

ETSI TS 118 120 V2.1.2 (2020-03)

oneM2M;
WebSocket Protocol Binding

(oneM2M TS-0020 version 2.1.2 Release 2A)

TECHNICAL SPECIFICATION

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)2oneM2M TS-0020 version 2.1.2 Release 2A

Reference
RTS/oneM2M-000020v2A

Keywords
IoT, M2M, protocol

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.

All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and

of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)3oneM2M TS-0020 version 2.1.2 Release 2A

Contents

Intellectual Property Rights .. 4

Foreword ... 4

1 Scope .. 5

2 References .. 5

2.1 Normative references ... 5

2.2 Informative references .. 5

3 Definition of terms, symbols and abbreviations ... 6

3.1 Terms .. 6

3.2 Symbols .. 6

3.3 Abbreviations ... 6

4 Conventions .. 6

5 Overview on WebSocket Binding .. 6

5.1 Use of WebSocket .. 6

5.2 Binding Overview .. 7

6 Protocol Binding .. 10

6.1 Introduction .. 10

6.2 WebSocket connection establishment .. 10

6.2.1 General .. 10

6.2.2 Client handshake ... 10

6.2.2.1 Format of request-line ... 10

6.2.2.2 Host header ... 10

6.2.2.3 Upgrade header ... 11

6.2.2.4 Connection header ... 11

6.2.2.5 Sec-WebSocket-Key header .. 11

6.2.2.6 Sec-WebSocket-Version header .. 11

6.2.2.7 Sec-WebSocket-Protocol header ... 11

6.2.2.8 Sec-WebSocket-Extensions header ... 11

6.2.2.9 Subprotocol names and serialization formats .. 12

6.2.3 Server handshake format .. 12

6.2.3.1 Format of status-line ... 12

6.2.3.2 Upgrade header ... 12

6.2.3.3 Connection header ... 12

6.2.3.4 Sec-WebSocket-Accept header ... 12

6.2.3.5 Sec-WebSocket-Protocol header ... 12

6.2.3.6 Sec-WebSocket-Extensions header ... 13

6.3 Closing WebSocket connection .. 13

6.4 Registration procedure ... 13

6.5 Handling of Non-Registration Request .. 13

6.6 Use of proxy servers ... 13

7 Security Aspects ... 14

Annex A (informative): Example Procedures .. 15

A.1 AE Registration and creation of a Container child resource .. 15

History .. 18

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)4oneM2M TS-0020 version 2.1.2 Release 2A

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword
This Technical Specification (TS) has been produced by ETSI Partnership Project oneM2M (oneM2M).

https://ipr.etsi.org/

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)5oneM2M TS-0020 version 2.1.2 Release 2A

1 Scope
The present document specifies the binding of Mca and Mcc primitives onto the WebSocket binding.

It specifies:

• Procedures and message formats for operating and closing of WebSocket connections.

• How request and response primitives are mapped into the payload of the WebSocket protocol.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] IETF RFC 6455 (December 2011): "The WebSocket Protocol".

[2] ETSI TS 118 101: "oneM2M; Functional Architecture (oneM2M TS-0001)".

[3] IETF RFC 7230 (June 2014): "Hypertext Transport Protocol (HTTP/1.1): Message Syntax and
Routing".

[4] ETSI TS 118 103: "oneM2M; Security solutions (oneM2M TS-0003)".

[5] ETSI TS 118 104: "oneM2M; Service Layer Core Protocol Specification (oneM2M TS-0004)".

[6] IETF RFC 7692 (December 2015): "Compression Extension for WebSocket".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] oneM2M Drafting Rules.

NOTE: Available at http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf.

https://docbox.etsi.org/Reference/
http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)6oneM2M TS-0020 version 2.1.2 Release 2A

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

oneM2M WebSocket Client (WS Client): WebSocket Client associated with an AE or a CSE capable of establishing
the WebSocket connections

oneM2M WebSocket Server (WS Server): WebSocket Server associated with a CSE which accepts requests to
establish WebSocket connections

