

ETSI TS 103 544-21 V1.3.1 (2019-10)

Publicly Available Specification (PAS);
Intelligent Transport Systems (ITS);

MirrorLink®;
Part 21: High Speed Media Link (HSML)

CAUTION

The present document has been submitted to ETSI as a PAS produced by CCC and
approved by the ETSI Technical Committee Intelligent Transport Systems (ITS).

CCC is owner of the copyright of the document CCC-TS-054 and/or had all relevant rights and had assigned said rights to ETSI
on an "as is basis". Consequently, to the fullest extent permitted by law, ETSI disclaims all warranties whether express, implied,

statutory or otherwise including but not limited to merchantability, non-infringement of any intellectual property rights of third
parties. No warranty is given about the accuracy and the completeness of the content of the present document.

TECHNICAL SPECIFICATION

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)2

Reference
RTS/ITS-98-21

Keywords
interface, ITS, PAS, smartphone

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm
except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

©ETSI 2019.
© Car Connectivity Consortium 2011-2019.

All rights reserved.
ETSI logo is a Trade Mark of ETSI registered for the benefit of its Members.
MirrorLink® is a registered trademark of Car Connectivity Consortium LLC.

RFB® and VNC® are registered trademarks of RealVNC Ltd.
UPnP® is a registered trademark of Open Connectivity Foundation, Inc.

Other names or abbreviations used in the present document may be trademarks of their respective owners.
DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.

3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.

oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.

GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)3

Contents

Intellectual Property Rights .. 5

Foreword ... 5

Modal verbs terminology .. 5

1 Scope .. 6

2 References .. 6

2.1 Normative references ... 6

2.2 Informative references .. 6

3 Definition of terms, symbols and abbreviations ... 7

3.1 Terms .. 7

3.2 Symbols .. 7

3.3 Abbreviations ... 7

4 Introduction .. 7

5 HSML USB Architecture ... 8

5.1 General ... 8

5.2 Functional Characteristics .. 9

5.2.1 General .. 9

5.2.2 Interface .. 9

5.2.3 Endpoints .. 9

5.2.3.1 General .. 9

5.2.3.2 Default ... 9

5.2.3.3 Framebuffer ... 9

5.3 Vendor-Specific Codes ... 9

5.4 Interface Descriptor .. 9

5.5 Endpoint Descriptors .. 10

5.6 HSML Requests ... 10

5.6.1 General .. 10

5.6.2 GetVersion .. 11

5.6.3 GetParameters ... 11

5.6.4 SetParameters ... 12

5.6.5 StartFramebufferTransmission ... 13

5.6.6 PauseFramebufferTransmission .. 14

5.6.7 StopFramebufferTransmission .. 14

5.6.8 SetMaxFrameRate .. 14

5.6.9 GetIdentifier .. 15

6 HSML Framebuffer Transmission Protocol ... 15

6.1 General ... 15

6.2 Managing an HSML Connection .. 15

6.2.1 Identifying Remote Applications .. 15

6.2.2 Establishing the HSML Connection ... 15

6.2.3 Intentionally Terminating the HSML Connection .. 16

6.2.4 Unintentionally Terminating the HSML Connection ... 16

6.3 HSML Protocol Phases .. 16

6.3.1 Initialization Phase .. 16

6.3.2 Transmission Phase... 17

6.3.2.1 Handling Context Information .. 17

6.3.2.2 Handling Display Data .. 19

6.3.2.3 Handling Pausing and Resuming Data Transfer ... 21

6.3.2.4 Handling Framebuffer Resolution Change .. 21

6.3.2.5 Handling Framebuffer Format Change ... 23

6.3.2.6 Handling Framerate Adjustment ... 23

6.3.2.7 Handling Framebuffer Blocking Notification ... 24

6.3.2.8 Handling Orientation Changes .. 25

6.3.2.9 Handling Content Attestation .. 26

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)4

6.3.3 HSML Protocol Finite State Machine ... 27

Annex A (informative): Authors and Contributors ... 28

History .. 29

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)5

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee Intelligent Transport Systems
(ITS).

The present document is part 21 of a multi-part deliverable. Full details of the entire series can be found in part 1 [i.1].

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)6

1 Scope
The present document is part of the MirrorLink® specification which specifies an interface for enabling remote user
interaction of a mobile device via another device. The present document is written having a vehicle head-unit to interact
with the mobile device in mind, but it will similarly apply for other devices, which provide a colour display, audio
input/output and user input mechanisms.

The present document describes the High-Speed Media Link, a video transmission mechanism that utilizes the USB to
project the screen of one device onto another device with a larger screen.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI TS 103 544-3 (V1.3.1): "Publicly Available Specification (PAS); Intelligent Transport
Systems (ITS); MirrorLink®; Part 3: Audio".

[2] ETSI TS 103 544-2 (V1.3.1): "Publicly Available Specification (PAS); Intelligent Transport
Systems (ITS); MirrorLink®; Part 2: Virtual Network Computing (VNC) based Display and
Control".

[3] USB IF: "Universal Serial Bus Specification", Revision 2.0, April 27, 2000.

