

ETSI TS 102 809 V1.3.1 (2017-06)

Digital Video Broadcasting (DVB);
Signalling and carriage of interactive applications and
services in Hybrid broadcast/broadband environments

�

TECHNICAL SPECIFICATION

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)2

Reference
RTS/JTC-DVB-371

Keywords
broadcasting, DVB, internet, IP, multimedia

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2017.

© European Broadcasting Union 2017.
All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.

3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.

oneM2M logo is protected for the benefit of its Members
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)3

Contents

Intellectual Property Rights .. 10

Foreword ... 10

Modal verbs terminology .. 10

1 Scope .. 11

2 References .. 11

2.1 Normative references ... 11

2.2 Informative references .. 13

3 Definitions and abbreviations ... 13

3.1 Definitions .. 13

3.2 Abbreviations ... 14

4 Application models .. 15

4.1 Introduction .. 15

4.2 Starting and stopping applications .. 16

4.2.1 Applications bound to broadcast services ... 16

4.2.2 Applications bound to a content on demand item ... 16

4.2.3 Applications bound to a network operator .. 17

5 Signalling interactive applications and services ... 17

5.1 Semantics ... 17

5.2 Application metadata .. 17

5.2.1 Introduction... 17

5.2.2 Application types .. 18

5.2.2.1 Semantics .. 18

5.2.2.2 MPEG-2 Encoding .. 18

5.2.2.3 XML Encoding ... 18

5.2.3 Application identification ... 18

5.2.3.1 Semantics .. 18

5.2.3.2 MPEG-2 encoding ... 19

5.2.3.3 XML encoding .. 19

5.2.4 Application control codes ... 19

5.2.4.1 Semantics .. 19

5.2.4.2 MPEG-2 encoding ... 20

5.2.4.3 XML encoding .. 20

5.2.5 Platform profiles ... 20

5.2.5.1 Semantics .. 20

5.2.5.2 MPEG-2 encoding ... 21

5.2.5.3 XML encoding .. 21

5.2.6 Application visibility .. 21

5.2.6.1 Semantics .. 21

5.2.6.2 MPEG-2 encoding ... 22

5.2.6.3 XML encoding .. 22

5.2.7 Application priority... 22

5.2.7.1 Semantics .. 22

5.2.7.2 MPEG-2 encoding ... 22

5.2.7.3 XML encoding .. 22

5.2.8 Application icons .. 22

5.2.8.1 Semantics .. 22

5.2.8.2 MPEG-2 encoding ... 23

5.2.8.3 XML encoding .. 23

5.2.9 Graphics constraints .. 24

5.2.9.1 Semantics .. 24

5.2.9.1.0 Introduction ... 24

5.2.9.1.1 Supported graphics configurations .. 24

5.2.9.1.2 Running without a visible UI ... 24

5.2.9.1.3 Handling changed graphics configurations.. 24

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)4

5.2.9.1.4 Handling externally controlled video .. 24

5.2.9.2 MPEG-2 encoding ... 25

5.2.9.3 XML encoding .. 25

5.2.10 Application usage ... 25

5.2.10.1 Semantics .. 25

5.2.10.2 MPEG-2 encoding ... 25

5.2.10.3 XML encoding .. 26

5.2.11 Stored applications .. 26

5.2.11.1 Semantics .. 26

5.2.11.1.0 Introduction ... 26

5.2.11.1.1 Lifecycle of stored applications ... 26

5.2.11.1.2 Application versioning .. 27

5.2.11.1.3 Launching applications from the cache ... 27

5.2.11.1.4 Storage priority .. 28

5.2.11.2 MPEG-2 encoding ... 28

5.2.11.3 XML encoding .. 29

5.2.12 Application Description File ... 29

5.2.12.1 Description .. 29

5.2.12.2 Application description file name and location ... 29

5.2.12.3 Syntax ... 29

5.2.12.4 Semantics .. 30

5.3 MPEG-2 table and section syntax .. 31

5.3.1 Summary ... 31

5.3.1.1 Summary of common signalling ... 31

5.3.1.2 Summary of additional signalling for applications carried via OC ... 31

5.3.1.3 How to add a new scheme (informative) ... 31

5.3.2 Program specific information ... 31

5.3.2.0 Introduction ... 31

5.3.2.1 Application signalling stream.. 32

5.3.2.2 Data broadcast streams .. 32

5.3.3 Notation .. 32

5.3.3.1 reserved ... 32

5.3.3.2 reserved_future_use .. 32

5.3.4 Application Information Table ... 32

5.3.4.0 Introduction ... 32

5.3.4.1 Data errors ... 33

5.3.4.2 AIT transmission and monitoring ... 33

5.3.4.3 Optimized AIT signalling ... 33

5.3.4.4 Visibility of AIT .. 33

5.3.4.5 Definition of sub-table for the AIT ... 34

5.3.4.6 Syntax of the AIT .. 34

5.3.4.7 Use of private descriptors in the AIT .. 35

5.3.4.8 Text encoding in AIT .. 35

5.3.4.9 Access to an MPEG-2 format AIT via a broadband connection ... 35

5.3.4.9.0 Introduction ... 35

5.3.4.9.1 Syntax .. 36

5.3.4.9.2 Syntactic restrictions ... 36

5.3.4.9.2.1 Transport protocols .. 36

5.3.4.9.3 MIME type .. 36

5.3.5 Generic descriptors ... 36

5.3.5.1 Application signalling descriptor .. 36

5.3.5.2 Data broadcast id descriptor .. 37

5.3.5.2.0 Introduction ... 37

5.3.5.2.1 Generic descriptor ... 37

5.3.5.2.2 Data broadcast id descriptor for interactive application .. 38

5.3.5.3 Application descriptor ... 38

5.3.5.4 Application recording descriptor ... 39

5.3.5.5 Application usage descriptor ... 41

5.3.5.6 User information descriptors ... 42

5.3.5.6.0 Introduction ... 42

5.3.5.6.1 Application name descriptor .. 42

5.3.5.6.2 Application icons descriptor .. 42

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)5

5.3.5.7 External application authorization descriptor .. 43

5.3.5.8 Graphics constraints descriptor ... 44

5.3.6 Transport protocol descriptors .. 44

5.3.6.0 Introduction ... 44

5.3.6.1 Syntax of selector bytes for OC transport ... 45

5.3.6.2 Syntax of selector bytes for interaction channel transport .. 46

5.3.7 Simple application location descriptor .. 47

5.3.7.0 Introduction ... 47

5.3.7.1 Example .. 48

5.3.8 Simple application boundary descriptor ... 48

5.3.9 Service information... 49

5.3.9.1 Data broadcast descriptor for interactive application announcement .. 49

5.3.10 Stored applications .. 51

5.3.10.1 Application storage descriptor .. 51

5.4 XML-based syntax ... 51

5.4.0 Introduction... 51

5.4.1 Service bound application signalling .. 52

5.4.2 Signalling of unbound applications .. 52

5.4.3 Extensions to defined SD&S elements ... 52

5.4.3.1 Package ... 52

5.4.3.2 IP Service .. 52

5.4.3.3 ServiceProvider ... 53

5.4.4 New XML element definitions ... 53

5.4.4.1 ApplicationList .. 53

5.4.4.2 Application .. 53

5.4.4.2.0 Overview ... 53

5.4.4.2.1 Application Specific Information (informative) .. 54

5.4.4.3 ApplicationIdentifier ... 54

5.4.4.4 ApplicationDescriptor ... 54

5.4.4.5 VisibilityDescriptor ... 55

5.4.4.6 IconDescriptor ... 55

5.4.4.7 AspectRatio ... 55

5.4.4.8 MhpVersion .. 55

5.4.4.9 StorageCapabilities ... 56

5.4.4.10 StorageType .. 56

5.4.4.11 ApplicationType .. 56

5.4.4.12 DvbApplicationType ... 56

5.4.4.13 ApplicationControlCode ... 56

5.4.4.14 ApplicationSpecificDescriptor .. 57

5.4.4.15 AbstractIPService .. 57

5.4.4.16 ApplicationOfferingType .. 57

5.4.4.17 ServiceDiscovery .. 57

5.4.4.18 ApplicationUsageDescriptor ... 58

5.4.4.19 TransportProtocolDescriptorType ... 58

5.4.4.20 HTTPTransportType ... 58

5.4.4.21 OCTransportType ... 58

5.4.4.22 ComponentTagType .. 59

5.4.4.23 SimpleApplicationLocationDescriptorType ... 59

5.4.4.24 SimpleApplicationBoundaryDescriptorType .. 59

5.4.5 ApplicationDiscovery record .. 59

5.5 Constant values .. 60

6 Referencing DVB services ... 61

6.1 DVB URL syntax and semantics .. 61

6.2 DVB URL resolution.. 61

6.2.1 Service identifier descriptor .. 61

7 Application transport .. 62

7.1 Object carousel ... 62

7.2 HTTP .. 62

8 Synchronization .. 63

8.1 Introduction .. 63

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)6

8.2 Referencing .. 63

9 Protection ... 64

9.1 Introduction .. 64

9.2 Scope .. 64

9.3 Discovery, signalling and carriage of protection data .. 64

9.3.1 Overview (informative) .. 64

9.3.2 Discovery .. 65

9.3.2.1 Authenticating components of a service ... 65

9.3.2.2 Authentication of interactive components of a service ... 65

9.3.3 PSI signalling .. 65

9.3.4 Carriage .. 66

9.3.5 Time parameters ... 66

9.3.5.1 Repetition rate of authentication messages ... 66

9.3.5.2 Repetition rate of certificate collection ... 66

9.4 Signing and verification ... 67

9.4.1 Overview (informative) .. 67

9.4.2 Verification procedure reference model ... 68

9.4.2.1 General verification principles .. 68

9.4.2.2 Verification of authentication sub_tables .. 68

9.4.2.3 Verification of payload sections .. 69

9.4.3 Authentication messages ... 70

9.4.4 Performance enhancements (informative) .. 73

9.4.5 Transport Stream constraints .. 73

9.4.6 Receiver requirements .. 73

9.4.6.1 Overview ... 73

9.4.6.2 Receiver minimum requirements .. 74

9.4.6.3 Additional requirements .. 74

9.5 Trust management .. 75

9.5.1 Overview .. 75

9.5.2 Establishing trust for stand-alone services .. 75

9.5.2.1 Introduction ... 75

9.5.2.2 State machine .. 76

9.5.2.3 Measuring probation and timeout periods ... 79

9.5.2.4 Behaviour while trust has yet to be established... 80

9.5.3 Coordinating entity assists establishing trust (optional) ... 80

9.5.4 Trust messages .. 81

9.5.4.1 About certificate chains (informative) .. 81

9.5.4.2 Succession of certificates .. 82

9.5.4.3 Security considerations (informative) ... 83

9.5.4.4 Certificate properties and configurations .. 84

9.5.4.5 General certificate collection construction rules ... 86

9.5.4.6 Certificate collection construction rules for stand-alone services ... 86

9.5.4.7 Certificate chain construction assisted by a coordinating entity (optional) ... 87

9.5.4.8 Signalling in the Transport Stream .. 89

9.5.4.8.1 Overview ... 89

9.5.4.8.2 Encoding the certificate collection .. 89

9.5.4.8.3 Updating the certificate collection ... 90

9.5.4.8.4 Terminating the trust signalling ... 90

9.5.4.8.5 Certificate collection message ... 90

9.5.4.9 Certificate ordering within certificate collection ... 91

9.5.4.10 Certificate encoding .. 92

9.5.4.10.1 Overview ... 92

9.5.4.10.2 DVBCertificate syntax .. 92

9.5.4.10.3 TBSDVBCertificate syntax ... 93

9.5.4.10.4 TBSDVBCertificate extensions ... 94

9.5.4.10.5 Computing and comparing key identifiers... 95

9.5.5 Device behaviour .. 95

9.5.5.1 State stored when trust is established .. 95

9.5.5.2 Verifying that a certificate chain is coherent ... 95

9.5.5.2.1 Common rules for certificate chain verification .. 95

9.5.5.2.2 Receivers without coordinating entity certificates ... 96

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)7

9.5.5.2.3 Receivers with coordinating entity certificates (optional) ... 96

9.5.5.3 Verifying succession of certificate chains anchored in a manager certificate 96

9.5.5.4 Verifying succession of certificate chains anchored in a coordinating entity certificate 97

Annex A (informative): Elements defined by the platform specification .. 98

A.1 Introduction .. 98

A.2 Elements which are defined by the platform specification .. 98

Annex B (normative): Object carousel ... 99

B.1 Introduction .. 99

B.1.0 General ... 99

B.1.1 Key to notation ... 99

B.2 Object carousel profile ... 99

B.2.0 Introduction .. 99

B.2.1 DSM-CC sections ... 99

B.2.1.0 Basic requirements .. 99

B.2.1.1 Sections per TS packet .. 100

B.2.2 Data carousel .. 100

B.2.2.0 Scope .. 100

B.2.2.1 General .. 100

B.2.2.2 DownloadInfoIndication ... 100

B.2.2.3 DownloadServerInitiate .. 101

B.2.2.4 ModuleInfo ... 101

B.2.2.4.0 The moduleInfo field... 101

B.2.2.4.1 Label descriptor ... 102

B.2.2.4.2 Caching priority descriptor ... 102

B.2.2.5 ServiceGatewayInfo.. 103

B.2.2.6 Download cancel .. 103

B.2.2.7 DownloadDataBlock ... 104

B.2.3 The object carousel ... 104

B.2.3.1 BIOP Generic Object Message ... 104

B.2.3.2 CORBA strings ... 104

B.2.3.3 BIOP FileMessage .. 104

B.2.3.4 Content type descriptor ... 105

B.2.3.5 BIOP DirectoryMessage ... 106

B.2.3.6 BIOP ServiceGateway message .. 108

B.2.3.7 BIOP Interoperable Object References ... 108

B.2.3.7.0 IOR structure ... 108

B.2.3.7.1 BiopProfileBody ... 108

B.2.3.7.2 LiteOptionsProfileBody .. 110

B.2.3.8 BIOP StreamMessage ... 112

B.2.3.9 BIOP StreamEventMessage .. 114

B.2.3.10 Additional tapUse values .. 115

B.2.4 Broadcast timebases and events ... 116

B.2.4.0 Introduction... 116

B.2.4.1 Stream and StreamEvent messages ... 116

B.2.4.1.1 Association with time bases .. 116

B.2.4.1.2 Event names and event IDs ... 117

B.2.4.1.3 Stream event life time ... 117

B.2.4.2 Stream descriptors .. 117

B.2.4.2.1 NPT reference descriptor .. 117

B.2.4.2.2 Stream event descriptor ... 117

B.2.4.2.2.1 Association of event ids to event time ... 117

B.2.4.2.2.2 Re-use of event ids .. 117

B.2.4.2.2.3 Signalling of "do it now events" .. 117

B.2.4.2.2.4 Private data .. 118

B.2.4.2.3 Unused descriptors .. 118

B.2.4.3 DSM-CC sections carrying stream descriptors ... 118

B.2.4.3.1 Section version number ... 118

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)8

B.2.4.3.2 Single firing of "do it now" events .. 118

B.2.4.3.3 Section number ... 118

B.2.4.3.4 DSM-CC sections for DSMCC_descriptor_list() .. 118

B.2.4.3.5 Encoding of table id extension .. 118

B.2.4.4 Broadcast timebases .. 119

B.2.4.4.0 Introduction ... 119

B.2.4.4.1 DVB Timeline (Optional) ... 119

B.2.4.5 Broadcast events ... 119

B.2.4.5.1 DSM-CC "do it now" stream events ... 119

B.2.4.5.2 DSM-CC scheduled stream events .. 119

B.2.4.5.3 DVB synchronized events ... 120

B.2.4.6 Monitoring broadcast timebases and events ... 120

B.2.4.6.1 Timebase reference monitoring ... 120

B.2.4.6.2 Timebase stimulated event monitoring ... 120

B.2.4.6.3 DSM-CC "do it now" stream events ... 121

B.2.4.6.4 DSM-CC scheduled stream events .. 121

B.2.4.6.5 Number of timebase components .. 121

B.2.4.6.6 DVB synchronized events ... 121

B.2.5 Assignment and use of transactionId values ... 122

B.2.5.1 Informative background .. 122

B.2.5.2 DVB semantics of the transactionId field ... 122

B.2.6 Mapping of objects to data carousel modules... 123

B.2.7 Compression of modules .. 123

B.2.8 Mounting an object carousel .. 124

B.2.8.0 Introduction... 124

B.2.8.1 carousel_identifier_descriptor... 124

B.2.9 Unavailability of a carousel .. 126

B.2.10 Delivery of carousels within multiple services ... 126

B.3 AssociationTag mapping .. 127

B.3.1 Decision algorithm for association tag mapping .. 127

B.3.1.1 TapUse is not BIOP_PROGRAM_USE ... 127

B.3.1.2 TapUse is BIOP_PROGRAM_USE ... 128

B.3.2 DSM-CC association_tags to DVB component_tags ... 128

B.3.3 deferred_association_tags_descriptor ... 128

B.4 Example of an object carousel (informative) ... 128

B.5 Caching... 130

B.5.0 Introduction .. 130

B.5.1 Determining file version ... 130

B.5.2 Transparency levels of caching .. 130

B.5.2.0 Introduction... 130

B.5.2.1 Transparent caching .. 130

B.5.2.1.0 Introduction ... 130

B.5.2.1.1 Active caching ... 131

B.5.2.1.2 Passive caching ... 131

B.5.2.1.3 DII repetition rate .. 131

B.5.2.2 Semi-transparent caching .. 131

B.5.2.2.0 Introduction ... 131

B.5.2.2.1 Implications for the receiver (informative) ... 132

B.5.2.3 Static caching .. 132

B.5.2.3.0 Introduction ... 132

B.5.2.3.1 Implications for the broadcaster (informative) .. 132

B.5.2.3.2 Implications for the receiver (informative) ... 132

B.5.3 Dynamic carousel structure .. 132

Annex C (normative): Generic Application Western European Character Set 133

Annex D (normative): ASN.1 for DVBCertificate ... 134

D.1 According to IETF RFC 5912 .. 134

D.2 According to IETF RFC 5280 .. 135

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)9

Annex E (informative): Walkthrough of device operations when establishing and
maintaining trust for stand-alone services .. 146

E.1 Thread 1: Managing state timeouts in the absence of incoming coherent trust signalling 146

E.2 Thread 2: Managing the processing of incoming certificate collection messages 146

Annex F (informative): Bibliography ... 148

History .. 149

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)10

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

NOTE: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standards in the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body
by including in the Memorandum of Understanding also CENELEC, which is responsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active members in about
60 countries in the European broadcasting area; its headquarters is in Geneva.

European Broadcasting Union
CH-1218 GRAND SACONNEX (Geneva)
Switzerland
Tel: +41 22 717 21 11
Fax: +41 22 717 24 81

The Digital Video Broadcasting Project (DVB) is an industry-led consortium of broadcasters, manufacturers, network
operators, software developers, regulatory bodies, content owners and others committed to designing global standards
for the delivery of digital television and data services. DVB fosters market driven solutions that meet the needs and
economic circumstances of broadcast industry stakeholders and consumers. DVB standards cover all aspects of digital
television from transmission through interfacing, conditional access and interactivity for digital video, audio and data.
The consortium came together in 1993 to provide global standardization, interoperability and future proof
specifications.

The normative XML schemas referenced by the present document are attached as separate files contained in archive
ts_102809v010301p0.zip which accompanies the present document. The XML schemas included in the present
document are informative.

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)11

1 Scope
The present document defines a framework for the signalling and carriage of interactive applications or services in
broadcast and broadband networks. This framework covers:

• Signalling interactive applications or services in both classical broadcast networks and broadband networks.

• Distributing the files of interactive applications or services through either classical broadcast networks or
broadband networks.

• Synchronizing interactive applications or services to video or audio content distributed through classical
broadcast networks or broadband networks.

• Referencing video, audio or subtitle content distributed through classical broadcast networks or broadband
networks from interactive applications or services.

The present document is independent of any particular technology for interactive applications or services. It is intended
to be referenced by organizations defining how interactive applications or services are to be deployed and not used as a
stand-alone document in its own right. It is expected that those organizations will make a selection appropriate for their
market or deployment from among the functionality defined here. The use of "shall", "should" and similar terms in the
present document is intended to apply only if the particular feature is used and not to imply that the feature itself is
mandatory.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI EN 300 468: "Digital Video Broadcasting (DVB); Specification for Service Information (SI)
in DVB systems".

[2] ETSI EN 301 192 (V1.3.1): "Digital Video Broadcasting (DVB); DVB specification for data
broadcasting".

[3] ISO/IEC 13818-1: "Information technology - Generic coding of moving pictures and associated
audio information - Part 1: Systems".

[4] ISO/IEC 13818-6: "Information technology - Generic coding of moving pictures and associated
audio information: Part 6: Extensions for DSM-CC".

[5] IETF RFC 2616: "Hypertext Transfer Protocol - HTTP/1.1".

[6] ETSI TS 102 034: "Digital Video Broadcasting (DVB); Transport of MPEG-2 TS Based DVB
Services over IP Based Networks".

[7] ISO 639-2:1998: "Codes for the representation of names of languages - Part 2: Alpha-3 code".

[8] ISO/IEC 8859-1: "Information technology - 8-bit single-byte coded graphic character sets - Part 1:
Latin alphabet No. 1".

https://docbox.etsi.org/Reference/

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)12

[9] Object Management Group: "The Common Object Request broker: Architecture and
Specification".

NOTE: Available at http://www.omg.org/cgi-bin/doc?formal/97-09-01.pdf.

[10] IETF RFC 2045: "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies".

[11] IETF RFC 1950: "ZLIB Compressed Data Format Specification version 3.3".

[12] IETF RFC 1951: "DEFLATE Compressed Data Format Specification version 1.3".

[13] ETSI TS 102 823 (V1.1.1): "Digital Video Broadcasting (DVB); Specification for the carriage of
synchronized auxiliary data in DVB transport streams".

[14] IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

[15] ETSI TS 101 162: "Digital Video Broadcasting (DVB); Allocation of identifiers and codes for
Digital Video Broadcasting (DVB) systems".

[16] ATSC A/100-5: "DTV Application Software Environment level 1 (DASE-1); Part 5: ZIP Archive
Resource Format".

[17] W3C Recommendation: "XML Schema Part 0: Primer Second Edition".

NOTE: Available at http://www.w3.org/TR/xmlschema-0/

[18] IETF RFC 1945: "Hypertext Transfer Protocol - HTTP/1.0".

[19] IETF RFC 2818: "HTTP over TLS".

[20] ETSI TS 102 851: "Digital Video Broadcasting (DVB); Uniform Resource Identifiers (URI) for
DVB Systems".

[21] IETF RFC 1035: "Domain names - implementation and specification".

[22] ANSI X9.62: "Public Key Cryptography for the Financial Services Industry, The Elliptic Curve
Digital Signature Algorithm (ECDSA)".

[23] FIPS 180-4: "Secure Hash Standard (SHS)".

[24] NIST Special Publication 800-107: "Recommendation for Applications Using Approved Hash
Algorithms".

[25] IETF RFC 3447: "Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1".

[26] SECG SEC 2: "Recommended Elliptic Curve Domain Parameters".

NOTE: Available at http://www.secg.org/SEC2-Ver-1.0.pdf.

[27] IETF RFC 8032: "Edwards-curve Digital Signature Algorithm (EdDSA)".

[28] IETF RFC 5912: "New ASN.1 Modules for the Public Key Infrastructure Using X.509 (PKIX)".

[29] Recommendation ITU-T X.680: "Information technology - Abstract Syntax Notation One
(ASN.1): Specification of basic Notation".

[30] Recommendation ITU-T X.690: "Information technology - ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding
Rules (DER)".

[31] draft-josefsson-tls-ed25519-00: "Using EdDSA/Ed25519 in the Internet X.509 Public Key
Infrastructure".

NOTE: Available at https://tools.ietf.org/html/draft-josefsson-tls-ed25519-00.

http://www.omg.org/cgi-bin/doc?formal/97-09-01.pdf
http://www.w3.org/TR/xmlschema-0/
http://www.secg.org/SEC2-Ver-1.0.pdf
https://tools.ietf.org/html/draft-josefsson-tls-ed25519-00

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)13

[32] IETF RFC 5280: "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile".

[33] ETSI TS 102 770: "Digital Video Broadcasting (DVB); System Renewability Messages (SRM) in
DVB Systems".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI TS 102 727: "Digital Video Broadcasting (DVB); Multimedia Home Platform (MHP)
Specification 1.2.2".

[i.2] ETSI TR 101 202 (V1.1.1): "Digital Video Broadcasting (DVB); Implementation guidelines for
Data Broadcasting".

[i.3] IETF RFC 1738: "Uniform Resource Locators (URL)".

[i.4] IETF RFC 2396: "Uniform Resource Identifiers (URI): Generic Syntax".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

abstract service: mechanism to group a set of related unbound applications where some aggregator has taken the
responsibility to ensure that the set of related applications work together

NOTE: This is a generalization of a broadcast service to support applications not related to any broadcast TV or
radio service. A set of resident applications which a network operator has packaged together (e.g. chat,
email, WWW browser) could comprise one abstract service.

application: collection of assets and logic that together provide a self-contained interactive service to the user

application lifecycle: various states in which an application may exist and the transitions between them, including
starting and stopping

Application Programming Interface (API): interface between an application and a particular feature, function or
resource of the receiver

automatic channel scan: channel scan performed by the receiver that has not been explicitly requested by the user

NOTE: Examples of when these channel scans may be performed include at a fixed time in the middle of the
night or sometime after the receiver has been put into standby by the user.

classical broadcast network: network using classical broadcast technologies based on MPEG-2 transport streams
carried over a physical layer such as DVB-T, DVB-S or DVB-C

platform specification: document which references the present document and defines which parts of the present
document are applicable in a particular market or deployment

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)14

NOTE: The present document also identifies various properties, fields and behaviours that may be varied by a
platform specification.

reserved: when used in the clause defining the coded bit stream, indicates that the value may be used in the future for
ISO defined extensions

NOTE: Unless otherwise specified within the present document all "reserved" bits are set to "1".

reserved_future_use: when used in the clause defining the coded bit stream, indicates that the value may be used in the
future for ETSI defined extensions

NOTE: Unless otherwise specified within the present document all "reserved_future_use" bits are set to "1".

reserved_zero_future_use: when used in the clause defining the coded bit stream, indicates that the value may be used
in the future for ETSI defined extensions.

NOTE: All "reserved_zero_future_use" bits are set to "0".

selected service: TV or radio service which is currently being presented by the receiver and whose application
signalling is being monitored by the receiver

service: sequence of programmes under the control of a broadcaster which can be broadcast as part of a schedule

sub_table: collection of sections with the same value of table_id and:

• for an authentication_message_section: the same table_id_extension (authentication_group_id) and
version_number;

• for a certificate_collection_message_section: the same table_id_extension (trust_message_id) and
version_number.

NOTE: The table_id_extension field is equivalent to the fourth and fifth byte of a section when the
section_syntax_indicator is set to a value of "1".

unbound application: application which is not associated with a broadcast service

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ADF Application Description File
AFI Authority and Format Identifier
AIT Application Information Table
API Application Programming Interface
ASN.1 Abstract Syntax Notation 1
AV Audio Video
BIOP Broadcast Inter-ORB Protocol
CORBA Common Object Request Broker Architecture
CRC Cyclic Redundancy Check
DDB Download Data Block
DER Distinguished Encoding Rules
DII Download Info Indication
DNS Domain Name System
DSI Download Server Initiate
DSM-CC Digital Storage Media - Command and Control
DTD Document Type Definition
DVB Digital Video Broadcasting
DVB-SI DVB Service Information
EIT Event Information Table
EPG Electronic Programme Guide
ETSI European Telecommunications Standards Institute
FIFO First In, First Out
HTML Hyper Text Mark-up Language
HTTP Hyper Text Transport Protocol

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)15

HTTPS Hypertext Transfer Protocol - Secure
IEC International Electrotechnical Commission
IOR Interoperable Object References
IP Internet Protocol
IPR Intellectual Property Rights
ISO International Organization for Standardization
LSB Least Significant Byte
MHP Multimedia Home Platform
MPEG Moving Picture Expert Group
NPT Normal Play Time
NSAP Network Service Access Point
OC Object Carousel
ORB Object Request Broker
OUI Organizationally Unique Identifier
PAT Program Association Table
PID Packet IDentifier
PKIX Public Key Infrastructure X. 509
PMT Program Map Table
PNG Portable Network Graphics
PSI Program Specific Information
PVR Personal Video Recorder
SD&S Service Discovery and Selection
SDT Service Description Table
SI Service Information
STC System Time Clock
TS Transport Stream
TV TeleVision
UI User Interface
URL Uniform Resource Locator
UTC Coordinated Universal Time (literally Universel Temps Coordonné)
UTF Unicode Transformation Format
WWW World Wide Web
XML eXtensible Markup Language

4 Application models

4.1 Introduction
The present document can enable a wide range of different application models depending on which of the optional
features are selected. Below is a list of some of these, sorted from simplest to more complex:

• Applications bound to exactly one broadcast service which are started when that service is selected and
stopped when that service is de-selected.

• Applications bound to more than one broadcast service which are started when any such service is selected,
stopped when that service is de-selected, even if the de-selection is part of changing to a new service to which
the application is also bound.

• Applications which persist across service changes are applications bound to more than one broadcast service
that are started when any service to which they are bound is selected, run without interruption while any
service to which they are bound remains selected and stopped when no longer bound to any currently selected
service.

• Applications bound to a content item that is part of a broadcast service (for example an individual programme
or adverts) will be started when that content item starts (if the service is selected at that time) and terminated
when the content item finishes (if the service remains selected at that time).

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)16

• Applications bound to a content on demand item will either be handled identically to applications bound to
parts of a broadcast service (including the possibility for dynamic changes during the content on demand item)
or will be valid for the entire duration of the content item.

• Applications which are valid while the receiver is connected to a network operator or service platform
provider. In some deployments, this may be permanent.

4.2 Starting and stopping applications

4.2.1 Applications bound to broadcast services

When a broadcast service is selected, the following shall apply:

• The receiver shall determine if there are any applications signalled as being related to the service as defined by
clause 5.3 or clause 5.4 of the present document.

• Applications which are part of that service and which are signalled with a control code of AUTOSTART (see
table 3) and which are not still running from a previously presented service shall be started.

• Applications which are part of that service, which are signalled with a control code of AUTOSTART and
which are already running from a previously presented broadcast service shall continue to run uninterrupted.
A second instance of the application shall not be started.

• Applications which are part of that broadcast service and which are signalled with a control code of PRESENT
shall continue to run if already running but shall not be started if not already running.

• Running applications from any previously presented broadcast service which are not part of the new broadcast
shall be stopped as part of the change of presented service.

While a broadcast service continues to be presented as defined above, the following apply:

• Applications which are added to the service with a control code of AUTOSTART shall be automatically
started when their addition is detected by the receiver. Applications added to the service with any other control
code shall not be automatically started.

• Applications which are part of the service whose control code changes to AUTOSTART from some other
value shall be automatically started unless already running.

• Applications which are part of the service whose control code changes from AUTOSTART to PRESENT and
which are already running shall continue to run.

• Applications whose control code changes to KILL or DESTROY shall be stopped as defined by the semantics
which the application technology specification defines for those control codes.

When a broadcast service stops being selected, the following apply:

• Applications where the serviceBound element of the application_descriptor (see clauses 5.3.5.3 and 5.4.4.4) in
their signalling has value true shall be stopped.

• When an application continues running after change of broadcast service, it shall run as signalled in the new
service and not the former service.

4.2.2 Applications bound to a content on demand item

Applications bound to a content on demand item will either be handled identically to applications bound to parts of a
broadcast service (including the possibility for dynamic changes during the content on demand item) or will be valid for
the entire duration of the content item. In the latter case, applications whose control code is AUTOSTART shall be
started when the content item starts being presented and shall be stopped when the content item stops being presented.
Changes to application control codes are not possible.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)17

4.2.3 Applications bound to a network operator

Applications bound to a network operator may run at any time when a receiver is connected to that operator's network.
Applications with a control code of AUTOSTART shall be automatically started when the receiver is first connected to
that network or when the application(s) are added to the signalling. Where receivers can change from one network
operator to another, as part of this process, the former network operator's applications shall be stopped and the new
operator's applications started.

5 Signalling interactive applications and services

5.1 Semantics
This clause covers the following topics:

• How the receiver identifies the applications associated with a service and finds the locations from which to
retrieve them.

• The signalling that enables the broadcast to manage the lifecycles of applications.

• How the receiver can identify the sources of broadcast data required by the applications of a service.

Much of the signalling is generic. For example, the application_descriptor is independent of the application
representation. Other signalling may be defined by the platform specification. URIs used in this signalling shall comply
with the format and restrictions defined in [20].

5.2 Application metadata

5.2.1 Introduction

Applications may have a number of items of metadata associated with them. These are as follows:

• Type: Identifies the platform needed to run or present the application.

• Identifier: Identifies the application.

• Control code: Defines the lifecycle state of the application.

• Profile: Defines the minimum profile of receiver needed for this application.

• Visibility: Identifies whether the application is visible to the user or to other applications via an application
listing API (where such an API is supported).

• Priority: Defines the priority of the application relative to other signalled applications.

• Icons: Identifies the location of icons for this application.

• Graphics constraints: Identifies any constraints on this application with respect to changes in graphics
configuration or presented video.

• Storage information: Defines whether an application should be stored, and which application files should be
stored.

In this clause, each sub-clause first defines the semantics for that item of information and then the MPEG-2 and XML
based encodings of the item.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)18

5.2.2 Application types

5.2.2.1 Semantics

All applications have an associated type in order that a receiver can discard applications whose types it does not
support.

NOTE: The application type is not sufficient to guarantee that a receiver can run an application. For more
information, see the metadata relating to application profiles in clause 5.2.5.

5.2.2.2 MPEG-2 Encoding

In the MPEG-2 encoding, application types are identified by a 15-bit number. This enables receivers to filter out
signalling for unsupported application types. Defined application types are registered with DVB [15]. For historical
reasons, application types are registered with the ID MHP_Application_Type_ID.

5.2.2.3 XML Encoding

In the XML encoding, application types are strings, typically a MIME type. See clause 5.4.4.11.

5.2.3 Application identification

5.2.3.1 Semantics

Each application has an associated application identifier. This consists of two parts, the organisation_id and the
application_id as follows:

organisation_id: This field is a globally unique value identifying the organization that is responsible for the
application. These values are registered with DVB [15]. Values of zero shall not be encoded. For compatibility with
clause B.2.10 the most significant 8 bits of the organisation_id shall be zero.

application_id: This field uniquely identifies the application. This is allocated by the organization registered with the
organisation_id who decides the policy for allocation within the organization. Values of zero shall not be encoded.

The application_id values are divided into three ranges: one for unsigned applications, one for signed applications and
one for specially privileged applications. This is for security reasons. Applications transmitted as unsigned shall use an
application_id from the unsigned applications range and applications transmitted as signed shall use an application_id
from the signed applications range. Applications transmitted as privileged shall use an application_id from the
privileged applications range.

Table 1: Value ranges for application_id

application_id values Use
0x0000 Shall not be used
0x0001 to 0x3fff Application_ids for unsigned applications
0x4000 to 0x7fff Application_ids for signed applications
0x8000 to 0x9fff Application_ids for privileged applications
0xa000 to 0xfffd Reserved for future use by DVB
0xfffe Special wildcard value for signed applications of an organization
0xffff Special wildcard value for all applications of an organization

Application_id values 0xffff and 0xfffe are wild cards. They shall not be used to identify an application but, for
example, are allowed for use in the external_application_authorization_descriptor (see clause 5.3.5.7). The value 0xffff
matches all applications with the same organisation_id. The value 0xfffe matches all signed applications with the same
organisation_id.

The same application identifier may be used in different application types for applications performing essentially the
same function.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)19

5.2.3.2 MPEG-2 encoding

This is a 6 byte field with the following structure:

Table 2: Application identifier syntax

 No. of bits
application_identifier {
 organisation_id 32
 application_id 16
}

The same application_identifier() shall appear only once within the set of applications signalled for the same application
type.

5.2.3.3 XML encoding

The application identifier is defined by the following XML fragment where the elements are defined above.

<xsd:complexType name="ApplicationIdentifier">
 <xsd:sequence>
 <xsd:element name="orgId" type="xsd:unsignedInt"/>
 <xsd:element name="appId" type="xsd:unsignedShort"/>
 </xsd:sequence>
</xsd:complexType>

5.2.4 Application control codes

5.2.4.1 Semantics

This control code allows the broadcaster to signal to the receiver what to do with the application with regard to its
lifecycle. The set of codes have some differences between application types and precise semantics are defined on an
application type specific basis.

If the receiver receives a code that it does not recognize, the application shall continue in its current state.

Table 3: Application control code values

MPEG-2
encoding

Identifier Semantics

0x00 reserved_future_use
0x01 AUTOSTART The application shall be started when the service is selected, unless the

application is already running.
0x02 PRESENT The application is allowed to run while the service is selected, however it

shall not start automatically when the service becomes selected.
0x03 DESTROY The application shall be stopped but may be permitted the opportunity to

close down gracefully. Attempts to start the application shall fail.
0x04 KILL The application shall be stopped as soon as possible. Attempts to start

the application shall fail.
0x05 PREFETCH Application files should be cached by the receiver, if possible. The

application shall not be started and attempts to start it shall fail.
0x06 REMOTE This identifies an application that is not available on the current transport

stream and hence only available after tuning to a new transport stream or
if cached and signalled as launchable completely from cache.

0x07 DISABLED The application shall not be started and attempts to start it shall fail.
0x08 PLAYBACK_AUTOSTART The application shall not be run, neither direct from broadcast nor when in

timeshift mode. When a recording is being played back from storage, the
application shall be presented as if it was autostart.

0x09 to 0xFF reserved_future_use

Platform specifications should define which of these control codes are applicable.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)20

5.2.4.2 MPEG-2 encoding

The application control code is signalled through the application_control_code field for the application in the AIT (see
clause 5.3.4.6). The values are shown in table 3.

5.2.4.3 XML encoding

The XML encoding of the application control code is defined by the following fragment where the values are as defined
in table 3:

<xsd:simpleType name="ApplicationControlCode">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AUTOSTART"/>
 <xsd:enumeration value="PRESENT"/>
 <xsd:enumeration value="DESTROY"/>
 <xsd:enumeration value="KILL"/>
 <xsd:enumeration value="PREFETCH"/>
 <xsd:enumeration value="REMOTE"/>
 <xsd:enumeration value="DISABLED"/>
 <xsd:enumeration value="PLAYBACK_AUTOSTART"/>
 </xsd:restriction>
</xsd:simpleType>

5.2.5 Platform profiles

5.2.5.1 Semantics

Some platform specifications may define a number of different profiles, and potentially different versions of those
profiles. These fields define the minimum platform profile and version of that profile required by the application.
Platform specifications that use this information need to define what it means in their context.

application_profile: This field is an integer value which represents the platform profile required by the application.
This indicates that a receiver implementing one of the profiles listed in this loop is capable of executing the application.

version.major: This field carries the numeric value of the major sub-field of the profile version number.

version.minor: This field carries the numeric value of the minor sub-field of the profile version number.

version.micro: This field carries the numeric value of the micro sub-field of the profile version number.

The four above fields indicate the minimum profile on which an application will run. Applications may test for features
found in higher (backwards compatible) profiles and exploit them. The receiver shall only launch applications if the
following expression is true for at least one of the signalled profiles:

()

OR" logical" represents

AND" logical" represents

of"set the tobelongs" represents

:Where

ile)]})]}ation_profcro(applicversion.mi- terminal _microon_version[applicati

ile)]ation_profnor(applicversion.mi terminal_n.minor ion_versio{[applicat

ile)}ation_profnor(applicversion.mi terminal_minor n_version.applicatio({

ile))ation_profjor(applicversion.ma terminal_n.major ion_versio[(applicat

ile))ation_profjor(applicversion.ma terminal_.major on_version(applicati{

etprofiles_s terminal_ n_profileapplicatio

∨
∧
∈

≤∧
=∨
<∧

=∨
<∧

∈

NOTE: The encoding of these values may vary between application types and is defined by the interactive
services technology specification.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)21

5.2.5.2 MPEG-2 encoding

Profiles are encoded as part of the application descriptor as follows:

Table 4: Application profile encoding

 No. of bits Identifier Value
application_profiles_length 8 uimsbf
for(i=0; i<N; i++) {
 application_profile 16 uimsbf
 version.major 8 uimsbf
 version.minor 8 uimsbf
 version.micro 8 uimsbf
}

5.2.5.3 XML encoding

The XML encoding of the profiles is as follows:

<xsd:complexType name="MhpVersion">
 <xsd:sequence minOccurs="1">
 <xsd:element name="profile" type="ipi:Hexadecimal16bit "/>
 <xsd:element name="versionMajor" type="ipi:Hexadecimal8bit "/>
 <xsd:element name="versionMinor" type="ipi:Hexadecimal8bit "/>
 <xsd:element name="versionMicro" type="ipi:Hexadecimal8bit "/>
 </xsd:sequence>
</xsd:complexType>

NOTE: The name of the type is historical.

5.2.6 Application visibility

5.2.6.1 Semantics

The visibility field specifies whether the application is suitable to be offered to the end-user for them to decide if the
application should be launched. Table 5 lists the allowed values of this field.

NOTE: This applies equally to any generic launching menu application provided by the content or service
provider or the receiver manufacturer.

Table 5: Definition of visibility states for applications

MPEG-2
encoding

XML Encoding Description

00 NOT_VISIBLE_ALL This application shall not be visible either to applications via an application
listing API (if such an API is supported by the receiver) or to users via the
navigator with the exception of any error reporting or logging facility, etc.

01 NOT_VISIBLE_USERS This application shall not be visible to users but shall be visible to applications
via an application listing API (if such an API is supported by the receiver).

10 reserved_future_use
11 VISIBLE_ALL This application can be visible to users and shall be visible to applications via

an application listing API (if such an API is supported by the receiver).

This field is optional.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)22

5.2.6.2 MPEG-2 encoding

Application visibility is encoded in the visibility field of the application descriptor in the AIT (see clause 5.3.5.3).
Possible values for this field are given in table 5.

5.2.6.3 XML encoding

The XML encoding of the visibility is as follows:

<xsd:simpleType name="VisibilityDescriptor">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="NOT_VISIBLE_ALL"/>
 <xsd:enumeration value="NOT_VISIBLE_USERS "/>
 <xsd:enumeration value="VISIBLE_ALL"/>
 </xsd:restriction>
</xsd:simpleType>

See table 5 in clause 5.2.6.1 for the definition of these values.

5.2.7 Application priority

5.2.7.1 Semantics

The application priority identifies a relative priority between the applications signalled in a service:

• Where there is more than one application with the same application identification in a service, this priority
shall be used to determine which application is started.

• Where there are insufficient resources to continue running a set of applications, this priority shall be used to
determine which applications to stop or pause.

• A larger integer value indicates higher priority.

• If two applications have the same application identification and the same priority, the receiver may make an
implementation-dependent choice on which to start.

NOTE: Platform specifications may define special semantics for specific priority values.

5.2.7.2 MPEG-2 encoding

Application priority is encoded in the application_priority field of the application_descriptor (see clause 5.3.5.3).

