

ETSI TS 103 146-4 V1.1.1 (2017-01)

Reconfigurable Radio Systems (RRS);
Mobile Device (MD) information models and protocols;

Part 4: Radio Programming Interface (RPI)

TECHNICAL SPECIFICATION

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)2

Reference
DTS/RRS-0248

Keywords
architecture, mobile, radio, SDR, software

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2017.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)3

Contents
Intellectual Property Rights .. 4

Foreword ... 4

Modal verbs terminology .. 4

1 Scope .. 5

2 References .. 5

2.1 Normative references ... 5

2.2 Informative references .. 5

3 Definitions and abbreviations ... 6

3.1 Definitions .. 6

3.2 Abbreviations ... 7

4 Introduction .. 8

5 System Requirement Mapping ... 9

6 Radio Virtual Machine specification .. 10

6.1 Concept of RVM .. 10

6.2 Elementary RVM (eRVM) ... 11

6.3 RVM Hierarchy .. 15

6.4 Data types ... 16

6.4.1 Types and Values .. 16

6.4.2 Run-Time Data ... 16

6.5 Arithmetic... 17

6.6 Exceptions .. 17

6.7 Control, Synchronization and Execution .. 17

6.8 Operations with Memory .. 18

6.9 RVM run-time environment ... 18

7 Configcodes for RVM .. 18

7.0 Introduction .. 18

7.1 Configcodes generation .. 18

7.2 Binary format for Configcodes ... 20

7.3 XML schema for Configcodes ... 23

8 Radio Library ... 29

8.0 Introduction .. 29

8.1 Reference Radio Library .. 30

8.2 Native Radio Library .. 31

9 Loading, Linking and Initialization .. 31

10 Compiling for RVM (Front-End Compilation) .. 32

Annex A (informative): Mapping between XML and Binary .. 33

Annex B (informative): SFB Candidate ... 34

Annex C (informative): Replacement of selected components of an existing RAT 36

Annex D (informative): Introducing new SFBs ... 37

History .. 38

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)4

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee Reconfigurable Radio Systems
(RRS).

The present document is part 4 of a multi-part deliverable. Full details of the entire series can be found in part 1 [i.3].

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)5

1 Scope
The scope of the present document is to define the Radio Programming Interface (RPI) for mobile device
reconfiguration. The work is based on the Use Cases defined in ETSI TR 102 944 [i.1], on the system requirements
defined in ETSI EN 302 969 [1] and on the radio reconfiguration related architecture for mobile devices defined in
ETSI EN 303 095 [i.2]. Furthermore, the present document complements the mobile device information models and
protocols related to the Multiradio Interface ETSI EN 303 146-1 [i.3], to the Reconfigurable Radio Frequency Interface
ETSI EN 303 146-2 [i.4] and to the Unified Radio Application Interface ETSI EN 303 146-3 [i.5].

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI EN 302 969 (V1.2.1): "Reconfigurable Radio Systems (RRS); Radio Reconfiguration related
Requirements for Mobile Devices".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI TR 102 944: "Reconfigurable Radio Systems (RRS); Use Cases for Baseband Interfaces for
Unified Radio Applications of Mobile Device".

[i.2] ETSI EN 303 095 (V1.2.1): "Reconfigurable Radio Systems (RRS); Radio Reconfiguration related
Architecture for Mobile Devices".

[i.3] ETSI EN 303 146-1: "Reconfigurable Radio Systems (RRS); Mobile Device Information Models
and Protocols; Part 1: Multiradio Interface (MURI)".

[i.4] ETSI EN 303 146-2 : "Reconfigurable Radio Systems (RRS); Mobile Device (MD) information
models and protocols; Part 2: Reconfigurable Radio Frequency Interface (RRFI)".

[i.5] ETSI EN 303 146-3: "Reconfigurable Radio Systems (RRS); Mobile Device (MD) information
models and protocols; Part 3: Unified Radio Application Interface (URAI)".

https://docbox.etsi.org/Reference/

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)6

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

Abstract Processing Element (APE): abstracts computational resource that executes any computations downloaded
from Radio Library

NOTE: APE is connected with input and output DOs. APE is reactive. Any computations are started if all input
DOs are filled with real data.

basic operations: operations either provided by the Radio Library and/or UDFB Set to eRVM or by the Radio Library
and/or RVM/eRVM Configcodes to RVM

NOTE: Each Basic Operation is mapped to a corresponding APE in the case of eRVM or mapped to a
corresponding APE or RVM/eRVM in the case of RVM.

data flow chart: reactive data flow computational model consisting of data and operators where data are connected
with operators

NOTE: Operators abstract computations. They are triggered by full data. Results of operator computations are
written in connected output data if they are empty.

Data Object (DO): typeless token abstracting any type of data

NOTE: DO provides a container for storing data. It can be empty if no data in the container or it can be full if
there is data in the container. DO is allocated in the infinite and flat memory. Any RVM has access to this
memory. One or a few APEs from RVM can be connected with DO. DO acknowledges connected APEs
about its status whether it empty or full.

dynamic operation: operation that is performed by allocating the computational resources during run-time for each
APE required executing the given operation

NOTE 1: The resources are deallocated upon completion of the corresponding operation

NOTE 2: Dynamic operation is available only in the case of MDRC-7 defined in ETSI EN 302 969 [1]. In other
words, dynamic operation is needed when RA requires the dynamic resource sharing.

native radio library: library providing platform-specific description of each SFB that represents the target platform
hardware

port configuration: specification of the number of APEs inputs and outputs

radio library authority: authority empowered to decide which components can be registered as new SFBs

NOTE: Any suitable organization can take the role of a Radio Library Authority. The choice of the organization
is beyond the scope of the present document.

reference radio library: library providing normative definition of each SFB

NOTE: There may be multiple such Reference Radio Libraries. For a given RA, a unique Reference Radio
Library is used.

Radio Virtual Machine (RVM): abstract machine that supports reactive and concurrent executions

NOTE: A RVM may be implemented as a controlled execution environment that allows the selection of a trade-
off between flexibility of base band code development and required (re-)certification efforts.

Radio Virtual Machine Runtime Environment (RVM RE): software that allows running Radio Applications that
might be Configcodes or executable codes

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)7

Software Intermediate Representation (SWIR): RA representation as data flow chart

NOTE: SWIR file contains information on all terminal objects, their parameters (cost, implement function, size,
etc.) and connections (links, access type, source and destination).

terminal operation: operation that will always be executed without any other interruption

NOTE 1: Furthermore, terminal operation cannot be decomposed into smaller operations.

NOTE 2: "Terminal operations" are equivalent to "atomic operations", but additionally it indicates that a hierarchy
is being used in which the "terminal operations" are on the lowest level of hierarchy and they can be part
of another operation.