NOTE: Available at http://sdphca.ucsd.edu/lab_equip_manuals/usb_20.pdf.

[4] IETF RFC 4122: "A Universally Unique Identifier (UUID) URN Namespace", July 2005.

NOTE: Available at http://www.ietf.org/rfc/rfc4122.txt.

[5] USB IF: "Universal Serial Bus, Communications Class, Subclass Specification for Ethernet
Control Model Devices", Revision 1.2, February 9, 2007.

NOTE: Available at https://usb.org/sites/default/files/CDC1.2_WMC1.1_012011.zip - File ECM120.pdf.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI TS 103 544-1 (V1.3.1): "Publicly Available Specification (PAS); Intelligent Transport
Systems (ITS); MirrorLink®; Part 1: Connectivity".

https://docbox.etsi.org/Reference
http://sdphca.ucsd.edu/lab_equip_manuals/usb_20.pdf
http://www.ietf.org/rfc/rfc4122.txt
https://usb.org/sites/default/files/CDC1.2_WMC1.1_012011.zip

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)7

3 Definition of terms, symbols and abbreviations

3.1 Terms
Void.

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ARGB Alpha-Red-Green-Blue
CCC Car Connectivity Consortium
HSML High Speed Media Link
IN INput
PC Personal Computer
RGB Red-Green-Blue
RLE (Scan-line based) Run Length Encoding
UI User Interface
UPnP Universal Plug and Play
USB Universal Serial Bus
UUID Universally Unique IDentifier
VNC Virtual Network Computing
XML eXtensible Markup Language

4 Introduction
High Speed Media Link (HSML) is a screen out technology. The main purpose is to let mobile users project their
phones' screens to a larger one, like the display inside a car infotainment system or PC, and users can control their
phones via an automotive head unit or PC. With bigger screens, users can have much better usage experience. Of
course, the present document does not limit the usage scenarios only on mobile phones and automotive head units. The
HSML can be applied to any device that conforms to the present document. As shown in Figure 1.

Figure 1: HSML Protocol Stack

There are two roles in the HSML architecture. The HSML source is the source of video data and the HSML sink is sink
side. On the other hand, the control data is sent from HSML sink to HSML source.

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)8

Figure 2: HSML Overview

The audio and additional display control mechanisms are handled by MirrorLink requirements defined in [1] and [2].
Therefore, any device that wants to comply with the present document shall implement MirrorLink as well.

The MirrorLink Client, providing HSML functionality, shall implement the HSML sink functionality.

The MirrorLink Server, providing HSML functionality, shall implement the HSML source functionality.

5 HSML USB Architecture

5.1 General
HSML is a USB function that can transfer display data efficiently. The figure below shows the USB architecture of
HSML. Two pipes are established. The control pipe is used to send HSML specific requests. The framebuffer pipe is
established for transmitting the uncompressed or compressed display data.

The device and host will be used in this clause to refer to HSML source and HSML sink respectively because this
clause mainly describes HSML in the context of USB.

CE (HSML Server) HU (HSML Client)

USB Device USB Host

EP In (Bulk)

Vendor Specific

Class

EP In (Bulk)

Vendor Specific

Class

EP0 (Ctrl)EP0 (Ctrl)

Figure 3: HSML USB Architecture

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)9

5.2 Functional Characteristics

5.2.1 General

The MirrorLink Server shall support at least two functions: one is HSML and the other is CDC/NCM which is
compliant with HSML. The MirrorLink Server shall include the HSML USB interface into the same USB configuration
as the CDC/NCM USB interface. The HSML function is used for video transmission and the CDC/NCM is used for
carrying MirrorLink traffic.

5.2.2 Interface

The HSML interface shall be one of several interfaces the MirrorLink Server has in order to conform to the present
document.

5.2.3 Endpoints

5.2.3.1 General

The device shall contain two endpoints: Ctrl (Default) and Bulk In (Framebuffer).

5.2.3.2 Default

The default endpoint uses the control transfers as defined in the USB specification [3]. All the standard and vendor-
specific requests are transmitted through this endpoint. The endpoint number shall be zero (0).

5.2.3.3 Framebuffer

This endpoint is used to receive the framebuffer data from the device. This endpoint shall use bulk transfers and the
direction shall be IN. The maximum packet size for USB 2.0 shall be 512 bytes and for USB 3.0 shall be 1 024 bytes.

5.3 Vendor-Specific Codes
Table 1 defines the interface class, subclass and protocol used in the HSML interface descriptor.

Table 1: Vendor-Specific Codes

Fields Code Description
Class 0xFF Vendor specific class

Subclass 0xCC CCC
Protocol 0x01 HSML

To comply with the present document, the device should not have another USB vendor-specific interface whose
subclass field is 0xCC and protocol field is 0x01. The detail of descriptor class definition rule is following USB
specification in [3].

5.4 Interface Descriptor
The HSML interface descriptor is just like a standard USB interface descriptor, except some fields are dedicated to
HSML as follows.