5.2.7.3 XML encoding

Application priority is encoded in the priority field of the application descriptor (see clause 5.4.4.4).

5.2.8 Application icons

5.2.8.1 Semantics

One or more icons may be associated with an application. The content format for these possible icons shall be PNG.
Platform specifications may impose additional restrictions on the content format of icons.

Each icon has an icon locator and a set of flags that identify the size and aspect ratio of the icon.

The icon locator is the first part of the string that specifies the location of the icon files. It is relative to a location that
depends on the application type. The icon locator shall not end with a "/" slash character.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)23

The file names for the icon files are encoded in a standard way:

 filename = icon_locator "/dvb.icon." hex_string
 hex_string = 4*4hex
 hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c" | "d" | "e" | "f"
 digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

An icon file shall contain exactly one icon. The icon contained in the icon file shall have the format specified by the
4 hexadecimal digit postscript of its file name. The value of this postscript is given by the corresponding MPEG-2
encoding of the icon flags (see table 7).

5.2.8.2 MPEG-2 encoding

Information relating to the application icons is encoded in the application_icons_descriptor.

Table 6: Application icons descriptor syntax

 No.of bits Identifier Value
application_icons_descriptor() {
 descriptor_tag 8 uimsbf 0x0B
 descriptor_length 8 uimsbf
 icon_locator_length 8 uimsbf
 for (i=0; i<N; i++) {
 icon_locator_byte 8 uimsbf
 }
 icon_flags 16 bslbf
 for (i=0; i<N; i++) {
 reserved_future_use 8 bslbf
 }
}

Possible values for the icon_flags field are given in table 7.

Table 7: Definition of different icon flags

Icon flag bits Description of icon size and pixel aspect ratio
0000 0000 0000 0001 32 x 32 for square pixel display
0000 0000 0000 0010 32 x 32 for broadcast pixels on 4:3 display (see note)
0000 0000 0000 0100 24 x 32 for broadcast pixels on 16:9 display
0000 0000 0000 1000 64 x 64 for square pixel display
0000 0000 0001 0000 64 x 64 for broadcast pixels on 4:3 display (see note)
0000 0000 0010 0000 48 x 64 for broadcast pixels on 16:9 display
0000 0000 0100 0000 128 x 128 for square pixel display
0000 0000 1000 0000 128 x 128 for broadcast pixels on 4:3 display (see note)
0000 0001 0000 0000 96 x 128 for broadcast pixels on 16:9 display
0000 0010 0000 0000 256 x 256 for square pixel display
0000 0100 0000 0000 256 x 256 for broadcast pixels on 4:3 display (see note)
0000 1000 0000 0000 192 x 256 for broadcast pixels on 16:9 display
xxxx 0000 0000 0000 reserved_future_use
NOTE: Approximatively 15/16 pixel aspect ratio on 50 Hz system.

If the icon_flags field of the application icons descriptor were to have a value indicating the presence of multiple icons,
each of the indicated icons would have its own icon file. For example, if icon_flags has a value of 0x0005, the directory
specified by icon_locator would contain two files named dvb.icon.0004 (for 24 x 32 square pixel rendering) and
dvb.icon.0001 (for 32 x 32 square pixel rendering).

5.2.8.3 XML encoding

Icon information is encoded in one or more IconDescriptor elements:

<xsd:complexType name="IconDescriptor">
 <xsd:attribute name="filename" type="xsd:string" use="required"/>
 <xsd:attribute name="size" type="xsd:unsignedShort" use="optional"/>
 <xsd:attribute name="aspectRatio" type="mhp:AspectRatio" use="optional"/>

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)24

</xsd:complexType>

NOTE 1: The MPEG-2 and XML encodings are intentionally different. The MPEG-2 encoding only carries the
icon_locator prefix and the remainder of the filename is computed. The XML encoding carries the
complete URL.

NOTE 2: The mhp:AspectRatio type is defined in clause 5.4.4.7 of the present document.

The size and aspectRatio attributes are defined as optional since they can be determined from the 4 hexadecimal digit
postscript of its file name, as defined in table 7.

5.2.9 Graphics constraints

5.2.9.1 Semantics

5.2.9.1.0 Introduction

Applications may be constrained in the graphics resolutions they support, or in their ability to handle changes in the
graphics or video configuration.

Constraints on the graphical capabilities of an application can be specified using a number of fields, defined below.

Applications where this information is not signalled shall be assumed to have the following graphics constraints:

• Supports standard definition video.

• Cannot run without a visible UI.

• Cannot handle changed graphics configurations.

• Cannot handle externally controlled video.

Applications where the set of signalled graphics configurations is empty shall be assumed not to be constrained to
particular graphics configuration(s). Either they do not use graphics or they are written to support the full range of
graphics configurations defined in the present document and tested accordingly.

5.2.9.1.1 Supported graphics configurations

Supported graphics configurations for an application are given by a list of one or more of supported configurations
(listed in table 9). The full screen configurations are sorted from most preferred to least preferred.

5.2.9.1.2 Running without a visible UI

The can_run_without_visible_ui flag indicates whether the application needs to display a user interface. If this flag is
set then the application can usefully run with no user interface visible. If this flag is not set then the application can only
usefully run with a user interface visible. Applications signalled with this flag set are responsible for detecting when it
would be reasonable to show their user interface again and requesting this as defined in the platform specification.

5.2.9.1.3 Handling changed graphics configurations

The handles_configuration_changed flag indicates whether the application is capable of handling changes in the
graphics configuration. If this flag is set then the application can handle changes in the graphics configuration between
the supported graphics configurations for this application (see clause 5.2.9.1.1). If this flag is not set then once the
default graphics configuration has been set for an application instance, it will only correctly display under that graphics
configuration.

5.2.9.1.4 Handling externally controlled video

The handles_externally_controlled_video flag indicates whether an application can usefully run when the presentation
of the video is under the control of a second application external to its service. If this flag is set then the application can
handle being displayed under these circumstances. Examples include picture in picture and picture outside picture.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)25

5.2.9.2 MPEG-2 encoding

The graphics_constraints_descriptor signals which constraints apply to the application.

Table 8: Graphics constraints descriptor syntax

 No. of bits Identifier Value
graphics_constraints_descriptor() {
 descriptor_tag 8 uimsbf 0x14
 descriptor_length 8 uimsbf
 reserved_future_use 5 bslbf
 can_run_without_visible_ui 1 bslbf
 handles_configuration_changed 1 bslbf
 handles_externally_controlled_video 1 bslbf
 for(i=0;i<N;i++) {
 graphics_configuration_byte 8 uimsbf
 }
}

Supported graphics configurations for an application are given by a list of one or more of the values listed in table 9.

Table 9: Graphics configuration byte values

Value Meaning
0 Reserved
1 Full screen standard definition
2 Full screen 960x540
3 Full screen 1 280x720
4 Full screen 1 920x1 080

5 to 31 Reserved for future use by DVB project
32 to 255 Reserved for future use

5.2.9.3 XML encoding

The XML encoding is not defined in the present document.

5.2.10 Application usage

5.2.10.1 Semantics

This identifies that the application provides a specific, well-known, service; for example teletext, EPG or chat.
Receivers may include a shortcut to start these services, for example a remote control key. Receivers may also include a
native UI offering access to these services.

5.2.10.2 MPEG-2 encoding

Table 10: Application usage descriptor

 No. of bits Identifier Value
application_usage_descriptor() {
 descriptor_tag 8 uimsbf 0x16
 descriptor_length 8 uimsbf
 usage_type 8 uimsbf
}

descriptor_tag: This 8 bit field with value 0x16 identifies the descriptor.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)26

usage_type: This 8 bit field indicates which service is provided by the application. It shall be coded according to
table 11.

Table 11: MPEG-2 encoding of application usage types

Type Value Description
0x00 reserved
0x01 Digital Text application

0x02 to 0x7F reserved for future use
0x80 to 0xFF usable by platform specifications (see note)

NOTE: Platform specification should define the domain in which these values are applicable, e.g. using a specific
data broadcast ID.

Platform specifications should define which of these usage types are applicable.

If no application_usage_descriptor is present then an application does not provide a specific well-known service.

5.2.10.3 XML encoding

The XML encoding of the application usage type is given by the ApplicationUsageDescriptor element:

<xsd:complexType name="ApplicationUsageDescriptor">
 <xsd:sequence>
 <xsd:element name="ApplicationUsage" type="xsd:anyURI" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

The ApplicationUsage element indicates which service is provided by the application. It shall be coded according to
table 12.

Table 12: XML encoding of application usage types

ApplicationUsage Value Description
urn:dvb:mhp:2009:digitalText Digital Text application

Platform specifications extending the usage types should prefix the value with the relevant namespace identifier for the
platform specification.

5.2.11 Stored applications

5.2.11.1 Semantics

5.2.11.1.0 Introduction

Storable applications follow the standard application signalling model defined in the present document. A receiver that
does not provide storage or does not recognize these extensions will perceive storable applications as viable
applications that potentially can be run from the broadcast connection. The signalling described in this clause augments
the signalling described elsewhere in the present document.

The primary focus of stored applications is to improve the startup behaviour of applications delivered over broadcast
connections. This feature is less relevant for applications delivered over a broadband connection.

5.2.11.1.1 Lifecycle of stored applications

Stored applications may be broadcast related or stand-alone.

If an application is broadcast related then the application's life cycle is controlled by the broadcast service. Such
applications are suitable for caching but not for running as a stand-alone application. For stored broadcast related
applications the broadcast signalling shall be used when launching the stored application. So, little information from the
signalling needs to be stored with the application.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)27

• If the application is stand-alone then the application can usefully be launched by the user independently of a
broadcast service. Applications with this property may also be launched as if broadcast related if the currently
selected service lists them in its signalling. For stored stand-alone applications, the signalling used when
launching the application shall come from a stored representation of the AIT.

5.2.11.1.2 Application versioning

The version field provides the version number of the application. This number starts at zero and increments by one each
time any of the files listed in the Application Description File (see clause 5.2.12) change or the contents of the
Application Description File itself change. Used values shall never be reused. In the event that the number range is
exhausted, a new application_id shall be used.

The is_launchable_with_older_version flag indicates whether an older cached version of an application may be run
even though a higher version is signalled in the broadcast. When set, the receiver shall start the cached application
where the version number of the cached application is lower than or equal to the version number of the broadcast
application. If the version number of the cached application is higher than the version number of the broadcast
application, the cached application shall not be started. If the flag is not set, the cached application shall not be started.

NOTE: If this flag is set, the cached application is responsible to handle version conflicts between cached
application code and broadcast application data.

5.2.11.1.3 Launching applications from the cache

The launchable_completely_from_cache flag indicates whether a connection to a transport protocol is required. When
set, this indicates that this application can be run entirely from cache, without connecting to the transport protocol
signalled in the application's signalling, assuming that all the critical files have been cached. If the flag is not set, a
connection to the transport protocol needs to be made in order to run this application as a broadcast-related application.
This flag only applies if the application is being run as a broadcast related application; it is ignored when storing an
application into a stored service, as all applications signalled as stand-alone can run without a connection to the
transport protocol when run as part of a stored service.

This flag shall only be set when the not_launchable_from_broadcast flag is also set.

NOTE: This flag should be set only for applications where the object carousel is not present at all.

The not_launchable_from_broadcast flag indicates whether an application can be usefully launched before it is
completely cached. When set, this indicates that the delivery characteristics of this application are such that it is not
useful to launch the application unless it has been completely cached/stored. If the flag is not set, then caching provides
some benefit but is not essential.

Applications in stored services and applications where the not_launchable_from_broadcast flag is set shall only be
launched where the receiver has stored the complete set of files which are listed in the Application Description File as
being critical.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)28

Table 13: Storage descriptor flag combinations

not_launchable
_from_broadcast

launchable_completely
_from_cache

is_launchable
with_older_version

Description

0 0 0 Normal case.
0 0 1 Shall not be signalled.
0 1 0 Shall not be signalled.
0 1 1 Shall not be signalled.
1 0 0 Runs if signalled version is stored.
1 0 1 Runs if signalled or older version is stored.

1 1 0

Runs completely from cache if signalled
version is stored. The application cannot be
stored due to unavailability of the object
carousel for the current service.

1 1 1

Runs if signalled or older version is stored. The
application cannot be stored due to
unavailability of the object carousel for the
current service.

When set, flag
indicates that files are
present but bitrate is
too low.

When set, flag indicates
that files are not present
in current broadcast at
all.

5.2.11.1.4 Storage priority

The storage priority of an application indicates the priority of this application for storage relative to the other
applications signalled in this service. It is only meaningful for applications which have been proactively cached by the
receiver implementation and shall be ignored otherwise.

Higher values indicate more important applications to store. The behaviour when applications have the same priority is
implementation dependent.

5.2.11.2 MPEG-2 encoding

Information about the storage capabilities for an application is carried in the application storage descriptor.

Table 14: Syntax of application storage descriptor

 No.of bits Identifier
application_storage_descriptor() {
 descriptor_tag 8 uimsbf 0x10
 descriptor_length 8 uimsbf
 storage_property 8 uimsbf
 not_launchable_from_broadcast 1 bslbf
 launchable_completely_from_cache 1 bslbf
 is_launchable_with_older_version 1 bslbf
 Reserved 5 bslbf
 Reserved 1 bslbf
 Version 31 uimsbf
 Priority 8 uimsbf
}

The storage_property field is encoded as follows:

Table 15: Semantics of storage property values

storage_property Property
0 broadcast related
1 stand alone

2 to 255 reserved

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)29

5.2.11.3 XML encoding

The XML encoding of the storage capabilities for an application is given by the StorageCapabilities element:

<xsd:complexType name="StorageCapabilities">
 <xsd:sequence minOccurs="0">
 <xsd:element name="storageProperty" type="mhp:StorageType"/>
 <xsd:element name="isStorable" type="xsd:boolean"/>
 <xsd:element name="canCache" type="xsd:boolean"/>
 </xsd:sequence>
 <xsd:attribute name="launchableFromBroadcast" type="xsd:boolean" use="required"/>
 <xsd:attribute name="launchableCompletelyFromCache" type="xsd:boolean" use="required"/>
 <xsd:attribute name="launchableWithOlderVersion" type="xsd:boolean" use="required"/>
</xsd:complexType>

NOTE 1: The mhp:StorageType type is defined in clause 5.4.4.10 of the present document.

NOTE 2: The storage priority is not defined in the XML encoding.

5.2.12 Application Description File

5.2.12.1 Description

The Application Description File (ADF) provides the list of files that need to be stored for an application as well as
other related necessary information. The notation uses an XML-based syntax.

For those applications that can be stored, an Application Description File shall be placed in the same carousel as the
application.

NOTE: The Application Description File does not duplicate all the information needed to run the application. The
receiver also needs to use the information in the application signalling when installing the application.

Where a file is listed in the Application Description File of more than one application and is stored, the receiver shall
ensure that each application sees the correct version of the file for that application. The version of the file visible to one
application shall not be changed by any changes in the version of the file visible to any other application which may
share that same file.

5.2.12.2 Application description file name and location

The location of an ADF should be defined in a platform specification. By convention, the name of an ADF is:

 'dvb.storage.oooooooo.aaaa'

 where:

 oooooooo is the organisation_id of the application as a 8 character hexadecimal string

 aaaa is the application_id as a 4 character hexadecimal string

The organisation_id and application_id shall be padded with leading zeros to the specified length.

Lowercase hex digits shall be used to encode the organisation_id and application_id.

5.2.12.3 Syntax

The syntax of the Application Description File is defined by the following XML DTD.

The PublicLiteral to be used for specifying this DTD in document type declarations of the XML files is:

 "-//DVB//DTD Application Description File 1.0//EN"

and the URL for the SystemLiteral is:

 "http://www.dvb.org/mhp/dtd/applicationdescriptionfile-1-0.dtd"

<!ENTITY % object "(dir|file)">

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)30

<!-- the main element for the application description -->
<!ELEMENT applicationdescription (%object;)+>

<!ATTLIST applicationdescription version NMTOKEN #REQUIRED>

<!ELEMENT dir (%object;)*>
<!ATTLIST dir
 name CDATA #REQUIRED
 priority NMTOKEN #IMPLIED
>

<!ELEMENT file EMPTY>
<!ATTLIST file
 name CDATA #REQUIRED
 priority NMTOKEN #IMPLIED
 size NMTOKEN #REQUIRED
>

5.2.12.4 Semantics

Version: A decimal integer denoting the version number of this application.

The value of this attribute shall not contain leading zeros (unless it is "0"). The value of this attribute shall also match
the version number signalled in the version field of the application storage descriptor in the AIT entry of this
application; if it does not, the application description file is invalid. (This field allows application authors to ensure that
the version number signalled in the AIT is correct. If it is wrong then this prevents any files being stored.)

Name: This attribute provides the name of a file system object (directory or file) that is storable. This is the name of the
object within its enclosing directory and hence does not include any directory path information. For the name attribute
of a file element only, the last character of the name can be the wild-card character "*". This character will match any
string including an empty string.

If name is "." or "..", contains the path separator character "/", or contains the character NUL (U+0000), then receivers
shall reject the ADF as invalid.

NOTE 1: No elements are provided for naming object types such as Stream or StreamEvent which are carried in an
object carousel, therefore there is no mechanism to specify that Stream and StreamEvent objects are
required to be stored.

NOTE 2: Listing a directory object in the file does not imply anything about those contents of the directory which
are not themselves listed in the file.

NOTE 3: Specifications which reference the present document may impose restrictions on file names which may be
used.

Paths are relative to the directory containing the application description file, i.e. <file> and <dir> elements immediately
inside the <applicationdescription> element refer to files and directories in the same directory as the application
description file.

Priority: This attribute describes how important it is to store this object. The value shall be between 0 and 255,
inclusive. If it is outside this range then the application description file is invalid. The value zero indicates that it is
critical to store the object (i.e. there is no benefit in storing any objects unless this part is stored). Higher values indicate
lower storage priority.

The default value for the priority attribute is zero (i.e. critical).

The priority for an object inherits from the immediately enclosing directory.

Size: This attribute defines the size in bytes of the file, or files where the name attribute includes a wild-card.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)31

5.3 MPEG-2 table and section syntax

5.3.1 Summary

5.3.1.1 Summary of common signalling

The minimum signalling requirements for any applications are summarized as follows:

• PMT with application signalling descriptor to identify the service component(s) carrying the Application
Information Table.

• Application Information Table with the following information in its common descriptor loop:

- transport_protocol_descriptor (all applications descriptions shall be within the scope of at least one
transport_protocol_descriptor. These can be placed in either or both of the descriptor loops).

• Application Information Table with the following information in its application information descriptor loop:

- application_descriptor;

- application_name_descriptor.

5.3.1.2 Summary of additional signalling for applications carried via OC

In either the "common" (first) descriptor loop or the "application" (inner) descriptor loop:

• transport_protocol_descriptor, with the selector bytes containing the OC specific information as defined in
table 31.

5.3.1.3 How to add a new scheme (informative)

The signalling scheme is intended to be extensible with regard to the application representations and transport protocols
that are supported. The areas that need to be addressed when doing this are summarized below.

To add further transport protocols:

• Extend table 30 "Semantics of selector bytes".

• Possibly define further specialist descriptors such as the IP_signalling_descriptor.

To add further application representations:

• Define further specialist descriptors if needed (see clause 10.9 "DVB-J specific descriptors" in the MHP
specification [i.1] for examples).

• Define the application type specific life cycle control codes in clause 5.2.4 "Application control codes".

Where constant values are registered by the present document extend the table 38 "Registry of constant values".

5.3.2 Program specific information

5.3.2.0 Introduction

The elementary stream (inner) loop of the PMT for a DVB service supporting one or more applications shall reference
streams for the following:

• Location of the stream(s) transporting the Application Information Table.

• Location of the stream(s) transporting the application code and data.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)32

5.3.2.1 Application signalling stream

The elementary stream information for the PMT entry describing the elementary stream carrying the Application
Information Table has the following characteristics:

• The stream_type is set to 0x05 (ISO/IEC 13818-1 [3], private sections).

• An application_signalling_descriptor (see clause 5.3.5.1).

There may be more than one elementary stream carrying application signalling information for a service.

5.3.2.2 Data broadcast streams

The minimum signalling in the PMT associated with data broadcast components is the value of the PMT stream_type
field required by the DVB data broadcasting specification (ETSI EN 301 192 [2]) for the transport protocol. The full
details of the data broadcast protocol, the location of its "principal" component etc. are provided in the AIT (see
clause 5.3.4 "Application Information Table").

Optionally, the PMT may include data_broadcast_id_descriptors.

NOTE: Inclusion of data_broadcast_id_descriptors enables receivers to start mounting the file system that
delivers applications concurrently with acquiring the AIT that identifies which applications are of interest.
Enabling this concurrent operation may allow receivers to accelerate their activation of an interactive
application. See clause B.2.8 "Mounting an object carousel".

The data_broadcast_id_descriptor identifies the "principal" component of the data broadcast. The detailed semantics of
this optional signalling reflects the transport protocol. For example, in the case of a DVB object carousel it identifies the
component carrying the DSI.

There may also be certain protocol specific descriptors in the PMT. For example, the object carousel requires the
inclusion of the carousel_identifier_descriptor (see clause B.2.8 "Mounting an Object Carousel").

In its minimum form (with no selector information) a data broadcast id descriptor just identifies the "principal"
component. This optionally may be extended with selector information that identifies the application types of the
autostart applications delivered by that data broadcast. See clause 5.3.5.2 "Data broadcast id descriptor".

5.3.3 Notation

5.3.3.1 reserved

The term "reserved" when used in the clause defining the coded bit stream, indicates that the value may be used in the
future for ISO defined extensions. Unless otherwise specified within the present clause all "reserved" bits shall be set to
"1".

5.3.3.2 reserved_future_use

The term "reserved_future_use", when used in the clause defining the coded bit stream, indicates that the value may be
used in the future for ETSI defined extensions. Unless otherwise specified within the present clause all
"reserved_future_use" bits shall be set to "1".

5.3.4 Application Information Table

5.3.4.0 Introduction

The Application Information Table (AIT) provides full information on the data broadcast, the required activation state
of applications carried by it, etc. The AIT comprises the set of AIT sub-tables (see clause 5.3.4.5) within the selected
service which have an application_type that the receiver can decode.

Data in the AIT allows the broadcaster to request that the receiver change the activation state of an application.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)33

5.3.4.1 Data errors

AITs which contain errors shall be processed as follows:

• An error in a descriptor shall result in that descriptor being silently discarded. Processing of that descriptor
loop shall continue with the next descriptor (if any). The scope of error detection of a descriptor should be
limited to the application information section in which it is carried.

• An error in an application loop outside a descriptor shall result in that entry in the application loop being
silently discarded. Processing of that application loop shall continue with the next entry (if any).

NOTE: The consequence of the above is that an error in a mandatory descriptor which results in that descriptor
being silently ignored may then result in an application loop which is missing such a mandatory
descriptor. Hence that application loop is silently ignored.

• An error in an application information section outside of an application loop shall result in that entire
application information section being silently discarded. Processing of the AIT shall continue with the next
application information section (if any).

5.3.4.2 AIT transmission and monitoring

Receivers shall monitor the PMT for changes in the number of AIT elementary streams present. The time within which
changes shall be detected is application type dependent. Receivers shall monitor all AIT elementary streams within the
selected service, as described in more detail below.

The minimum repetition rate for each AIT sub-table should be defined by the platform specification.

Provided that AITs for the selected service are delivered on 3 or fewer elementary streams then the maximum time
interval between the moment the AIT is updated and the moment the new version is detected by the receiver should be
defined by the platform specification.

NOTE: If broadcasts use more than 3 elementary streams to deliver AITs then receiver response time may
degrade in an unpredictable way.

The receiver is only required to monitor AIT sections for application types that it can decode. In this case, the
application signalling may only be passed on for a subset of the application types being broadcast, in the case where the
broadcast carries a superset of the receiver's capabilities.

Applications removed from the AIT sub-table which was signalling them but where that AIT sub-table remains present
in the network, shall be stopped as if they had been signalled with a DESTROY control code.

If the AIT sub-table signalling an application vanishes from the network completely, that application shall continue to
run. The receiver shall monitor for the re-appearance of the AIT sub-table as defined for the appearance of new AIT
sub-tables above while that service remains selected.

5.3.4.3 Optimized AIT signalling

The optional AIT_version_number carried by the application_signalling_descriptor allows a possible optimization of
receiver burden as it allows receivers to acquire the AIT only after they see changes in the AIT version advertised in the
PMT.

See clause 5.3.5.1 "Application signalling descriptor".

5.3.4.4 Visibility of AIT

If an application tunes away from a transport stream where its signalling is carried without selecting a new service, it
will continue running although the AIT is not visible.

In receivers with multiple network interfaces, if the AIT of the selected service is visible via any of them, then the AIT
signalling is used as normal.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)34

5.3.4.5 Definition of sub-table for the AIT

All sections on the same PID with the AIT table_id and the same value of application_type are members of the same
sub-table.

5.3.4.6 Syntax of the AIT

The Application Information Section describes applications and their associated information. Each Application
Information Section includes one "common" descriptor loop at the top level for descriptors that are shared between
applications of that sub table and a loop of applications. Each application in the application loop has an "application"
descriptor loop containing the descriptors associated with that application.

Like DVB SI tables, the scope of common loop descriptors is the sub-table. So, any descriptors present in the common
descriptor loop apply to all sections of the sub-table. Typically, common descriptors would normally only be present in
section 0 of a sub-table, unless there was not enough space.

Like other DVB SI tables, any strings contained in these tables shall not have null terminations.

Table 16: Application Information Section syntax

 No. of bits Identifier
application_information_section() {
 table_id 8 uimsbf
 section_syntax_indicator 1 bslbf
 reserved_future_use 1 bslbf
 reserved 2 bslbf
 section_length 12 uimsbf
 test_application_flag 1 bslbf
 application_type 15 uimsbf
 reserved 2 bslbf
 version_number 5 uimsbf
 current_next_indicator 1 bslbf
 section_number 8 uimsbf
 last_section_number 8 uimsbf
 reserved_future_use 4 bslbf
 common_descriptors_length 12 uimsbf
 for(i=0;i<N;i++){
 descriptor()
 }
 reserved_future_use 4 bslbf
 application_loop_length 12 uimsbf
 for(i=0;i<N;i++){
 application_identifier()
 application_control_code 8 uimsbf
 reserved_future_use 4 bslbf
 application_descriptors_loop_length 12 uimsbf
 for(j=0;j<N;j++){
 descriptor()
 }
 }
 CRC_32 32 rpchof
}

table_id: This 8 bit integer with value 0x74 identifies this table.

section_syntax_indicator: The section_syntax_indicator is a 1-bit field which shall be set to "1".

section_length: This is a 12-bit field, the first two bits of which shall be "00". The remaining 10 bits specify the
number of bytes of the section starting immediately following the section_length field, and including the CRC_32. The
value in this field shall not exceed 1 021 (0x3FD).

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)35

test_application_flag: This 1-bit field when set indicates an application which is transmitted for the purposes of
receiver testing and which shall not be started or listed in any API or displayed in any user interface by receivers under
normal operational conditions. The means (if any) by which a receiver is put into a mode where applications signalled
with this bit set are treated as if this field is set to zero is implementation dependent but should not be one which typical
end-users might discover on their own.

application_type: This is a 15-bit field which identifies the type of the applications described in this AIT sub_table.
See clause 5.2.2.2.

version_number: This 5-bit field is the version number of the sub_table. The version_number shall be incremented by
1 when a change in the information carried within the sub_table occurs. When it reaches value "31", it wraps around to
"0".

current_next_indicator: This 1-bit indicator shall be set to "1".

section_number: This 8-bit field gives the number of the section. The section_number of the first section in the
sub_table shall be "0x00". The section_number shall be incremented by 1 with each additional section with the same
table_id, and application_type.

last_section_number: This 8-bit field specifies the number of the last section (that is, the section with the highest
section_number) of the sub_table of which this section is part.

common_descriptors_length: This 12-bit field gives the total length in bytes of the following descriptors. The
descriptors in this descriptor loop apply for all of the applications contained in this AIT sub_table.

application_control_code: This 8-bit field controls the state of the application. The semantics of this field is
application type dependant. See clause 5.2.4 "Application control codes".

application_loop_length: This 12-bit field gives the total length in bytes of the following loop containing application
information.

application_identifier(): This 48 bit field identifies the application. The structure of this field is defined in clause 5.2.3
"Application identification".

application_descriptors_loop_length: This 12-bit field gives the total length in bytes of the following descriptors. The
descriptors in this loop apply to the specific application.

CRC_32: This is a 32-bit field that contains the CRC value that gives a zero output of the registers in the decoder
defined in annex B of ETSI EN 300 468 [1] after processing the entire section.

5.3.4.7 Use of private descriptors in the AIT

Private descriptors may be included in the AIT provided that they are in the scope of a DVB-SI ETSI EN 300 468 [1]
private data specifier descriptor. The scope rules for the private data specifier descriptor are as follows:

• If this descriptor is located within any descriptor loop of the AIT, then any specifier identified within this
descriptor loop applies to all following descriptors and user-defined values in the particular descriptor loop
until the end of the descriptor loop, or until another occurrence of a private_data_specifier_descriptor.

• The use of the descriptor in the common (first) descriptor loop does not apply to descriptors or user-defined
values in the application (second) descriptor loop.

5.3.4.8 Text encoding in AIT

Unless otherwise specified, all fields interpreted as text strings in the AIT shall be encoded as UTF8, but shall not
include the null character.

5.3.4.9 Access to an MPEG-2 format AIT via a broadband connection

5.3.4.9.0 Introduction

The AIT file contains the MPEG-2 encoding of an AIT in a form that may be loaded via HTTP and is used to group
applications that are not associated with a broadcast service.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)36

NOTE: Platform specifications which include support for the AIT file should define how this is used; for
example, passing an HTTP URL which refers to this file to a platform-defined API call.

Platform specifications should define any requirements for monitoring or polling an AIT file for changes.

5.3.4.9.1 Syntax

The interaction channel encoding of the AIT into the AIT file is as follows:

• A single file shall contain all of the data.

• The file shall contain a concatenation of Application Information Sections (specified in clause 5.3 of the
present document).

• The possibly multiple sections shall be ordered as follows:

- Ascending order of application_type.

- Within a single value of application_type in ascending order of section_number.

• All sections shall have current_next_indicator set to "1".

• Only the AUTOSTART and PRESENT application control codes (see table 3) are appropriate.

5.3.4.9.2 Syntactic restrictions

5.3.4.9.2.1 Transport protocols

The only allowed protocol_id has the value 0x0003. See table 29 "Protocol_id".

5.3.4.9.3 MIME type

The MIME type for an AIT file shall be "application/vnd.dvb.ait". The file extension shall be ".ait". Implementations
may also encounter the MIME type "application/dvb.ai" for the AIT used for backwards compatibility. Use of this
MIME type is not recommended for new applications, deployments of services.

5.3.5 Generic descriptors

5.3.5.1 Application signalling descriptor

The application_signalling_descriptor is defined for use in the elementary stream loop of the PMT where the
stream_type of the elementary stream is 0x05. It identifies that the elementary stream carries an Application
Information Table.

The application_signalling_descriptor optionally carries a loop of application_type and AIT_version_number pairs.
These allow the descriptor to optionally reproduce the current version number state of the associated Application
Information Table. This allows the receiver to be informed of the version of the AIT as a side effect of monitoring the
PMT (which is expected to be monitored closely, under normal conditions). See clause 5.3.4.3 "Optimized AIT
signalling".

When the receiver detects a change of the content of the application_signalling_descriptor, it shall acquire the new
version of the AIT and respond accordingly.

The presence of the application_type and AIT_version_number subfields is optional. If not present then the AIT
transmission and monitoring applies, see clause 5.3.4.2 "AIT transmission and monitoring".

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)37

Table 17: Application signalling descriptor syntax

 No. of bits Identifier
application_signalling_descriptor() {
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 for(i=0; i<N; i++){
 reserved_future_use 1
 application_type 15 uimsbf
 reserved_future_use 3 bslbf
 AIT_version_number 5 uimsbf
 }
}

descriptor_tag: This 8 bit integer with value 0x6F identifies this descriptor.

descriptor_length: This 8 bit field indicates the number of bytes following the descriptor length field.

application_type: This 15 bit field identifies the application type of an Application Information Table sub-table that is
on this elementary stream.

AIT_version_number: This 5 bit field provides the "current" version number of the Application Information Table
sub-table identified by the application_type field.

5.3.5.2 Data broadcast id descriptor

5.3.5.2.0 Introduction

The data_broadcast_id_descriptor is defined for use in the elementary stream information of the PMT. The descriptor
identifies:

• The transport format of the data broadcast whose "principal component" is on this elementary stream.

• The semantics of "principal component" is transport protocol specific.

• The set of application types for any autostart applications delivered by the data broadcast.

A single elementary stream may have more than one data_broadcast_id_descriptor to indicate conformance with more
than one data broadcast specification. In addition, more than one data_broadcast_id_descriptor may be used to list
additional application types within the scope of a particular data broadcast id.

More than one elementary stream may have a data_broadcast_id_descriptor indicating that auto start applications are
carried by more than one delivery mechanism (for example a single service may have more than one object carousel
delivering auto start applications).

5.3.5.2.1 Generic descriptor

The data_broadcast_id_descriptor is defined in a generic form by ETSI EN 300 468 [1] (illustrated in table 18). Where
no "id specific data" is provided the descriptor just identifies the "principal" component of a data broadcast.

Table 18: Generic data broadcast id descriptor syntax

 No.of bits Identifier Value
data_broadcast_id_descriptor() {
 descriptor_tag 8 uimsbf 0x66
 descriptor_length 8 uimsbf
 data_broadcast_id 16 uimsbf
 for (i=0; i<N; i++) {
 id specific data 8 bslbf
 }
}

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)38

5.3.5.2.2 Data broadcast id descriptor for interactive application

When the data_broadcast_id is 0x00F0 or 0x00F1, (see table 38) the syntax of the data_broadcast_id_descriptor is as
shown in table 19. This extends the generic descriptor with an optional list of application types for which autostart
applications may exist within the data broadcast. This list provides a hint to allow the receiver to prioritize connection
to a data broadcast when several are provided by the service. If no list is provided then the data_broadcast_id_descriptor
is silent on the types of autostart applications that may be carried by the data broadcast. If the application list is not
empty, then the data broadcast shall not include autostart applications of application types other than those in the list. It
is not required that the data broadcast always include autostart applications of all types in the list.

Table 19: data_broadcast_id_descriptor syntax for interactive applications

 No.of bits Identifier Value
data_broadcast_id_descriptor() {
 descriptor_tag 8 uimsbf 0x66
 descriptor_length 8 uimsbf
 data_broadcast_id 16 uimsbf
 for (i=0; i<N; i++) {
 reserved_future_use 1
 application_type 15 uimsbf
 }
}

descriptor_tag: This 8 bit integer with value 0x66 identifies this descriptor.

data_broadcast_id: This 16 bit field indicates the format of the data broadcast transport protocol. These values are
registered at http://www.dvb.org.

application_type: This 15 bit field indicates the type of the application. See clause 5.2.2 of the present document.

5.3.5.3 Application descriptor

Exactly one instance of the application_descriptor shall be contained in every "application" (inner) descriptor loop of
the AIT.

Table 20: Application descriptor syntax

 No.of bits Identifier Value
application_descriptor() {
 descriptor_tag 8 uimsbf 0x00
 descriptor_length 8 uimsbf
 application_profiles_length 8 uimsbf
 for(i=0; i<N; i++) {
 application_profile 16 uimsbf
 version.major 8 uimsbf
 version.minor 8 uimsbf
 version.micro 8 uimsbf
 }
 service_bound_flag 1 bslbf
 visibility 2 bslbf
 reserved_future_use 5 bslbf
 application_priority 8 uimsbf
 for(i=0; i<N; i++) {
 transport_protocol_label 8 uimsbf
 }
}

descriptor_tag: This 8 bit integer with value 0x00 identifies this descriptor.

application_profiles_length: This 8-bit field indicates the length of the application_profile loop in bytes.

application_profile: This 16-bit field identifies which application type specific profile is required by this application.
See clause 5.2.5 "Platform profiles".

http://www.dvb.org/

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)39

version.major: This 8-bit field indicates the major version number of the profile. See clause 5.2.5 "Platform profiles".

version.minor: This 8-bit field indicates the minor version number of the profile. See clause 5.2.5 "Platform profiles".

version.micro: This 8-bit field indicates the micro version number of the profile. See clause 5.2.5 "Platform profiles".

service_bound_flag: If this flag is set to "1", the application is only associated with the current service and so the
process of killing the application shall start at the beginning of the service change regardless of the contents of the
destination AIT.

visibility: This 2-bit field indicates whether the application is visible to other applications via an application listing API
(if supported by the platform) or to users. See clause 5.2.6 "Application visibility".

application_priority: This 8-bit field identifies the priority of the application relative to other signalled applications.
See clause 5.2.7 "Application priority".

transport_protocol_label: This 8-bit field identifies a transport protocol that delivers the application. See
transport_protocol_label in clause 5.3.6 "Transport protocol descriptors".

If more than one protocol is signalled then each protocol is an alternative delivery mechanism. The ordering indicates
the broadcaster's view of which transport connection will provide the best user experience (first is best). This may be
used as a hint by receiver implementations. It shall be evaluated only once during the life time of the application.

The protocol selection by the receiver may depend on a variety of factors including user preferences and the
performance of the transport connections to the receiver.

5.3.5.4 Application recording descriptor

The application_recording_descriptor can be signalled in the application descriptor loop of the AIT. This descriptor
contains extra information on application life cycle indicating in particular if an application is appropriate to use in
conditions of trick-mode playback. It indicates whether this application shall or shall not be recorded, when a program,
along with which this application is signalled, is recorded. It provides a means to specify the locations of data resources
that shall be recorded along with the application, as well as the labels of the object carousel modules of the application
that shall, should or should not be recorded.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)40

Table 21: Application recording descriptor syntax

Syntax No. of bits Identifier Comments/Value
application_recording_descriptor (){
 descriptor_tag 8 uimsbf 0x06
 descriptor_length 8 uimsbf
 scheduled_recording_flag 1 bslbf
 trick_mode_aware_flag 1 bslbf
 time_shift_flag 1 bslbf
 dynamic_flag 1 bslbf
 av_synced_flag 1 bslbf
 initiating_replay_flag 1 bslbf
 reserved 2 bslbf
 label_count 8 uimsbf N0
 for(i=0;i<N0;i++){
 label_length 8 uimsbf N1
 for(j=0; j<N1; j++) {
 label_char 8 uimsbf
 }
 storage_properties 2 uimsbf
 reserved 6
 }
 component_tag_list_length 8 uimsbf N2
 for(i=0;i<N2;i++){
 component_tag 8 uimsbf
 }
 private_length 8 uimsbf N3
 for(i=0;i<N3;i++){
 private 8 uimsbf
 }
 for(i=0;i<N4;i++){
 reserved_future_use 8 uimsbf
 }
}

descriptor_tag: This 8 bit integer with value 0x06 identifies this descriptor.

scheduled_recording_flag: This single bit flag, when set to '1', indicates that the application is appropriate to record
when the service in which it is signalled is recorded by a scheduled recording. When set to '0', it indicates that the
application is inappropriate to record by a scheduled recording. Examples of why an application would be inappropriate
to record include the application not having been tested in a PVR environment or that the application is closely related
to the time of transmission and would be meaningless to the end-user if played back from a recording (e.g. an
application tied to a live event).

trick_mode_aware_flag: This single bit flag, if set to '1', indicates that the application is trick-mode aware. If set to '0',
the application is not aware of trick-modes.

time_shift_flag: This single bit flag, when set to '1', indicates that the application is appropriate to record when the
service in which it is signalled is recorded in time-shift recording mode. When set to '0', it indicates that the application
is inappropriate to record in time-shift recording mode.

dynamic_flag: This flag indicates whether the application relies on the use of dynamic data from the broadcast during
its execution. When set to '1', it indicates that the application relies on the presence of files (either code or data) or
application signalling (e.g. application control code) which change during the lifetime of the piece of content. When set
to '0', it indicates that the application does not rely on dynamic data from the broadcast.

NOTE 1: The present document does not define behaviour for receivers that is conditional upon the value of this
flag. Platform specifications may use this flag in their determination of whether or not an application is
recordable.

av_synced_flag: This flag indicates whether the application requires use of stream events. If set to '1', this is required.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)41

NOTE 2: The present document does not define behaviour for receivers that is conditional upon the value of this
flag. Platform specifications may use this flag in their determination of whether or not an application is
recordable.

initiating_replay_flag: This single bit flag, if set to '1', indicates that the receiver shall not initiate the playback of the
streams located in the same recording as the application. The application is responsible for starting this playback. If set
to '0', the implementation shall initiate this playback in parallel with starting the application as would conventionally be
the case. This flag shall only be considered when playback of a recording is first started. After this time, the value of
this flag shall be ignored.

label_count: This 8-bit field identifies the number of labels that have been used.

label_length: This 8-bit field identifies the number of bytes in the label.

label_char: These 8-bit fields carry an array of bytes that label a part of the application within its transport protocol.

NOTE 3: The present document does not define which parts of applications can be labelled or the form of the label
(if any). Platform specifications that wish to use this mechanism need to define the format of labels.

storage_properties: A field indicating the importance of storing the labelled part of the application. Values for this
field are defined in table 22.

Table 22: Values for the storage_properties field

storage_properties value Definition
0 should not be stored
1 critical to store
2 optional to store
3 reserved

component_tag_list_length: This integer specifies the length in number of bytes of the list of component tags.

component_tag: This field identifies a service component that delivers data that is required by the application at
playback time and that shall be recorded along with the application and the audio, video and subtitle streams to be
recorded.

private: These bytes may be used for private extensions.

reserved_future_use: These reserved bytes may be used for future DVB extensions.

5.3.5.5 Application usage descriptor

The application_usage_descriptor identifies that the application provides a specific, well-known, service; for example
teletext, EPG or chat. Receivers may include a shortcut to start these services, for example a remote control key.
Receivers may also include a native UI offering access to these services. If no application_usage_descriptor is present
then an application does not provide a specific well-known service.

Table 23: Application usage descriptor

 No. of bits Identifier Value
application_usage_descriptor() {
 descriptor_tag 8 uimsbf 0x16
 descriptor_length 8 uimsbf
 usage_type 8 uimsbf
}

descriptor_tag: This 8 bit field with value 0x16 identifies the descriptor.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)42

usage_type: This 8 bit field indicates which service is provided by the application. It shall be coded according to
table 11.

5.3.5.6 User information descriptors

5.3.5.6.0 Introduction

The user information descriptors complement the application_descriptor by providing information suitable for
presentation to the user (where the application_descriptor provides technical information for automatic use by the
receiver).

These descriptors are defined for use in the "application" (inner) descriptor loop of the AIT.

5.3.5.6.1 Application name descriptor

Exactly one instance of this descriptor shall be included in the "application" (inner) descriptor loop. The application
name shall distinguish the application and shall be informative to the user.

Table 24: Application name descriptor syntax

 No.of bits Identifier Value
application_name_descriptor() {
 descriptor_tag 8 uimsbf 0x01
 descriptor_length 8 uimsbf
 for (i=0; i<N; i++) {
 ISO_639_language_code 24 bslbf
 application_name_length 8 uimsbf
 for (i=0; i<N; i++) {
 application_name_char 8 uimsbf
 }
 }
}

descriptor_tag: This 8 bit integer with value 0x01 identifies this descriptor.

