
ETSI TS 123 127 V3.0.0 (2000-03)
Technical Specification

Universal Mobile Telecommunications System (UMTS);
Technical Specification Group Services and System Aspects;

Virtual Home Environment / Open Service Architecture
(3G TS 23.127 version 3.0.0 Release 1999)

1

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)3G TS 23.127 version 3.0.0 Release 1999

Reference
DTS/TSGS-0223127U

Keywords
UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network
drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2000.

All rights reserved.

http://www.etsi.org/
http://www.etsi.org/tb/status
editor@etsi.fr

2

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)3G TS 23.127 version 3.0.0 Release 1999

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect
of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server
(http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server)
which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by the ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under www.etsi.org/key.

http://www.etsi.org/ipr
http://www.etsi.org/key

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)33G TS 23.127 version 3.0.0

Contents

Foreword .. 4

1 Scope.. 5

2 References.. 5
2.1 Normative references ... 5
2.2 Informative references ... 6

3 Definitions and abbreviations .. 6
3.1 Definitions ... 6
3.2 Abbreviations... 7

4 Virtual Home Environment ... 7

5 Open Service Architecture... 7
5.1 Overview of the Open Service Architecture .. 8
5.2 Basic mechanisms in the Open Service Architecture .. 11
5.3 Handling of end-user related security .. 12
5.3.1 End-user authorisation to applications ... 12
5.3.2 Application authorisation to end-users... 12
5.3.3 End-user’s privacy.. 12
5.4 Base interface classes... 13
5.4.1 Base Interface Class ... 13
5.4.2 Base Service Interface class ... 13

6 Framework service capability features .. 14
6.1 Trust and Security Management SCFs... 14
6.1.1 Initial Contact... 14
6.1.2 Authentication .. 16
6.1.3 OSA Access ... 18
6.2 Discovery... 24
6.3 Integrity Management SCFs .. 26
6.3.1 Load Manager .. 26
6.3.2 Fault Manager .. 31

7 Network service capability features... 34
7.1 Call Control ... 34
7.1.1 Call Manager.. 35
7.1.2 Call ... 37
7.1.2.1 Sequence Diagrams .. 43
7.1.2.2 Enable Call notification .. 43
7.1.2.3 Number translation ... 43
7.1.2.4 Call barring... 44
7.1.2.5 Pre-paid with advice of charge ... 44
7.2 Network User Location.. 47
7.3 User Status ... 53
7.4 Terminal Capabilities... 56
7.5 Message Transfer... 57
7.5.1 Generic User Interaction .. 57
7.5.1.1 User Interaction Manager ... 57
7.5.1.2 Generic User Interaction... 60
7.5.2 Call User Interaction .. 63
7.6 User Profile Management .. 65

Annex A (Informative): Change History.. 66

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)43G TS 23.127 version 3.0.0

Foreword
This Technical Specification has been produced by the 3GPP.

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of this TS, it will be re-released by the TSG with an identifying
change of release date and an increase in version number as follows:

Version 3.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 Indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the specification;

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)53G TS 23.127 version 3.0.0

1 Scope
This document specifies the stage 2 of the Virtual Home Environment and Open Service Architecture.

Virtual Home Environment (VHE) is defined as a concept for personal service environment (PSE) portability across
network boundaries and between terminals. The concept of the VHE is such that users are consistently presented with
the same personalised features, User Interface customisation and services in whatever network and whatever terminal
(within the capabilities of the terminal and the network), wherever the user may be located. For Release 99, e.g.
CAMEL, MExE and SAT are considered the mechanisms supporting the VHE concept.

The Open Service Architecture (OSA) defines an architecture that enables operator and third party applications to make
use of network functionality through an open standardised interface (the OSA Interface). OSA provides the glue
between applications and service capabilities provided by the network. In this way applications become independent
from the underlying network technology. The applications constitute the top level of the Open Service Architecture
(OSA). This level is connected to the Service Capability Servers (SCSs) via the OSA interface. The SCSs map the OSA
interface onto the underlying telecom specific protocols (e.g. MAP, CAP etc.) and are therefore hiding the network
complexity from the applications.

Applications can be network/server centric applications or terminal centric applications. Terminal centric applications
reside in the Mobile Station (MS). Examples are MExE and SAT applications. Network/server centric applications are
outside the core network and make use of service capability features offered through the OSA interface. (Note that
applications may belong to the network operator domain although running outside the core network. Outside the core
network means that the applications are executed in Application Servers that are physically separated from the core
network entities).

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

2.1 Normative references

[1] GSM 01.04 (ETR 350): ”Digital cellular telecommunication system (Phase 2+); Abbreviations and
acronyms”

[2] GSM 02.57: ”Digital cellular telecommunication system (Phase 2+); Mobile Station Application
Execution Environment (MExE); Service description”

[3] UMTS TS 23.057: "Mobile Station Application Execution Environment (MExE); Functional
description - Stage2”

[4] UMTS TS 22.078: "Customised Applications for Mobile network Enhanced Logic (CAMEL)
(Phase3); Service description - Stage 1"

[5] UMTS TS 23.078: ”Customised Applications for Mobile network Enhanced Logic (CAMEL)
(Phase3); Functional description - Stage 2”

[6] GSM 11.14: ”Digital cellular telecommunication system (Phase 2+); Specification of the SIM
Application Toolkit for the Subscriber Identity Module - Mobile Equipment; (SIM - ME)
interface” [7]UMTS TS 22.101: ”Universal Mobile Telecommunications System (UMTS):
Service Aspects; Service Principles”

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)63G TS 23.127 version 3.0.0

[8] UMTS TS 22.105: ”Universal Mobile Telecommunications System (UMTS); Services and Service
Capabilities”

[9] UMTS TS 22.121: ”Universal Mobile Telecommunications System (UMTS); Virtual Home
Environment”

[10] 3GPP TR 22.905: “3rd Generation Partnership Project; Technical Specification Group Services
and System Aspects; Vocabulary for 3GPP Specifications”

[11] IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996]

[12] World Wide Web Consortium Composite Capability/Preference Profiles (CC/PP): A user side
framework for content negotiation (www.w3.org)

[13] Wireless Application Protocol, User Agent Profile Specification (http://www.wapforum.org/)

2.2 Informative references
[14] UMTS TR 22.970: ”Universal Mobile Telecommunications System (UMTS); Virtual Home

Environment”

<Editor’s note: some references may have to be aligned with their official title, e.g. ‘UMTS’ documents>

3 Definitions and abbreviations

3.1 Definitions
For the purposes of this TS, the following definitions apply:

Applications: software components providing services to end-users by utilising service capability features.

HE-VASP: see [9]

Home Environment: responsible for overall provision of services to users.

Local Service: see[9]

OSA Interface: Standardised Interface used by applications to access service capability features.

Personal Service Environment: contains personalised information defining how subscribed services are provided and
presented towards the user. The Personal Service Environment is defined in terms of one or more User Profiles.

Service Capabilities: see [9]

Service Capability Feature: see [9]

Service Capability Server: Functional Entity providing OSA interfaces towards an application.

Services: see [9]

User Interface Profile: see [9]

User Profile: see [9]

User Services Profile: see [9].

Value Added Service Provider see [9]

Virtual Home Environment: see [9].

Further UMTS related definitions are given in 3G TS 22.101 and 3G TR 22.905.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)73G TS 23.127 version 3.0.0

3.2 Abbreviations
For the purposes of this TS the following abbreviations apply:

CAMEL Customised Application For Mobile Network Enhanced Logic
CSE Camel Service Environment
HE Home Environment
HE-VASP Home Environment Value Added Service Provider
HLR Home Location Register
IDL Interface Description Language
MAP Mobile Application Part
ME Mobile Equipment
MExE Mobile Station (Application) Execution Environment
MS Mobile Station
MSC Mobile Switching Centre
OSA Open Service Architecture
PLMN Public Land Mobile Network
PSE Personal Service Environment
SAT SIM Application Tool-Kit
SCF Service Capability Feature
SCP Service Control Point
SCS Service Capability Server
SIM Subscriber Identity Module USIM User Service Identity Module
VASP Value Added Service Provider
VHE Virtual Home Environment
WGW WAP Gateway
WPP WAP Push Proxy

Further GSM related abbreviations are given in GSM 01.04. Further UMTS related abbreviations are given in 3G TR
22.905.

