ETSITS 103 964 vi.1.1 02502

C—
TECHNICAL SPECIFICATION

Cyber Security (CYBER);
A Verifiable Credentials extension using
Attribute-Based Encryption

2 ETSI TS 103 964 V1.1.1 (2025-02)

Reference
DTS/CYBER-0098

Keywords
access control, confidentiality, portability, privacy

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B
Association & but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver repository.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness
for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not
limited to, the warranties of merchantability, fithess for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2025.
All rights reserved.

ETSI

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

3 ETSI TS 103 964 V1.1.1 (2025-02)

Contents

INtelleCtual Property RIGNTS ..o bbb bt n e nie s 5
0] 151 0] o SRS 5
Y ToTo E Y=Y g oI (=14 o Ta o] oo | 2SSOSR 5
1 RS0t 0] 0SSP 6
2 LRy =] £=] 0= OSSR 6
2.1 NOFMALIVE FEFEIENCESeveeiieie ettt ettt ettt e e et e e e be s eeebesbeese et e e e e besaeebesreeneeneenseneesnens 6
2.2 INFOIMALIVE FEFEIBNCESttt sttt sttt et e nt e te st e besbeebeeneeneeeenee st ees 7
3 Definition of terms, symbols and abbreViations............cccce v 8
3.1 LT £ T OO U TR PR PP 8
3.2 Y 1100 £ SRS 9
3.3 ADDFEVIALIONS ...ttt bttt bbbt b bt e s s e e bt bt e b e b e e b e e n b e b bt bbbt e R e e e nn et 9
4 ABE challenge/response authorization Method............cccooiiiiiiiii s 10
4.1 LT [1Tod 1o o USRS 10
4.1.1 L@ T Y 11 PSSO 10
4.1.2 FUNCLIONAT CIEENTIALSeveeeeee ettt sttt ettt et et e tesneeneeneeneeneeseesre e 10
413 VErifiable CretntialSc.o ittt st eeeteer e st e e e neeseeseenes 11
4.2 o 0] (0o OSSP 11
4.2.1 1= Tod o1 [0 USSR 11
4.2.2 Predicate ENCryption SCNEIMAociiiieiicice ettt te et e e e e sneesneenreenes 12
4.2.3 RUNNING EXAMPIE ..ottt esae e sae e be et e sneesteesteestaeseeeneeannas 12
4.3 Y LTI 0] g Tol T o £ S S 13
4.3.1 Anonymous Credentials and Zero Knowledge Proof ... 13
4.3.2 FUNCLIONAT CIEAENTIALSveeeeee ettt sttt sttt e e e tesreeneeneeneeneesaesre e 13
4.3.3 Presentation POHCY VerifiCatiONccooiiiiiiiiiiee e 14
434 Credential REVOCALION.cv ittt e te bt e b e ae e s et et e steseesbesreereeneeneeseesrennis 14
4.4 Architecture and Reference POINES (NOMALIVE)cuiviiiiiiiiieisieiee e 15
441 F N o] T (=T o1 0 (PSSR 15
4472 Reference Point K (Key diStriDULION)coviiiiiiiiii e 15
443 Reference Point P (public parameters diStribUtion)cccveieiiiiieniee e 16
4.4.4 Reference PoINt R (ChalleNQe rESPONSE) ...c.vveiieieeie ettt ettt be e beeeeeaeennas 16
5 VErifiable CredentialS.........cc.oiiiiieii ittt e st teeeesteereennesreenee e 16
5.1 LT [1Tod 1o o USRS 16
5.2 Interface Implementing Reference POINE Kooiiiiiiie e 17
5.2.1 L@ T Y 11 USSR 17
522 CIAIM PIOOT ...t bbbt e bt bt bbb b e bbb e bt bt b et b b et be b st et b 17
523 Example: Verifiable Credentials (INfOrmMatiVe)..........ocooiiiiiiiii e 18
5.3 Interface Implementing RefErenCe POINT P.........cccooiiiiii e 19
531 OVBIVIBW ...ttt ettt bbb bbb b€ b e H 28 e e e b e b e 4 H £ e h e ekt e s b e et e n b et eb e ekt e bt eb e e ne et e nbenb et 19
5.3.2 Verification MethOd CIAIMSoiiiiiiiieie bbbttt sr s 20
5.3.3 Example: Controller Document (infOrMatiVe)ccveiiiiiiie s 20
6 Interface Implementing Reference POINE Rccvoiiiiiiiie e e 22
6.1 Lo [1Tod 1o o PSSR 22
6.2 CRAIIENGE......e bbb bbb bR R bbbt bt b 22
6.2.1 L@ Y 11 USRS 22
6.2.2 AV AY o o 0] (=Tod T I T=T Vo T PSS 22
6.2.3 JWE ENCIYPEEA KEY ...ttt bbbt bbb bbbt bbbttt b et enes 23
6.2.4 N AT O o]0 T=T (= USRS 23
6.2.5 Example: JWE ProteCted HEAUENccci i iie ettt sttt e st e teesta e aeeneas 23
6.2.6 Example: JWE ENCIYPLEA KEYuvoiiee ettt sttt n e nna e te e te e e e aeaneas 23
6.2.7 Example: JWE Ciphertext and JWE ODJECEcvoiveieicce ettt 25
6.3 LR 010] 17T OO P PR PROPROTR 26
6.3.1 OVBIVIBW ...ttt ettt et bbbt e sttt h b4 H e h e h e e R b et e E e e bt ekt eb £ e b e e n b et e e bt eb e e bt eb e e e e b e nbeabenes 26
6.3.2 Example: Verifiahle PreSEntation ... 27

ETSI

4 ETSI TS 103 964 V1.1.1 (2025-02)

Annex A (informative): Attribute Based ENCryptionccecceviieeie s 28
AL CP-ABE SCREMA. ...ttt bbbttt e et 28
A.2 CP-WATERS-KEM CONSITUCTIONcuviitiiiieiiesiieie sttt sttt sae st stesneenaesneenee e 28
A.3 CCA-SeCUre CP-ABE CONSLIUCLIONocuiiiieiiiieieiie sttt ettt sttt see et eseesneeneesaesneeneesreenee e 30
A3l CCA-secure ENCryption AlGOItIMcoiiiii ettt e e e e sneas 30
A3.2 CCA-secure Decryption ALGOITTNM ..ot et sttt re s e seeneeseesneas 30
Annex B (informative): Pairing friendly BL S12-381 Curve and itSEncoding........cccccceeeeviinennnne. 31
B.1 BLSI12-381 CUIVE ...eieiitieie ettt sttt sttt bbbt a e bt b e s e s bt e h e e bt s bt e et eb e e st e nbesbeeb e et seeenne e 31
B.2 Point encoding With COMPIESSION........ccviiiiiiie ettt reere e resre e 31
2 TGS 1o o T- L7 LA Lo] o SO 32
B4 DESEITAIIZALION.....c.uiiieeieieieee ettt ettt b bbbt b b ettt n e 33
B.5 Base64URL ENcoding and DECOUING.......c.cooviiiiiiiiiciie ittt ettt re s sae e 33
B.6 Encoding elements of the multiplicative group GF(P2)*........cceeeiiiiiiesereeee s 34
Annex C (informative): A Simple Compiler for Basic CP-ABE poOliCI€S.......cccccevvvievvcecce e, 35
Annex D (informative): Functional CredentialS........cccceecevieeece e e 36
D 20 A I T T 4T] TSRS 36
D.2 Correctness, unforgeability and anonymity of the protocol defined in the present document............... 36
Annex E (informative): ET Sl FOrQR .t e 38
HISTOTY .ttt bbb bR bbb R R e R bR Rt R bbbt ne e 39

ETSI

5 ETSI TS 103 964 V1.1.1 (2025-02)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI membersand non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, | PRs notified to
ETS in respect of ETS standards’, which is available from the ETSI Secretariat. Latest updates are available on the
ETSI IPR online database.

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™, LTE™ and 5G™ logo are trademarks of ETSI registered for the benefit of its Members and of the
3GPP Organizational Partners. oneM 2M ™ logo is a trademark of ETSI registered for the benefit of its Members and of
the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Cyber Security (CYBER).

Modal verbs terminology

In the present document “shall”, "shall not", "should"”, "should not", "may", "need not", "will", "will not™, "can" and
"cannot” are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must” and "must not™ are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

6 ETSI TS 103 964 V1.1.1 (2025-02)

1 Scope

The present document defines a new proof method via a challenge-response authentication protocol based on predicate
encryption, in particular on Ciphertext Policy-Attribute Based Encryption (CPABE). In this proof method, CP-ABE
keys encode attributes, while the expressiveness of CP-ABE policies enables their selective disclosure and/or
anonymous proof of predicates over them. Relationship with existing Zero Knowledge Proof [i.16] methods is
highlighted.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found in the
ETSI docbox.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] IETF RFC 8017: "PKCS #1: RSA Cryptography Specifications Version 2.2", November 2016.

[2] IETF RFC 7517: "JSON Web Key (JWK)", May 2015.

[3] IETF RFC 7516: "JSON Web Encryption (JWE)", May 2015.

[4] IETF RFC 7515: "JSON Web Signature (JWS)", May 2015.

[5] IETF RFC 4648: "The Basel6, Base32, and Base64 Data Encodings", October 2006.

[6] ETSI TS 103 532 (V1.2.1) (05-2021): "CYBER,; Attribute Based Encryption for Attribute Based
Access Control".

[7] IEEE 1363.3™-2013: "Standard for Identity-Based Cryptographic Techniques using Pairings™.

[8] W3C®: "Verifiable Credentials Data Model v2.0". W3C Candidate Recommendation Draft,
19 January 2025.

[9] W3C®: "Verifiable Credential Data Integrity 1.0, Securing the Integrity of Verifiable Credential
Data”, W3C Candidate Recommendation Draft, 03 August 2024.

[10] W3C®: "Controlled Identifiers (CIDs) v1.0", W3C Working Draft, 26 January 2025.

[11] IETF RFC 7519: "JSON Web Token (JWT)", May 2015.

ETSI

https://docbox.etsi.org/Reference/
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc4648
https://www.etsi.org/deliver/etsi_ts/103500_103599/103532/01.02.01_60/ts_103532v010201p.pdf
https://ieeexplore.ieee.org/document/6662370
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-integrity/
https://www.w3.org/TR/vc-data-integrity/
https://www.w3.org/TR/controller-document/
https://www.rfc-editor.org/info/rfc7519

2.2

7 ETSI TS 103 964 V1.1.1 (2025-02)

Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE:

While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i-1]

[i.2]

[i-3]

[i-4]

[i.5]
[i.6]

[i.7]

[i.8]

[i.9]

[i.10]

[i.11]

[i.12]

[i.13]

[i.14]

[i.15]
[i.16]
[i.17]

[i.18]

A. Lewko and B. Waters: "Decentralizing Attribute-Based Encryption"”, Cryptology ePrint
Archive, Paper 2010/351, 2010.

T. Looker, V. Kalos, A. Whitehead, M. Lodder: "The BBS Signature Scheme", Internet Draft,
draft-irtf-cfrg-bbs-signatures-07, June 2024,

Sakemi, Y., Kobayashi, T., Saito, T. and R. S. Wahby: "Pairing-Friendly Curves", Internet-Draft,
draft-irtf-cfrg-pairing-friendly-curves-11, 6 November 2022.

B. Waters: "Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably
secure realization", Cryptology ePrint Archive, Paper 2008/290, 2008.

Zeutro LLC Encryption & Data Security: "The OpenABE Design Document™, Version 1.0.

Deuber D., Maffei M., Malavolta G., Schroder M.R.D., Simkin M.: "Functional credentials".
Proceedings on Privacy Enhancing Technologies (04-2018).

Boneh D., Boyen X., Shacham H.: "Short Group Signatures". In: Franklin, M. (eds) Advances in
Cryptology - CRYPTO 2004. Lecture Notes in Computer Science, vol. 3152. Springer, Berlin,
Heidelberg, 2004.

Dan Boneh and Hovav Shacham: "Group Signatures with Verier-Local Revocation”. In
ACM CCS, 2004.

Tessaro S., Zhu C.: "Revisiting BBS Signatures”. Cryptology ePrint Archive, Paper 2023/275
(2023).

Song D.X.: "Practical forward secure group signature schemes”. In: Proceedings of the 8" ACM
Conference on Computer and Communications Security. pp. 225-234. CCS '01, Association for
Computing Machinery, New York, USA (2001).

D. Chaum: "Security without identification: Transaction systems to make big brother obsolete™.
Commun. ACM, (10), 1985.

J. Camenisch and A. Lysyanskaya: "An Efficient System for Nontransferable Anonymous
Credentials with Optional Anonymity Revocation”. In EUROCRYPT, LNCS. Springer, 2001.

Jan Camenisch and Els Van Herreweghen: "Design and implementation of the idemix anonymous
credential system". In ACM CCS. ACM, 2002.

Christian Paquin and Greg Zaverucha: "U-Prove Cryptographic Specification VV1.1", Revision 3.
Technical report, Microsoft Corporation, 2013.

Hyperledger: "AnonCreds Specification”.

Goldwasser-Micali-Rackoff: "The knowledge complexity of interactive proof systems"”, 1985.

J. Groth and A. Saha: "Efficient non-interactive proof systems for bilinear groups”. In N. P. Smart,
editor, EUROCRYPT 2008, vol. 4965 of LNCS, pp 415-432, Istanbul, Turkey, April 13-17, 2008.
Springer, Heidelberg, Germany.

E. Fasllija: "The Role of Verifiable Data Registries in the Verifiable Credential Ecosystem", online
report by the Secure Information Technology Centre, Austria, 2024.

