be supported by PCF tools.

ETSI

64 ETSI TS 102 523 V1.1.1 (2006-09)

6.4.1 Referencing model

target ﬁ reference
“href |0.1

rsource

array item > PCFitem < map item| containment
i * * .
Jength : int | Membership ~context = original aggregation o
-element |-name : name [0..1] | -child -parent
i | 1 P-href
{ordered} -index: int[0..1] {ordered}
e reference

T

value item

map reference item . -COPY
-value 0.*
-exact : boolean !

SR always resolve in
-@type = URKfrozen} original context

Figure 8: PCF reference and navigation model

Figure 8 shows the relationships between PCF items that are part of the PCF referencing and navigation model.

6.4.2 Typed reference

6.4.2.1 PCF item references

PCF item references alow any PCF item to be specified by reference rather than by an explicitly stated value. This
shall be achieved using the "href" property that is available for all PCF items, as described in clause 6.2.1 and illustrated
by the reference relationship in figure 8.

References are made from a PCF item and this item shall be known as the sour ce item. References are made to a PCF
item and thisitem shall be known as the target item.

A PCF item reference shall be any PCF item with a non-empty "href" property. If the "href" property is non-empty, the
value of the PCF item shall be defined by reference and any locally specified value shall be ignored. The value of a PCF
reference item shall be determined by embedding the content of target of the reference at the position of the source
reference.

PCF reference items are strongly typed. The source and target of a PCF item reference shall be of the same type.

If asource item has no name specified and the target item does have a name specified, the name of the source item shall
be the same as the name of the target item on resolution of the reference. Where both the source item and target item
have a name, the source item shall be known by its own name, not that of the target, after reference resolution.

NOTE: Both the source item and target item may not have names specified where they are declared as elements
of an array.

Clause 6.4.2.2 defines the path format of these references and clause 6.4.3 defines the rules for the contextual resolution
of these references.
6.4.2.2 Reference path format and resolution

The reference path format enables an author to uniquely identify any item in a PCF service description by a path name.
As a service description may be partitioned into a number of PCF source documents, the PCF reference path format
allows references both within and between PCF source documents. Thisis achieved through the use of URIS[9].

ETSI

65 ETSI TS 102 523 V1.1.1 (2006-09)
The aim of resolving a path shall be to determine the target item that the path refersto or that the path isinvalid. A
value that represents a path in PCF shall be known as a PCF path.

PCF items defined by reference have a href property that is specified by a"ref_path" production. The map item that is
the closest ancestor by containment to the source item is known asits parent item and all the items contained by a map
item are known asits child items or children.

The service item that is the furthest ancestor by containment from the source item in the current resolution context shall
be known asthe root serviceitem.

The PCF container that is associated with the PCF source document according to the current resolution context is
known astheroot container item.

The root service item and root container item may change depending on the context for the resolution of the reference,
as defined in clause 6.4.3.

NOTE 1: Source itemsin arrays have their closest ancestor that is a map item defined as their parent item. The
array in which the source item is contained shall not be considered as its parent item.

The format of a path, specified using Extended Backhaus-Naur Form [*], shall be:

ref_path = (uri_part)? "#" ("/" | "~/")? path
uri_part = absoluteURl | relativeURl

pat h c:= path_item ("/")+ path | path_item
path_item::= nane (index)? | "."

i ndex ="[" integer "]"

Missing productionsin the path format grammar above shall be defined as follows:
. "integer" - A non-negative integer value consistent with the PCF integer data type defined in clause 6.2.2.2.
. "name" - A name value consistent with the PCF name data type defined in clause 6.2.3.8.
. "absoluteURI" and "relativeURI" - as defined in [8].

A PCF path shall be resolved in a sequence of steps. At each step, the path shall be resolved with respect to a specific
PCF item, known asthe relative item, determined in the previous step. Therefore, the first step shall be to determine
theinitia relative item.

Where the "uri_part" of the "ref_path” is present, it explicitly identifies the PCF source document that contains the
target item (the tar get PCF sour ce document) and the PCF container of thistarget PCF source document shall be the
initial value for the relative item. In this case, the optional "/" literal may be present but has no effect on the choice of
relative item. The optional "#~" literal shall not be allowed.

Where the "uri_part” is not present, the target PCF source document shall be the containing PCF source document in the
context of the resolution of the reference (see clause 6.4.3). The relative item shall then be set according to one of the
following rules:

. If the optional "/" literal is present, the initial value for the relative item shall be the root container item.
. If the optional "~/" literal is present, theinitial value for the relative item shall be the root service item.

. If the"/" or "~/" literals are not present, the initial value for the relative item shall be the parent item of the
source item.

EXAMPLE: The comments in the following XML document, written according to the PCF XML schema, show
how elementsin a PCF source document called "myservice.xml" can be referred to:

<l-- refer to PCF container as:
- "nyservice.xm # " fromoutside or inside the source doc.
- "#/" frominside the source docunent -->

<PCF>
<I-- refer to follow ng integer "age" as:
- "myservice. xnm #/ age" fromoutside or inside the source doc.

- "#/age" frominside the source document -->
<I nteger name="age" val ue="32"/>

ETSI

66 ETSI TS 102 523 V1.1.1 (2006-09)

<Servi ce nanme="ol der">

<I-- refer to follow ng integer "age" as:
- "nyservice. xm #/ ol der/ age" fromout/inside the source doc.
- "#/ ol der/age" frominside the source docunent
- "#age" locally
- "#~/age" fromin context derived fromservice "older" -->
<I nteger name="age" val ue="33"/>

<!-- transclude an age value from parent context - same as using
"#/age" in original context, may differ in derived context -->
<I nteger name="ol dage" href="#../age" context="original"/>
</ Servi ce>
</ PCF>

If the "path” includes another "path" then the "path_item" shall be resolved to a new relative item and then the
remaining "path" shall be resolved with respect to this as a next step.

If the "path” is made up of only a"path_item" then this"path_item™" shall be resolved as the last step of path resolution
and the PCF item that it resolvesto shall be the target item that the path refers to.

The way in which a"path_item" isresolved shall depend on how it is specified, according to the following rules:
. a"name" and optional "index", that shall resolve to one of the children of the relative item as follows:

- Where an "index" is provided, the name shall refer to an array item or the path isinvalid. The "index" is
anon-negative and shall refer to a PCF item in the array by its order in the sequence of items and the
"path_item" shall resolve to thisitem. If the index is greater than the length of the array, the path shall be
considered invalid.

- Where no "index" is provided, the path shall refer to a PCF item that is a child item of the relative item
by matching the name property of the PCF item.

. afull-stop character ("."), where the "path_item" resolves to the current relative item;

. adouble full-stop ("..") to indicate that the "path_item" shall resolve to the parent of the relative item. If no
parent item exists then the path shall be considered invalid.

NOTE 2: By this definition, empty paths are invalid. Paths must always contain a hash "#" character and at |east
one "path_item". However, as an empty path is used to indicate that a PCF item is not a PCF reference
item, PCF interpreters should not report an error.

6.4.3 Contextual resolution

The paths specified by the "href" properties of a PCF item reference are either resolved in their originally declared
context or a context derived from where they are used. As defined in clause 6.2.1.1, every PCF item has a" context”
property, the value of which is an enumeration set to either "original™ or "derived". The default value for this property
shall be "original”.

When the "context” property of a PCF item referenceis set to "origina”, then:
. The root container item shall be the PCF container within which the PCF item reference is defined.

. The root service item shall be the furthest ancestor service component from the PCF item reference that isa
serviceitem. If no ancestral service item can be found, the PCF path defining the PCF item referenceis
invalid.

. The path shall be resolved in the hierarchical referential context provided by the root container item and all its
descendants. Thisisthe PCF container of the source document where the PCF item reference is declared.

If the "context" property of a PCF item referenceis set to "derived", a service item shall be activated and the reference
resolved with respect to this service item, known to be active. Contextual resolution shall then use the following rules:

. The root container item shall be the PCF container that is furthest ancestor by declaration of the activated
service item.

. The root service item shall be the activated service item.

ETSI

67 ETSI TS 102 523 V1.1.1 (2006-09)

. The path shall be resolved in the hierarchical referential context provided by the root container item and all its
descendants.

NOTE 1: The main reason for using "derived" referencesisto alow the reuse of structures that have aready been
declared. When a PCF item of compound type isreused in a new context, it is copied in to replace a PCF
reference item, often of original type. All the child items that are themselves PCF reference items of
"derived" type are then resolved relative to the location where it has been copied to rather than their
original context.

NOTE 2: A chain of referencesis established when one PCF item reference depends on the resolution of another. If
asource item with original context depends on the resolution of itstarget item, where the target itemisa
derived context PCF item reference, the source item should be replaced by embedding the unresolved
target item with respect to the root container item and then the derived item can be resolved with respect
to the root service item.

EXAMPLE: The following XML fragment written according to the PCF XML schema shows the reuse of a
TextBox component in two scenes, using both original and derived references:

<PCF>
<String name="title" value="this is not resolved here"/>
<Text Box name="headi ng" >

<!-- ref cannot be resolved here: root service itemunknown -->
<String nanme="content" href="#../title" context="derived"/>
<!-- other properties here -->

</ Text Box>

<Servi ce name="reuse">
<!-- service properties omtted -->
<Scene nane="scenel">
<String name="title" value="First scene"/>
<Text Box href="#../../heading" context="original"/>
</ Scene>

<Scene nane="scene2">
<String name="title" val ue="Second scene"/>
<Text Box href="#/headi ng" context="original"/>
</ Scene>

</ Servi ce>
</ PCF>

When all references are resolved, the following XML fragment is equivalent:

<PCF>
<Servi ce name="reuse">

<Scene nane="scenel">
<Text Box name="headi ng" >
<String name="content" val ue="First scene"/>
<!-- other shared properties here -->
</ Text Box>
</ Scene>

<Scene nane="scene2>
<Text Box name="headi ng" >
<String name="content" val ue="Second scene"/>
<!-- other shared properties here -->
</ Text Box>
</ Scene>

</ Servi ce>
</ PCF>

6.4.4 Map reference items

A map referenceitem enables all the content of one map item, the target map item, to be copied into the content of
another, the source map item. A map item may contain zero or more reference items, alowing the content of zero or
more map items to be copied into the content of another.

A map reference item shall have a href property with avalue that is a PCF path, as defined in clause 6.4.2.2, that shall
resolve to the target map item.

ETSI

68 ETSI TS 102 523 V1.1.1 (2006-09)

All PCF map reference items shall be resolved in their original context.

NOTE: Anauthor can structure a service using collection items defined by PCF item references with a derived
context to achieve the effect of a map reference item being resolved in a derived context.

All child itemsin the target map item shall be copied into source map item in the order they are declared so that they
replace the map reference item. If the target map item is empty, resolution of the map reference item shall remove the
reference item from the source map item.

If, as part of the map reference item resolution items, more than one PCF item has the same name within the source map
item, the rules below shall apply before the resolution shall be considered complete. For each set of PCF items with the
same repeated name within the source map item:

. the item with the repeated name with highest index shall remain in the source map item in the same relative
position in the sequence to other PCF items;

. all other PCF items with that name shall be removed.

EXAMPLE: The following fragment of XML, written according to the PCF XML schema, shows a map
reference item represented as the " Copy" element being used to combine two collectionsinto the
properties into a component.

<Col | ection nane="textinfo">
<String name="content" val ue="Press red"/>
<Col or nane="textcol or" val ue="#FF0000"/ >
</ Col | ecti on>

<Col | ecti on name="boxi nfo">

<Si ze nane="si ze" val ue="100 30"/ >

<Posi tion name="origin" val ue="150 210"/ >
</ Col | ecti on>

<Text Box name="instruction">
<Copy href="#../textinfo">
<Copy href="4#../boxinfo">
<l-- next property overides that from "boxinfo" Copy -->
<Position name="origin" val ue="600 60"/>
</ Text Box>

6.4.5 Parameter items

Behaviour within a component item may only access components within the same scope as the enclosing component
item (see clause 6.3.7). Parameter items provide a means to allow behaviour to access PCF components outside its
enclosing context.

A component declared as a peer of a second component can be passed into in the context of the second component
using parameter items. Parameter items appear as if they are locally declared within the component they are passed into,
thus they may be accessed from within the second component's context. Each parameter item shall be given a new
name, an alias, that must be unique within its enclosing component and which shall be used to refer to the item within
the component's context.

The PCF component has a parameter-list property as introduced in clause 6.2.5.2. Thisis a space delimited list of
parameter pairsthat contain names that map external componentsto their aliases. The first item in each parameter pair
is the path to the first component. The second item in the parameter pair is the name that shall be used for the item
within the second component. The two items shall be separated by a colon.

To enable strong typing and validation, any component that uses parameter items shall explicitly declare each parameter
item aias and component class that it expects to be provided by the enclosing context.

NOTE: Inthe PCF XML schema, parameter items are represented by the "Parameter” element. Parameter item
declaration allows parameterized component instances to be validated independently of their enclosing
context and allows a transcoder to re-use the implementation of such items within their platform-specific
outpuit.

Each declared parameter item shall be provided with a reference to a component instance in the enclosing context and
shall have the same component class as the component instance it refersto. It isan error if either of these conditions
fals.

ETSI

69 ETSI TS 102 523 V1.1.1 (2006-09)

Within a component, a parameter item can be accessed exactly asif it had been declared locally as a child component.

EXAMPLE 1: Thefollowing XML fragment shows how parameter items can be used to share a common variable
between two scenes. Behaviour in both scenes can access the variable, which does not lose its
value on scene transition.

<Servi ce name="interactive_quiz">
<I nt eger Var name="score"/>
<Scene nane="| evel 1" paraneter-|ist="score:running_total">
<Par anet er name="runni ng_total" cl ass="IntegerVar/>
<!-- Behavi our here can now use running_total as if it was local -->
</ Scene>
<Scene nane="| evel 2" paraneter-|ist="score:running_total ">
<Par anet er name="runni ng_total" cl ass="IntegerVar/>
<!-- Behaviour here has access to the same variable as in levell -->
</ Scene>
</ Servi ce>

EXAMPLE 2. Thefollowing XML fragment illustrates passing a parameter down the PCF component hierarchy
to make it accessible by a child component.

<Servi ce name="gane">
<StringVar name="user Nanme"/>
<Scene nane="begi nner" paraneter-|ist="user Name: nane" >
<Par anet er name="nane" class="StringVar"/>
<Stati cELC name="score_banner" paraneter-|ist="nane: nane">
<Par anet er name="nane" cl ass="StringVar"/>
<!-- The userNane variable in the service can be read and witten
here -->
</Stati cELC
</ Scene>
</ Servi ce>

EXAMPLE 3: Thefollowing XML fragment illustrates the use of a PCF path to pass an item within a Collection
into a component. It also shows a parameter list containing two parameter pairs separated by a
space.

<Servi ce name="begi nner">
<Col | ecti on name="scoreboard">
<StringVar name="nane"/>
<I nt eger Var name="score"/>
</ Col | ecti on>
<Scene nane="scenel" paraneter-|ist="scoreboard/ name: nane
scor eboard/ score: score">
<Par anet er name="nane" cl ass="StringVar"/>
<Par anet er nanme="score" cl ass="IntegerVar"/>
</Stati cELC
</ Scene>
</ Servi ce>

6.4.6 Navigation reference items

Navigation reference items represent navigable links between PCF items or external items to a PCF service
description.

Navigation reference items shall be members of the URI data type defined in clause 6.2.3.14. The value property of a
navigation reference item shall be known as the navigation target. The navigation target shall be defined by a PCF
path, as defined in clause 6.4.2.2, that can be resolved to a PCF item.

The scene navigation action defined in clause J.1.1 can be used to change the currently active scene during an
interactive service session. Calling the scene navigation action resultsin the following steps:

. Checking that the navigation target resolvesto a sceneitem.
. Deactivating the current scene item.
. Activating the navigation target scene item.

A navigation reference item can be resolved during an interactive session and shall always resolve in the hierarchical
referential context of the active service item that is its ancestor.

ETSI

70 ETSI TS 102 523 V1.1.1 (2006-09)

NOTE: Navigation reference items are PCF items, so a havigation reference item can be defined by a PCF item
reference and this can be resolved in a derived context.

EXAMPLE: Thefollowing XML fragment, which is written according to the PCF XML schema, shows how
navigation reference items can be combined with PCF item references.

<PCF>
<ELC nane="t enpl at el" >
<SceneNavi gat e>
<URI nanme="target" href="#../../content/next" context="derived"/>
</ SceneNavi gat e>
</ ELC

<Servi ce>
<Scene nanme="scenel">
<ELC href="#/tenpl atel"/>
<Col | ecti on nane="content">
<URI name="next" val ue="#~/scene2"/>
</ Col | ecti on>
</ Scene>
</ Servi ce>
</ PCF>

6.5 Uniform Resource Identifiers

6.5.1 General usage

The PCF supports the URI [9] scheme for making links between items of content and external resources to a service
description. The Uniform Resource Identifier specification provides a means to identify aresource in alocation-specific
manner, using the Uniform Resource Locator (URL) syntax, or in alocation-independent manner, using the Uniform
Resource Name (URN) syntax.

URNSs may be used to identify a resource whose location will vary from platform to platform, for example broadcast
video and audio streams. The URN provides a unique name for a resource but does not define its location, so achieving
portability. However, this does require atarget platform to provide a means to resolve a unique name to an actua
resource on the target platform.

6.5.2 URN syntax in the PCF

All PCF URNs shall be encoded according to the following syntax:

"urn: x-dvb-pcf:" <providerID> ":" <date> ":" <contentID> (":" <revision>)?

All PCF URNs shall start with "urn:" as required by the URN specification [10]. The namespace identification syntax of
the urn shall always be "x-dvb-pcf" and this shall always be followed by acolon ":".

The next item in a PCF URN shall be aprovider identifier ("providerID"). This shall be an Internet domain name that
is owned by the provider at the date on which a service description is published. This shall provide a globally unique
identifier for the source of the content. This provider identifier shall not itself contain a colon. Provider identifiers shall
be followed by acolon ":". If the provider identifier is not explicitly defined then the default provider identified "dvb.org"
shall be assumed.

The next item in a PCF URN shall be adate ("date") value that indicates the date of publication of the resource referred
to. This can be used to distinguish between different daily episodes of a news programme. This value shall either be
empty or adate value consistent with the PCF date data type, as described in clause 6.2.3.3. An empty date value shall
indicate that the content referred to is the most recent version or alive stream. Dates, even empty dates, shall be
followed by a colon ":".

The next item in aPCF URN shall provide a content identifier (“contentID"). This, along with its publication date and
revision number, should uniquely identify the item of content referred to by the URN to the content provider. The
content identifier shall not itself contain a colon.

ETSI

71 ETSI TS 102 523 V1.1.1 (2006-09)

The final item of a PCF URN is an optional revision number ("revision) specification. Thisis a non-zero positive
integer that, for any two items with the same URN without a revision number specified, shall be higher number for the
more recent version. Where arevision number is specified, a colon shall be used to separate it from the preceding
content identifier. A URN with no revision number specified shall match with the most recent version of a piece of
content with the same base URN and a revision number specified.

EXAMPLE 1: Thefollowing PCF URN could be used to reference alive video stream from the Centre Court at
the Wimbledon Tennis Championships 2005. No date field is specified asthe URN refersto alive
stream.

urn: x-dvb- pcf: bbc. co. uk: : W nbl edon2005_CentreCourt _Li veFeed

EXAMPLE 2. Thefollowing PCF URN refersto an audio clip that should be played out in response to a user
action within a PCF service. The date field distinguishes the audio clip from other clips that may
be available from the provider.

ur n: x- dvb- pcf: sky. com 2005- 03- 21: SM5_Send_Audi o

EXAMPLE 3: Thefollowing PCF URN refersto a collection of updated scores during a rugby championships.
The revision number updates every time the resource is updated with new score information.

ur n: x- dvb- pcf: bbc. co. uk: : si x_nati ons_2005_| at est _scor es: 145

6.6 Marked up text representation

Marked up text value items allow PCF service authors to apply styling to sections of flowed text content by
incorporating mark up tags, as defined in annex F. Marked up text tags allow both inline styling and tabulated
structuring of text.

Where visual component content is rendered from a marked up text value item, the component's styling shall be
inherited as the base properties for the initial rendering of the text and then can be overridden by locally specified mark

up tags.

NOTE 1: Where visua component content is represented as a string value item, the styles described in the
properties of the component will be used to present the entire string.

The rendering of inline mark up tag presentation shall not be compulsory.

NOTE 2: Many platforms are not able to support a change of styling part way through a flow of text. A transcoder
may choose which inline mark up tags are rendered. Transcoders may implement alternative approaches
for rendering inline styling properties.

EXAMPLE 1: Text with unsupported inline styling may be rendered as an image at the transcoder.

Marked up text tags do not have an equivalent of the name or exact properties of avalue item, as specified in

clause 6.2.1.3. No error shall be reported if a particular styling property cannot be achieved. The PCF referencing model
shall not be part of the marked up text representation and so no reference can be made to a style tag to, for example,
reuseit.

EXAMPLE 2: Thefollowing fragment of XML shows how data for atable could be represented asasingle
marked up text item.

<Mar kedUpText >
<body xm ns="http://ww. dvb. org/ pcf/x-dvb-pcf">
<t abl e>
<tr><t h>Teanx/t h> <t h>Pl ayed</th> <t h>Poi nts</th></tr>
<tr><td>Wal es</td> <td>4</td> <td>8</td></tr>
<tr><td>lrel and</td> <td>4</td> <td>6</td></tr>
</tabl e>
</ body>
</ Mar kedUpText >

Marked up text value items shall be represented as XML documents [5] that conform to the schema " x-dvb-pcf.xsd”.

NOTE 3: Where appropriate, the relevant structures and element names of HTML [8] have been adopted for the
PCF.

ETSI

72 ETSI TS 102 523 V1.1.1 (2006-09)

7 General component specification

7.1 Overview

Components are the functional building blocks within a PCF service description. All standard presentational and
non-custom behavioural aspects of a PCF service are described by combining different types of components. The PCF
defines a standard toolkit of components to implement commonly used interactive service functionality.

The complete set of standard PCF componentsisintroduced in clause 7.5 and is fully specified in annex A.

PCF also defines a behaviour notation sufficiently complex to allow components from the standard toolkit to be
extended and combined. This behaviour notation is described fully in clause 9.

Components are initialized and manipulated using a standard interface model and a standard set of scoping rules. Whilst
the present document defines what the intended visual appearance and behaviour of each component type shall be, it
does not specify how this should be implemented. The actual implementation may vary significantly on a
platform-by-platform basis, depending upon that platform's underlying APl and resources.

Each PCF component shall be implemented to provide an author's intended user experience according to the
component's specification. Thisisto ensure portability of PCF services.

The PCF component object model consists of two separate, but closely associated, object models:

. The Component Specification Model is described in clause 7.2. Thisis a meta-model used to define which
component classes are available for use within the PCF. It is not part of the PCF model for describing
interactive services; rather, it describes the interface characteristics of each component type.

. The Component I nstantiation M odel is described in clause 7.3. It comprises the set of objects that are used
to declare and manipulate components within a PCF document. Thisis part of the PCF model for describing
interactive services and provides the core building blocks of PCF service descriptions.

An XML schema representation of the component specification model, called the Component Definition Syntax, is
provided with the present document (see clause G.2.1).

The definition of acomponent class shall consist of:
. aprovider and a name, together being a unique identifier of the component class;
. its interface definition according to the component specification model;
. atextual description of the details of this definition;

. adescription of the behaviour that the component implementation is required to exhibit.

7.2 Component specification model

7.2.1 Overview

The standard PCF component types are defined in clause 7.5. In each case the formal definition consists of up to three
sections. These are: the I nterface Definition in the Component Definition Syntax (described in 7.2.2); a Textual
Description section that expands upon the interface definition; and for elements with intrinsic behaviour, a Behaviour
Specification.

These sections are defined in detail in clauses 7.2 to 7.7

Target platforms shall implement the standard PCF components in accordance with their component specificationsin
annex A.

New component types that are added to future versions of the PCF specification shall also be defined using this
component specification format.

ETSI

73 ETSI TS 102 523 V1.1.1 (2006-09)

It is recommended that the component specification format is used to define any custom components that may be
created. Defining components in a standard format will aid compatibility with other PCF tools, help authorsto
understand the component, and facilitate standardization if the custom component is later adopted as a standard PCF
component.

7.2.2 Interface definition

The component specification model is the meta-model used to define the characteristics of each component class. This
object model, and its associated component definition syntax, shall be used to specify the component classes that are
available for use within a PCF service description.

NOTE: The component specification model is not part of the actual PCF for describing interactive services, but
has been defined within the present document to provide a solid foundation upon which the PCF
Component Model is built. However, as component type definitions in component definition syntax are
schema-conformant XML they may be used by a transcoder for PCF validation.

This model isillustrated in figure 9.

I ComponentSpec
Intendedimplementation -Name Overview
-Provider
-Serializable -Version
-Container
-coreProperties ? ?
0.* | 0.*Property
Value ltem PropertySpec
Name Name 0.*| -Handled Events 0.* | -Handled Action 0.* | -Generated Event 0.* |-Generated Errors
-Value -Type HandledBEventSpec HandledActionSpec GeneratedEventSpec GeneratedErrorSpec
0.1
-Bxact -Access
_Use -Class -Type -Type -Name
-default -Type -Level

Figure 9: Component specification model

This model isimplemented as the PCF Component Definition Syntax (CDS). The CDS schemais defined in file
"component-syntax.xsd", which is provided with the specification. Objects within the component specification model
are used to define component classes, and the interface characteristics of those component classes. The objects defining
these interface characteristics, shown in figure 9 are as follows:

. A ComponentSpec item shall define a specific Component Class. A ComponentSpec item shall have these
attributes:

- A provider. This shal identify the creator of the component. Components defined within the present
document shall have the default provider, "dvb.org”.

- An identifying name. This shall be unique amongst all component class names from the provider.

- A serializable flag. This shall define whether the component class shall have a serialized form that may
be used for data exchange.

- A container flag. This shall define whether instances of the component class may contain child
components.

A ComponentSpec item shall contain:

. A Propertiesitem containing zero or more PropertySpec items. This defines the set of properties that may be
set and/or read on an instance of the component class. These properties may be either defined directly using
PropertySpec elements, or included as part of a property group using PropertyGroupRef elements.

. An optional HandledEvents item containing zero or more HandledEventSpec items. This defines the set of
events that a component instance of this class may respond to during its lifetime. These events may be either
defined directly using HandledEventSpec elements, or included as part of a handled event group using
HandledEventGroupRef elements.

ETSI

7221

74 ETSI TS 102 523 V1.1.1 (2006-09)

An optional HandledActions item containing zero or more HandledActionSpec items. This defines the set of
actions that a component instance of this class may respond to during its lifetime. These events may be either
defined directly using HandledActionSpec elements, or included as part of a handled action group using
HandledActionGroupRef elements.

An optional GeneratedEvents item containing zero or more Gener atedEvent Spec items. This defines the set
of eventsthat a component instance of this class may generate during its lifetime. These events may be either
defined directly using Gener atedEventSpec elements, or included as part of a generated event group using
GeneratedEventGroupRef elements.

An optional GeneratedErrorsitem containing zero or more Gener atedError Spec items. This defines the set
of error events that a component instance of this class may generate during its lifetime. This set shall contain
all the errors that are generated as part of any inherent behaviour defined for that component. These errors may
be either defined directly using GeneratedError Spec elements, or included as part of a generated error group
using GeneratedError GroupRef elements.

An Overview item. The overview item contains attributes detailing the component class's version. It is
envisaged that some component types may evolve over time, so a version number allows different versions of
the same component to be identified.

An Intendedl mplementation item. This has a single cor ePr operties attribute, and this attribute shall be alist
of the properties that must be implemented on atarget platform. These are the properties of a component that
arerequired to ensure that all implementations provide an equivalent user experience.

Groups

Many component types have features in common. Different component types may:

have common properties, such as colour or position;
respond to the same events, such as key-press events,
respond to the same actions, such as show/hide actions;
generate the same events, such as OnSelect;

generate the same errors, such as OnlnvalidMediaType.

When thisisthe case, then instead of including the PropertySpec, HandledEventSpec, HandledActionSpec etc. items
directly within the ComponentSpec object, the common features shall be declared separately from the component
specification, as part of a group. This group shall then be included by reference from within the component
specification. The component specification object model showing the ability to group itemsisillustrated in figure 10.

ETSI

75 ETSI TS 102 523 V1.1.1 (2006-09)

PropertyGroup | 0-*
0.*
T ComponentSpec
0.*
‘{xor}
PropertySpec . \
" of 1 of Qx| o
R\\\{xor} {XOE}/I
ponts | |- Dord
0.* 0.* 0.* 0.*
HandledEventGroup HandledActionGroup CGeneratedBventGroup GeneratedErrorGroup
0.* 0.* 0.* 0.*
HandledEventSpec HandledActionSpec | _| || GeneratedBventSpec | |__|GeneratedErorSpec
0.* 0.* 0.* 0.*

Figure 10: Component specification object model showing groups

The use of groups achieves consistency across component types. In the case of properties, it also alows property values
to be cascaded, as described in clause 7.3.3.

. Every property defined within a property group shall have a name that is unique across all property groups.
. Every event defined within an event group shall have a name that is unique across al event groups.

. Every action defined within an action group shall have a name that is unique across al action groups.

. Every error defined within an error group shall have aname that is unique across all error groups.

PCF defines a set of property, event, action and error groupsin annexes A and B. Standard PCF component type
specifications use these groups in addition to individually defined items.

Custom components should use standard groups where appropriate. Custom groups can be defined and may be used in
the definition of custom components.

NOTE: Custom groups shall observe the requirements for unique naming across all property groups.

EXAMPLE 1: All components that have a border, such as Rectangle, Polygon, TextBox and Button include the
border_properties property group within their set of properties. The border-properties property
group contains properties such as linestyle and bor der-width. This means that equivalent border
properties can be referred to consistently across all component types. It also simplifies the
specification of each type, asinstead of specifying each border property for each component type,
the border properties are specified once in the property group and then the group isincluded by
each component specification.

When a component instance is declared within a PCF service, the properties that may be declared for that instance are
the union of all properties within property groups specified for that component type, and any other individual properties
specified for that component class.

A special feature of property items defined as part of a property group is that component instance declarations can
inherit values for those items from an ancestor component item. Thisis explained in clause 7.3.3.

Property groups are used only as a means to declare properties within component type specifications and are not used
within a PCF service description itself. Therefore when setting property values in an instance of a component the only
distinction between properties from property groups and class specific properties is the inheritance which is allowed for
property group properties.

ETSI

76 ETSI TS 102 523 V1.1.1 (2006-09)

EXAMPLE 2: A Polygon component has properties from the border_properties property group and also a
class-specific property, vertices, specifying the vertices of the Polygon. The definition of an
instance of the Polygon component type may list its property itemsin any order, intermingling
border-properties group property items such as linestyle with the vertices property item and
property items from other property groups used by the Polygon class.

7.2.2.2 Property specifications

The ComponentSpec item shall contain a Propertiesitem. Within the Properties item there may be PropertySpec
items, which declare properties specific to the component class, and PropertyGroupRef items, which reference
properties contained in PropertyGroup items declared outside of the component.

PropertySpec items have the following attributes:

. A name. If the PropertySpec is part of a property group, the name shall be unique amongst all properties
which are contained in property groups.

. A type. This shall specify the value item type, from the set of available PCF value types (integer, boolean,
string, imageData etc) that shall be used to provide this property value within a component instance
declaration. If a PropertySpec is of type enumer ation then it shall contain or reference an Enumer ationSpec
item that defines the allowable values for the property. Enumeration specifications are defined in
clause 7.2.2.3.

. A use specifier. This shall have avalue of either "required” or "optiona". If the use is specified as required,
then all component instance declarations of this component type must be provided with avalue for this
property. If the use is optional then a default value may be specified within the property's specification.

. An access specifier. This specifies the level of accessibility and mutability of this property over the lifetime of
a component. This attribute shall be one of these values:

- initializeOnly: A property item that shall only be used to specify theinitial value of the property. Such
property items cannot be accessed from within the PCF action language;

- final: A property item that can be used to specify the initial value of the property, and can be read but not
modified from within the PCF action language;

- readWrite: A property item that can be used to specify the initial value of the property, and can be read
and modified from within the PCF action language;

- readOnly: A property item that can only be read from within the PCF action language. Such property
items are used to access dynamic component state.

Where the useis set to "optiona”, a default value may be provided through the inclusion of a default value item within
the PropertySpec. The name of thisitem shall be default and its value is the chosen default value. If a component
instance will not be complete without a val ue being available for a particular property then either the use shall be
specified to "required”, or a default value shall be supplied in the PropertySpec.

NOTE: Seeclause 7.5.2 for a naming convention for properties which are associated with particular component
states.

7.2.2.3 Enumeration specifications

The enumeration data type is defined in detail in clause 6.2.2.3. EnumerationSpec items allow enumerations to be
declared. They may be declared directly within the PropertySpec item in which they are used, or outside of any
ComponentSpec items, and then referenced from within Pr opertySpec items using an Enumer ationRef item. The
relationship between PropertySpec items and Enumer ationSpec itemsisillustrated in figure 11.

ETSI

77 ETSI TS 102 523 V1.1.1 (2006-09)

EnumerationSpec 0.1 PropertySpec
-Name 0.* -Name
Enumeration -Type
-Access
-Use
0.* |-Values

Enumerationltem

-Value

Figure 11. Enumeration Specification Objects
An EnumerationSpec shall:
. have aname;
. contain one or more Enumer ationltems, each of which defines a possible value;

. have their default, and any values used in component instances, provided using a String value item.

7.2.2.4 Handled event specifications

Components can handle and generate events. Clause 7.4.5 describes how generated events are declared in a component
class specification. Figure 12 illustrates how events are modelled in the component class specification.

ComponentSpec 1 Properties
0.1 0.*
0.1
HandledEvents PropertySpec
o GeneratedEvents pertySp
- -name
-datatype
HandledBEventGroup
o* 0.* -name
*
GeneratedBEventGroup 0.* |GeneratedEventSpec 0. PropertyRef
-name -class = component | T { -componentProperty
HandledEventSpec 0.1 Qualifier -eventProperty
*
0. -name
-class
ype 0.* Valueltem
EventSpec WIS
-value

EventGroup 1* -name -type

_name -class

!

PropertySpec

-name
-datatype

Figure 12: Component event model

The ComponentSpec item may contain a HandledEventsitem. Within the HandledEvents item there may be
HandledEvent Spec items, which declare handled events specific to the component class, and

HandledEventGroupRef items, which reference handled events contained in HandledEventGr oup items declared
outside of the component. The HandledEvent Spec items associated with a ComponentSpec shall specify all the events
external to the component that trigger behaviour within the inherent behaviour defined for that component class.

ETSI

78 ETSI TS 102 523 V1.1.1 (2006-09)

NOTE 1. HandledEventSpec items do not define new event types themselves; the specifics of individual event
types, such as cause and associated data, are defined within annex B. HandledEvent Spec items are
similar to the Trigger item defined in clause 9.6.3.2; they refer to an existing event type and may define
qualifier values against the properties of this event type.

HandledEventSpec items have the following attributes:

. A class specifier. This specifies what class of event this HandledEventSpec refers to. Components shall be
able to handle events of class user or system. Components shall not be able to handle events generated by
other components.

. A type specifier. This specifies the event type and associates the HandledEventSpec with an event
specification in annex B.

A HandledEventSpec item may contain a qualifier, which restricts the events which are handled based on property
valuesin the event. The qualifier shall contain:

. Zero or more PropertyRefs. These give the name of the property in the event and the name of a property
within the component. The property within the component must be of the same type as the event property
identified.

. Zero or more Valuel tems. These give the name of the property in the event and a value. The value must be of
the same type as the event property.

An event shall be handled only if the values of its properties match all of those specified in the handled event qualifier.

Where the qualifier contains or refersto an array value, an event shall be handled only if its property matches at least
one of the values specified in the array.

NOTE 2: Unlike Trigger qualifiers, HandledEventSpec qualifiers may refer to component properties that can be
manipulated at run-time.

7.2.2.5 Generated event specifications

The ComponentSpec item may contain a Gener atedEventsitem. Within the Gener atedEvents item there may be
GeneratedEventSpec items, which declare generated events specific to the component class, and
GeneratedEventGroupRef items, which reference generated events contained in GeneratedEventGroup items
declared outside of the component. The Gener atedEventSpec items associated with a ComponentSpec shall specify
al the component events that are generated as part of the behaviour defined by the inherent behaviour for that
component class. Figure 12 shows how events are included in a component class specification.

NOTE 1. GeneratedEventSpec items do not describe the events themselves; events are described fully in clause 9.2
and the specifics of individual events, such as cause and associated data, are defined within annex B.

GeneratedEventSpec items have the following attribute;

. A type specifier. This specifies the event type and associates the Gener atedEvent Spec with an event
specification in annex B.

NOTE 2: In contrast with HandledEvent Spec items, Gener atedEventSpec items do not have a class attribute.
Thisis because all generated events are of class component.

7.2.2.6 Handled action specifications

. The ComponentSpec item may contain a HandledActions item. Within the HandledActions item there may
be HandledActionSpec items, which declare handled actions specific to the component class, and
HandledActionGroupRef items, which reference handled actions contained in HandledActionGroup items
declared outside of the component. The HandledActionSpec items belonging to a Component Spec shall
specify all the actions that trigger behaviour within the inherent behaviour defined for that component class.
HandledActionSpec items do not describe the actions themselves; actions are described fully in clause 9.4.

ETSI

79 ETSI TS 102 523 V1.1.1 (2006-09)

7.2.2.7 Generated error specifications

The ComponentSpec item may contain a Gener atedError sitem. Within the GeneratedError sitem there may be
GeneratedError Spec items, which declare generated errors specific to the component class, and

GeneratedError GroupRef items, which reference generated errors contained in GeneratedError Group items
declared outside of the component. The GeneratedErr or Spec items belonging to a ComponentSpec shall specify all
the component errors that are generated as part of the behaviour defined by the inherent behaviour for that component
class. GeneratedError Spec items do not describe the error events themselves; error events are described fully in
clause 9.3.5, and the specifics of individua errors, such as cause and associated data. Commonly generated errors are
defined within clause B.4 and component specific errors are defined within annex A.

GeneratedError Spec items have the following attribute;

« Atype specifier. This specifies the error type and associates the Gener atedErr or Spec with an error specification
inclause B.4.

7.2.2.8 Intended implementation

The ComponentSpec item shall contain an I ntendedl mplementation item. The | ntendedl mplementation item has:

. acoreProperties attribute. Thisisalist of the names of the component's properties which shall be
implemented as a minimum by atarget implementation.

Itisthelist of core propertiesthat specifies the degrees of freedom with which a component type may be implemented.
The core properties define what a component implementation has to implement; all other properties define what a
component should ideally implement. Aslong as atarget platform implements alevel of component functionality
somewhere between the mandatory level and the ideal level then that target platform shall be considered to implement
the component.

These degrees of freedom allow lower-specification platforms to implement the minimum set of functionality whilst not
constraining higher-specification platforms to this minimum.

7.2.2.9 Overview item

The ComponentSpec item shall contain an Overview item. The Overview item has:

. A version attribute. Thisindicates the version number of the component class which is being declared by the
Component Spec item.

. It is envisaged that some component types may evolve over time, so the version number allows different
versions of the same component to be identified.
7.2.3 Textual description
The textual description section of a component's class specification shall fulfil two purposes:

. to describe how the properties specified within the interface definition affect the appearance and/or behaviour
of an instance of the component class;

. to provide a human readabl e description of the component class.

Each property specified within the interface definition shall have some associated text within the textual description
section to explain what the significance of the property is for this component type.

The explanation shall be sufficiently detailed so that it, in conjunction with any relevant aspects of the behaviour
specification, completely specifies how theinitial value, and subsequent modifications to the value, of the property
affect the appearance and behaviour of the component instance to which the property applies.

In addition to the description of individual values there shall be a description of the overall component. This shall
provide an overview of the component's appearance and behaviour and shall be in sufficient detail so that it, in
conjunction with the property descriptions and the behaviour specification, provides a complete description of the
appearance and behaviour of a component instance of that class.

ETSI

80 ETSI TS 102 523 V1.1.1 (2006-09)

7.2.4 Behaviour specification

The behaviour specification of a component shall define the behaviour of the component class, both in terms of how an
instance of the component class interacts with the rest of the service acrossitsinterface and in terms of how this
interaction is reflected in the component instance's appearance and the nature of any subsequent interactions.

Where possible, amodel of the component class's behaviour should be described using a UML statechart. The
description of behaviour in this way does not mean that an implementation of the component class on atarget platform
should actually contain the statemachine defined by the statechart; it means that the component shall behave as though
it contained the statemachine.

The statechart shall define:

. theinternal statesthat the component may bein;

. the component's response to external events and actions,

. the state transitions that may occur in response to internal or external events and actions;

. changes to appearance in response to events, actions and or state transitions;

. the conditions under which the component will generate component events and component errors.
Where necessary the statechart should be accompanied by additional descriptive text.

If the internal behaviour of a component classistoo complex for complete description, then it is acceptable to only
provide alow-level description of how the component behaves at its interface. This shall include a description of all the
events and actions that shall be responded to, and all the component events that shall be generated, and under what
circumstances. In such a case the internal behaviour of the component does not need to be modelled as a statechart;
however, it must still be described in sufficient detail to portray what the intended user experience of the component's
internal behaviour.

EXAMPLE: The internal behaviour of a component to implement a Tetris-like game may be too complex to
practically model as a statechart. In such a case the behaviour may be explained as a selection of
screen-shots with accompanying text.

The omission of a statechart for a component class will inevitably lead to more scope for different implementations to
provide differing user experiences. It is therefore recommended that statecharts are used wherever it is practicable to do
0.

7.3 Component instantiation model

The second aspect of the PCF component model, the component instantiation model, is part of the PCF. Items from
the model are used to declare component instances within a PCF service description. The component instantiation
model isimplemented within the PCF XML schema.

The component specification model isrelated to the component instantiation model in that the former defines what is
expected and valid within the latter. The relationships between items in the two models areillustrated in figure 13.

ETSI

81 ETSI TS 102 523 V1.1.1 (2006-09)

PropertySpec 0. por ComponentSpec
-Name -Property -Name
-Type -Provider
-Access —-Container
-Use
1 |-Specification 1 -Provider, Class
0.* | -Instance
0.* |-Instance
Component ltem
0.* 0.* -
Value ltem -Name Behaviour ltem
-Property -Custom Behaviour
Type -Class
_Name -Provider
-Value
-BExact 0..*+Child
-container=true -Parent

Container Component ltem

Figure 13: Relationship between component specification and instantiation items

7.3.1 Component

All components instances shall be of the ordered map data type, as defined in clause 6.2.5.2. This alows PCF items to
be contained within the component. Every component instance shall have a name that uniquely identifiesit within the
scope of its declaration.

All components shall have a component class and optionally aprovider. If the provider is not specified it defaultsto
"dvb.org". Together the component provider and class link a component instance with its associated component class
specification, as defined by a ComponentSpec item. A component instance shall adhere to the rules specified by its
associated ComponentSpec item.

A component may contain:
. zero or more value itemsto define theinitial values of its properties;

. zero or more behaviour items to define custom extensions to the inherent behaviour of the component
instance;

. zero or more child component itemsif the component item is a container component. This will beindicated in
the ComponentSpec item for the component class, as described in clause 7.2.2.

7.3.2 Properties

Each ComponentSpec component class definition specifies a set of properties that affect the appearance and behaviour
of component instances of that class.

Within a component instance declaration the properties are defined by a set of value items that specify the initia
property values, and hence the initial state, of that component instance.

. A value item has a name that may match the name of a PropertySpec item defined within the component's
class specification. If it does, then the value item shall provide the value of that property.

. A value item has adata type. This shall be one of the data types defined by the PCF architecture in clause 6.2.

. A value item has avalue.

ETSI

82 ETSI TS 102 523 V1.1.1 (2006-09)

. The data type of avalue item with a particular name must match the data type specified by the PropertySpec
item with the same name in the component's class specification. If the PropertySpec datatypeisan
enumeration, then the value item shall be of type String, and the value must be one of the values given in the
EnumerationSpec.

Properties which need initial values may obtain these from one of four sources. The value is obtained using the
following precedence order. If no value is specified then the next option is used:

1) A vaueisdeclared in the component instance.

2) If the property is defined in a PropertyGroup then if any of the component instances in the ancestral hierarchy
has a declared value for the property this shall be used. If more than one ancestor declares a value, the value
declared in the most immediate ancestor shall be used. See clause 7.3.3 for more information on cascaded
properties.

3) If adefault value has been specified for the property in the PropertySpec then this shall be used.

4) If the property name hasa"-focus' or "-disabled" suffix then the value for the property named similarly, but
without the suffix shall be used.

NOTE 1: If the use attribute of the PropertySpec item defining the property is set to "required” then avalue must
be obtained in step 1 or step 2. If no value has been obtained after step 2 then the component instanceis
invalid.

If aproperty needs an initial value, but one has not been obtained then the component instance isinvalid.

It shall be possible to modify and query a defined subset of these properties using the PCF's action language. This shall
be to determine and change the state of a component instance. The ability to initialize, modify and query a specific
property of a component instance is defined by the access attribute of that property's PropertySpec item.

NOTE 2: All aspects of a component instance are specified by its property items. Some of these properties may
conventionally, in alanguage such as HTML, be considered content. Other properties specify
presentational aspects such as colour, styling etc. PCF does not make an explicit distinction between
content and presentation. All property items can use the PCF's flexible referencing and item grouping
mechanism, as specified in clause 6.4.1, to allow the service author to partition a service description in the
most appropriate way.

7.3.3 Cascaded properties

It shall be possible for property items that are specified as a member of a PropertyGroup to be cascaded through the
component hierarchy within a service description, so that child components may inherit properties that are defined
within their ancestral hierarchy.

If a component class contains a property that is specified within a PropertyGroup, and an instance of this component
does not contain a value item explicitly providing a value for the property, then the property shall be inherited from the
nearest component in the ancestral hierarchy providing a value. Thisinheritance takes place in the context of where the
component is being used; this is the derived context.

EXAMPLE: A Rectangle component is declared within a StaticEL C. The Rectangle instance has no fillcolor
or linestyle property values specified. The container in which the Flow is presented has afillcolor
property value of red (#FF0000) specified but no linestyle. In this case the Rectangle will inherit
the parent container's fillcolor property, and so will also have afillcolor of red. Asit is unable to
inherit the linestyle property (assuming linestyle is not defined higher up the ancestral hierarchy) it
will use the default linestyle property value of "solid".

7.3.4 Component implementation tolerance

PCF isintended to be portable across many platforms, each with their own characteristics. As such it is accepted that on
different platforms certain features may not be rendered exactly the same, but will always provide an equivalent user
experience. The permissible tolerance within which features may be rendered is defined by the

I ntendedl mplementation element within the component class specificationsin annex A.

ETSI

83 ETSI TS 102 523 V1.1.1 (2006-09)

The Intendedl mplementation element defines the minimum implementation that atarget platform must provide for this
component class. It has a single cor eProperties attribute. This attribute lists the properties of the component that are
essential to providing an equivalent user experience.

Propertiesin the coreProperties list of a supported component shall be implemented by a target platform.

All properties that are specified for a component class but not included in the coreProperties list are non-mandatory.
These may be optionally implemented by atarget platform.

NOTE 1: To provide an optimal user experience atarget platform should implement as many non-mandatory
properties as possible.

A service author may specify that afeature should by implemented exactly as specified by setting the exact flag of the
relevant property value item to true.

A property value item with the exact flag set to true must be implemented exactly by atarget platform, even if that
property is not specified as a core property of the component class.

NOTE 2: The ability to specify that a property must be rendered exactly is provided so that, in exceptional
circumstances, a service author can prevent atarget platform from approximating or ignoring a property
where this would be inappropriate. Forcing properties to be rendered exactly will reduce the portability of
aservice.

7.4 Component behaviour

7.4.1 Behaviour overview

The PCF generic component model allows the state of a component instance to be modified during itslifetime. The
model also allows a defined subset of the inherent behaviour of a component instance to be extended. These aspects of
custom behaviour are described using one or more behaviour items. The behaviour items available within PCF,

i.e. statemachines, event handlers and action items, are described fully in clause 9. Custom behaviour may be used to:

. extend the behaviour of individual components;

. connect the behaviour of a number of components together within a container or Scene.
It is possible to modify the state of a component instance in two ways:

. by changing one or more property values;

. by invoking an action.
In both cases these changes would be defined using the PCF action language.

A component may generate eventsto provide notification of arestricted set of internal state transitions. This allows the
behaviour of a component instance to be extended. Generated events may be responded to by behaviour items declared
either within the component instance itself, or within the component's ancestors.

7.4.2 Accessing component properties

It shall be possible to read, using the PCF action language, the component property values that are defined within their
property specification that have an access type of final, readOnly and readWrite.

It shall be possible to modify, using the PCF action language, the component property values that are defined within
their property specification to have an access type of readWrite.

When a component instance has one or more of its property values updated, the underlying implementation of the
component instance shall update itself to reflect this change.

Property read and write operations shall be synchronous. when a component instance has a property value modified and
then immediately read, then the underlying component implementation shall ensure that the value returned from the
read operation shall be the value set in the modify operation.

ETSI

84 ETSI TS 102 523 V1.1.1 (2006-09)

EXAMPLE: If the fillcolor property of a TextBox is modified from green (#00FF00) to blue (#0000FF) and
then immediately read, the value returned from the read shall also be blue (#0000FF). This shall be
the case even if the underlying graphics implementation means that there is a delay before the
representation on the screen is refreshed with the new fillcolor.

The syntax and mechanism for modifying and reading property values is described fully in the behaviour section,
clause 9.4.6.

7.4.3 Handled events

Some component types have inherent behaviour that may respond to events.

The events that a component of a particular type may respond to shall be defined by the set of HandledEventSpec
items within the component's class specification.

The set of eventsthat are understood by each component class are detailed in annex A.

The target platform shall implement components so that they respond to events appropriately, as defined by the
behaviour specification within the component's class specification.

EXAMPLE: A Button component will respond directly to a user key-press without the need for any additional
behaviour to be specified; it will change its appearance to show that it isin an "active" state.

7.4.4 Handled actions

Component actions are commands that are sent to a specific component instance, and which direct that component
instance to perform some operation and/or state change.

The actions that may be sent to a component of a particular type are defined by the set of HandledActionSpec items
within the component's class specification.

Actions may have zero or more parameters to provide the component with additional datato perform that action. These
are specified by parameter items within the HandledActionSpec item.

The target platform shall implement components so that they respond to actions appropriately, as defined by the
behaviour specification within the component's class specification.

The syntax and mechanism for sending actions to componentsis described fully in the behaviour section, clause 9.4.
The set of actions that are understood by each component class are detailed in annex A.
EXAMPLE: The ReturnPath component implements arequest action to submit a transaction to aremote
server. This action expects a Transaction component as a parameter.
7.4.5 Generated events

In addition to responding to external stimuli from the PCF service such as events, property changes and actions, some
components shall also be able to generate component events. This enables them to provide notification of internal state
transitions to the wider PCF service in which they are contained.

The events that a component of a particular type may generate are defined by the set of Gener atedEvent Spec items
within the component's class specification.

The events generated by each class of component are specified in annex B.

The target platform shall implement components so that they generate events appropriately, as defined by the behaviour
specification within the component's class specification.

EXAMPLE: In addition to changing its visual appearance, the Button component, when selected, will also
generate an OnSelect component event. This event may then be handled by a custom behaviour
item elsewhere in the containing Scene to add some additional custom behaviour - for instance by
invoking a transfer action on a ReturnPath component elsewhere in the Scene.

Component events may have zero or more parameters to provide additional data about the event.

ETSI

85 ETSI TS 102 523 V1.1.1 (2006-09)

7.4.6 Generated errors

Aswell as generating events during their normal lifetime, some component types may also generate errorsto provide
notification of an internal problem.

The errors that a component of a particular class may generate are defined by the set of GeneratedError Spec items
within the component's class specification.

The errors generated by each class of component are specified in annex A.

The target platform shall implement components so that they generate errors appropriately, as defined by the behaviour
specification within the component's class specification.

EXAMPLE: An I mage component will generate an OnlnvalidM ediaType error if the type of media does not
match on of the supported image/* types.
1.4.7 Component scope

The scope within which components are modifiable by behaviour itemsis strictly defined by the PCF. These rules are
defined fully in clause 6.3.7.

The order in which events generated by components are made available to other components is governed by the
component event propagation model. Thisis defined in clause 9.3.4.

7.5 Defined PCF component classes

7.5.1 Overview
Componentsin the PCF can broadly be grouped into the following categories.
. Visual components: These components contribute to visual aspects of the viewer experience.

. Non-visual components. These components have no visual appearance but provide some aspect of service
functionality.

. Container components: These components may contain a number of other components. Container
components may contain custom behaviour to specify interactions between their child components.

The PCF does not specify componentsin a class hierarchy in the object-oriented sense. Thisis because the PCF does
not specify how a component should by implemented, only how the component is intended to appear and behave. As
such, it is possible that the implementation on a particular platform uses a completely different class hierarchy.

ETSI

86 ETSI TS 102 523 V1.1.1 (2006-09)

7.5.2 Visual components

Table 22 lists the visual components available as standards within PCF:

Table 22: PCF visual components

Component Type Description

AxisLine Draws a horizontal or vertical line.

Background Draws an image or a solid colour as the background to a scene.

Button Implements the appearance and behaviour of a button, radio button or check-
box.

Clock Implements the appearance and behaviour of a clock.

ConnectStatusimage Defines a location within the reference screen where platform specific
graphics may be rendered to represent the connection state of the return path
component.

Ellipse Draws an ellipse.

HintTextBox Draws plain text "hints" within a defined rectangular area in response to focus
events on visible components.

Image Displays an image.

ImageAnimated Displays a set of images in sequence to create an animation.

ImageScalable Displays an image that is scalable to the size available.

Line Draws a line between two arbitrary points.

Menu Implements the appearance and behaviour of a menu.

NumericNavigator Allows a user to enter a number and then navigates to a scene linked to the
number.

PickList Draws a "pop-up" containing a list of textual items, and allows the user to
select an item.

Pixel Draws a pixel.

Polygon Draws a polygon based on an arbitrary set of points.

RadioButtonGroup Groups a set of buttons into a mutually-exclusive select group.

Rectangle Draws a rectangle.

SpinControl Implements the appearance and behaviour of a spin control.

TextBox Draws a text box.

Textinput Implements the appearance and behaviour of a text input field.

Ticker Implements the appearance and behaviour of a marquee ticker.

Subtitles Controls the presentation of subtitles, defined as an elementary
stream of a Stream component.

Video Controls the presentation of a video, defined as an elementary stream of a
Stream component.

All visual components shall bein either the "Visible" or "Hidden" state (see figure 14).

By default, al visual components are able to take focus, however this may be overridden either in the component's class
specification or in the instance declaration by setting the focusable property to false.

Components that are focusable shall implement the statechart defined in figure 14.

ETSI

87 ETSI TS 102 523 V1.1.1 (2006-09)

Hide

\isible statemachine

Focus statemachine

Hide Focussed

entry/ OnFocus
ext/ OnBlur

Figure 14: Visual component behaviour

For a non-focusable component, the Focus statemachine in figure 14 is reduced to just the "Default” state.

When a focusable component isin the "Disabled" state it can still have avisual appearance, if one is defined, but it shall
not take focus.

When a focusable component isin the "Default” state it shall have a visual appearance and shall be focusable.

The only dependency between the two statemachines shall be that when a component isin the "Hidden" state it shall not
take focus.

The "Show" event shall occur when the visible property is set to true. The "Hide" event shall occur when the visible
property is set to false. The "Enable" event shall occur when the enabled property is set to true. The "Disable" event
shall occur when the enabled property is set to false. The "Focus' event shall occur when the component is given focus.
The"Blur" event shall occur when the component loses focus.

Only avisible component with afocusable property set to true shall be able to take focus, and the point at which it
takes focus shall be determined by its tabindex property.

Some component classes may be specified to automatically alter their appearance depending on their state without the
need for any action description. In order to allow the author of a service description to control such changesin
appearance, a component specification may associate properties with each component state. This association is achieved
through the use of standard suffixes to the property name:

. To associate a property with the "Default” state there shall be no suffix.
. To associate a property with the "Focused" state the suffix "-focus' shall be used.
. To associate a property with the "Disabled” state the suffix "-disabled" shall be used.

Thereis no requirement for the properties associated with a particular component state to completely describe all
aspects of acomponent's visual appearance.

For each aspect the value is taken from the first property found with a value (either explicitly declared or provided as a
default in the component class specification) using the order of precedence defined in table 23.

ETSI

88 ETSI TS 102 523 V1.1.1 (2006-09)

Table 23: Order of selection for properties associated with focus state of visual components

Current state Default Focused Disabled
First choice (default) -focus -disabled
Second choice (default) (default)

7.5.3 Non visual components

7.5.3.1 Functional components

Table 24 lists the functional non-visual components available as standard within PCF.

Table 24: PCF functional non-visual components

Component Type

Description

Audio

Controls the presentation of an audio, defined as an elementary stream of
a Stream component.

CurrentTime

Used to obtain the current time.

Indicate Provides a simple voting mechanism using a return path.

Random Used to obtain a random number.

ReturnPath Provides access to a return path.

SecureReturnPath Provides access to a secure return path mechanism.

Stream Controls the connection to a composition of elementary media streams (video,
audio, subtitles etc.) that are presented in synchronization.

StreamEvent Controls a source of stream events from a data elementary stream of a
Stream component.

Timer Used to generate a timer notification at a specified point in the future.

Transaction Controls the data exchange over a return path.

7.5.3.2 Variable and cookie components

Table 25 lists variable and cookie components available as standard within PCF.

Table 25: PCF variable and cookie components

Component Type

Description

BooleanVar

Used to store and retrieve a single boolean value for the lifetime of the
encapsulating Container component.

DateTimeVar

Used to store and retrieve a single date and time representation value for the
lifetime of the encapsulating Container component.

IntegerVar Used to store and retrieve a single integer value for the lifetime of the
encapsulating Container component.
StringVar Used to store and retrieve a single string value for the lifetime of the

encapsulating Container component.

BooleanCookie

Used to store and retrieve a single boolean value such that it may persist
beyond the duration of a service session.

DateTimeCookie

Used to store and retrieve a single date and time representation value such
that it may persist beyond the duration of a service session.

IntegerCookie Used to store and retrieve a single integer value such that it may persist
beyond the duration of a service session.
StringCookie Used to store and retrieve a single string value such that it may persist

beyond the duration of a service session.

Each variable or cookie has a single property called value, which is of the appropriate type. Variables store the value
for the lifetime of the component's parent container. Cookies persist for at least the lifetime of the user's session.

ETSI

89 ETSI TS 102 523 V1.1.1 (2006-09)

7.5.4 Container components

Figure 15 shows the conceptual hierarchy of component classifications within the standard set of PCF components:

Property | -Properties | Component
0.*
0.* -LayoutProperties 0.* SubComponents
VisualComponent NonVisualComponent
N
ContainerComponent
N
FlowLayoutContainer How BC
T N N
: Table TextHow
TruncateHowContainer
Scene Service
ScrollHowContainer

PageHowContainer

Figure 15: Component object model

NOTE: Thisisnot aclass hierarchy in the strict object-oriented sense. PCF does not specify how a component
should by implemented, only how the component is intended to appear and behave. As such, it is possible
that the implementation on a particular platform uses a completely different class hierarchy.

The hierarchy in figure 15 is derived from the commonality of facets at the component interface level -
the use of common property groups, the ability to contain child components and layout characteristics etc,
and as such provides a useful approximation of a class hierarchy.

ETSI

90 ETSI TS 102 523 V1.1.1 (2006-09)

Table 26 lists the container components available as standard within PCF.

Table 26: PCF standard container components

Component Type Description

Service This is the top-level component. A Service positions all its immediate sub-
components using the same layout rules as a StaticELC.

Scene Positions all its immediate sub-components using the same layout rules as a
StaticELC.

ELC Explicit Layout Container: positions its sub-components using explicitly

StaticELC defined size and position properties.

SFC ScrollFlowContainer: presents a Flow within a fixed size rectangular area,

StaticSFC with a scroll control to reveal Flow content that cannot be directly
accommodated in the presentation area.

PFC PageFlowContainer: presents a Flow within a fixed size rectangular area,

StaticPFC with a paging control to reveal Flow content that cannot be directly
accommodated in the presentation area.

TFC TruncateFlowContainer: presents a Flow within a rectangular area, with

StaticTFC limited "stretch" governed by a maxsize control. Flow content that cannot be
directly accommodated in the presentation area at maximum size will be
truncated.

Flow Positions its subcomponents using the flow layout algorithm specified in the
present document.

TextFlow Specialization of Flow which is limited to contain only a single instance of
SimpleMarkedUpText.

Table Presents content in a tabular form using child components specified in the
present document. Tables can exist only within a Flow or within a
FlowLayoutContainer.

Static forms of these components restrict the manipulation of certain properties at run-time. This provides components
which will be portable to awider range of platforms.

The layout algorithms underlying these components are specified within clause 8.

7.6 Custom components

In addition to the component types defined as standard within the PCF specification, it shall be possible to create
custom components to implement special functionality or to exploit specific features available on atarget platform.

As PCF uses a generic component interface for its standard components, instances of custom components shall be
declared within a PCF service in exactly the same way.

The present document defines the interfaces for standard component types using the PCF's Component Definition
Syntax and specifies what the perceived behaviour of that standard component type should be. It shall be the
responsibility of the custom component creator to define the interface of the custom component type, although this must
still be using the CDS to define the interface elements.

The present document places no restrictions on how the underlying component implementation should appear or
behave.

It isthe responsibility of the transcoder for the target platform for which the custom component has been written to
interpret a declaration of an instance of that component and implement it appropriately.

It will only be possible to render a custom component on platforms that support that specific custom component type.
As such, servicesthat contain custom components will be less portable than services that contain only standard PCF
components.

In the case where the same custom component is available on multiple platforms, it shall be the responsibility of the
custom component creator to ensure that the component type provides an equivalent user experience on each of these
platforms.

ETSI

91 ETSI TS 102 523 V1.1.1 (2006-09)

To prevent naming collisions, the creator of a custom component should set the provider of the component to their
domain name. They can then choose the name of the component, ensuring that it is unique within components which are
provided by them. If necessary the provider name may have a path after the domain to further differentiate between
components.

EXAMPLE 1: Foo Components has produced an interactive game, and will name it as follows:
provi der ="f ooconponent s. conf' nane="Gane"

EXAMPLE 2: The Big Broadcasting Company has produced two quizzes, and names them as follows:

provi der =" bi gbr oadcast i ngconpany. com gameshows/ strongestchain " nanme="qui z"
provi der =" bi gbr oadcast i ngconpany. com ganmeshows/ t estt heconti nent" nanme="qui z"

NOTE: The creation of custom eventsis not permitted. Custom components shall use only events defined by the
present document.

7.7 Schema components

The generic component model appliesto all component classes. As such, it shall be possible to declare a component
instance of any class using the generic component model element Component and specify that component instance's
properties with the various Valuel tems.

In addition to this method of declaration it shall be possible to declare standard PCF components using class-specific
declaration elements. Thisisto allow a PCF author to write less verbose, but functionally equivalent PCF.

The components that may be used in this way are collectively referred to as schema components. Elements for
specifically declaring each type of schema component are included within the PCF schema. The element for each
schema component shall be the same as that component's class name.

EXAMPLE: A Rectangle component may be declared generically using the following PCF fragment:

<Conponent cl ass="Rect angl e">

<Col or name="fillcolor" val ue="#0000FF"/>
<Col or name="1|1inecol or" val ue="#FFFFFF"/ >
<Posi tion name="origin" val ue="100 100"/ >

<Si ze nanme="si ze" val ue="50 30"/>

</ Conponent >

Alternatively, the functionally equivalent, but type-specific declaration would be as follows:

<Rect angl e>

<Col or name="fillcolor" val ue="#0000FF"/>
<Col or name="1|1inecol or" val ue="#FFFFFF"/ >
<Posi ti on name="origin" val ue="100 100"/ >

<Si ze name="si ze" val ue="50 30"/>

</ Rect angl e>

NOTE: Custom component declarations shall always use the generic form.

8 Layout specification

8.1 Introduction

The PCF layout specification governs the overall positioning and appearance of the visible PCF components that
comprise the layout of a PCF service.

Layout of visible components in PCF can be controlled in two ways:
. explicit layout;

. flow layout.

ETSI

92 ETSI TS 102 523 V1.1.1 (2006-09)
Explicit layout supports pixel-accurate positioning of graphical and textual objects on screen within an explicit layout
container, as described in clause A.1.1.4.

Flow layout supports presentation of content that is flowed into a defined rectangular area according to an automated
layout algorithm. There are three kinds of Flow:

. Flow: Flowed content can include text, inline graphics and all other visual components. A Flow component
can contain child visual components. A Flow component can contain MarkedUpText content.

. TextFlow: TextFlow is asubset of Flow where only SimpleMarkedUpText content is supported. A TextFlow
shall not contain any child components.

. Table: Tables are a subset of Flow where flowed content is laid out in atwo dimensional tabular structure. The
table layout algorithm in PCF is based on the CSS2 table specification

Flowed content is presented in one of three kinds of Flow container:

. TFC (Truncate Flow Container): A rectangular bounded areain which a Flow of content can be presented.
The TFC may stretch, within specified limits, to accommodate the Flow. Content that cannot be
accommodated within the TFC shall be truncated.

. SFC (Scroll Flow Container): A rectangular bounded area in which a Flow of content can be presented. The
SFC presents a scrollbar to enable the viewer to scroll up and down through content that cannot be
accommodated in the SFC.

. PFC (Page Flow Container): A rectangular bounded area in which a Flow of content can be presented. The
PFC presents |eft and right navigation controls to enable the viewer to page back and forth through content that
cannot be accommodated in the PFC.

Flow layout is specified in clause 8.3.

PCF can be deployed to awide variety of platforms, and it is possible that information about certain aspects of specific
destination platforms may not be available to the service author. These may include:

. screen resolution;
. OSD registration;
. safe areas,

. fonts;

. colour depth.

A service author may not know the screen resolution of the target platform on which a service is to be rendered.
Specification of explicit screen coordinates may result in distortions to or clipping of the intended appearance. To avoid
this potential problem, all screen coordinates shall be specified with respect to a reference screen model. The reference
screen model is described in detail in clause 8.7.

NOTE: A PCF transcoder can map areference screen location to an actual screen location on a specific target
platform.