4 Virtual Home Environment
The Virtual Home Environment (VHE) is an important portability concept of the 3G mobile systems. It enables end
users to bring with them their personal service environment whilst roaming between networks, and also being
independent of terminal used.

The Personal Service Environment (PSE) describes how the user wishes to manage and interact with her
communication services. It is a combination of a list of subscribed to services, service preferences and terminal
interface preferences. PSE also encompasses the user management of multiple subscriptions, e.g. business and private,
multiple terminal types and location preferences. The PSE is defined in terms of one or more User Profiles.

The user profiles consist of two kinds of information:

- Interface related information (User Interface Profile) and,

- Service related information (User Services profile).

Please see TS22.121 [9] for more details.

5 Open Service Architecture
In order to implement not known end user services/applications today, a highly flexible Open Service Architecture
(OSA) is required. The Open Service Architecture (OSA) is the architecture enabling applications to make use of
network capabilities. The applications will access the network through the OSA interface that is specified in this
Technical Specification.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)83G TS 23.127 version 3.0.0

Network functionality offered to applications is defined as a set of Service Capability Features (SCFs) in the OSA
interface, which are supported by different Service Capability Servers (SCS). These SCFs provide access to the network
capabilities on which the application developers can rely when designing new applications (or enhancements/variants of
already existing ones). The different features of the different SCSs can be combined as appropriate. The exact
addressing (parameters, type and error values) of these features is described in stage 3 descriptions. These interface
descriptions (defined using CORBA Interface Description Language) are open and accessible to application developers,
who can design services in any programming language. The service logic is executed towards the OSA interfaces, while
the underlying core network functions use their specific protocols.

The aim of OSA is to provide an extendible and scalable architecture that allows for inclusion of new service capability
features and SCSs in future releases of UMTS with a minimum impact on the applications using the OSA interface.

The standardised OSA interface shall be secure, it is independent of vendor specific solutions and independent of
programming languages, operating systems etc used in the service capabilities. Furthermore, the OSA interface is
independent of the location within the home environment where service capabilities are implemented and independent
of supported server capabilities in the network.

To make it possible for application developers to rapidly design new and innovative applications, an architecture with
open interfaces is imperative. By using object-oriented techniques, like CORBA, it is possible to use different operating
systems and programming languages in application servers and service capability servers. The different servers inter-
work via the OSA interfaces. The service capability servers serve as gateways between the network entities and the
applications.

The OSA API is an application layer interface, which is based on lower layers using main stream information
technology and protocols. The middleware (e.g. CORBA) and lower layer protocols (e.g. IP) should provide security
mechanisms to encrypt data (e.g. IP sec).

5.1 Overview of the Open Service Architecture
The Open Service Architecture consists of three parts:

- Applications, e.g. VPN, conferencing, location based applications. These applications are implemented in one or
more Application Servers;

- Framework, providing applications with basic mechanisms that enable them to make use of the service
capabilities in the network. Examples of framework service capability features are Authentication and
Discovery. Before an application can use the network functionality made available through the Service
Capability Servers, authentication between the application and framework is needed. After authentication, the
discovery service capability feature enables the application to find out which network service capability features
are provided by the Service Capability Servers. The network service capability features are accessed by the
methods defined in the OSA interface classes.

- Service Capability Servers, providing the applications with service capability features, which are abstractions
from underlying network functionality. Examples of service capability features offered by the Service Capability
Servers are Call Control and User Location. Similar service capability features may possibly be provided by
more than one Service Capability Server. For example, Call Control functionality might be provided by SCSs on
top of CAMEL and MExE.

The OSA service capability features are specified in terms of a number of interface classes and their methods. The
interface classes are divided into two groups:

- framework interface classes, describing the methods on the framework

- network interface classes, describing the methods on the service capability servers.

The interface classes are further divided into methods. For example, the Call Manager interface class might contain a
method to create a call (which realises one of the Service capability features ‘Initiate and create session’ as specified in
[9]).

Note that the CAMEL Service Environment does not provide the service logic execution environment for applications
using the OSA interface, since these applications are executed in Application Servers.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)93G TS 23.127 version 3.0.0

framework User Location Call control

HLR CSE WGW
WPP

Servers

E.g. Location server
 MExE server
 SAT server

Service capability server(s)

Interface
class

OSA interface

Open
Service

Architecture

discovery Application

Application
server

Figure 1: Overview of Open Service Architecture

This specification, together with the associated stage 3 specification, defines the OSA interface. OSA does not mandate
any specific platform or programming language.

The Service Capability Servers that implement the OSA interface classes are functional entities that can be distributed
across one or more physical nodes. For example, the User Location interface classes and Call Control interface classes
might be implemented on a single physical entity or distributed across different physical entities. Furthermore, a service
capability server can be implemented on the same physical node as a network functional entity or in a separate physical
node. For example, Call Control interface classes might be implemented on the same physical entity as the CAMEL
protocol stack (i.e. in the SCP) or on a different physical entity.

Several options exist:

Option 1

The OSA interface classes are implemented in one or more physical entity, but separate from the physical network
entities. Figure 2 shows the case where the OSA interface classes are implemented in one physical entity, called
“gateway” in the figure. Figure 3 shows the case where the SCSs are distributed across several ‘gateways’.

SCS ‘Gateway’

OSA Interface

Non-standardised
Interfaces

CSE ….HLR

Physical entity Functional entity

Figure 2: SCSs and network functional entities implemented in separate physical entities

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)103G TS 23.127 version 3.0.0

SCS ‘Gateway’

OSA Interface

Non-standardised
Interfaces

CSE ….HLR

SCS SCS

Figure 3: SCSs and network functional entities implemented in separate physical entities, SCSs
distributed across several ‘gateways’

Option 2

The OSA interface classes are implemented in the same physical entities as the traditional network entities (e.g. HLR,
CSE), see figure 4.

SCS
OSA Interface

CSE ….HLR

SCS SCS

Figure 4: SCSs and network functional entities implemented in same physical entities

Option 3

Option 3 is the combination of option 1 and option 2, i.e. a hybrid solution.

‘Gateway’

OSA Interface

Non-standardised
Interfaces

CSE ….HLR

SCS SCS

Figure 5: Hybrid implementation (combination of option 1 and 2)

It shall be noted that in all cases there is only one framework. This framework may reside within one of the physical
entities containing an SCS or in a separate physical entity.

From the application point of view, it shall make no difference which implementation option is chosen, i.e. in all cases
the same network functionality is perceived by the application. The applications shall always be provided with the same
set of interface classes and a common access to framework and service capability feature interfaces. It is the framework
that will provide the applications with an overview of available service capability features and how to make use of
them.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)113G TS 23.127 version 3.0.0

5.2 Basic mechanisms in the Open Service Architecture
This section explains which basic mechanisms are executed in OSA prior to offering and activating applications.

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

- Authentication: Once an off-line service agreement exists, the application can access the authentication
interface. The authentication model of OSA is a peer-to-peer model. The application must authenticate the
framework and vice versa. The application must be authenticated before it is allowed to use any other OSA
interface.

- Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previously authenticated application is allowed to do. Authentication must precede
authorisation. Once authenticated, an application is authorised to access certain service capability features.

- Discovery of framework and network service capability features. After successful authentication,
applications can obtain available framework interface classes and use the discovery interface to obtain
information on authorised network service capability features. The Discovery interface can be used at any time
after successful authentication.

- Establishment of service agreement. Before any application can interact with a network service capability
feature, a service agreement must be established. A service agreement may consist of an off-line (e.g. by
physically passing messages) and an on-line part. The application has to sign the on-line part of the service
agreement before it is allowed to access any network service capability feature.

- Access to network service capability features: The framework must provide access control functions to
authorise the access to service capability features or service data for any API operation from a client, with the
specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server:

- Registering of network service capability features. SCFs offered by a Service Capability Server can be
registered at the Framework. In this way the Framework can inform the Applications upon request about
available service capability features (Discovery). This mechanism is in general applied when installing or
upgrading a Service Capability Server.

< editor’s note: this mechanism is considered as of lower priority than other parts of OSA for R’99 >

Basic mechanisms between Application Server and Service Capability Server:

- Request of event notifications. This mechanism is applied when a user has subscribed to an application and
that application needs to be invoked upon receipt of events from the network related to the user. For example,
when a user subscribes to a screening application, the application needs to be invoked when the user makes a
call. It will therefore request to be notified when a call setup is performed, with the user number as Called Party
Number.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)123G TS 23.127 version 3.0.0

5.3 Handling of end-user related security
Once OSA basic mechanisms have ensured that an application has been authenticated and authorised to use network
service capability features, it is important to also handle end-user related security aspects. These aspects consist of the
following.