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ADN Application Dedicated Node
AE Application Entity
ASN Application Service Node
CBOR Concise Binary Object Representation
CMDH Communication Management and Delivery Handling
CRUDN Create Retrieve Update Delete Notify
CSE Common Services Entity
FQDN Fully Qualified Domain Name
GUID Globally Unique IDentifier
HTTP Hypertext Transport Protocol
IETF Internet Engineering Task Force
IN-CSE Infrastructure Node Common Services Entity
IP Internet Protocol
JSON JavaScript Object Notation
MN Middle Node
MN-CSE Middle Node Common Services Entity
NAT Network Address Translator
RFC Request for Comments
SAEF Security Association Establishment Framework
TCP Transmission Control Protocol
TLS Transport Layer Security
URI Uniform Resource Identifier
WS WebSocket
WSS WebSocket Secure
XML eXtensible Markup Language

4 Conventions
The key words "Shall", "Shall not", "May", "Need not", "Should", "Should not" in the present document are to be
interpreted as described in the oneM2M Drafting Rules [i.1].

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)7oneM2M TS-0020 version 2.1.2 Release 2A

5 Overview on WebSocket Binding

5.1 Use of WebSocket
This binding makes use of the WebSocket protocol IETF RFC 6455 [1] to transport serialized representations of
oneM2M request and response primitives over the Mca or Mcc reference points.

Establishment of a WebSocket connection shall be initiated by a WebSocket client by sending a handshake to a
WebSocket server as specified in section 4 of IETF RFC 6455 [1]. Once the WebSocket connection is established, both
oneM2M request and response primitives can be exchanged bi-directionally between the two endpoints of the
connection. Serialized representations of the request and response primitives shall be mapped in the Payload Data field
of the WebSocket base framing protocol, as defined in section 5.2 of IETF RFC 6455 [1].

A WebSocket connection employs either a TCP/IP or a TLS over TCP/IP connection. The underlying TCP and TLS
connections are established as the first step of the WebSocket handshake.

5.2 Binding Overview
WebSocket binding may be employed for communication between any two endpoints which can be connected over the
Mca, Mcc or Mcc' interface reference points supported by the oneM2M Architecture as shown in figure 6.1-1 of ETSI
TS 118 101 [2].

When using the WebSocket protocol, one communication endpoint shall act as the WebSocket server. The WebSocket
server listens for inbound handshake messages arriving from any WebSocket client to which a WebSocket connection is
not yet established. Whether a communication endpoint takes the role of the client or the server shall depend on the
registration relationship between the communicating entities as follows: the registree shall always use a WebSocket
client, while the associated registrar shall always use a WebSocket server on the respective reference point.

This implies that ADN and ASN always take the role of a WebSocket client when WebSocket binding is employed. An
MN-CSE uses a WebSocket server to communicate with its registrees and a WebSocket client to communicate with its
own registrar (which can be another MN-CSE or an IN-CSE).

The IN-CSE provides a WebSocket server functionality to communicate with all its registrees, i.e. within a service
provider's domain. On the Mcc' reference points, i.e. for communication between IN-CSEs of different Service Provider
domains, the IN-CSE shall provide both WebSocket client and server functionality. This enables any IN-CSE to open a
WebSocket connection to any IN-CSE of another Service Provider's domain.

Figure 5.2-1 shows some applicable example system configuration.

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)8oneM2M TS-0020 version 2.1.2 Release 2A

Figure 5.2-1: Example scenarios of WebSocket client and server configurations

There exists a maximum of one WebSocket connection between two nodes. A WebSocket connection is established for
the first time when the initial registration procedure of an entity to its registrar is performed. On an established
WebSocket connection, request and response primitives can be exchanged in both directions. Any connection may be
closed by either the WebSocket client or the server, depending on the communication schedule of either entity.
However, the connection can be reopened from the client side only.

If the connection is closed temporarily, it shall be reopened when the next request primitive is sent from the client to the
server side, or when the time to become reachable configured at <schedule> resource. If the WebSocket connection
with the next-hop entity is not opened, and the WebSocket connection cannot be established due to lack of
pointOfAccess address for the entity, a sending CSE may enable buffering of primitives which should be sent to the
entity until the connection is reopened or their expiration time is reached. See Annex H of ETSI TS 118 104 [5] about
buffering of primitives by CMDH functionality.

Figure 5.2-2 shows an example message flow for a scenario where an ADN-AE registers to its registrar MN-CSE using
an unsecured TCP connection without proxy and then continues exchanging non-registration request and response
primitives.

