

ETSI TS 102 822-6-1 V1.1.1 (2003-10)

Technical Specification

Broadcast and On-line Services: Search, select, and
rightful use of content on personal storage systems

("TV-Anytime Phase 1");
Part 6: Delivery of metadata over a bi-directional network;

Sub-part 1: Service and transport

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 2

Reference
DTS/JTC-TVA-PH1-06-1

Keywords
broadcasting, content, service, transport, TV,

video

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2003.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.org

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 3

Contents

Intellectual Property Rights ..5

Foreword...5

Introduction ..5

1 Scope ..6

2 References ..7

3 Definitions, abbreviations and conformance..8
3.1 Definitions..8
3.2 Abbreviations ...9
3.3 Conformance ..10

4 Introduction ..10
4.1 Types and Functionalities of Metadata Services ..11
4.1.1 Metadata Retrieval ..11
4.1.2 Submission of User-centric Metadata ...13
4.2 Metadata Service Capability Descriptions ...13
4.3 Metadata Service Discovery...13
4.3.1 Non-standardized Discovery...14
4.3.2 Unidirectional Delivery of Discovery Information...14
4.3.3 Client-Initiated Discovery Using the Bi-directional Network ..14

5 Metadata Service Types ...14
5.1 get_Data Operation...14
5.1.1 Request Format ...15
5.1.1.1 Query constraint parameters..15
5.1.1.1.1 Identifying contextNodes ..17
5.1.1.1.2 Identifying fields ...19
5.1.1.1.3 Primary index CRID fields ..22
5.1.1.1.4 Restrictions on the use of QueryConstraints..23
5.1.1.1.5 Evaluating a predicate ...24
5.1.1.2 View on returned data ...25
5.1.1.2.1 Sort criteria ..26
5.1.1.3 Size limit parameter ..27
5.1.1.4 Interpretation of Query Predicates ..27
5.1.1.5 Definition of server behaviour ..28
5.1.2 Response Format ..28
5.1.2.1 Indicating the sorting of the response..29
5.1.2.2 Indicating the service version..29
5.1.2.3 Truncating the result set ..30
5.1.2.4 Updating the result set...30
5.2 submit_Data Operation...31
5.2.1 Usage and user preference data submission policy (informative)...31
5.2.2 Request Format ...31
5.2.3 Response Format ..32

6 Transport Protocol..32
6.1 SOAP..33
6.2 Error Codes ..34
6.2.1 General error conditions ...35
6.2.2 get_Data operation error conditions..35
6.3 HTTP..36
6.4 Encapsulation of Metadata ...36
6.4.1 Encapsulation of get_Data response ...36
6.5 Encoding of Metadata ..37
6.6 Metadata Service Security..37

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 4

7 Metadata Service Capability Descriptions ...37
7.1 describe_get_Data ..37
7.1.1 Use of the AuthorityList element..39
7.1.2 AvailableTables information ..39
7.1.2.1 Operations that can deliver content referencing information ..41
7.1.2.2 Operations that can deliver programme metadata ...42
7.1.3 Extended Field List ...42
7.1.4 Description of update capabilities...42
7.2 describe_submit_Data ..42

Annex A (normative): Formal Definition of Metadata Services ..44

Annex B (normative): TV Anytime defined field and contextNode identifiers47

Annex C (informative): Examples of get_Data Requests..48

C.1 Requesting data on specific CRIDs..48

C.2 Requesting specific fragments..48

C.3 Searching for the film "Titanic" ...48

C.4 Searching for a comedy drama that does not star Jim Carrey ..49

C.5 Searching for a programme with a rating of more than 8...49

C.6 Searching for a ClassificationScheme Table..49

C.7 Creating an EPG...50

C.8 Searching for programmes with a review...50

C.9 Updating a fragment...51

C.10 Requesting update fragments ...51

Annex D (informative): Examples of get_Data Operation's Capability Description52

D.1 Pure location resolution service ...52

D.2 Pure metadata retrieval service for broadcast enhancement...52

D.3 A rich metadata service that allows users to search for movies ...53

D.4 Broadcaster provided metadata service used for constructing traditional EPGs....................................54

D.5 Pure metadata retrieval service for bi-directional channel ...54

Annex E (informative): Use of BiM Encoded Metadata in Bi-directional Transport......................56

E.1 Applying BiM encoding...56

E.2 Negotiation of BiM Encoding ..56

Annex F (informative): Bibliography...57

List of figures..58

List of tables ...58

History ..59

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

The present document is part 6 sub-part 1, of a multi-part deliverable covering Broadcast and On-line Services: Search,
select and rightful use of content on personal storage systems ("TV-Anytime Phase 1"), as identified below:

Part 1: "Phase 1 Benchmark Features";

Part 2: "System description";

Part 3: "Metadata";

Part 4: "Content referencing";

Part 5: Not currently applicable in TV-Anytime Phase 1;

Part 6: "Delivery of metadata over a bi-directional network";

Sub-part 1: "Service and transport";

Sub-part 2 : "Service discovery";

Part 7: "Bi-directional metadata delivery protection".

Introduction
The present document is based on a submission by the TV-Anytime forum (http://www.TV-Anytime.org).

'TV-Anytime Phase 1' (TVA-1) is the first full and synchronized set of specifications established by the TV-Anytime
Forum. TVA-1 features enable the search, selection, acquisition and rightful use of content on local and/or remote
personal storage systems from both broadcast and online services.

The features are supported and enabled by the specifications for Metadata, Content Referencing, and Bi-directional
Metadata Delivery Protection, TS 102 822-3 sub-parts 1 [12] and 2 [13], TS 102 822-4 [14], TS 102 822-6-2 [15] and
TS 102 822-7 [16]] respectively. All Phase 1 Features listed in TV035r6 are enabled by the normative TV-Anytime tools
specifications. This list of Phase 1 Features is to be used as guidance to manufacturers, service providers and content
providers regarding the implementation of the Phase 1 TV-Anytime specifications.

http://webapp.etsi.org/IPR/home.asp
http://www.tv-anytime.org/

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 6

1 Scope
The present document is the sixth in a series of "S-series" specification documents produced by the TV-Anytime Forum.
These documents establish the fundamental specifications for the services, systems and devices that will conform to the
TV-Anytime standard, to a level of detail that is implementable for compliant products and services.

As is common practice in such standardization efforts, these specification documents were preceded by requirements
documents, which define the requirements for the TV-Anytime services, systems, and devices.

Congruent with the structure defined in the initial TV-Anytime Call for Contributions (TV014r3), these specifications
are parsed into three major areas: Metadata, Content Referencing, and Rights Management and Protection. Within these
general areas, four specifications have been developed to date: TS 102 822-3-1 [12], TS 102 822-3-2 [13],
TS 102 822-4 [14], TS 102 822-6-1 (the present document), TS 102 822-6-2 [15] and TS 102 822-7 [16]. A
specification for TS 102 822-5 is still under development. See the several TV-Anytime Calls for Contributions for more
detail on the derivation and background of these categories and their respective roles in the TV-Anytime standardization
process.

The first two documents in the TV-Anytime S-series are intended to define the context and system architecture in which
the standards in TS 102 822-3-1 [12], TS 102 822-3-2 [13], TS 102 822-4 [14], TS 102 822-6-1 (the present document),
TS 102 822-6-2 [15] and TS 102 822-7 [16] are to be implemented in "Phase 1" of the TV-Anytime environment. The
first document in the series (TS 102 822-1 [25]) provides benchmark business models against which the TV-Anytime
system architecture is evaluated to ensure that the specification enable key business applications. The next document in
the series (TS 102 822-2 [11]) presents the TV-Anytime System Architecture. These two documents are placed ahead of
the other three for their obvious introductory value. (Note that TS 102 822-1 [25] and TS 102 822-2 [11] are largely
informative documents, while the remainder of the S-series is normative. Also note that a "Phase 2" of the TV-Anytime
process is currently underway, in which additional requirements and specifications that will build on Phase 1 are being
developed. Readers are encouraged to check the TV-Anytime Forum's website at www.TV-Anytime.org for the most
recent status of its specifications.)

Although each of the S-series documents is intended to stand alone, a complete and coherent sense of the TV-Anytime
system standard can be gathered by reading all of the Phase 1 specification documents in numerical order.

The scope of the present document, comprises the delivery of TV-Anytime metadata and content referencing information
via a bi-directional network using a PDR's return path.

The requirements for this technology are outlined in the TV-Anytime Forum's Requirement Series R-1 document [10].
The following paragraphs from those requirements give an overview of the return path's use:

- "The consumer can get more information about the programme from either the content provider or from a
programme information service offered by a third party. This could include programme specifications (such as
source, duration, format, storage location, etc.), programme schedules, commentary, critiques, liner notes from
the provider or third parties, etc."

- "A Return Path is a data connection from a consumer's home digital storage system (e.g. PDR) to one or more
service providers. The return path gives the consumer access to interactive content, such as the Internet and
interactive television. It also allows service providers to access consumer profile/preference information in
order to make business decisions regarding content that is provided to the consumer."

The present document describes a client-initiated means for requesting metadata from, and submitting user-centric data
to, IP based web services. In the present document, these web services are termed "metadata services". The
specification also defines a means for describing and discovering such metadata services, but does not address the
unidirectional delivery of metadata over IP networks, or the delivery of content over IP networks. A more complete
definition of the scope of this work, along with the system requirements, may be found in document TV150,
"Requirements and Scenarios for the Bi-directional Transport of Metadata" [3].

http://www.tv-anytime.org/

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 7

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

[1] XML, Extensible Markup Language (XML) 1.0, October 2000.

NOTE: Available at: http://www.w3.org/TR/2000/REC-xml-20001006.

[2] Namespaces in XML, W3C Recommendation, 14 January 1999.

NOTE: Available at: http://www.w3.org/TR/REC-xml-names/.

[3] Requirements and Scenarios for the Bi-directional Transport of Metadata, TV150r1. The
TV-Anytime Forum.

NOTE: Available at: http://www.TV-Anytime.org.

[4] IETF RFC 1591: "Domain Name System Structure and Delegation", J. Postel.

[5] IETF RFC 1945: "Hypertext Transfer Protocol, HTTP/1.0", T. Berners-Lee, R. Fielding,
H. Frystyk.

[6] IETF RFC 2119: "Key words for use in RFCs to Indicate Requirement Levels", S. Bradner.

[7] IETF RFC 2396: "Uniform Resource Identifiers (URI): Generic Syntax", T. Berners-Lee,
R. Fielding, L. Masinter.

[8] IETF RFC 2616: "Hypertext Transfer Protocol, HTTP/1.1", R. Fielding, J. Gettys, J. Mogul,
H. Frystyk, T. Berners-Lee.

[9] Simple Object Access Protocol (SOAP) 1.1, W3C Note, 8 May 2002. D. Box, et. al.

NOTE: Available at: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[10] TV-Anytime Requirements Series: R-1, TV035r6. The TV-Anytime Forum.

NOTE: Available at: http://www.TV-Anytime.org.

[11] ETSI TS 102 822-2: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime Phase 1"); Part 2: System description".

[12] ETSI TS 102 822-3-1: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime Phase 1"); Part 3: Metadata; Sub-part 1: Metadata
schemas".

[13] ETSI TS 102 822-3-2: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime Phase 1"); Part 3: Metadata; Sub-part 2: System aspects
in a uni-directional environment".

[14] ETSI TS 102 822-4: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime Phase 1"); Part 4: Content Referencing".

[15] ETSI TS 102 822-6-2: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime Phase 1"); Part 6: Delivery of metadata over a
bi-directional network; Sub-part 2: Service discovery".

http://docbox.etsi.org/Reference
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/REC-xml-names/
http://www.tv-anytime.org/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.tv-anytime.org/

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 8

[16] ETSI TS 102 822-7: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime Phase 1"); Part 7: Bi-directional metadata delivery
protection".

[17] Unicode Collation Algorithm, Unicode Technical Report #10. M. Davis, K. Whistler.

NOTE: Available at: http://www.unicode.org/unicode/reports/tr10.

[18] Unicode Normalization Forms, Unicode Standard Annex #15. M. Davis, M. Dürst.

NOTE: Available at: http://www.unicode.org/unicode/reports/tr15.

[19] Universal Description Discovery & Integration, Version 3.0, T. Bellwood, et. al.

NOTE: Available at: http://uddi.org/pubs/uddi-v3.00-published-20020719.htm.

[20] Web Services Description Language, Version 1.1, W3C Note 15 March 2001, E. Christensen,
F. Curbera, G. Meredith, S. Weerawarana.

NOTE: Available at: http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[21] Web Services Inspection Language, Version 1.0, K. Ballinger, P. Brittenham, A. Malhotra,
W. A. Nagy, S. Pharies.

NOTE: Available at: http://www.ibm.com/developerworks/webservices/library/ws-wsilspec.html.

[22] XML Schema, W3C Recommendations (version 20010502).

NOTE: Available at: http://www.w3.org/TR/2001/REC-xmlschema-0-20010502,
 http://www.w3.org/TR/2001/REC-xmlschema-1-20010502,
 http://www.w3.org/TR/2001/REC-xmlschema-2-20010502

[23] The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, M. Marchiori et. al.

NOTE: Available at: http://www.w3.org/TR/P3P/.

[24] The WS-Inspection and UDDI Relationship, W. A. Nagy, K. Ballinger.

NOTE: Available at: http://www-106.ibm.com/developerworks/webservices/library/ws-wsiluddi.html.

[25] ETSI TS 102 822-1: "Broadcast and On-line Services: Search, select, and rightful use of content
on personal storage systems ("TV-Anytime Phase 1"); Part 1: Phase 1 Benchmark Features".

[26] ISO/IEC 15938-1: "Information technology - Multimedia content description
interface - Part 1: Systems".

3 Definitions, abbreviations and conformance

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

acquisition: retrieval of content

application: a specific set of functions running on the PDR. Some applications use metadata, either automatically or
under consumer control

authority: organization that creates CRIDs

bi-directional network: a network that supports two way, point-to-point, one-to-many, and many-to-many data
delivery

NOTE: The Internet is an example of such a network. A PDR may access a bi-directional network using its return
path.

http://www.unicode.org/unicode/reports/tr10
http://www.unicode.org/unicode/reports/tr15
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.ibm.com/developerworks/webservices/library/ws-wsilspec.html
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502
http://www.w3.org/XML/Schema
http://www.w3.org/TR/P3P/
http://www-106.ibm.com/developerworks/webservices/library/ws-wsiluddi.html

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 9

capture: storing the acquired content (e.g. to local storage)

content: anything the viewer would like to access (movies, games, TV programmes, radio programmes, etc.)

content creator: producers of the content

content provider: entity that acts as the agent for and is the prime exploiter of the content

content reference: pointer to a specific content item

location resolution: process of establishing the address (location and time) of a specific content instance from its CRID

locator: time and place where a content item can be acquired

metadata: generally, data about content, such as the title, genre, and summary of a television programme

NOTE: In the context of TV-Anytime, metadata also includes consumer profile and history data.

metadata service: service that provides TV-Anytime data using a server on a bi-directional network

NOTE: The formats of the data and the protocols used to deliver that data are defined by the present document.

programme: editorially coherent piece of content

NOTE: Typically, a programme is acquired by the PDR as a whole.

resolving authority: body which provides location resolution

Resolving Authority Record (RAR): information needed for retrieving the location resolution data for the given
authority

return path: part of the bi-directional distribution system from the consumer to service provider

segment: continuous portion of a piece of content, for example a single news topic in a news programme

service provider: aggregator and supplier of content which may include gateway and management roles

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ARIB Association of Radio Industries and Businesses

NOTE: A Japanese standards organization.

ATSC Advanced Television Systems Committee

NOTE: American based standards organization for establishing technical standards for advanced television
systems, including digital high definition television.

BiM Binary format for multimedia description streams

NOTE: Defined in ISO/IEC 15938-1 [26] (MPEG-7 Systems part).

CE Consumer Electronics
CRID Content Reference Identifier: identifier for content that is independent of its location
DNS Domain Naming System: system used on the Internet to register names that can then be mapped

into IP addresses using a DNS server
DVB Digital Video Broadcasting

NOTE: Set of standards used for European digital TV broadcasting.