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AOT Ahead-Of-Time
APE Abstract Processing Element
ASF Abstract Switch Fabric
BE Back End
CC Configcodes Counter
CSL Communication Services Layer
CU Control Unit
DO Data Object
eRVM Elementary RVM
eSFB Elementary SFB
FB Functional Block
FBRI FB Reusability Index
FFT Fast Fourier Transform
HD Hardware Dimension
HW Hardware
ID Identification
IFFT Inverse Fast Fourier Transform
IR Intermediate Representation
JIT Just-In-Time
LCF Last Configuration Flag
MD Mobile Device
MURI MUltiRadio Interface
NAF Next Address Flag
NCAO Next Configcode Address Offset
RA Radio Application
RAP Radio Application Package
RAT Radio Access Technology
RCF Radio Control Framework
RE Runtime Environment
RF Radio Frequency
RLA Radio Library Authority
ROS Radio Operating System
RPI Radio Programming Interface
RRFI Reconfigurable Radio Frequency Interface
RVM RE RVM Runtime Environment
RVM Radio Virtual Machine
SD Software Dimension
SFB Standard Functional Block
SWIR SoftWare Intermediate Representation
UDFB User Defined Functional Block
UML® Unified Modeling Language
URA Unified Radio Applications
URAI Unified Radio Applications Interface
XML eXtensible Markup Language

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)8

4 Introduction
A reconfigurable MD is capable of running multiple radios simultaneously and of changing the set of radios by loading
new Radio Application Package (RAP). All Radio Applications (RAs) are called Unified Radio Applications (URAs)
when they exhibit a common behaviour from the reconfigurable MD's point of view [i.2]. In order to run multiple
URAs, the reconfigurable MD will include Communication Services Layer (CSL), Radio Control Framework (RCF),
Radio Platform and 4 sets of interfaces for their interconnection.

Figure 4.1: Four sets of interfaces for Reconfigurable MD

Figure 4.1 illustrates the Reconfigurable MD architecture with the 4 sets of interfaces, i.e.:

• MURI for interfacing CSL and RCF [i.2];

• RRFI for interfacing URA and RF Transceiver [i.3];

• URAI for interfacing URA and RCF [i.2];

• RPI for allowing an independent and uniform production of RAs.

The present document defines RPI.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)9

RadioComputer

<<interface>>

IMURI

<<interface>>

IRRFI

<<interface>>

IRPI

<<interface>>

IURAI

Figure 4.2: UML® class diagram for Radio Computer interfaces

Figure 4.2 illustrates UML® class diagram for Radio Computer interfaces. The reconfigurable MD may be seen as a
Radio Computer where individual URAs are engineered as software entities [i.2].

The present document is organized as follows:

• Clause 5 describes the system requirement mapping;

• Clause 6 describes the radio virtual machine specification;

• Clause 7 describes the Configcodes for RVM;

• Clause 8 describes the radio library structure;

• Clause 9 describes the load, linking and initialization;

• Clause 10 describes the compiling for RVM;

• Annex A describes the mapping between Binary and XML;

• Annex B describes SFB Candidates;

• Annex C describes the replacement of selected components of an existing RAT.

While UML® is used for defining the information model and protocol related to RPI, other modelling languages could
be used as well.

5 System Requirement Mapping
The Radio Programming Interface and its related components described in the present document shall support the
system requirements shown in table 5.1 referring to clause 6 of ETSI EN 302 969 [1]. This is achieved by introducing
the entities/components/units given in the 1st column of table 5.1.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)10

Table 5.1: Mapping of Radio Programming Interface and its related components to
the system requirements described in ETSI EN 302 969 [1]

Entity/Component/Unit System Requirements [1] Comments
Radio Programming Interface R-FUNC-MDR-04 The requirement shall be as described in clause 6.4.4 of ETSI

EN 302 969 [1].
Radio Virtual Machine R-FUNC-MDR-13 The requirement shall be as described in clause 6.4.13 of

ETSI EN 302 969 [1].
R-FUNC-MDR-14 The requirement shall be as described in clause 6.4.14 of

ETSI EN 302 969 [1].
R-FUNC-MDR-15 The requirement shall be as described in clause 6.4.15 of

ETSI EN 302 969 [1].
Radio Library R-FUNC-FB-06 A library extension shall be supported. The requirement shall

be as described in clause 6.3.6 of ETSI EN 302 969 [1].

6 Radio Virtual Machine specification

6.1 Concept of RVM
As introduced in ETSI EN 303 095 [i.2], the Radio Virtual Machine (RVM) is an Abstract Machine which is capable of
executing Configcodes and it is independent of the hardware. The implementation of a RVM is target Radio Computer
specific and it shall have access to the Back-end Compiler (on the platform itself or externally as described in ETSI
EN 303 095 [i.2], clause 4.4.1) for Just-in-Time (JIT) or Ahead-of-Time (AOT) compilation of Configcodes.

This clause describes the concept of RVM. As mentioned above, the RVM is an abstract machine, which executes a
particular algorithm presented as a data flow chart. In other words, the RVM is the result of replacing all operators and
tokens in the particular data flow chart with Abstract Processing Elements (APEs) and Data Objects (DOs),
respectively. Each APE executes computations marked by the replaced operator identifier. These computations are
taken from the Radio Library.

Figure 6.1 illustrates a conceptual view of RVM processing. This process requires APE, DO and Radio Library, of
which the definitions are as follows:

• APE abstracts a computational resource corresponding to the operation in a particular data flow chart.

• DO abstracts a memory resource. In other words, DO is an abstracted memory for storing data used during the
procedure of Radio processing.

• Reference/Native Radio Library includes normative definitions/native implementation of all Standard
Functional Blocks (SFBs) [i.2] for front-end/back-end compilation. Note that the computations included in the
Radio Library are represented in terms of normative definitions or native implementations of SFBs depending
upon whether the Radio Library is used for front-end or back-end compilation, respectively.

NOTE 1: User Defined Functional Blocks (UDFBs) will be created through combination of SFBs and represented
as a data flow chart to be executed in the RVM. Alternatively, a UDFB is implemented as a stand-alone
module/function which can be mapped:

i) into one APE (i.e. this UDFB can be considered atomic); or

ii) into an eRVM/RVM (i.e. not atomic). UDFBs are not in general included into the Radio Library,
but they are part of the Radio Application Package.

The RVM begins to work immediately after some DOs initialization. All APEs shall execute computations
asynchronously and concurrently. An individual APE shall execute the allocated operator if all the corresponding input
DOs are full. APEs shall access DOs with operations "read" , "read-erase", or "write". After reading input data from
DOs, the APE shall execute the allocated operator and, if output DOs are empty, then the APE shall write processed
data. Any full output DO shall block the corresponding writing operation. The RVM shall execute computations until
reaching the state when all APEs become inactive. In this state, there are not enough full DOs, which can activate the
inactive operators. The result of computations are full DOs, which cannot activate the inactive operators.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)11

NOTE 2: An Output DO can become an Input DO for a subsequent operator. Then, this input DO can activate the
subsequent operator.

NOTE 3: The state or operation of a given APE is independent on the state of other APEs. I.e. each APE is atomic.

Figure 6.1: Conceptual Diagram of Radio Virtual Machine Processing

6.2 Elementary RVM (eRVM)
This clause describes the eRVM which shall consist of components of Basic Operations, Program memory, Control
Unit (CU), Abstract Switch Fabric (ASF) as well as APEs and DOs, of which the definitions are as follows. eRVM shall
not contain another eRVM or RVM.