ISO_639_language_code: This 24-bit field contains the ISO 639-2 [7] three character language code of the language of
the following application name. Both ISO 639.2/B and ISO 639.2/T may be used.

Each character is coded into 8 bits according to ISO 8859-1 [8] and inserted in order into the 24-bit field.

application_name_length: This 8 bit unsigned integer specifies the number of bytes in the application name.

application_name_char: This field carries one character of a string (not null terminated) of characters encoded in
accordance with annex A of ETSI EN 300 468 [1]. The string names the application in a manner intended to be
informative to the user. Specific application types may impose additional restrictions on the encoding of this value.

5.3.5.6.2 Application icons descriptor

Zero or one instance of this descriptor shall be included in the "application" (inner) descriptor loop. It allows icons to be
associated with the application.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)43

Table 25: Application icons descriptor syntax

 No.of bits Identifier Value
application_icons_descriptor() {
 descriptor_tag 8 uimsbf 0x0B
 descriptor_length 8 uimsbf
 icon_locator_length 8 uimsbf
 for (i=0; i<N; i++) {
 icon_locator_byte 8 uimsbf
 }
 icon_flags 16 bslbf
 for (i=0; i<N; i++) {
 reserved_future_use 8 bslbf
 }
}

descriptor_tag: This 8 bit integer with value 0x0B identifies this descriptor.

icon_locator_length: This 8 bit integer specifies the number of bytes in the string that prefixes standard icon file name.

icon_locator_byte: This 8 bit value is one byte of the icon locator string. See clause 5.2.8 "Application icons".

icon_flags: This 16-bit field identifies the size and aspect ratio of icons available for this application. See clause 5.2.8
"Application icons".

5.3.5.7 External application authorization descriptor

The "common" (first) descriptor loop of the Application Information Table may contain zero or more
external_application_authorization_descriptors. Each descriptor contains information about external applications that
are allowed to continue to run with the applications listed in this Application Information Table sub-table but cannot be
launched from this service. The external authorization applies to applications with the identified application_identifier()
that are of the application_type identified by the AIT subtable where this descriptor is contained.

Table 26: External application authorization descriptor syntax

 No.of bits Identifier Value
external_application_authorisation_descriptor() {
 descriptor_tag 8 uimsbf 0x05
 descriptor_length 8 uimsbf
 for(i=0; i<N; i++) {
 application_identifier()
 application_priority 8 uimsbf
 }
}

descriptor_tag: This 8-bit integer with value 0x05 identifies this descriptor.

application_identifier(): This 48-bit field identifies an application. The structure of this field is defined in clause 5.2.3
"Application identification".

application_priority: This 8-bit integer specifies the priority that this application assumes in the context of the current
service.

If the 0xffff or 0xfffe wildcard is used for the application_id within the application_identifier() and there are
applications from the same organisation_id explicitly signalled in the application loop of the AIT, the priority for those
applications shall be the one signalled in the application_descriptor (see clause 5.3.5.3).

See application_priority under clause 5.3.5.3 "Application descriptor".

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)44

5.3.5.8 Graphics constraints descriptor

The graphics_constraints_descriptor defines the circumstances under which an application can work (or has been tested
to work). These circumstances are:

• which full screen graphics resolutions an application supports;

• whether an application can work when its video is controlled (e.g. scaled to less than full screen size) by
another application not signalled as part of the current service (e.g. an EPG, a navigator, or an unbound
application running as part of an abstract service).

This descriptor may be present either in the "application" (inner) loop of an AIT in which case it applies to only that
application or the "common" (outer) loop of an AIT in which case it applies to all applications signalled in that AIT
sub-table.

Table 27: Graphics constraints descriptor syntax

 No. of bits Identifier Value
graphics_constraints_descriptor() {
 descriptor_tag 8 uimsbf 0x14
 descriptor_length 8 uimsbf
 reserved_future_use 5 bslbf
 can_run_without_visible_ui 1 bslbf
 handles_configuration_changed 1 bslbf
 handles_externally_controlled_video 1 bslbf
 for(i=0;i<N;i++) {
 graphics_configuration_byte 8 uimsbf
 }
}

Where the fields have the following meanings:

descriptor_tag: This 8 bit integer with value 0x14 identifies this descriptor.

descriptor_length: This 8 bit field indicates the number of bytes following the descriptor length field.

can_run_without_visible_ui: This single bit flag indicates whether the application can run without a visible UI. See
clause 5.2.9.1.2 "Running without a visible UI".

handles_configuration_changed: This single bit flag indicates whether the application can support changes in the
receiver's graphics configuration. See clause 5.2.9.1.3 "Handling changed graphics configurations".

handles_externally_controlled_video: This single bit flag indicates whether the application requires control over the
presentation of video in the same service. See clause 5.2.9.1.4 "Handling externally controlled video".

graphics_configuration_byte: These 8 bit fields contains a value specified in clause 5.2.9.1.1 "Supported graphics
configurations".

5.3.6 Transport protocol descriptors

5.3.6.0 Introduction

The transport_protocol_descriptor identifies the transport protocol associated with a service component and possibly
provides protocol dependent information.

The descriptor may be used in either the "common" (outer) descriptor loop or the "application" (inner) descriptor loop.
When in the "common" loop it applies to all of the applications in that sub-table. Any such descriptors in the
"application" loop describe additional transport protocols available to a specific application.

Each application shall be in the scope of at least one transport_protocol_descriptor.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)45

Table 28: Transport protocol descriptor syntax

 No.of bits Identifier Value
transport_protocol_descriptor() {
 descriptor_tag 8 uimsbf 0x02
 descriptor_length 8 uimsbf
 protocol_id 16 uimsbf
 transport_protocol_label 8 uimsbf
 for(i=0; i<N; i++) {
 selector_byte 8 uimsbf N1
 }
}

descriptor_tag: This 8 bit integer with value 0x02 identifies this descriptor.

protocol_id: An identifier of the protocol used for carrying the applications. The values of the protocol_id are
registered in the present document and at http://www.dvb.org.

Table 29: Protocol_id

protocol_id Description
0x0000 reserved_future_use
0x0001 Object Carousel as defined in annex B of the present document.
0x0002 reserved
0x0003 Transport via HTTP over the interaction channel as defined in clause 7.2.
0x0004 to 0x00FF Reserved for use by DVB.
0x0100 to 0xFFFF Subject to registration at http://www.dvb.org.

transport_protocol_label: This 8 bit field uniquely identifies a transport protocol within this AIT section. The
application_descriptor refers to this value to identify a transport connection that carries the application.

selector_byte: Additional protocol specific information.

Table 30: Semantics of selector bytes

protocol_id Selector byte data
0x0000 reserved_future_use
0x0001 See clause 5.3.6.1, "Syntax of selector bytes for OC transport"
0x0002 Reserved
0x0003 See clause 5.3.6.2, "Syntax of selector bytes for interaction channel transport"
0x0004 to 0xFFFF Not defined in this version of the present document

5.3.6.1 Syntax of selector bytes for OC transport

When the protocol ID is 0x0001 the selector bytes in the transport_protocol_descriptor shall be as shown in table 31.

Table 31: Syntax of selector bytes for OC transport

Syntax Bits Identifier
remote_connection 1 bslbf
reserved_future_use 7 bslbf
if(remote_connection == "1") {
 original_network_id 16 uimsbf
 transport_stream_id 16 uimsbf
 service_id 16 uimsbf
}
component_tag 8 uimsbf

http://www.dvb.org/
http://www.dvb.org/

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)46

remote_connection: This single bit flag if set to "1" indicates that the transport connection is provided by a broadcast
service that is different to the one carrying the AIT. Such applications shall not be autostarted by receivers but are
visible (subject to the visibility field of the application descriptor and the availability of an API for discovering
signalled applications) for possible launching by service selection (but not via an application launching API). When this
bit is set, the following 3 fields (original_network_id, transport_stream_id and service_id) are included in the selector
bytes. This flag shall be set to "0" when the transport connection is provided by the current service.

Applications with this flag set shall either have their application control code set to REMOTE (see table 3), or they shall
have an application_storage_descriptor with "launchable_completely_from_cache" set to "1" (see clause 5.2.11.1.3).

Applications where remote_connection is "1" that also have an application_storage_descriptor with
"launchable_completely_from_cache" set to "1" (see clause 5.2.11.1.3) are a special case. If such an application is
cached on the receiver, it can be launched in the usual way. There are no special restrictions on the control code for an
application signalled in this way - e.g. it could be PRESENT or even AUTOSTART. If the application is not cached on
the receiver, it cannot be launched and the signalled control code will be ignored - it will always be treated as if it was
REMOTE.

Remote applications can be cached and stored in the usual way if an application first tunes the network interface to the
appropriate transport stream.

original_network_id: This 16 bit field identifies the DVB SI original network id of the transport stream that provides
the transport connection.

transport_stream_id: This 16 bit field identifies the MPEG transport stream id of the transport stream that provides
the transport connection.

service_id: This 16 bit field identifies the DVB-SI service id of the service that provides the transport connection.

component_tag: Identifies the "principal" service component that delivers the application. The identified component is
the elementary stream that carries the DSI of the object carousel.

5.3.6.2 Syntax of selector bytes for interaction channel transport

When the protocol ID is 0x0003 the selector bytes in the transport_protocol_descriptor shall be as shown in table 32
"Syntax of selector bytes for interaction transport". This allows encoding of a number of URLs. The descriptor can also
be used in a simplified form where only one URL is encoded.

For efficiency when encoding possibly many similar URLs the encoding divides the URL into a shared base part and a
set of URL extensions. The set of URLs can identify ZIP [16] files, or base URLs ending in the "/" character, that
encapsulate portions of the file system.

Multiple transport protocol descriptors with the protocol ID value 0x0003 and the same transport protocol label may be
provided to define a larger set of URLs to describe the file system.

Table 32: Syntax of selector bytes for interaction transport

Syntax Bits Identifier
for(i=0; i<N; i++){
 URL_base_length 8 uimsbf
 for(j=0; j<N; j++){
 URL_base_byte 8 uimsbf
 }
 URL_extension_count 8 uimsbf
 for(j=0; j<URL_extension_count; j++){
 URL_extension_length 8 uimsbf
 for(k=0; k<URL_length; k++){
 URL_extension_byte 8 uimsbf
 }
 }
}

URL_base_length

This 8-bit field provides the number of bytes in the base part of the URL.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)47

URL_base_byte

These bytes form the first part of a HTTP URL conforming to HTTP 1.0 (see IETF RFC 1945 [18]), or the first part of
an HTTPS URL conforming to IETF RFC 2818 [19] or the first part of another URL conforming to IETF
RFC 3986 [14].

URL_extension_count

This 8-bit field indicates the number of URL extensions conveyed by this descriptor.

URL_extension_length

This 8-bit field indicates the number of bytes in the extension part of the URL.

URL_extension_byte

These bytes form the later part of an HTTP URL conforming to HTTP 1.0 (see IETF RFC 1945 [18]), or the later part
of an HTTPS URL conforming to IETF RFC 2818 [19] or else a URL whose scheme is supported by a registered
interaction channel transport service provider implementation.

URLs are formed by concatenating the URL extension with the preceding URL base. The URL so formed either
identifies a file system directory or a specific ZIP file.

In the simplified form, the following apply:

• Exactly one base URL shall be encoded.

• The URL formed by URL_base_byte shall be a URL ending with a slash ("/") character. References to ZIP
files are not permitted.

• URL_extension_count shall be zero.

• Only one transport_protocol_descriptor with protocol_id 0x0003 shall be present in the scope of the
application.

5.3.7 Simple application location descriptor

5.3.7.0 Introduction

One instance of this descriptor shall be contained in the "application" (inner) descriptor loop of the AIT for each
application.

Table 33: Simple application location descriptor syntax

 No.of bits Identifier Value
simple_application_location_descriptor () {
 descriptor_tag 8 uimsbf 0x15
 descriptor_length 8 uimsbf
 for(i=0; i<N; i++) {
 initial_path_bytes 8 uimsbf
 }
}

descriptor_tag: This 8 bit integer with value 0x15 identifies this descriptor.

initial_path_bytes: These bytes contain a string specifying the URL path component to the entry point document.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)48

5.3.7.1 Example

The following example describes the usage of the simple_application_location_descriptor.

An application author designs an application in the following manner:

• The application data is distributed among several directories, for instance an "image" directory and a "main"
directory.

• The application entry point is a document called "index.foo" and stored in the "main" directory.

From the application author's point of view, the application entry point is specified by the path "main/index.foo". This
path is stored in the initial_path_bytes string of the location descriptor.

Table 34: Examples showing application entry point signalling for different protocol_id values

protocol_id value Selector Resulting application entry point
0x0001 Component tag, e.g. 0xb4 dvb://1.2.3.b4/main/index.foo
0x0003 Base URL, e.g.

"http://www.example.com/apps/"
http://www.example.com/apps/main/index.foo

If the broadcaster chooses to insert this application in a file system sub-directory called "application", the
initial_path_bytes shall be prefixed with the string "application/", i.e. initial_path_bytes shall have the value
"application/main/index.foo".

5.3.8 Simple application boundary descriptor

This descriptor is defined for use in the application loop of the AIT. It provides a set of prefixes that describe the data
elements that form the application.

This descriptor is optional. When absent, the application boundary defaults to the complete set of all content coming
from the transport signalled in the transport_protocol_descriptor associated with the application. This can be overridden
by the platform specification.

Multiple boundary descriptors can be used for the same application. In this case, the applicable set of extensions is the
union of the set of extensions defined by the descriptors.

Table 35: Simple application boundary descriptor syntax

 No.of bits Identifier Value
simple_application_boundary_descriptor {
 descriptor_tag 8 uimsbf 0x17
 descriptor_length 8 uimsbf
 boundary_extension_count 8 uimsbf
 for(j=0; j<boundary_extension_count; j++){
 boundary_extension_length 8 uimsbf
 for(k=0; k<boundary_extension_length; k++){
 boundary_extension_byte 8 uimsbf
 }
 }

descriptor_tag: This 8 bit integer with value 0x17 identifies this descriptor.

boundary_extension_count: This 8-bit field indicates the number of boundary extensions conveyed by this descriptor.

boundary_extension_length: This 8-bit field indicates the number of bytes in the boundary extension.

boundary_extension_byte: These bytes form a URL prefix. Any URLs which match this prefix are considered to be
within the application boundary. Note that the URL prefix is a strict prefix (e.g. 'http://www.example.com' instead of
'www.example.com') and may include components of a path (e.g. 'http://www.example.com/epg/'). Platform
specifications may define a minimum level of granularity given by the prefix.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)49

5.3.9 Service information

5.3.9.1 Data broadcast descriptor for interactive application announcement

The generic data_broadcast_descriptor is defined in ETSI EN 300 468 [1]. This clause defines the syntax and semantics
of the selector bytes when the data broadcast id has the value 0x00F2 (see table 36). In this case the selector bytes
provide a list of interactive applications and information about each application. Zero or more instances of this
descriptor may be listed in the SDT or the EIT to identify interactive applications associated with the service or the
event where the descriptor is present. This descriptor only indicates the association between the service or event and the
applications. The location of each listed application shall be resolved through the AIT. This descriptor shall not list
applications where the test_application_flag is (or will be) set in the corresponding entry in the AIT.

Table 36: Syntax of extended data broadcast descriptor - broadcast id 0xF2

 No.of bits Identifier Value
data_broadcast_descriptor(){
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 data_broadcast_id 16 uimsbf
 component_tag 8 uimsbf
 selector_length 8 uimsbf
 for(i=0; i<selector_length; i++){
 organization_id 32 uimsbf
 application_id 16 uimsbf
 reserved_future_use 1 bslbf
 application_type 15 uimsbf
 application_profile_length 8 uimsbf
 for (j=0; j<N; j++){
 application_profile 16 uimsbf
 version.major 8 uimsbf
 version.minor 8 uimsbf
 version.micro 8 uimsbf
 }
 application_names_length 8 uimsbf
 for(j=0; j<N2;j++){
 ISO_639_language_code 24 bslbf
 application_name_length 8 uimsbf
 for(l=0; l<N3; l++){
 application_name_char 8 bslbf
 }
 }
 reserved_length 8 uimsbf
 for(j=0; i<N4; i++){
 reserved_future_use 8 bslbf
 }
 private_data_length 8 uimsbf
 for(j=0; j<N5; j++){
 private_data_byte 8 bslbf
 }
 }
 ISO_639_language_code 24 bslbf
 text_length 8 uimsbf
 for (i=0; i<text_length; i++){
 text_char 8 uimsbf
 }
}

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)50

Semantics of the data broadcast descriptor:

The semantics for the following elements of the syntax are defined in ETSI EN 300 468 [1]:

descriptor_tag: For this 8-bit field see ETSI EN 300 468 [1].

descriptor_length: For this 8-bit field see ETSI EN 300 468 [1].

data_broadcast_id: For this 16-bit field see ETSI EN 300 468 [1]. This field has the value 0x00F2 (see table 38) when
announcing interactive applications (regardless of the transport method(s) used for the interactive application and data).

component_tag: For this 8-bit field see ETSI EN 300 468 [1].

selector_length: For this 8-bit field see ETSI EN 300 468 [1].

The semantics for the following elements of the syntax are defined in the present document:

organization_id: This is 32-bit field encodes the organisation_id of the application. See clause 5.2.3 "Application
identification".

application_id: This is 16-bit field encodes the ID of the application. See clause 5.2.3 "Application identification".

application_type: This is 15-bit field encodes the type of the application. See clause 5.2.2 "Application types".

application_profile_length: This 8-bit field indicates the length of the application profile loop in bytes.

application_profile: This 16-bit field identifies which application type specific profile is required by this application.
See clause 5.2.5 "Platform profiles".

version.major: This 8-bit field indicates the major version number of the profile. See clause 5.2.5 "Platform profiles".

version.minor: This 8-bit field indicates the minor version number of the profile. See clause 5.2.5 "Platform profiles".

version.micro: This 8-bit field indicates the micro version number of the profile. See clause 5.2.5 "Platform profiles".

application_names_length: This 8-bit unsigned integer specifies the number of bytes in the following multilingual
application names.

ISO_639_language_code: This is 24-bit field encodes the ISO_639_language_code of the application name. See
clause 5.3.5.6.1 "Application name descriptor".

application_name_length: This is 8-bit field encodes the length of the application name. See clause 5.3.5.6.1
"Application name descriptor".

application_name_char: See application_name_char in clause 5.3.5.6.1 "Application name descriptor".

reserved_length: This 8-bit unsigned integer specifies the number of reserved bytes that follow.

reserved_future_use: This is an 8-bit field.

private_data_length: This 8-bit unsigned integer specifies the number of private data bytes that follow.

private_data_byte: This is an 8-bit field.

The semantics for the following elements of the syntax are defined in ETSI EN 300 468 [1]:

ISO_639_language_code: For this 24-bit field see ETSI EN 300 468 [1].

text_length: For this 8-bit field see ETSI EN 300 468 [1].

text_char: For this 8-bit field see ETSI EN 300 468 [1].

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)51

5.3.10 Stored applications

5.3.10.1 Application storage descriptor

This application_storage_descriptor advertises that an application can be stored and provides some indications of its
properties. The presence of this descriptor indicates that an Application Description File is provided for the application
(see clause 5.2.11). For a storable application a single application_storage_descriptor shall be placed in either the
"common" (outer) descriptor loop or "application" (inner) descriptor loop of the AIT.

This descriptor, and the implied Application Description File, also supports receivers that implement speculative
caching.

Table 37: Syntax of application storage descriptor

 No.of bits Identifier Value
application_storage_descriptor() {
 descriptor_tag 8 uimsbf 0x10
 descriptor_length 8 uimsbf
 Storage_property 8 uimsbf
 not_launchable_from_broadcast 1 bslbf
 launchable_completely_from_cache 1 bslbf
 is_launchable_with_older_version 1 bslbf
 reserved 5 bslbf
 reserved 1 bslbf
 version 31 uimsbf
 priority 8 uimsbf
}

descriptor_tag: This 8 bit integer with value 0x10 identifies this descriptor.

descriptor_length: This 8 bit field indicates the number of bytes following the descriptor length field.

storage_property: This 8 bit field indicates whether the application is broadcast related or stand-alone.

launchable_completely_from_cache: See clause 5.2.11.1.3 "Launching applications from the cache".

is_launchable_with_older_version: See clause 5.2.11.1.2 "Application versioning".

not_launchable_from_broadcast: See clause 5.2.11.1.3 "Launching applications from the cache".

version: See clause 5.2.11.1.2 "Application versioning".

priority: See clause 5.2.11.1.4 "Storage priority".

5.4 XML-based syntax

5.4.0 Introduction

This clause defines an XML encoding for the AIT in addition to the MPEG-2 table and section based encoding defined
in clause 5.3 of the present document. Since the intended use for this XML encoding is in conjunction with the SD&S
defined in ETSI TS 102 034 [6], this encoding follows the same format and re-uses already defined elements and types.

Of the features in the MPEG-2 encoding, the signalling of graphics constraints is not supported in the XML encoding.

The semantics of the fields defined in this clause shall be identical to those of the corresponding fields in the existing
MPEG-2 table and section based encoding as defined by the present document.

Monitoring for changes in the XML-based AIT shall be performed as defined in clause 5.4.3 of ETSI TS 102 034 [6].

The MIME type used for the XML encoding of the AIT shall be application/vnd.dvb.ait+xml. The file extension shall
be ".aitx".

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)52

5.4.1 Service bound application signalling

Service bound applications shall be signalled by including an ApplicationList element in either the IPService or the
Package elements of SD&S (see ETSI TS 102 034 [6]). This is fully specified in clauses 5.4.3.2 and 5.4.3.1 respectively
of the present document.

Applications are either defined inline within the ApplicationList element or in an ApplicationDiscovery record as
defined in clause 5.4.5. In the latter case the ApplicationIdentifier is used in the ApplicationList to reference the
application in the ApplicationDiscovery record.

Alternatively, a service may include an MPEG-2 format AIT in-band in the stream. Announcement that the transport
stream includes this AIT is signalled in the IPService element. However, inclusion of an MPEG-2 format AIT in-band
in the stream prohibits the use of the XML encoding of the AIT.

5.4.2 Signalling of unbound applications

Unbound applications (i.e. applications which are not associated with a specific service) shall be signalled by including
one or more AbstractIPService elements in the SD&S service provider discovery record (see ETSI TS 102 034 [6]).
This is fully specified in clause 5.4.3.3.

Applications are either defined inline within the AbstractIPService's ApplicationList element or in an
ApplicationDiscovery record as defined in clause 5.4.5. In the latter case the ApplicationIdentifier is used in the
AbstractIPService's ApplicationList element to reference the application in the ApplicationDiscovery Record.

5.4.3 Extensions to defined SD&S elements

5.4.3.1 Package

The application list signalled in the package contains a set of applications which are available for all the IPServices
signalled in the package. The ApplicationList is added as an extension to the Package type defined in ETSI
TS 102 034 [6].

<xsd:complexType name="PackageType">
 <xsd:complexContent>
 <xsd:extension base="ipi:Package">
 <xsd:sequence>
 <xsd:element name="ApplicationList" type="mhp:ApplicationList" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

NOTE: Adding an application to a package is semantically the same as adding the application to all services of
that package.

5.4.3.2 IP Service

Service bound applications for single services are signalled by an extension of the IPService type defined in ETSI
TS 102 034 [6].

<xsd:complexType name="IPServiceType">
 <xsd:complexContent>
 <xsd:extension base="ipi:IPService">
 <xsd:choice>
 <xsd:element name="ApplicationList" type="mhp:ApplicationList" minOccurs="0"/>
 <xsd:element name="AITDescriptor" type="mhp:AITDescriptorType" minOccurs="0"/>
 </xsd:choice>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="AITDescriptorType" />

This extension adds an ApplicationList element to the end of the IPService element. The ApplicationList element is an
instantiation of the ApplicationList type defined in clause 5.4.4.1 of the present document.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)53

The AIT of the service may be included inline within the transport stream using the MPEG2 syntax. This may be
signalled by an AITDescriptor element. If an inline AIT is signalled the ApplicationList element shall not be present.

5.4.3.3 ServiceProvider

Unbound applications are signalled by an extension of the ServiceProviderType type as defined in ETSI
TS 102 034 [6].

<xsd:complexType name="ServiceProviderType">
 <xsd:complexContent>
 <xsd:extension base="ipi:ServiceProviderType">
 <xsd:sequence>
 <xsd:element name="AbstractService" type="mhp:AbstractIPService"
 maxOccurs="unbounded" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

The extension adds an AbstractService element at the end of the service provider definition. The AbstractService
element is an instantiation of the AbstractIPService type defined in clause 5.4.4.15 of the present document.

5.4.4 New XML element definitions

5.4.4.1 ApplicationList

<xsd:complexType name="ApplicationList">
 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="application" type="mhp:Application" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="ApplicationReference" type="mhp:ApplicationIdentifier" minOccurs="0"
 maxOccurs="unbounded">
 </xsd:sequence>
</xsd:complexType>

An ApplicationList is a list of Application and/or ApplicationReference elements. An ApplicationReference is an
instantiation of an ApplicationIdentifier type defined in clause 5.4.4.3 of the present document. A reference can be
resolved by looking for the ApplicationIdentifier in the ApplicationDiscovery records of the same service provider.

5.4.4.2 Application

5.4.4.2.0 Overview

<xsd:complexType name="Application">
 <xsd:sequence>
 <xsd:element name="appName" type="ipi:MultilingualType" maxOccurs="unbounded"/>
 <xsd:element name="applicationIdentifier" type="mhp:ApplicationIdentifier"/>
 <xsd:element name="applicationDescriptor" type="mhp:ApplicationDescriptor"/>
 <xsd:element name="applicationSpecificDescriptor"
 type=" mhp:ApplicationSpecificDescriptor" minOccurs="0"/>
 <xsd:element name="applicationUsageDescriptor"
 type="mhp:ApplicationUsageDescriptor" minOccurs="0"/>
 <xsd:element name="applicationBoundary"
 type="mhp:SimpleApplicationBoundaryDescriptorType"
 minOccurs="0"
 maxOccurs="1" />
 <xsd:element name="applicationTransport"
 type="mhp:TransportProtocolDescriptorType"
 minOccurs="1"
 maxOccurs="unbounded" />
 <xsd:element name="applicationLocation"
 type="mhp:SimpleApplicationLocationDescriptorType"
 minOccurs="1"
 maxOccurs="1" />
 </xsd:sequence>
</xsd:complexType>

An application can be completely described by:

• An application name which can be multilingual (appName).

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)54

• A unique identification (applicationIdentifier).

• A generic descriptor which is common and mandatory for all types of application (applicationDescriptor).

• An application specific descriptor which will depend upon the type of the signalled application.

• An application usage descriptor which is optional.

• An application boundary descriptor which is optional.

• One or more application transport descriptors.

• A simple application location descriptor.

5.4.4.2.1 Application Specific Information (informative)

Some platform specifications may choose to describe, or require, extra information to be communicated to the receiver
that is outside the scope of information currently carried in the Application element, for example additional transport
protocol information or security related information. To enable this, the Application type defined in clause 5.4.4.2 can
be extended, following the XML extensibility recommendations defined in [17].

5.4.4.3 ApplicationIdentifier

<xsd:complexType name="ApplicationIdentifier">
 <xsd:sequence>
 <xsd:element name="orgId" type="xsd:unsignedInt"/>
 <xsd:element name="appId" type="xsd:unsignedShort"/>
 </xsd:sequence>
</xsd:complexType>

As defined in clause 5.2.3 "Application identification", an application is uniquely identified by:

• OrgId, a globally unique organization identifier that identifies the organization that is responsible for the
application.

• AppId, an application identifier allocated by the organization registered with the organization identifier who
decides the policy for allocation within the organization.

5.4.4.4 ApplicationDescriptor

<xsd:complexType name="ApplicationDescriptor">
 <xsd:sequence>
 <xsd:element name="type" type="mhp:ApplicationType"/>
 <xsd:element name="controlCode" type="mhp:ApplicationControlCode"/>
 <xsd:element name="visibility" type="mhp:VisibilityDescriptor" minOccurs="0"/>
 <xsd:element name="serviceBound" type="xsd:boolean" default="true" minOccurs="0"/>
 <xsd:element name="priority" type="ipi:Hexadecimal8bit"/>
 <xsd:element name="version" type="ipi:Version"/>
 <xsd:element name="mhpVersion" type="mhp:MhpVersion" minOccurs="0"/>
 <xsd:element name="icon" type="mhp:IconDescriptor" minOccurs="0"/>
 <xsd:element name="storageCapabilities" type="mhp:StorageCapabilities" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

The contents of this complex type are mostly those defined in clause 5.3.5.3 "Application descriptor".

The simple type elements are defined as follows:

visibility: This optional element specifies whether the application is suitable to be offered to the end-user for them to
decide if the application should be launched. See clause 5.2.6 "Application visibility".

serviceBound: Whether the application is bound to a service or not as defined by the service_bound_flag. See
clause 5.3.5.3 "Application descriptor".

priority: This field identifies a relative priority between the applications signalled in this service. See clause 5.2.7
"Application priority".

version: See clause 5.2.11.1.2 "Application Versioning".

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)55

mhpVersion: See clause 5.4.4.8.

icon: Signals the presence of an icon representing the application.

storageCapabilities: This optional element shall be added for giving the receiver the required information to
store/cache the application.

5.4.4.5 VisibilityDescriptor

<xsd:simpleType name="VisibilityDescriptor">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="NOT_VISIBLE_ALL"/>
 <xsd:enumeration value="NOT_VISIBLE_USERS "/>
 <xsd:enumeration value="VISIBLE_ALL"/>
 </xsd:restriction>
</xsd:simpleType>

These values are defined in table 5 in clause 5.2.6.1 "Semantics".

5.4.4.6 IconDescriptor

<xsd:complexType name="IconDescriptor">
 <xsd:attribute name="filename" type="xsd:string" use="required"/>
 <xsd:attribute name="size" type="xsd:unsignedShort" use="optional"/>
 <xsd:attribute name="aspectRatio" type="mhp:AspectRatio" use="optional"/>
</xsd:complexType>

As defined in clause 5.2.8 "Application icons" the IconDescriptor element serves to signal the presence of an icon
representing the application. The size and aspectRatio attributes are defined as optional since they can be determined as
defined in table 7.

E.g.

<icon filename="dvb.icon.1"/> , size = 32x32 pixel square

5.4.4.7 AspectRatio

<xsd:simpleType name="AspectRatio">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="4_3"/>
 <xsd:enumeration value="16_9"/>
 <xsd:enumeration value="1_1"/>
 </xsd:restriction>
</xsd:simpleType>

These aspect ratios are the set of aspect ratios used in table 7 in clause 5.2.8 "Application icons".

5.4.4.8 MhpVersion

<xsd:complexType name="MhpVersion">
 <xsd:sequence minOccurs="1">
 <xsd:element name="profile" type="ipi:Hexadecimal16bit "/>
 <xsd:element name="versionMajor" type="ipi:Hexadecimal8bit "/>
 <xsd:element name="versionMinor" type="ipi:Hexadecimal8bit "/>
 <xsd:element name="versionMicro" type="ipi:Hexadecimal8bit "/>
 </xsd:sequence>
</xsd:complexType>

These elements are defined as follows:

profile: See application_profile in clause 5.2.5 "Platform profiles".

versionMajor: See version.major in clause 5.2.5 "Platform profiles".

versionMinor: See version.minor in clause 5.2.5 "Platform profiles".

versionMicro: See version.micro in clause 5.2.5 "Platform profiles".

NOTE: This type is named for historical reasons.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)56

5.4.4.9 StorageCapabilities

<xsd:complexType name="StorageCapabilities">
 <xsd:sequence minOccurs="0">
 <xsd:element name="storageProperty" type="mhp:StorageType"/>
 </xsd:sequence>
 <xsd:attribute name="launchableFromBroadcast" type="xsd:boolean" use="required"/>
 <xsd:attribute name="launchableCompletelyFromCache" type="xsd:boolean" use="required"/>
 <xsd:attribute name="launchableWithOlderVersion" type="xsd:boolean" use="required"/>
</xsd:complexType>

This descriptor, if present, serves to state whether the application can be stored or cached in the receiver as defined in
clause 5.2.11 "Stored applications".

The attributes launchableFromBroadcast, launchableCompletelyFromCache, launchableWithOlderVersion have exactly
the same meaning as the flags as defined in clauses 5.2.11.1.2 and 5.2.11.1.3.

5.4.4.10 StorageType

<xsd:simpleType name="StorageType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="BROADCAST-RELATED"/>
 <xsd:enumeration value="STANDALONE"/>
 </xsd:restriction>
</xsd:simpleType>

See clause 5.2.11.1.1 "Lifecycle of stored applications".

5.4.4.11 ApplicationType

<xsd:complexType name="ApplicationType">
 <xsd:choice>
 <xsd:element name="DvbApp" type="mhp:DvbApplicationType"/>
 <xsd:element name="OtherApp" type="mpeg7:mimeType"/>
 </xsd:choice>
</xsd:complexType>

See clause 5.2.2 "Application types".

5.4.4.12 DvbApplicationType

<xsd:simpleType name="DvbApplicationType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="DVB-J"/>
 <xsd:enumeration value="DVB-HTML"/>
 </xsd:restriction>
</xsd:simpleType>

5.4.4.13 ApplicationControlCode

<xsd:simpleType name="ApplicationControlCode">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AUTOSTART"/>
 <xsd:enumeration value="PRESENT"/>
 <xsd:enumeration value="DESTROY"/>
 <xsd:enumeration value="KILL"/>
 <xsd:enumeration value="PREFETCH"/>
 <xsd:enumeration value="REMOTE"/>
 <xsd:enumeration value="DISABLED"/>
 <xsd:enumeration value="PLAYBACK_AUTOSTART"/>
 </xsd:restriction>
</xsd:simpleType>

This descriptor serves to dynamically control application life cycle. The meaning of each one of the enumeration
elements, as well as the expected behaviour in the receiver, is fully defined in clause 5.2.4 "Application control codes".

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)57

5.4.4.14 ApplicationSpecificDescriptor

<xsd:complexType name="ApplicationSpecificDescriptor">
 <xsd:choice>
 <xsd:element name="dvbjDescriptor" type="mhp:DVBJDescriptor"/>
 <xsd:element name="htmlDescriptor" type="mhp:DVBHtmlDescriptor"/>
 <xsd:element name="otherDescriptor" type="mhp:OtherDescriptor"/>
 </xsd:choice>
</xsd:complexType>

<xsd:complexType name="OtherDescriptor" abstract="true"/>

This descriptor contains the specific descriptor depending upon the type of application. As well as descriptors defined in
the present document, it may also include externally defined descriptors.

NOTE: DVBJDescriptor and DVBHTMLDescriptor are outside the scope of the present document.

5.4.4.15 AbstractIPService

<xsd:complexType name="AbstractIPService">
 <xsd:sequence>
 <xsd:element name="svcName" type="ipi:MultilingualType" maxOccurs="unbounded"/>
 <xsd:element name="svcId" type="mhp:Hexadecimal24bit"/>
 <xsd:element name="isAutoSelect" type="xsd:boolean"/>
 <xsd:element name="ApplicationList" type="mhp:ApplicationList" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:simpleType name="Hexadecimal24bit">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[0-9a-fA-F]{1}[1-9a-fA-F]{1}[0-9a-fA-F]{4}"/>
 </xsd:restriction>
</xsd:simpleType>

These elements have the following definitions:

svcName: The name of the abstract service.

svcId: An identifier for the abstract service. This shall be unique within the abstract services signalled for a service
provider.

isAutoSelect: Flag indicating if the service should be automatically started. If the value of this element is true then the
service shall be automatically started when the service provider is selected. If false, it shall not.

5.4.4.16 ApplicationOfferingType

<xsd:complexType name="ApplicationOfferingType">
 <xsd:complexContent>
 <xsd:extension base="ipi:OfferingBase">
 <xsd:sequence>
 <xsd:element name="ApplicationList" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Application" type="mhp:Application"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

This element may be used by a service provider to list Application offerings

5.4.4.17 ServiceDiscovery

<xsd:element name="ServiceDiscovery">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="ApplicationDiscovery" type="mhp:ApplicationOfferingType"
 maxOccurs="unbounded"/>

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)58

 </xsd:choice>
 </xsd:complexType>
</xsd:element>

NOTE: This element forms the root element of an SD&S XML instance document defining one or more
Application Discovery records. Other SD&S Offering records, as defined in ETSI TS 102 034 [6], are
contained under the ServiceDiscovery root element defined in ETSI TS 102 034 [6]. The appropriate
ServiceDiscovery element is identified in an XML instance document through its namespace prefix.

5.4.4.18 ApplicationUsageDescriptor

<xsd:complexType name="ApplicationUsageDescriptor">
 <xsd:sequence>
 <xsd:element name="ApplicationUsage" type="xsd:anyURI" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

See clause 5.2.10.3 for the definition of the semantics of this element.

5.4.4.19 TransportProtocolDescriptorType

<xsd:complexType name="TransportProtocolDescriptorType" abstract="true" />

This type defines the base class for a transport protocol descriptor. This is an abstract type - subclasses of this type are
defined to support specific transport protocols. See clause 5.3.6 for a wider discussion of transport protocol descriptors.

5.4.4.20 HTTPTransportType

<xsd:complexType name="HTTPTransportType">
 <xsd:complexContent>
 <xsd:extension base="mhp:TransportProtocolDescriptorType">
 <xsd:sequence>
 <xsd:element name="URLBase" type="xsd:anyURI"
 minOccurs="1"
 maxOccurs="1" />
 <xsd:element name="URLExtension" type="xsd:anyURI"
 minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

The HTTP transport protocol descriptor shall be used when an entry point to an application is accessed via HTTP. The
actual URL of the entry point is composed from the base URL concatenated with the path provided by the simple
application location descriptor.

For URLBase and URLExtension the same semantics shall apply as for URL_base_byte and URL_extension_byte
respectively in clause 5.3.6.2 of the present document.

5.4.4.21 OCTransportType

<xsd:complexType name="OCTransportType">
 <xsd:complexContent>
 <xsd:extension base="mhp:TransportProtocolDescriptorType">
 <xsd:sequence>
 <xsd:choice maxOccurs="1" minOccurs="0">
 <xsd:element name="DvbTriplet" type="ipi:DVBTriplet">
 </xsd:element>
 <xsd:element name="TextualId" type="ipi:TextualIdentifier">
 </xsd:element>
 </xsd:choice>
 <xsd:element name="ComponentTag" minOccurs="1" maxOccurs="1"
type="mhp:ComponentTagType">
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)59

An ApplicationType element of type OCTransportType shall be present if the application is delivered via DSM-CC
Object Carousel. If this application is linked to a service and the carousel is part of that service then the service
identifier may be omitted.

For applications not linked to a service, e.g. service provider applications, either the DvbTriplet or the TextualId of a
service shall be present.

5.4.4.22 ComponentTagType

<xsd:complexType name="ComponentTagType">
 <xsd:attribute name="ComponentTag" type="ipi:Hexadecimal8bit">
 </xsd:attribute>
</xsd:complexType>

This type defines the representation of an DVB component tag.

5.4.4.23 SimpleApplicationLocationDescriptorType

<xsd:simpleType name="SimpleApplicationLocationDescriptorType">
 <xsd:restriction base="xsd:anyURI" /> </xsd:simpleType>

This descriptor is defined in clause 5.3.7.

5.4.4.24 SimpleApplicationBoundaryDescriptorType

<xsd:complexType name="SimpleApplicationBoundaryDescriptorType">
 <xsd:sequence>
 <xsd:element name="BoundaryExtension" type="xsd:anyURI"
 minOccurs="1"
 maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

This descriptor provides a set of prefixes that describe the data elements that form the application. See clause 5.3.8 for
the semantics of this descriptor.

5.4.5 ApplicationDiscovery record

An ApplicationDiscovery record is an instantiation of the ApplicationOfferingType carried in ServiceDiscovery
element as specified by clauses 5.4.4.16 and 5.4.4.17.

The presence and retrieval location of an ApplicationDiscovery record is signalled from the ServiceProviderDiscovery
record using the OfferingListType (see clause 5.2.5 of ETSI TS 102 034 [6]). The PayloadId of the
ApplicationDiscovery record shall be 0xC1.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)60

5.5 Constant values

Table 38: Registry of constant values

Where used Type Value Where Defined Scope
Private data specifier
descriptor

descriptor tag 0x5F PSI and SI tables SI

Data broadcast id
descriptor

0x66 PMT

Application Signalling
Descriptor

0x6F PMT

Service identifier descriptor 0x71 SDT
Caching priority descriptor descriptor tag 0x71 DII moduleInfo

userInfo
ETSI EN 301 192 [2]
- DVB specification
for data
broadcasting

Content type descriptor 0x72 BIOP objectInfo
(note 1)

Reserved to DVB for future
OC descriptors

0x73 to 0x7F OC

reserved to DVB for future
use

table ID on AIT PID 0x00 to 0x73 The present
document

Application Information
Table

0x74

Reserved to DVB for future
use

0x75 to 0x7F

Reserved for private use 0x80 to 0xFF
Application descriptor descriptor tag 0x00 AIT The present

document Application name descriptor 0x01
Transport protocol
descriptor

0x02

Reserved to DVB for future
use

0x03, 0x04

External application
authorization descriptor

0x05

Application recording
descriptor

0x06

Reserved to DVB for future
use

0x07 to 0x0A

Application icons descriptor 0x0B
Reserved to DVB for future
use

0x0C to 0x0F

Application storage
descriptor

0x10

Reserved to DVB for future
use

0x11 to 0x13

Graphics constraints
descriptor (see
clause 5.3.5.8 "Graphics
constraints descriptor)

0x14

Simple application location
descriptor

0x15

Application usage
descriptor

0x16

Simple application
boundary descriptor

0x17

reserved to DVB for future
use

0x18 to 0x5E

Private data specifier
descriptor (note 2)

0x5F

Subject to registration at
http://www.dvb.org

0x60 to 0x7F

User defined (note 3) 0x80 to 0xFE

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)61

Where used Type Value Where Defined Scope
DVB Object Carousel data broadcast id 0x00F0 PMT, AIT SI
reserved 0x00F1
DVB application presence 0x00F2 EIT, SDT SI
Reserved to DVB for future
use

0x00F3 to 0x00FE PMT, AIT SI

NOTE 1: Strictly MessageSubHeader::ObjectInfo in the file message and the bound object info in a file binding of a
directory or service gateway message.

NOTE 2: The DVB SI private data specifier descriptor is defined for use in the Application Information Table to
introduce private descriptors.

NOTE 3: All user defined descriptors shall be within the scope of a private data specifier descriptor (see
clause 5.3.4.7 "Use of private descriptors in the AIT").

6 Referencing DVB services

6.1 DVB URL syntax and semantics
The syntax and semantics of the "dvb:" URL scheme are defined in [20].

6.2 DVB URL resolution

6.2.1 Service identifier descriptor

Zero or more service_identifier_descriptors may be included in the SDT description of a service. Each such descriptor
defines a single textual identifier for the service. The syntax of the textual service identifier is:

<service_name> "." <service_provider_domain_name>

where:

<service_name>

is a unique name for the service within the service provider's domain.