- End-user authorisation to applications, limiting the access of end-users to the applications they are subscribed
to.

- Application authorisation to end-users, limiting the usage by applications of network capabilities to authorised
(i.e. subscribed) end-users.

- End-user’s privacy, allowing the user to set privacy options.

These aspects are addressed in the following subsections.

5.3.1 End-user authorisation to applications

An end-user is authorised to use an application only when he or she is subscribed to it.

In the case where the end-user has subscribed to the application before the application accesses the network SCFs, then
the subscription is part of the Service Level Agreement signed between the HE and the HE-VASP.

After the application has been granted access to network SCFs, subscriptions are controlled by the Home Environment.
Depending on the identity of an authenticated and authorised end-user, the Home Environment may use any relevant
policy to define and possibly restrict the list of services to which a particular end-user can subscribe. At any time, the
Home Environment may decide, unilaterally or after agreement with the HE-VASP, to cancel a particular subscription.

Service subscription and activation information need to be shared between the Home Environment and the HE-VASP,
so that the HE-VASP knows which end-users are entitled to use its services. Appropriate online and/or offline
synchronisation mechanisms (e.g. SLA re-negotiation) can be used between the HE and the HE-VASP, which are not
specified in OSA release 99.

End-to-end interaction between a subscribed end-user and an application may require the usage of appropriate
authentication and authorisation mechanisms between the two, which are independent from the OSA API, and therefore
not in the scope of OSA standardisation.

5.3.2 Application authorisation to end-users

The Home Environment is entitled to provide service capabilities to an application with regard to a specific end-user if
the following conditions are met:

1) The end-user is subscribed to the application

2) The end-user has activated the application

3) The usage of this network service capability does not violate the end-users privacy settings (see next section).

The service capability server ensures that the above conditions are met whenever an application attempts to use a
service capability feature for a given end-user, and to respond to the application accordingly, possibly using relevant
error parameters (USER_NOT_SUBSCRIBED, APPLICATION_NOT_ACTIVATED,
USER_PRIVACY_VIOLATION). The mechanism used by the SCS to ensure this is internal to the HE (e.g. access to
user profile) and is not standardised in OSA release 99.

5.3.3 End-user’s privacy

The Home Environment may permit an end-user to set privacy options. For instance, it may permit the end-user to
decide whether his or her location may be provided to 3rd parties, or whether he or she accepts information to be pushed
to his or her terminal. Such privacy settings may have an impact on the ability of the network to provide service
capability features to applications (e.g. user location, user interaction). Thus, even if an application is authorised to use
an SCF and the end-user is subscribed to this application and this application is activated, privacy settings may still
prevent the HE from fulfilling an application request.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)133G TS 23.127 version 3.0.0

The service capability server ensures that a given application request does not violate an end-users privacy settings or
that the application has relevant privileges to override them (e.g. for emergency reasons). The mechanism used by the
SCS to ensure this is internal to the HE and is not standardised in OSA release 99.

5.4 Base interface classes
The base interface classes described in this sub clause are provided for completeness of the documentation. With object
oriented design all classes are based on a base class.

5.4.1 Base Interface Class

This class is the foundation of the all interfaces and shall be inherited by all other interface classes. It does not contain
any method.

Name Base_Interface

Method

Parameters

Returns

Errors

5.4.2 Base Service Interface class

This class provides the base for all service interface classes described in the following chapters. It allows an application
to set an interface reference to be used by the OSA interfaces for requests and asynchronous responses to the
application.. For example, when an application wants to be notified upon the receipt of the "called party busy" event,
the Service Capability Server must know where to send the notification. This reference can be provided by the
application with the setCallBack method across the OSA interface.

Name Base_Service_Interface

Method setCallback()

This method specifies the reference address of the callback interface that an SCF uses to invoke
methods on the application.

Parameters appInterface
Specifies a reference to the application interface, which is used for callbacks.

Returns

Errors

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)143G TS 23.127 version 3.0.0

6 Framework service capability features

6.1 Trust and Security Management SCFs
The Trust and Security Management service capability features provide:

- The first point of contact for a client application to access a Home Environment;

- The authentication operations for the client application and Home Environment to perform an authentication
protocol;

- The client application with the ability to select a network service capability feature to make use of;

- The client application with a portal to access other framework service capability features.

The process by which the client application accesses the Home Environment has been separated into 3 stages, each
supported by a different framework service capability feature:

1. Initial Contact with the framework

2. Authentication to the framework

3. Access to framework and network service capability features

6.1.1 Initial Contact

The client application gains a reference to the Initial SCF for the Home Environment that they wish to access. This may
be gained through a URL, an Application Support Broker, a stringified object reference, etc. At this stage, the client has
no guarantee that this is a reference to the Home Environment.

The client application uses this SCF to initiate the authentication process with the Home Environment.

The Initial SCF supports the initiateAuthentication operation to allow the authentication process to take place (using
the Authentication SCF defined in section 6.1.2). This operation must be the first invoked by the client application.
Invocations of other operations will fail until authentication has been successfully completed.

Once the client has authenticated with the provider, the client can gain access to other framework and network service
capability features. This is done by invoking the requestAccess method, by which the client application requests a
certain type of access service capability feature. The OSA Access service capability feature is defined in section 6.1.3.

The Initial Contact framework SCF is defined by a unique interface class, consisting of the following methods.

Method initiateAuthentication()

The client application uses this method to initiate the authentication process.

Direction Application to Framework

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)153G TS 23.127 version 3.0.0

Parameters clientAppID
This is an identifier for the client application. It is used to identify the client to the framework, (see
authenticate() on Authentication). If the clientAppID cannot be found by the framework, an error
code is returned by the framework. The value of the parameter fwAuthInterface is NULL in this
case.

authType
This identifies the type of authentication mechanism requested by the client. It provides operators
and clients with the opportunity to use an alternative to the OSA Authentication interface, e.g.
CORBA Security.

appAuthInterface
This provides the reference for the framework to call the authentication interface of the client
application.

Returns fwAuthInterface
This provides the reference for the client application to call the authentication SCF of the
framework.

Errors

Method requestAccess ()

Once client and framework are authenticated, the client application invokes the requestAccess
operation on the Initial SCF. This allows the client application to request the type of access they
require. If they request OSA_ACCESS, then a reference to the OSA Access interface is returned.
(Home Environments can define their own access interfaces to satisfy client requirements for
different types of access.)

Direction Application to network

Parameters accessType
This identifies the type of access SCF requested by the client application.

appAccessInterface
This provides the reference for the framework to call the access interface of the client application.

Returns fwAccessInterface
This provides the reference for the client to call the access SCF of the framework.

Errors

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)163G TS 23.127 version 3.0.0

6.1.2 Authentication

Once the client application has made initial contact with the Home Environment, authentication of the client application
and Home Environment may be required.

The API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given
situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide
confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital
signatures in the authentication procedure depends on the type of authentication technique selected. In some cases
strong authentication may need to be enforced by the Home Environment to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The client application must authenticate with the framework before it is able to use any of the other interfaces supported
by the framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1. The client application calls initiateAuthentication on the Home Environment’s framework Initial interface. This
allows the client to specify the type of authentication process. This authentication process may be specific to the
Home Environment, or the implementation technology used. The initiateAuthentication operation can be used to
specify the specific process, (e.g. CORBA security). OSA defines a generic authentication service capability
feature (Authentication), which can be used to perform the authentication process. The initiateAuthentication
operation allows the client application to pass a reference to its own authentication interface to the Framework,
and receive a reference to the Authentication interface supported by the framework, in return.

2. The client application invokes the selectAuthMethod on the framework’s Authentication SCF. This includes the
authentication capabilities of the client application. The framework then chooses an authentication method based
on the authentication capabilities of the client application and the framework. If the client is capable of handling
more than one authentication method, then the framework chooses one option, defined in the prescribedMethod
parameter. In some instances, the authentication capability of the client application may not fulfil the demands of
the framework, in which case, the authentication will fail.

3. The client application and framework interact to authenticate each other. Depending on the method prescribed,
this procedure may consist of a number of messages e.g. a challenge/ response protocol. This authentication
protocol is performed using the authenticate operation on the Authentication interface. Depending on the
authentication method selected, the protocol may require invocations on the Authentication SCF supported by
the framework; or on the client application counterpart; or on both.