• Basic Operations shall include operators either provided:

i) from Radio Library as SFBs and/or;

ii) from UDFB set as UDFBs, each of which is mapped onto one single APE.

NOTE 1: Since UDFBs might be implemented as a stand-alone module/function which can be mapped into one
APE, in this case, Basic Operations include operators provided by UDFB Set as well as by Radio Library
as SFBs. Note that those UDFBs are atomic.

NOTE 2: For a RVM, the SFB or UDFB can be mapped onto an APE or RVM or eRVM. In the eRVM case, the
mapping to RVM or eRVM is not possible since it is the lowest level of hierarchy as it will be introduced
in clause 6.3.

NOTE 3: From an execution perspective, there is no difference between SFBs and UDFBs.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)12

• Program memory shall be provided with Configcodes which determine the eRVM configuration.

• CU shall generate Initialization and Set-up instructions for APEs, DOs and ASF based on decoding
Configcodes stored in the Program memory.

• ASF shall connect APEs and DOs in accordance with CU signals. One DO can be connected with multiple
APEs. One APE can be connected with multiple DOs. DO from other eRVMs can be connected with ASF
through external data ports.

Figure 6.2 illustrates a block diagram of eRVM. Basic Operations in eRVM consist of operations provided by the Radio
Library and/orUDFB Set.

NOTE 1: A target platform may or may not provide accelerators for some/all SFBs and/or UDFBs.

NOTE 2: Three cases can be considered:

i) RAP includes only SFBs;

ii) RAP includes only UDFBs;

iii) RAP includes SFBs and UDFBs.

NOTE 3: Furthermore, and independent of the upper note, Basic Operations may include:

i) SFBs only;

ii) UDFBs only; or

iii) SFBs and UDFBs.

Figure 6.2: Elementary RVM

The Data path of an eRVM shall consist of the following blocks:

• DOs;

• APEs;

• ASF.

Each DO shall have a unique number and for this purpose the DOs shall be represented as DO1, DO2, … , DON, where
N is a sufficiently large number. The structure of DO is shown in figure 6.3.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)13

DO

full/empty

exception

status

init

set
config

datads

A
S
F

Figure 6.3: DO and its interfaces

Each DO shall be configured by a config instruction which consists of:

• init field initializes DO according to the specific initialization procedure (depending on implementation);

• set field is an instruction which sets up the DO attributes such as DO_ID, access time, size, etc. (as shown in
clause 6.2).

DO shall communicate with APEs through ASF interface which consists of:

• data status (ds) signal to indicate whether the DO is full or empty;

• data lines directed to or from DO to read or write data to or from APEs.

Status interface shall provide the status information of DO to CU and consists of:

• full/empty describes whether DO is full of data or empty;

• exception describes the reason of fail when an APE operates with the DO.

Each APE shall have a unique number and shall be represented as APE1, APE2, … , APEM, where M is a sufficiently
large number. The structure of APE is shown in figure 6.4.

APE exception status

datads

p
o
r
t
 1

init

setconfig

...

datads

p
o
r
t
 N

Figure 6.4: APE and its interfaces

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)14

APEs shall be configured by the config instruction which consists of:

• init field brings the op code operation from Basic Operations;

• set field sets up APE attributes such as the number of ports, port types, the execution cost and time.

APE's ports shall connect APE to ASF and shall include data interface which consists of:

• ds signal to indicate whether the DO is full or empty;

• data lines to read or write data through ASF.

Status interface shall provide status information of APE to CU and consists of:

• active/inactive describes state of the APE such as active and inactive;

• exception describes the reason of fail when an APE's operation has an error.

Note that, the APE is active when it has consumed input DOs and processes them. The APE goes to the inactive state
with corresponding indication to CU immediately after processing all the data associated to the APE.

ASF shall connect APEs and DOs as shown in figure 6.5. One DO can be connected to multiple APEs. One APE can
also be connected to multiple DOs.

data

port1

data

port2 ...

data

portL ...

data

portN

...

Data ports

Processing ports

i
n
t
e
r
n
a
l

e
x
t
e
r
n
a
l

connector

Switch fabric

config; init, set

processing

port1

processing

port2

processing

portM

Figure 6.5: Abstract Switch Fabric

ASF shall connect DOs and APEs through ports which consist of:

• data ports (internal) connect the ASF to DOs via interface lines;

• data ports (external) connect the ASF to DOs from other eRVMs or RVMs;

• processing ports connect the ASF to APEs via interface lines.

Each connector of ASF shall connect ports bounded to DO with ports bounded to APE. Each connector shall have the
same interface lines as ports do, i.e. ds, data. Connectors shall convey interface values between ports when they appear
in corresponding ports.

CU shall configure the ASF by the following commands:

• init associates data ports with DOs and processing ports with APEs;

• set creates connections between data ports and processing ports.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)15

6.3 RVM Hierarchy
Figure 6.6 illustrates RVM hierarchy which shall consist of APEs, DOs, Basic Operations, Program memory, CU, ASF
and eRVMs/RVMs. Note that RVM might contain another eRVM(s)/RVM(s). Each eRVM/RVM in this case functions
like an APE. Similarly to the case of figure 6.2, the CU in figure 6.6 connects the DO(s) to the corresponding APE(s)
through the ASF. But in this case the data might be connected to eRVM/RVM as well as to APE.

For a RVM, the SFB or UDFB shall be mapped onto an APE or RVM or eRVM.

NOTE 1: In the eRVM case, the mapping to RVM or eRVM is not possible since it is the lowest level of hierarchy.

NOTE 2: Only Basic Operations can be mapped to an APE, but these Basic Operations can furthermore be mapped
to an eRVM or RVM. If an SFB or UDFB is not included in the Basic Operations, it cannot be mapped to
an APE, it is mapped to an eRVM or RVM.

The RVM shall be scalable vertically and/or horizontally. As for vertical scaling, since each eRVM contains exactly one
particular data flow chart, i.e. specific algorithm, in order to build a RVM hierarchy, an APE can contain another
eRVM/RVM which executes another particular data flow chart. As for horizontal scaling, several RVMs can be
arranged on the same level. These horizontally arranged RVMs shall be independent, meaning that fully independent
processes are executed in parallel.

Figure 6.6: RVM hierarchy

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)16

Figure 6.7: Horizontal scaling of eRVM

6.4 Data types

6.4.1 Types and Values
The only data types for DOs shall be tokens which have some size in bits. The DOs structure is recognized by
initialized APE.

NOTE: As one example, full DOs can be treated an allocation of bits in memory.

6.4.2 Run-Time Data
There shall be the following Run-Time Data types:

1) CC (Configcodes Counter) register : positive 32-bit integer.

2) Constant DOs: dynamic allocation of bits existing only during task execution and initialized by some external
agent. In short, this DO is related to externally provided data.