ETSI

https://eprint.iacr.org/2010/351
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-11
https://eprint.iacr.org/2008/290
https://eprint.iacr.org/2008/290
https://github.com/zeutro/openabe/blob/master/docs/libopenabe-v1.0.0-design-doc.pdf
https://doi.org/10.1515/popets-2018-0013
https://doi.org/10.1145/501983.502015
https://hyperledger.github.io/anoncreds-spec/
https://technology.a-sit.at/en/the-role-of-verifiable-data-registries-in-the-verifiable-credential-ecosystem/

8 ETSI TS 103 964 V1.1.1 (2025-02)

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:
Anonymous authentication: process or action of proving a credential is valid, without tracing back the Owner
Anonymous proof : proof for which the Verifier has no reasonable chance to trace back the Prover
Claim: assertion made about a (Data) Subject
Claimant: For the purpose of the present document, same as Prover.
Credentials: data attesting to the truth of certain stated facts
NOTE: For the purpose of the present document, a credential is in form of a set of one or more Claims.
Credential holder: entity which receives credentials from an Issuer

Data Subject: identified or identifiable natural person to which the data relates, or device that produces data that can be
linked to a natural person

Holder: entity possessing of one or more Credentials
I ssuer: issuing authority accredited or supervised for issuing Credentials

K ey management: administration and use of the generation, registration, certification, deregistration, distribution,
installation, storage, archiving, revocation, derivation and destruction of keying material in accordance with a security

policy

M ember ship proof: method by which a Prover can prove to Verifier that an element is in a given set of elements
without disclosing the actual element

Per sonally Identifiable Infor mation (PI1): any information that (a) can be used to identify the PII principal to whom
such information relates, or (b) is or might be directly or indirectly linked to a PII principal

Presentation: act of presenting a Credential to a Verifier
Presentation Policy: policy used by a Verifier defining access control criteria Credentials shall satisfy

Proof of predicate: method by which a Prover can prove to Verifier that an attribute satisfies a given Boolean
assertion, without disclosing the actual value of the attribute

Prover: entity presenting a credential to a Verifier

Range proof: method by which a Prover can prove to Verifier that a numeric value is in a given range (lower and upper
bound) without disclosing the actual value

Selective disclosure: capability that enables the user to present only a subset of user-provided attributes
Subject: For the purpose of the present document, same as Data Subject.
Trust: level of confidence in the reliability and integrity of an entity to fulfil specific responsibilities

Unlinkability: capability of ensuring that a user may make multiple uses of resources or services without others being
able to link these uses together

Verifiable Credentials: tamper-evident credential whose authorship can be cryptographically verified

Verifiable Presentation: tamper-evident presentation of information encoded in such a way that authorship of the data
can be trusted after a process of cryptographic verification

NOTE: Certain types of verifiable presentations might contain data that is synthesized from, but does not contain,
the original verifiable credentials.

ETSI

9 ETSI TS 103 964 V1.1.1 (2025-02)

Verifier: entity that receives verifiable presentations and process them via cryptographic verification

Zero Knowledge Proof: mathematical proof that conveys no additional knowledge other than the correctness of the
proposition in need of proving

3.2 Symbols

For the purposes of the present document, the following symbols apply:

A B CD
I, A

Zp

i

P(x,y)
P(X\y)
Ey, E2
GF(p)
GF(p?)

r

Gy, G2
Gr

01, 02
GF(p')*
Gr

e(o’o)

Attributes

Security parameter (natural number)

Set of integers modulo prime number p
Imaginary unit (such that i+ 1 =0 in Z)
Point on elliptic curve E;

Point on elliptic curve E;

Pairing friendly elliptic curves

Cyclic group of order p

Cyclic group of order p?

Order of the subgroup of E; over GF(p) and of E, over GF(p?)
Cyclic subgroups of order r

Target group

Generators for Gy, G2

Multiplicative Cyclic group of order p*?
Target group (in bilinear pairing)
Bilinear pairing function

aoral pha, a, b, u, v, t Secret key components in Z, (in CP-WATERS-ABE construction)

S

K, L, Ky
C', C, Dk
AP

(M; p)

Set of attributes

key components (in CP-WATERS-ABE construction)

Ciphertext components (in CP-WATERS-ABE construction)

String representing an access policy

Access structure made of a LSSS matrix M and a mapping function p() (in CP-WATERS-ABE
construction)

¥ =(s,¥, -, Vm) Vector of random elements in Z, used to produce the ciphertext (in CP-WATERS-ABE

H, H

u

S, Ik

/‘{k, Wk

K r
A=(M;p), A

construction)

Hash functions (e.g. SHA-256)

A seed (normally obtained from the application of a collision-resistant hash function)
Pseudo random generated values

Algorithmically computed exponents

Bit strings

Access structure

Policy

The (infinite) universe of policies

User keys

null

The universe of attributes (may be finite or infinite)
Probability evaluation function

XOR (bitwise operator)

Concatenation operator

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ABE

AP

BBS
CCA
CP-ABE
CT
LSSS

Attribute Based Encryption

Access Policy

Boneh, Boyen, and Shacham

Chosen Ciphertext Attack

Ciphertext Policy-Attribute Based Encryption
CipherText

Linear Secret Sharing Scheme

ETSI

10 ETSI TS 103 964 V1.1.1 (2025-02)

M Message to encrypt

MPK Master Public Key

MSK Master Secret Key

PK Public Key

PRG Pseudo Random Generator

SK (User) Secret Key
4 ABE challenge/response authorization method
4.1 Introduction

41.1 Overview

The present document defines a challenge-response authentication and authorization method based on Attribute Based
Encryption (ABE). The method was originally described in ETSI TS 103 532 [6], clause 7.6 as a method for
authentication, however the present document extends and generalize its purpose by introducing authentication by
anonymous proof of predicates. Depending on the specific chosen predicate encryption schema, the resulting protocol
may provide different expressiveness. For example, some initial ABE schemas were not be able to (efficiently) support
negation ("NOT") operator, while recent ones do. By using the hereafter described method, a Prover (formerly named
"Claimant™ in ETSI TS 103 532 [6]) can prove the possession of attributes fulfilling a certain policy - referred to as
"presentation policy" - to a Verifier without necessarily revealing her identity. To do so, the Prover receives a credential
(i.e. an ABE secret key) enabling her to resolve a challenge proposed by the Verifier.

While afore mentioned ETSI TS 103 532 [6], clause 7.6 focuses on the challenge-response abstract protocol,
mechanisms necessary to provide additional properties for anonymous authentication and user unlikability are object of
the present document.

Born with the seminal work of [i.11], anonymous authentication has experimented waves of renewed interest during the
years and is now becoming popular due to the raise of various user "wallet" models. The attempt to provide standard
cryptographic primitives for privacy-preserving identity credentials is today ongoing at various standardization fora. For
example, at the time of writing, IEFT is intended to standardize a recent efficient construction of the Boneh, Boyen, and
Shacham (BBS) signature [i.9], originally introduced with the paper [i.7].

Historically, various anonymous credentials built on specialized signatures have been proposed as a mean to implement
anonymous authentication. Generally speaking, in such a scheme, the Prover, after obtaining a signature over a set of
attributes from an Issuer, randomizes it and proves in zero knowledge its possession to a Verifier, optionally revealing a
subset of those attributes. This is referred to as selective disclosure. Note that the Verifier is unable to determine which
signature was used to generate the proof, removing any source of correlation (unlinkability).

However, in some contexts, selective disclosure is not the only desired feature. For example, a service may require that
their users are over 18 years old and that they are based in one of the European Countries, without learning the actual
values of these user's attributes. In such a case, it is necessary to implement an anonymous proof of predicates proving
that user's attributes "age" and "Country" satisfy the following presentation policy:

age GI 18 AND country ONEOF {Austria, Belgium .., Sweden}

Where GT (greater than), AND, ONEOF represent predicates. Note that in this example the user has not to disclose the
value of her attributes age and count ry, while the Prover does not learn other information than the fact that the
user's attributes satisfy the above presentation policy.

41.2 Functional Credentials

Functional credentials, introduced by [i.6], are a generalization and unification of anonymous credentials and their
derivates. Functional credentials use a scheme almost exclusively built on top of predicate encryption, providing a very
natural way to prove predicates. Given a ciphertext encoding a presentation policy, e.g. CP-ABE ciphertext, a Prover
can simply decrypt such a ciphertext to convince a Verifier that she knows a key embedding a set of attributes matching
the policy. As opposite to signature-based credentials, Functional credentials are natively anonymous, i.e. the set of
attributes issued to a user by an issuing Authority is always kept private by default, being embedded in the user's secret
key. By combining various operators, predicates may natively achieve wide expressiveness.

ETSI

11 ETSI TS 103 964 V1.1.1 (2025-02)

4.1.3 Verifiable Credentials

The present document maps Functional credentials to W3C® defined Verifiable Credentials [8]. At the time of writing,
existing or ad-hoc invented additional signature schemes are being progressively introduced in Verifiable Credentials to
fit zero knowledge requirements. Essentially these new signature schemes turn a two-party relationship Signer/Verifier
into a three party one: Issuer, Prover, Verifier. Predicate encryption natively implements this three-party relationship,
being based on an Authority/Encrypting party/Decrypting party model. Featured with a native policy definition
language, a verification protocol based on predicate encryption may efficiently support several kinds of anonymous
proofs (including selective disclosure, proof of membership, range proof and a whole variety of complex predicate
proofs combining the aforementioned ones).

4.2 Protocol

4.2.1 Description
The present clause amends the protocol presented in ETSI TS 103 532 [6], clause 7.6 as follows:

1) The prover shall issue a resource request including the resource identifier to be accessed. If desired, the
prover may include the subject's identity.

NOTE 1: In the original protocol, an optional parameter was the subject's identity. However, in the present
document, which support anonymous authentication, the subject identity is not necessarily disclosed.

2) The verifier shall choose a nonce (and proper randomness to initiate CCA-secure ABE encryption. See
clause A.3.1).

3) Using a presentation policy, the verifier shall execute CCA-secure ABE encryption and shall respond
with a message indicating that an ABE challenge-response protocol will be initiated. The response shall
include the ABE ciphertext and the presentation policy in clear.

NOTE 2: In CP-ABE the presentation policy consists in an access structure, which is made public by the encrypting
party. A compiler is used to translate the high-level presentation policy into an access structure. A simple
example is reported in Annex C.

4) Using an ABE secret key fulfilling the presentation policy, the prover shall decrypt the ABE ciphertext
and recover the secret token.

5) The prover shall then reiterate the request at step 1) including the decrypted secret token.

6) The verifier shall compare the received secret token with the original one. If the two tokens match, the
authentication is successful, and the verifier shall give the prover access to the requested resource.

7) If authentication is not successful, the verifier shall repeat the procedure from step 2.

ETSI

12 ETSI TS 103 964 V1.1.1 (2025-02)

Claimant Verifier

]
|
|
|
|
|
|
|
:
e 1. Resource request

2. Prepare challenge token
and embed in ABE ciphertext

3. Challenge request

}---—1

4. Challenge token recovery

F-———-1

5. Challenge response

6. Challenge token comparison

7. Authentication response

Figure 4.2.1-1: High-level view of the protocol described in ETSI TS 103 532 [6], clause 7.6

Note that to prevent ciphertext forgeability, the predicate encryption schema used in this protocol shall be
CCA-resistant.
4.2.2 Predicate Encryption Schema

The present document builds on Cyphertext Policy Attribute-Based Encryption (CP-ABE) as predicate encryption
schema. In CP-ABE [i.4], decryption keys embed user's attributes while an arbitrary predicate may be embedded in the
ciphertext. The message is disclosed to users holding a key only if the attributes match the predicate.

4.2.3 Running Example

To illustrate the protocol, the present document proposes a scenario used as a running example throughout the whole
document. The scenario has three actors: an Issuer, a Prover and a Verifier and it is "standalone”, meaning that specific
integration to higher level protocols (e.g. HTTP, OAuth, etc.) is not a goal of the present document.

The flow of events is as follows:

1) The Prover (decrypting party) receives from the Issuer (ABE Authority) a verifiable credentials
containing a set of attributes.

2) The Prover requests access to a resource at the Verifier.

3) The Verifier (encrypting party) creates a challenge by encrypting a secret using a presentation policy and
send it to the Prover.

4) The Prover is able to decrypt the ciphertext and recover the secret.
5) The Prover presents a verifiable presentation containing the decrypted secret to the Verifier.

The example uses the CP-ABE schema described in [i.4] and ETSI TS 103 532 [6] and reported in Annex A, which
explicitly considers constructions implemented over elliptic curves and pairings. In particular, state-of-art BLS12-381
curves (Annex B) are used.

Attributes generated for the Prover are simple literals A and D. Presentation policy is a simple combination of Boolean
operators:

A AND (D OR (B AND Q)

and may be compiled using the simple compiler proposed in Annex C.

ETSI

13 ETSI TS 103 964 V1.1.1 (2025-02)

To prevent ciphertext forgeability, the predicate encryption schema used in the protocol is secure under chosen
ciphertext attacks. Following recommendations in ETSI TS 103 532 [6], the construction referred to as CCA-secure
CP-ABKEM is adopted. For details, the reader may refer to Annex A.

NOTE: The present document - as well as ETSI TS 103 532 [6] - considers ABE constructions over pairings only.
Despite additional implementations (i.e. post-quantum lattice-based) are being proposed for ABE, their
concrete adoption is still under discussion and therefore are not hereby considered.

4.3 Main Concepts

4.3.1 Anonymous Credentials and Zero Knowledge Proof

Anonymous credentials initially proposed by Chaum [i.11] and firstly implemented by Camenisch and

Lysyanskaya [i.12] allow users to prove the possession of a set of attributes in zero knowledge. Goldwasser, Micali, and
Rakoff defined proposed the first Zero Knowledge Proof (ZKP) scheme back in 1985 [i.16] and defined ZKP as "those
proofs that convey no additional knowledge other than the correctness of the proposition in need of proving”. A survey
on ZKP is out of scope for the present document. The Zero Knowledge property is of particular interest for credentials
because it ensures that two Verifiers cannot share any common piece of data that could allow them to infer that they are
dealing with the same user (a property known as unlikability). Such a condition also applies between Issuers and
Verifiers.

Several today existing anonymous credentials schemas are based on encrypted or committed signatures in combination
with Zero Knowledge Proofs. The most prevalent approaches are based on IBM's Idemix [i.13] issued in early 2000
followed by Microsoft's U-Prove [i.14] released in 2013. In the context of distributed applications, an example of a
real-world deployed signature-based anonymous credentials is AnonCreds, specified by Hyperledger [i.15] in 2018 and
built on top of the Camenisch-Lysyanskaya signatures and using Camenisch's cryptographic accumulators for
revocation. At the present time, version 2 of AnonCreds specifications is under development.