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)10

Table 2: HSML Interface Descriptor

Offset Fields Size
(Bytes)

Value Description

0 bLength 1 Number Size of this descriptor. (9 bytes)
1 bDescriptorType 1 Constant Interface descriptor (0x04)
2 bInterfaceNumber 1 Number Number of interface
3 bAlternateSetting 1 Number Value used to select alternative setting

4 bNumEndpoints 1 Number
Number of Endpoints. This number shall be 1 for a
Bulk IN.

5 bInterfaceClass 1 Class Interface Class Code. (0xFF)
6 bInterfaceSubClass 1 SubClass Interface Subclass Code. (0xCC)
7 bInterfaceProtocol 1 Protocol Interface Protocol Code. (0x01)

8 bInterface 1 Index
Index of a string descriptor that describes this
interface

Standard USB interface descriptor is defined in [3].

5.5 Endpoint Descriptors
The HSML interface requires 2 endpoints: one is default Control endpoint (endpoint 0), another is BULK IN endpoint
as follows.

Table 3: HSML Bulk IN Endpoint Descriptor

Offset Fields Size Value Description
0 bLength 1 Number Size of this descriptor. (7 bytes)
1 bDescriptorType 1 Constant Endpoint descriptor (0x05)
2 bEndpointAddress 1 Number Endpoint number and direction (The bit 7 should be 1 to

indicates its direction is IN)
3 bmAttributes 1 Constant Transfer type, Bulk. (0x02)
4 wMaxPacketSize 2 Number Maximum packet size supported (For USB 2.0, this value

shall be 512 and for USB 3.0, this value shall be 1 024)
6 bInterval 1 Number Service interval. (not used)

Standard endpoint descriptor is defined in [3].

5.6 HSML Requests

5.6.1 General

Table 4 lists all of the HSML specific requests that are valid for the HSML interface. Requests marked as "Yes" in the
mandatory field shall be implemented by any conforming HSML device.

Table 4: HSML Request List

Request Code Mandatory Description
GetVersion 0x40 Yes Get and provide HSML versions of the HSML source

and sink.

GetParameters 0x41 Yes Request the device to report its capabilities and
configurations.

SetParameters 0x42 Yes Configure the device according to the device's and
the host's capabilities.

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)11

Request Code Mandatory Description
StartFramebufferTrans
mission

0x43 Yes Request the device to start sending framebuffer via
the Bulk IN endpoint.

PauseFramebufferTran
smission

0x44 Yes Request the device to pause the framebuffer
transmission if it's in streaming mode.

StopFramebufferTrans
mission

0x45 Yes Request the device to stop sending framebuffer if it's
in streaming mode.

SetMaxFrameRate 0x46 Yes Request the device to set the maximum framebuffer
update rate. The device shall not send framebuffer
updates at a rate beyond the specified value.

GetIdentifier 0x47 Yes Request the device to return a unique identifier.

The request format is defined in [3], clause 9.

Based on [3], all HSML requests shall use little endian for any value 16-bit, 32-bit or 64-bit value.

5.6.2 GetVersion

This request retrieves the maximum version that the device can support and tells the device which version the host can
support at the same time.

Table 5: GetVersion Request

bmRequestType bRequestCode wValue wIndex wLength Data
11000001B 0x40 HSML Sink

version
The
interface
number

2 First byte: Major version of
HSML source
Second byte: Minor version of
HSML source

The first byte of wValue field shall be HSML sink major version and the second byte of wValue field shall be HSML
sink minor version. The value of wValue field and Data field returned from the HSML source shall be both 0x0100 for
this version of the present document.

HSML source and HSML sink shall provide this function for backward compatibility.

5.6.3 GetParameters

This request is used by the host to get the capabilities and configuration of the device.

Table 6: GetParameters Request

bmRequestType bRequestCode wValue wIndex wLength Data
11000001B 0x41 0 The

interface
number

16 HSML Parameter
structure (see Table 7)

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)12

Below is the HSML parameter structure.

Table 7: HSML Parameter Structure

Offset Field Size Value Description
0 bmCapabilities 4 Bitmap Bit 0: BigEndian used

Bit 1: FBUpdateOnChange supported
Bit 2 to 31: Reserved. (it shall be all zeroes)

4 wWidth 2 Number The width of framebuffer that the device
wants to use.

6 wHeight 2 Number The height of framebuffer that the device
wants to use.

8 bmPixelFormatSupported 4 Bitmap Bit 0: 32-bit ARGB 888 (mandatory for HSML
source)
Bit 1: 24-bit RGB 888 (deprecated)
Bit 2: 16-bit RGB 565 (mandatory for HSML
source)
Bit 3: 16-bit RGB 555 (deprecated)
Bit 4: 16-bit RGB 444 (deprecated)
Bit 5: 16-bit RGB 343 (deprecated)
Bit 6 to 31: Reserved. (it shall be all zeroes)

12 bmEncodingSupported 4 Bitmap Bit 0: RAW data (Mandatory)
Bit 1: RLE (Run Length Encoding) as defined
in [2].
Bit 2 to 31: Reserved. (it shall be all zeros)

If the endianness of framebuffer data is big endian, the device shall set bit 0 of bmCapabilities field to 1. Otherwise, it
shall set this bit to 0 to indicate that its native framebuffer is in little endian. If the device supports sending the
framebuffer only when its display data changed, it shall set bit 1 of bmCapabilities field to 1.