EPG Electronic Programme Guide

NOTE: Means of presenting content to the consumer, allowing selection of desired content.

HTTP HyperText Transfer Protocol
IP Internet Protocol

NOTE: Generic name for the network protocols used on the Internet.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 10

IPR Intellectual Property Rights
PDR Personal Digital Recorder
RAR Resolving Authority Record
SI System Information

NOTE: Collection of information tables used in DVB.

SOAP Simple Object Access Protocol
SQL Structured Query Language
TCP Transmission Control Protocol
UDDI Universal Description Discovery & Integration
URI Uniform Resource Identifier
URL Uniform Resource Locator
VOD Video On Demand
W3C World Wide Web Consortium
WSDL Web Services Description Language
WS-Inspection Web Services Inspection Language
XML Extensible Markup Language

3.3 Conformance
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [6].

It is important to note that OPTIONAL and RECOMMENDED elements of the specification, if they are implemented,
MUST be implemented in the manner documented in the present document.

4 Introduction
The TV-Anytime Forum has defined a number of data types that can be exchanged between TV-Anytime devices. These
include programme metadata, content referencing information, and user-centric metadata. The present document is
concerned with data exchange between TV-Anytime clients and metadata servers over a bi-directional network using the
return path. A TV-Anytime client is typically a PDR, although in this document the client can be any Internet connected
device. These devices do not necessarily need to have the ability to display or store content, since many types of devices
can exploit TV-Anytime metadata services (e.g. a mobile phone displaying an EPG).

Programme metadata and content referencing information can be delivered unidirectionally (e.g. via traditional
broadcast or IP multicast) or via a bi-directional network. The reasons a TV-Anytime provider might choose to deliver
data via a bi-directional network are as follows:

• It allows a richer set of metadata to be delivered, since there are much lower bandwidth constraints.

• It allows TV-Anytime data providers without access to a broadcast system to deliver metadata to clients.

• It allows TV-Anytime data providers to personalize the metadata they offer according to the source of the
request.

• It allows a range of client devices, which are not necessarily able to receive broadcast data, to access and
exploit TV-Anytime data. For example, a mobile phone or personal organizer could use the metadata service to
show the user an EPG.

User-centric metadata can only be delivered from a PDR to a TV-Anytime metadata service when a return path is
available and the user authorizes it. The submission of such user data allows the metadata service to provide a variety of
value adding services, which are more completely described in clause 6.5 of the TS 102 822-3-1 [12].

The present document defines the protocols that allow these transactions to take place in an interoperable fashion. Note
that, due to the widespread nature and mass penetration of the Internet, the TV-Anytime Forum has completely specified
the transport and network layer protocols (TCP/IP) necessary for end-to-end interoperability. This is in contrast to
unidirectional transport mechanisms, which are not completely specified by the TV-Anytime Forum, but instead defined
individually by the bodies responsible for the various broadcast standards used around the world (e.g. ARIB, ATSC,
DVB, etc.).

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 11

To use a TV-Anytime metadata service a client takes the steps illustrated in figure 1.

Exploit
Metadata
Service

URL
Metadata Service
Capability Description

Obtain
Capability

Description

Discover
Metadata
Service

Start End

Figure 1: The steps in using a TV-Anytime metadata service

These steps are described in more detail in the following three clauses (in reverse order). Note that a metadata service
MUST provide a description capability (see clause 7), but the support for metadata service discovery
(see TS 102 822-6-2 [15]) is OPTIONAL. The middle step typically will only occur when a metadata service is first
discovered or updated, and not each time the metadata service is used.

4.1 Types and Functionalities of Metadata Services
TV-Anytime metadata services can be broken into two basic types, which are shown in figures 2 and 3. The metadata
services specified are all request-response based. This can be seen in the two figures - the network transaction is always
point-to-point (client to server), and the transaction is always initiated by the client.

4.1.1 Metadata Retrieval

Metadata retrieval occurs when a client wishes to obtain certain metadata from a metadata service that it has previously
discovered and obtained a capability description for. The following list gives some examples of metadata retrieval.

• A client wishes to obtain programme reviews for a CRID. The client sends a request specifying the CRID and
type of metadata required, and the metadata service responds with the appropriate ProgramReviewTable.

• A client wishes to obtain the schedule information for a particular channel over the next week. The client
sends a request specifying the channel, date range, and type of metadata required. The metadata service returns
a ProgramLocationTable and ProgramInformationTable corresponding to the programmes on
that channel.

• A client wishes to search a metadata service that specializes in movie information. The client sends a request
specifying the type of movie (e.g. the genre is "Western", and the star is "John Wayne"), and the type of
metadata required. The metadata service returns a number of matching movies, using a
ProgramInformationTable and ProgramReviewTable.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 12

Metadata
Service

Client

Request Metadata

IP Network

NOTE 1: Any party capable of delivering compliant TV-Anytime data could provide a metadata service. Examples
include: content creators, content providers, service providers, consumer electronics manufacturers and
third parties aggregation services.

NOTE 2: The request contains parameters that specify the type of metadata required by the client.
NOTE 3: The types of metadata returned could be any of the non user-centric data specified in the

TS 102 822-3-1 [12] (i.e. the fragments defined in clause 4.3.1.1 of TS 102 322-3-2 [13]), along with
content referencing information.

Figure 2: Client requesting metadata from a metadata service

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 13

4.1.2 Submission of User-centric Metadata

Submission of user-centric metadata offers a number of possible benefits to both consumers and metadata service
providers. These are described in clause 6.5 of the TS 102 822-3-1 [12]. Ensuring the privacy of these transactions and
that the metadata service provider is trustworthy is essential to the submission of user-centric metadata. The means by
which this is ensured is not defined by the present document.

Metadata
Service

Client

User-centric data Acknowledgement

IP Network

NOTE 1: In this case, the metadata service is a user data aggregator. Any of the parties listed for figure 2, or any
other party capable of usefully exploiting TV-Anytime usage information in a trustworthy fashion, could
provide the metadata service.

NOTE 2: In principle, the user-centric data may be any of the types defined in the Metadata Specification
(TS 102 822-3-1[12] (e.g. UserPreferences and UsageHistory). For the purposes of this version of
the specification, only a submission of carefully constrained, anonymous UsageHistory instances is
allowed.

Figure 3: Client submitting user-centric data to a service provider

4.2 Metadata Service Capability Descriptions
In order to exploit usefully the metadata services described in the previous clause, the client needs information about the
nature of the metadata service being offered. This is because different metadata services will provide different types of
metadata and can be queried in different ways. For example, some metadata services may offer just content referencing
information, whilst others may provide programme metadata but no segmentation information. Similarly, whereas one
server may only be able to accept simple requests for metadata based on a CRID, another server may offer much more
sophisticated querying and sorting capabilities. Moreover, different types of queries are only useful if a client is able to
establish sensible values with which to query. An example of this is a query for scheduling data
(ProgramLocationTable). In order to query for scheduling information on a particular content delivery service,
the client needs to know the content delivery services for which that metadata service has data.

To address this issue, each metadata service provides, on request from a client, a capability description. This capability
description allows a client to flexibly query a metadata service, without making requests that will not be supported by
that metadata service. Furthermore, it allows metadata service providers to flexibly implement the server in a way that
is appropriate to the data that they have available.

4.3 Metadata Service Discovery
Metadata service discovery is the process by which a client establishes a URL where a TV-Anytime metadata service
can be found. There are a number of ways this process can occur, but only the third method (see clause 4.3.3) is
addressed by the present document.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 14

4.3.1 Non-standardized Discovery

A number of methods exist for discovering the URLs of metadata services that will not be standardized by the
TV-Anytime Forum. The following list gives some examples.

• The client might be pre-programmed with a set of URLs that refer to one or more metadata services. This will
typically be useful in a vertical market, or tightly controlled horizontal market.

• A user might manually enter a URL of a new metadata service he is interested in, using some means of text
input.

• The software on a client may be updated using software updates delivered via a unidirectional broadcast, or
over the return channel.

4.3.2 Unidirectional Delivery of Discovery Information

TS 102 822-2 [11] and TS 102 822-4 [14] define ways, or requirements on the underlying transport, in which the URL
of a bi-directional metadata and/or content referencing service can be discovered from TV-Anytime information inserted
in a unidirectional stream. The present document defines how a client can usefully exploit the discovered service using
the resulting URL.

4.3.3 Client-Initiated Discovery Using the Bi-directional Network

This mode of metadata service discovery involves using the bi-directional network to access a "Yellow Pages" of
TV-Anytime metadata services. The mechanism is based upon W3C standards for web service discovery (UDDI [19]
and WS-Inspection [21], the use of which is standardized by the TV-Anytime Forum, according to the rules given in
clause 5 in TS 102 822-6-2 [15]. Support for these discovery techniques by clients and servers is OPTIONAL.

5 Metadata Service Types
The TV-Anytime Forum defines two types of metadata web service. Each type of web service can be thought of as a
remote procedure with a well-defined set of inputs and outputs and a well-defined behaviour. In WSDL [20]
terminology, this remote procedure is known as an operation (see annex A). The metadata retrieval operation
(see clause 4.1.1 is called the get_Data operation, and the user description submission operation (see clause 4.1.2) is
called the submit_Data operation.

The types used in the requests and responses to TV-Anytime metadata services are defined in the target namespace:
"urn:tva:transport:2002" . This allows Schema aware tools to validate the various messages. The types defined in
TS 102 822-3-1 [12] and TS 102 822-4 [14] schemas are referenced in the transport namespace (using XML Schema's
import mechanism).

The Schema fragments in the following clauses are all defined within this namespace. The corresponding namespace
qualifier used in these Schema fragments is "tns:" The complete XML Schema file
(tva_transport_types_v10.xsd) may be found attached to the present document as part of a common Zip file.

5.1 get_Data Operation
The get_Data operation allows a client to query a server in order to retrieve TV-Anytime data for a set of
programmes or programme groups. The following list gives a few examples of the types of functionality that a
TV-Anytime metadata provider can offer using a get_Data operation.

• Operation that takes a list of CRIDs and returns content referencing data for those CRIDs.

• Operation that takes a list of CRIDs and returns TV-Anytime metadata for those CRIDs.

• Operation that accepts a query for programmes with particular metadata attributes (e.g. with a particular genre,
or starring a certain actor, etc.) and returns matching programmes.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 15

• Operation that accepts a query for programmes broadcast at a certain time or on a certain channel and returns
matching programmes.

A get_Data operation can, in principle, support all these types of queries, as well as more complex queries,
involving a wide range of metadata constraints, and logical combinations of those constraints.

5.1.1 Request Format

The request format allows the client to specify three types of parameters. The semantics and structure of these three
parameters are explained in more detail in the subsequent clauses.

<element name="get_Data" type="tns:get_Data"/>
 <complexType name="get_Data">
 <sequence>
 <element name="QueryConstraints">
 <complexType>
 <choice>
 <element name="PredicateBag" type="tns:PredicateBagType"/>
 <element name="BinaryPredicate" type="tns:BinaryPredicateType"/>
 <element name="UnaryPredicate" type="tns:UnaryPredicateType"/>
 </choice>
 </complexType>
 </element>
 <element name="RequestedTables" type="tns:RequestedTablesType"/>
 </sequence>
 <attribute name="maxPrograms" type="unsignedInt"/>
 </complexType>

Name Definition
QueryConstraints A REQUIRED parameter that defines, by means of one or more

logical predicates the set of "result records" that the client is
interested in. See clause 5.1.1.4 for a definition of "result record". For
example, this set could be specified using a list of CRIDs, the
programmes that have the keyword "Thriller" in their metadata, or the
programmes that correspond to a BroadcastEvent on Channel 2 on
Saturday, etc.

RequestedTables A REQUIRED parameter that specifies the view of the metadata
required by the client. This parameter determines the types of
metadata that are returned for each result, and also allows the client
to specify simple sort criteria to be applied to the result.

maxPrograms An OPTIONAL upper limit on the number of programmes that will be
returned. This is to prevent the client being overloaded by very large
result sets. If this attribute is not there the server should return all the
matching results.

5.1.1.1 Query constraint parameters

This parameter consists of a set of logical predicates, which can be nested together (according to the rules of first order
predicate logic) and together define the set of results that a client is interested in. (Using SQL terminology, this
parameter plays a similar role to the WHERE clause in an SQL SELECT statement.) Unlike SQL, the interpretation of
the logical constraints does not have to be strict - the results returned do not need to precisely match the criteria
specified in the query. This provides opportunity for metadata service providers to offer value adding search algorithms.

 <complexType name="PredicateBagType">
 <sequence maxOccurs="unbounded">
 <choice>
 <element name="PredicateBag" type="tns:PredicateBagType"/>
 <element name="BinaryPredicate" type="tns:BinaryPredicateType"/>
 <element name="UnaryPredicate" type="tns:UnaryPredicateType"/>
 </choice>
 </sequence>
 <attribute name="contextNode" type="tns:contextNodeIDType"/>
 <attribute name="negate" type="boolean" default="false"/>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 16

 <attribute name="type" type="tns:PredicateBagTypeType"/>
 </complexType>
 <simpleType name="PredicateBagTypeType">
 <restriction base="string">
 <enumeration value="AND"/>
 <enumeration value="OR"/>
 </restriction>
 </simpleType>
 <complexType name="BinaryPredicateType">
 <attribute name="fieldID" type="tns:fieldIDType" use="required"/>
 <attribute name="fieldValue" type="string" use="required"/>
 <attribute name="test" default="equals"
 type="tns:BinaryPredicateTestType"/>
 </complexType>
 <complexType name="UnaryPredicateType">
 <attribute name="fieldID" type="tns:fieldIDType" use="required"/>
 <attribute name="test" default="exists"
 type="tns:UnaryPredicateTestType"/>
 </complexType>
 <simpleType name="BinaryPredicateTestType">
 <restriction base="string">
 <enumeration value="equals"/>
 <enumeration value="not_equals"/>
 <enumeration value="contains"/>
 <enumeration value="greater_than"/>
 <enumeration value="greater_than_or_equals"/>
 <enumeration value="less_than"/>
 <enumeration value="less_than_or_equals"/>
 </restriction>
 </simpleType>
 <simpleType name="UnaryPredicateTestType">
 <restriction base="string">
 <enumeration value="exists"/>
 </restriction>
 </simpleType>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 17

Name Definition
PredicateBagType A PredicateBagType contains one or more BinaryPredicate,

UnaryPredicate or PredicateBag children, and is used to express
logical relationships between these children.

type This attribute expresses the logical relationship between the children of
this PredicateBag. It can take the values "AND" or "OR". The attribute
is REQUIRED when there are two or more children. The attribute is
meaningless if the PredicateBag contains a single element.

negate This attribute reverses the Boolean evaluation (true/false) of the
PredicateBag. If there are two or more children predicates, it is
evaluated after the children predicates have been combined; i.e. the
type attribute has tighter precedence.

contextNode If present, this attribute restricts the way in which fragments are matched
with this PredicateBag. Specifically, the predicates contained within
this PredicateBag MUST all be satisfied by the fields in a single XML
element within the fragment. The root node of this XML element is
defined by the contextNodeID value of the contextNode attribute.
The contextNodeID values used here MAY have a definition that
uses a multiple XPath expression (i.e. the contextNodeID may refer to
multiple nodes, but the actual node is given by the RequestedTable
element). When used, all the contextNodeID values referenced in the
predicates that are descendants of this PredicateBag MUST refer to
fields that are descendants of the contextNode element in the XML
Schema.

UnaryPredicateType/Bin
aryPredicateType

A Boolean test that can be evaluated on a field stored by a metadata
service. See clause 5.1.1.1.1 for a definition of field.

fieldID A REQUIRED fieldID value (see clause 5.1.1.1.1) that defines the
field being tested (e.g. CRID, Title, etc.).

test The relationship between the fieldID and the fieldValue. This
attribute can take the value "equals", "not_equals", "contains",
"greater_than", "greater_than_or_equal", "less_than",
"less_than_or_equals", or "exists".

fieldValue The value being tested. This attribute is not present in predicates of the
type UnaryPredicateType.

Annex C provides some examples that illustrate the types of queries a client can issue.

5.1.1.1.1 Identifying contextNodes

A contextNode is an XML node of the following type: element.