4.3.2 Functional Credentials

The present document aims at simplifying construction, deployment and adoption of credentials schemas supporting
anonymous proof of predicates by building on encryption schemas rather than on signature-based schemas. [i.6] refers
to this kind of credential as Functional credentials. A predicate encryption scheme allows one to embed an arbitrary set
of attributes Sin the user decryption keys and produce a ciphertext for predicates f so that the plaintext may be
recovered only by users holding a key such that f(S) = 1. The scheme guarantees that the set of attributes S is kept
private, except for the information trivially revealed by the validity of the predicate for the encoded attributes.

In such a scheme, a way to verify credentials anonymously is to prove in zero knowledge the successful decryption of a
given ciphertext. However, this direct application of generic zero knowledge proofs over predicate encryption schemes
may result computationally prohibitive, as proving in zero knowledge the successful decryption of a given ciphertext
(using Groth-Sahai proofs [i.17]) would make the proof scaling with the size of the ciphertext of a predicate encryption
making it unusable for practical purposes.

Functional credentials implement anonymity using a different approach: a verifier composes a challenge simply by
encrypting a random secret and sends it to the prover. In the schema proposed in [i.6], in order to prove the knowledge
of a key (thus possession of attributes), the prover participates in building the ciphertext by choosing a random number
which the verifier uses to build the ciphertext. The verifier chooses a second random number and sends a commitment
of this parameter to the prover. Finally, the verifier combines the two numbers into a XOR expression and obtain a
random secret and the randomness to be used to build a ciphertext.

After this "setup" phase, the prover decrypts the ciphertext obtaining the random secret. However, she does not send it
immediately to the verifier, rather sends back a commitment of the decrypted message.

In the final step, the verifier reveals the randomness that she used to compute the ciphertext so that the prover can
locally verify that the ciphertext has been not forger. If this holds true, the prover finally sends the opening information.
If the opening reconstructs to the original message, the verifier is convinced that the prover possesses the correct key,
thus the correct attributes.

Note that this approach introduces some extra rounds in the protocol presented in clause 4.2, which are essentially
intended to guarantee that the ciphertext produced by the verifier was truly randomly generated and was not forged to
allow the verifier to extract information from the presenter's key.

ETSI

14 ETSI TS 103 964 V1.1.1 (2025-02)

However, for some predicate encryption schemas, the extra steps in the above presented protocol might be redundant.
This is of benefit for many existing authentication protocols (such as HTTP and OAuth) which rely on a three steps
procedure (request-challenge-response).

NOTE: Inthe case of CCA-secure CP-ABKEM of ETSI TS 103 532 [6], used as a running example throughout
the present document, the protocol is in fact simplified omitting the commitment steps. Clause D.1
illustrates a proof showing that the correctness, unforgeability and anonymity properties are still
preserved in the simplified version.

4.3.3 Presentation Policy Verification

In CP-ABE, each policy is implemented through an access structure containing attributes to be matched. A presentation
policy is translated in an access structure using a compiler (the algorithm reported in Annex C is an example of a simple
compiler supporting basic operators). To avoid that an attacker, impersonating the Verifier, might use specially crafted
policies to gain more knowledge than necessary from a prover, it is needed to ensure that the presentation policy the
Verifier is claiming exactly translates into access structure made available with the ciphertext.

The decrypting party (the Prover) may verify if the used access structure matches a given policy as follows:
1) The Prover shall obtain the access structure A = extractAccessructure() from the ciphertext.

2) The Prover shall recompute the access structure A’ starting from the presentation policy the Verifier
claims.

3) If A== A'the Prover shall proceed, otherwise it shall stop.

Aand A’ shall be calculated using the same compiler, therefore details about the compiler should be publicly available.

4.3.4 Credential Revocation

The present document considers three kinds of revocation: time-based, list-based and accumulator-based.

Time-based revocation uses timestamps attributes contained in the credentials. Attributes "issued at", "not before than",
"expires at" defined in [11] may be used for this purpose. A Verifier shall not accept credentials presented before the
date and time specified under the attribute "issued at" attribute if present, nor under the attribute "not before than" if
present. Similarly, a Verifier shall not accept credentials presented after the date and time specified under the attributes
"expires at" if present. This check may be implemented through the presentation policy.

Revocation based on whitelists may use specific attributes embedded in the credentials (i.e. unique identifiers or serial
numbers). When an attribute-based whitelist mechanism is used, the Issuer shall maintain a public whitelist of attributes
and shall embed whitelisted attributes in the credentials. The Verifier shall not accept credentials whose attributes
values are not matching the ones in the whitelist. To invalidate revoked credentials, the Issuer shall periodically update
the whitelist.

To enforce a whitelist approach, the Verifier may implement a specific policy accepting only non-revoked credentials
to be valid.

An alternative is to use a blacklist approach which works for predicate encryption schemas supporting negations by
defining a policy excluding blacklisted credentials. Using blacklists, the Verifier shall not accept credentials whose
attributes values are matching the ones in the blacklist.

One drawback to implement whitelists or blacklists is the length of the policy that grows linearly with the number of
involved credentials. Also, the size of the list could allow for privacy threats. The smaller is the list, the easier for the
verifier to provide correlation between two or more presentation of the same credential.

Furthermore, when implementing lists in policies, the entity that control revocation is in fact the Verifier, not the Issuer.
Therefore, this approach, called "verifier-local revocation"”, reveals to be formally incorrect. In fact, by exploiting
verifier-local revocation, malicious Verifiers could potentially craft a set of special policies able to create correlation
when the same credential is used with two or more different verifiers. Note that this issue affects also anonymous
credentials based on signature schemas [i.8].

NOTE 1: To mitigate this threat in Functional credentials, the Prover should always be able to compare the list in
the presentation policy with the one maintained by the Issuer.

ETSI

15 ETSI TS 103 964 V1.1.1 (2025-02)

NOTE 2: The verifier-local revocation approach also introduces some problems with backward unlinkability [i.10],
as the revocation of a credential may imply the linkability of past credential presentations.

When using revocation based on cryptographic accumulators, each issued credential embeds a secret value that a
Verifier shall check against a public value that shall be maintained by the Issuer (the accumulator). If the check is not
successfully, the verifier shall not accept the presented credential. When the accumulator changes, Provers shall update
the secret value embedded in their credentials. Usually this happens by using public values, without the need for the
Prover to be reissued with new credentials.

4.4 Architecture and Reference Points (normative)

441 Architecture

The system architecture presented in the present document consists of three entities: an Issue, a Prover and a Verifier. In
case of CCA-secure CP-ABE based on CP-WATERS-KEM, these are mapped to an ABE Authority, a Decrypting
party, and an Encrypting party. These three entities, therefore, shall be able to execute the algorithm described in
Annexes A, B and C of the present document.

ISSUER

RPP —— —— RPK

VERIFIER | PROVER

RPR

Figure 4.4.1-1: Architecture

In particular, the ABE Authority shall be able to execute the ABE set-up algorithm for CP-ABE, generating the
corresponding master public key MPK and master secret key MSK. The Authorization Server shall also be able to
generate keys based on a set of attributes.

The Encrypting party shall be able to run ABE encryption algorithm using the master public key MPK generated by the
Authority and a presentation policy (encoded as in Annex C).

The Decrypting party shall have a protected environment where it is able to store confidentially the secret keys received
from the Authority and run the ABE decryption algorithm.

The interactions between the three aforementioned entities happens at Reference Points K, P and R, hereafter specified.

NOTE: Requirements for interfaces implementing Reference Points K, P and R are generally satisfied when using
HTTPS connections.

4.4.2 Reference Point K (key distribution)

The Reference Point K allows the Authority to distribute secret keys to the Decrypting party. The corresponding
interface shall ensure that the entity corresponding to the Authority is authenticated as well as confidentiality and
integrity protection of exchanged keys and metadata. The involved parties may also mutually authenticate.

ETSI

16 ETSI TS 103 964 V1.1.1 (2025-02)

4.4.3 Reference Point P (public parameters distribution)

Reference Point P is used by the Authority which makes publicly available the master public key and any other needed
public parameter (e.g. attributes, accumulators) and metadata. The corresponding interface shall ensure that the entity
corresponding to the Authority is authenticated as well as integrity protection of exchanged data. Any party shall be
able to publicly access data exposed though this interface.

4.4.4 Reference Point R (challenge response)

Reference Point between the Decrypting party and the Encrypting party. The corresponding interface shall execute the
protocol specified in clause 4.2. The entity corresponding to the Prover (Decrypting party) may require the entity
corresponding to the Verifier (Encrypting party) to authenticate. The corresponding interface shall ensure
confidentiality and integrity protection of exchanged data.

5 Verifiable Credentials

5.1 Introduction

This clause provides an informal outline of the Verifiable Credentials model defined in [8]. In this model:
e A \Verifiable Credential is a set of one or more claims made by the same entity.
e Aclaim is a statement about a subject. A subject is a thing about which claims can be made.
e Claims are expressed using subject-property-value relationships.
. Issuers release Verifiable Credentials to Holders.
e Any Holder may transfer Verifiable Credentials to other Holders.
e The Holder stores the Verifiable Credentials in a repository and may delete them.

e To authenticate or provide access to a service, the Holder which assume the role of a Prover, generates a
Verifiable Presentation and presents it to a Verifier.

NOTE 1: Throughout the present document, the role of the Prover is assumed to be generally matching with the
role of a "Holder", if the credentials have not been transferred. Mechanisms to transfer credentials and
power of attorney are out of the scope for the present document.

e The Verifier verifies the authenticity of the presented Verifiable Presentation. This verification shall include
checking the credential status for revocation of the Verifiable Credential the presentation has been generated
from.

e Each Verifier trusts the Issuer to produce valid Verifiable Credentials.

e Holders and Verifiers trust the Issuer to produce (through a proof establishing that the Issuer generated the
credential) and release valid Verifiable Credentials, and to revoke them when appropriate.

e AnlIssuer does not necessarily need to trust (or even know) the Verifier.

o Verifiable Credentials are securely stored in a repository. Any Holder trusts the repository to not release
credentials to anyone other than the Holder, and to not corrupt or lose them while they are in its care. Issuer
and the Verifier do not necessarily need to trust the repository.

o A verifiable data registry contains information about which data is controlled by which entities. All entities
shall trust the registry to be tamper-evident and correct.

NOTE 2: Report [i.18] contains more information and implementation considerations for verifiable data registries.

e Contrary to different trust models (e.g. a Certificate Authority trust models), in Verifiable Credentials trust
relationships are not transitive.

ETSI

17 ETSI TS 103 964 V1.1.1 (2025-02)

5.2 Interface Implementing Reference Point K

521 Overview

The present clause uses the definition of Verifiable Credentials (whose description and the semantics is detailed in [8])
to implement Reference Point K. While a Verifiable Credential may consist in several claims, expressed using
subject-property-value relationships, this clause is not intended to report a comprehensive description of them, but only
of those of interest for mapping Functional credentials. Both in Verifiable Credential and in Verifiable Presentation, the
claim "proof" [9] serves this purpose.

5.2.2 Claim proof

This claim shall contain at least one cryptographic proof that may be used to detect tampering and verify the authorship
of a credential or presentation. The proof appears is in the form of a composite object, whose specific format and
semantics shall be defined by the "type" property.

Credential proofs are traditionally signature-based: credential subjects' attributes are represented as signed plaintext
messages. In Functional credentials, instead, attributes are "embedded™ in keys issued by an Authority, therefore each
proof contains such keys.

type

The mandatory claim refers to the proof type. The claim shall consist in a property whose value is a single string
identifying the proof type.

The present document defines the new types Funct i onal Credenti al for Functional credentials and
Functi onal Credenti al Presentati on for Functional credential presentation format and the following subtypes:

Functi onal Credenti al _2023_CP_WATERS_KEM

Functi onal Credenti al Presentati on_2023_CP_WATERS_KEM
proof Pur pose

The purpose of this mandatory property is to prevent the proof from being misused for a purpose other than the one it
was intended for. This claim shall consist in a property whose value is an array of strings identifying the proof purpose.
The present document allows the following two proof purpose values among the several predefined ones described in
[8]: aut henti cati on and capabi | i tyl nvocat i ons.

verificationM ethod
This mandatory claim contains a set of parameters required to verify the proof.

The value of the "verificationMethod" claim property shall be an URI referencing an object of type "verificationMethod",
hosted inside an external document, which is called "controller document".

A specific implementation shall provide content integrity protection. When the "verificationMethod™ is referenced
through an URI, the protocol used to acquire the "verificationMethod" object may use a valid HTTPS connection.

NOTE 1: Referencing a "verificationMethod" rather than embedding it in the credentials may allow for more
flexibility in key management, therefore it is currently the only recommended best practice adopted by
the present document. Clause 5.3 specifies the use of referenced controller documents to implement
Reference Point P.

proofValue

This mandatory claim shall consist in a property whose value is of type string and express base-encoded binary data
necessary to verify the digital proof using the specified "verificationMethod". It shall use the Multibase encoding as
described in Section 2.4 of the Controller Documents 1.0 specification [10] to express the binary data.

The Multibase encoding consists of a string including a single character header which identifies the base and encoding
alphabet used to encode a binary value, followed by the encoded binary value (using that base and alphabet).

ETSI

18 ETSI TS 103 964 V1.1.1 (2025-02)

For the purposes of the present document, the Base64URL without padding encoding shall be used. The assigned

character header which identifies this latter is "u".
The claim shall contain one Authority-generated CP-ABE secret key, embedding attributes referred to any claim to
prove in the Verifiable credential object. Each claim shall be mapped to one (or more) ABE attributes. In particular:

e claims whose datatype are just strings shall be one-to-one mapped to ABE attributes;

e depending on the specific ABE scheme and the compiler used to translate policies, claims with other datatypes
(e.g. integers, date and time, geolocation) may be supported as well and should follow the standard translation
defined in ETSI TS 103 532 [6].