Anintrinsic layout issue faced by service authorsis achieving accurate registration, or overlay, of OSD graphics above
the video plane. Thisisonly possible to reliably achieve when both screen resolution and aspect ratio are known. The
PCF does not attempt to address this industry-wide issue. I ssues relating to OSD registration are described in clause 8.8.

Many interactive TV receivers have limited built-in font resources. Because PCF service authors may not have
knowledge of font resources available on target platforms, PCF follows the CSS2 [22] approach. This approach allows
font selection criteria to be expressed by the service author, but font selection is ultimately determined by the
capabilities of, and resources available to, a specific target platform. Font selection is described in clause 8.10.

ETSI

93 ETSI TS 102 523 V1.1.1 (2006-09)

8.2 Explicit layout

8.2.1 Introduction

A PCF explicit layout container component is a container component that allows its child components to be precisely
positioned and sized using explicit co-ordinate and size values. An explicit layout container is a container used to group
child components. The child components are then positioned relative to the origin of the explicit container. The origin
of the explicit container may be offset from the origin of the screen co-ordinate system.

An explicit layout container has no visual appearance or size of itsown. It hasan origin position property that defines
the zero point of the co-ordinate system relative to which al the container's child components are positioned.
Components within an explicit layout container do not affect each other's horizontal or vertical position. Child
components higher up the z-plane display stack will appear on top of child components further down.

8.2.2 Explicit layout container elements and characteristics

There are two types of explicit layout container available: static (StaticEL C) and dynamic (EL C). The static container
allowsits child components to be laid out at initialization, after which point the container cannot subsequently be
repositioned or hidden. In contrast, the dynamic container can be repositioned, hidden or shown, like any other visual
component; by doing so al its child components are themselves repositioned, hidden or shown.

The relationship between these and other related components is shown in figure 16.

Component
--child

0.*

Explicit Layout Container

-origin

StaticELC ELC
-visible

Scene Service

Figure 16: Explicit layout component hierarchy

An explicit layout container is a container for components. Child components shall be positioned relative to the origin
of the explicit layout container.

ETSI

94 ETSI TS 102 523 V1.1.1 (2006-09)

EXAMPLE 1: Anexplicit layout container has an origin position of 100,100. The container has a single child
component, a Rectangle, which has an origin property of 80,50. The position of the Rectangle on
the screen will be relative to the layout container's origin, so will therefore be at screen
co-ordinates of 180,150. Thisisillustrated in figure 17.

Screen Total offset in screen
co-ordinates: 180, 150

| ELC Origin

! 80,50

Rectangle

'
1
'
'
'
T
'
'
'
'
'
'
'
'
'
'
'
'
T
'

Figure 17: Relative positioning of explicit layout child components

A StaticELC is one that can only beinitialized. Once initialized it cannot be moved or hidden. It shall still be possible to
show, hide and move each individual child component.

A Sceneisa StaticELC. All scenes shall have afixed origin at screen co-ordinate 0,0.

A dynamic ELC has all the properties of a StaticEL C. In addition it shall be possible to show and hide the container,
move its origin, and reposition it in the display stack. When a dynamic explicit layout container is shown, hidden or
moved, al its child components shall also be shown, hidden or moved accordingly.

It shall be possible for an explicit layout container to contain further explicit layout containers. In each case the origin
co-ordinate of the child container defines the zero point for its children. However, it shall not be possible for a
StaticEL C to be located within an ELC. Thisis because the static container cannot move, and so would be unable to
move if its dynamic parent container moved.

Explicit layout containers may contain Flow layout containers. However, explicit layout containers shall not be
contained within Flow containers.

If one or more components within an ELC are moved individually, either inthe X and Y planes or up and down the
display stack, and the EL C is subsequently moved, then the child components shall retain their new relative positions
within the ELC.

EXAMPLE 2: Figure 18 shows an ELC that contains three child components: a Rectangle, an Ellipse and a
triangle (made using the Polygon component). Initially they are ordered, asillustrated in A, from
back-to-front: the rectangle, triangle and ellipse.

Subsequently, the triangle component is brought to the front of the display stack, and both the
triangle and the ellipse are moved. Thisisillustrated in B.

Finally, the ELC is moved to the right. As can be seen in C, the modified relative spatial
relationships between the container's child components are maintai ned after the parent is moved.

1 1
1 ELC Origin) 1 ELC Origin

A ' B c

Figure 18: Moving child components within a (dynamic) ELC

ETSI

95 ETSI TS 102 523 V1.1.1 (2006-09)

Upon initialization, components shall be positioned within the z-plane in the order in which they are declared, those
components declared first being at the back. If two components occupy the same space on screen, the component
declared later, and thus higher up the display stack, will obscure the component lower down the display stack.

EXAMPLE 3: Anexplicit layout container has two child components, a Rectangle and a Polygon. The
Rectangle is declared before the Polygon in the PCF description. The Polygon will therefore be
nearer the front of the z-plane display stack. Thisisillustrated in figure 19.

Screen

Figure 19: Display stack positioning of explicit layout child components

Child components within an explicit layout container shall occupy the same band of the display stack. If two explicit
layout containers are children of a parent explicit layout container, then these children shall each occupy their own
separate band of the display stack. All the children of the rear child layout container shall be positioned underneath all
the children of the front child layout container. For further explanation of the display stack see clause 8.9.

EXAMPLE 4: Thisisillustrated in figure 20. In diagram A there are two Explicit Layout Containers, ELC 1 and
EL C 2. Both have three components at different z-order positions, which overlap. ELC 2isina
z-order positionin front of ELC 1. If the containers are repositioned so that they overlap, asin
diagram B, the rearmost component of ELC 2 is still in front of the front-most component of
ELC1.

ELC1 ELC2

A B

Figure 20: Explicit layout containers overlapping each other

8.3 Flow layout

8.3.1 Introduction

PCF flow layout provides a mechanism whereby components and content that do not require the layout precision of an
explicit layout container can be "flowed" into arectangular area and positioned relative to each other according to the
Flow layout algorithm.

A Flow component lays out its child elements in essentially the same way asis common for HTML. Character sets
requiring left-to-right and right-to-1eft flow are supported, and these are handled on an element-by-element basis.
Within this basic framework, more precise positioning control is achieved by allowing the alignment, spacing and
block-separation of individual elements to be specified.

ETSI

96 ETSI TS 102 523 V1.1.1 (2006-09)

The layout algorithm used by the Flow component is based directly on the layout algorithm specified by the W3C
Cascading Style Sheets, level 2 CSS2 Specification. The present document defines a flexible set of rules for applying
formatting to HTML documents. The requirements for flow layout in PCF differ from those for HTML web pagesin
that:

. They are less extensive - much of the more subtle formatting control available within CSS2 is unnecessary in
PCF flow layout components.

. PCF aready achieves some of the more complex aspects of layout using its own mechanisms - the explicit
layout component achieves an equivalent effect to CSS2's absolute and fixed position types.

Because of these differences, the layout facilities available within Flows are a restricted subset of CSS2, and the syntax
for controlling this layout is significantly different. However, the underlying flow layout algorithm isidentical.

The PCF flow layout is not a component itself; instead, a number of container components are defined that implement
the flow layout algorithm. These present, and allow navigation across, the laid out areain avariety of different ways.
8.3.2 Flow layout elements

A PCF Scene description forms a description tree.

A Flow isanode on this description tree.

A Tableisaspecialization of Flow, and is described in clause 8.5.

A Flow will incorporate both the visual components and marked up text beneath it in the description tree hierarchy.
These are called PCF flow layout elements and their relationships areillustrated in figure 21. Within clause 8.3 these
arereferred to simply as elements.

These elements form a subset of the nodes within the description tree (as the tree may contain non-visual components
which are ignored by the Flow), and this subset may be considered equivalent to the document tree described in the
CSS2 specification.

How HowLayoutContainer
>
N
Table TextHow
Property
0.*
-AppliedProperties
1 0.1 | 0.1 0.1
TC TH TF B TR 0.* D
. . * * 0 * o..*
0.1 FColumn-wise Properties 0.*10..

Figure 21: Flow layout component hierarchy

ETSI

97 ETSI TS 102 523 V1.1.1 (2006-09)

8.3.3 The flow layout box model

A PCF flow layout component shall lay out its child components and content using a conceptual box model. In this
model each separately identifiable child element istreated as though it were contained within a box. Boxes are flowed
across the content area of their containing box using the visual formatting model described in clause 8.3.4.

Each conceptual box has the attributes shown in figure 22.

r—-——---——— |
I ™ Margin (Transparent) I
| __TB___Boder _______ I
I : TP Padding l I
| |
Left |Lm | LB : LP Content RP:RB rul Right
N]
T S
| BB |
BM
e I

= = = Margin Edge
Border Edge

—————— Padding Edge

—— Content Edge

Figure 22: Layout box attributes

The layout box for an element has four concentric areas. the content ar ea, the padding area, the border area, and the
margin area. The perimeter of each areais called an "edge", so each box has four edges:

. The content edge: this edge surrounds the element's rendered content. By default its height and width are the
minimum required to contain the content, although this can be overridden with explicit values. The
background style of the content area isthe background property of the generating element.

. The padding edge: this edge surrounds the box's padding. If the padding width is 0 then this edge is the same
as the content edge. The background style of the padding area is the background property of the generating
element.

. The border edge: this edge surrounds the box's border. If the border width is 0 then this edge is the same as
the padding edge. The style of the padding areais specified by the border properties of the generating
element.

. The margin edge: this edge surrounds the box's margin. If the margin width is O then this edge is the same as
the border edge. Margins are always transparent, and allow the content area of the containing parent element to
show through.

The properties relating to each of the edges may be specified using value items referring to the top, bottom, left and
right segmentsin isolation.

8.3.4 Flow layout box types

8.34.1 Overview

The layout agorithm of the flow uses a number of virtual box types. These are not PCF service description items; they
are conceptual objects used to describe the model for laying out PCF components and marked up text within a Flow
component.

These objects, and the relationships between them, areillustrated in figure 23.

ETSI

98 ETSI TS 102 523 V1.1.1 (2006-09)

Block Formatting Context

Inline Formatting Conte

T T Divided Vertically By
1.*
1
1.* | -Formats o 0 -Divides Vertically
1% Block Box Base : Line Box
Flow 1..*[-Contains

Containing Block

i)
1

1.+ -Formats
-Top-Level Block inci i
P 0.1 Principal Block Box Block Box _Containing Block 0. Inline Box -Contajned By

1 1.*
1 1

0.*" Block-Level Element

0.* Inline-Level Element 1

Figure 23: Flow layout model objects

The three left-most items within figure 23 represent elements within a PCF description tree. These are:

Flow: the Flow component itself. This contains the child elements that must be laid out using the flow layout
model.

Block-level element: any child element that requires formatting visually as a separate block. For example:
paragraph and horizontal rule.

Inline-level element: any child element that does not form a new block of content. For example: emphasized
text within a paragraph, inline images and inline components.

The remaining items within the diagram are conceptual items used to define the flow layout model. These are:

Block box: alayout box used to contain a block-level element.

Principle block box: block-level elements shall generate a principal block box that directly contains only block
boxes. The principal block box establishes the containing block for descendant boxes.

Block formatting context: principal block boxes establish the block formatting context used for laying out
descendent block boxes.

Inline box: alayout box used to contain an inline-level element. Inline boxes are contained within a block box,
which establishes their containing block. An anonymous containing block box shall be generated if noneis
explicitly defined.

Inline formatting context: the containing block box establishes the inline formatting context for laying out its
descendent inline boxes.

Line box: an inline formatting context lays its inline boxes out over one or more horizontal lines. The
formatting context generates a line box to represent the rectangular area that contains the boxes that form a
singleline.

These items are defined in detail within clauses 8.3.4.2 to 8.3.4.6.

8.3.4.2

Containing blocks

Elements within a Flow are contained within a hierarchical tree structure: the Flow contains a number of child e ements;
some of these child elements may themselves contain child elements.

Within this structure, the element at each node of the tree islaid out either by ablock box or by an inline box. In either
case an element's layout box is positioned relative to, and within, that box's containing block.

The containing block of a descendent box shall be the content-edge of the nearest block-level ancestor box.

ETSI

99 ETSI TS 102 523 V1.1.1 (2006-09)

The width of the top-level containing block shall be constrained by the width of the container in which the Flow isto be
presented. The height of this block may grow to accommodate all descendent boxes.

8.343 Block-level elements

Block-level elements are those elements, such as paragraphs, that require formatting visually as a separate block. A
block-level element shall be given sole occupancy of the vertical areain which it islocated within its containing block.
Figure 24 shows three block-level elements, labelled 1, 2 and 3, within their containing block, labelled C.

m e C
' Thisisaparagraph 1.
| Thisisaparagraph |- 2!
' Thisis a paragraph 3

Figure 24: Layout of block-level elements

Block-level elements shall generate aprincipal block box, which shall contain only block boxes, and these block boxes
shall be used to lay out the block level elements.

If aFlow contains only inline-level elements, then an anonymous block box shall be generated to contain them.

If block-level elements and inline-level elements exist at the same level within the element tree then an anonymous
block box will be generated to contain each contiguous sequence of inline-level elements. Thus, if ablock box has at
least one block box insideit, it shall be forced to have only block boxesinsideit.

EXAMPLE: Given the following marked-up text:

<body>

This is sone text

<p>This is some nore text</p>
</ body>

The body element has both an inline and a block-level element. To make it easier to define the
formatting an anonymous block box shall be generated around "Thisis some text". This would
then be laid out as shown in figure 25.

body, box anonymous box

\

Thisis some text

Thisis some more

A3
s,

N

p box

Figure 25: Layout of anonymous block boxes
8.3.4.4 Block formatting context

In ablock formatting context block boxes shall be laid out vertically, one after the other, beginning at the top of the
containing block.

ETSI

100 ETSI TS 102 523 V1.1.1 (2006-09)

The vertical distance between sibling boxes shall be determined by the margin properties of those siblings.

Vertical margins between adjacent block boxes within a block formatting context shall collapse so that the margin
height separating the boxesis equal to the maximum of the bottom margin of the upper box and the top margin of the
lower box.

In ablock formatting context each block box's vertical outer edges shall touch the vertical edges of the containing
block.

8.345 Inline-level elements

Inline-level elements do not require a separate formatting block. They shall be distributed into lines, with each
successive element following on horizontally from its previous sibling. Figure 26 illustrates three inline el ements,
Text Box 1, Text Box 2 and Image 1, being laid out within their containing block.

Containing Block

TexdtBox1 =-=-""""=777=77="""~ Ted Box2 ™~
. Thisis some text..i.HereIs.
.I'-I'éx_t Box 2 continued ~ -~ 1|_ ST SIS T T

somemore i "™

1
1
1 [N
b - = |

Figure 26: Layout of block-level elements

In figure 26 the second element, labelled Text Box 2, has been split across two lines as otherwise it would overrun the
right-hand edge of its containing block.

Within a containing block box, some inline boxes will be generated explicitly by inline-level elements such asem, big,
or small. In cases where text is declared directly within the block-level element, an anonymousinline box will be
generated to contain it.

EXAMPLE: Given the following marked-up text:
<p>Thi s i s <enmpenphasi zed</ em> text</p>

The p generates a block box with three inline boxes inside it. The box for "emphasized" isan
inline box generated by the em inline element. The other inline boxes, for "Thisis" and "text" are
generated by the block-level element, p, and are anonymous inline boxes.

8.3.4.6 Inline formatting context

In aninline formatting context, boxes shall be laid out horizontally, one after the other, beginning at the top of a
containing block. Horizontal margins, borders, and padding shall be respected between these boxes.

Boxes shall be aligned vertically depending upon their vertical-align property: their bottoms or tops may be aligned, or
the baselines of text within them may be aligned. The rectangular area that contains the boxes that form alineiscalled a
line box.

The width of aline box shall be determined by its containing block. A line box shall always be tall enough for al of the
boxesit contains. However, it may be taller than the tallest box it contains (if, for example, boxes are aligned so that
baselines line up).

When the height of abox B islessthan the height of the line box containing it, the vertical alignment of B within the
line box shall be determined by the vertical-align property.

ETSI

101 ETSI TS 102 523 V1.1.1 (2006-09)

When several inline boxes cannot fit horizontally within a single line box, they shall be distributed among two or more
vertically-stacked line boxes. Thus, a paragraph is a vertical stack of line boxes. Line boxes shall be stacked with no
vertical separation and no overlap.

The left edge of aline box shall touch the left edge of its containing block and the right edge shall touch the right edge
of its containing block. Line boxes in the same inline formatting context may vary in height.

EXAMPLE: One line might contain atall image, requiring ataller line box than other lines that contain only
text.

When the total width of the inline boxes on alineisless than the width of the line box containing them, their horizontal
distribution within the line box shall be determined by their "text-align” property. If that property has the value
"justify"”, the user agent may stretch the inline boxes as well.

An inline box may not exceed the width of aline box so long inline boxes shall be split into several boxes and these
boxes distributed across several line boxes. When an inline box is split, margins, borders and padding shall have no
visual effect where the split occurs. Formatting of margins, borders, and padding may not be fully defined if the split
occurs within a bidirectional embedding.

By default, text within an inline box shall have its white space collapsed. If the inline box overrunsits line box, then the
inline box shall be split at the white space nearest to the right edge (for a left-to-right character set) and still within the
line box. If an inline box occupies and overruns an entire line box, and due to no appropriate white space cannot be
split, then the overrunning content shall be truncated.

If non-default white space handling is required, the white-space property may be used to modify the rules for collapsing
white space and splitting inline boxes.

8.3.5 Layout properties

The following clauses describe the properties that a child component within a flow layout may define that have specific
side-effects when defined within a flow-layout.

8.3.5.1 General properties

The v-align property defines the vertical alignment of a child element. If the element is an inline-level element then the
v-align property shall define the element’s alignment within its containing line-box. This property shall have no effect if
the child element is a block-level element. The v-align property may have the following values:

. Basdline: align the baseline of the box with the baseline of the parent box. If the box does not have a baseline,
aign the bottom of the box with the parent's baseline.

. Middle: align the vertical midpoint of the box with the baseline of the parent box plus half the x-height of the
parent.

. Sub: lower the baseline of the box to the proper position for subscripts of the parent's box. (This value has no
effect on the font size of the element's text.)

. Super: raise the baseline of the box to the proper position for superscripts of the parent's box. (This value has
no effect on the font size of the element's text.)

. Text-top: align the top of the box with the top of the parent element's font.

. Text-bottom: aign the bottom of the box with the bottom of the parent element's font.
. Top: align the top of the box with the top of the line box.

. Bottom: align the bottom of the box with the bottom of the line box.

The h-align property defines the horizontal alignment of child elements within ablock-level element. Given that a
block-level element contains a stack of one or more line boxes, the h-align property shall define how the inline-level
elements within each line box are aligned. The h-align property may have the following values:

. Left: inline-level elements shall be aligned to the left-hand edge of their containing line box.

ETSI

102 ETSI TS 102 523 V1.1.1 (2006-09)

. Right: inline-level elements shall be aligned to the right-hand edge of their containing line box.
. Center: inline-level elements shall be aligned so that they are centred within their containing line box.

. Justify: the inline-level elements may be stretched so that they span the entire width of the containing line
box.

The white-space property defines how whitespace inside an element is handled. Va ues have the following meanings:

. Normal: this value directs user agents to collapse sequences of whitespace, and break lines as necessary to fill
line boxes. Additional line breaks may be created by occurrences of the
 element.

. Pre: this value prevents user agents from collapsing sequences of whitespace. Lines are only broken at
newlines in the source, or at occurrences of the
 element.

. Nowr ap: this value collapses whitespace as for "normal”, but suppresses line breaks within text except for
those created by the
 element.

8.3.5.2 Side-specific properties

The following properties may be used in their general form, in which case the property is applied to al four sides (top,
bottom, left and right) of the box in question, or they may be applied to individua sides by adding the appropriate
suffix.

NOTE: Whenanindividua sideis specified in conjunction with the general form (applied to al sides), the value
for the individual side overrides that of the value for the general form for the given side.

The margin property defines the width of the margin area of abox. The "margin” property itself is a shorthand for
setting the margin width for all four sides to the same val ue; these may also be set individually using margin-top,
mar gin-bottom, mar gin-left and mar gin-right. All of these properties specify the margin width in pixels.

The padding property defines the width of the padding area of abox. The "padding” property itself isa shorthand for
setting the padding width for all four sides to the same value; these may a so be set individually using padding-top,
padding-bottom, padding-left and padding-right. All of these properties specify the padding width in pixels.

The set of border properties define the width, colour and style of the border area. The border properties prefixed with
just "border" apply the property in question to all four sides, whereas border properties may be applied individually
using properties prefixed with bor der -top, border-bottom, bor der-left and bor der-right. The following border
properties may be set:

. Width: the width, in pixels, of the border.

Color: the default colour of the border.

. Focuscolor: the colour of the border when the element has focus.

. Disabledcolor: the colour of the border when the element is disabled.

. Activecolor: the colour of the border when the element is active.

. Idlecolor: the colour of the border when the element isidle.

. Shadowecolor: the colour to use as shadow when the border is using a multicoloured style.

. Highlightcolor: the colour to use as highlight when the border is using a multicoloured style.

. Linestyle-singlecolor: the single-colour linestyle to use for the border. The value may be solid, dashed,
dotted or double.

. Linestyle-multicolor: the multi-colour linestyle to use for the border. The value may be gr oove, ridge,
bevelled-outset and bevelled-inset.

ETSI

103 ETSI TS 102 523 V1.1.1 (2006-09)

8.4 TextFlow

The TextFlow component is a specialization of the Flow component and obeys all the rules of the Flow component, but
its content type shall be SimpleMarkedUpText, and it shall not contain any child elements.

8.5 Table layout

85.1 Introduction

Tablelayout is a specialization of Flow layout, which provides a mechanism where child components and content are
positioned in atwo dimensional grid structure.

Tablesin the PCF are based upon the specification for tablesin the W3C's HTML4 [8] specification and Cascading
Stylesheets 2 [22] specification.

AsinHTML4 / CSS2, tablesin the PCF support the grouping of table rows into header, footer, and body sections.
Column groupings are also supported. Row and column groupings enable flexible rendering of tables in ways that
emphasize the table content and enhance usability.

EXAMPLE 1. Row groupings provide for the possibility of a PCF implementation that scrolls the table body, but
keeps header and footer always visible, or that repeats the header and footer rows across multiple
screens of paged table content.

EXAMPLE 2: Column groupings enable contrasting styling and formatting to be applied to specific columns,
such asthe "total” column in an accounts grid.

AsinHTML4/ CSS2, table cellsin the PCF may span multiple rows and columns.

The Table component defines the algorithm for laying out the table grid, and exists independently of the Flow layout
container objects that are used to present Flows and tables.

The layout of content within each cell of a Table obeys the rules defined for flow layout. See clause 8.3.
The visual representation of a Table is handled by one of the three flow containers:

. SFC (Scroll Flow Container);

. PCF (Page Flow Container);

* TFC (Truncate Flow Container).

The flow layout containers are specified in clause 8.6.

8.5.2 Table layout algorithms

The PCF does not define any optimal table layout algorithm. PCF implementations may make use of any suitable layout
algorithm, including those that prioritize speed over precision. The only exception to thisis where the service author has
specified that the "fixed" table layout algorithm should be used.

The fixed table layout algorithm is specified in clause 8.5.2.1.

An automatic table layout algorithm is specified in clause 8.5.2.2. This clause is optional.

8.5.2.1 Fixed table layout

Under the "fixed" table layout algorithm, the horizontal width of the table and columns shall not depend on the content
of the cells. Instead, table width depends only on the presentation container width, and column width depends on
declared column widths, borders and cell spacing.

The overall width of the table shall be derived from the available internal width of the flow container, i.e. actua
container width, minus any padding and, in the case of the SFC, minus any allocation for the scroll bar.

ETSI

104 ETSI TS 102 523 V1.1.1 (2006-09)

The width of each column in the table shall be determined as follows:
1) A column element width property with a value other than "auto" sets the width for that column.

2) Where column width has not been specified, acell in the first row of the column with a value other than
"auto” for the width property sets the width for that column. If the cell spans more than one column, the width
isdivided evenly over the columns spanned.

3) Anyremaining columns equally divide the remaining horizontal table space, minus borders and cell spacing.

Where the available width of the presentation container is greater than the sum of the values of the width properties for
each of the columns plus borders and cell spacing, the Table shall be positioned within the container according to the
flow alignment for that container.

Where the available width of the presentation container is less than the sum of the values of the width properties for
each of the columns plus borders and cell spacing, the PCF implementation shall return an error.

NOTE: Thefixed table layout algorithm allows PCF implementations to begin layout as soon as the entire first
row has been received. Subsequent rows do not affect column width.

Cell content is flowed within each cell according to the PCF flow layout algorithm specified in clause 8.3.
Cell content may be truncated according to the value of the wrap property for that cell, as specified in clause A.1.2.3.5.

If the containing row for a cell has arow-height property value defined, each cell in that row shall be this height.
Otherwise, cell height shall be stretched to accommodate the content and row height shall be determined according to
the algorithm specified in clause 8.5.2.4.

8.5.2.2 Automatic table layout (optional)

Under the "automatic" table layout algorithm, the horizontal width of the table is derived from the available internal
width of its flow container. Thisis a departure from CSS2.

The automatic table layout a gorithm shall adjust the width of the table columnsto fill the width of the presentation
container.

The automatic table layout algorithm shall only apply where one or more columns do not have a width property
specified.

Column widths are determined as follows:

1) The minimum content width for each cell in the Table shall be calculated according to the rules specified in
clause 8.5.2.1. If the specified width for the cell is greater than minimum content width, then the specified
width defines the minimum cell width. It isan error if the specified width is smaller than the minimum content
width. A value of "auto” for the width property of a cell means that minimum content width defines the
minimum cell width.

2) Themaximum cell width shall be calculated by formatting the content in each cell without breaking any lines,
except where explicit line breaks are specified.

3) For each column, a minimum and a maximum column width shall be determined from the cells that span only
that column. The minimum column width is the largest minimum cell width of the cellsin that column. The
maximum column width is the largest maximum cell width of the cellsin that column.

4) If awidth property is specified for a column and the width property is greater than the minimum column
width, then the width property shall define the column width. It isan error if the width property for the column
is smaller than the minimum column width.

5) For each cell that spans more than a single column, the sum of minimum column widths for the spanned
columns must be greater than the minimum cell width.

6) If condition 5is not met, then the minimum column width for each spanned column that does not have a width
property specified shall be increased evenly so that condition 5 is met. The PCF does not define how to
increase column widths in situations where the number of additional pixelsrequired is not a multiple of the
number of columns being increased. It isan error if no minimum column widths can be increased.

ETSI

105 ETSI TS 102 523 V1.1.1 (2006-09)

This provides a minimum and maximum width for each column. The presentation contai ner width shall determine final
column widths as follows:

1) If the width of the presentation container is greater than the sum of the maximum widths required by all the
columns plus borders and spacing then the final width for each column shall be the maximum column width
plus an additional width. The additional width shall be the difference between the sum of al maximum column
widths and the width of the presentation container, distributed evenly across all columns that do not have a
width property specified.

2) If the width of the presentation container isless than the sum of the maximum widths required by all the
columns plus borders and spacing, and more than the sum of the minimum widths required for al the columns
plus borders and spacing, then the final width for each column shall be the minimum column width plus an
additional width. The additional width shall be the difference between the sum of al minimum column widths
and the width of the presentation container, distributed evenly across all columns that do not have awidth
property specified.

3) Itisaneror if the available width of the presentation container is less than the sum of the minimum widths
reguired by all columns plus borders and spacing.
8.5.2.3 Table height algorithm

Table height is determined by the sum of the row heights, plus borders and spacing.

8.5.2.4 Row height algorithm
Row height is determined as follows:

1) Wherethe declared height property for the row has a value other than "auto", row height shall be determined
by the height property.

2) Whererow height is undeclared, or has avalue of "auto”, row height is calculated after al cellsin that row
have been laid out, and shall be equal to the minimum height required by the tallest cell in the row. See
clause 8.5.2.5 for details of the cell height algorithm.

8.5.2.5 Cell height algorithm

Table cells may have aheight property declaration, or may inherit a height property declaration from the parent table
row.

Where a cell height isdeclared or inherited, content in that cell shall not wrap, unless the declared cell height is
sufficiently large to accommodate the wrapped content. Overflowed content that cannot fit within the bounds of the cell
declared height shall truncate. Where cell height and row height has not been declared, or has avalue of "auto", content
in that cell shall be flowed using the flow algorithm specified in clause 8.3, and the cell height shall be the minimum
height required by the content in that cell.

Where a cell spanstwo or more rows, cell height shall be derived from the sum of the spanned row height property
declarations. If the spanned rows do not have height property declarations, or have height property values of "auto",
then the sum of the row heights must be great enough to encompass the minimum height of the cell spanning the rows.

Where row height is undeclared, and must be calculated, the calculation is contingent upon vertical alignment of cells
within that row.

The vertical-align property of each cell determinesits alignment within the row. Each cell's content has a baseline, a
top, amiddle and a bottom, as does the row itself. The values for the vertical-align property are as follows:

. Baseline - the cell is positioned such that the baseline of the cell's content is aligned with the baseline of the
containing row, or of the baseline of the first of several spanned rows.

. Top - the top of the cell box is aligned with the top of the containing row, or the top of the first of several
spanned rows.

. Bottom - the bottom of the cell block is aligned with the bottom of the containing row, or the last of several
spanned rows.

ETSI

106 ETSI TS 102 523 V1.1.1 (2006-09)

Middle - the centre of the cell is aligned with the centre of the containing row, or the centre point of severa
spanned rows.

The baseline of acell isthe baseline of the first line of content in that cell. If there is no text in the cell, the baseline
shall be the baseline of whatever content isin the cell. If the cell is empty, the baseline shall be the bottom of the cell
block. The maximum distance between the top of the cell block and the baseline over al cellsthat have a vertical-align
property of "baseline" is used to set the baseline for the row.

top

.. Lorem

ipsum dolor
sit amet,

n
consectetur I S u m 3
adipisicing p
elit, sed do = e
eiusmod

= dolor 5
1 2 4

baseline

middle

bottom

Figure 27: vertical alignment of cells

EXAMPLE: Infigure 27, cell blocks 1 and 2 are baseline aligned. Cell block 2 has the largest height above the

baseline, and so determines the baseline for the row.

NOTE: If no cell block has baseline alignment, then the row will not have, and does not need, a baseline.

To avoid ambiguity, cell alignment shall proceed as follows:

1)
2)

3)

4)

Cellsthat are baseline aligned are positioned first. This establishes the baseline for the row.

Cellsthat have top alignment are positioned second. The row now has a baseline, atop, and a provisional
height, which is the distance from the top to the lowest bottom of the cells positioned thus far.

Bottom and middle aligned cells are positioned. If any of these have a height which is larger than the current
row height of the row, then the row height shall be increased by lowering the bottom.

Cell blocksthat are smaller than the height of the row receive extratop or bottom padding.

8.5.2.6 Intra-cell content alignment

8.5.2.6.1 Horizontal alignment

Horizontal alignment of cell content shall be determined by the horizontal-alignment property for the cell. The values
for the horizontal-alignment properties are:

|eft - the content is aligned left in the cell;

centre - the content is centred in the cell. Where the cell contains wrapped content, each line of content shall
be centred,;

right - the content is aligned right in the cell;

justify - the content isjustified, with extra spacing such that the text string fills the available cell width.

ETSI

107 ETSI TS 102 523 V1.1.1 (2006-09)

8.5.2.6.2 Vertical alignment

Vertical intra-cell alignment shall be determined by the vertical-alignment property for the cell. The values for the
vertical alignment properties are:

. baseline - the baseline of the content shall be aligned;
. top - the top of the content shall be aligned with the top of the cell;
. bottom - the bottom of the content shall be aligned with the bottom of the cell;

. middle - the middle of the content shall be centred vertically in the cell.

8.5.3 Borders

Border width interacts with table width, cell width and cell padding and spacing. The relationship is described by the
following equation, which holds true for every table row:

Row width = (0.5 * border-widthy) + margin-left; + padding-left; + width; + padding-right; + margin-right; +
border-width, + border-width , + margin-left, + ... margin-right,, + (0.5 * border-width,)

In this equation, n isthe number of cellsin the row, and border-width; refersto the border between cellsi and +1.

NOTE 1: Only half of the two exterior borders are included within the table width. The other half liesin the margin
area of the table.

NOTE 2: PCF implementations must manage situations where there are odd numbers of pixels specified for
borders. The PCF makes no explicit specification for how thisissue should be handled.

= £ = =
*] = = o
z o o F oo o F oo o =
- e L E & L & c L
88 g B 83 g £ 3 g 3
‘E|E| width 3|3‘c"‘| width F‘|~ '1| width |d| g I

table width i

Figure 28: PCF border drawing diagram

Borders may be specified for tables, rows, row groups, columns, column groups and cells. It is therefore possible that
border segments within atable structure may have conflicting width, style and colour definitions declared in elements
whose borders coincide.

Border definition conflicts are resolved as follows:

1) Borderswith border style of "hidden" take precedence over all conflicting definitions.

ETSI

108 ETSI TS 102 523 V1.1.1 (2006-09)
2) Borderswith the style of "none" have lowest priority. A border will be omitted only if al coinciding borders
have the style "none".
NOTE: The default border style definition in "none".

3) If none of the conflicting border definitionsis "hidden” and at |east one of them is not "none", then narrower
borders are discarded in favour of wider borders.

4) If all widthsin conflicting border definitions are the same, the styling is resolved in the following order of
preference: "double”, "solid", "dashed”, "dotted", "ridge", "outset", "groove" and "inset".

If the border definitions conflict only in colour, then the colour is resolved according to a hierarchy: cell colour, row
color, row group colour, column colour, column group colour, and table colour.

8.6 Flow layout container components

The top-level block of al Flows will have afixed width, defined as the available content area width of the container in
which the Flow is to be presented. However, the height of the top-level block will grow to fit the child elements that are
contained within the Flow.

The height of the top-level block may exceed the available content area height of the container component. When this
occurs, it may be desirable to follow a number of different policies:

. truncate the content that overflows the available arez;

. increase the height of the flow layout container to accommodate the extra height, up to a certain maximum
size,

. provide a scroll bar to allow the user to scroll down to the overflowing content;

. provide a paging mechanism to allow the user to page to the overflowing content.
These four policies are implemented using three different flow layout container components:

. SFC (Scroll Flow Container);

. PCF (Page Flow Container);

. TFC (Truncate Flow Container).

The SFC component supports vertical scrolling of the content. If the flowed content exceeds the available content area,
the user may scroll through the content using a pair of pre-defined up/down keys.

The PFC component splits the Flow into a number of pages, and then allows the user to navigate through these pages
using a pair of pre-defined previous/next keys.

Both the SFC and PFC may reserve portions of their screen areato present appropriate navigation controls.

EXAMPLE: A PCF compliant implementation may reserve a strip of screen area along the right-hand edge of a
ScrollFlowContainer in order to visually present a scroll bar graphic. A strip of screen area along
the botton edge of a PFC may similarly be reserved to present "prev" and "next" button graphics.
In both cases, the effective area available for presentation of flowed content will be affected.

NOTE: Inclusion of ascroll bar graphic on the right hand edge of a ScrollFlowContainer will reduce the available
content area width for the ScrollFlowContainer. This will impact on calculation of the Flow.

The TFC component implements a non-paging, non-scrolling flow layout. By default a TFC component truncates any
content that exceeds the available content area. However, an optional maximum height property can be defined that
specifies the amount that the bottom edge of the TFC layout container can move if it needs to accommodate content that
exceeds the default available content area.

Content that overflows the maximum height of a TFC shall be truncated.

ETSI

109 ETSI TS 102 523 V1.1.1 (2006-09)

Maximum height of a TFC shall be constrained by the available height between the top of the TFC and the bottom of
the reference screen. TFC that include a maximum height definition that would result in the bottom of the container
falling off the bottom of the reference screen shall be treated as if the maximum height definition were the maximum
height that can be accommodated within the reference screen area.

8.7 Reference screen model

8.7.1 The reference screen
Thereis considerable variation in the display resolution of potential target devices.

NOTE: Standard definition TV resolution in Europe istypically 720 x 576 pixels, regardless of aspect ratio. Some
widescreen TV formats support 1280 x 720 resolution. Smaller devices such as handheld computers or
mobile phones may also be delivery targets for PCF services.

To support the definition of exact pixel locations on screen, despite the possibility of delivery to platforms with
different resolutions, PCF has adopted ar efer ence screen model.

All PCF screen locations are defined with respect to a reference screen. Thisis a bounded rectangular co-ordinate
system that comprises the reference screen in which all screen locations within the service description shall be located.
The referenceScreen property of the PCF service item defines the size of the reference screen for a particular service
description.

The mapping of the reference screen to atarget device is the responsibility of a PCF transcoder. If such mapping needs
to accommodate a difference in resolution between that of the reference screen and that of the display of the target
deviceit shall observe the rules defined in clause 8.7.2. These rules make use of properties of the PCF service item, as
defined in clause A.1.1.1.

8.7.2 Mapping the reference screen to a target device

8.7.2.1 Target device display resolution same as reference screen

When the resolution of the display of the target device and that of the reference screen are the same, pixel co-ordinates
in the reference screen shall map directly to their equivalent pixel co-ordinatesin the display.

A PCF transcoder may ignore the refer enceScreenM apping, r efer enceScreenAlignment and
refer enceScreenSurround properties of the PCF service item.

8.7.2.2 Target device display resolution different to reference screen

If the resolution of the display of the target device is different to that of the reference screen the
referenceScreenM apping property of the PCF service itemis used to indicate how a PCF transcoder shall handle the
resolution mis-match.

If the referenceScreenMapping property is set to "display-anamorphic" then the reference screen shall be scaled to
completely fill the display of the target device. However, since the scaling applied horizontally may be different to that
applied verticaly, the resulting presentation may be anamorphic.

0= L)

PCF description Mapped to display with Mapped to display with
reference screen greater resolution lesser resolution

Figure 29: ReferenceScreenMapping property set to "display-anamorphic"

ETSI

110 ETSI TS 102 523 V1.1.1 (2006-09)

If the referenceScreenM apping property is set to "display-preserve” then the reference screen shall be scaled to fill the
display of the target device as far as possible whilst preserving its aspect ratio, i.e. the scaling applied horizontally shall
be the same as that applied vertically. The implication of thisisthat the reference screen may only fill the display in one
dimension. The referenceScreenAlignment property of the service item shall be used to position the scaled reference
screen within the display and the referenceScreenSurround property of the service item shall be used to fill any part of
the display not mapped to by the reference screen.

i0: .

PCF description Mapped to display with Mapped to display with
reference screen greater resolution. lesser resolution.
referenceScreenAlignment referenceScreenAlignment
set to “bullseye” set to “north”

Figure 30: referenceScreenMapping property set to "display-preserve"

If the referenceScreenMapping property is set to "pixel" and the resolution of the display is greater than that of the
reference screen then the reference screen shall not be scaled. The referenceScreenAlignment property of the service
item shall be used to position the reference screen within the display and the referenceScreenSurround property of the
service item shall be used to fill any part of the display not mapped to by the reference screen.

The mapping rules for the case where the referenceScreenM apping property is set to "pixel" and the resolution of the
display islessthan that of the reference screen is not defined by the present document.

PCF description Mapped to display with Mapping to display with
reference screen greater resolution. lesser resolution
referenceScreenAlignment not defined by the
set to “bullseye’ present document.

Figure 31: referenceScreenMapping property set to "pixel"

8.7.2.3 Scaling the reference screen (informative)

The PCF does not specify the algorithm to be used when mapping coordinates from the reference screen to the display
of atarget device in cases where their resolution is not the same. PCF transcoders may implement scaling algorithms as
appropriate for specific target platforms. Distortions may occur when visual components are scaled for display on
non-reference screens.

NOTE: The reference screen model provides service authors with a portable means to describe the visible aspect
of a service so as be able to achieve equivalent appearance on displays with different resolutions.
However, mapping between resolutions may reguire approximation and rounding of exact coordinate
values. It will also require the scaling of certain content formats, such asimages, with potentially variable
resultsin quality depending on the particular implementation provided by the transcoder. To achieve
precise control over a service's appearance at different screen resolutions, service authors can provide
separate sets of screen positions, sizes (and if necessary assets) for each target screen resolution, using the
approach described in annex L.

ETSI

111 ETSI TS 102 523 V1.1.1 (2006-09)

8.8 Registration of video and graphics

The PCF makes no assumptions regarding the physical implementation of target devices and handles al visible
components within a single co-ordinate space, i.e. the reference screen. In this model registration of graphicsto a
particular point in the video is always achieved. However, in practice video and graphics may be handled differently
within the receiver and the requirements of achieving the correct aspect ratio for any video and maintaining registration
of video and graphics can not always be met. See annex P for further information on aspect ratio handling.

The serviceAspectRatio and videoHandlingPriority properties of the PCF service item may be used by a PCF
transcoder to optimize the presentation of a service on a particular target device. The use of these by a PCF transcoder is
not defined in the present document

8.9 Display stack model

8.9.1 Initializing the display stack

The PCF employs alayering model, known as the display stack. Theinitial ordering of visual components and
containers within the display stack isimplicit from the order in which they are declared in service and scene items.

At the start of the service session the display stack shall beinitialized in an empty state. Then any visual componentsin
the service item shall be added, one at atime and in their order of declaration, to the top of the display stack. Then any
visual componentsin the first scene item shall be added to the display stack in the same manner. Thisresultsin the first
visual component declared within the service item at the bottom of the display stack and the last component declared in
the first sceneitem at the top.

When navigation between scenes occurs the current scene item is deactivated and all visual components declared within
it shall be removed from the display stack. This leaves the display stack consisting of just the visual components
declared within the service itemin their current order.

NOTE 1: The order of these remaining components in the display stack may be different to their order of
declaration in the service item due to use of action language.

NOTE 2: Service item ordering is maintained on scene transition.
NOTE 3: The entire target scene will appear on top of Service items after scene transition.

When the target scene item is activated all visual components shall be added to the display stack in the same manner as
for the first scene item.

A special caseisthe handling of the Background component. Declared Background components shall not be added to
the display stack (see clause A.2.1).

Theinitial order of visual componentsin the display stack shall be local to the layout container in which they are
declared. Within a container, each child visual component shall be displayed in front of its preceding sibling. The visual
component declared last is displayed on top. Thisisillustrated in figures 32 and 33 where the numbers indicate the
order in which components are added to the display stack.

ETSI

112 ETSI TS 102 523 V1.1.1 (2006-09)

Service

A4 v v

.1 Component 2 Component Scene

A 4 v

3 Container 6 Component
component

A 4 v

4 Component 5 Component

Figure 32: Order of component rendering

Figure 33: Display stack layering model

8.9.2 Manipulating the display stack
Visual components may be moved up and down in the display stack using the following actions:
. infront - to move one object in front of another;
. behind - to move one object behind another;
. top - to move an object to the topmost position on the stack;
. bottom - to move an object to the bottom of the stack.

When avisual component is moved in this way, other visual components may be partially or wholly obscured or
uncovered.

Container components may also be moved up and down the display stack where thisis permitted in their action
definition.

EXAMPLE: Figure 34 illustrates the display stack model. In diagram A there are two Explicit Layout
Containers, ELC 1 and ELC 2. Both have three overlapping components, whose ordering is
implicit from the order in which they are declared. ELC 2 was declared after ELC 1, and therefore
its child components are displayed above ELC 1 in the display stack. Thisisillustrated in
diagram B, where the rear-most component of ELC 2 isin front of the front-most component of
ELC1.

ETSI

113 ETSI TS 102 523 V1.1.1 (2006-09)

Figure 34: Display stack behaviour

Similarly, when an Explicit Layout Container is hidden or shown, all of its sub-components are hidden or shown as
well.

8.10 Font selection

Font selection in the PCF is modelled closely on the font sel ection approach of CSS2 [22].

NOTE: Service authors are advised to refer to clause 15.1 of the CSS2 specification that informed the
specification of fontsin the PCF.

The PCF does not support font definitionsin service descriptions. Rather, it follows the CSS2 model where fonts are
requested through definition of a series of font properties. The specified set of font propertiesin the service description
provide the basis for afont selection exercise performed by the PCF implementation.

The PCF provides arich set of font specification criteriato enable a very granular font specification. The PCF supports
the following font selection criteria

. font-family - specifies the font family to be used to render the text;

. font-style - specifies whether the font is to be displayed using a normal, italic or oblique face;

. font-emphasis - specifies emphasis for fonts;

. font-variant - specifies whether the font should be rendered using normal or small-caps glyphs;

. font-weight - specifies the boldness or lightness of the glyphs used to render the text;

. font-stretch - specifies the degree of condensing or expansion in the glyphs used to render the text;

. font-size - specifies the size of the font from baseline to baseline when set solid, i.e. when the font size and
line height properties have the same value.

Font properties are defined in clause C.9.

9 Behaviour specification

At the core of an interactive service is an event-driven system, allowing external eventsto determine the route through
the system rather than following some internally expressed route. The complexity of an interactive service stems from
event/action patterns often coupled with concurrency and timing aspects. The PCF behaviour format provides a succinct
means of capturing these intricaciesin away that can be easily and reliably implemented, analysed and verified.

The specification of the behaviour for PCF startsin clause 9.1 with an introduction to the behavioural concepts of PCF.
Thisisfollowed by detailed accounts of the event types available to PCF (see clause 9.2), their propagation through the
component hierarchy (see clause 9.3.4.2), the PCF action language (see clause 9.4), and the use of statemachines (see
clause 9.6).

ETSI

114 ETSI TS 102 523 V1.1.1 (2006-09)

9.1 Introduction

The PCF behaviour provides for a service author:
e adescription of the different event types and how they propagate within the service structure;
e theability to describe a particular component as having focus thus influencing the event propagation method,;
e anaction language to describe the response to an event;

« amethod to describe specific moments in the lifetime of an interactive service can be captured and described
asadtate;

¢ amethod to describe the sequences of states and actions that occur in response to discrete events based on
statemachines,

e agraphical representation of statemachinesin the form of statecharts;
e an XML-based textual representation of statemachines.

The behaviour model is high-level, freeing a service from containing details of implementation and enabling service
authors to succinctly express their intent.

NOTE: The high-level model enables transcoders to implement an optimized transition for each target platform.

The PCF provides the service author a variety of components with intrinsic behaviour. The behaviour of these
components complies to the event propagation model and focus mechanism. For many PCF services, intrinsic
component behaviour will be sufficient.

For occasions when these component do not provide the behaviour required, the service author shall describe additional
behaviour using a combination of statemachines, action language and events, taking advantage of the event propagation
model and focus mechanism.

9.1.1 Intrinsic component behaviour

The PCF provides a comprehensive set of components that a service author may use to build a service. Some of these
components have intrinsic behaviour that causes them to react to certain events without the need for any additional PCF
behaviour declarations.

EXAMPLE 1: Inresponse to the UP and DOWN remote control keys, the highlight on a Menu component will
move up and down the list of menu labels.

Some of the component's properties provide an interface to the behaviour description enabling the service author to
affect certain aspects of the perceived behaviour.

EXAMPLE 2: The service author can control the colour associated with the highlighted menu label by providing
avalue for the textcolor -focus property of the Menu component.

9.1.2 Independent behaviour

When the PCF components do not provide the necessary behaviour to create a particular intended user experience, the
service author may add their own behaviour. This shall be achieved using a combination of PCF statemachines and PCF
action language descriptions by:

. creating custom components with the desired behaviour, as described in clause 7.6;

. attaching independent statemachines, as described in clause 9.6, within the component hierarchy.

ETSI

115 ETSI TS 102 523 V1.1.1 (2006-09)

9.2 Events

9.2.1 Run-time event model

Eventsin PCF are items that have a transient existence at run-time, and can only be accessed from action language that
are triggered by that event.

An event has an eventtype that defines a set of named properties as specified in annex B.

Within a component declaration, interest in an event is declared through the trigger item within an onEvent item or a
gtate transition item. The onEvent item or state transition item defines a name for the event whilst it existsin the
component's content. For the purposes of action language, events that exist in a component's context shall be considered
to be components themselves declared in the same context. Thus the event name may be used to directly access the
properties contained within the event.

NOTE 1: OnEvent and state transition names shall, therefore, be unique within the context of the component that
declares them.

An event may contain a sour ce property that indicates the source component responsible for propagating the event into
the context in which the action language is now executing.

NOTE 2: Sourceistherefore areserved word and shall not be used as the name of an event property item in event
type specifications.

NOTE 3: The value of source thus changes each time an event propagates up alevel in the component hierarchy.
Two specia values are defined to identify the source of the event:
. "this" identifies the source as the component in which the action language is defined;
. "system” identifies the source as the run-time environment itself.
NOTE 4: Thevalues "this' and "system" are therefore reserved words and shall not be used to identify components
in the PCF.
9.2.2 Event access declaration

Trigger declarations may contain aqualifier declaration. This provides a means to declare specific values for the
properties of an event that must be met in order for the event to trigger a state transition.

Qualifier property values are tested for equality with their respective event properties and such tests must al evaluate to
"true" in order for the event to occur.

Each qualifier value item shall provide the name of the event property and the literal value to test it against.

9.3 Event propagation model

The event propagation model is necessary within PCF in order that a transcoder is able to properly realizePCF specified
behaviour. Included in this abstract model are the notions system events, user input events and component events and
how they are influenced by focus.

The specification of the event propagation model for PCF startsin clause 9.3.1 with an introduction to the relationships
with PCF that determine the event propagation model. The technical specification followsin clauses 9.3.2 t0 9.3.5.

9.3.1 Introduction

9.3.1.1 Object model
The object model shown in figure 35 illustrates the relationship between an event and the service structure.

A single statemachine isinterested in zero or more events.

ETSI

116 ETSI TS 102 523 V1.1.1 (2006-09)

A component is associated with a statemachine. It follows that a component is interested in those events associated with
its statemachine.

A container is atype of component and is associated with zero or more components.
A sceneisacontainer and, therefore, atype of component.
A serviceis associated with zero or more components.

A focus manager will be used to identify which component within a service currently has focus. No more than one
component shall have focus at any given time during the lifetime of a service being rendered on areceiver. This
component may be declared at scene-level, container-level or basic component-level.

service C%”d pgr;t component 1 0.1 statemachine
1

1 0.* 1

parent
f)
208 child 0.*
focus 1 L event
manager container

0.*

parent

child

1

scene

Figure 35: Object model showing how events relate to other aspects of a service.

9.3.1.2 Component containment hierarchy

A scene shall be constructed from a combination of logical groupings of components. Thisresultsin a hierarchy of
components. There is a parent-child containment relationship between components at different levels within the
hierarchy.

EXAMPLE: The component hierarchy depicted in figure 36 shows the containment relationship within the
service called "root". For example, the container "group” is the parent of "comp3" and "comp4". It
isthe child of "scenel”. The descendents of a component include all the generations of
containment. Therefore, the descendents of "scene”'1 are "compl”, "group”, "comp2" and the
children of "group”, "comp3" and "comp4".

All components within the hierarchy of a scene are active when the sceneis active. The event propagation model shall
determine how events are routed around this hierarchy.

ETSI

117 ETSI TS 102 523 V1.1.1 (2006-09)

root::service

parent
child
scenel::scene

parent
|chi|d | child | child
compl::component group::container comp2::component
parent
child child
comp3::component comp4::component

Figure 36: Abstract component hierarchy (not UML)

9.3.1.3 Event propagation
A PCF event is an occurrence within the lifetime of a service that may invoke a response in some way.

Event types include system events (see clause 9.3.2), user input events (see clause 9.3.3) and component events (see
clause 9.3.4).

The event propagation model specifies the rules that determine the routing of events around the component containment
hierarchy. The model provides a consistent solution for al three event types whilst acknowledging their different
purposes.

9.3.2 System events

9321 Overview

System events are independent of the user's interaction with the service and so are not linked to the currently focused
component. Instead, a response may be gained from an interested component within the component hierarchy.

System events include;
. file/object updatesin the transmission stream;
. synchronization with streams;

. in-band triggers.

9.3.2.2 System event propagation rules
An event shall initially target the Service component.

. The event shall target the active scene and all its descendents in an unspecified. All components that have an
interest in this event may respond.

. The event shall target all descendents of the Service component excluding any non-active scene components.

EXAMPLE: There are five components interested in a particular system event in the component hierarchy
shown in figure 37 (indicated using a red border). The system event targets each of the three
components within the active scene (scenel) and targets the direct child components of the service
indicated by the red arrows. The highlighted component contained within scene2 is not targeted.
The order in which components are targeted is not specified.

ETSI

118 ETSI TS 102 523 V1.1.1 (2006-09)

NOTE: The mechanism by which events are made available to components' children can be made efficient
through careful implementation. The transcoder need not examine all components within the component
hierarchy in order to locate those with an interest in a particular event. In particular:

" If a component has knowledge of the events of interest to its descendents then the distribution of an
event can be restricted to those branches of the component hierarchy where there isinterest in the
current event.

" If acomponent is aware of exactly which of its descendents hasinterest in a particular event then
those components could be targeted directly.

root::service
l
scenel:scene ::component scene2::scene
|
::conlponent ::container ::complonent Z:COl’]t(’l:\iner ::component
I —— —
::component ::container ::component ::component

—— !

::component ::component

Figure 37: Events target service level components, and those of the active scene (scenel)

9.3.3 User input events

9.3.3.1 Overview
User input events are generated as aresult of user interaction. The scope of PCF considers only:
. Remote control key press (virtua keys).
It isthe concept of focus that makes the event propagation model for user input events different to those of system
events.
9.3.3.2 Focus control

No more than one component shall have focus at any given time. A user event shall initially target the component that
currently has focus.

If no component has been identified as having focus, then by default, the scene will assume focus and a user event shall
initially target the scene.

The PCF action language will facilitate the movement of focus between components.

EXAMPLE: The component hierarchy shown in figure 38 includes a Menu and a SpinControl that respond to
DOWN user key events. If the Menu has focus when a DOWN event is generated then the event
first targets the Menu component. The Menu responds to the event. The SpinControl, despite
having an interest in this event, does not respond.

ETSI

9.3.3.3

1)
2)

3)

4)

5)

119 ETSI TS 102 523 V1.1.1 (2006-09)

root::service

scenel::scene

menu::component group::container textBox::component
<DOWN>
textlnput::component spinControl::component
<DOWN>

Figure 38: Hierarchy of components within an example scene

User input event propagation rules
An event shall initially target the focused component.

If the component isinterested in the event then the event propagation shall terminate and the component may
respond to the event.

If the component is not interest in the event then the event shall target the parent component of the current
component.

Steps 2 and 3 repeat until either:
- acomponent has an interest in the event and propagation terminates (step 2); or
- the target component is the Service component.

If the Service component is not interested in the event then the event propagation continues asif it werea
system event.

EXAMPLE: The component with focusin figure 39 is highlighted with a yellow border. Those components

interested in a particular event have been drawn with ared border. The event first targets the
focused component. This component has no interest in this particular event and so the event targets
its parent component (a container). None of the components on the path to the Service component
have an interest in this event. When the event reaches the Service component it propagates as if it
were a system event. It targets all those components within the currently active scene that have an
interest in this particular event. Thisisillustrated in figure 40 where the event targets the three
components within scenel. Notice that the event does not target the component in scene2 despite
itsinterest in the event.

ETSI

Figure 39: Event propagation from focused component towards the Service component

NOTE:

9.3.4

9.34.1

A component generates component events to provide information about a change in itsinterna state. Not all internal
state changes of a particular component type shall be reported, but the component type specificationsin annex A shall
specify which events a particular component type will generate, and under what conditions these events will occur.

ETSI TS 102 523 V1.1.1 (2006-09)

scene2::scene

root::service

120
root::service
1 |
scenel:scene ::component
1
::conlponent ::container ::com[lonent ::contlliner
::component ::container ::component ::component
::component ::component

::component

scenel:scene

!

::component

1

::component

::container

::component

I—

::container

o

scenez2::scene

::component

::containe

r

::component

::component

—— 4

::component

::component

::component

Figure 40: Event propagation after reaching the scene component.

Overview

Component events

ETSI

The mechanism by which events are made available to the descendents of the scene component can be
made efficient through careful implementation. In particular:

The transcoder need not reconsider those components that declined the event whilst propagating towards
the root of the component hierarchy.

121 ETSI TS 102 523 V1.1.1 (2006-09)

EXAMPLE 1: A Button component generates an OnSelect event when the user presses the select key whilst the

button is active and has focus.

The purpose of component eventsistwofold:

To provide notification hooks, thus allowing the intrinsic behaviour of a component to be extended with
custom behaviour items.

To allow parent container components to perform some action in response to an event generated by one of
their children. By this means a parent component can link the behaviours of two or more of its children.

EXAMPLE 2: When the user changes the selected item on a M enu component the M enu generates an OnSelect

event. If ascene hasaM enu and a TextBox as two of its children it could link the behaviour of
these two components together by responding to the M enu's OnSelect event by changing the text
within the TextBox.

Behavioural access to PCF componentsis defined by a set of scoping rules (see clause 6.3.7). Only behaviour items
declared within a component itself, or within a component's parental hierarchy, may manipulate that component. It
follows that this scoping applies to the visibility of events generated by a component: the only behaviour items that may
respond to a component event are those declared within the generating component, or those declared within the
generating component's parental hierarchy.

9.34.2

Component event propagation rules

When a component generates an event, event handlers shall be given the opportunity to respond to that event in the
following order:

1)
2)

3)

4)

5)

An event shall initially target the generating component.

If the component has custom behaviour items that are interested in the event then the event propagation shall
terminate and the behaviour items may respond to the event.

If the component is not interested in the event then the event shall target the parent component of the current
component.

Steps 2 and 3 repeat until either:
- acomponent has an interest in the event and propagation terminates (step 2); or
- the target component is the Ser vice component.

If the event propagates up to the service and is not handled then it is discarded.

NOTE: Unlike user interface events, component events that have propagated up to the service level are not

broadcast to the rest of the scene.

EXAMPLE: The component generating an event is highlighted with a yellow border. The parent component

interested in that event has been drawn with ared border. In this caseit isthe current scene. The
event first targets the generating component. Behaviour declared within this component has no
interest in this particular event and so the event targets its parent component (a container). None of
the components on the path to the scene component have an interest in this event. When the event
reaches the scene component, behaviour items declared within the scene react to the event.

ETSI

122 ETSI TS 102 523 V1.1.1 (2006-09)

root::service
|
scenel:scene ::component
1
::conlponent ::container ::com[!onent ::contzlaminer
::component ::container ::component ::component
::component ::component

Figure 41: Event propagation from generating component towards the Service component.

9.3.5 Error Events

An error event is a specialization of a component event, and shall behave exactly as a component event for purposes of
propagation and declaration of trigger itemsto receive such events. The definition of the error event isin annex B

Conditions under which error events are generated by components are declared in the component specification annex A.
This annex also defines the values contained in the properties of each error event.

9.3.5.1 Execution error levels and default responses

Errors that propagate through the service description are identified as being at one of three levels. Their level
determines the default service session response if they are not handled explicitly within the service description provided
by the author.

Thelevels are:

. error - an error event of thislevel propagating through to the Service component is considered fatal and shall
cause termination of the service session.

. warning - an error event of thislevel propagating through to the Service component is recorded by the service
session for later examination, but does not affect the service session.

. notice - an error event of thislevel propagating through to the Service component is discarded and does not
affect the service session.

9.3.5.2 Error types
A PCF service description can suffer:
. reference errors- when areferenceis not resolvable at run-time;
. component errors- asdefined in clause B.4.1;
. guard failures - the condition cannot be eval uated,;
. action language errors - numerical or semantic errors during execution.

. A reference error shall result in the generation of a ReferenceError event.

ETSI

123 ETSI TS 102 523 V1.1.1 (2006-09)
EXAMPLE 1. At run-time, areceiver may discover that a piece of the PCF service description cannot be found
when activating a scene that referencesit.

A component error shall result in the generation of an error event with the property values as specified by the
GeneratedError definitions given in the component specification.

A guard failure and an action language error are equivalent. Both are failures in execution of action language
description, and shall result in the generation of an ExecutionError error event from the component containing the
action language description with alevel property as specified in clause 9.3.5.1

EXAMPLE 2: An action language error can occur if arrays indexes are out of bounds, or if atype conversion
fails, or if there is an attempt to divide a number by zero.

A guard failure shall also result in the guard condition evaluating to "false".

An action language failure of level "error” shall result in the action language execution being abandoned at the position
where the error occurred and the action language context being exited.

An action language failure of level "warning" shall not have any effect on subsequent execution of the action language
description.

An action language failure of level "notice" shall not have any effect on subsequent execution of the action language
description.

9.4 Action language

9.4.1 Introduction

The action language allows a PCF service author to describe a sequence of actions to be taken during the lifetime of a
PCF service, where these actions test and modify the current state of an interactive service. The action language is
designed to be similar to ECMA-script (see bibliography) wherever possible.

EXAMPLE: The following fragment of action language sets thefill colour of a Rectangle when the
loadComplete variable is true.

if (1oadConplete == true)
statusRectangle.fillcolor = #7f7f 7f;

The action language supports flexible partitioning of execution between head-end and receiver. As such, the action
language and its run-time model are not specified in terms of what a machine should do to carry out a sequence of
actions, but rather what an author can expect to have happened once the execution of an instance of action language has
compl eted.

NOTE: The PCF action language is expressed as an EBNF grammar provided in annex 1. It should also be
considered as a semantic action model that could be represented by alternative notations. An XML [5]
representation of the action model has been developed to validate the principle; however, thisis not
currently part of the specification.

The action language provides the following features:

. strongly typed values that are compatible with PCF static service descriptions, as described in clause 6.2.1.1,
and a mapping between values in a static service description and values in an active service description;

. alibrary of functions for use in expressions that can be used to manipulate values of PCF data types, as
described in clause 9.4.9;

. alibrary of system actions that can be called from any PCF action language, as described in clause 9.4.7.

9.4.2 Representation and execution

The PCF action language is represented by the normative EBNF grammar provided in annex |. The productions of this
grammar represent the PCF action language r un-time execution model, as described in clause 9.4.6.

ETSI

124 ETSI TS 102 523 V1.1.1 (2006-09)

Action language has two usesin PCF:

. to define sequences of actions to be executed in response to an event or state transition, as described in
clause 9.6.3.1;

. to define guard conditions, as described in clause 9.6.3.3.

J7 execution T | ook
ction Language Bloc
this CemiEtingr context guag
+event this +execute()
Action Language Block | 0.1
execution
context
1 il
Iso(fjle Statement |0.* actions
P actions {ordered}
{ordered} zr
Scope 0.* |
l .
Main Statement =
Break Continue loop
mapped into scope +execute() statements
locally declared T
Assignment Declaration Action Call Conditional Loop
+arget : Component
-action : name
sets creates initial then block
value | grguments branch N else block
1| 1 new value 0.1 |1 0.* condition
Variable Expression Condition iteration ™,
1 tESt‘ condition
~[+hame : name +operator H
+evaluate() : Value
W local N
N scope itializ
variables value P rslg?g:rr;gent/
1 Must 1|Scope .
<<metaclass>> el Literal Value evaluate b Ideclaran(_)n and .
. . , 0a oop assignmen
Runtime Datatype type Hiteral : String Boolean not shown.
*
+default value

Figure 42: Action language model

The model for representing action language is shown in figure 42. The top level items of the action language execution
model are action language and condition items, which are collectively known as action language items. These are
contained within a generic container item, such as a guard condition in a statemachine, which provide the execution
context of an action language instance. The itemsin this model are described below:

. Action language block items represent all sequences of actions that can be executed. They can act asa
container for other action language blocks.

. Action language items are kinds of Action Language Block items and contain a sequence of Statement items,
where each statement item is considered as an action to be executed in the order in which they are declared.
The different kinds of statement are described in clauses 9.4.6.1 to 9.4.6.6.

. Action language block instances have a scope, known as their local scope, which contains variables mapped in
from the execution context, as described in clause 9.4.5.2, and any locally declared variables.

ETSI

125 ETSI TS 102 523 V1.1.1 (2006-09)

. Run-time datatype items represent the data types available for values in any action language instance. Each
run-time datatype is a set of possible values, as described in clause 9.4.5.2

. Value items represent values that are members of the run-time data types.
. Literal valueitems are literals that represent values of a given run-time data type item.

. Variable items are mutable named val ues contained within the scope of an action language instance. Variable
items exist within a scope for one of two reasons:

- They have been declared locally using the declaration statement described in clause 9.4.6.3. Variable
items declared this way are known aslocal variables.

- They have been mapped into the scope as described in clause 9.4.5. Variable items available within an
action language instance by mapping are known as mapped variables.

. Expression items represent an evaluation that can be carried out as part of a statement or condition and return
avauethat is calculated based on the structure of the expression. An output value shall be calculated by
carrying out the eval uation operation for the expression, as described in clause 9.4.7. The evaluation result isa
value that is a member of one of the run-time data types.

. Condition items consist of an expression item that eval uates to a Boolean value. Conditions items are also
used in guard conditions of statemachines, as described in clause 9.6.3.3.

. Block items are a sequence of statement items that are executed within their own local scope. The execution
context for ablock isits nearest ancestor action language block container, known as its parent block.

9.4.3 Valid action language

To be executed in arun-time environment as part of a user experience, action language items shall be valid. This means
that they are syntactically correct with respect to the action language notation grammar in annex | and semantically
correct according to the rules stated in clause 9. If action languageisinvalid, it shall not be executed and an error shall
be reported. This error shall be known as atranscode-timeerror.

NOTE: The action language is designed in such away as to minimize run-time errors. A transcoder may check
the validity of action language items and report where errors are found prior to the rendering of a service.

9.4.4 Action language data type and action language items

The action language data type shall represent the set of all possible instances of the action language model. Members
of the action language data type are action language items. Action language items shall be PCF items as defined in
clause 6.2.1 of the architecture.

NOTE 1: Action language items can benefit from the reuse permitted by the PCF architecture's reference and
navigation model, as defined in clause 6.4.

NOTE 2: The scope of any action language block contains the local variables and mapped in variablesin the scope
of the parent action language block, according to the mapping process described in clause 9.4.5.

EXAMPLE: Action language items are represented by the "ActionLanguage" element in the PCF XML
schema. The following fragment of XML illustrates the reuse of an action language item.