• Element contextNode can correspond to nodes with an XML Schema complexType model (an element
containing other elements or attributes).

ContextNodes are defined using an XPath expression based on a subset of XPath (for a definition of this XPath subset,
see TS 102 822-3-1 [12]). Instead of using this verbose XPath expression directly in every predicate, all fields used in a
query MUST be assigned a contextNode. A contextNode is just a syntactic shortcut that provides a consistent
alias for the full XPath expression that identifies a node. The TV-Anytime Forum defines a normative subset of nodes
with predefined contextNode values.

In order to define a list of contextNode definitions the following piece of XML Schema is used.

 <element name="ContextNodeIDDefinitionList"
 type="tns:ContextNodeIDDefinitionListType">
 <key name="UniqueContextNode">
 <selector xpath="tns:ContextNodeIDDefinition"/>
 <field xpath="@contextNodeID"/>
 </key>
 </element>
 <complexType name="ContextNodeIDDefinitionListType">
 <sequence>
 <element name="ContextNodeIDDefinition" maxOccurs="unbounded">
 <complexType>
 <attribute name="contextNode" type="NCName"/>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 18

 <attribute name="contextNodeDefinition"
type="tns:contextNodeDefinitionListType"/>
 </complexType>
 </element>
 </sequence>
 <attribute name="targetNamespace" type="anyURI" use="required"/>
 </complexType>
 <simpleType name="contextNodeDefinitionType">
 <restriction base="token">
 <pattern value="(/((\i\c*:)?(\i\c*)))*((/text\(\))|(/@((\i\c*:)?(\i\c*))))?"/>
 </restriction>
 </simpleType>
 <simpleType name="contextNodeDefinitionListType">
 <list itemType="tns:contextNodeDefinitionType"/>
 </simpleType>
 <simpleType name="contextNodeIDType">
 <restriction base="QName"/>
</simpleType>

Name Definition
ContextNodeIDDefinitionListType Provides a uniform structure for defining a map of

contextNode values to XPath expressions.
targetNamespace The field definition namespace to which this

contextNode map belongs. The namespace can be
used to unambiguously reference contextNode values
from multiple namespaces. The use of namespaces here
is similar to, but distinct from, the use of namespaces to
identify XML Schema, and is in accordance with
Namespaces in XML [2].

ContextNodeIDDefinition Contains a single contextNode map.
ContextNodeId A name used to identify this field. All the contextNode

values defined in a particular namespace MUST be
unique.

ContextNodeDescription A list of XPath expressions that defines the fields that MAY
be searched when this contextNode is used. Each item
in the list is a regular expression that corresponds to the
XPath subset defined in TS 102 822-3-1 [12],
clause 4.8.5.1.2. The XPath namespace context consists
of the namespace declarations that are in scope in the
XML instance document at the point that this attribute
appears.

contextNodeIDType The simple type that all contextNode values are based
on. Note that the use of QName ensures that
contextNode values are always namespace qualified.

Element instances based upon the ContextNodeIDDefinitionListType are used to specify the TV-Anytime
Forum's predefined subset of contextNode values.

The predefined subset of contextNode allocations, which belong in the urn:tva:transport:contextNodeIDs:2002
field definition namespace, can be found in annex B. Within the present document the prefix "tvac" is used to denote
this namespace.

Within this same namespace, some contextNode identifiers contain multiple XPath statements. A server HAS to use the
specific Xpath statement relevant to the considered RequestedTable when performing a query based on these
contextNodes as it does for the CRID field. Table 2 defines some additional special case contextNode identifiers, along
with a semantic description of their meaning. These special case contextNodes are those that cannot be identified using
single XPath expressions.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 19

Table 1: Description of special case contextNodeID values (informative)

ContextNodeID Comment

CreditsItem The CreditsItem element of the CreditsList element within the
ProgramInformation or GroupInformation table.

AudioAttributes The AudioAttributes element of the AVAtrributes element within
the ProgramInformation or ProgramLocation tables.

VideoAttributes The VideoAttributes element of the AVAtrributes element within
the ProgramInformation or ProgramLocation tables.

AwardsListItem The AwardsListItem element of the AwardsList element within the
ProgramInformation or GroupInformation tables.

ProgramInformation The ProgramInformation element of the ProgramInformation table.
GroupInformation The GroupInformation element of the GroupInformation table.
BroadcastEvent The BroadcastEvent element of the ProgramLocation table.
Schedule The Schedule element of the ProgramLocation table.
OnDemandProgram The OnDemandProgram element of the ProgramLocation table.
ServiceInformation The ServiceInformation element of the ServiceInformation table.
PersonName The PersonName element of the CreditsInformation table.
OrganizationName The OrganizationName element of the CreditsInformation table.

SegmentInformation The SegmentInformation element of the SegmentInformation
table.

SegmentGroupInformation The SegmentGroupInformation element of the
SegmentInformation table.

Review The Review element of the ProgramReview table.

5.1.1.1.2 Identifying fields

A field is an XML node of the following type: attribute, text or element.

• Attribute fields and text fields (the contents of an element's text node) have no structure, so can be represented
as a string whose value can be tested against the fieldValue given in a predicate.

• Element fields can correspond to nodes with an XML Schema complexType model (an element containing
other elements or attributes). Fields of this type can only be used in a predicate if the test is "exists". An
example of why this might be useful is given in annex C, example 8. Sorts cannot be based upon an element
field.

Fields are defined using an XPath expression based on a subset of XPath (for a definition of this XPath subset, see
TS 102 822-3-1 [12]). Instead of using this verbose XPath expression directly in every predicate, all fields used in a
query MUST be assigned a fieldID. A fieldID is just a syntactic shortcut that provides a consistent alias for the
full XPath expression that identifies a field. The TV-Anytime Forum defines a normative subset of fields with predefined
fieldID values.

In order to define a list of fieldID definitions the following piece of XML Schema is used.

 <element name="FieldIDDefinitionList"
 type="tns:FieldIDDefinitionListType">
 <key name="UniqueField">
 <selector xpath="tns:FieldIDDefinition"/>
 <field xpath="@fieldID"/>
 </key>
 </element>
 <complexType name="FieldIDDefinitionListType">
 <sequence>
 <element name="FieldIDDefinition" maxOccurs="unbounded">
 <complexType>
 <attribute name="fieldID" type="NCName"/>
 <attribute name="fieldDefinition"
 type="tns:fieldDefinitionListType"/>
 </complexType>
 </element>
 </sequence>
 <attribute name="targetNamespace" type="anyURI" use="required"/>
 </complexType>
 <simpleType name="fieldDefinitionType">

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 20

 <restriction base="token">
 <pattern value="(/((\i\c*:)?(\i\c*)))*((/text\(\))|(/@((\i\c*:)?(\i\c*))))?"/>
 </restriction>
 </simpleType>
 <simpleType name="fieldDefinitionListType">
 <list itemType="tns:fieldDefinitionType"/>
 </simpleType>
 <simpleType name="fieldIDType">
 <restriction base="QName"/>
 </simpleType>
 <simpleType name="fieldIDListType">
 <list itemType="tns:fieldIDType"/>
 </simpleType>

Name Definition
FieldIDDefinitionListType Provides a uniform structure for defining a map of fieldID

values to XPath expressions.
targetNamespace The field definition namespace to which this fieldID map

belongs. The namespace can be used to unambiguously
reference fieldID values from multiple namespaces. The
use of namespaces here is similar to, but distinct from, the
use of namespaces to identify XML Schema, and is in
accordance with "Namespaces in XML" [2].

FieldIDDefinition Contains a single fieldID map.
fieldID A name used to identify this field. All the fieldID values

defined in a particular namespace MUST be unique.
fieldDefinition A list of XPath expressions that defines the fields that MAY be

searched when this fieldID is used. Each item in the list is
a regular expression that corresponds to the XPath subset
defined in TS 102 822-3-1 [12], clause 4.8.5.1.2. The XPath
namespace context consists of the namespace declarations
that are in scope in the XML instance document at the point
that this attribute appears.

fieldIDType The simple type that all fieldID values are based on. Note
that the use of QName ensures that fieldID values are
always namespace qualified.

fieldIDListType A whitespace-separated list of fieldID values

Element instances based upon the FieldIDDefinitionListType are used in two places in the present
document. Firstly, it is used to specify the TV-Anytime Forum's predefined subset of fieldID values. Secondly, it
MAY appear in a get_Data operation's capability description, where it is used to allocate fieldID values to fields
not in the normative subset. See clause 7.1.3 for an explanation of how this is done. In this, way servers can extend their
metadata services to flexibly support querying or sorting on any field in the TV-Anytime metadata and content
referencing Schema.

The predefined subset of fieldID allocations, which belong in the urn:tva:transport:fieldIDs:2002 field definition
namespace, can be found in annex B. Within the present document the prefix "tvaf" is used to denote this namespace.

Within this same namespace, some field identifiers contain multiple XPath statements. A server MAY use any of these
XPath statements when performing a query based on these fields. Table 2 defines some additional special case field
identifiers, along with a semantic description of their meaning. These special case fields are those that cannot be
identified using single XPath expressions.

Table 2: Description of special case fieldID values (informative)

FieldID Comment

CRID
The CRID when it is used in the context of identifying the CRID
with which a fragment is associated.
Details of this fieldID can be found in table 3.

Start
The Start attribute of the DecomposedLocator element from
the LocationResult element within the content referencing
table.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 21

FieldID Comment

Title
Any title element (Title or ShortTitle) from the
ProgramInformation, GroupInformation,
ProgramLocation or SegmentInformation tables.

TitleLanguage
The language attribute of the Title element from the relevant
ProgramInformation, GroupInformation,
ProgramLocation or SegmentInformation table.

Synopsis
Any Synopsis element from the ProgramInformation,
GroupInformation, ProgramLocation or
SegmentInformation tables.

SynopsisLanguage
The language attribute of the Synopsis element from the
ProgramInformation, GroupInformation,
ProgramLocation or SegmentInformation tables.

PublishedStart

The PublishedTime element of any items of type
ScheduleEventType, and the StartOfAvailability
element of a OnDemandProgram item. If the
StartOfAvailability element is not present, it is assumed to
be the current time (i.e. available now).

PublishedDuration The PublishedDuration element of any items of type
ScheduleEventType.

FragmentID
Any fragmentId attribute. See Annex C for an example of how
this fieldID may be used to retrieve a specific fragment.

fragmentVersion
Any fragmentVersion attribute. See Annex C for an example
of how this fieldID may be used to update a specific fragment.

AudioCoding
The coding element from the AudioAttributes element from
the ProgramInformation or ProgramLocation tables.

AudioChannels
The NumOfChannels element from the AudioAttributes
element within the ProgramInformation or ProgramLocation
tables.

VideoAspectRatio The AspectRatio element from the VideoAttributes element within
the ProgramInformation or ProgramLocation tables.

Keyword The Keyword element within the ProgramInformation or
GroupInformation tables.

KeywordLanguage The language attribute from the Keyword element within the
ProgramInformation or GroupInformation tables.

Genre The Genre element within the ProgramInformation or
GroupInformation tables.

Language The Language element from the ProgramInformation or
GroupInformation tables.

ParentalGuidance The ParentalGuidance element from the ProgramInformation or
GroupInformation tables.

Role
The Role element from the cast list item that relates to cast
member associated with the ProgramInformation or
GroupInformation tables.

FamilyName
The FamilyName element from the cast list item that relates to
cast member associated with the ProgramInformation or
GroupInformation tables.

GivenName
The GivenName element from the cast list item that relates to cast
member associated with the ProgramInformation or
GroupInformation tables.

AwardTitle The Title element from an awards list item within the
ProgramInformation or GroupInformation tables.

AwardYear The Year element from an awards list item within the
ProgramInformation or GroupInformation tables.

AwardNominee The Nominee element from an awards list item within the
ProgramInformation or GroupInformation tables.

AwardRecipient The Recipient element from an awards list item within the
ProgramInformation or GroupInformation tables.

RatingValue The RatingValue element from Review element within the
ProgramInformation or GroupInformation tables.

RatingScheme The RatingScheme element from Review element within the
ProgramInformation or GroupInformation tables.

ProductionDate The ProductionDate element from BasicDescription element within
the ProgramInformation or GroupInformation tables.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 22

FieldID Comment

CreditName Any name element (FamilyName or GivenName) form the
ProgramInformation, GroupInformation or ProgramReviews tables.

ProgramURL The ProgramURL element from the BroadcastEvent Schedule, or
OnDemandProgram element within the ProgramLocation table.

FreeToView The Free element from the BroadcastEvent or Schedule element
within the ProgramLocation table.

EpisodeOf The EpisodeOf element from the ProgramInformation element
within the ProgramInformation table.

GroupType The value attribute of the GroupType element within the
GroupInformation table.

ServiceURL The ServiceURL element of the ServiceInformation element within
the ServiceInformation table.

ServiceName The ServiceName element of the ServiceInformation element
within the ServiceInformation table.

CreditsItem The CreditsItem element of the CreditsList element within the
ProgramInformation or GroupInformation table.

AudioAttributes The AudioAttributes element of the AVAtrributes element within
the ProgramInformation or ProgramLocation tables.

VideoAttributes The VideoAttributes element of the AVAtrributes element within
the ProgramInformation or ProgramLocation tables.

AwardsListItem The AwardsListItem element of the AwardsList element within the
ProgramInformation or GroupInformation tables.

ProgramInformation The ProgramInformation element of the ProgramInformation table.
GroupInformation The GroupInformation element of the GroupInformation table.
BroadcastEvent The BroadcastEvent element of the ProgramLocation table.
Schedule The Schedule element of the ProgramLocation table.
OnDemandProgram The OnDemandProgram element of the ProgramLocation table.
ServiceInformation The ServiceInformation element of the ServiceInformation table.
PersonName The PersonName element of the CreditsInformation table.
OrganizationName The OrganizationName element of the CreditsInformation table.

SegmentInformation The SegmentInformation element of the SegmentInformation
table.

SegmentGroupInformation The SegmentGroupInformation element of the
SegmentInformation table.

Review The Review element of the ProgramReview table.

CSUri The uri attribute of the ClassificationScheme element within the
ClassificationSchemeTable.

CSAlias The mpeg7:alias attribute of the CSAlias element within the
ClassificationSchemeTable.

GenreCS The href attribute of the Genre element within the
ProgramInformationTable and GroupInformationTable.

If a metadata service wishes to support querying or sorting on a field within the normative subset it MUST use the
predefined fieldID. (I.e. servers MUST NOT define their own fieldID for a field already in the normative
subset.)

5.1.1.1.3 Primary index CRID fields

Fragments containing CRIDs exist in many different locations in the TV-Anytime schema. Since CRIDs can occur in
multiple places within a fragment (e.g. in a GroupInformation fragment they can be used to refer to parent
groups), the following table formally defines the CRID field that is used to identify the fragments in each case.

The XPath expressions are namespace qualified. The present document assumes the expression content of the XPath
evaluator has the following namespace prefixes:

cr urn:tva:ContentReferencing:2002

tva urn:tva:metadata:2002

mpeg7 urn:mpeg:mpeg7:schema:2001

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 23

Table 3: The meaning of the CRID field in the different TV-Anytime tables

Table type XPath specification for CRID node set
(ignore whitespace)

Number
matches

ContentReferencing /cr:ContentReferencingTable/cr:Result/@CRID 0 or 1

ProgramInformation
/tva:TVAMain/tva:ProgramDescription/tva:Pro
gramInformationTable/tva:ProgramInformation
/@programId

0 or 1

GroupInformation
/tva:TVAMain/tva:ProgramDescription/tva:Gro
upInformationTable/tva:GroupInformation/@gr
oupId

0 or 1

ProgramReview
/tva:TVAMain/tva:ProgramDescription/tva:Pro
gramReviewTable/tva:ProgramReviews/tva:Prog
ram/@crid

0 to many

/tva:TVAMain/tva:ProgramDescription/tva:Pro
gramLocationTable/tva:Schedule/tva:Schedule
Event/tva:Program/@crid

0 to many

/tva:TVAMain/tva:ProgramDescription/tva:Pro
gramLocationTable/tva:BroadcastEvent/tva:Pr
ogram/@crid

0 to many

/tva:TVAMain/tva:ProgramDescription/tva:Pro
gramLocationTable/tva:OnDemandProgram/tva:P
rogram/@crid

0 to many

ProgramLocation

/tva:TVAMain/tva:ProgramDescription/tva:Pro
gramLocationTable/tva:OnDemandService/tva:O
nDemandProgram/tva:Program/@crid

0 to many

/tva:TVAMain/tva:ProgramDescription/tva:Seg
mentInformationTable/tva:SegmentList/tva:Se
gmentInformation/tva:ProgramRef/@crid
The schema does not require this attribute. If it is omitted
the implied CRID (from the parent segment group) MUST
be used for the server to determine matching
SegmentInformation fragments based on the CRID field.