AE

W
S

 C

lient

CSE

W
S

 S

erver

W
S

 C

lient

AE

CSE

W
S

 C

lient

AE

AE

W
S

 C

lient

CSE

W
S

 C

lient

AE

CSE

W
S

 S

erver

W
S

 C

lient
AE CSE

WS
 Server

WS
 Client

ADN

ASN

ADN

MN MN

ASN

IN

Mcc’

Mcc

Mca

Mcc

Mca

Mcc

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)9oneM2M TS-0020 version 2.1.2 Release 2A

Figure 5.2-2: Example message flow with Websocket binding

1) The ADN-AE wants to register to its registrar MN-CSE. If a WebSocket connection does not exist, it is
established by the following steps 2) and 3). It is assumed that the ADN-AE knows the point of access
(i.e. WebSocket URI specified in IETF RFC 6455 [1]) under which the registrar CSE can be reached with
WebSocket binding.

2) The WebSocket client opens handshake to the server with subprotocol name 'oneM2M-pro-v1.0' following
IETF RFC 6455 [1].
If the server can be reached under the WebSocket URI ws://example.net:9000/, the client handshake may look
as follows:

GET / HTTP/1.1
Host: mncse1234.net:9000
Upgrade: WebSocket
Connection: Upgrade
Sec-WebSocket-Key: ud63env87LQLd4uIV20/oQ==
Sec-WebSocket-Protocol: oneM2M-pro-v1.0
Sec-WebSocket-Version: 13

3) The WebSocket server replies with a handshake to the client. In the successful case, the status-line of this
HTTP response may look as follow:

Request-Version: HTTP/1.1
Status-Code: 101
Response-Phrase: Switching Protocols
Upgrade: WebSocket
Connection: Upgrade
Sec-WebSocket-Protocol: oneM2M-pro-v1.0
Sec-WebSocket-Accept: FuSSKANnI7C/6/FrPMt70mfBY8E=

AE WS client CSE WS server
ADN MN

1) AE wants to start registration
procedure and triggers WebSocket
connection establishment

2) Client handshake

3) Server handshake

4) Request primitive

5) WebSocket Binding

6) WebSocket message

7) Unpacking request primitive

8) Request primitive

9) Receiver side processing of
AE registration procedure

10) Response primitive

11) WebSocket Binding

12) WebSocket message

13) Unpacking response primitive

14) Response primitive

15) non-registration CRUDN operations

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)10oneM2M TS-0020 version 2.1.2 Release 2A

4) The ADN-AE issue a registration request primitive. The request primitive may e.g. look as follows as JSON-
serialized representation:

{"op":1,"to":"//example.net/mncse1234","rqi":"A1234","pc":{"m2m:ae":{"api":"a56",
"apn":"app1234"}},"ty": 2}

NOTE: The WebSocket client associated with an ADN-AE does not need to be reachable for WebSocket Server
handshake messages.

5) WebSocket Binding process, which transforms a single oneM2M primitive into one or more data frames of the
WebSocket Framing protocol, as specified in IETF RFC 6455 [1]. When transmitting a JSON-serialized
primitive in utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message
fragment will be set to x1 ("text frame").

6) The WebSocket message (consisting of one or more frames) shall be sent to the WS server.

7) The original request primitive shall be unpacked from the WebSocket message by the WS server.

8) The request primitive is delivered to the MN-CSE.

9) The MN-CSE performs the receiver side operations of AE registration as specified in ETSI TS 118 101 [2].

10) The response primitive is issued to the WebSocket server.

11) WebSocket binding process for the response primitive is performed.

12) The WebSocket message (consisting of one or more frames) is sent to the client.

13) The response primitive is unpacked.

14) The response primitive is to the ADN-AE.

15) After successful completion of AE registration any other CRUDN requests and response primitives can be
exchanged over the existing WebSocket connection in both directions. If the ADN-AE has no other requests to
send, the WebSocket connection may be closed temporarily. When the WebSocket connection is closed after
registration and reopened later again, the registration procedure as outlined in steps 4 to 14 is omitted. In this
case any non-registration request primitives can be sent directly.

6 Protocol Binding

6.1 Introduction
The WebSocket protocol enables two-way communication between client and server even when a firewall and/or NAT
are present between them. This means, once a WebSocket connection is established, request (and response) primitives
can be exchanged in both directions, from the client to the server and vice versa. However, AEs may be capable of
handling Notification request primitives only, or no request primitives at all.