Inside each credential proof, a CP-ABE secret key shall be a Base64URL encoded JSON object; each key component
shall correspond to a JSON sub-object. The syntax presented in JSON Web Key (JWK) [2] shall be used to represent
these components.

NOTE 2: W3C® [8] specifications allows for more than one credential proof as part of this property. While the
present document limits to only one credential proof, corresponding to a single Authority-generated
CP-ABE secret key, such "parallel credentials” may be useful in various scenarios outside the scope of
the present document.

5.2.3 Example: Verifiable Credentials (informative)

The following example refers to the sample scenario presented throughout the present document and uses BLS12-381
elliptic curves. In this example, the Prover receives attributes A and D from the Issuer. Annex B provides more details
about the serialization format used to represent any point on the two elliptic curves used in the pairing. For efficiency
reasons, key components embedding attributes are translated into point on E; curve, while other key components are on
E> curve. Point compression (i.e. sending the x coordinate of a point but omitting the y coordinate - which is later
reconstructed at the receiver's side) is used to reduce the overall size of the object.

Assume the Issuer is an ABE Authority using the construction CP-ABE-KEM (reported in clause A.2). The Authority
randomly generates the following (private) parameters:

a: 0x3b07e4abccad2b6d74038739f a3674adb29793a3476f 8790308867e40697678d

al pha: 0x83cc59a4be42cdd0c26db275c569bbe2a63f a4f b861319aadb567e057c767ab
t: O0x68e7098bdaf 2f 5c74ae20e61348ebd7baeb6f 85bb5a6e8cc493f ad91bdb268bc

And the following public attributes, as point on the curve E_1, encoded in a JSON document following IETF
RFC 7517 [2]:

"attributes":[

{
"kty":"EC',
"crv":"BLS-12-381",
"x": " pCWBh5vIKXv46i sf WAg83SkVI 7_B- 4K68pr Y3ukopKRBIR- k1PDri 2r DZCZsr qYh",
"kid":"H(A)"
b
{
"kty":"EC',
"crv":"BLS-12-381",
"x":"hj 2l zvf cYevXORWMU2z Zot t NnBgQz 1JbXgDPv5ZPZmhNf UAM pEXy 3WWHC 40QnHL"
"kid":"H(B)"
h
{
"kty":"EC',
"crv":"BLS-12-381",
"x":"gVJ__Y-30p8j hvaGBBEPbOJDkp49dF2knj | z3xr VQMMM3NTEU0oc COUCAR?- j r noK",
"kid":"H Q"
b
{
"kty":"EC',
"crv":"BLS-12-381",
"x":"i RYg8UgCPuLExMaxs pRuxgJnmABCz 68i J TpweKp5j 0A- CDt Ur VPET9r j dzzD 3j k_",
"kid":"H(D"
}

ETSI

19 ETSI TS 103 964 V1.1.1 (2025-02)

NOTE 1: Throughout the present document, whitespaces are added to JSON objects for readability purpose. They
are ignored in any processing.

Hence, the Authority generates the following key components K = gx#g.%, L = g2t and for each xeSKyx = H(X)%

{
"key": [
{
"kty":"EC",
"crv":"BLS-12-381",
"x":"pG _pl roAV2RvI Vi PCPI EWRN_Fn3ML_t kzZsoxaggQMX2BV7wXuhBKJur h1zMZhePA3pLAeZCBE6Shs JIKWN7_6VPu5xv8f s
Pk7Z27qGAki K8dzxNFhEBPI glaHddBwWRo" ,
"kid":"K=g_27{\\al phata*t}"
H
{

"kty":"EC',

"crv":"BLS-12-381",

"x": "t CdvIOnpnA38RgRe9RCkbd3oHMaw eODNB- j ABZmokxJcG3hwy43uz4l 9k X1Li C51 ENr -
HX5ECgi 30y ka3f YAMHos LHxgWYOyumQ t i QOKi XURGp- x USVQABZI W AMKGE" ,

"kid":"L=g_2"t"
I
{
"kty":"EC',
"crv":"BLS-12-381",
"x": "ol scdTugCDgeQ\cbFt - aCDyxQaQCuWjz Smmy2vxznuPdBZVoCj t _DWTD7KDy MJbs™ ,
"kid":"K_A=H(A) Mt
}
{
"kty":"EC',
"crv":"BLS-12-381",
"x":"klri J1B1Xi yPVLBDGn8cvDIHs1bnx1j 0ARAQOBZKM.DOdnSmh42bV2kgf 2j x1 gl O',
"kid":"K _D=H(D)"t"
}

NOTE 2: Conventionally, the present document names each key components after the Latex expression used in the
officially recognized scientific article describing the original CP-ABE schema. This is hot normative and
other conventions may be used as well.

The key is released to the Decrypting party encoded as a Multibase document, as follows:

"proof":{

"type":"Functional Credential _2023_CP_WATERS_KEM',

"created":"2023-01-01T00: 00: 012",

" proof Pur pose": [

"capabi lityl nvocations"

I,

"verificationMethod":"https://ww. exanpl e. or g/ vc/ cp-abe/ v1l/ publi c- paramet er s#1",
"proof Val ue": "ueyJrZXki A t 71 nt 0eSl| 61 kVDI i wi Y3J2Ij oi GKxTLTEyLTMANMSI sl ngi O JwR3Jf cEl ybOFXM J2SVZpUENCH
EVXUk5f Rmdz TTFf dG 6WiNveGFnZ1FXMkIWN3d YdWhCSOplcngxek 1aaGVQQTNWTEFI Vk8z RTZTYNNKS1di Tj df Nl ZQdTV4dj hne
1Br N1pacUdBa2l LOGR6eE5GAEVCUGKNMAFI ZGRCd1ZSbyl sl nt pZCl 61 ks9Z18yXnt c XGFscGhhK2EqdHOi f Sx71 nt 0eSl 61 kVDI
i wi Y3J21j oi kxTLTEYLTMAMSI sl ngi O JOQRR2OM wbk Ez OFIx UmJSUKNr YnzbOht YXct ZU9ET| gt ak FCWilva3hKYOczaHd5N
DNlej RsON YMUxpQz VIRUSY LUNYNUVDZ2kz T3I r YTNMATRNS@Iz TEh4Z1dt T3l 1bVFf dG@ RTOt pWFVSNnAt eFVTVI EOQ psV1pBT
Xg2RSI sl nt pZCl 61 kwdzZ18yXnQ f Sx71 mt 0eSl 61 kVDI i wi Y3J21 j oi QkXTLTEYLTMAMSI sl ngi O JvbHN] ZFRLcUNEZ2VRTmNi R
nQ YUNEeXhRYVFDdVdnel Nt bnkydnh6bnVQZEJaVmdDanRf RHAURDALRH NVWz1 i wi a2l ki j oi S19BPUgoQS| edCI9LHsi a3R5I
j oi RUM LCJj cnYi O JCTFM MTIt Mzgx! i wi eCl 61 nt Jcm KMJI xWE 5UFZMk RHaDhj dk RKSHVK Ynb4 MAOWQVJI BUTBCWIt NTEQWZ
GLTbWyOMMI WMt xZj JqeGxxbE8i LCIr aWQ G JLXOQSChEKV50I! n1df Q'

}
}

Note the prepended character header u in the "proofVValue" encoding and the following Base64URL no padding
encoding the JSON Web Key.

5.3 Interface Implementing Reference Point P
5.3.1 Overview

The present clause defines the interface implementing Reference Point P using the definition of the "controller
document” object specified in Verifiable Credentials [8].

ETSI

20 ETSI TS 103 964 V1.1.1 (2025-02)

A controller document [10] shall consist in one or more "verificationMethod". Each "verificationMethod" contains
verification material. For the present document, the verification material shall consist in any public parameters available
from the specific adopted schema, plus other meta information, namely:

1) JSON Web Keys (JWK) [RFC7517] to represent any public key component.

NOTE 1: [8] recommends that verification methods using JWKs [2] to represent their public keys using the value
of "kid" property as their fragment identifier. However, as Functional credentials present more complex
public key, made of a set of components, alternative ways (e.g. Latex representation as proposed in the
example) are accepted.

2) A reference to the used compiler: may be provided as a trusted web application translating a policy into
an access structure or as a definition of this translation (e.g. a lex/yacc command grammar file).

3) Any attribute definition in case allowed attributes are limited (so called "small universe™ ABE schemas),
or reference to any function converting attributes from their string representation format to group
elements (generally points on elliptic curve) for ABE "large universe" schemas.

NOTE 2: [8] mandates that verification methods should be registered in the Verifiable Data Registries. However, at
the time there is no evidence of established specifications for Verifiable Data Registries. However, the
reader may refer to report [i.18] for several implementation considerations.

532 Verification Method Claims

Each "verificationMethod" shall contain the following mandatory claims:

verificationM ethod.ld

This claim shall consist in a property whose value is a single URI identifying the "verificationMethod".
verificationM ethod.Controller

This claim shall consist in a property whose value is a single URI identifying the Controller, i.e. the Authority.
verificationM ethod.Type

This claim shall consist in a property whose value is a single string that references exactly one verification method type.
The type of a verification method shall be used to determine the process (i.e. algorithm) performing the verification
method.

In addition, "verificationMethod" shall:

e contain a claim "MPK", that shall consist in a property whose value is an array of specific public parameter for
each ABE scheme. Each parameter shall be encoded using JSON Web Key (JWK) [2];

e contain a claim "compiler™, which consists in a property whose value is a URI referencing to the compiler used
to encode presentation policies.

5.3.3 Example: Controller Document (informative)

Continuing the running example, the Authority releases the master public key: MPK = g1, g:%, €01, g2)% H(X) for each
xin{A,B,C,D}, encodes it in the following controller document, specifies the compiler to be used to encode
presentation policies and makes it publicly available at the Controller's URI. The reader may refer to Annex B for the
encoding formats and in particular clause B.6 for the encoding format of the element (g1, g2)“

"id":"https://ww. exanpl e. org/vc/ cp-abe/ vl/ public- paraneters"”,
"verificationMet hod": [
{
"id":"https://ww. exanpl e. org/ vc/ cp- abe/ vl/ publi c- par anmet er s#1",
"type":"Functional Credential _2023_CP_WATERS_KEM Publ i cPar anet ers",
“controller":"https://ww. exanpl e.org/",
"conpiler":"https://ww. exanpl e. org/vc/ cp-abe/vl/ conpiler.yacc",
VPR [
{
"kty":"EC',

ETSI

21 ETSI TS 103 964 V1.1.1 (2025-02)

"crv":"BLS12-381",

"x": "l _HTpzGX15QM WOMr6ns D8Noj E- XdLkFoU46Pxcbr FhsVeg_- Xoa7_s68Ar bl sa7",
“kid":tg_1"

}s

{
"kty":"EC',

“crv":"BLS12-381",
"x":"k- Ar YFEIxn2B9r NOgi CdPZVI r ONCZI LYat dphu9x_UEkz TPESES5RdV- W f QvdBCt -
Akqi svCPCpENCAUNLcUQUcbket T6QDs Ct FELZHr j OXcLr AMhgAW 79SAVs| Bl b24"

"kid":"g_2"
b
{
"kty":"EC',
"crv":"BLS12-381",
"x": " pSgZnHHWOEhhshpuBZHNIT] 9380nn68CuUKZ2Z| s| mXFvNgBHOa6t 51 K7t Rt YdwaU',
"Kid':itg 1ra”
},
{
"kty":"EC,
"crv":"BLS12-381",
XU
[[
" Dkd1l ZACKkr XkbeUYdaQdZekWypLL3t 2Woul Gkj b3wj 8Cl 1ggvy! dTl al Asl FSEVK",
" CaLTZnVELLr 005nEc6n- YwnKr Y- el g63kt Ug- j UOnf JVK2FZZ8GS2UdWs Wi owpF"
][)
" AHRuXaBkvJPAv6qpcoC7pr 2K2u@pueF4okwat Y_mAdSx3LYWhUA gMPbTgXr ol ",
"EzdCAcdKBSgTRT_vwoJxgNUZr Pfi f | t QAVB8BAEK2yVbr _SJhi EXcOZG_bSodoy V"
]
1.
[[
" DR6bpi ri usbhaS8nKDWZzYLi G vpr 9XbRGP7xMAl O uDl dVOkpxUCTCCcrj DyhTv",
"EJKHLoBbgn9g2Vi M\l _6FhV77CGol Un7l QgzU4_aAxNpogZdul xx2HWhS_2wx0xg6"
][,
"Bl r X\VuhF78CaT8F19VUj zZWYT4npZ1U3gAma7r uzLM 1MLel i i H30ov5x| Ff YDf b",
" AZRf hNKuyj f g- - Q6wW7hy NLORVBgJi sh6MeYAMUG _pYr EgA J7JXJINdI MTwC80EQ"
]
1.
[[
" F- U0_oaJl miaf 21gl zuoZNRO9Hs| K9SVMK] Kj bf M ngLJRgf ef Y32Avoll6epPs",
"E7v0glcRuocQat EbTowQESkWHy3M nmDaat xhvhLOLwoS9t XUr zOqdmU2D7vk YP"
][,
" EuVkk3JCct QAf VTQer AMWYD_Y7ybXo_Fv_GFk_bkhFaT7Ycs9127PpnPhFZk GMIN'
"BFWIJI SOH PKsVs2onD2r 9Yi 45Tt WgoHc Sgf YKKYS2200Ki U2vE2koeApZwu58"
]
]
I,
"kid":"e(g_1, g_2)™\\al pha"
},
{
"kty":"EC,
"crv":"BLS-12-381",
"x" " pCWBh5vIKXv46i sf WAQ83SkVI 7_B- 4K68pr Y3ukopKRBIR- k1PDr i 2r DZCZsr qYh",
" d"HA) "
}
{
"kty":"EC',
"crv":"BLS-12-381",
"x":"hj 21 zvf ¢ YevX9RWW2z Zot t NnBqQz 1JbXgDPv5ZPZirhNF UAM pEXy 3WWHC 40QaHL"
"kid":"H(B)"
},
{
"kty":"EC,
"crv":"BLS-12-381",
"x":"gVJ__Y-30p8j hvaGBBEPbh0JDkp49dF2knj | z3xr VQMM3NTEuoc COuCAR7- j r noK",
"Kid" "H(O)"
}
{
"kty":"EC',
"crv":"BLS-12-381",
"Xx":"i RYg8UgCPuLExMs pRuxqJnmABCz68i JTpweKp5j 0A- CDt Ur VPET9rj dzZD 3j k_",
"Kid":"H(D)"
}

ETSI

22 ETSI TS 103 964 V1.1.1 (2025-02)

}
]
}
6 Interface Implementing Reference Point R
6.1 Introduction

While the previous clause defined the format of verifiable credentials and presentations, together with a method to
retrieve public parameters, implementing reference point K and P, the present clause focuses on the format of data at the
Reference Point R.