<Acti onLanguage name="i ncr ement Score" >
score. val uet+;
</ Acti onLanguage>

<Scene nane="scoreDi spl ay" >
<I nt eger Var nanme="score">
<I nteger name="val ue" val ue="0"/>
</ | nt eger Var >

<OnEvent name="sel ect">
<Trigger eventtype="KeyEvent">
<User Key nane="key" val ue="VK_ENTER'/ >
</ Tri gger >
<Acti onLanguage href="#../increment Score" context="original"/>

ETSI

126 ETSI TS 102 523 V1.1.1 (2006-09)

</ OnEvent >
</ Scene>

9.4.5 Run-time data mapping

9451 Execution context

Action language items are declared in a rendering context provided by the item's closest ancestor component item,
known as the parent component item. The parent component item provides all the mapped variables into the execution
context provided by the container.

All mapped variables for the local scope of an action language block with its associated parent component item shall be
determined prior to the execution of that action language block. Mapped variables shall be determined by the following
rules:

. All renderable items in the rendering context of the container that are active at the same time as this container
shall become mapped variables. Thisincludes all items mapped into the scope of the parent component items
using the parameter lists defined in clause 6.4.5. The run-time data type of these items shall be "component".
In this case, the name of the mapped variable shall be the same as the PCF item to which it refers.

. Renderable items shall include all renderable items described within descendent collection items of the parent
component item. In this case, the name of the mapped variable shall be the path from the parent component
item to the PCF item to which it refers. The path shall consist of a sequence of one or more collection names
separated by a period character ".", followed by another period character and the name of the item itself.

EXAMPLE 1. Thefollowing XML fragment, which is written according to the PCF XML schema, shows how a
component item within a collection item can be referenced from an action language item.

<Scene>
<Col | ecti on name="vari abl es">
<I nt eger Var nanme="counter">
<I nteger name="val ue" val ue="1"/>
</ | nt eger Var >
</ Col | ecti on>
<OnEvent nane="sel ect">
<Trigger eventtype="KeyEvent">
<User Key nanme="key" val ue="VK_ENTER'/ >
</ Tri gger>
<Acti onLanguage name="j unpCounter">
vari abl es. counter. val ue += 10;
</ Acti onLanguage>
</ OnEvent >
</ Scene>

NOTE 1: It shall not be possible to access or manipulate a collection item from action language.

. All properties of the parent component item with "access" specifiers set to "readOnly", "final" and "readWrite"
shall become mapped variables. Table 27 shows the mapping between the "declaration type" of a PCF item
type name and the "run-time type" name of the mapped variable.

ETSI

127

ETSI TS 102 523 V1.1.1 (2006-09)

Table 27: Equivalent declaration and run-time data types

declaration type run-time type declaration type run-time type
boolean |boolean boolean array |boolean(]
color |color color array |color]]
currency |currency currency array |currencyl]
date |date date array |date]]
dateTime [datetime dateTime array [datetime[]
integer |integer integer array |integer{]
markedUpText [markeduptext markedUpText array [markeduptext[]
position |position position array |position]]
time |time time array [time[]
proportion |proportion proportion [proportion(]
timecode |[timecode timecode array [timecode[]
size |size size array [size[]
string |string string array |string(]
URI [URI URI array |URI[]

NOTE 2: When mapping component item properties and renderable items into the execution context of the action
language, a name clash cannot occur as the mapped in items shall have been declared within the same
referential context.

EXAMPLE 2: Thefollowing XML fragment, which is written according to the PCF XML schema, illustrates a
component item of "readWrite" access type being mapped into an action language item and can be
modified. Note also the use of the XML CDATA tag [5] as the action language example contains

an element-like tag that is not part of the PCF schema.

<Servi ce>
<Proportion name="servi ceAspect Rati 0" val ue="4 3"/>
<OnEvent nane="aspect_shift">
<Trigger eventtype="KeyEvent">
<User Key name="key" val ue="VK_ENTER'/ >
</ Tri gger >
<Acti onLanguage>
<! [CDATA]
servi ceAspect Rati o = <proportion>16 9</proportion>;
11>
</ Acti onLanguage>
</ OnEvent >
</ Servi ce>

. All descendent renderable items and properties within a mapped item of "component” shall become mapped
variables, named according to the component, followed by a period character "." and determined by applying
therulesin therest of this clause.

9.45.2

Other than the "component™ run-time type aready discussed in clause 9.4.5.1, the run-time data types of the action
language model shall be defined to have the names specified in the "run-time type" columns of table 27. Authors can
assume that the sets of values represented by equivalent declaration and run-time types are the same.

Run-time data types

NOTE: Transcoders can convert values from the acceptable values for PCF data types to platform-specific data
types for the execution of action language. Platform-specific data representation of data should not affect

the outcome of the execution of action language items, as defined in clause 9.

Enumeration values of the enumeration data type defined in clause 6.2.2.3 can be mapped into the action language but
shall not be declared within the action language. Enumerations can be written in the action language grammar using the
"EnumerationLiteral" production (see clause |.2.3). The system action library in annex J defines enumerations that can
be used as arguments to specific action calls. The component specificationsin A define enumerations that can be
assigned to specific component item properties.

All value items, irrespective of datatype, can have a nil value in PCF service description. The "NilLiteral" token in the
action language grammar shall represent equivalent nil value for run-time data types. Any expression that contains a nil
value shall evaluate to nil.

ETSI

128 ETSI TS 102 523 V1.1.1 (2006-09)

9.4.6 Run-time execution model

946.1 Statements

Action language blocks consist of a sequence of statement items, each of which shall be executed in the order in which
it is declared, starting with the first in the sequence. Statements are represented by the " Statement” production (see
clause 1.3.1) in the action language notation. In the notation, statements within an action language block are separated

by semi-colon characters™; ".

The run-time execution model does not state how long the execution of a statement item should take or whether the next
statement must start immediately following completion of the end of the previous one.

NOTE 1: An author can expect that a PCF transcoder will create arendering of a PCF service that triesto execute a
sequence of actions as fast as practically possible on a given platform. This should giving the appearance
to the user that execution of an action language item is atomic and as near to instantaneous as possible.

The main statements of the PCF action language are assignment, declaration, action call, conditional and loop. These
are described in the clauses 9.4.6.2 t0 9.4.6.6 in terms of the change of state they cause at the completion of the
statement's execution. Some statements generate run-time errors or warnings, as defined in clause 9.4.6.7.

execute

when (last statement complete)/

stopped generate warnings running

runtime error

Figure 43: Action language execution states

An action language item has two execution states, "stopped” and "running”, as shown in figure 43. When an action
language item is executed, the first statement it contains should be executed immediately and the action language item
shall transition to the state "running"”.

When the last statement in the sequence has completed its execution, the action language item shall transition to the
"stopped” state. At this point, any warnings generated during the execution of the action language items can be posted
as component events, as described in clause 9.3.4. When a run-time error occurs in the execution of some action
language, execution of the action language shall stop, returning the action language instance to its " stopped" state.

NOTE 2: The PCF action language does not have user-definable functions or data structures as in languages such
as C. An author must work within the constraints of the action language, making use of the modular
representation of the PCF architecture's referencing model, to achieve modularity and reuse of code.

9.4.6.2 Assignment statement

An assignment statement uses a variable item and, depending on the type of the assignment statement, has an optional
expression item. Seven types of assignment statement are defined. An assignment statement is represented by the
"Assignment" production (see clause 1.3.2) in the PCF action language notation.

Where an expression is provided, the execution of an assignment statement shall have completed when both:
. the expression has been evaluated;

. the value of the variable has been set to the result of the evaluation, according the type of the assignment
statement.

The five types of assignment statement for which an expression is required are:
. Direct assignment ("="): The result of the evaluation shall be set as the new value of the variable.

. Assignment by addition ("+="): The result of the evaluation shall be added to the current value of the variable,
using the add operator that is described in clause 9.4.7.2, and assigned as the new value of the variable.

ETSI

129 ETSI TS 102 523 V1.1.1 (2006-09)
NOTE 1: For any variablev and expression e, an assignment by addition "v += e" isequivalent to the assignment
"v = v + e".

. Assignment by subtraction (- ="): The result of the evaluation shall be subtracted from the current value of the
variable, using the subtract operator that is described in clause 9.4.7.2, and assigned as the new value of the
variable.

NOTE 2: For any variable v and expression e, an assignment by subtraction "v -= e" isequivalent to the

assignment v = v - e".

. Assignment by multiplication ("*="): The result of the evaluation shall be multiplied with the value of the
variable, using the multiply operator that is described in clause 9.4.7.2, and assigned as the new value of the
variable.

NOTE 3: For any variable v and expression e, an assignment by multiplication"v *= e" is equivalent to the
assignmentv = v * e".

. Assignment by division ("/ ="): The result of the evaluation shall be divided by the value of the variable, using
the divide operator that is described in clause 9.4.7.2, and assigned as the new value of the variable. If the
expression isthe literal value O, the PCF service shall be invalid. If the expression evaluatesto O at run-time, a
"division by zero" error shall be generated.

NOTE 4: For any variable v and expression e, an assignment by multiplication"v /= e" isequivaent to the
assignment"v = v / e".

For al direct assignments, the run-time data type that is the result of evaluating an expression shall be the same asthe
run-time data type of the variable to which the value is assigned. This can be checked prior to execution of the action
language, and if the types are not the same then the action language instance shall be considered asinvalid.

For al other assignment types that have an expression, either:
. the expression shall evaluate to the integer data type and the variable shall be of the integer data type;
. or the action language instance shall be considered asinvalid.

The PCF action language shall not permit the implicit casting of avariable's value to a different run-time data type on
assignment.

Where no expression is provided, the assignment statement is either an assignment by increment or assignment by
decrement statement, as described below:

. Assignment by increment ("++"): A value of 1 shall be added to the value of the variable.

NOTE 5: For any variable v, an assignment by increment statement "v++" isequivalentto v = v + 1".
. Assignment by decrement ("--"): A value of 1 shall be subtracted from the value of the variable.
NOTE 6: For any variable v, an assignment by increment statement "v--" isequivalentto"v = v - 1".

For assignment by increment/decrement statements, the value shall be of the integer data type or the action language
shall be considered invalid.

Assignment to a mapped variable that is a property of a component item with access specifier "initializeOnly",
"readOnly" or "fina" shall result in the action language being invalid.

NOTE 7: It shal only be possible to assign val ues to mapped variables derived from properties with access
specifier "readWrite".
9.4.6.3 Declaration statement

A declaration statement uses a run-time data type item to create a new variable item and has an optional expression that
can be used to initialize the variable's value. A declaration statement is represented by the "Declaration” production (see
clause 1.3.4) in the PCF action language notation.

ETSI

130 ETSI TS 102 523 V1.1.1 (2006-09)

The execution of adeclaration statement shall be considered complete when a new variable has been created within the
local scope of the action language instance containing the declaration statement. The variable shall have the name
specified in the declaration statement.

Where an optional expression is provided, this shall be treated as a declaration statement followed by an assignment
statement. This assignment statement has as its variable the newly created variable and the declaration's expression. The
declaration shall be considered complete once the assignment statement has compl eted.

Where no expression is provided with the declaration, the variable shall be assigned the nil value for the run-time data
type associated of the declaration.

EXAMPLE: The following two action language sequences are equivaent. Firstly, a declaration with an
expression:;

integer x = 3;
Secondly, a declaration followed by an assignment:

i nteger x;
X = 3

When anew variable is declared, it shall exist within the local scope of the action language block in whichiitis
declared. The variable shall be available for all statements after the declaration until the end of the current sequence of
actions. Local declaration shall override any mapped variables of the same name.

Any reference to the variable that is made by a statement before the declaration statement shall be treated as follows:

. If the reference isto one of the mapped variablesin the current local scope, the reference shall be resolve to
this before to the declaration statement.

. Otherwise the action language shall be considered asinvalid.

Independently of the run-time data type of the variable, the name of the variable shall be unique within al variables
declared in the local scope. If avariable is declared with the same name as another variable that has been previously
been explicitly declared in the same action language block, the action language instance shall be considered invalid.

9.4.6.4 Action call statement
An action call statement has two forms:
. Calling a system-level action, known as a system action, as specified in annex J.

. Using atarget component that isin scope, calling an action specified the component's specification, known as
acomponent action, as described in annex A.

In both cases, the action shall have a name and may have a sequence of expressionsto be evaluated to provide
arguments for the action.

The execution of an action call statement shall have completed when:
. any expressions provided as arguments for the actions have been evaluated and passed to the action;

. for system actions and component actions, the action has completed as specified for the zero or more values
passed in.

A system action can be distinguished from a component action, as no path to a particular component is provided.

. For system actions, if no action of the specified name exists as listed in annex H then the action language shall
be considered asinvalid.

For component actions, the component specification for the type of component referenced in the action language shall
provide an action of the given name, or the action language shall be considered asinvalid.

ETSI

131 ETSI TS 102 523 V1.1.1 (2006-09)

Each action has a signature that describes a sequence of datatypes that shall match to an acceptabl e sequence of values
of those types as arguments to the action call. All the expressions in a sequence that make up the arguments to an action
call shall evaluate to values of data types that match the signature, in order, item-for-item, or the action language shall
be considered asinvalid. The order of declaration of any Parameter items within the component action specification
defines the signature of the action.

NOTE: The signature may be a sequence of zero length. In this case, it shall be acceptable for a sequence of
arguments to be of zero length.

EXAMPLE 1: Thefollowing system action call statement causes a service to transition to a new scene:

SceneNavi gat e(<uri >#~/ homepage</ uri >, <enunpmark</enunm>, nil);
EXAMPLE 2: The following component action hides the presentation of a TextBox.
help_text.hide().
9.4.6.5 Conditional statement

The conditional statement shall use the evaluation of a condition to choose whether to execute a block of statements or
not. Where the block is not executed and an optional aternative el se" block of statements is provided, this shall be
executed instead. A conditional statement is represented by the " Conditional" production (see clause 1.3.5) in the PCF
action language notation.

The execution of a conditional statement shall have completed when:
. the condition expression has been eval uated;
. if the condition eval uates to true, execution of the "t hen™ statement block has been executed and is compl eted;
. if the condition evaluates to false:
- if an"el se" expression block is provided, this statement block has been executed and is completed;
- if no"el se" expression block is provided, the conditional statement is complete.
NOTE: A block has completed executing when each statement within that block has completed executing.

EXAMPLE: The following action language statement shows a conditional statement, which is represented by
the keyword "i f .

if ((a<b) & (b == 10)) a++
else { a=0; b=20; }

9.4.6.6 Loop statement and loop control
A loop statement is represented by the "Loop" production (see clause 1.3.6) in the PCF action language notation.
The loop statement shall consist of:

. an optional initial declaration statement;

. arequired loop condition;

. asingle loop statement or block of loop statements;

. an optional loop assignment.

Execution of aloop statement shall take the form of a sequence of iterations. Before the first iteration, the optional
initial declaration statement shall be executed in the same scope as the loop statement. An iteration shall consist of:

1) Theiteration starts with the evaluation of the loop condition. If the condition evaluates to false, the loop shall
terminate. Termination shall result in: the end of the current iteration; no further iterations of the current loop;
execution of the loop statement to have completed. If the condition eval uates to true, the iteration continues
with the next step.

ETSI

132 ETSI TS 102 523 V1.1.1 (2006-09)

2) Next, the single loop statement or block of loop statements is executed. A block of loop statements may
contain loop control statements as described below.

3) Next, if the optional loop assignment is present, this shall be executed.
4) The execution completes and a new iteration of the loop shall start, as defined in the first step above.

The loop block and its descendant blocks can contain the loop control statements break and continue. These shall be
interpreted as follows:

. break - execution of the break statement shall stop the execution of the current loop block, stop the current
iteration and terminate the loop.

. continue - execution of the continue statement shall stop the execution of the current loop block and jump to
the next step of the iteration (evaluation of the optional loop assignment).

NOTE: Any declaration statements within descendant blocks of the action language notation shall re-initialize the
variable they declare within the local scope.

EXAMPLE: The following action language statement shows a loop statement, which is represented by the
keyword "for". The example illustrates action language that could be used to fade in the
appearance of some text ("text3") to alevel that does not exceed an author's defined limit
("maxIntensity").

for (int i =0; i <255 ; i +=4) {
if (i > maxlntensity) break;
integer[4] colorNums = [i, i, i, 255];
col or fontColor = integerToCol or(col or Nums) ;
text 3. textcol or f ont Col or;

}

9.4.6.7 Execution errors
Run-time execution errors result in "execution error” events as defined in clause 9.3.5.
Run-time execution errors of "error" level are:
. divide by zero during the eval uation of an expression;
. array index out of bounds;
. failure of aaction call;
. failure of afunction in the expression function library, such as atype conversion function;
. platform-specific fatal errors, such as out of memory errors.
Run-time execution errors of "warning” level are:
. integer underflow and overflow in expression evaluation;
. platform-specific warning messages.

The"errorstring” associated with the error event should contain a description of the error. The "errorstring” may provide
information for an author to be able to locate the action language item the caused the problem, and the statement within
the action language block in particular.

9.4.7 Expressions and conditions

9.4.7.1 Evaluation
Expressions are structured as a tree of sub-expressions. Expressions can be eval uated as part of the execution of an

action language statement where required. Evaluation of an expression shall be complete once a value of a known
run-time data type has been determined using the rules in this clause.

ETSI

133 ETSI TS 102 523 V1.1.1 (2006-09)

The leaf nodes of the tree and what they shall evaluate to shall be:
. literal values, which evaluate to a corresponding value of a run-time data type;

. array declaration expressions, which evaluate to the elements of an array of a specific run-time data type by the
evaluation of each sub-expression within the array declaration expression;

. path references that do not includes indexes, representing the names of variablesin the current scope, which
evaluate to the value of the variable referred to within the current local scope;

. path references including indexes, representing an element of a named array within the current scope, which
evaluate to the element of the array at the index given by evaluation the index expression;

. action language expression library function calls, which evaluate to the result of calling the named function,
where the arguments to the function are determined by first evaluating all the expressions in the argument list.

EXAMPLE: The following action language shows four declaration statements corresponding to the four |eaf
node types listed above:

string stringlLiteral = "Exanple text.";
integer[3] birthday = [4/2, 10+1, 1972];
integer[3] anotherBirthday = birthday;
integer birthYear = birthday[3];

date birthDate = integerToDat e(birthday);

Conditions shall be defined by expressions that shall evaluate to the boolean run-time data type. All expressions that
evauate to the boolean run-time data type may not necessarily be conditions.

Non-leaf nodes of action language expressions shall be defined by arithmetic and logical expressions that are eval uated
by performing an operation on the result of the evaluation of their non-leaf child nodes. These operations are defined in
clauses9.4.7.2t09.4.7.4

NOTE: The action language grammar is defined in an unambiguous way that shall determine operator precedence
during the construction of expression trees.

9.4.7.2 Arithmetic operators

The operators listed below perform arithmetic operations. These operations are defined for the integer run-time data
type only. An expression with an arithmetic operator with children that evaluate to a data type other than integer shall
result in atranscode-time error.

The following arithmetic operators are defined:

. add (+) - Evaluation of the add operator shall result in an integer value that is the sum of two integer-valued
child expressions.

. subtract (-) - Evaluation of the subtract operator shall result in an integer value that is the integer-val ued
right-child of the operator node subtracted from the integer-valued left-child.

. multiply (*) - Evaluation of the multiply operator shall result in an integer value the multiplicative product of
the two integer-valued child expressions.

. divide (/) - Evaluation of the divide operator shall result in an integer value quotient from the division of the
integer-valued |eft-child by the integer-valued right side.

. modulus (%) - Evaluation of the modulus operator shall result in an integer value remainder from the division
of the integer-valued left-child by the integer-valued right side.

. unary minus (-) - Evaluation of the unary minus operator shall result in an integer value that has the opposite
sign to that of the integer-valued child.

. increment (++) - Evaluation of the increment operator shall result in an integer value that is one greater than
the integer-valued child.

. decrement (- -) - Evaluation of the decrement operator shall result in an integer value that is one less than the
integer-val ued child.

ETSI

134 ETSI TS 102 523 V1.1.1 (2006-09)

9.4.7.3 Logical operators

The operators listed below perform logical operations. These operations are defined for the boolean run-time data type
only. An expression with alogical operator with children that evaluate to a data type other than boolean shall result in a
transcode-time error.

. and (&&) - Evaluation of the and operator shall result in a boolean value that istrue if and only if both of the
boolean-valued children are true.

. or (| |) - Evaluation of the or operator shall result in aboolean value that isfalse if and only if both of the
boolean-valued children are false.

. not (1) - Evaluation of the not operator shall result in a boolean value of trueif and only if the boolean-valued
child isfalse.
9.4.7.4 Relative operators

Relative operators compare the value of two items, to see if they are equal, not equal, lesser or greater than one another.
The value that results from the evaluation of arelative operator is aways of the boolean run-time type.

The following relative operators are defined for all run-time data types:

. equals (==) - Evaluation of the equals operator shall result in aboolean value that istrueif and only if the left-
child is the same run-time data type as the right-child and the value of both children isthe same.

. not equals (! =) - Evaluation of the not equals operator shall result in aboolean value that is falseif and only if
the left-child is the same run-time data type as the right-child and the value of both children is the same.

NOTE: When values of the component run-time type are compared, they shall only be considered equa if they
are the same component.

These following relative operations are defined for integer-valued children only. An expression with arelative operator
with children that evaluate to a data type other than integer shall result in atranscode-time error. The following relative
operators compare integer values.

. less (<) - Evaluation of the less operator shall result in a boolean value that is true if and only if the
integer-val ued left-child isless than the integer-val ued right-child.

. lessor equal (<=) - Evaluation of the less or equal operator shall result in a boolean value that istrueif and
only if the integer-valued left-child isless than or equal to the integer-valued right-child.

. greater (>) - Evaluation of the greater operator shall result in a boolean value that istrue if and only if the
integer-valued left-child is greater than the integer-valued right-child.

. greater or equal (>=) - Evaluation of the greater or equal operator shall result in a boolean value that is true if
and only if the integer-valued left-child is greater than or equal to the integer-val ued right-child.

9.4.8 System action library

The system actions of the PCF action language are defined in clause 1.1.

9.4.9 Expression function library

The system actions of the PCF action language are defined in annex G.

9.5 Action language shortcuts

Alongside the PCF action language syntax are a number of "shortcuts' that provide an alternative way of describing
certain commonly used, actions. These are described in annex J.

NOTE: Importantly, transcoders that do not implement the PCF action language rely on these shortcuts to
describe the required behaviour.

ETSI

135 ETSI TS 102 523 V1.1.1 (2006-09)

9.6 Statemachines

A statemachine is a description of behaviour that encapsulates the events outlined in clause 9.2 and the action language
described in clause 9.4. Statemachines are often associated with components but can be described independently for use
within a PCF service.

The semantics and notation of statemachines used within PCF are closely related to those used by the OMG Unified
Modelling Language (UML) which also uses statecharts to model behaviour.

9.6.1 Introduction

The sequences of states and actions that occur in response to discrete events can be expressed using a statemachine.

Statemachines can be modelled using a statechart, a well-documented and accepted graphical representation of
behavioural intent.

Statecharts provide alogical way of describing the intended user-experience of behaviour that is complementary to the
content, navigation, component and layout description of a PCF service. They describe the event-driven aspects of a
system independently to its data flow or structural aspects.

The PCF behaviour model specifies a number of information items that form part of the architecture information set as
described in clause 6.1.3.

The information items significant to the description of behaviour are represented in the UML object model in
clause 9.6.1.3. The specification of each information itemis given in clause 9.6.2 to clause 9.6.5. The description
includes its graphical representation on a statechart. Where appropriate, the PCF XML representation of each
information item is outlined.

9.6.1.1 State definition

A stateis an identifiable period of calm during the lifetime of an object or an interaction during which it:
. satisfies some condition;
. performs some action; or
. waits for some event.

There may be many different states associated with a particular service.

A change of state may occur as the result of a particular event. Thisisindicated on a statechart by atransition arrow
directed away from the currently active sour ce state towards the tar get state. The transition includes details of the
event, any guard conditions under which the transition should not take place and any action that must take place before
the target state becomes active.

9.6.1.2 PCF state types

The UML model identifies fourteen different state types that can be used in combination with to form a statemachine.
These are listed in the first column of table 28.

The PCF model is based on the UML description of statecharts diagrams. Only six of the UML state types are required
to fully describe statemachines for interactive services. The PCF information items are given in the second column
alongside the equivalent UML name. The third column indicates the clause in which each information item is defined.

ETSI

136

ETSI TS 102 523 V1.1.1 (2006-09)

Table 28: The UML states that are utilized by PCF.

UML name PCF name Described
in clause:
initial state initial state 9.6.4.1
final state final state 9.6.4.2
deep history state Not used NA
shallow history state history state 9.6.4.3
branch state choice state 9.6.5.3
junction state junction state 9.6.5.2
simple state Not used NA
composite state state 9.6.5.1
synchronization state Not used NA
join state Not used NA
fork state Not used NA
submachine state Not used NA
stub state Not used NA

9.6.1.3 Object model

Figure 44 shows a UML diagram to represent the PCF object model for statemachines. Each UML class corresponds to

asingle information item.

Although the model is independent of the PCF representation, there is a direct correlation between the class names and
the elements used in the PCF XML representation of the information set.

ETSI

137 ETSI TS 102 523 V1.1.1 (2006-09)

StateMachine

0.1 |
TransitionCollection 1

FinalState %1
-target 0.1

¥ 1.* |-incoming Initial State -1

Trigger 0.1 1 outgoing 1 -sourc1>e 0.1

outgoing 1 -source

1| HistoryState %1
Guard p.1 1 incoming 0.1 -target 0.1

.outgoi.ng 1--: -source ChoiceState . 0.1 .
1 incoming 1. -target 0.* StateCollection

-incoming routgoing -incoming routgoing
0.*| 0.* 1.x X _source o* 1

1 | JunctionState
-target 1 0.1

-[ntemaltransition
0.* -State

1 State 0.*

-source

-target

0.1 -statel -state2
- entry 1 1

Action p1

ext

Figure 44: The PCF Statemachine object model

ETSI

138 ETSI TS 102 523 V1.1.1 (2006-09)

9.6.1.4 Transition and onevent object model

Figure 45 shows a UML diagram to represent the PCF object model for a state transition item and onEvent item. Both
derive from the abstract class TransitionBase.

The TransitionBase has:
. at most one Trigger;
. at most one Guard,;
. at most one piece of ActionLanguage.

Transition items are pieces of behaviour that cause a state change from the sour ce state to the tar get state as described
in clause 9.6.3.1. OnEvent items are descriptions of behaviour that do not cause a change in state. They may be used
within internal transitions as described in clause 9.6.5.1.3 or may be used at any point in the PCF description as a
"shortcut” - a piece of behaviour without the need for a statemachine.

ActionLanguage

O"]| TransitionBase 0.1 |Guard
T T
Trigger | Condition
OnEvent Transition
0..1
Qualifier
1 1
Source Target

Figure 45: Transition and OnEvent object model

9.6.2 Statemachine
A statemachine item represents sequences of states and actions that occur in response to discrete events.
The properties of a statemachine item may include:
. aname that is unique within the enclosing parent item.
The description of a statemachine item shall contain, in no specific order:
. at most one state transition collection item;
. exactly one top state item.
A statechart isagraphical representation of a statemachine item.

EXAMPLE: A statemachineitem is represented in the PCF XML format using an element with name
StateMachine:

<St at eMachi ne>
<TopSt at e>
<l--state information -->
</ TopSt at e>
<Transi tionCol | ecti on>
<l--transition information -->

ETSI

139 ETSI TS 102 523 V1.1.1 (2006-09)

</ Transi tionCol | ecti on>
</ St at eMachi ne>

9.6.3 Transition collection
The transition collection item contains alist of state transition items available to the enclosing statemachine.
The properties of atransition collection may include:
. aname that is unique within the enclosing statemachine item.
The description of a state transition collection item shall contain:
. at least one transition item.

EXAMPLE: PCF XML outline for atransition collection.

<Transi tionCol |l ecti on>
<Transition ...>
<Transition ...>

</ Transi tionCol | ecti on>

All transitions between different states shall be declared within the TransitionCollection.

9.6.3.1 Transition

A state transition item is a directed relationship between two state items; the source state and the target state. A state
item shall be any of the PCF state types listed in table 28.

NOTE: A statetransition item is distinct from a scene transition item as described in clause J.1.1.
The properties of a state transition item shall include:

. an optional name that is unique within the enclosing statemachine item;

. exactly one source state item,

. exactly one target state item.

The source state item and target state item shall identify the name of the state item within the enclosing statemachine to
which they refer. The transition item forms the description of an outgoing transition item of the source state item and as
an incoming transition item of the target state item.

The description of a state transition item shall contain, in no specific order:
. at most onetrigger item;
. at most one guard item;
. at most one action item.

The guard item shall be evaluated before any action is executed. The action shall be executed only if the guard
condition evaluates to true.

When a state transition item is represented on a statechart it shall take the form of an arrow as shown in figure 46. The
arrow shall point away from the source state and towards the target state.

N
I
Figure 46: Statechart representation of a transition item

EXAMPLE: A state transition item is represented in the PCF XML format using an element with name
Transition. The source state and target state are represented by the source and target attributes and
they refer to the states named "statel" and "state2" respectively. Thistransition is the outgoing
transition for the state with name "statel” and the incoming transition for the state with name
"state?".

ETSI

140 ETSI TS 102 523 V1.1.1 (2006-09)

<Transition name="tranl" source="statel" target="state2">

<Trigger ... />
<@uard .../>
<ActionLanguage .../>

</Transition>

Transitions whose source and target state are the same state may be declared within the TransitionCollection, but more
commonly are declared as an Internal Transition within the state itself, as described in clause 9.6.5.1.3.

9.6.3.2 Trigger
The trigger item indicates the event that causes a state transition.
The properties of atrigger item shall include:
. an optional name that is unique within the enclosing parent item;
. an eventtype from an enumerated list of event types listed in the event schema.
The description of atrigger item shall contain, in no specific order:

. zero or more PCF items to qualify the value of the eventtype. The name attribute of these PCF items shall
match a corresponding property of the eventtype that is being qualified.

EXAMPLE: A trigger item is represented in the PCF XML format using an element with the name Trigger. The
example below describes a Trigger that filters KeyEvents, specifically the VK_LEFT formsthe
value for the "key" property of the KeyEvent event.

<Trigger name="triggerl" eventtype="KeyEvent">
<User Key name="key" val ue="VK_LEFT"/>
</ Tri gger >

9.6.3.3 Guard

The guard item contains a conditional expression. A transition with a guard shall take place only when this expression
evaluates to true.

The description of aguard item shall contain:
. a Condition item from the PCF action language schema.

EXAMPLE: PCF XML outline for aguard.

<Cuar d>
<Condition .../>
</ Quar d>

9.6.34 Action

The action item is a piece of PCF action language. The PCF XML format uses a piece of action language from the
action language schema.

9.6.4 Top state
A top state item is the root of the state containment hierarchy.
The description of atop state item shall contain:

. exactly oneinitial stateitem;

. at most one final state item;

. at most one history state item;

. exactly one state collection item.

ETSI

141 ETSI TS 102 523 V1.1.1 (2006-09)

A top state item shall not be the source of any transitions and, therefore, not contain any outgoing transitions.

When atop state item is represented on a statechart it shall take the form of a rectangle with rounded corners as shown
infigure 47.

Figure 47: Statechart representation of atop state item

EXAMPLE 1: The statechart in figure 48 shows the top state item containing one initia state item, one fina state
item and two state items.

topstate

& J

Figure 48: The top state item is drawn explicitly

EXAMPLE 2: The graphical representation of atop state item on a statechart is optional. The statechart shownin
figure 49 is equivalent to that in figure 48 .

Stateone statetwo

Figure 49: The top state item is implicit

EXAMPLE 3: A top stateitem is represented in the PCF XML format using an element with name TopState:

<TopSt at e>

<Initial State nane="I|_initial" .../>
<Final State name="F_initial" .../>
<StateCol | ecti on name="otherstates" .../>

<TopSt at e>

9.6.4.1 Initial state
Aninitial state item is the source state of single transition that indicates the default internal state of the enclosing state.
The properties of an initial state item may include:
. aname that is unique within the enclosing state item.
Aninitial state item shall be associated with:
. exactly one outgoing transition item where no trigger item is specified.

Aninitia state item shall not be the target of any state transitions and, therefore, shall not be associated with any
incoming transition items.

ETSI

142 ETSI TS 102 523 V1.1.1 (2006-09)
NOTE: The outgoing transition item is not described within the initial state item, but is contained within the
transition collection item, as described in clause 9.6.3.

When an initial state item is represented on a statechart it shall take the form of filled circle as shown in figure 50.

Figure 50: Statechart representation of an initial state item

EXAMPLE: Aninitial stateitem is represented in the PCF XML format using an element with name
Initial State:

<Initial State nane="initial"/>

A transition drawn to the enclosing state boundary is equivalent to the transition being drawn to the initial state in the
enclosing state.

96.4.2 Final state

A final state item indicates that the enclosing state is completed. If the enclosing state is the top state (item) then this
indicates that the entire statemachine is completed.

The properties of afinal state item may include:

. aname that is unique within the enclosing state item.
A final state item shall be associated with:

. at least one incoming transition item.

A final state item shall not be the source of any transitions and, therefore, shall not be associated with any outgoing
transitions.

NOTE 1: Theincoming transition item is not described within the final state item, but is contained within the
transition collection item, as described in clause 9.6.3.

When afinal stateitem is represented on a statechart it shall take the form of an unfilled circle enclosing a smaller filled

circle as shown in figure 51.

Figure 51: Statechart representation of a final state item

EXAMPLE: A final state item is represented in the PCF XML format using an element with name Final State.
This example gives the outline PCF XML for afinal state item with two incoming transition items.

<Fi nal State nane="final _2"/>

NOTE 2: A state that does not contain afinal state item will exit when the scene exits.

9.6.4.3 History state

A history state item can be used instead of, or in conjunction with the initial state item to indicate "enter-by-history”. It
isthe source state of single transition item that indicates the default internal state item of the enclosing state item.
Specificaly, it enables the default state item to become the most recently visited child state.

NOTE 1. Thisbehaviour is based on the UML shallow history pseudostate. The properties of the UML deep
history pseudostate can be mimicked using nested history state items.

The properties of a history state item may include:

. aname that is unique within the enclosing state item.

ETSI

143 ETSI TS 102 523 V1.1.1 (2006-09)

A history state:
. shall be associated with exactly one outgoing transition item where no trigger is specified;
. should be associated with at |east one incoming transition item.

NOTE 2: The transition items are not described within the history state item, but are contained within the transition
collection item, as described in clause 9.6.3.

When a history state item is represented on a statechart it shall take the form of an open circle enclosing the letter H as

shown in figure 52.

Figure 52: Statechart representation of a history state item

Thefirst time the enclosing state is visited the child state that becomes active shall be the "default state”.

If the transition terminates on the history state then the default state is indicated by the outgoing transition from the
history state. A transition that terminates on the edge of the enclosing state is equivalent to a transition terminating on
theinitia state. When entering the enclosing state through theinitial state then the default stateisindicated by the
outgoing transition from the initial state.

Subsequent visits to the enclosing state through the history state will cause the most recently visited child state to
become the active state. If the most recently visited child state was the final state then the active child state shall be the
default state.

Subsequent visits to the enclosing state through the initial state shall cause the default state indicated by the initial state
to become the active state.

If noinitia state exists then all transitions to the enclosing state shall terminate on the history state.

EXAMPLE 1. A history state item is represented in the PCF XML format using an element with name
HistoryState. This example shows the PCF XML outline for the history state item drawn in
figure 53.

<Hi storyState name="exanpl el"/>

enclosingstate

| e C)

[statetwo]

J

Figure 53: All visits to enclosingstate exploit the behaviour of the history state

ETSI

EXAMPLE 2:

144 ETSI TS 102 523 V1.1.1 (2006-09)

When a history state exists without an accompanying initial state the enclosing state can only be
activated through transitions directed to its history state.

The history state in figure 54 is not accompanied by an initial state. The transitions 1 and 2 are
directed to the history state. The outgoing transition from the history state, transition 3, indicates
that "stateone" is the default child state of "enclosingstate”. This shall be the active child state the
first time "enclosingstate” is visited. Subsequent visitsto "enclosingstate” result in the most
recently visited child state becoming active.

enclosingstate

stateone statetwo

Figure 54: History state may be used without an accompanying initial state

EXAMPLE 3:

Figure 55 shows a history state in conjunction with an initial state.

If the first visit to "enclosingstate” is viatransition 1 then the active child state is determined by
the outgoing transition from theinitial state, transition 4. The active child state is "stateone”. If the
first visit is viatransition 2 or 3 then the active child state is determined by the outgoing transition
from the history state, transition 5. The active child state is "statetwo".

Subsequent visitsto "enclosingstate” viatransition 1 to theinitial state shall result in "stateone”
becoming active.

Subsequent visits viatransition 2 or 3 to the history state shall result in the most recently visited
child state becoming active.

enclosingstate

stateone statetwo

L=

Figure 55: Both the history and initial state shall have an outgoing transition

ETSI

145 ETSI TS 102 523 V1.1.1 (2006-09)

9.6.5 State collection

A state collection item is used to group states of which there can be more than one instance within the enclosing state.
These include state items, junction state items, and choice items but exclude initial state items, final state items and
history items.

The properties of a state collection item may include:
. aname that is unique within the enclosing state item.
The description of a state collection item shall contain, in no specific order:
. zero or many state items;
. Zero or many junction state items;
. Zero or many choice state items.
A state collection item has no graphical representation on a statechart.

EXAMPLE: A state collection item is represented in the PCF XML format using an element with name
StateCollection. This example shows the PCF XML outline of a state collection item containing
two state items, an initial state item and afinal state item.

<St at eCol | ecti on>

<State nane="stateA' ... />

<State nane="stateB" ... />
<JunctionState name="junctionA" .../>
<Choi ceSt at e nane="choi ceA" .../>
<Choi ceSt at e nane="choiceB" .../>

</ St at eCol | ecti on>

9.6.5.1 State
The properties of a state item may include:
. aname that is unique within the enclosing state item;
The description of a state shall contain, in no specific order:
. at most one state entry action item;
. at most one state exit action item;
. zero or more internal state transition items;
. at most oneinitia state item;
. at most one final state item;
. at most one history state item,;
. at most one state collection item.
A state item shall be associated with:
. Zero or more incoming transition items;
. Zero or more outgoing transition items, each with atrigger item specified.

NOTE: Thetransition items are not described within the state item, but are contained within the transition
collection item, as described in clause 9.6.3. A state's outgoing transition items can be identified as those
transition items whose source state item has the same val ue as the name of the state. A state'sincoming
transition items can be identified as those transition items whose target state item has the same value as
the name of the state.

ETSI

146 ETSI TS 102 523 V1.1.1 (2006-09)

When a state item is represented on a statechart it shall take the form of arectangle with rounded corners as shown in
figure 56.

Figure 56: Statechart representation of a state item

EXAMPLE: A stateitem is represented in the PCF XML format using an element with name State. This
example shows the PCF XML outline of the state item "stateone" shown in figure 57. The
transitions to and from stateone, and those between the child states of stateone are described within
the transition collection element.

<St at e nanme="st at eone" >
<St at eEntry>

<ActionLanguage> <!-- dothis --> </Acti onLanguage>
</ St at eEntry>
<StateExit>
<Acti onLanguage> <!-- dotheother --> </ActionLanguage>

</ StateExit>
<Internal Transitions>

<OnEvent >

<Tri gger eventtype="KeyEvent"></Tri gger>

<Acti onLanguage> <!-- sonething --> </ActionLanguage>
</ OnEvent >

</Internal Transitions>
<Initial State nane="stateone_i"/>
<Fi nal St ate nane="stateone_f"/>
<StateCol | ecti on>

<State nane="stateA"'/>

<State nane="stateB"/>
</ St at eCol | ecti on>

</ St at e>
topstate
stateone statetwo
_ entry/ dothis 12
I_topstate | do/something
’ 5 ext/ dotheother
2-1

Figure 57: The description for "stateone" includes transitions and child states

9.6.5.1.1 State entry
A state entry item contains a piece of action language that shall be activated upon entry to the enclosing state.
The description of a state entry item:

. shall contain exactly one action item.

NOTE: Thereisno guard item associated with the state entry item.

ETSI

147 ETSI TS 102 523 V1.1.1 (2006-09)

EXAMPLE 1. A state entry item is represented in the PCF XML format using an element with name StateEntry.

<St at eEntry>
<ActionLanguage ... />
</ StateEntry>

Actions associated with the state entry item shall take place when the enclosing state becomes active, and before any
actions associated with internal states.

EXAMPLE 2: Infigure 58, the entry actions associated with stateone take place before those associated with the
initially activated child state statetwo.

stateone

entry / (actionswhenentering)
exit / (actionswhenexiting)

statetwo
entry / (dothis)

‘ exit / (dothiswhenterminating

Figure 58: Nested states with state entry and state exit

9.6.5.1.2 State exit

A state exit item contains a piece of action language that shall be activated upon exit from the enclosing state. Thereis
no guard item associated with the state exit item.

The description of a state exit item:
. shall contain exactly one action item.
NOTE: Thereisno guard item associated with the state exit item.

EXAMPLE 1: A state exit itemis represented in the PCF XML format using an e ement with name StateEntry.

<StateExit>
<ActionLanguage ... />
</ St at eExi t >

Actions associated with the state exit item shall take place when the enclosing state is being terminated, and after any
actions associated with terminating internal states.

EXAMPLE 2: Infigure 58, when stateone terminates, the exit actions associated with statetwo take place before
those associated with stateone.

9.6.5.1.3 Internal transitions
Aninternal transition item does not cause a change of state.
The properties of an internal transition item may include:

. aname that is unique within the enclosing statemachine item.

ETSI

148 ETSI TS 102 523 V1.1.1 (2006-09)

The description of an internal transition item:
. shall contain atrigger item;
. may contain a guard item;
. may contain an action item.

EXAMPLE: The PCF XML representation of an internal transition takes the form of the OnEvent element. One
or more OnEvent elements can be described within an Internal Transitions element.

<State name="thi sstate">
<Internal Transi ti ons>
<OnEvent name="presssel ect" source="thisstate" target="thisstate">
<Trigger eventtype="KeyEvent">
<User Key nanme="key" val ue="VK_ENTER'/ >
</ Tri gger >
<ActionLanguage> <! -actions > </ActionLanguage>
</ OnEvent >
</Internal Transitions>
</ St at e>

Internal transition items should be described within the state item. This ensures that this characteristic of the stateis
retained if the state be reused by other parts of the service. However, internal transition items may be described within
the transition collection item. A transition item whose source and target refer to the same state describes an internal
transition for this state.

96.5.2 Junction state

A junction state item shall be used to join one or more incoming transitions to one or more outgoing transitions.
Specificaly, it shall be used when no action is associated with one or more of the incoming transitions.

The properties of ajunction state item may include:
. aname that is unique within the enclosing state item.
A junction state item shall be associated with:
. at least one incoming transition item;
. at least one outgoing transition item.
The description of incoming transition items associated with ajunction state item:
. may contain atrigger item;
. may contain a guard item;
. shall not contain an action item.
The description of outgoing state transition items associated with a junction state item:
. shall not contain atrigger item;
. may contain a guard item;
. may contain an action item.

NOTE 1: Thetransition items are not described within the junction state item, but are contained within the
transition collection item, as described in clause 9.6.3.

When a junction state item is represented on a statechart it shall take the form of afilled circle as shown in figure 59.

Figure 59: Statechart representation of a junction state item

ETSI

149 ETSI TS 102 523 V1.1.1 (2006-09)

If none of the guard items evaluate to true then no state transition takes place.
If more than one guard item evaluates to true then one transition shall be selected arbitrarily.

The representation of ajunction state item on a statechart is graphical shorthand for multiple simple state transitions that
share certain guard conditions. The statechart in figure 60 uses a junction state item and is equivalent to the statechart in
figure 61 that uses multiple simple transitions.

NOTE 2: A transcoder may choose to implement ajunction state item as multiple single transitions for ease of
processing.

EXAMPLE: A junction state item is represented in the PCF XML format using an element with name
JunctionState. This example shows the PCF XML outline of the junction state item and the
associated transition items shown in figure 60.

The guard condition [b<Q] is evaluated. If true, the guards on the outgoing transitions are
evaluated. The condition that evaluates to true determines the new state. Should [a=6] (no
outgoing transition is configured to be true when [a=6]) then there is no transition from state one.

<JunctionState name="junction"/>

<TransitionCol | ecti on>
<Transition name-"inl" source="stateone" target="junction">
<@uard <!-- b<0 --> />
<Trigger .../>
<!--no action for incomng transition-->
</ Transi ti on>
<Transition name="out1" source="junction" target="statetw">
<@uard <!--a>7 --> />
<!—o trigger for outgoing transition -->
</ Transi ti on>
<Transition name="out2" source="junction" target="statethree">
<@uard <!--a=5 --> />
<!—o trigger for outgoing transition -->
</ Transi ti on>
<Transition name="out 3" source="junction" target="statefour">
<@uard <!-- a<6 --> />
<!—o trigger for outgoing transition -->
</ Transi ti on>
</ Transi tionCol | ecti on>

state one

[b<0]

7] 8 [a<5]

[a=5]

state two state three state four

Figure 60: Junction state item used to simplify multiple guarded transitions

ETSI

150 ETSI TS 102 523 V1.1.1 (2006-09)

State one

[b<0&a>7] [b<0&a=5] [b<0 & a<5]

state two state three state four

Figure 61: Multiple guarded transitions

9.6.5.3 Choice state

A choice state item shall be used to join one or more incoming transitions to one or more outgoing transitions.
Specificaly, it shall be used when an action is associated with one or more of the incoming transitions.

The properties of a choice state item may include:
. aname that is unique within the enclosing state item.
A choice state item shall be associated with:
. at least one incoming transition item;
. at least one outgoing transition item.
The description of incoming transition items associated with a choice state item:
. shall contain atrigger item;
. can contain aguard item;
. should contain an action item;
The description of outgoing transition items associated with a choice state item:
. shall not contain atrigger item;
. can contain aguard item;
. can contain an action item.

NOTE 1: Thetransition items are not described within the state item, but are contained within the transition
collection item, as described in clause 9.6.3.

When a choice state item is represented on a statechart it shall take the form of an unfilled circle as shown in figure 62.

O

Figure 62: Statechart representation of a choice state item
The representation of a choice state item on a statechart is not graphical shorthand for multiple simple transitions. The

statechart in figure 63 that uses a choice state item is not equivalent to the statechart in figure 64 that uses multiple
simple transitions.

ETSI

151 ETSI TS 102 523 V1.1.1 (2006-09)

The actions associated with a simple transition are evaluated after all the associated guard conditions have been
considered. The compound transition through a choice state item is the only way to express that an action takes place
before a guard condition is considered.

The action associated with the incoming transition may affect the value of the condition to be tested on the outgoing
transition. Asaresult, it is not possible to test the guard conditions associated with the outgoing transitions until the
choice state has been reached. The transition cannot be abandoned at the choice state and so there should be exactly one
outgoing transition whose guard condition evaluates to true for each valid value of the test variable. In the case where
more than one of the outgoing guardsis true then one shall be selected arbitrarily. There should be one outgoing
transition labelled with the condition [else] to ensure all possible values are captured.

NOTE 2: A choice state item should be used only when an action is associated with one or more of the incoming
transitions. Otherwise, ajunction state item should be used to enable the transcoder to take advantage of
the easier implementation.

EXAMPLE 1:

EXAMPLE 2:

A choice state item is represented in the PCF XML format using an element with name
ChoiceState. This example shows the PCF XML outline of the choice state item shown in

figure 63 that joins together a single incoming transition with three outgoing transitions. A guard is
associated with each transition. An action is associated with the incoming transition.

The guard condition [b<Q] is evaluated. If true, the action a:=f(m) is executed. Only after the
action has been executed is the guard on the outgoing transition evaluated. The [else] condition
ensures all possible values of "a" are considered.

<Choi ceSt at e nane="choi ce"/>

<Transi tionCol | ecti on>
<Transition name="inl" source="stateone" target="choice">

<@ard ... <!-- b<0 --> />
<Trigger .../>
<Action ...<!-- a:=f(m -->/>

</Transition>

<Transi ti on name="out 1" source="choi ce" target="statetw">
<@uard ... <!-- else --> />

</ Transition>

<Transi tion name="out?2" source="choice" target="statethree">
<@uard ... <!-- a=5 --> />

</ Transi ti on>

<Transi tion name="out 3" source="choi ce" target="statefour">
<Guard ... <!-- a<6 --> />

</ Transi ti on>

</ Transi ti onCol | ecti on>

State one

[o<OJ/a:=f(m)

felse] A [a<5]

o/

[a=5]

state two state three state four

|

Figure 63: Choice state item used with action on incoming transition

The single transition from state one to state four in figure 64 is not equivalent to the transitions
from state one to state four through the choice state in figure 63. Figure 64 demands "if [b<Q], do
a=f(m), then test if [a<5]..." whereas figure 63 denotes "only if both [b<0] and [a<5] are true then
do a=f(m)". These expressions are not necessarily equivalent because the action a:=f(m) may
influence the value of "a" thus affecting the test result of the second guard condition.

ETSI

152 ETSI TS 102 523 V1.1.1 (2006-09)

state one

[b<0 & a<b)/a:=f(m)

state four

Figure 64: A single transition cannot replace the transitions through a choice state item

9.7 OnEvent - statemachine shortcut

Alongside the PCF statemachine model is a shortcut that provides an aternative way of describing behaviour that
involves trigger, guard and action language items.

The onEvent item is synonymous with an internal transition, as described in clause 9.6.5.1.3, and is appropriate for
simple behaviours where a change in state does not occur.

The following examples show how OnEvent can be used:

EXAMPLE 1. When "scenel” is active and a VK_ENTER keypressis received, the scene navigates to "next_scene".

<Scene nane="scenel">
<!--visual conponents etc -->
<Button name="buttonl">
<!--Button properties -->
</ But t on>
<Button name="button2">
<!--Button properties -->
</ But t on>
<OnEvent nane="presssel ect">
<Trigger eventtype="KeyEvent">
<User Key nanme="key" val ue="VK_ENTER'/ >
</ Tri gger >
<SceneNavi gat e>
<URI nanme="target" val ue="#../next_scene"/>
</ SceneNavi gat e>
</ OnEvent >
</ Scene>

EXAMPLE 2. When "scene?2" is active, the scene navigatesto "next_scene" when either "buttonl" or "button2" is
selected (the OnEvent declared at scene-level captures an OnSelect event generated by either
Button component).

<Scene nane="scene2">
<!--visual conponents etc -->
<Button name="buttonl">
<!--Button properties -->
</ But t on>
<Button name="button2">
<!--Button properties -->
</ But t on>
<OnEvent nane="presssel ect">
<Trigger eventtype="OnSel ect"/>
<SceneNavi gat e>
<URI nanme="target" val ue="#../next_scene"/>
</ SceneNavi gat e>
</ OnEvent >
</ Scene>

EXAMPLE 3: When "scene3" is active, the scene navigatesto "next_scene" only when "buttonl" is selected (the
OnEvent being declared in the scope of "buttonl").

<Scene nanme="scene3">
<l--visual components etc -->
<Button nane="buttonl">
<!--Button properties -->

ETSI

153 ETSI TS 102 523 V1.1.1 (2006-09)

<OnEvent name="presssel ect">
<Trigger eventtype="OnSel ect"/>
<SceneNavi gat e>
<URI nanme="target" val ue="#../next_scene"/>
</ SceneNavi gat e>

</ OnEvent >
</ Butt on>
<Butt on name="I|_do_not hi ng">
<!--Button properties -->
</ Button>
</ Scene>
9.8 User-defined behaviour

9.8.1 Scope of user-defined behaviour
User-defined behaviour can be introduced at any level of the component hierarchy, either using statemachines or events.
User-defined behaviour shall:

. extend any intrinsic behaviour, not override it;

. obey the same scoping rules as PCF components; it may only manipulate child components within the scope of
declaration.

EXAMPLE 1. Inorder to change the label text of a Button component to that of another Button component, the
user-defined behaviour shall be described within a container component that contains both Button
components.

EXAMPLE 2: Inorder to change the label text of a Button component, where the replacement text does not
depend on any other component, then the user-defined behaviour may be defined within the scope
of the Button component itself.

9.8.2 Event propagation involving user-defined behaviour

Event propagation takes place as described in clause 9.3.

For a component that has both intrinsic behaviour and user-defined behaviour, an event shall initially target the intrinsic
behaviour. Only if the intrinsic behaviour does not respond shall the event target the user-defined behaviour.

Where more than one instance of user-defined behaviour responds to the same event, the order in which the behaviour
is executed is undefined.

EXAMPLE 1: Figure 65 shows the intrinsic behaviour of afocused component respond to a user input event.
Event propagation of the user input event terminates.

Component

user input event

\ Component

Intrinsic User-defined
behaviour behaviour

Figure 65: Event propagation terminates at intrinsic behaviour of focused component

ETSI

EXAMPLE 2:

154 ETSI TS 102 523 V1.1.1 (2006-09)

Figure 66 shows a user input event initially target the intrinsic behaviour of a focused component.
The intrinsic behaviour does not respond to this event and so the user input event propagates to the
user-defined behaviour. The user-defined behaviour responds to the user input event which
terminates. But the user-defined behaviour generates a component event which continues
propagating up the component hierarchy. The component event propagation continues according
totherulesin clause 9.3.4.

4
1
1
Component :
1
Intrinsic | User-defined
behaviour behaviour
A
]
: |
user input event '
! component
: event
\ Component !
Intrinsic User-defined
behaviour behaviour

Figure 66: Event propagation with intrinsic behaviour in focused component

EXAMPLE 3:

Figure 67 shows a focused component with no intrinsic behaviour defined. The user input event
initially targets the user-defined behaviour of the focused component. This behaviour does not
respond to this event and so it is passed up the component hierarchy. The parent component's
intrinsic behaviour responds to the user input event and generates a component event which passes
first to any user-defined behaviour in this component. Only if this behaviour does not respond does
the component event propagate up the component hierarchy as described in clause 9.3.4.

A
]
]
Component :
compone nt :
Intrinsic event User-défined
behaviour behaviour
A
user input event
Component
User-defined
behaviour

Figure 67: Event propagation with no intrinsic behaviour in focused component

ETSI

155 ETSI TS 102 523 V1.1.1 (2006-09)

10 Return path

10.1 Introduction

PCF Functional Model
F— Client
PCF . Transcoder | Forward Path .
Content Preparation | PCF Fomat > Client STB
Server >
Platform 1 Platform 1
A \ Platfgrm 2 \ A Platform 2
I Platform x I A Platform x
Y
Y
Application Server . Retym Path Server
(E-Shopping Server -
Vote Count, Chat) | Return Path Platorf | | [
Platf§rm 2 Client Return Path
‘ Platform x

Figure 68: PCF High Level Functional Model / Logical Architecture

NOTE: Thelogical architecture depicted in figure 68 is an example logical architecture and is not mandated by
the PCF specification.

The PCF return path mechanism provides a means to transfer data to and from the content provider under the author's
control - "Client Return Path + Server Return Path" in figure 68. This should be distinguished from transfer of
resources, such as images, referenced through a URI [ref 7 in Architecture Section 2.3.14] viathe "Client Forward Path"
infigure 68. Usage of the return path implies direct electronic communication without consumer intervention to allow
the information exchange to take place, i.e. it does not include instructing a user to communicate via SMS. The return
path mechanism enables the exchange of serializable component types (e.g. integer, string, date, array)

The standard return path implementation is built around three items:
. aReturnPath component;
. aTransaction component;

. aTransfer collection.

A fourth component, the indicate component, is a cut down version of the ReturnPath component, whose purposeisto
aenable very simple return path functionality whereby a connection is made but no transaction occurs, such asis used
in avery simple voting application. A fifth component, the SecureReturnPath component allows for the secure
transfer of datato take place.

10.2 Return path components

10.2.1 Returnpath component

The ReturnPath component embodies the return path itself and manages the actual data transfer exchange process. Its
properties incorporate information to define the target application server, viaits connectionTarget (URI) property and
the current status of the return path connection (i.e. closed, open, opening, closing) viaits state property. At run-time the
ReturnPath component is passed a reference to a data Transaction component that contains the source and/or
destination data transfer collections. The Retur nPath component statechart is shown in figure 69.

ETSI

156 ETSI TS 102 523 V1.1.1 (2006-09)

close error / OnError
. success / OnClose @sconnem
transfer(ba)/ ban.start
‘ [else] >(L closed)J<connection drop / OnError Lopen

transfer(ba)/ ban.start
disconnect/ OnClos

connect

opening
success / OnOpen
open error / OnError

[auto-connect = true]

Figure 69: ReturnPath Component Statechart

The auto-connect property defines the start up behaviour of the ReturnPath component. Setting auto-connect to "true"
requires that the ReturnPath component starts opening its connection as soon asit isin scope, otherwise it initiates into
the closed state.

Calling the connect action shall cause the ReturnPath component to start opening its connection. A successful outcome
will result in the return path becoming open and generating an OnOpen event.

Calling the disconnect action shall cause the ReturnPath component to start closing its connection. If the ReturnPath
component isin its open state then it shall wait for al outstanding busy transactions to complete before becoming
closed. If the ReturnPath component isin its opening state then it shall abort any busy transactions and return directly
to the closed state. In either case the Retur nPath component shall generate an OnClose event.

It shall be possible to submit a transaction by calling the transfer action of the ReturnPath component when the return
path isin either the opening or open states. Upon submission of the transfer action the associated transaction shall
become busy. The data transfer associated with the transaction shall only be carried out after the return path has reached
its open state.

The ReturnPath component may not always close in awell defined manner and can abort at any point. Thisis depicted
by the "OnError” eventsin figure 69, the ReturnPath components statechart. "OnError” events always result in the
return path being closed and any busy transactions failing.

EXAMPLE: A PCF code snippet might look like:

<Ret urnPat h name="rp">
<URI name="connectionTarget" val ue="urn: dvb- pcf: ww:. pi zza. tv: orderline"/>
<Bool ean name="aut oConnect" val ue="true"/>

</ Ret ur nPat h>

NOTE: The ConnectionTarget value is an abstract URI that shall be resolved by atranscoder on atarget platform.
For example adia up capable platform could resolve to atelephone number whereas a broadband
platform could resolve to a URI.

ETSI

157 ETSI TS 102 523 V1.1.1 (2006-09)

10.2.2 Transfer collection

The data transfer collection defines a sequence of information to be transferred over the return path. Only serialized data
can be transferred through the return path. Serialized datais a restricted set of data types, appropriate for transfer
through the return path, for example integers, strings, variables, dates but NOT Rectangles, Buttons, M enusetc. The
PCF specification defines whether or not a component type is seridizable. The transfer of graphicsimages through the
return path is not required in theinitia version of the PCF and therefore images are not defined as serializable.

EXAMPLE: A PCF code snippet might look like:

<TransferCol | ecti on name="request">
< String name="pi zzatype" val ue="pescatore"/>
< I nteger name="pizzasi ze" val ue="12"/>
< Integer name="quantity" val ue="1"/>

</ Transfer Col | ecti on>

NOTE: ThedataTransfer Collection is generic enough to be used in other situations, such as data transfersto a
storage device.

10.2.3 Transaction component

The Transaction Component embodies the status of an actual data transfer exchange process. (i.e. idle, busy) viaits
state property, and upon completion it shall generate an outcome event which defines the success (OnCompl ete) or
failure (OnError) of the transaction. The transaction can be aborted under application control by using the "abort"
action, which shall generate an OnAbort event. The Transaction component statechart is shown in figure 70.

start/ OnStart

abort / OnAbort

success / OnComplete

fail / OnError

Figure 70: Transaction Component Statechart

The request (Client STB to Application Server) transfer collection specifies the order of components to serialize and
send. The response (Application Server to Client STB) transfer collection specifies the order of serialized components

to receive and interpret.

EXAMPLE: A sample PCF fragment might look like:

<Text Box name="user Feedback" >
<String nane="content" val ue="Pl ease press the send button to order your
pi zza!"/>
</ Text Box>
<Transacti on name="pi zzaTransacti on">
<TransferCol | ecti on name="request">
<StringVariabl e name="pi zzat ype" val ue="pescatore"/>

ETSI

158 ETSI TS 102 523 V1.1.1 (2006-09)

<I nteger Vari abl e name="pi zzasi ze" val ue="12"/>
<I ntegerVari abl e name="quantity" val ue="1"/>
</ Transfer Col | ecti on>
<TransferCol | ecti on name="response">
<StringVari abl e name="pronoMessage" val ue=""/>
</ Transfer Col | ecti on>
</ Transacti on>
<OnEvent nane="conpl et eEvent ">
<Trigger eventtype="OnConpl ete"/>
<Act i onLanguage><! [CDATA[
string tenp[64] = strncat("Thank you. Your pizza is on its way!",
pi zzaTr ansacti on. response. pronoMessage, 64);
user Feedback. content = tenp;
11>
</ Acti onLanguage>
</ OnEvent >
<OnEvent name="errorEvent">
<Trigger eventtype="OnError"/>
<Act i onLanguage><! [CDATA[
string tenp[64] = strncat("Sorry. Your order has failed,
pl ease tel ephone us instead: ", errorEvent.errorstring, 64);
user Feedback. content = tenp;
11>
</ Acti onLanguage>
</ OnEvent >

10.2.4 Indicate component

Theindicate component is an alternative to the ReturnPath component. The indicate component is not associated with
aTransaction component and therefore it does not transfer any PCF defined data. Its purpose is purely to make a
connection and then close.

EXAMPLE 1.

Indicate components can be used to implement a simple voting service; one component for "yes"
and another for "no". On adial up modem platform the implementation may dial one telephone
number for the "yes' and another for the "no." On a broadband aways-on platform the
implementation may call one URL for the "yes" and another URI for the "no". An application
running on the return path server would perform the necessary counting function on behalf of the
author.

The indicate component statechart is shown in figure 71.

indicate

abort/ OnAbort

indicating

success / OnComplete

fail / OnError

Figure 71: Indicate Component Statechart

Anindication isinitiated by invoking the indicate action of the indicate component from the action language. Upon
completion it shall generate an outcome event which defines the success (OnComplete) or failure (OnError) of the
indication. The indication can be aborted under application control by using the "abort" action, which shall generate an

OnAbort event.

ETSI

159 ETSI TS 102 523 V1.1.1 (2006-09)

NOTE 1: Theindicate component abstracts the implementation away from any particular return path technology. A
platform with a dial up modem would probably implement a drop call to a specified telephone number
whereas a platform with an always on broadband connection would probably connect to a specified URL.
In each case the transcoder would derive the appropriate functionality.

NOTE 2: Dueto potential resource contention, a platform with adial up modem may disconnect any previoudy
established return path connections, when the indicate action is invoked on an indicate component.

EXAMPLE 2: An Example PCF code snippet might look like :

<l ndi cat e name="YesVote">
<URI nane="connectionTarget"
val ue="ur n: pcf : br oadcast er X. co. uk/ qui zvot e/ yes"/ >
</ I ndi cat e>
<l ndi cat e name="NoVot e" >
<URI nane="connectionTarget"
val ue="urn: pcf: br oadcast er X. co. uk/ qui zvot e/ no"/ >
</ I ndi cat e>

10.2.5 Securereturnpath component
The statechart for the SecureReturnPath component isidentical to the Retur nPath component in clause 10.2.1.
The SecureReturnPath component is not considered open until a secure channel has been fully established.

If the SecureReturnPath component fails to establish the secure channel, an open error will follow.

10.3 Return path transfer process

Datatransfers are initiated by invoking the transfer action of an open or opening Retur nPath component within the
action language. The return path transfer action shall include areference to a previously defined transaction.

The interaction between a ReturnPath component and the Transaction component is shown in figure 72.

| . PCE Descriptipn | : ReturnPaqh | txn: Transactio¢

1:transfer(txn)

H 2:start

3:0nEvent

OnEvent is one of
OnAbort or

Figure 72: Return Path Sequence of Events

EXAMPLE: An example PCF code fragment might look like:

<Button name="sendOrder"/>
<OnEvent name="sendActi on">
<Trigger eventtype="OnSel ect"/>
<Act i onLanguage><! [CDATA[
rp.transfer(<uri>pizzaTransaction</uri>);
]1]1></ Acti onLanguage>
</ OnEvent >

ETSI

160 ETSI TS 102 523 V1.1.1 (2006-09)

10.4 Return path object model

ReturnPath, Transfer Collection and Transaction components and their associated data objects may be defined at the
service level and/or at the scene level. Should a Transaction component go out of scope whilst it is busy it shall be
aborted (for example closing a scene that incorporates Retur nPath components). Should a Retur nPath component go
out of scope whilst it isnot in a closed state then any associated busy transactions shall be aborted. The author can
control against this happening, if required, by declaring the components at a higher level in the hierarchy, or by defining
some explicit scene behaviour.

The transmission order of any pending transactionsis not guaranteed. If thisisimportant to the application author then
he will manage thisin his code, for example, by explicitly performing status/ error message checks on pending /
committed transactions.

A given Service or scene may declare more than one Transaction component e.g. one for reading and one for writing,
or aternatively one for reading one type of data and another for reading a different type of data. A given platform may
support multiple open return path connections, so a Service may contain more than one Retur nPath component at a
time.

Each Transaction component shall contain O or 1 transfer collection named "request" that defines the outgoing data of
the transaction (from the client's perspective).

Each Transaction component shall contain O or 1 transfer collection named "response” that defines the incoming data
of the transaction (from the client's perspective).

The Domain model of the components related to the Return path is shown in figure 73.

ReturnPath 0.1 0.* Transaction SignedTransaction
-connection-target -state
-auto-connect -timeout
-State
+abort()
+transfer(ba : Transaction) o0
+connect()
+disconnect()
0.1 0.1
-request -response
SecureReturnPath TransferCollection

Figure 73: Return Path Components Domain Model

10.5 Security of return path data

10.5.1 Introduction

An author can request that security mechanisms occur within the platform. The specification of security algorithmsis
outside the scope of the PCF.

An author will be able to specify that any particular items of data that are exchanged across the return path may be a
combination of signed or secure. The implementation of each of these methods may require the sharing of secrets, but
how thisisrealized is also outside the scope of the PCF. However, an author can expect the following minimum
behaviours.

ETSI

161 ETSI TS 102 523 V1.1.1 (2006-09)

10.5.2 Signed data

The purpose of signing is to ensure that there is a reasonabl e degree of assurance that the data being transferred has not
been tampered with in transit.

EXAMPLE: An MD?5 signature may be applied.

10.5.3 Secure data transfer

The purpose of encryption isto securely and privately transfer data through the Client Return Path (see figure 1 above).
Physically the Return Path Server could reside with the application author's systems in order to achieve full end-to-end
data security. The PCF does not specify any security or encryption protocol.