The Authentication framework SCF is defined by a single interface class, consisting of the following methods.

Method selectAuthMethod ()

The client application uses this method to initiate the authentication process. The mechanism
returned by the framework is the mechanism it prefers. This should be within capability of the client
application. If a mechanism that is acceptable to the framework within the capability of the client
application cannot be found, the framework returns an error code
(INVALID_AUTH_CAPABILITY).

Direction Application to network

Parameters authCapability
This is the means by which the authentication mechanisms supported by the client are conveyed to
the framework.

Returns prescribedMethod
This is returned by the framework to indicate the mechanism it prefers for the authentication
process. If the value of the prescribedMethod returned by the framework is not understood by the
client application, it is considered a catastrophic error and the client application must abort.

Errors

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)173G TS 23.127 version 3.0.0

Method authenticate () (application to network)

This method is used by the client to authenticate the framework using the mechanism indicated in
prescribed Method. The framework must respond with the correct responses to the challenges
presented by the client. The clientAppID received in the initiateAuthentication() can be
used by the framework to reference the correct public key for the client application (the key
management system is currently outside of the scope of the OSA specification). The number of
exchanges and the order of the exchanges is dependent on the prescribedMethod.

Direction Application to network

Parameters prescribedMethod
This parameter contains the method that the framework has specified as acceptable for
authentication (see selectAuthMethod).

challenge
The challenge presented by the client application to be responded to by the framework. The
challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols -
Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be
encrypted with the mechanism prescribed by selectAuthMethod().

Returns response
This is the response of the framework to the challenge of the client application in the current
sequence. The response will be based on the challenge data, decrypted with the mechanism
prescribed by selectAuthMethod().

Errors

Method authenticate() (network to application)

This method is used by the framework to authenticate the client application using the mechanism
indicated in prescibedMechanism. The client application must respond with the correct responses to
the challenges presented by the framework. The number of exchanges and the order of the
exchanges is dependant on the prescribedMethod. (These may be interleaved with authenticate()
calls by the client application on the Authentication interface. This is defined by the
prescribedMethod.)

Direction Network to application

Parameters prescribedMethod
This parameter contains the agreed method for authentication (see selectAuthMethod on the
Authentication interface.)

challenge
The challenge presented by the framework to be responded to by the client application. The
challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols -
Challenge Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be
encrypted with the mechanism prescribed by selectAuthMethod().

Returns response
This is the response of the client application to the challenge of the framework in the current
sequence. The response will be based on the challenge data, decrypted with the mechanism
prescribed by selectAuthMethod().

Errors

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)183G TS 23.127 version 3.0.0

Method abortAuthentication()(application to network)

The client application uses this method to abort the authentication process. This method is invoked
if the client no longer wishes to continue the authentication process, (e.g. if the framework responds
incorrectly to a challenge.) If this method has been invoked, calls to the requestAccess operation on
Initial will return an error code (INVALID_AUTHENTICATION) until the client has been properly
authenticated.

Direction Application to network

Parameters

Returns

Errors

Method abortAuthentication()(network to application)

The framework uses this method to abort the authentication process. This method is invoked if the
framework wishes to abort the authentication process, (e.g. if the client application responds
incorrectly to a challenge.) If this method has been invoked, calls to the requestAccess operation on
Initial will return an error code (INVALID_AUTHENTICATION), until the client has been
properly authenticated.

Direction Network to application

Parameters

Returns

Errors

6.1.3 OSA Access

During an authenticated session accessing the Framework, the client application will be able to select and access an
instance of a framework or network service capability feature.

Access to framework SCFs is gained by invoking the obtainInterface, or obtainInterfaceWithCallback operations. The
latter is used when a callback reference is supplied to the framework. For example, a network SCF discovery interface
class reference is returned when invoking obtainInterface with “discovery” as the SCF name.

In order to use network SCFs, the client must first be authorised to do so by establishing a service agreement with the
Home Environment. The client application uses the discovery SCF to retrieve the ID of the network SCF they wish to
use.They may then use the accessCheck operation to check that they are authorised to use the network SCF. The
selectService operation is used to tell the Home Environment that the client application wishes to use the network SCF.
The signServiceAgreement operation is used to digitally sign the agreement, and provide non-repudiation for both
parties in agreeing that the SCF would be available for use.

Establishing a service agreement is a business level transaction, which requires the HE-VASP that owns the client
application to agree terms for the use of an SCF with the Home Environment. Service agreements can be reached using
either off-line or on-line mechanisms. Off-line agreements will be reached outside of the scope of OSA interactions, and
so are not described here. However, client applications can make use of service agreements that are made off-line. Some
Home Environments may only offer off-line mechanisms to reach service agreements.

After a service agreement has been established between the client and the Home Environment domains, the client
application will be able to make use of this agreement to access the network SCF.

The accessCheck operation allows the client application to check whether it has permission to access (read, write, etc)
to a specified SCF, and specific SCF features. The client application defines the security domain and context of access
to the SCF. The access control policy is based on a number of conditions, events and permissions that determine
whether the client application is authorised to access the SCF/feature.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)193G TS 23.127 version 3.0.0

The accessCheck operation is optional, in that can be called by the client application to check that it has permission to
use specific SCF features, before starting an SCF instance. It is not compulsory for the client application to make this
check before selecting a network SCF and signing a service agreement to use an instance of the SCF. If the accessCheck
operation confirms that the client application has permission to use a specific SCF feature, then this feature should be
available to the client application when using the SCF instance. The Home Environment may include the results of the
accessCheck as part of the service agreement, that is signed before using an SCF instance, thereby assuring the client
application that the SCF features will be available.

The selectService operation is used to identify the SCF that the client application wishes to use. A list of service
properties initialises the SCF, and an SCF token is returned. The client application and Home Environment must sign a
copy of the service agreement to confirm the use of the SCF. The framework invokes signServiceAgreement operation
on the client applications’s Access callback interface with the service agreement text to be signed. The client
application uses its digital signature key to sign the agreement text, and return the signed text to the framework. The
client application then calls the signServiceAgreement operation on the OSA Access SCF. The framework signs the
agreement text, retrieves a reference to a network manager interface for the selected SCF (using a mechanism not
specified in release 99), and returns this reference to the client application.

The OSA Access framework SCF is defined by a single interface class, which consists of the following methods.

Method obtainInterface ()

This method is used to obtain other framework SCFs. The client application uses this method to
obtain interface references to other framework SCFs. (The obtainInterfacesWithCallback method
should be used if the client application is required to supply a callback interface to the framework.)

Direction Application to network

Parameters interfaceName
The name of the framework SCF to which a reference to the interface is requested.

Returns fwInterface
This is the reference to the SCF interface requested.

Errors INVALID_INTERFACE_NAME
Returned if the interfaceName is invalid.

Method obtainInterfaceWithCallback ()

This method is used to obtain other framework SCFs. The client application uses this method to
obtain interface references to other framework SCFs, when they are required to supply a callback
interface to the framework. (The obtainInterface method should be used when no callback interface
needs to be supplied.)

Direction Application to network

Parameters interfaceName
The name of the framework SCF to which a reference to the interface is requested.

appInterface
This is the reference to the client application interface, which is used for callbacks. If an application
interface is not needed, then this method should not be used. (The obtainInterface method should be
used when no callback interface needs to be supplied.)

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)203G TS 23.127 version 3.0.0

Returns fwInterface
This is the reference to the SCF requested.

Errors INVALID_INTERFACE_NAME
Returned if the interfaceName is invalid.

Method accessCheck()

This method may be used by the client application to check whether it has been granted permission
to access the specified SCF. The response is used to indicate whether the request for access has been
granted or denied and if granted the level of trust that will be applied. The securityModelID and the
relevant securityLevel are available as part of the registration data for the SCF.

securityModelID:
The identity of the specific Security Model that is to be used to define a set of appropriate policies
for the SCF that can be used by the framework to determine access rights. The model may include:
blanket permission; session permission or one shot permission. A number of security models will be
stored by the framework, and referenced by the access control module, according to the security
model identifier of the SCF.

securityLevel:
The trust level required by the SCF for granting access. The Security Level is used by the
framework’s access control module when it checks for access rights.