WebSocket binding applied by oneM2M entities/nodes shall be fully compliant with IETF RFC 6455 [1]. After
establishment of a WebSocket connection between two nodes, at the transmitter side each individual request and
response primitive is mapped into one or several WebSocket frames.

6.2 WebSocket connection establishment

6.2.1 General

A WebSocket connection is opened by the client side as specified in section 4 of IETF RFC 6455 [1] with sending of a
client handshake. The server responds with a server handshake.

The client handshake consists of an HTTP upgrade request, along with a list of required and optional header fields.

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)11oneM2M TS-0020 version 2.1.2 Release 2A

The handshake shall be a valid HTTP request as specified by IETF RFC 7230 [3]. The server handshake consists of a
HTTP status-line and a list of header fields.

The applicable format of the request-line, status-line and the applicable header fields are specified in the following sub-
clauses.

HTTP headers fields have case-insensitive field names.

CSEs capable to support WebSocket shall indicate the schemes ws and/or wss together with the applicable host name
and port numbers in the pointOfAccess attribute of their <CSEBase> resource, i.e. as ws://host:port1 and
wss://host:port2.

6.2.2 Client handshake

6.2.2.1 Format of request-line

The request-line of a client handshake shall begin with the method token "GET", followed by the request target "/" and
the HTTP version set to "HTTP/1.1" as follows:

GET / HTTP/1.1

If the client is configured to use a proxy when using the WebSocket Protocol, a connection to the proxy server shall be
established prior to sending the above client handshake. This is described in clause 6.6.

6.2.2.2 Host header

The Host header shall be present in each client handshake.

The Host header indicates the FQDN or IP address of the Receiver CSE of the next hop. If the originator of the client
handshake is an oneM2M field entity, the host header represents the registrar CSE of the originator.

When no proxy is used, the Host header shall be set as one of the pointOfAccess attribute values associated with the
Receiver. Selection of the appropriate Receiver is described in ETSI TS 118 104 [5].

If the client is configured to use a proxy when using the WebSocket Protocol, then the client should connect to that
proxy and ask it to open a TCP connection to the host and port rather than to the next hop CSE.

6.2.2.3 Upgrade header

The Upgrade header shall be present in each client handshake message with value WebSocket as follows:

Upgrade: WebSocket

6.2.2.4 Connection header

The Connection header shall be present in each client handshake message with value Upgrade as follows:

Connection: Upgrade

6.2.2.5 Sec-WebSocket-Key header

The Sec-WebSocket-Key header shall be present in each client handshake message. The header field includes a base64-
encoded representation of a random 16 bytes pattern, for example:

Sec-WebSocket-Key: ud63env87LQLd4uIV20/oQ==

6.2.2.6 Sec-WebSocket-Version header

The Sec-WebSocket-Version header shall be present in each client handshake message with value 13 as follows:

Sec-WebSocket-Version: 13

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)12oneM2M TS-0020 version 2.1.2 Release 2A

6.2.2.7 Sec-WebSocket-Protocol header

The Sec-WebSocket-Protocol header shall be present in a client handshake message. It enables the client to indicate its
supported application subprotocols on the server and be sure that the server agreed to support that subprotocol. It is used
by the client to indicate the oneM2M Service Layer Protocol version and supported serialization formats to the server.

The value of the Sec-WebSocket-Protocol header shall be one or more of the registered names defined in clause 6.2.2.9.
It shall also be allowed to include multiple Sec-WebSocket-Protocol headers with a value that includes one registered
name each as defined in IETF RFC 6455 [1], for example:

Sec-WebSocket-Protocol: oneM2M.R2.0.JSON, oneM2M-R2.0_XML

and

Sec-WebSocket-Protocol: oneM2M.R2.0.XML

Sec-WebSocket-Protocol: oneM2M.R2.0.JSON

are equivalent headers, expressing that the WebSocket client supports both application subprotocols,
oneM2M.R2.0.XML and oneM2M.R2.0.XML. The order of names indicated in the Sec-WebSocket-Protocol header
specifies the client's preference.

6.2.2.8 Sec-WebSocket-Extensions header

The Sec-WebSocket-Extensions header may be used to negotiate the use of per-message compression as specified in
IETF RFC 7692 [6].

If the client handshake includes the header, e.g.

Sec-WebSocket-Extensions: permessage-deflate

it indicates to the server the client’s preference to apply the compression mechanism defined in IETF RFC 7692 [6].
The header may include additional parameters as specified in IETF RFC 7692 [6].