NOTE: An example encryption protocol might be SSL 3.0, however which protocol and how secure that protocol
may be is outside the scope of the PCF and is for the content author to determine its suitability
independently for each target platform.

In order to realize this, the PCF defines the Secur eRetur nPath component which transfers data in an encrypted format.

Once declared within a PCF Service, the ReturnPath component and the Secur eRetur nPath component provide the
same interface for transferring data.

10.6 Return Path Transaction Format (RPTF)

The PCF does not specify the format of data on the Client Return Path. The Return Path Transaction Format (RPTF)
provides a standardized, but non mandatory, platform independent representation of the data exchanged on the Server
Return Path.

NOTE: The RPTF does not specify a means by which datais transported or encapsul ated.

The RPTF consists of RPTF transaction items that correspond to RP Transaction items as defined in the authored PCF
Service. These Transaction items will comprise zero or more RPTF TransferCollections. Figure 74 below shows how
the above Return path Object Model is extended to incorporate these RPTF elements.

Transaction
FELT (ReturnPath)
Transaction |1 1
-Name
-State -Head-End Representation
-Request -Response
.1 0.1 0.1 | -Payload
TransferCollection
<<Sequence>> 1 (ReturnPath)
TransferCollection - - :
-Children -Head-End Representation -Children
0.* 0.%

O"*
-Data ltems | 0.*
<<Serializable Component>> VAT
Component 1 1 ajue ftem
-Head-End Representation e
-Name

-Value

Figure 74: Return Path Transaction Format Mapping

ETSI

162 ETSI TS 102 523 V1.1.1 (2006-09)

Left = PCF Description Right = RPTF Representation

The RPTF model in figure 74 shall be serialized as an XML representation according to the schema defined below:

<?xm version="1.0" encodi ng="UTF-8"?>

<xs:schema target Namespace="http://wwm. dvb. org/ pcf/rptf" xmns:xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: pcf ="http://ww. dvb. or g/ pcf/ pcf" el ement For nDef aul t ="qual i fied"

attri but eFor nDef aul t =" unqual i fi ed">

<xs:inmport nanmespace="http://ww. dvb. org/ pcf/pcf" schemaLocati on="pcf.xsd"/>
<xs:el ement nanme="Transacti on">
<xSs:annotation>
<xs: docunent ati on>cont ai ner for RPTF transacti on</xs: docunentati on>
</ xs:annot ati on>
<xs: conpl exType>
<xs:choi ce m nCccurs="0" maxCccur s="unbounded" >
<xs:element ref="String"/>
<xs:el ement ref="Integer"/>
<xs: el ement ref="Bool ean"/>
</ xs: choi ce>
<xs:attribute name="name" type="xs: NCName" use="required"/>
</ xs: conpl exType>
</ xs: el enent >
</ xs: schena>

10.7 Connection usage display to viewer

Typical return path usage will involve communicating to the viewer platform specific information relating to the
availability, cost, status and security of the return path connection.

The presentation of static information regarding the use of the return path connection, for example cost per minute, may
be achieved using standard PCF visible components, such as TextBox and | mage, where the content property is
defined as awell known Exter nalBody. The referenced external body can then be provided on a platform specific basis
as appropriate.

The presentation of dynamic information regarding the status of the return path connection may be achieved using the
ConnectStatusl mage component (see clause A.2.4).

11 Profiles

11.1 Introduction

The purpose of profilesisto provide an easy way to describe the minimum capabilities, i.e. the minimum profile, that a
platform must provide in order to achieve the authorial intent captured in the PCF description of an interactive service.

Thisis so that an author can have confidence that their service description will work on a particular target platform, or
more precisely a particular target device, without having to meticulously match up every feature they have used with the
features provided by that target.

Asnot al platforms will be able to support the full range of PCF features the present document defines a number of
standard (DVB) profiles (see annex D). These DVB profiles have been defined to reflect pragmatic sub-sets of the
current version of the PCF given both the fundamental ability for platforms to support specific PCF features and the
ease of implementing a supporting PCF transcoder. It is possible that in the future additional DVB profiles may be
defined in response to feedback from practical experience of using the PCF and/or further evolution of the PCF
specification itself.

Individual platforms or content providers may independently create and publish proprietary profiles that may be of use
in optimizing a PCF description of a service. This activity is outside of the scope of the DVB.

To simplify the interchange of profile definitions (DVB or proprietary) between parties a standard representation may
be used.

ETSI

163 ETSI TS 102 523 V1.1.1 (2006-09)

Platforms that claim to conform to a particular profile (DVB or proprietary) shall provide at least the minimum
capabilities identified for the profile. In some cases thisimplies that specific hardware resources are present in the
platform.

A standard mechanism for associating a profile with a PCF service description is provided.

11.2 Profile definition

A PCF profile shall be defined by reference to one or more profile packages. Each profile package embodies a set of
related PCF features, e.g. behaviour. The definition of a profile package shall be described by reference to the
normative clauses within a specific version of the PCF specification that describe the relevant PCF features. Each
profile package shall be assigned a unique identifier formed according to the URI specification.

The PCF features within a profile package shall be grouped into one or more levels. Each new level shall consist of a
superset of PCF features with respect to the previous level and shall be identified by an incrementing integer count,
starting with 1.

NOTE 1: The purpose of levelsisto reflect both the inherent boundaries in platform capabilities (e.g. availability or
not of SecureReturnPath) and significant stepsin the complexity of PCF transcoder implementation.

Profile packages should be defined so as to achieve the coarsest possible sub-setting of the PCF specification.
Furthermore, the number of levels within a profile package should be minimized wherever possible. A standard (DVB)
set of profile package definitionsis specified in annex D.

NOTE 2: Itisonly by minimizing the number of profile packages and levels that the profiling mechanismis able to
meet its stated purpose, i.e. to provide an easy way to describe the minimum capabilities that a platform
must provide.

Soin fact a profile is defined by referencing one or more profile packages at a particular level. Within a particular
profile each profile package may be at a different level.

A standard syntax for the declaration, and so interchange, of profile definitionsis specified in annex D. This shall be
used to declare a profile using one of two possible methods:

. A profile may be declared as an explicit list of profile packages at a particular level.

EXAMPLE 1.

<profil eDef name="mycom com nyprofile">

<package id="dvb. org/ pcf/ package/ behavi our" |evel ="1"/>
<package id="dvb. org/ pcf/ package/l ayout/explicit" |level="2"/>
</ profil eDef >

. Alternatively a profile may be declared as an extension to another existing profile.

EXAMPLE 2:

<profil eDef name="mycom conm nybetterprofile">
<baseProfile id="mycom con nyprofile"/>

</ profil eDef >

If the declaration of a profile, by either method, includes more than one instance of a particular profile package once all
profile instances have been expanded, then all instances of the profile package other than the one with the greatest value
of level are redundant and may be ignored.

EXAMPLE 3: Thefollowing fragment.
<profil eDef name="mycom com nybetterprofile">
<BaseProfile id="mycom com nyprofile"/>

<package id="dvb. org/ pcf/ package/ architecture" |evel ="2"/>
</ profil eDef>

Expandsto:

<profil eDef name="mycom com nybetterprofile">
<package i d="dvb. or g/ pcf/ package/ archi tecture" |evel ="1"/>

ETSI

164 ETSI TS 102 523 V1.1.1 (2006-09)

<package id="dvb. org/ pcf/ package/ architecture" |evel ="2"/>
</ profil eDef>

Which is equivalent to:

<profil eDef name="mycom conf nybetterprofile">
<package i d="dvb. or g/ pcf/ package/ behavi our" |evel ="1"/>
<package i d="dvb. or g/ pcf/ package/ |l ayout/explicit" |evel ="2"/>
<package id="dvb. org/ pcf/ package/ architecture" |evel ="2"/>

</ profil eDef>

11.3 Profile association

A PCF profile is associated with a PCF service description by itsinclusion in a PCF service digest that is referenced
from within the Service element of the service description itself. The mechanism for referencing a PCF service digest is
described in clause A.1.1.1.

The PCF service digest may contain profile aliases defined using the profile Alias element. Each defined profile diasis
uniquely identified within the scope of the service description by the name attribute of the profileAlias element. If a
profile alias is defined with the name "minimum” this specifies the minimum capabilities that will be required of a
platform to render the intended viewer experience. The use of profile aliases with any other nameis not defined in the
present document.

It is not mandatory for a PCF service description to have any associated profiles. Thiswill occur if either no PCF
service digest is referenced from the service description, or if the referenced digest includes no profile aias definitions.

NOTE: If no default profile is associated with a PCF Service then a PCF transcoder can only assume that any
aspect of the PCF may have been used in the description of the service. How a PCF transcoder chooses to
deal with this situation (i.e. reject the service description, attempt to process but issue awarning) is
outside the scope of the present document.

12 Service digest

12.1 Introduction

The purpose of the PCF service digest is to provide summary information that may be interchanged independently of
the actual PCF service description itself.

NOTE: Thisisexpected to be useful during theinitial stages of any business-to-business interchange.

12.2 Digest definition

The digest does not form part of the PCF service description itself. However, it may be referenced from a PCF service
description as an external resource (see clause A.1.1.1).

The digest shall be encoded asan XML document according to clause G.1.6.
Theroot element of adigest, pcfServiceDigest, shall contain the following information items:

. A name attribute. This shall be used to provide a human-readable textual name for the service, e.g. "BBC
Olympics 2008".

. A provider attribute. This shall be aregistered Internet domain name, e.g. "bbc.co.uk". (See RFC 1591 [29] for
DNS name registration.) The provider attribute is case insensitive and must be afully qualified name
according to the rules defined by RFC 1591 [29].

. A pcfSpecVersion attribute. This shall identify the version of the PCF specification with which the service

description is conformant, i.e. it shall be the same as the value encoded within the Service element of the PCF
service description itself.

ETSI

165 ETSI TS 102 523 V1.1.1 (2006-09)

A pcfServiceDigest may also contain the following information items:
. A version attribute. This shall be used to provide a version number for the PCF service description.

. A Servicel D child element. This shall be used to provide aunique identifier for the service according to some
identification scheme.

. A Description child element. This may be used to provide afree-form textual description of the PCF service.

. One or more ServiceEntryPoint child elements. These identify alternative entry scenes for navigating to the
service in addition to that defined by the "firstScene" property of the Service item itself.

. One or more ProfileAlias child elements. See clause 12.3.

12.3 Profile alias definition

The profileAlias child element within a pcfServiceDigest element shall be used to define a profile aias for the relevant
PCF service description. A profileAlias element shall contain the following information item:

. A name attribute. Each defined profile alias shall be given a name that is unique within the scope of the service
description. The name "minimum" shall be assigned to a profile aias that identifies the minimum capabilities
that will be required of a platform to render the intended viewer experience. Other profile aliases may be
assigned any name as convenient.

A profileAlias may & so contain the following information items:
. One or more baseProfile child elements. Each instance shall identify a specific PCF profile (see clause 11.2).
. One or more package child elements. Each instance shall identify a specific PCF profile package.

A profileAlias shall contain at least a one baseProfile or package child element.

If the declaration of a profileAlias includes more than one instance of a particular profile package once al profile
instances have been expanded, then al instances of the profile package other than the one with the greatest val ue of
level are redundant and may be ignored. Thisis handled in the same way as for profile definitions (see clause 11.2).

So for the simplest case where a service is authored according to a single profile the association might ook like the
following:

<profil eAlias name="m ni mun' >
<baseProfile id="dvb.org/ pcf/profiles/core"/>
<profil eAlias>

For the situation where the core of a service is authored according to one profile but part of the service is authored by a
third party according to another profile the association might look like the following:

<profil eAias name="m ni mun' >
<baseProfile id="dvb. org/ pcf/profil es/core"/>
<baseProfile id="mny.com pcf/profiles/abitnore"/>
</profil eAias>

NOTE: Thisisredly aconvenience since at the two profiles could have been merged into a more optimized form
in advance. However, it was agreed that the work required of a transcoder to manage this was minimal.

Another example is where a standard profile is extended with one (or more) packages, as follows:

<profil eAlias nane="whi zzy">
<baseProfile id="dvb.org/ pcf/profiles/core"/>

</profil eAlias>
And of course it would be possible to simply define a profile alias only using packages, i.e. no base profile:

<profil eAlias name="anot her">
<package i d="dvb. org/ pcf/ package/ behavi our" |evel ="3"/>
...other package defs ...

</profil eAlias>

ETSI

166 ETSI TS 102 523 V1.1.1 (2006-09)

12.4 Example PCF service digests

EXAMPLE 1: A simple service digest.

<pcf Servi ceDi gest nanme="BBC O ynpi cs 2008" provi der ="bbc. co. uk" pcf SpecVersi on="1.0"/>

EXAMPLE 2: A service digest that provides both service entry points and profiling information.

<pcf Servi ceDi gest name="BBC O ynpi cs 2008" provi der="bbc. co. uk" version=1.0a" pcfSpecVersi on="1.0">
<Servi cel D type="">bbc. co. uk/ ol ynpi cs2008</ Ser vi cel D>
<Descripti on>No use of return path</Description>
<Servi ceEnt ryPoi nt >i ndex_scene</ Servi ceEnt r yPoi nt >
<Servi ceEnt ryPoi nt >scor eboar d_scene</ Servi ceEnt r yPoi nt >
<Profil eAlias name="defaul t">
<BaseProfile id="dvb. org/ pcf/profil es/core"/>
</ProfileAlias>
</ pcf Servi ceDi gest >

13 Mechanism for transport and packaging (optional)

The PCF transport and packaging mechanism specifies a semantic model for transfer of PCF service descriptions
between any source and sink entities. It isintended that this be used for delivery of PCF service descriptions to
PCF-compliant transcoders. The description that follows is expressed in terms of these entities. This does not preclude
its use for exchange between alternative entities.

This part of the specification is optional. A PCF-compliant system may choose to implement an alternative means for
exchange of PCF service descriptions.

Should a PCF-compliant system adopt this part of the specification, all clauses contained herein are normative.

13.1 PCF data exchange model

13.1.1 Assets, transactions and acceptability

A PCF service shall be described in a collection of separate data units known as PCF assets. Each asset shall be
identified by a URI that is unique within the scope of the service registration. PCF assets shall contain either
PCF-compliant XML or other octet datain a supported content format. Subsets of this collection shall be delivered to
the transcoder as a series of transactions over time. Update and remove operations shall be supported at the transcoder
interface to insert, refresh or remove individual assets from the set currently loaded onto the transcoder.

In order to allow transactions to be processed in distinct contexts at a specific transcoder, each service shall be
registered with that transcoder by the service provider. All transactions shall then take place within the context of this
registration.

NOTE 1. Thisalows the same serviceto be registered one or more times with the same or separate transcoders.

NOTE 2: Transactions may be initiated by any party that has access to the service registration. Thisis alowed to be
an entity other than the service provider.

A transaction message shall pass a set of PCF asset URIs into a service context on the transcoder. This shall declare this
set of URIsto be part of the service context. This message may also contain the content of zero or more assets, where
each asset shall be identified by a URI that is unique within the service registration context.

Transaction messages may be delivered synchronously with the transcoder, in which case all processing shall be
completed before a response message is generated. Messages may be delivered asynchronously with the transcoder, in
which case a response message shall be generated immediately after receipt of the message, and the status of the
transaction may be monitored through subsegquent message requests and responses.

The transcoder shall resolve al supplied URIs and acquire asset contents according to the update models described in
clauses 13.1.2 to 13.1.4. All assets so acquired become the loaded assets of that service within that registration context.

ETSI

167 ETSI TS 102 523 V1.1.1 (2006-09)

The transcoder may then test the acceptability of the content using a combination of XML syntax validation , PCF
semantic correctness, compliance with the PCF profile in use and content transcodability as bounded by the exactness
declarations within the content

NOTE 3: The business rules applied to determine acceptability of content are considered to be outside the scope of
the present document, for example afailure to achieve exactness for a particular value item may not
invalidate the content i.e. it may till be accepted as part of atransfer. Instead the business rules shall be
determined by the tool provider.

13.1.2 Push update model

If the URI can be resolved to another part of the transaction message, the content shall be retrieved from this part. If the
content is not acceptable, the transaction shall fail.

13.1.3 Pull update model

If the URI cannot be resolved to another part of the transaction message and the URI is not a PCF indirect URN as
defined in clause 6.2.3.14, the URI shall be used to retrieve the content from a remote resource. Retrieval shall happen
once for each asset. If the content request fails, or the content is not acceptable the transaction shall fail.

13.1.4 Online update model

If the PCF asset hasitsis volatile flag set to "true”, retrieval of content shall occur once initially and may occur
intermittently thereafter during the lifetime of that asset. Thus the asset should remain available at this URI throughout
thistime. The pattern of retrieval requestsis platform-specific, and not defined by this specification. A portable hint can
be specified to define the validity period of avolatile asset, and the platform shall not cache the asset for longer than
this period. If theinitial content request fails, or the content is not acceptable the transaction shall fail. If any subsequent
retrieval of avolatile asset fails, or any instance of the content is not acceptable, the transcoder shall reject the asset and
an error event shall be generated in the run-time environment of any device accessing this asset.

13.1.5 Asset lifetime

The lifetime of the assets loaded by each transaction is bounded by the lifetime of the service registration. When the
service is unregistered, the service shall become unavailable and any remaining assets associated with that service
registration may be discarded by the platform.

13.1.6 Service packaging and references

One or more PCF assets, known as PCF sour ce documents, shall contain the PCF description of the service. Exactly
one PCF source document shall be identified as the master asset, and shall be used by the transcoder as the starting
point for examining the description hierarchy of the loaded assets of a PCF service.

EXAMPLE 1: Figure 75 illustrates a set of loaded assetsin a registration context on a transcoder.

ETSI

168 ETSI TS 102 523 V1.1.1 (2006-09)

Master asset

PCFService

reference 4 reference 2

reference 3

v
Urn:dvb-pcf:bbc.co.uk::bbc3:mainAV

Figure 75: Simple PCF service example

PCF source documents may contain references to PCF entities that form part of the same service definition. Each entity
shall be encapsulated by a PCF asset. The referenced entity may be within the same PCF asset (e.g. reference 1 in
figure 75) or in a separate PCF asset (e.g. reference 2 in figure 75) or may be the entire asset (e.g. reference 3in

figure 75). All forms are known as dir ect references.

PCF source documents may contain abstract references to entities which are beyond the scope of the PCF service
definition. Such references are known as indir ect refer ences. They shall be implemented using the PCF URN syntax
(see annex Q).

EXAMPLE 2: Indirect references are used for:

. Abstract media service and Ser vice component references, for service tuning and component selection such as
"urn:x-dvb-pcf:bbc.co.uk::bbctwo".

. PCF service entry point references, for inter-PCF service navigation such as
"urn:x-dvb-pcf:skyinteractive.com:: SkyActive".

. PCF return path configuration references, for establishing return path sessions such as "urn:x-dvb-
pcf:www.foo.bar::myvotingserver".

NOTE: URNsare managed independently by each content provider. This includes registration with platform
operators and distribution to service authors.

13.1.7 Service coherence

Throughout the service registration lifetime, all direct and indirect references within the set of assets loaded into the
service context must be resolvable. It is the responsibility of the transcoder to test this condition for each new
transaction. Thisis known as the coherence validation rule and ensures that the service is alwaysin a coherent
condition. If this condition is invalidated by atransaction, this transaction shall be rejected by the transcoder and an
error returned to the service provider. Thus, the order in which assets are supplied via a sequence of transactionsis
important and shall be maintained by the transcoding process.

13.1.8 Transcoder hints

Hints may be provided to the transcoder with each transaction to assist the transcoder in processing the assets. Annex E
defines a set of portable hints that shall be supported by al transcoder i mplementations that adopt this clause of the
specification. Other hints, known as transcoder directives, are not portable and may be implemented by atranscoder to
extend the hinting capability in a vendor-specific manner. PCF specifies a syntax for the transport of all hints.

ETSI

13.2

169

Detailed model specification

Figure 76 illustrates the domain model for the physical format of a PCF service description and the interacting objects
through which such a description is transported to a PCF transcoder. The UML containment association has deliberately
been used to specify entities whose lifetimes are related.

ETSI TS 102 523 V1.1.1 (2006-09)

Transcoder

-transcoderlD

-PCFProfileSupported [1..%]
-access address

= : : - : -configured for
+register(swvc : Senvice) : SenviceRegistration N
+unregister(reg : SeniceRegistration)
+Hransaction(reg : SeniceRegistration, ta : SeniceTransaction)
+enquire(reg : SenviceRegistration, baid : int)
OctetData *
~content ServiceRegistration
registrationID
1)
deployed on -PCFProfileAgreed
rnmﬁggm—_ 1 -
'Iofded Asset Service 1
-UR * -senicelD -Initator
* -contentType -organsiationiD . ServiceProvider
direct ref -contentEncoding -PCFProfileRequired “OWnel,
-is_\wolatile
*
*
delete | ServiceTransaction PortableHnt
ransactonID N Hint -type
-update |-status <——\alue
. -emrorDescription
SourceDocument
-component TranscoderDirective
= -opaqueData
* *
-indirect ref ExternalResource | -configured on
-URN
direct ref:

must be to an entitywithin the
same PCFSenice

13.2.1

Figure 76: Transport and Packaging domain model

PCFTranscoder

This object encapsulates the public interface of a network operator's transcoder. Associations, attributes and operations
are as defined in table 29.

ETSI

170 ETSI TS 102 523 V1.1.1 (2006-09)

Table 29: Transcoder interface specification

Associations:

PCFService: by association class ServiceRegistration

a PCFTranscoder will be responsible for transcoding the service descriptions contained in all
associated PCFServices. Transcoding occurs within the context of one or more
PCFServiceRegistration instances. Thus a PCFService may be registered one or more times
allowing temporal isolation between transmissions of the same PCFService.

A ServiceRegistration is returned by a successful call to the register() operation.

PCFAsset: as role loaded
each PCFTranscoder will reference a set of PCFAssets. These assets are those that have been
successfully delivered by the transaction() operation in the context of a ServiceRegistration.

Attributes:

transcoder|D:
a unique identifier for a transcoder instance.

PCFProfileSupported:

each PCFTranscoder declares its transcoding capability through a set of acceptable profile
values. When a register() operation is called, the PCFService::PCFProfileRequired value is
checked for existence within this set.

access address:
Each PCFTranscoder will be exposed on a well-known access address (e.g. a SOAP URI).

Operations:

ServiceRegistration register(PCFService):

a service provider must register PCFServices with PCFTranscoders. This operation shall result
in a ServiceRegistration, thus it shall allocate a registrationID and resolve the PCFprofileAgreed
value that shall be used when transcoding the service. It must be the first action taken during
the service lifetime.

If no acceptable PCFProfileAgreed value can be found, the operation shall fail.

unregister(ServiceRegistration):

this operation shall destroy the ServiceRegistration and any loaded PCFAssets associated to it
via successful transaction() operations. It must be the last action taken during the service
lifetime.

transaction(ServiceRegistration, ServiceTransaction):

this operation shall update the state of a service description, within the context of the

ServiceRegistration, with a set of new PCFAssets. It may also remove PCFAssets from the

loaded set.

NOTE: This operation applies the coherence validation rule across the loaded PCFAssets.
See ServiceTransaction for details and error reporting.

13.2.2 ServiceRegistration

This object encapsul ates the association between a PCFTranscoder and a PCFService. Associations, attributes and
operations are as specified in table 30.

Table 30: Service registration interface

Associations:

ServiceTransaction:
all updates to a service description occur within the context of a ServiceRegistration.

ServiceProvider:
a service provider shall be the initiator of a ServiceRegistration via the register() operation.

Attributes:

registrationID:
allocated by the PCFTranscoder to identify this context. Unique within the scope of the
PCFTranscoder.

PCFProfileAgreed:
the profile value agreed by the registration operation, to be used in transcoding the PCFService

13.2.3 ServiceTransaction

This object encapsulates a set of PCFAssets to be applied to a PCFTranscoder through the transaction() operation.
Associations, attributes and operations shall be as specified in table 31.

NOTE: Thisisdistinct from the return path transaction that is described in clause 10.2.3.

ETSI

171 ETSI TS 102 523 V1.1.1 (2006-09)

Table 31: Service transaction interface

Associations:

ServiceRegistration:
this provides the context on the PCFTranscoder within which transactions will be applied and
validated.

PCFAsset: in roles "update" and "delete"

the set of PCFAssets to be changed or removed from the service context.

NOTE 1: In order to adhere to the coherence validation rule it is necessary that the first
transaction supplies the PCFAsset identified as the master asset in the PCFService.

Hint:
metadata to assist the transcoder in operating on the PCFAssets referenced in this transaction.

Attributes:

transactionID:
allocated by the transcoder to identify this transaction. Unique within the scope of the
ServiceRegistration.

Status:
the state of the transaction in the PCFTranscoder. Values are:
1) accepted: transaction accepted for processing;
2) validated: transaction has passed coherence test and service context state has been
updated;
3) completed: transaction processing complete;
4) failed: transaction failed during processing, see errorDescription.
NOTE 2: States 1 and 2 will only be visible for an asynchronous transaction request.
Once a transaction has completed processing and has been applied to the ServiceRegistration
context it may be removed from the transcoder. This is indicated by the completed state.
A transaction can fail at any point prior to reaching completed. This is indicated by the failed
state. Failed transactions can also be removed from the transcoder.

errorDescription:
machine and human readable error value to identify cause of failure.

13.2.4 PCFService

This object encapsul ates the existence of a PCF service description and associated assets. Associations, attributes and
operations shall be as defined in table 32:

Table 32: Pcf service description interface

Associations:

ServiceRegistration:
PCF services may be registered multiple times to different transcoders. The service registration
holds the context in which the service is deployed.

PCFAsset:
a PCF service description is a collection of PCF assets. One of these assets is indicated as the
master asset and is used as the starting point for service validation and transcoding.

Attributes:

servicelD:
ID allocated by service provider to identify this PCF service description. Unique within scope of
organizationID.

organizationlID:
globally unique ID allocated by PCF Naming Authority to service providers. Equivalent to MHP
organizationID in [20].

PCFProfileRequired:
minimum level PCF profile value against which this PCF service can be deployed. Failure to
meet this level within the target transcoder will prevent registration.

13.2.5 PCFAsset and specializations

PCFAsset is an abstract interface to a PCF source document of other octet data. PCF assets shall be passed across the
interface as the atomic units of data transfer. PCF assets thus define the atomic units of a service description that may be

modified over time.

Specific asset types are also described. Associations, attributes and operations shall be as defined in table 33.

ETSI

172 ETSI TS 102 523 V1.1.1 (2006-09)

Table 33: PCF assets interface

Associations:

PCFSourceDocument(specialization):

Unit containing PCF service description source language. Contains a PCF Component in XML
format.

This unit may be associated with zero or more other PCF assets or ExternalResources.

OctetData(specialization):

Unit containing octet data in a PCF-compliant content format. Transcoder support for content
formats is determined by profile level agreed, e.g. graphics formats, text markup formats.
This unit shall be entirely self-contained.

Attributes:

URIPath:
identifier for PCFAsset and optionally locator for asset contents. May be used by transcoder to
retrieve the asset (pull and online update models). Shall be unigue within scope of PCFService.

contentType:

content format indicator for transcoder use, as specified by "content-type" header in [21].

Supported values are determined by agreed profile level.

NOTE 1: Where pull model content delivery is used, this value represents the expected
content type and shall be used to validate the actual content type when that asset is
received.

contentEncoding:

content encoding indication for transcoder use, as specified by "content-encoding" header
in [21]. Supported values are determined by agreed profile level.

NOTE 2: Use for pull model content delivery validation as noted for contentType field.

is_volatile:

flag to indicate that an asset will be updated intermittently at source and should be refreshed by
the transcoder. URIPath must resolve to a remote asset to allow the transcoder to refresh this
item of content repeatedly.

13.2.6 ExternalResource

External Resource is an abstract interface to a PCF URN. Associations, attributes and shall be as defined in table 34.

Table 34: External resources interface

Associations

PCFSourceDocument:
URN values may appear in any PCF source document. They shall be resolved on the
transcoder to actual resource information.

Transcoder:
ExternalResources are configured by the transcoder operator to support access by PCF
services to specific resources. URN values are supplied by resource providers.

Attributes:

URN:
portable URN namespace used to reference external resources. Resolved by transcoder using
network-specific information.

13.2.7 Hint and specializations

Hint is an abstract interface to an item of metadata that assists the transcoder in operating on a transaction.
Specializations are also described. Associations, attributes and operations shall be as specified in table 35.

Table 35: hints interface

Associations:

ServiceTransaction:
Hints exist in the scope of a ServiceTransaction and have the same lifetime.

TranscoderDirective(specialization):

this is an opaque, transcoder-specific instruction that allows the hint set to be extended for a
particular transcoder instance. PCF does not specify any syntax for what the opaqueData
attribute may contain, except that it shall be of type xsd:string.

PortableHint(specialization):

this is a PCF-defined transcoder hint. The hint type is contained in the type attribute, and a
type-dependant value is contained in the value attribute.

Annex E defines the current set of portable hint types and values.

ETSI

173 ETSI TS 102 523 V1.1.1 (2006-09)

13.3 PCF data exchange sequence for transcoder input

Figure 77 illustrates the sequence of actions necessary to deliver a PCF service description to a transcoder. Numbered
messages are referred to in the following text.

A service provider shall register a PCF service with atranscoder prior to any other action [1, 2]. This shall return a
service registration instance. The service registration must be presented in all subsequent transactions[3, 8, 19].

A PCF transcoder shall maintain the order of al input transactions of equal priority when updating a service registration
context.

A PCF transcoder may process transactions of a higher priority value before processing any transactions of alower
priority value. Input order of transactions with different priority values may not be maintained [not shown].

A PCF transcoder shall maintain the atomicity of each transaction between validation and service registration context
update, independent of the priority of such transactions.

NOTE: Intheillustration, seriaization of processing is used to maintain atomicity. Thus the validation of the
second transaction [14] is delayed until the first transaction is completed [11]. Alternative strategies may
be employed.

In the event of a syntax validation failure or coherence validation failure, the affected transaction shall not be applied to
the service registration context and an error shall be returned [not shown].

A service provider shall unregister a PCF service after all other actions are complete [19, 20].

: ServiceProvider ’ : PCFTranscoder ‘ ’@g:Servicel%gistration ‘ ’txnl: ServiceTransaction ‘ ’ txn2 : ServiceTransaction

1: reg =register(s\vc)

2: new
3: transaction(reg, bl

: - NOTE: transactions

5: read context 6: validate are serialised to
: maintain coherence

n accept
9: new
11: up@
NOTE: transaction 12: return complete
order is maintained 13: read context '
14: validate

15: retumaccept T
- 16: ranscode

\Lmu date context

18: retum complete

19: unregister(reg)

20: delete contex

T I T

Figure 77: Transcoder operation sequence model

An example implementation of an interface conforming to this model is given using the SOAP [19] standard web
services description language in clause G.3.1.

ETSI

174 ETSI TS 102 523 V1.1.1 (2006-09)

Annex A (normative):
Component specifications

A.1 Container components

A.1.1 Layout components

A.1.1.1 Service

The Service component shall represent the compl ete description of an interactive service.

<Conponent Spec provi der="dvb. org" nanme="Servi ce" container="true" serializable="fal se">
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="pcfSpecVersion firstScene referenceScreen
ref erenceScr eenMappi ng referenceScreenAl i gnnent referenceScreenSurround serviceAspectRatio
vi deoHandl i ngPriority"/>
<Properties>
<Pr opertySpec nanme="pcf SpecVersion" type="string" use="required"
access="initializeOnly"/>
<PropertySpec nane="firstScene" type="uri" use="required" access="initializeOnly"/>
<PropertySpec nanme="announcenent" type="uri" use="optional" access="initializeOnly"/>
<PropertySpec nane="servi ceDi gest" type="uri" use="optional" access="initializeOnly"/>
<PropertySpec nane="referenceScreen" type="size" use="optional" access="initializeOnly">
<pcf:Size name="default" val ue="720 576"/ >
</ Pr opertySpec>
<PropertySpec nanme="ref erenceScr eenMappi ng" type="enunerati on" use="optional"
access="initializeOnly">
<Enuner at i onSpec nane="nmappedTo" >
<Enurer ati onl t em name="di spl ay- ananor phi c"/ >
<Enuner ati onl t em name="di spl ay- preserve"/ >
<Enuner ati onl t em name="pi xel "/ >
</ Enuner at i onSpec>
<pcf:String name="defaul t" val ue="pixel "/ >
</ Pr opertySpec>
<PropertySpec nanme="ref erenceScreenAl i gnnment" type="enuneration" use="optional"
access="initializeOnly">
<EnunerationRef ref="rel ative-positions"/>
<pcf: String name="defaul t" val ue="bul |l seye"/>
</ Pr opertySpec>
<PropertySpec nane="referenceScreenSurround" type="col or" use="optional"
access="initializeOnly">
<pcf: Col or name="default" val ue="#000000"/>
</ Pr opertySpec>
<PropertySpec nane="servi ceAspect Rati 0" type="proportion" use="optional"
access="readWite">
<pcf:Proportion name="default" val ue="0 0"/>
</ Pr opertySpec>
<PropertySpec name="vi deoHandl ingPriority" type="enumeration" use="optional"
access="readWite">
<Enuner ati onSpec name="priority">
<Enurer ati onl t em name="aspect Rati 0"/ >
<Enuner ati onltem name="al i gnmrent "/ >
</ Enurrer at i onSpec>
<pcf:String name="default" val ue="aspectRati 0"/>
</ Pr opertySpec>
</ Properties>
</ Conponent Spec>

A Service component is akind of map item, as defined in clause 6.2.5.2. This meansthat it may contain zero or more
instances of any other kind of PCF item, with the following restrictions:

. A Service component shall contain at least one scene component.
. A Service component shall not contain other Service components.

NOTE: An explicit mechanism for nesting services components is beyond the scope of the present document.

ETSI

175 ETSI TS 102 523 V1.1.1 (2006-09)

The pcfSpecVersion property shall identify the version of the PCF specification with which the service description is
conformant.

The firstScene property shall identify the initially active scene item within the service description to be presented.

The announcement property may be used to identify the PCF description of the presentation of an announcement,
e.g. "PressRed". Thisis handled separately from the first scene (as identified by the firstScene property) since such
announcements are implemented in different ways on different platforms and not always as part of adelivered
interactive service. See annex M.

The serviceDigest property may be used to identify the service digest. The service digest provides summary
information about the service description, as defined is clause 12. The service digest does not form part of the PCF
service description.

The referenceScreen property shall be used to define the size of arectangular co-ordinate system that comprises the
reference screen in which all other visible components of the service description shall be located.

ThereferenceScr eenM apping property shall be used to define how the co-ordinate system of the reference screen shall
be mapped into the co-ordinate system of atarget device when the resolution of atarget deviceis different to that of the
reference screen. See clause 8.7.2.2.

The referenceScreenAlignment property shall be used to position the reference screen within the display of the target
device in cases where the resolution of the mapped reference screen is smaller than that of the display of atarget device.
See clause 8.7.2.2.

The referenceScreenSurround property shall be used to indicate the colour to use to fill any part of the display of a
target device not defined by the mapped reference screen. See clause 8.7.2.2.

The serviceAspectRatio property shall be used to indicate the aspect ratio of the service. The value "0 0" shall mean
that the aspect ratio of the service is undefined.

The videoHandlingPriority property shall be used to indicate whether the priority isto present video at the correct
aspect ratio or to maintain registration of video and graphics in scenarios where both can not be achieved.

The Service component is a StaticEL C (see clause 8.2) with afixed origin at screen co-ordinate 0,0.

A.1.1.2 Scene

The purpose of the scene item isto describe a spatially and temporally co-ordinated viewer experience at a particular
point in the service description.

<Conponent Spec provi der="dvb. org" nane="Scene" contai ner="true">
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperti es=""/>
<CGener at edEvent s>
<CGener at edEvent GroupRef ref="scene_events"/>
</ Gener at edEvent s>
</ Conponent Spec>

A scene component isakind of map item, as defined in clause 6.2.5.2. This meansthat it may contain zero or more
instances of any other kind of PCF item, with the following restrictions:

. A scene component shall not contain Service components.
. A scene component shall not contain other scene components.
The scene component is a StaticEL C (see clause 8.2) with a fixed origin at screen co-ordinate 0,0.

The scene shall generate a Scenelifecycle event when it becomes active, immediately prior to rendering any of its child
components. The action property shall indicate if the scene has been entered by aforward or history navigation action.

The scene shall generate a Scenelifecycle event when it becomes inactive, immediately prior to deactivating any of its
child components. The action property shall indicate that the sceneis exiting.

ETSI

176 ETSI TS 102 523 V1.1.1 (2006-09)

A.1.1.3 Static explicit layout container specification

<Conponent Spec provi der ="dvb. org" name="Stati cELC' contai ner="true">
<Overvi ew versi on="1.0"/>
<I nt endedl npl ement ati on coreProperties="origin"/>
<Properties>
<PropertyG oupRef ref="positioning_properties-absolute" properties="origin"/>
</ Properties>
</ Conponent Spec>

The origin property defines the co-ordinate point within the EL C's parent component that shall be used as the zero
co-ordinate point for positioning the EL C's child components.

The origin property isinitializeOnly.

A.1.1.4 Explicit layout container specification

<Conponent Spec provi der ="dvb. org" name="ELC' contai ner="true">
<Overvi ew version="1.0"/>
<I nt endedl npl ement ati on coreProperties="origin"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents" properti es="visible"/>
<PropertyG oupRef ref="positioning_properties-absolute" properties="origin"/>
</ Properties>
</ Conponent Spec>

The origin property defines the co-ordinate point within the EL C's parent component that shall be used as the zero
co-ordinate point for positioning the EL C's child components.

If the visible property is set to true, al child components that also have their visible property set to true shall be shown.
If the visible property is set to false, al child components shall be hidden.

A.1.1.5 Flow layout container component specifications

A.1.1.5.1 TruncateFlowContainer component

A TruncateFlowContainer isaflow layout container that does not provide any paging or scrolling facilities. Child
content and components are flowed within the available area. If the child elements, when laid out, overflow the
available vertical areathey are truncated.

The following XML defines the StaticTruncateFlowContainer interface:

<Conponent Spec provi der="dvb. org" name="Stati cTFC' contai ner="true">
<Overvi ew versi on="1.0"/>
<I nt endedl npl enent ati on coreProperties="visible focusabl e enabl ed origin
si ze bordercolor fillcolor textcol or
h-align v-align content"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertyG oupRef ref="font-properties"/>
<PropertySpec nanme="grow' type="bool ean" access="initializeOnly"
use="opti onal ">
<pcf: Bool ean name="default" val ue="fal se"/>
</ Pr opertySpec>
<PropertySpec nanme="nmax- hei ght" type="integer" access="initializeOnly"
use="opti onal ">
<pcf:Integer name="default" val ue="0"/>
</ Pr opertySpec>
</ Properties>
</ Conponent Spec>

The following XML defines the DynamicTruncateFlowContainer interface:

<Conponent Spec provi der="dvb. org" name="TFC' contai ner="true">
<Overvi ew versi on="1.0"/>

ETSI

177 ETSI TS 102 523 V1.1.1 (2006-09)

<I nt ended! npl enrent ati on coreProperti es="visible focusable enabled origin size bordercol or
fillcolor textcolor h-align v-align content"/>

<Properties>

<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>

<PropertyG oupRef ref="positioning_properties-absolute"/>

<PropertyG oupRef ref="border_properties"/>

<PropertyG oupRef ref="col or_properties-fillcolor"/>

<PropertyG oupRef ref="alignment_properties"/>

<PropertyG oupRef ref="paddi ng_and_nargi n_properties"/>

<PropertyG oupRef ref="font-properties"/>

<PropertySpec nanme="grow' type="bool ean" access="readWite" use="optional ">

<pcf: Bool ean name="default" val ue="fal se"/>
</ PropertySpec>
<PropertySpec name="max- hei ght" type="integer" access="readWite" use="optional ">

<pcf:Integer name="default" val ue="0"/>
</ PropertySpec>
</ Properties>
</ Conponent Spec>

A StaticTruncateFlowContainer isaflow layout container that may be initialized with defined content area
dimensions, and a set of child content and components. Once initialized, these values cannot be changed during the
lifetime of the component.

A TruncateFlowContainer provides the same functionality as a static flow container, except the dimensions of its
content area, and its set of child content and components may be changed during the lifetime of the component, in
which case the component will re-calculate its layout.

The visible property defines whether or not the flow container isvisible.
The focusable property defines whether or not the flow container will ever be able to enter afocused state.

If the focusable property is set to true, the enabled property defines whether or not the flow container is eligible to
receive focus, due to user navigation.

The aacolor property defines the anti-alias colour to use when rendering the text.

The origin property shall define the position of the top left-hand corner of the flow container when it is drawn within an
explicit layout container.

The size property shall define the horizontal and vertical dimensions of the flow container when it is drawn within an
explicit layout container. This value may only be modified after initialization for a dynamic flow container.

Thefillcolor property shall define the default fill colour of the flow container.
Thetextcolor property shall define the default colour of the text within the flow container.

Theborder_properties property group shall define the colour, style, width and corner-radius of the flow container's
border.

The alignment_properties property group shall define the default vertical and horizontal alignment of the text within
the content area of the flow container.

The padding_properties property group shall define the padding between the content edge and the border.

The margin_properties property group shall define the margin between the border edge and the containing block when
the flow container isitself a child of a parent flow layout container.

The font_properties define the default font to use to display any content text.

If the grow property is set to "true” then the height of the flow container shall increase past the height defined by the
size property, up to the value defined by the max-height property, if the flowed content requires this extra height in
order to display without being truncated. If the flow layout has grown to its max-height and the content is till too large
to fit, then the content shall be truncated.

Child components and content elements shall be laid out using the rules defined within clause 8.3.

ETSI

178 ETSI TS 102 523 V1.1.1 (2006-09)

A.1.1.5.2 ScrollFlowContainer component

A ScrollFlowContainer isaflow layout container that provides scrolling facilities. The height of the box into which
child content and components are flowed is potentially limitless. If the height is greater than the height of the SFC's
content area then it shall be possible for the user to view the total flow in stages by scrolling over flow using navigation

keys.

If the content is large enough to require scrolling, then a scroll bar shall be displayed adjacent to the content area, but
within the bounds defined by the size property, to show which point within the scrollable areais currently visible.

The following XML defines the StaticScrollContainer interface:

<Conponent Spec provi der="dvb. org" name="Stati cSFC' contai ner="true">
<Overvi ew version="1.0"/>
<I nt ended| npl emrent ati on coreProperties="visible focusabl e enabl ed origin size bordercol or
fillcolor textcolor h-align v-align navigation_properties content scroll-position"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_nargi n_properties"/>
<PropertyG oupRef ref="font-properties"/>
<PropertyG oupRef ref="navigation_properties"/>
<PropertySpec nanme="scrol | -position" type="enuneration" access="initializeOnly"
use="opti onal ">
<EnunerationRef ref="rel ative-positions"/>
<pcf:String name="default" val ue="west"/>
</ Pr opertySpec>
</ Properties>
</ Conponent Spec>

The following XML defines the DynamicScrollContainer interface:

<Conponent Spec provi der="dvb. org" nane="SFC' contai ner="true">
<Overvi ew version="1.0"/>
<I nt ended! npl enent ati on coreProperti es="visible focusable enabled origin size bordercol or
fillcolor textcolor h-align v-align navigation_properties content scroll-position"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertyG oupRef ref="font-properties"/>
<PropertyG oupRef ref="navigation_properties"/>
<PropertySpec nane="scroll-position" type="enuneration" access="initializeOnly"
use="optional ">
<Enuner ati onRef ref="rel ative-positions"/>
<pcf:String name="defaul t" val ue="west"/>
</ PropertySpec>
</ Properties>
</ Conponent Spec>

A StaticScrollContainer isascroll container that may be initialized with defined content area dimensions, and a set of
child content and components. Once initialized, these values cannot be changed during the lifetime of the component.

A DynamicScrollContainer provides the same functionality as a static scroll container, except the dimensions of its
content area, and its set of child content and components may be changed during the lifetime of the component, in
which case the component will re-calculate its layout.

The visible property defines whether or not the scroll container isvisible.
The focusable property defines whether or not the scroll container will ever be able to enter afocused state.

If the focusable property is set to true, the enabled property defines whether or not the scroll container is eligible to
receive focus, due to user navigation.

The aacolor property defines the anti-alias colour to use when rendering the text.

ETSI

179 ETSI TS 102 523 V1.1.1 (2006-09)

Theorigin property shall define the position of the top left-hand corner of the scroll container when it is drawn within
an explicit layout container.

The size property shall define the horizontal and vertical dimensions of the scroll container when it is drawn within an
explicit layout container. This value may only be modified after initialization for a dynamic scroll container.

Thefillcolor property shall define the default fill colour of the scroll container.
Thetextcolor property shall define the default colour of the text within the scroll container.

The border_properties property group shall define the colour, style, width and corner-radius of the scroll container's
border.

The alignment_properties property group shall define the default vertical and horizontal alignment of the text within
the content area of the scroll container.

The padding_properties property group shall define the padding between the content edge and the border.

The mar gin_properties property group shall define the margin between the border edge and the containing block when
the scroll container isitself achild of a parent flow layout container.

The font_properties define the default font to use to display any content text.
The next-key property shall define the key the user may press to scroll to the next line of content.
The previous-key property shall define the key the user may pressto scroll to the previous line of content.

The scroll-position property shall define whether the scroll bar, if required, is displayed to the East or the West of the
content area.

The content property shall define the content elements to display within the scroll container. Content may be any
marked up document fragment that conforms to the rules defined within the supplied XML schema "x-dvb-pcf.xsd".
This value may only be modified after initialization for a dynamic flow container.

Child components and content elements shall be laid out using the rules defined within clause 8.3

A.1.1.5.3 PFC component

A PFC isaflow layout container that provides paging facilities. The height of the box into which child content and
components are flowed is potentially limitless. If the height is greater than the height of the page flow container's
content areathen it shall be possible for the user to view the total flow in stages by paging through the flow using
navigation keys.

The following XML defines the StaticPFC interface:

<Conponent Spec provi der="dvb. org" name="Stati cPFC' contai ner="true">
<Overvi ew versi on="1.0"/>
<I nt ended| npl emrent ati on coreProperties="visible focusabl e enabl ed origin size bordercol or
fillcolor textcolor h-align v-align navigation_properties content |abel-format |abel-text"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertyG oupRef ref="font-properties"/>
<PropertyG oupRef ref="navigati on_properties"/>
<PropertySpec nane="| abel -format" type="string" access="initializeOnly" use="optional">
<pcf:String name="default" val ue="Page % of %"/>
</ PropertySpec>
<PropertySpec name="| abel -text" type="string" access="readOnly"/>
<PropertySpec name="num pages" type="integer" access="readOnly"/>
<PropertySpec nane="current-page" type="integer" access="readOnly"/>
</ Properties>
<Gener at edEvent s>
<CGener at edEvent Gr oupRef ref="page_contai ner_events"/>
</ Gener at edEvent s>
</ Conponent Spec>

ETSI

180 ETSI TS 102 523 V1.1.1 (2006-09)

The following XML defines the DynamicPFC interface:

<Conponent Spec provi der="dvb. org" nane="PFC' contai ner="true">
<Overvi ew versi on="1.0"/>
<I nt ended! npl enent ati on coreProperti es="visible focusable enabled origin size bordercol or
fillcolor textcolor h-align v-align navigation_properties content |abel-format |abel-text"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertyG oupRef ref="font-properties"/>
<PropertyG oupRef ref="navigation_properties"/>
<PropertySpec nane="| abel -format" type="string" access="readWite" use="optional ">
<pcf:String name="default" val ue="Page % of %"/>
</ Pr opertySpec>
<PropertySpec nanme="| abel -text" type="string" access="readOnly"/>
<PropertySpec nane="num pages" type="integer" access="readOnly"/>
<PropertySpec nane="current-page" type="integer" access="readOnly"/>
</ Properties>
<Gener at edEvent s>
<CGener at edEvent GroupRef ref="page_contai ner_events"/>
</ Gener at edEvent s>
</ Conponent Spec>

A StaticPageContainer is a page container that may be initialized with defined content area dimensions, and a set of
child content and components. Once initialized, these values cannot be changed during the lifetime of the component.

A DynamicPageContainer provides the same functionality as a static page container, except the dimensions of its
content area, and its set of child content and components may be changed during the lifetime of the component, in
which case the component will re-calculate its layout.

The visible property defines whether or not the page container isvisible.
The focusable property defines whether or not the page container will ever be able to enter afocused state.

If the focusable property is set to true, the enabled property defines whether or not the page container is eligible to
receive focus, due to user navigation.

The aacolor property defines the anti-alias colour to use when rendering the text.

Theorigin property shall define the position of the top left-hand corner of the page container when it is drawn within an
explicit layout container.

The size property shall define the horizontal and vertical dimensions of the page container when it is drawn within an
explicit layout container. This value may only be modified after initialization for a dynamic page container.

Thefillcolor property shall define the default fill colour of the page container.
Thetextcolor property shall define the default colour of the text within the page container.

Theborder_properties property group shall define the colour, style, width and corner-radius of the page container's
border.

The alignment_properties property group shall define the default vertical and horizontal alignment of the text within
the content area of the page container.

The padding_properties property group shall define the padding between the content edge and the border.

The mar gin_properties property group shall define the margin between the border edge and the containing block when
the page container isitself achild of a parent flow layout container.

The font_properties define the default font to use to display any content text.
The next-key property shall define the key the user may pressto move to the next page of content.

The previous-key property shall define the key the user may press to move to the previous page of content.

ETSI

181 ETSI TS 102 523 V1.1.1 (2006-09)

The label-format property shall define the format in which page information shall be rendered into the label-text
information string. This value of this property shall be a plain text string that may contain either or both of the following
format flags:

. %c: replace with the current page humber;
. %t: replace with the total number of pages.

EXAMPLE: For a page container positioned on page 3 of atotal of 6 pages, alabel-format value of "Page %c
of %:t" would result in avalue in |abel-text of "Page 3 of 6".

This value may only be modified after initialization for a dynamic page container.

The label-text property isaread only property that shall contain an information string, with aformat defined by the
label-format property, that may be used to provide areport of the current page position within the total flow. This
value shall update as the user navigated through the avail able pages.

The num-pages property isaread only property that contains the total number of pages available within this page
container.

The current-page property is aread only property that contains the page number of the currently visible page.

The content property shall define the content elements to display within the page container. Content may be any
marked up document fragment that conforms to the rules defined within the supplied XML schema "x-dvb-pcf.xsd".
Thisvalue may only be modified after initialization for a dynamic flow container.

Child components of a page flow container shall be laid out using the rules defined within clause 8.3.

A page flow container shall generate an OnPageChanged event every time the user navigates to a new page.

A.1.2 Flow components

A.1.2.1 Flow

A.1.2.1.1 Introduction

The following fragment of XML defines the Flow component:

<Conponent Spec provi der="dvb. org" name="Fl ow' contai ner="true">
<Qvervi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="content"/>
<Properties>
<PropertySpec nane="content" type="narkedUpText" use="optional" access="readWite"/>
<PropertySpec nane="directionality" type="enuneration" access="initializeOnly"
use="optional ">
<Enuner ati onSpec nanme="directionality">
<Enuner ati onltem name="I1tr"/>
<Enunerationltemname="rtl"/>
</ Enuner at i onSpec>
<pcf:String name="defaul t" value="Itr"/>
</ Pr opertySpec>
</ Properties>
</ Conponent Spec>

The Flow component can contain marked up text and other visual elements such as tables and images, that are to be
automatically laid-out and presented in one of the three kids of Flow Layout Container components.

The Flow component does not have any origin or size properties. The width for a Flow is derived from the available
width of the FlowLayoutContainer in which it is to be presented. The height of a flow is derived the sum of the heights
of each line of laid-out content in the Flow.

Flow layout shall always be implemented from the top down.

ETSI

182 ETSI TS 102 523 V1.1.1 (2006-09)

A.1.2.1.2 The content property

<PropertySpec nanme="content" type="markedUpText" use="optional" access="readWite"/>

The content property shall define the content elementsto be laid-out within the flow. Content may be any marked up
document fragment that conforms to the rules defined within the supplied XML schema "x-dvb-pcf.xsd". This value
may only be modified after initialization for a dynamic flow container.

A.1.2.1.3 The directionality property

<PropertySpec nanme="directionality" type="enunmeration" access="initializeOnly" use="optional">
<Enurer ati onSpec nanme="directionality">
<Enurerationltem name="I1tr"/>
<Enunerationltem name="rtl"/>
</ Enurrer at i onSpec>
<pcf:String name="defaul t" value="Itr"/>
</ PropertySpec>

The directionality property shall define the direction of automatic layout in the Flow.
Default Flow direction is |eft-to-right.
Flow layout may optionally be implemented in right-to-left direction.

NOTE: Directionality of a Flow appliesto the entire Flow. The PCF does not support conflicting directionality
for different parts of asingle flow.

A.1.2.2 TextFlow

A.1.2.2.1 Introduction

The following fragment of XML defines the Flow component:

<Conponent Spec name="Text Fl ow' serial i zabl e="fal se">
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="content"/>
<Properties>
<PropertySpec nane="content" type="nmarkedUpText" use="optional" access="readWite">
<pcf: MarkedUpText name="default" val ue=""/>
</ Pr opertySpec>
<PropertySpec nane="directionality" type="enuneration" access="initializeOnly"
use="opti onal ">
<Enuner ati onSpec nanme="directionality">
<Enuner ati onltem name="I1tr"/>
<Enuner ati onltem name="rtl"/>
</ Enurrer at i onSpec>
<pcf:String name="defaul t" value="Itr"/>
</ Pr opertySpec>
</ Properties>
</ Conponent Spec>

The TextFlow component can contain only marked up text that is to be automatically laid-out and presented in one of
the three kinds of Flow Layout Container components.

The TextFlow component does not have any origin or size properties. The rendered width of the content declared within
a TextFlow component is derived from the available width of the FlowLayoutContainer in which it isto be presented.
The height of aflow is derived the sum of the heights of each line of laid-out content in the TextFlow.

TextFlow layout shall always be implemented from the top down.

ETSI

183 ETSI TS 102 523 V1.1.1 (2006-09)

A.1.2.2.2 The content property

<PropertySpec nanme="content" type="markedUpText" use="optional" access="readWite"/>
The content property shall define the content elementsto be laid-out as a flow.

Content may be any marked up document fragment that conforms to the rules defined within the supplied XML schema
"x-dvb-pcf.xsd" with the following restrictions:

. Block elements shall be restricted to paragraph elements only.
. Specia elements shall be restricted to line break elements and span elements only.
Any other mark-up may be ignored but any text enclosed within it shall be rendered.

This value of this property may only be modified after initialization for a dynamic flow container.

A.1.2.2.3 The directionality property

<PropertySpec nanme="directionality" type="enuneration" access="initializeOnly" use="optional">
<Enuner ati onSpec nanme="directionality">
<Enurerationltem name="I1tr"/>
<Enurerationltem name="rtl|"/>
</ Enurrer at i onSpec>
<pcf:String name="defaul t" value="Itr"/>
</ PropertySpec>

The directionality property shall define the direction of automatic layout in the Flow.
Default Flow direction is |eft-to-right.
Flow layout may optionally be implemented in right-to-left direction.

NOTE: Directionality of a Flow appliesto the entire Flow. The PCF does not support conflicting directionality
for different parts of a single flow.

A.1.2.3 Table components

Similar to HTML 4.0, table layout is"row primary", meaning that service authors specify rows, not columns, in the
PCF service description.

A Table comprises any number of rows of cells.

Columns are derived after the rows have been defined - the first cell in each row belongs to the first column, the second
cell in each row belongs to the second column, and so on. Rows and columns may be grouped, and any such groupings
may optionally be reflected in the visual presentation of the table.

EXAMPLE: Styling characteristics such as fill and border colour may be applied row-wise and column-wise to
groups of table cellsto provide individual formatting for any row or column. This enables authors
to highlight table headers and footers, or columns and rows as required to enhance presentation
and usability of the table content.

The PCF table model comprises: tables, rows, row groups, columns, columns groups and cells. These are defined using
the following elements:

A.1.2.3.1 The Table component

<Conponent Spec provi der ="dvb. org" name="Tabl e" contai ner="true">
<Overvi ew versi on="1.0"/>
<I nt ended| npl emrent ati on coreProperties="tabl e-1ayout table-colums col um-w dt hs bordercol or
fillcolor"/>
<Properties>
<PropertySpec nane="t abl e-col ums" type="integer" use="required" access="initializeOnly"/>
<PropertySpec nane="col um-wi dt hs" type="string" use="optional" access="initializeOnly"/>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="alignment_properties"/>

ETSI

184 ETSI TS 102 523 V1.1.1 (2006-09)

<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertyG oupRef ref="background_properties"/>
</ Properties>
</ Conponent Spec>

A.1.2.3.1.1 The table-layout property

The table-layout property specifies the layout al gorithm to be used for the table. If the table-layout property valueis
"auto", then the automatic layout algorithm, or other implementation-specific algorithm shall be used. If the
table-layout property valueis "fixed", then the fixed layout algorithm shall be used.

A.1.2.3.1.2 The caption property

The caption property specifies atext string that can be used to provide a brief description of the purpose of the table.
The caption property is optional, and can be used to populate a table heading.

A.1.2.3.1.3 The table-columns property

The table-columns property specifies the number of columnsin the table.

EXAMPLE: <table table-columns="5">. In this example, a five column table will be drawn. In the absence of a
column-widths specification, each column will consume an equal amount of the available table
width. In this case, each column will consume.

A.1.2.3.1.4 The row-height property

The row-height property specifiesin pixels the default height for each row in the table. The value of the row-height
property may be over riddenby aTR or aTD.

NOTE: By default, atable cell will wrap to accommodate its content. Where row height has been specified, cells
in that row will truncate any content that cannot be accommodated within the specified height.

A.1.2.3.1.5 The columnwidth property
Table column widths may be defined in three ways:
. Absol ute column widths - each column is specified in pixels.
. Percentage column widths - each column width is specified as a percentage of the available table width.

. Auto column widths - the number and width of columns is not specified, but is calculated by the PCF
implementation.

Column widths may be specified in percentage values. A percentage value specified for a column width shall be
resolved relative to the computed table width. If the table has a width property value of "auto", then a percentage
represents a constraint on the column's width which the PCF implementation should satisfy.

NOTE 1: Percentage width declarations may not always be possible to satisfy. A column width value of 110 %
cannot be satisfied.

NOTE 2: Inthisagorithm, both rows and columns constrain and are constrained by the dimensions of the cells
they contain. Setting column width may impact on the height of arow, and vice versa.

EXAMPLE 1: Absolute column widths

<t abl e wi dt h="100" tabl e-1ayout="fi xed" tabl e-col ums="20, 20, 20, 20, 20">
NOTE 3: Where specified, absolute table-column values must add up to equal table-width value.

EXAMPLE 2: Percentage column widths

<tabl e wi dt h="100" table-layout="fixed" tabl e-colums="20% 20% 20% 20% 20% >

NOTE 4: Where specified, percentage table-column values must add up to 100 %

ETSI

185 ETSI TS 102 523 V1.1.1 (2006-09)

A.1.2.3.2 Table row group components

Table rows may be grouped into table header, table body and table footer groups, usingthe TH, TB and TF
components respectively. This division enables PCF implementations to support scrolling of table bodies independently

of header and footer, or repeat of table header and footer rows across multiple pages when the Table is presented in a
PFC.

When present, the TH, TB and TF each contain arow group. Each row group shall contain at least one TR.

A.1.2.3.2.1 The TH component

<Conponent Spec provi der ="dvb. org" name="TH' contai ner="true">
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperties=""/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="tabl eheader_properties"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertyG oupRef ref="background_properties"/>
</ Properties>
</ Conponent Spec>

The TH component can contain arow group. Where TH exists, it shall contain at least one TR.

A.1.2.3.2.2 The TB component

<Conponent Spec provi der="dvb. org" name="TB" contai ner="true">
<Overvi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperties=""/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_nargi n_properties"/>
<PropertyG oupRef ref="background_properties"/>
</ Properties>
</ Conponent Spec>

The TB component can contain arow group. Where TB exists, it shall contain at least one TR.

The TB component shall always be declared, unless the table consists only of a single table body, withno TH or TF.

A.1.2.3.2.3 The TF component

<Conponent Spec provi der="dvb. org" name="TF" contai ner="true">
<Overvi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperties=""/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="tabl ef ooter_properties"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertyG oupRef ref="background_properties"/>
</ Properties>
</ Conponent Spec>

The TF component can contain arow group. Where TF exists, it shall contain at least one TR.

ETSI

186 ETSI TS 102 523 V1.1.1 (2006-09)

A.1.2.3.3 Table column group components

A.1.2.3.3.1 The TC component

<Conponent Spec provi der="dvb. org" nane="TC'>
<Overvi ew version="1.0"/>
<I nt ended! npl emrent ati on cor eProperti es="col um- nunber"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="tabl ecol um_properties"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertyG oupRef ref="background_properties"/>
<PropertySpec nanme="span" type="integer" use="optional" access="initializeOnly">
<pcf:Integer name="default" val ue="1"/>
</ PropertySpec>
<Pr opertySpec nanme="col um-nunber" type="integer" use="required" access="initializeOnly"/>
</ Properties>
</ Conponent Spec>

The TC component alows grouping of propertiesto be applied column-wise to table cells. The TC component does not
group columns structurally.

The column-number property

<PropertySpec nanme=" col um-nunber" type="integer" use="required" access="initializeonly"/>
The column-number property defines the column number to which the properties specified in TC shall be applied.

NOTE: Column numbering is contingent on directionality of Flow. A table in aleft-to-right flow shall have
column 1 asits left-most column. In aright-to-left flow, the first column shall be the right-most column.

The span property
<PropertySpec nane="span" type="integer" use="optional" access="initializeonly" default="1"/>

The span property specifies the number of columns spanned by the TC element. The properties defined for the TC are
shared for al cellsin al columnsin the span.

The default value for the span property is 1. If the span property value n is greater than 1, then the properties defined in
T C shall be shared with the next n-1 columns.

A.1.2.3.3.2 The TCG component

<Conponent Spec provi der="dvb. org" name="TCG' contai ner="true">
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperties="col um- nunber"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="tabl ecol um_properties"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertyG oupRef ref="background_properties"/>
<PropertySpec nanme="span" type="integer" use="optional" access="initializeOnly">
<pcf:Integer name="default" val ue="1"/>
</ Pr opertySpec>
<PropertySpec nane="col um-nunber" type="integer" use="required" access="initializeOnly"/>
</ Properties>
</ Conponent Spec>

The TCG component groups columns together. Tables consist either of asingle implicit column group, or of any
number of explicitly declared columns groups.

The number of columnsin a column group shall be defined in one of two mutually exclusive ways.

. The span property of the column group specifies the number of columnsin the group.

ETSI

187 ETSI TS 102 523 V1.1.1 (2006-09)

. Each column component represents one or more columns in the group.

The column-number property
<PropertySpec name=" col um-nunber" type="integer" use="required" access="initializeonly"/>
The column-number property defines the column number to which the properties specified in TCG shall be applied.

NOTE: Column numbering is contingent on directionality of Flow. A table in aleft-to-right flow shall have
column 1 asitsleft-most column. In aright-to-left flow, the first column shall be the right-most column.

The span property
<PropertySpec nane="span" type="integer" use="optional" access="initializeonly" default="1"/>

The span property specifies the number of columns spanned by the TCG element. The properties defined for the TCG
are shared for al cellsin all columnsin the span.

The default value for the span property is 1. If the span property value n is greater than 1, then the properties defined in
T C shall be shared with the next n-1 columns.

The span value shall be ignored if the TCG contains one or more TC components.

A.1.2.3.4 The TR component

<Conponent Spec provi der="dvb. org" nanme="TR' contai ner="true">
<Overvi ew version="1.0"/>
<I nt ended! npl enrent ati on coreProperti es="bordercolor fillcolor"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="tabl erow properties"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertyG oupRef ref="background_properties"/>
</ Properties>
</ Conponent Spec>

The TR component acts as a contained for arow of cells.

The TR component inherits al its styling attributed from its parent table component.

A.1.2.3.5 The TD component

<Conponent Spec provi der="dvb. org" name="TD"' contai ner="true">
<Overvi ew versi on="1.0"/>
<I nt ended! npl ement ati on coreProperti es="bordercolor fillcolor"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertyG oupRef ref="background_properties"/>
<PropertySpec nane="rowspan" type="integer" use="optional" access="initializeOly">
<pcf:Integer name="default" val ue="1"/>
</ Pr opertySpec>
<PropertySpec nane="col span" type="integer" use="optional" access="initializeOly">
<pcf:Integer name="default" val ue="1"/>
</ Pr opertySpec>
<PropertySpec name="wr ap" type="bool ean" use="optional" access="initializeOnly">
<pcf: Bool ean nanme="default" val ue="true"/>
</ PropertySpec>
</ Properties>
</ Conponent Spec>

The TD component contains content to be laid-out within a tabular structure.

TDs may be empty.

ETSI

188 ETSI TS 102 523 V1.1.1 (2006-09)

Content within a TD shall be laid-out according to the algorithm defined for Flow. By default, content within a table
cell shall wrap, and the table cell shall stretch to accommodate the content.

A.1.2.3.5.1 The rowspan property

<PropertySpec nane="rowspan" type="integer" use="optional" access="initializeonly" default="1" />
The rowspan property specifies the number of rows the cell shall span. Default value for rowspan property is"1".

A rowspan property value of "0" specifies that the cell shall span all rows from the row in which the cell is declared, to
the last row in the rowgroup in which the cell is specified. If no rowgroup has been specified, then the cell shall span all
rows from the row in which it is declared, to the last row in the table.

A.1.2.3.5.2 The colspan property

The colspan property specifies the number of columns the cell shall span. Default value for the colspan property is"1".

A colspan property value of "0" specifies that the cell shall span al columns from the column in which the cell is
declared, to the last column in the column group in which the cell is specified. If no column group has been specified,
then the cell shall span al columns from the column in which it is declared, to the last column in the table.

NOTE: column spanning is contingent on directionality of the Flow in which the table is located.

A.1.2.3.5.3 The wrap property

<PropertySpec name="wr ap" type="bool ean" use="optional" access="initializeOnly">
<pcf: Bool ean nanme="default" val ue="true"/>
</ PropertySpec>

The wrap property specifies behaviour of flowed content in atable cell when the content istoo large to be
accommodated within the cell. Default behaviour is for the content to wrap, and the table cell to grow to the extent
required to accomodate the flowed content.