Direction Application to network

Parameters securityContext
A context is a group of security relevant attributes that may have an influence on the result of the
accessCheck request.

securityDomain
The security domain in which the client application is operating may influence the access control
decisions and the specific set of features that the requestor is entitled to use.

group
A group can be used to define the access rights associated with all clients that belong to that group.
This simplifies the administration of access rights.

serviceAccessTypes
These are defined by the specific Security Model in use but are expected to include: Create, Read,
Update, Delete as well as those specific to SCFs.

Returns serviceAccessControl
This is a structure containing the access control policy information controlling access to the SCF,
and the trustLevel that the Home Environment has assigned to the client application. It consists of

• policy: indicates whether access has been granted or denied. If granted then the parameter
trustLevel must also have a value.

• trustLevel: The trustLevel parameter indicates the trust level that the Home Environment has
assigned to the client application.

Errors

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)213G TS 23.127 version 3.0.0

Method selectService ()

This method is used by the client application to identify the network SCF that the client application
wishes to use.

Direction Application to network

Parameters serviceID
This identifies the SCF required.

serviceProperties
This is a list of the properties that the SCF should support. These properties (names and values) are
used to initialise the SCF instance for use by the client application.

Returns serviceToken
This is a free format text token returned by the framework, which can be signed as part of a service
agreement. This will contain operator specific information relating to the service level agreement.
The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method
accepting the serviceToken will return an error code (INVALID_Service_TOKEN). Service
Tokens will automatically expire if the client or framework invokes the endAccess method on the
other's corresponding access interface.

Errors INVALID_SERVICE_ID

Returned if the serviceID is not recognised by the framework

INVALID_SERVICE_PROPERTY

Returned if a property is not recognised by the framework

Method signServiceAgreement()(application to network)

This method is used by the client application to request that the framework sign an agreement on the
SCF, which allows the client application to use the SCF. If the framework agrees, both parties sign
the service agreement, and a reference to the manager interface of the SCF is returned to the client
application.

Direction Application to network

Parameters serviceToken
This is the token returned by the framework in a call to the selectService() method. This
token is used to identify the SCF instance requested by the client application.

agreementText
This is the agreement text that is to be signed by the framework using the private key of the
framework.

signingAlgorithm
This is the algorithm used to compute the digital signature.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)223G TS 23.127 version 3.0.0

Returns signatureAndServiceMgr
This is a reference to a structure containing the digital signature of the framework for the service
agreement, and a reference to the manager interface of the SCF:

• The digitalSignature is the signed version of a hash of the service token and agreement text
given by the client application.

• The serviceMgrInterface is a reference to the manager interface for the selected SCF.

Errors INVALID_SERVICE_TOKEN

Returned if the serviceToken is not recognised by the framework

Method signServiceAgreement()(network to application)

This method is used by the framework to request that the client application sign an agreement on the
SCF. It is called in response to the client application calling the selectService() method on the
Access SCF of the framework. The framework provides the service agreement text for the client
application to sign. If the client application agrees, it signs the service agreement, returning its
digital signature to the framework.

Direction Network to application

Parameters serviceToken
This is the token returned by the framework in a call to the selectService() method. This
token is used to identify the SCF instance to which this service agreement corresponds. (If the client
application selects many SCFs, it can determine which selected SCF corresponds to the service
agreement by matching the service token.)

agreementText
This is the agreement text that is to be signed by the client application using the private key of the
client application.

signingAlgorithm
This is the algorithm used to compute the digital signature.

Returns digitalSignature
The digitalSignature is the signed version of a hash of the service token and agreement text given by
the framework.

Errors

Method terminateServiceAgreement()(application to network)

This method is used by the client application to terminate a service agreement for the SCF.

Direction Application To Network

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)233G TS 23.127 version 3.0.0

Parameters serviceToken
This is the token passed back from the framework in a previous selectService() method call.
This token is used to identify the service agreement to be terminated.

terminationText
This is the termination text describes the reason for the termination of the service agreement.

digitalSignature
This is a signed version of a hash of the service token and the termination text. The signing
algorithm used is the same as the signing algorithm given when the service agreement was signed
using signServiceAgreement().The framework uses this to check that the
terminationText has been signed by the client. If a match is made, the service agreement is
terminated, otherwise an error is returned.

Returns

Errors

Method terminateServiceAgreement() (network to application)

This method is used by the framework to terminate a service agreement for the SCF.

Direction Network to application

Parameters serviceToken
This is the token passed back from the framework in a previous selectService() method call.
This token is used to identify the service agreement to be terminated.

terminationText
This is the termination text describes the reason for the termination of the service agreement.

digitalSignature
This is a signed version of a hash of the service token and the termination text. The signing
algorithm used is the same as the signing algorithm given when the service agreement was signed
using signServiceAgreement(). The framework uses this to confirm its identity to the client.
The client can check that the terminationText has been signed by the framework.

Returns

Errors

Method endAccess()

The endAccess operation is used to end the client application’s access session with the framework.
The client requests that its access session be ended. After it is invoked, the client application will not
longer be authenticated with the framework. The client application will not be able to use the
references to any of the framework SCFs gained during the access session. Any calls to these SCF
interfaces will fail.

Direction Application To Network

Parameters

Returns

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)243G TS 23.127 version 3.0.0

Errors

Method terminateAccess ()

The terminateAccess operation is used to end the client application’s access session with
the framework (e.g. this may be done if the framework believes the client application is
masquerading as someone else. Using this operation will force the client application to re-
authenticate if it wishes to continue using the framework SCFs.)

After terminateAccess() is invoked, the client application will not longer be authenticated
with the framework. The client application will not be able to use the references to any of
the framework SCFs gained during the access session. Any calls to these interfaces will
fail.

Direction Network to application

Parameter
s

terminationText
This is the termination text describes the reason for the termination of the access session.

signingAlgorithm
This is the algorithm used to compute the digital signature.

digitalSignature
This is a signed version of a hash of the termination text. The framework uses this to
confirm its identity to the client. The client can check that the terminationText has
been signed by the framework.

Returns

Errors

6.2 Discovery
The discovery SCF consists of a single interface class. Before a network SCF can be discovered, the client application
must know what “types” of SCFs are supported by the Framework and what “properties” are applicable to each SCF
type. The listServiceType() method returns a list of all “SCF types” that are currently supported by the framework and
the “describeServiceType()” returns a description of each SCF type. The description of SCF type includes the “SCF-
specific properties” that are applicable to each SCF type. Then the client application can discover a specific set of
registered SCFs that belong to a given type and possess the desired “property values”, using the “discoverService()
method.

Once the HE-VASP finds out the desired set of SCFs supported by the network, it subscribes (a sub-set of) these SCFs
using the Subscription framework SCF. The HE-VASP (or the client applications in its domain) can find out the set of
SCFs available to it (i.e., the SCFs that it can use) by invoking “listSubscriberServices()”.

The discovery SCF is invoked by the HE-VASP or client applications. Its methods are described below.

Method discoverService ()

The discoverService operation is the means by which a client application is able to obtain the IDs of
the SCFs that meet its requirements. The client application passes in a list of desired properties to
describe the SCF it is looking for, in the form attribute/value pairs for the properties. The client
application also specifies the maximum number of matched responses it is willing to accept. The
framework must not return more matches than the specified maximum, but it is up to the discretion
of the Framework implementation to choose to return less than the specified maximum. The
discoverService() operation returns a serviceID/Property pair list for those SCFs that match the
desired property list that the client application provided.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)253G TS 23.127 version 3.0.0

Direction Application to network

Parameters serviceTypeName
The “ServiceTypeName” parameter conveys the required SCF type. It is key to the central purpose
of “SCF trading”. By stating an SCF type, the importer implies the SCF type and a domain of
discourse for talking about properties of SCF.

The framework may return an SCF of a subtype of the “type” requested. An SCF sub-type can be
described by the properties of its supertypes.

desiredPropertyList
The “desiredPropertyList”parameter is a list of property name and property value pairs of properties
that the discovered set of SCFs should satisfy. These properties deal with the non-functional and
non-computational aspects of the desired SCF. The property values in the desired property list must
be logically interpreted as “minimum”, “maximum”, etc. by the framework.

max
The “max” parameter states the maximum number of SCFs that are to be returned in the
“ServiceList” result.

Returns serviceList :
This parameter gives a list of matching SCFs. Each SCF is characterised by an SCF ID and a list of
property name and property value pairs associated with the SCF.

Errors ILLEGAL_SERVICE_TYPE
Returned of the string representation of the “type” does not obey the rules for SCF type identifiers

UNKNOWN_SERVICE_TYPE
Returned if the “type” is correct syntactically but is not recognised as an SCF type within the
Framework

Method listServiceTypes ()

This operation returns the names of all SCF types which are in the repository. The details of the SCF
types can then be obtained using the describeServiceType() method.