3) Intermediate DOs: dynamic allocation of bits existing only during task execution and initialized by
intermediate value created as a result of corresponding APE operation.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)17

6.5 Arithmetic
Arithmetic is not fixed but defined by operations from Basic Operations.

6.6 Exceptions
There shall be 2 types of exceptions:

• Generated by DOs, see table 6.1.

Table 6.1: DO Exceptions

Value Semantic
00 No exception
01 Operation with size > DO size
10 Conflicting writes
11 Conflicting read-erase operations

• Generated by APEs/(e)RVMs, see table 6.2.

Table 6.2 : APE/(e)RVM Exceptions

Exception Semantic
00 No exception
01 Change CC flow
10 Arithmetic overflow/underflow

11 Incorrect operation (operation is carried out on data
where the operation is not defined)

6.7 Control, Synchronization and Execution
Control shall be data-driven only. Execution shall be done by APE in case that

• All input DOs are configured and full in case of terminal operations;

• All input DOs are configured and some of them are full in case of nonterminal operations;

• APE is configured;

• APE is connected with configured DOs.

After APE has been configured, some output DOs of APE might be non-empty while the APE is executing its
operation. The task of execution is not instantaneous but has some finite duration. All operation on the data path shall
be concurrent and asynchronous.

CU does not manage task execution directly. CU shall:

• configure all data path elements before Configcodes execution;

• receive status signals from all data path element during task execution;

• detect end of each Configcode;

• detect the last Configcode in the task;

• stop execution in case of any exception.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)18

6.8 Operations with Memory
In the applied model, memory is considered be flat and infinite. Its implementation is out the scope of the present
document. Any RVM shall have access to the memory. DOs shall be allocated in the memory during their
configuration. The memory shall allow multiple parallel read write operations. Conflicting operations shall enforce
exceptions. Attempts to write more data than there is allocated DO memory shall also enforce exceptions. During
particular memory operation the entire DOs shall be consumed.

6.9 RVM run-time environment
The RVM Runtime Environment (RVM RE), e.g. software based, allows to run RAs which might be Configcodes or
executable codes:

1) In case of CConfigcode execution, the RVM RE comprises a RVM interpreter.

2) In case of executable codes, binary platform-specific codes are created which are executed on the target
platform.

The RVM RE provides access for RAs to platform hardware resources and radio spectrum. For that purpose RVM RE
and RAs shall implement interfaces defined by documents [i.3], [i.4] and [i.5].

In particular, installation and uninstallation of RAs are supported by MURI. Access to platform hardware resources is
provided by URAI. Access to radio spectrum is provided by RRFI.

In case of Configcodes, JIT compiler might be a part of the RVM RE.

Any type of code representation (i.e. executable code, source code, IR) should comply with the interfaces defined in
ETSI EN 303 095 [i.2].

NOTE 1: In the case of executable code, the ROS defined in ETSI EN 303 095 [i.2] allows the executable RA code
to access the platform HW in order to generate or receive a radio signal.

NOTE 2: In the case of source code, compilation is performed on the platform as an additional step prior to
execution.

NOTE 3: The RVM is only used for the IR case.

7 Configcodes for RVM

7.0 Introduction
This clause explains how the Configcodes are generated as a result of front-end compilation of the software
Intermediate Representation (SWIR) during the design time of RA code distribution. The Configcodes are typically
generated in either binary or eXtensible Markup Langugage (XML) depending on vendor's choice.

7.1 Configcodes generation
This clause explains how the Configcodes are generated in either binary or XML format, which is referred to as a RVM
Input file in the present document. Figure 7.1 illustrates the processing steps of generating the Configcodes from
corresponding SWIR. Processing of Configcodes generation shown in figure 7.1 starts from SWIR which consists of
functions and processes of a given RA code. The SWIR shall be generated through the procedure of parallelizing a
given RA code created in a high-level language, e.g. C, C++, etc. The operation of SWIR is based on data-driven
mechanism as mentioned in clause 6.1. The conversion of SWIR into corresponding Configcodes shall consist of the
following 3 steps.

1) Parsing SWIR file.

Input: SWIR file.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)19

Output: Intermediate Representation (IR) objects which consist of terminal objects and links that connect the
terminal objects.

Actions: Parsing of SWIR file and creating IR objects consisting of sections and links.

2) Mapping of IR objects into Configcodes objects.

Input: List of IR objects.

Output: Configcodes objects each of which represents one configuration determined by terminal operators,
APE, DO and Switch configurations and text file with OpCode which specifies implemented data flow chart.

Actions: Conversion of each object from IR data format to Configcodes format with all configurations of the
Configcodes in the task being determined by parameters for APE, DO and Switch. Creation of OpCode file
with matches between the name of each implemented function and corresponding OpCode.

3) Creation of RVM Input file.

Input: Configcodes objects.

Output: RVM Input file.

Actions: Creation of RVM Input file from Configcodes objects.

SWIR

Parsing SWIR

IR objects

Convert to
RVM IR

Configcode
objects

Create
RVM Input

RVM
Input file

OpCode
file

Step 1

Step 2

Step 3

Figure 7.1: Processing step of generating RVM Input file

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)20

NOTE: While there might be various formats in the RVM Input file, the present document considers XML and
Binary format. Examples of Configcodes defined in Binary and XML format are shown in clauses 7.2 and
7.3, respectively.

7.2 Binary format for Configcodes
In this clause, the format of binary Configcodes is presented.

Each task shall include one or several Configcodes. Each of them shall consist of Control Configcode, DO Configcode,
APE Configcode, ASF Configcode and optionally Next Configcode Address Offset (NCAO). The field NCAO shall be
augmented if NAF = 1. The binary format of Configcodes is shown in figure 7.2 and shall consist of:

• The control section provides general information regarding the task and consists of:

- LCF, 1 bit, LCF = 1 means that this is the last Configcode in the task;

- NAF, 1 bit, NAF = 1 means that the field NCAO is augmented to this Configcode;

- Task_ID, 8 bits, is an automatically generated identifier of this task;

- RPI version, 8 bits, is version number of supported RPI;

- Reference_ID, 8 bits, is SFB identifier of the reference Radio Library;

- Implementation version, 8 bits, is the version number of the implemented task;

- Developer_ID, 16 bits, is the identifier of the developer who creates the current task;

- Creation_Date, 16 bits, is the date of task creation.

• DO section provides general information regarding DO configuration and consists of:

- N_DO, 8 bits is the number of DOs involved in this Configcode;

- N_DO particular DO configuration fields:

� DO_config is a particular DO Configcode;

� ASF_config is the ASF Configcode without DO field.

• APE section provides general information regarding APE configuration and consists of:

- N_APE, 16 bits is the number of APEs involved in this Configcode;

- N_APE particular APE configuration fields:

� APE config field is a particular APE Configcode.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)21

8 bits

 N_DO DO 0 DO_config

DO 1 DO_config

...