The device shall set wWidth and wHeight according to its framebuffer resolution.

The device shall support ARGB 888 and RGB 565 pixel formats.

The wEncodingSupported field indicates encodings of framebuffer that the device supports. The device shall support
the RAW encoding, i.e. the bit 0 shall be set to 1.

5.6.4 SetParameters

This request is used to tell the device which configuration that the host wants to use.

Table 8: SetParameters Request

bmRequestType bRequestCode wValue wIndex wLength Data
01000001B 0x42 0 The

interface
number

12 HSML Configuration
structure (see Table 9)

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)13

Below is the HSML configuration structure.

Table 9: HSML Configuration Structure

Offset Field Size Value Description
0 bmCapabilities 4 Bitmap Bit 0: BigEndian used

Bit 1: FBUpdateOnChange used.
Bit 2 to 31: Reserved. (it shall be all zeroes)

4 bPixelFormat 1 Number 0: 32-bit ARGB 888
1: 24-bit RGB888 (deprecated)
2: 16-bit RGB 565
3: 16-bit RGB 555 (deprecated)
4: 16-bit RGB 444 (deprecated)
5: 16-bit RGB 343 (deprecated)
6 to 31: Reserved.
32 to 255: Undefined

5 bPadding 1 0 Padding
6 wPadding 2 0 Padding
8 bmEncodingSupporte

d
4 Bitmap Bit 0: RAW (Mandatory)

Bit 1: RLE (Run Length Encoding)
Bit 2 to 31: Reserved. (it shall be all zeroes)

The host shall set bit 0 of bmCapabilities field to 1, if the endianness of its framebuffer data is big endian. Otherwise, it
shall set this bit to 0 to indicate that its native framebuffer is in little endian. The device shall follow the host's capability
and send framebuffer data accordingly.

The host should set the FBUpdateOnChange bit to avoid unnecessary USB bandwidth usage if the device supports it.

The host shall select only colour formats supported from the server. The host may send SetParameters request any time
when the host wants to change the pixel format.

The host can use bmEncodingSupported field to indicate the device what encodings it supports. If both host and device
support multiple encodings, then device can take advantage of it by encoding the framebuffer based on display contents.
For example, if the current display content is a pure UI, then the device may encode the framebuffer with RLE. On the
other hand, if the content is a movie, then the device may use RAW encoding.

The device shall respond with a STALL if it cannot handle the configuration from the host.

The host shall not send this request without sending the GetParameters request first.

5.6.5 StartFramebufferTransmission

This request asks the device to start sending framebuffer via the Bulk IN endpoint.

Table 10: StartFramebufferTransmission Request

bmRequestType bRequestCode wValue wIndex wLength Data
01000001B 0x43 0x0000: Streaming Mode

0x0001: On-Demand Mode
The
interface
number

0 None

The device will send the framebuffer continuously in the streaming mode. This mode is purely designed for
performance. It gives you the minimum latency and the highest possible frame rate. The host should try to keep up with
the device, otherwise the user may experience some delay.

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)14

The On-Demand mode lets the host decide when it needs an updated framebuffer. Every time the device receives this
request with the On-Demand Mode set in the wValue field, it shall send a framebuffer to the host. This mode saves the
bandwidth on expense of slightly increased latency.

5.6.6 PauseFramebufferTransmission

This request asks the device to pause framebuffer transmission via the Bulk IN endpoint.

Table 11: PauseFramebufferTransmission Request

bmRequestType bRequestCode wValue wIndex wLength Data
01000001B 0x44 0 The interface

number
0 None

The device shall stop any pending framebuffer transmissions when receiving this request but maintain all configurations
and the host shall discard all queued data after sending this request. The host can restart the framebuffer transmission by
sending the StartFramebufferTransmission at a later time without configuring the device again. This request shall not be
sent at the on-demand mode.

5.6.7 StopFramebufferTransmission

This request stops the device from sending framebuffer at the streaming mode.

Table 12: StopFramebufferTransmission Request

bmRequestType bRequestCode wValue wIndex wLength Data
01000001B 0x45 0 The interface

number
0 None

The device shall cease all activities on the Bulk IN endpoint and clean all remaining data in the queue when it receives
this request. This request shall not be sent at the on-demand mode.

5.6.8 SetMaxFrameRate

This request sets the upper bound of the device's frame rate.

Table 13: SetMaxFrameRate Request

bmRequestType bRequestCode wValue wIndex wLength Data
01000001B 0x46 Maximum frames per

second
The interface
number

0 None

The frame rate is defined as 1 s divided by the number of framebuffer updates. The device should send the framebuffer
at a regular interval according the value in the wValue field. For instance, if the wValue is 30, the device should send a
framebuffer every 33 ms or more.

The device shall not send framebuffer at a rate higher than the value specified in the wValue field and the host can send
this request any time after the initialization phase.

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)15

5.6.9 GetIdentifier

This request can be used to identify multiple HSML devices when they are all connected to the same host.