A wrap property value of "false" specifiesthat overflowing content in the table cell shall not wrap, and shall be
truncated instead.

A.2 Visual components

A.2.1 Background

The Background component displays an image or aplain fill colour as the background for a scene.

<Conponent Spec nane="Background" provi der="dvb. org">
<Overvi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperties="fillcolor"/>
<Properties>
<PropertyG oupRef ref="background_properties" properties="fillcolor fillcolor-rendering-
intent image tiling offset stretchToFit"/>
</ Properties>
</ Conponent Spec>

The Background component displays a static background for a scene. It is aways positioned at the rearmost positionin
the display stack. The extent of the defined background shall always match the extent of the screen.

The image property may be used to specify an image resource to display as the background. If animage is specified,
then its associated resource should be resolved and this should be displayed according to the tiling-mode, stretch-to-fit
and offset properties. If no image property is specified or the image resource cannot be resolved, the fillcolor property
shall provide a solid fill colour for the scene.

ETSI

189 ETSI TS 102 523 V1.1.1 (2006-09)

The focusable and enabled properties shall always be "false": the background shall not take focus or have an enabled
or disabled state. As such, the fillcolor-focus, fillcolor -disabled, fillcolor-active and fillcolor-idle are not relevant and
shall beignored.

The visible property shall always be "true": it shall not be possible to make the background invisible.
The aacolor property shall be ignored as this has no meaning for a component that is always the rearmost in the z-order.

NOTE: Todisplay video as abackground to a scene, aVVideo component should be placed at the bottom of the
display stack.

A.2.2 Basic shapes

A.2.2.1 Notes on basic shapes in general (informative)

Apart from the AxisLine component, all the basic shape components require some line-art capability. If thisis not
possible on the target platform it may be possible to pre-render line art at the head end, for display as a bitmap on the
receiver.

A.2.2.2 AxisLine

An AxisLine component draws a straight, axis-aligned line.

<Conponent Spec provi der ="dvb. org" name="Axi sLi ne">
<Overvi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperties="color origin |length axis"/>
<Properties>
<PropertySpec nane="l ength" type="integer" use="required" access="readWite"/>
<PropertySpec nanme="axi s" type="enunerati on" use="required" access="readWite">
<Enuner ati onSpec nane="axi sl i ne">
<Enurer ati onltem name="vertical "/>
<Enurer ati onltem name="hori zontal "/ >
</ Enurrer at i onSpec>
</ Pr opertySpec>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="linestyle_properties"/>
<PropertyG oupRef ref="col or_properties-linecolor"/>
<PropertyG oupRef ref="positioning_properties-absolute" properties="origin"/>
</ Properties>
</ Conponent Spec>

An AxisLine component shall draw an X- or Y-axis aligned, straight line in a specified line colour.

The origin property shall define the start point of drawing the line. The length and axis properties shall be used to
determine the end point. For vertical lines, the length property shall define the top-to-bottom distance in reference
screen pixels from the start point. For horizontal lines, the length property shall define the left-to-right distance in
reference screen pixels from the start point. A negative length property shall indicate that the line shall be drawn from
bottom-to-top or right-to-left from the start point respectively.

Thelinecolor property shall determine the foreground colour to be used to draw the line. The linestyle property may be
used to determine a particular style with which to draw the line.

A.2.2.3 Ellipse

An Ellipse component draws an ellipse within a conceptual enclosing rectangle of defined position and size.

<Conponent Spec provi der="dvb. org" name="El|i pse">
<Overvi ew versi on="1.0"/>
<I nt ended! npl enent ati on coreProperti es="visible focusable enabled origin size bordercol or
fillcolor"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
</ Properties>
</ Conponent Spec>

ETSI

190 ETSI TS 102 523 V1.1.1 (2006-09)

The visible property defines whether or not the Ellipseisvisible.
The focusable property defines whether or not the Ellipse will ever be able to enter afocused state.

If the focusable property is set to true, the enabled property defines whether or not the Ellipse is eligible to receive
focus, due to user navigation.

The origin property shall define the position of the top left-hand corner of the Ellipse's enclosing rectangle.
The size property shall define the size of the Ellipse's enclosing rectangle.
Thefillcolor property shall define the fill colour of the Ellipse.

The border_properties property group shall define the colour, style and width of the Ellipse's border.

A.2.2.4 Line

A Line component draws a straight line between two points.

<Conponent Spec provi der ="dvb. org" name="Li ne">
<Overvi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperties="linecolor origin size"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="linestyle_properties"/>
<PropertyG oupRef ref="col or_properties-Ilinecolor"/>
</ Properties>
</ Conponent Spec>

A Line component shall draw a straight line between any two pointsin the reference screen areain a specified colour.

Theorigin property shall define the start point of drawing the line and the size property shall define the end point as an
offset from the origin.

A.2.25 Pixel

The Pixel component draws a single pixel on the screen.

<Conponent Spec provi der ="dvb. org" name="Pi xel ">
<Overvi ew version="1.0"/>
<I nt ended! npl ement ati on coreProperti es="visible focusabl e enabl ed |inecolor origin"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="col or_properties-linecolor"/>
<PropertyG oupRef ref="positioning_properties-absolute" properties="origin"/>
</ Properties>
</ Conponent Spec>

The visible property defines whether or not the Pixel isvisible.
The focusable property defines whether or not the Pixel will ever be able to enter afocused state.

If the focusable property is set to true, the enabled property defines whether or not the Pixel is eligible to receive focus,
due to user navigation.

The origin property shall define the position on screen where the Pixel is drawn.

The linecolor property shall define the colour in which the Pixel is drawn.

A.2.2.6 Polygon

A Polygon component draws an arbitrary polygon with a specified set of vertices.

<Conponent Spec provi der ="dvb. org" name="Pol ygon" >
<Overvi ew versi on="1.0"/>
<I nt ended! npl enrent ati on coreProperti es="visible focusable enabled origin size bordercol or
fillcolor vertex"/>
<Properties>

ETSI

191 ETSI TS 102 523 V1.1.1 (2006-09)

<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute" properties="origin"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertySpec nane="vertex" type="positionArray" use="required" access="readWite"/>
</ Properties>
</ Conponent Spec>

The visible property defines whether or not the Polygon isvisible.
The focusable property defines whether or not the Polygon will ever be able to enter afocused state.

If the focusable property is set to true, the enabled property defines whether or not the Polygon is eligible to receive
focus, due to user navigation.

The origin property defines the zero point that all vertices are drawn in relation to.

Each vertex property defines a vertex of the Polygon, relative to the origin.

Thefillcolor property shall define the fill colour of the Polygon.

Theborder_properties property group shall define the colour, style and width of the Polygon's border.

A.2.2.7 Rectangle

A Rectangle component draws a vertical and horizontal axis-aligned rectangle with a specified origin and size.

<Conponent Spec provi der ="dvb. org" name="Rect angl e" >
<Overvi ew version="1.0"/>
<I nt ended| npl emrent ati on coreProperties="visible focusabl e enabl ed origin size bordercol or
fillcolor"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
</ Properties>
</ Conponent Spec>

The visible property defines whether or not the Rectangleis visible.
The focusable property defines whether or not the Rectangle will ever be able to enter afocused state.

If the focusable property is set to true, the enabled property defines whether or not the Rectangle is eligible to receive
focus, due to user navigation.

The origin property shall define the position of the top left-hand corner of the Rectangle.
The size property shall define the horizontal and vertical dimensions of the Rectangle.
Thefillcolor property shall define the fill colour of the Rectangle.

The border_properties property group shall define the colour, style, width and corner-radius of the Rectangle's border.

A.2.3 Clock

The Clock component displays an automatically updating textual clock, whose date time format shall be configurable.

<Conponent Spec provi der ="dvb. org" name="d ock">

<Overvi ew version="1.0"/>

<I nt ended! npl emrent ati on coreProperties=""/>

<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="col or_properties-textcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_nargi n_properties"/>
<PropertyG oupRef ref="font-properties"/>

ETSI

192 ETSI TS 102 523 V1.1.1 (2006-09)

<PropertySpec name="format" type="string" use="required" access="initializeOnly"/>
</ Properties>
</ Conponent Spec>

The visible property defines whether or not the Clock isvisible.
The focusable property defines whether or not the Clock will ever be able to enter afocused state.

If the focusable property is set to true, the enabled property defines whether or not the Clock is eligible to receive
focus, due to user navigation.

The aacolor property defines the anti-alias colour to use when rendering the text.

Theorigin property shall define the position of the top left-hand corner of the Clock when it is drawn within an explicit
layout container.

The size property shall define the horizontal and vertical dimensions of the Clock.

Thefillcolor property shall define the fill colour of the Clock.

Thetextcolor property shall define the colour of the text within the Clock.

The border_properties property group shall define the colour, style, width and corner-radius of the Clock's border.

The alignment_properties property group shall define the vertical and horizontal alignment of the text within the
content area of the Clock.

The padding_properties property group shall define the padding between the content edge and the border.

The mar gin_properties property group shall define the margin between the border edge and the containing block when
the Clock is drawn within a flow.

Thefont_properties define the font to use to display the Clock's text.
The format property shall define the format in which the date and time are presented. Format is a string, in which
certain character combinations shall be replaced with date and time elements. These character combinations shall be as
follows:

. %a - replaced with locale specific abbreviated day name (eg Sun, Mon, Tue)

. %A - replaced with locale specific full day name (eg Sunday, Monday)

. %b - replaced with local e specific abbreviated month name (Jan, Feb)

. %B - replaced with local e specific full month name (January, February)

. %c - replaced with locale specific date/time info (in UK: Tue 10 August)

. %d - replaced by date of month (01-31)

. %H - replaced by hour (24 hour clock) (00-23)

. %I - replaced by hour (12 hour clock) (1-12)

. %j - replaced by day of year (001-365)

. %m - replaced by month (01-12)

. %M - replaced by minute (0-59)

. %p - replaced by local specific string for AM and PM

. %S - replaced by second (00-59)

. %U - replaced by week number of year (Monday 1% day of week) (01-53)

. %x - replaced by local date representation in locale specific format: (UK "31/12/04", US"12/31/04")

ETSI

193 ETSI TS 102 523 V1.1.1 (2006-09)

. %X - replaced by local time representation in local specific format (UK "17:32:16")
. %y - replaced by the year without the century: "04"

. %Y - replaced by the year with the century : "2004"

A.2.4 ConnectStatusimage

A.2.4.1 Introduction

The following XML fragment defines the Connect Statusl mage component:

<Conponent Spec provi der ="dvb. org" name="Connect St at usl mage" >
<Overvi ew version="1.0"/>
<I nt ended! npl ement ati on coreProperti es="visible enabl ed size bordercolor h-align v-align"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="margin_properties"/>
</ Properties>
</ Conponent Spec>

The ConnectStatusl mage component serves to define alocation within the reference screen where platform specific
graphics may be rendered to represent each of the four states supported by the ReturnPath component: opening, open,
closing and closed.

NOTE: Graphicsused to represent connection status are platform specific, and are not specified by service
authors.

A.2.5 HintTextBox

A.2.5.1 Introduction

A HintTextBox component renders plain text within a defined rectangular area relevant to the visible component that
currently has focus.

<Conponent Spec provi der ="dvb. org" name="H nt Text Box" >
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperties="visible enabled origin
si ze bordercolor fillcolor textcol or
h-align v-align"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="col or_properties-textcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertyG oupRef ref="font-properties"/>
</ Properties>
</ Conponent Spec>

The HintTextBox is essentially identical to the TextBox component, except that the text to be displayed is not defined
within the Hint TextBox component itself. Instead the text to be presented by the Hint TextBox component is defined
by the HintText property of the visible component that currently has focus. In this way the HintTextBox component is
to provide a simple mechanism to deliver context-sensitive information. The text presented shall be updated to reflect
any change of focus.

EXAMPLE: Aninput field component may have a HintText property value of "please enter your phone number
and press select". This text will be presented by the HintTextBox component when focus rests on
that input field.

The HintTextBox is not a focusable component.

Only one HintTextBox instance shall be active at any point in time.

ETSI

194 ETSI TS 102 523 V1.1.1 (2006-09)

Text shall be rendered within a HintTextBox using the same rules as for a TextBox with the wrapping property set to
true.

A.2.5.2 Properties defined elsewhere
. intrinsic_properties-visual_components. clause C.1.1;
. border_properties: clause C.4;
. font_properties. clause C.9;
. color_properties-fillcolor: clause C.3.4;
. positioning_properties-absolute: clause C.7.1;
. alignment_properties. clause C.7.3;
. padding_and_margin_properties: clause C.8;

. background properties: clause C.8.

A.2.6 Image

The Image component displays a still image.

<Conponent Spec provi der="dvb. org" nane="I| nage" >
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="visible focusabl e enabl ed size content"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="margi n_properties"/>
<PropertySpec nane="content" type="inageData" use="required" access="readWite"/>
<PropertySpec nane="content-focus" type="inageData" use="optional" access="readWite"/>
<PropertySpec nane="content-di sabl ed" type="i mageData" use="optional"
access="readWite"/>
</ Properties>
<CGener at edEvent s>
<CGener at edEvent GroupRef ref="nedi a_events"/>
</ Gener at edEvent s>
<Gener at edErr or s>
<CGener at edError G oupRef ref="nmedi a_errors"/>
</ Gener at edErr or s>
</ Conponent Spec>

The visible property shall define whether or not the Image component isvisible.
The focusable property shall define whether or not the Image component will ever be able to enter afocused state.

If the focusable property is set to true, the enabled property shall define whether or not the Image component is eligible
to receive focus, due to user navigation.

Theorigin property shall define the position of the top left-hand corner of the Image component when it is drawn
within an explicit layout container. This shall correspond to the top-left hand corner of the image.

The size property shall define the horizontal and vertical dimensions of the Image component. If theimage sizeis
different then the image shall not be scaled to fit. Instead:

. If theimage sizeislarger then the parts that fall outside the boundary of the | mage component (on the right
and bottom boundaries) shall not be rendered.

. If the image size is smaller then the pixels within the boundary of the |mage component that are not defined
by the image shall be set to the colour defined by the fillcolor property.

Thefillcolor property defines the fill colour that shall be used between:

. the padding edge and the content edge;

ETSI

195 ETSI TS 102 523 V1.1.1 (2006-09)
. the content edge and the image, when the image dimensions are smaller than the dimensions of the content
area and the image is not being scal ed.
Theborder_properties property group shall define the colour, style, width and corner-radius of the image's border.

The alignment_properties property group shall define the vertical and horizontal alignment of the image within the
content area of the image when the actual image dimensions are smaller than the dimensions of the content area and the
image is not being scaled.

The padding_properties property group shall define the padding between the content edge and the border.

The mar gin_properties property group shall define the margin between the border edge and the containing block when
the image is drawn within aflow.

The content property shall define the image to be displayed when the image component is in its default state.
The content-focus property may be used to define an image to be displayed when the image component has focus.
The content-disabled property may be used to define an image to be displayed when the image component is disabled.

The statechart in figure 78 defines image loading behaviour.

dia loaded and decoded)
/display image”fire OnMediaAvailable

media decqde error

Available

Figure 78: Image loading behaviour
Theimage isinitialy loading.

If thereisaload error or an image decoding error then a media_unavailable or media_corrupt error shall be fired
respectively.

If the image loads and decodes successfully the image shall become available for display and an OnM ediaAvailable
event shall be fired. The rendering of theimage is determined by the visible property.

A.2.7 ImageAnimated

The ImageAnimated component displays a simple sequence of images.

<Conponent Spec provi der ="dvb. org" name="I| mageAni mat ed" >
<Overvi ew versi on="1.0"/>
<I nt ended! npl ement ati on coreProperties="visible focusabl e enabl ed
si ze bordercolor h-align v-align content pause"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="margi n_properties"/>
<PropertyG oupRef ref="ani mati on_properties"/>
<PropertySpec nane="current-frame" type="integer" use="optional" access="readWite">
<pcf:Integer name="default" val ue="0"/>
</ Pr opertySpec>
<PropertySpec name="numfranmes" type="integer" access="readOnly"/>
<PropertySpec nane="content" type="inageDataArray" access="initializeOnly"
use="required"/ >
</ Properties>
<Gener at edEvent s>
<CGener at edEvent GroupRef ref="ani mati on_events"/>

ETSI

196 ETSI TS 102 523 V1.1.1 (2006-09)

<CGener at edEvent Gr oupRef ref="nmedi a_events"/>
</ Gener at edEvent s>
<Gener at edError s>
<CGener at edError G oupRef ref="nmedi a_errors"/>
</ Gener at edErr or s>
</ Conponent Spec>

The visible property shall define whether or not the ImageAnimated component is visible.

The focusable property shall define whether or not the ImageAnimated component will ever be able to enter a focused
state.

If the focusable property is set to true, the enabled property shall define whether or not the ImageA nimated component
iseligible to receive focus, due to user navigation.

The origin property shall define the position of the top left-hand corner of the ImageAnimated component when it is
drawn within an explicit layout container.

The size property shall define the horizontal and vertical dimensions of the ImageAnimated component. If the
dimensions of any image in the sequence are different to the value of the size property then it shall not be scaled to fit.
Instead:

. If theimage sizeislarger then the parts that fall outside the boundary of the | mage component (on the right
and bottom boundaries) shall not be rendered.

. If the image size is smaller then the areas within the boundary of the | mage component that are not defined by
the image shall be transparent.

Thefillcolor property defines the fill colour that shall be used between:
. the padding edge and the content edge;

. the content edge and the image, when the image dimensions are smaller than the dimensions of the content
area and the image is not being scaled.

The border_properties property group shall define the colour, style, width and corner-radius of the image's border.

The alignment_properties property group shall define the vertical and horizontal alignment of the image within the
content area of the component, when the image dimensions are smaller than the dimensions of the content area and the
image is not being scaled.

The padding_properties property group shall define the padding between the content edge and the border.

The margin_properties property group shall define the margin between the border edge and the containing block when
theimage is drawn within a flow.

The animation_properties property group shall define the way in which the images are animated.
The frameperiod property shall define the delay, in milliseconds, between successive images.
The running property shall define whether or not the images are currently being animated.

The number -of-loops property shall define the number of loops of the animation sequence to show before stopping. If
this value is zero then the animation shall loop continuously.

The pause property shall define the number of milliseconds to wait between successive loops.

The current-frame property, when read, shall return the index of the frame currently being displayed. When written to
it shall set the current position within the animation sequence.

The num-frames property shall return the total number of frames in the animation sequence.

The content property shall define the array of images that make up the animation sequence. The images shall be
presented in the order they are defined in this array, starting with the image at the index value of 1.

The statechart in figure 79 illustrates the |mageAnimated component's loading and animation behaviour.

ETSI

197 ETSI TS 102 523 V1.1.1 (2006-09)

Loading

when (images loaded and|decoded)
[display first frame”ire OnlVediaAvailable

Active

’ >‘ [running =false] \(W/ when (running =false)

[remaining loops =0]
/running = false
irg OnAnimationComplete

[running =true] when (runni

RuUNNIn when (animation complete)
| 9 J7decrement remaining loops
[remaining loops > 0]

firel OnLoopComplete

after (loopPause)

Paused

Figure 79: ImageAnimated behaviour

The animation image component isinitially in aloading state.

If thereisaload error or an image decoding error then a media_unavailable or media_corrupt error shall be fired
respectively.

If all the images|oad and decode successfully, the first frame of the animation shall become available for display, an
OnM ediaAvailable event shall be fired.

Once available, the ImageAnimated shall be either initially in the running or the stopped state, as defined by the
running property.

When the animation sequence completes, one of two things shall happen:

. if there are more animation loops to present, as defined by the number -of-loops property, the component shall
generate an OnL oopComplete event and pause for the number of milliseconds defined by the pause property,
before presenting the next loop in the animation,;

. if there are no more animation loops to present the animation shall enter the stopped state with its final frame
showing, set its running property to false, and generate an OnAnimationComplete event.

A.2.8 ImageScalable

The I mageScalable component displays a still image with control over its scaling and presentation within the visible
area of the component itself.

<Conponent Spec provi der ="dvb. org" name="I| mageScal abl e" >
<Overvi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperties="visible focusabl e enabl ed size content fillcolor "/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>

ETSI

198 ETSI TS 102 523 V1.1.1 (2006-09)

<PropertyG oupRef ref="margi n_properties"/>
<PropertySpec nanme="content" type="i mageData" use="required" access="readWite"/>
<PropertySpec name="vi ewport-h-position" type="proportion" use="optional"
access="readWite">
<pcf:Proportion name="default" value="0 1"/>
</ Pr opertySpec>
<PropertySpec nanme="vi ewport-v-position" type="proportion" use="optional"
access="readWite">
<pcf:Proportion name="default" value="0 1"/>
</ Pr opertySpec>
<Pr opertySpec nanme="vi ewport-h-size" type="proportion" use="optional"
access="readWite">
<pcf:Proportion name="default" value="1 1"/>
</ Pr opertySpec>
<Pr opertySpec nanme="vi ewport-v-size" type="proportion" use="optional"
access="readWite">
<pcf:Proportion name="default" value="1 1"/>
</ Pr opertySpec>
<PropertySpec nanme="h-scal e" type="proportion" use="optional" access="readWite">
<pcf:Proportion name="default" value="1 1"/>
</ PropertySpec>
<PropertySpec nanme="v-scal e" type="proportion" use="optional" access="readWite">
<pcf:Proportion name="default" value="1 1"/>
</ PropertySpec>
<PropertySpec nane="anchor" type="enuneration" use="optional" access="readWite">
<Enuner ati onRef ref="rel ative-positions"/>
<pcf:String name="defaul t" val ue="bul |l seye"/>
</ PropertySpec>
</ Properties>
<CGener at edEvent s>
<Gener at edEvent Gr oupRef ref="nedi a_events"/>
</ Gener at edEvent s>
<Gener at edError s>
<CGener at edError G oupRef ref="nmedi a_errors"/>
</ Gener at edEr r or s>
</ Conponent Spec>

The visible property shall define whether or not the | mageScalable component isvisible.

The focusable property shall define whether or not the | mageScalable component will ever be able to enter afocused
state.

If the focusable property is set to true, the enabled property shall define whether or not the I mageScalable component
iseligible to receive focus, due to user navigation.

The origin property shall define the position of the top left-hand corner of the | mage component when it is drawn
within an explicit layout container. This shall correspond to the top-left hand corner of the image.

The size property shall define the horizontal and vertical dimensions of the | mage component. If theimage sizeis
different then it shall not be scaled to fit. Instead:

. If theimage sizeis larger then the parts that fall outside the boundary of the | mage component (on the right
and bottom boundaries) shall not be rendered.

. If the image size is smaller then the areas within the boundary of the | mage component that are not defined by
the image shall be transparent.

Thefillcolor property defines thefill colour that shall be used between:
. the padding edge and the content edge;

. the content edge and the image, when the image dimensions are smaller than the dimensions of the content
area and the image is not being scaled.

The border_properties property group shall define the colour, style, width and corner-radius of the image's border.

The alignment_properties property group shall define the vertical and horizontal alignment of the image within the
content area of the image when the actual image dimensions are smaller than the dimensions of the content area and the
image is not being scaled.

The padding_properties property group shall define the padding between the content edge and the border.

ETSI

199 ETSI TS 102 523 V1.1.1 (2006-09)

The margin_properties property group shall define the margin between the border edge and the containing block when
theimage is drawn within a flow.

The content property shall define the image to be displayed when the image component isin its default state.

The process by which an area of the decoded image is selected, scaled and subsequently displayed by the ImageScalable
component as part of an interactive service is the same as that described for the Video component (see clause A.2.15).

The image loading behaviour for an ImageScal able component is the same as for an |mage component (see
clause A.2.6).

A.2.9 TextBox

A TextBox component renders plain text within a rectangular area.

<Conponent Spec provi der="dvb. org" nane="Text Box" >
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="visible focusabl e enabl ed origin
si ze bordercolor fillcolor
textcolor h-align v-align
content w appi ng"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="col or_properties-textcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertyG oupRef ref="font-properties"/>
<PropertySpec name="content" type="string" use="optional" access="readWite">
<pcf:String name="defaul t" val ue=""/>
</ PropertySpec>
<PropertySpec nane="w appi ng" type="bool ean" use="optional" access="initializeOly">
<pcf: Bool ean nanme="default" val ue="fal se"/>
</ Pr opertySpec>
</ Properties>
</ Conponent Spec>

The visible property defines whether or not the TextBox isvisible.
The focusable property defines whether or not the TextBox will ever be able to enter afocused state.

If the focusable property is set to true, the enabled property defines whether or not the TextBox is eligible to receive
focus, due to user navigation.

The aacolor property defines the anti-alias colour to use when rendering the text.

The origin property shall define the position of the top left-hand corner of the TextBox when it is drawn within an
explicit layout container.

The size property shall define the horizontal and vertical dimensions of the TextBox.

Thefillcolor property shall define the fill colour of the TextBox.

Thetextcolor property shall define the colour of the text within the TextBox.

The border_properties property group shall define the colour, style, width and corner-radius of the TextBox's border.

The alignment_properties property group shall define the vertical and horizontal alignment of the text within the
content area of the TextBox.

The padding_properties property group shall define the padding between the content edge and the border.

The margin_properties property group shall define the margin between the border edge and the containing block when
the TextBox is drawn within a flow.

The font_properties define the font to use to display the content text.

ETSI

200 ETSI TS 102 523 V1.1.1 (2006-09)

The content property shall define the textual content to be rendered.

Textual content shall be rendered as a series of lines within the rectangular area defined by the size property. The flow
of text shall be based on the rules defined in clause 8.3.4 asif the textual content was flow within a paragraph element
as defined in annex F. However, the exact way in which the rendering occurs shall be affected by the wrapping
property as follows:

If the wrapping property is fal se then:

. The flow of text shall only break onto a new line only where a Carriage Return character (OxOD) is present in
the text. Consequently, the number of lines to render shall be equal to the number of Carriage Returns present,
plusone.

If the wrapping property is true then:

. In addition to breaking onto a new line where a Carriage Return character (OxOD) is present in the text the flow
of text shall automatically break onto successive lines as required to avoid any horizontal truncation of the text
content.

Any textual content that flows beyond the bounds of the rectangular area defined by the size property shall be truncated
in a platform-specific manner.

A.2.10 Ticker

The Ticker component displays a scrolling ticker.

<Conponent Spec provi der="dvb. org" name="Ti cker">
<Overvi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="visible focusabl e enabl ed origin
bordercol or fillcolor textcolor
h-align v-align | oopPause direction content"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="col or_properties-textcolor"/>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_and_nargi n_properties"/>
<PropertyG oupRef ref="font-properties"/>
<PropertyG oupRef ref="ani mati on_properties"/>
<PropertySpec name="content" type="string" use="optional" access="readWite">
<pcf:String name="defaul t" val ue=""/>
</ PropertySpec>
<PropertySpec nanme="direction" type="enunerati on" use="optional" access="readWite">
<Enuner ati onSpec nanme="scrol | Directi on">
<Enurer ationltem name="|eft"/>
<Enuner ationltem name="ri ght"/>
</ Enurrer at i onSpec>
<pcf:String name="defaul t" value="left"/>
</ PropertySpec>
<PropertySpec nane="startBl ank" type="bool ean" access="readWite" use="optional ">
<pcf: Bool ean nanme="defaul t" val ue="true"/>
</ Pr opertySpec>
<PropertySpec nane="ticker Type" type="enuneration" access="initializeOnly"
use="opti onal ">
<Enurer ati onSpec nanme="ti cker Types">
<Enuner ati onl t em name="mar quee"/ >
<Enurer ati onl tem name="reveal "/ >
</ Enuner at i onSpec>
<pcf:String name="defaul t" val ue="marquee"/>
</ Pr opertySpec>
</ Properties>
<CGener at edEvent s>
<CGener at edEvent GroupRef ref="ani mati on_events"/>
</ Gener at edEvent s>
</ Conponent Spec>

The visible property defines whether or not the Ticker isvisible.

The focusable property defines whether or not the Ticker will ever be able to enter afocused state.

ETSI

201 ETSI TS 102 523 V1.1.1 (2006-09)
If the focusable property is set to true, the enabled property defines whether or not the Ticker iseligible to receive
focus, due to user navigation.
The aacolor property defines the anti-alias colour to use when rendering the text.

Theorigin property shall define the position of the top left-hand corner of the Ticker when it is drawn within an
explicit layout container.

The size property shall define the horizontal and vertical dimensions of the Ticker.

Thefillcolor property shall define thefill colour of the Ticker.

Thetextcolor property shall define the colour of the text within the Ticker.

The border_properties property group shall define the colour, style, width and corner-radius of the Ticker's border.

The alignment_properties property group shall define the vertical and horizontal alignment of the text within the
content area of the Ticker. Only the vertical aignment property shall be used.

The padding_properties property group shall define the padding between the content edge and the border.

The mar gin_properties property group shall define the margin between the border edge and the containing block when
the Ticker isdrawn within aflow.

Thefont_properties define the font to use to display the content text.

The content property shall define the textual content to display within the Ticker. Display of the textual content shall
conform to the following rules:

. Line breaks will be ignored.

. Content withinaTicker shall not automatically word-wrap. If the Ticker Type property is set to "revea” and
the content string is too long to fit into the content area, the rendering behaviour is undefined by the present
document.

The animation_properties property group shall define the way in which the Ticker animates its content.
The frameperiod property defines the movement speed in milliseconds per pixel.

NOTE 1. Platforms are free to implement any actual pixel step size provided the perceived movement speed
remains as specified by the frameperiod property.

Therunning property defines whether or not the Ticker is currently running, i.e. moving.

The number -of-loops property defines the number of loops of the Ticker content to show before stopping. If this value
is zero then the Ticker shall loop continuously.

The loopPause property defines the number of milliseconds to wait between successive loops. During this pause the
content shall remain visible.

The direction property shall define the direction in which the content moves asit scrolls.

NOTE 2: The default direction property, "left", is most suitable for left-to-right script in a marquee. Service authors
may change this value for right-to-left script or when Ticker Typeis set to "revea”.

The startBlank property shall define whether or not each loop should start with as much content as possible pre-
positioned within the Ticker, or whether the Ticker should begin the loop blank.

NOTE 3: Wherethe Ticker Type property is set to "reveal” the Ticker will always start blank.

The statechart in figure 80 defines the animation behaviour for the Ticker component.

ETSI

202 ETSI TS 102 523 V1.1.1 (2006-09)

Active

[running = false]

> Stopped e—_hen (running = false)

[remaining loops = 0]
ing =true) /running =false
Mirg OnAnimationComplete

[running = true]

when (1

RUNNIN when (animation complete)
9 /decrement remaining loops

[remaining loops > 0]
fire|OnLoopComplete

after (loopPause)

Figure 80: Ticker animation behaviour

This statechart defines the animation-related behaviour when the Ticker isactive, that is, when its parent sceneisthe
active scene. This statechart operates concurrently with the standard visual component statechart.

The Ticker iseither initially in the running or stopped state, as defined by the running property.
When one Ticker animation loop sequence completes, one of two things shall happen:

. if there are more animation loops to present, as defined by the number -of-loops property, the Ticker shall
generate an OnL oopComplete event and pause for the number of milliseconds defined by the pause property,
before presenting the next loop in the animation;

. if there are no more animation loops to present the Ticker shall enter the stopped state, set its running property
to false, and generate an OnAnimationComplete event.

NOTE 4: It should be noted that the paused state is atransitory state that is entered automatically at the end of each
loop, and exited after loopPause milliseconds. It should not be confused with the concept of manually
pausing a video or audio player transport.

A.2.11 Input components

A.2.11.1 Button

A Button component shall draw a vertical and horizontal axis-aligned rectangle with a specified origin and size, and
shall superimpose asingle line of text and an image if specified.

<Conponent Spec provi der="dvb. org" name="Button">
<Overvi ew versi on="1. 01"/ >
<I nt ended! npl enrent ati on coreProperti es="visible enabl ed focusable origin size | abel imge
fillcolor fillcolor-active textcolor selected sel ectrode hotkey"/>
<Properties>
<!--visual properties-->
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="font_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<l--optional button |abel text-->
<PropertySpec nane="content" type="string" use="optional" access="readWite"/>
<!--optional button image-->
<PropertySpec name="i mage" type="imageData" use="optional" access="initializeOnly"/>
<PropertySpec nane="i nage_al i gn" type="enuneration" use="optional"
access="initializeOnly">
<Enuner ati onRef ref="rel ative-positions"/>
<pcf: String name="defaul t" val ue="bul | seye"/>
</ PropertySpec>

ETSI

203 ETSI TS 102 523 V1.1.1 (2006-09)

<!--behavi oural properties-->
<PropertySpec nanme="sel ected" type="bool ean" access="readWite"/>
<PropertySpec nane="sel ect rode" type="enunerati on" access="initializeOnly"
use="opti onal ">
<Enuner ati onSpec nane="sel ect nodes" >
<Enuner ati onl t em name="pushbutton"/>
<Enuner ati onl t em name="t oggl e"/ >
<Enurer ati onl t em name="oneshot "/ >
</ Enuner at i onSpec>
<pcf: String name="defaul t" val ue="pushbutton"/>
</ Pr opertySpec>
<PropertySpec nane="hot key" type="userKey" access="initializeOnly" use="optional"/>
</ Properties>
<Handl edEvent s>
<Handl edEvent Spec nanme="sel ect" eventtype="KeyEvent" eventcl ass="user">
<Qualifier>
<pcf: UserKey name="key" val ue="VK_ENTER'/>
</Qualifier>
</ Handl edEvent Spec>
<Handl edEvent Spec nanme="hot key" eventtype="KeyEvent" eventcl ass="user">
<Qualifier>
<PropertyRef conponent property="hotkey" eventproperty="key"/>
</Qualifier>
</ Handl edEvent Spec>
</ Handl edEvent s>
<Handl edAct i ons>
<Handl edActi onG oupRef ref="visible-actions"/>
</ Handl edAct i ons>
<CGener at edEvent s>
<CGener at edEvent GroupRef ref="button_events"/>
</ Gener at edEvent s>
<Gener at edError s>
<CGener at edError GroupRef ref="basic_errors"/>
<CGener at edError G oupRef ref="nmedi a_errors"/>
</ Gener at edErr or s>
</ Conponent Spec>

The visible property shall define whether or not the Button isvisible.
The focusable property shall define whether or not the Button will ever be able to enter a focused state.

If the focusable property is set to true, the enabled property shall define whether or not the Button is eligible to receive
focus, due to user navigation. In addition the Button shall be prevented from changing active state while disabled.

The origin property shall define the position of the top left-hand corner of the rectangle.
The size property shall define the horizontal and vertical dimensions of the rectangle.

The color_properties-fillcolor property group shall define thefill colour of the rectanglein at least the idle and active
states. Implementations may also use other colours in the group to show other states as described in clause 7.3.3.

The border_properties property group shall define the colour, style, width and corner-radius of the rectangle's border.
The aacolor property shall define the anti-alias colour to use when rendering the text.
Thetextcolor property shall define the colour of the text within the Button.

The padding_properties property group shall define the padding between the content edge of the text label and image
and the border.

The margin_properties property group shall define the margin between the border edge and the containing block when
the Button is drawn within a flow.

The font_properties shall define the font to use to display the content text.

The label property shall define the textual content to display within the Button. Display of the textual content shall
conform to the following rules:

. Label text within aButton shall not automatically word-wrap. If aline of text istoo long to fit into the content
area of the Button the rendering behaviour is undefined by the present document.

ETSI

204 ETSI TS 102 523 V1.1.1 (2006-09)

The image property may be used to specify an image resource to display in addition to the text label and background
rectangle.

Theimage-align property may be used to specify the relative alignment of the image and the text |abel within the
content area of the Button. The image may be placed north, south, east or west of the text, or the text may be centrally
aligned with the image [default]. The resulting content block is then centered within the content area of the Button.
There shall be an implicit z-order such that the text appearsin front of the image and the image appearsin front of the
rectangle. This order cannot be changed.

The selected property shall enable action language access to the active state of the Button.

The selectmode property shall control the behaviour of the Button. Setting this to pushbutton shall cause intermittent
action, setting thisto toggle shall cause the active state to remain until another select event occurs and setting thisto
one-shot shall cause the Button to only respond to the first select event.

The hotkey property shall allow the Button to respond to the key event specified by this value even if the Button does
not have focus.

A Button shall behave according to two separate statemachines; the standard intrinsic focus machine and an activity
statemachine that defines the response to the "select” and "hotkey" events.

NOTE: The standard intrinsic focus machine is shared with all other visible, focusable components and is
described in clause 7.4.

The activity statemachine is shown in figure 81.

hotkey{selectmode=toggle & visible & !disabled)/OnUnselect

select[sefectmode=toggle & visible & focussed)/OnUnselect

(pushdelay)[selectmode=pushbuttgn

[selected = false] [active]

entry/ OnSelect

electjsible & focussed]

otkeyvisible & !disabled]

[selected = true]

Figure 81: Button statemachine

A Button shall alwaysinitialize into theidle state.
A Button shall respond to the select event only when it isvisible and has focus.
A Button shall respond to the hotkey event only when it is visible and is not disabled.

A Button in the active state with selectmode set to "pushbutton” shall become idle after a platform-specific delay called
"pushdelay".

A Button in the active state with selectmode set to "toggle” shall become idle after a select or hotkey event.

ETSI

205 ETSI TS 102 523 V1.1.1 (2006-09)

A Button in the active state with selectmode set to "oneshot” shall not respond to any further events.

A.2.11.2 PickList

When not active, a PickList component shall draw a vertical and horizontal axis-aligned rectangle with a specified
origin and size, and shall superimpose asingle line of text representing the selected item.

There shall be avisua indication that this value may be adjusted by the user using up and down actions.

When active, aPickList component shall draw a pop-up rectangular area anchored to the original display rectangle and
at the top of the Z order. This pop-up shall be large enough to contain the defined list of textual items, and highlight the
currently selected item. It shall respond to user input to adjust which itemin thelist is highlighted, and to select the
currently highlighted item as the selected item.

<Conponent Spec provi der ="dvb. org" name="Pi ckLi st">
<Overvi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperties=" visible enabl ed focusable origin size fillcolor-active
textcolor items selected"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="font_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertySpec nane="itens" type="stringArray" access="initializeOnly"/>
<PropertySpec name="sel ecti on" type="integer" access="readWite"/>
<PropertySpec name="pivot" type="enuneration" access="initializeOnly">
<EnunerationRef ref="rel ative-positions"/>
</ PropertySpec>
</ Properties>
<Hand| edEvent s>
<Handl edEvent Spec nanme="sel ect" eventtype="KeyEvent" eventcl ass="user">
<Qualifier>
<pcf: UserKey name="key" val ue="VK_ENTER'/>
</Qualifier>
</ Handl edEvent Spec>
<Handl edEvent Spec name="up" eventtype="KeyEvent" eventcl ass="user">
<Qualifier>
<pcf: User Key name="key" val ue="VK_UP"/>
</Qualifier>
</ Handl edEvent Spec>
<Handl edEvent Spec nanme="down" eventtype="KeyEvent" eventcl ass="user">
<Qualifier>
<pcf: User Key name="key" val ue="VK_DOM"/>
</Qualifier>
</ Handl edEvent Spec>
</ Handl edEvent s>
<Gener at edEvent s>
<CGener at edEvent GroupRef ref="choi ce_events"/>
</ Gener at edEvent s>
<Gener at edErr or s>
<Gener at edErr or G oupRef ref="basic_errors"/>
</ Gener at edErr or s>
</ Conponent Spec>

The visible property shall define whether or not the PickList isvisible.
The focusable property shall define whether or not the PickList will ever be able to enter afocused state.

If the focusable property is set to true, the enabled property shall define whether or not the PickList iseligibleto
receive focus, due to user navigation. In addition the PickList shall be prevented from changing value while disabled.

Theorigin property shall define the position of the top left-hand corner of the rectangle.
The size property shall define the horizontal and vertical dimensions of the rectangle.

The color_propertiesfillcolor property group shall define the fill colour of the rectangle. |mplementations may also
use other coloursin the group to show other states as described in clause 7.3.3.

The border_properties property group shall define the colour, style, width and corner-radius of the rectangle's border.

ETSI

206 ETSI TS 102 523 V1.1.1 (2006-09)

The aacolor property shall define the anti-alias colour to use when rendering the text.
Thetextcolor property shall define the colour of the text within the PickList.

The padding_properties property group shall define the padding between the content edge of the item text and the
border.

The mar gin_properties property group shall define the margin between the border edge and the containing block when
the PickList isdrawn within a flow.

The font_properties shall define the font to use to display the item text.

The items property shall define an array of strings. It shall be an error if any of these strings contain line breaks.
The selection property is an integer that shall define whichitemin theitems array is currently selected.

Display of the item text shall conform to the following rules:

. If the selected item text istoo large to fit into the content area of the PickList the rendering behaviour is
undefined by the present document.

. If the number of itemsin the PickList istoo large to display using a pop-up rectangle the rendering behaviour
is undefined by the present document.

The pivot property shall define the location of the pop-up relative to the rectangle. The value shall identify which side
or corner of the rectangle and pop-up area shall be anchored together.

A PickList shall behave according to two separate statemachines; the standard intrinsic focus machine and an activity
statemachine that defines the response to the "select”, "up" and "down" events.

NOTE: The standard intrinsic focus machine is shared with al other visible, focusable components and is
described in clause 7.5.2.

The activity statemachine is shown in figure 82.

visible&focussed
[selection <items.size]/selection++

[else]

up
select

idle selectOnChange [active]

blur/OnChange down

[else] ‘

[selection>1]/selection--

Figure 82: PickList statemachine

A PickList shall only respond to eventsif it both visible and focused.
A PickList snall initialize into the idle state.
A PickList shall respond to the select event when it isin the idle state.

A PickList shall respond to the select, up and down events when it isin the active state.

ETSI

207 ETSI TS 102 523 V1.1.1 (2006-09)

A PickList shall generate OnChange events each time it transitions from active to idle states.

A PickList shall transition from active to idle states when it loses focus.

A.2.11.3 RadioButtonGroup

A RadioButtonGroup is a speciaization of an explicit layout container that contai ns behaviour appropriate to co-
ordinate a collection of child Button components such that only one is selected at any time.

<Conponent Spec provi der ="dvb. org" name="Radi oButtonG oup" contai ner="true">
<Overvi ew versi on="1.0"/>
<I nt endedl npl ement ati on coreProperties="origin selected"/>
<Properties>
<PropertySpec name="origin" type="position" access="readWite"/>
<PropertySpec nane="sel ected" type="string" access="readOnly"/>
</ Properties>
</ Conponent Spec>

A RadioButtonGroup may only contain Button components.
A RadioButtonGroup does not have any visual representation itself, nor does it consume user events.

The property selected shall expose the name of the child Button component that is currently selected i.e. it has the
value checked.name. This value may be "nil" if no child component is selected.

A RadioButtonGroup shall behave according to the statemachine illustrated in figure 83.

Button checked, OnSeIe/cI(gl:utton)/checked.selected =false

. (unchecked] OnSelect(button) [checked]
entry/ checked = nill J [entry/ checked = button J

\

Figure 83: RadioButtonGroup statemachine

A RadioButtonGroup shall respond to the OnSelect events generated by the Button components contained within it.
See clause A.2.11.1 for the definition of the Button component.

When initialized, a RadioButtonGroup shall set itsinternal state variable "checked" to the value "nil".

On receipt of an OnSelect event, if the RadioButtonGroup isin the unchecked state it shall become checked. If the
RadioButtonGroup was aready in the checked state it shall set the "selected" property of the Button referenced by the
checked variable to "false".

On entering the checked state the RadioButtonGroup shall set the state variable "checked" to the Button that
generated the OnSel ect event.

A.2.11.4 SpinControl

A SpinControl component shall draw a vertical and horizontal axis-aligned rectangle with a specified origin and size,
and shall superimpose asingle line of text representing an integer value. There shall be avisual indication that this
value may be adjusted by the user using up and down actions.

<Conponent Spec provi der="dvb. org" nane="Spi nControl ">
<Overvi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="visible enabl ed focusable origin size mn max
fillcolor fillcolor-active textcolor value"/>

<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="font_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>

ETSI

208 ETSI TS 102 523 V1.1.1 (2006-09)

<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertySpec name="m n" type="integer" use="required" access="readWite"/>
<PropertySpec nane="max" type="integer" use="required" access="readWite"/>
<PropertySpec nane="val ue" type="integer" use="required" access="readWite"/>
</ Properties>
<Handl edEvent s>
<Handl edEvent Spec eventtype="KeyEvent" eventcl ass="user" name="increnent">
<Qualifier>
<pcf: UserKey name="key" val ue="VK_UP"/>
</Qualifier>
</ Handl edEvent Spec>
<Handl edEvent Spec nanme="decrenment" eventtype="KeyEvent" eventcl ass="user">
<Qualifier>
<pcf: User Key name="key" val ue="VK_DOM"/ >
</Qualifier>
</ Handl edEvent Spec>
</ Handl edEvent s>
<Gener at edEvent s>
<Gener at edEvent Gr oupRef ref="choi ce_events"/>
</ Gener at edEvent s>
<CGener at edError s>
<Gener at edErr or G oupRef ref="basic_errors"/>
</ Gener at edErr or s>
</ Conponent Spec>

The visible property shall define whether or not the SpinControl isvisible.
The focusable property shall define whether or not the SpinControl will ever be able to enter afocused state.

If the focusable property is set to true, the enabled property shall define whether or not the SpinControl iseligibleto
receive focus, due to user navigation. In addition the SpinControl shall be prevented from changing value while
disabled.

The origin property shall define the position of the top left-hand corner of the rectangle.
The size property shall define the horizontal and vertical dimensions of the rectangle.

The color_propertiesfillcolor property group shall define the fill colour of the rectangle. |mplementations may also
use other coloursin the group to show other states as described in clause 7.3.3.

The border_properties property group shall define the colour, style, width and corner-radius of the rectangle's border.
The aacolor property shall define the anti-alias colour to use when rendering the text.
Thetextcolor property shall define the colour of the text within the SpinControl.

The padding_properties property group shall define the padding between the content edge of the text value and the
border.

The margin_properties property group shall define the margin between the border edge and the containing block when
the SpinControl is drawn within aflow.

The font_properties shall define the font to use to display the value text.

The min property shall define the lower bound of the range over which the value may be adjusted by the user. It isan
error to attempt to set it larger than the max value.

The max property shall define the upper bound of the range over which the value may be adjusted by the user. It shall
be an error to attempt to set it smaller than the min value.

The value property shall define the integer value displayed within the SpinControl. It shall remain between the values
defined by the min and max properties. It isan error to attempt to set it outside this range.

NOTE 1: Range errors as described here can be generated during both transcoding and at run-time.
Display of the textual representation of the value property shall conform to the following rules:

. If the text representation of the value istoo long to fit into the content area of the SpinContr ol the rendering
behaviour is undefined by the present document.

ETSI

209 ETSI TS 102 523 V1.1.1 (2006-09)
A SpinControl shall behave according to two separate statemachines; the standard intrinsic focus machine and an
activity statemachine that defines the response to the "up” and "down" events.

NOTE 2: The standard intrinsic focus machine is shared with all other visible, focusable components and is
described in clause 7.5.2.

The activity statemachine is shown in figure 84.

visible & focussed

(min]
[value==min] palue==min] entry/ OnChange J
uphalue++

else

uphalue++

(spinning)
[entry/ OnChange

downhalue--

J

>‘ [else]

downhalue--

[value==max]

[value==max] (max 1
[entry/ OnChange J

Figure 84: SpinControl statemachine

A SpinControl shall only respond to eventsif it both visible and focused.

A SpinControl shall initialize into the appropriate state according to the value in the value property.
A SpinControl shall respond to the up and down events when it isin the spinning state.

A SpinControl shall respond only to the up event when it isin the min state.

A SpinControl shall respond only to the down event when it isin the max state.

NOTE 3: A SpinControl shall not consume aVK_UP KeyEvent when in the max state, or aVK_DOWN
KeyEvent when in the min state.

A SpinControl shall generate OnChange events each time its value property is altered by the user using up and down
events.

A.2.11.5 Textlnput

A Textlnput component shall draw a vertical and horizontal axis-aligned rectangle with a specified origin and size, and
shall superimpose asingle line of text representing the user entered value.

<Conponent Spec provi der="dvb. org" nane="Text| nput">
<Overvi ew versi on="1.0"/>
<l nt ended! npl emrent ati on coreProperties="origin size min max fillcolor value"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="border_properties"/>

ETSI

210 ETSI TS 102 523 V1.1.1 (2006-09)

<PropertyG oupRef ref="font_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>
<PropertySpec nane="val ue" type="string" use="optional" access="readWite"/>
<PropertySpec nane="val uesi ze" type="integer" use="optional" access="initializeOnly"/>
<PropertySpec nane="dat atype" type="enuneration" use="required" access="initializeOnly">
<Enurer ati onSpec name="t extentrytypes">
<Enurer ati onltem name="string"/>
<Enuner ati onl tem name="i nteger"/ >
</ Enurrer at i onSpec>
</ PropertySpec>
<PropertySpec nane="hot keys" type="userKeyArray" access="initializeOnly"/>
</ Properties>
<Hand| edEvent s>
<Handl edEvent Spec nanme="userkey" eventtype="KeyEvent" eventcl ass="user">
<Qualifier>
< pcf: User KeyArray name="key">
<pcf: User Key val ue="VK 0"/>
<pcf: UserKey val ue="VK_1"/>
<pcf: UserKey val ue="VK_2"/>
<pcf: UserKey val ue="VK 3"/>
<pcf: UserKey val ue="VK 4"/>
<pcf: UserKey val ue="VK_ 5"/>
<pcf: UserKey val ue="VK_6"/>
<pcf: UserKey val ue="VK_ 7"/>
<pcf: UserKey val ue="VK 8"/>
<pcf: UserKey val ue="VK_ 9"/ >
<pcf: UserKey val ue="VK_UNKNOM"/ >
</ pcf: User KeyArray>
</Qualifier>
</ Handl edEvent Spec>
<Handl edEvent Spec nanme="hot key" eventtype="KeyEvent" eventcl ass="user">
<Qualifier>
<PropertyRef conponent property="hotkeys" eventproperty="key"/>
</Qualifier>
</ Handl edEvent Spec>
<Handl edEvent Spec nanme="del ete" eventtype="KeyEvent" eventcl ass="user">
<Qualifier>
<pcf: User Key name="key" val ue="VK_LEFT"/>
</Qualifier>
</ Handl edEvent Spec>
</ Handl edEvent s>
<Gener at edEvent s>
<CGener at edEvent GroupRef ref="text_i nput_events"/>
</ Gener at edEvent s>
<Gener at edErr or s>
<Gener at edErr or G oupRef ref="basic_errors"/>
</ Gener at edErr or s>
</ Conponent Spec>

The visible property shall define whether or not the textinput is visible.
The focusable property shall define whether or not the textinput will ever be able to enter a focused state.

If the focusable property is set to true, the enabled property shall define whether or not the textinput is eligible to
receive focus, due to user navigation. In addition the textinput shall be prevented from changing value while disabled.

Theorigin property shall define the position of the top left-hand corner of the rectangle.
The size property shall define the horizontal and vertical dimensions of the rectangle.

The color_propertiesfillcolor property group shall define the fill colour of the rectangle. |mplementations may also
use other coloursin the group to show other states as described in clause 7.3.3.

The border_properties property group shall define the colour, style, width and corner-radius of the rectangle's border.
The aacolor property shall define the anti-alias colour to use when rendering the text.

Thetextcolor property shall define the colour of the text within the textinput.

The padding_properties property group shall define the padding between the content edge of the text and the border.

The margin_properties property group shall define the margin between the border edge and the containing block when
the textinput is drawn within a flow.

ETSI

211 ETSI TS 102 523 V1.1.1 (2006-09)

Thefont_properties shal define the font to use to display the text.
The value property shall define and expose to action language the text entered by the user.
The valuesize property shall define the maximum number of characters that can be entered by the user.

The datatype property shall define the expected format of the entered text and shall prevent invalid characters being
entered or consumed.

The hotkeys property shall define an array of key codes to which the textinput shall respond if it does not have focus.
Display of the text shall conform to the following rules:

. If the text istoo large to fit into the content area of the textinput the rendering behaviour is undefined by the
present document.

A textinput shall behave according to two separate statemachines; the standard intrinsic focus machine and an activity
statemachine that shall define the response to the user key events.

NOTE: The standard intrinsic focus machine is shared with all other visible, focusable components and is
described in clause 7.5.2.

The activity statemachine is shown in figure 85.

[else]

userkeyvisible&focussed]

[value.length==0]

hotkeyjvisible&!disabled]

empty
entry/ OnEmpty

[value.length==0]

[else]

g; [else]

userkeyvisible&focussed]

[else] | isi i
‘ . editing hotkeyjvisible&!disabled]

entry/ OnChange

keyin vaIidset]/value.Tppend(unicode)

deletevisible&focussed]value.trim() [else] \4

[keyin validset]ialue.append(unicode)
delete|visible&focussed]ivalue.trim()

full
[value.length==valuesize] entry/ OnFull [value.length==valuesize]

Figure 85: textinput statemachine

Userkey events are any KeyEvent where the key property isin the set VK_0to VK _9 or hasthe value
VK_UNKNOWN and the Unicode value is an alphanumeric i.e. not a navigation key.

Hotkey events are any KeyEvent where the key property matches one of the values in the hotkeys array property.
A textinput shall respond to delete and userkey eventsif it both visible and focused.

A textinput shall respond to hotkey eventsif it is both visible and not disabled.

A textinput shal initialize into the appropriate state depending on the length of the value property.

A textinput shall respond to the userkey and hotkey eventsif it isnot in the full state. If the key carried in the event is
valid for the set defined by the datatype property then the events unicode property value shall be appended to the
textinput value. KeyEvent valid sets are shown below.

ETSI

212 ETSI TS 102 523 V1.1.1 (2006-09)

Datatype Valid KeyEvent values
String VK _0to VK 9, VK_UNKNOWN containing a printable Unicode character
Number VK 0to VK 9

A textinput shall respond to the delete event if it is not in the empty state. A delete event shall trim the last character
from the value property.

A textinput shall generate OnChange events each time the value property is modified by the user.
A textinput shall generate an OnFull event when it reaches the full state.

A textinput shall generate an OnEmpty event when it reaches the empty state.

A.2.12 Menu

A.2.12.1 Introduction

The following XML defines the PCF menu component:

<?xm version="1.0" encodi ng="UTF-8"?>

<Conponent Specs xm ns="http://wwm. dvb. or g/ pcf/ conponents" xmi ns: pcf="http://wwm. dvb. or g/ pcf/ pcf"
xm ns: pcf-types="http://wwm. dvb. or g/ pcf/ pcf-types" xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena-

i nstance" xsi:schemalLocation="http://ww.dvb. org/ pcf/conponents

conponent - synt ax. xsd" >
<Conponent Spec provi der="dvb. org" name="Menu">
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperties="origin size fillcolor textcolor selected
sel ect rode"/ >
<Properties>
<!--visual properties-->
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="font_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="paddi ng_and_nargi n_properties"/>
<PropertySpec nanme="nenuAl i gn" type="enuneration" access="initializeOnly"
use="optional ">
<Enuner ati onSpec name="nenu_al i gn">
<Enuner ati onltem name="vertical "/>
<Enurer ati onltem name="hori zontal "/ >
</ Enurrer at i onSpec>
<pcf:String name="defaul t" val ue="vertical"/>
</ PropertySpec>
<PropertySpec nane="inmage" type="inmageData" access="initializeOnly" use="optional"/>
<PropertySpec nanme="i mageAl i gn" type="enuneration" use="optional"
access="initializeOnly">
<EnunerationRef ref="rel ative-positions"/>
<pcf:String nane="default" val ue="west"/>
</ Pr opertySpec>
<PropertySpec nane="| abel Array" type="stringArray" access="initializeOnly"
use="required"/ >
<! --behavi oural properties-->
<PropertySpec nane="target Array" type="uri Array" access="initializeOnly"
use="requi red"/ >
<PropertySpec nane="inital Label " type="integer" access="initializeOnly" use="optional"/>
<PropertySpec nane="i ndex" type="integer" access="readOnly"/>
<PropertySpec nanme="target" type="uri" access="readOnly"/>

<PropertySpec nane="menuLoop" type="bool ean" access="initializeOnly" use="optional">
<pcf: Bool ean name="default" val ue="true"/>
</ Pr opertySpec>
<PropertySpec nane="sel ect node" type="enuneration" access="initializeOnly"
use="optional ">
<Enuner at i onSpec nane="sel ect nodes" >
<Enuner ati onl t em name="pushbutton"/>
<Enuner ati onl t em name="t oggl e"/ >
</ Enurrer at i onSpec>
<pcf:String name="default" val ue="pushbutton"/>
</ Pr opertySpec>

ETSI

213 ETSI TS 102 523 V1.1.1 (2006-09)

</ Properties>
<Handl edEvent s>
<Handl edEvent Spec name="prev" eventtype="UserKey" eventclass="user"/>
<Handl edEvent Spec name="next" eventtype="UserKey" eventclass="user"/>
<Handl edEvent Spec nanme="sel ect" eventtype="UserKey" eventcl ass="user">
<Qualifier>
<pcf: User Key name="key" val ue="VK_ENTER'/>
</Qualifier>
</ Handl edEvent Spec>
</ Handl edEvent s>
<CGener at edEvent s>
<CGener at edEvent GroupRef ref="button_events"/>
</ Gener at edEvent s>
<Gener at edError s>
<Gener at edError G oupRef ref="nmedi a_errors"/>
</ Gener at edErr or s>
</ Conponent Spec>
</ Conponent Specs>

The menu component provides a mechanism for usersto navigate and select one of a set of options presented in a
visually coherent, ordered list. Only one option may be highlighted or selected at atime.

The menu consists of an array of label items that are represented by text strings and optionally a background image that
tracks the presently highlighted label.

ThelabelArray shall define the text strings to be presented for each label item in the menu. If any of these strings
cannot be rendered on one line within the declared size of the menu, the PCF does not specify the rendering behaviour.

Menus may be vertically or horizontally aligned. Labelsin a menu are grouped in atable-like structure, consisting of a
single column or asingle row. Menus shall have a specified origin, and may optionally have a specified size.

NOTE 1: If no sizeis specified, the platform should use the labels' text strings and font to determine a suitable
dimension.

Spacing of labels within amenu is not explicitly defined. This shall be determined instead from the text font
specifications.

Label items within a menu shall be ordered from first to last according to their order of their declaration. This shall
correspond to top to bottom or right to left ordering when rendered.

Initial highlight within a menu shall fall on the first label, unless aninitialL abel property value has been defined for the
menu and lies within the range of the number of items declared in the label Array.

NOTE 2: Only the highlighted label shall be rendered using any -focus related text and colour properties if defined.
Other labels shall be rendered with the default values. In addition only the highlighted label shall be
rendered using any -active or -idle properties.

By default, navigation within a menu shall loop, meaning that in a vertically aligned menu, a down arrow navigation

action when the highlight is on the bottom most label will result in the highlight moving to the topmost label. Service
authors may control this behaviour with the menuL oop property.

A.2.12.2 Properties defined elsewhere
. intrinsic_properties-visual_components: clause C.1.1;
. border_properties: clause C.4;
. font_properties. clause C.9;
. color_properties-fillcolor: clause C.3.4;
. positioning_properties-absolute: clause C.7.1;
. alignment_properties: clause C.7.3;

. padding_and_margin_properties: clause C.8.

ETSI

214 ETSI TS 102 523 V1.1.1 (2006-09)

A.2.12.3 The labelArray property

ThelabelArray string array specifies the set of text stringsto be presented in the menu, ordered from first to last.

A.2.12.4 The targetArray property

ThetargetArray property shall define an array of URI values containing navigation targets. Each entry in the
targetArray property shall have a corresponding entry in the label Array property.

If the length of the label Array property is not equal to the length of the targetArray property the behaviour of Menu is
undefined by the present document.

A.2.12.5 The initialLabel property

TheinitialLabel property defines an integer that indicates which menu label shall be highlighted upon initialization of
the menu, where zero corresponds to the first Iabel. If no value is specified then, by default, the first item in the
label Array shall be highlighted.

A.2.12.6 The index property

The index property provides for run-time indication of the currently highlighted label, where zero corresponds to the
first 1abel.

A.2.12.7 The target property

The target property provides aread only value of the target value that corresponds to the currently highlighted menu
label.

A.2.12.8 The menuAlign property

The menuAlign property specifies whether the menu should be aligned horizontally or vertically. The default valueis
"vertical" for avertically aligned menu consisting of a single column of labels.

A.2.12.9 The menuLoop property

The menuL oop property specifies menu loop navigation behaviour. Where the menuLoop property has a value of
"true", highlight behaviour shall loop around the menu.

EXAMPLE: In avertically aligned menu with the default menuL oop property value of "true", the down button
shall move highlight to the next label in the menu. When the highlight reaches the last label in the
menu, a down button press shall move highlight to the first Iabel in the menu.

A.2.12.10 The selectmode property

The selectmode property sets the select behaviour for all l1abels of the menu component. Thisisidentical to that defined
for the button component.

See clause A.2.11.1 for description of the button selectmode property.

A.2.12.11 The image property

The image property specifies a background image to be presented behind or next to the text of the highlighted menu
label. See also imageAlign.

A.2.12.12 The imageAlign property

The imageAlign property sets the alignment of the image (if any) with the label text in the menu, asit does for the
button component.

ETSI

215 ETSI TS 102 523 V1.1.1 (2006-09)

NOTE: Only the highlighted label will be rendered with an image. Other labels will only render their text values.

See clause A.2.11.1 for description of the button imageAlign property.

A.2.12.13 Behaviour specification

The menu behaviour is specified in the statechart displayed as figure 86.

visible&focused

maxindex=labelArray.length()
index

PREV[menuloop==true]/index=maxindex

[firstlabelhasfocus W
[initialindex is nil[/index=0 do / button select machine
index==0]
ﬂ‘ NEXT/index.increment()
PREV/index.decrement()

menulabelhasfocus
do / button select machine

H [else]/index=initialLabel

NEXT/index.increment()

w PREV/index.decrement(

[index==maxindex]

lastlabelhasfocus

[initialLabel==maxindex]/index=maxindex | do / button select machine

NEXT[menuloop==true]/index=0

Figure 86: Menu component statechart

ETSI

216 ETSI TS 102 523 V1.1.1 (2006-09)

On entry to the visible and focused state, the menu shall highlight the appropriate label as required by the initial Label
property.

On navigation actions the menu shall move the highlight as required by the menuL oop property, or shall release the
focus.

On select action the menu shall behave as specified for the button component. In addition if thereisanon-nil valuein
the targetArray[index] field the component shall invoke a navigation action using the URI value. This shall be
equivalent to invoking the following action language statement:

sceneNavi gate(target Array[index], "remenber" , nil);

This action shall occur in place of generating an OnSelect event.

A.2.13 NumericNavigator

A.2.13.1 Introduction

A NumericNavigator component provides a mechanism for users to navigate through a service, or to trigger events
using numeric keys.

The following XML fragment defines the PCF NumericNavigator component:

<Conponent Spec provi der ="dvb. org" name="Nureri cNavi gat or ">
<Overvi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperties="origin size fillcolor value val ueSi ze val ueArray
target Array"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="border_properties"/>
<PropertyG oupRef ref="font_properties"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertyG oupRef ref="paddi ng_and_margi n_properties"/>

<PropertySpec name="val ue" type="integer" access="readWite" use="required"/>

<PropertySpec nane="val ueSi ze" type="integer" access="initializeOnly" use="required"/>

<PropertySpec nane="val ueArray" type="integerArray" access="initializeOnly"
use="required"/ >

<PropertySpec nane="target Array" type="uri Array" access="initializeOnly"
use="requi red"/ >

<PropertySpec name="descriptionArray" type="stringArray" access="initializeOnly"
use="optional "/ >

<PropertySpec nanme="target" type="uri" access="readOnly" use="required"/>

<PropertySpec nanme="inval i dMessage" type="string" access="final" use="optional ">

<pcf:String name="defaul t" val ue=""/>
</ PropertySpec>
<PropertySpec nane="description" type="string" access="readOnly" use="optional"/>
</ Properties>

<Handl edEvent s>
<Handl edEvent Spec name="nunber Key" eventtype="KeyEvent" eventcl ass="user">
</ Handl edEvent Spec>
<Handl edEvent Spec nanme="sel ect" eventtype="KeyEvent" eventcl ass="user">
<Qualifier>
<pcf: UserKey name="key" val ue="VK_ENTER"' />
</Qualifier>
</ Handl edEvent Spec>
<Handl edEvent Spec nanme="del ete" eventtype="KeyEvent" eventcl ass="user">
<Qualifier>
<pcf: User Key name="key" val ue="VK_DELETE" />
</Qualifier>
</ Handl edEvent Spec>
</ Handl edEvent s>

<CGener at edEvent s>
<CGener at edEvent Spec eventtype="OnValid"/>
<CGener at edEvent Spec eventtype="Onlnvalid"/>
<Gener at edEvent Spec eventtype="OnSel ect"/>
</ Gener at edEvent s>

ETSI

217 ETSI TS 102 523 V1.1.1 (2006-09)

<Gener at edErr or s>
<Gener at edError Spec errortype="unknown_error"/>
</ Gener at edErr or s>
</ Conponent Spec>

A.2.13.2 Properties defined elsewhere
. intrinsic_properties-visual_components: clause C.1;
. border_properties: clause C.4;
. font_properties: clause C.9;
. color_properties-fillcolor: clause C.3.4;
. positioning_properties-absolute: clause C.7.1;

. padding_and_margin_properties: clause C.8.

A.2.13.3 The value property
<PropertySpec nane="val ue" type="integer" access="readWite" use="required" default="0"/>
The value property shall define and expose to action language the text entered by the user and shall prevent invalid

characters being entered or consumed.

A.2.13.4 The valueSize property
<PropertySpec nanme="val ueSi ze" type="integer" access="initializeOnly" use="required"/>

The valueSize property shall define the maximum number of numbers that can be entered by the user.

A.2.13.5 The valueArray property

<PropertySpec nane="val ueArray" type="IntegerArray" access="initializeOnly" use="required"/>

The valueArray property shall define an array of integers representing the valid set of navigation numbers. Each entry
in the valueArray property shall have a corresponding entry in the targetArray property.

A.2.13.6 The targetArray property
<PropertySpec nanme="target Array" type="URI Array" access="initializeOnly" use="required"/>

ThetargetArray property shall define an array of URI values containing navigation targets. Each entry in the
targetArray property shall have a corresponding entry in the valueArray property.

If the length of the valueArray property is not equal to the length of the targetArray property the behaviour of
NumericNavigator is undefined by the present document.