DO (N_DO-1) DO_config

16 bits

 N_APE APE 0 APE_config

APE 1 APE_config

APE (N_APE-1) APE_config

...

variable length field

9 bytes+2*NN bits

DO 0 ASF_config

DO 1 ASF_config

DO (N_DO-1)ASF_config

variable length field

LCF

1 bit

NAF

1 bit

NCAO

16 bits

Task_ID

8 bits

RPI Version

8 bits

RPI version RPI Version

8 bits

Reference_ID RPI Version

8 bits

Implementation

version

Developer_ID

16 bits 16 bits

Creation_Date

Control

section

DO

section

APE

section

Figure 7.2: Binary format for Configcodes

Format of a particular DO_Configcode shall consist of two parts: one part is a fixed length field of DO set code and the
other part is a variable length field of DO init code. It is shown in figure 7.3.

LENGTH VARIABLE LENGTH FIELD

1 byte up to 256 bytes

SIZE ACCESS TIME

4 bytes 4 bytes

DO_ID

1 byte

DO set code

DO init code

Figure 7.3: Format of a particular DO_Configcode

DO shall be configured by an instruction DO_config (Set, Init) with Set field and Init field.

Figure 7.4 illustrates the format of the DO set code and it shall consist of :

• SIZE is the positive integer number showing the DO size in bytes;

• ACCESS TIME is the positive integer number showing access time in ns.

Figure 7.4: Format of DO set code

The Set field shall set DO attributes using Set(YYYY, ZZZZ) where YYYY is the size in bytes, ZZZZ is the access
time in ns.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)22

Figure 7.5 illustrates the format of DO init code and it consists of :

• LENGTH, 1 byte, is the length of the variable part of the field in bytes;

• VARIABLE LENGTH FIELD up to 256 bytes brings immediate values.

Figure 7.5: Format of DO init code

The Init field shall initialize the DO according to the specific initialization procedure (depending on implementation)
and make DO full after initialization if LENGTH ≠ 0, i.e. Init(XXXX), where XXXX contains the length and
initialization value in the form of a bit sequence. Init field might be empty if LENGTH = 0, in such case the DO is
empty.

Figure 7.6 illustrates the format of APE_Configcode and it shall consist of :

• APE_ID, 2 bytes, is the number of APE;

• op code, 20 bits is the code of operation from Basic Operations;

• T, 1 bit flag, when T = 1 for dynamic operations, APE is inactive just after completion of the operation, when
T = 0 for static operations, APE is active even after completion of the operation;

NOTE 1: The statement "APE is inactive just after completion of the operation" indicates that another functionality
may be allocated to the APE. The statement "APE is active even after completion of the operation"
indicates that no change of functionality will occur.

• NN, 3 bits is the number of ports;

• cost, 2 bytes is the execution cost value;

• time, 2 bytes is the time constraint value;

• port access type, 2 bits per port describes the access type {r, re, w, rew }.

Figure 7.6: Format of a particular APE_Configcode

APE shall be configured by an instruction APE_config (APE_Port_ID, Set, Init) with APE port identifier field, Set
field and Init field.

The APE_Port_ID field shall have identifier APE_Port_ID (XXXX.YY, PORT_TYPE), where XXXX = APE_ID,
YY is the number of APE ports and PORT_TYPE = {r, re, w, rew}.

The Set field shall set APE attributes using Set(NN, PP, XXXX, YYYY) where NN is the number of ports (decimal),
PP is the field defining port types, XXXX is the execution cost (decimal), if XXXX = 0 then there is no cost, YYYY is
time in ms (decimal), if YYYY = 0 then there are no time constraints.

The Init field shall bring the identifier of an operation from the set of Basic Operations and port configuration. During
the APE configuration procedure, the APE shall be bound with op operation from the Basic Operations using Init(op).
Input and output parameters of the operator shall be bound to the APE's ports of corresponding access types.

NOTE 2: The op code is obtained by applying some unique mapping function to the SFB identifiers. The choice of
the mapping function needs to be defined. However, it is beyond the scope of the present document.

NOTE 3: APE Configuration comprises two stages, i.e. initialization and set-up. The Configcodes provide the
parameters for both procedures.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)23

NOTE 4: Access type are defined as {r, re, w, rew }.

After APE configuration procedure is successfully completed, the APE shall:

• be moved to the active state with corresponding indication to CU;

• process values in lines ds (data status) and data.

APE exception codes shall be used as shown in table 7.1.

Table 7.1: APE Exceptions

Exception Semantic
00 No exception
01 Change CC (Configcodes Count) flow
10 Arithmetic overflow/underflow
11 Incorrect operation

Figure 7.7 illustrates the format of the ASF_Configcode. Ports shall connect ASF with DOs or with APEs as described
in figure 6.5. Connectors of ASF shall connect ports bounded to DO with ports bounded to APE. Each connector shall
have the same interface lines as ports: ds, data. Connectors shall convey interface values between ports when they
appear in the corresponding ports.

N APE_0.P

1 byte 6 bits 12 bits

DO APE_1.P APE_N.P

12 bits 12 bits

...

Figure 7.7: Format of ASF_Configcode

Figure 7.7 illustrates the format of ASF_Configcode and it shall consist of:

• DO, 1 byte field shall provide the DO ID number;

• N, 6 bits shall be the number of APEs connected with DO;

• APE_K.P, 12 bits where K runs from 0 to N-1:

- APE_K, 8-bit shall denote the APE number;

- P, 4-bit shall denote the port number.

ASF shall be configured by an instruction ASF_config (Set, Init) with Set field and Init field.

The Set field shall set the ASF attributes using Set(DO, N) where DO is the ID number of DO, N is the number of
APEs connected with the DO.

The Init field shall initialize the ASF using Init(APE_K.P) where APE_K, with K running from 0 to N-1, denotes the
APE number, P denotes the port number. After configuration connectors shall convey interface values to DOs and
APEs.

7.3 XML schema for Configcodes
In this clause, the XML schema for Configcodes is presented. Each task includes one or several Configcodes.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)24

Task configcode

DOconfig

APEconfig

DO

Virtual

ASF Port

APE

Complex

Switch

IF

FOR

WHILE

Port

Port

Port

Port

Port

Port

Figure 7.8: XML elements consisting of Configcodes

Figure 7.8 illustrates the XML elements consisting of Configcodes. The following XML elements shall be used:

• task;

• Configcode;

• DOconfig;

• DO;

• ASF;

• Virtual;

• APEconfig;

• APE;

• Complex;

• FOR;

• SWITCH;

• IF;

• WHILE;

• Port.

Attributes of each element shall be used as given by tables 7.2 to 7.15. It is illustrated in figure 7.8.

Element /task

• Parent element: document root

• Children:

- <Configcode>

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)25

<task> is the root element of the xml.

Table 7.2: Attributes of <task>

Attribute Description
TaskID Task identifier.
RPIVersion Version of RPI.
DeveloperID Developer identifier.
CreationDate Date of task creation.
ReferenceID SFB identifier of reference Radio Library.
TaskImpVersion Task implementation version.
num Contain number of configurations in the task.

Element /task/Configcode

• Parent: <task>

• Children:

- <DOconfig>

- <APEconfig>

<Configcode> is tag for one configuration in the task.

Table 7.3: Attributes of <Configcode>

Attribute Description
LCF Last Config Flag. Identify last Configcode in the task.
ID Automatically generated identifier.
NDO Number of DOs in the configuration.
NAPE Number of APE in the configuration.