0 to many

SegmentInformation

/tva:TVAMain/tva:ProgramDescription/tva:Seg
mentInformationTable/tva:SegmentGroupList/t
va:SegmentGroupInformation/tva:ProgramRef/@
crid

0 to many

5.1.1.1.4 Restrictions on the use of QueryConstraints

The QueryConstraints element MUST NOT contain predicates with fields from the following tables:

• ContentReferencingTable. Content referencing information does not contain metadata attractors, so
none of the fields are suitable as query constraints.

• CreditsInformationTable. Credits information is considered to always be inlined from the point of
view of specifying a search. In other words, fields based upon the credit information fields inside a
BasicDescription element are used to constrain a search.

There are two exceptions to these rules:

• Searches using the fragmentId field and fragmentVersion field can be used to retrieve or update a
metadata fragment from any metadata table.

• Searches based on the CRID field are a special case, which is considered in clause 5.1.1.1.3.

Please note that a request with "QueryConstraints" containing disjunctive condition may lead sometimes to an
ambiguous result (see example in clause C.9).

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 24

5.1.1.1.5 Evaluating a predicate

Although the fieldID values specify precisely the field being matched, a metadata service is free to interpret which
metadata fields are used to match the query fieldValue. For example, if a query specifies a programme with a
certain title, a server is free to match this string with any of the values given by the Title or ShortTitle
elements. Similarly, if a query specifies a keyword search, a server could match the keyword on any of the stored
keywords as well as words in the title and synopsis. In general, where the metadata schema offers alternative ways of
representing the same information a metadata service SHOULD be lenient in matching either representation (e.g. a UK
parental guidance of "18" might be considered to match an American rating of "X"). In particular, it is
RECOMMENDED that a metadata service adopt the following behaviour.

• If a controlled term is being matched, the server matches fieldValue values specified using both the full
URN for the controlled term, or a shortened alias form.

• Any query field inside a BasicDescription element can give rise to a match for the corresponding field
inside a ProgramInformation or GroupInformation fragment. E.g. a search for the field Title
with value "Friends" could give rise to a programme CRID (episode of "Friends"), or a group CRID (series of
"Friends"). If the client is only requested in one type of CRID, they can achieve this by requesting the
appropriate table type in the RequestedTables parameter.

• The fields within a BroadcastEvent can be considered to the match corresponding fields within a
ScheduleEvent. This does not impact how the metadata service chooses to fragment the returned data
(i.e. whether to use BroadcastEvent or Schedule fragments).

The tests evaluated to determine the Boolean value of a predicate are self-explanatory, but the following should be
noted.

• equals. For numeric types, a server MUST consider values that are numerically equal to the query value to
represent a match. For fields that have the anyURI type or some derived type (e.g. CRID, ServiceURL, etc.)
equality MUST be based upon the rules defined for that particular URI. For fields that have the TVAIDType
type (e.g. fragmentID, serviceID, etc.), equality MUST be based on the rules for matching ID and IDRef
types, as defined in the XML specification [1].

• For other types derived from string, the server determines the notion of equality. It is RECOMMENDED that
the server ignores leading and trailing white space and character case when comparing strings. The server may
also employ fuzzy or other type of matching algorithms so that matches may still be returned if a name is
misspelt in a query, say.

• For fields that can contain multiple values (e.g. Title, Genre, Keywords, etc.), it is RECOMMENDED that the
query fieldValue is matched to any of the field values in a fragment. If the server has no data for a
particular field, it is RECOMMENDED that the server considers the associated fragment not to match the
predicate, as this can lead to very large result sets. However, if the query is sufficiently restrictive (no
truncation of the response is necessary) it may be appropriate to relax this rule.

• less_than, greater_than. The use of XPath and XML Schema mean that the metadata service is always aware
of the Schema type of every field. If the type is duration, then the shortest time is considered to be the lesser. If
the type is a date and/or time, then the earlier value is considered to be the lesser. If the type is numeric, then
less_than has its obvious interpretation.

• If the type is derived from a string, then the earliest string (according to a lexicographic sort) is considered to
be the lesser. The comparison is based on the Unicode Technical Standard 10 Collation Order [17] on elements
normalized according to Unicode Normalization Form C [18]. By default, the collation takes place according
to the Default Unicode Collation Element Table in conjunction with Unicode Collation Algorithm. A metadata
provider may choose to use another collation table, in which case this is indicated by naming the collation
table in the capability description (see clause 6.1).

• For fields that can contain multiple values (e.g. Title, Genre, Keywords, etc.), the metadata service should base
the comparison on the field it considers to be primary. For some elements, this is indicated using the type
attribute with value "main".

• If a fragment has no metadata for a particular field, the fragment SHOULD be tested as if the value for that
field is the empty string.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 25

• exists. In order for this test to evaluate as "true", the metadata service MUST be able to populate the element or
attribute with useful data. I.e. it is not sufficient to instantiate the element or attribute but leave it empty.

• contains. This test is only used to test fields that have a type derived from a string. For all other field types the
test SHOULD not be used.

5.1.1.2 View on returned data

This REQUIRED RequestedTables parameter defines the types of data that a metadata service will try to provide
on each result it returns. To achieve this, the client includes a list of table types that it requires. For a given result set, a
server SHOULD supply, if the appropriate metadata is available, the corresponding fragments for this result record
from the requested tables. It is not an error if the appropriate metadata is not available (e.g. no segmentation information
is available for that CRID), and the client MUST NOT assume that requested fragments will always be returned.

 <complexType name="RequestedTablesType">
 <sequence>
 <element name="Table" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="SortCriteria" type="tns:SortCriteriaType"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="type" use="required">
 <simpleType>
 <restriction base="string">
 <enumeration value="ContentReferencingTable"/>
 <enumeration value="ClassificationSchemeTable"/>
 <enumeration value="ProgramInformationTable"/>
 <enumeration value="GroupInformationTable"/>
 <enumeration value="CreditsInformationTable"/>
 <enumeration value="ProgramLocationTable"/>
 <enumeration value="ServiceInformationTable"/>
 <enumeration value="ProgramReviewTable"/>
 <enumeration value="SegmentInformationTable"/>
 </restriction>
 </simpleType>
 </attribute>
 </complexType>
 </element>
 </sequence>
 </complexType>

Name Definition
RequestedTables A list of table elements containing at least one entry.

Table Specifies the type of table required by the client and the sort criteria
to be applied to that table.

Type Mandatory parameter giving the type of TV-Anytime table required by
the client. Can take the values: ContentReferencingTable,
ClassificationSchemeTable,
ProgramInformationTable,GroupInformationTable,
ProgramLocationTable, ServiceInformationTable,
ProgramReviewTable, SegmentInformationTable, and
CreditsInformationTable.

SortCriteria The sort criteria to be applied to that table. If not present the returned
table will not necessarily be sorted. The order of the SortCriteria
element is significant See clause 5.1.1.2.1 for a more complete
explanation of sorting.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 26

A metadata service can choose whether or not to inline credits information directly, or to reference a fragment in the
CreditsInformationTable. The request for a CreditsInformationTable determines if the server
returns credits information at all, but does not impact the above choice on how to include the credits information. A
server MUST NOT return credits information if the CreditsInformationTable is not listed in the
RequestedTable parameter. The SortCriteria parameter SHALL be ignored if it is used in conjunction with
the CreditsInformationTable.

A ServiceInformationTable will always be included in a response if a ServiceInformation entry is
being referenced (using a serviceIDRef) from a ProgramLocationTable. Thus, an explicit request for a
ServiceInformationTable will have no effect if a ProgramLocationTable is being returned.
Nevertheless, if the client wishes to specify sort criteria for the ServiceInformationTable, it is useful to
include it in the requested tables.

5.1.1.2.1 Sort criteria

 <complexType name="SortCriteriaType">
 <attribute name="fieldID" type="tns:fieldIDType" use="required"/>
 <attribute name="order" type="tns:SortingOrderType"
 default="ascending"/>
 </complexType>
 <simpleType name="SortingOrderType">
 <restriction base="string">
 <enumeration value="ascending"/>
 <enumeration value="descending"/>
 </restriction>
 </simpleType>

Name Definition
SortCriteriaType The definition of one sorting criteria to apply.

fieldID Specifies the field to use
Order Defines the type of sorting to apply (either ascending or descending).

Sorts are applied across the fragments contained in a given table. Sorts can be applied in either ascending order (with
the least first) or descending order (with the largest first). The criteria by which fields are compared is identical to that
used to make less_than (ascending search) and greater_than (descending search) comparisons, as specified in
clause 5.1.1.1.5. One implication of this is that fragments included in the response containing no data for the field being
sorted MUST be sorted as if that field had the value of the empty string. Another implication is that if the sort field can
have multiple values in a single fragment (e.g. Title), the metadata service SHOULD be sorted on the primary value
for that field.

There can be a number of SortCriteria elements within the RequestedTables parameter. The metadata
service uses this to apply a multi-tier sort, with the first sort applied using the first SortCriteria element in the
list, the next sort using the second SortCriteria element (if any), and so on. If a server indicates that it supports
one or more sort fields (see clause 7.1) for a table, then it MUST support a single-tier sort for that table. If a server
indicates that it supports more than one sort field, then it MAY support a multi-tier sort for that table. The exact sort
applied by the server is indicated in the response (see clause 5.1.2.1). If multi-tier sorting is supported, groups of
fragments that are equivalent according to the criteria of one sort field are then sorted according to the criteria of the
next sort field. For example, this allows a set of BroadcastEvent fragments to first be grouped into channels and
then sorted according to time and date, and thus make the construction of an EPG on the client much more efficient.
Such a sort could be specified as follows.

 <RequestedTables>
 <Table type="ProgramLocationTable">
 <SortCriteria fieldID="tvaf:ServiceURL" order="descending"/>
 <SortCriteria fieldID="tvaf:PublishedTime"/>
 </Table>
 </RequestedTables>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 27

If the SortCriteria parameter contains a fieldID value that refers to a field identifier containing multiple
XPath expressions, the metadata service MAY choose any one of the XPath expressions for identifying which field to
use for sorting that fragment.

For example, if a result is a ProgramLocationTable containing both OnDemandProgram fragments and
BroadcastEvent fragments, and the sort criteria is "PublishedStart", all the BroadcastEvent fragments will be
sorted according to their published time (see table 2) followed by all the OnDemandProgram fragments sorted
according to their first available time.

The way in which a client establishes the fields for which sorting is supported (if any) is described in clause 7.1.

5.1.1.3 Size limit parameter

An OPTIONAL parameter (maxPrograms) can be inserted in the request. It is a positive integer and is used by the
client to specify the number of records returned by a query. If a query results in a greater number of records, the server
MUST return maxPrograms records, along with their corresponding metadata.

Limiting the number of records being returned does not guarantee the client device's memory not being exceeded since
there is no limit on the size of each of data associated with each record. Similarly, knowing the exact byte size of the
response is not sufficient, since there is not a linear relationship between this figure and the size of the post-parsing in-
memory objects. The client SHOULD ensure that memory overloading is gracefully handled by terminating the parsing
step before memory limits are reached. The purpose of the maxPrograms parameter is to allow the client to avoid
this occurrence for the large majority of cases. (See also the explanation of the truncated parameter in
clause 5.1.2.3, which may be included in the response).

It is RECOMMENDED that when the server truncates a response, it provide the results that it considers to be the closest
match to the specified query.

5.1.1.4 Interpretation of Query Predicates

This clause defines the data model that is used to describe how the server processes the query to build its response. This
model is necessary to explain the way in which queries operate across tables. It does not imply an underlying
implementation, nor does it imply that a response must strictly satisfy the relational calculus definition given here.

The data model described in this clause is purely a tool to describe how queries across tables work. This model uses a
set of relational tables in order to explain how query predicates SHOULD be interpreted. The data model itself is
informative.

When all the query predicates contain fieldID values belong to the same table (e.g. a query based on Title and
Keyword fields) the result records that satisfy the query constraints will be matched. If the query predicates contain
fieldID values belonging to multiple tables, then the matching result records should satisfy those predicates in all
the relevant tables. The data model is a tool to explain this behaviour, as it can become complex in the general case.

Firstly, this data model defines a set of relational tables containing the following records for each fragment that matches
the query.

• Content referencing record. Each record corresponds to a Result element and the table is uniquely keyed
with a CRID.

• Program information record. Each record corresponds to a ProgramInformation element and the table is
uniquely keyed with a CRID.

• Group information record. Each record corresponds to a GroupInformation element and the table is
uniquely keyed with a CRID.

• Broadcast event record. Each record corresponds to a BroadcastEvent or a ScheduleEvent element,
and can be assigned a CRID.

• On demand programme record. Each record corresponds to an OnDemandProgram element and can be
assigned a CRID.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 28

• Service information record. Each record corresponds to a ServiceInformation element and is uniquely
keyed with a serviceId.

• Review record. Each record corresponds to a Review element and is associated with a CRID.

• Segment information record. Each record corresponds to a SegmentInformation element and is
associated with a CRID.

• Segment group record. Each record corresponds to a SegmentGroupInformation element and is
associated with a CRID.

Note that, with one exception: the "Content referencing record", these records correspond exactly to the fragments
defined in part B of the Metadata Specification. Within each record the data is not flat (i.e., there are nested and
repeated data structures) so in practice this would be a poor relational model for TV-Anytime.

We now define a combined table formed by performing a sequence of full outer joins as follows:

1) The service information and broadcast event tables are joined based upon the serviceId field.

2) The service information and on demand programme tables are joined based upon the serviceId field.

3) The two resulting tables, and all the other tables, are joined based upon the CRID field to leave a single
combined table. Since the join operation (Cartesian product) is commutative and associative, the order in
which this join is performed is not significant.

Each row of the combined table is termed a "result record". A result record has the following properties:

• There can be many result records containing the same value in the CRID field.

• A result record may have no entries for a particular field or set of fields. This is equivalent to saying that not
all types of metadata and metadata tables will be available for every programme.

• The same fragment can appear in multiple result records.

• Each field within a result record can be uniquely identified using a fieldID value.

5.1.1.5 Definition of server behaviour

This clause defines the server's behaviour to a query that is assumed by the data model. The server SHOULD return a
response containing content referencing and/or metadata fragments based upon the predicates in the
QueryConstraints that satisfy the query.

The server SHALL return a response that contains only the tables specified by the RequestedTables parameter,
based on the rules defined in clause 5.1.1.2

Each fragment SHALL be encapsulated in either a TVAMain or ContentReferencingTable element. The
complete response SHALL contain either one TVAMain element, one ContentReferencingTable element or
one instance of both TVAMain and ContentReferencingTable. The response SHALL have duplicated
fragments removed.

5.1.2 Response Format

A get_Data response contains an XML instance document containing zero or one instance of the following
elements:

• TVAMain.

• ContentReferencingTable.

• InvalidFragments.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 29

 <element name="get_Data_Result" type="tns:get_Data_ResultType"/>
 <complexType name="get_Data_ResultType">
 <sequence>
 <element name="TableSortingInformation"
 type="tns:RequestedTablesType" minOccurs="0"/>
 <element ref="tva:TVAMain" minOccurs="0"/>
 <element ref="cr:ContentReferencingTable" minOccurs="0"/>
 <element name="InvalidFragments"
 type="tns:InvalidFragmentsType" minOccurs="0"/>
 </sequence>
 <attribute name="serviceVersion" type="unsignedInt" use="required"/>
 <attribute name="truncated" type="boolean"/>

Name Definition
TVAMain An element inside which all metadata items defined in

TS 102 822-3-1 [12] are instantiated.
ContentReferencingTable An element inside which all metadata items defined in

TS 102 822-4 [14] are instantiated.
InvalidFragments Represents list of invalid fragments using the

InvalidFragmentsType type. See clause 5.1.2.4 for a
definition of this type and how it is used.