When the server accepts use of message compression it responds with a Sec-WebSocket-Extensions header in the server
handshake message as specified in clause 6.2.3.6, and in this case compression is applied in both transmission
directions. If the server handshake message does not include a Sec-WebSocket-Extensions header, compression shall
not be applied.

6.2.2.9 Subprotocol names and serialization formats

The Sec-WebSocket-Protocol header in the opening handshake is used to negotiate the application protocol layered on
top of WebSocket. The application protocol addressed in the present document is the Release-2 version of the oneM2M
Service Layer.

The oneM2M Service Layer Protocol consists of the exchange of serialized representations of request and response
primitives as defined in ETSI TS 118 101 [2] and ETSI TS 118 104 [5]. This version of the present document allows
use of the serialization formats listed in table 6.2.2.9-1. Both, protocol version and serialization format are associated
with a specific subprotocol name.

Table 6.2.2.9-1 lists the serialization formats, associated subprotocols names and opcode setting of the WebSocket
Frame protocol applicable for the present version of the present document.

Table 6.2.2.9-1: Applicable Subprotocol names

Serialization Format Subprotocol Name WS opcode Notes
JSON oneM2M.R2.0.json x1 ("text frame") See clause 8.4 in ETSI TS 118 104 [5]
XML oneM2M.R2.0.xml x1 ("text frame") See clause 8.3 in ETSI TS 118 104 [5]

CBOR oneM2M.R2.0.cbor x2 ("binary frame") See clause 8.5 in ETSI TS 118 104 [5]

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)13oneM2M TS-0020 version 2.1.2 Release 2A

6.2.3 Server handshake format

6.2.3.1 Format of status-line

The status-line of a server handshake shall begin with the HTTP version set to "HTTP/1.1", followed by the status
code and reason phrase as defined in IETF RFC 6455 [1]. When the WebSocket connection is established successfully,
the status-line may look as follows:

HTTP/1.1 101 Switching Protocols

For the unsuccessful connection establishment, any appropriate HTTP error status code shall be returned with optional
addition of a corresponding reason phrase.

6.2.3.2 Upgrade header

The Upgrade header shall be present in each server handshake message with value WebSocket as follows:

Upgrade: WebSocket

6.2.3.3 Connection header

The Connection header shall be present in each server handshake message with value Upgrade as follows:

Connection: Upgrade

6.2.3.4 Sec-WebSocket-Accept header

The Sec-WebSocket-Accept header shall be present in each server handshake message. The header field shall be
constructed from the Sec-WebSocket-Key value and the GUID as specified in section 4.2.2 of IETF RFC 6455 [1]. It
may look e.g. as follows:

Sec-WebSocket-Accept: FuSSKANnI7C/6/FrPMt70mfBY8E=

6.2.3.5 Sec-WebSocket-Protocol header

The Sec-WebSocket-Protocol header shall be present in a server handshake message. It indicates to the client that the
server accepts (one of) the subprotocol(s) indicated by the client.

The server compliant with the present document shall select one of the subprotocol names indicated in the Sec-
WebSocket-Protocol header of the client handshake message and set the value of the Sec-WebSocket-Protocol header
of the server handshake message accordingly.

6.2.3.6 Sec-WebSocket-Extensions header

If the optional Sec-WebSocket-Extensions header with value "permessage-deflate" was included in the client
handshake message, the Sec-WebSocket-Extensions header with same value shall also be included into the server
handshake message, if the server accepts usage of message compression, and apply message compression in the
transmit direction and message decompression in the receive direction as defined in IETF RFC 7692 [6].

If the server does not accept message compression, it shall not include the Sec-WebSocket-Extensions header.

6.3 Closing WebSocket connection
Compliant with section 7 of IETF RFC 6455 [1] a WebSocket connection shall be closed by sending a Connection
Close Frame (opcode x8). Both, client and server may initiate a closing handshake of an existing WebSocket connection
at any time.

WebSocket connections should be kept open for as long as possible considering any given constraints due to
communication policies and power saving requirements. Unless communication policies enforce the closing of network
access, it is left to implementation to decide when exactly the closing of a WebSocket shall be triggered.