At Reference Point R, the Verifier provides the Prover with a challenge, i.e. a CP-ABE encrypted secret that shall be
decrypted. The Prover's response is the decrypted secret (see the protocol illustrated in clause 4.2).

This clause is intended to provide a standard format for the challenge and for the response appearing in the
challenge-response protocol.

6.2 Challenge

6.2.1 Overview

The challenge shall be a cyphertext encoded via JSON Web Encryption (JWE) compact serialization [3], which for
reference, is below reported. This serialization format is made of five Base64 URL safe encoded string segments

concatenated by the dot "." character.

The present document uses three out of five "segments"”: the JWE Protected Header, the JWE Encrypted Key, the JWE
Ciphertext. The JWE Initialization Vector, and the JWE Authentication Tag (reported as deleted statements below) are
not used:

BASE64URL(UTF8(JWE Protected Header)) || '.' ||
BASE64URL(JWE Encrypted Key) || '." ||

BASE64URL(JWE Ci phertext) || "." ||
: .

NOTE: The name "Protected Header" derives from historical reasons since, in the original JWE specifications,
parameters inside this segment are used as "additional authenticated data" of the authenticated encryption
algorithm defined in the original JWE specifications:

additional authenticated data = ASCl | (BASE64URL(UTF8(JWE Prot ect ed Header)))

The "additional authenticated data" is passed to the authenticated encryption algorithm to obtain the "JWE
Authentication Tag". As ABE schemas use their own authenticated encryption, no "Authentication Tag™ is used in the
present document.

6.2.2 JWE Protected Header

The "JWE Protected Header" object shall contain the following two entries defined by the JWE standard [3]:
e The algorithm used to provide key encapsulation shall appear as value of the "alg" property.
e The algorithm used to encrypt the ciphertext shall appear as value of the "enc" property.

In addition, the present document defines a new property "query" as follows:

e The presentation policy used for encryption shall appear as value of the "query” property:

{"query": <cp-abe-policy>}

ETSI

23 ETSI TS 103 964 V1.1.1 (2025-02)

To build the final JWE compact serialized object, the "JWE Protected Header" object shall be encoded as
BASE64URL(UTF8(JWE Protected Header)), where BASE64URL() denotes the Base64URL encoding and UTF8()
denotes the octets encoding the UTF-8 [RFC3629] representation of any string containing a sequence of zero or more
Unicode characters.

NOTE: For the purposes of the present document, the "alg” property value matches the value cP- WATERS- KEMand
the "enc" property value matches the value cP- WATERS- ABE, thus referring to the construction reported in,
respectively, clauses A.2 and A.3. In addition, the "query" property value appearing in the JWE Protected
Header matches the access policy string generated by the encrypting party in the CCA-secure Encryption
algorithm (clause A.3.1).

6.2.3 JWE Encrypted Key

The "JWE Encrypted Key" object represents components of the encapsulated key generated by the CP-WATERS-KEM
algorithm.

These components are points over elliptic curves. The syntax presented in [2] shall be used to represent these
components.

To build the final JWE compact serialized object, the "JWE Encrypted Key" object shall be encoded as
BASE64URL(JWE Encrypted Key).

6.2.4 JWE Ciphertext

The "JWE Ciphertext" object represent the final ciphertext produced by the CP-WATERS-ABE algorithm, which shall
be plain bit string made of two components: the nonce and the randomness used in the challenge-response protocol.

To build the final JWE compact serialized object, the "JWE Ciphertext" string shall be encoded as BASE64URL(JWE
Ciphertext).

6.2.5 Example: JWE Protected Header

According to clause 4.1.3, the presentation policy in the example shown in the present document is:

A AND (D OR (B AND Q)
Therefore, the JSON representation inside the JWE Protected Header is:

{
"al g": " CP- WATERS- KEM',
"enc": " CP- WATERS- ABE"
"query":"A AND (D OR (B AND Q)"

Encoding using Base64URL without padding gives:

eyJhbGei O JDUCIXQVRFU M SOVNI i wi ZWBj | j oi QLAt VOFURVITLUFCRSI s| nF1ZXJ51 j oi QSBBTKQUKEQuT1! gKEI gQUSEI EMp
KSJ9

6.2.6 Example: JWE Encrypted Key

In the running example presented throughout the present document, Kand r are 128 bit strings, defined as bytes in
hexadecimal notations as follows:

K=02x000102030405060708090a0b0c0d0e0f
r=02x101112131415161718191alblcldlelf

Concatenating K, r and the presentation policy (the presentation policy in the example iSA AND (D OR (B AND Q))) in
a single byte array gives:

Kl | r]| policy=02x000102030405060708090a0b0c0d0e0f 101112131415161718191alblcldlelf 4120414e44202844204f
5220284220414e4420432929

ETSI

24 ETSI TS 103 964 V1.1.1 (2025-02)

Hashing using SHA256 gives:

HASH256(K| | r| | pol i cy): 02xc79257ec424db354115569bdcee5cacaf 9529¢c6593899c8c8d7f 2f 8312a6c¢ce0
This seed, known as u, is used to initialize the pseudo random generator (see clause A.3.1).

Given the pseudo random generated values:

s: 02x25c05d2f 19c8cc490df bf af a82d9745b3cf 6b6619641cealb3e9c5f bf 56ddcf 0

| anmbdal: 02x92329ecf 05ad3a8f b548f 1085cf 4c3d38aedebb77c2f b3f 2c6d09354df 9ac401
| anbda2: 02x51034784a9c43b6f 2942e62b7f ceOc4af 3036d258c6ed494ch55bb5f 1120f 1de
| anbda3: 02x2a65¢c681bd9250da95e493d6b95a54476670a58a8d9f f €1821¢3774604b22713
| anbda4: 02x77b66b33db90f 018becelf a2f 86888d05c66eadlal076aded1932a615d318f 0
r1: 02x38963f 822119730ebceab3cc6ec008ef Oebf 1942b5a530a5a7elleef 7423cd9c

r2: 02x5ac4661c0879cf 2f 8c0f 7d629f 53b2ad7c5d8bdea851f 056d096¢f d462f d7238

r3: 02x60d5327364706a2c4004902b4c631f a4a9d8110da00b5d0e01bb6af 0d5eec817

r4: 02x21ccef edd32bb4887a58b40556b75262875ae19e6a0a327¢c8b7625085867f 76e

and the following LSSS matrix (obtained by compiling the presentation policy using the simple compiler presented in
Annex C):

A 1 1 0
B 0 -1 1
C 0 0 -1
D 0 -1 0
the final ciphertext components:
C'= gls
Cr = g:**¥H (py) ™
Dy =g,'*

are represented as compressed points over elliptic curves E; and E; (refer to Annex B for more details about the
serialization format used to represent any point on the two elliptic curves).

{
"ciphertext":[

{
"kty":"EC',
"crv":"BLS12-381",
"x":"hti mHzBHB4l ywoepORf r 6RDpEt aQSo_8KkwcWMLO2Fsf vTl ui F3g89G3- 5eONrr Q'
"kid":"CM\prinme=g_1"s"

h

{
"kty":"EC",
"crv":"BLS12-381",
"x":"KkpE-bqgelj XjjtgeAli VAOSI sRYUBI ATp- L6spVd43nm6(BRIQOO7cl dYuHcWLYoep",
"kid":"C 1=g_1~{a*\\lanbda_1}*H(\rho(1))"{-r_1}"

b

{
"kty":"EC',
"crv":"BLS12-381",
"x": i VMBL2LQ4haEgyulL6buhqZGpPGer BE- H goPy7BO- VBBVEQIVX9Syu5- q8Fr 3NYG'
"kid":"C 2=g_17{a*\\l anbda_2}*H(\rho(2))"{-r_2}"

}

{
"kty":"EC',
"crv":"BLS12-381",
"x": " gKKVf Gsudf 1VRzOdSNBOEqKx| g6To9Vn8Hz 6l r 7dt bj 06VEY1X4AwEn8Ut e1Axa3_",
"kid":"C_3=g_17{a*\\lanbda_3}*H(\rho(3))"{-r_3}"

b

{
"kty":"EC',
"crv":"BLS12-381",
"x": " gAnHeUkgBOKHZy - eBug4edOucWRFDVEY2(OKh- u_JUChwxh1URIxf vt ebQZ2kVBWQ' ,
"kid":"C 4=g_1"{a*\\|l anbda_4}*H(\rho(4))"{-r_4}"

}

{

"kt y"o EC',
“crv":"BLS12-381",

ETSI

25 ETSI TS 103 964 V1.1.1 (2025-02)

"x": "t f Q7YsBwg-
Tr MBKWKr hx UOf u4bJsg51c19HOFCXI WHdci z2ZnWas| GABGngS91ugESM2JI S0aFGywA2dLat kEvi e9_FHc_C2r uMs| Vj 6DpZ_p7W
TpkAcM\h- e6wBdf S- ",
"kid":"D 1=g_2"r1"
b
{

"kty":"EC',
"crv":"BLS12-381",

"x":"ttez3M CaPc20V9r 17mIV9Zbe4i 0i f O6xt 4kcat 7CGgkJulR5dXzt x9Al xi RCABS4ADVI 1OfF usHgZNKd&nmOHWDFN edpi 3s
sXqt rr 6Q0zzf HeF41 hHW8ZQyW QWX RKT",
"kid":"D 2=g_2"r2"
H
{

"kty":"EC',
"crv":"BLS12-381",
"x": " mcoNUQZB9qc- JQB46M/R8t 00gLr nivt zBlyeJpBDJ- XhXu6ZeF8-
hjj 11 oYEMRI ZkDz| 2Tj EpVz_DAThNXkzOKv9qFP63Y!l Dn- e5FuNt AM og4ZaVvhj vTyUgf eMygZeft ",
"kid":"D 3=g_2~r3"
},
{

"kty":"EC',
“crv": " BLS12- 381",
“x":"j xI Z2_z2dhr UXqd5Aa_B1ni 3VQeXK5psMOW j 6FKI 3exb66YX-
cVUMLIEG kel uvB8ObWRXN hqMrbOUY_GeVDLsh5RVZNnCx5hAf EntHa78C- L3mMgxK6XF HAVLI3Kj - L"
"kid":"D 4=g_2~r4"
}

}
Encoding the whole JSON object to Base64URL without padding gives:

eyJj aXBoZXJ0ZXhOI j pbeyJr dHki O JFQyI s| m\ydi | 61 kIMJUzEyLTMAMSI sl ngi O Jodd t SHpCSEl ObH 3b2ViWMFJIntj ZSRHBF
dGFRU29f OFt r d2NXTTEWNKZZz ZnZUoHVpR] NxODl HMy01ZU9CQcnJRI i wi a2l ki j oi QL5¢cXHByaWl PWif M5z1 nOseyJr dHki O JF
QI sl m\ydi | 61 kKIMJUZEyLTMAMSI sl ngi O Jr cEUt YnFl SWYanp0Z2VBME WNE9 Th HNSW/U4b EFUc C1MNNNWMQOM202UTNSS| FP
Tzdj bGRZdUnj VzFZb2W i wi a2l ki j oi QL8xPWIf MV/57YSpcXGxhbWkYV8xf Spl KFxyaGBoMskpXnst cl 8xf SJ9LHsi a3R51 j oi

RUM LCJj cnYi G JCTFMKM 0z ODEi LCJ41 j oi aVZNUOwWy TFEOaGFFZ31 1TDZi dWhx WdwUEdI ckJFLUhQgZ29QeTdCTy 1WOEJNNVFK
Vng5U3l INS1XOEZyMD5ZRy| s| nt pZCl 61 kNf M 1nXz Fee2EqXFxs YWLi ZGFf Mh0gSCheenhvKDl pKV57LXIf Mh0i f Sx71 nt 0eSI 6
I kVDIi wi Y3J2Ij oi KxTMTIt Mzgxliw eCl 61 mdLS1ZmR3N1ZGYxVI J6MERTT] gwRXFLe&xnN Rv OVZuOEh6NnxYy N2ROYmowNl Y2
WIFYNHdFbj hVdGUxQXhhML8i LCIr aWQ O JDXzMBZ18xXnt hKI xcbGFt YnRhXzNOKkgoXHJobygzKSI eey1yXzN9l nOseyJr dHki

QO JFQyI sl m\ydi | 61 kIMJzEyLTMANSI sl ngi G IxQA\BI ZVWr cUIPSOhaeS1I QnVxNGVKMAV] V1IIGRELIFWIIPS2gt dVIKVWFod1ho
MWSSnhndnR Yk9aMrt WndRI i wi a2l ki j oi QL80PWIf MV57YSpcXGxhbW k' YV80f Spl KFxyaGBoNCkpXnst cl 80f SJ9LHsi a3R5
I'j oi RUM LCJj cnYi O JCTFMKM 0z ODEi LCJ4I j 0oi d&ZRNLI zQndxLVRybThLVOt yaHhVT2Z1NGI Ke 3E1MAVK OUhPRKNYSVdI ZGNp
ej Jabl dhc2xHVzZNHonFTOTF1cUVTTTIKUz BhRkd5d0Ey ZExhd G Fdm | OVOGSGNf QzJy dU1z SVZgNk RwW 9wiN1dUc Gt BYO1CaCll