ServiceVersion This parameter indicates the version of the get_Data
operation's capability description. See clause 5.1.2.2.

truncated When this attribute is true, it indicates that the result of the query
has been truncated because the number of results exceeded the
maxPrograms attribute specified in the request or the server was
not able to return all the results. See clause 5.1.2.3.

The instance document returned MUST be XML Schema valid with respect to the appropriate metadata and content
referencing schemas. Furthermore, each instance document MUST contain the appropriate TVAIDType type to allow
complete dereferencing of all TVAIDRefType nodes within the instance document (e.g. if a Schedule is included,
the ServiceInformation entry, referenced via the serviceIDRef, must also be present).

5.1.2.1 Indicating the sorting of the response

The TableSortingInformation element SHALL be included in any response where a sort has been performed
on the response.

The first SortCriteria element defines the first field by which the response has been sorted. Each subsequent
SortCriteria element (if any) defines the next levels of sorting that has been applied.

For example, the following XML snippet shows a response that has been sorted by service URL and then by published
time (note that the syntax is the same as that used to specify the sorting in the query).

 <TableSortingInformation>
 <Table type="ProgramLocationTable">
 <SortCriteria fieldID="tvaf:ServiceURL"/>
 <SortCriteria fieldID="tvaf:PublishedTime"/>
 </Table>
 </TableSortingInformation>

5.1.2.2 Indicating the service version

The serviceVersion attribute MUST be included in the response. This parameter indicates the version of the
get_Data operation's capability description. When the version is updated a client can retrieve a new capability
description for the metadata service (see clause 7.1 for more explanation on how this parameter is used). Note that the
serviceVersion attribute indicates nothing about the syntax version in the response (which can be inferred from
the XML namespace), or the version of the metadata data in the result (metadata version information is indicated using
the fragmentVersion attribute).

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 30

5.1.2.3 Truncating the result set

If the OPTIONAL truncated attribute has the value "true", the records returned do not represent the entire query
result set. This is either a result of the inclusion of the maxPrograms attribute in the request, or as a result of the
server being overloaded. The actual limit used in the latter case is server specific, but in general should be a sufficiently
large number so as to not normally be an issue. No behaviours such as paging mechanisms are defined for retrieving
more data after a truncated limit, as this requires more complex client and server implementations (since state must be
maintained between queries), and would be complex when the server's database is being asynchronously updated. The
intent is to support the average query, while at the same time allowing servers the leeway required to be able to manage
adequate performance.

A very large number of responses is usually an indication that the query was insufficiently specific. In most cases, it is
possible to refine the query by the alteration of the original parameter set. If truncation occurs as a result of flexible
interpretation of the query, it is RECOMMENDED that the server falls back to strict interpretation of the query in order
to reduce the number of responses.

5.1.2.4 Updating the result set

The fragmentVersion and fragmentId identifiers MAY be placed at the fragment level in the get_Data
response (as defined by the TS 102 822-3-1 [12]). If included, this allows the client to request and update individual
fragments. A client may cache fragment version information and be able to ignore future instances of the same metadata
if the fragment version number has not been incremented. TV-Anytime metadata in the bi-directional environment MAY
be updated by the unit of fragments based on the fragementID and/or fragmentVersion defined in
TS 102 822-3-1 [12]. To support the metadata updating in the bi-directional environment, the fragmentVersion
has the following additional validity constraints.

The fragmentVersion attribute SHOULD be either one of an 8-digit or 14-digit unsigned integer. When it is an
8-digit integer, it SHOULD follow the format of YYYYMMDD and represents the last updated date of the fragment.
When it is an 14-digit integer, it SHOULD follow the format of YYYYMMDDhhmmss and represents the last updated
date and time. YYYY represents year in four digits, MM represents month in two digits, DD represents day of the
month in two digits, hh represents hour in two digits (using a 24 hour clock), mm represents minute in two digits, and ss
represents second in two digits.

If a receiver wants to update a fragment received by the uni-directional link using the bi-directional link it should make
a request for the same fragment with a fragmentVersion with a later date than it receives the fragment by the uni-
directional link.

The server indicates its support for this updating mechanism using the capability description, as described in clause 7.1.

If the request for a fragmentID does not include the fragmentVersion, the server shall return its latest version of
the fragment.

 <complexType name="InvalidFragmentsType">
 <sequence>
 <element name="Fragment" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <attributeGroup ref="tva:fragmentIdentification"/>
 </complexType>
 </element>
 </sequence>
 </complexType>

Name Definition
InvalidFragmentsType An InvalidFragmentsType is used to express invalid

fragment lists. It contains one or more Fragment elements.
Fragment Identifies an invalid fragment using the

fragmentIdentification attributeGroup (as defined in
TS 102 822-3-1 [12]). The meaning of fragmentID and
fragmentVersion in this context is described in this clause.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 31

When the InvalidFragments element is included in the get_Data_Result element, the client SHOULD
delete the fragments saved in the local storage identifiable by the fragmentID and/or fragmentVersion listed
in the InvalidFragments element.

A fragmentID can be reassigned to other fragments by the publisher, when the original fragment became invalid
and is deleted. When a fragmentID is reused, to ensure the uniqueness of the fragmentID, the server is expected
to include the reassigned fragmentID and the fragmentVersion representing the deleted date or the last
modified date of the InvalidFragments element, whenever the requested fragmentVersion is smaller than
the fragmentVersion of the deleted fragment.

5.2 submit_Data Operation
The submit_Data operation is much simpler than the get_Data operation. In this version of the specification, its
usage is limited according to the constraints outlined in clause 3.1.2.

5.2.1 Usage and user preference data submission policy (informative)

TV-Anytime phase one technical specifications limit the data that can be submitted to a defined (in clause 3.1.2) set of
anonymous profile data that has been created via manual input or intelligent agents based on usage of services and
content. It is out of scope for the device to send "all" usage data to "all" potential service providers known to the PDR
for Phase One because no authenticated return channel rights management process has been specified yet.

The TV-Anytime Forum respects and embraces the basic rights of all viewers and providers. These include preserving
the basic right of a content consumer to privacy and acknowledging the legitimate rights of all participants such as
content creators and providers, service providers, advertisers and network operators.

It is the content consumer's decision as to the amount of privacy invasion and profiling capabilities done by these
participants, and will be allocated by the content consumer to a vendor or service provider at his/her discretion.

Providers that accept the content consumer's choice to allocate to them the responsibility (partial or in full) to profile
him/her, through a contract with a service/technology/content provider, will adhere to strict privacy regulations. A
computer readable representation of this policy (which could be rendered for the content consumer) may be provided as
part of the describe_submit_data operation, see clause 7.2. The policy regulation will effectively eliminate
breaches of security of the collected private information in order to avoid any use of it that was not explicitly permitted
by the end-consumer.

Providers of content wish to know how their content is performing as far as the consumer is concerned. Business
decisions may be made as a result (cancel the scheduling of a programme because the viewers don't like it; advertisers
will want to know viewers numbers, etc).

An anonymised subset of the UsageHistory table may be submitted if this functionality has been enabled by the
consumer. Anonymity must be guaranteed so that no detail about the individual will be sent.

This will enable service providers and broadcasters the ability to analyze aggregated viewer preferences and allow them
to make business decisions based on their performance in these areas.

5.2.2 Request Format

 <element name="submit_Data" type="tns:submitDataType"/>
 <complexType name="submitDataType">
 <sequence>
 <element name="UsageHistory" type="mpeg7:UsageHistoryType"/>
 </sequence>
 </complexType>

The input to the submit_Data operation simply uses the mpeg7:UsageHistoryType which is part of
the UserDescription defined in TS 102 822-3-1 [12], and therefore has the same semantics.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 32

5.2.3 Response Format

 <element name="submit_Data_Result" type="tns:submit_Data_Result"/>
 <complexType name="submit_Data_Result">
 <attribute name="serviceVersion" type="unsignedInt" use="required"/>
 </complexType>

The submit_Data response MUST contain some indication of the current version of the capability description. This
allows receivers to update the capability description without having to download the capability description each time
the submit_Data operation is used.

6 Transport Protocol
SOAP [9] and HTTP [5] are used for delivering TV-Anytime XML data over the IP networks, since this combination is
very well suited to the point-to-point, request-response nature of the TV-Anytime operations. The exact usage of SOAP
and HTTP is given in the next two clauses. Figure 4 provides a semantic representation of the network stack.

IP

OPTIONAL
binary encoding

OPTIONAL
security layer

HTTP

TCP

TV-Anytime XML

SOAP

Figure 4: The bi-directional network transport stack

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 33

This architecture results in HTTP messages of the following form:

POST /tva/md-service HTTP/1.0
Host: www.example.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
Accept-Encoding: deflate
SOAPAction: "get_Data"

<?xml version="1.0" encoding="UTF-8"?>
<Envelope xmlns=" http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <get_Data xmlns="http://www.TV-Anytime.org/2002/11/transport"
 xmlns:tvaf="http://www.TV-Anytime.org/2002/11/transport/fieldIDs">
 <QueryConstraints type="OR">
 <Predicate fieldID="tvaf:CRID"
 fieldValue="crid://example.com/foo"/>
 <Predicate fieldID="tvaf:CRID"
 fieldValue="crid://example.com/bar"/>
 </QueryConstraints>
 <RequestedTables>
 <Table type="ContentReferencingTable"/>
 </RequestedTables>
 </get_Data>
 </Body>
</Envelope>

Figure 5: Example HTTP request

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
Content-Encoding: deflate

<?xml version="1.0" encoding="UTF-8"?>
<Envelope xmlns="http://www.w3.org/2002/06/soap-envelope">
 <Body>
 <get_Data_Result xmlns=" http://schemas.xmlsoap.org/soap/envelope/">
 <ContentReferencingTable version="1"
 xmlns="http://www.TV-Anytime.org/2002/06/ContentReferencing">
 <!-- ... etc. -->
 </ContentReferencingTable>
 </get_Data_Result>
 </Body>
</Envelope>

Figure 6: Example HTTP response

6.1 SOAP
The following usage of SOAP is mandated:

• TV-Anytime metadata services will provide an HTTP binding, and may support other transport bindings where
appropriate.

• SOAP supports different messaging styles, but is most commonly used for Remote Procedure Calls.
TV-Anytime does not use remote procedure call messaging style, since this implies that every parameter must
be included in a procedure call, which is not appropriate for TV-Anytime operations that have several optional
parameter types. However, the remote procedure call convention of naming the root element in the SOAP
body according to the name of the operation is followed.

• SOAP encoding is not used in the request or the response (i.e. the element in the root of the SOAP body will
belong to the TV-Anytime transport types namespace, urn:tva:transport:2002). Servers will reject any request
that arrives with a SOAP encoding attribute with the appropriate SOAP Fault.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 34

• The SOAP Actor feature is not supported and servers will reject any request that arrives with a SOAP Actor
attribute in the SOAP Header with the appropriate SOAP Fault.

• The following clause defines application specific fault conditions to be used in the SOAP Fault element.

This usage of SOAP is more formally defined using the WSDL interface definition that can be found in annex A.

6.2 Error Codes
The first line of error reporting is governed by the SOAP specification [9]. SOAP fault reporting and fault codes will be
returned for most invalid requests or any request where the intent of the caller cannot be determined.

In a manner consistent with the SOAP processing rules, HTTP status codes will be used for communicating status
information in HTTP. As is the case for SOAP, success reporting will use a 200-status code to indicate that the client's
request including the SOAP component was successfully processed.

The ErrorReport element is defined to allow servers to report application-level errors that are specific to
TV-Anytime metadata services. In accordance with the SOAP specification, if the content of the SOAP message's Body
cannot be processed successfully, the SOAP fault MUST contain a detail element (which in turn contains an
ErrorReport). Note that the inability to process a well-formed Body element is also termed an "application-level
error", since the error cannot be detected by the SOAP processor and instead relies on application-level knowledge. The
error report contains error information that includes descriptions and a code that can be used to determine the cause of
the error. Errors that arise due to problems with in the HTTP layer or SOAP layer (e.g. the SOAP message does not
conform to the SOAP specification) should be reported using the error mechanisms provided by those layers and MUST
NOT be reported inside a SOAP fault's Detail element.

TV-Anytime application-level errors SHOULD be conveyed using standard HTTP status codes, where a 500-level code
indicates a server-induced error. In such cases, the metadata service MUST issue an HTTP 500 "Internal Server Error"
response and return an ErrorReport inside a SOAP fault report.

Any errors detected in the request will invalidate the entire request, and cause an ErrorReport to be generated
within a SOAP fault as described below. A server MAY report multiple errors, although there is no requirement for the
metadata service to continue processing the request after detecting the first error. In accordance with the SOAP
specification, additional application response elements SHOULD NOT be included in the Body of the SOAP request.
In other words, it is not possible for the server to indicate an error condition and also make a best-effort at providing a
response.

The ErrorReport element takes the following form:

 <element name="ErrorReport" type="tns:ErrorReportType"/>
 <complexType name="ErrorReportType">
 <sequence>
 <element name="Error" type="tns:ErrorType" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <complexType name="ErrorType">
 <sequence>
 <element name="Reason" type="mpeg7:TextualType" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="errorCode" use="required" type="tns:errorCodeType"/>
 <attribute name="fields" type="tns:fieldIDListType"/>
 </complexType>
 <simpleType name="errorCodeType">
 <restriction base="string">
 <enumeration value="FatalError"/>
 <enumeration value="InvalidRequest"/>
 <enumeration value="Unsupported"/>
 <enumeration value="UnrecognizedVersion"/>
 <enumeration value="UnspecifiedError"/>
 <enumeration value="UnsupportedQueryField"/>
 <enumeration value="UnsupportedSortField"/>
 <enumeration value="InvalidFieldID"/>
 <enumeration value="InvalidFieldValue"/>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 35

 </restriction>
 </simpleType>

Name Definition
ErrorReport Lists the application level errors that have occurred as a result

of invoking a metadata service.
Error Describes a single application-level error.

errorCode A REQUIRED string that precisely defines the nature of the
error. The legitimate values for this string are listed in
clauses 6.2.1.1 and 6.2.1.2.

fields An OPTIONAL attribute that lists the fieldID values related
to this error.

Reason An OPTIONAL human meaningful description of the error.

6.2.1 General error conditions

The following error codes MAY be returned by invoking any of the operations defined in the present document. The
field attribute is not relevant to these errors, and so SHALL not be present for the following error conditions.

• FatalError: Signifies that a serious technical error has occurred whilst processing the request.

• InvalidRequest: The query is well-formed but not valid according to the Schema defined by the present
document.

• Unsupported: Signifies that the metadata service does not support an optional feature that is required in order
to correctly process the request. A possible reason for this error is that the client has assumed a functionality
that is at odds with the functionality described in the capability description.

• UnrecognizedVersion: Signifies that the namespace of the child element inside Body element of the request
(e.g. the urn:tva:transport:2002 namespace) is unsupported by this metadata service.

• UnspecifiedError: Signifies any other error.

Error conditions are not mutually exclusive and some are special cases of others (e.g. some of the get_Data error
conditions below are special cases of the Unsupported error). A metadata service SHOULD provide the most specific
error code that is appropriate to the error.

The next clause defines error codes that are specific to the get_Data operation. No specialized error conditions are
defined for the submit_Data, describe_get_Data, and describe_submit_Data operations.

6.2.2 get_Data operation error conditions

When any of the following errors are returned, the operation SHALL return a field attribute listing the field identifiers
that caused the error to occur.

• UnsupportedQueryField: A query contains a fieldID value that is no supported by the metadata service.
When this error is returned, the operation SHALL return a field attribute listing the unsupported fields.

• UnsupportedSortField: A sort is requested using a field for which sorting is not supported by the metadata
service.

• InvalidFieldID: A fieldID in any type of predicate or sortCriteria element contained a field
identifier that is neither in the TV-Anytime defined field identifier list, nor in the field identifier list given by
the service capability description of this operation.