Table 14: GetIdentifier

bmRequestType bRequestCode wValue wIndex wLength Data
11000001B 0x47 0 The interface

number
16 UUID

version 4

The device shall return a Universally Unique IDentifier (UUID) version 4, as defined in [4], upon receiving this request.

NOTE: The UUID value in HSML is represented as 16 RAW bytes. The UUID in the UPnP XML is represented
as a 36 bytes String. The HSML UUID and UPnP Server Device XML UUID may represent the same
underlying value.

Example, where the UPnP and HSML UUID represent the same value:

UPnP UUID:

 "uuid:2fac1234-31f8-11b4-a222-08002b34c003"

HSML UUID:

 Byte(0x2f), Byte(0xac), Byte(0x12), Byte(0x34), Byte(0x31), Byte(0xf8), Byte(0x11),
 Byte(0xb4), Byte(0xa2), Byte(0x22), Byte(0x08), Byte(0x00), Byte(0x2b), Byte(0x34),
 Byte(0xc0), Byte(0x03)

6 HSML Framebuffer Transmission Protocol

6.1 General
There are two phases of the HSML protocol:

• Initialization Phase: To let HSML source and HSML sink to load proper drivers that can communicate with
each other and exchange the configuration messages, as shown in Figure 3.

• Transmission Phase: HSML source sends the display data and HSML sink sends the control data at this
phase.

6.2 Managing an HSML Connection

6.2.1 Identifying Remote Applications

HSML is identified as specific encoding within an existing VNC connection. Therefore, remote applications shall be
listed and handled as VNC based applications with protocolID set to "VNC".

During a VNC session the MirrorLink Client shall list HSML pseudo encoding (-527) within VNC SetEncodings
message, to indicate the support of HSML. If MirrorLink Server supports the HSML as well, it shall send VNC
FramebufferUpdate messages with Context Information (-524) and HSML pseudo encoding (-527) in response to
FramebufferUpdateRequest messages from the MirrorLink Client.

6.2.2 Establishing the HSML Connection

A VNC connection shall be established from the MirrorLink Client prior the HSML connection as defined in [2]. The
HSML connection shall be established after VNC initialization phase as defined in clause 6.3.1.

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)16

6.2.3 Intentionally Terminating the HSML Connection

The MirrorLink Client and Server can initiate terminating both connections anytime by sending a VNC ByeBye
message as specified in [2].

The MirrorLink Client shall terminate the HSML connection by sending a StopFramebufferTransmission request, as
specified in clause 5.6.7, when the MirrorLink Client is in streaming mode, as shown in Figure 4, and shall not send any
further StartFramebufferTransmission requests, as specified in clause 5.6.5.

Figure 4: Message Sequence for Intentionally Terminating HSML (Streaming Mode)

If the MirrorLink Client decides to re-establish the VNC session, it shall follow the steps given in clause 6.2.2. The
MirrorLink Server shall keep the USB HSML

6.2.4 Unintentionally Terminating the HSML Connection

The HSML connection may be disconnected unintentionally in case of any error conditions. The recognizing entity
shall then terminate the VNC connection by sending a VNC ByeBye message as specified in [2].

The VNC connection may be disconnected unintentionally in case of any error conditions. The MirrorLink Client shall
then terminate the HSML connection, following the steps defined in clause 6.2.3.

If the MirrorLink Client decides to re-establish the VNC session, it shall follow the steps given in clause 6.2.2.

6.3 HSML Protocol Phases

6.3.1 Initialization Phase

Before establishing the HSML connection, a VNC connection shall be established, because HSML depends on it to
configure display parameters, provide context information and handle user input events. Therefore, the whole
initialization sequence shall be as shown in Figure 5.

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)17

Figure 5: Message Sequence for HSML Initialization Phase

After VNC handshaking phase as defined in [2] and exchanging ClientInit and ServerInit messages, the MirrorLink
Client shall indicate the support for HSML by listing HSML pseudo encoding (-527) within the SetEncodings message
during the initialization phase of the VNC connection. The encoding order of supported framebuffer encodings may be
used from the HSML Source as an indication on the HSML sink's priority order (first entry has highest priority). After
receiving the initial FramebufferUpdate message with HSML pseudo encoding (-527), the MirrorLink Client shall
initialize the HSML connection on USB layer.

The MirrorLink Client may establish connections to multiple MirrorLink servers that all support HSML simultaneously.
In this case, the MirrorLink Client shall use the GetIdentifier request to distinguish between them. The MirrorLink
Server shall send the same UUID value in both the returned value of the GetIdentifier request and the HSML pseudo
encoding.

The GetVersion request tells HSML sink what HSML version the HSML source is going to use for the subsequent
communications. HSML sink may send GetParameters request after receives the reply of GetVersion request.

The GetParameters request is used to learn about the capabilities and configurations of HSML source. HSML sink shall
use the returned values to select the configuration which HSML sink can support. Once selected the preferred
configuration, HSML sink shall send SetParameters request to HSML source. HSML source shall adopt the
configuration from HSML sink.

The HSML resolution wWidth and wHeight as provided via GetParameters request shall follow the resolution
negotiated within the VNC context, i.e. as soon as the Desktop Size Pseudo Encoding has been sent.