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)14oneM2M TS-0020 version 2.1.2 Release 2A

6.4 Registration procedure
A oneM2M entity (AE or CSE) not yet registered to its registrar CSE needs to be preconfigured with various parameters
as specified in ETSI TS 118 101 [2] and ETSI TS 118 103 [4] in order to be able to send the registration request
primitive (i.e. create <AE> or create <remoteCSE> request primitive). To establish a WebSocket connection, the
WebSocket client shall be configured with an applicable point of access of its registrar CSE which includes FQDN or IP
address and the port number.

After the Registration procedure has been successfully completed, the WebSocket Server (e.g. Registrar CSE for
WebSocket Client) shall enable routing of any incoming oneM2M primitives to this registree.

Thus until the Before the Registration procedure is successfully completed, any incoming oneM2M primitives to the
WebClient shall be rejected by the Receiver (e.g. registrar CSE).

Closing of the WebSocket connection after registration does not impact the registration status of an AE or CSE to its
registrar, unless an explicit de-registration procedure is performed by deletion of the respective <AE> or <remoteCSE>
resource instance.

6.5 Handling of Non-Registration Request
Registered entities (AE and CSE) are allowed to send and receive non-registration request primitives. A WebSocket
connection should support any of the transfer modes defined in clause 8.2 of ETSI TS 118 101 [2], i.e. blocking
requests, and non-blocking requests for both synchronous and asynchronous cases.

When sending blocking requests, the WebSocket connection shall not be closed before the response is received, or
before any configured timeout period has expired.

When sending non-blocking requests, the WebSocket connection shall not be closed before the acknowledgment
response is received, or before any configured timeout period has expired. If the entities' communication policies and
power saving requirements allow, the connection should be kept open at least until an ongoing procedure has fully
completed, i.e. requesting of the result in synchronous mode or completion of Notify procedure in asynchronous mode.

6.6 Use of proxy servers
The connection to a proxy shall be requested by sending a request-line with the method token "CONNECT", followed by
the request target host and port of the WebSocket server and the HTTP version set to "HTTP/1.1" as follows:

CONNECT WSserver.example.com:80 HTTP/1.1

7 Security Aspects
Authentication and Transport Layer Security can be established when the oneM2M entity which hosts the WebSocket
Server can be addressed with the wss URI scheme. When using the wss URI scheme, one of the Security Association
Establishment Frameworks (SAEF) as defined in ETSI TS 118 103 [4] shall be applied to provide mutually
authenticated Transport Layer Security between the communicating entities prior to sending the WebSocket client
handshake.

The SAEF is accomplished by successful completion of a TLS handshake procedure before the client sends its opening
handshake message. The details of SAEF and possibly required Remote Security Provisioning Frameworks are
specified in ETSI TS 118 103 [4].

In special deployment scenarios, e.g. when the communicating oneM2M entities using WebSocket binding are located
in a secure environment and/or implemented on the same device, Transport Layer Security may not be required. In such
scenarios unsecured WebSocket communication addressed with the ws URI scheme may be adequate.

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)15oneM2M TS-0020 version 2.1.2 Release 2A

Annex A (informative):
Example Procedures

A.1 AE Registration and creation of a Container child
resource

Figure A.1-1 illustrates a message flow for registration of an ADN-AE to an IN-CSE as described in clause 7.3.5.2.1 of
ETSI TS 118 104 [5] with WebSocket mapping and subsequent creation of a <Container> child resource.

Figure A.1-1: Message flow for registration of an ADN-AE to an IN-CSE

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)16oneM2M TS-0020 version 2.1.2 Release 2A

In the considered example, the WebSocket protocol is used to send JSON serialized request and response primitives in
text format.

The message flow may look as follows:

1) TCP connection establishment and Security Association Establishment as defined in ETSI TS 118 103 [4]
based on TLS handshake procedure is accomplished.

2) The WSS client sends e.g. the following opening handshake message, offering to use either JSON or XML
serialization of primitives:

GET / HTTP/1.1

Host: mncse1234.net:9000

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Key: ud63env87LQLd4uIV20/oQ==

Sec-WebSocket-Protocol: oneM2M.R2.0.json, oneM2M.R2.0.xml

Sec-WebSocket-Version: 13

3) The WSS server selects use of JSON serialization and responds the following handshake message:

Request-Version: HTTP/1.1

Status-Code: 101

Response-Phrase: Switching Protocols

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Protocol: oneM2M.R2.0.json

Sec-WebSocket-Accept: FuSSKANnI7C/6/FrPMt70mfBY8E=

4) The AE sends the following request primitive in textual JSON serialized format:

{"op":1,"to":"//example.net/mncse1234","rqi":"A1000",
"rcn":7,"pc":{"m2m:ae":{"rn":"SmartHomeApplication", "api":"Na56", "apn":"app1234"}},"ty":2}

 The above JSON object is mapped by the WS client into a data frame of the WebSocket Framing protocol in
utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment is
set to x1 ("text frame").