• InvalidFieldValue: The fieldValue in a BinaryPredicateBagType element contains a string that
is not appropriate to the fieldID in that predicate. This might be because the field being queried is an
enumerated type or because the field has syntactic restrictions (e.g. the tvaf:CRID field).

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 36

If a query requests a ContentReferencingTable and contains one or more CRID fields in the query, the
metadata service should be careful to behave correctly when it is unable to provide location resolution data for the
CRID(s). In particular, if the CRID is syntactically correct but no content referencing information is available a
Result element should be returned for the CRID with the status flag set appropriately. No error condition should
be raised. In general, it is not an error condition if a metadata service is simply unable to provide appropriate metadata
in response to a query.

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
Content-Encoding: deflate

<?xml version="1.0" encoding="UTF-8"?>
<Envelope xmlns="http://www.w3.org/2002/06/soap-envelope">
 <Body>
 <Fault>
 <faultcode>Client</faultcode>
 <detail>
 <ErrorReport xmlns="urn:tva:transport:2002"
 xmlns:tvaf="urn:tva:transport:fieldIDs:2002">
 <Error errorCode="UnsupportedQueryField" fields="tvaf:Title">
 <Reason xml:lang="en">
 Searching on Title field is unsupported</Reason>
 </Error>
 </ErrorReport>
 </detail>
 </Fault>
 </Body>
</Envelope>

Figure 7: Example of response indicating an error

6.3 HTTP
• The HTTP server and client MUST fully support HTTP/1.0 [5].

• The client MUST always send the HTTP/1.1 defined Host header (which is defined in clause 14.23 of
HTTP/1.1 [8]).

• The HTTP client and server negotiate a suitable compression using the Accept-Encoding header. Therefore,
both the client and server MUST support the Accept-Encoding header (which is defined in clause D.2.3 of
HTTP/1.0 [5], but is not required by that specification).

• Clients MUST be prepared to follow HTTP redirects (according to clause 9.3 of HTTP/1.0 [5]) to allow server
fall-over and load-balancing. Note that contrary to HTTP/1.0, redirections should be followed automatically,
without user intervention, even though the POST method is being used.

• The SOAPAction HTTP header field SHOULD be set to the name of the operation being called.

6.4 Encapsulation of Metadata
In all cases, the request and response data form a single, valid XML instance document. In general, these instance
documents are self-describing and need no further encapsulation. However, the metadata encapsulation for the
get_Data operation is defined in more detail.

6.4.1 Encapsulation of get_Data response

The content of the SOAP envelope is a TVAMain element and/or ContentReferencingTable, as specified in
clause 5.1.2. These XML instance documents effectively provide an encapsulation format for the fragments they
contain. The context path of each fragment is implicit from the fragment's location in the instance document. The
fragmentVersion and fragmentId identifiers MAY appear at the fragment level (as defined in
TS 102 822-3-1 [12]).

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 37

Each get_Data operation can be considered to provide a single metadata description (the term "metadata description"
is defined in TS 102 822-3-2 [27]), from which each query selects a metadata subset. Thus, the content of the TVAMain
fragment (see clause 4.3.1.1 of TS 102 822-3-2 [13]) is fixed at a given moment in time. The version attribute of the
TVAMain fragment applies only to the fragment itself and not to its child fragments. Consequently, although this
fragment is sent with every response, a client only needs to update its cache of the fragment (if any) when the
TVAMain element's version attribute increases.

6.5 Encoding of Metadata
Servers MUST support UTF-8 textual encoding for all requests and responses, and MAY support other encodings, in
which case the encoding MUST be indicated in the XML header according to clause 4.3.3 of the XML specification [1].
If an encoding is so indicated it MUST be consistent with the encoding indicated in the HTTP/1.0 [5] Content-Type
header (e.g. see figure 5).

For efficiency reasons, HTTP clients and servers SHOULD support at least one well-known compression format.
Clients SHOULD indicate the compression formats they understand using the Accept-Encoding HTTP header. The
HTTP server SHOULD use the most efficient encoding that is understood by both the client and server, and indicate
this in the HTTP response using the Content-Encoding header. It is RECOMMENDED that both TV-Anytime HTTP
clients and servers support the use of the deflate Content-Encoding type (as defined in clause 3.5 of HTTP/1.1 [8]).

Other compression formats may be supported, including the use of BiM specified in Annex E. In all cases, the use of
transport layer compression MUST be transparent to the SOAP processor and higher layers.

6.6 Metadata Service Security
The TV-Anytime phase 1 set of specifications offers clients guaranteed integrity of the metadata delivery from an
authenticated server. This technology is described in TS 102 822-7 [16]. A metadata server that supports the
TS 102 822-7 [16] specification for integrity checking SHALL be capable of communicating with clients that
implement TS 102 822-7 [16] and with clients that do not. If TS 102 822-7 [16] is used and the server wishes to identify
the source of the request, it SHOULD do so using HTTP Basic Authentication (negotiated according to HTTP/1.0 [5]).
Any additional security services are not mandated or prevented by the present document and fall outside its scope.

7 Metadata Service Capability Descriptions
For each TV-Anytime get_Data or submit_Data operation that is provided, there is a corresponding operation,
describe_get_Data or describe_submit_Data. These two operations (an operation, X, and its
corresponding describe_X operation) together form a port (see annex A). Since a port always has a single binding and
endpoint, the URL of the operation, X, and its corresponding describe_X operation must be the same. A describe
operation is responsible for returning a capability description for the corresponding operation of the same port. A
describe operation has no input parameters.

7.1 describe_get_Data
The get_Data capability description provides the following type of information about the operation.

• Human-readable descriptive information about the operation.

• The types of metadata tables available.

• If content referencing information is available, the Resolving Authority Records for that get_Data
operation.

• If programme metadata is available, the CRID authorities known by the server for that type of metadata.

• If scheduling information is available, the content delivery services know by that server.

• If metadata queries are possible, the query fields that are allowed for each table.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 38

• If sorting is possible, the sort fields that are supported for each table and the type of collation on which the sort
is based.

• The ability of the operation to deliver update and invalidation information.

The format of the capability description is as follows.

 <element name="describe_get_Data_Result"
 type="tns:describe_get_Data_Result"/>
 <complexType name="describe_get_Data_Result">
 <sequence>
 <element name="Name" type="string" minOccurs="0"/>
 <element name="Description" type="mpeg7:TextualType" minOccurs="0"
 maxOccurs="unbounded"/>
 <element name="CollationURI" type="anyURI" minOccurs="0"/>
 <element name="ExtendedFieldList" type="tns:FieldIDDefinitionListType"
 minOccurs="0">
 <key name="UniqueExtendedFields">
 <selector xpath="tns:FieldIDDefinition"/>
 <field xpath="@fieldID"/>
 </key>
 </element>
 <element name="AuthorityList" type="tns:AuthorityListType"
 minOccurs="0"/>
 <element name="AvailableTables" type="tns:AvailableTableListType"/>
 <element name="UpdateCapability" type="tns:updateCapabilityType"
 minOccurs="0"/>
 </sequence>
 <attribute name="serviceVersion" type="unsignedInt" use="required"/>
 </complexType>

Name Definition
serviceVersion A REQUIRED parameter that MUST equal the version

number returned as part of the corresponding operation's
result. The intention of this number is to make the client
aware when an operation has been upgraded (e.g. can be
searched on new channels or for new resolution
authorities) and to refresh the cached capability
description information (if any).

Name OPTIONAL name of the metadata service, suitable for
display to a user.

Description OPTIONAL textual description of the metadata service,
suitable for display to a user. This allows an application
exploiting the metadata service to indicate to the user
information about the metadata service that she is using
(e.g. "Specialists in movie information and reviews").

CollationURI OPTIONAL URI that indicates the name of the collation
that sorts are based on. If no sorting is supported this field
is meaningless and SHOULD be omitted. If sorting is
supported and this field is not present then sorting MUST
be based on the Default Unicode Collation Element Table.
The present document does not define the form of the
URI, or any means of specifying or obtaining a collation.
Regional bodies may define suitable URIs and their
associated collations, as appropriate to their locale.

ExtendedFieldList Provides a list of fieldID values and their associated
field using the FieldIDDefinitionListType. Used
for fields that the server wishes to support but are not
allocated a fieldID by the TV-Anytime Forum (see
clause 5.1.1.1.1).

AuthorityList An OPTIONAL list of authorities for which this operation
can provide metadata for all the table types it is capable
of delivering. See also clause 7.1.1.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 39

Name Definition
AvailableTables A REQUIRED description of the types of data tables that

can be returned by this get_Data response. At least
one Table entry MUST be present. For each table, the
fields that can be queried on and sorted on are specified.
Depending on the type of table, other descriptive
information is sometimes included.

UpdateCapability An OPTIONAL update capability description to indicate
the server's capability of update capability as defined in
clause 5.1.2.4. When this element does not exist, the
server does not support either versioned update nor the
invalid fragment notification. See clause 7.1.4 for more
details.

For examples of get_Data capability descriptions see annex D.

7.1.1 Use of the AuthorityList element

 <complexType name="AuthorityListType">
 <sequence>
 <element name="Authority" type="string" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

Name Definition
AuthorityListType A definition of a list of one or more Authority

elements.
Authority Specifies a single authority for whose CRIDs the

operation is able to provide TV-Anytime data.

The AuthorityList element can be instantiated in two locations:

• As one of the elements at the top level of the capability description. In this case, the server is able to provide
data on the listed authorities for all of the data table types that are listed in the AvailableTables element.
If the capability description indicates that a ContentReferencingTable can be returned, then there
SHOULD be a ResolvingAuthorityRecord for each of the authorities listed in the top level
AuthorityList. This element allows a server to specify its list of supported authorities, without the need
to repeat this information for every table that it supports.

• As one of the children elements of a table listed in the AvailableTables element. In this case, the server
is able to provide data of the type indicated by the Table elements xml schema declared type attribute for
this authority.

NOTE: The capability description indicating that a certain type of metadata is available for a certain authority
does not necessarily mean that the server will be able to provide that metadata for any particular CRID.

7.1.2 AvailableTables information

This element describes which table types the get_Data operation is capable of returning. Depending upon the table
type, each entry in the list (a Table element) can contain a different child element. These child elements contain
descriptive information that is relevant to that table type.

 <complexType name="AvailableTableListType">
 <sequence>
 <element name="Table" type="tns:AvailableTableBase"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <complexType name="AvailableTableBase" abstract="true">
 <sequence>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 40

 <element name="AuthorityList" type="tns:AuthorityListType"
 minOccurs="0"/>
 </sequence>
 <attribute name="canSort" type="tns:fieldIDListType"/>
 <attribute name="canQuery" type="tns:fieldIDListType"/>
 </complexType>
 <complexType name="ContentReferencingTable">
 <complexContent>
 <extension base="tns:AvailableTableBase">
 <sequence>
 <element ref="rar:ResolvingAuthorityRecordTable"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
<complexType name="ClassificationSchemeTable">
 <complexContent>
 <extension base="tns:AvailableTableBase"/>
 </complexContent>
</complexType>
 <complexType name="ProgramInformationTable">
 <complexContent>
 <extension base="tns:AvailableTableBase"/>
 </complexContent>
 </complexType>
 <complexType name="GroupInformationTable">
 <complexContent>
 <extension base="tns:AvailableTableBase"/>
 </complexContent>
 </complexType>
 <complexType name="ProgramLocationTable">
 <complexContent>
 <extension base="tns:AvailableTableBase">
 <sequence>
 <element name="AvailableLocations">
 <complexType>
 <sequence>
 <element name="Availability" type="duration" minOccurs="0"/>
 <element name="ServiceURL" type="anyURI"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="ProgramReviewTable">
 <complexContent>
 <extension base="tns:AvailableTableBase"/>
 </complexContent>
 </complexType>
 <complexType name="SegmentInformationTable">
 <complexContent>
 <extension base="tns:AvailableTableBase"/>
 </complexContent>
 </complexType>
 <complexType name="ServiceInformationTable">
 <complexContent>
 <extension base="tns:AvailableTableBase"/>
 </complexContent>
 </complexType>
 <complexType name="CreditInformationTable">
 <complexContent>
 <extension base="tns:AvailableTableBase"/>
 </complexContent>
 </complexType>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 41

Name Definition
Table Indicates that a particular table is available from this

get_Data operation and encapsulates information
relevant to querying that table. All instantiations of this
element will be derived from the base type,
AvailableTableBase, which can have the following
three attributes.

xsi:type This is the xml schema declared type attribute which is
used to indicate the type of table where xsi is used as the
namespace qualifier for xml schema. Can take the
following values: ContentReferencingTable,
ProgramInformationTable, GroupInformationTable,
ProgramLocationTable, ProgramReviewTable,
SegmentInformationTable, ServiceInformationTable, and
CreditsInformationTable.

canQuery List of fieldID values indicating the query fields that
can be accepted by this operation. The order of the fields
is not significant. All tables that can be queried on (see
clause 5.1.1.1.4), except the
ServiceInformationTable, MUST support querying
using the CRID field. Hence, this attribute is meaningless
when combined with a table of type
"ContentReferencingTable" and
"CreditsInformationTable". If this attribute is not present
no other type of querying is supported for this table.

canSort List of fieldID values indicating the query fields that
can be used for sorting (as indicated using the
SortCriteria parameter in a query). For every field
that a server declares that it supports sorting, it SHALL
support both ascending and descending sorting of that
field. If this attribute is not present, sorting is not
supported for this table. The order of the fields is not
significant.

AuthorityList An OPTIONAL list of authorities for which this operation
can provide metadata of the type included in this table.
See also clause 7.1.1.

ResolvingAuthorityRecordTable As defined in TS 102 822-4 [14]. This element is
REQUIRED if Table has the type
"ContentReferencingTable". Tables of this type SHOULD
NOT include an AuthorityList (since the
ResolvingAuthorityRecordTable indicates which
authorities content referencing information is provided
for).

AvailableLocations This element is REQUIRED if the Table has the type
"ProgramLocationTable". The element specifies the types
of programme location related queries that can be
answered by the server.

Availability An OPTIONAL duration that indicates to the client the
time window over which the schedule information is
available (e.g. "it is possible to query these channels for
the next 10 days only").

ServiceURL The content services for which scheduling information is
available (corresponds to the ServiceURL element that
can be included in a ServiceInformationTable).

7.1.2.1 Operations that can deliver content referencing information

If the server is capable of delivering content referencing information then the description will include a list of Resolving
Authority Records describing the resolution services offered by this server. This allows a client to establish whether a
particular CRID may be resolved using the metadata service.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 42

7.1.2.2 Operations that can deliver programme metadata

If the server is capable of delivering programme metadata then the description will include a list of CRID authorities for
which metadata is available.

If the server is capable of delivering scheduling information (ProgramLocationTable), a list of the content service
URLs (e.g. broadcast channels, IP multicast services, or on-demand contents servers) known by this metadata service is
also provided. Using this data a receiver can determine whether any of the programmes being described by this server
are being offered using content delivery services that are actually available to the receiver. Based upon this information
a receiver can construct queries for scheduling information, such as the one shown in example 7 in annex C.

7.1.3 Extended Field List

If a metadata service wishes to support querying or sorting on fields that are not allocated fieldIDs by the
TV-Anytime Forum, it has to define these field using its own ExtendedFieldList. This allows a get_Data
operation to provide searching and sorting functionality that is specialized to the metadata available to that metadata
service. For example, if a metadata service specializes in providing segmentation information for the highlights of
sports programmes, the metadata service can define extended fields for the Title and Synopsis of segments so as to
allow receivers to make refined queries for segmentation information.

7.1.4 Description of update capabilities

There are two OPTIONAL features whose support shall be independently indicated using this part of the capability
description.

 <complexType name="updateCapabilityType">
 <attribute name="versionRequest" type="boolean" default="true"/>
 <attribute name="invalidResponse" type="boolean" default="true"/>
 </complexType>

Name Definition
updateCapabilityType Defines a container of versionRequest and

invalidResponse attributes, which can specify
whether the server can provide versioned metadata and
lists of invalid fragments.

versionRequest An attribute of Boolean value to indicate the server's
capability of handling version requests.

invalidResponse An attribute of Boolean value to indicate whether the
server is able to provide invalidated fragments when they
are no longer valid or removed.