<service_provider_domain_name>

is an Internet DNS domain name that the service provider has rights to control. The organization's administrating the
Internet DNS domain names are used as a globally unique registration mechanism that allows these textual service
identifiers to be globally unique names.

The <service_name> field shall follow the rules defined for Internet DNS names so that the whole textual service
identifier is a valid host name to be used in the Internet DNS as defined in IETF RFC 1035 [21].

An example of a textual service identifier is:

movie-channel-1.broadcaster-b.com

where "broadcaster-b.com" is an Internet DNS domain owned by the broadcaster and "movie-channel-1" is a unique
name for the service assigned by the service provider.

NOTE 1: The textual service identifier has the same syntax as an Internet host name and it has to be assigned in a
domain that the service provider has the rights to control. However, the textual service name for a service
is not required to resolve to any IP address using the Internet DNS service and if it does, this version of
the present document does not specify any specific services that this host should provide if contacted
using the IP protocols.

A single service identifier can be assigned to services in different physical networks even if they have different
original_network_id and service_id. A given service identifier shall only be associated with services that are considered
to be the same service.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)62

NOTE 2: It is up to the service provider to decide which services are "same" and which are not. For example, two
services in two different networks where the service have the same programme content but different
regional adverts could be generally considered to be the "same" service. However, this decision is entirely
up to the service provider.

More than one service identifier may be allocated to a service instance.

Table 39: Service identifier descriptor

 No.of bits Identifier Value
service_identifier_descriptor () {
 descriptor_tag 8 uimsbf 0x71
 descriptor_length 8 uimsbf
 for (i = 0; i < descriptor_length; i++) {
 textual_service_identifier_bytes 8 uimsbf
 }
}

descriptor_tag: This 8 bit integer with value 0x71 identifies this descriptor.

textual_service_identifier_bytes: These bytes contain the unique identifier for a service encoded using the normal
encoding for text strings in DVB SI.

7 Application transport

7.1 Object carousel
This clause describes the protocol used when broadcast applications are transmitted using the DSM-CC User-to-User
Object Carousels.

The present document is based on the following specifications:

• ISO/IEC 13818-1 [3] - MPEG 2 systems.

• ISO/IEC 13818-6 [4] - DSM-CC.

• ETSI EN 301 192 [2] - DVB specification for data broadcasting.

• ETSI TR 101 202 [i.2] - Implementation Guidelines for Data broadcasting.

With the constraints and extensions described in annex B.

7.2 HTTP
When applications are downloaded using the HTTP protocol, the HTTP 1.1 protocol shall be supported as defined in
IETF RFC 2616 [5].

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)63

8 Synchronization

8.1 Introduction
The present document supports synchronization to video or audio streams in a service using DSM-CC stream events as
defined in clause B.2.4.

These can be either:

• "Do-it-now" events as defined in clause B.2.4.2.2. These events are posted to the application as soon as they
are received by the receiver.

• Events synchronized to a DVB timeline as defined in clause B.2.4.2.2. The events are posted to the application
when the timeline reaches the time signalled for the event.

Platform specifications where synchronization is needed should define which of these are supported in their
deployment.

8.2 Referencing
Two mechanisms are defined for referencing sources of stream events from applications:

• By referencing a DSM-CC stream event object in an object carousel. This requires the service to contain an
object carousel as well as the elementary stream carrying the stream event messages.

• By referencing an XML file containing equivalent information to the DSM-CC stream event object as defined
by the following schema. This enables synchronization to services carrying the stream event messages but not
containing an object carousel. The MIME type "application/vnd.dvb.streamevent+xml" shall be used for these
XML files when a MIME type is required.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!--W3C Schema generated by XMLSpy v2006 sp2 U (http://www.altova.com)-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:dsmcc="urn:dvb:mis:dsmcc:2009"
 targetNamespace="urn:dvb:mis:dsmcc:2009" elementFormDefault="qualified"
 attributeFormDefault="qualified">
 <xs:complexType name="DsmccType">
 <xs:sequence>
 <xs:element name="dsmcc_object" type="dsmcc:DsmccObjectType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="dsmcc" type="dsmcc:DsmccType"/>
 <xs:complexType name="DsmccObjectType">
 <xs:sequence>
 <xs:element name="stream_event" type="dsmcc:StreamEventType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="component_tag" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="StreamEventType">
 <xs:attribute name="stream_event_id" type="xs:string" use="required"/>
 <xs:attribute name="stream_event_name" type="xs:string" use="required"/>
 </xs:complexType>
</xs:schema>

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)64

9 Protection

9.1 Introduction
If an attacker can cause a receiver to receive new or modified interactive applications and services, the attacker may
have an opportunity to cause receiver behaviour that may be harmful to the receiver or the viewer. The protection
scheme described in the present document allows a receiver to authenticate data for interactive applications and services
carried in MPEG private sections in DVB broadcasts. This information can be used by the receiver to protect itself and
the viewer against such modification of interactive applications and services in the broadcast by an attacker.

NOTE: Although the protection mechanisms defined in the present document are intended to be used with data
relating to interactive applications and services, they can equally be used with any other data which also
uses the MPEG private section format.

The protection scheme consists of two main elements:

1) Authentication of the broadcast data relating to interactive applications and services. To achieve this, a
cryptographic hash is computed before transmission (as specified in clause 9.4) from each MPEG section
which is to be authenticated. Collections of these hashes are grouped and cryptographically signed with the
legitimate originator's private key to form authentication messages which are included in the broadcast. The
receiver has the legitimate originator's corresponding public key, and uses it to verify the signatures of
authentication messages it receives from the broadcast. If an authentication message's signature is successfully
verified the collection of hashes it carries are added to a collection of trusted hashes maintained by the
receiver. When the receiver receives an MPEG section that requires authentication it computes the hash for
that section. The receiver then searches the appropriate collection of trusted hashes associated with the current
service for a hash that matches the hash of the received section. If the hash of the MPEG section matches a
trusted hash, then the MPEG section is confirmed to be from the legitimate originator and has not been
modified in transit.

2) Establishment and management of trust in the public keys which are used to verify the authentication
messages. To enable a receiver to draw the conclusions described in the first point, it is required that it has one
or more trusted public keys available prior to this authentication process. Since it may not always be possible
to provision all public keys in a receiver, a mechanism for obtaining trusted public keys from a DVB broadcast
is defined in clause 9.5. The receiver may also obtain trusted public keys by other mechanisms (e.g. via an
Internet connection). Those other mechanisms are beyond the scope of the present document. Over time, it
may be necessary to inform receivers that certain public keys are no longer to be considered trustworthy.
Mechanisms for this process, referred to as revocation, are also defined in clause 9.5.

9.2 Scope
The present document specifies how to authenticate data in a Transport Stream, and specifically data pertaining to
interactive applications and services.

It does not specify if and when data in a Transport Stream is to be authenticated or not. This decision is intentionally left
to the users of the present document.

9.3 Discovery, signalling and carriage of protection data

9.3.1 Overview (informative)

The data structures required for the verification of protected payload data are carried in MPEG private sections. These
include certificate collection messages that are used by the receiver to establish one or more trusted public keys for
verifying signatures, as well as authentication messages that contain signed hashes of payload data. Collectively, these
are referred to as protection messages. The identification of protection messages is defined in clause 9.3.4.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)65

Protection messages may be carried in the same elementary stream as payload data being protected, or in a different
elementary stream. When carried in the same elementary stream, no PMT signalling is needed to identify the
elementary stream carrying protection messages, as its location is implicit. For situations where protection messages are
carried in a different elementary stream, clause 9.3.3 defines a descriptor for use in the PMT to assist the receiver in
locating associated protection messages.

9.3.2 Discovery

9.3.2.1 Authenticating components of a service

Clause 9.3.3 defines the protection message descriptor which identifies the components of a service that carry
protection messages. If the protection messages and the payload data being authenticated are carried by different
components of a service, this descriptor shall be present in the ES info loop of the PMT for those components that carry
protection messages.

If the protection messages are carried by the same component as the data being authenticated, this descriptor is not
required but may optionally be present to assist receivers in locating protection messages.

9.3.2.2 Authentication of interactive components of a service

When protection messages are used to authenticate components of an interactive service, they shall be carried by one or
more of the service components that carry the signalling and data for the interactive service. Additionally protection
messages may be carried by an additional service component however the present document does not require receivers
to process such messages.

Where the protection messages are carried by the service components that carry the signalling and/or the data for the
interactive service the protection message descriptor is not required but may optionally be present. Where the protection
messages are carried by an additional service component the protection message descriptor shall be used to identify this
service component.

9.3.3 PSI signalling

The protection message descriptor (see table 40) provides a means to locate the components of a service that carry
protection messages (defined in clause 9.4 and clause 9.5) and the components of the services that can be verified by
these protection messages. When used it is carried in the ES_info loop of the PMT.

The use of this descriptor is defined in clause 9.3.2.

EXAMPLE: Protection messages on a single component can verify multiple components. For example, a single
component carrying protection messages could verify both a service component carrying the AIT
and the service component(s) carrying the DSM-CC Object Carousel. A protection message
descriptor, if present, identifies a service component that carries protection messages. The set of
component tags listed by the protection message descriptor lists the components protected by these
protection messages. In this example, the protection message descriptor would list both the
component carrying the AIT and the component(s) carrying the Object Carousel.

The protection message descriptor is an extended descriptor as defined by ETSI EN 300 468 [1].

Table 40: Protection message descriptor

Syntax Number of bits Identifier
protection_message_descriptor(){
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 descriptor_tag_extension 8 uimsbf
 reserved 4 bslbf
 component_count 4 uimsbf
 for (i=0;i<N;i++){
 component_tag 8 uimsbf
 }
}

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)66

Semantics for the protection message descriptor:

descriptor_tag: The descriptor tag is an 8 bit field which shall identify the descriptor as an extension descriptor. It shall
be coded according to clause 6.1 of ETSI EN 300 468 [1].

descriptor_length: The descriptor length is an 8-bit field specifying the total number of bytes of the data portion of the
descriptor following this field.

descriptor_tag_extension: The descriptor tag extension is an 8 bit field which shall identify the descriptor as a
protection message descriptor. It shall be coded according to clause 6.3 of ETSI EN 300 468 [1] with value 0x18.

component_count: This 4 bit field specifies the number of component tags following.

component_tag: This 8 bit field shall have the same value as the component_tag field in the stream identifier descriptor
for a component of the same service, which can be verified by the protection messages carried in the elementary stream
identified by this descriptor.

9.3.4 Carriage

All protection messages defined in the present document are carried in private sections as defined in
ISO/IEC 13818-1 [3]. The table_id shall be coded according to clause 5.1.3 of ETSI EN 300 468 [1].

The different protection message types with table_id 0x7B are distinguished by means of the table_id_extension field.
Table 41 lists the defined message types and their table_id_extension values.

Table 41: table_id_extension values

table_id_extension Description
0x0000 to 0x00FF Authentication message sections as defined in clause 9.4.3.

Sections with each value are considered independently for the purposes of
maintaining sets of verified hashes. For the number of different sub_tables that
a receiver is required to process when implementing a specific profile see
clause 9.4.6.

In the context of an authentication message the table_id_extension is
authentication_group_id of the authentication message.

0x0100 Certificate collection message as defined in clause 9.5.4.8.5.
0x0101 to 0xFFFF Reserved for future use

System renewability messages according to ETSI TS 102 770 [33] may also be carried where a coordinating entity is
used. See also clause 9.5.3.

9.3.5 Time parameters

9.3.5.1 Repetition rate of authentication messages

No maximum interval between authentication message sub_tables is specified in the present document.

NOTE: The practical minimum interval will be a consequence of factors such as the size of the quarantine FIFO,
the data rate of the transmission and the authentication latency acceptable for the application.

9.3.5.2 Repetition rate of certificate collection

The sub_table that conveys the certificate collection for a service shall be repeated at an interval of no longer than
30 seconds.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)67

9.4 Signing and verification

9.4.1 Overview (informative)

The authentication scheme uses authentication message sub_tables that carry a set of cryptographic hashes of payload
sections. Each section in the authentication sub_table is cryptographically signed. If the authentication sub_table
sections can be verified using a trusted public key (for example, obtained by means defined in clause 9.5) then the
hashes delivered by the authentication message sub_table are deemed trusted. Payload sections which have hashes that
are identical to trusted hashes found in trusted authentication messages are considered authenticated.

Figure 1 summarizes the reference model for verification which is specified in detail in clause 9.4.2.

Figure 1: Reference model for verification

Sections arriving from one or more elementary streams are identified by table_id as being payload sections or protection
messages. Payload sections, and information recording the PID of the elementary stream that delivered them, enter a
quarantine FIFO awaiting verification. Protection messages that are authentication messages are used to update a cache
of trusted hashes following verification using a trusted public key. Payload messages are de-queued from the FIFO for
onward processing if they can be matched against a trusted hash.

The reference model includes the following areas of storage:

• A quarantine FIFO for payload sections awaiting verification

• A cache of trusted hash values from each of the one or more authentication sub-tables

• A small buffer for authentication sub_table sections awaiting verification

The reference model allows a small buffer for authentication sub_table sections awaiting verification. This serves to
accommodate sections that may accumulate whilst the receiver is verifying the signature on a previous authentication
sub_table section.

The reference model describes one instance of the verifier (quarantine FIFO, cached trusted hashes, etc.). More than one
instance is theoretically possible but is outside the scope of the present document.

The payload section quarantine is storage managed as a FIFO. Sections move through this storage in transmission order.
The receiver examines the section at the head of the FIFO. If the section can be verified against trusted hashes stored in
the cache, the section is removed from the FIFO and released from the quarantine as a verified section for subsequent
processing by the receiver. After a verified section is released from the quarantine, the receiver examines the section
that is now the head of the FIFO. This process continues examining, and conditionally releasing sections from the head
of the FIFO, until the FIFO is empty or the section at the head of the FIFO cannot be verified against trusted hashes
currently stored in the cache. If it is not possible to verify section at the head of the FIFO then the process of examining
the section at the head of the FIFO pauses. The process examining sections at the head of the FIFO restarts under either
of two conditions:

• The cache of trusted hashes is updated.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)68

• The FIFO becomes full.

Where payload section arrives before the authentication message that provides the hash required to verify the section,
then the payload section cannot be verified using the currently cached trusted hashes. When such a section reaches the
head of the FIFO, verification of payload sections pauses. If the cache of trusted hashes is updated then the section at
the head of the FIFO is examined to see if it can now be verified.

If the FIFO becomes full the section at the head of the FIFO is discarded to allow an arriving section to be added to the
tail of the FIFO. The section that is now the head of the FIFO is then examined to see if it can now be verified.

Sections are removed from the head of the FIFO in transmission order and are either released from the quarantine
having passed verification or discarded if the FIFO has become full before they can be verified.

The sizes of these areas are specified in clause 9.4.6, along with certain performance requirements.

The reference model and the receiver constraints place constraints on the construction of the Transport Stream which
are described in clause 9.4.5.

A receiver may be able to implement the verification procedure such that resources it typically expends are less than
those defined by the reference model. Clause 9.4.4 covers some possible optimizations which can help in achieving this.

9.4.2 Verification procedure reference model

9.4.2.1 General verification principles

The present clause specifies the receiver reference model in detail. Receivers shall perform verification in a manner that
achieves the same acceptance and rejection of sections as defined by the reference model. Receivers may otherwise
deviate from this model provided that the performance constraints specified in clause 9.4.6 are met.

The reference model is not sensitive to the number of different elementary streams on which the data to be verified is
carried. The set of elementary streams carrying payload sections and protection messages is determined according to
clause 9.3 and the rules for determining which parts of a transport stream require verification are addressed in
clause 9.2.

With reference to figure 1, the cache of trusted hashes stores hashes from one or more authentication sub_tables
supplied by one or more elementary streams.

The reference model works as follows. On receiving sections carried by elementary streams that are to be verified:

• sections of authentication sub_tables are buffered for verification and processing

• payload sections (i.e. sections that are not protection messages) are added to the input of the quarantine FIFO

9.4.2.2 Verification of authentication sub_tables

Authentication sub_table sections in the buffer are processed as follows:

1) Signature verification occurs at a specified minimum rate (see clause 9.4.6).

2) If signature verification is unsuccessful, the section is discarded. Otherwise, the section hash information from
the section is used to update the cache of trusted hashes as follows:

3) The elementary stream PID that delivered the section and authentication_group_id of the section are examined
to determine the authentication sub_table to which the section belongs.

4) Any stored hash values obtained from the previously received version of the same sub_table are removed from
the cache.

5) Each hash value included in the section is added to the cache along with its associated referencing information.

6) If the new hashes cannot be accommodated, then all hashes cached from previous authenticated sub_tables
shall be discarded and the addition to the cache retried.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)69

7) If, even after having discarded all cached hashes from previously received authentication sub_tables, the set of
hashes from the latest authentication sub_table cannot be completely stored in the cache then the receiver
behaviour is undefined.

NOTE 1: If the transmission changes the set of authenticated data being transmitted then the previously cached
hashes are no longer relevant. The behaviour described above ensures that hashes delivered by newer
authentication sub_tables displace those previously received.

NOTE 2: If an authentication sub_table is received that is the same as the previously received instance of that
authentication sub_table and the hashes from that previous instance are still held in the cache then the
newly received instance of the authentication sub_table can be discarded without further processing. This
is an optional optimization for the receiver.

9.4.2.3 Verification of payload sections

As each payload section is received the time of reception for that section shall be recorded.

Three separate triggers each result in a common set of steps being followed to process items in the FIFO. The triggers
are:

• a payload section is received (and is inserted in to the tail of the FIFO)

• the cache of trusted hashes is updated (following the arrival of one or more authentication messages)

• more than the FIFO timeout period has elapsed since the section now at the head of the FIFO was received

The FIFO timeout period shall be 2 seconds.

Whenever one of these triggers occurs, a process equivalent to the following steps shall be repeated until the quarantine
FIFO is empty or verification of the section at the head of the FIFO is not possible:

• Inspect the section at the head of the quarantine FIFO.

• Compute the hash of this section using the appropriate hash algorithm.

• Search the cache of trusted hashes to see if a trusted hash with appropriate scope is present that can verify the
section. Specifically, a candidate trusted hash verifies the section if the following statements are true:

- The elementary stream from which the payload section was received matches the elementary stream to
which the trusted hash applies, determined as follows:

� If the reference_type (associated with the hash within the authentication message) is 1 then the
trusted hash applies to the same elementary stream that delivered the authentication message.

� If the reference_type (associated with the hash within the authentication message) is 2 then the
trusted hash applies to the elementary stream to which the component_tag in the reference resolves.

- The table_id of the payload section matches the table_id to which the trusted hash applies, determined
from the reference_bytes associated with the hash within the authentication message.

- The hash of the payload section matches that of the trusted hash over the appropriate
section_hash_length.

• If a matching hash is found in the cache, release the section at the head of the quarantine FIFO for use by the
receiver.

• If no matching hash is found for the section at the head of the quarantine FIFO and the FIFO is now full or
more than the FIFO timeout period has elapsed since the section at the head of the FIFO was received, discard
the section at the head of the FIFO.

In operation, the fullness of the quarantine FIFO will depend on the relative arrival time of authentication sub_tables
and payload sections from the received stream. If the authentication sub_tables are received and verified before the
corresponding payload sections arrive, then the payload sections can be verified and released from the quarantine
without delay. However, if payload sections are received before the authentication sub_tables that allow them to be
verified arrive, then the payload sections will be delayed in the quarantine FIFO.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)70

If an authentication sub_table is lost (for example due to transmission errors) then the payload that it verifies cannot be
released from the quarantine FIFO. If a subsequent authentication sub_table does not deliver the required trusted
hashes, then the payload section will remain at the head of the FIFO, and the FIFO will fill up. When the FIFO is full or
the section at the head of the FIFO has been stored for more than the FIFO timeout period, the unverifiable section at
the head of the FIFO will be discarded, and the verification process will continue examining the subsequent sections in
the FIFO. Similarly, if sections from an un-trusted source are received then they will not be released from the
quarantine FIFO and ultimately will be discarded.

If sections from an un-trusted source are received, then they will never be released from the quarantine FIFO and
ultimately will be discarded.

Practically the size of the quarantine FIFO constrains the minimum repetition rate for authentication sub_tables relative
to the arrival and repetition rates of the corresponding payload sections.

EXAMPLE 1: One strategy could be to transmit authentication sub_tables at a small multiple of the minimum
theoretical rate, with each insertion being a new version that repeats some of the hashes from
previous versions of the authentication sub_table. This could accommodate occasional loss of
authentication sub_tables due to transmission errors without significant delay.

EXAMPLE 2: Another strategy could be to transmit hashes only once. In this case, the loss of an authentication
sub_table would lead to all sections covered by it being lost and subsequent sections being
temporarily held up due to the timeout. As such, this approach is not likely to be appropriate for
many use cases.

9.4.3 Authentication messages

The authentication information conveyed in authentication message sections allows a receiver to verify a payload
section. They shall be coded according to table 42.

Table 42: Syntax of the authentication message section

Syntax Number
of bits

Identifier

authentication_message_section() {
 table_id 8 uimsbf
 section_syntax_indicator 1 bslbf
 reserved_future_use 1 bslbf
 reserved 2 bslbf
 section_length 12 uimsbf
 authentication_group_id 16 uimsbf
 reserved 2 bslbf
 version_number 5 uimsbf
 current_next_indicator 1 bslbf
 section_number 8 uimsbf
 last_section_number 8 uimsbf
 section_hash_algorithm_identifier 8 uimsbf
 section_hash_length 8 uimsbf
 signature_algorithm_identifier 8 uimsbf
 reserved 4 bslbf
 section_hashes_loop_length 12 uimsbf
 for (i=0;i<N;i++) {
 reference_type 4 uimsbf
 reference_length 4 uimsbf
 for (j=0;j<N;j++) {
 reference_byte 8 uimsbf
 }
 for (j=0;j<N;j++) {
 section_hash_byte 8 bslbf
 }
 }
 extension_bytes_length 8 uimsbf
 for (i=0;i<N;i++) {
 extension_byte 8 bslbf

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)71

Syntax Number
of bits

Identifier

 }
 signature_key_identifier_length 8 uimsbf
 for (i=0;i<N;i++) {
 signature_key_identifier_byte 8 bslbf
 }
 for (i=0;i<N;i++) {
 signature_byte 8 bslbf
 }
 CRC_32 32 rpchof
}

Semantics for the authentication message section:

table_id: This 8-bit field shall be coded according to clause 5.1.3 of ETSI EN 300 468 [1] with value 0x7B.

section_syntax_indicator: This 1-bit field shall be set to '1'.

section_length: This 12-bit field shall be coded according to ISO/IEC 13818-1 [3].

authentication_group_id: This 16-bit field identifies an authentication message sub_table. It shall be coded according
to clause 9.3.4 to indicate an authentication message section.

version_number: This 5-bit field shall be coded according to ISO/IEC 13818-1 [3].

current_next_indicator: This 1-bit field shall be set to '1'.

section_number: This 8-bit shall be coded according to ISO/IEC 13818-1 [3].

last_section_number: This 8-bit shall be coded according to ISO/IEC 13818-1 [3].

section_hash_algorithm_identifier: This 8-bit field identifies the hash algorithm used to create the hashes of data
sections that are contained in the section hash fields. It shall be coded according to table 43.

Table 43: Section hash algorithm identifier coding

section_hash_algorithm_identifier Description
0 SHA-256 according to FIPS 180-4 [23]
1 SHA-512 according to FIPS 180-4 [23]

2 to 255 reserved for future use

This value shall be pseudo static and shall have the same value in all of the sub_tables applicable to this instance of the
verifier.

NOTE 1: As this value is pseudo static the receiver implementation is not required to implement seamless operation
of the verifier in the case that an authentication message is received with a changed value for this field.
For example, upon receiving a changed value a receiver could discard any payload sections awaiting
verification in the quarantine FIFO and also discard any cached trusted hashes from previously received
authentication messages.

section_hash_length: This 8-bit value indicates the number of bytes of hash data present in each section_hash_field in
the section hashes loop. Its value shall not be greater than the length of the hash produced by the hash algorithm
indicated by the section_hash_algorithm_identifier field and shall not be less than 8. Its value may be smaller than the
length of the hash produced by the hash algorithm, in which case the section hashes are truncated from the full length
hash produced by the hash algorithm.

NOTE 2: This value should be set according to factors such as the desired security level, the number and rate of
sections and the requirements of applicable platform specifications. It is recommended to set this value to
at least 16 bytes.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)72

For the hash algorithms defined in FIPS 180-4 [23] hash truncation for truncated message digests is defined in NIST
Special Publication 800-107 [24].

This value shall be pseudo static and shall have the same value in all of the sub_tables applicable to this instance of the
verifier.

NOTE 3: As this value is pseudo static the receiver implementation is not required to implement seamless operation
of the verifier in the case that an authentication message is received with a changed value for this field.
For example, upon receiving a changed value a receiver could discard any payload sections awaiting
verification in the quarantine FIFO and also discard any cached trusted hashes from previously received
authentication messages.

signature_algorithm_identifier: This 8-bit value that identifies the algorithm used to calculate the signature of the
authentication message section, which is conveyed in the signature field. It shall be coded according to table 44.

Table 44: Signature algorithm identifier coding

signature_algorithm_identifier Description
0x00 reserved for future use
0x01 ed25519 without pre-hash, according to IETF RFC 8032 [27]
0x02 sha256WithRSAEncryption according to IETF RFC 3447 [25]
0x03 sha384WithRSAEncryption according to IETF RFC 3447 [25]
0x04 ecdsa-with-SHA256 according to ANSI X9.62 [22] using curve

secp256r1 according to SEC 2 [26]
0x05 ecdsa-with-SHA256 according to ANSI X9.62 [22] using curve

secp384r1 according to SEC 2 [26]
0x06 ecdsa-with-SHA384 according to ANSI X9.62 [22] using curve

secp256r1 according to SEC 2 [26]
0x07 ecdsa-with-SHA384 according to ANSI X9.62 [22] using curve

secp384r1 according to SEC 2 [26]
0x08 to 0xFF reserved for future use

NOTE 4: The set of signature algorithms that are mandatory for a receiver to implement is addressed in
clause 9.4.6.

NOTE 5: The curve named secp256r1 is also known as prime256v1(see ANSI X9.62 [22] and SEC 2 [26]).

section_hashes_loop_length: This 12-field indicates the length in bytes of the loop of section hashes that follows.

reference_type: This 4-bit field that indicates how the payload section associated with the following hash value can be
located and identified. It shall be coded according to table 45.

Table 45: Reference type coding

reference_type Description
0 reserved for future use
1 The payload section is located on the same elementary stream and is

identified by a table_id value carried in the first reference_byte and by
the section_hash itself.
The reference_length field shall be set to 1.

2 The payload section is located on a different elementary stream and is
identified by component_tag and table_id values carried in the first
and second reference_byte respectively, and by the section_hash
itself. The referenced elementary stream can be found by looking up
the component_tag value in a stream_identifier_descriptor within the
PMT of the service carrying the authentication message section.
The reference_length field shall be set to 2.

3 to 15 reserved for future use

reference_length: This 4-bit specifies the length in bytes of the following reference field.

reference_byte: This is an 8-bit field. The sequence of reference_byte fields specifies the reference field. The syntax
and semantics of the reference field shall be defined by the referencing mechanism that is identified in the
reference_type field.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)73

NOTE 6: The reference may match a number of sections and consequently there may be multiple entries in the
hashes loop with the same reference field. A received section is successfully matched if there exists a
hash entry with both a matching reference (reference field) and a matching hash value (section_hash
field).

section_hash_byte: This is an 8-bit field. The sequence of section_hash_byte fields specifies the section_hash field,
which conveys a cryptographic hash of a referenced section, calculated using the hash algorithm indicated in the
section_hash_algorithm_identifier field and truncated to section_hash_length.

extension_bytes_length: This 8-bit specifies the length in bytes of the following extension_bytes field. Receivers that
implement the present document shall not rely on or require this field being zero.

extension_byte: This is an 8-bit field which is reserved for future use. Receivers that implement the present document
shall ignore the contents of this field.

signature_key_identifier_length: This 8-bit specifies the length in bytes of the following signature_key_identifier
field.

signature_key_identifier_byte: This is an 8-bit field. The sequence of signature_key_identifier_byte fields specifies
the signature_key_identifier field, which conveys a truncated identifier for the public key needed to verify the signature
contained in the signature field. This field shall match the truncated identifier of a public key delivered by the trust
management mechanism (see clause 9.5.4.10.5).

signature_byte: This is an 8-bit field. The sequence of signature_byte fields specifies the signature field, which
conveys a digital signature calculated using the algorithm specified in the signature_algorithm_identifier field. The
input data for the signature algorithm shall be the entire section up to, but not including the first signature_byte. The
total number of signature bytes present is determined by the signature algorithm and key being used.

NOTE 7: The input data for the signature algorithm includes the extension field (when present) and its preceding
length field, regardless of whether the receiver implements any extensions or not.

9.4.4 Performance enhancements (informative)

A receiver that can satisfy the reference model in clause 9.4.2 with the constraints in clause 9.4.6 will perform
acceptably. The following illustrate some techniques that may allow the receiver to meet these requirements while using
fewer resources with a typical broadcast signal.

Observe if an arriving authentication sub_table is identical to an authentication sub_table that was received previously
and whether the hashes that it delivered are still cached. If so, there is no need to repeat the verification of the arriving
sub_table or process it further. This can be further enhanced by caching the authentication sub_tables and hashes
persistently. However, if the authentication sub_tables are frequently changing then the receiver needs to be capable of
verifying them at the rates specified in clause 9.4.6.

9.4.5 Transport Stream constraints

A Transport Stream carrying data protected according to the present document shall be constructed such that it can be
verified by any receiver that implements the reference model specified in clause 9.4.2 using the minimum performance
and sizing requirements specified for a receiver in clause 9.4.6.

9.4.6 Receiver requirements

9.4.6.1 Overview

Imposing minimum requirements on receiver capabilities allows Transport Streams to be constructed so that every
receiver which implements the mandatory provisions of the present document is capable of processing the Transport
Stream, and achieve the intended protection. Therefore, all receiver implementations of the present document shall at
least meet the requirements defined in clause 9.4.6.2. Future versions of the present document or users of the present
document may define one or more supersets of these minimum constraints, see clause 9.4.6.3.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)74

9.4.6.2 Receiver minimum requirements

Table 46: Receiver minimum requirements

Parameter Constraints Requirements
signature_algorithm_identifier
value in authentication message
section

At least algorithm 0x01 Receivers shall implement at
least the signature algorithm(s)
identified in this constraint.

section_hash_length value in
authentication message section

Minimum 16 bytes (128 bits)
Maximum 64 bytes (512 bits)

Receivers shall ignore any hash
whose truncated length is outside
the specified range.

Number of sub_tables carrying
authentication messages

4 Receivers shall support
independent processing of up to
this number of authentication
message sub_tables.

authentication_group_id values 0 to 3 Receivers shall support
processing of authentication
message sub_tables with any of
these authentication_group_id
values. Receivers may discard
authentication message
sub_tables with other values.

Size of payload section
quarantine FIFO

50 sections of up to 4 096 bytes
each

The size of the receiver payload
section FIFO shall be the value
specified. See note 1.

Number of verified hashes to
store

At least 500 hashes (distributed in
any manner between the allowed
sub_tables)

Receivers shall be able to store
the specified number of hash
values and associated references
for the purposes of verifying
payload sections. See note 2.

Number of authentication
sub_table sections awaiting
verification

4 sections of up to 4 096 bytes
each

Receivers shall be able to buffer
at least the specified number of
sections prior to signature
verification.

Rate at which payload sections
can have their hash computed
and verified

At least 131 072 bytes per second
of section data or 100 sections per
second (whichever limit is reached
first)

Receivers shall be able to verify
payload sections at a rate greater
than or equal to this rate.

Rate at which signatures on
authentication message
sub_tables can be verified

4 sections per second, each
section up to 4 096 bytes

Receivers shall be able to verify
authentication message
sub_tables at a rate greater than
or equal to this rate. See note 3..

Carriage of protection messages Protection messages shall only be
carried on the elementary streams
that are to be protected

Receivers may ignore the PSI
signalling defined in clause 9.3.3.

NOTE 1: The FIFO size constraint is both a lower and upper limit to constrain the maximum delay in the
event that an authentication message is lost.

NOTE 2: Receivers may choose to store the hashes in the form of the original authentication message
sections or may extract them after signature verification and store them separately.

NOTE 3: This performance requirement assumes a worst case where each authentication message
received has to be verified (i.e. messages are not identical to a previously received message).

9.4.6.3 Additional requirements

The present document only requires receivers to satisfy the minimum requirements defined in clause 9.4.6.2. External
specifications may define one or more supersets of these minimum requirements. A non-exhaustive list of requirements
that might be addressed by other documents includes the following:

• Additional signature algorithms beyond EdDSA

- Where applicable, the key sizes that are required to be supported.

- If applicable, the signature verification performance requirements for additional signature algorithms.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)75

• Whether the receiver is required to be capable of receiving protection messages from elementary streams other
than the elementary streams carrying the payload and hence whether the receiver is required to process the PSI
signalling defined in clause 9.3.3.

• Application-specific terminal requirements in excess of those in table 46.

9.5 Trust management

9.5.1 Overview

This clause addresses how trust signalling provides the receiver with verification keys to enable data carried by
protectable streams to be authenticated.

Protectable streams are elementary stream signalled either 1) as defined in clause 5.3.2.1 of the present document or 2)
as defined in clause 5.3.2.2 of the present document.

Trust signalling is conveyed by the certificate collection message (as defined in clause 9.5.4.8.5). This carries a set of
certificates.

Trust signalling is deemed coherent when there are certificates in the certificate collection message that form a
certificate chain that can be verified according to the rules in clause 9.5.5.2. If the trust signalling is not coherent then
the receiver ignores it.

This clause specifies how trust signalling becomes established either because it is coherent and stable for at least a
specified period (see clause 9.5.2) or anchors to a coordinating entity (see clause 9.5.3). In the first case, where trust
becomes established due to the stability of the trust signalling, the self-signed certificate at the top of the certificate
chain (which may also be the only certificate in the chain) is known as the manager certificate.

Trust signalling may need to be updated from time to time. Clauses 9.5.5.3 and 9.5.5.4 specify how new trust signalling
can be identified as a valid successor to previous trust signalling.

Use of a coordinating entity is optional for both broadcasts and receivers. As shown in figure 11 "Coordinating entity
provides an alternative route for verification", broadcasts that include a certificate chain that can be verified from a
coordinating entity root certificate are also required to include a certificate chain that can be verified by receivers not
aware of that coordinating entity.

A coordinating entity will define a set of services to which it applies - for example based on a DVB-SI network_id or
original_network_id. The present document only defines usage of coordinating entities where receivers that include the
root of trust for the coordinating entity are required to reject certificate chains that cannot be authenticated by that root
of trust for services where the coordinating entity applies.

NOTE 1: Significant business and/or regulatory relationships and arrangements need to be put in place to ensure
that certificate chains on legitimate services are not rejected.

NOTE 2: It is theoretically possible to use a coordinating entity with a set of services without rejecting certificate
chains in those services that are not authenticated by the root of trust from the coordinating entity. This is
not addressed by the present document.

NOTE 3: When a coordinating entity defines the set of services to which it applies, this needs to be done in a way
that does not enable attackers to strip protection from popular services.

9.5.2 Establishing trust for stand-alone services

9.5.2.1 Introduction

This clause addresses the mechanism by which trust is established for individual services without requiring a
coordinating entity. In this case trust is established by trust signalling being observed as present, coherent and stable on
a service for a "probation" period. This provides the receiver with a verification key that enables applications delivered
by that service to be verified.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)76

This clause also enables the established trust to be maintained/updated by the verified succession of coherent trust
signalling. That is new candidate trust signalling that can be authenticated by previously established trust signalling
according to the rules in clause 9.5.5.3. This clause also allows candidate trust signalling to become the established trust
signalling after an extended period of stability. This is to allow recovery from problems.

Under the stand-alone scheme the broadcaster is able to deactivate the authentication of protectable streams (the
termination of trust) by transmitting signalling containing the trust termination certificate (see clause 9.5.4.8.4).

9.5.2.2 State machine

Figure 2 shows the state diagram for how trust is established and maintained for a stand-alone service. At a high level
these states enable two modes of operation:

• Green box - trust has been established (a trusted verification key is stored) and application authentication is
possible. The receiver shall apply the process described in clause 9.4.2 of the present document to MPEG-2
private sections received from protectable streams.

• Red box - trust has not been established (no verification key is trusted) so application authentication is not
possible. Clause 9.5.2.4 defines the required behaviour for these states.

• Each of these coloured boxes encapsulates a number of states and transitions which are detailed in tables 47
and 48.

Figure 2: State diagram for establishing trust for stand-alone services

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)77

Table 47: States for establishing trust for stand-alone services

State Name Description
A Service detected but not

yet visited
The receiver has detected the service (for example after a factory reset, a user
initiated or automated channel scan) but has not yet visited the service.

After a factory reset, all services shall be treated as being found following a
user initiated channel scan.

B No trust established There is no established trust signalling or trusted verification key for the service
and so application authentication is not possible. See clause 9.5.2.4.

C Probation Coherent trust signalling is present but trust in this signalling has not yet been
established. See clause 9.5.2.4.

D Trust established The receiver shall apply the process described in clause 9.4.2 of the present
document to MPEG-2 private sections received from protectable streams.

E Loss of authenticated
trust signalling

There is no authenticated trust signalling in the network. Either the receiver
has received new candidate trust signalling that is not a valid successor to the
currently established trust signalling or the receiver is currently not receiving
any coherent trust signalling. The receiver checks the stability of this situation
for a period "Loss2" as defined in table 49 before determining that the currently
established trust signalling will not be coming back.

The receiver shall apply the process described in clause 9.4.2 of the present
document to MPEG-2 private sections received from protectable streams using
the trusted verification key for that service.

Table 48: State transitions for establishing trust for stand-alone services

<#> Old state Trigger New State Description
1 Service

detected but
not yet visited

Service visited No trust
established

Service is visited for the first time, e.g. after a user
initiated or automated channel scan discovers the
existence of the service.

2 No trust
established

Coherent trust
signalling received
that is not
termination of trust
signalling

Probation The receiver shall store the received coherent trust
signalling as candidate trust signalling.

The receiver shall start counting the probation period as
defined in clause 9.5.2.3. If this is the first time that the
service has been visited since a user initiated channel
scan or factory reset then the probation period is
Probation1 in table 49. If the service has been visited
previously or this is the first visit to the service since an
automatic channel scan then the probation period is
Probation2 in table 49.

3 Probation Trust signalling
coherent and stable
for probation period

Trust
established

The coherent and stable candidate trust signalling shall
become the established trust signalling for that service
and the verification key it provides shall become the
trusted verification key for that service.

The receiver shall store the certificate chain (including
the verification key) as the newly established trust
signalling (see clause 9.5.5.1).

4 Probation Trust signalling
changes

No trust
established

If the received trust signalling changes in any way
(compared to the stored candidate trust signalling)
before the probation period has elapsed then the
receiver shall transition back to the no trust established
state and reset the probation period counter.

5 Trust
established

New coherent trust
signalling received
that is a valid
successor to the
established trust
signalling

Trust
established

The new trust signalling shall become the established
trust signalling for that service and the verification key it
provides shall become the trusted verification key for
that service.

The receiver shall update the stored established
certificate chain and verification key for that service from
the new trust signalling (see clause 9.5.5.1).

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)78

<#> Old state Trigger New State Description
6 Trust

established
New coherent trust
signalling received
that is a valid
successor to the
established trust
signalling and is
termination of trust
signalling

No trust
established

The receiver shall remove the stored established
certificate chain and verification key for that service.

7 Trust
established

New coherent trust
signalling received
that is not a valid
successor to the
established trust
signalling

Loss of
authenticated
trust
signalling

The receiver shall store the received coherent trust
signalling as candidate trust signalling.

This candidate trust signalling shall not become the
established trust signalling and the verification key it
provides shall not be used for authentication. The
existing established trust signalling shall remain the
established trust signalling.

The receiver shall start counting the timeout period
"Loss2" in table 49 as defined in clause 9.5.2.3.

8 Trust
established

Coherent trust
signalling not
received within the
period "Loss1" (as
defined in table 49)
while the service is
selected
(without termination
of trust having been
signalled as in 6)

Loss of
authenticated
trust
signalling

The existing established trust signalling shall remain the
established trust signalling.

No candidate trust signalling shall be stored.

The receiver shall start counting the timeout period
"Loss2" in table 49 as defined in clause 9.5.2.3.

9 Loss of
authenticated
trust signalling

Either the currently
established trust
signalling is
received or new
coherent trust
signalling is
received that is a
valid successor to
the established trust
signalling

Trust
established

If the received trust signalling is different from the
established trust signalling but is a valid successor then
the new trust signalling shall become the established
trust signalling for that service and the verification key it
provides shall become the trusted verification key for
that service. The receiver shall update the stored
certificate chain and verification key for that service from
the new trust signalling.

If the valid successor is trust termination signalling the
receiver shall next perform transition 6 (not shown in
figure 2).

Otherwise the existing established trust signalling shall
continue to be used.

10 Loss of
authenticated
trust signalling

New coherent trust
signalling received
that is not a valid
successor to the
established trust
signalling and is
different from the
current candidate
trust signalling

Loss of
authenticated
trust
signalling

The receiver shall re-start counting the timeout period
"Loss2" in table 49 from zero.

The receiver shall store the received coherent trust
signalling as candidate trust signalling.

11 Loss of
authenticated
trust signalling

Coherent trust
signalling is not
received for a
period of "Loss1"
(as defined in
table 49) while the
service is selected
and
while counting the
"Loss2" timeout for
candidate trust
signalling

Loss of
authenticated
trust
signalling

If the receiver has current candidate trust signalling
stored then the receiver shall erase the current
candidate trust signalling and shall re-start counting the
timeout period "Loss2" in table 49 from zero.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)79

<#> Old state Trigger New State Description
12 Loss of

authenticated
trust signalling

Service remains in
this state for the
"timeout" period
"Loss2" as defined
in table 49

No trust
established

Previous established trust signalling and the trusted
verification key shall be discarded.

Table 49: Definition of timing parameters

Name Definition Value
Probation1 Probation if this is the first time that the service has

been selected since a user initiated channel scan
or factory reset.

300 seconds (see note)

Probation2 Probation if the service has been selected
previously or this is the first visit to the service
since an automatic channel scan.

1 800 seconds (see note)

Loss1 Coherent trust signalling has not been received for
a period

The repetition period defined in clause 9.3.5.2
multiplied by 4

Loss2 Coherent trust signalling has not been received for
a period or new coherent trust signalling received
that is not a valid successor to the established
trust signalling

As defined by the trustTimeToLive in the
established manager certificate for this service as
defined in clause 9.5.4.10.3

NOTE: A platform specification may specify values greater than these.

9.5.2.3 Measuring probation and timeout periods

When the trust status of a service changes to either the probation or loss of authenticated trust signalling states or when
a change in the trust signalling is detected while in one of those states, the receiver shall persistently store a copy of the
candidate new trust signalling (if any) and the current time.

NOTE: While established trust signalling is stored it is available to enable application authentication. The
established trust signalling remains available until it is removed on entry to the no trust established state.
So, the receiver may be storing both established trust signalling and candidate new trust signalling.