Direction Application to network

Parameters

Returns listTypes
The names of the requested SCF types.

Errors

Method describeServiceType()

This operation lets the caller to obtain the details for a particular SCF type.

Direction Application to network

Parameters name
The name of the SCF type to be described

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)263G TS 23.127 version 3.0.0

Returns serviceTypeDescription
The description of the specified SCF type. The description provides information about:

• the property names associated with the SCF,

• the corresponding property value types,

• the corresponding property mode (mandatory or read only) associated with each SCF property,

• the names of the super types of this type, and

• whether the type is currently enabled or disabled.

Errors ILLEGAL_SERVICE_TYPE
Returned of the string representation of the “type” does not obey the rules for SCF type identifiers

UNKNOWN_SERVICE_TYPE
Returned if the “type” is correct syntactically but is not recognised as an SCF type within the
Framework

Method listSubscribedServices ()

Returns a list of SCFs so far subscribed by the HE-VASP. The HE-VASP (or the client
applications in the HE-VASP domain) can obtain a list of subscribed SCFs that they are allowed to
access.

Direction Application to network

Parameters

Returns serviceIDList
Returns a list of IDs of the SCFs subscribed by the HE-VASP.

Errors

6.3 Integrity Management SCFs

6.3.1 Load Manager

The framework API should allow the load to be distributed across multiple machines and across multiple component
processes, according to a load balancing policy. The separation of the load balancing mechanism and load balancing
policy ensures the flexibility of the load balancing functionality. The load balancing policy identifies what load
balancing rules the framework should follow for the specific client application. It might specify what action the
framework should take as the congestion level changes. For example, some real-time critical applications will want to
make sure continuous service is maintained, below a given congestion level, at all costs, whereas other applications will
be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load balancing policy is
related to the QoS level to which the application is subscribed.

The Load Manager SCF consists of a single interface class. Most methods are asynchronous, in that they do not lock a
thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one
that uses synchronous message calls.

The load management operations do not exchange callback interfaces as it is assumed that the client application has
supplied its Load Management callback interface at the time it obtains the Framework’s Load Manager SCF, by use of
the obtainInterfaceWithCallback operation on the OSA Access SCF.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)273G TS 23.127 version 3.0.0

Method reportLoad()

The client application notifies the framework about its current load level (0,1, or 2) when the load
level on the application has changed.
At level 0 load, the application is performing within its load specifications (i.e. it is not congested or
overloaded). At level 1 load, the application is overloaded. At level 2 load, the application is severly
overloaded.

Direction Application to network

Parameters requester
Specifies the application interface for callbacks.

loadLevel
Specifies the load level for which the application reported.

Returns

Errors

Method enableLoadControl()

Upon detecting load condition change, (i.e. load level changing from 0 to 1, 0 to 2, 1 to 2
or 2 to 1, for the SCFs or framework which has been registered for load control), the
framework enables load management activity at the client application based on the policy.

Direction Network to application

Parameter
s

loadStatistics
Specifies the new load statistics

Returns

Errors

Method disableLoadControl()

After load level of the framework or SCF which has been registered for load control moves back to
normal, framework disables load control activity at the client application based on policy.

Direction Network to application

Parameters ServiceIDs
Specifies the framework and SCFs for which the load has changed to normal. The serviceIDs is null
to specify the framework only.

Returns

Errors

Method resumeNotification()

Resume the notification from an application for its load status after the detection of load level
change at the framework and the evaluation of the load balancing policy.

Direction Network to application

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)283G TS 23.127 version 3.0.0

Parameters

Returns

Errors

Method suspendNotification()

Suspend the notification from an application for its load status after the detection of load level
change at the framework and the evaluation of the load balancing policy.

Direction Network to application

Parameters

Returns

Errors

Method queryLoadReq ()

The client application requests load statistic records for the framework and specified SCFs.

Direction Application to Network

Parameters requester
Specifies the application interface for callbacks.

serviceIDs
Specifies the framework, SCFs or applications for which the load statistics shall be reported. The
serviceIDs is null for framework load statistics only.

timeInterval
Specifies the time interval within which the load statistics are generated.

Returns

Errors

Method queryLoadRes()

 Returns load statistics to the application which requested the information.

Direction Network to application

Parameters loadStatistics
Specifies the framework-supplied load statistics.

Returns

Errors

Method queryLoadErr()

Returns an error code to the application that requested load statistics.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)293G TS 23.127 version 3.0.0

Direction Network to application

Parameters loadStatisticsError
Specifies the framework-supplied error code.

Returns

Errors

Method queryAppLoadReq()

The framework requests for load statistic records produced by a specified application.

Direction Network to application

Parameters serviceIDs
Specifies the SCFs or applications for which the load statistics shall be reported.

timeInterval
Specifies the time interval within which the load statistics are generated.

Returns

Errors

Method queryAppLoadRes ()

Report load statistics back to the framework that requested the information.

Direction Application to network

Parameters loadStatistics
Specifies the load statistics in the application.

Returns

Errors

Method queryAppLoadErr()

Return an error response to the framework that requested the application’s load statistics
information.

Direction Application to network

Parameters loadStatisticsError
Specifies the error code associated with the failed attempt to retrieve the application’s load statistics.

Returns

Errors

Method registerLoadController ()

Register the client application for load management under various load conditions.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)303G TS 23.127 version 3.0.0

Direction Application to network

Parameters requester
Specifies the application interface for callbacks.

serviceIDs
Specifies the framework and SCFs to be registered for load control. To register for framework load
control only, the serviceIDs is null.

Returns

Errors

Method unregisterLoadController ()

Unregister the client application for load management.

Direction Application to network

Parameters requester
Specifies the application interface for callbacks.

serviceIDs
Specifies the framework or SCFs to be unregistered for load control.

Returns

Errors

Method resumeNotification ()

Resume load management notifications to the application for the framework and specified SCFs
after their load condition changes.

Direction Application to network

Parameters serviceIDs
Specifies the framework and SCFs for which notifications are to be resumed. The serviceIDs is null
to resume notifications for the framework only.

Returns

Errors

Method suspendNotification()

Suspend load management notifications to the application for the framework and specified SCFs,
while the application handles a temporary load condition.

Direction Application to network

Parameters serviceIDs
Specifies the framework and SCFs for which notifications are to be suspended. The serviceIDs is
null to suspend notifications for the framework only.

Returns

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)313G TS 23.127 version 3.0.0

Errors

6.3.2 Fault Manager

This SCF is used by the application to inform the framework of events which affect the integrity of the framework and
SCFs, and to request information about the integrity of the system.

It consists of a single interface class, with the following methods.

Method activityTestReq()

This method may be used by the application to test that the framework or an SCF is operational. On
receipt of this request, the framework must carry out a test on the specified SCF or the framework
itself to check that it is operating correctly and report the test result.

Direction Application to network

Parameters activityTestID
The identifier provided by the client application to correlate the response (when it arrives) with this
request.

svcID
This parameter identifies which SCF the client application is requesting the activity test to be done
for. A null value denotes that the activity test is being requested for the framework.

appID
This parameter identifies which client application is requesting the activity test, and therefore which
application to send the result to.

Returns

Errors

Method activityTestRes()

The framework returns the result of the activity test in this method, along with a test identifier to
allow correlation of result to request within the client application.

Direction Network to application

Parameters activityTestID
The identifier provided by the client (in the request), to correlate this response with the original
request.

activityTestResult
The result of the activity test.

Returns

Errors

Method appActivityTestReq ()

This method is invoked by the framework to request that the client application carries out an activity
test to check that is it operating correctly.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)323G TS 23.127 version 3.0.0

Direction Network to application

Parameters activityTestID
The identifier provided by the client (in the request), to correlate this response with the original
request.

Returns

Errors

Method appActivityTestRes ()

This method is used by the client application to return the result of a previously requested activity
test.

Direction Application to network

Parameters activityTestID
The identifier is used by the framework to correlate this response (when it arrives) with the original
request.

activityTestResult
The result of the activity test.

Returns

Errors

Method fwFaultReportInd ()

This method is invoked by the framework to notify the client application of a failure within the
framework. The client application must not continue to use the framework until it has recovered (as
indicated by a fwFaultRecoveryInd).

Direction Network to application

Parameters fault
Specifies the fault that has been detected.