Element /task/Configcode/DOconfig

• Parent: <Configcode>

• Children:

- <DO>

- <Virtual/>

<DOconfig> is tag for DOs configurations.

Element /task/Configcode/DOconfig/DO

• Parent: <DOconfig>

• Children:

- <ASF>

<DO> is tag for configuration of one DO.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)26

Table 7.4: Attributes of <DO>

Attribute Description
ID Automatically generated identifier.
Size Size of DO.
AccT Accesses time of DO.
Length Length of initial data in object.
Data Initial data.

Element /task/Configcode/DOconfig/DO/ASF

• Parent: <DO>

• Children:

- <Port/>

<ASF> is tag for configuration of ASF for DO.

Table 7.5: Attributes of <ASF>

Attribute Description
APENum Number of APE connected to DO.

Element /task/Configcode/DOconfig/ASF/Port

• Parent: <ASF>

• Children: none

<Port> is tag for Switch port.

Table 7.6: Attributes of <Port>

Attribute Description
APEid APE identifier.
PortId Port identifier.

Element /task/Configcode/DOconfig/Virtual

• Parent: <DOconfig>

• Children: none

<Virtual> is tag for virtual DO.

Table 7.7: Attributes of <Virtual>

Attribute Description
ID Automatically generated identifier.
Type Size of DO.
PortRef Port of the main control operator, to which VDO is connected.
InPortRef Port of the main control operator, which will be the input port for the VDO.
OutPortRef Port of the main control operator, which will be the output port for the VDO.

Element /task/Configcode/APEconfig

• Parent: <Configcode>

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)27

• Children:

- <APE>

- <Complex>

- <Switch>

- <IF>

- <FOR>

- <WHILE>

<APEconfig > is tag for abstract physical elements configurations.

Element /task/Configcode/APEconfig/APE

• Parent: <APEconfig>

• Children:

- <Port>

<APE> is tag for configuration of one functional APE.

Table 7.8: Attributes of <APE>

Attribute Description
ID Automatically generated identifier.
OpCode OpCode of implemented function.
T Flag for dynamic operations.
Cost Execution cost value.
Time Time constrain value.
PortNum Number of Switch ports for APE.

Element /task/Configcode/APEconfig/Complex

• Parent: <APEconfig>

• Children:

- <Port>

<Complex> is tag for configuration of complex APE.

Table 7.9: Attributes of <Complex>

Attribute Description
ID Automatically generated identifier.
Body ID of body configuration.
T Flag for dynamic operations.
Cost Execution cost value.
Time Time constrain value.
PortNum Number of Switch ports for APE.

Element /task/Configcode/APEconfig/FOR

• Parent: <APEconfig>

• Children:

- <Port>

<FOR> is tag for configuration of FOR-cycle.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)28

Table 7.10: Attributes of <FOR>

Attribute Description
ID Automatically generated identifier.
Body ID of cycle body configuration.
T Flag for dynamic operations.
Cost Execution cost value.
Time Time constrain value.
PortNum Number of Switch ports for APE.

Element /task/Configcode/APEconfig/WHILE

• Parent: <APEconfig>

• Children:

- <Port>

<WHILE> is tag for configuration of While-cycle.

Table 7.11: Attributes of <WHILE>

Attribute Description
ID Automatically generated identifier.
Body ID of cycle body configuration.
T Flag for dynamic operations.
Cost Execution cost value.
Time Time constrain value.
PortNum Number of Switch ports for APE.

Element /task/Configcode/APEconfig/IF

• Parent: <APEconfig>

• Children:

- <Port>

<IF> is tag for configuration of IF operator.

Table 7.12: Attributes of <IF>

Attribute Description
ID Automatically generated identifier.
Then ID of body-then configuration.
Else ID of body-else configuration.
T Flag for dynamic operations.
Cost Execution cost value.
Time Time constrain value.
PortNum Number of Switch ports for APE.

Element /task/Configcode/APEconfig/Switch

• Parent: <APEconfig>

• Children:

- <Port>

- <Case>

<Switch> is tag for configuration of Switch-Case operator.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)29

Table 7.13: Attributes of <Switch>

Attribute Description
ID Automatically generated identifier.
T Flag for dynamic operations.
Cost Execution cost value.
Time Time constrain value.
PortNum Number of Switch ports for APE.

Element /task/Configcode/APEconfig/APE|Complex|For|WHILE|IF|Switch/Port

• Parent: <APE|Complex|FOR|WHILE|IF|Switch>

• Children: none

<Port> is tag for ASF port.

Table 7.14: Attributes of <Port>

Attribute Description
ID Port identifier.
AccType Accesses type.

Element /task/Configcode/APEconfig/Switch/Case

• Parent: <Switch>

• Children: none

<Port> is tag for case part of Switch operator.

Table 7.15: Attributes of <Port>

Attribute Description
Body ID of case-body configuration.
Condition Case condition.

8 Radio Library

8.0 Introduction
The Radio Library shall include the entire set of SFBs [i.2]. The Radio Library is categorized into two kinds as follows:

• Reference Radio Library shall provide normative definition of each SFB.

• Native Radio Library shall provide platform-specific description of each SFB which represents the target
platform hardware.

NOTE 1: The computations included in the Radio Library are represented in terms of normative definitions or
native implementations of SFBs depending upon whether the Radio Library is used for front-end or back-
end compilation, respectively.

NOTE 2: The examples in the present document illustrate the use of the Radio Library for physical layer functions,
but the library is extensible to provide functions of higher layers, e.g. encryption, channelization, radio
link selection, etc.

Reference Radio Library and Native Radio Library are described in detail in clauses 8.1 and 8.2, respectively.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)30

8.1 Reference Radio Library
The Reference Radio Library shall include the information regarding each operator downloaded from the Basic
Operations of RVM introduced in clause 6 in the case of front-end compilation. The operator corresponds to each SFB
defined in ETSI EN 303 095 [i.2].

The Reference Radio Library shall include normative definition of each SFB of the entire set of SFBs [i.2].

NOTE 1: The normative definition should include information for the 3rd party to use while making RA code, such
as, e.g. resources required at each function of a given SFB, etc.

NOTE 2: Each SFB corresponds to an operator used in Radio Computing, e.g. FFT, IFFT, Convolution, etc. A
normative description of each SFB might be given in a high-level language, e.g. C, C++, C#, etc. for the
3rd party RA provider to refer to.

NOTE 3: The most primitive leveled SFB is denoted as Elementary SFB (eSFB). It means that eSFBs are terminal
library elements such that they are not decomposed into more fine grained elements. Table 8.1 shows
operators that may be defined as eSFBs.

Table 8.1: List of eSFB

Name Input Output Description
NOP 1 1 No operation, coping input to output.

Copy operator 1 2 Coping 1 input to 2 outputs.

Filter 2 1 1 predicate input and 1 data input, if predicate input is true
than coping data input to output.

Multiplexer 2 1 Any input triggers coping this input to output.