Nnd2QnRmy 0i LCIr aWQ O JEXzE9Z18y Xnl x| nOseyJr dHki O JFQy! sI mNydi | 61 kIMJzEyLTMAMSI sl ngi O J0dGVaM)1qT2FQ
YzJvVj | yMTdt SI YSWHI | NGkwaWZPNnhONG j YXQBR2dr SnUxUj VkWHpOeDl BbHhpUKMDQ MDRFZpMU9NTXNI ¢ Vp OS2 RHVOWSELN
REZOhGvkcGkzc3NYe XRycj ZRT3p6Zkhl Rj RIaEh30FpReVdsUXdGeFJr VCI sl nt pZCl 61 KRf M 1nXzJecj | i f Sx71 nt 0eSl 61 kVD
I'iw Y332l] oi QkxTMIIt Mzgxliwi eCl 61 mlj bO5VUVpCOXFj LUpRQ QT TdSOHQMVHFME mLWAHPCMXI | SnBCREot WehYd TZaZUY4
LWhganxsbll FbVIJIWrt Eemwy VGpFc FZ6 XORBVGhOWR 6IVEt 20XFGUDYZWAKEDbi 11 NUZ1TnRBTWVZz RaYVZoanZUeVWnZnvNUWla
ZWZ0I1 i wi a2l kI j oi RF8zPWIf M 5yMyJ9LHsi a3R51 j oi RUM LCJj cnYi O JCTFMKM 0zCDEi LCJ4! j oi anhJW Jf ej JkaHI VWHFK
NUFhXO0I xbrkz VI FI VEs 1c HNNQ@Bdnmaj Z2GS2wz ZXhi Nj ZZWC1j VnVNMALFR2pr YOI 1dkl 4MEIXU hCbCGhx TXZi T1VZX0dl VKRMVE21 1
U Z6bk NANWIBZKVt SGE3CEM TDNt TWH4SzZYZkhBVKXKM2t qLUn LCIr aWQ O JEXz@@Z18yXnl 0l n1df Q

6.2.7 Example: JWE Ciphertext and JWE object

In the running example presented throughout the present document, the element e(g, g)** is a group field element that
is represented in towered format:

[[[13a3bd4f 132b2010dch1818deed44e8c0celf 24f 9939a4f ¢1087c¢030d30d8b70c04f 2ec675eddcf 2191d7ca2e84372f a
0b828dcd917be9e80c0245a07851a045af e4b4f 9a2al1383adb5212ced57ad29a5ee7e5ef 61¢12¢9438¢374f 4097823dc], [1
330f f b482dealc4f e2ec7aef b0856bf bb80ae81a306d11e500f 2946229ccf 087cla70ad45d4acas534651f 37952968555, 018e
00b4f c2601808ee8cea338139e3365ab35e9daaf 0d0189e4cd14850bc68d63953682cd2ee901f e357e7906cdf 938e]], [[07b
141a211d3288ef 93a0dea859ba02c70af ab4a5daf 7d296af 121b607b0acf f 72e7cec2a9db5ca2e073ch7d8ad7b567, Obbd47
02a3009f a8f 08b525549d78a352cb019c000a9b72604dd43a83e617795ec8f ebb5953dc1e4929bb7f 6d3b58bd9], [05eddf O
d57f 761b309a30¢354b6413880dd0de7a000b1f 6¢c9f babd430bbe6722df dal532e752bf 792c7b952ebe013a8c, 181cff89fb
04f 53f 03e5d5000bd2f aeb39b3995b916bc347a6ad931e01bdla045a03ae21f 61daf 9f 9d0d170f baf 2a6ébf]], [[01dalcc71
f2b71dd20¢c61990d3d30e212e618c1d73be6664ec28540a78e69cea2debebedf c6422bb0372593e7cef 7al4, 0165bf 5a86b9
5bb12cd8c0ce2a81276bd05ef ddb636737b360d2e9f 8966501dde2478505c9c5¢c5a52ad79e0a8cabf e50] , [Of 71180460df 8
f 7¢5334401d705f f 268d7c45d111f d51a3a65b9f f 67¢1082e82f f 981a486f f 1a564ea63b783f cadclda, 15f 2e1056f def 784
9a24f ec7022bd0d1616333bed25db51c60ccc0a3a543a5f 6434f 76203f 552827c9b79cac16714bal]]]

ETSI

26 ETSI TS 103 964 V1.1.1 (2025-02)

Walking through the towered representation and concatenating each array element encoded in hexadecimal notation
(see clause B.6), gives:

13a3bd4f 132b2010dcbh1818deed44e8c0ceOf 24f 9939a4f ¢1087¢030d30d8b70c04f 2ec675eddcf 2191d7ca2e84372f a, 0b8
28dcd917be9e80c0245a07851a045af e4b4f 9a2al383adb5212ced57ad29a5ee7e5ef 61¢12¢9438c374f 4097823dc, 1330f f
b482dealc4f e2ec7aef b0856bf bh80ae81a306d11e500f 2946229ccf 087cla70ad45d4aca534651f 37952968555, 018e00b4f
€c2601808ee8ceal338139e3365ab35e9daaf 0d189e4cd14850bc68d63953682cd2ee901f e357e7906cdf 938e, 07b141a211d3
288ef 93a0dea859ba02c70af ab4as5daf 7d296af 121b607b0acf f 72e7cec2a9db5ca2e073cb7d8ad7b567, Obbd4702a3009f a
8f 08b525549d78a352¢cbh019¢c000a9b72604dd43a83e617795ec8f ebb5953dc1e4929bb7f 6d3b58bd9, 05eddf 0d57f 761b309
a30c354b6413880dd0de7a000b1f 6¢c9f babd430bbe6722df dal532e752bf 792¢c7b952ebe013a8c, 181cf f 89f b04f 53f 03e5d
5000bd2f aeb39b3995b916bc347a6ad931e01bd1a045a03ae21f 61daf 9f 9d0d170f baf 2a6bf, 01dalOcc71f 2b71dd20c61990
d3d30e212e618c1d73be6664ec28540a78e69cea2debebedf c6422bb0372593e7cef 7al4, 0165bf 5a86b95bb12cd8cOce2a8
1276bd05ef ddb636737b360d2e9f 8966501dde2478505¢c9c5c5a52ad79e0a8cabf e50, Of 71180460df 8f 7¢5334401d705f f 2
68d7c45d111f d51a3a65b9f f 67¢1082e82f f 981a486f f 1a564ea63b783f cadclda, 15f 2e1056f def 7849a24f ec7022bd0d16
16333bed25db51c60ccc0a3a543a5f 6434f 76203f 552827¢9b79cac16714bal

Where commas have been used to keep separated each element. Removing the commas and using the value resulting
from the concatenation of elements to feed the SHA256 algorithm gives:

y=02x09b1266b67f 42cf df a2132e1821607209a5428d3319b4ae226d132472c93c2c4
The final encrypted (K||r) @y is given by:
KI|r @y = 02x09b0246863f 12af af 22838ea8e1b092f 8a453ac0258e5¢cf 53ec8285c¢308edcdb

Which is converted in the following Base64URL representation:

CbAkaGPxKvr yKDj gj hsJL4pFGCsAl j | zZ1PsgoXDCOBNs

Where trailing padding has been omitted. The final JSON Web Encryption (JWE) object in its compact form is:

eyJhbGei G JDUCIXQVRFU M SOVNI i wi ZVBj | j oi QLAt VOFURVJITLUFCRSI s| nF1ZXJ51 j oi QSBBTkQuKEQyT1l gKEI gQUSEI EMp
KSJ9. eyJj aXBozXJ0ZXhOl j pbeyJdr dHki G JFQyl sl m\ydi | 61 kIMJzEyLTMAMSI sl ngi G Jodd t SHpCSEI ObH 3b2VWiVFIntj Z
SRHBFdGFRU29f OEt r d2NXTTEWMVK ZzZnZUbHVpR) NxODl HW/01ZU9CcnJRI i wi a2l ki j oi QL5¢cXHByaWll PWif M5z nOseyJr dHk
i O JFQy! sl m\ydi | 61 kKIMJzZEyLTMANSI sl ngi G Jr cEUt YnFl SWYanp0Z2VBME WNE9 Th HNSW/U4 b EFUc C1MNNNWMQOM202UTN
SS| FPTzdj bGRZdUnj VzFZb2VW i wi a2l ki j oi QL8xPWIf MV57YSpc XGxhbWk YV8xf Spl KFxyaGBoMskpXnst cl 8xf SJ9LHsi a3R
51 j oi RUM LCJj cnYi G JCTFMKM 0z ODEI LCJ41 j oi aVZNUOwy TFEOaGFFZ31 1TDZi dWhxWkdwUEdI ckJFLUNqZ29Qe TdCTy 1WOE]
NNVFKVNg5U3I 1NS1xOEZyMD5ZRy| sl mt pZCl 61 kKNf M 1nXz Fee2EqXFxsYWLi ZGFf Mh0qSChecrmhvKDI pKV57LXJIf Mh0i f Sx71 nt
0eSI 61 kVDI i wi Y3321 j oi QkxTMTIt Mzgxliw eCl 61 mdLS1ZmR3N1ZGYxVI JEMGRTTj gwRXFLeGxnN RvOVZuOEh6Nmxy N2ROYnD
WN Y2WIFYNHAFbj hVdGUxQXhhML8i LCIr aWQ G JDXzMBZ18xXnt hKI xcbGrFt YmRh Xz N9KkgoXHIobygzKS| eey 1y XzN9l nOseyJ
rdHki G JFQyI sl mN\ydi | 61 KIMJzEyLTMAMSI sl ngi O IxQNBI ZWr cUJPSOhaeS1l nVxNGVKVHV) V1JCGRELFWIIPS2gt dVOKWWF
od1lhoMWSSnhnmdnRI Yk9avht WOndRI i wi a2l ki j oi QL8OPWIf MV57YSpc XGxhbW k' YV8B0f Spl KFxyaG3oNCkpXnst ¢l 80f SI9LHs
i a3R51 j oi RUM LCJj cnYi O JCTFMKM 0z ODEi LCJ41 j oi d&ZRNLI zQndxLVRybThLVOt yaHhVT2Z1NGI Ke 3ELMAVK OUhPRKNYSVd
| ZGNpej Jabl dhc2xHVzZNHbnFTOTF1c UVTTTIKUz BhRKd5d0Ey ZExhdG Fdm | OV9GSGNf QzJydU1z SVZgNKRWWW 9wN1dUc Gt BYO1
CaCll Nnd2QRmyOi LCIr aWQ O JEXzE9Z18y Xnl x1 n0seyJr dHki G JFQyI sl m\ydi | 61 kIMJzEyLTMANMSI sl ngi O JOdGVaMD1
qT2FQYzJvVj | yMIdt Sl YSWI | NGkwaWZPNnhONG j YXQBR2dr SnUxUj VkWHpOeDl BoHhp UkMDQ MORFZpMUINEXNI ¢ VpOS2RHVIO
WSEINREZOhGVkcGkzc3NYCcXRycj ZRT3p6Zkhl Rj R1JaEh30FpReVdsUXdGeFJr VCI sl nt pZCl 61 KRf M 1nXzJecj | i f Sx71 nt OeSl
61 kVDI i wi Y3J2Ij oi QKxTMTIt Mzgx! i wi eCl 61 mlj bO5VUVpCOXFj LUpRQ Q2 TTdSCHQMVHFMe mLWiHpCMXI | SnBCREot WehYdTZ
aZzuy4LWhganxsbll FbVIJIWit Eemay VGpFcFZ6 XORBVGhONG 6 VEL 20XFGUDYZz W Ebi 11 NUZ1TnRBTW)v Zz RaYVZoanZUeVWnZmV/
NUWaZWZ0l i wi a2l ki j oi RF8zPWAf M 5yMyJ9LHsi a3R51 j oi RUM LCJj cnYi G JCTFMKM 0z ODEi LCJ4I j oi anhJW Jf ej JkaHJ
VWHFKNUFhXO0I xbnkz VI FI WEs 1cHNNQBdmaj ZGS2wz ZXhi Nj ZZWC1j VnVNMMLFR2pr YOI 1dkl 4AMEI XU hCbCGhx TXZi T1VZX0dl VKR
Me21 LUl Z6bkNANWABZK Vt SGE3CEM TDNt TWH4SzZYZKhBVKXKM2t gLUwWi LCIr aWQ O JEXz2(QQZ18yXnl Ol n1df Q . CbAkaGPxKvr
yKD gj hsJL4pFGsAl j | z1PsgoXDCO3Ns.

Where three out of five segments have been used.

6.3 Response

6.3.1 Overview

The Prover's response is implemented using a Verifiable Presentation proof. The definition of the proof shall be the
same as for Verifiable Credentials reported in clause 5.2, except for the property "proofValue™.

The "proofValue" property shall present a Base64URL string (refer to clause B.5) encoding the value matching the
response (i.e. the decrypted secret) of the challenge-response protocol presented in clause 4.2.

Note that, contrary to signature-based verifiable presentation, a proof in Functional credentials does not need a specific
"nonce" as a protection from reply attacks. In fact, due to the randomness used to generate the challenge, each challenge
(and each response) is unique in time.

ETSI

27 ETSI TS 103 964 V1.1.1 (2025-02)

6.3.2 Example: Verifiable Presentation

Continuing the running example, the Prover responds to the challenge received by the Verifier with the following proof
embedded in a Verifiable Presentation.

{
"proof": {
"type":"Functional Credenti al Presentati on_2023_CP_WATERS_KEM',
"created": "2023-01-01TO00: 00: 01Z",
"proof Val ue": "uAAECAWQFBgcl CQoLDAOCDW',
"proof Purpose": ["capabilitylnvocations"],
"verificationMethod": "https://ww. exanpl e. org/vc/ cp-abe/vl/ public-paranet ers#l"

}

Note the prepended character header "u" (multi-base encoding) in the "proofValue™ and the following encoding of the
value of K defined in clause 6.2.6 via Base64URL no padding.

ETSI

28 ETSI TS 103 964 V1.1.1 (2025-02)

Annex A (informative):
Attribute Based Encryption

Al CP-ABE schema

Traditional public-key encryption uses a public key to target ciphertexts to a specific user. The user holds a secret key
and can decrypt the message. In predicate encryption, and Attribute Based Encryption in particular, instead, ciphertexts
are not necessarily encrypted to one particular user. Instead, both users' secret keys and ciphertexts can be associated
with a set of attributes or a policy over attributes. A user is able to decrypt a ciphertext if there is a "match" between his
secret key and the ciphertext.