A.2.13.7 The descriptionArray property

<PropertySpec name="descriptionArray" type="StringArray" access="initializeOnly" use="optional"
defaul t=""/>

The descriptionArray property may define textual descriptions of each of the values defined in the valueArray
property.

A.2.13.8 The target property
<PropertySpec nanme="target" type="URl" access="readOnly" use="required"/>

Thetarget property shall define and expose to action language the target URI chosen by the user.

ETSI

218 ETSI TS 102 523 V1.1.1 (2006-09)

A.2.13.9 The invalidMessage property
<PropertySpec nanme="inval i dMessage" type="string" access="final" use="optional" default=""/>
TheinvalidM essage property may define and expose to action language the string to display when an invalid value has

been entered.

A.2.13.10 The description property

<PropertySpec nanme="description" type="string" access="readOnly" use="optional" default=""/>

The description property may define and expose to action language a textual description of the value entered.

A.2.13.11 Behaviour specification

When active, a NumericNavigator component shall draw a rectangle with a specified origin and size. This rectangle
shall be large enough to contain a single line of text representing the user entered value.

NOTE 1: If thetext istoo large to fit into the rectangle of the NumericNavigator the rendering behaviour is
undefined by the present document.

A NumericNavigator shall behave according to two separate statemachines; the standard intrinsic focus machine and
an activity statemachine that shall define the response to the user key events.

NOTE 2: The standard intrinsic focus machine is shared with all other visible, focusable components and is
described in clause 7.5.2.

The activity statemachine is shown in figure 87.

active & unfocused
‘ visible & focused

delete[value.length==0]/value.trim()

Ivalue=null

idle:]

[value in valueArray])/OnValid

[else]

f Editing | select [value in valueArray/OnSelect |
‘ |)

Ivalue.append(numberKey)

numberKey
numberKey [else] ‘ [else]/OnInvalid

>@<

[value.length==valueSize]/value=null

Figure 87: NumericNavigator statemachine

Numberkey events are any KeyEvent where the key property isin the set VK_0to VK_09.

A NumericNavigator shall initialize into the appropriate state depending on the length of the val ue property.
A NumericNavigator shall respond to numberKey eventsif it is active.

A NumericNavigator shall respond to numberKey and select eventsif it is both visible and not disabled.

A NumericNavigator shall respond to delete key if the value property is not empty and NumericNavigator isvisible
and not disabled. A delete event shall trim the last character from the val ue property.

ETSI

219 ETSI TS 102 523 V1.1.1 (2006-09)

A NumericNavigator shall generate an OnValid event each time the value property is modified by the user and the new
value property existsin valueArray.

A NumericNavigator shall generate an OnSelect event in response to a select event if the value property isin
valueArray. In addition if there isanon-nil valuein the target property the component shall invoke a navigation action
using this URI value. This shall be equivalent to invoking the following action language statement:

sceneNavi gate(target], “"remenber” , nil);
This action shall occur in place of generating an OnSelect event.

A NumericNavigator shall generate Oninvalid eventsin response to a select event if the value property isnot in
valueArray.

A NumericNavigator shall respond to numberKey events and initialize the value property if the size of the value
property is equal to the valueSize property.

A NumericNavigator shall respond to numberKey events and append the key to the value property.

A.2.14 Subtitles

The Subtitles component controls the presentation of a subtitles elementary stream located within the composition
managed by the enclosing Stream component.

<Conponent Spec provi der ="dvb. org" name="Subtitles">
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperties=""/>
<Properties/>

</ Conponent Spec>

In the present document the Subtitles component is only used to provide a means to switch on and off the presentation
of any subtitles that the viewer has requested. In effect this allows the interactive service to either or stop the
presentation of subtitles should they already be running. However, it does not provide a means to start the presentation
of subtitlesif this has not be requested by the viewer. Nor does it provide a means to select the subtitles elementary
stream to present.

NOTE: Itisassumed that the subtitles elementary stream to present will be determined in a platform-specific
manner based on the video elementary stream being presented and any viewer language preference.

The subtitles elementary stream shall only be presented when the Subtitles component, the enclosing parent Video
component and the latter's enclosing parent Stream component are active.

A.2.15 Video

The Video component controls the presentation of a video elementary stream located within the composition managed
by the enclosing Stream component. The Video component can be used to scale the decoded video frame and select an
area of the decoded, scaled video frame to present in the reference screen area.

<Conponent Spec provi der ="dvb. org" name="Vi deo" >
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperties="visible focusabl e size content term nation
fillcolor"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-visible_conponents"/>
<PropertyG oupRef ref="positioning_properties-absolute"/>
<PropertySpec nane="content" type="uri" use="optional" access="readWite">
<pcf: URl name="default" val ue="urn: dvb-pcf::default"/>
</ Pr opertySpec>
<PropertySpec name="term nation" type="enuneration" use="optional"
access="initializeOnly">
<Enuner ati onSpec nane="| ast Franme" >
<Enuner ati onl t em name="di sappear"/ >
<Enurer ati onltem name="freeze"/>
</ Enurrer at i onSpec>
<pcf: String name="defaul t" val ue="di sappear"/>
</ Pr opertySpec>
<PropertySpec name="vi ewport-h-position" type="proportion" use="optional"
access="readWite">

ETSI

220 ETSI TS 102 523 V1.1.1 (2006-09)

<pcf:Proportion name="default" value="0 1"/>
</ Pr opertySpec>
<PropertySpec name="vi ewport-v-position" type="proportion" use="optional"
access="readWite">
<pcf:Proportion name="default" value="0 1"/>
</ Pr opertySpec>
<Pr opertySpec nanme="vi ewport-h-size" type="proportion" use="optional"
access="readWite">
<pcf:Proportion name="default" value="1 1"/>
</ Pr opertySpec>
<Pr opertySpec nanme="vi ewport-v-size" type="proportion" use="optional"
access="readWite">
<pcf:Proportion name="default" value="1 1"/>
</ Pr opertySpec>
<PropertySpec nanme="h-scal e" type="proportion" use="optional" access="readWite">
<pcf:Proportion name="default" value="1 1"/>
</ PropertySpec>
<PropertySpec nanme="v-scal e" type="proportion" use="optional" access="readWite">
<pcf:Proportion name="default" value="1 1"/>
</ PropertySpec>
<PropertySpec nane="anchor" type="enumneration" use="optional" access="readWite">
<Enuner ati onRef ref="rel ati ve-positions"/>
<pcf: String name="defaul t" val ue="bul | seye"/>
</ PropertySpec>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
</ Properties>
</ Conponent Spec>

The visible property shall define whether or not the Video component isvisible.
The focusable property shall define whether or not the Video component will ever be able to enter a focused state.

If the focusable property is set to true, the enabled property shall define whether or not the Video component is eligible
to receive focus, due to user navigation.

The origin property shall define the position of the top left-hand corner of the Video component when it is drawn
within an explicit layout container.

The size property shall define the horizontal and vertical dimensions of the Video component. This definesthe visible
area of the component.

The content property shall identify a video elementary stream located within the composition managed by the enclosing
parent Stream component. The value for this property may be a URL or a URN as appropriate given the definition of
the composition within the enclosing Stream component. The value for this property may be a URL or a standard PCF
URN (defined in annex Q) as appropriate given the definition of the composition within the enclosing Stream
component.

A special case of the content property is when the video elementary stream to be identified is the default for the
composition as determined by the target platform. This shall be defined by setting value of the content property to
"urn:x-dvb-pcf::default”.

NOTE 1: The video elementary stream will only be presented when both the Audio component and the enclosing
parent Stream component are active.

The termination property shall indicate whether the last video frame shall disappear (and be replaced with the colour
#000000) or whether it shall freeze when the composition managed by the enclosing parent Stream component is either
paused or reaches its inherent end.

NOTE 2: The video elementary stream will only be presented when both the Video component and the enclosing
parent Stream component are active.

ETSI

221 ETSI TS 102 523 V1.1.1 (2006-09)

viewport-h-position

viewport-h-size v-scale -
ition size.x
>|< >’ t position | S
h-scale
viewport-
v-position|, U
- N
viewport- .
v-size|, '

1 - select video area 2 - scale video 3 - place on ref. screen

anchor="bullseye"

Figure 88: Video selection, scaling and positioning

Figure 88 illustrates how an area of the decoded video is selected, scaled and subsequently displayed as part of an
interactive service. This shall take place in the following three stages:

1)

2)
3)

A viewport area of the decoded video shall be defined by a box with dimensions set by the viewport-h-size
and viewport-v-size properties that has its top-left hand corner located at a position corresponding to the
decoded video pixel defined by the viewport-h-position and viewport-v-position properties. All properties
shall be specified as a proportion of the respective horizontal and vertical dimensions of the framesin the
video elementary stream.

The selected viewport may be scaled in proportion to its current size using the h-scale and v-scale properties.

The scaled video shall be presented within the area defined by the origin and size properties, which are
relative to the current reference screen. The scaled video shall be aligned within this area according to the
anchor property. If the scaled video is larger than the available rectangular areain any direction, it shall be
clipped in that dimension to fit the available space. If the scaled video is smaller in any direction than the
available rectangular area, the gap between the video's edge and the edge of the video window shall be filled
with the colour specified by the fillcolor property in that dimension

EXAMPLE: If the anchor property is set to "bullseye”, the central pixel of the viewport shall line up with the

central pixel of the rectangle defined by the position and size properties. If anchor is set to "north-
west", the top-left most pixel of the video shall line up with the top-left most pixel of the rectangle
defined by the position and size properties.

NOTE 3: The process of selecting, scaling and positioning source video in avideo window is designed to assist an

author with defining video windows where they do not know much about the dimensions or aspect ratio
of the source video. Through the use of proportions, it is more likely that when the video is displayed to a
user, it does not appear to be distorted. In scenarios where an author knows the dimension and aspect ratio
of the source material and want more precise control, the viewport properties can al be specified as
proportions of the source video's dimensions, for example "360 720",

A3

Non-visual components

A.3.1 Audio

The Audio component controls the presentation of an audio elementary stream located within the composition managed
by the enclosing Stream component.

<Conponent Spec provi der ="dvb. org" name="Audi 0" >

<Overvi ew versi on="1.0"/>
<I nt ended! npl ement ati on coreProperti es="content vol ume"/>
<Properties>
<PropertySpec nanme="content" type="uri" use="optional" access="readWite">
<pcf: URl name="default" val ue="urn: dvb-pcf::default"/>
</ PropertySpec>
<PropertySpec name="vol unme" type="integer" use="optional" access="readWite">

ETSI

222 ETSI TS 102 523 V1.1.1 (2006-09)

</ Pr opertySpec>
<PropertySpec nane="active" type="bool ean" use="optional" access="readWite">
<pcf: Bool ean name="default" val ue="true"/>
</ PropertySpec>
</ Properties>
</ Conponent Spec>

The content property shall identify an audio elementary stream located within the composition managed by the
enclosing parent Stream component. The value for this property may be a URL or a URN as appropriate given the
definition of the composition within the enclosing Stream component. The value for this property may be a URL or a
standard PCF URN (defined in annex Q) as appropriate given the definition of the composition within the enclosing
Stream component.

A specia case of the content property is when the audio elementary stream to be identified is the default for the
composition as determined by the target platform. This shall be defined by setting val ue of the content property to
"urn:x-dvb-pcf::default”.

The active property shall indicate whether the component is currently presenting audio.

The volume property of an Audio component shall define the volume at which the audio elementary stream should be
presented. This value describes a scaling of the original elementary stream volume in decibels.

. 0dB: Leave the volume unchanged.

. >0 dB: Shall be implemented as 0 dB or louder.
May be approximated to O dB.

. <0dB: Shall be implemented as quieter than 0 dB.
May be approximated to -256 dB.

. -256 dB: Shall mute the audio elementary stream.

The audio elementary stream will only be presented when both the Audio component and the enclosing parent Stream
component are active.

A.3.2 Cookie variables

A.3.2.1 BooleanCookie

A BooleanCookie component shall represent a run-time-accessible value of the PCF Boolean data type, where the
value shall persist for the lifetime of a session rather than the lifetime of the component's container.

<Conponent Spec provi der="dvb. org" nane="Bool eanCooki e" >
<Qvervi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="val ue"/>
<Properties>
<PropertySpec nane="val ue" type="bool ean" access="readWite">
<pcf: Bool ean nanme="default" val ue="true"/>
</ Pr opertySpec>
</ Properties>
</ Conponent Spec>

The value property shall represent the current value of the variable. This value can beinitialized when a
BooleanCookie component is described. The value of the cookie shall persist throughout the lifetime of a user's session
and can be read and set when the variable isin scope, as defined in clause 0.

A.3.2.2 DateTimeCookie

A DateTimeCookie component shall represent a run-time-accessible value of the PCF dateTime data type, where the
value shall persist for the lifetime of a session rather than the lifetime of the component's container.

<Conponent Spec provi der="dvb. org" nane="Dat eTi meCooki e" >
<Overvi ew versi on="1.0"/>
<I nt ended! npl ement ati on coreProperti es="val ue"/>
<Properties>

ETSI

223 ETSI TS 102 523 V1.1.1 (2006-09)

<PropertySpec nanme="val ue" type="dateTi me" access="readWite">
<pcf: DateTi me name="defaul t" val ue="2000-01-01T00: 00: 00"/ >
</ PropertySpec>
</ Properties>
</ Conponent Spec>

The value property shall represent the current value of the variable. Thisvalue can beinitialized when a
DateTimeCookie component is described. The value of the cookie shall persist throughout the lifetime of auser's
session and can be read and set when the variable isin scope, as defined in clause 0.

A.3.2.3 IntegerCookie

An I nteger Cookie component shall represent a run-time-accessible value of the PCF integer data type, where the value
shall persist for the lifetime of a session rather than the lifetime of the component's container.

<Conponent Spec provi der ="dvb. org" name="I nt eger Cooki e" >
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="val ue"/>
<Properties>
<PropertySpec nane="val ue" type="integer" access="readWite">
<pcf:Integer name="default" val ue="0"/>
</ PropertySpec>
</ Properties>
</ Conponent Spec>

The value property shall represent the current value of the variable. This value can beinitialized when an
I nteger Cookie component is described. The value of the cookie shall persist throughout the lifetime of a user's session
and can be read and set when the variable isin scope, as defined in clause O.

A.3.2.4 String cookie

A string cookie component shall represent a run-time-accessible value of the PCF string data type, where the value
shall persist for the lifetime of a session rather than the lifetime of the component's container.

<Conponent Spec provi der="dvb. org" name="Stri ngCooki e">
<Qvervi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="val ue"/>
<Properties>
<PropertySpec nane="val ue" type="string" access="readWite">
<pcf:String name="defaul t" val ue=""/>
</ Pr opertySpec>
</ Properties>
</ Conponent Spec>

The value property shall represent the current value of the variable. This value can be initialized when a string cookie
component is described. The value of the cookie shall persist throughout the lifetime of a user's session and can be read
and set when the variable isin scope, as defined in clause 0.

A.3.3 CurrentTime

The CurrentTime component shall provide the current system date and time.

<Conponent Spec provi der="dvb. org" nane="Current Ti ne">
<Overvi ew versi on="1.0"/>
<I nt ended! npl ement ati on coreProperti es="val ue"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-nonvisible_conponents"/>
<PropertySpec nane="val ue" type="dateTi me" access="readOnly"/>
</ Properties>
</ Conponent Spec>

The value property of shall provide the current system date and time on each read. The minimum granularity of change
for the value property shall be a second.

NOTE: On some platforms, date and time values will not necessarily advance in millisecond steps.

ETSI

224 ETSI TS 102 523 V1.1.1 (2006-09)

A.3.4 Random

The Random component is a random number generator that has a read-only value.

<Conponent Spec provi der ="dvb. org" name="Randont >
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="val ue max-result"/>
<Properties>
<PropertySpec nanme="val ue" type="integer" access="readOnly"/>
<PropertySpec nane="max-result" type="integer" use="required" access="initializeOnly"/>
</ Properties>
</ Conponent Spec>

The value property shall change each time it isread to produce a platform's best attempt at a truly random number. The
resulting random series shall be bounded and inclusive of O up to the max-result property.

NOTE: If necessary, the random series may be seeded transparently by the platform to achieve the most random
result.

A.3.5 Return path components

In addition to atransfer collection, the functionality of the return path is encapsulated in four non-visible components,
the ReturnPath Component, the Transaction Component, the Indicate Component and the Secur eRetur nPath
Component.

A.3.5.1 Indicate

On adial up platform the I ndicate Component would make a return path connection and then close immediately, with
no transfer of data. On an aways on broadband platform the | ndicate Component could simply touch a web page.

<Conponent Spec provi der ="dvb. org" name="Indi cate">
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="connecti onTarget state"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-nonvisible-conponents"/>
<PropertySpec nanme="connecti onTarget" type="uri" access="readWite"/>
<PropertySpec nane="state" type="enuneration" access="readOnly">
<Enuner ati onSpec name="i ndi cate_state">
<Enuner ati onltem name="idl e"/>
<Enuner ati onl t em name="i ndi cati ng"/>
</ Enurer at i onSpec>
</ PropertySpec>
</ Properties>
<Handl edActi ons>
<Handl edAct i onSpec nane="indi cate"/>
<Handl edAct i onSpec nane="abort"/>
</ Handl edActi ons>
<Gener at edEvent s>
<Gener at edEvent Spec eventtype="OnConpl ete"/ >
<CGener at edEvent Spec eventtype="OnAbort"/>
</ Gener at edEvent s>
<Gener at edErr or s>
<Gener at edError Spec errortype="OnError"/>
</ Gener at edErr or s>
</ Conponent Spec>

The connectionTar get property shall define the target application server to which the indicate component will establish
its connection. Its value is an abstract URI that shall be resolved by a transcoder on atarget platform. For example adial
up capable platform could resolve to atelephone number whereas a broadband platform could resolve to a URL.

The state property reports the status of the indicate component as depicted in the indicate component statechart
(reference to be included).

ETSI

225 ETSI TS 102 523 V1.1.1 (2006-09)

A.3.5.2 ReturnPath

The ReturnPath component embodies the return path itself

<Conponent Spec provi der ="dvb. org" name="Ret urnPat h" >
<Overvi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="connecti onTarget auto-connect state"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-nonvisible-conponents"/>
<PropertySpec nanme="connectionTarget" type="uri" access="initializeOnly" use="required"/>
<PropertySpec nanme="aut o-connect" type="bool ean" access="initializeOnly" use="optional ">
<pcf: Bool ean name="default" val ue="fal se"/>
</ PropertySpec>
<PropertySpec nanme="state" type="enuneration" access="readOnly">
<Enuner ati onSpec nanme="return-path-state">
<Enurer ati onl t em name="cl osed"/ >
<Enurer ati onl t em name="openi ng"/ >
<Enuner ati onl t em name="open"/ >
<Enuner ati onl t em name="cl osi ng"/ >
</ Enurrer at i onSpec>
</ PropertySpec>
</ Properties>
<Hand| edAct i ons>
<Handl edAct i onSpec nane="connect"/>
<Handl edAct i onSpec nane="di sconnect"/>
<Handl edActi onSpec name="transfer"/>
</ Handl edActi ons>
<CGener at edEvent s>
<CGener at edEvent Spec eventtype="OnOpeni ng"/ >
<Gener at edEvent Spec eventtype="OnCpen"/>
<Gener at edEvent Spec eventtype="Ond osi ng"/>
<Cener at edEvent Spec eventtype="Ond ose"/>
</ Gener at edEvent s>
<Gener at edError s>
<Gener at edError Spec errortype="OnError"/>
</ Gener at edEr r or s>
</ Conponent Spec>

The connectionTar get property shall define the target application server to which the Retur nPath component will
establish its connection. Its value is an abstract URI that shall be resolved by a transcoder on atarget platform. For
example adia up capable platform could resolve to atelephone number whereas a broadband platform could resolve to
aURL.

The auto-connect property defines the start up behaviour of the ReturnPath component, which when set to true
requires that the ReturnPath component starts opening its connection as soon asit isin scope, otherwise it initiates into
the closed state.

The state property reports the status of the ReturnPath component as depicted in the ReturnPath component
statechart in clause A.3.5.2.

A.3.5.3 SecureReturnPath

The SecureRetur nPath component embodies the return path itself:

<Conponent Spec provi der ="dvb. org" name="Secur eRet ur nPat h" >
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="connecti onTarget auto-connect state"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-nonvisible-conponents"/>
<PropertySpec nane="connectionTarget" type="uri" access="initializeOnly" use="required"/>
<PropertySpec nane="auto-connect" type="bool ean" access="initializeOnly" use="optional">
<pcf: Bool ean nanme="default" val ue="fal se"/>
</ Pr opertySpec>
<PropertySpec nane="state" type="enuneration" access="readOnly">
<Enuner ati onSpec nanme="secure-return-path-state">
<Enuner ati onl t em name="cl osed"/ >
<Enuner ati onl t em name="openi ng"/ >
<Enurer ati onl t em name="open"/ >
<Enurer ati onl t em name="cl osi ng"/ >
</ Enurrer at i onSpec>
</ Pr opertySpec>
</ Properties>
<Handl edAct i ons>

ETSI

226 ETSI TS 102 523 V1.1.1 (2006-09)

<Handl edActi onSpec name="connect"/>
<Handl edActi onSpec name="di sconnect"/>
<Handl edAct i onSpec nane="transfer"/>
</ Handl edAct i ons>
<CGener at edEvent s>
<Gener at edEvent Spec eventtype="OnCpen"/ >
<Gener at edEvent Spec eventtype="OnC ose"/ >
</ Gener at edEvent s>
<Gener at edError s>
<Gener at edError Spec errortype="OnError"/>
</ Gener at edErr or s>
</ Conponent Spec>

The connectionTar get property shall define the target application server to which the SecureReturnPath component
will establish its connection. Its value is an abstract URI that shall be resolved by atranscoder on atarget platform. For
example adial up capable platform could resolve to atelephone number whereas a broadband platform could resolve to
aURL.

The auto-connect property defines the start up behaviour of the Secur eReturnPath component, which when set to true
requires that the Secur eRetur nPath component starts opening its connection as soon as it isin scope, otherwise it
initiates into the closed state.

The state property reports the status of the SecureRetur nPath component as depicted in clause A.3.5.3.

A.3.5.4 Transaction component

The Transaction component embodies the status of an actual data transfer exchange process.

<Conponent Spec provi der ="dvb. org" name="Transacti onConponent ">
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="state timeout"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-nonvisible_conponents"/>
<PropertySpec nane="state" type="enuneration" access="readOnly">
<Enuner ati onSpec nanme="transaction-state">
<Enuner ati onltem name="idl e"/>
<Enurer ati onl t em name="busy"/ >
</ Enuner at i onSpec>
</ PropertySpec>
<PropertySpec name="tinmeout" type="integer" use="optional" access="readWite">
<pcf:Integer name="default" val ue="3000"/>
</ Pr opertySpec>
</ Properties>
<Handl edAct i ons>
<Handl edActi onSpec name="abort"/>
</ Handl edActi ons>
<CGener at edEvent s>
<CGener at edEvent Spec eventtype="OnStart"/>
<Gener at edEvent Spec eventtype="OnConpl ete"/ >
<Gener at edEvent Spec eventtype="OnAbort"/>
</ Gener at edEvent s>
<Gener at edError s>
<Gener at edError Spec errortype="OnError"/>
</ Gener at edErr or s>
</ Conponent Spec>

The timeout property defines the number of milliseconds the Transaction component shall wait before assuming that
the transaction has failed and an on-error event should be triggered.

The state property reports the status or the Transaction component as depicted in the Transaction component
statechart (reference to be included). This shall be enumerated as"idl€" or "busy".

A.3.6 Stream

The Stream component controls the connection to a composition of one or more elementary media streams. The
composition may consist of one or more individual media streams of varying type, e.g. audio, video, subtitle, real-time

graphics.
<Conponent Spec provi der="dvb. org" name="Stream' contai ner="true">

<Overvi ew versi on="1.0"/>
<I nt ended! npl enrent ati on coreProperti es="content | oopi ng speed"/>

ETSI

227 ETSI TS 102 523 V1.1.1 (2006-09)

<Properties>
<PropertySpec nanme="content" type="streanData" use="required" access="readWite"/>
<PropertySpec nane="| oopi ng" type="integer" use="optional" access="readWite">
<pcf:Integer name="default" val ue="1"/>
</ PropertySpec>
<PropertySpec nanme="speed" type="proportion" use="optional" access="readWite">
<pcf:Proportion name="default" value="1 1"/>
</ PropertySpec>
<PropertySpec nane="counterPosition" type="timecode" use="optional" access="readWite">
<pcf: Ti mrecode nanme="defaul t" val ue="00: 00: 00: 00"/ >
</ Pr opertySpec>
<PropertySpec nane="endPosition" type="tinecode" use="optional" access="readWite">
<pcf: Ti mecode name="default" val ue="23:59:59: 00"/ >
</ Pr opertySpec>
<PropertySpec name="active" type="bool ean" use="optional" access="readWite">
<pcf: Bool ean nanme="default" val ue="true"/>
</ PropertySpec>
</ Properties>
<Gener at edEvent s>
<CGener at edEvent Spec eventtype="OnStreanPl ayi ng"/ >
<Cener at edEvent Spec eventtype="OnStreantt opped"/ >
</ Gener at edEvent s>
<Gener at edErr or s>
<Cener at edError Spec errortype="OnStreankrror"/>
</ Gener at edErr or s>
</ Conponent Spec>

The Stream component can be used to manage connections to compositions encoded using different formats and
obtained from different kinds of location. For example, an MPEG Program (DVB Service) within an broadcast MPEG-
2 Transport Stream or an audio clip in the form of an MPEG-2 Elementary Stream that exist within the receiver in
memory or on disk.

The relationships between the Stream component and other related components areillustrated in figure 89.

NOTE 1: In common with other parts of the present document this class hierarchy does not exist with in the PCF.
Thefigure, including the abstract classes StreamBase and ElementaryStream, is provided to illustrate the
relationship between various components.

Stream

-content : streamData
-looping : int
-speed : proportion

0..% 0..% 0..*
Audio Video StreamEvent
-content : uri -content : uri -content : uri
-volume : int -termination : enum

-viewportHPaosition : proportio
-viewportVPosition : proportior
-viewportHSize : proportion
-viewportVSize : proportion
-viewportHScale : proportion
-viewportVScale : proportion
-anchor : enum

0..1
Subtitles

Figure 89: Stream control and presentation components

ETSI

228 ETSI TS 102 523 V1.1.1 (2006-09)

What figure 89 shows is that to present a specific elementary media streams from within a composition a component of
the corresponding type, e.g. Video, shall be declared within the relevant Stream component. See annex R for an
example.

The content property shall define the composition of elementary media streams to be managed by the Stream
component. This composition may be embedded within the service description or be referenced as an external body.

A special case of an external body item is when the composition to be managed is the default for the context in which
the transcoded service description is running. For example, to present the video and audio for whatever TV service the
interactive service forms part of. This shall be described using an external body item with the uri property set to
"urn:x-dvb-pcf::default".

EXAMPLE: Set the composition to the default in the current context.

<StreanData name="content">
<Ext ernal Body content-type="application/octet-stream uri="urn:x-dvb-pcf::default"/>
</ St r eanDat a>

The looping property shall define the number of times to loop the composition, as follows:
0: Loop indefinitely
1: Play once
>1 (n): Play (n) times

The speed property shall define the rate of advancement of the composition, as follows:;
01: Stop
1 1: Play at normal speed

NOTE 2: The Stream component does not support trick-modes, such as reverse playback, faster than normal speed
playback.

The counter Position property shall define the current position within the composition. When a composition starts
running it will start playing from the point defined by the counter position. If the counterPosition property is updated
playback will skip to this new position within the composition. If the new value for the counterPosition property is
beyond the endPosition then counterPosition shall be set to the value of endPosition.

If this property is not supported by atarget platform then updating its value will have no effect and if read it shall return
anull value.

The endPosition property shall define the position within the composition at which to stop playing. When arunning
composition reaches this point it shall stop and change its running flag to "false”. If endPosition is set to a timecode that
is before the current running position then the stream will immediately stop and set its running flag to "false". If
endPosition is set to atimecode that is after the end timecode of the composition then the composition shall stop playing
if and when it reachesitsinherent end.

If this property is not supported by atarget platform then updating its value will have no effect and if read it shall return
anull value.

The active property shall indicate whether the component is currently an active source of stream events.

The intrinsic behaviour of a Stream component and any child componentsis described in figures 90 and 91.

ETSI

®

[intially-active = true]

229 ETSI TS 102 523 V1.1.1 (2006-09)
Inactive
[initially-active = false] [’
[Stream CW \
/Fire OnSitr, rror
Stream connection error
/Fire OnStreamError
SetActi when (last lopp complete)
> . . fiire OnStreamStopped
Setlnactiye
[else]
| Active]

|

entry/ running = true”streams.ParentStreamActive’fire OnStreamPlaying
exit/ running = false”streams.ParentStreamInactive

Figure 90: Stream behaviour

[initially-active = false]

Inactive

®

[initially-Active = true]

SetActive

entry/ running = false

\ J

[Parent =

6

[Parent = inactive]

Setlnacti

[Awaiting Active

[entry/ running = true

J

active] parentStreamActive()

[else]

Setlnactive

ParentStreamlpactive()

-®

Active]
entry/ running = true J

\

[Stream connection error]fire OnStreamError

Figure 91: Elementary Stream Behaviour

Multiple Stream components may be active at the same time. However, when running Stream components and any
child components will normally consume platform resources (audio/video decoders etc). The management of such
resource is not described by the present document.

NOTE 2: For explicit control a service author may need to deactivate active Stream component and/or child
components before activating another Stream component and/or child component that will consume

shared resources.

ETSI

230 ETSI TS 102 523 V1.1.1 (2006-09)

A.3.7 StreamEvent

The StreamEvent component controls the generation of stream events from a data elementary stream within the
composition managed by the enclosing Stream component.

<Conponent Spec provi der="dvb. org" nane="StreanEvent" >
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="content"/>
<Properties>
<PropertySpec nane="content" type="uri" use="optional" access="readWite">
<pcf: URl name="default" val ue="urn: dvb-pcf::default"/>
</ PropertySpec>
<PropertySpec nanme="active" type="bool ean" use="optional" access="readWite">
<pcf: Bool ean nanme="defaul t" val ue="true"/>
</ PropertySpec>
</ Properties>
</ Conponent Spec>

The content property shall identify a data elementary stream used to deliver stream events located within the
composition managed by the enclosing Stream component.

The active property shall indicate whether the component is currently an active source of elementary media streams.

A special case of the content property is when the data elementary stream to be identified is the default for the
composition as determined by the target platform. This shall be defined by setting value of the content property to
"urn:x-dvb-pcf::default”.

The data elementary stream shall only be a source of stream events when both the StreamEvent component and the
enclosing parent Stream component are active.

A.3.8 Timer

The Timer component implements atimer that may be used to generate timed events.

<Conponent Spec provi der ="dvb. org" name="Ti mer">
<Overvi ew versi on="1.0"/>
<I nt endedl npl enent ati on coreProperties="period continuous"/>
<Properties>
<PropertyG oupRef ref="intrinsic_properties-nonvisible-conponents"/>
<PropertySpec name="peri od" type="integer" access="readWite"/>
<PropertySpec nane="conti nuous" type="bool ean" access="readWite" use="optional ">
<pcf: Bool ean name="default" val ue="fal se"/>
</ Pr opertySpec>
</ Properties>
<Handl edAct i ons>
<Handl edAct i onSpec nane="start"/>
<Handl edActi onSpec name="stop"/>
</ Handl edActi ons>
<CGener at edEvent s>
<CGener at edEvent Spec eventtype="OnTi mer"/>
</ Gener at edEvent s>
</ Conponent Spec>

The period property defines the number of milliseconds until the Timer firesitstimeout event.

The continuous property defines what the Timer should do once it times out: if this value is set to true the Timer will
restart, and will therefore generate further timeout events at regular intervals; if this valueisfalse the Timer will reset
and require restarting before it generates any further events.

ETSI

231 ETSI TS 102 523 V1.1.1 (2006-09)

sta

[continuoyus =true]

Started

Figure 92: Timer behaviour

A Timer isinitialy stopped.
On receipt of astart action the Timer starts.
If the Timer is started and it receives astop action the Timer stops and no Timer event shall be generated.

An OnTimer event shal befired period milliseconds after entering the started state. At this point, if the continuous
property isfalse then the Timer shall revert to a stopped state. If continuousis set to true the Timer shall re-enter the
started state.

A.3.9 Transient variables

A.3.9.1 BooleanVar

The BooleanVar component shall represent a run-time-accessible value of the PCF Boolean data type, where the value
persists only for the lifetime of the component's container.

<Conponent Spec provi der ="dvb. org" name="Bool eanVar" contai ner="true">
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="val ue"/>
<Properties>
<PropertySpec nanme="val ue" type="bool ean" access="readWite">
<pcf: Bool ean name="default" val ue="true"/>
</ PropertySpec>
</ Properties>
</ Conponent Spec>

The value property shall represent the current value of the variable. This value can beinitialized when a BooleanVar
component is described, and can be read and set during the variable's scoped lifetime, as defined in clause 7.5.3.2.

A.3.9.2 DateTimeVar

The DateTimeVar component shall represent a run-time-accessible value of the PCF dateTime data type, where the
value persists only for the lifetime of the component's container.

<Conponent Spec provi der="dvb. org" nane="Dat eTi meVar" >
<Qvervi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="val ue"/>
<Properties>
<PropertySpec nane="val ue" type="dateTi me" access="readWite">
<pcf: DateTi me name="default" val ue="2000-01-01T00: 00: 00"/ >
</ Pr opertySpec>
</ Properties>
</ Conponent Spec>

The value property shall represent the current value of the variable. This value can beinitialized when a DateTimeVar
component is described, and can be read and set during the variable's scoped lifetime, as defined in clause 7.5.3.2.

ETSI

232 ETSI TS 102 523 V1.1.1 (2006-09)

A.3.9.3 IntegerVar

The Integer Var component shall represent a run-time-accessible value of the PCF integer data type, where the value
persists only for the lifetime of the component's container.

<Conponent Spec provi der="dvb. org" name="IntegerVar" serializabl e="true">
<Overvi ew version="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="val ue"/>
<Properties>
<PropertySpec nanme="val ue" type="integer" access="readWite">
<pcf:Integer name="default" val ue="0"/>
</ PropertySpec>
</ Properties>
</ Conponent Spec>

The value property shall represent the current value of the variable. This value can beinitialized when an Integer Var
component is described, and can be read and set during the variable's scoped lifetime as defined in clause 7.5.3.2.

A.3.9.4 StringVar

The StringVar component shall represent a run-time-accessible value of the PCF string data type, where the value
persists only for the lifetime of the component's container.

<Conponent Spec provi der="dvb. org" name="StringVar" serializabl e="true">
<Overvi ew versi on="1.0"/>
<I nt ended! npl emrent ati on coreProperti es="val ue"/>
<Properties>
<PropertySpec nanme="val ue" type="string" access="readWite">
<pcf:String name="default" val ue=""/>
</ PropertySpec>
</ Properties>
</ Conponent Spec>

The value property shall represent the current value of the variable. This value can beinitialized when a StringVar
component is described, and can be read and set during the variable's scoped lifetime, as defined in clause 7.5.3.2.

ETSI

233 ETSI TS 102 523 V1.1.1 (2006-09)

Annex B (normative):
Events and errors

B.1 System events

B.1.1 Service event

A service lifecycle event provides for temporal synchronization to the start and end of a service session.

<Event Spec nane="Servi celLi fecycl e" cl ass="systent >
<PropertySpec nane="action" type="enuneration" access="readOnly">
<Enuner ati onSpec nanme="Iifecycl eaction">
<Enurer ati onl t em name="1 oad"/ >
<Enurer ati onltem name="exit"/>
</ Enurrer at i onSpec>
</ PropertySpec>
</ Event Spec>

A service lifecycle event contains an action property to indicate if thisis the start or end of a service session.

. A "load" event shall occur when the service session is ready to begin execution, immediately prior to
activating the initial scene component i.e. all components of a service have been acquired but no rendering has
yet taken place.

. An"exit" event shall occur immediately after the request to navigate away from the current service and before
discarding any components of the service or deactivating the currently active scene.

B.1.2 Stream event

A stream event provides for temporal synchronization points within a playing media stream.

NOTE 1: PCF service description permits several media streams to be playing simultaneously. Events from all
playing streams shall contribute to the timeline of stream events that occur during a service session.

<Event Spec nanme="StreanEvent" cl ass="systent>
<PropertySpec nane="streamnml d" type="uri" access="readOnly"/>
<PropertySpec nane="event Nane" type="string" access="readOnly"/>
<PropertySpec nanme="payl oad" type="string" access="readOnly"/>
</ Event Spec>

A stream event shall contain a streamld property which identifies the Stream component instance that manages the
media stream composition in which the StreamEvent was delivered.

A stream event shall contain an eventName property that is used to classify the event in a service-specific manner. This
value shall not be null and shall be defined within the context of a single media stream. See also annex O.

NOTE 2: each event islocated at a specific temporal position within the timeline of the media stream with which it
isassociated. A stream event with agiven streamld and eventName may occur more than once during
the service session because several instances of it may be defined at distinct temporal locationsin the
same media stream.

NOTE 3: PCF does not specify any pre-roll of events. In the logical PCF behaviour model, stream events occur at
the exact moment which their temporal location represents in the associated media stream. Platform
implementations should ensure that the rendering of the effects caused by a stream event occur as close as
possible to this moment. Thus atemporal location value is not required in the context of the event itself.

A stream event shall contain a payload property that carries optional event data, represented as a string.

Stream events are delivered to a platform independently of the PCF service description which uses them, thus this
mechanism is outside the scope of PCF.

ETSI

234 ETSI TS 102 523 V1.1.1 (2006-09)

Event timelines may be delivered by binding them to media items associated with the PCF service or in a separate
standal one document. The present document recommends a set of informative aternative bindings to achieve thisin
annex O.

B.1.3 ProgramChange event

A program change event provides for temporal synchronization to program boundaries within a media stream. Itis
intended to directly model DVB EIT Present/Following transitions or their equivalent.

<Event Spec name="Pr ogr anChange" cl ass="systenl'>
<PropertySpec nanme="stream d" type="uri" access="readOnly"/>
<PropertySpec nanme="eventld" type="uri" access="readOnly"/>
<PropertySpec nane="startTi me" type="dateTi me" access="readOnly"/>
<PropertySpec nane="duration" type="tinme" access="readOnly"/>
<PropertySpec nanme="| anguage" type="is0639" access="readOnly"/>
<PropertySpec name="nane" type="string" access="readOnly"/>
<PropertySpec nanme="shortDescription" type="string" access="readOnly"/>

</ Event Spec>

A program change event shall contain a streamld property which identifies the Stream component instance that
manages the media stream composition in which the program change occurred.

A program change event shall contain an eventld property that shall uniquely identify the program within the media
stream.

A program change event shall contain astartTime property that shall contain the expected start date and time for the
program.

A program change event shall contain aduration property that shall contain the expected duration for the program.

A program change event shall contain alanguage property that shall contain the language for the program name and
description.

A program change event shall contain a name property that shall contain the title for the program.

A program change event shall contain a shortDescription property that shall contain a synopsis for the program.

B.1.4 RunningStatus event

A running status event provides for temporal synchronization with the start and end of transmission within amedia
stream. It isintended to directly model DVB Service Running Status transitions or their equivalent.

<Event Spec name="Runni ngSt at us" cl ass="systenl'>
<PropertySpec nane="streaml d" type="uri" access="readOnly"/>
<PropertySpec name="status" type="enumeration" access="readOnly">
<Enuner ati onSpec name="rst">
<Enuner ati onl t em name="st opped"/ >
<Enuner ationltem name="starting"/>
<Enuner ati onl t em name="r unni ng"/ >
<Enuner ati onl t em name="st oppi ng"/ >
</ Enurer at i onSpec>
</ PropertySpec>
</ Event Spec>

A running status event shall contain a streamld property which identifies the Stream component instance that manages
the media stream composition in which the transition occurred.

A running status event shall contain a status property which indicates the state into which the media stream has
transitioned. These states correspond directly with those defined for DVB Service Information [27].

ETSI

235 ETSI TS 102 523 V1.1.1 (2006-09)

B.2 User events

B.2.1 Key event

A key event shall be generated by the run-time environment when one of a specific set of user input device keysis
activated. Thiskey must be in the set that is mapped to the values defined in clause K.1 by the platform implementation.

<Event Spec name="KeyEvent" cl ass="user">
<PropertySpec nane="key" type="userKey" access="readOnly"/>
</ Event Spec>

A key event shall contain a key property which indicates which virtual key has been activated.

NOTE: Key events shall only occur once per activation of a specific key. There is no automatic key repeat
indication, or key down/up indication. See Raw Key Event for these features.

B.2.2 RawKey event

A raw key event may be generated in a platform-specific manner to provide more detailed information regarding the
nature of the user input device key activation.

NOTE: Raw key events may not be portable or even available on all platforms.

<Event Spec nane="RawKeyEvent" cl ass="user">
<PropertySpec nane="keycode" type="integer" access="readOnly"/>
<PropertySpec nane="keytype" type="enuneration" access="readOnly">
<Enuner ati onSpec name="r awkeyt ype" >
<Enuner ati onl t em name="keydown"/ >
<Enurer ati onl t em name="keyup"/ >
<Enurer ati onl t em name="keyr epeat"/ >
</ Enurrer at i onSpec>
</ Pr opertySpec>
</ Event Spec>

A raw key event shall contain a keycode property which indicates which physical device key has been activated. The
value contained in this property is platform-specific and not defined by the present document.

EXAMPLE: A keycode may allow a service author to distinguish between a front panel key and aremote key
of the same nominal virtual key value, or to access an alternative user input device such as agame
controller.

A raw key event shall contain akeytype property which indicates which action a user isinvoking on aphysical device
key. Actions that may be distinguished are: key down, key up and key repest.

B.3 Component events

B.3.1 Navigation events

Navigation events shall be generated by a component when the intrinsic focus behaviour alters the focus state of a
component.

<Event Spec cl ass="conponent" name="OnFocus"/>
<Event Spec cl ass="conmponent" nanme="OnBl ur"/>

An OnFocus event shall occur when a component receives focus.
An OnBlur event shall occur when a component loses focus.

There is a GeneratedEventGroup for Navigation events, which some components may use. It is declared as follows:

<Gener at edEvent G oup name="navi gati on_events">
<CGener at edEvent Spec eventtype="OnFocus"/>

ETSI

236 ETSI TS 102 523 V1.1.1 (2006-09)

<CGener at edEvent Spec eventtype="OnBlur"/>
</ Gener at edEvent G oup>

B.3.2 Scene events

Scene events, enterforward and enter history shall be generated when a Scene component becomes active. Scene
event exit shall be generated when the scene becomes inactive.
<Event Spec name="ScenelLi fecycl e" cl ass="conponent">
<PropertySpec nanme="acti on" type="enunerati on" access="readOnly">
<Enuner ati onSpec name="1li f ecycl eacti on">
<Enuner ati onltem name="ent erf orward"/ >
<Enuner ationltem name="ent er hi story"/>
<Enunerationltem name="exit"/>
</ Enurrer at i onSpec>
</ Pr opertySpec>
</ Event Spec>

Thereis a GeneratedEventGroup for Scene events, which some components may use. It is declared as follows:
<Cener at edEvent G- oup name="scene_events">

<Cener at edEvent Spec eventtype="Scenelifecycle"/>
</ Gener at edEvent G oup>

B.3.3 Button events

Button events may be generated when any selectable input control is operated.

NOTE: Button eventsinclude navigation events.

<Event Spec cl ass="conponent" name="nSel ect"/>
<Event Spec cl ass="conponent" name="OnUnsel ect"/>

An OnSelect event shall occur when the control is activated.
An OnUnselect event shall occur if the control is positively deactivated e.g. aradio button is unchecked.
Thereis a GeneratedEventGroup for Button events, which some components may use. It is declared as follows:
<CGener at edEvent Group name="button_events">
<Cener at edEvent G oupRef ref="navi gation_events"/>
<Gener at edEvent Spec eventtype="OnSel ect"/>

<Gener at edEvent Spec eventtype="OnUnsel ect"/>
</ Gener at edEvent G oup>

B.3.4 Choice events

Choice events may be generated when any editable input control is atered by the user.

<Event Spec cl ass="conponent" name="OnChange"/>

An OnChange event shall occur when an edit operation is completed on the control e.g. a character is entered into a
text input directly, or an on-screen keyboard is used to edit and then save the text value.

Thereis a GeneratedEventGroup for Choice events, which some components may use. It is declared as follows:

<Cener at edEvent G- oup nane="choi ce_events">
<Gener at edEvent Gr oupRef ref="navi gati on_events"/>
<Gener at edEvent Spec eventtype="OnChange"/ >

</ Gener at edEvent G oup>

B.3.5 Media events

Media events may be generated by any component that handles media content in a dynamic manner.

<Event Spec cl ass="conponent" nanme="0OnMedi aAvai | abl e"/>

ETSI

237 ETSI TS 102 523 V1.1.1 (2006-09)

An OnM ediaAvailable event shall be generated when the component has successfully acquired its media content and is
presenting or is ready to present it, e.g. an image has been acquired and decoded in a Background component.

There is a GeneratedEventGroup for Media events, which some components may use. It is declared as follows:
<Gener at edEvent Group name="nedi a_events">

<Cener at edEvent Spec eventtype="OnMedi aAvail abl e"/ >
</ Gener at edEvent G oup>

B.3.6 Textlnput events

Textlnput events may be generated by input controls that support free text entry.
<Event Spec cl ass="conponent" name="OnEnpty"/>

<Event Spec cl ass="conponent" name="OnFul|l"/>
<Event Spec cl ass="conponent" name="OnUnpri ntabl eCharacter"/>

An OnEmpty event shall be generated when a delete edit is requested on an aready empty text field.
An OnFull event shall be generated when an increase edit is requested on an already full text field.

An OnUnprintableCharacter event shall be generated when an edit is requested that contains characters not suitable
for the text field, e.g. an onscreen keyboard is used to enter an apha charactersinto a numeric only text field.

There is a GeneratedEventGroup for Textlnput events, which some components may use. It is declared as follows:
<CGener at edEvent Group nanme="text_i nput_events">
<CGener at edEvent GroupRef ref="choi ce_events"/>
<CGener at edEvent Spec eventtype="OnEnmpty"/>
<CGener at edEvent Spec eventtype="OnFul | "/ >

<CGener at edEvent Spec eventtype="OnUnpri nt abl eCharacter"/>
</ Gener at edEvent G oup>

B.3.7 Animation events

Animation events may be generated by components that display an animation.

<Event Spec cl ass="conponent" nanme="OnLoopConpl ete"/>
<Event Spec cl ass="conponent" nanme="OnAni mati onConpl ete"/>

An OnL oopComplete event shall be generated when the animation reaches the end of the sequence and has more loops
to complete.

An OnAnimationComplete event shall be generated when the animation reaches the end of the sequence and there are
no more loops to present.

Thereis a GeneratedEventGroup for Animation events, which some components may use. It is declared as follows:
<CGener at edEvent Group name="ani mati on_events">
<Gener at edEvent Spec eventtype="OnLoopConpl ete"/ >

<CGener at edEvent Spec eventtype="OnAni mati onConpl ete"/ >
</ Gener at edEvent G oup>

B.3.8 PageContainer events

Page Container events may be generated by page container components.
<Event Spec cl ass="conmponent" nanme="OnPageChanged"/>

An OnPageChanged event shall be generated when the user navigates to a different page.

Thereis a GeneratedEventGroup for PageContainer events, which some components may use. It is declared as follows:
<Cener at edEvent G- oup nane="page_cont ai ner _events">

<Cener at edEvent Spec eventtype="0OnPageChanged"/ >
</ Gener at edEvent G oup>

ETSI

238 ETSI TS 102 523 V1.1.1 (2006-09)

B.3.9 Timer event

A Timer event is generated by the Timer component.

<Event Spec cl ass="conponent" name="OnTi mer" >
<PropertySpec nane="nane" type="string" access="readOnly"/>
</ Event Spec>

B.3.10 NumericNavigator events

OnValid and Onlnvalid events are generated by the NumericNavigator component.

<Event Spec cl ass="conponent" name="OnValid"/>
<Event Spec cl ass="conmponent" name="Onlnvalid"/>

B.3.11 Stream events

OnStreamPlaying and OnStreamStopped events are generated by the NumericNavigator component.

<Event Spec cl ass="conponent" name="OnStreanPl ayi ng"/>
<Event Spec cl ass="conponent" name="OnStreantt opped"/ >

B.3.12 ReturnPath events

ReturnPath events can be generated by the components which control the return path.

<Event Spec name="OnQpeni ng" cl ass="conponent"/>
<Event Spec name="OnQpen" cl ass="conponent"/>
<Event Spec nane="Ond osi ng" cl ass="conponent"/>
<Event Spec nanme="OnC ose" cl ass="conponent"/>
<Event Spec name="OnStart" cl ass="conponent"/>
<Event Spec name="OnConpl et e" cl ass="conponent"/>
<Event Spec nanme="OnAbort" cl ass="conponent"/>

An OnOpening event shall be generated when an attempt is made to open areturn path connection.

An OnOpen event shall be generated when a return path connection has been successfully opened.

An OnClosing event shall be generated when an attempt is made to close the return path connection.

An OnClose event shall be generated when the return path connection has been successfully closed.

An OnStart event shall be generated when a transmission over the return path has been started.

An OnComplete event shall be generated when a transmission over the return path has been successfully completed.

An OnAbort event shall be generated when a transmission was aborted before completion by the application.

B.4 Errors

Errors are instances of the Error Event which have the event properties set by values defined according to the ErrorSpec
for the error. Clause B.4.1 declares the Error Event. Individual Errors are then declared in the remaining clauses.

B.4.1 Error events

An Error event defines a standard means for propagating error conditions within a service description.

<Event Spec name="Error" cl ass="conponent">
<PropertySpec nanme="nane" type="string" access="readOnly"/>
<PropertySpec nanme="| evel " type="enunerati on" access="readOnly">
<Enuner ati onSpec name="errorl evel ">
<Enurer ati onl t em name="noti ce"/>

ETSI

239 ETSI TS 102 523 V1.1.1 (2006-09)

<Enuner ati onl t em name="war ni ng"/ >
<Enuner ati onltem name="error"/>
</ Enuner at i onSpec>
</ PropertySpec>
<PropertySpec name="errorstring" type="string" access="readOnly"/>
</ Event Spec>

Error events are not directly referenced by component specifications. Instead Error Spec items declare Errors with
properties of this event provided. Components shall then use Gener etedEr ror Spec items to reference the ErrorSpec
which defines the error they use.

An error event shall contain a name property as specified by the name attribute of an ErrorSpec item.
An error event shall contain an errorlevel property as specified by the level attribute of an ErrorSpec item.

An error event shall contain an errorstring property that contains a human readable description for the error event
which may be platform specific and is not defined in the present document.

B.4.2 Basic errors

All components may generate thisbasic error.

<Error Spec nanme="OnUnknownError" |evel ="error"/>

There is a GeneratedErrorGroup for Basic Errors, which some components may use. It is declared as follows:

<Gener at edError G oup name="basic_errors">
<CGener at edError Spec errortype="OnUnknownError"/>
</ Gener at edEr r or G oup>

B.4.3 Media errors

Components that handle dynamic media content in any form may generate these media errors.

<Error Spec nanme="OnUnknownError" |evel ="error"/>

<Error Spec name="Onl nval i dMedi aType" | evel ="war ni ng"/ >

<Error Spec name="OnMedi aUnavai | abl e" | evel ="war ni ng"/ >

<Error Spec name="OnMedi aCorrupt" | evel ="warni ng"/>

<Error Spec nane="OnMedi aEncodi ngNot Supported" | evel ="warni ng"/>

An OnlnvalidM ediaType error shall be generated if the type of media does not match atype supported by the
component, e.g. video/mpeg for an Image component which supports only image/* types.

An OnM ediaUnavailable error shall be generated if the media content item cannot be acquired in a reasonable time.
NOTE: What constitutes a reasonable time shall be platform-specific and is not defined in the present document.

An OnM ediaCorrupt error shall be generated if the media content item fails to complete any decoding required before
rendering it.

An OnM ediaEncodingNotSupported error shall be generated if the media content item is not packaged using an
encoding supported by the component, e.g. GZIP compressed content is acquired when only uncompressed content is
supported.

There is a GeneratedErrorGroup for Media Errors, which some components may use. It is declared as follows:

<Cener at edErr or G oup name="nedi a_errors">

<Cener at edEr r or Spec errortype="Onl nval i dMedi aType"/ >

<Gener at edError Spec errortype="OnMedi aUnavai | abl e"/ >

<Gener at edError Spec errortype="OnMedi aCorrupt"/>

<Gener at edErr or Spec errortype="OnMedi aEncodi ngNot Supported"/>
</ Gener at edEr r or G oup>

ETSI

B.4.4 Stream errors

The following error is generated by Stream components.

240 ETSI TS 102 523 V1.1.1 (2006-09)

<ErrorSpec |l evel ="error" name="OnStreantrror"/>

B.4.5 ReturnPath errors

Thefollowing error is generated by Return Path components.

<Err or Spec

B.4.6 Execution errors

name="OnError" | evel ="warni ng"/>

The following errors are generated by execution of action language:

<Error Spec
<Err or Spec
<Error Spec
<Error Spec

nanme=" Ref erenceError"
nane="Executi onError"
nane="Executi onError"
nane="Executi onError"

| evel ="error"/>

| evel ="error"/>

| evel ="warni ng"/>
| evel ="notice"/>

NOTE: Execution error level is determined by the class of failure as defined in clause 9.4.6.7.

ETSI

241 ETSI TS 102 523 V1.1.1 (2006-09)

Annex C (normative):
Property Groups

C.1 Intrinsic properties

Intrinsic properties are applied to all components, where each component is either classified as visible or nonvisible.

C.1.1 Visible components

C.1.1.1 Enumeration

<Enuner ati onSpec nane="updat e- val ues" >
<Enuner ati onl t em nane="aut 0"/ >
<Enuner ati onl t em nanme="onrefresh"/>
<Enuner ati onl t em name="none"/ >

</ Enuner at i onSpec>

Enumeration values shall be defined as follows:
. auto - content shall immediately refresh when an update is received.
. onrefresh - when updated content has been received, it shall be displayed only after arefresh or redraw event.

. none - updated content shall not be displayed within the scope of the current Scene.

C.1.1.2 PropertyGroup

<PropertyG oup name="instrinisic_properties-visible_conmponents">
<PropertySpec nane="enabl ed" type="bool ean" defaul t="true"
writeabl e="true"/>
<PropertySpec nane="focusabl e" type="bool ean" default="true"
writeabl e="fal se"/>
<PropertySpec nanme="reactivetext" type="string" use="optional" witeabl e="true"/>
<PropertySpec nane="vi si bl e" type="bool ean" default="true"
writeabl e="true"/>
<PropertySpec nanme="t abi ndex" type="integer" use="optional" witeabl e="false"/>
<PropertySpec nane="update" type="enuneration" defaul t="auto" witeabl e="fal se">
<Enurner ati onRef ref="updat e-val ues"/>
</ PropertySpec>
<PropertySpec nane="aacol or" type="color" use="optional" witeable="fal se"/>
</ PropertyG oup>

The propertiesin this property group shall be defined as follows:

. enabled - set to "true" if acomponent is currently enabled, as defined in clause 7.5.2, and "false” if itis
disabled.

. focusable - set to "true" if acomponent can receive focus, as defined in clause 7.5.2, and "false” if it cannot.

. reactivetext - text associated with a component that may be displayed to a user when the component has
focus.

. visible - set to "true” if acomponent is currently visible and "false” if not.

. tabindex - used to indicate the order of a component within a sequence of other components that a user can
navigate focus between.

. update - controls the behaviour of a component when updated content is available.

. aacolor - anti-alias colour to use when drawing a component on top of other components or Background
components.

ETSI

242 ETSI TS 102 523 V1.1.1 (2006-09)

C.2 Background properties

C.2.1 Background_properties-images

<PropertyG oup name="background_properties-i mages">
<PropertySpec nanme="i mage" type="i mageData" use="optional" access="readWite"/>
<PropertySpec name="tiling" type="enuneration" access="initializeOnly" use="optional">
<Enurer ati onSpec name="tiling- node">
<Enurer ati onl t em name="none"/ >
<Enuner ati onl t em name="hori zontal "/ >
<Enuner ati onltem name="vertical "/ >
<Enurer ati onl t em name="bot h"/ >
</ Enuner at i onSpec>
<pcf:String name="defaul t" val ue="none"/>
</ Pr opertySpec>
<PropertySpec nane="of fset" type="position" use="optional" access="initializeOly">
<pcf:Position name="default" value="0 0"/>
</ Pr opertySpec>
<PropertySpec nanme="stretchToFit" type="bool ean" use="optional" access="initializeOnly">
<pcf: Bool ean nanme="default" val ue="fal se"/>
</ PropertySpec>
</ PropertyG oup>

The propertiesin this property group shall be defined as follows:
. src - the source of the background image.
. tiling - controls direction and allowability of background images.
. offset - controls offset of top left corner of image from origin of component.

. stretch-to-fit - set to "true" if background image shall be stretched to fill background area of component,
"false” if not.

C.2.2 Background_properties

</ PropertyG oup>
<PropertyG oup nanme="background_properties">
<PropertyG oupRef ref="background_properties-imges"/>
<PropertyG oupRef ref="col or_properties-fillcolor"/>
</ PropertyG oup>

C.2.2.1 Properties defined elsewhere
. Background properties - images:. clause C.2.

. Color_propertiesHillcolor: clause C.3.4.

C.3 Color properties

C.3.1 Color_properties

<PropertyG oup name="col or_properties">

<PropertySpec nane="color" type="color" use="required" access="readWite"/>
<PropertySpec nanme="col or-focus" type="color" use="optional" access="readWite"/>
<PropertySpec nanme="col or-di sabl ed" type="col or" use="optional" access="readWite"/>
<PropertySpec nane="col or-active" type="color" use="optional" access="readWite"/>
<PropertySpec nane="color-idle" type="color" use="optional" access="readWite"/>
<PropertySpec nanme="shadowcol or" type="col or" use="optional" access="readWite"/>
<PropertySpec nanme="hi ghlightcolor" type="color" use="optional" access="readWite"/>
<PropertySpec nane="aacol or" type="color" use="optional" access="initializeOnly"/>
<PropertySpec nane="rendering-intent" type="enuneration" use="optional" default="auto"

access="readWite">

ETSI

243 ETSI TS 102 523 V1.1.1 (2006-09)

<Enuner ati onRef ref="rendering-intent"/>
</ Pr opertySpec>

</ PropertyG oup>

The color_properties group defines the generic set of color-related properties for use in PCF components.

The propertiesin this property group shall be defined as follows:

color - asequence of four integer values between 0 and 255, expressed in hexadecimal, representing red,
green, blue and transparency colour values respectively;

color-focused - acolor value to be displayed when the component isin afocused state;
color-disabled - acolor vaue to be displayed when the component isin a disabled state;
color-active - acolor value to be displayed when the component isin an active state;
color-idle - acolor valueto be displayed when the component isin anidle state;
color-shadow - acolor value to be used for shadows,

color-highlight - acolor value to be used for highlights;

color-aa - acolor valueto be used in calculation of anti-alias colours;

rendering-intent -as specified in Extensible Stylesheet Language (XSL) 1.0 [25] clause 17.3.

C.3.2 Color_properties-linecolor

</ PropertyG oup>
<PropertyG oup name="col or_properties-linecolor">

<PropertySpec nanme="linecol or" type="color" use="required" access="readWite"/>
<PropertySpec nane="linecol or-focus" type="col or" use="optional" access="readWite"/>
<PropertySpec nane="li necol or-di sabl ed" type="color" use="optional" access="readWite"/>
<PropertySpec nanme="linecol or-active" type="color" use="optional" access="readWite"/>
<PropertySpec nanme="linecolor-idle" type="color" use="optional" access="readWite"/>
<PropertySpec nane="li necol or-shadow' type="col or" use="optional" access="readWite"/>
<PropertySpec nane="linecol or-highlight" type="col or" use="optional" access="readWite"/>
<PropertySpec nanme="linecol or-rendering-intent" type="enuneration" use="optional"

access="initializeOnly">

<Enurer ati onRef ref="rendering-intent"/>
</ PropertySpec>

</ PropertyG oup>

The color_properties-linecolor properties group defines the set of linecolor-related properties for use in PCF
components.

The propertiesin this property group shall be defined as follows:

linecolor - a sequence of four integer values between 0 and 255, expressed in hexadecimal, representing red,
green, blue and transparency colour values respectively;

linecolor-focused - a color value to be displayed when the component isin afocused state;
linecolor -disabled - acolor value to be displayed when the component isin adisabled state;
linecolor-active - acolor value to be displayed when the component isin an active state;
linecolor-idle - acolor value to be displayed when the component isin an idle state;
linecolor-shadow - acolor value to be used for shadows;

linecolor -highlight - acolor value to be used for highlights;

linecolor -rendering-intent -as specified in Extensible Stylesheet Language (XSL) 1.0 [25] clause 17.3.

ETSI

244 ETSI TS 102 523 V1.1.1 (2006-09)

C.3.3 Color_properties-bordercolor

</ PropertyG oup>

<PropertyG oup nanme="col or_properties-bordercol or">
<PropertySpec nanme="bordercol or" type="color" use="required" access="readWite"/>
<PropertySpec nane="bordercol or-focus" type="color" use="optional" access="readWite"/>
<PropertySpec nane="bordercol or-di sabl ed" type="col or" use="optional" access="readWite"/>
<PropertySpec nanme="bordercol or-active" type="col or" use="optional" access="readWite"/>
<PropertySpec nanme="bordercol or-idle" type="color" use="optional" access="readWite"/>
<PropertySpec nane="bordercol or - shadow' type="color" use="optional" access="readWite"/>
<PropertySpec nane="bordercol or-highlight" type="color" use="optional" access="readWite"/>
<PropertySpec nanme="bordercol or-rendering-intent" type="enuneration" use="optional"

access="initializeOnly">
<Enurer ati onRef ref="rendering-intent"/>

</ PropertySpec>

</ PropertyG oup>

The color_properties-fillcolor properties group defines the set of fillcolor-related properties for use in PCF components.
The propertiesin this property group shall be defined as follows:

. border color - a sequence of four integer values between 0 and 255, expressed in hexadecimal, representing
red, green, blue and transparency colour values respectively;

. bor der color-focused - a color value to be displayed when the component isin afocused state;
. border color-disabled - acolor value to be displayed when the component isin a disabled state;
. border color -active - a color value to be displayed when the component isin an active state;

. bordercolor-idle - acolor vaue to be displayed when the component isin an idle state;

. bor der color-rendering-intent -as specified in Extensible Stylesheet Language (XSL) 1.0 [25] clause 17.3.

C.3.4 Color_properties-fillcolor

</ PropertyG oup>

<PropertyG oup name="col or_properties-fillcolor">
<PropertySpec name="fillcolor" type="color" use="required" access="readWite"/>
<PropertySpec name="fillcol or-focus" type="color" use="optional" access="readWite"/>
<PropertySpec nane="fillcol or-di sabl ed" type="color" use="optional" access="readWite"/>
<PropertySpec nane="fillcol or-active" type="color" use="optional" access="readWite"/>
<PropertySpec name="fillcolor-idle" type="color" use="optional" access="readWite"/>
<PropertySpec name="fillcolor-rendering-intent" type="enuneration" use="optional"

access="initializeOnly">
<Enurer ati onRef ref="rendering-intent"/>

</ Pr opertySpec>

</ PropertyG oup>

The color_properties-fillcolor properties group defines the set of fillcolor-related properties for use in PCF components.
The propertiesin this property group shall be defined as follows:

. fillcolor - asequence of four integer values between 0 and 255, expressed in hexadecimal, representing red,
green, blue and transparency colour values respectively;

. fillcolor-focused - acolor value to be displayed when the component isin afocused state;
. fillcolor-disabled - a color value to be displayed when the component isin a disabled state;
. fillcolor-active - a color value to be displayed when the component isin an active state;

. fillcolor-idle - acolor value to be displayed when the component isin an idle state;

. fillcolor-shadow - acolor value to be used for shadows;

. fillcolor-highlight - a color value to be used for highlights;

. fillcolor-rendering-intent -as specified in Extensible Stylesheet Language (XSL) 1.0 [25] clause 17.3.

ETSI

245 ETSI TS 102 523 V1.1.1 (2006-09)

C.3.5 Color_properties-textcolor

</ PropertyG oup>

<PropertyG oup name="col or_properties-textcolor">
<PropertySpec nanme="textcolor" type="color" use="required" access="readWite"/>
<PropertySpec nane="textcol or-focus" type="color" use="optional" access="readWite"/>
<PropertySpec nane="textcol or-di sabl ed" type="color" use="optional" access="readWite"/>
<PropertySpec nanme="textcol or-active" type="color" use="optional" access="readWite"/>
<PropertySpec nanme="textcolor-idle" type="color" use="optional" access="readWite"/>
<PropertySpec nane="textcol or-shadow' type="col or" use="optional" access="readWite"/>
<PropertySpec nane="textcol or-highlight" type="color" use="optional" access="readWite"/>
<PropertySpec nanme="textcol or-rendering-intent" type="enuneration" use="optional"

access="initializeOnly">
<Enurer ati onRef ref="rendering-intent"/>

</ PropertySpec>

</ PropertyG oup>

The color_properties-textcolor properties group defines the set of textcolor-related properties for use in PCF
components.

The propertiesin this property group shall be defined as follows:

. textcolor - a sequence of four integer values between 0 and 255, expressed in hexadecimal, representing red,
green, blue and transparency colour values respectively;

. textcolor-focused - a color value to be displayed when the component isin afocused state;
. textcolor-disabled - acolor value to be displayed when the component isin adisabled state;
. textcolor-active - acolor value to be displayed when the component isin an active state;

. textcolor-idle - acolor value to be displayed when the component isin an idle state;

. textcolor-rendering-intent -as specified in Extensible Stylesheet Language (XSL) 1.0 [25] clause 17.3.