Demultiplexer 2 2 If predicate is true than copy input to the 1st output else to the
2nd.

Return 1 1 Stop configuration execution with corresponding code sent to
output.

Add 2 1 Returns the sum of two inputs.
Subtract 2 1 Subtract the second input from the first input.
Multiply 2 1 Returns the multiple of two inputs.
Divide 2 1 Devides one input value by the other input.

Logical AND 2 1 Returns ture if both inputs can be converted to ture;
otherwise, returns false.

Logical OR 2 1 Returns ture if either input can be converted to ture; if both
can be converted to false, returns false.

Logical NOT 1 1 Returns false if input can be converted to ture; otherwise,
returns ture.

Bitwise AND 2 1 Returns a one in each bit position for which the
corresponding bits of both inputs are ones.

Bitwise OR 2 1 Returns a one in each bit position for which the
corresponding bits of either or both inputs are ones.

Bitwise XOR 2 1 Returns a one in each bit position for which the
corresponding bits of either but not both inputs are ones.

Bitwise NOT 1 1 Inverts the bits of its input.

Left shift 1 1 Shifts a in binary representation b (< 32) bits to the left,
shifting in zeroes from the right.

Right shift 1 1 Shifts a in binary representation b (< 32) bits to the right,
discarding bits shifted off.

Preincrement 1 1 Increment input by 1, then use the new value of input in the
current operation.

Postincrements 1 1 Use the current value of input in the current operation, then
increment input by 1.

Predecrement 1 1 Decrement input by 1, then use the new value of input in the
current operation.

Postdecrements 1 1 Use the current value of input in the current operation, then
decrement input by 1.

Typical candidates for SFBs are given in annex B.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)31

8.2 Native Radio Library
The Native Radio Library shall include information on how each SFB in the Reference Radio Library is implemented in
a target hardware platform. The information shall explicitly specify the implementation of each SFB in the Reference
Radio Library using dedicated hardware accelerators and/or programmable devices provided in the target hardware
platform. The native Radio Library shall be used for the back-end compilation of the Configcodes.

Figure 8.1: Generation of Native Radio Library

Figure 8.1 shows a flow chart for generating Native Radio Library from the corresponding Reference Radio Library. It
is obtained from the available Reference Radio Library and the Hardware Library from which a target hardware
platform is built. Elements of the Native Radio Library are created as the result of mapping Reference Radio Library
elements onto the Hardware Library elements.

NOTE: A Reference Radio Library is preferably publicly available.

9 Loading, Linking and Initialization
RVM shall be instantiated for execution of platform-specific Configcodes obtained from the back-end compiler. The
instantiation consists of three steps (following back-end compilation creating platform-specific ConfigCodes for RVM
(note: in a different set-up, back-end compilation may create binary code, then no RVM processing is required, but only
a run-time environment)):

• Loading;

• Linking;

• Initialization.

Loading is the process of finding the binary representation of particular Basic Operations which configure APEs. The
binary files corresponding to the set of identified Basic Operations shall be downloaded into RVM from Native Radio
Library.

NOTE: In this stage, the corresponding RVM is optimized for a specific target platform. The Basic Operations
are specific to the target platform.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)32

Linking is the process of taking Configcodes for a particular task and combining the corresponding Basic Operations
included in the Configcodes to the run-time executable image. Linking process can be static or dynamic depending on
the T flag value in APE_config as shown in figure 7.6. If T = 1 then the corresponding operation is linked dynamically
during run-time execution. In the opposite case, when T = 0, all the Basic Operations included in the Configcodes are
linked before run-time execution.

Initialization consists of the instantiation and initialization procedures for DOs, APEs and ASF. Information for this
process is taken from corresponding Configcode Init fields (see clause 7). During this process all full DOs are initialized
with immediate values according to implementation-dependent procedures (i.e. the way of storing the initial value and
how to transfer them to DOs in the initialization phase typically depends on the target platform). Each APE is initialized
with the binary code of the corresponding operations. Connections between APEs and DOs are established in the ASF
according to the implementation-dependent initialization procedure.

After instantiation, an executable version of the original RA is available that is optimized for the specific target
platform. The process is fully finalized and the RA can be executed.

10 Compiling for RVM (Front-End Compilation)
This paragraph describes the front-end part of the compilation process related to the transformation of input source code
into platform independent RVM Configcodes. There are two alternatives to obtain Configcodes:

1) RadioApp code (e.g. in C, C++, Java, etc.) is used as an input. Following parallelization (SWIR is obtained as
output of the parallelization operation) and RVM compilation, the Configcodes are obtained.

2) RadioApp represented as Data Flow Chart (corresponding to SWIR) is used as an input. Following RVM
compilation, the Configcodes are obtained.

The generic compilation flow is shown in figure 10.1. The compilation procedure of SWIR to Configcodes is described
in clause 7.1. The RVM Compiler uses also the Radio Lib to produce Configcodes.

Figure 10.1: Compilation for RVM

NOTE: In the context of the present document, it is assumed that there is no mathematical representation of the
compilation process. Consequently, there is no formal validation that the compilation output is a true
representation of the original Source Code. A manufacturer will typically use its own (proprietary) model
for validation.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)33

Annex A (informative):
Mapping between XML and Binary
Table A.1 shows the mapping between XML and binary.

Table A.1: Mapping of XML schema to binary format

XML schema Binary format Description
TaskID Task_ID Task identifier.

RPIVersion RPI version Version of RPI.
DeveloperID Developer_ID Developer identifier.
CreationDate Creation_Date Date of task creation.
ReferenceID Reference_ID SFB identifier of reference Radio Library.

TaskImpVersion Implementation version Task implementation version.
num NAF Contain number of configurations in the task.
LCF LCF Last Config Flag. Identify last Configcode in the task.
NDO N_DO Number of DOs in the configuration.
NAPE N_APE Number of APE in the configuration.
ID(DO) DO_ID Automatically generated identifier.

Size SIZE Size of DO.
AccT ACCESS TIME Accesses time of DO.

Length LENGTH Length of initial data in object.
Data VARIABLE LENGTH FIELD Initial data.

APENum N Number of APE connected to DO.
APEid APE_ID APE identifier.
PortId APE_Port_ID Port identifier.
Type Not applicable Size of DO.

PortRef Not applicable Port of the main control operator, to which Virtual DO is
connected.

InPortRef Not applicable Port of the main control operator, which will be the input
port for the Virtual DO.

OutPortRef Not applicable Port of the main control operator, which will be the
output port for the Virtual DO.

Body Not applicable ID of body configuration.
Then Not applicable ID of body-then configuration.
Else Not applicable ID of body-else configuration.

Condition Not applicable Case condition.
ID(APE) APE_ID Automatically generated identifier.
OpCode op code OpCode of implemented function.

T T Flag for dynamic operations.
Cost cost Execution cost value.
Time time Time constrain value.

PortNum NN Number of Switch ports for APE.
AccType port access type Accesses type.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)34

Annex B (informative):
SFB Candidate
Annex B describes some typical candidates of SFBs. Each SFB consist of eSFBs. Table B.1 shows the definition of data
types. The generally applied definition of each SFB candidate are shown in tables B.2 to B.5.