7.2 describe_submit_Data
The describe_submit_Data capability description provides a metadata service with the ability to describe the
usage and preference information that it wishes to receive. It can optionally specify the privacy policy that will be used
when user centric data is submitted to this metadata service.

 <complexType name="describe_submit_Data_Result">
 <sequence>
 <element name="Name" type="string" minOccurs="0"/>
 <element name="Description" type="mpeg7:TextualType" minOccurs="0"
 maxOccurs="unbounded"/>
 <element name="RequestedTables" type="tns:RequestedSubmitTablesType"/>
 <element ref="p3p:POLICY" minOccurs="0"/>
 </sequence>
 </complexType>
 <complexType name="RequestedSubmitTablesType">
 <sequence>
 <element name="Table" maxOccurs="unbounded">
 <complexType>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 43

 <attribute name="type" use="required">
 <simpleType>
 <restriction base="string">
 <enumeration value="UserPreferences"/>
 <enumeration value="UsageHistory"/>
 </restriction>
 </simpleType>
 </attribute>
 </complexType>
 </element>
 </sequence>
 </complexType>

Name Definition
Name OPTIONAL name of the metadata service, suitable for

display to a user.
Description OPTIONAL textual description of the metadata service,

suitable for display to a user. This allows an application
exploiting the metadata service to indicate to the user
information about the metadata service that she is using.

RequestedTables The list of tables that this operation wishes to receive.
p3p:POLICY OPTIONAL element that describes the privacy policy of

this operation, using the Platform for Privacy Preferences
[23] specification.

RequestedSubmitTablesType A list of table elements containing at least one entry.
Table Specifies the type of table requested by the server.

type REQUIRED parameter giving the type of TV-Anytime
table requested by the server. Can take the values:
"UsageHistory" or "UserPreferences".

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 44

Annex A (normative):
Formal Definition of Metadata Services
This annex provides a WSDL [20] interface definition for all TV-Anytime metadata services. WSDL defines a number
of terms used to describe web services. The way in which these relate to TV-Anytime metadata services is given below.

• Operation: All TV-Anytime operations are request-response based, so can be thought of as a type of remote
procedure call. An example of a TV-Anytime operation is submit_Data or describe_get_Data.

• PortType: A collection of operations. When given a binding and a concrete endpoint the portType is known
as a port. All operations in a given port MUST be present (i.e. it is not possible to offer only some of the
operations in a port) and MUST have the same binding. The TV-Anytime Forum defines two portTypes
(get_Data and submit_Data), each of which has two operations, the basic functionality (get_Data or
submit_Data) and the corresponding describe operation (describe_get_Data or
describe_submit_Data).

• Binding: A particular protocol binding (e.g. SOAP or HTTP GET) for a portType. There may be more than
one binding for each portType. Each one is a different port and offers an alternative means for accessing the
same portType. A TV-Anytime server could choose to provide other bindings, such as an HTTP POST
implementation. By mandating a SOAP binding, a minimum level of interoperability is guaranteed.

• Service: A family of WSDL ports that are related in some way. A TV-Anytime metadata service can contain a
get_Data port and/or a submit_Data port. In practice, most TV-Anytime servers will have just one WSDL
service. However, the server provider could choose to group certain ports together for some reason. (E.g. a
movie service containing a get_Data port and a submit_Data port, and a children service containing
just a get_Data port).

The following document is a WSDL interface definition that defines the behaviour of all TV-Anytime defined web
services. It plays two roles:

• The WSDL interface formally specifies the inputs, outputs, encodings and transport bindings used by all
TV-Anytime web services. The definitions given correspond to the specification of TV-Anytime metadata
services earlier in this document.

• Metadata service providers wishing to provide WSDL implementation definitions for their metadata services
can import this WSDL interface definition. Annex G gives an example of how such a WSDL implementation
can be referenced from a WS-Inspection description.

<?xml version="1.0"?>
<definitions
 targetNamespace="urn:tva:transport:wsdl:2002"
 xmlns:tns="urn:tva:transport:wsdl:2002"
 xmlns:tva="urn:tva:transport:2002"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <documentation> WSDL Service Interface for a TV Anytime web service API. This WSDL
document defines the API calls for the two types of TV Anytime ports</documentation>
 <import namespace="urn:tva:transport:2002"/>
 <!-- Basic input and output messages. -->
 <message name="get_Data">
 <part name="body" element="tva:get_Data"/>
 </message>
 <message name="get_Data_Result">
 <part name="body" element="tva:get_Data_Result"/>
 </message>
 <message name="describe_get_Data">
 <part name="body" element="tva:describe_get_Data"/>
 </message>
 <message name="describe_get_Data_Result">
 <part name="body" element="tva:describe_get_Data_Result"/>
 </message>
 <message name="submit_Data">

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 45

 <part name="body" element="tva:submit_Data"/>
 </message>
 <message name="submit_Data_Result">
 <part name="body" element="tva:submit_Data_Result"/>
 </message>
 <message name="describe_submit_Data">
 <part name="body" element="tva:describe_submit_Data"/>
 </message>
 <message name="describe_submit_Data_Result">
 <part name="body" element="tva:describe_submit_Data_Result"/>
 </message>
 <message name="ErrorReportMessage">
 <part name="body" element="tva:ErrorReport"/>
 </message>
 <!-- The different types of services (ports) with their inputs and outputs. -->
 <portType name="get_Data_Port">
 <operation name="get_Data">
 <input message="tns:get_Data"/>
 <output message="tns:get_Data_Result"/>
 <fault name="error" message="tns:ErroReportMessage"/>
 </operation>
 <operation name="describe_get_Data">
 <input message="tns:describe_get_Data"/>
 <output message="tns:describe_get_Data_Result"/>
 <fault name="error" message="tns:ErroReportMessage"/>
 </operation>
 </portType>
 <portType name="submit_Data_Port">
 <operation name="submit_Data">
 <input message="tns:submit_Data"/>
 <output message="tns:submit_Data_Result"/>
 <fault name="error" message="tns:ErroReportMessage"/>
 </operation>
 <operation name="describe_submit_Data">
 <input message="tns:describe_submit_Data"/>
 <output message="tns:describe_submit_Data_Result"/>
 <fault name="error" message="tns:ErroReportMessage"/>
 </operation>
 </portType>
 <!-- The bindings: defines how SOAP/HTTP is used to carry the service. -->
 <binding name="get_Data_SOAP" type="tns:get_Data_Port">
 <documentation>TV Anytime get_Data binding</documentation>
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="get_Data">
 <soap:operation soapAction="get_Data"/>
 <input>
 <soap:body use="literal" parts="body"/>
 </input>
 <output>
 <soap:body use="literal" parts="body"/>
 </output>
 <fault name="error">
 <soap:fault use="literal"/>
 </fault>
 </operation>
 <operation name="describe_get_Data">
 <soap:operation soapAction="describe_get_Data"/>
 <input>
 <soap:body use="literal" parts="body"/>
 </input>
 <output>
 <soap:body use="literal" parts="body"/>
 </output>
 <fault name="error">
 <soap:fault use="literal"/>
 </fault>
 </operation>
 </binding>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 46

 <binding name="submit_Data_SOAP" type="tns:submit_Data_Port">
 <documentation>TV Anytime submit_Data binding</documentation>
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="submit_Data">
 <soap:operation soapAction="submit_Data"/>
 <input>
 <soap:body use="literal" parts="body"/>
 </input>
 <output>
 <soap:body use="literal" parts="body"/>
 </output>
 <fault name="error">
 <soap:fault use="literal"/>
 </fault>
 </operation>
 <operation name="describe_submit_Data">
 <soap:operation soapAction="describe_submit_Data"/>
 <input>
 <soap:body use="literal" parts="body"/>
 </input>
 <output>
 <soap:body use="literal" parts="body"/>
 </output>
 <fault name="error">
 <soap:fault use="literal"/>
 </fault>
 </operation>
 </binding>
</definitions>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 47

Annex B (normative):
TV Anytime defined field and contextNode identifiers
The TV-Anytime fieldID definition scheme which is defined in clause 5.1.1.1.2 is included in the
tva_fieldID_definitions_v10.xml file.

The TV-Anytime contextNodeID definition scheme which is defined in clause 5.1.1.1.1 is included in the
tva_contextNodeID_definitions_v10.xml file.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 48

Annex C (informative):
Examples of get_Data Requests
This annex gives some simple examples of how a PredicateBag element can be used to represent different types of
queries. By combining these PredicateBag elements more refined queries can be built up.

C.1 Requesting data on specific CRIDs
To retrieve metadata on a particular set of CRIDs, the following query type is used. The type of data returned will
depend upon the RequestedTables parameter.

 <PredicateBag type="OR">
 <BinaryPredicate fieldID="tvaf:CRID" fieldValue="crid://example.com/foo"/>
 <BinaryPredicate fieldID="tvaf:CRID" fieldValue="crid://example.com/bar"/>
 </PredicateBag>

C.2 Requesting specific fragments
To obtain a particular set of fragments, the query takes the following form.

 <PredicateBag type="OR">
 <BinaryPredicate fieldID="tvaf:fragmentID" fieldValue="34567"/>
 <BinaryPredicate fieldID="tvaf:fragmentID" fieldValue="12344"/>
 </PredicateBag>

The RequestedTable parameter can still be used to sort fragments retrieved in this fashion, but it has no effect on
the fragments returned (i.e. it does not cause fragments from other tables to be returned also).

C.3 Searching for the film "Titanic"
The following search would return any programme with "Titanic" in the title.

 <BinaryPredicate fieldID="tvaf:Title" fieldValue="Titanic" test="contains"/>

To refine the query to find a specific "Titanic" programme the following query could be used. The following will only
return matches that were directed by James Cameron.

 <QueryConstraints>
 <PredicateBag type="AND">
 <BinaryPredicate fieldID="tvaf:Title" fieldValue="Titanic"/>
 <PredicateBag type="AND" contextNode="tvac:CreditsItem">
 <BinaryPredicate fieldID="tvaf:Role" fieldValue=":role:V83"/>
 <BinaryPredicate fieldID="tvaf:GivenName" fieldValue="James"/>
 <BinaryPredicate fieldID="tvaf:FamilyName" fieldValue="Cameron"/>
 </PredicateBag>
 </PredicateBag>
 </QueryConstraints>
 <RequestedTables>
 <Table type="ProgramInformationTable">
 <SortCriteria fieldID="tvaf:CRID" order="ascending"/>
 </Table>
 <Table type="GroupInformationTable">
 <SortCriteria fieldID="tvaf:CRID" order="ascending"/>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 49

 </Table>
 </RequestedTables>

C.4 Searching for a comedy drama that does not star Jim
Carrey

The following search will find comedy dramas, but only those that do not involve Jim Carrey as a key character.

 <PredicateBag type="AND">
 <BinaryPredicate fieldID="tvaf:Genre" fieldValue=":content:3.4.11"/>
 <PredicateBag negate="true" type="AND" contextNode="tvac:CreditsItem">
 <BinaryPredicate fieldID="tvaf:Role" fieldValue=":role:V709"/>
 <BinaryPredicate fieldID="tvaf:GivenName" fieldValue="Jim"/>
 <BinaryPredicate fieldID="tvaf:FamilyName" fieldValue="Carey"/>
 </PredicateBag>
 </PredicateBag>

C.5 Searching for a programme with a rating of more
than 8

The following predicate will find only programmes that have been assigned review ratings of more than 8 by the user's
favorite reviewer, John Green.

 <PredicateBag type="AND" contextNode="tvac:Review">
 <BinaryPredicate fieldID="tva:ReviewerGivenName" fieldValue="John"/>
 <BinaryPredicate fieldID="tvaf:ReviewerFamilyName" fieldValue="Green"/>
 <BinaryPredicate fieldID="tvaf:RatingValue" test="greater_than_or_equals"
 fieldValue="8"/>
 </PredicateBag>

C.6 Searching for a ClassificationScheme Table
The following predicate will find the ClassificationScheme Uri equals "urn:tva:metadata:cs:TVARoleCS:2002" or the
CSAlias equals "TVARoleCS".

<get_Data xmlns=urn:tva:transport:2002 ...>
<QueryConstraints>
 <PredicateBag type="OR">
 <BinaryPredicate fieldID="CSUri"
 fieldValue="urn:tva:metadata:cs:TVARoleCS:2002" />
 <BinaryPredicate fieldID="CSAlias" fieldValue="TVARoleCS" />
 </PredicateBag>
 </QueryConstraints>
 <RequestedTables>
 <Table type="ClassificationScheme"/>
 </RequestedTables>
</get_Data>

The response including the ClassificationSchemeTable would be as below:

<get_Data_Result ...>
 <TVAMain version="20020928" publisher="TVA-Metadata-Service" ...>
 <ClassificationSchemeTable>
 <ClassificationScheme uri="urn:tva:metadata:cs:TVARoleCS:2002">

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 50

 <Import href="urn:mpeg:mpeg7:cs:RoleCS:2001"/>
 <mpeg7:Term termID="V708">
 <mpeg7:Name xml:lang="en">Dubber</mpeg7:Name>
 </mpeg7:Term>
 ...
 </ClassificationScheme>
 </ClassificationSchemeTable>
 </TVAMain>
</get_Data_Result>

C.7 Creating an EPG
The following search retrieves all the broadcast programmes on three specific channels over a two-day period.

 <PredicateBag type="AND">
 <BinaryPredicate fieldID="tvaf:PublishedTime"
 fieldValue="2002-09-26T00:00:00Z" test="greater_than_or_equals"/>
 <BinaryPredicate fieldID="tvaf:PublishedTime"
 fieldValue="2002-09-27T23:59:59Z" test="less_than_or_equals"/>
 <PredicateBag type="OR">
 <BinaryPredicate fieldID="tvaf:ServiceURL" fieldValue="dvb://1.2.1"/>
 <BinaryPredicate fieldID="tvaf:ServiceURL" fieldValue="dvb://1.2.2"/>
 <BinaryPredicate fieldID="tvaf:ServiceURL" fieldValue="dvb://1.2.3"/>
 </PredicateBag>
 </PredicateBag>

C.8 Searching for programmes with a review
This query searches for programmes being shown tonight that have a review. This is an example of when an "exists"
test might be useful.

 <PredicateBag type="AND">
 <BinaryPredicate fieldID="tvaf:PublishedTime"
 fieldValue="2002-09-26T00:00:00Z" test="greater_than_or_equals"/>
 <BinaryPredicate fieldID="tvaf:PublishedTime"
 fieldValue="2002-09-27T23:59:59Z" test="less_than_or_equals"/>
 <UnaryPredicate fieldID="tvaf:Review" test="exists"/>
 </PredicateBag>

The query below requests programme reviews of programmes with "Titanic" in the title:

 <QueryConstraints>
 <BinaryPredicate fieldID="tvaf:Title" fieldValue="Titanic" test="contains"/>
 </QueryConstraints>
 <RequestedTables>
 <Table type="ProgramReviewTable"/>
 </RequestedTables>

If we now request for programme reviews of programmes with either "Titanic" or "Star Wars" in the title, it is not clear
in the result which review corresponds to which part of the request.

 <QueryConstraints>
 <PredicateBag type="OR">
 <BinaryPredicate fieldID="tvaf:Title" fieldValue="Titanic" test="contains"/>
 <BinaryPredicate fieldID="tvaf:Title" fieldValue="Star Wars" test="contains"/>
 </PredicateBag>
 </QueryConstraints>
 <RequestedTables>
 <Table type="ProgramReviewTable"/>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 51

 </RequestedTables>

A solution to remove the ambiguity is to not use the disjunctive condition in this case and to issue separate requests.

Another solution to remove the ambiguity is to add the following tables "ProgramInformationTable" and
"GroupInformationTable" to the request or to issue a second request for "ProgramInformationTable" and
"GroupInformationTable" using CRIDs returned within the first response.

C.9 Updating a fragment
The following query will check to see if a metadata service has a later version of a fragment than the version cached by
the receiver.

 <PredicateBag type="AND">
 <Predicate fieldID="tvaf:fragmentID" fieldValue="34567"/>
 <Predicate fieldID="tvaf:fragmentVersion"
 test="greater_than" fieldValue="20020925"/>
 </PredicateBag>

C.10 Requesting update fragments

Following is an example of a query to retrieve fragments which are updated after the given date, i.e. September 25,
2002, using the service described in clause C.5.