The HSML initialization shall be completed in 1 s.

6.3.2 Transmission Phase

6.3.2.1 Handling Context Information

The VNC connection is used to exchange context information via framebuffer update request - response mechanism.
Instead of any framebuffer pixel data a specific HSML pseudo encoding (-527) is used to identify the out-of-band
transfer via HSML.

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)18

Table 15: HSML Pseudo Encoding

bytes Type Value Description
2 U16 0 X-position of rectangle (top left corner)
2 U16 0 Y-position of rectangle (top left corner)
2 U16 width Width of the negotiated framebuffer resolution
2 U16 height Height of the negotiated framebuffer resolution
4 S32 -527 Encoding type
2 U16 16 The length of unique identifier
16 Array of U8 UUID version 4

After receiving the initial FramebufferUpdate message and in response to any VNC FramebufferUpdate messages, the
MirrorLink Client shall immediately send a VNC FramebufferUpdateRequest message. The VNC
FramebufferUpdateRequest shall include the whole framebuffer area, with X and Y position set to 0 (zero) and width
and height according to the negotiated framebuffer resolution.

The MirrorLink Server shall respond by sending a FramebufferUpdate message with Context Information (-524) and
HSML pseudo encoding (-527) instead of any framebuffer pixel data. While the HSML connection is active the
MirrorLink Server shall not send any framebuffer pixel data within FramebufferUpdate messages and the MirrorLink
Client shall either ignore any framebuffer pixel data within FramebufferUpdate messages or intentionally terminate the
VNC session.

Depending on incremental flag within FramebufferUpdateRequest message, the MirrorLink Server:

• Shall immediately send context information for the requested area, independent of whether it has changed or
not, if incremental flag is set to '0' (non-incremental), as shown in Figure 6.

• Shall send context information for the requested area, once context information has changed, if incremental
flag is set to '1' (incremental), as shown in Figure 7.

• May send context information independent of whether it has changed or not, if incremental flag is set to '1'
(incremental). In that case it is recommended to wait at least 100 ms.

The MirrorLink Client and Server shall also follow additional requirements defined in [2].

Figure 6: Message Sequence for on-Demand Context Information

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)19

Figure 7: Message Sequence for on-Change Context Information

6.3.2.2 Handling Display Data

Once HSML source and HSML sink exchange the required information, HSML source can start to send the display data
on USB layer.

There are two ways to transmit the display data from HSML source to HSML sink:

1) Streaming Mode.

2) On-Demand Mode.

HSML source shall support both Streaming Mode and On-Demand Mode.

HSML source shall send framebuffer continuously in the streaming mode, as shown in Figure 8.

Figure 8: Message Sequence for Transmission Phase (Streaming Mode)

In on demand mode the HSML source shall only send framebuffer if requested by the HSML sink regardless of whether
the FBUpdateOnChange in the SetParameters is set, as shown in Figure 9.

Figure 9: Message Sequence for Transmission Phase (On-Demand Mode)

Every framebuffer has to be preceded by a header as shown in Table 16 and it shall send the header's individual fields in
network byte order (most significant byte first).

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)20

Table 16: Framebuffer Header

bytes Type Value Description
8 Array of U8 0xFFFF48534D4CFFFF Signature of frame header
4 U32 Sequence number
4 U32 Timestamp
4 U32 Framebuffer data size in byte, not

including this header
2 U16 Width
2 U16 Height
1 U8 0: 32-bit ARGB 888

1: 24-bit RGB888
2: 16-bit RGB 565
3: 16-bit RGB 555
4: 16-bit RGB 444
5: 16-bit RGB 343
6 to 31: Reserved.
32 to 255: Undefined

Pixel format

1 U8 0: RAW
1: RLE
2 to 31: Reserved
32 to 255: Undefined

Encoding

486 for USB 2.0 and
998 for USB 3.0

Array of U8 All zeros Reserved

The signature field is used to synchronize the framebuffer when some data is lost in transit.

The sequence number is incremented by one for each framebuffer sent. It may be used to calculate the frame rate on the
HSML sink side. The timestamp field shall be recorded at the time of the frame being captured and the unit shall be ms.
This value shall be derived from a clock that increments monotonically and linearly in time and the initial value of it is
random.

The width and height fields shall follow the negotiated framebuffer resolution within the VNC context. The pixel
format and encoding fields shall be equivalent to those of SetParameters request.

The bulk transfer with framebuffer header and framebuffer data shall be formatted like Figure 10.

Figure 10: Bulk Transfer Framebuffer Format

Framebuffer Data shall include full screen information no matter if it is raw data or compressed data. Framebuffer Data
shall be orientated and rotated as negotiated within the VNC context. Framebuffer Data shall be formatted according the
PixelFormat set via SetParameter request and as defined in [2].

The HSML source shall use a USB short packet mechanism to implement segment delineation as specified in [5].When
a framebuffer transfer (Header + Data) spans N USB packets, the first packet through packet N-1 shall be the maximum
packet size defined for the USB endpoint. If the Nth packet is less than maximum packet size the USB transfer of this
short packet will identify the end of the segment. If the Nth packet is exactly the maximum packet size, it shall be
followed by a zero-length packet (which is a short packet) to assure the end of segment is properly identified [5].