Table B.1: Definition of Data types

Classification Data type Range Byte(bit)

integer

char -128~127 1(8)
unsigned char 0~255 1(8)

short -32 768~32 767 2(16)
int -2 147 483 648~2 147 483 647 4(32)

long -2 147 483 648~2 147 483 647 4(32)
unsigned short 0~65 535 2(16)

unsigned int 0~4 294 967 295 4(32)
unsigned long 0~4 294 967 295 4(32)

real-floating type
float 8,4 × 10^-37~3,4 × 10^39 4(32)

double 2,2 × 10^-309~1,8 × 10^309 8(64)

Table B.2: Definition of eSFBs related to arithmetic operations

Name Syntax Number of
operands Description

Basic assignment a = b 2 Allocate b to a.
Addition a + b 2 Add a to b.

Subtraction a - b 2 Subtract b from a.
Multiplication a × b 2 Multiply a with b.

Division a / b 2 Divide a by b.
Modulo

(integer remainder) a % b 2 Modulus Operator and remainder of after a
division.

Increment
Prefix ++a 1 Increment the value of the a and return a

reference to the result.

Postfix a++ 1 Create a copy of a, increment the value of the a
and return the copy to the result.

Decrement
Prefix --a 1 decrement the value of the a and return a

reference to the result.

Postfix a-- 1 Create a copy of a, decrement the value of the
a and return the copy to the result.

Table B.3: Definition of eSFBs related to comparison operations

Name Syntax Number of
operands Description

Equal to a == b 2 Checks if the values of a and b are equal or not. If yes, then the
condition becomes true.

Not equal to a != b 2 Checks if the values of a and b are equal or not. If the values
are not equal, then the condition becomes true.

Greater than a > b 2 Checks if the value of a is greater than the value of b. If yes,
then the condition becomes true.

Less than a < b 2 Checks if the value of a is less than the value of b. If yes, then
the condition becomes true.

Greater than or
equal to a >= b 2 Checks if the value of a is greater than or equal to the value of

b. If yes, then the condition becomes true.
Less than or

equal to a <= b 2 Checks if the value of a is less than or equal to the value of b. If
yes, then the condition becomes true.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)35

Table B.4: Definition of eSFBs related to logical operations

Name Syntax Number of
operands Description

Logical negation
(NOT) !a 1 It is used to reverse the logical state of its operand.

Logical AND a && b 2 If both the operands are non-zero, then the condition
becomes true.

Logical OR a || b 2 If any of the two operands is non-zero, then the
condition becomes true.

Table B.5: Definition of eSFBs related to bitwise operations

Name Syntax Number of
operands Description

Bitwise NOT ~a 1 Switching state 0 to 1, and vice versa.

Bitwise AND a & b 2 Binary AND Operator copies a bit to the result
if it exists in both operands.

Bitwise OR a | b 2 Binary OR Operator copies a bit if it exists in
either operand.

Bitwise XOR a ^ b 2 Binary XOR Operator copies the bit if it is set in
one operand but not both.

Bitwise left shift a << b 2 The a value is moved left by the number of bits
specified by the b.

Bitwise right shift a >> b 2 The a value is moved right by the number of
bits specified by the b.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)36

Annex C (informative):
Replacement of selected components of an existing RAT
As mentioned in clause 4, a reconfigurable MD is capable of running multiple radios simultaneously and of changing
the set of radios by loading new Radio Application Package (RAP). While a RAP may provide an entire novel RAT to a
target mobile device, it is also possible that a RAP is replacing one or several components of an existing (hardwired)
RAT implementation.

For such a selected replacement of existing (hardwired) RAT components, the Radio Library will provide an SFB
which provides interfaces to (3rd party) software developers for accessing the (hardwired) RAT internal interfaces. The
basic principle is illustrated below.

Figure C.1 presents an example representation of a transmission chain which is comprised of components A, B, C, D, E,
F.

A B C D E

Transmission

Figure C.1: Example representation of components of a transmission chain

It is assumed that a manufacturer may choose to enable (3rd party) software developers to replace one or multiple of
these components by novel software components. Figure C.2 illustrates the replacement of component B through a
novel implementation by (3rd party) software developers.

BLACK BOX

A C D E
Transmission

The novel „Black Box SFB“ is replacing the

original (hardwired) component

Novel inputs/outputs are visible to the

developer of 3rd party software

Novel

component

Novel component replaces the original

(hardwired) component through accessing

the „black box“ interfaces.

Figure C.2: Example replacement of a component through interfacing with novel SFB provided by
a (3rd party) software provider

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)37

Annex D (informative):
Introducing new SFBs
As for the determination of new SFBs, Radio Library Authority (RLA) will determine whether or not a candidate SFB
is registered as a new SFB. The reusability of the candidate Functional Block (FB) is a key factor in the determination
of SFB. Therefore, the RLA will evaluate "how importantly and/or how often is the candidate FB used in a given
RA(s)?".

Figure D.1: Flow chart for determining SFBs

Figure D.1 illustrates a typical procedure for RLA to determine a new SFB. In order to be considered as an SFB
candidate, the candidate FB will be presented in the form of a reference code, which consists of a proper combination of
eSFBs. Since the reusability is the key factor of determining a new SFB, an evaluation quotient such as FB Reusability
Index (FBRI) as shown in figure D.1 should be set up by the RLA in the viewpoint of both hardware- and software-
related factors of the candidate FB. Hardware Dimension (HD) and Software Dimension (SD) shown in figure D.1 are
concerned with hardware- and software-related factors of the candidate FB, respectively. In the evaluation for HD, the
candidate FB might be evaluated in terms of the degree of performance improvement, hardware implementation
difficulty, time to market, etc. In the evaluation for SD, the candidate FB might be evaluated in terms of the software
correctness and completeness, complexity and/or reusability of the FB algorithm, etc.

ETSI

ETSI TS 103 146-4 V1.1.1 (2017-01)38

History
Document history

V1.1.1 January 2017 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	5 System Requirement Mapping
	6 Radio Virtual Machine specification
	6.1 Concept of RVM
	6.2 Elementary RVM (eRVM)
	6.3 RVM Hierarchy
	6.4 Data types
	6.4.1 Types and Values
	6.4.2 Run-Time Data

	6.5 Arithmetic
	6.6 Exceptions
	6.7 Control, Synchronization and Execution
	6.8 Operations with Memory
	6.9 RVM run-time environment

	7 Configcodes for RVM
	7.0 Introduction
	7.1 Configcodes generation
	7.2 Binary format for Configcodes
	7.3 XML schema for Configcodes

	8 Radio Library
	8.0 Introduction
	8.1 Reference Radio Library
	8.2 Native Radio Library

	9 Loading, Linking and Initialization
	10 Compiling for RVM (Front-End Compilation)
	Annex A (informative): Mapping between XML and Binary
	Annex B (informative): SFB Candidate
	Annex C (informative): Replacement of selected components of an existing RAT
	Annex D (informative): Introducing new SFBs
	History