C.4 Border properties

<Enuner at i onSpec name="bor der-si ngl ecol or-1inestyl es">

<Enuner ati onltem name="sol i d"/>

<Enuner ati onl t em name="dashed"/ >

<Enuner ati onltem nanme="dotted"/>

<Enurer ati onl t em name="doubl e"/ >
</ Enurrer at i onSpec>
<Enuner ati onSpec nane="border-nul ticol or-1inestyl es">

<Enurrer ati onl t em name="gr oove"/ >

<Enuner ati onltem name="ri dge"/>

<Enuner ati onl t em name="bevel | ed- out set"/>

<Enuner ati onl t em name="bevel | ed-i nset"/>
</ Enuner at i onSpec>
<PropertyG oup nanme="border_properties">

<PropertyG oupRef ref="col or_properties-bordercolor"/>

<PropertyG oupRef ref="linestyle_properties"/>

<PropertyG oupRef ref="cornerradi us_properties"/>

<PropertySpec nane="border-w dth" type="integer" default="2" access="readWite"/>

<PropertySpec nane="border-top-Iinestyle-singlecolor" type="enuneration" default="solid"
access="initializeOnly">

<Enuner ati onRef ref="border-singlecolor-linestyles"/>

</ PropertySpec>

<PropertySpec nane="border-top-linestyle-nulticolor" type="enuneration" use="optional"
access="initializeOnly">

<Enuner ati onRef ref="border-multicolor-linestyles"/>

</ PropertySpec>

<PropertySpec nane="border-top-w dth" type="integer" use="optional" access="initializeOnly"/>

<PropertySpec nanme="border-top-color" type="color" use="optional" access="initializeOnly"/>

<PropertySpec nanme="border-top-focuscolor" type="color" use="optional" access="initializeOnly"/>

<PropertySpec nane="bor der-top-di sabl edcol or" type="color" use="optional"
access="initializeOnly"/>

<PropertySpec nanme="border-top-activecol or" type="color" use="optional"
access="initializeOnly"/>

<PropertySpec nane="border-top-idlecolor" type="color" use="optional" access="initializeOnly"/>

ETSI

246 ETSI TS 102 523 V1.1.1 (2006-09)

<Pr opertySpec nane="bor der-top-shadowcol or" type="col or" use="optional"
access="initializeOnly"/>
<PropertySpec nane="border-top-highlightcolor" type="color" use="optional"
access="initializeOnly"/>
<PropertySpec nane="border-bottomlinestyl e-singlecolor" type="enuneration" default="solid"
access="initializeOnly">
<Enurer ati onRef ref="border-singlecolor-linestyles"/>
</ PropertySpec>
<PropertySpec nane="border-bottomlinestyle-multicolor" type="enuneration" use="optional"
access="initializeOnly">
<Enuner ati onRef ref="border-multicolor-linestyles"/>
</ PropertySpec>
<PropertySpec nane="border-bottomw dth" type="integer" use="optional" access="initializeOnly"/>
<PropertySpec nanme="border-bottomcolor" type="color" use="optional" access="initializeOnly"/>
<Pr opertySpec nanme="border-bottomfocuscol or" type="color" use="optional"
access="initializeOnly"/>
<PropertySpec nane="border-bottom di sabl edcol or" type="col or" use="optional"
access="initializeOnly"/>
<Pr opertySpec nane="border-bottom activecol or" type="color" use="optional"
access="initializeOnly"/>
<PropertySpec nane="border-bottomidlecolor" type="color" use="optional"
access="initializeOnly"/>
<Pr opertySpec nane="border-bottom shadowcol or" type="col or" use="optional"
access="initializeOnly"/>
<PropertySpec nane="border-bottom highlightcolor" type="color" use="optional"
access="initializeOnly"/>
<PropertySpec nane="border-|left-linestyle-singlecolor" type="enuneration" default="solid"
access="initializeOnly">
<Enuner ati onRef ref="border-singlecolor-linestyles"/>
</ PropertySpec>
<PropertySpec nanme="border-left-linestyle-nmulticolor" type="enuneration" use="optional"
access="initializeOnly">
<Enuner ati onRef ref="border-nulticolor-linestyles"/>
</ PropertySpec>
<PropertySpec nanme="border-left-w dth" type="integer" use="optional" access="initializeOnly"/>
<PropertySpec nanme="border-left-color" type="color" use="optional" access="initializeOnly"/>
<PropertySpec nane="border-|eft-focuscolor" type="color" use="optional"
access="initializeOnly"/>
<PropertySpec nane="border-|eft-disabl edcol or" type="color" use="optional"
access="initializeOnly"/>
<PropertySpec nane="border-|eft-activecolor" type="color" use="optional"
access="initializeOnly"/>
<PropertySpec nanme="border-left-idlecolor" type="color" use="optional" access="initializeOnly"/>
<PropertySpec nanme="border-|eft-shadowcol or" type="col or" use="optional"
access="initializeOnly"/>
<PropertySpec name="border-|eft-highlightcolor" type="color" use="optional"
access="initializeOnly"/>
<PropertySpec nanme="border-right-linestyle-singlecolor" type="enuneration" default="solid"
access="initializeOnly">
<Enuner ati onRef ref="border-singlecolor-linestyles"/>
</ Pr opertySpec>
<PropertySpec nanme="border-right-linestyle-nmulticolor" type="enuneration" use="optional"
access="initializeOnly">
<Enuner ati onRef ref="border-nulticolor-linestyles"/>
</ Pr opertySpec>
<PropertySpec nanme="border-right-w dth" type="integer" use="optional" access="initializeOnly"/>
<PropertySpec nanme="border-right-color" type="color" use="optional" access="initializeOnly"/>
<PropertySpec nane="border-right-focuscolor" type="color" use="optional"
access="initializeOnly"/>
<Pr opertySpec nanme="border-right-di sabl edcol or" type="col or" use="optional"
access="initializeOnly"/>
<PropertySpec name="border-right-activecolor" type="color" use="optional"
access="initializeOnly"/>
<PropertySpec nanme="border-right-idlecolor" type="color" use="optional"
access="initializeOnly"/>
<Pr opertySpec name="border-right-shadowcol or" type="color" use="optional"
access="initializeOnly"/>
<PropertySpec nanme="border-right-highlightcolor" type="color" use="optional"
access="initializeOnly"/>
</ PropertyG oup>

The BorderProperties properties group defines the set of border-related properties for use in PCF components.

ETSI

247 ETSI TS 102 523 V1.1.1 (2006-09)

C.4.1 BorderProperties enumerations

C.4.1.1 BorderSingleColorLinestyle enumeration
The enumerations used in the BorderProperties group shall be defined as follows:

. Border Singlecolor Linestyles - specifies the single-color linestyle for the border of the component.
Enumerated values are;

- "solid" - the boder is drawn as a singlecolor solid line;
- "dashed" - the border is drawn as a singlecolor dashed line;
- "dotted" - the border is drawn as a singlecolor dotted line;

- "double" - the border is drawn as a singlecolor double line.

C.4.1.2 BordermulticolorLinestyle enumeration

. BorderMulticolor Linestyles - specifies the multi-color linestyle for the border of the component. Enumerated
values are:

- groove - the border looks as though it were carved into the canvas;
- ridge - the opposite of groove. The border looks as though it were coming out of the canvas;
- bevelled-outset - the border makes the entire component look as though it were embedded in the canvas;

- bevelled-inset - the border makes it look as though the entire component were coming out of the canvas.

C.4.2 BorderProperties specification

C.4.2.1 Border-Width

<PropertySpec nanme="border-w dth" type="integer" default="2" access="readWite"/>

Specifiesin pixels the width of the border. Default valueis"2".

C.4.2.2 Side-specific property application

All borderproperties can be specified as generic border properties to be applied to all sides of a component, or asa
border property specific to a single side of a component.

Any border property may also be applied only to a single side of a component. The side shall be declared as Left, Right,
Top or Bottom.

EXAMPLE: The Border-Width property specifies border width for all sides of a visible component. The
Border TopWidth property specifies border width only for the top border of the component.

C.4.3 BorderProperties defined elsewhere
The generic set of border properties are defined in the property groups listed below.
. ColorPropertiesBordercolor: clause C.3.3.
. LinestyleProperties: clause C.6.

. CornerradiusProperties: clause C.5.

ETSI

248 ETSI TS 102 523 V1.1.1 (2006-09)

C.5 CornerRadius properties

<PropertyG oup name="Corner Radi us_properties">
<PropertySpec nane="Corner Radi us" type="integer" use="optional" default="0"
access="initializeOnly"/>
<Pr opertySpec nane="Corner Radi us-NW type="integer" defaul
<PropertySpec name="Corner Radi us-NE" type="integer" defaul
<PropertySpec name="Corner Radi us-SW type="integer" defaul
<PropertySpec name="Corner Radi us- SE' type="integer" defaul
</ PropertyG oup>

access="initializeOnly"/>
access="initializeOnly"/>
access="initializeOnly"/>
access="initializeOnly"/>

— - -

0
0
" Qn
0

The CornerRadius property group definesin pixels the radius to which corners of visible components are to be rounded.
The default value of "0" means no rounding shall be applied to the corners of the component.

A single CorneRradius specification can be made within a component specification to apply CornerRadius uniformly to
each corner of the component.

CornerRadius can also be applied individually to single corners of a component. The corners shall be declared as NW,
NE, SW and SE.

EXAMPLE: The CornerRadius property specifies corner radius for all corners of avisible component. The
CornerRadius NW property specified CornerRadius only for the top-left corner of the component.

C.6 LineStyle properties

<Enuner ati onSpec name="I|inestyl es">
<Enuner ati onl tem nane="sol i d"/>
<Enuner ati onl t em nane="dashed"/ >
<Enunerationltem name="dotted"/>
<Enuner ati onl t em name="doubl e"/ >
<Enuner ati onl t em name="gr oove"/ >
<Enuner ati onltem name="ri dge"/ >
<Enuner ati onl t em name="bevel | ed-i nset"/ >
<Enurner ati onl t em name="bevel | ed- out set"/ >
</ Enurrer at i onSpec>

<PropertyG oup name="linestyl e_properties">
<PropertySpec nane="linestyle" type="enuneration" default="solid" access="initializeOly">
<EnunerationRef ref="linestyles"/>
</ Pr opertySpec>
<PropertySpec name="line-w dth" type="integer" default="2" access="initializeOnly"/>

</ PropertyG oup>

The LineStyleProperties property group specifies the set of linestyle related properties for use in PCF components.

C.6.1 Linestyle enumerations

<Enuner ati onSpec name="I|inestyl es">
<Enuner ati onl tem name="sol i d"/>
<Enuner ati onl t em name="dashed"/ >
<Enunerationltem nanme="dotted"/>
<Enuner ati onl t em name="doubl e"/ >
<Enuner ati onl t em name="gr oove"/ >
<Enuner ati onltem name="ri dge"/ >
</ Enurrer at i onSpec>

The enumerations used in the LinestyleProperties group shall be defined as follows:
. Solid - the line shall be drawn as a solid line.
. Dashed - the line shall be drawn as a dashed line.
. Dotted - the line shall be drawn as adotted line.

. Double - the line shall be drawn as adouble line.

ETSI

249 ETSI TS 102 523 V1.1.1 (2006-09)

. Groove - the line shall be drawn such that it appears to be cut into the canvas.

. Ridge - the opposite to groove. The line shall be drawn such that it appears to come out of the canvas.

C.6.2 LineStyle properties specification

C.6.2.1 Linestyle

<PropertySpec nane="linestyle" type="enuneration" default="solid" access="initializeOly">
<Enuner ati onRef ref="linestyles"/>
</ Pr opertySpec>

The linestyle property specifies the linestyle to be applied the line. Linestyles are defined in linestyle enumerations,
clause C.6.1.

C.6.2.2 Linewidth

<PropertySpec nanme="line-w dth" type="integer" default="2" access="initializeOnly"/>

The LineWidth property specifiesin pixelsthe width of the line. Default value is 2 pixels.

C.7 Positioning and layout properties

C.7.1 PositioningPropertiesAbsolute

<PropertyG oup name="positioni ng_properties-absol ute">
<PropertySpec name="origin" type="position" use="optional" access="readWite"/>
<PropertySpec nanme="si ze" type="size" use="optional" access="readWite"/>

</ PropertyG oup>

The PositioningPropertiesAbsol ute group specifies absol ute positions for component in the PCF.

C.7.1.1 Oirigin

<PropertySpec nanme="origin" type="position" use="optional" access="readWite"/>

The Origin property specifies the pixel location to be used as the origin of the component. The Origin specification is
made within the content of the parent container.

EXAMPLE: An Origin value of "100 100" for avisible component nested directly within a Scene means that
the component will be drawn such that the top left corner will be 100 pixels below and 100 pixels
to the right of the top left corner of the reference screen area. A visible component with an Origin
value of "100, 100" declared within an EL C will be drawn such that the top left corner of the
component will be offset 100 pixels to the right and 100 pixels below the Origin of the EL C.

C.7.1.2 Size

<PropertySpec nane="Size" type="size" use="optional" access="readWite"/>

The Size property specifiesin pixelsthe X and Y dimensions of the component. The Size specification is made within
the reference screen area.

EXAMPLE: A component with a Size definitions of 100 200" shall be drawn 100 pixels wide and 200 pixels
deep.

ETSI

250 ETSI TS 102 523 V1.1.1 (2006-09)

C.7.2 Flow layout properties

<PropertyG oup name="| ayout_properties-flow'>
<PropertySpec access="initializeOnly" name="white-space" type="enuneration">
<Enuner ati onSpec nane="whi t e- space- handl i ng" >
<Enurer ati onl t em name="normal "/ >
<Enuner ati onltem name="pre"/>
<Enurer ati onl t em name="no-w ap"/ >
</ Enurrer at i onSpec>
</ PropertySpec>
<PropertyG oupRef ref="alignment_properties"/>
<PropertyG oupRef ref="paddi ng_properties"/>
<PropertyG oupRef ref="margi n_properties"/>
<PropertyG oupRef ref="border_properties"/>
</ PropertyG oup>

The LayoutPropertiesH ow property group specifies the flow layout related properties for PCF components.

C.7.2.1 WhiteSpaceHandling property

<PropertySpec access="initializeOnly" name="white-space" type="enuneration">
<Enuner ati onSpec nane="whi t e- space- handl i ng" >
<Enurer ati onl t em name="normal "/ >
<Enurer ati onltem name="pre"/>
<Enuner ati onl t em name="no-w ap"/ >
</ Enurrer at i onSpec>
</ PropertySpec>

The WhiteSpaceHandling enumeration shall be defined as follows:

. normal - Thisvalue directs PCF implementations to collapse sequences of white space, and to break lines as
necessary to fill line boxes. Additional line breaks may be created by occurrences of the
 element.

. pre - This value prevents PCF implementations from collapsing sequences of white space. Lines are only
broken at newlinesin the source, or at occurrences of the
 element.

. nowrap - This value collapses whitespace as for "normal”, but suppresses line breaks within text except for
those created by the
 element.

C.7.2.2 Flow layout properties defined elsewhere
The flow layout properties are defined in the property groups below:

. Alignment properties, clause C.7.3.

. Padding properties, clause C.8.1.

. Margin properties, clause C.8.2.

. Border properties, clause C.4.2.

C.7.3 Alignment-properties

<Enurrer ati onSpec name="hori zontal - al i gnment s" >
<Enurerationltem name="|eft"/>
<Enuner ati onltem name="center"/>
<Enuner ati onltem name="ri ght"/>
<Enuner ati onl tem name="j ustify"/>

</ Enurrer at i onSpec>

<Enurer ati onSpec name="vertical -al i gnments">
<Enuner ati onl t em name="t op"/ >
<Enuner ati onltem name="m ddl e"/ >
<Enuner ati onl t em name="basel i ne"/ >
<Enurer ati onl t em name="bot t ont'/ >
<Enuner ati onl t em name="sub"/ >
<Enuner ati onl t em name="super"/ >
<Enurer ati onltem name="t ext-top"/>
<Enurer ati onl t em name="t ext - bott ont'/ >

ETSI

251 ETSI TS 102 523 V1.1.1 (2006-09)

</ Enurrer at i onSpec>
<PropertyG oup name="al i gnment _properties">
<PropertySpec nane="h-align" type="enuneration" access="initializeOnly" default="left">
<Enuner ationRef ref="horizontal -alignnents"/>
</ PropertySpec>
<PropertySpec nanme="v-align" type="enuneration" default="top" access="initializeOnly">
<Enuner ati onRef ref="vertical-alignments"/>
</ PropertySpec>
</ PropertyG oup>

C.7.3.1 Alignment properties enumerations

C.7.3.1.1 Horizontal alignment enumeration

<Enuner ati onSpec name="hori zontal -al i gnment s" >

<Enunerationltem name="left"/>
<Enuner ati onl t em nane="center"/>
<Enuner ationltem name="ri ght"/>
<Enurer ati onltem name="j ustify"/>

</ Enurrer at i onSpec>

The horizontal alignment enumeration shall be defined as follows:

left - left aligned;
right - right aligned;
centre - centre aligned,;

justify - justified aligned.

C.7.3.1.2 Vertical alignment enumeration

<Enurer ati onSpec name="vertical -al i gnments">
<Enurer ati onltem name="t op"/ >
<Enuner ationltem nanme="m ddl e"/ >
<Enuner ati onl t em nane="basel i ne"/ >
<Enuner ati onl t em nane="bott ont'/ >
<Enunerationl tem name="sub"/>
<Enurer ati onl t em name="super"/ >
<Enuner ati onltem name="text-top"/>
<Enuner ati onl t em nane="t ext - bott ont'/ >

</ Enuner at i onSpec>

The vertical alignment enumeration shall be defined as follows:

Top: aign the top of the box with the top of the line box.

Middle: align the vertical midpoint of the box with the baseline of the parent box plus half the x-height of the
parent.

Baseline: align the baseline of the box with the baseline of the parent box. If the box does not have a baseline,
aign the bottom of the box with the parent's baseline.

Bottom: align the bottom of the box with the bottom of the line box.

Sub: lower the baseline of the box to the proper position for subscripts of the parent's box.

NOTE 1: Thisvalue has no effect on the font size of the element's text.

super: raise the baseline of the box to the proper position for superscripts of the parent's box.

NOTE 2: Thisvalue has no effect on the font size of the element's text.

TextTop: align the top of the box with the top of the parent element's font.

TextBottom: aign the bottom of the box with the bottom of the parent element's font.

ETSI

252 ETSI TS 102 523 V1.1.1 (2006-09)

C.7.3.2 H-align property

<PropertySpec nanme="h-align" type="enuneration" access="initializeOnly" default="left">
<EnunerationRef ref="horizontal -alignnents"/>
</ PropertySpec>

The H-align property specifies the horizontal alignment for content within a component.

H-align values are defined in the horizontal -alignments enumeration, clause C.7.3.1.1.

C.7.3.3 V-align property

<PropertySpec nanme="v-align" type="enuneration" default="top" access="initializeOnly">
<Enuner ati onRef ref="vertical-alignments"/>

</ Pr opertySpec>

The V-align property specifies the vertical alignment for content within a component.

V-align values are defined in the vertical-alignments enumeration, clause C.7.3.1.2.

C.8 Padding and margin properties

C.8.1 Padding properties

<PropertyG oup name="paddi ng_properties">
<PropertySpec nanme="paddi ng" type="integer" default="0" access="initializeOnly"/>
<PropertySpec nanme="paddi ng-top" type="integer" default="0" access="initializeOnly"/>
<PropertySpec nane="paddi ng-bottom' type="integer" default="0" access="initializeOnly"/>
<PropertySpec nane="paddi ng-left" type="integer" default="0" access="initializeOnly"/>
<PropertySpec nanme="paddi ng-right" type="integer" default="0" access="initializeOnly"/>
</ PropertyG oup>

The padding properties group defines padding to be applied between component edge and contained content.

C.8.1.1 Padding

<PropertySpec nane="paddi ng" type="integer" default="0" access="initializeOnly"/>

The padding property specifiesin pixels the amount of space to be left between a component border and the content it
contains. Default valueis"0".

C.8.1.2 Side-specific padding application

Padding can be specified as a generic property to be applied to al sides of a component, or as a property specific to a
single side of a component.

Where padding isto be applied to a single side of a component, the side shall be declared as Left, Right, Top or Bottom.

EXAMPLE: The Padding property specifies padding for all sides of a visible component. The PaddingT op
property specifies padding only for the top border of the component.

C.8.2 Margin properties

<PropertyG oup name="margi n_properties">
<PropertySpec name="margi n" type="integer" default="0" access="initializeOnly"/>
<PropertySpec name="margi n-top" type="integer" default="0" access="initializeOnly"/>
<PropertySpec name="margi n-botton type="integer" default="0" access="initializeOnly"/>
<PropertySpec nane="margin-left" type="integer" default="0" access="initializeOnly"/>
<PropertySpec nane="margi n-right" type="integer" default="0" access="initializeOnly"/>
</ PropertyG oup>

The margin property group defines margin to be applied around the component edge.

ETSI

253 ETSI TS 102 523 V1.1.1 (2006-09)

C.8.2.1 Margin

<PropertySpec name="margi n" type="integer" default="0" access="initializeOnly"/>

The margin property specifies in pixels the margin to be applied around the component edge.; default valueis"0".
C.8.2.2 Side-specific margin application

Margin can be specified as a generic property to be applied to al sides of a component, or as a property specific to a
single side of a component.

Where margin is to be applied to asingle side of a component, the side shall be declared as Left, Right, Top or Bottom.

EXAMPLE: The Margin property specifies margin for all sides of avisible component. The MarginTop
property specifies margin only for the top border of the component.

C.9 Font properties

C.9.1 Font family

<PropertySpec nanme="font-famly" type="font-famly" use="optional" default="sans-serif"/>

The font-family property specification for PCF shall be as specified in clause 15.2.2 of CSS2 [22].

C.9.2 Font emphasis

<PropertySpec nane="font-style type="enuneration" use="optional" default="normal">
<Enuner ati onSpec nane="f ont - enphasi s" >
<Enuner ati onl t em name="ent'/ >
<Enurer ati onlt em name="strong"/ >
<Enunerationltem name="i"/>

<Enurrer ati onl t em name="bi g"/ >
<Enurer ationltem name="smal | "/ >
</ Enurrer at i onSpec>
</ Pr opertySpec>

The font-emphasis property specification for PCF shall be as specified in clause 11.8.2 of WML 1.3 [24].

C.9.3 Font style

<PropertySpec nane="font-style type="enuneration" use="optional" default="normal">
<Enurer ati onSpec name="font-styl e">
<Enuner ati onl t em name="nor mal "/ >
<Enuner ati onltem name="italic"/>
<Enurer ati onl t em name="obl i que"/ >
<Enunerationltem name="i nherit"/>
</ Enurrer at i onSpec>
</ Pr opertySpec>

The font-style property specification for PCF shall be as specified in clause 15.2.3 of CSS2 [22].

C.9.4 Fontvariant

<PropertySpec nane="font-variant type="enuneration" use="optional" default="normal">
<Enuner ati onSpec name="font-vari ant">
<Enuner ati onl t em name="nor mal "/ >
<Enunerationltem name="smal | - caps"/>
<Enuner ationltem name="i nherit"/>
</ Enurrer at i onSpec>
</ Pr opertySpec>

ETSI

254 ETSI TS 102 523 V1.1.1 (2006-09)

The font-variant property specification for PCF shall be as specified in clause 15.2.3 of CSS2 [22].

C.9.5 Font weight

<PropertySpec nane="font-wei ght type="enuneration" use="optional" defaul t="normal">
<Enuner ati onSpec nane="f ont - wei ght ">
<Enuner ati onl t em nane="nor mal "/ >
<Enuner ati onl t em name="bol d"/ >
<Enuner ati onl t em name="bol der"/ >
<Enuner ati onltem name="1i ght"/>
<Enuner ati onltem name="1i ghter"/>
<Enuner ati onl t em name="100"/>
<Enuner ati onl t em nanme="200"/>
<Enuner ati onl t em nane="300"/>
<Enuner ati onl t em nanme="400"/>
<Enuner ati onl t em name="500"/>
<Enuner ati onl t em name="600"/>
<Enuner ati onl t em nane="700"/>
<Enuner ati onl t em nane="800"/ >
<Enuner ati onl t em name="900"/>
<Enunerationltem name="inherit"/>
</ Enurrer at i onSpec>
</ Pr opertySpec>

The font-weight property specification for PCF shall be as specified in clause 15.2.3 of CSS2 [22].

C.9.6 Font stretch

<PropertySpec nane="font-stretch type="enuneration" use="optional" defaul t="normal ">
<Enuner at i onSpec name="font-stretch">
<Enuner ati onl t em nane="nor mal "/ >
<Enuner ati onl t em nanme="wi der"/ >
<Enuner ati onl t em name="narrower"/ >
<Enuner ationltem name="ul tra- condensed"/ >
<Enuner ati onl t em nanme="extra-condensed"/ >
<Enuner ati onl t em nane="condensed"/ >
<Enuner ati onl t em name="sem - condensed"/ >
<Enuner ati onl t em name="seni - expanded"/ >
<Enurer ati onl t em name="expanded"/ >
<Enuner ati onl t em name="extr a- expanded"/ >
<Enuner ationltem name="ul tr a- expanded"/ >
<Enuner ationltem name="i nherit"/>
</ Enurrer at i onSpec>
</ Pr opertySpec>

The font-stretch property specification for PCF shall be as specified in clause 15.2.3 of CSS2 [22].

C.9.7 Fontsize

<PropertySpec nane="font-size type="font-size" use="optional" default="medi un'/>

The font-size property specification for PCF shall be as specified in clause 15.2.4 of CSS2 [22].

C.9.8 Font-size-adjust

<PropertySpec nanme="font-size-adjust type="integer" nil="true" use="optional" default="nil"/>

The font-size property specification for PCF shall be as specified in clause 15.2.4 of CSS2 [22].

C.10 The LabelProperties property group

<PropertyG oup name="I| abel _properties">
<PropertySpec nane="| abel" type="string" use="optional" default="" access="readWite"/>
<PropertySpec nanme="| abel - focused" type="string" use="optional" default="" access="readWite"/>
<PropertySpec nanme="| abel - di sabl ed" type="string" use="optional" default="" access="readWite"/>
<PropertySpec nane="| abel -active" type="string" use="optional" default="" access="readWite"/>

ETSI

255 ETSI TS 102 523 V1.1.1 (2006-09)

<PropertySpec nanme="| abel -idl e" type="string" use="optional" default="" access="readWite"/>

</ PropertyG oup>

The Label Properties property group defines a generic label string, as well as label string valuesto be used in each of the
focus states supported by Button components: focused, disabled, active and idle.

C.11 The ImageProperties property group

<PropertyG oup name="i nage_properties">

<PropertySpec name="i mageURL" type="uri" use="optional" default="" access="readWite"/>
<PropertySpec name="i mageURL-focused" type="uri" use="optional" default="" access="readWite"/>
<PropertySpec nane="i nageURL-di sabl ed" type="uri" use="optional" default="" access="readWite"/>
<PropertySpec nane="i nageURL-active" type="uri" use="optional" default="" access="readWite"/>
<PropertySpec nanme="i mageURL-idl e" type="uri" use="optional" default="" access="readWite"/>

</ PropertyG oup>

The ImageProperties property group defines a generic imageURL for image source, as well as alternate image locations
to satisfy each of the focus states supported by the Image component: focused, disabled, active and idle.

C.12 The AnimationProperties property group

<PropertyG oup name="ani mati on_properties">
<PropertySpec name="franmePeri od" type="integer" use="required" access="readWite"/>
<PropertySpec nane="runni ng" type="bool ean" use="optional" default="true" access="readWite"/>
<PropertySpec nane="nunber Of Loops" type="integer" use="optional" default="0"
access="readWite"/>
<PropertySpec nanme="| oopPause" type="integer" use="optional" default="0" access="readWite"/>
</ PropertyG oup>

The AnimationProperties property group defines properties to be used in ImageAnimated and Ticker components.

C.12.1 The FramePeriod property

<PropertySpec nane="franePeriod" type="integer" use="required" access="readWite"/>

The frameperiod property defines the movement speed in milliseconds per pixel.

C.12.2 The Running property

<PropertySpec name="runni ng" type="bool ean" use="optional" default="true" access="readWite"/>

The running property defines whether or not the Ticker or ImageAnimated is currently running, i.e. moving.

C.12.3 TheNumberOfLoops component

<PropertySpec nane="nunber Of Loops" type="integer" use="optional" default="0" access="readWite"/>

The number -of-loops property defines the number of loops of the Ticker or ImageAnimated content to show before
stopping. If thisvalue is zero then the Ticker or ImageAnimated shall loop continuously.

C.12.4 The LoopPause component

<PropertySpec nanme="| oopPause" type="integer" use="optional" default="0" access="readWite"/>

The loopPause property defines the number of milliseconds to wait between successive loops. During this pause the
content shall remain visible.

ETSI

256 ETSI TS 102 523 V1.1.1 (2006-09)

Annex D (normative):
Profile specifications

D.1 DVB profiles

D.1.1 Introduction

The following clauses define a number of standard DVB profiles that reflect significant boundaries in the capabilities of
digital television platforms and/or PCF transcoder complexity.

It isfairly apparent that none of these profiles contains the ReturnPath profile package (see clause C.1.7). However,
this profile package can be easily included where required using the standard mechanism for declaring a profile as an
extension to another existing profile. For example:

<profil eDef name="mycom comf myrpprofile">

<BaseProfile id="dvb.org/ pcf/profil es/basic"/>

<package id="dvb. org/ pcf/ package/ returnpath" |evel ="1"/>
</ profil eDef >

D.1.2 dvb.org/pcf/profile/basic

D.1.2.1 Overview

This profile has been defined so as to encapsulate what is believed to be the minimum useful sub-set of PCF features.
Consequently a service described using PCF features restricted to this profile is expected to offer a high degree of
portability, whilst requiring the minimum of PCF support within atarget platform.

D.1.2.2 Definition
This profile shall be defined as follows:

<profil eDef name="dvb. org/ pcf/profil es/basic">
<package i d="dvb. or g/ pcf/ package/ archi tecture" |evel ="1"/>
<package id="dvb. org/ pcf/ package/ behavi our" |evel ="1"/>
<package id="dvb. org/ pcf/package/l ayout/explicit" level="1"/>
<package i d="dvb. or g/ pcf/ package/ | ayout/text" |evel ="1"/>

</ profil eDef >

D.1.3 dvb.org/pcf/profile/core

D.1.3.1 Overview

This profile has been defined so as to encapsulate what is believed to be the maximum sub-set of PCF features that is
till expected to offer a high degree of portability. Thisislikely to require a considerable degree of PCF support within
atarget platform.

D.1.3.2 Definition
This profile shal be defined by either of the following, which are equivalent and equally valid:

<profil eDef name="dvb. org/ pcf/profiles/core">
<package id="dvb. org/ pcf/ package/ architecture" |evel ="2"/>
<package id="dvb. org/ pcf/ package/ behavi our" |evel ="3"/>
<package i d="dvb. or g/ pcf/ package/l ayout/explicit" |evel ="1"/>
<package i d="dvb. or g/ pcf/ package/ | ayout/fl ow' |evel ="1"/>

<package i d="dvb. or g/ pcf/ package/ | ayout/text" |evel ="1"/>

ETSI

257 ETSI TS 102 523 V1.1.1 (2006-09)

</ profil eDef>

<profil eDef name="dvb. org/ pcf/profiles/core">
<baseProfile id=" dvb.org/pcf/profiles/basic"/>
<package id="dvb. org/ pcf/ package/ architecture" |evel ="2"/>
<package i d="dvb. or g/ pcf/ package/ behavi our" |evel ="3"/>
<package i d="dvb. or g/ pcf/ package/ | ayout/fl ow' |evel ="1"/>
</ profil eDef>

D.1.4 dvb.org/pcf/profile/full

D.1.4.1 Overview

This profile has been defined so asto encapsulate all of the features of the present document, with the exception of the

ReturnPath.

D.1.4.2 Definition
This profile shall be defined by either of the following, which are equivalent and equally valid:

<profil eDef name="dvb. org/ pcf/profiles/full">
<package id="dvb. org/ pcf/ package/ architecture" |evel ="2"/>
<package i d="dvb. or g/ pcf/ package/ behavi our" |evel ="4"/>
<package i d="dvb. org/ pcf/ package/ |l ayout/explicit" |evel ="2"/>
<package id="dvb. org/ pcf/ package/l ayout/flow' |evel ="2"/>
<package id="dvb. org/ pcf/ package/l ayout/text" |evel ="2"/>

</ profil eDef>

<profil eDef name="dvb. org/ pcf/profiles/full">
<baseProfile id=" dvb.org/pcf/profiles/core"/>
<package i d="dvb. or g/ pcf/ package/ behavi our" |evel ="4"/>
<package i d="dvb. or g/ pcf/ package/ | ayout/explicit" |evel ="2"/>
<package id="dvb. org/ pcf/ package/l ayout/flow' |evel ="2"/>
<package id="dvb. org/ pcf/ package/l ayout/text" |evel ="2"/>

</ profil eDef>

ETSI

258 ETSI TS 102 523 V1.1.1 (2006-09)

Annex E (normative):
Portable hints for PCF data exchange

type values description
priority low marks a transaction to be serviced with a lower priority
than those marked with "normal” or "high" priority.
normal default priority. Marks a transaction to be serviced with
a priority between those marked with "low" and "high"
priorities.
high marks a transaction to be serviced with a priority above
those marked with "low" and "normal" priorities.
validity_period [0..MAX_INT] gives a number of seconds for which any volatile

assets in the transaction may be cached by a network
or transcoder.

The value 0 may be used to indicate no caching is
allowed. This allows an author to request that the asset
be kept as current as possible by the platform. Actual
behaviour will be platform-specific.

ETSI

259 ETSI TS 102 523 V1.1.1 (2006-09)

Annex F (normative):
Marked up text format

The elements that make up the marked up text format are described in clauses F.1 to F.6.

F.1 Block elements
Theroot of all marked up text itemsisthe body element ("body"). Body elements shall contain a sequence of zero or

more block elements. Block elements are: paragraph elements ("p"); horizontal rule elements ("hr"); table elements
("table"). Body and block elements areillustrated in figure 93.

Bl attriputes

| Eorp font_properties |

attributes

fontstyleGroup

Irline elements
that alter just font

. Block paragraph style.

| ! container,

Elerment : Do - phraseGroup
contaring PCF - B ineGroupl——{(ZB e
rarked up text D.es Alinine elernents, FINe E=mer

that describe the
phrasing of the
text they contain,

specialGroup

=
= Irline elerments
0 e with special

behaviour,
B altributes
| Horp color_propetties |

Vigible horizontal | Horp linestyle_properties |
rile.

Structure for
tabulated data.

content,

Figure 93: Marked up text block elements

Body elements can have font properties that specify font characteristics that can be applied to al text within the marked
up text item.

Paragraph element ("p") isamixed content element that shall contain text interleaved with a sequence of zero or more
elements that are members of the inline element group. The inline element group itself consists of three other element
groups:

. font style group - elements that change the font style of the text they contain, as described in clause F.2;
. phrase group - elements that change the phrasing of the text they contain, as described in clause F.3;

. special group - elements with a specialized effect to the content they contain, as described in clause F.4.

ETSI

260 ETSI TS 102 523 V1.1.1 (2006-09)

Paragraph elements may have font properties specified that can be applied to ater the style of any text contained within
the paragraph, overriding any styles specified in the paragraph's enclosing tag.

Horizontal rule ("hr") elements draw horizontal lines that span the width of the container of the marked up text, between
other block elements. Horizontal rules can have colour properties and line style properties specified.

Table elements contain structured table content, as described in clause F.5.

EXAMPLE: The simplest possible PCF marked up content element consists of an empty body tag, as shown
below:

<body xm ns="http://ww:. dvb. org/ pcf/x-dvb-pcf"/>

F.2 Font style elements

Font style elements alter the font style of al text they contain. The PCF currently has two font style elements big and
small, asillustrated in figure 94. Rendering of font style elements depends on the user agent.

7T .
--------- 4 —eee— [inlineroup
iy St
Present tag content in a 0 o &l inline elements,
bigger Font,

fontstyleGroup [

Inline elerments that alter PR —
just fone seyle, —ysmall | —--------- 4 —see— [inlineGroup
e
Present tag content in a D__.;,E. Al inline elermeants,

sraller Fant,

Figure 94: Marked up text font style inline elements

The following isinformative description of how to render the font style elements:

. Big elements present the text content they contain with alarger font than that of the font size before the big
element.

. Small elements present the text content they contain with a smaller font than that of the font size before the big
element.

F.3 Phrase elements

Phrase elements add structural information to the text they contain. The PCF has two phrase elements asillustrated in
figure 95: emphasis element ("em"); stronger emphasis element ("strong"). The rendering of font style elements
depends on the user agent.

- - ..
............ 4 e [2H inlineGroup

Ernphasise cantent according D..l:é' &l inline elements,
o current stle,

phraseGroup

Inline elerments that describe FERR —
the phrasing of the test they | x8ronQ |—F----------- - —wsa— [=H inlineGroup
conkain, . e —

Strengthen content accarding 0. All inline elerments,

b current style,

Figure 95: Marked up text phrase inline elements

The following is informative description of how to render phrase elements:

. "em" elements may cause the text they contain to be rendered in an italicized font;

ETSI

261 ETSI TS 102 523 V1.1.1 (2006-09)

. "strong" elements may cause the text they contain to be rendered in an emboldened font.

F.4 Special elements

The specia elements of PCF allow specia effects, such as font styling, to be applied to textual content. Thisincludes:
. anchor elements ("a") - contain inline navigation references to other PCF Scenes or content;
. line break elements ("br") - insert aline break between text within a paragraph;
. image elements ("img") - insert an inline image by URI reference in the flow of text content;
. span elements ("span™) - apply afont styling to the contained content.

The specia elements are shown in figure 96.

B attributes

ER]
o
=
i %
T @
o |
o |
= |m
915
2=
==
i

Anchor,

i ol

L
o &ll inline elerments,

Line break within a paragrph.

B attributes
specialGroup [=] 13 4 sre

Inline ¢ ith sl bype | xsanylR]
nline alaments wik Special N -
behawiour, —|,|mg E]_ Uze | reguired
Inline irnage. alt
Iype | xsistring
uze |reguired

B attritutes

| g propattrs:font_properties

A5pan [!
. . ' TTTTe

Generic style-applyving LT —see T inlineGroup

element, R

N L
0. &ll inline elarnents,

Figure 96: Marked up text special inline elements

The anchor element has a hypertext reference attribute ("href") that isa URI link. When the content is presented to a
user, the presentation of the content within the anchor may in a different style to indicate the presence of alink to a user.
A user may aso be able to navigate to the link and select it to navigate to the content that it references.

NOTE 1: The way that the textual content of the anchor element is presented to the user is not specified here.
Neither isthe meansin which a user can focus on the link, select it and navigate to the content it
references. Component specifications that make use of the anchor element should provide the details of
the presentation and behaviour of hypertext links.

The line break element shall cause aline break to be inserted into the text at the position where the element is located,
i.e. any text after aline break element shall be presented to the user on anew line.

ETSI

262 ETSI TS 102 523 V1.1.1 (2006-09)

The image element may be replaced by the image content that is referenced by the URI contained in the source attribute
("src") it contains. A user may be presented with the text contained in the alternative attribute ("alt") as part of the
presentation of the text content or the behaviour of the component that is presenting the component.

NOTE 2: The presentation of the image in relation to the text around it is described in clause 8.3.4 with the flow
layout detail of the PCF specification.

The span element allows an author to specify any allowable PCF font style property that may be applied in the
presentation of the text contained within the element.

NOTE 3: The presentation of the text is not required to be in the exact style specified by the span element. A
transcoder may choose to try to match with the closest font available on a particular platform or ignore
the span element altogether.

EXAMPLE: The following fragment of a marked up text item shows how a different font style can be applied
to aword within a sentence. A transcoder should try to apply as many of the styles as possible to
the word.

<p>Press the
<span font-fam|y="Hel vetica" font-weight="bol der"
t ext col or ="#af 0000" font-stretch="w der">RED</ span>
button for nore infornation.
</ p>

F.5 Table structures

Table elements are block elements that represent the structured textual content of two-dimensional tabulated
information. Table structures can be of any size and the table element and its sub-elements can be used to specify
properties for the presentation of the text within tables. The elements of atable structure areillustrated in figure 97.

El sttriputes

] |grp table_properties |

H sttributes

........... | Hrp tableheader_properties

Table header that
repeats on

m sub-pages.
-— :

: Heibut
Structure for ' Blstiributes

tabulated data,

|grp tablefooter_properties

Table headers
and footers

appear before
any body data,

Table footer that
repeats on

1 oo
sub-pages. o Table row.

D= 1.eo T Table row.
Tables either Table body
defined with sections,

pagination or not
H attributes

| Horp tablerow_properties |

Table header
delimeter,

Table cel
delimeter,

Figure 97: Marked up text table structures

ETSI

263 ETSI TS 102 523 V1.1.1 (2006-09)

Table elements shall contain either a sequence a paginated table item, as described below, or TR items, as described in
clause F.6. Table items may have table property attributes specified to indicate how the table and any items it contains
should be presented.

A paginated table item enables authors to describe larger amounts tabulated data that it may be necessary to split into
pagesin order for auser to access all of it. Paginated table items consist of: header and footer TRs that are displayed on
every page; TB sectionsthat collect together information that should be displayed together on the same page. A
paginated table item shall consist of a sequence of the following elements:

. table header element ("thead") - an optional table header that shall contain a sequence of one or more table
row items and may have some table header styling property attributes;

. table footer element ("tfoot") - an optional table footer that shall contain a sequence of one or more table row
items and may have some table footer styling property attributes;

. table body elements ("tbody") - one or more table bodies, each of which contains a sequence of one or more
table rows that describe the text content for the body of a page of tabulated information.

NOTE: The presentation of a paginated table is platform dependent and shall depend on the component used to
display the tabulated information. The behaviour that allows a user to navigate between pages of
tabulated content may be specified by a component and will also be platform dependent. Table bodies can
be joined together by atranscoder but, where possible, the table bodies should not be split across multiple

pages.

EXAMPLE: The following fragment of a marked up text item shows how the text content for a table containing
details a rugby championship may be split across two pages, each page having the same table
header.

<t abl e>
<t head>
<tr> <th>Teanx/th> <th>Pl ayed</th> <th>Poi nts</th> </tr>
</t head>
<t body>

<tr> <td>Wal es</td> <td>4</td> <td>8</td> </tr>
<tr> <td>lreland</td> <td>4</td> <td>6</td> </tr>
<tr> <td>France</td> <td>4</td> <td>6</td> </tr>

</t body>

<t body>
<tr> <td>Engl and</td> <td>4</td> <td>2</td> </tr>
<tr> <td>Scot| and</td> <td>4</td> <td>2</td> </tr>
<tr> <td>ltal y</td> <td>4</td> <td>0</td> </tr>

</t body>

</t abl e>

F.6 Table rows

Table row elements contain a sequence of zero or more cells of text content. The cells are either table header cell
elements ("th") or standard table cell elements ("td"), as shown in figure 98.

ETSI

264 ETSI TS 102 523 V1.1.1 (2006-09)

Bl attributes

| grp propattrstablerow_properties |

B attritutes

| gty propattrs:itablecell_properties

+ number-columns-spanned .
bvpe | xEpositivelnteger i

ze optional

=,
:I
3
ul
1
ol
EI
z !
|
L'
9.
-
g:
&
2

.

Table raw,

ILIEE optional

Wvpe [xspostivelnteger :

th

Table header delirmetar, = optional

itype wa positivelnteger |

w |

o
i
€
@
=
=4
=

-_—— - /----\
i N - inlineGroup [+
== ' = b [+

0 0. &ll inline elarnents,

B attributes

| grjp propattrsitablecell_properties
-—lm

S
H - ~ PET)
Table cell delimeter, L7 —aaa S inlineGroup

i ol

£ s
0. &ll inline elarnents,

Figure 98: Marked up text table rows

Table header cell elements and standard table cell elements shall both contain text and el ements from the inline content
element group, as defined in clauses F.1 to F.4. Both may have table cell style attributes applied to them.

Table header cell elements may be presented with atable header cell styling to distinguish them from standard table cell
elements.

ETSI

265 ETSI TS 102 523 V1.1.1 (2006-09)

Annex G (normative):
XML resources

There are a number of resources that can be used in the authoring and validation of a PCF description of an interactive
service. These take the form of XML schemas and documents. Version 1.0 of the schemas accompany the present
document and are contained in archive ts_102523v010101p0.zip.

A brief description of each is provided here.

G.1 PCF syntax

G.1.1 pcf.xsd

Thisisthe core PCF schema.

NOTE: behaviour.xsd and schemacomponents.xsd are included into pcf.xsd schema and so share the same
namespace.

G.1.2 behaviour.xsd

This schema describes behaviour including statemachines, OnEvents and ActionLanguage.

G.1.3 schemacomponents.xsd

This schema describes the schema components.

G.1.4 pcf-types.xsd

This schema describes the PCF data types and abstract structures.

G.1.5 x-dvb-pcf.xsd

This schema describes PCF marked up text.

G.1.6 servicedigest.xsd

This schema describes information about, and profiling details of a PCF service.

G.2 Component definition syntax

G.2.1 component-syntax.xsd

This schema describes the component definition syntax.

G.2.2 components.xml

This xml file describes the PCF components, including their properties and behaviour.

ETSI

266 ETSI TS 102 523 V1.1.1 (2006-09)

G.2.3 propertygroups.xml

Thisxml file describes groups of properties that form part of the component descriptionsin components.xml.

G.2.4 eventgroups.xmil

Thisxml file describes groups of events that form part of the component descriptionsin components.xml.

G.2.5 events.xml

Thisxml file describes the events (which includes errors) recognized within the PCF.

G.3 Transport and packaging

G.3.1 transport.wsdl

This web service description language (wsdl) document specifies the PCF transport and packaging SOAP interface.

ETSI

267 ETSI TS 102 523 V1.1.1 (2006-09)

Annex H (normative):
Action language expression function library

A library of functions that is available within expressions of the PCF action language.

H.1 Type conversion functions

Type conversion functions allow values of one run-time data type to be converted to values of another. All the available
run-time data types conversions are enumerated in clause H.1.1 and then described in detail in clausesH.1.2 to H.1.12.

H.1.1 Available type conversions

Table 36 shows type conversion functions that are available within the PCF action language.

Table 36: Available type conversions

% > Q % [}

5 5| ¢ Els |3 | 8 g
Sl |88 el |2EclT ||| 8]=
el B le s || E|8|E|EE|E B |5 |E|E|S

conversion = = =
boolean X X X X X 1 X X X 1 X X X
color| X X X X X >4 X X X 1 X X X
component| X X X X X X X X X X X X X
currency| X X X X X 1 X X X 1 X X X
date| X X X X 1/* | >4 X X X 1 X X X
dateTime| X X X X 1 >9 X X X 1 1 X X
integer| 1 [3-4>] X X |3-5>[6-9> X 2> 2> 1 [36>] X X
markedUpText| X X X X X X X X 1 X X X
position| X X X X X X >2 X X 1 X X X
size| X X X X X X >2 X X 1 X X X
string| X X X 1 X X 1 1 X X X X X
time| X X X X X * >6 X X X 1 X X
timecode| X X X X X X >4 X X X 1 X X

URI| X X X X X X X X X X X X

Information in the table shall be interpreted according to the following rules:

. To determine whether a type conversion function exists between values of two data types, the table shall be
read row type name first, then column type name. These shall be known as the first val ue type and second
value type respectively.

EXAMPLE 1: To determine whether it is possible to convert from a value of type color to avalue of type string,
look to the contents of the cell where the first value type (color) row meets the second value type
(string) column.

The contents of the associated cell shall be interpreted as follows:
. X - No type conversion function exists from the first val ue type to the second value type.

. 1 - A type conversion function exists that creates exactly one value of the second type from one value of the
first type.

. >number - A type conversion function exists that creates number values of the second value type from one
value of the first value type.

ETSI

268 ETSI TS 102 523 V1.1.1 (2006-09)
. number> - A type conversion function exists that creates one value of the second val ue type from number
values of the first value type.

. * - A hybrid type conversion function exists that takes values of two different types to make the value of
another type.

EXAMPLE 2: The contents of the cell indicating conversion from position to string contains the value "1". This
indicates that one value of type position can be converted to one value of type string. However,
conversion from position to integer is characterized by ">2". Thisindicates that the conversion of
asingle value of type position shall produce two values of type integer.

EXAMPLE 3: The contents of the cellsindicating a conversion from time and date to dateTime contain the
hybrid conversion function *. Thisindicates that avalue of type dateTime can be created from a
value of type time and avalue of type date.

NOTE: The existence of atype conversion between typesis not associative. If atype conversion function exists
between type A and type B, this does not imply that a type conversion function exists between type B
and type A.

. The number of the first value type may be expressed as arange: "number1-number2". A number range
indicates that the conversion function to the second val ue type shall accept a variable number of parameters of
the first value type. The number of parameters shall lie within thisinclusive range.

EXAMPLE 4: The table shows a conversion between values of type integer to a value of type color. The cell
contents "3-4>" indicate that 3 integers can be converted to a value of type color (RGB val ues) and
that 4 integers can be converted to a value of type color (RGB + transparency).

H.1.2 From boolean

H.1.2.1 Boolean to integer
Converts a boolean value to an integer value of O for false and 1 for true.

The signature of the function is:

i nt eger bool eanTol nt eger (bool ean)

This function always succeeds.

H.1.2.2 Boolean to string

Converts a boolean value to a string value, where afalse value is converted to the string "false" and true is converted to
the string "true”.

The signature of the functionis:

string bool eanToSt ri ng(bool ean)

The function always succeeds.

H.1.3 From color

H.1.3.1 Color to integer parts
Converts a color value to its four constituent integer parts.

The signature of the functionis:

i nteger Array[4] col or Tol nt eger (col or)

The function always succeeds.

ETSI

269 ETSI TS 102 523 V1.1.1 (2006-09)

H.1.3.2 Color to string

Convertsacolor valueto a string value.

The signature of the functionis:

string colorToString(color)

The function always succeeds.

H.1.4 From currency

H.1.4.1 Currency to integer
Converts a currency value to an integer, removing the decimal point.

The signature of the functionis:

i nteger currencyTol nteger (currency)

The function always succeeds.

H.1.4.2 Currency to string
Converts a currency value to a string value, retaining the decimal point.

The signature of the functionis:

string currencyToString(currency)

The function always succeeds.

H.1.5 From date

H.1.5.1 Date to dateTime

Converts a date value to a dateTime value, where the timeis set to 00:00:00.000.

EXAMPLE: Conversion of the date value "2000-01-01+11:00" to a dateTime value would result in "2000-01-
01T00:00:00.000+1100".

The signature of the functionis:

dat eTi me dat eToDat eTi me(dat e)

The function always succeeds.

H.1.5.2 Date to integer parts
Converts a date value to its constituent integer parts.
Five integers result from a date value that includes the (optional) time zone information.

The signature of the functionis:

i ntegerArray[5] dateAll Tol nteger(date)
Three integers result from a date value that does not include the (optional) time zone information.

The signature of the functionis:

i ntegerArray[3] dateTol nteger(date)

ETSI

270 ETSI TS 102 523 V1.1.1 (2006-09)

The function always succeeds.

H.1.5.3 Date to string

Converts a date value to a string val ue.

The signature of the functionis:

string dateToString(date)

The function always succeeds.

H.1.6 From dateTime

H.1.6.1 DateTime to date

Converts a dateTime value to a date value, omitting the time component.
The signature of the functionis:
dat e dat eTi neTodat e(dat eTi ne)

The function always succeeds.

H.1.6.2 DateTime to integer parts
Converts a dateTime value to its constituent integer parts.

EXAMPLE: The dateTime value "2000-10-11T12:34:56.789-12:30" convertsto integer values of "2000", 10",
"11","12","34", "56", " 789", "12" and 30".

Nine integers result from a dateTime that includes all optional components.
The signature of the function is:
i ntegerArray[9] dateTi meAll Tol nt eger (dat eTi me)

Eight integers result from a dateTime that includes the (optional) time zone information but does not include the
(optional) decimal fraction of a second.

The signature of the functionis:
integerArray[8] dateTi meAl | Dat eTol nt eger (dat eTi me)

Seven integers result from a dateTime that includes the (optional) decimal fraction of a second but does not include the
(optional) time zone information.

The signature of the functionis:

integerArray[7] dateTi meAl |l Ti meTol nt eger (dat eTi me)

Six integers result from a dateTime that does not include the (optional) decimal fraction of a second nor the (optional)
time zone information.

The signature of the functionis:

i nteger Array[6] dateTi meTol nt eger (dat eTi ne)

The function always succeeds.

ETSI

271 ETSI TS 102 523 V1.1.1 (2006-09)

H.1.6.3 DateTime to string

Converts adateTime value to a string value.

The signature of the functionis:

string dateTi meToString(dateTi me)

The function always succeeds.

H.1.6.4 DateTime to time

Converts a dateTime value to atime value, omitting the date component.

The signature of the function is:

time dateTi meToTi me(dat eTi ne)

The function always succeeds.

H.1.7 From integer

H.1.7.1 Integer to boolean
Converts an integer to a boolean where the integer value 0 is converted to false and al other integersto true.

The signature of the functionis:

bool ean i nt eger ToBool ean(i nt eger)

The function always succeeds.

H.1.7.2 Integer parts to color

Converts three or four integer values to a single color value. Each integer shall be converted to its hexadecimal
representation.

If four integers are supplied then these shall determine the red, green, blue and transparency components respectively.

The signature of the functionis:

col or integerToCol or(integerArray[4])

If only three integers are supplied then these shall determine the red, green and blue components; transparency shall be
set to its default value.

The signature of the functionis:

col or integerToCol or(integerArray[3])
The function shall succeed if each integer falls between 0 and 255 so that successful conversion to a hexadecimal
representation is possible.
H.1.7.3 Integer parts to date
Converts three or five integer values to a single date value.
If five integers are supplied then these shall determine the year, month, day and time zone information.

EXAMPLE 1. Theinteger values"2000", "12","25", "12" and "30" convert to a date value of
2000-12-25+12:30.

ETSI

272 ETSI TS 102 523 V1.1.1 (2006-09)

The signature of the functionis:
date integerToDate(integerArray[5])
If only three integers are supplied then these shall determine the year, month, and day.
EXAMPLE 2: Theinteger values "2000", "12" and "25" convert to a date value of 2000-12-25
The signature of the functionis:
col or integerToCol or(integerArray[3])

The function shall succeed if each integer obeys the constraints on each component part as described in clause 6.2.3.3.

H.1.7.4 Integer parts to dateTime
Converts six to nine integer values to asingle dateTime value.
If nine integers are supplied then these shall determine all parts of the dateTime data type.

EXAMPLE: The integer values "2000", "12", "25", "12", "34", "56", "789", "-12" and "30" convert to a
dateTime value of 2000-12-25T 12:34:56.789-12:30.

The signature of the functionis:
dat eTi me integer ToDateTi me(integerArray[9])

If eight integers are supplied then these shall determine the year, month, day, hour, minutes, seconds and timezone
parts.

EXAMPLE: The integer values "2000", "12", "25", "12","34", "56", "12" and "30" convert to adateTime value
of 2000-12-25T12:34:56+12:30.

The signature of the functionis:
dat eTi me i nteger ToDat eTi me(i ntegerArray[8])
If seven integers are supplied then these shall determine the year, month, day, hour, minutes, seconds and milliseconds.

EXAMPLE: The integer values "2000", "12", "25", "12", "34", "56" and "789" convert to a dateTime value of
2000-12-25T12:34:56.789.

The signature of the functionis:
dat eTi me integer ToDateTi me(integerArray[7])
If only six integers are supplied then these shall determine the year, month, day, hour, minutes and seconds.

EXAMPLE: The integer values "2000", "12", "25", "12", "34" and "56" convert to a dateTime value of 2000-
12-25T12:34:56.

The signature of the functionis:
dat eTi me integer ToDat eTi me(i ntegerArray[6])

The function shall succeed if each integer obeys the constraints on each component part as described in clause 6.2.3.3.

H.1.7.5 Integer parts to position

Converts two integer valuesto a single position value, where the first integer becomes the horizontal component of the
position value and the second integer becomes the vertical component of the position value.

The signature of the functionis:

position integerToPosition(integerArray[2])

The function shall always succeed.

ETSI

273 ETSI TS 102 523 V1.1.1 (2006-09)

H.1.7.6 Integer parts to size

Convertstwo integer values to asingle size value, where the first integer becomes the width component of the size
value and the second integer becomes the height component of the size value.

The signature of the functioniis:

size integerToSi ze(integerArray[2])

The function shall always succeed.

H.1.7.7 Integer parts to string
Converts an integer value to a string value.
The signature of the functionis:

string integerToString(integer)

The function always succeeds.

H.1.7.8 Integer parts to time
Convertsthreeto six integer valuesto asingle time value.
If six integers are supplied then these shall determine all components of the time data type.

EXAMPLE 1. Theinteger values"12", "34", "56", "789", "-12" and "30" convert to atime value of
12:34:56.789-12:30.

The signature of the functionis:
time integerToTi me(integerArray[6])

If five integers are supplied then these shall determine the hour, minutes, seconds and timezone parts. The milliseconds
part shall take its default value.

EXAMPLE 2: Theinteger values"12", 34", "56", "12" and "30" convert to atime value of 12:34:56+12:30.
The signature of the functionis:
time integerToTi me(integerArray[5])
If four integers are supplied then these shall determine the hour, minutes, seconds and milliseconds.
EXAMPLE 3: Theinteger values"12","34","56" and "789" convert to atime value of 12:34:56.7809.
The signature of the functionis:
time integerToTi me(integerArray[4])
If only three integers are supplied then these shall determine the hour, minutes, seconds.
EXAMPLE 4: Theinteger values"12","34" and "56" convert to atime value of 12:34:56.
The signature of the functionis:
time integerToTi me(integerArray[3])

The function shall succeed only if each integer obeys the constraints on each component part as described in
clause 6.2.3.12.

ETSI

274 ETSI TS 102 523 V1.1.1 (2006-09)

H.1.8 From marked up text

H.1.8.1 Marked up text to string

Converts a marked up text value to a string val ue.

The signature of the function is:

string markedUpText ToSt ri ng(mar kedUpText)

The function always succeeds.

H.1.9 From position

H.1.9.1 Position to integer parts

Converts a position value to its composite integer parts, where the first integer value represents the horizontal
component of the position value and the second integer value represents the vertical component of the position value.

The signature of the functionis:

i ntegerArray[2] positionTol nteger(position)

The function shall always succeed.

H.1.9.2 Position to string
Converts a position value to a string val ue.

The signature of the functionis:

string positionToString(position)

The function always succeeds.

H.1.10 From size

H.1.10.1 String to currency
Convertsa string value to a currency value.

The signature of the functionis:
currency stringToCurrency(string)

The function shall succeed if the string obeys the constraints of a currency value as described in clause 6.2.3.2.

H.1.10.2 String to integer

Converts a string value to an integer value.

The signature of the functionis:

i nteger stringTol nteger(string)

The function shall succeed if the string obeys the constraints of an integer value as described in clause 6.2.2.2.

ETSI

275 ETSI TS 102 523 V1.1.1 (2006-09)

H.1.10.3 String to markedUpText

Convertsa string value to a markedUpText value.

The signature of the functionis:

mar kedUpText stringToMar kedUpText (string)

The function shall succeed if the string obeys the constraints of a markedUpText value as described in clause 6.2.3.7.

H.1.11 From time

H.1.11.1 Time and date to dateTime

Converts atime value and a date value to asingle dateTime value.

EXAMPLE: The time value "12:34:56.789-12:30" and date value "2005-12-25-12:30" convertsto dateTime
values of "2005-12-25T12:34:56.789-12:30".

The signature of the functionis:

dateTinme timeDateToDateTi me(ti me, date)

The function shall fail if time and date have different values for the timezone part.

H.1.11.2 Time to integer parts
Converts atime value to its six constituent integer parts.

EXAMPLE: The time value "12:34:56.789-12:30" convertsto integer values of "12", "34", "56", "789", "-12",
"30".

Six integers result from atime value that includes the (optional) decimal fraction of a second information.

The signature of the functionis:

integerArray[6] timeAll Tol nteger(tine)
Five integers result from atime value that does not include the (optional) decimal fraction of a second information.

The signature of the functionis:
integerArray[5] timeTol nteger(tinme)

The function always succeeds.

H.1.11.3 Time to string

Convertsatime value to a string value.

The signature of the functionis:
string timeToString(time)

The function always succeeds.

ETSI

276 ETSI TS 102 523 V1.1.1 (2006-09)

H.1.12 From timecode

H.1.12.1 Timecode to integer parts
Converts atimecode value to its four constituent integer parts.

EXAMPLE: The timecode value "23:59:59.29" converts to integer values of
"23","59", "59", "29".

The signature of the functionis:
integerArray[4] timecodeTol nteger(ti mecode)

The function always succeeds.

H.1.12.2 Timecode to string

Converts atimecode value to a string value.

string tinmecodeToString(ti mecode)

The function always succeeds.

H.2 Arithmetic functions

There are no arithmetic functions beyond those provided as operators in the Action Language grammar defined in the
present document.

H.3 Array functions

A set of functions to manipulate array data types.

H.3.1 Array length

Returns an integer value representing the number of recordsin the array.
The signature of the functionis:
i nteger |ength(<array>)

where <array> represents any identifier declared as an array type either in the action language or as an array property of
a component.

For multi-dimensional arrays, the total number of recordsis returned i.e. the product of the array sizesin each
dimension.

The function always succeeds.

H.4 String functions

A set of functions to manipulate string data types.

H.4.1 String length

Returns an integer value representing the number of charactersin the string.

ETSI

277 ETSI TS 102 523 V1.1.1 (2006-09)

The signature of the functionis:

integer strlen(string s)

The function always succeeds.

H.4.2 String compare
Returns an integer value representing the lexical difference between charactersin two strings.

The signature of the functionis:
integer strncnp(string sl1, string s2, integer n)

Characters at locations 0 to [n-1] in s1 and s2 are compared. The comparison will stop when a difference in the
character valuesis encountered or the location reaches the value of n.

Thereturn value is -1 if the value of the character encountered in sl isless than that in s2.
The return valueis +1 if the value of the character encountered in sl is greater than that in s2.
Thereturn valueis 0 if al characters encountered are the same.

The function always succeeds.

H.4.3 String contains

Returns an integer value representing the location of the first occurrence of one string in another.

The signature of the function is:

integer strstr(string s1, string s2)

If the string s2 matches a sequence of charactersin sl, the return valueis the location in sl of the first character of the
sequence S2.

If the string s2 is not found in sl the return valueis -1.

The function always succeeds.

H.4.4 String extract

Returns a portion of a string.

The signature of the functionis:

string substr(string s, integer start, integer |ength)
The return value is a string composed of length characters from the string s beginning at the location start.

NOTE: Thereturned string is not necessarily independent of the input string. Thisisto avoid dynamic allocation
of storage for a new string value.

The function will succeed if there are enough charactersin sto fulfil the request.

ETSI

278 ETSI TS 102 523 V1.1.1 (2006-09)

Annex | (normative):
Action language notation syntax

1.1 Grammar introduction

This annex contains format definition of the PCF action languages. The grammatical productionsin this annex shall
define the syntactical grammar productions of the PCF action language. The goal production shall be " ActionLanguage"
as defined in clause 1.3.1The semantics of the action language shall be as defined by the action language model in
clause 9.4.

All spaces and new line characters shall be ignored in the default grammar state apart from where defined as avalid part
of aliteral's production.

The notation in represented in Extended Bachus-Naur Form (EBNF). All characters are considered as represented
according to the Unicode standard [6].

1.2 Literals

.2.1 Numeric literals

Decinal Literal | HexLiteral | CctallLiteral
[1-9] ([0-9])*

I ntegerlLiteral
Deci nal Li t eral

HexLi t eral "0" [xX] ([0-9a-fA-F])+

Cctal Literal "0 ([O0-7])*

Currencyliteral = '<currency> ([0-9]) '.' [0-9] [0-9] '</currency>

Col orLiteral ='# HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit
(HexDigit HexDigit)?

HexDi gi t = [0-9a-fA-F]

NOTE: Thelitera representation for the productions "IntergerLiteral”, "DecimalLiteral”, "HexLiteral" and
"OctalLitera" are compatible with ECMA-script (see bibliography).

1.2.2 Date and time literals

Dat eTi neLi t eral
Ti neLi teral

'<dateTime>' DatePart 'T TinePart (Tinezone)? '</dateTi me>'
"<time> TinePart (Tinezone)? '</time>'

Dat eLi t er al '<date>' DatePart (Tinmezone)? '</date>'
Dat ePar t [0-9] [0-9] [0-9] [0-9] "-' [0O1] [0-9]'-" [0O-3] [0-9]
Ti mePar t [012] [0-9] ':" [0-5] [0-9] ":' [0-5] [0-9]
"' [0-9] ([0-9])? ([0-9])7)7
Ti nezone ([+1 [01] [0-3] [O-5] [0-9]) | 'uTC

Ti necodelLi teral "<tinecode> [012] [0-9] ':'" [0O-5] [0-9] ':' [0-5] [0-9]

" [0-5] [0-9] '</tinmecode>'

1.2.3 Character-based literals

StringlLiteral o=ttt (O [MV#x0a#x0d] |
A ([ntbrfAt"] | [0-7] ([0-7])? | [0-3] [0-7] [0-7]))*

' <body>'" (["<])* '</body>'
t<uri> ([A<])*F " <luri >
'<enun®' ldentifier '</enunm'

Mar kedUpText Literal ::
URI Li teral :
Enuner ati onLi teral

ETSI

279 ETSI TS 102 523 V1.1.1 (2006-09)

1.2.4 Geometric literals

BoundsLi t eral ;1= '<bounds>' Signedlnteger ListSpace Signedlnteger ListSpace
Si gnedl nt eger Li st Space Signedlnteger '</Bounds>' Si gnedl nt eger
= ([+] ([#x20#x09])7 I nt egerLiteral
L| st Space [#x20#x09] /* Space and tab */
Posi tionLiteral '<position>" Singedlnteger ListSpace Signedlnteger
' </ position>'
'<size>' Signedlnteger ListSpace Signedlnteger '</size>
' <proportion>'" Signedlnteger ListSpace Signedlnteger
' </ proportion>'

Si zelLi teral
ProportionLiteral

1.2.5 Literal production

Ni | Literal
Literal

"nil’

IntegerLiteral | CurrencyLiteral | ColorLiteral |
BoundsLiteral | PositionLiteral | SizeLiteral |
StringLiteral | DateLiteral | TinmeLiteral |
Dat eTi neLiteral | BooleanLiteral | MarkedUpTextLiteral |

URI Literal | TimecodelLiteral | EnunerationLiteral |
ProportionLiteral | NilLiteral
1.2.6 Identifiers
I dentifier IdentifierStart | Identifier ldentifierPart

IdentifierStart | UnicodeConbi ni ngMark | UnicodeDigit |
"\'" Uni codeEscapeSequence

"u'" HexDigit HexDigit HexDigit HexDigit

TypeNarme | "if' | "for' | '"else' | 'break' | 'continue'

IdentifierPart

Uni codeEscapeSequence : :
Reser vedTokens :

The"IdentifierStart” production shall matchthe™ " character or any character from the following Unicode categories:
"Uppercase letter (Lu)", "Lowercase letter (LI)", "Titlecase letter (Lt)", "Other letter (Lo)", or "Letter number (NI)".