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)21

6.3.2.3 Handling Pausing and Resuming Data Transfer

The HSML source can pause and later on resume the HSML streaming of framebuffer data at any point in time.

The message sequence, the HSML source and sink shall follow for pausing and resuming the framebuffer stream in
Streaming Mode, is shown in Figure 11.

Figure 11: Message Sequence for Pausing and Resuming the Data Transfer in Streaming Mode

In case the HSML Sink has enabled FBUpdateOnChange, the HSML Source shall send an initial framebuffer, when
resuming the framebuffer streaming. I.e. the HSML Source shall not wait until an actual change of the framebuffer.
This allows the HSML Sink to not keep the last framebuffer content, before pausing the stream.

The message sequence, the HSML source and sink shall follow for pausing and resuming the framebuffer stream in on-
Demand Mode, is shown in Figure 12.

Figure 12: Message Sequence for Pausing and Resuming the Data Transfer in On-Demand Mode

6.3.2.4 Handling Framebuffer Resolution Change

The MirrorLink Client and Server can change framebuffer resolution as defined in [2].

The HSML source shall follow changed resolutions immediately and send HSML Framebuffer Data with updated
resolution. The HSML sink shall render Framebuffer Data with updated resolution.

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)22

The message sequence the HSML source and sink shall follow is shown in Figure 13, in case the resolution is changed
during run-time, i.e. after the HSML transfer has started. The HSML source shall stop sending HSML packets
immediately after having received the StopFramebufferTransmission message, but it shall still finish an already ongoing
transfer of an HSML frame. Therefore, the HSML Sink shall be able to receive further HSML packets, containing the
old size, after sending the StopFramebufferTransmission message.

Figure 13: Message Sequence for successful run-time Framebuffer Resolution Change

On reception of the ClientDisplayConfiguration message, the VNC Server shall send a FramebufferUpdate message
containing a DesktopSize pseudo encoding rectangle with the new framebuffer resolution. In case the VNC Server does
not support the new resolution, it shall send a FramebufferUpdate message containing a DesktopSize pseudo
encoding rectangle with the old framebuffer resolution, as shown in Figure 14.

Figure 14: Message Sequence for unsuccessful run-time Framebuffer Resolution Change

In case the MirrorLink Server wants to change the framebuffer resolution during the initial handshake, the following
very similar message sequence shall be followed, as given in Figure 15.

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)23

Figure 15: Message Sequence for initial Framebuffer Resolution Change

The MirrorLink Server and Client shall both follow the framebuffer scaling and aspect ratio requirements defined in [2].

6.3.2.5 Handling Framebuffer Format Change

The HSML sink can change the pixel format and encoding of framebuffer during the transmission phase by sending the
SetParameters request. It shall follow the procedure in Figure 16.

Figure 16: Message Sequence for Framebuffer Format Change in Streaming Mode

After changing the pixel format, the HSML sink shall ignore framebuffer whose format is not identical to the format
values in SetParameters request because it may receive several framebuffers that are still using the old format in
streaming mode. The HSML source shall keep its current pixel format, if the HSML sink attempts to set a pixel format
value in SetParamters request, which is not supported from the HSML source.

6.3.2.6 Handling Framerate Adjustment

The HSML sink can limit the maximum frame rate that the HSML source can send by following the procedure in
Figure 17.

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)24

Figure 17: Message Sequence for Framerate Adjustment

6.3.2.7 Handling Framebuffer Blocking Notification

The HSML source shall be compliant with the Framebuffer Blocking Notification mechanism in [2], the
FramebufferBlocking Notification is sent by VNC Client still and the example flow is shown in Figure 18 for the
example situation, when the MirrorLink Client is blocking the framebuffer after receiving new Context Information.

Figure 18: Message Sequence for Framebuffer Blocking on new Framebuffer Context Info

HSML source shall follow one of the actions defined in [2] on reception of a framebuffer blocking notification message
to resolve the framebuffer blocking.

In case the MirrorLink Client is moving the MirrorLink screen to the background the HSML Sink shall pause the
HSML transfer, sending a PauseFramebufferTransmission message in streaming mode, as shown in Figure 19. In case
of on-demand mode, the HSML Sink shall stop sending FramebufferUpdateRequest messages.

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)25

Figure 19: Message Sequence moving the MirrorLink Screen to the Background

The HSML Sink shall resume the HSML transfer sending a StartFramebufferTransmission message (in streaming
mode) or a FramebufferUpdateRequest message (in on-demand mode), as soon as the MirrorLink screen is in the
foreground again.

6.3.2.8 Handling Orientation Changes

The HSML Sink shall provide the framebuffer content in landscape orientation. Portrait orientation is not supported by
the present document and shall not be used. The MirrorLink Client and Server should therefore disable the orientation
switch support flag (bit 0 of the Framebuffer Configuration word) in the VNC Client and Server Configuration
messages.