Returns

Errors

Method fwFaultRecoveryInd ()

This method is invoked by the framework to notify the client application that a previously reported
fault has been rectified.

Direction Network to application

Parameters fault
Specifies the fault from which the framework has recovered.

Returns

Errors

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)333G TS 23.127 version 3.0.0

Method svcUnavailableInd ()

This method is used by the client application to inform the framework that it can no longer use the
indicated SCF (either due to a failure in the client application or in the SCF). On receipt of this
request, the framework should take the appropriate corrective action. The framework assumes that
the session between this client application and instance SCF is to be closed and updates its own
records appropriately as well as attempting to inform the SCF instance and/or its administrator. If
the client application then tries to continue the use of this session it should be returned an error.

Direction Application to network

Parameters serviceID
The identity of the SCF which can no longer be used.

appID
The identity of the application sending the indication.

Returns

Errors

Method svcUnavailableInd ()

This method is used by the framework to inform the client application that it can no longer use the
indicated SCF due to a failure in the SCF. On receipt of this request, the client application must act
to reset its use of the specified SCF (using the normal mechanisms such as the discovery and
authentication interfaces to stop use of this SCF instance and begin use of a different SCF instance).

Direction Network to application

Parameters serviceID
The identity of the SCF which can no longer be used.

reason
The reason why the SCF is no longer available.

Returns

Errors

Method genFaultStatsRecordReq ()

This method is used by the application to solicit fault statistics from the framework. On receipt of
this request, the framework must produce a fault statistics record, which is returned to the client
application. The fault statistics record must contain information about faults relating to the SCFs
specified in the serviceIDList parameter, during the specified period.

Direction Application to Network

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)343G TS 23.127 version 3.0.0

Parameters timePeriod
The period over which the fault statistics are to be generated. A null value leaves this to the
discretion of the framework.

serviceIDList
This parameter lists the SCFs that the application would like to have included in the general fault
statistics record. If the application would like the framework fault statistics to be included it should
include the NULL serviceID.

appID
This parameter identifies which client application is requesting the statistics record, and therefore
which application to send the record to.

Returns

Errors

Method genFaultStatsRecordRes ()

This method is used by the framework to provide fault statistics to a client application in response to
a genFaultStatsRecordReq.

Direction Network to application

Parameters faultStatistics
The fault statistics record.

serviceIDList
This parameter lists the SCFs that have been included in the general fault statistics record. The
framework is denoted by the NULL serviceID.

7 Network service capability features
The service capability features provided to the application by service capabilities servers to enable access to network
resources.

Note: when the direction of a method in an interface class is “application to network”, this means that the method is
invoked from the application to an SCS residing on the network side of the OSA interface.

7.1 Call Control
The Call control network service capability feature consists of two interface classes:

1. Call manager, containing management function for call related issues

2. Call, containing methods to control a call

A call can be controlled by one Call Manager only. A Call Manager can control several calls..

1 Call
Manager

Call1 n

Figure 6 Call control classes usage relationship

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)353G TS 23.127 version 3.0.0

The Call Control service capability features are described in terms of the methods in the Call Control interface classes.
Table 1 gives an overview of the Call Control methods and to which interface classes these methods belong.

Table 1: Overview of Call Control interface classes and their methods

CallManager Call

enableCallNotification routeCallToDestination_Req

disableCallNotification routeCallToDestination_Res

callNotificationTerminated routeCallToDestination_Err

callEventNotify release

callAborted deassignCall

callNotificationTerminated getCallInfo_Req

getCallInfo_Res

getCallInfo_Err

superviseCall_Req

SuperviseCall_Res

superviseCall_Err

callFaultDetected

setAdviceOfCharge

setCallChargePlan

7.1.1 Call Manager

The generic call manager interface class provides the management functions to the generic call Service Capability
Features. The application programmer can use this interface class to create call objects and to enable or disable call-
related event notifications.

Method enableCallNotification()

This method is used to enable call notifications to be sent to the application.

Direction Application to network

Parameters appInterface
If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is
used for callbacks. If set to NULL, the application interface defaults to the interface specified via the
setCallback() method.

eventCriteria
Specifies the event specific criteria used by the application to define the event required. Examples of
events are “incoming call attempt reported by network”, “answer”, “no answer”, “busy”.

Returns assignmentID

Specifies the ID assigned by the generic call control manager object for this newly-enabled event
notification.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)363G TS 23.127 version 3.0.0

Errors USER_NOT_SUBSCRIBED
Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED
Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION
Returned if the requests violates the end-user’s privacy setting

Method disableCallNotification()

This method is used by the application to disable call notifications.

Direction Application to network

Parameters eventCriteria
Specifies the event specific criteria used by the application to define the event to be disabled.
Examples of events are “incoming call attempt reported by network”, “answer”, “no answer”,
“busy”.

assignmentID
Specifies the assignment ID given by the generic call control manager objectwhen the previous
enableNotification() was called.

Returns -

Errors INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

Method callEventNotify()

This method notifies the application of the arrival of a call-related event.

Direction Network to application

Parameters callReference
Specifies the reference to the call object to which the notification relates.

eventInfo
Specifies data associated with this event. These data include originatingAddress,
originalDestinationAddress, redirectingAddress and AppInfo (see for more explanation on these
data the routeCallToDestination() method).

assignmentID
Specifies the assignment id which was returned by the enableNotification() method. The
application can use assignment IDto associate events with event-specific criteria and to act
accordingly.

appInterface
Specifies a reference to the application object which implements the callback interface for the new
call.

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)373G TS 23.127 version 3.0.0

Method callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally.
No further communication will be possible between the call object and the application.

Direction Network to application

Parameters call
Specifies the call object that has aborted or terminated abnormally.

callSessionID
Specifies the call session ID of the call that has aborted or terminated abnormally.

Returns -

Errors -

Method callNotificationTerminated()

This method indicates to the application that all event notifications have been terminated (for
example, due to faults detected).

Direction Network to application

Parameters -

Returns -

Errors -

7.1.2 Call

The generic call interface class provides a structure to allow simple and complex call behaviour to be used.

Method routeCallToDestination_Req()

This asynchronous method requests routing of the call (and inherently attached parties) to the
destination party (specified in the parameter TargetAddress). The destination party is attached
to the call via a passive leg. This means that the call is not automatically released if the destination
party disconnects from the call; only the leg with which the destination party was attached to the call
is released in that case. .

Direction Application to network

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)383G TS 23.127 version 3.0.0

Parameters callSessionID
Specifies the call session ID of the call.

responseRequested
Specifies the set of observed events that will result in a routeCallToDestination_Res()
being generated.

targetAddress
Specifies the destination party to which the call should be routed.

originatingAddress
Specifies the address of the originating (calling) party.

originalDestinationAddress
Specifies the original destination address of the call, i.e. the address as specified by the originating
party. This parameter should be equal to the originalDestinationAddress as received by
the application in the eventInfo parameter of the callEventNotify method.

redirectingAddress
Specifies the last address from which the call was redirected.

appInfo
Specifies application-related information pertinent to the call (such as alerting method, tele-service
type, service identities and interaction indicators).

assignmentID
Specifies the ID assigned by the network SCS. The same ID will be returned in the
routeCallToDestinationRes or Err. This allows the application to correlate the request and the result.

Returns -

Errors USER_NOT_SUBSCRIBED
Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED
Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION
Returned if the requests violates the end-user’s privacy setting

Method routeCallToDestination_Res()

This asynchronous method indicates that the request to route the call to the destination was
successful, and indicates the response of the destination party (for example, the call was answered,
not answered, refused due to busy, etc.).

Direction Network to application

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)393G TS 23.127 version 3.0.0

Parameters callSessionID
Specifies the call session ID of the call.

eventReport
Specifies the result of the request to route the call to the destination party. It also includes the mode
that the call object is inand other related information.

Returns -

Errors -

Method routeCallToDestination_Err()

This asynchronous method indicates that the request to route the call to the destination party was
unsuccessful - the call could not be routed to the destination party (for example, the network was
unable to route the call, the parameters were incorrect, the request was refused, etc.).

Direction Network to application

Parameters callSessionID
Specifies the call session ID of the call.

errorIndication
Specifies the error which led to the original request failing.

Returns -

Errors -

Method release()

This method requests the release of the call and associated objects.

Direction Application to network

Parameters callSessionID
Specifies the call session ID of the call.

cause
Specifies the cause of the release.