The "UnicodeCombiningPart" production shall match any character from the following Unicode categories:
"Non-spacing mark (Mn)" or "Combining spacing mark (Mc)".

The "UnicodeDigit" production shall match any character from the Unicode Category "Decimal number (Nd)".
The"Identifier" production shall not match any of the following:

. valid matches for the "ReservedTokens';

. system action call names as defined in annex J;

. expression names as defined in annex G.

NOTE: The character categories listed here form an acceptable set in the intersection of identifiers defined for
both NCNamesin XML [5] and the "IndentifierName" production in ECM A Script (see bibliography).

1.3 Structure and statements

1.3.1 Goal production and statements

Act i onLanguage (Statenent)*

St at enent Assignnment ';' | Declaration ';' | Loop ';' | Break '
Continue ';' | Conditional ';' | Action ';' | ";' |
Bl ock

Bl ock ='{" (Statement)* '}’

ETSI

280 ETSI TS 102 523 V1.1.1 (2006-09)

1.3.2 Assignment

Assi gnment = PathReference ('='" | "+=" | '-=" | '"*=" | '"/=") Expression |
Pat hRef erence ('++ | '--")
Pat hRef er ence NanmeW t hl ndex ('.' NanmeWthlndex)*

NameW t hl ndex
I ndex

Identifier (Index)*
"[" Expression ']’

.3.3 Action call

Acti on
Argunent s

Pat hRef erence Argunents
"(" (Expression (',' Expression)*)? ')’

1.3.4 Declaration

Decl aration ::= TypeNane (ArrayDeclaration)? Identifier ('=" Expression)? |
TypeNane |dentifier ArrayDeclaration ('=" Expression)?
TypeNane ;.= 'boolean' | 'bounds' | 'color' | 'conponent' |
"currency' | 'date' | 'datetime' | 'integer' |
"mar keduptext' | 'position' | 'size' | 'string' |
"time' | 'tinecode' | 'URI'
ArrayDecl aration = ("[" IntegerLiteral ']')+

NOTE: Array declarations can only be declared to be of afixed size and shall not be dynamically determined by
the evaluation of an expression.

1.3.5 Conditional

Condi ti onal o= "if" (' Expression ')' Statenent ('else' Statenent)?

.3.6 Loop

Loop ="'for' '(' (Declaration | Assignment)? ';'
(Expression)? ';' (Assignment)? ')' Statemnent

Br eak = 'break’

Conti nue = 'conti nue'

1.4 Expressions

.5 Ternary operator

Expr essi on ;.= Conditional OExpr ('?" Expression ':' Expression)?

1.5.1 Logical and relative expressions

Condi tion Condi ti onal O Expr

Condi ti onal O Expr = Condi ti onal AndExpr ('||' Conditional AndExpr)*
Condi ti onal AndExpr = Equal i tyExpr ('&& EqualityExpr)*
Equal i t yExpr = Rel ational Expr ('==" Relational Expr | '!=" Relational Expr)*

Rel at i onal Expr Addi tiveExpr ('<' AdditiveExpr | '<=' AdditiveExpr |

">'" AdditiveExpr | '>=' AdditiveExpr)*

1.5.2 Arithmetic expressions

Addi ti veExpr = MultiplicativeExpr ('+ MiltiplicativeExpr |
"-'" MiltiplicativeExpr)*
Mul tiplicativeExpr ::= UnaryExpr ('*' UnaryExpr | '/' UnaryExpr | '% UnaryExpr)*

ETSI

281 ETSI TS 102 523 V1.1.1 (2006-09)

1.5.3 Unary expressions

Unar yExpr ="'+ UnaryExpr | '-' UnaryExpr |
"++' PrimaryExpr | '--' PrimaryExpr |
Unar yNot Pl usM nExpr

Unar yNot Pl usM nExpr ::="!" UnaryExpr | Postfi XxExpr

1.5.4 Primary expressions

Post f i xExpr = PrimaryExpr ('++ | '--")?

Pri mar yExpr = PrimaryPrefix (Argunents)?

PrimaryPrefix = Literal | '(' Expression ')' | PathReference | ArrayExpr
ArrayExpr ='['" (Expression (',' Expression)*)? ']’

ETSI

282 ETSI TS 102 523 V1.1.1 (2006-09)

Annex J (normative):
System action library

J.1 Transitions

J.1.1 Forward navigate to another scene

Navigates from the current (source) scene to another (target) scene. Provides control of history stack entry.

The signature of the functionis:

ni| sceneNavi gate(URl target,
enunxf or get, remenber, mar k> type,
URl substitute);

The parameter "target” isa URI of the scene that becomes active as a result of this action.

The parameter "type" is an enumeration that determines whether any information is recorded on the history stack as a
result of the action. The value "remember" indicates that a scene isto be placed on the history stack asaresult of this
navigation. If thisisacritical navigation, then it may be appropriate to use the value "mark". The value "forget"
indicates that no sceneis placed on the stack. If no valueis given, the default is "forget”.

The parameter "substitute” is a URI of an alternative scene that shall be placed on the history stack instead of the source
scene. This parameter shall be used in conjunction with the type parameter.

EXAMPLE: sceneNavi gat e(<uri >#~/ scene2</ uri >, <enunenmark</enune, nil);
will navigate to the scene named "scene2" in the current service, recording the source scene on the
history stack and marking it.

The function shall succeed if the target scene exists in the run-time environment.
Errorsin forward navigation can be captured using the OnForwardNavigation error event.

NOTE: An OnForwardNavigation error shall result in service termination unless an author explicitly describes
how this should be handled.

J.1.2 Historical navigate to a previous scene

Navigates from the current (source) scene to a scene recorded on the history stack.

EXAMPLE: hi st or yNavi gate(true);
will navigate to the nearest scene recorded in the history stack as marked, and erase the history
stack down to and including this recorded scene.

The signature of the functionis:

ni | historyNavi gat e(bool ean mark);

The parameter "mark" is a Boolean that indicates whether to navigate to the last recorded scene or the last marked scene
in the history stack.

When the mark parameter has avalue of "false" then this describes navigation to the last scene placed on the history
stack. The last scene on the stack shall be deleted as a result of this navigation.

When the mark parameter has a value of "true" then this describes navigation to the last marked scene on the history
stack. All scenes at the end of the stack shall be deleted up to and including this last marked scene as aresult of this
navigation.

The function shall succeed if the required recorded scene is found on the stack and exists in the run-time environment.

ETSI

283 ETSI TS 102 523 V1.1.1 (2006-09)

Errorsin history navigate can be captured using the OnlnvalidHistory error event.

NOTE: AnOninvaidHistory error shall result in service termination unless an author explicitly describes how
this should be handled.

J.1.3 Erasing the history stack

Provides for erasure of items from the history stack.

EXAMPLE: historyDelete(all);
will remove all recorded items from the history stack.

The signature of the function is:

ni | historyDel et e(enunxal |, marked, | ast > del type);

The "deltype" enumeration shall be one of the 3 literals "all, "marked" or "last" and controls how much of the history
stack is erased; al items, all down to and including the nearest marked item or the last item recorded respectively. If no
marked item is found then "marked" removes all items.

The function shall always succeed.

J.1.4 Reading the history stack

Provides for access to items recorded on the history stack.

EXAMPLE: target = historyRead(true);
will retrieve the nearest marked item from the history stack.

The signature of the functionis:

conponent hi st oryRead(Bool ean marked) ;

The "marked" Boolean indicates whether to retrieve the last recorded scene or the last marked scene from the history
stack.

The function shall always succeed. If the required recorded scene is not found on the stack the function shall return a
"nil" value.

J.1.5 Navigate to another service

Navigates from the current (source) service to another (target) service. The history stack shall be deleted on navigation
to anew service.

EXAMPLE: servi ceNavi gat e(<uri >#qui z. xm #Tuesday</uri>, nil);
will navigate to the service named "service2", and delete all scenes on the history stack.

The signature of the functionis:

nil serviceNavigate(URl target,
URlI entrypoint);

The "target" component shall resolve to a PCF service item.

The function shall succeed if the target service exists in the run-time environment.

ETSI

284 ETSI TS 102 523 V1.1.1 (2006-09)

J.2 Exit

J.2.1 Exiting the service session
Provides ameans to exit the service session.

EXAMPLE: exit();
will exit the service session.

The signature of the functionis:
nil exit();

The function shall always succeed. Behaviour if the service entry point cannot be found is not defined by the PCF.

J.3 Presentation

J.3.1 Controlling rendering
Provides a means to block scene rendering activity during the service session.

EXAMPLE: redrawfal se);
will block scene rendering from this point forwards.

The signature of the functionis:

ni | redraw bool ean enabl e);

The "enable" boolean block and unblocks scene rendering activity. Subsequent calls to this function with the same value
will have no effect.

The function shall always succeed.

J.4 Environment

J.4.1 Getting the time

Provides a means to access the system clock.

EXAMPLE: time = get Systenfine();
will retrieve the system clock value.

The signature of the functionis:
time get Systenfine();
The function shall return the system clock value from the receiver environment.

The function shall always succeed.

J.4.2 Getting the platform identifier

Provides a means to access a unique identifier for this platform.

EXAMPLE: pl atform = getPl atform D();
will retrieve the platform identifier value.

ETSI

285 ETSI TS 102 523 V1.1.1 (2006-09)

The signature of the functionis:

string getPlatform D();
The function shall return the platform identifier value from the receiver environment.

The function shall always succeed.

J.4.3 Getting the receiver identifier

Provides a means to access a receiver identifier that is unigue within the platform.

EXAMPLE: myid = get ReceiverlD();
will retrieve the receiver identifier value.

The signature of the functionis:

string getReceiverlD);
The function shall return the receiver identifier value from the receiver environment.

The function shall always succeed.

J.4.4 Getting the default language

Provides a means to access the default language setting.

EXAMPLE: | ang = get Def aul t Language() ;
will retrieve the default language value.

The signature of the functionis:

i s0639 get Def aul t Language();
The function shall return the default language value from the receiver environment.

The function shall always succeed.

J.5 XML Shortcuts

In a PCF profile where action language is excluded, it shall still be possible to express the following system API cals
using an aternative "shortcut" XML syntax.

J.5.1 Scene navigate shortcut
A scene navigate item is a shortcut for the sceneNavigate action (see clause J.1.1).
The properties of a scene navigate item include:
. aname that is unique within the scope of the shortcut;
. atype - an enumeration of either "remember"”, "forget” or "mark".
The description of a scene navigate item shall contain:
. exactly one URI item called "trigger” to indicate the new PCF scene;
. at most one URI item called "substitute”.

EXAMPLE: A scene navigate item is represented in the PCF XML using an element with name "". This
exampl e describes a scene navigate where a substitute scene is placed on the history stack asa
result of the navigation.

ETSI

286 ETSI TS 102 523 V1.1.1 (2006-09)

<SceneNavi gate type="renmenber" substitute="#../otherscene">
<URI nanme="target" val ue="#../scenel"/>
<SceneNavi gat e>

J.5.2 Service navigate shortcut

A service navigate item is a shortcut for the serviceNavigate action (see clause J.1.5).
The description of a service navigate item shall contain:
. exactly one PCF URI item called "target" to indicate the new PCF service.

. At most one PCF string item called "entrypoint” to indicate a component entry point other than the service's
default first scene.

EXAMPLE: A service navigate item is represented in the PCF XML using an element with name
"ServiceNavigate".

<Servi ceNavi gat e>

<URI nane="target" val ue="#quiz.xm"/>

<String name="entrypoi nt" val ue=" #/startscene"/>
</ Servi ceNavi gat e>

J.5.3 History navigate shortcut
A history navigate item is a shortcut for the historyNavigate action (see clause J.1.2).
The properties of a history navigate item include:

. a Boolean property item called "mark" - which has a default value "false".

EXAMPLE: A history navigate is represented in the PCF XML using an element with name "HistoryNavigate".

<Hi st oryNavi gate mark="true"/>

J.5.4 Exit action shortcut
An exit action item describes an action that terminates the currently active service.
An exit action item has no properties.

EXAMPLE: An exit action is represented in the PCF XML using an element with name "Exit".

<Exi t Action/ >

ETSI

287

ETSI TS 102 523 V1.1.1 (2006-09)

Annex K (normative):

User keys
Table 37 shows al virtual user key codes supported by PCF. Each user key code is then described in more detail in
clause K.2.
K.1 Virtual key codes
The virtual key codes as enumerated in table 37 are the acceptable values for the PCF user key data type described in
clause 6.2.3.15.
Table 37: Virtual key codes
VK 0 VK_ACCEPT VK _COLORED KEY 5 |VK PNP_TOGGLE
VK_1 VK_CANCEL VK_DELETE VK_PREV
VK 2 VK_CHANNEL DOWN [VK_DOWN VK_RESET
VK 3 VK_CHANNEL_UP VK_ENTER VK_RIGHT
VK 4 VK_CLEAR VK_GUIDE VK_SPLIT_SCREEN _TOGGLE
VK_5 VK_COLORED KEY 0 |VK HELP VK_TAB
VK_6 VK_COLORED KEY 1 |VK HOME VK_TELETEXT
VK 7 VK_COLORED KEY 2 |VK_INFO VK_UNKNOWN
VK 8 VK _COLORED KEY 3 |VK LEFT VK_UP
VK_9 VK_COLORED KEY 4 |[VK_OPTIONS
NOTE: Virtual key codes are mapped to platform-specific keys or functionality. Virtual keys may correspond to a

sequence of key presses or some platform-specific representation such as an overlaid menu.

K.2

K.2.1

Numeric keys

VK_0... VK_9

K.2.2 Navigation keys

VK_UP, VK_DOWN, VK_LEFT, VK_RIGHT

K.2.3 Coloured keys

VK_COLORED_KEY_0/5

Key code descriptions

K.2.4 Service-level control keys

VK_CHANNEL_UP/DOWN

VK_TELETEXT
VK_PNP_TOGGLE

VK_SPLIT_SCREEN_TOGGLE

ETSI

288 ETSI TS 102 523 V1.1.1 (2006-09)

K.2.5 Unknown key

VK_UNKNOWN

ETSI

289 ETSI TS 102 523 V1.1.1 (2006-09)

Annex L (informative):
Scalability techniques

The PCF provides a powerful referencing mechanism that allows a PCF service description to be flexibly partitioned
into a number of fragments. Furthermore, there is nothing that prevents a fragment from being referenced as part of
more than one service description. This means that, for example, two variants of a particular service can easily be
described that contain of common core based on shared fragments with the variant-specific aspects based on
variant-specific fragments. The referencing of such generic fragments not only reduces the total datainvolved in the
description of the two variants but also means that any change to such a fragment will be inherently reflected in both
variants.

There is no mechanism within the present document to allow a PCF service description to contain more than one
description for a particular aspect of the service. Such a scalability technique would alow a more editorially desirable
(but perhaps less portable) alternative to be provided in addition to a description within the bounds of the minimum
profile associated with the service description. For example, ideally display this spinning flaming logo but if thisis not
possible display this static bitmap.

NOTE: Infact the profile association mechanism (see clause 11.3) aready anticipates such an "aternative
description” mechanism, since it allows more than one profile to be associated with a particular service
description, i.e. one for each description.

ETSI

290 ETSI TS 102 523 V1.1.1 (2006-09)

Annex M (normative):
Service announcement and boot

The availability of an interactive service is generally promoted to the viewer using some kind of on screen "call to
action” or "announcement”, e.g. "Press Red". The description of such an announcement may be captured as PCF Scene
item. However, such a Scene item needs careful handling due to the way in which the implementation of
announcements varies from platform to platform. In some platforms interactive applications auto-boot and so the
announcement must form part of the application itself. In other platforms the announcement is provided by some means
outside of the interactive application, with the application only booted following viewer input.

To accommodate these different models a Scene item that describes the viewer experience of an announcement (the
"announcement Scene") shall be identified independently of theinitially active Scene within the core service
description (the "first Scene") using the announcement and fir stScene properties of the service item respectively.

NOTE 1. Thisisonly required when maximizing the portability of a service description. If aservice descriptionis
authored with a particular target platform in mind then the description of the announcement may be
incorporated into the core service description or not described at all as appropriate.

NOTE 2: Dueto the platform specific nature of announcements there is no guarantee as to how or even if a
described announcement Scene is rendered.

The description within the announcement Scene of Scene navigation to the first Scene (typically in response to viewer
input) shall make use of the defined PCF value item fir stScene as opposed to making an explicit reference to the Scene
that has been identified as the first Scene. This means that the description of navigation from the announcement Scene
will remain valid even if the fir stScene property of the service item is changed.

A service description shall contain no explicit scene navigation to a Scene identified as the announcement Scene.
Instead it shall be assumed that only on exiting the interactive service will the announcement Scene be returned
(navigated) to. How this return to the announcement Scene isimplemented in the transcoded output will vary greatly
from platform to platform.

Theserules areillustrated in the following example:

<Servi ce name="ny_service">
<URI nane="firstScene" val ue="#hone"/>
<URI nane="announcenent" val ue="#press_red"/>

<Scene nane="press_red">

<OnEvent nane="red_button_nav">
<Tri gger eventtype="KeyEvent">
<User Key name="key" val ue="VK COLORED KEY_0"/>
</ Tri gger>
<Servi ceNavi gat e>
<URI nanme="target" href="#~/firstScene" context="derived"/>
</ Servi ceNavi gat e>
</ OnEvent >
</ Scene>

<Scene nane="hone" >

<OnEvent name="exit">

<Trigger eventtype="KeyEvent">
<User Key nanme="key" val ue="VK_PREV"/>

</ Tri gger>
<Exi t Acti on/ >

</ OnEvent >

</ Scene>
</ Servi ce>

ETSI

291 ETSI TS 102 523 V1.1.1 (2006-09)

Annex N (informative):
Independent authoring of elements of a service description

The PCF provides a powerful referencing mechanism that allows a PCF service description to be flexibly partitioned
into a number of fragments. There is nothing inherent within the PCF that prevents fragments from being authored
independently from one another. This might be useful when different parties are responsible for different parts of a
service.

EXAMPLE: An interactive service might allow the viewer to browse and buy books. One party |ooks after the
presentation of the available stock and the selection of items to buy, whilst a second party |ooks
after the payment transaction.

Using the PCF referencing model, two (or more) parties can maintain the relevant aspects of a service description
independently while providing a unified viewer experience. However, this does require an "interface” to be agreed in
advance to ensure that the PCF referencing mechanism will work across the boundary between these independently
authored fragments. However, thisis not unreasonable as such a "contract” is amost certainly required simply to deal
with issues of on-screen real -estate and the passing of information from one fragment to the other, e.g. total cost of
books in the shopping basket.

NOTE: The nesting of Service componentsis not allowed by the present document. It is possible that this (or
some more powerful mechanism along the lines of HTML Frames) may be defined by a future revision of
the PCF specification to provide a more explicit means of combining independently authored service
fragments.

ETSI

292 ETSI TS 102 523 V1.1.1 (2006-09)

Annex O (informative):
StreamEvent bindings

0.1 XML document binding

The following XML schema may be used to represent a sequence of StreamEvents for ingest by a platform.

Each StreamEvent element has attributes to represent the event name and timecode for firing. StreamEvents may also
contain an optional payload string.

<?xm version="1.0" encodi ng="UTF-8"?>
<xs:schema target Nanmespace="http://wmv dvb. or g/ pcf/stream events" xnl ns: pcf-
types="http://ww. dvb. org/ pcf/pcf-types" xm ns:xs="http://ww.w3. org/ 2001/ XM_Schema"
xm ns="http://ww. dvb. or g/ pcf/stream events" el ement For nDef aul t ="qual i fied"
attri but eFor nDef aul t ="unqual i fi ed">
<xs:inport nanmespace="http://ww. dvb. org/ pcf/pcf-types" schemaLocati on="pcf-types. xsd"/>
<xs: el ement name="StreanEvents">
<xs:annot ati on>
<xs:docunentation>list of events for a single itemof nmaterial e.g. broadcast program
PVR recordi ng, etc.</xs:docunentation>
</ xs:annot ati on>
<xs: conpl exType>
<Xs: sequence>
<xs: el ement name="StreanEvent">
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: extensi on base="pcf-types:string">
<xs:attribute name="eventname" type="pcf-types:string"
use="requi red"/ >
<xs:attribute name="tinmecode" type="pcf-types:tinmecode"
use="required"/ >
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el emrent >
</ xs: sequence>
<xs:attribute name="material _id" type="pcf-types:string" use="optional"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schena>

EXAMPLE: The following simple example shows the above schemain use:

<?xm version="1.0" encodi ng="UTF-8"?>
<StreanEvents xm ns="http://wwmv dvb. or g/ pcf/stream events"
xm ns: pcf-types="http://wwm. dvb. or g/ pcf/ pcf-types" xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena-
i nstance" xsi:schenmaLocation="http://ww. dvb. org/ pcf/stream events stream events. xsd"
mat eri al _i d="Q033-2298- BANZAI " >
<StreanEvent eventnanme="question" timecode="00: 10: 55: 08" >1</ St r eanEvent >
<StreanEvent eventnanme="question" timecode="00: 13: 35: 02" >2</ Str eanEvent >
<StreanEvent eventname="answer" timecode="00:22:15: 12" >1</ St r eanEvent >
<StreanEvent eventname="answer" timecode="00:11:11: 17" >2</ StreanEvent >
<StreanEvent eventnanme="score" timecode="00:27:21:09">call if you have scored nore than
6</ St reanEvent >
</ StreanEvent s>

0.2 MXF document binding

MFX (see bibliography) documents may carry one or more timelines of events in addition to streamed media content.
This annex defines the binding between the MFX object types and values and their interpretation as PCF
StreamEvents.

ETSI

293

ETSI TS 102 523 V1.1.1 (2006-09)

Table 38: MXF document binding

MFEX object type MFEX property name PCF stream event property
Shot Shot Description eventname

Key Point Keypoint Position timecode

Key Point Keypoint Value payload

NOTE: Itisrecommended to agree a Keypoint Kind value to represent PCF StreamEvents within the MXF data

dictionary. This serves to separate these key frames from any others.

0.3 AAF document binding

AAF (see bibliography) documents may describe one or more timelines of eventsin addition to streamed media content.

This annex defines the binding between the AAF object types and properties and their interpretation as PCF

StreamEvents.

Table 39: AAF document binding

AAF object type AAF property name PCF stream event property
EventMobSlot SlotName [if defined] else SlotID eventname

Event Position timecode

Event Comment payload

ETSI

294 ETSI TS 102 523 V1.1.1 (2006-09)

Annex P (informative):
Receiver handling of aspect ratio

Video is produced in a variety of aspect ratios, most commonly 4:3 or 16:9. Thisvideo isthen in turn presented on a
mixture of displays of either 4:3 or 16:9 aspect ratio. The upshot is that it is common for video produced in one aspect
ratio to be presented on a display of different aspect ratio. This makes it necessary for the combination of receiver and
display to provide suitable processing to ensure that the viewer is presented with video in the correct aspect ratio.

When considering video only, such "aspect ratio handling" is well supported by current digital television receiver
implementations. For example, when presenting 16:9 video on a 4:3 display aspect ratio handling techniques, such as
"centre cut-out” and "letter box™" as shown below, are readily available.

S@=

Figure 99: 16:9 source video

{J

Figure 100: 16:9 source video on 4:3 display, with "centre cut-out" compensation

AV
| ' “

Figure 101: 16:9 source video on 4:3 display, with "letter-box" compensation

However, problems can occur when trying to ensure the exact placement or "alignment" of OSD graphics with specific
points in the video.

In an idealized receiver implementation aspect ratio handling will not have any impact on graphics registration. In such
an implementation any processing performed on the video will also be performed on the graphics so spatia
relationships (and hence registration) will be preserved. However, in reality few (if any) actual implementations are
based on this. Inreality physical hardware architectures can mean that aspect ratio handling can be applied to the video
prior to the overlay of any graphics with the result that any registration islost.

0OSD layer

Figure 102: 16:9 source video presented at 16:9 with graphics box

ETSI

295 ETSI TS 102 523 V1.1.1 (2006-09)

0SD layel

Figure 103: 16:9 source video presented at 4:3 with centre cut-out compensation, with graphics box

oL C

' OSD laye) ~

Figure 104: 16:9 source video presented at 4:3 with letter-box compensation, with graphics box

Of course one solution to this would be to only allow aspect ratio handling to take place after the video and graphics
had been combined. Whilst this would ensure that registration would be preserved, it could result in the presentation of
video (and indeed graphics) at an incorrect aspect ratio.

In summary there are scenarios where the requirements of achieving the correct aspect ratio and maintaining
registration can not be met. Furthermore, under such circumstances there is no single rule that will always deliver the
most optimal behaviour. Instead, only the service author islikely to know which of the requirements has the greatest
priority.

ETSI

296 ETSI TS 102 523 V1.1.1 (2006-09)

Annex Q (normative):
Standard PCF URNSs

Table 40 lists URNs have been defined as standard within the PCF.
NOTE: Thelack of any explicit provider identifier implies that this part of the URN should be assumed to be

"dvb.org".
Table 40: URNs in PCF
URN Description
urn:x-dvb-pcf::default A default value with declared meaning within the context of its use.

urn:x-dvb-pcf::dvb-ctag<NN> Identifies an elementary media stream within the context of DVB Service
(MPEG Program) assigned the DVB component tag value <NN>, where
NN represents an 8-bit value in a hexadecimal format.

For example, "urn:x-dvb-pcf::dvb-ctag64", for the component tag value
0x64.

urn:x-dvb-pcf::mpeg-pid<NN> |ldentifies an elementary media stream within the context of an MPEG
Transport Stream assigned the MPEG packet identifier (PID) value
<NN>, where NN represents an 8-bit value in a hexadecimal format.

For example, "urn:x-dvb-pcf::mpeg-pid64", for the PID value 0x64.

ETSI

297 ETSI TS 102 523 V1.1.1 (2006-09)

Annex R (informative):
Example PCF service descriptions

Notwithstanding the provisions of the copyright clause related to the text of the present document, ETSI grants that
users of the present document may freely reproduce the Example service description proformain this annex so that it
can be used for its intended purposes and may further publish the completed Example service description.

R.1 "Hello World!"

R.1.1 Simplest possible description

In the simplest possible example the compl ete description of a service is provide in asingle PCF source document.
-- source docunent: main.xm --

<PCF>
<Servi ce nanme="hel |l o_worl d">
<URI name="firstScene" val ue="#hi"/>
<String name="pcf SpecVersi on" val ue="1.0"/>
<Scene nane="hi ">
<Text Box name="capti on">
<Position name="origin" val ue="100 100"/>
<Si ze nanme="si ze" val ue="200 30"/>
<String name="content" value="Hello, world!"/>
</ Text Box>
</ Scene>
</ Servi ce>
</ PCF>

R.1.2 External content

This example provides an alternative way of describing the same viewer experience captured by the examplein
annex R.1.1 by referencing out from the PCF source document to an external resource, in this case atext file.

-- source docunent: nain.xm --

<PCF>
<Servi ce nane="hell o_worl d">
<URI name="firstScene" val ue="#hi"/>
<String name="pcf SpecVersi on" val ue="1.0"/>
<Scene nane="hi ">
<Text Box name="capti on">
<Position name="origi n" val ue="100 100"/>
<Si ze name="si ze" val ue="200 30"/>
<String name="content">
<Ext ernal Body content-type="text/plain" uri="nmyfile.txt"/>

</ String>
</ Text Box>
</ Scene>
</ Servi ce>
</ PCF>

Where the content of filemyfil e. t xt is:
Hel l o, world!

This allows the text to be displayed to be authored independently of the rest of the service description. It also means that
updates to the text to be displayed can be made without having to modify any PCF source document.

NOTE: The partitioning of the service description in this manner does imply that the transcoded output will
consist of two corresponding data entities. It would, for example, be perfectly reasonable for the
transcoded output to consist of just asingle data entity.

ETSI

298 ETSI TS 102 523 V1.1.1 (2006-09)

R.1.3 Service and scene defined in separate source documents

This example illustrates how a service description can be partitioned into more than one PCF source document. This
allows different parties to author different parts. It does however require some agreement at the "interface”: in this case
the name of the Scene and the source document in which it is declared.

-- source docunent: nmain.xm --

<PCF>
<Servi ce nane="hell o_worl d">
<URI name="firstScene" val ue="#hi"/>
<String name="pcf SpecVersi on" val ue="1.0"/>

<Scene nane="hi" href="#scene_def.xnl #/ hel | 0"/ >
</ Servi ce>
</ PCF>

-- source docunent: scene_def.xm --

<PCF>
<Scene nane="hel | 0" >
<Text Box name="caption">
<Posi tion name="origin" val ue="100 100"/ >
<Si ze nanme="si ze" val ue="200 30"/>
<String nanme="content" value="Hello, world!"/>
</ Text Box>
</ Scene>
</ PCF>

R.2 Templated authoring

R.2.1 Scene item defined using a template

A common authoring technique is to define scenes as an instance of some kind of presentation template. The PCF does
not provide an explicit "template item". However, the PCF does provide features to support a template-based approach
to service authoring.

In this example the service description is partitioned into two source documents. The first source document declares the
service item. This contains two Scene components that are based on a"template” declared in the second source
document in the form of a static explicit layout container component.

NOTE: Sucha"template" could be defined using other container components.
-- source docunent: main.xm --

<PCF>
<Servi ce name="qui ck_march">
<URI name="firstScene" val ue="#one"/>
<String name="pcf SpecVersi on" val ue="1.0"/>
<Scene nane="one">
<String name="dynam c_capti on" value="1..."/>
<URI name="next_scene" val ue="#../two"/>
<Stati cELC name="tenpl ate" href="#tenpl ate_def. xnm #t enpl atel"/>
</ Scene>
<Scene nane="two">
<String name="dynam c_capti on" value="2..."/>
<URI name="next_scene" val ue="#../one"/>
<Stati cELC name="tenpl ate" href="#tenpl ate_def.xnm #t enpl atel"/>
</ Scene>
</ Servi ce>
</ PCF>

-- source docunent: tenplate_def.xm --

<PCF>
<Stati cELC name="t enpl atel" >
<Text Box name="static_caption">
<Posi tion name="origin" val ue="100 100"/ >
<Si ze nane="si ze" val ue="200 30"/>
<String name="content" val ue="Qui ck, march!"/>

ETSI

299 ETSI TS 102 523 V1.1.1 (2006-09)

</ Text Box>
<Text Box nane="dynam c_capti on">
<Posi tion name="origin" val ue="100 200"/ >
<Si ze nanme="si ze" val ue="200 30"/>
<String name="content" href="#../../dynam c_caption" context="derived"/>
</ Text Box>
<OnEvent name="press_red">
<Trigger eventtype="KeyEvent">
<User Key name="key" val ue="VK COLORED KEY_0"/>
</ Tri gger >
<SceneNavi gat e>
<URI name="target" href="#../../../next_scene" context="derived"/>
</ SceneNavi gat e>
</ OnEvent >
</ Stati cELC>
</ PCF>

R.2.2 Scene item defined using multiple templates

An extension to the examplein clause R.2.1 isone in which a scene item is defined by reference to two "templates’, in
this case two static explicit layout container components. However, there is a potential problem in that there could be a
namespace clash between the two referenced components such that resol ution can become ambiguous. This creates an
error since there are now two items with the same name, i.e. "text".

-- source docunent: main.xm --

<PCF>
<Servi ce name="br oken">
<URI nanme="firstScene" val ue="#ooops"/>
<String name="pcf SpecVersi on" val ue="1.0"/>
<Scene name="ooo0ps" >
<String name="text" value="This is some text"/>
<Stati cELC nanme="tenpl atel" href="tenpl atel. xm #t enpl atel"/>
<l-- this next String el ement causes anbiguity - duplicate name -->
<String name="text" value="This is some nore text"/>
<Stati cELC name="tenpl at e2" href="tenpl at e2. xnl #t enpl at e2"/ >
</ Scene>
</ Servi ce>
</ PCF>

-- source docunent: tenplatel.xm --

<PCF>
<Stati cELC name="t enpl at el" >
<Text Box name="headl i ne">
<Posi ti on name="origin" val ue="100 100"/ >
<Si ze nane="si ze" val ue="200 30"/>
<String name="content" href="#/../../text" context="derived"/>
</ Text Box>
</ Stati cELC>
</ PCF>

-- source docunent: tenplate2. xm --

<PCF>
<Stati cELC name="t enpl at e2" >
<Text Box name="body" >
<Posi ti on name="origin" val ue="100 200"/ >
<Si ze nane="si ze" val ue="200 30"/>
<String name="content" href="#/../../text" context="derived"/>
</ Text Box>
</ Stati cELC>
</ PCF>

Where the risk of such a namespace clash cannot be removed through management of the template declaration, e.g. a
third party "library" declaration, it will be necessary to clearly identify the context of any association through the use of
acollection item.

-- source docunent: nmain.xm --
<PCF>
<Servi ce nanme="not _broken">

<URI name="first Scene" val ue="#ahhh"/>
<String name="pcf SpecVersi on" val ue="1.0"/>

ETSI

300 ETSI TS 102 523 V1.1.1 (2006-09)

<Scene nane="ooops" >
<Col | ecti on name="c1">
<String name="text" value="This is some text"/>
<Stati cELC name="tenpl atel" href="#tenpl atel. xm #t enpl atel"/>
</ Col | ecti on>
<Col | ecti on name="c2">
<String name="text" value="This is some nore text"/>
<Stati cELC name="t enpl at e2" href ="#t enpl at e2. xn #t enpl at e2"/ >
</ Col | ecti on>
</ Scene>
</ Servi ce>
</ PCF>

Where the source documentst enpl at el. xm andt enpl at e2. xm are as before.

In asecond, slightly more specialized example a Scene item is defined by reference to the same "template” more than
once. Thisinherently causes a clash in reference names and so must be dealt with in the manner described above.

R.3 Presenting streamed content

R.3.1 Default elementary media streams using a URN

This example shows how to present the default video and audio, and (if available and selected for presentation by the
viewer) subtitles elementary media streams for the context in which the transcoded service description is running. All
references are provided as URNSs that must be resolved in a platform-specific manner by the relevant PCF transcoder.

-- source docunent: main.xm --

<PCF>
<Servi ce name="wat ch_tv">
<URI name="firstScene" val ue="#ny_scene"/>
<String name="pcf SpecVersi on" val ue="1.0"/>
<Stream nane="tv">
<StreanData name="content">
<Ext er nal Body content-type="application/octet-strean uri="urn:x-dvb-pcf::default"/>
</ St r eanDat a>
<Vi deo nane="default_fullscreen_vi deo">
<Subtitles name="al | ow_subs_presentation"/>
</ Vi deo>
<Audi o nane="def aul t _audi 0"/>
</ Strean>

<Scene nanme="ny_scene">
<l-- Scene def here -->
</ Scene>
</ Servi ce>
</ PCF>

R.3.2 From specific broadcast service using a URN

This example shows how to present the default video and a specific audio elementary media streams from a specific TV
service identified viaa URN.

NOTE: Inthisexample (and othersthat follow) there is no Subtitles component so no subtitles elementary media
stream will be presented, even if available and selected for presentation by the viewer.

Since the elementary media stream composition representing the TV serviceisidentified using a URN any referencesto
elementary media streams within it must also be made using a URN.

-- source docunent: main.xm --

<PCF>
<Servi ce name="wat ch_tv">
<URI nane="firstScene" val ue="#nmy_scene"/>
<String name="pcf SpecVersi on" val ue="1.0"/>
<Stream name="tv">
<StreanData name="content">

ETSI

301 ETSI TS 102 523 V1.1.1 (2006-09)

<Ext er nal Body content-type="application/octet-streant uri="urn: x-dvb-
pcf: bbc. co. uk: gol f"/>
</ St r eanDat a>
<Vi deo nane="nosai c_vi deo"/>
<Audi o nanme="audi o_f or _hi ghl i ght ed_nosai c_i t ent' >
<URI nane="content" val ue="urn: x-dvb- pcf: bbc. co. uk: audi 01"/ >
</ Audi 0>
</ Streanr

<Scene nane="ny_scene">
<l-- Scene def here -->
</ Scene>
</ Servi ce>
</ PCF>

R.3.3 From specific broadcast service using a URL

This example shows how to present the default video and a specific audio elementary media streams from a specific TV
service identified viaaURL.

Since the elementary media stream composition representing the TV serviceisidentified using a URL any references to
elementary media streams within it can be made using a URN or aURL. In this case the DVB URL format isused to
identify an elementary media stream composition with the DVB service ID 0x5678 and an audio elementary media
stream within it with the DVB component tag 0x64. The PCF default URN is used to identify the default video within
the composition.

-- source docunent: nain.xm --

<PCF>
<Servi ce name="wat ch_tv">
<URI name="firstScene" val ue="#ny_scene"/>
<String name="pcf SpecVersi on" val ue="1.0"/>
<Stream nane="tv">
<StreanData nane="content">
<Ext er nal Body content-type="vi deo/ x- MP2T-P" uri="dvb://1234..5678"/>
</ St r eanDat a>
<Vi deo nane="default_fullscreen_vi deo"/>
<Audi o nane="audi 0" >
<URI name="content" val ue="dvb://1234..5678.64"/>
</ Audi o>
</ Streanr

<Scene nane="nmny_scene">
<l-- Scene def here -->
</ Scene>
</ Servi ce>
</ PCF>

An equivalent description would be one where the value for the content property of the Audio component is set to the
standard PCF URN urn:x-dvb-pcf::dvb-ctag64 (see annex Q).

R.3.4 From local file using a URL

Inthisexample afilermy_speci al _beep. npg contains MPEG coded audio in an MPEG-2 elementary stream. The
fileisreferenced by the Stream component with the content-type property set to vi deo/ x- MP2ES to indicate that the
streamed media composition is provided as an MPEG-2 elementary stream, but at this point of undefined encoded
content within. The subsequent declaration of the Audio component has the content-type property set to audi o/ npeg
to indicate that the contents of the MPEG-2 elementary stream is MPEG coded audio. Since thisisthe only elementary
media stream inside this type of composition the use of the PCF default URN is sufficient.

-- source docunent: scene_defs.xm --

<PCF>
<Scene nane="sone_ot her _scene" >
<Stream nanme="audi o_cl i p">

<StreanData nanme="content">
<Ext er nal Body content-type="vi deo/ x- MP2ES" uri ="ny_speci al _beep. npg"/ >

</ St r eanDat a>

<Audi o nane="def aul t _audi 0" >
<URI nane="content" val ue="urn: x-dvb-pcf::default"/>

ETSI

302 ETSI TS 102 523 V1.1.1 (2006-09)

</ Audi o>
</ Streanp
</ Scene>
</ PCF>

R.4 Miscellaneous examples

R.4.1 Service item contains "boilerplate" visible components

In some services a number of visible components are common to most (or even al) scenes. Furthermore it may be
necessary to preserve the state of such components between Scenes. To achieve this, components may be placed with a
service item. A good example of this would be "boilerplate” components such as alogo or a video window.

-- source docunent: nmain.xm --

<PCF>
<Servi ce name="fol | owmre" >
<URI name="first Scene" val ue="#press"/>
<String name="pcf SpecVersi on" val ue="1.0"/>
<Rect angl e name="backgr ound" >
<Position nanme="origin" value="0 0"/>
<Si ze name="si ze" val ue="720 576"/ >
<Col or nane="fillcolor" value=""/>
</ Rect angl e>
<l mage name="| ogo" >
<Position name="origin" val ue="100 550"/ >
<Si ze name="si ze" val ue="100 70"/ >
<l mageDat a nanme="content">
<Ext er nal Body content-type="i mage/ png" uri="|ogo. png"/>
</ | mageDat a>
</ | mage>
<Scene nane="press">
<String name="instructions" val ue="Press Red"/>
<URI name="next_scene" val ue="#../again"/>
<Stati cELC name="t enpl ate" href="#tenpl at e_def #t enpl at el"/ >
</ Scene>
<Scene nane="agai n">
<String name="instructions" value="Co on, do it again"/>
<URI name="next_scene" val ue="#../press"/>
<Stati cELC nanme="tenpl ate" href="#tenpl at e_def #t enpl atel"/ >
</ Scene>
</ Servi ce>
</ PCF>

-- source docunent: tenplate_def.xm --

<PCF>
<Stati cELC name="t enpl at el" >
<Text Box name="text">
<Posi ti on name="origin" val ue="100 200"/ >
<Si ze name="si ze" val ue="200 30"/>
<String name="content" href="#../../instructions" context="derived"/>
</ Text Box>
<OnEvent name="press_red">
<Trigger eventtype="KeyEvent">
<User Key name="key" val ue="VK_ COLORED KEY_0"/>
</ Tri gger >
<SceneNavi gat e>
<URI nanme="target" value="#../../next_scene"/>
</ SceneNavi gat e>
</ OnEvent >
</ Stati cELC>
</ PCF>

ETSI

303 ETSI TS 102 523 V1.1.1 (2006-09)

Annex S (informative):
Bibliography

ISO/IEC 9899 (1999): "The C Programming Language”.

Java Language Specification: "The Java Language Specification by James Gosling, Bill Joy and Guy Steele".
ISBN 0-201-63451-1. http://java.sun.com/docs/books/jlg/index.html

SO 8601 (2000): "Data elements and interchange formats - Information interchange - Representation of dates
and times'.

ISO/IEC 9075 (1999 and 2003): "Information technology - database languages - SQL".

ETSI TS 102 322: " Specification for a Lightweight Microbrowser for interactive tv applications, based on and
compatible with WML".

T.H. Nelson: "Literary Machines'. Mindful Press, Sausdlito, CA, 1982.

NewsML 1.2: "News Markup Language”. Details at http://www.newsml.org/

ECMA-262 / ISO/IEC 16262: "ECMA Script Language Specification 3rd edition", December 1999.
http://www.ecmar-international .org/publications/standards/Ecma-262.htm

ISO/IEC 19501: "Unified modelling language 2.0".
http://www.omg.org/technol ogy/documents/formal/uml.htm

SMPTE 377M: MXF.

AAF Association: "Advanced Authoring Format (AAF) Object Specification v1.1". April 2005.
http://www.aaf associ ation.org/html/specs/aaf obj ectspec-v1.1.pdf

ETSI

http://www.sun.com/books/catalog/Gosling_JLS.xml
http://www.newsml.org/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.omg.org/technology/documents/formal/uml.htm
http://www.aafassociation.org/html/specs/aafobjectspec-v1.1.pdf

304

ETSI TS 102 523 V1.1.1 (2006-09)

History

Document history

V111

September 2006

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Conventions
	5 Service author guide (informative)
	5.1 Introduction
	5.2 An overview of a PCF service description
	5.3 Components
	5.3.1 The Service component
	5.3.2 The Scene component
	5.3.3 Layout components
	5.3.3.1 Explicit layout
	5.3.3.2 Flow layout

	5.3.4 Return path components
	5.3.5 Custom components

	5.4 Content
	5.5 Behaviour
	5.5.1 Events
	5.5.2 Action language

	5.6 Structuring a PCF service description
	5.6.1 The href
	5.6.2 Copy

	5.7 Managing differences between target platforms
	5.7.1 Degrees of freedom
	5.7.2 Profiles

	5.8 Transport and packaging

	6 Architecture
	6.1 Introduction
	6.1.1 Strong typing
	6.1.2 Static and active description
	6.1.3 Service representation
	6.1.4 Referencing model
	6.1.5 Data partitioning and reuse

	6.2 Data types
	6.2.1 Data type description
	6.2.1.1 Data type model
	6.2.1.2 Description space
	6.2.1.3 Value items

	6.2.2 Primitive types
	6.2.2.1 Boolean
	6.2.2.2 Integer
	6.2.2.3 Enumeration
	6.2.2.4 String

	6.2.3 Core types
	6.2.3.1 Colour
	6.2.3.2 Currency
	6.2.3.3 Date
	6.2.3.4 Date and time
	6.2.3.5 Font family
	6.2.3.6 Font size
	6.2.3.7 Marked up text
	6.2.3.8 Name
	6.2.3.9 Position
	6.2.3.10 Proportion
	6.2.3.11 Size
	6.2.3.12 Time
	6.2.3.13 Timecode
	6.2.3.14 URI
	6.2.3.15 User keys

	6.2.4 Octet data items
	6.2.4.1 Octet data introduction
	6.2.4.2 Octet data model
	6.2.4.3 Octet data containers
	6.2.4.3.1 Portable MIME types
	6.2.4.3.2 Meta property items
	6.2.4.3.3 Embedded plain text data
	6.2.4.3.4 Embedded binary data
	6.2.4.3.5 Embedded base64 data
	6.2.4.3.6 Embedded hexadecimal binary data
	6.2.4.3.7 Embedded quoted printable data
	6.2.4.3.8 External body items
	6.2.4.3.9 Multipart data item

	6.2.4.4 Octet data item types
	6.2.4.4.1 String octet data items
	6.2.4.4.2 Marked up text octet data items
	6.2.4.4.3 Image octet data items
	6.2.4.4.4 Stream octet data items

	6.2.5 Compound types
	6.2.5.1 Compound data type
	6.2.5.2 Map type and item
	6.2.5.3 Typed array data type and array items

	6.3 Service description structure
	6.3.1 Description items
	6.3.2 Component items
	6.3.3 Collection items
	6.3.4 PCF container
	6.3.5 Scene items
	6.3.6 Service items
	6.3.7 Scoping rules

	6.4 Reference and navigation
	6.4.1 Referencing model
	6.4.2 Typed reference
	6.4.2.1 PCF item references
	6.4.2.2 Reference path format and resolution

	6.4.3 Contextual resolution
	6.4.4 Map reference items
	6.4.5 Parameter items
	6.4.6 Navigation reference items

	6.5 Uniform Resource Identifiers
	6.5.1 General usage
	6.5.2 URN syntax in the PCF

	6.6 Marked up text representation

	7 General component specification
	7.1 Overview
	7.2 Component specification model
	7.2.1 Overview
	7.2.2 Interface definition
	7.2.2.1 Groups
	7.2.2.2 Property specifications
	7.2.2.3 Enumeration specifications
	7.2.2.4 Handled event specifications
	7.2.2.5 Generated event specifications
	7.2.2.6 Handled action specifications
	7.2.2.7 Generated error specifications
	7.2.2.8 Intended implementation
	7.2.2.9 Overview item

	7.2.3 Textual description
	7.2.4 Behaviour specification

	7.3 Component instantiation model
	7.3.1 Component
	7.3.2 Properties
	7.3.3 Cascaded properties
	7.3.4 Component implementation tolerance

	7.4 Component behaviour
	7.4.1 Behaviour overview
	7.4.2 Accessing component properties
	7.4.3 Handled events
	7.4.4 Handled actions
	7.4.5 Generated events
	7.4.6 Generated errors
	7.4.7 Component scope

	7.5 Defined PCF component classes
	7.5.1 Overview
	7.5.2 Visual components
	7.5.3 Non visual components
	7.5.3.1 Functional components
	7.5.3.2 Variable and cookie components

	7.5.4 Container components

	7.6 Custom components
	7.7 Schema components

	8 Layout specification
	8.1 Introduction
	8.2 Explicit layout
	8.2.1 Introduction
	8.2.2 Explicit layout container elements and characteristics

	8.3 Flow layout
	8.3.1 Introduction
	8.3.2 Flow layout elements
	8.3.3 The flow layout box model
	8.3.4 Flow layout box types
	8.3.4.1 Overview
	8.3.4.2 Containing blocks
	8.3.4.3 Block-level elements
	8.3.4.4 Block formatting context
	8.3.4.5 Inline-level elements
	8.3.4.6 Inline formatting context

	8.3.5 Layout properties
	8.3.5.1 General properties
	8.3.5.2 Side-specific properties

	8.4 TextFlow
	8.5 Table layout
	8.5.1 Introduction
	8.5.2 Table layout algorithms
	8.5.2.1 Fixed table layout
	8.5.2.2 Automatic table layout (optional)
	8.5.2.3 Table height algorithm
	8.5.2.4 Row height algorithm
	8.5.2.5 Cell height algorithm
	8.5.2.6 Intra-cell content alignment
	8.5.2.6.1 Horizontal alignment
	8.5.2.6.2 Vertical alignment

	8.5.3 Borders

	8.6 Flow layout container components
	8.7 Reference screen model
	8.7.1 The reference screen
	8.7.2 Mapping the reference screen to a target device
	8.7.2.1 Target device display resolution same as reference screen
	8.7.2.2 Target device display resolution different to reference screen
	8.7.2.3 Scaling the reference screen (informative)

	8.8 Registration of video and graphics
	8.9 Display stack model
	8.9.1 Initializing the display stack
	8.9.2 Manipulating the display stack

	8.10 Font selection

	9 Behaviour specification
	9.1 Introduction
	9.1.1 Intrinsic component behaviour
	9.1.2 Independent behaviour

	9.2 Events
	9.2.1 Run-time event model
	9.2.2 Event access declaration

	9.3 Event propagation model
	9.3.1 Introduction
	9.3.1.1 Object model
	9.3.1.2 Component containment hierarchy
	9.3.1.3 Event propagation

	9.3.2 System events
	9.3.2.1 Overview
	9.3.2.2 System event propagation rules

	9.3.3 User input events
	9.3.3.1 Overview
	9.3.3.2 Focus control
	9.3.3.3 User input event propagation rules

	9.3.4 Component events
	9.3.4.1 Overview
	9.3.4.2 Component event propagation rules

	9.3.5 Error Events
	9.3.5.1 Execution error levels and default responses
	9.3.5.2 Error types

	9.4 Action language
	9.4.1 Introduction
	9.4.2 Representation and execution
	9.4.3 Valid action language
	9.4.4 Action language data type and action language items
	9.4.5 Run-time data mapping
	9.4.5.1 Execution context
	9.4.5.2 Run-time data types

	9.4.6 Run-time execution model
	9.4.6.1 Statements
	9.4.6.2 Assignment statement
	9.4.6.3 Declaration statement
	9.4.6.4 Action call statement
	9.4.6.5 Conditional statement
	9.4.6.6 Loop statement and loop control
	9.4.6.7 Execution errors

	9.4.7 Expressions and conditions
	9.4.7.1 Evaluation
	9.4.7.2 Arithmetic operators
	9.4.7.3 Logical operators
	9.4.7.4 Relative operators

	9.4.8 System action library
	9.4.9 Expression function library

	9.5 Action language shortcuts
	9.6 Statemachines
	9.6.1 Introduction
	9.6.1.1 State definition
	9.6.1.2 PCF state types
	9.6.1.3 Object model
	9.6.1.4 Transition and onevent object model

	9.6.2 Statemachine
	9.6.3 Transition collection
	9.6.3.1 Transition
	9.6.3.2 Trigger
	9.6.3.3 Guard
	9.6.3.4 Action

	9.6.4 Top state
	9.6.4.1 Initial state
	9.6.4.2 Final state
	9.6.4.3 History state

	9.6.5 State collection
	9.6.5.1 State
	9.6.5.1.1 State entry
	9.6.5.1.2 State exit
	9.6.5.1.3 Internal transitions

	9.6.5.2 Junction state
	9.6.5.3 Choice state

	9.7 OnEvent - statemachine shortcut
	9.8 User-defined behaviour
	9.8.1 Scope of user-defined behaviour
	9.8.2 Event propagation involving user-defined behaviour

	10 Return path
	10.1 Introduction
	10.2 Return path components
	10.2.1 Returnpath component
	10.2.2 Transfer collection
	10.2.3 Transaction component
	10.2.4 Indicate component
	10.2.5 Securereturnpath component

	10.3 Return path transfer process
	10.4 Return path object model
	10.5 Security of return path data
	10.5.1 Introduction
	10.5.2 Signed data
	10.5.3 Secure data transfer

	10.6 Return Path Transaction Format (RPTF)
	10.7 Connection usage display to viewer

	11 Profiles
	11.1 Introduction
	11.2 Profile definition
	11.3 Profile association

	12 Service digest
	12.1 Introduction
	12.2 Digest definition
	12.3 Profile alias definition
	12.4 Example PCF service digests

	13 Mechanism for transport and packaging (optional)
	13.1 PCF data exchange model
	13.1.1 Assets, transactions and acceptability
	13.1.2 Push update model
	13.1.3 Pull update model
	13.1.4 Online update model
	13.1.5 Asset lifetime
	13.1.6 Service packaging and references
	13.1.7 Service coherence
	13.1.8 Transcoder hints

	13.2 Detailed model specification
	13.2.1 PCFTranscoder
	13.2.2 ServiceRegistration
	13.2.3 ServiceTransaction
	13.2.4 PCFService
	13.2.5 PCFAsset and specializations
	13.2.6 ExternalResource
	13.2.7 Hint and specializations

	13.3 PCF data exchange sequence for transcoder input

	Annex A (normative): Component specifications
	A.1 Container components
	A.1.1 Layout components
	A.1.1.1 Service
	A.1.1.2 Scene
	A.1.1.3 Static explicit layout container specification
	A.1.1.4 Explicit layout container specification
	A.1.1.5 Flow layout container component specifications
	A.1.1.5.1 TruncateFlowContainer component
	A.1.1.5.2 ScrollFlowContainer component
	A.1.1.5.3 PFC component

	A.1.2 Flow components
	A.1.2.1 Flow
	A.1.2.1.1 Introduction
	A.1.2.1.2 The content property
	A.1.2.1.3 The directionality property

	A.1.2.2 TextFlow
	A.1.2.2.1 Introduction
	A.1.2.2.2 The content property
	A.1.2.2.3 The directionality property

	A.1.2.3 Table components
	A.1.2.3.1 The Table component
	A.1.2.3.1.1 The table-layout property
	A.1.2.3.1.2 The caption property
	A.1.2.3.1.3 The table-columns property
	A.1.2.3.1.4 The row-height property
	A.1.2.3.1.5 The columnwidth property

	A.1.2.3.2 Table row group components
	A.1.2.3.2.1 The TH component
	A.1.2.3.2.2 The TB component
	A.1.2.3.2.3 The TF component

	A.1.2.3.3 Table column group components
	A.1.2.3.3.1 The TC component
	A.1.2.3.3.2 The TCG component

	A.1.2.3.4 The TR component
	A.1.2.3.5 The TD component
	A.1.2.3.5.1 The rowspan property
	A.1.2.3.5.2 The colspan property
	A.1.2.3.5.3 The wrap property

	A.2 Visual components
	A.2.1 Background
	A.2.2 Basic shapes
	A.2.2.1 Notes on basic shapes in general (informative)
	A.2.2.2 AxisLine
	A.2.2.3 Ellipse
	A.2.2.4 Line
	A.2.2.5 Pixel
	A.2.2.6 Polygon
	A.2.2.7 Rectangle

	A.2.3 Clock
	A.2.4 ConnectStatusImage
	A.2.4.1 Introduction

	A.2.5 HintTextBox
	A.2.5.1 Introduction
	A.2.5.2 Properties defined elsewhere

	A.2.6 Image
	A.2.7 ImageAnimated
	A.2.8 ImageScalable
	A.2.9 TextBox
	A.2.10 Ticker
	A.2.11 Input components
	A.2.11.1 Button
	A.2.11.2 PickList
	A.2.11.3 RadioButtonGroup
	A.2.11.4 SpinControl
	A.2.11.5 TextInput

	A.2.12 Menu
	A.2.12.1 Introduction
	A.2.12.2 Properties defined elsewhere
	A.2.12.3 The labelArray property
	A.2.12.4 The targetArray property
	A.2.12.5 The initialLabel property
	A.2.12.6 The index property
	A.2.12.7 The target property
	A.2.12.8 The menuAlign property
	A.2.12.9 The menuLoop property
	A.2.12.10 The selectmode property
	A.2.12.11 The image property
	A.2.12.12 The imageAlign property
	A.2.12.13 Behaviour specification

	A.2.13 NumericNavigator
	A.2.13.1 Introduction
	A.2.13.2 Properties defined elsewhere
	A.2.13.3 The value property
	A.2.13.4 The valueSize property
	A.2.13.5 The valueArray property
	A.2.13.6 The targetArray property
	A.2.13.7 The descriptionArray property
	A.2.13.8 The target property
	A.2.13.9 The invalidMessage property
	A.2.13.10 The description property
	A.2.13.11 Behaviour specification

	A.2.14 Subtitles
	A.2.15 Video

	A.3 Non-visual components
	A.3.1 Audio
	A.3.2 Cookie variables
	A.3.2.1 BooleanCookie
	A.3.2.2 DateTimeCookie
	A.3.2.3 IntegerCookie
	A.3.2.4 String cookie

	A.3.3 CurrentTime
	A.3.4 Random
	A.3.5 Return path components
	A.3.5.1 Indicate
	A.3.5.2 ReturnPath
	A.3.5.3 SecureReturnPath
	A.3.5.4 Transaction component

	A.3.6 Stream
	A.3.7 StreamEvent
	A.3.8 Timer
	A.3.9 Transient variables
	A.3.9.1 BooleanVar
	A.3.9.2 DateTimeVar
	A.3.9.3 IntegerVar
	A.3.9.4 StringVar

	Annex B (normative): Events and errors
	B.1 System events
	B.1.1 Service event
	B.1.2 Stream event
	B.1.3 ProgramChange event
	B.1.4 RunningStatus event

	B.2 User events
	B.2.1 Key event
	B.2.2 RawKey event

	B.3 Component events
	B.3.1 Navigation events
	B.3.2 Scene events
	B.3.3 Button events
	B.3.4 Choice events
	B.3.5 Media events
	B.3.6 TextInput events
	B.3.7 Animation events
	B.3.8 PageContainer events
	B.3.9 Timer event
	B.3.10 NumericNavigator events
	B.3.11 Stream events
	B.3.12 ReturnPath events

	B.4 Errors
	B.4.1 Error events
	B.4.2 Basic errors
	B.4.3 Media errors
	B.4.4 Stream errors
	B.4.5 ReturnPath errors
	B.4.6 Execution errors

	Annex C (normative): Property Groups
	C.1 Intrinsic properties
	C.1.1 Visible components
	C.1.1.1 Enumeration
	C.1.1.2 PropertyGroup

	C.2 Background properties
	C.2.1 Background_properties-images
	C.2.2 Background_properties
	C.2.2.1 Properties defined elsewhere

	C.3 Color properties
	C.3.1 Color_properties
	C.3.2 Color_properties-linecolor
	C.3.3 Color_properties-bordercolor
	C.3.4 Color_properties-fillcolor
	C.3.5 Color_properties-textcolor

	C.4 Border properties
	C.4.1 BorderProperties enumerations
	C.4.1.1 BorderSingleColorLinestyle enumeration
	C.4.1.2 BordermulticolorLinestyle enumeration

	C.4.2 BorderProperties specification
	C.4.2.1 Border-Width
	C.4.2.2 Side-specific property application

	C.4.3 BorderProperties defined elsewhere

	C.5 CornerRadius properties
	C.6 LineStyle properties
	C.6.1 Linestyle enumerations
	C.6.2 LineStyle properties specification
	C.6.2.1 Linestyle
	C.6.2.2 Linewidth

	C.7 Positioning and layout properties
	C.7.1 PositioningPropertiesAbsolute
	C.7.1.1 Origin
	C.7.1.2 Size

	C.7.2 Flow layout properties
	C.7.2.1 WhiteSpaceHandling property
	C.7.2.2 Flow layout properties defined elsewhere

	C.7.3 Alignment-properties
	C.7.3.1 Alignment properties enumerations
	C.7.3.1.1 Horizontal alignment enumeration
	C.7.3.1.2 Vertical alignment enumeration

	C.7.3.2 H-align property
	C.7.3.3 V-align property

	C.8 Padding and margin properties
	C.8.1 Padding properties
	C.8.1.1 Padding
	C.8.1.2 Side-specific padding application

	C.8.2 Margin properties
	C.8.2.1 Margin
	C.8.2.2 Side-specific margin application

	C.9 Font properties
	C.9.1 Font family
	C.9.2 Font emphasis
	C.9.3 Font style
	C.9.4 Font variant
	C.9.5 Font weight
	C.9.6 Font stretch
	C.9.7 Font size
	C.9.8 Font-size-adjust

	C.10 The LabelProperties property group
	C.11 The ImageProperties property group
	C.12 The AnimationProperties property group
	C.12.1 The FramePeriod property
	C.12.2 The Running property
	C.12.3 TheNumberOfLoops component
	C.12.4 The LoopPause component

	Annex D (normative): Profile specifications
	D.1 DVB profiles
	D.1.1 Introduction
	D.1.2 dvb.org/pcf/profile/basic
	D.1.2.1 Overview
	D.1.2.2 Definition

	D.1.3 dvb.org/pcf/profile/core
	D.1.3.1 Overview
	D.1.3.2 Definition

	D.1.4 dvb.org/pcf/profile/full
	D.1.4.1 Overview
	D.1.4.2 Definition

	Annex E (normative): Portable hints for PCF data exchange
	Annex F (normative): Marked up text format
	F.1 Block elements
	F.2 Font style elements
	F.3 Phrase elements
	F.4 Special elements
	F.5 Table structures
	F.6 Table rows

	Annex G (normative): XML resources
	G.1 PCF syntax
	G.1.1 pcf.xsd
	G.1.2 behaviour.xsd
	G.1.3 schemacomponents.xsd
	G.1.4 pcf-types.xsd
	G.1.5 x-dvb-pcf.xsd
	G.1.6 servicedigest.xsd

	G.2 Component definition syntax
	G.2.1 component-syntax.xsd
	G.2.2 components.xml
	G.2.3 propertygroups.xml
	G.2.4 eventgroups.xml
	G.2.5 events.xml

	G.3 Transport and packaging
	G.3.1 transport.wsdl

	Annex H (normative): Action language expression function library
	H.1 Type conversion functions
	H.1.1 Available type conversions
	H.1.2 From boolean
	H.1.2.1 Boolean to integer
	H.1.2.2 Boolean to string

	H.1.3 From color
	H.1.3.1 Color to integer parts
	H.1.3.2 Color to string

	H.1.4 From currency
	H.1.4.1 Currency to integer
	H.1.4.2 Currency to string

	H.1.5 From date
	H.1.5.1 Date to dateTime
	H.1.5.2 Date to integer parts
	H.1.5.3 Date to string

	H.1.6 From dateTime
	H.1.6.1 DateTime to date
	H.1.6.2 DateTime to integer parts
	H.1.6.3 DateTime to string
	H.1.6.4 DateTime to time

	H.1.7 From integer
	H.1.7.1 Integer to boolean
	H.1.7.2 Integer parts to color
	H.1.7.3 Integer parts to date
	H.1.7.4 Integer parts to dateTime
	H.1.7.5 Integer parts to position
	H.1.7.6 Integer parts to size
	H.1.7.7 Integer parts to string
	H.1.7.8 Integer parts to time

	H.1.8 From marked up text
	H.1.8.1 Marked up text to string

	H.1.9 From position
	H.1.9.1 Position to integer parts
	H.1.9.2 Position to string

	H.1.10 From size
	H.1.10.1 String to currency
	H.1.10.2 String to integer
	H.1.10.3 String to markedUpText

	H.1.11 From time
	H.1.11.1 Time and date to dateTime
	H.1.11.2 Time to integer parts
	H.1.11.3 Time to string

	H.1.12 From timecode
	H.1.12.1 Timecode to integer parts
	H.1.12.2 Timecode to string

	H.2 Arithmetic functions
	H.3 Array functions
	H.3.1 Array length

	H.4 String functions
	H.4.1 String length
	H.4.2 String compare
	H.4.3 String contains
	H.4.4 String extract

	Annex I (normative): Action language notation syntax
	I.1 Grammar introduction
	I.2 Literals
	I.2.1 Numeric literals
	I.2.2 Date and time literals
	I.2.3 Character-based literals
	I.2.4 Geometric literals
	I.2.5 Literal production
	I.2.6 Identifiers

	I.3 Structure and statements
	I.3.1 Goal production and statements
	I.3.2 Assignment
	I.3.3 Action call
	I.3.4 Declaration
	I.3.5 Conditional
	I.3.6 Loop

	I.4 Expressions
	I.5 Ternary operator
	I.5.1 Logical and relative expressions
	I.5.2 Arithmetic expressions
	I.5.3 Unary expressions
	I.5.4 Primary expressions

	Annex J (normative): System action library
	J.1 Transitions
	J.1.1 Forward navigate to another scene
	J.1.2 Historical navigate to a previous scene
	J.1.3 Erasing the history stack
	J.1.4 Reading the history stack
	J.1.5 Navigate to another service

	J.2 Exit
	J.2.1 Exiting the service session

	J.3 Presentation
	J.3.1 Controlling rendering

	J.4 Environment
	J.4.1 Getting the time
	J.4.2 Getting the platform identifier
	J.4.3 Getting the receiver identifier
	J.4.4 Getting the default language

	J.5 XML Shortcuts
	J.5.1 Scene navigate shortcut
	J.5.2 Service navigate shortcut
	J.5.3 History navigate shortcut
	J.5.4 Exit action shortcut

	Annex K (normative): User keys
	K.1 Virtual key codes
	K.2 Key code descriptions
	K.2.1 Numeric keys
	K.2.2 Navigation keys
	K.2.3 Coloured keys
	K.2.4 Service-level control keys
	K.2.5 Unknown key

	Annex L (informative): Scalability techniques
	Annex M (normative): Service announcement and boot
	Annex N (informative): Independent authoring of elements of a service description
	Annex O (informative): StreamEvent bindings
	O.1 XML document binding
	O.2 MXF document binding
	O.3 AAF document binding

	Annex P (informative): Receiver handling of aspect ratio
	Annex Q (normative): Standard PCF URNs
	Annex R (informative): Example PCF service descriptions
	R.1 "Hello World!"
	R.1.1 Simplest possible description
	R.1.2 External content
	R.1.3 Service and scene defined in separate source documents

	R.2 Templated authoring
	R.2.1 Scene item defined using a template
	R.2.2 Scene item defined using multiple templates

	R.3 Presenting streamed content
	R.3.1 Default elementary media streams using a URN
	R.3.2 From specific broadcast service using a URN
	R.3.3 From specific broadcast service using a URL
	R.3.4 From local file using a URL

	R.4 Miscellaneous examples
	R.4.1 Service item contains "boilerplate" visible components

	Annex S (informative): Bibliography
	History