When the receiver selects a service in either the probation or loss of authenticated trust signalling states and the received
trust signalling is the same as the previously stored candidate trust signalling, the receiver shall calculate how much
time has passed since the change in state of the service.

• If the end of the timed period has passed since the service was last visited then the receiver shall apply the
state change according to clause 9.5.2 of the present document.

• If the end of the timed period has not yet passed then, while that service remains visited, the receiver shall use
a timer or similar mechanism to check if the end of the period passes. If this happens then the receiver shall
apply the state change according to clause 9.5.2 of the present document.

When the receiver selects a service in the loss of authenticated signalling state and the service contains no trust
signalling and did not contain any at the last change in state then:

• If the end of the timed period has passed since the service was last visited then the receiver shall apply the
state change according to clause 9.5.2 of the present document.

• If the end of the timed period has not yet passed then, while that service remains visited, the receiver shall use
a timer or similar mechanism to check if the end of the period passes. If this happens then the receiver shall
apply the state change according to clause 9.5.2 of the present document.

If the receiver has one or more secure sources of time (e.g. real-time clock, secure internet-based source of time) then
such a secure source shall be used for measuring the timed periods. Calculating how much time has passed shall be
done by subtracting the persistently stored time from the current time.

If the receiver does not have a secure source of time then calculating how much time has passed shall be done by
measuring the time spent in any internal state where time can be determined to be elapsing, e.g. when powered on. This
may include when in a standby state, if the receiver can measure time when in this state. Under no circumstances shall
time based on broadcast TOT/TDT be used.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)80

9.5.2.4 Behaviour while trust has yet to be established

The present document defines default behaviour for the states B and C that depends on whether a receiver modifies its
channel list in reaction to NIT/SDT changes immediately the change is detected or only after the receiver is put in to
standby.

If the receiver does not immediately modify its channel list in reaction to NIT/SDT changes then, by default, MPEG-2
private sections from protectable streams shall bypass the authentication process defined in clause 9.4.2 and shall be
passed to the "Normal Section Processing" step shown in figure 1, "Reference model for verification". However a
platform specification may require such sections to be rejected where arrangements are in place to ensure that all
legitimate services carry authentication.

If a receiver immediately modifies its channel list in reaction to NIT/SDT changes and if such a receiver starts applying
the process defined in the present clause to a service added as a result of the NIT/SDT change then the following shall
apply to MPEG-2 private sections from protectable streams in such a service:

• They shall not bypass the authentication process defined in clause 9.4.2; and

• They shall not be passed to the "Normal Section Processing" step shown in figure 1, "Reference model for
verification".

9.5.3 Coordinating entity assists establishing trust (optional)

A coordinating entity is an external trust anchor that is trusted by a device without any service specific trust signalling.
Trust signalling that includes one or more certificate chains that depend on a coordinating entity shall also be
constructed to support the stand-alone model described in clause 9.5.2 as illustrated in figure 12.

A coordinating entity's root key certificate shall never be broadcast using the trust management process described in the
present document. The actual process of distributing and managing these coordinating entity certificates is beyond the
scope of the present document. For the purpose of verifying certificates it is assumed that the management of
coordinating entity certificates is done in a secure manner. Coordinating entities are not limited to providing trust for a
single service i.e. may provide trust for multiple services or for all services in a market.

The following shall apply when a receiver supporting a coordinating entity attempts to authenticate data in a service to
which the coordinating entity applies:

• The state diagram in clause 9.5.2 of the present document shall not be applied to that service.

• Coherent trust signalling that cannot be authenticated by a coordinating entity that applies to the service shall
be discarded and any verification keys shall not be used.

• Coherent trust signalling that is authenticated by an applicable coordinating entity shall immediately become
the established trust signalling.

• The terminal shall always apply the process described in clause 9.4.2 of the present document to MPEG-2
private sections received from protectable streams.

Coordinating entities may provide revocation or renewability information that needs to be conveyed to receivers. If so,
such messages shall be carried in accordance with ETSI TS 102 770 [33] and shall be carried on the same component as
other trust messages defined by the present document. The PMT signalling defined in ETSI TS 102 770 [33] is optional.
Receivers that do not support any coordinating entity that makes use of these messages shall ignore them.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)81

9.5.4 Trust messages

9.5.4.1 About certificate chains (informative)

Figure 3 shows an example of a public key certificate. The certificate payload is an electronic document that provides a
public key (the "subject public key") associated with various other items of information. The certificate signature allows
the integrity and authenticity of the certificate payload to be cryptographically verified.

Figure 3: Example public key certificate

All certificates are signed using a confidentially held private key as part of the certificate creation. This signature can be
verified using the corresponding public key by anyone. This public key is usually published within another certificate.
This creates an 'Issuer' relationship between two certificates referred to as a "certificate chain". In the general case a
certificate signature is verified by the public key of the certificate above it in the certificate chain. The exception is the
certificate at the top of the chain which is self-signed, i.e. signed using the confidentially held private key that
corresponds to the public key conveyed within itself. The certificate at the top of the chain is commonly known as a
"trust anchor" and needs to become trusted by a separate mechanism.

In the present document there are two mechanisms for trust anchors to become trusted. Clause 9.5.2 defines how a trust
anchor can become trusted based on continuous observed presence in the broadcast. Such a trust anchor corresponds to
a "manager certificate" within the system described in the present document. Alternatively the certificate has been
distributed to the receiver from a trusted source by a mechanism beyond the scope of the present document (see
clause 9.5.3). Such a trust anchor is referred to as a "coordinating entity certificate". This specification does not define
rules for determining which mechanism should be used under what circumstances. It is expected that such rules will be
defined by co-ordinating entities themselves.

In the present document the certificate above a certificate in the certificate chain is referred to as the certificate's
"parent" and the certificate below the certificate in the chain is referred to as the certificate's "child". I.e. a "child"
certificate is verified by its "parent".

In figure 4 certificate 'B' is the child of 'A'. The signature of certificate 'B' can be verified by pubkeyA provided by
certificate 'A'. Similarly 'C' is the child of 'B' and the signature of certificate 'C' can be verified by pubkeyB. In this
example certificate 'A' is a self-signed certificate and hence the top of the certificate chain. The signature of a self-
signed certificate can be verified by the public key in that certificate.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)82

Figure 4: Example certificate chain

For the purposes of establishing the certificate chain each certificate includes an "authority key identifier" that identifies
the subject public key of its parent. A key identifier is computed from the subject public key of a certificate as described
in clause 9.5.4.10.5 and serves as a unique identifier for that public key. The parent of a child is located by comparing
the computed key identifiers of public keys in the other certificates with the authority key identifier present in the child.
In figure 4 certificate 'B' is the child of 'A' and so the authority key id in certificate 'B' matches the result of the key
identifier computation applied to the subject public key in certificate 'A'.

NOTE: The certificate syntax defined in the present document intentionally does not include a subject key
identifier.

A child certificate may have more than one parent. That is, more than one parent certificate may carry a given subject
public key as shown in figures 11 and 12.

For certificates above the bottom of the chain the subject public key is required to verify the signature of the current
child of that certificate. The subject public key of the certificate at the bottom verifies other data (authentication
messages in the present document, see clause 9.4.3).

The above describes the cryptographic connections between certificates at a single moment in time. The modification of
the certificate chain over time is described in clauses 9.5.4.2 and 9.5.4.8.3.

The certificate also contains "issuer" and "subject" fields. Notionally these fields provide metadata about the
organizations issuing and receiving the certificates. However, these fields have no technical use in the present
document.

9.5.4.2 Succession of certificates

From time to time public keys will need to be replaced to maintain security. The cryptographic parent/child
relationships within a certificate chain allow the chain to be verified but cannot prove that the certificates are current. In
environments where keys are to be distributed via a unidirectional channel (such as broadcast) precautions are required
to allow a receiver to detect and reject the replay of previously active but no longer current keys as well as to correctly
identify and validate legitimate key replacements. In the present document two mechanisms are used to signal the
chronological succession of certificates.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)83

All certificates defined by the present document contain a validity field. The notBefore value of the validity field is used
by the receiver to detect (and so reject) a certificate if it is older than the one it has seen most recently. Although the
notBefore value represents UTC time a receiver only has to compare values between certificates to determine their
relative ages. Thus the receiver is not required to have access to a reliable source of UTC time when comparing
notBefore values of different certificates. See clause 9.5.5.2.

Manager certificates defined in the present document (see clause 9.5.4.4) additionally always include a successorKeyID
field. This value uniquely references the subject public key of the next manager certificate in the sequence as illustrated
in figure 5. The value of the successorKeyID uses the key identifier computation described in clause 9.5.4.10.5. This
allows a broadcast to securely pre-announce a future manager's key and thereby the corresponding manager certificate
and allows a receiver to trust the future manager certificate when it is first received.

NOTE: The successorKeyID provides cryptographic binding between successive manager certificates over time.
This is distinct from the parent/child hierarchical relationship within a certificate chain created by direct
signing.

Figure 5: Minimum manager identifying future successor

The broadcast may additionally carry a sequence of predecessor manager certificates leading up to the current manager
certificate. Each of these manager certificates references its successor via the successorKeyID field. This allows a
receiver to trust the current manager certificate even if it did not previously receive one or more of the most recent
predecessors but had received at least one of the more remote predecessors. Figure 6 illustrates such a configuration. In
this example manager[n] is the current manager certificate and managers [n-M] to [n-1] are previous manager
certificates. If the receiver does not yet trust the current manager but the receiver trusts one of the previous managers
[n-M] to [n-1] then the receiver can trust the current manager.

Figure 6: Collection includes predecessor manager certificates

Figure 7 illustrates the transmission at a later time where manager [n+1] has become the current manager and identifies
manager [n+2] as its successor. In this case manager [n] has become one of the optional predecessor manager
certificates and manager [n-M] has been dropped from the collection.

Figure 7: Collection includes predecessor manager certificates at time t+1

9.5.4.3 Security considerations (informative)

This clause briefly summarizes some of the assumptions and intentions behind the solution described in the present
document and is intended to help readers understand how the system can be used to its best effect.

The present document makes the following assumptions about keys and certificates:

• It is assumed that the lifetime of a verification key will be in the range of a few weeks or months.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)84

• It is assumed that the lifetime of a manager in a hierarchy will span multiple verification key lifetimes and
would generally be in the range of 12 to 24 months.

• In a simplest configuration of the manager additionally acting as the verification key, the assumed lifetime is
also in the range of several months (e.g. 6 to 24 months).

• If there is a schedule for replacing keys then the notAfter dates should be set accordingly. Otherwise the
notAfter value should be set according to other operational considerations.

• It is assumed that measures are taken to safeguard cryptographic material and to prevent accidental data loss.

• It is assumed that key sizes and hash lengths, where variable, are selected by the broadcaster to provide an
adequate level of protection and will be reviewed and updated from time to time.

The unidirectional nature of the free-to-air broadcast environment prevents use of common industry approaches which
assume bidirectional communication. The designated successor is a novel concept designed to allow a secure and
uninterrupted recovery from a key compromise in such an environment. This means that receivers are able to securely
switch from a compromised key to a non-compromised successor. This is possible because the designated successor is
securely announced in advance within the current manager certificate and never allowed to change thereafter. This
prevents an attacker from changing the value even if they compromise the current manager key.

The security of the replacement process for managers does not rely on the key of a manager after that manager's
certificate has been verified for the first time. This property allows for the secure implementation of a one-tier system
because it provides separate security mechanisms for key replacement and securing authentication messages:

• Authentication messages are signed by the current key. Any authentication message that can be verified with
the current key is valid. Therefore an attacker who gains control over the current key could send out forged
authentication messages.

• The successor key is verified by comparing its computed key identifier to the successorKeyId of its
predecessor. This process does not involve the current key and therefore cannot be subverted by an attacker
who gained control over the current key.

9.5.4.4 Certificate properties and configurations

Each certificate includes the keyUsage field as described in clause 9.5.4.10.3. The value of this field controls how the
subject public key contained in a certificate can be used. Receivers shall only use public keys according to the key
usage of their respective certificates.

The present document defines the keyUsage field in certificates as follows:

a) The digitalSignature bit is asserted when the subject public key may be used for verifying the signatures of
authentication messages. Public keys conveyed within certificates with digitalSignature not asserted shall not
be used to verify these signatures. The authentication message shall only reference keys from a certificate that
has the digitalSignature bit asserted.

b) The keyCertSign bit is asserted when the subject public key may be used for verifying signatures of other
certificates. Public keys conveyed within certificates with keyCertSign not asserted shall not be used to verify
the signature of certificates. A self-signed certificate shall not have the keyCertSign bit asserted unless it also
signs child certificates.

No certificate shall have both key usage bits asserted.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)85

Table 50: Identifying certificate types from properties

Successor
ID present

Successor ID
matches

SubjectKeyID of
another certificate
within collection

KeyUsage bits Asserted Self-signed Certificate type
digitalSig KeyCertSign

Y N 1 0 Y Manager (note 1)
Y N 0 1 Y Manager
Y Y 1 0 Y Previous manager
Y Y 0 1 Y Previous manager (note 2)
N Not applicable 0 1 N Intermediate
N Not applicable 1 0 N Verification
Y Matches own

subjectKeyID
0 0 Y Termination of trust

NOTE 1: In this case the certificate chain has only one certificate and the manager certificate also provides the
verification key.

NOTE 2: In this case the certificate was previously a manager that was used in a chain with one certificate and the
manager certificate also provided the verification key.

Within the system, key usage and certificate properties can be combined to serve a specific purpose within a certificate
hierarchy. In order to make these purposes clearly identifiable, the present document defines the following certificates
within a hierarchy:

• Manager certificate (which is eligible to become trusted as described in clause 9.5.2) shall:

- Be self-signed.

- Include the successorKeyId field.

• In addition, a manager certificate can operate in either one of two configurations depending on the keyUsage
bits that have been asserted:

- If the digitalSignature bit is asserted the manager certificate operates in a single-tier system and the
subject public key shall only be used to verify authentication messages. In this configuration the manager
certificate additionally acts like a verification key certificate.

- If the keyCertSign bit is asserted then the manager certificate serves as the top of a hierarchy and the
subject public key shall only be used to verify other certificates.

• Intermediate certificate shall:

- Be non-self-signed.

- Not include the successorKeyId field.

- Have the keyCertSign usage bit asserted.

- Have the digitalSignature bit not asserted.

• Verification key certificate shall:

- Be non-self-signed.

- Not include the successorKeyId field.

- Have the digitalSignature usage bit asserted.

- Have the keyCertSign bit not asserted.

• Trust termination certificate shall:

- Be self-signed.

- Shall include the successorKeyId field with the value set to the value of its own authorityKeyID.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)86

- Have the keyCertSign bit not asserted.

- Have the digitalSignature bit not asserted.

Any certificate that does not comply with these rules shall be ignored by the receiver.

9.5.4.5 General certificate collection construction rules

Each certificate collection message shall carry a collection of certificates belonging to a single DVB service. Each
collection shall contain all the certificates needed to build at least one valid certificate chain but may contain additional
certificates that enable the construction of alternative chains ascending to different root certificates. In addition a
collection message may contain previous manager certificates as described in clause 9.5.4.2.

NOTE: A collection can be as small as a single certificate in cases where a service only uses a single self-signed
certificate.

9.5.4.6 Certificate collection construction rules for stand-alone services

This clause illustrates a range of valid certificate collections.

Figure 8 illustrates the minimum scenario where a single certificate is both the self-signed manager certificate used by
the receiver as a trust anchor and also provides the public key used to verify the authentication messages.

Figure 8: Minimum scenario

Figure 9 shows the most basic hierarchy of two certificates. The manager certificate (shown in red) is a self-signed
certificate and is the root of the certificate chain. The receiver establishes trust in this certificate as described in
clause 9.5.2. Once trust has been established the receiver is enabled to successfully authenticate any certificate
belonging to a chain leading up to a trusted manager certificate. In figure 9 the bottom certificate in the chain is verified
by the subject public key of the manager certificate. This last certificate is the verification key certificate that provides
the public key for verifying authentication messages as described in clause 9.4.3.

Figure 9: Most basic hierarchy

Figure 10 illustrates two variations of the certificate chain shown in figure 9. Here the certificate chain is extended by
one or more intermediate certificates. In this case the verification key certificate is verified via the sequence of
intermediate certificates that leads to the manager certificate.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)87

The use of intermediate certificates as shown in figure 10 is allowed but not required by the present document.

Figure 10: Broadcast certificate chain with additional intermediate certificate

9.5.4.7 Certificate chain construction assisted by a coordinating entity (optional)

Figure 11 illustrates variants of the examples in clause 9.5.4.6 where a coordinating entity is additionally available to
provide an alternative trust anchor. Here certificate (B) is the verification key certificate. The authority key id of
certificate (B) indicates that it can be verified by pubkeyA. Two certificates have pubkeyA as their subject public key:
certificate (A) and certificate (Z). Certificate (A) is a self-signed manager certificate. The chain of certificate (A) and
certificate (B) has the same structure as certificate chain shown in figure 9. In figure 11 there is additionally an
alternative certificate chain ascending through certificate (Z). This leads to the coordinating entity root certificate (Y).
The mechanism by which certificate (Y) is made available to the receiver is beyond the scope of the present document.

Figure 11: Coordinating entity provides an alternative route for verification

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)88

The general requirement is that the verification key certificate is verifiable at least by the certificate chain leading to the
self-signed manager certificate. Optionally the verification key certificate may also be verifiable by one or more
alternative certificate chains leading to one or more coordinating entity root certificates.

The receiver behaviour depends on whether it has a coordinating entity certificate available to it that is applicable to the
service (see clause 9.5.1):

• If the receiver is configured with the public key certificate of the coordinating entity then the receiver uses this
key to verify the alternative certificate chain and ignores the certificate chain leading to the manager
certificate. These alternative chains can assist the establishment of trust as described in clause 9.5.3.

• If the receiver is not configured with any of the coordinating entity root certificates required to verify the
alternative certificate chains then the receiver ignores the alternative certificate chains. In this case the receiver
establishes trust in the manager certificate as described in clause 9.5.2 and uses this to validate the verification
key certificate.

The mechanism by which the coordinating entity certificates are made available to the receiver is beyond the scope of
the present document.

Figure 12 shows further examples of alternative certificate chains that lead to a coordinating entity root certificate.

Figure 12: Coordinating entity provides an alternative route for verification - three examples

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)89

9.5.4.8 Signalling in the Transport Stream

9.5.4.8.1 Overview

The certificate collection message (see clause 9.5.4.8.5) shall always carry a certificate containing the current
verification key (except when trust termination is being signalled as described in clause 9.5.4.8.4). This certificate can
either be a self-signed manager or a verification key certificate as described in clause 9.5.4.4. In the case where the
verification key is carried by a verification key certificate, the certificate collection shall carry a certificate chain that
allows this certificate to be validated by a self-signed manager certificate. Optionally alternative certificate chains may
also be present to allow the verification key certificate to be validated by one or more coordinating entity certificates.

The successful authentication of certificates carried by the certificate collection message for one service shall not
depend on certificates carried in certificate collection messages for other services. Only coordinating entity certificates,
which may be optionally used and which are not carried in the TS (see clause 9.5.3), may thus be used in the
authentication of data for more than one service.

The certificates in each certificate collection message shall be encoded so that they can be validated (see
clause 9.5.4.8.2) and any updates to the certificates in the certificate collection message shall be encoded according to
clause 9.5.4.8.3. These requirements enable a receiver to validate that a modified set of certificates is a successor rather
than the replay of some older set of certificates (see clause 9.5.4.2).

9.5.4.8.2 Encoding the certificate collection

This clause defines the rules for encoding the certificates carried by the certificate collection message.

Each certificate collection message (see clause 9.5.4.8.5) shall carry a set of certificates. The following rules shall
apply:

a) There shall be exactly one valid current manager certificate. The successor referenced by the current manager
shall not be present in the current certificate collection message.

b) There may optionally be one or more previous manager certificates. Within the current certificate collection
message each previous manager shall reference exactly one successor and exactly one previous manager shall
reference the current manager as its successor.

c) There shall be exactly one certificate containing the public key referenced by the signature key identifier
carried by authentication messages (see clause 9.4.3) in that service.

d) Optionally additional certificates may be present that enable the verification key certificate to be validated by
alternative certificate chains leading to coordinating entity root certificates not carried in the certificate
collection message.

e) The certificate collection message shall not carry certificate chains that require the receiver to be able to verify
a chain longer than 5 certificates.

f) The certificate collection message shall not require the receiver to concurrently process and store more than
10 certificates for each service.

g) Where coordinating entity certificates are in use, any coordinating entity certificates installed in the terminal
(by whatever mechanism) shall also count against the certificate chain limits that the receiver is required to be
able to process.

h) No certificate in a collection shall have a notBefore value greater than the UTC time at time of transmission.

i) No certificate in a collection shall have a notAfter value less than the UTC time at time of first transmission.
However, previous manager certificates if present may include notAfter values less than the UTC time at time
of transmission.

Alternatively if trust termination is being signalled (see clause 9.5.4.8.4) then the following rules shall apply:

j) There shall be exactly one trust termination certificate.

k) There may optionally be one or more previous manager certificates as specified in requirement (b).

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)90

9.5.4.8.3 Updating the certificate collection

This clause defines the rules for encoding changes to the set of certificates that enable the receiver to determine if a
modified certificate chain is a legitimate successor to the current certificate chain. Different mechanisms apply to the
manager certificate and other certificates. These rules apply in addition to the rules in clause 9.5.4.8.2.

Whenever a certificate collection is changed in any way the following rules shall apply:

a) Once a certificate has been published with a particular value of subjectPublicKey no variant of that certificate
shall be generated. This creates a permanent one-to-one relationship between a manager certificate and its
successor.

b) Broadcasters shall not re-use previous keys when generating new certificates.

NOTE: It is assumed that keys are always generated using an appropriate cryptographically secure random
number generator.

c) The value of notBefore in the validity field of a new certificate shall be greater than the value of notBefore in
the certificate that it replaces at the same depth below the manager certificate.

d) Whenever a manager certificate is created the public key for the succeeding manager certificate shall be
known by the broadcaster (but not published). The key identifier of this future public key shall be encoded in
the successorKeyID field of the manager certificate. When subsequently a new manager certificate is
introduced it shall use the successor public key computed previously as the subjectPublicKey of the new
certificate.

9.5.4.8.4 Terminating the trust signalling

In addition to being able to establish trust in a service the present document also enables services to signal the
termination of their trust signalling in a secure way. In order to do so, a service shall broadcast a trust termination
certificate with the successorKeyId set to the key id of its own subject public key. Because trust termination certificates
are self-signed this means that the value of successorKeyId is then identical to the value of authorityKeyID. In addition,
a trust termination certificate shall have all keyUsage bits set to zero.

The trust termination certificate shall be a valid successor to the manager that came before it and conform to the rules
described in clause 9.5.4.8.2.

NOTE: Certificates once broadcast are not allowed to be modified. In this case the transition from normal
operation to termination of trust is achieved by replacing the current manager with its designated
successor and configuring this designated successor to terminate trust.

Upon receiving a valid trust termination certificate devices shall remove all stored trust signalling information related to
the manager and its predecessors. Receivers that have not previously received any trust signalling for that service shall
consider the service unprotected as long as the certificate collection message contains a trust termination certificate.

Termination of trust is only defined for manager certificates as defined in the present document that have been carried
within a transport stream and does not apply to coordinating entity root certificates.

9.5.4.8.5 Certificate collection message

There shall be a single certificate collection message for each protected service. This shall be conveyed in a single
sub_table. Each sub_table shall contain a collection of certificates encoded according to clause 9.5.4.8.2. The table shall
be coded according to the table 51.

NOTE: Receipt of the trust collection message is required for the receiver to progress the probation period (see
clause 9.5.2) but is not required in real-time on channel change and so the repetition rate of this
information is not critical to the user experience following a channel change.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)91

Table 51: Syntax of the certificate collection message section

Syntax Number
of bits

Identifier

certificate_collection_message_section() {
 table_id 8 uimsbf
 section_syntax_indicator 1 bslbf
 reserved_future_use 1 bslbf
 reserved 2 bslbf
 section_length 12 uimsbf
 trust_message_id 16 uimsbf
 reserved 2 bslbf
 version_number 5 uimsbf
 current_next_indicator 1 bslbf
 section_number 8 uimsbf
 last_section_number 8 uimsbf
 reserved 4 bslbf
 certificate_count 4 uimsbf
 for (i=0;i<N;i++) {
 reserved 4 bslbf
 certificate_length 12 uimsbf
 for (j=0;j<M;j++) {
 certificate_byte 8 bslbf
 }
 }
 CRC_32 32 rpchof
}

Semantics for the certificate collection message section:

table_id: This 8-bit field shall be coded according clause 5.1.3 of ETSI EN 300 468 [1] with value 0x7B.

section_syntax_indicator: This 1-bit field shall be set to '1'.

section_length: This 12-bit field shall be coded according to ISO/IEC 13818-1 [3].

trust_message_id: This 16-bit field indicates the type of message. It shall be set to the value defined 0x100 as defined
in clause 9.3.4.

version_number: This 5-bit field shall be coded according to ISO/IEC 13818-1 [3].

current_next_indicator: This 1-bit field shall be set to '1'.

section_number: This 8-bit shall be coded according to ISO/IEC 13818-1 [3].

last_section_number: This 8-bit shall be coded according to ISO/IEC 13818-1 [3].

certificate_count: This 4-bit value shall indicate the number of certificates conveyed by the table.

Certificates shall be ordered within the certificate collection as specified in clause 9.5.4.9.

certificate_length: This 12-bit value indicates the number of bytes of certificate data present in the following certificate
bytes loop.

certificate_byte: This is an 8-bit field. The sequence of certificate_byte fields conveys a DVBCertificate of length
certificate_length bytes.

9.5.4.9 Certificate ordering within certificate collection

One or more certificates may be placed within each certificate message section, and the complete certificate collection
may be distributed over one or more sections.

Regardless of how the certificates are divided between sections, if more than one certificate is present, the ordering
shall comply with the requirements of this clause.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)92

Where the certificate collection conveys a trust termination certificate:

• The trust termination certificate shall appear first, beginning in the first section of the certificate message
sub_table.

• Any past manager certificates shall be placed next, starting with the most recent and ending with the oldest.

Otherwise:

• The current certificate chain shall appear first, beginning in the first section of the certificate message
sub_table. The certificate containing the verification key referenced by the authentication section(s) shall
appear first. If the chain has more than one certificate then the first certificate shall be immediately followed
by each certificate in the chain up to and including a self-signed manager certificate.

• Additional certificate chains for coordinating entities shall come next, each starting with the certificate that
verifies a certificate from the current certificate chain and continuing up to but not including the coordinating
entity root certificate.

• Any past manager certificates shall be placed next, starting with the most recent and ending with the oldest.

9.5.4.10 Certificate encoding

9.5.4.10.1 Overview

In the present document certificate syntax is specified using Abstract Syntax Notation ASN.1 as specified in
Recommendation ITU-T X.680 [29] and encoded using the distinguished encoding rules (DER) as specified in
Recommendation ITU-T X.690 [30]. This present document uses structures devised for the representation of
cryptographic related data specified by Internet Engineering Task Force relating to Public-Key Infrastructure (X.509)
(PKIX) and later augmented by other expert groups from the cryptographic community. The public specification of
common cryptographic data representation is organized and presented in IETF RFC 5912 [28].

Clauses 9.5.4.10.2 and 9.5.4.10.3 define the syntax and semantics for the DVBCertificate and the TBSDVBCertificate.
The normative ASN.1 syntax for these is specified in annex E.

9.5.4.10.2 DVBCertificate syntax

The syntax of the DVBCertificate is summarized in table 52. Each DVBCertificate shall always contain every field
listed in table 52.

Table 52: Elements of the DVBCertificate

Field Name Field Type
tbsDVBCertificate TBSDVBCertificate
signatureAlgorithm AlgorithmIdentifier
signature BIT STRING

Semantics of fields of DVBCertificate:

DVBCertificate: This is the top level document type syntax. The components of the DVBCertificate are described
below.

tbsDVBCertificate: This element conveys the TBSDVBCertificate which is the container for the certificate fields that
together form the data to be signed by the sender and validated by the receiver. See clause 9.5.4.10.3.

signatureAlgorithm: This field shall be encoded using the type AlgorithmIdentifier as specified in the module
AlgorithmInformation-2009 in IETF RFC 5912 [28]. This field shall convey the identifier for the algorithm used to
compute the signature. The set of signature algorithms allowed by the present document are those listed in table 44. The
receiver shall implement at least those algorithms specified in clause 9.4.6.2.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)93

signature: This field shall be encoded using the ASN.1 type BIT STRING as specified in Recommendation
ITU-T X.680 [29]. This field shall convey the signature calculated over the whole data of the DER encoded
tbsDVBCertificate field computed using the algorithm identified in the signatureAlgorithm field.

NOTE 1: Signature computation and verification always consider the whole data of the tbsDVBCertificate
(regardless of whether individual fields in the tbsDVBCertificate are to be acted on by the receiver).

NOTE 2: The signature is over the tbsDVBCertificate field alone and does not also sign the signatureAlgorithm
field.

9.5.4.10.3 TBSDVBCertificate syntax

The syntax of the TBSDVBCertificate is summarized in table 53. Each TBSDVBCertificate shall always contain every
field in this table except for the successorKeyID field, which is conditionally present as described in clause 9.5.4.4, and
the optional extensions field.

Table 53: Elements of TBSDVBCertificate

Field Name Field ASN.1 Type
version INTEGER
signatureAlgorithm AlgorithmIdentifier
issuer Name
validity Validity
authorityKeyID KeyIdentifier
subject Name
subjectPublicKeyInfo SubjectPublicKeyInfo
keyUsage KeyUsage
successorKeyID KeyIdentifier
trustTimeToLive INTEGER
extensions Extensions

Semantics of fields of TBSDVBCertificate:

version: This field shall be encoded using the ASN.1 type INTEGER as specified in Recommendation
ITU-T X.680 [29]. For version 1.3.1 of the present document this field shall be set to the value 1.

signatureAlgorithm: This field shall be encoded using the type AlgorithmIdentifier as specified in the module
AlgorithmInformation-2009 in IETF RFC 5912 [28]. This shall be identical to the signatureAlgorithm field in the
enclosing DVBCertificate described in table 52.

issuer: This field shall be encoded with type Name as specified in the module PKIX1Explicit-2009 in IETF
RFC 5912 [28]. This field shall contain a non-empty distinguished name.

Notionally this field identifies the issuer or authorizing body of this certificate. The receiver shall ignore the information
in this field (any information presented here is to assist engineering analysis of the data and serves no technical purpose
for the receiver).

validity: This field shall be encoded with the type Validity as specified in the module PKIX1Explicit-2009 in IETF
RFC 5912 [28]. The representation of time shall be encoded using the GeneralizedTime as defined in clause 46.3 of
Recommendation ITU-T X.680 [29] and shall encode coordinated universal time (case 'b' of clause 46.3). See
clauses 9.5.4.8.2 and 9.5.4.8.3.

authorityKeyID: This field shall be encoded with the type KeyIdentifier as specified in the module PKIX1Implicit-
2009 in IETF RFC 5912 [28]. The value of this field is computed as specified in clause 9.5.4.10.5 and encodes the key
identifier of the public key that verifies the signature of this certificate.

NOTE: This value allows the certificate that provides the public key required to verify this certificate to be
located. Locating the certificate that provides the public key is not sufficient to validate the certificate.

subject: This field shall be encoded with type Name as specified in the module PKIX1Explicit-2009 in IETF
RFC 5912 [28]. This field shall contain a non-empty distinguished name.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)94

Notionally this field identifies the organization responsible for or associated with the subject public key. The receiver
shall ignore the information in this field (any information presented here is to assist engineering analysis of the data and
serves no technical purpose for the receiver).

subjectPublicKeyInfo: This field shall be encoded with the type SubjectPublicKeyInfo as specified in the module
PKIX1Explicit-2009 in IETF RFC 5912 [28]. This field shall convey the algorithm, parameters and value of the public
key being conveyed in this certificate.

See (draft-josefsson-tls-ed25519-00 [31]) for the ASN.1 encoding for Ed25519 public keys.

keyUsage: This field shall be encoded with the type KeyUsage as specified in the module PKIX1Implicit-2009 in IETF
RFC 5912 [28].

In the present document only bits digitalSignature (0) and keyCertSign (5) are used. All other bits of the keyUsage field
shall be ignored. The purpose of these bits and rules governing their application are described in clause 9.5.4.4.

Unlike common usage defined in documents such as IETF RFC 5280 [32], the keyUsage field of the certificate defined
in the present document is a mandatory component and not an extension field.

successorKeyID: This field when present shall be encoded with the type KeyIdentifier as specified in the module
PKIX1Implicit-2009 in IETF RFC 5912 [28]. The value of this field is computed as specified in clause 9.5.4.10.5.

This field shall only be present where the certificate is a self-signed manager certificate. In this case it shall encode the
key identifier of the subjectPublicKey that succeeds the certificate's subjectPublicKey (see clauses 9.5.4.8.2 and
9.5.4.8.3). For all other certificates this field shall not be present.

trustTimeToLive: This field when present shall be encoded with the type INTEGER.

This field shall only be present where the certificate is a self-signed manager certificate and is mandatory in the
manager certificate.

The value of this field in established trust signalling conveys the number of hours that established trust should be
retained after either trust signalling is lost or new candidate coherent trust signalling is received that is not a valid
successor to the current established trust signalling. Values in the range 1 to 255 are allowed. Values less than 1 shall be
considered to be 1. Values greater than 255 shall be considered to be 255.

extensions: This optional field when present shall be encoded with the type Extensions as specified in the module
PKIX-CommonTypes-2009 in IETF RFC 5912 [28].

The semantic of the critical field in the extension is derived from that in IETF RFC 5280 [32] specifically:

• If an extension is present with the critical flag set to TRUE and the receiver is not able to process the extension
then the certificate shall be rejected.

• If an extension is present with the critical flag set to FALSE and the receiver is not able to process the
extension then it shall ignore the extension.

• If the receiver is able to process the extension then it shall observe the semantics specified for that extension.

9.5.4.10.4 TBSDVBCertificate extensions

The present document defines one extension for the certificates defined in clause 9.5.4.10.3.

ext-URL: This extension conveys a universal resource locator (URL) and a label that identifies the purpose of the URL
carried by the extension. Zero or more such extensions may be present in a certificate. The purpose of this extension is
beyond the scope of the present document.

ext-URL has been allocated identifier id-ce-dvburl in the ASN.1 modules defined in the present document as following:

id-ce-dvburl OBJECT IDENTIFIER ::= { itu-t(0) identified-organization(4) etsi(0) dvb-signalling
(2809) 0 }

 ext-URL ::= SEQUENCE {
 uRLLabel PrintableString,
 uRLValue GeneralName }

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)95

When included in a certificate, the extension shall have the critical flag set to FALSE. The uRLLabel field provides
context for the application using this extension and is not specified in the present document. The GeneralName coding
of the uRLValue field shall be of type uniformResourceIdentifier.

NOTE: A discussion of URL and the wider family of Uniform Resource Identifiers can be found in IETF
RFC 1738 [i.3] and IETF RFC 2396 [i.4].

9.5.4.10.5 Computing and comparing key identifiers

In the present document key identifiers shall be computed as the SHA-256 (as specified in FIPS 180-4 [23]) of the value
of the BIT STRING subjectPublicKey (excluding the tag, length, and number of unused bits). The portion of the result
of the SHA-256 stored in the key identifier field depends on the context in which it is used. A receiver shall deem a key
identifier to match a subjectPublicKey when the SHA-256 of that public key matches the key identifier over all of the
bytes in the key identifier field:

• The successorKeyID shall not be truncated (i.e. the full 32 byte result of the SHA-256 computation shall be
used).

• The authorityKeyID and signature_key_identifier (in the authentication message in clause 9.4.3) shall be
truncated to retain only the left most 8 bytes (as defined in NIST Special Publication 800-107 [24]).

NOTE: This method is derived from clause 4.2.1.2 Subject Key Identifier in IETF RFC 5280 [32].

9.5.5 Device behaviour

9.5.5.1 State stored when trust is established

For each DVB service when trust is established the receiver shall store at least the information from the certificates in
the certificate chain in which trust has been established (according to the state machines in clauses 9.5.2, 9.5.5.1 and
9.5.3).

NOTE: When trust is anchored in a self-signed manager certificate the information from at least the certificate
chain including the verification key certificate and the manager certificate is stored. Alternatively if trust
is anchored in a coordinating entity certificate then at least the certificate chain including the verification
key certificate and the chain ascending to the coordinating entity certificate is stored.

The same certificates and public keys may be carried in the signalling of multiple services. However, services shall be
considered in isolation when implementing the reference model described in the present document. The receiver shall
therefore only consider the signalling in the presently selected service and state derived from signalling received
previously on the presently selected service. For example, if a certificate has been observed to update on one service
this shall have no significance for the state of a second service.

9.5.5.2 Verifying that a certificate chain is coherent

9.5.5.2.1 Common rules for certificate chain verification

The receiver shall first verify that the ordering of certificates within the certificate collection is as specified in
clause 9.5.4.9. Next the receiver shall attempt to locate the certificate containing the verification key within the
certificate collection. This can either be done by searching for a key that matches the key identifier conveyed in the
authentication message or by finding a certificate that matches the criteria outlined in clause 9.5.4.4. If there is no
certificate containing a verification key then the receiver shall examine the certificate collection to locate a trust
termination certificate (see clause 9.5.4.8.4). If neither are present or there is more than one certificate that provides a
verification key then the certificate collection shall be deemed not verified as coherent.

Where the located certificate is the verification key certificate the receiver shall progressively verify each certificate
using the public key from the parent certificate of that certificate until the receiver reaches a root certificate. This root
may either be a self-signed manager certificate within the same collection or a coordinating entity anchor certificate
known by the receiver. In the case that the root is a self-signed manager certificate the receiver shall verify the manager
certificate using its own public key.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)96

NOTE 1: The verification key may be contained in a self-signed manager certificate and hence the chain may
contain just a single certificate (see clause 9.5.4.4).

NOTE 2: When receiving a set of certificates the receiver should first compute the subject key identifier for each
certificate to assist locating the parent(s) of each certificate.

Where the located certificate is a trust termination certificate the receiver shall verify that it is correctly encoded
according to clause 9.5.4.8.4 and that it can be verified using its own public key.

In addition to the cryptographic verification of the certificate signatures the receiver shall verify that the validity field of
all certificates meets the following requirements:

• The value of notBefore shall be greater than or equal to the value of notBefore of all parents of that certificate.

• The value of notAfter shall be less than or equal to the value of notAfter of all parents of that certificate.

• Within a certificate's validity field the value of notAfter shall be greater than that of notBefore.

NOTE 3: In the present document modified/updated certificates are not possible. Certificates are always replaced
(with a certificate with a new key) if there is a need to change any aspect of the certificate. Consequently
all children of this replaced certificate also need to be replaced.

Receivers that have a secure source of UTC time may check the validity field against UTC time and may ignore any
certificate whose validity period does not include the current UTC time. This check may be made mandatory by
requirements outside the scope of the present document (e.g. market specific requirements).

NOTE 4: The value of notAfter in previous manager certificates may be less than the current UTC time. See
clause 9.5.4.8.2.

If all of these verification steps succeed then the certificate collection shall be deemed verified and therefore coherent.
Otherwise it shall be deemed not to be verified/coherent and the receiver shall ignore the certificate collection message.

9.5.5.2.2 Receivers without coordinating entity certificates

Where a receiver has no coordinating entity certificates installed that apply to the service carrying a certificate chain, a
certificate chain is considered verified when it meets the common rules specified in clause 9.5.5.2.1 with the certificate
a chain leading to a self-signed manager certificate.

9.5.5.2.3 Receivers with coordinating entity certificates (optional)

Where a receiver has one or more coordinating entity certificates installed that apply to the service carrying a certificate
chain, a certificate chain is considered verified when it meets the common rules specified in clause 9.5.5.2.1 with the
certificate chain leading to at least one designated coordinating entity anchor.

Where a receiver has one or more coordinating entity certificates installed that apply to the service carrying a certificate
chain, but the certificate collection does not contain certificate chains leading to any of these coordinating entity
certificates then the receiver shall discard the certificate chain as not verified/coherent.

NOTE: It is theoretically possible to use a coordinating entity with a set of services without rejecting certificate
chains in those services that are not authenticated by the coordinating entity root of trust. This is not
addressed by the present document.

9.5.5.3 Verifying succession of certificate chains anchored in a manager certificate

For a receiver to verify whether or not a new different certificate chain is a valid successor to the certificate chain in
which trust is currently established the receiver shall do the following:

1) Verify the new certificate chain according to the rules in clause 9.5.5.2.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)97

2) If the new manager certificate is different from the established manager certificate then verify that the new
manager certificate is a valid successor to the established manager certificate as follows:

a) Verify that the new manager certificate is the direct successor of the established manager certificate by
verifying that the subject key identifier computed from the subjectPublicKeyInfo of the new manager
certificate matches the successorKeyID of the currently established manager certificate (see
clause 9.5.4.8.3). If this succeeds then this step 2 has succeeded else proceed to step 2b.

b) If step 2a failed and the certificate collection includes previous manager certificates then verify that the
manager certificate of the new certificate chain is a more distant successor to the established manager
certificate (see also clause 9.5.4.8.2). First examine the previous manager certificates carried by the new
certificate collection to locate a certificate that is the designated successor of the currently established
manager. This is identified as the previous manager certificate where the subject key identifier computed
from the subjectPublicKeyInfo matches the successorKeyID of the currently established manager. If the
established manager's designated successor is found amongst the previous manager certificates the
receiver shall then verify that there is an unbroken sequence of previous manager certificates leading
from the established manager's designated successor to the new manager. The receiver shall also verify
that each previous manager certificate is verifiable (the certificates are self-signed and so shall be
verifiable by their own subjectPublicKeyInfo). If it is not possible to find a verifiable link between the
currently established manager certificate and the new manager certificate then verification of the
certificate chain succession fails.

3) If the manager certificate in the new certificate chain is identical to the established manager certificate the
receiver shall verify that the certificates in the chain below the new manager are either identical to the
corresponding certificate in the established certificate chain or are valid successors. The receiver shall do this
by progressively examining the new certificate chain downward from the manager. The receiver shall look for
the first certificate in the new certificate chain that is not identical to the certificate in the established certificate
chain at the corresponding depth below the manager. If such a certificate is found then the receiver shall verify
that the value of notBefore in the validity field of the new certificate is greater than the value of notBefore in
the certificate in the established chain of certificates at the corresponding depth below the manager. This
verifies that this changed certificate is a successor to the previous established certificate. No certificates shall
be examined below this first certificate that is different.

NOTE: Any certificates below an updated certificate will have a notBefore value that is valid relative to its
parent. This is verified in step 1 of this process.

If all of these verifications succeed this new certificate chain shall become the certificate chain in which trust is
established and the receiver shall update the state stored as defined in clause 9.5.5.1. The receiver shall then only use
the updated store and stop using the certificates that have been replaced during the update. If any of these verifications
fail the receiver shall follow the behaviour defined in clause 9.5.2.