5) The IN-CSE validates the privilege of the originator to create an <AE> resource, and accepts the request to
create the resource.

6) The IN-CSE acknowledges the success of the request by responding the following JSON serialized response
primitive. The response primitive includes all attributes of <AE> instance created in Step 5.

{"rsc":2001,"rqi":"A1000","pc":{"m2m:ae":{"rn":"SmartHomeApplication","ty":2,"ri":"ae1","api"
:"Na56","apn":"app1234","pi":"cb1","ct":"20160506T153208",
"lt":"20160506T153208","acpi":["acp1","acp2"],"et":"20180506T153208", "aei":"S_SAH25"}}}

 The above JSON object is mapped by the WS server into a data frame of the WebSocket Framing protocol in
utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment is
set to x1 ("text frame").

7) The AE sends in textual JSON serialized format the following request primitive to create a <Container>
resource as child resource of the <AE> created in Step 5:

{"op":1,"to":"//example.net/mncse1234/SmartHomeApplication",
"rqi":"A1001","rcn":7,"pc":{"m2m:cnt":{"rn":"SmartHomeContainer","mbs":100000,
"mni":500}},"ty":3}

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)17oneM2M TS-0020 version 2.1.2 Release 2A

 The above JSON object is mapped by the WS client into a data frame of the WebSocket Framing protocol in
utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment is
set to x1 ("text frame").

8) The IN-CSE validates the privilege of the originator to create an <Container> resource under the <AE>
resource created in step 5, and accepts the request to create the resource.

9) The IN-CSE acknowledges the success of the request by responding the following JSON serialized response
primitive:

{"rsc":2001,"rqi":"A1001","pc":{"m2m:cnt":{"rn":"SmartHomeContainer",
"ty":3,"ri":"cnt1","pi":"ae1","ct":"20160506T154048",
"lt":"20160506T154048","acpi":["acp1"],"et":"20180506T154048","cr":"
S_SAH25","st":0,"mni":500,"mbs":100000,"cni":0,"cbs":0,"mia":3600}}}

 The above JSON object is mapped by the WS server into a data frame of the WebSocket Framing protocol in
utf-8 text format, the 4-bit opcode in the WebSocket Base Framing Protocol of the first message fragment is
set to x1 ("text frame").

10) Primitives of further subsequent CRUDN procedures may be transferred on the existing WebSocket
connection.

ETSI

ETSI TS 118 120 V2.1.2 (2020-03)18oneM2M TS-0020 version 2.1.2 Release 2A

History

Document history

V2.0.0 September 2016 Publication

V2.1.2 March 2020 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Conventions
	5 Overview on WebSocket Binding
	5.1 Use of WebSocket
	5.2 Binding Overview

	6 Protocol Binding
	6.1 Introduction
	6.2 WebSocket connection establishment
	6.2.1 General
	6.2.2 Client handshake
	6.2.2.1 Format of request-line
	6.2.2.2 Host header
	6.2.2.3 Upgrade header
	6.2.2.4 Connection header
	6.2.2.5 Sec-WebSocket-Key header
	6.2.2.6 Sec-WebSocket-Version header
	6.2.2.7 Sec-WebSocket-Protocol header
	6.2.2.8 Sec-WebSocket-Extensions header
	6.2.2.9 Subprotocol names and serialization formats

	6.2.3 Server handshake format
	6.2.3.1 Format of status-line
	6.2.3.2 Upgrade header
	6.2.3.3 Connection header
	6.2.3.4 Sec-WebSocket-Accept header
	6.2.3.5 Sec-WebSocket-Protocol header
	6.2.3.6 Sec-WebSocket-Extensions header

	6.3 Closing WebSocket connection
	6.4 Registration procedure
	6.5 Handling of Non-Registration Request
	6.6 Use of proxy servers

	7 Security Aspects
	Annex A (informative): Example Procedures
	A.1 AE Registration and creation of a Container child resource

	History