This feature enables a party to encrypt data even without knowing a priori the identity of each individual user which
needs to access the data. ABE can be efficiently used whenever ciphertexts have to be targeted to a class of users rather
than a single user, because encryption is performed once.

In particular, in most Ciphertext Policy-Attribute Based Encryption (CP-ABE) schemes a monotonic tree access
structure representing a policy is encoded into the cyphertext, while the user's secret keys are computed with respect to
a set of attributes S the user has obtained.

Attributes are assigned to users and the access structures are used to label different sets of encrypted data. A user is able
to decrypt the ciphertext with a given key if and only if there is an assignment of attributes from the secret key to nodes
of the tree such that the tree is satisfied.

The underlying mathematical construction is based on a secret sharing scheme embedded in the ciphertext that prevents
collusion attacks, i.e. attacks from two or more different users that have obtained keys encoding different sets of
attributes that, by their own, would not satisfy the access tree structure, but whose union would do.

The decryption algorithm works by masquerading original values from each user's secret key in a randomized fashion.
Thus, the key components associated to the same attribute in two different secret keys are not the same and cannot be
interchanged in order to decrypt a cyphertext.

The scheme consists of four algorithms:

. Setup(l) -> MSK, MPK: Takes global parameters | as input and outputs the public parameters MPK and a
master key MSK.

. Key-Gen(MSK,) -> SK: Takes as input the master secret key MSK and a set of attributes S that describe the
key and outputs a secret key SK.

. Encrypt(MPK, M, A) -> CT: Takes as input the public parameters MPK, a message M, and an access structure
A over the universe of attributes (that represents the policy to be satisfied to access the message). The
algorithm encrypts M and produces a ciphertext CT such that only a user that possesses a set of attributes that
satisfies the access structure will be able to decrypt the message. The ciphertext implicitly contains A.

o Decrypt(CT, SK): Takes as input the ciphertext CT (which contains the access structure A), and a secret key
XK, which is a secret key for a set Sof attributes. If the set Sof attributes satisfies the access structure A then
the algorithm will decrypt the ciphertext and return a message M.

A.2 CP-WATERS-KEM construction

The present construction is reported in [i.4]. It is adapted in clause 4.2.2 of ETSI TS 103 532 [6] with only few changes
in used symbols.

Let G1, Gz and Gy be two multiplicative cyclic groups of prime order. Let g; and gz be generators of G;, G, and e be a bilinear
map, € Gi1 x G;—Gr. The bilinear map e has the following properties:

1) Bilinearity: for all u, v € G and a, b € Z,, the equality e(u°) = e(u®,v?) = e(u,v)® holds.

ETSI

2)

29 ETSI TS 103 964 V1.1.1 (2025-02)

Non-degeneracy: e(gi, g2) #1.

If the group operation in G; and Gy and the bilinear map e are both efficiently computable, G1 and G; are said bilinear

groups.

CP-WATERS-ABE consists of four algorithms:

1)

2)

3)

NOTE:

4)

Setup() — {MPK, MSK}: The algorithm outputs the master secret key MSK and the master public key
MPK, and publishes the MPK.

The algorithm chooses bilinear groups G; and G; and random exponents a (alpha), a € Z,.
The public key is MPK = {g1, 92, 0:? , €(01, g2)°} and the master secret key is MK = {g% «, a}.

A function H: {0, 1}* —G: modelled as a random oracle hashes any attributes x € {0, 1}* and produce
attribute parameters on request.

Key-Gen(MPK,MSK, S) — secret key: Key generation happens by taking as input the master secret key
MSK and a set of attributes Sthat describe the key. The output is a randomized secret decryption key.

Chosen a random t€Z;, the algorithm simply generates and releases: K = g>"g,®, L = g2' and, for each xeS
Kx = H(x)'as the secret decryption key.

Encrypt(MPK, (M; p)) — {random secret, ciphertext}: The algorithm takes as input an access structure
(M; p) the public key MPK. M is an | x m matrix, while p is an injective function associating each row of
M to an attribute p (i.e. px= p(K) €S); note that in this construct one attribute is associated with at most
one row ([i.4] proposes off-the-shelf techniques to cope with this limitation). The output is a random
secret and the ciphertext.

Chosen a random vector # = (s, y,, ...,) in (Zp)™ and being M the k-th row of M, the algorithm
computes A, = ¥M,. In addition, the algorithm chooses random ry, ..., 1| €Z,.

In order to use pseudo-randomness, the algorithm can take as input an optional input seed u {0, 1}*to a
pseudo-random generator PRG. This feature is later used (see clause A.3) to transform the ABKEM
schema into a hybrid CCA-IND2 encryption schema.

Together with a with the access structure (M; p), the algorithm makes public the ciphertext:
C'= 91S
Ci = g1 H (py) ™™
Dy =g,"*
The algorithm computes the random secret e(g1,92)*° and keeps it private.

Decrypt(SK, C) — random secret: Dually, the decryption takes as input the ciphertext C generated at step
3 and the secret key SK generated at step 2. The output is the common secret e(g,, g,)*° if and only if
the set of attributes Ssatisfies the access structure, null otherwise.

For each k such that p is in S(i.e. consider only attributes in S), compute ok such that 2k k= s (there
could be different sets of {«wy} satisfying this equation).

Compute the random secret:
e(C',K)

Mele(Ce, LYe (K, D)]« e(91,92)

ETSI

30 ETSI TS 103 964 V1.1.1 (2025-02)

A3

CCA-secure CP-ABE construction

A.3.1 CCA-secure Encryption Algorithm

The present construction is reported in [i.5]. It is adapted in clause 4.5.2 of ETSI TS 103 532 [6] with only few changes
in adopted symbols.

The CCA-secure encryption algorithm is specified by the following steps:

The encrypting party (prover) shall choose a random number renosen, an access structure AP (as a string) and a
nonce Kcnosen and concatenates them to form the string renosen| | Kchosen| | A

The encrypting party runs the encryption algorithm of the original CP-WATERS-KEM to get a random secret
and the ciphertext. The seed rchosen||Kchosen| |AP is used as a source of randomness for CP-WATERS-KEM
encryption algorithm with u = PRG (H' ("shosen || Kchosen ||AP), 1), Where PRG is a Pseudo Random Generator,
I is the length of the returned random bit string (u £0,1}') and H' is a collision-resistant hash function.

- The random secret is e(g4, g,)*. Keep it private and use in the next step.
- Release the ABKEM ciphertext Cagkem.

Use random secret above for XORing the concatenation r chosen| | Kchosen.

- Transform rchosen|| Kehosen into bytes (octets).

- Using the Pseudo Random Generator (PRG), get r = PRG(H (e(g,, 92)*), 1) for CP-WATERS-KEM or

r = PRG(H((e(accy, g:)%(g1?, 92"))%), 1) for the modified CP-WATERS-KEM, with H being a
collision-resistant hash function.

= Flna”y, Compute C =r @ (Kchosen”rchosen).

A.3.2 CCA-secure Decryption Algorithm

The present construction is reported in [i.5]. It is adapted in clause 4.5.2 of ETSI TS 103 532 [6] with only few changes
in adopted symbols.

The CCA-secure decryption algorithm is specified by the following steps:

Run decryption of the original CP-WATERS-KEM or of the modified schema to decrypt the ABKEM
ciphertext Cagkem and to obtain the shared secret: e(g4, g,)* for CP-WATERS-KEM or

(e(accy, g2)%(g:?, g;""""))* for the modified CP-WATERS-KEM.

Use that shared secret to generate randomness r = PRG (H (e(gq, 92)*), D).

Use generated randomness r for XORing the ciphertext and retrieVe Kenosn and reosen: C @ 1= (Kenosenl[Fehosen)-
Verify raeen Matches the random number chosen at beginning.

Run again the ABKEM encryption as in clause A.3.1 USiNG reosenl |Kenosen| AP @S @ source of randomness and verify
the result is equal to the received ciphertext Cagkem.

ETSI

31 ETSI TS 103 964 V1.1.1 (2025-02)

Annex B (informative):
Pairing friendly BLS12-381 Curve and its Encoding

B.1 BLS12-381 Curve

While IEEE 1363.3-2013 [7] contains useful definitions and conventions that may be used for the implementation of the
present document, this latter follows some conventions to match the more recent work done by IETF/W3C® community
for the Elliptic Curve Cryptography. Therefore, the present document aligns with [i.2] that suggests that vast majority of
current libraries implementing BLS12-381 use the encoding method defined in Annex C of [i.3] (although other
encoding exists).

When using BLS12-381 pairing friendly curve, the elliptic curves E; and E; are defined over the group fields of modulo
p: GF(p) and GF(p?) with:

p:
0x1a011lea397f e69a4blba7b6434bacd764774b84f 38512bf 6730d2a0f 6b0f 6241eabf f f eb153ffffhof ef fffffffaaab

The first group field is of integers, the second one is an "extension field" of "complex" integers y' = y'o + y'1 X i group
elements with base (1,i) where i+ 1= 0.

Two elliptic curves are defined by:
Epy*=x3+4
Eyy?=x3+4x(@{+1)

The group Gy and G; are defined as the order r subgroups of E; over GF(p) and E, over GF(p?) respectively, with r
prime factor of p:

r = 0x73eda753299d7d483339d80809a1d80553bda402f f f e5bf ef f f f f f f f 00000001

The generators are:

gl

(0x17f 1d3a73197d7942695638c4f a9ac0f c3688c4f 9774b905al4e3a3f 171bac586c55e83f f 97alaef f b3af 00adb22c6bb

0x08b3f 481e3aaalf 1a09e30ed741d8ae4f cf 5095d5d00af 600db18ch2c04b3edd03cc744a2888ae40caa232946c5e7el)

g2: ([0x024aa2b2f 08f 0a91260805272dc51051c6e47ad4f a403b02b4510b647ae3d1770bac0326a805bbef d48056¢8c121b
db8, 0x13e02b6052719f 607dacd3a088274f 65596bd0d09920b61ab5da6lbbdc7f 5049334cf 11213945d57e5ac7d055d042b
7e], [0x0ce5d527727d6e118cc9cdcb6da2e351aadf d9baa8cbdd3a76d429a695160d12c923ac9cc3baca289e193548608b82
801, 0x606c4a02ea734cc32acd2b02bc28b99ch3e287e85a763af 267492ab572e99ab3f 370d275cecldalaaa9075f f 05f 79b

e])

A pairing e is defined by taking G; as a subgroup of E(GF(p)) of order r, Gz as an order r subgroup of E'(GF(p?)) for
BLS12 and Gr as an order r subgroup of the multiplicative group GF(p*?)*.

B.2 Point encoding with compression

Serialized points include three metadata bits that indicate whether a point is compressed or not, whether a point is the
point at infinity or not, and the sign of the point's y-coordinate (ordinate) for point compression.

Point compression refers to the ability to represent a point by only one of its coordinates, x-coordinate (the abscissa),
leaving the recipient the task of calculating the other one, y-coordinate (the ordinate), using the curve equation plus an
additional information about the sign of the ordinate. Compressed points on E; are serialized into 48 bytes, while
compressed points on E; are serialized into 96 bytes.

Serialization and deserialization algorithms use the following functions:

. The functions LEFT(str, n) and RIGHT(str, n) respectively return the n leftmost or rightmost bytes from string
str.

ETSI

32 ETSI TS 103 964 V1.1.1 (2025-02)
The function sgrt(y) or sgrt(y'), given y an element in G, or y' an element in G, returns the square root of
element y in the respective group, i.e. an element a such that a? = y, or the error signal INVALID.
The function signGFp(y) defined in [i.3], returns one bit representing the sign of an element of GF(p):
1) ify>(p-1)/2outputl.
2) else output O.

The function signGsz(y’) = signGsz(y’o + y'; x i)defined in [i.3], returns one bit representing the sign of
an element in GF(p?):

1) Ify'1equals O, output sign_GF_p(y'o).
2) Elseify1> (p-1)/2output 1.
3) else output O.

The function O2IP(X), defined in [1], given an octet string to be converted X, converts it to a nonnegative
integer:

1) Let X =Xg|| Xz2|| ...]| XxLen @nd X(xLen-iy be the integer value of the octet X; for 1 <i < xLen.
2) Let X = Xien1) X 256C50D) + Xy n.gy X 25601602 + | + X3 X 256 + Xo.
3) Output x.

The function 120SP (x, xLen), defined in [1], converts a nonnegative integer X to an octet string of a specified
length xLen<256:

1) If x> 256", output error "integer too large" and stop.
2) Write the integer x in its unique xLen-digit representation in base 256:

X = XxLen-1) X 2561610 + X en-g) X 25601812 + |+ x; x 256 + Xo

where 0 <x_i < 256 (note that one or more leading digits will be zero if x is less than 256*enD),
3) Let the octet X; have the integer value x_(xLen-i) for 1 <i <xLen. Output the octet string:

X:X]_ ” X2 || ” Xxl_en

B.3

Serialization

1) Forany point P = (x,y) to be serialized, set:
- C_bit (compression) is set to 1 (indicating that point compression is used).

- I_bit (infinity) is 1 if P is either the point at infinity of E; or E, otherwise it is 0. The serialization of a
point at infinity results in a string of zero bytes, except C_bit and |_bit which are set to 1.

- S_bit (sign) is 0 if I_bit is 1, otherwise if P is a point on Eg, set S_bit = signGFp(y), else if P is a point
on Bz, S_bit= Sign(;ppz(y’).

2) Group the metadata bits into m_byte = (C_bit x 2/7) + (I_bit x 276) + (S_bit x 2/5).
3) Let x_string be the serialization of x, which is defined as follows:
- If P is the point at infinity on Ej, let x_string = 120SP(0, 48).

- If P is a point on E; other than the point at infinity, then x is an element of GF(p), i.e. an integer in the
inclusive range [0, p - 1]. In this case, let x_string = 120SP(x, 48).

- If P is the point at infinity on E, let x_string = 120SP(0, 96).