9.5.5.4 Verifying succession of certificate chains anchored in a coordinating entity
certificate

Where the certificate chain leads to a coordinating entity certificate and the certificate collection has changed relative to
the established trust signalling then the receiver shall verify that the certificates in the chain below the coordinating
entity certificate are either identical to the corresponding certificate in the established certificate chain or are valid
successors. The receiver shall do this by progressively examining the new certificate chain downward from the
coordinating entity. The receiver shall look for the first certificate in the new certificate chain that is not identical to the
certificate in the established certificate chain at the corresponding depth below the coordinating entity. If such a
certificate is found then the receiver shall verify that the value of notBefore in the validity field of the new certificate is
greater than the value of notBefore in the certificate in the established chain of certificates at the corresponding depth
below the manager. This verifies that this changed certificate is a successor to the previous established certificate. No
certificates shall be examined below this first certificate that is different.

The verification required if the coordinating entity certificates themselves are updated is beyond the scope of the present
document (as is the mechanism for updating the coordinating entity certificates).

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)98

Annex A (informative):
Elements defined by the platform specification

A.1 Introduction
This annex describes the elements defined in the present document whose semantics are defined by the platform
specification.

A.2 Elements which are defined by the platform
specification

Table A.1: Elements which are defined by the platform specification

Clause Element
5.2.5 Application profiling and profile versioning
5.2.8 Location of application icon (where the app icon locator is relative to)
5.2.8 Encoding of application icons locator

5.2.12 Location of application description file
5.3.4.2 Time in which AIT changes will be detected
5.3.4.2 Minimum repetition rate for each AIT subtable
5.3.4.2 Time in which AIT update will be detected

5.3.5.6.1 Encoding of application name in MPEG-2 application name descriptor
B.2.4.6.1 Time in which updates to the set of timebases will be detected
B.2.4.6.2 Time in which changes to event fire times are detected

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)99

Annex B (normative):
Object carousel

B.1 Introduction

B.1.0 General
This annex describes the constraints and extensions to the specifications listed in clause 7.1 when using DSM-CC
User-to-User Object Carousels for the carriage of broadcast applications.

B.1.1 Key to notation
Certain notations are used in the "value" columns of the syntax tables.

Table B.1: Key to notation

Symbol
+ A value that is "allocated" e.g. configuration parameter of the object carousel server.
* A value that is "calculated" e.g. a field whose value is calculated by the carousel server as a

consequence of the number of bytes in other fields.

B.2 Object carousel profile

B.2.0 Introduction
In the following clause, the message structures of the object carousels are introduced with associated additional
restrictions. Each section contains a table specifying the restrictions on the usage of the fields. The table also indicates
the source for these restrictions: the DSM-CC standard, DVB guidelines or a specific restriction for the present
document.

For the object carousel messages, also the message syntax is included. In the syntax tables grey shading indicates
parts that the broadcaster may put in, but a receiver compliant with the present document may ignore.

B.2.1 DSM-CC sections

B.2.1.0 Basic requirements

All object carousels messages are transmitted using DSM-CC section format. The DSM-CC section format is defined in
chapter 9.2 of the DSM-CC specification [4].

The DSM-CC standard provides an option to use either a CRC32 or a checksum for detecting bit errors. The present
document, makes the following restriction:

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)100

Table B.2: Restrictions on DSM-CC Section format

Field Restrictions Source
section_syntax_indicator 1 (indicating the use of the CRC32) The present document
last_section_number For sections transporting DownloadDataBlock

fragments:
- all modules intended to be retrieved shall have the

last section number 0xFE
- if last section number = 0xFF receiver behaviour is

undefined.

The maximum section length is 4 096 bytes for all types of sections used in object carousels. The section overhead is
12 bytes, leaving a maximum of 4 084 bytes of payload per section.

B.2.1.1 Sections per TS packet

Parts of no more than four sections shall be delivered in a single TS packet.

B.2.2 Data carousel

B.2.2.0 Scope

This clause defines the content of the data carousel messages when used in the object carousel.

Usage of data carousel descriptors not listed below in a DVB object carousel is not defined by the present document.

B.2.2.1 General

The definitions in table B.3 apply to both the dsmccDownloadDataHeader and the similar dsmccMessageHeader.

Table B.3: Restrictions on DSM-CC DownloadData and Message headers

Field Restrictions Source
TransactionId See clause B.2.5, "Assignment and use of

transactionId values"
The present document

AdaptationLength The receiver may ignore the possible contents of the
dsmccAdaptationHeader field

B.2.2.2 DownloadInfoIndication

The DownloadInfoIndication is a message that describes a set of modules and gives the necessary parameters to locate
the module and retrieve it.

Table B.4: Restrictions on the DII

Field Restrictions Source
blockSize maximum size 4 066

(max. section payload - DDB-header size (18))
The recommended blockSize is 4 066

DSM-CC (for the definition of
blockSize), the present
document (for the value)

windowSize 0 (not used for Object Carousels) DSM-CC
ackPeriod 0 (not used for Object Carousels) DSM-CC
tCDownloadWindow 0 (not used for Object Carousels) DSM-CC
tCDownloadScenario 0 (not used for Object Carousels) DSM-CC
compatibilityDescriptor():
compatibilityDescriptorLength

0 (no compatibility descriptor for Object Carousels) DSM-CC

PrivateDataLength The receiver may ignore the possible contents of the
privateData field

DVB

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)101

B.2.2.3 DownloadServerInitiate

The DownloadServerInitiate is used in the case of object carousels to provide the object reference to the
ServiceGateway (i.e. root directory) of the object carousel.

Table B.5: Restrictions on DSI

Field Restrictions Source
compatibilityDescriptor():
compatibilityDescriptorLength

0 (no compatibility descriptor for Object Carousels) DSM-CC

privateData Contains the ServiceGatewayInfo structure DSM-CC
serverId Shall be set to 20 bytes each with the value of 0xFF DVB/The present document

B.2.2.4 ModuleInfo

B.2.2.4.0 The moduleInfo field

The moduleInfo structure is placed in the moduleInfo field of the DownloadInfoIndication of the data carousel. It
contains the information needed to locate the module.

Table B.6: Restrictions on the DII moduleInfo field

Field Restrictions Source
BIOP::ModuleInfo::Taps The first tap shall have the "use" value 0x0017

(BIOP_OBJECT_USE). The id and selector fields are
not used and the receiver may ignore them. The
receiver may ignore possible other taps in the list.

DVB

BIOP::ModuleInfo::UserInfo The userInfo field contains a loop of descriptors.
These are specified in the DVB Data Broadcasting
standard and/or the present document. The receiver
shall support the compressed_module_descriptor (tag
0x09) used to signal that the module is transmitted in
compressed form. The userInfo field may also contain
a caching_priority_descriptor and one or more
label_descriptors.

DVB/The present document

moduleTimeOut
blockTimeOut
minBlockTime

These fields are defined in units of µs. An appropriate
value shall be explicitly encoded by carousel
generation equipment. There is no default value that
may be encoded, i.e. 0xFFFFFFFF has no special
meaning. Receivers shall not employ an inbuilt
default instead of the signalled value, as there is no
way to define these without knowledge of the
construction of a particular carousel.

The present document

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)102

Table B.7: BIOP::ModuleInfo syntax

Syntax No. of bits Identifier Value Comment
BIOP::ModuleInfo() {
 moduleTimeOut 32 uimsbf +
 blockTimeOut 32 uimsbf +
 minBlockTime 32 uimsbf +
 taps_count 8 uimsbf N1 ≥1
 {
 id 16 uimsbf 0x0000 user private
 use 16 uimsbf 0x0017 BIOP_OBJECT_USE
 assocTag 16 uimsbf +
 selector_length 8 uimsbf 0x00
 }
 for (j=1; j<N1; j++) { Possible additional

taps that may be
ignored by receivers

 id 16 uimsbf +
 use 16 uimsbf +
 assocTag 16 uimsbf +
 selector_length 8 uimsbf N2
 for (j=0; j<N2; j++) {
 selector_data 8 uimsbf +
 }
 }
 userInfoLength 8 uimsbf N3
 for (k=0; k<N3; j++) {
 userInfo_data 8 uimsbf +
 }
}

B.2.2.4.1 Label descriptor

This clause is empty in the present document.

B.2.2.4.2 Caching priority descriptor

To indicate priorities for the objects, a caching_priority_descriptor may be included in the userInfo field of the
moduleInfo in the DownloadInfoIndication message.

This descriptor provides a priority value for the caching. The same priority applies for each object in the module. The
priority indicated in the descriptor is only a hint to the receiver and implementations may use that in combination with
other caching strategies.

The descriptor includes also the transparency level (see clause B.5.2 "Transparency levels of caching") that shall be
used by the receiver implementation if it caches objects in this module.

Table B.8: Caching priority descriptor syntax

Syntax No. of bits Identifier Value Comment
caching_priority_descriptor() {
 descriptor_tag 8 uimsbf 0x71
 descriptor_length 8 uimsbf
 priority_value 8 uimsbf
 transparency_level 8 uimsbf
}

descriptor_tag: This 8 bit integer value with 0x71 identifies this descriptor.

priority_value: Indicates the caching priority for the objects within this module. A higher value indicates more
importance for caching.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)103

transparency_level: Transparency level that shall be used by the receiver if it caches objects contained in this module.
The possible values are listed in table B.9. The semantics of the policies are defined in clause B.5.2 "Transparency
levels of caching".

Table B.9: Transparency level values

Value Description
0 reserved
1 Transparent caching
2 Semi-transparent caching
3 Static caching.

4 to 255 reserved for future use

When this descriptor is not included in the userInfo field of the moduleInfo for a module, the default values that shall be
assumed are:

• priority_value: 128.

• transparency_level: 1 (transparent caching).

B.2.2.5 ServiceGatewayInfo

The ServiceGatewayInfo structure is carried in the DownloadServerInitiate message and provides the object reference
to the ServiceGateway object.

Table B.10: Restrictions on the ServiceGatewayInfo

Field Restrictions Source
BIOP::ServiceGatewayInfo::downloadTaps The receiver may ignore the downloadTap list. The present

document BIOP::ServiceGatewayInfo::serviceContextList The receiver may ignore the service context list.
BIOP::ServiceGatewayInfo::UserInfo The receiver may ignore the user info.

Table B.11: ServiceGatewayInfo() syntax

Syntax No. of bits Identifier Value Comment
ServiceGatewayInfo(){
 IOP::IOR() + See table B.21

"IOP::IOR syntax"
 downloadTaps_count 8 uimsbf N1 software download

Taps
 for (i=0; i<N1; i++) {
 DSM::Tap()
 }
 serviceContextList_count 8 uimsbf N2 serviceContextList
 for (i=0; i<N2; i++) {
 context_id 32 uimsbf
 context_data_length 16 uimsbf N3
 for (j=0; j<N3; j++) {
 context_data_byte 8 uimsbf +
 }
 }
 userInfoLength 16 uimsbf N5 user info
 for (i=0; i<N5; i++) {
 userInfo_data 8 uimsbf +
 }
}

B.2.2.6 Download cancel

There is no semantic for this message in this profile. Receivers may ignore them.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)104

B.2.2.7 DownloadDataBlock

Table B.12: Restrictions on the DDB

Field Restrictions Source
moduleId Module ids are unique within the scope of the

object carousel. See ISO/IEC 13818-6 [4],
clause 11.2.3.

DSM-CC

B.2.3 The object carousel

B.2.3.1 BIOP Generic Object Message

The BIOP Generic Object Message is a common structure used by all the BIOP (Broadcast Inter-ORB Protocol)
messages.

Table B.13: Restrictions on the BIOP Generic Object Message

Field Restrictions Source
MessageHeader::byte_order 0 (indicating big-endian byte order). DVB
MessageSubHeader::objectKey Maximum length of the key shall be

four bytes.
DVB

MessageSubHeader::objectKind The short three-letter aliases shall be
used, plus the null-terminator.

DVB

Access attributes Access attributes are not transmitted
in object carousels

DSM-CC

B.2.3.2 CORBA strings

In a number of places object carousel messages include text strings. These are formatted in accordance with
clause 12.3.2 of CORBA/IIOP [9] and using the so-called "CDR-Lite" encoding as described by ISO/IEC 13818-6 [4],
clause 5.6.3.4. I.e. the text is preceded by an integer specifying the length of the string and followed by a null
terminator. The size of this integer depends on the string concerned and can be seen clearly in the syntax tables that
follow. However, for clarity CORBA format strings and the size of their length fields are summarized in table B.14.

Table B.14: Location of CORBA format strings

string length field size
(bits)

location

objectKind_data 32 Table B.16 "BIOP::FileMessage syntax"
objectKind_data
id_data
kind_data

32
8
8

Table B.19 "BIOP::DirectoryMessage syntax"

objectKind_data 32 Table B.28 "BIOP::StreamMessage syntax"
objectKind_data
eventName_data

32
8

Table B.30 "BIOP::StreamEventMessage syntax"

type_id_byte 32 Table B.21 "IOP::IOR syntax"
id_data
kind_data

32
32

Table B.25 "Syntax of Lite Options Profile Body with
ServiceLocation component"

B.2.3.3 BIOP FileMessage

The BIOP FileMessage is used for carrying file objects.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)105

Table B.15: Restrictions on the BIOP File Message

Field Restrictions Source
MessageSubHeader::ObjectInfo The ObjectInfo may be empty (have a length of zero). If not

empty the first 8 bytes of the ObjectInfo shall contain the
DSM::File::ContentSize attribute. This is optionally followed
by a loop of descriptors.
The descriptors defined for possible use in this location are:
Content type descriptor.

The present
document

MessageSubHeader::ServiceContextList The receiver may skip the possible serviceContextList
structures.

Table B.16: BIOP::FileMessage syntax

Syntax No. of bits Identifier Value Comment
BIOP::FileMessage() {
 magic 4 x 8 uimsbf 0x42494F50 "BIOP"
 biop_version.major 8 uimsbf 0x01 BIOP major version 1
 biop_version.minor 8 uimsbf 0x00 BIOP minor version 0
 byte_order 8 uimsbf 0x00 Big endian byte ordering
 message_type 8 uimsbf 0x00
 message_size 32 uimsbf *
 objectKey_length 8 uimsbf N1 1 to 4
 for (i=0; i<N1; i++) {
 objectKey_data 8 uimsbf +
 }
 objectKind_length 32 uimsbf 0x00000004
 objectKind_data 4 x 8 uimsbf 0x66696C00 "fil" type_id alias
 objectInfo_length 16 uimsbf N2
 DSM::File::ContentSize 64 uimsbf + objectInfo (note)
 for (i=0; i<N2 - 8; i++) {
 descriptor() 8 uimsbf +
 }
 serviceContextList_count 8 uimsbf N3 serviceContextList
 for (i=0; i<N3; i++) {
 context_id 32 uimsbf
 context_data_length 16 uimsbf N4
 for (j=0; j<N4; j++) {
 context_data_byte 8 uimsbf +
 }
 }
 messageBody_length 32 uimsbf *
 content_length 32 uimsbf N5
 for (i=0; i<N5; i++) {
 content_byte 8 uimsbf + actual file content
 }
}
NOTE: If present and non-zero, this shall be the same as the content_length of the referenced FileMessage.

B.2.3.4 Content type descriptor

Zero or one content_type_descriptors can be carried in the file MessageSubHeader::ObjectInfo or the
BIOP::Binding::ObjectInfo. Where more than one content_type_descriptor is used they shall express the same content
format. Also, the content type (if any) signalled in the directory binding shall be identical to that signalled in the bound
file's header. This optional descriptor identifies the media type of the file.

This content type signalling only applies to objects of type file and is not appropriate for other object types.

The format of the content_type_descriptor is shown in table B.17.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)106

Table B.17: Content type descriptor syntax

Syntax No. of bits Identifier Value Comment
content_type_descriptor() {
 descriptor_tag 8 uimsbf 0x72
 descriptor_length 8 uimsbf
 for (i=0; i<descriptor_length; i++) {
 content_type_data_byte 8 uimsbf A MIME type
 }
}

descriptor_tag: This 8-bit integer with value 0x72 identifies this descriptor.

descriptor_length: This 8-bit integer identifies the number of bytes following it.

content_type_data_byte: These bytes form a string that indicates the MIME content type of the object. The string is
specified as follows:

 content_type_data = type "/" subtype *(";" parameter)

Where type, subtype and parameter are as defined in section 5 of IETF RFC 2045 [10] and hence content_type_data
carries the payload of the Content-Type header defined in IETF RFC 2045 [10].

B.2.3.5 BIOP DirectoryMessage

The BIOP DirectoryMessage is used for carrying the directory objects.

Table B.18: Restrictions on the BIOP Directory Message

Field Restrictions Source
MessageSubHeader::ObjectInfo The receiver may skip the N2 possible bytes in the objectInfo

field.
The present
document

MessageSubHeader::ServiceCo
ntextList

The receiver may skip the N3 possible serviceContextList
structures.

The present
document

BIOP::Name The name shall contain exactly one NameComponent. The
id_length shall be 2 or greater. The id_data shall not be
replicated for other name components within this directory.

The present
document

BIOP::Binding::BindingType Either "ncontext" (in the case of a Directory object) or "nobject"
(in the case of a File or a Stream object). Binding type
"composite" shall not be used.

DVB

BIOP::Binding::ObjectInfo The ObjectInfo for bound objects may be empty (have a length
of zero).
If the bound object is a file and the ObjectInfo is not empty the
first 8 bytes of the ObjectInfo shall contain the ContentSize
attribute. This is optionally followed by a loop of descriptors.
The descriptors defined for possible use in this location are:
Content type descriptor.

The present
document

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)107

Table B.19: BIOP::DirectoryMessage syntax

Syntax No. of bits Identifier Value Comment
BIOP::DirectoryMessage() {
 magic 4 x 8 uimsbf 0x42494F50 "BIOP"
 biop_version.major 8 uimsbf 0x01 BIOP major version 1
 biop_version.minor 8 uimsbf 0x00 BIOP minor version 0
 byte_order 8 uimsbf 0x00 big endian byte ordering
 message_type 8 uimsbf 0x00
 message_size 32 uimsbf *
 objectKey_length 8 uimsbf N1 1 to 4
 for (i=0; i<N1; i++) {
 objectKey_data 8 uimsbf +
 }
 objectKind_length 32 uimsbf 0x00000004
 objectKind_data 4 x 8 uimsbf 0x64697200 "dir" type_id alias
 objectInfo_length 16 uimsbf N2 = 0 (note) objectInfo
 for (i=0; i<N2; i++) {
 objectInfo_data 8 uimsbf +
 }
 serviceContextList_count 8 uimsbf N3 serviceContextList
 for (i=0; i<N3; i++) {
 context_id 32 uimsbf
 context_data_length 16 uimsbf N4
 for (j=0; j<N4; j++) {
 context_data_byte 8 uimsbf +
 }
 }
 messageBody_length 32 uimsbf *
 bindings_count 16 uimsbf N5
 for (i=0; i<N5; i++) { Binding
 BIOP::Name() {
 nameComponents_count 8 uimsbf N6 = 1 See table B.16.
 for (i=0; i<N6; i++) {
 id_length 8 uimsbf N7 NameComponent id
 for (j=0; j<N7; j++) {
 id_data 8 uimsbf + The "/" character shall not be

used.
 }
 kind_length 8 uimsbf N8 NameComponent kind
 for (j=0; j<N8; j++) {
 kind_data 8 uimsbf + As type_id (see table 4-4 in

ETSI TR 101 202 [i.2])
 }
 }
 }
 BindingType 8 uimsbf + 0x01 for nobject

0x02 for ncontext
 IOP::IOR() + objectRef see table B.21
 objectInfo_length 16 uimsbf N9
 if(kind_data == "fil"){
 DSM::File::ContentSize 64 uimsbf + 0 means that file size is not

signalled
 for (j=0; j<N9 - 8; j++) {
 descriptor_byte 8 uimsbf +
 }
 }
 else {
 for (j=0; j<N9; j++) {
 descriptor_byte 8 uimsbf +
 }
 }
 }
}
NOTE: See item 2 under clause 11.3.2.2 "Directory Message Format" in the DSM-CC specification [4]: "the objectInfo field

shall be empty".

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)108

B.2.3.6 BIOP ServiceGateway message

The syntax of the BIOP ServiceGateway message is identical to that of the BIOP DirectoryMessage (described above)
with the following exceptions:

• The object kind is "srg" rather than "dir".

• Use is made of the service context list.

B.2.3.7 BIOP Interoperable Object References

B.2.3.7.0 IOR structure

The Interoperable Object References (IOR) are references to objects and contain the necessary information to locate the
object. The IOR structure may contain different options to be able to point to objects that can be reached via different
types of connections. For the present document, the use of IORs is limited to references to objects carried in broadcast
object carousels. For object carousels, there are two types of object references: one to be used to reference objects
carried in the same object carousel and one to be used to reference objects in other object carousels.

Table B.20: Restrictions on the BIOP IOR

Field Restrictions Source
IOP::IOR::type_id Contains the objectKind of the referenced object. A short

three-letter aliases shall be used, plus a null-terminator.
The present
document

IOP::IOR::taggedProfileList There shall be at least 1 taggedProfile included in an IOR. For
objects carried in a broadcast object carousel, the first
taggedProfile shall be either a TAG_BIOP profile or a
TAG_LITE_OPTIONS.
If the first tagged profile is some other profile, the object is not
carried in a broadcast object carousel and the receiver may
ignore the object subject to its own capabilities.

The present
document

Table B.21: IOP::IOR syntax

Syntax No. of bits Identifier Value Comment
IOP::IOR {
 type_id_length 32 uimsbf N1
 for (i=0; i<N1; i++) {
 type_id_byte 8 uimsbf + Short alias type_id (e.g.

"dir")
 }
 taggedProfiles_count 32 uimsbf N2 Profile bodies
 IOP::taggedProfile() For objects in broadcast

carousels: either
BIOPProfileBody or
LiteOptionsProfileBody

 for (n=0; n<N2 - 1;n++) {
 IOP::taggedProfile() Receiver may ignore

other profiles (2...N1) if
present

 }
}

B.2.3.7.1 BiopProfileBody

The BiopProfileBody is used for references to objects within the same object carousel.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)109

Table B.22: Restrictions on the BIOP Profile Body

Field Restrictions Source
BiopProfileBody::byte_order 0 (indicating big-endian byte order). DVB
BiopProfileBody::LiteComponent The list shall contain exactly 1 BiopObjectLocation and

exactly 1 DSM::ConnBinder as the first two components in
that order. The receiver may ignore possible other
components in the list.

The present
document

DSM::ConnBinder For objects carried in the broadcast object carousel, the first
Tap shall be of type BIOP_DELIVERY_PARA_USE. If there
is another type of tap in the first position, the receiver may
ignore this object reference, as it is a reference for object
accessed using another type of protocol (e.g. for return
channel use). The receiver may ignore possible other taps in
the list.

The present
document

DSM::Tap In the BIOP_DELIVERY_PARA_USE tap, the id field is not
used and may be ignored by the receiver.

The present
document

DSM::Tap::timeout This field is defined in units of µs. An appropriate value shall
be explicitly encoded by carousel generation equipment.
There is no default value that may be encoded, i.e.
0xFFFFFFFF has no special meaning. Receivers shall not
employ an in-built default instead of the signalled value, as
there is no way to define these without knowledge of the
construction of a particular carousel.

The present
document

Table B.23: BIOP Profile Body syntax

Syntax No. of bits Identifier Value Comment
BIOPProfileBody {
 profileId_tag 32 uimsbf 0x49534F06 TAG_BIOP (BIOP Profile Body)
 profile_data_length 32 uimsbf *
 profile_data_byte_order 8 uimsbf 0x00 big endian byte order
 lite_component_count 8 uimsbf N1
 BIOP::ObjectLocation {
 componentId_tag 32 uimsbf 0x49534F50 TAG_ObjectLocation
 component_data_length 8 uimsbf *
 carouselId 32 uimsbf +
 moduleId 16 uimsbf +
 version.major 8 uimsbf 0x01 BIOP protocol major version 1
 version.minor 8 uimsbf 0x00 BIOP protocol minor version 0
 objectKey_length 8 uimsbf N2 1 to 4
 for (k=0; k<N2; k++) {
 objectKey_data 8 uimsbf +
 }
 }
 DSM::ConnBinder {
 componentId_tag 32 uimsbf 0x49534F40 TAG_ConnBinder
 component_data_length 8 uimsbf N4
 taps_count 8 uimsbf N3
 DSM::Tap {
 id 16 uimsbf 0x0000 user private
 use 16 uimsbf 0x0016 If BIOP_DELIVERY_PARA_USE

is provided it shall be the first tap.
If there is another type of tap in
the first position, the receiver may
ignore this object reference, as it
is a reference for an object
accessed using another type of
protocol (e.g. for return channel
use)

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)110

Syntax No. of bits Identifier Value Comment
 assocTag 16 uimsbf +
 selector_length 8 uimsbf 0x0A
 selector_type 16 uimsbf 0x0001
 transactionId 32 uimsbf *
 timeout 32 uimsbf *
 }
 for (n=0; n<N4 - 18; n++) { The receiver may skip over the

possible additional taps
 additional_tap_byte 8 uimsbf
 }
 }
 for (n=0;n<N6;n++) { N6=N1 - 2
 BIOP::LiteComponent{
 componentId_tag 32 uimsbf +
 component_data_length 8 uimsbf N7
 for (i=0; i<N7; i++) {
 component_data_byte 8 uimsbf
 }
 }
 }
}

B.2.3.7.2 LiteOptionsProfileBody

The LiteOptionsProfileBody is used for making links to objects carried in other object carousels. The
LiteOptionsProfileBody can be used to make references to objects carried in other carousels within the same Transport
Streams or in other Transport Streams. The following constraints are put on the use of the LiteOptionsProfileBody:

• LiteOptionsProfileBody references shall never be used in an IOR which is in the DSI referencing the service
gateway.

• The target carousel is never mounted automatically by the implementation.

• The platform specification may define rules for when a LiteOptionsProfileBody is encountered.

Table B.24: Restrictions on the Lite Options Profile Body

Field Restrictions Source
LiteOptionsProfileBody::profile_data_byte_order 0 (indicating big-endian byte order). DVB
LiteOptionsProfileBody::LiteOptionComponents The list shall contain a ServiceLocation component

as the first component. The receiver may ignore
possible other components in the list.

The present
document

DSM::ServiceLocation For objects carried in the broadcast object
carousel, the service domain NSAP address shall
follow the Carousel NSAP address format.

The present
document

DSM::ServiceLocation::InitialContext The receiver may ignore the initial context The present
document

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)111

Table B.25: Syntax of Lite Options Profile Body with ServiceLocation component

Syntax No. of bits Identifier Value Comment
LiteOptionsProfileBody {
 profileId_tag 32 uimsbf 0x49534F05 TAG_LITE_OPTIONS

(Lite Options Profile Body)
 profile_data_length 32 uimsbf *
 profile_data_byte_order 8 uimsbf 0x00 big endian byte order
 lite_component_count 8 uimsbf N1
 DSM::ServiceLocation {
 componentId_tag 32 uimsbf 0x49534F46 TAG_ServiceLocation
 component_data_length 8 uimsbf *
 serviceDomain_length 8 uimsbf 0x14 Length of carousel NSAP

address
 serviceDomain_data() 160 uimsbf + See table B.26
 CosNaming::Name() { pathName
 nameComponents_count 32 uimsbf N2
 for (i=0; i<N2; i++) {
 id_length 32 uimsbf N3 NameComponent id
 for (j=0; j<N3 j++) {
 id_data 8 uimsbf +
 }
 kind_length 32 uimsbf N4 NameComponent kind
 for (j=0; j<N4 j++) {
 kind_data 8 uimsbf + as type_id (see table 4.4

in ETSI TR 101 202 [i.2])
 }
 }
 }
 initialContext_length 32 uimsbf N5
 for (n=0; n<N5 n++) {
 InitialContext_data_byte 8 uimsbf
 }
 }
 for (n=0;n<N6;n++) { N6=N1-1
 BIOP::LiteComponent{
 componentId_tag 32 uimsbf +
 component_data_length 8 uimsbf N7
 for (i=0; i<N7; i++) {
 component_data_byte 8 uimsbf
 }
 }
 }
}

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)112

Table B.26: DVB Carousel NSAP Address

Syntax No. of bits Identifier Value Comment
DVBcarouselNSAPaddress {
 AFI 8 uimsbf 0x00 NSAP for private use.
 type 8 uimsbf 0x00 Object carousel NSAP

Address.
 carouselId 32 uimsbf + To resolve this reference

a carousel_identifier_
descriptor with the same
carousel_id as indicated
in this field shall be
present in the PMT
signalling for the service
identified below.

 specifierType 8 uimsbf 0x01 IEEE OUI.
 specifierData { IEEE OUI } 24 uimsbf 0x00015A Constant for DVB OUI.
 dvb_service_location () {
 transport_stream_id 16 uimsbf + This may be set to

0x0000 which indicates
that the receiver shall not
use the
transport_stream_id when
locating the service. For
any other value then this
field shall be used.

 original_network_id 16 uimsbf +
 service_id 16 uimsbf + (= MPEG-2

program_number).
 reserved 32 bslbf 0xFFFFFFFF
 }
}

B.2.3.8 BIOP StreamMessage

Table B.27: Restrictions on the BIOP Stream Message

Field Restrictions Source
MessageSubHeader::ObjectInfo The ObjectInfo field contains the DSM::Stream::Info_T

structure and optionally other data after the Stream Info
structure. Receivers may ignore the aDescription_bytes in
the DSM::Stream::Info_T structure and the possible other
object info data following the structure. Broadcasts may set
the duration field to zero to indicate undefined duration.

The present
document

MessageSubHeader::ServiceContextList The receiver may skip the possible serviceContextList
structures.

The present
document

MessageSubHeader::MessageBody The MessageBody carries a sequence of taps.
There shall be at most one tap of use
BIOP_PROGRAM_USE. This tap identifies the service that
provides the media stream associated with the Stream
object (via a deferred_association_tags_descriptor in the
PMT). The tap may only reference programs that are
broadcast on the same multiplex (i.e. receivers shall not
need to tune to a different multiplex in order to receive the
referenced media stream).
There shall also be at most one tap with use
STR_NPT_USE or STR_DVBTIMEL_USE indicating a
timebase to be associated with the Stream object. Taps with
use STR_DVBTIMEL_USE shall be interpreted according to
clause B.2.3.10.
Receivers may ignore possible other Taps (such as
BIOP_ES_USE).

The present
document

NOTE: Use of NPT is obsolete and not defined in the present document.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)113

Table B.28: BIOP::StreamMessage syntax

Syntax No. of bits Identifier Value Comment
BIOP::StreamMessage() {
 magic 4 x 8 uimsbf 0x42494F50 "BIOP"
 biop_version.major 8 uimsbf 0x01 BIOP major version 1
 biop_version.minor 8 uimsbf 0x00 BIOP minor version 0
 byte_order 8 uimsbf 0x00 big endian byte ordering
 message_type 8 uimsbf 0x00
 message_size 32 uimsbf *
 objectKey_length 8 uimsbf N1 1 to 4
 for (i=0; i<N1; i++) {
 objectKey_data 8 uimsbf +
 }
 objectKind_length 32 uimsbf 0x00000004
 objectKind_data 8 uimsbf 0x73747200 "str" type_id alias
 objectInfo_length 16 uimsbf N2
 DSM::Stream::Info_T { uimsbf objectInfo
 aDescription_length 8 uimsbf N3 aDescription
 for (i=0; i<N3; i++) {
 aDescription_bytes 8 uimsbf +
 }
 duration.aSeconds 32 simsbf + may be set to 0 to

indicate undefined
 duration.aMicroSeconds 32 uimsbf + may be set to 0 to

indicate undefined
 audio 8 uimsbf + Flag: 0x00 = false,

non-zero = true
 video 8 uimsbf + Flag: 0x00 = false,

non-zero = true
 data 8 uimsbf + Flag: 0x00 = false,

non-zero = true
 }
 for (i=0; i<N2-(N3+10); i++) {
 objectInfo_byte 8 uimsbf +
 }
 serviceContextList_count 8 uimsbf N4 serviceContextList
 for (i=0; i<N4; i++) {
 context_id 32 uimsbf
 context_data_length 16 uimsbf N5
 for (j=0; j<N5; j++) {
 context_data_byte 8 uimsbf +
 }
 }
 messageBody_length 32 uimsbf *
 taps_count 8 uimsbf N6
 for (i=0; i<N6; i++) {
 id 16 uimsbf (note) see clause B.2.4.4
 use 16 uimsbf + see clause B.2.3.10 and

table 4.12 in DVB
Guidelines for Data
Broadcasting [i.2]

 assocTag 16 uimsbf +
 selector_length 8 uimsbf 0x00 no selector
 }
}
NOTE: If the tap use is STR_DVBTIMEL_USE then the value of this 16 bit integer corresponds to the value of the

broadcast_timeline_id field of the DVB Timeline that defines the timebase for this stream. For other values of
tap use the value of this field is undefined.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)114

B.2.3.9 BIOP StreamEventMessage

Table B.29: Restrictions on the BIOP StreamEvent Message

Field Restrictions Source
MessageSubHeader::ObjectInfo The ObjectInfo field contains the DSM::Stream::Info_T and

DSM::Stream::EventList_T structures followed optionally by
other object info data (which may be ignored by receivers).
See table B.27 regarding the DSM::Stream::Info_T. Receivers
may ignore the possible other data following the
DSM::Stream::EventList_T.
The EventList_T defines a sequence of event names that
correlates to the sequence of event ids in the MessageBody.
eventNames_count shall equal eventIds_count.

The present
document

MessageSubHeader::ServiceCo
ntextList

The receiver may skip the possible serviceContextList
structures.

The present
document

MessageSubHeader::MessageB
ody

The MessageBody carries a sequence of taps followed by a
sequence of event ids.
The sequence of taps follows the following rules:

• There shall be at most one tap of use
BIOP_PROGRAM_USE. This tap identifies the service
that provides the media stream associated with the
Stream object (via a
deferred_association_tags_descriptor in the PMT).
The tap may only reference programs that are
broadcast on the same multiplex (i.e. receivers shall
not need to tune to a different multiplex in order to
receive the referenced media stream).

• There shall be at most one tap with use
STR_NPT_USE or STR_DVBTIMEL_USE indicating a
timebase to be associated with the StreamEvent
object. Taps with use STR_NPT_USE shall be
interpreted as described in ISO/IEC 13818-6 [4]. Taps
with use STR_DVBTIMEL_USE shall be interpreted
according to clause B.2.3.10.

• There shall be at most one tap with use
STR_EVENT_USE
STR_STATUS_AND_EVENT_USE or
STR_DVBEVENT_USE. This tap indicates the PID
where event data relating to the StreamEvent object is
broadcast. Receivers may ignore possible other taps
(such as BIOP_ES_USE).

The present
document

NOTE: The use of NPT is obsolete and is not defined in the present document.

Table B.30: BIOP::StreamEventMessage syntax

Syntax No. of bits Identifier Value Comment
BIOP::StreamEventMessage() {
 magic 4 x 8 uimsbf 0x42494F50 "BIOP"
 biop_version.major 8 uimsbf 0x01 BIOP major version 1
 biop_version.minor 8 uimsbf 0x00 BIOP minor version 0
 byte_order 8 uimsbf 0x00 big endian byte ordering
 message_type 8 uimsbf 0x00
 message_size 32 uimsbf *
 objectKey_length 8 uimsbf N1
 for (i=0; i<N1; i++) {
 objectKey_data 8 uimsbf +
 }
 objectKind_length 32 uimsbf 0x00000004
 objectKind_data 4 x 8 uimsbf 0x73746500 "ste" type_id alias
 objectInfo_length 16 uimsbf N2
 DSM::Stream::Info_T { uimsbf
 aDescription_length 8 uimsbf N3 aDescription
 for (i=0; i<N3; i++) {
 aDescription_bytes 8 uimsbf + see BIOP StreamMessage

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)115

Syntax No. of bits Identifier Value Comment
 }
 duration.aSeconds 32 simsbf + see BIOP StreamMessage
 duration.aMicroSeconds 32 uimsbf + see BIOP StreamMessage
 audio 8 uimsbf + see BIOP StreamMessage
 video 8 uimsbf + see BIOP StreamMessage
 data 8 uimsbf + see BIOP StreamMessage
 }
 DSM::Event::EventList_T {
 eventNames_count 16 uimsbf N4
 for (i=0; i<N4; i++) {
 eventName_length 8 uimsbf N5
 for (j=0; j<N5; j++) {
 eventName_data 8 uimsbf + (including zero terminator)
 }
 }
 }
 for (i=0; i<N2 - (N3 + 14 + N4 + sum(N5));
i++) {

 objectInfo_byte 8 uimsbf +
 }
 serviceContextList_count 8 uimsbf N6
 for (i=0; i<N6; i++) {
 context_id 32 uimsbf
 context_data_length 16 uimsbf N7
 for (j=0; j<N7; j++) {
 context_data_byte 8 uimsbf +
 }
 }
 messageBody_length 32 uimsbf *
 taps_count 8 uimsbf N8
 for (i=0; i<N8; i++) {
 id 16 uimsbf (note) see clause B.2.4.4
 use 16 uimsbf + see clause B.2.3.10 and

table 4.12 in DVB
Guidelines for Data
Broadcasting [i.2]

 assocTag 16 uimsbf +
 selector_length 8 uimsbf 0x00 no selector
 }
 eventIds_count 8 uimsbf N4 (= eventNames_count)
 for (i=0; i<N4; i++) {
 eventId 16 uimsbf +
 }
}
NOTE: If the tap use is STR_DVBTIMEL_USE, the value of this 16-bit integer corresponds to the value of the

broadcast_timeline_id field of the DVB Timeline that defines the timebase for this stream. If the tap use is
STR_DVBEVENT_USE, the value of this 16-bit integer field corresponds to the value of the
synchronised_event_context of all events relevant to this stream. For other values of tap use the value of this
field is undefined.

B.2.3.10 Additional tapUse values

Two additional tapUse values are defined for use in referencing DVB synchronized auxiliary data ETSI
TS 102 823 [13] from an Object Carousel as shown in table B.31.

Table B.31: tapUse values for referencing DVB synchronized auxiliary data

tapUse Value
STR_DVBTIMEL_USE 0x8000
STR_DVBEVENT_USE 0x8001

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)116

The semantics of the fields of a Tap pointing to a DVB broadcast_timeline_descriptor are described below:

• The use field indicates the use of the Tap. The value of this field shall be STR_DVBTIMEL_USE.

• The value of the id field shall specify the broadcast_timeline_id of the timeline to be referenced.

• The assocTag identifies the connection on which the broadcast_timeline_descriptor is broadcast.

• The selector field shall be empty.

The semantics of the fields of a Tap pointing to a DVB synchronised_event_descriptor are described below:

• The use field indicates the use of the Tap. The value of this field shall be STR_DVBEVENT_USE.

• The value of the id field shall specify the synchronised_event_context of the events to be referenced.

• The assocTag identifies the connection on which the synchronised_event_descriptors are broadcast.

• The selector field shall be empty.

B.2.4 Broadcast timebases and events

B.2.4.0 Introduction

Receivers may support DVB Timeline for broadcast timebase delivery.

Receivers are also required to support broadcast events as follows:

• DSM-CC scheduled stream events. These are defined with reference to a broadcast timebase defined using
either DSM-CC NPT or the DVB Timeline mechanism.

• DSM-CC "do it now" stream events. These are stand-alone events that are independent of a broadcast
timebase.

• DVB synchronized events. These are stand-alone events that are independent of a broadcast timebase but
which can provide much greater temporal accuracy than DSM-CC "do it now" events.

The BIOP StreamMessage and StreamEventMessage are used within a DSM-CC object carousel to reference timebases
and to define events. A BIOP StreamMessage can only be used to reference a broadcast timebase. A BIOP
StreamEventMessage can be used to define broadcast events with or without reference to a broadcast timebase.

NOTE 1: The NPT mechanism and scheduled stream events that depend on it are known to be vulnerable to
disruption in many digital TV distribution networks. Existing deployed network equipment that re-
generates the STC is unlikely to be aware of NPT and hence will not make the necessary corresponding
modification to STC values inside NPT reference descriptors. This may cause stream events scheduled
against NPT to fire at the wrong time or to never fire at all. Applications should only use scheduled
stream events with NPT when they are confident that the network where they are to be used does not have
this problem. DVB Timeline, DSM-CC "do it now" events and events carried within DVB synchronized
auxiliary data offer more reliable alternatives to NPT.

NOTE 2: The use of NPT is obsolete and is not defined in the present document.

B.2.4.1 Stream and StreamEvent messages

B.2.4.1.1 Association with time bases

The id field of the STR_DVBTIMEL_USE tap of a StreamMessage or StreamEventMessage identifies the timebase
associated with that Stream/StreamEvent object. Multiple StreamMessage or StreamEventMessage may be used at the
same time to allow subscriptions to multiple timebases of the same service. See clause B.2.4.4 "Broadcast timebases".

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)117

B.2.4.1.2 Event names and event IDs

In StreamEventMessages the EventList_T defines a sequence of event names that correlates 1:1 to the sequence of
event IDs in the MessageBody. Within each BIOP::StreamEventMessage the event names uniquely associate to event
ID values.

• The eventNames_count shall equal eventIds_count.

• The names in the EventList_T are zero-terminated strings.

• The eventID values in the StreamEventMessage correspond to the eventID values carried in
StreamEventDescriptors or the synchronised_event_id values in DVB synchronised_event descriptors.

B.2.4.1.3 Stream event life time

In StreamEventMessages the set of events described in the BIOP::StreamEvent message is possibly a subset of the
events that may be used by the application during the course of a programme. Therefore, applications may need to
accommodate the dynamic change of such messages. Cache transparency (see clause B.5.2.1 "Transparent caching")
and version listener mechanisms provide applications with the means to do this.

Similarly the set of stream event descriptors being transmitted at any time may not correspond to the set of events
described in the BIOP::StreamEventMessage.

The event ID for an event name shall not change while the name exists. If a name is removed it shall not be
reintroduced within 60 seconds.

B.2.4.2 Stream descriptors

B.2.4.2.1 NPT reference descriptor

NOTE: The use of NPT is obsolete and is not defined in the present document.

B.2.4.2.2 Stream event descriptor

B.2.4.2.2.1 Association of event ids to event time

Where the timebase for a scheduled stream event is provided by NPT, the eventNPT field conveys the NPT value at
which the event will occur (or has occurred). Where the timebase for an event is provided by DVB Timeline, the
eventNPT field conveys the tick value at which the event will occur (or has occurred) and shall be interpreted in units of
the tick_rate used to define the DVB Timeline.

Each StreamEventDescriptor provides a single association between an eventID and an eventNPT. If the receiver detects
a change in the eventNPT associated with a value of eventID this redefines the time at which the event should fire.

Receivers shall ignore scheduled events where the eventNPT has passed.

See also clause B.2.4.2.2.3 "Signalling of "do it now events"".

NOTE: The use of NPT is obsolete and is not defined in the present document.

B.2.4.2.2.2 Re-use of event ids

Event ID values may be re-used any number of times. For example, after an event has fired then stream event
descriptors with the same eventID but different eventNPT may be broadcast.

B.2.4.2.2.3 Signalling of "do it now events"

ISO/IEC 13818-6 [4] is silent on the broadcast signalling of "do it now" events.

These events shall be identified by the value of eventID and hence table id extension (see clause B.2.4.3.5 "Encoding of
table id extension").

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)118

Where the value of eventID identifies a "do it now" event then the value of eventNPT shall be ignored by the receiver.