<BinaryPredicate fieldID="tvaf:fragmentVersion" test="greater_than"
 fieldValue="20020925"/>

As a response to the previous example query, a metadata of following format can be received. In this response, it
notifies the client system that the fragment with fragmentID "11" published before September, 30, 2002 and the
fragment with fragmentID "15" published before September, 27, 2002 are no longer valid in addition to the updated
fragments of programme information table and programme location table.

<get_Data_Result ...>
 <Invalid>
 <Fragment fragmentID="11" fragmentVersion="20020930"/>
 <Fragment fragmentID="15" fragmentVersion="20020927"/>
 </Invalid>
 <TVAMain version="20020928" publisher="TVA-Metadata-Service" ...>
 <ProgramDescription>
 <ProgramInformationTable>
 <ProgramInformation fragmentID="040" fragmentVersion="20021001">
 <!--..: etc. -->
 </ProgramInformation>
 </ProgramInformationTable>
 <ProgramLocationTable>
 <Schedule fragmentID="023" fragmentVersion="20020928">
 ...
 </Schedule>
 </ProgramLocationTable>
 </ProgramDescription>
 </TVAMain>
</get_Data_Result>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 52

Annex D (informative):
Examples of get_Data Operation's Capability Description
This annex gives some examples of the different types of functionality a get_Data operation might offer in real-life
TV-Anytime metadata service deployments.

D.1 Pure location resolution service
A broadcaster provides a location resolution service over IP as an alternative to its unidirectional location resolution
service. No other data is provided by the web service, which only offers a get_Data operation that is capable of
returning a ContentReferencingTable and no other table types. Only CRIDs from the autnam.com authority
can be resolved using this operation.

<describe_get_Data_Result serviceVersion="3"
 xmlns="urn:tva:transport:2002">
 <AvailableTables>
 <Table xsi:type="ContentReferencingTable">
 <ResolvingAuthorityRecordTable
 xmlns="urn:tva:ResolvingAuthority:2002">
 <ResolvingAuthorityRecord>
 <ResolutionProvider>autnam.com</ResolutionProvider>
 <AuthorityName>autnam.com</AuthorityName>
 <Class>primary</Class>
 <VersionNumber>1000</VersionNumber>
 <URL>http://www.autnam.com/lr/</URL>
 <FirstValidDate>2000-09-06T09:30:00Z</FirstValidDate>
 <LastValidDate>2000-09-28T18:00:00Z</LastValidDate>
 <Weighting>1</Weighting>
 </ResolvingAuthorityRecord>
 </ResolvingAuthorityRecordTable>
 </Table>
 </AvailableTables>
</describe_get_Data_Result>

D.2 Pure metadata retrieval service for broadcast
enhancement

A broadcaster chooses to deliver enhanced metadata (critical reviews and segmentation data) using the bi-directional
channel. All other data (including scheduling and content referencing information) is delivered by means of the
unidirectional channel. The broadcaster offers a get_Data operation that is able to provide a
ProgramInformationTable, GroupInformationTable, ProgramReviewTable and
SegmentInformationTable in its responses. All of these tables can be queried using the fragmentId and
fragmentVersion to allow integration with, and updating of, unidirectionally delivered metadata. This is indicated
using the UpdateCapability element appropriately. In addition, the ProgramInformationTable and
GroupInformationTable can be sorted according to Title and Genre fields. Queries based upon metadata
constraints are not supported by this metadata service.

<describe_get_Data_Result serviceVersion="3"
 xmlns="urn:tva:transport:2002">
 <AuthorityList>
 <Authority>broadcaster.com</Authority>
 </AuthorityList>
 <AvailableTables
 xmlns:tvaf="urn:tva:transport:fieldIDs:2002">
 <Table xsi:type="ProgramInformationTable" canQuery="tvaf:fragmentID
 tvaf:fragmentVersion" canSort="tvaf:Title tvaf:Genre"/>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 53

 <Table xsi:type="GroupInformationTable" canQuery="tvaf:fragmentID
 tvaf:fragmentVersion" canSort="tvaf:Title tvaf:Genre"/>
 <Table xsi:type="ProgramReviewTable" canQuery="tvaf:fragmentID
 tvaf:fragmentVersion"/>
 <Table xsi:type="SegmentInformationTable" canQuery="tvaf:fragmentID
 tvaf:fragmentVersion"/>
 </AvailableTables>
 <UpdateCapability versionRequest="true" invalidResponse="false"/>
</describe_get_Data_Result>

D.3 A rich metadata service that allows users to search
for movies

The operation could be provided by a third party (e.g. IMDB.com) who creates its own CRIDs that can be resolved into
creator CRIDs. This would require the web server to provide a get_Data operation that supports searches for movies
based on Title, Keywords, Genre and Actors / Directors. The operation also allows searches on an extended field:
colour. The operation is able to return a ContentReferencingTable, ProgramInformationTable and
ProgramReviewTable.

<describe_get_Data_Result serviceVersion="3"
 xmlns="urn:tva:transport:2002">
 <Name>Barry Norman's Movie Recommendations</Name>
 <Description>For dedicated movie fans. Find the latest reviews and
ratings</Description>
 <ExtendedFieldList
 targetNamespace=http://www.barry-norman.com/tva-fields
 xmlns:tva="urn:tva:metadata:2002">
 <FieldIDDefinition fieldID="Color"
fieldDefinition="/tva:TVAMain/tva:ProgramDescription/tva:ProgramInformationTable/tva:Prog
ramInformation/tva:AVAttributes/tva:VideoAttributes/tva:Color/@type"/>
 </ExtendedFieldList>
 <AuthorityList>
 <Authority>barry-norman.com</Authority>
 </AuthorityList>
 <AvailableTables>
 <Table xsi:type="ContentReferencingTable">
 <ResolvingAuthorityRecordTable
 xmlns="urn:tva:ResolvingAuthority:2002">
 <ResolvingAuthorityRecord>
 <ResolutionProvider>barry-norman.com</ResolutionProvider>
 <AuthorityName>barry-norman.com</AuthorityName>
 <Class>primary</Class>
 <VersionNumber>1000</VersionNumber>
 <URL>http://www.barry-norman.com/tva</URL>
 <FirstValidDate>2000-09-06T09:30:00Z</FirstValidDate>
 <LastValidDate>2000-09-28T18:00:00Z</LastValidDate>
 <Weighting>1</Weighting>
 </ResolvingAuthorityRecord>
 </ResolvingAuthorityRecordTable>
 </Table>
 <Table xsi:type="ProgramInformationTable"
 xmlns:tvaf=urn:tva:transport:fieldIDs:2002
 xmlns:ef=http://www.barry-norman.com/tva-fields
 canQuery="tvaf:Title tvaf:Keyword tvaf:Genre tvaf:Role
 tvaf:GivenName tvaf:FamilyName ef:Color"/>
 <Table xsi:type="ProgramReviewTable"/>
 </AvailableTables>
</describe_get_Data_Result>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 54

D.4 Broadcaster provided metadata service used for
constructing traditional EPGs

The metadata service allows querying for scheduling information, based upon the start time and content service of the
programmes. The resulting ProgramLocationTable can be sorted according to the start time and channel of the
programmes. Using the associated ProgramInformationTable a receiver can efficiently construct an EPG.

<describe_get_Data_Result serviceVersion="3"
 xmlns="urn:tva:transport:2002">
 <AuthorityList>
 <Authority>broadcaster.com</Authority>
 </AuthorityList>
 <AvailableTables
 xmlns:tvaf="urn:tva:transport:fieldIDs:2002">
 <Table xsi:type="ProgramInformationTable"/>
 <Table xsi:type="ProgramLocationTable" canQuery="tvaf:ServiceURL
 tvaf:PublishedTime" canSort="tvaf:ServiceURL tvaf:PublishedTime">
 <AvailableLocations>
 <Availability>P7D</Availability>
 <ServiceURL>dvb://2.7d1.13</ServiceURL>
 <ServiceURL>dvb://2.7d1.14</ServiceURL>
 </AvailableLocations>
 </Table>
 </AvailableTables>
</describe_get_Data_Result>

D.5 Pure metadata retrieval service for bi-directional
channel

A third party or a broadcaster could deliver metadata using the bi-directional channel. The third party or the broadcaster
offers a get_Data operation that is able to provide a ProgramInformationTable,
GroupInformationTable, ProgramReviewTable ProgramLocationTable, and
SegmentInformationTable in its responses. The metadata service allows querying for scheduling information,
based upon the start time, end time. The resulting ProgramLocationTable can be sorted according to the start
time and channel of the programmes. All of these tables can be queried using the fragmentId and
fragmentVersion to allow updating of the previously delivered metadata. This is indicated using the
UpdateCapability element appropriately.

<describe_get_Data_Result serviceVersion="3"
 xmlns="urn:tva:transport:2002">
 <AuthorityList>
 <Authority>broadcaster.com</Authority>
 </AuthorityList>
 <AvailableTables
 xmlns:tvaf="urn:tva:transport:fieldIDs:2002">
 <Table xsi:type="ProgramInformationTable"
 canQuery="tvaf:fragmentID tvaf:fragmentVersion"
 canSort="tvaf:Title tvaf:Genre"/>
 <Table xsi:type="GroupInformationTable"
 canQuery="tvaf:fragmentID tvaf:fragmentVersion"
 canSort="tvaf:Title tvaf:Genre"/>
 <Table xsi:type="ProgramReviewTable"
 canQuery="tvaf:fragmentID tvaf:fragmentVersion"/>
 <Table xsi:type="SegmentInformationTable"
 canQuery="tvaf:fragmentID tvaf:fragmentVersion"/>
 <Table xsi:type="ProgramLocationTable"
 canQuery=" tvaf:fragmentID tvaf:fragmentVersion tvaf:PublishedTime"
 canSort="tvaf:ServiceURL tvaf:PublishedTime">
 <AvailableLocations>
 <Availability>P7D</Availability>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 55

 <ServiceURL>dvb://2.7d1.13</ServiceURL>
 <ServiceURL>dvb://2.7d1.14</ServiceURL>
 </AvailableLocations>
 </Table>
 </AvailableTables>
 <UpdateCapability versionRequest="true" invalidResponse="true"/>
</describe_get_Data_Result>

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 56

Annex E (informative):
Use of BiM Encoded Metadata in Bi-directional Transport
This clause provides a framework for the OPTIONAL usage of BiM encoding of SOAP, within the context of
TV-Anytime delivery of metadata over a bi-directional network. It ensures encodability of SOAP messages and
interoperability between applications within that context.

E.1 Applying BiM encoding
In order to apply BiM encoding to a SOAP message, one needs to have an XML Schema describing it. Given the
constraints expressed in the present document and the schema it contains, a schema describing a complete SOAP
message is produced to provide the SOAP specific parts that are missing. Once such a schema is obtained, BiM
encoding functionality can be added in a non-intrusive manner as it is solely concerned with encoding and Content
Negotiation (described in clause 6.3).

Similarly, additional SOAP headers MAY be defined using locally added schema definitions, but will be discarded
otherwise, taking into account limitations imposed on SOAP listed in clause 6.1. Future versions of the present
document may define SOAP headers either directly or by reference, in which case they will be added to the schema
describing the complete SOAP messages.

E.2 Negotiation of BiM Encoding
The HTTP 1.0 specification defines a mechanism allowing a user agent to reach an agreement with the server with
which it is communicating based on the Accept-Encoding and Content-Encoding headers. This process is known as
Content Negotiation. Clause 6.3 of the present document requires that clients and servers support the Accept-Encoding
header, and that Content Negotiation take place between them so as to determine the best encoding.

In addition to this, clients and servers that choose to transfer data in a BiM encoded form SHALL flag BiM encoded
content with a proper Content-Encoding header upon transmission, and SHALL NOT change the Content-Type
corresponding to their content.

The content coding token corresponding to the BiM encoding is x-bim.

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 57

Annex F (informative):
Bibliography
Documents are available from the TV-Anytime web site http://www.TV-Anytime.org.

"R-1: Call For Contributions" (TV014r3)

http://www.tv-anytime.org/

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 58

List of figures
Figure 1: The steps in using a TV-Anytime metadata service ... 11

Figure 2: Client requesting metadata from a metadata service... 12

Figure 3: Client submitting user-centric data to a service provider.. 13

Figure 4: The bi-directional network transport stack ... 32

Figure 5: Example HTTP request... 33

Figure 6: Example HTTP response .. 33

Figure 7: Example of response indicating an error... 36

List of tables
Table 1: Description of special case contextNodeID values (informative) .. 19

Table 2: Description of special case fieldID values (informative)... 20

Table 3: The meaning of the CRID field in the different TV-Anytime tables ... 23

ETSI

ETSI TS 102 822-6-1 V1.1.1 (2003-10) 59

History

Document history

V1.1.1 October 2003 Publication

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions, abbreviations and conformance
	3.1 Definitions
	3.2 Abbreviations
	3.3 Conformance

	4 Introduction
	4.1 Types and Functionalities of Metadata Services
	4.1.1 Metadata Retrieval
	4.1.2 Submission of User-centric Metadata

	4.2 Metadata Service Capability Descriptions
	4.3 Metadata Service Discovery
	4.3.1 Non-standardized Discovery
	4.3.2 Unidirectional Delivery of Discovery Information
	4.3.3 Client-Initiated Discovery Using the Bi-directional Network

	5 Metadata Service Types
	5.1 get_Data Operation
	5.1.1 Request Format
	5.1.1.1 Query constraint parameters
	5.1.1.1.1 Identifying contextNodes
	5.1.1.1.2 Identifying fields
	5.1.1.1.3 Primary index CRID fields
	5.1.1.1.4 Restrictions on the use of QueryConstraints
	5.1.1.1.5 Evaluating a predicate

	5.1.1.2 View on returned data
	5.1.1.2.1 Sort criteria

	5.1.1.3 Size limit parameter
	5.1.1.4 Interpretation of Query Predicates
	5.1.1.5 Definition of server behaviour

	5.1.2 Response Format
	5.1.2.1 Indicating the sorting of the response
	5.1.2.2 Indicating the service version
	5.1.2.3 Truncating the result set
	5.1.2.4 Updating the result set

	5.2 submit_Data Operation
	5.2.1 Usage and user preference data submission policy (informative)
	5.2.2 Request Format
	5.2.3 Response Format

	6 Transport Protocol
	6.1 SOAP
	6.2 Error Codes
	6.2.1 General error conditions
	6.2.2 get_Data operation error conditions

	6.3 HTTP
	6.4 Encapsulation of Metadata
	6.4.1 Encapsulation of get_Data response

	6.5 Encoding of Metadata
	6.6 Metadata Service Security

	7 Metadata Service Capability Descriptions
	7.1 describe_get_Data
	7.1.1 Use of the AuthorityList element
	7.1.2 AvailableTables information
	7.1.2.1 Operations that can deliver content referencing information
	7.1.2.2 Operations that can deliver programme metadata

	7.1.3 Extended Field List
	7.1.4 Description of update capabilities

	7.2 describe_submit_Data

	Annex A (normative): Formal Definition of Metadata Services
	Annex B (normative): TV Anytime defined field and contextNode identifiers
	Annex C (informative): Examples of get_Data Requests
	C.1 Requesting data on specific CRIDs
	C.2 Requesting specific fragments
	C.3 Searching for the film "Titanic"
	C.4 Searching for a comedy drama that does not star Jim Carrey
	C.5 Searching for a programme with a rating of more than 8
	C.6 Searching for a ClassificationScheme Table
	C.7 Creating an EPG
	C.8 Searching for programmes with a review
	C.9 Updating a fragment
	C.10 Requesting update fragments

	Annex D (informative): Examples of get_Data Operation's Capability Description
	D.1 Pure location resolution service
	D.2 Pure metadata retrieval service for broadcast enhancement
	D.3 A rich metadata service that allows users to search for movies
	D.4 Broadcaster provided metadata service used for constructing traditional EPGs
	D.5 Pure metadata retrieval service for bi-directional channel

	Annex E (informative): Use of BiM Encoded Metadata in Bi-directional Transport
	E.1 Applying BiM encoding
	E.2 Negotiation of BiM Encoding

	Annex F (informative): Bibliography
	List of figures
	List of tables
	History