ETSI

33 ETSI TS 103 964 V1.1.1 (2025-02)

If P is a point on E; other than the point at infinity, then X' = xo + X, X i and can be represented as (Xo, X1)
where xp and x; are elements of GF(p). Let x_string = 120SP(x1, 48) || 120SP(xo, 48).

Notice that in all of the above cases, the 3 most significant bits of x_string[0], i.e. the first byte of x_string, are
guaranteed to be 0.

4) Lets_string[0] = x_string[0] OR m_byte, in order to include the metadata bits.

5) Output x_string.

B.4 Deserialization

1) Letm_byte =s_string[0] & OXEO, where & is bitwise AND operator.

2) If m_byte equals any of 0x20, 0x60, or OXEO, output error "INVALID" and stop decoding.
3) Else:

- Let C_bit equal the most significant bit of m_byte;

- Let I_bit equal the second most significant bit of m_byte; and

- Let S_bit equal the third most significant bit of m_byte.

4) If C_bitis 0 output error "INVALID" and stop decoding.

5) If s_string has length 48 bytes, the output point P(x,y) is on the curve Ey; else if s_string has length 96
bytes, the output point P(X',y') is on the curve Ey; else output error "INVALID" and stop decoding.

6) Lets_string[0] = s_string[0] & Ox1F.

7) IfI_bitis 1 then:

- If s_string == 0 (s_string is the all zeros string), output the point at infinity and stop decoding.
- else output error "INVALID" and stop decoding.

8) Letx=0S2IP(s_string) or X' = (Xo, X1) = (OS2IP(RIGHT(s_string),48), OS2IP((LEFT(s_string,48)))
depending P lays on E; or E (see step 5).

9) To determine the y-coordinate (ordinate), compute y? or y*2 using equation E; or E, depending whether
point P lays on the first or the latter curve (see step 5):

- If the computed value is not a square, output error "INVALID" and stop decoding.
- Else, if the pointis on E_1 set Y_bit = sign(;pp(sqrt(yz)).
- Else, if the point is on E_2 set Y_bit = Signcppz(sqrt(y'z)).

10) If S_bitequals Y_bit, output P = (X, y) in E1 or P = (X',y') in Ex. Otherwise, output P = (X, -y) in E; or
P=(X,y)in Ex

B.5 Base64URL Encoding and Decoding

Conforming to [4], when appearing as values inside JSON objects, EC points and group field elements are further
processed using Base64:

e EC points are first encoded as per the above clauses, then Base64 encoding as below is applied.

. Group field elements are converted to byte arrays using the 120SP(x, 48) function ([1]), then Base64 encoding
as below is applied.

ETSI

34 ETSI TS 103 964 V1.1.1 (2025-02)

The Base64 encoding specified in [4] uses the URL- and filename-safe character set defined in Section 5 of [5], with all
trailing '=' characters omitted and without the inclusion of any line breaks, whitespace, or other additional characters.
The Base64URL encoding of the empty octet sequence is the empty string.

B.6 Encoding elements of the multiplicative group
GF(p™)*

Elements of the multiplicative group GF(p'?)* are polynomials of degree 12 represented through their 12 coefficients.
However, they may be conveniently represented in the so called "towered" format as an array of three arrays of two
arrays of two group field elements GF(p). For the purposes of the present document, this is the preferred format. The
following two encodings are used:

e When appearing inside of JSON objects, the towered format is mapped directly into JSON array of arrays.
Non-array (i.e. group field) elements are encoded using the Base64 encoding specified in [4] (which uses the
URL- and filename-safe character set defined in Section 5 of [5], with all trailing '=' characters omitted and
without the inclusion of any line breaks, whitespace, or other additional characters).

. When appearing in binary objects, each non-array element is represented in hexadecimal notation. These

non-array elements are concatenated exactly in the order they appear inside each array. Each tower of arrays is
traversed starting from the outmost array to the inmost array.

ETSI

35 ETSI TS 103 964 V1.1.1 (2025-02)

Annex C (informative):
A Simple Compiler for Basic CP-ABE policies

The present annex reports a simple technique for converting simple Boolean formulas to an CP-ABE access structure
represented as a LSSS Matrices. This technique is described in Annex G of [i.1].

Input: a Boolean formula represented as a tree, where nodes are AND and OR gates and the leaf nodes correspond to

attributes.

Output: a LSSS Matrix, where by convention the vector (1, 0, ..., 0) is the "sharing vector” (the vector allowing to
reconstruct the secret) for the LSSS matrix.

In the following the symbol | represents a concatenation operator:

1)

2)
a)

b)

3)

4)

5)

Label the root node of the tree with the vector (1) - a vector of a single element, which is 1. Use a global
counter ¢, and initialize it to 1.

Go down next tree level:

If the parent node is an OR gate labelled by the vector v, then its children are labelled by v (and the value
of ¢ stays the same).

If the parent node is an AND gate labelled by the vector v, pad v with O's at the end (if necessary) to
make it of length c; label one of its children with the vector v|1 and the other with the vector
O, ..., 0)] - 1, where (0, ..., 0) denotes the zero vector of length c.

Increment ¢ by 1 and repeat from step 2 till each leaf of the tree is labelled.

Consider the vectors labelling each leaf. If these vectors have different lengths, pad the shorter ones with
0's at the end to arrive at vectors of the same length.

The vectors labelling the leaf nodes form the rows of the LSSS matrix.

ETSI

36 ETSI TS 103 964 V1.1.1 (2025-02)

Annex D (informative):
Functional Credentials

D.1 Definitions

A Functional credentials scheme for an attribute universe Q and a family of policies @ consists of the following
(polynomial time) algorithms and protocols:

1) CKGen(1*) — (MSK, MPK): The key generation algorithm gets as input the security parameter and
outputs a key pair (MK, MPK) of an issuer (master key pair).

2) GrantCred(MSK, S) — cred: The grant credential algorithm gets input the master secret key MK and a
non-empty set of attributes S < Q) and it outputs a credential cred for the corresponding set of attributes.

3) < ShowCred(MPK, cred, f), VrfyCred(MPK, f) >— b: ShowCred takes as input the master public key
MPK, a credential cred, and a policy f; VrfyCred inputs the master public key MPK and a policy f. At the
end, VrfyCred outputs either O or 1.

By definition, for all 1 €N, for all (MSK, MPK) & CKGen(1’) for all S €, for all cred € GrantCred(osk, S), for all
f € @ such that f(S) = 1, a Functional credentials scheme:

. is said correct if it holds that Pr[< ShowCred(MPK, cred, f), VrfyCred(MPK, f) >— 1] =1;

. is said unforgeable if, chosen an arbitrary policy f, any adversary having access to all system issued credentials
cred but the ones satisfying the policy (i.e. for each credential cred, evaluation f(cred) &= 1 has a negligible
probability to succeed in the credential verification process);

. is said anonymous if, arbitrarily chosen a policy f and two provers PO and P1 showing credentials cred0 and
credl, both satisfying or not the policy (i.e. f(cred1) = f(cred2)) any adversary acting as a verifier cannot
distinguish between them).

D.2 Correctness, unforgeability and anonymity of the
protocol defined in the present document

Theorem. When using the protocol defined throughout the present document, a polynomial time adversary, acting as a
Verifier, cannot distinguish between any two Provers P and P; with different CP-WATERS-KEM keys Ko and Ky, if
these keys both satisfy (or not satisfy) the same access structure they are tested against.

Proof. Consider the following security game (adapted from [i.6]):

1) The Setup algorithm of CP-WATERS-KEM or the modified schema takes place. The public key PK is
given to the adversary.

2) Any Prover P; receives distinct secret keys Ki embedding some attributes.

3) The adversary is allowed to submit queries in the form (7.0sen || Kcnosen ||AP) t0 an oracle which
produces a random output u if this is the first time the input has been queried on. Otherwise, it gives back
the previous response. In addition, the oracle computes the ciphertext C using the CCA-secure encryption
algorithm (clause A.3.1) and records the couple ((7chosen || Kchosen ||1AP), (C, 1)) in a table. This oracle
operation is run throughout the whole game.

4) The adversary, acting as a Verifier V, arbitrarily chooses an access structure AP and two Provers Py and
P4, such that their corresponding keys either both satisfy, or both not satisfy the chosen access structure.

5) Depending on an internal coin toss b, the oracle impersonates prover Py in the verification algorithm.

6) Verifier V sends a ciphertext C to the oracle.

ETSI

37 ETSI TS 103 964 V1.1.1 (2025-02)
7) The oracle either decrypts the ciphertext and return the correct message m = (Kchosen||f chosen) OF responds
with L.

8) The aforementioned steps (except the Setup) are repeated adaptively for any polynomial number of times
on arbitrarily chosen access structure and arbitrarily chosen pairs of provers.

9) The Verifier try a guess b’ and wins the game if b == b ’(i.e. she is able to guess which Prover has
responded).

Modify this game as follows:

. At step 7, when given a ciphertext C, the oracle checks if C appears in the random oracle table. If so, it outputs
the corresponding m = (Kchosen| | chosen) Value in the table; otherwise, it outputs L and rejects.

The difference between the original game and the modified one is negligible, as in the original game the oracle may
decrypt even in case of a forged ciphertext (i.e. a ciphertext not computed using the CCA-secure encryption algorithm).
However, since the oracle was not queries on (T.posen || Kenosen | |AP), the probability that this event happens is bounded
by the probability of apriori guessing a ciphertext output by an encryption for a given message without knowing the
randomness used to encrypt.

The following observations apply to the modified game:

. If the Verifier produces a genuine ciphertext C following the CCA-secure Encryption algorithm, she gets a
correct decryption mif the attributes embedded in the secret key Kj, satisfy the chosen access structure AP,
i.e. AP (Kp) = 1. Thus, the presented schema satisfies the correctness property (by definition).

. Vice versa, if the attributes embedded in the secret key Ky do not satisfy the chosen access structure AP,
i.e. AP (Ky) = 0, the ciphertext would not decrypt at all except for a negligible probability ¢. Hence, the
presented scheme satisfies the unforgeability property (by definition).

Furthermore, it is possible to observe that:

e The access structure AP associated to the ciphertext C is always known to the challenger (given as input after
being chosen by the adversary).

o Because a pseudo random generator is used, the ciphertext C is deterministically computed from the public
key PK and the access structure AP.

. When the Verifier produces a genuine ciphertext C following the CCA-secure Encryption algorithm, the
ciphertext C is uniformly distributed on the ciphertext space, because computed using the uniformly
distributed randomness (step 3 of this clause).

. No decryption happens when the Verifier produces a forged ciphertext.

Under the three conditions above, suppose to modify the previous game replacing prover Py's behaviour as follows:
. if key Ky, embeds attributes satisfying the access structure AP, then message mis returned;
o otherwise L is returned.

That is, P, no longer evaluates the decryption using the key Ky, rather it (deterministically) returns mor L depending on
the internal bit AP (Ky). The introduced modification does not alter the advantage of the verifier V except for at most a
negligible probability.

Since AP (Ko) = AP (Ky) (by assumption, both keys satisfy or not satisfy the access structure), in the latter game the
random coin b of the oracle remains hidden in an information-theoretic sense. This finally implies that the advantage of
Verifier V is 1/2 in distinguish between Py and P;.

ETSI

38 ETSI TS 103 964 V1.1.1 (2025-02)

Annex E (informative):
ETSI Forge

A collection of JSON schemas that have been used for the running example presented throughout the present document
is available in the ETSI Forge at the following URL: https://forge.etsi.org/rep/cyber/103964.

ETSI

https://forge.etsi.org/rep/cyber/103964

39

ETSI TS 103 964 V1.1.1 (2025-02)

History

Document history

V111

February 2025

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 ABE challenge/response authorization method
	4.1 Introduction
	4.1.1 Overview
	4.1.2 Functional Credentials
	4.1.3 Verifiable Credentials

	4.2 Protocol
	4.2.1 Description
	4.2.2 Predicate Encryption Schema
	4.2.3 Running Example

	4.3 Main Concepts
	4.3.1 Anonymous Credentials and Zero Knowledge Proof
	4.3.2 Functional Credentials
	4.3.3 Presentation Policy Verification
	4.3.4 Credential Revocation

	4.4 Architecture and Reference Points (normative)
	4.4.1 Architecture
	4.4.2 Reference Point K (key distribution)
	4.4.3 Reference Point P (public parameters distribution)
	4.4.4 Reference Point R (challenge response)

	5 Verifiable Credentials
	5.1 Introduction
	5.2 Interface Implementing Reference Point K
	5.2.1 Overview
	5.2.2 Claim proof
	5.2.3 Example: Verifiable Credentials (informative)

	5.3 Interface Implementing Reference Point P
	5.3.1 Overview
	5.3.2 Verification Method Claims
	5.3.3 Example: Controller Document (informative)

	6 Interface Implementing Reference Point R
	6.1 Introduction
	6.2 Challenge
	6.2.1 Overview
	6.2.2 JWE Protected Header
	6.2.3 JWE Encrypted Key
	6.2.4 JWE Ciphertext
	6.2.5 Example: JWE Protected Header
	6.2.6 Example: JWE Encrypted Key
	6.2.7 Example: JWE Ciphertext and JWE object

	6.3 Response
	6.3.1 Overview
	6.3.2 Example: Verifiable Presentation

	Annex A (informative): Attribute Based Encryption
	A.1 CP-ABE schema
	A.2 CP-WATERS-KEM construction
	A.3 CCA-secure CP-ABE construction
	A.3.1 CCA-secure Encryption Algorithm
	A.3.2 CCA-secure Decryption Algorithm

	Annex B (informative): Pairing friendly BLS12-381 Curve and its Encoding
	B.1 BLS12-381 Curve
	B.2 Point encoding with compression
	B.3 Serialization
	B.4 Deserialization
	B.5 Base64URL Encoding and Decoding
	B.6 Encoding elements of the multiplicative group GF(p12)*

	Annex C (informative): A Simple Compiler for Basic CP-ABE policies
	Annex D (informative): Functional Credentials
	D.1 Definitions
	D.2 Correctness, unforgeability and anonymity of the protocol defined in the present document

	Annex E (informative): ETSI Forge
	History