In case an application on the MirrorLink Server attempts to change the orientation to Portrait and the application cannot
be switched back into Landscape, e.g. the Portrait-only Android native home screen application, the MirrorLink Server
shall not follow the orientation request and send a Portrait framebuffer via HSML. Instead, the MirrorLink Server
should stop sending further HSML frames (if in streaming mode) and send VNC ContextInformationPseudoEncoding
message, with the application category set to "Switch to MirrorLink Client native UI". The
framebuffer dimensions within that message shall match the original landscape orientation. The MirrorLink Client shall
stop the HSML framebuffer transmission and switch to its native UI, as shown in below Figure 20.

Figure 20: Recommended Message Sequence to respond to Applications switching to Portrait Mode

In case the MirrorLink Server does not use the mechanism described in Figure 20, it shall switch either to a certified
Home Screen or to another certified application, which are certified for the given driving mode and locale and which
displays a landscape user-interface.

In case the MirrorLink Client nevertheless attempts to change the orientation, the MirrorLink Server shall reject the
change, using the message exchange shown in Figure 21.

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)26

Figure 21: Message Sequence rejecting Orientation Change from MirrorLink Client

In case the MirrorLink Server nevertheless attempts to change the orientation, the MirrorLink Client shall reject the
change, using the message exchange shown in Figure 22.

Figure 22: Message Sequence rejecting Orientation Change from MirrorLink Server

In case the MirrorLink Client has disabled bit 0 of the Framebuffer Configuration word in the
ClientDisplayConfiguration message, the MirrorLink Client may intentionally terminate the current foreground
application or the current VNC Session, rather than using the message sequence of Figure 22.

6.3.2.9 Handling Content Attestation

The current HSML specification only supports the attestation of the Context Information via the exchange VNC
ContentAttestation messages. See [2] for details.

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)27

6.3.3 HSML Protocol Finite State Machine

Below is a diagram describing state transition of the HSML source and sink after receiving various requests from the
HSML sink:

• Uninitialized - Initial State; HSML Source and Sink are uninitialized.

• Unconfigured - HSML Source and Sink are initialized but not configured.

• Configured - HSML Source and Sink are initialized and configured; HSML streaming stopped.

• Started - HSML Source and Sink are initialized and configured; HSML streaming ongoing.

On termination of the related VNC session, the HSML source and sink shall return to an uninitialized state, i.e. the
HSML sink shall follow the HSML initialization phase, as defined in clause 6.2, when a HSML connection is setup the
next time.

Figure 23: HSML Protocol Finite State Machine Diagram

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)28

Annex A (informative):
Authors and Contributors
The following people have contributed to the present document:

Rapporteur: Dr. Jörg Brakensiek, E-Qualus (for Car Connectivity Consortium LLC)

Other contributors: Matthias Benesch, Mercedes-Benz Research & Development North America

Joey Chien, HTC Corp.

Seubert Christopher, Carmeq (for Volkswagen AG)

Gautier Falconnet, PSA

Dennis Fernahl, Carmeq (for Volkswagen AG)

Alexander Kirschner, jambit GmbH

Matthias Langhammer, jambit GmbH

Joe Wei, HTC Corp.

ETSI

ETSI TS 103 544-21 V1.3.1 (2019-10)29

History

Document history

V1.3.0 October 2017 Publication

V1.3.1 October 2019 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Introduction
	5 HSML USB Architecture
	5.1 General
	5.2 Functional Characteristics
	5.2.1 General
	5.2.2 Interface
	5.2.3 Endpoints
	5.2.3.1 General
	5.2.3.2 Default
	5.2.3.3 Framebuffer

	5.3 Vendor-Specific Codes
	5.4 Interface Descriptor
	5.5 Endpoint Descriptors
	5.6 HSML Requests
	5.6.1 General
	5.6.2 GetVersion
	5.6.3 GetParameters
	5.6.4 SetParameters
	5.6.5 StartFramebufferTransmission
	5.6.6 PauseFramebufferTransmission
	5.6.7 StopFramebufferTransmission
	5.6.8 SetMaxFrameRate
	5.6.9 GetIdentifier

	6 HSML Framebuffer Transmission Protocol
	6.1 General
	6.2 Managing an HSML Connection
	6.2.1 Identifying Remote Applications
	6.2.2 Establishing the HSML Connection
	6.2.3 Intentionally Terminating the HSML Connection
	6.2.4 Unintentionally Terminating the HSML Connection

	6.3 HSML Protocol Phases
	6.3.1 Initialization Phase
	6.3.2 Transmission Phase
	6.3.2.1 Handling Context Information
	6.3.2.2 Handling Display Data
	6.3.2.3 Handling Pausing and Resuming Data Transfer
	6.3.2.4 Handling Framebuffer Resolution Change
	6.3.2.5 Handling Framebuffer Format Change
	6.3.2.6 Handling Framerate Adjustment
	6.3.2.7 Handling Framebuffer Blocking Notification
	6.3.2.8 Handling Orientation Changes
	6.3.2.9 Handling Content Attestation

	6.3.3 HSML Protocol Finite State Machine

	Annex A (informative): Authors and Contributors
	History