B.2.4.2.2.4 Private data

The contents of the privateDataByte field do not need to be interpreted by the receiver. However, the application can
access the privateDataByte field using the org.dvb.dsmcc.StreamEvent.getEventData method.

B.2.4.2.3 Unused descriptors

Receivers may ignore the following descriptors if present:

• NPT Endpoint descriptor.

• Stream Mode descriptor.

B.2.4.3 DSM-CC sections carrying stream descriptors

B.2.4.3.1 Section version number

The section version number field increments to reflect changes in stream descriptor(s) carried by sections with the same
value of table_id (0x3D) and table_id_extension.

The version number shall increment for reasons including the change in value of eventNPT for a given eventId.

B.2.4.3.2 Single firing of "do it now" events

Receivers shall respond to the first instance of a "do it now" event detected under a particular combination of table id,
table id extension and version number. Reception of subsequent copies of the particular event shall be ignored until a
different version number is detected.

B.2.4.3.3 Section number

For the present document receivers shall only consider section number zero.

B.2.4.3.4 DSM-CC sections for DSMCC_descriptor_list()

If the table_id field equals 0x3D the current_next_indicator bit shall be set to "1".

B.2.4.3.5 Encoding of table id extension

The section's table id extension field provides information on the stream descriptor(s) carried by the section.

Table B.32: Encoding of table id extension for DSMCC_descriptor_lists

table_id_extension bits Payload of DSM-CC section with table ID 0x3D
[15] [14] [13 to 0]

0 0 eventID[13 to 0] Section carries a single "do it now" event
0 1 xx xxxx xxxx xxxx Section carries NPT reference descriptors

1 0 xx xxxx xxxx xxxx Section carries one or more other stream descriptors. I.e.
- Stream event descriptor(s) with a future eventNPTs
- Stream mode descriptor (can be ignored in the present document)
- NPT endpoint descriptor (can be ignored in the present document)

1 1 reserved for future use
NOTE: The use of NPT is obsolete and is not defined in the present document.

The value of eventID for "do it now" events shall be in the range 0x0001 to 0x3FFF. The value of eventID for
scheduled events shall be in the range 0x8000 to 0xBFFF. The value 0 is not allowed (see clause 5.5.2.2.1 in
ISO/IEC 13818-6 [4]).

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)119

B.2.4.4 Broadcast timebases

B.2.4.4.0 Introduction

Multiple concurrent timebases may be defined for a single MPEG program but only a single time base is allowed to
progress at any instant (the other timebases shall be paused). Timebases can be provided by two means: DSM-CC NPT
and DVB Timeline.

NOTE: Use of DSM-CC NPT is obsolete and not defined in the present document.

B.2.4.4.1 DVB Timeline (Optional)

The relationship between each DVB Timeline and the MPEG timebase (STC) is defined using the
broadcast_timeline_descriptor carried in DVB Synchronized Auxiliary Data ETSI TS 102 823 [13]. The
broadcast_timeline_id field of the broadcast_timeline_descriptor (an 8-bit unsigned integer) identifies the timebase.

The value of the id field of the STR_DVBTIMEL_USE tap (a 16-bit unsigned integer) of a StreamMessage or
StreamEventMessage identifies the timebase associated with that Stream/StreamEvent object. Multiple StreamMessages
or StreamEventMessages may be used at the same time to allow subscriptions to multiple timebases of the same service.

In this profile, broadcast_timeline_descriptors can indicate two states:

• Non-paused. The running_status field set to "Running".

• Paused. The running_status field set to "Paused".

The DVB Timeline referenced may be defined using either the direct or offset encoding method specified in ETSI
TS 102 823 [13].

Descriptors other than the broadcast_timeline_descriptor may be present within the Synchronized Auxiliary Data
stream. Receivers shall skip descriptors which they do not support and continue processing the next descriptor. Not
supported descriptors include those defined but not supported (e.g. the TVA_id descriptor in devices not required to
support that descriptor by another specification) and descriptors whose tag value is either reserved or user private. See
also clause B.2.4.5.3.

The Synchronized Auxiliary Data specification ETSI TS 102 823 [13] describes the management of DVB Timeline
discontinuities.

Receivers shall comply with the recommendations for receivers in clause D.5 of ETSI TS 102 823 [13] including those
defined by "should" in that clause. Receivers shall not fire events synchronized to a DVB Timeline in circumstances
where the state of the timeline is unknown or where the timeline has been removed from the PMT of the service in
which it is carried.

B.2.4.5 Broadcast events

B.2.4.5.1 DSM-CC "do it now" stream events

Receivers shall support DSM-CC "do it now" stream events as defined in clause B.2.4.2.2. This provides a means for
delivering stand-alone events without the need for a broadcast timebase.

As these events are delivered in the payload of an MPEG Section, they cannot be accurately synchronized with linear
media streams.

B.2.4.5.2 DSM-CC scheduled stream events

Receivers shall support DSM-CC scheduled stream events as defined in clause B.2.4.2.2. These are defined with
reference to a broadcast timebase defined using either the DVB Timeline mechanism.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)120

For DSM-CC scheduled stream events, the following usage scenarios are envisaged:

• A single continuous timebase (i.e. a single progressing value of time) can be used. In this case, the broadcast is
logically a single continuing interactive production, and the broadcaster is responsible for pre-processing the
applications, etc. before broadcast to ensure that they are suitable.

• The signal received by the receiver can include a unique timebase for each programme needing one. This
timebase could be suspended during any insertion into a programme and discontinued at the end of the
programme.

B.2.4.5.3 DVB synchronized events

Receivers shall support DVB synchronized events as defined by ETSI TS 102 823 [13]. This mechanism allows for the
accurate generation of events without the need for a timebase.

DVB synchronized events are defined using the synchronized_event_descriptor.

The synchronised_event_context field of this descriptor identifies the application-specific context for a set of events and
is referenced using the id field of the STR_DVBEVENT_USE tap of a DSM-CC StreamEventMessage.

The contents of the synchronised_event_data_byte field does not need to be interpreted by the receiver. However, the
application can access the synchronised_event_data_byte field using the org.dvb.dsmcc.StreamEvent.getEventData
method.

Receivers shall support the cancellation of DVB synchronized events that have not yet fired using the
synchronised_event_cancel_descriptor.

Cancellation shall be supported for individual events and for sets of events with a common
synchronised_event_context.

Descriptors other than the synchronised_event_descriptor and synchronised_event_cancel_descriptor may be present
within the Synchronized Auxiliary Data stream. Receivers shall skip descriptors which they do not support and continue
processing the next descriptor. Not supported descriptors include those defined but not supported (e.g. the TVA_id
descriptor in devices not required to support that descriptor by another specification) and descriptors whose tag value is
either reserved or user private.

DVB synchronized events have a specified presentation time, determined by the presentation timestamps of the
auxiliary data structures carrying synchronised_event_descriptors and the reference_offset_ticks field of the
synchronised_event_descriptors. As such, the events are synchronized to a point in time within linear media streams
such as video or audio. Receivers shall deliver events to applications timed so as to retain this synchronization with the
linear media.

B.2.4.6 Monitoring broadcast timebases and events

B.2.4.6.1 Timebase reference monitoring

When applications have registered for timebase stimulated events, the receiver shall allocate resources sufficient to
ensure that updates to the set of timebases is detected. The time within which updates will be detected is application
type dependent.

B.2.4.6.2 Timebase stimulated event monitoring

When applications have registered for timebase stimulated events the receiver shall allocate resources sufficient to
ensure that updates to the set of timebase stimulated events is detected. The time within which updates will be detected
is application type dependent. So, if an event is introduced or the time at which it is specified to fire is changed then the
receiver will respect this change within the period specified. If the fire time for an event changes less than this period
before it was previously scheduled to fire then there is no guarantee that all receivers will detect the change in time.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)121

The receiver shall deactivate any event listeners dependant on a timebase (and may free resources associated with those
listeners) if:

• the timebase is an NPT timebase and it is deleted (reference to it is removed from the set of
NPTReferenceDescriptors);

• the timebase is an NPT timebase and a discontinuity is detected in that timebase;

• a service selection operation changes the current service.

NOTE: The use of NPT is obsolete and is not defined in the present document.

B.2.4.6.3 DSM-CC "do it now" stream events

"do it now" events are single shot events, accordingly receivers need to make special efforts to ensure a high probability
that they can be reliably received.

For each application, the receiver is not required to monitor more than a single component delivering "do it now" stream
events. So, if events from more than one DSM-CC StreamEventMessage are subscribed to no more than one stream
component shall be specified as the source of StreamEventDescriptors carrying "do it now" events (i.e. the taps with use
STR_EVENTUSE or STR_STATUS_AND_EVENT_USE shall have the same value when referring to "do it now"
events).

Receivers shall dedicate a section filter to monitoring the possible transmission of "do it now" events while there are
any applications subscribed to these events.

B.2.4.6.4 DSM-CC scheduled stream events

The stream descriptors for scheduled events are transmitted several times in the period before the time that they should
fire. This allows a high probability that they will be effective even if they are not monitored continuously by the
receiver.

Any scheduled stream event descriptors shall be transmitted at least once each second.

Receivers shall raise an event in response to a scheduled stream event provided that the stream event descriptors are
broadcast for at least 5 seconds before the scheduled time.

For each application, the receiver is not required to monitor more than a single component delivering scheduled stream
events. So, if events from more than one DSM-CC StreamEventMessage are subscribed to no more than one stream
component shall be specified as the source of StreamEventDescriptors carrying scheduled events (i.e. the taps with use
STR_EVENT_USE or STR_STATUS_AND_EVENT_USE shall have the same value when referring to scheduled
events).

NOTE: Scheduled and "do-it-now" stream events can be carried on different stream components. The receiver is
required to be able to monitor one stream of each.

B.2.4.6.5 Number of timebase components

The receiver is only required to monitor a single timebase component. So, if events from more than one DSM-CC
StreamEventMessages are subscribed, each StreamEventMessage that references a timebase shall reference the same
type (NPT or DVB Timeline) and shall contain a STR_NPT_USE or STR_DVBTIMEL_USE tap specifying the same
association tag.

NOTE: The use of NPT is obsolete and is not defined in the present document.

B.2.4.6.6 DVB synchronized events

DVB synchronized events are transient events (i.e. only broadcast for a short period of time). Accordingly, receivers
need to make special efforts to ensure a high probability that they can be reliably received.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)122

For each application, the receiver is not required to monitor more than a single component delivering DVB
synchronized events. So, if events from more than one DSM-CC StreamEventMessage are subscribed to, no more than
one stream component shall be specified as the source of DVB synchronized events (i.e. the taps with use
STR_DVBEVENT_USE shall have the same value of assocTag).

Receivers shall dedicate a filter to monitoring the possible transmission of such events while there are any applications
subscribed to them.

Receivers are not required to monitor DSM-CC "do it now" stream events at the same time as monitoring DVB
synchronized events.

B.2.5 Assignment and use of transactionId values

B.2.5.1 Informative background

The use of the transactionId in the object carousel is inherited from its use as defined by the DSM-CC specification, and
as such it can appear somewhat complex. The transactionId has a dual role, providing both identification and versioning
mechanisms for control messages, i.e. DownloadInfoIndication and DownloadServerInitiate messages. The
transactionId should uniquely identify a download control message within a data carousel, however it should be
"incremented" whenever any field of the message is modified.

NOTE: The term "incremented" is used in the DSM-CC specification. Within the scope of the present document
this should be interpreted as "changed".

The object carousel is carried on top of one or more data carousels. By a data carousel used below the object carousel,
the present document means a set of DownloadInfoIndication message transmitted on a single PID and the
DownloadDataBlock messages carrying the modules described in the DownloadInfoIndication messages. The
DownloadDataBlock messages may be spread on other elementary streams than the DownloadInfoIndication messages.
The DownloadServerInitiate message in the context of object carousels is considered to be part of the top level of the
object carousel and not associated with any data carousel.

When a module is changed, the version number of the module needs to be changed. This implies that the
DownloadInfoIndication message that references the module needs to be also updated. Since the
DownloadInfoIndication is updated, the transactionId needs to be also changed. However, the transactionId of the
DownloadInfoIndication message is used in other messages also, but the need to change the other messages should
specifically be avoided and the implications of updating a module should be limited to the module itself and the
DownloadInfoIndication that references the module. Therefore, additional rules on the usage of the transactionId have
been specified as follows.

B.2.5.2 DVB semantics of the transactionId field

The transactionId has been split up into a number of sub-fields defined in table B.33. This reflects the dual role of the
transactionId (outlined above) and constraints imposed to reduce the effects of updating a module. However, to increase
interoperability the assignment of the transactionId has been designed to be independent of the expected filtering in
target receivers.

Table B.33: Sub-fields of the transactionId

Bits Value Sub-field Description
0 User-defined Updated flag This shall be toggled every time the control message is updated.
1 to 15 User-defined Identification This shall and can only be all zeros for the

DownloadServerInitiate message. All other control messages
shall have one or more non-zero bit(s).

16 to 29 User-defined Version This shall be incremented every time the control message is
updated. The value by which it is incremented should be one.

30 to 31 Bit 30 - zero
Bit 31 - non-zero

Originator This is defined in the DSM-CC specification ISO/IEC 13818-6 [4]
as 0x02 if the transactionId has been assigned by the network -
in a broadcast scenario this is implicit.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)123

Due to the role of the transactionId as a versioning mechanism, any change to a control message will cause the
transactionId of that control message to be incremented. Any change to a module will necessitate incrementing its
moduleVersion field. This change shall be reflected in the corresponding field in the description of the module in the
DownloadInfoIndication message(s) that describes it. Since a field in the DownloadInfoIndication message is changed
its transactionId shall be incremented to indicate a new version of the message. Also, any change in the
DownloadServerInitiate message implies that its transactionId shall also be incremented. However, when the
transactionId is divided into subfields as specified above, updating a message will change only the Version part of the
transactionId while the Identification part remains the same.

Since the transactionId is used also for identifying the messages when referencing the messages in other structures, it is
very desirable that these referenced would not need to be updated every time the control message is update. Therefore
the following rule shall be applied when locating the messages based on the references:

When locating a message based on the transactionId value used for referencing the message, only the
Identification part (bits 1 to 15) shall be matched.

Using this rule, the implications of updating a module can be limited to the module itself and the
DownloadInfoIndication message describing the module. Also, this implies that if a receiver wants to find out if a
particular module that it has retrieved earlier has changed, it needs to filter the DownloadInfoIndication message that
described that module and check if it has been changed.

B.2.6 Mapping of objects to data carousel modules
DSM-CC object carousels allow one or more objects to be carried in one module of the data carousel. In order to
optimize the performance and memory requirements three additional requirements are specified:

• When mapping objects to modules of a data carousel, only closely related objects should be put into one
module. Objects that are not closely related should not be put into the same module. If in the process of
retrieving an object from the carousel a receiver acquires a module containing multiple objects, it should
attempt to cache these since the expectation should be that the other objects are related to the object requested
and probably will be needed soon.

• The size of a module that contains multiple objects should not exceed 65 536 bytes when decompressed
(i.e. when the file has been decompressed from the file transport but before the content decoding has started).
Receivers complying to the present document are only required to handle modules containing multiple objects
where the module size when decompressed is 65 536 bytes or less. Modules containing a single file message
can exceed 65 536 bytes with upper size only limited by the memory resources in the receiver.

• In addition to the limitations imposed by the 65 536 byte limit, directory and service gateway messages are
limited to 512 object bindings per message.

B.2.7 Compression of modules
The modules may be transmitted either in uncompressed or compressed form. If the module is transmitted in
compressed form, this is signalled by including the compressed_module_descriptor in the userInfo field of the
moduleInfo in the DownloadInfoIndication message.

Table B.34 shows the syntax of the compressed_module_descriptor.

Table B.34: compressed_module_descriptor

 No. of bits Identifier Value
compressed_module_descriptor(){
 descriptor_tag 8 uimsbf 0x09
 descriptor_length 8 uimsbf
 compression_method 8 uimsbf
 original_size 32 uimsbf
}

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)124

Presence of the compressed_module_descriptor indicates that the data in the module has the "zlib" structure as defined
in IETF RFC 1950 [11].

The receiver shall support the Deflate compression algorithm as specified in IETF RFC 1951 [12]. This is signalled by
setting the least significant nibble of the compression_method to 0x8 (i.e. compression_method is xxxx1000). The
receiver is not required to support other compression algorithms.

B.2.8 Mounting an object carousel

B.2.8.0 Introduction

The ServiceGateway object is the root directory of the file system delivered by an object carousel and needs to be
acquired before any other object can be downloaded. This may be achieved by two compatible mechanisms. The
signalling of which mechanisms are being supported by a broadcast is provided by the carousel_identifier_descriptor.

In the present document the use of the carousel_identifier_descriptor for signalling is mandatory in the second
descriptor loop of a PMT (corresponding to a PID on which the DSI message for an object carousel is broadcast, i.e. the
boot-PID). The consequence is that if a PMT second descriptor loop contains a data_broadcast_id_descriptor that
provides signalling for the present document, it shall also contain a carousel_identifier_descriptor.

NOTE: A single PID only contains messages from a single Object Carousel and so only one
carousel_identifier_descriptor is present in any second descriptor loop. However, a single service may
contain more than one object carousel. Consequently, the carousel_identifier_descriptor may appear more
than once in any single PMT.

The acquisition of the ServiceGateway object may be via the standard DSI-DII mechanism. This shall be supported by
all broadcasts regardless of signalling in the carousel_identifier_descriptor and shall be sufficient for all receivers.

See also clause 5.3.2 "Program Specific Information".

A broadcast may also contain additional information in the carousel_identifier_descriptor to support the "enhanced"
boot mechanism. This is signalled by setting the formatId field for this descriptor to 0x01. This additional information is
an aggregation of all the fields necessary to locate the ServiceGateway, also found in the DSI and DII messages.
However, in such a case the module containing the ServiceGateway object shall be broadcast on the PID identified by
the data_broadcast_id_descriptor. It is optional for both broadcasts and receivers to support this mechanism.

B.2.8.1 carousel_identifier_descriptor

This descriptor is defined by MPEG and in the present document may be included in the second descriptor loop of a
PMT.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)125

Table B.35: Carousel identifier descriptor syntax

Syntax No. of bits Identifier Value
carousel_identifier_descriptor {
 descriptor_tag 8 uimsbf 0x13
 descriptor_length 8 uimsbf N1
 carousel_id 32 uimsbf
 FormatID 8 uimsbf
 if(FormatID == 0x00) {
 for(i=0; i<N1 - 5; i++){
 private_data_byte 8
 }
 }
 if(FormatID == 0x01) {
 ModuleVersion 8 uimsbf
 ModuleId 16 uimsbf
 BlockSize 16 uimsbf
 ModuleSize 32 uimsbf
 CompressionMethod 8 uimsbf
 OriginalSize 32 uimsbf
 TimeOut 8 uimsbf
 ObjectKeyLength 8 uimsbf N2 ≤ 4
 for(i=0; i<N2; i++){
 ObjectKeyData 8 bslbf
 }
 for(i=0; i<N1 - N2 - 21; i++){
 private_data_byte 8
 }
 }
}

carousel_id: This 32 bit field identifies the object carousel with the corresponding carousel_id. If the carousel is
intended to be shareable across multiple transport streams, the 24 most significant bits of the carousel_id shall carry the
24 least significant bits of the broadcaster's organisation_id. If the carousel is not intended to be shareable, these 24 bits
shall be zero. The remaining 8 least significant bits can take any value.

The carousel_id shall be unique within the program.

FormatID: This 8 bit integer identifies whether the carousel supports the "enhanced boot" mechanism or not. The value
0x00 indicates "standard boot", 0x01 indicates that "enhanced boot" is possible.

ModuleVersion: This 8 bit integer is the version number of the module containing the service gateway. This is
equivalent to moduleVersion in the DII.

ModuleId: This 16 bit integer is the identifier of the module in the carousel. This is equivalent to moduleId in the DII.

BlockSize: This 16 bit integer is the size in bytes of every block in the module (except for the last block which may be
the same or smaller). This is equivalent to blockSize in the DII.

ModuleSize: This 32 bit integer is the size of the module in bytes. This is equivalent to moduleSize in the DII.

CompressionMethod: This 8 bit field identifies the compression algorithm defined in IETF RFC 1950 [11] used to
compress the module. It is equivalent to compression_method carried in the compressed_module_descriptor in the DII.

OriginalSize: This 32 bit integer is the size of the data (in bytes) carried by the module before it was compressed. It is
equivalent to original_size carried in the compressed_module_descriptor in the DII.

If the module has not been compressed the values of OriginalSize and ModuleSize shall be equal and the value of
CompressionMethod is not defined.

TimeOut: This 8 bit integer specifies the timeout in seconds for acquisition of all blocks of the module.

ObjectKeyLength: This 8 bit integer specifies the number of bytes of ObjectKeyData.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)126

ObjectKeyData: These 8 bit values form an octet string that identifies the BIOP message that is the ServiceGateway
message.

B.2.9 Unavailability of a carousel
Broadcast carousels become permanently unavailable due to changes in the signalling including the following:

• The component signalled as carrying the DSI is removed from the PMT.

• The value of carousel ID associated with the carousel changes.

• The program disappears from the PAT.

• After an implementation dependent time general failure of the signalling (e.g. non-transmission of the PMT).

Additionally, carousels also become permanently unavailable when loss of connection to a temporarily disconnected
carousel becomes permanent.

B.2.10 Delivery of carousels within multiple services
Carousels shall be considered identical if, in the PMTs of the services, all the following hold:

Either:

a) Both services are delivered within the same transport stream; and

- Both services list the boot component of the carousel on the same PID.

- The carousel_identifier_descriptor for the carousel are identical in both services (so the carousels have
the same carousel_Id and boot parameters).

- All association tags used in the carousel map to the same PIDs in both services.

In this case, the carousel is transmitted over a single path, but the services are allowed to reference the carousel via a
number of routes, including deferral to a second PMT via deferred association tags.

Or:

b) Both services are delivered over multiple transport streams; and

- The carousel_id in the carousel_identifier_descriptor is in the range of 0x100 - 0xffffffff (containing the
broadcaster's organisation_id in the most significant 24 msbs of carousel_id).

- The carousel_identifier_descriptor for the carousel are identical in both services (so the carousels have
the same carousel Id and boot parameters).

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)127

B.3 AssociationTag mapping

B.3.1 Decision algorithm for association tag mapping

B.3.1.1 TapUse is not BIOP_PROGRAM_USE

Figure B.1 illustrates the decision tree for identifying the elementary stream(s) by which the object carousel is
distributed.

Figure B.1: Object Carousel ES identification decision tree

In the present document, the stream_identifier_descriptor shall always be used for assigning a component_tag for the
elementary streams. Use of association_tag_descriptors as defined in DSM-CC [4] is not required. If the
association_tag_descriptor is optionally used, a stream_identifier_descriptor (as defined in ETSI EN 300 468 [1]) shall
still be present and the tag values shall be set consistently in each descriptor. This restriction simplifies the decision tree
above so that the second decision can be skipped.

association_tag in
any deferred_association_

descriptors
?

association_tag in
(any of the) association_tag_
descriptors in the elementary

stream loop
?

LSB of association_tag
in (any of the) stream_identifier_

descriptors in the elementary
stream loop

?

association_tag

No

No

No

Invalid Object
Carousel

Go to other PMT

Match

Match

Yes

Yes

Yes

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)128

B.3.1.2 TapUse is BIOP_PROGRAM_USE

The decision tree in clause B.1 is not followed when resolving a BIOP_PROGRAM_USE tap as the only valid
broadcast encoding is for a tap of use BIOP_PROGRAM_USE to resolve to deferred_association_tags_descriptor in the
PMT even if the deferred_association_tags_descriptor identify the current service (i.e. stream or streamEvent reference
itself). If this resolution fails then the service from which the object carousel is mounted shall be returned as the
referenced service.

B.3.2 DSM-CC association_tags to DVB component_tags
The component_tag in a PMT's stream_identifier_descriptor (as defined in ETSI EN 300 468 [1]) is used to relate SI
service component information with an elementary stream without directly referring to a PID value. Likewise,
association_tags are used by DSM-CC in order to refer to an elementary stream without directly referencing a PID
value. An association_tag value is mapped to an elementary stream by matching the LSB of the association_tag with a
component_tag. The stream_identifier_descriptor is mandatory for all components referenced by an application and/or
object carousel.

Broadcasters may choose to use association_tag_descriptors (as defined by ISO/IEC 13818-6 [4]) which should
(theoretically) be tested for a match before trying component_tags. However, the LSB of the association_tag value in an
association_tag_descriptor has to be equal to the component_tag for that PID. Since the component_tag is unique within
a PMT this removes the need to match against association_tag_descriptors.

The deferrered_association_tags_descriptor required by the present document is the adaptation of the
ISO/IEC 13818-6 [4] descriptor defined in ETSI TR 101 202 [i.2]. This latter definition standardizes a mechanism to
signal the original network id.

When attempting to map an association_tag to an elementary stream the association_tag shall first be checked against
any deferred_association_tags_descriptors in the current PMT (current in this context means the PMT of the service
within which the association_tag is being mapped). If the association_tag matches any of the association_tags present in
a deferred_association_tags_descriptor then the matching process proceeds to the service indicated in that descriptor.
The receiver is not required to continue its search beyond this second service.

If the transport_stream_id field in the deferred_association_tags_descriptor is set to 0x0000 then it shall be ignored and
the receiver is free to choose which transport stream ID it selects when obtaining a service.

B.3.3 deferred_association_tags_descriptor
The transport_stream_id field of the deferred_association_tags_descriptor (as defined in DSM-CC [4]) may take value
0x0000 in which case it shall be ignored in resolving the reference.

B.4 Example of an object carousel (informative)
Figure B.2 illustrates an object carousel that is distributed over three elementary streams belonging to the same service.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)129

Figure B.2: Example carousel

The DownloadServerInitiate (DSI) message is carried on the first elementary stream. It contains the object reference
that points to the ServiceGateway. The tap with the BIOP_DELIVERY_PARA_USE points to a
DownloadInfoIndication (DII) message that provides the information about the module and the location where the
module is being broadcasted. In the example, the ServiceGateway object is in the module number 1 that is carried on
the second elementary stream (indicated by a BIOP_OBJECT_USE tap structure in the DII message).

The ServiceGateway object is a root directory that, in this example, references three subdirectories. Taps with
BIOP_DELIVERY_PARA_USE are used in the object references of the subdirectories to provide links to the modules
via the DownloadInfoIndication (DII) message. The two first subdirectories "dir1" and "dir2" are referenced in the DII
message that is carried in the first elementary stream. The third subdirectory is referenced in the DII message carried in
the third elementary stream.

In this example, the two first elementary streams carry the messages of one logical data carousel while the third
elementary stream carries the messages of another logical data carousel. All these belong to the same object carousel. In
the example, the third elementary stream contains the objects in the "dir3" subdirectory and the objects in the "dir1" and
"dir2" subdirectories are distributed over the first and second elementary stream.

NOTE: It is important to note that the third elementary stream may originate from a completely separate source
than the first two elementary streams. The directory hierarchy and objects contained in the third
elementary stream are "mounted" in the root directory by providing the "dir3" directory entry with the
appropriate location information.

This type of structure could be used, for example, in a national information service that contains some regional parts.
The common national parts could be carried in this example case on the two first elementary streams that are distributed
unmodified in the whole country. The regional parts are carried in the third elementary stream that is locally inserted at
each region. From the application's point of view, the common national parts are in the "dir1" and "dir2" subdirectories
while the regional parts are in the "dir3" subdirectory.

Another example where this type of structure could be used is if the service contains multiple independent applications.
In this case, each application could be placed in its own subdirectory and these subdirectories might be carried as
separate data carousels on different elementary streams.

DSI DII mod 2 mod 3

DSI: IOR of Service Gateway
object_key = k
module_id = 1
tap: use = BIOP_DELIVERY_PARA_USE

association_tag = 1

Service Gateway

dir1: object_key = k1
module_id = 2
tap: use = BIOP_DELIVERY_PARA_USE

association_tag = 1

dir2: object_key = k2
module_id = 5
tap: use = BIOP_DELIVERY_PARA_USE

association_tag = 1

dir3: object_key = k3
module_id = 82
tap: use = BIOP_DELIVERY_PARA_USE

association_tag = 3

mod 1 mod 4 mod 5 mod 6

DII mod 81 mod 82 mod 83 mod 84PID n+2
component_tag = 3

PID n
component_tag = 1

PID n+1
component_tag = 2

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)130

B.5 Caching

B.5.0 Introduction
This clause describes the constraints that a receiver compliant with the present document shall implement when caching
any content from the object carousel in the memory of the receiver. Caching is optional for the receiver, but if
implemented shall conform to the constraints set in this clause.

B.5.1 Determining file version
There is no version number directly related to files (or other BIOP messages), the closest association is the
moduleVersion in the DII that references the module that contains the BIOP message. Therefore, to ensure that a file is
up to date the receiver shall determine that the moduleVersion for the appropriate module is current and reacquire if
necessary. The circumstances under which this checking is required are defined by the transparency level as specified in
the following clause.

B.5.2 Transparency levels of caching

B.5.2.0 Introduction

The definition of transparency levels describes the behaviour that the receiver shall implement when the content in the
object carousel is changing. The transparency level determines how certain the receiver is required to be about the
validity of the content when returning the content to the application. The object carousel provides a mechanism for
determining version changes of the content by monitoring the DII messages.

Validity of content is specified here in terms of the version number of the module that is broadcast in the DII message.
The contents of an object as cached in the memory of the receiver are defined to be valid at a certain point in time when
the version number of the module in the cache matches the version number of the module as signalled in the DII
message describing that module as it was last broadcast.

NOTE: The definition is based on the DII message that was last broadcast and it may be that the receiver was not
filtering for this message at that time and did not receive it.

From the receiver point of view, the transparency level indicates the constraints that the receiver needs to implement for
monitoring the DII messages.

The broadcaster can indicate the appropriate transparency level that shall be applied for a given piece of content by
using a descriptor associated with a module in the DII message (see clause B.2.2.4.2 "Caching priority descriptor"). In
the absence of this descriptor from a module, the transparent caching is the default level.

B.5.2.1 Transparent caching

B.5.2.1.0 Introduction

The transparent caching is a caching level that ensures that the application cannot practically notice a difference in the
validity of the returned content between an implementation that caches content and an implementation that does not
cache any content. Naturally, an implementation that caches the content will return it to the application faster.

When returning content from the cache to the application, the receiver shall ensure that the version number of the
cached content matches the version number indicated in the current DII message describing that module. Once a DII has
been received it can be assumed that it is current at least for 500 ms and after that period until receiving the next
instance of the relevant DII. If filtering for that DII has not resumed by the end of this period, the state of that DII is to
be considered unknown until it is received again.

Therefore, receivers shall not return transparently cached data if it has waited more than half a second between
receiving the relevant DII and starting to filter for that DII again. If the receiver does not resume filtering within the
500 ms grace period, it shall download the relevant DII again when it wishes to use that DII to check cache validity.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)131

The choice of 500 ms is based on the normal timing uncertainty in data delivery through the broadcast chain and is
independent of the repetition rate of the DII messages.

B.5.2.1.1 Active caching

There are several ways the receiver can organize its caching strategy. One possible strategy is so-called active caching.
This means that the receiver has a dedicated section filter for each DII message it needs to monitor. Keeping that filter
continuously filtering for the DII guarantees that the receiver will notice the update of a module as soon as it happens
and can thus be aware of the validity of all the content it has cached.

However, in some cases the DII messages might be sent with a very high repetition rate that may cause a high
processing load because the receiver needs to do some processing every DII message that it receives. The 500 ms grace
period is designed to help this, as it allows the receiver to stop the section filter for 500 ms after receiving the DII
message. This lessens the processing burden on the receiver as it only needs to process each DII message twice a
second, even if it may be repeated on the transmission much more frequently.

B.5.2.1.2 Passive caching

With active caching, the receiver may need to have a dedicated section filter reserved for each DII message that it needs
to monitor. This would effectively limit the amount of content that can be cached, possibly to a very small number.
Therefore, the receiver may choose a so-called passive caching strategy. This means that the receiver does not even try
to monitor for the DII messages continuously, but each time an application wants to retrieve an object, it at that time
retrieves the current DII and checks if the cached content is still valid. Although, this strategy imposes a delay before
returning the content to the application, this delay is usually significantly smaller than having to retrieve the content
from the broadcast stream.

B.5.2.1.3 DII repetition rate

It should be noted that the description of active and passive caching are only informative here and receiver
implementations can use any strategy fulfilling the normative constraints set above. However, broadcasters should set
the repetition rate of the DIIs so that a receiver implementing the passive caching strategy will provide the expected
benefits of caching over a receiver implementing no caching.

B.5.2.2 Semi-transparent caching

B.5.2.2.0 Introduction

The semi-transparent caching level allows the receiver to cache the data and also return slightly out-dated data to the
application. The benefit of this caching level is that it allows receivers to cache larger quantities of content with a
reasonable resource usage while allowing the data to be returned usually immediately to the application. The semi-
transparent caching level provides less guarantees about validity of the content, but does not cause the delay implied by
the passive caching strategy with the transparent caching level.

When returning content from the cache to the application, the receiver shall ensure that the version number of the
cached content matches the version number indicated in a valid DII message describing that module. Once a DII has
been received it can be assumed to be valid at least for 30 s and after that period until receiving the next instance of the
relevant DII. If filtering for that DII has not resumed by the end of this period, the state of that DII is to be considered
unknown until it is received again.

Therefore, receivers shall not return semi-transparently cached data if it has waited more than 30 s between receiving
the relevant DII and starting to filter for that DII again. If the receiver does not resume filtering within the 30 s grace
period, it shall download the relevant DII again when it wishes to use that DII to check cache validity.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)132

B.5.2.2.1 Implications for the receiver (informative)

Reasons for selecting the 30 s value for the grace period in the semi-transparent caching level are different from the
reasons for the 500 ms grace period in the transparent level. The 30 s grace period in this level is intended e.g. to allow
receivers to keep typically a valid copy of each DII by retrieving each DII in a round robin fashion using a single
section filter. Naturally, whether this goal can be achieved, depends on the repetition rate of the DIIs and the amount of
content that is cached. If this is not possible, the receiver might use the passive caching strategy with this transparency
level as well. These strategies are only examples and the receiver may implement any strategy as long the normative
constraints defined above are fulfilled (this includes implementing no caching as it is optional, as well as treating the
semi-transparent level the same as the transparent level).

B.5.2.3 Static caching

B.5.2.3.0 Introduction

When using the static caching transparency level, the receiver shall check the validity of the cached content from the
version number in the DII message when it is used for the first time during the lifetime of an application instance. After
the first usage time, the receiver does not need to check the validity of the content during the lifetime of that application
instance.

B.5.2.3.1 Implications for the broadcaster (informative)

This has the implication, that content with this transparency level is appropriate for very static content that is updated
only rarely and where the possible update of the content does not need to be noticed by the application during the
lifetime of one application instance.

B.5.2.3.2 Implications for the receiver (informative)

The receiver, however, is allowed to update the contents of the statically cached files if it notices that they have been
updated in the carousel as well as use any caching strategy as long as the normative constraint defined above are
fulfilled (this includes implementing no caching as it is optional, as well as treating the static level the same as the
semi-transparent and/or the transparent level).

B.5.3 Dynamic carousel structure
The Object Carousel may change structure over time, i.e. both files and directories may be added or deleted. Also,
modules are not guaranteed to carry the same objects over the lifetime of the carousel. Therefore receivers shall not
assume that directory structures are static or that a given path will resolve always to the same object. All cached
directory information shall be cached according to the signalled cache priority. This means that before using an object
that has been cached, receivers shall validate the path to it.

NOTE: Validating a path does not necessarily mean downloading all elements in the path every time. For
example, simply determining that none of the objects on the path have changed since it was last fully
traversed is sufficient to confirm that the path itself has not changed.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)133

Annex C (normative):
Generic Application Western European Character Set
Table C.1 defines a character set suitable for use by platform specifications addressing the Western European market.

Table C.1: Generic Western European character set

Unicode character code Character Unicode script name
0020 to 007E Basic Latin
00A0 to 00FF Latin-1 supplement
0100 to 017E Latin Extended A (excluding 0149, 017F)

01CD Ǎ Latin Capital Letter A With Caron
01CE Ǎ Latin Small Letter A With Caron
02C6 ˆ Modifier Letter Circumflex Accent
02C7 ˇ Caron (Mandarin Chinese third tone)
02C9 - Modifier Letter Macron (Mandarin Chinese first tone)
02D8 ˘ Breve
02D9 ˙ Dot Above (Mandarin Chinese light tone)
02DA ° Ring Above
02DB ˛ Ogonek
02DC ˜ Small Tilde
1E80 Ẁ Latin Capital Letter W With Grave
1E81 ẁ Latin Small Letter W With Grave
1E82 Ẃ Latin Capital Letter W With Acute
1E83 ẃ Latin Small Letter W With Acute
1E84 Ẅ Latin Capital Letter W With Diaeresis
1E85 ẅ Latin Small Letter W With Diaeresis
1EF2 Ỳ Latin Capital Letter Y With Grave
1EF3 ỳ Latin Small Letter Y With Grave
2007 Figure Space
2013 - En Dash
2014 — Em Dash
2018 ' Left Single Quotation Mark
2019 ' Right Single Quotation Mark
201A ‚ Single Low-9 Quotation Mark
201C " Left Double Quotation Mark
201D " Right Double Quotation Mark
201E „ Double Low-9 Quotation Mark
2022 • Bullet
2026 … Horizontal Ellipsis
2030 ‰ Per Mille Sign
2039 ‹ Single Left-Pointing Angle Quotation Mark
203A › Single Right-Pointing Angle Quotation Mark
2044 ⁄ Fraction Slash
20AC € Euro Sign
2122 ™ Trademark Sign
2190 ← Leftwards Arrow
2191 ↑ Upwards Arrow
2192 → Rightwards Arrow
2193 ↓ Downwards Arrow
2212 − Minus Sign
2214 ∔ Dot Plus
2215 ⁄ Division Slash
221E ∞ Infinity
266B ♫ Beamed Eighth Notes
2713 ✓ Check Mark
2717 ✗ Ballot X

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)134

Annex D (normative):
ASN.1 for DVBCertificate

D.1 According to IETF RFC 5912
DVBMISSecurity-2009 { }

DEFINITIONS EXPLICIT TAGS ::=
BEGIN

--
-- This definition defines the type for the DVB-MIS certificate format
-- It uses many components imported from publicly available asn1 modules.
--

IMPORTS

 Validity, Name, SubjectPublicKeyInfo, SignatureAlgorithms, SIGNED{}
 FROM PKIX1Explicit-2009
 {iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-explicit-02(51)}

 Extensions{}, EXTENSION
 FROM PKIX-CommonTypes-2009
 {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0) id-mod-pkixCommon-02(57)}

 AlgorithmIdentifier{}, SIGNATURE-ALGORITHM
 FROM AlgorithmInformation-2009
 {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58)}

 KeyIdentifier, GeneralName, KeyUsage
 FROM PKIX1Implicit-2009
 {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-implicit-02(59)};

-- Will need a reference import for the Ed25519 coding.

-- New elements created by this document form the DVB cert

-- DVB Extensions cast in the manner of PKIX CertExtensions

 DVBCertExtensions EXTENSION ::= {
 ext-URL, ... }

--The only extension so far included

ext-URL EXTENSION ::= { SYNTAX
 Ext-URL IDENTIFIED BY id-ce-dvburl }

Ext-URL ::= SEQUENCE {
 uRLLabel PrintableString,
 uRLValue GeneralName }

etsi-spec-id OBJECT IDENTIFIER ::= { itu-t(0) identified-organisation(4) etsi(0) 2809 }

id-ce-dvburl OBJECT IDENTIFIER ::= { etsi-spec-id 0 }

TBSDVBCertificate ::= SEQUENCE {
 version INTEGER,
 signatureAlgorithm AlgorithmIdentifier{SIGNATURE-ALGORITHM, {SignatureAlgorithms}},
 issuer Name,
 validity Validity,
 authorityKeyID KeyIdentifier,
 subject Name,

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)135

 subjectPublicKeyInfo SubjectPublicKeyInfo,
 keyUsage KeyUsage,
 successorKeyID [0] KeyIdentifier OPTIONAL,
 trustTimeToLive [1] INTEGER (1..255) OPTIONAL,
 extensions [2] Extensions { {DVBCertExtensions}} OPTIONAL
}

-- Currently, with only one signature we can use the PKIX SIGNED parametarised class

DVBCertificate ::= SIGNED {TBSDVBCertificate}

-- Alternative non parameters content model.
-- DVBCertificate ::= SEQUENCE {
-- tbsDVBCertificate TBSDVBCertificate,
-- signatureAlgorithm AlgorithmIdentifier,
-- signature BIT STRING }

END

D.2 According to IETF RFC 5280
DVBCertificate-PKIX188 {}

DEFINITIONS EXPLICIT TAGS ::=

BEGIN

KeyIdentifier ::= OCTET STRING

SubjectKeyIdentifier ::= KeyIdentifier

KeyUsage ::= BIT STRING {
 digitalSignature (0),
 nonRepudiation (1), -- recent editions of X.509 have
 -- renamed this bit to contentCommitment
 keyEncipherment (2),
 dataEncipherment (3),
 keyAgreement (4),
 keyCertSign (5),
 cRLSign (6),
 encipherOnly (7),
 decipherOnly (8) }

Attribute ::= SEQUENCE {
 type AttributeType,
 values SET OF AttributeValue }
 -- at least one value is required

AttributeType ::= OBJECT IDENTIFIER

AttributeValue ::= ANY -- DEFINED BY AttributeType

AttributeTypeAndValue ::= SEQUENCE {
 type AttributeType,
 value AttributeValue }

-- Arc for standard naming attributes

id-at OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) ds(5) 4 }

-- Naming attributes of type X520name

id-at-name AttributeType ::= { id-at 41 }
id-at-surname AttributeType ::= { id-at 4 }
id-at-givenName AttributeType ::= { id-at 42 }
id-at-initials AttributeType ::= { id-at 43 }
id-at-generationQualifier AttributeType ::= { id-at 44 }

-- These are options for RDN/directorystring
-- Naming attributes of type X520Name:
-- X520name ::= DirectoryString (SIZE (1..ub-name))
--
-- Expanded to avoid parameterized type:

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)136

X520name ::= CHOICE {
 teletexString TeletexString (SIZE (1..ub-name)),
 printableString PrintableString (SIZE (1..ub-name)),
 universalString UniversalString (SIZE (1..ub-name)),
 utf8String UTF8String (SIZE (1..ub-name)),
 bmpString BMPString (SIZE (1..ub-name)) }

-- Naming attributes of type X520CommonName

id-at-commonName AttributeType ::= { id-at 3 }

-- Naming attributes of type X520CommonName:
-- X520CommonName ::= DirectoryName (SIZE (1..ub-common-name))
--
-- Expanded to avoid parameterized type:
X520CommonName ::= CHOICE {
 teletexString TeletexString (SIZE (1..ub-common-name)),
 printableString PrintableString (SIZE (1..ub-common-name)),
 universalString UniversalString (SIZE (1..ub-common-name)),
 utf8String UTF8String (SIZE (1..ub-common-name)),
 bmpString BMPString (SIZE (1..ub-common-name)) }

-- Naming attributes of type X520LocalityName

id-at-localityName AttributeType ::= { id-at 7 }

-- Naming attributes of type X520LocalityName:
-- X520LocalityName ::= DirectoryName (SIZE (1..ub-locality-name))
--
-- Expanded to avoid parameterized type:
X520LocalityName ::= CHOICE {
 teletexString TeletexString (SIZE (1..ub-locality-name)),
 printableString PrintableString (SIZE (1..ub-locality-name)),
 universalString UniversalString (SIZE (1..ub-locality-name)),
 utf8String UTF8String (SIZE (1..ub-locality-name)),
 bmpString BMPString (SIZE (1..ub-locality-name)) }

-- Naming attributes of type X520StateOrProvinceName

id-at-stateOrProvinceName AttributeType ::= { id-at 8 }

-- Naming attributes of type X520StateOrProvinceName:
-- X520StateOrProvinceName ::= DirectoryName (SIZE (1..ub-state-name))
--
-- Expanded to avoid parameterized type:
X520StateOrProvinceName ::= CHOICE {
 teletexString TeletexString (SIZE (1..ub-state-name)),
 printableString PrintableString (SIZE (1..ub-state-name)),
 universalString UniversalString (SIZE (1..ub-state-name)),
 utf8String UTF8String (SIZE (1..ub-state-name)),
 bmpString BMPString (SIZE (1..ub-state-name)) }

-- Naming attributes of type X520OrganizationName

id-at-organizationName AttributeType ::= { id-at 10 }

-- Naming attributes of type X520OrganizationName:
-- X520OrganizationName ::=
-- DirectoryName (SIZE (1..ub-organization-name))
--
-- Expanded to avoid parameterized type:
X520OrganizationName ::= CHOICE {
 teletexString TeletexString
 (SIZE (1..ub-organization-name)),
 printableString PrintableString
 (SIZE (1..ub-organization-name)),
 universalString UniversalString
 (SIZE (1..ub-organization-name)),
 utf8String UTF8String
 (SIZE (1..ub-organization-name)),
 bmpString BMPString
 (SIZE (1..ub-organization-name)) }

-- Naming attributes of type X520OrganizationalUnitName

id-at-organizationalUnitName AttributeType ::= { id-at 11 }

-- Naming attributes of type X520OrganizationalUnitName:

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)137

-- X520OrganizationalUnitName ::=
-- DirectoryName (SIZE (1..ub-organizational-unit-name))
--
-- Expanded to avoid parameterized type:
X520OrganizationalUnitName ::= CHOICE {
 teletexString TeletexString
 (SIZE (1..ub-organizational-unit-name)),
 printableString PrintableString
 (SIZE (1..ub-organizational-unit-name)),
 universalString UniversalString
 (SIZE (1..ub-organizational-unit-name)),
 utf8String UTF8String
 (SIZE (1..ub-organizational-unit-name)),
 bmpString BMPString
 (SIZE (1..ub-organizational-unit-name)) }

-- Naming attributes of type X520Title

id-at-title AttributeType ::= { id-at 12 }

-- Naming attributes of type X520Title:
-- X520Title ::= DirectoryName (SIZE (1..ub-title))
--
-- Expanded to avoid parameterized type:
X520Title ::= CHOICE {
 teletexString TeletexString (SIZE (1..ub-title)),
 printableString PrintableString (SIZE (1..ub-title)),
 universalString UniversalString (SIZE (1..ub-title)),
 utf8String UTF8String (SIZE (1..ub-title)),
 bmpString BMPString (SIZE (1..ub-title)) }

-- Naming attributes of type X520dnQualifier

id-at-dnQualifier AttributeType ::= { id-at 46 }

X520dnQualifier ::= PrintableString

-- Naming attributes of type X520countryName (digraph from IS 3166)

id-at-countryName AttributeType ::= { id-at 6 }

X520countryName ::= PrintableString (SIZE (2))

-- Naming attributes of type X520SerialNumber

id-at-serialNumber AttributeType ::= { id-at 5 }

X520SerialNumber ::= PrintableString (SIZE (1..ub-serial-number))

-- Naming attributes of type X520Pseudonym

id-at-pseudonym AttributeType ::= { id-at 65 }

-- Naming attributes of type X520Pseudonym:
-- X520Pseudonym ::= DirectoryName (SIZE (1..ub-pseudonym))
--
-- Expanded to avoid parameterized type:
X520Pseudonym ::= CHOICE {
 teletexString TeletexString (SIZE (1..ub-pseudonym)),
 printableString PrintableString (SIZE (1..ub-pseudonym)),
 universalString UniversalString (SIZE (1..ub-pseudonym)),
 utf8String UTF8String (SIZE (1..ub-pseudonym)),
 bmpString BMPString (SIZE (1..ub-pseudonym)) }

-- Naming attributes of type DomainComponent (from RFC 4519)

id-domainComponent AttributeType ::= { 0 9 2342 19200300 100 1 25 }

DomainComponent ::= IA5String

-- Legacy attributes

pkcs-9 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 9 }

id-emailAddress AttributeType ::= { pkcs-9 1 }

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)138

EmailAddress ::= IA5String (SIZE (1..ub-emailaddress-length))

-- naming data types --

Name ::= CHOICE { -- only one possibility for now --
 rdnSequence RDNSequence }

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

DistinguishedName ::= RDNSequence

RelativeDistinguishedName ::= SET SIZE (1..MAX) OF AttributeTypeAndValue

-- Directory string type --

DirectoryString ::= CHOICE {
 teletexString TeletexString (SIZE (1..MAX)),
 printableString PrintableString (SIZE (1..MAX)),
 universalString UniversalString (SIZE (1..MAX)),
 utf8String UTF8String (SIZE (1..MAX)),
 bmpString BMPString (SIZE (1..MAX)) }

-- DVB certificate structures begin here

DVBCertificate ::= SEQUENCE {
 tbsDVBCertificate TBSDVBCertificate,
 signatureAlgorithm AlgorithmIdentifier,
 signature BIT STRING }

TBSDVBCertificate ::= SEQUENCE {
 version INTEGER,
 signatureAlgorithm AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 authorityKeyID KeyIdentifier,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 keyUsage KeyUsage,
 successorKeyID [0] KeyIdentifier OPTIONAL,
 trustTimeToLive [1] INTEGER (1..255) OPTIONAL,
 extensions [2] Extensions OPTIONAL
}

Validity ::= SEQUENCE {
 notBefore Time,
 notAfter Time }

-- We retain Time for compatibilty with PKIX though only use GeneralizedTime.

Time ::= CHOICE {
 utcTime UTCTime,
 generalTime GeneralizedTime }

SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING
 -- contains the DER encoding of an ASN.1 value
 -- corresponding to the extension type identified
 -- by extnID
 }

--The only extension so far included

id-ce-dvburl OBJECT IDENTIFIER ::= { itu-t(0) identified-organisation(4) etsi(0) dvb-
signalling(2809) 0 }
ext-URL ::= SEQUENCE {
 uRLLabel PrintableString,
 uRLValue GeneralName }

--Bring in GeneralNames to populate the extension--

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)139

--This needs to be made IMPLICIT to allow PKIX compatible import when using 2009 schemes
--Else this encoding uses extra tag on field of type GeneralName

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {
 otherName [0] IMPLICIT AnotherName,
 rfc822Name [1] IMPLICIT IA5String,
 dNSName [2] IMPLICIT IA5String,
 x400Address [3] IMPLICIT ORAddress,
 directoryName [4] IMPLICIT Name,
 ediPartyName [5] IMPLICIT EDIPartyName,
 uniformResourceIdentifier [6] IMPLICIT IA5String,
 iPAddress [7] IMPLICIT OCTET STRING,
 registeredID [8] IMPLICIT OBJECT IDENTIFIER }

-- AnotherName replaces OTHER-NAME ::= TYPE-IDENTIFIER, as
-- TYPE-IDENTIFIER is not supported in the '88 ASN.1 syntax

AnotherName ::= SEQUENCE {
 type-id OBJECT IDENTIFIER,
 value [0] EXPLICIT ANY DEFINED BY type-id }

EDIPartyName ::= SEQUENCE {
 nameAssigner [0] DirectoryString OPTIONAL,
 partyName [1] DirectoryString }

AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }
 -- contains a value of the type
 -- registered for use with the
 -- algorithm object identifier value

-- X.400 address syntax starts here

ORAddress ::= SEQUENCE {
 built-in-standard-attributes BuiltInStandardAttributes,
 built-in-domain-defined-attributes
 BuiltInDomainDefinedAttributes OPTIONAL,
 -- see also teletex-domain-defined-attributes
 extension-attributes ExtensionAttributes OPTIONAL }

-- Built-in Standard Attributes

BuiltInStandardAttributes ::= SEQUENCE {
 country-name CountryName OPTIONAL,
 administration-domain-name AdministrationDomainName OPTIONAL,
 network-address [0] IMPLICIT NetworkAddress OPTIONAL,
 -- see also extended-network-address
 terminal-identifier [1] IMPLICIT TerminalIdentifier OPTIONAL,
 private-domain-name [2] PrivateDomainName OPTIONAL,
 organization-name [3] IMPLICIT OrganizationName OPTIONAL,
 -- see also teletex-organization-name
 numeric-user-identifier [4] IMPLICIT NumericUserIdentifier
 OPTIONAL,
 personal-name [5] IMPLICIT PersonalName OPTIONAL,
 -- see also teletex-personal-name
 organizational-unit-names [6] IMPLICIT OrganizationalUnitNames
 OPTIONAL }
 -- see also teletex-organizational-unit-names

CountryName ::= [APPLICATION 1] CHOICE {
 x121-dcc-code NumericString
 (SIZE (ub-country-name-numeric-length)),
 iso-3166-alpha2-code PrintableString
 (SIZE (ub-country-name-alpha-length)) }

AdministrationDomainName ::= [APPLICATION 2] CHOICE {
 numeric NumericString (SIZE (0..ub-domain-name-length)),
 printable PrintableString (SIZE (0..ub-domain-name-length)) }

NetworkAddress ::= X121Address -- see also extended-network-address

X121Address ::= NumericString (SIZE (1..ub-x121-address-length))

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)140

TerminalIdentifier ::= PrintableString (SIZE (1..ub-terminal-id-length))

PrivateDomainName ::= CHOICE {
 numeric NumericString (SIZE (1..ub-domain-name-length)),
 printable PrintableString (SIZE (1..ub-domain-name-length)) }

OrganizationName ::= PrintableString
 (SIZE (1..ub-organization-name-length))
 -- see also teletex-organization-name

NumericUserIdentifier ::= NumericString
 (SIZE (1..ub-numeric-user-id-length))

PersonalName ::= SET {
 surname [0] IMPLICIT PrintableString
 (SIZE (1..ub-surname-length)),
 given-name [1] IMPLICIT PrintableString
 (SIZE (1..ub-given-name-length)) OPTIONAL,
 initials [2] IMPLICIT PrintableString
 (SIZE (1..ub-initials-length)) OPTIONAL,
 generation-qualifier [3] IMPLICIT PrintableString
 (SIZE (1..ub-generation-qualifier-length))
 OPTIONAL }
 -- see also teletex-personal-name

OrganizationalUnitNames ::= SEQUENCE SIZE (1..ub-organizational-units)
 OF OrganizationalUnitName
 -- see also teletex-organizational-unit-names

OrganizationalUnitName ::= PrintableString (SIZE
 (1..ub-organizational-unit-name-length))

-- Built-in Domain-defined Attributes

BuiltInDomainDefinedAttributes ::= SEQUENCE SIZE
 (1..ub-domain-defined-attributes) OF
 BuiltInDomainDefinedAttribute

BuiltInDomainDefinedAttribute ::= SEQUENCE {
 type PrintableString (SIZE
 (1..ub-domain-defined-attribute-type-length)),
 value PrintableString (SIZE
 (1..ub-domain-defined-attribute-value-length)) }

-- Extension Attributes

ExtensionAttributes ::= SET SIZE (1..ub-extension-attributes) OF
 ExtensionAttribute

ExtensionAttribute ::= SEQUENCE {
 extension-attribute-type [0] EXPLICIT INTEGER (0..ub-extension-attributes),
 extension-attribute-value [1] EXPLICIT
 ANY DEFINED BY extension-attribute-type }

-- Extension types and attribute values
--

common-name INTEGER ::= 1

-- Extension types and attribute values

common-name INTEGER ::= 1

CommonName ::= PrintableString (SIZE (1..ub-common-name-length))

teletex-common-name INTEGER ::= 2

TeletexCommonName ::= TeletexString (SIZE (1..ub-common-name-length))

teletex-organization-name INTEGER ::= 3

TeletexOrganizationName ::=
 TeletexString (SIZE (1..ub-organization-name-length))

teletex-personal-name INTEGER ::= 4

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)141

TeletexPersonalName ::= SET {
 surname [0] IMPLICIT TeletexString
 (SIZE (1..ub-surname-length)),
 given-name [1] IMPLICIT TeletexString
 (SIZE (1..ub-given-name-length)) OPTIONAL,
 initials [2] IMPLICIT TeletexString
 (SIZE (1..ub-initials-length)) OPTIONAL,
 generation-qualifier [3] IMPLICIT TeletexString
 (SIZE (1..ub-generation-qualifier-length))
 OPTIONAL }

teletex-organizational-unit-names INTEGER ::= 5

TeletexOrganizationalUnitNames ::= SEQUENCE SIZE
 (1..ub-organizational-units) OF TeletexOrganizationalUnitName

TeletexOrganizationalUnitName ::= TeletexString
 (SIZE (1..ub-organizational-unit-name-length))

pds-name INTEGER ::= 7

PDSName ::= PrintableString (SIZE (1..ub-pds-name-length))

physical-delivery-country-name INTEGER ::= 8

PhysicalDeliveryCountryName ::= CHOICE {
 x121-dcc-code NumericString (SIZE (ub-country-name-numeric-length)),
 iso-3166-alpha2-code PrintableString
 (SIZE (ub-country-name-alpha-length)) }

postal-code INTEGER ::= 9

PostalCode ::= CHOICE {
 numeric-code NumericString (SIZE (1..ub-postal-code-length)),
 printable-code PrintableString (SIZE (1..ub-postal-code-length)) }

physical-delivery-office-name INTEGER ::= 10

PhysicalDeliveryOfficeName ::= PDSParameter

physical-delivery-office-number INTEGER ::= 11

PhysicalDeliveryOfficeNumber ::= PDSParameter

extension-OR-address-components INTEGER ::= 12

ExtensionORAddressComponents ::= PDSParameter

physical-delivery-personal-name INTEGER ::= 13

PhysicalDeliveryPersonalName ::= PDSParameter

physical-delivery-organization-name INTEGER ::= 14

PhysicalDeliveryOrganizationName ::= PDSParameter

extension-physical-delivery-address-components INTEGER ::= 15

ExtensionPhysicalDeliveryAddressComponents ::= PDSParameter

unformatted-postal-address INTEGER ::= 16

UnformattedPostalAddress ::= SET {
 printable-address SEQUENCE SIZE (1..ub-pds-physical-address-lines)
 OF PrintableString (SIZE (1..ub-pds-parameter-length)) OPTIONAL,
 teletex-string TeletexString
 (SIZE (1..ub-unformatted-address-length)) OPTIONAL }

street-address INTEGER ::= 17

StreetAddress ::= PDSParameter

post-office-box-address INTEGER ::= 18

PostOfficeBoxAddress ::= PDSParameter

poste-restante-address INTEGER ::= 19

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)142

PosteRestanteAddress ::= PDSParameter

unique-postal-name INTEGER ::= 20

UniquePostalName ::= PDSParameter

local-postal-attributes INTEGER ::= 21

LocalPostalAttributes ::= PDSParameter

PDSParameter ::= SET {
 printable-string PrintableString
 (SIZE(1..ub-pds-parameter-length)) OPTIONAL,
 teletex-string TeletexString
 (SIZE(1..ub-pds-parameter-length)) OPTIONAL }

extended-network-address INTEGER ::= 22

ExtendedNetworkAddress ::= CHOICE {
 e163-4-address SEQUENCE {
 number [0] IMPLICIT NumericString
 (SIZE (1..ub-e163-4-number-length)),
 sub-address [1] IMPLICIT NumericString
 (SIZE (1..ub-e163-4-sub-address-length))
 OPTIONAL },
 psap-address [0] IMPLICIT PresentationAddress }

PresentationAddress ::= SEQUENCE {
 pSelector [0] EXPLICIT OCTET STRING OPTIONAL,
 sSelector [1] EXPLICIT OCTET STRING OPTIONAL,
 tSelector [2] EXPLICIT OCTET STRING OPTIONAL,
 nAddresses [3] EXPLICIT SET SIZE (1..MAX) OF OCTET STRING }

terminal-type INTEGER ::= 23

TerminalType ::= INTEGER {
 telex (3),
 teletex (4),
 g3-facsimile (5),
 g4-facsimile (6),
 ia5-terminal (7),
 videotex (8) } (0..ub-integer-options)

-- Extension Domain-defined Attributes

teletex-domain-defined-attributes INTEGER ::= 6

TeletexDomainDefinedAttributes ::= SEQUENCE SIZE
 (1..ub-domain-defined-attributes) OF TeletexDomainDefinedAttribute

TeletexDomainDefinedAttribute ::= SEQUENCE {
 type TeletexString
 (SIZE (1..ub-domain-defined-attribute-type-length)),
 value TeletexString
 (SIZE (1..ub-domain-defined-attribute-value-length)) }

-- specifications of Upper Bounds shall be regarded as mandatory
-- from Annex B of ITU-T X.411 Reference Definition of MTS Parameter
-- Upper Bounds

-- Upper Bounds
ub-name INTEGER ::= 32768
ub-common-name INTEGER ::= 64
ub-locality-name INTEGER ::= 128
ub-state-name INTEGER ::= 128
ub-organization-name INTEGER ::= 64
ub-organizational-unit-name INTEGER ::= 64
ub-title INTEGER ::= 64
ub-serial-number INTEGER ::= 64
ub-match INTEGER ::= 128
ub-emailaddress-length INTEGER ::= 255
ub-common-name-length INTEGER ::= 64
ub-country-name-alpha-length INTEGER ::= 2
ub-country-name-numeric-length INTEGER ::= 3
ub-domain-defined-attributes INTEGER ::= 4
ub-domain-defined-attribute-type-length INTEGER ::= 8
ub-domain-defined-attribute-value-length INTEGER ::= 128
ub-domain-name-length INTEGER ::= 16

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)143

ub-extension-attributes INTEGER ::= 256
ub-e163-4-number-length INTEGER ::= 15
ub-e163-4-sub-address-length INTEGER ::= 40
ub-generation-qualifier-length INTEGER ::= 3
ub-given-name-length INTEGER ::= 16
ub-initials-length INTEGER ::= 5
ub-integer-options INTEGER ::= 256
ub-numeric-user-id-length INTEGER ::= 32
ub-organization-name-length INTEGER ::= 64
ub-organizational-unit-name-length INTEGER ::= 32
ub-organizational-units INTEGER ::= 4
ub-pds-name-length INTEGER ::= 16
ub-pds-parameter-length INTEGER ::= 30
ub-pds-physical-address-lines INTEGER ::= 6
ub-postal-code-length INTEGER ::= 16
ub-pseudonym INTEGER ::= 128
ub-surname-length INTEGER ::= 40
ub-terminal-id-length INTEGER ::= 24
ub-unformatted-address-length INTEGER ::= 180
ub-x121-address-length INTEGER ::= 16

-- Note - upper bounds on string types, such as TeletexString, are
-- measured in characters. Excepting PrintableString or IA5String, a
-- significantly greater number of octets will be required to hold
-- such a value. As a minimum, 16 octets, or twice the specified
-- upper bound, whichever is the larger, should be allowed for
-- TeletexString. For UTF8String or UniversalString at least four
-- times the upper bound should be allowed.

-- Algorithm OIDs and parameter structures

pkcs-1 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

-- Adding in from rfc 3279

-- encoding for RSA public key

RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER } -- e

--Signatures based on RSA Encryption
--PKIX1-PSS-OAEP-Algorithms

sha256WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 11 }

sha384WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 12 }

-- Bringing in Eliptical Key based signatures here

-- see rfc 3279 for explanation AlgorithmIdentifier is one component only

-- ECDSA with SHA-256
-- Parameters are ABSENT

ecdsa-with-SHA256 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) ansi-X9-62(10045) signatures(4)
 ecdsa-with-SHA2(3) 2 }

-- ECDSA with SHA-384
-- Parameters are ABSENT

ecdsa-with-SHA384 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) ansi-X9-62(10045) signatures(4)
 ecdsa-with-SHA2(3) 3 }
--
-- Signature Values
--
-- ECDSA

ECDSA-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER
 }
--

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)144

-- Bringing in Eliptical Key definitions here

-- (ECDSA keys use id-ecPublicKey)

id-ecPublicKey OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }
--
-- Named Elliptic Curves
--

secp256r1 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3)
 prime(1) 7 }

secp384r1 OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) certicom(132) curve(0) 34 }

EcpkParameters ::= CHOICE {
 ecParameters ECParameters,
 namedCurve OBJECT IDENTIFIER,
 implicitlyCA NULL }

ECParameters ::= SEQUENCE {
 version ECPVer, -- version is always 1
 fieldID FieldID, -- identifies the finite field over
 -- which the curve is defined
 curve Curve, -- coefficients a and b of the
 -- elliptic curve
 base ECPoint, -- specifies the base point P
 -- on the elliptic curve
 order INTEGER, -- the order n of the base point
 cofactor INTEGER OPTIONAL -- The integer h = #E(Fq)/n
 }

ECPVer ::= INTEGER {ecpVer1(1)}

Curve ::= SEQUENCE {
 a FieldElement,
 b FieldElement,
 seed BIT STRING OPTIONAL }

FieldElement ::= OCTET STRING

ECPoint ::= OCTET STRING

FieldID ::= SEQUENCE { -- Finite field
 fieldType OBJECT IDENTIFIER,
 parameters ANY DEFINED BY fieldType }

-- NB rfc 3279 is deprecated by rfc 5480

--Taking Ed25519 curve OID from https://tools.ietf.org.html/draft-ietf-curdle-pkix-02
--The same algorithm identifiers are used for signatures as are used for public keys
--When used to identify signature algorithms, the paramaters shall be absent.

id-edwards-curve-algs OBJECT IDENTIFIER ::= { 1 3 101 }

id-Ed25519 OBJECT IDENTIFIER ::= { id-edwards-curve-algs 112 }

--So we have

sa-EdDSA25519 OBJECT IDENTIFIER ::= { id-Ed25519 }

--The (64) octet string representing the signature is encoded directly in the BIT STRING
--without adding any additional ASN.1 wrapping.

pk-EdDSA25519 OBJECT IDENTIFIER ::= { id-Ed25519 }

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)145

--NB the class type declaration of pk-EdDSA25519 indicates
--Parameters are absent
--Key cert usage should be limited to {digitalSignature, keyCertSign}
--other permitted values {nonRepudiation, cRLSign} are not used in DVB
--EdDSA public keys are (32) byte strings without an internal structure ASN.1 representation.
--ref RFC 8032 (previously known as https://tools.ietf.org/html/draft-irtf-cfrg-eddsa-08)

END

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)146

Annex E (informative):
Walkthrough of device operations when establishing and
maintaining trust for stand-alone services

E.1 Thread 1: Managing state timeouts in the absence of
incoming coherent trust signalling

1) When visiting a service, management of the timeout values described in clause 9.5.2.3 is carried out. The
action required depends upon the current service state.

a) Services in "Service detected but not yet visited" transition to "No trust established", as trigger 1 of
clause 9.5.2.2.

b) Services in "Probation" never time out in absence of any signalling and do not need update.

c) Services in "Trust established" evaluate the conditions for trigger 8 of clause 9.5.2.2.

d) Services in "Loss of authenticated trust signalling" evaluate the conditions for trigger 11 (based on
Loss1) and trigger 12 (based on Loss2) of clause 9.5.2.2 using the timeout evaluation described in
clause 9.5.2.3.

E.2 Thread 2: Managing the processing of incoming
certificate collection messages

Upon receiving a new certificate collection message the receiver processes are summarized in the following steps:

1) For each certificate within the certificate collection message, determine the respective subject key ID from the
subjectPublicKey field as described in clause 9.5.4.10.5 Computing and comparing key identifiers.

2) Examine each certificate within the certificate collection message and identify the designation of each one by
matching each to one of the respective categories from Table 50 in clause 9.5.4.4. Certificates not
corresponding to any row are ignored.

3) Determine whether the collection qualifies as a coherent certificate collection message by following the
process described in clause 9.5.5.2. If not, processing on this certificate collection message ceases at this point
as described in clause 9.5.5.2.

4) Determine the current trusted state associated with the service on which the certificate collection message was
carried. If this state is currently "Service detected but not yet visited", then transition to "No trust established",
as trigger 1 of clause 9.5.2.2. (This may have been dealt with already, for example in Thread 1, or on initial
service selection, depending on the implementation of receiver operations).

5) Follow the actions specified in clause 9.5.2.2 for the current state, summarized here:

a) Service detected but not yet visited:

i) This state should not occur as it should have transitioned on or before 4 above.

b) No trust established:

ii) Transition to the "Probation" state unless the signalling contains a termination of trust certificate.

iii) If transitioned to "Probation" the certificate collection message is stored as candidate trust
signalling and appropriate probation timing parameter selected as clause 9.5.2.2.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)147

c) Probation:

iv) Follow the actions on receipt of coherent trust signalling while in "Probation" described in
Table 48. Evaluation of the probation timeout period is described in clause 9.5.2.3 including the
triggers for moving to the "Trust established" state.

d) Trust established:

v) Evaluate the Loss1 timer based on the time elapsed since last checked as described in
clause 9.5.2.3. Assuming this has not resulted in a state change and subsequent process described as
trigger 8 of clause 9.5.2.2 then the new data can be considered in the present service state.

vi) Compare the incoming coherent trust signalling with the stored established trust signalling.

vii) If there is no difference between the received coherent trust signalling and the stored trust
signalling the "Trust established" timer Loss1 is reset.

viii) If there is a difference between the received coherent signalling and the established trust signalling,
then follow trigger 5 of clause 9.5.2.2 and verify succession of certificate chains described in
clause 9.5.5.3.

ix) If the received coherent signalling is a verified successor the process of trigger 5 of clause 9.5.2.2 is
followed.

x) If the received coherent signalling is a verified successor and is also a termination of trust
signalling, then follow trigger 6 of clause 9.5.2.2.

xi) If the received coherent signalling is not a verified successor as determined above, then change the
service state to "Loss of authenticated trust signalling" as described in clause 9.5.2.2, trigger 7.

e) Loss of authenticated trust signalling:

xii) Compare the incoming coherent trust signalling with the stored established trust signalling.

xiii) If there is no difference between the data from the received coherent trust signalling and established
trust signalling, then trigger 9 of clause 9.5.2.2 has occurred and a transition to "Trust established"
as described in Table 48. The process for this state is complete. If there is a difference, continue.

xiv) Follow the process of clause 9.5.5.3 to determine whether the incoming is a successor to the
established trust signalling. If received coherent trust signalling successfully verifies as a successor
to the established trust signalling, then follow the process of trigger 9 of clause 9.5.2.2.

xv) If this is a verified successor to the established trust signalling and is also a termination of trust
signalling, then additionally follow trigger 6 of clause 9.5.2.2.

xvi) If the incoming trust signalling has not been verified as successor to the established trust signalling
continue with the processes below.

xvii) Compare the incoming coherent trust signalling with the stored candidate signalling.

xviii) If there is no difference between the received coherent trust signalling and stored candidate
signalling, consult the process of clause 9.5.2.3 for managing the timed period (Loss2) and
subsequent trigger 12. Otherwise continue with the steps below.

xix) If there is a difference between the received coherent signalling and the stored candidate signalling,
then follow trigger 10 of clause 9.5.2.2 affecting candidate signalling and timer period "Loss2".

The terminal has now completed the service state updates resulting from the receipt of trust signalling and (except in the
case of a service in "No trust established") has a unique verification key for the service with which to update the data
authentication process of clause 9.4.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)148

Annex F (informative):
Bibliography
"OpenCable Application platform 1.0 Profile"; OC-SP-OCAP1.0-I16-050803.

ETSI

ETSI TS 102 809 V1.3.1 (2017-06)149

History

Document history

V1.1.1 January 2010 Publication

V1.2.1 July 2013 Publication

V1.3.1 June 2017 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Application models
	4.1 Introduction
	4.2 Starting and stopping applications
	4.2.1 Applications bound to broadcast services
	4.2.2 Applications bound to a content on demand item
	4.2.3 Applications bound to a network operator

	5 Signalling interactive applications and services
	5.1 Semantics
	5.2 Application metadata
	5.2.1 Introduction
	5.2.2 Application types
	5.2.2.1 Semantics
	5.2.2.2 MPEG-2 Encoding
	5.2.2.3 XML Encoding

	5.2.3 Application identification
	5.2.3.1 Semantics
	5.2.3.2 MPEG-2 encoding
	5.2.3.3 XML encoding

	5.2.4 Application control codes
	5.2.4.1 Semantics
	5.2.4.2 MPEG-2 encoding
	5.2.4.3 XML encoding

	5.2.5 Platform profiles
	5.2.5.1 Semantics
	5.2.5.2 MPEG-2 encoding
	5.2.5.3 XML encoding

	5.2.6 Application visibility
	5.2.6.1 Semantics
	5.2.6.2 MPEG-2 encoding
	5.2.6.3 XML encoding

	5.2.7 Application priority
	5.2.7.1 Semantics
	5.2.7.2 MPEG-2 encoding
	5.2.7.3 XML encoding

	5.2.8 Application icons
	5.2.8.1 Semantics
	5.2.8.2 MPEG-2 encoding
	5.2.8.3 XML encoding

	5.2.9 Graphics constraints
	5.2.9.1 Semantics
	5.2.9.1.0 Introduction
	5.2.9.1.1 Supported graphics configurations
	5.2.9.1.2 Running without a visible UI
	5.2.9.1.3 Handling changed graphics configurations
	5.2.9.1.4 Handling externally controlled video

	5.2.9.2 MPEG-2 encoding
	5.2.9.3 XML encoding

	5.2.10 Application usage
	5.2.10.1 Semantics
	5.2.10.2 MPEG-2 encoding
	5.2.10.3 XML encoding

	5.2.11 Stored applications
	5.2.11.1 Semantics
	5.2.11.1.0 Introduction
	5.2.11.1.1 Lifecycle of stored applications
	5.2.11.1.2 Application versioning
	5.2.11.1.3 Launching applications from the cache
	5.2.11.1.4 Storage priority

	5.2.11.2 MPEG-2 encoding
	5.2.11.3 XML encoding

	5.2.12 Application Description File
	5.2.12.1 Description
	5.2.12.2 Application description file name and location
	5.2.12.3 Syntax
	5.2.12.4 Semantics

	5.3 MPEG-2 table and section syntax
	5.3.1 Summary
	5.3.1.1 Summary of common signalling
	5.3.1.2 Summary of additional signalling for applications carried via OC
	5.3.1.3 How to add a new scheme (informative)

	5.3.2 Program specific information
	5.3.2.0 Introduction
	5.3.2.1 Application signalling stream
	5.3.2.2 Data broadcast streams

	5.3.3 Notation
	5.3.3.1 reserved
	5.3.3.2 reserved_future_use

	5.3.4 Application Information Table
	5.3.4.0 Introduction
	5.3.4.1 Data errors
	5.3.4.2 AIT transmission and monitoring
	5.3.4.3 Optimized AIT signalling
	5.3.4.4 Visibility of AIT
	5.3.4.5 Definition of sub-table for the AIT
	5.3.4.6 Syntax of the AIT
	5.3.4.7 Use of private descriptors in the AIT
	5.3.4.8 Text encoding in AIT
	5.3.4.9 Access to an MPEG-2 format AIT via a broadband connection
	5.3.4.9.0 Introduction
	5.3.4.9.1 Syntax
	5.3.4.9.2 Syntactic restrictions
	5.3.4.9.2.1 Transport protocols

	5.3.4.9.3 MIME type

	5.3.5 Generic descriptors
	5.3.5.1 Application signalling descriptor
	5.3.5.2 Data broadcast id descriptor
	5.3.5.2.0 Introduction
	5.3.5.2.1 Generic descriptor
	5.3.5.2.2 Data broadcast id descriptor for interactive application

	5.3.5.3 Application descriptor
	5.3.5.4 Application recording descriptor
	5.3.5.5 Application usage descriptor
	5.3.5.6 User information descriptors
	5.3.5.6.0 Introduction
	5.3.5.6.1 Application name descriptor
	5.3.5.6.2 Application icons descriptor

	5.3.5.7 External application authorization descriptor
	5.3.5.8 Graphics constraints descriptor

	5.3.6 Transport protocol descriptors
	5.3.6.0 Introduction
	5.3.6.1 Syntax of selector bytes for OC transport
	5.3.6.2 Syntax of selector bytes for interaction channel transport

	5.3.7 Simple application location descriptor
	5.3.7.0 Introduction
	5.3.7.1 Example

	5.3.8 Simple application boundary descriptor
	5.3.9 Service information
	5.3.9.1 Data broadcast descriptor for interactive application announcement

	5.3.10 Stored applications
	5.3.10.1 Application storage descriptor

	5.4 XML-based syntax
	5.4.0 Introduction
	5.4.1 Service bound application signalling
	5.4.2 Signalling of unbound applications
	5.4.3 Extensions to defined SD&S elements
	5.4.3.1 Package
	5.4.3.2 IP Service
	5.4.3.3 ServiceProvider

	5.4.4 New XML element definitions
	5.4.4.1 ApplicationList
	5.4.4.2 Application
	5.4.4.2.0 Overview
	5.4.4.2.1 Application Specific Information (informative)

	5.4.4.3 ApplicationIdentifier
	5.4.4.4 ApplicationDescriptor
	5.4.4.5 VisibilityDescriptor
	5.4.4.6 IconDescriptor
	5.4.4.7 AspectRatio
	5.4.4.8 MhpVersion
	5.4.4.9 StorageCapabilities
	5.4.4.10 StorageType
	5.4.4.11 ApplicationType
	5.4.4.12 DvbApplicationType
	5.4.4.13 ApplicationControlCode
	5.4.4.14 ApplicationSpecificDescriptor
	5.4.4.15 AbstractIPService
	5.4.4.16 ApplicationOfferingType
	5.4.4.17 ServiceDiscovery
	5.4.4.18 ApplicationUsageDescriptor
	5.4.4.19 TransportProtocolDescriptorType
	5.4.4.20 HTTPTransportType
	5.4.4.21 OCTransportType
	5.4.4.22 ComponentTagType
	5.4.4.23 SimpleApplicationLocationDescriptorType
	5.4.4.24 SimpleApplicationBoundaryDescriptorType

	5.4.5 ApplicationDiscovery record

	5.5 Constant values

	6 Referencing DVB services
	6.1 DVB URL syntax and semantics
	6.2 DVB URL resolution
	6.2.1 Service identifier descriptor

	7 Application transport
	7.1 Object carousel
	7.2 HTTP

	8 Synchronization
	8.1 Introduction
	8.2 Referencing

	9 Protection
	9.1 Introduction
	9.2 Scope
	9.3 Discovery, signalling and carriage of protection data
	9.3.1 Overview (informative)
	9.3.2 Discovery
	9.3.2.1 Authenticating components of a service
	9.3.2.2 Authentication of interactive components of a service

	9.3.3 PSI signalling
	9.3.4 Carriage
	9.3.5 Time parameters
	9.3.5.1 Repetition rate of authentication messages
	9.3.5.2 Repetition rate of certificate collection

	9.4 Signing and verification
	9.4.1 Overview (informative)
	9.4.2 Verification procedure reference model
	9.4.2.1 General verification principles
	9.4.2.2 Verification of authentication sub_tables
	9.4.2.3 Verification of payload sections

	9.4.3 Authentication messages
	9.4.4 Performance enhancements (informative)
	9.4.5 Transport Stream constraints
	9.4.6 Receiver requirements
	9.4.6.1 Overview
	9.4.6.2 Receiver minimum requirements
	9.4.6.3 Additional requirements

	9.5 Trust management
	9.5.1 Overview
	9.5.2 Establishing trust for stand-alone services
	9.5.2.1 Introduction
	9.5.2.2 State machine
	9.5.2.3 Measuring probation and timeout periods
	9.5.2.4 Behaviour while trust has yet to be established

	9.5.3 Coordinating entity assists establishing trust (optional)
	9.5.4 Trust messages
	9.5.4.1 About certificate chains (informative)
	9.5.4.2 Succession of certificates
	9.5.4.3 Security considerations (informative)
	9.5.4.4 Certificate properties and configurations
	9.5.4.5 General certificate collection construction rules
	9.5.4.6 Certificate collection construction rules for stand-alone services
	9.5.4.7 Certificate chain construction assisted by a coordinating entity (optional)
	9.5.4.8 Signalling in the Transport Stream
	9.5.4.8.1 Overview
	9.5.4.8.2 Encoding the certificate collection
	9.5.4.8.3 Updating the certificate collection
	9.5.4.8.4 Terminating the trust signalling
	9.5.4.8.5 Certificate collection message

	9.5.4.9 Certificate ordering within certificate collection
	9.5.4.10 Certificate encoding
	9.5.4.10.1 Overview
	9.5.4.10.2 DVBCertificate syntax
	9.5.4.10.3 TBSDVBCertificate syntax
	9.5.4.10.4 TBSDVBCertificate extensions
	9.5.4.10.5 Computing and comparing key identifiers

	9.5.5 Device behaviour
	9.5.5.1 State stored when trust is established
	9.5.5.2 Verifying that a certificate chain is coherent
	9.5.5.2.1 Common rules for certificate chain verification
	9.5.5.2.2 Receivers without coordinating entity certificates
	9.5.5.2.3 Receivers with coordinating entity certificates (optional)

	9.5.5.3 Verifying succession of certificate chains anchored in a manager certificate
	9.5.5.4 Verifying succession of certificate chains anchored in a coordinating entity certificate

	Annex A (informative): Elements defined by the platform specification
	A.1 Introduction
	A.2 Elements which are defined by the platform specification

	Annex B (normative): Object carousel
	B.1 Introduction
	B.1.0 General
	B.1.1 Key to notation

	B.2 Object carousel profile
	B.2.0 Introduction
	B.2.1 DSM-CC sections
	B.2.1.0 Basic requirements
	B.2.1.1 Sections per TS packet

	B.2.2 Data carousel
	B.2.2.0 Scope
	B.2.2.1 General
	B.2.2.2 DownloadInfoIndication
	B.2.2.3 DownloadServerInitiate
	B.2.2.4 ModuleInfo
	B.2.2.4.0 The moduleInfo field
	B.2.2.4.1 Label descriptor
	B.2.2.4.2 Caching priority descriptor

	B.2.2.5 ServiceGatewayInfo
	B.2.2.6 Download cancel
	B.2.2.7 DownloadDataBlock

	B.2.3 The object carousel
	B.2.3.1 BIOP Generic Object Message
	B.2.3.2 CORBA strings
	B.2.3.3 BIOP FileMessage
	B.2.3.4 Content type descriptor
	B.2.3.5 BIOP DirectoryMessage
	B.2.3.6 BIOP ServiceGateway message
	B.2.3.7 BIOP Interoperable Object References
	B.2.3.7.0 IOR structure
	B.2.3.7.1 BiopProfileBody
	B.2.3.7.2 LiteOptionsProfileBody

	B.2.3.8 BIOP StreamMessage
	B.2.3.9 BIOP StreamEventMessage
	B.2.3.10 Additional tapUse values

	B.2.4 Broadcast timebases and events
	B.2.4.0 Introduction
	B.2.4.1 Stream and StreamEvent messages
	B.2.4.1.1 Association with time bases
	B.2.4.1.2 Event names and event IDs
	B.2.4.1.3 Stream event life time

	B.2.4.2 Stream descriptors
	B.2.4.2.1 NPT reference descriptor
	B.2.4.2.2 Stream event descriptor
	B.2.4.2.2.1 Association of event ids to event time
	B.2.4.2.2.2 Re-use of event ids
	B.2.4.2.2.3 Signalling of "do it now events"
	B.2.4.2.2.4 Private data

	B.2.4.2.3 Unused descriptors

	B.2.4.3 DSM-CC sections carrying stream descriptors
	B.2.4.3.1 Section version number
	B.2.4.3.2 Single firing of "do it now" events
	B.2.4.3.3 Section number
	B.2.4.3.4 DSM-CC sections for DSMCC_descriptor_list()
	B.2.4.3.5 Encoding of table id extension

	B.2.4.4 Broadcast timebases
	B.2.4.4.0 Introduction
	B.2.4.4.1 DVB Timeline (Optional)

	B.2.4.5 Broadcast events
	B.2.4.5.1 DSM-CC "do it now" stream events
	B.2.4.5.2 DSM-CC scheduled stream events
	B.2.4.5.3 DVB synchronized events

	B.2.4.6 Monitoring broadcast timebases and events
	B.2.4.6.1 Timebase reference monitoring
	B.2.4.6.2 Timebase stimulated event monitoring
	B.2.4.6.3 DSM-CC "do it now" stream events
	B.2.4.6.4 DSM-CC scheduled stream events
	B.2.4.6.5 Number of timebase components
	B.2.4.6.6 DVB synchronized events

	B.2.5 Assignment and use of transactionId values
	B.2.5.1 Informative background
	B.2.5.2 DVB semantics of the transactionId field

	B.2.6 Mapping of objects to data carousel modules
	B.2.7 Compression of modules
	B.2.8 Mounting an object carousel
	B.2.8.0 Introduction
	B.2.8.1 carousel_identifier_descriptor

	B.2.9 Unavailability of a carousel
	B.2.10 Delivery of carousels within multiple services

	B.3 AssociationTag mapping
	B.3.1 Decision algorithm for association tag mapping
	B.3.1.1 TapUse is not BIOP_PROGRAM_USE
	B.3.1.2 TapUse is BIOP_PROGRAM_USE

	B.3.2 DSM-CC association_tags to DVB component_tags
	B.3.3 deferred_association_tags_descriptor

	B.4 Example of an object carousel (informative)
	B.5 Caching
	B.5.0 Introduction
	B.5.1 Determining file version
	B.5.2 Transparency levels of caching
	B.5.2.0 Introduction
	B.5.2.1 Transparent caching
	B.5.2.1.0 Introduction
	B.5.2.1.1 Active caching
	B.5.2.1.2 Passive caching
	B.5.2.1.3 DII repetition rate

	B.5.2.2 Semi-transparent caching
	B.5.2.2.0 Introduction
	B.5.2.2.1 Implications for the receiver (informative)

	B.5.2.3 Static caching
	B.5.2.3.0 Introduction
	B.5.2.3.1 Implications for the broadcaster (informative)
	B.5.2.3.2 Implications for the receiver (informative)

	B.5.3 Dynamic carousel structure

	Annex C (normative): Generic Application Western European Character Set
	Annex D (normative): ASN.1 for DVBCertificate
	D.1 According to IETF RFC 5912
	D.2 According to IETF RFC 5280

	Annex E (informative): Walkthrough of device operations when establishing and maintaining trust for stand-alone services
	E.1 Thread 1: Managing state timeouts in the absence of incoming coherent trust signalling
	E.2 Thread 2: Managing the processing of incoming certificate collection messages

	Annex F (informative): Bibliography
	History