Returns -

Errors -

Method deassignCall()

This method requests that the relationship between the application and the call and associated object
be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the
application has no further control of call processing. If a call is de-assigned that has event reports or
call information reports requested, then these reports will be disabled and any related information
discarded.

Direction Application to network

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)403G TS 23.127 version 3.0.0

Parameters callSessionID
Specifies the call session ID of the call.

Returns -

Errors -

Method getCallInfo_Req()

This asynchronous method requests information associated with the call to be provided at the
appropriate time (for example, to calculate charging). This method must be invoked before the call
is routed to a target address. The call object will exist after the call is ended if information is
required to be sent to the application at the end of the call. The call information will be sent after
any call event reports.

Note: At the end of the call, the call information must be sent before the call is deleted.

Direction Application to network

Parameters callSessionID
Specifies the call session ID of the call.

callInfoRequested
Specifies the call information that is requested.

Returns -

Errors -

Method getCallInfo_Res()

This asynchronous method reports all the necessary information requested by the application, for
example to calculate charging.

Direction Network to application

Parameters callSessionID
Specifies the call session ID of the call.

callInfoReport
Specifies the call information requested.

Returns -

Errors -

Method getCallInfo_Err()

This asynchronous method reports that the original request was erroneous, or resulted in an error
condition.

Direction Network to application

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)413G TS 23.127 version 3.0.0

Parameters callSessionID
Specifies the call session ID of the call.

errorIndication
Specifies the error which led to the original request failing.

Returns -

Errors -

Method superviseCall_Req()

The application calls this method to supervise a call. The application can set a granted connection
time for this call. If an application calls this function before it calls a
routeCallToDestination_Req() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Direction Application to network

Parameters callSessionID
Specifies the call session ID of the call.

time

Specifies the granted time in milliseconds for the connection. When specified as 0, volume
based supervision is applied. Either bytes (volume) or time should be specified.treatment
Specifies how the network should react after the granted connection time expired.

bytes
Specifies the granted number of bytes that can be transmitted for the connection. When the quantity
is specified as 0, time based supervision is applied. Either bytes (volume) or time should be
specified.

Returns -

Errors -

Method superviseCall_Res()

This asynchronous method reports a call supervision event to the application.

Direction Network to application

Parameters callSessionID
Specifies the call session ID of the call.

report
Specifies the situation, which triggered the sending of the call supervision response.

usedTime
Specifies the used time for the call supervision (in milliseconds).

usedVolume
Specifies the used volume for the call supervision (in the same units as specified in the request).

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)423G TS 23.127 version 3.0.0

Returns -

Errors -

Method superviseCall_Err()

This asynchronous method reports a call supervision error to the application.

Direction Network to application

Parameters callSessionID
Specifies the call session ID of the call.

errorIndication
Specifies the error which led to the original request failing.

Returns -

Errors -

Method callFaultDetected()

This method indicates to the application that a fault has been detected in the call.

Direction Network to application

Parameters callSessionID
Specifies the call session ID of the call object in which the fault has been detected.

fault
Specifies the fault that has been detected.

Returns -

Errors -

Method setAdviceOfCharge()

This method allows the application to the charging information that will be send to the end-users
handset.

Direction Application to network

Parameters callSessionID
Specifies the call session ID of the call.

aOCInfo
Specifies two sets of Advice of Charge parameter according to GSM

tariffSwitch
Specifies the tariff switch that signifies when the second set of AoC parameters becomes valid.

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)433G TS 23.127 version 3.0.0

Method setCallChargePlan()

Allows an application to include charging information in network generated CDR.

Direction Application to network

Parameters callSessionID
Specifies the call session ID of the call.

callDetailRecordInfo
 Free Format string containing the application specific charging information

Returns -

Errors -

7.1.2.1 Sequence Diagrams

The following section will describe some scenarios to illustrate the use of the methods described above.

7.1.2.2 Enable Call notification

The first task to perform in order to allow applications to provide call control related services to certain users is to
enable call-related events for these users to trigger the application. This is done with the method
enableCallNotification().

CallControlManager CallApplication

1: enableCallNotification()

Figure 7: Enable call notification

7.1.2.3 Number translation

The example in figure 8 shows a simple number translation application.

After the call is triggered (according to the criteria in a previous enableCallNotification()), the SCS notifies
the application with an eventCallNotify() message. This allows the application to perform the needed actions
and continue the call set-up via a routeCallToDestination_Req() message. The SCS relays the result of the
call set-up (both positive and negative) to the application, which ends after that.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)443G TS 23.127 version 3.0.0

2: callEventNotify()

CallControlManager CallApplication

3: 'translate number'

5: routeCallToDestination_Req()

6: new()

7: routeCallToDestination_Res()

4: setCallback()

Figure 8: Simple number translation

7.1.2.4 Call barring

The next example (Figure 9) shows how a call barring application can be implemented:

C a l lA p p l ic a t io n U IC a llC a l lC o n tr o lM a n a g e r

8 : ro u te C a llT o D e s t in a t io n _ R e s ()

7 : ro u te C a llT o D e s t in a t io n _ R e q ()

4 : s e tC a llb a c k ()

5 : s e n d In fo A n d C o lle c t ()

6 : s e n d In fo A n d C o lle c t_ R e s ()

2 : c a llE v e n tN o t i fy ()

3 : s e tC a llb a c k ()

Figure 9: Call barring application

7.1.2.5 Pre-paid with advice of charge

The next example shows how a pre-paid application can be implemented:

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)453G TS 23.127 version 3.0.0

With a pre-paid application it is the application that will determine the charging for the call. This means that the
application will hold the whole tariffing scheme needed and needs to control the whole call. For the call shown the
following conditions apply:

- It is a long call

- Two tariff changes take place during the call.

- The application will inform the user about the applicable charging (the methods needed for this are described in
section 7.5.2).

After the application has been triggered, it sends a superviseCall_Req() message indicating that the application will be
responsible for charging the call. Before the call is be routed to the requested destination(5), the application sends the
allowed time for the call (4) and informs the user about the charging applicable (using the Advice of Charge
functionality in the core network) for this call (3). The sent information consists of two sets of AoC information and a
tariff switch. The application will be notified via the superviseCall_Res() message if the tariff switch expired during the
supervised period. This allows the application to send a new set of AoC information and a new tariff switch.

The application is notified of the expiration of the allowed time (7) and determines if the user has enough account left to
continue with the call.

1 If there is enough account left a new time slot is allowed

2 Is there not enough account, the user will be notified and the call terminated after some time in order to allow the
user to finish the call graciously.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)463G TS 23.127 version 3.0.0

App lica tion
 C a llC on tro lM ana ger C a ll U IC a ll

1 : enableCallN o tifica tion ()

2 : ca llE ventN otify()

3 : se tA dviceO fC harge()

5 : rou teCa llT oD estination_R eq()

7 : supe rviseC all_Res()

8 : supe rviseC all_Req()

9 : supe rviseC all_Res()

10 : se tA dviceO fC harge()

11 : superviseC all_R eq()

12 : superviseC all_R es()

4 : supe rviseC all_Req()

13 : send Info_ R eq()

14 : send Info_ R es()

15 : superviseC all_R eq()

16 : superviseC all_R es()

17 : re lease()

6 : rou teCa llT oD estination_R es()

Figure 10: Pre-paid with AoC

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)473G TS 23.127 version 3.0.0

7.2 Network User Location
The Network User Location service capability feature provides terminal location information, based on network-related
information, such as a VLR Number, Location Area Identification, or Cell Global Identification. It may also provide
geographical location information, if the network is able to support the corresponding capability.

It consists of a single interface class, permitting an application to perform the following:

- User location requests.

- Requests for starting (or stopping) the generation by the network of periodic user location reports.

- Requests for starting (or stopping) the generation by the network of user location reports based on location
changes.

Method locationReportReq()

Request for mobile-related location information on one or several users.

Direction Application to network

Parameters appLocationCamel
If this parameter is set (i.e. not NULL) it specifies a reference to the application
interface, which is used for callbacks. If set to NULL, the application interface defaults
to the interface specified via the obtainInterface() method (refer to
Authentication interface).

users
Specifies the user(s) for which the location shall be reported.

Returns assignmentId
Specifies the assignment ID of the location-report request.

Errors INVALID_PARAMETER_VALUE
A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET
The requested method has been refused, because no callback address is set.

RESOURCES_UNAVAILABLE
The required resources in the network are not available.
The application may try to invoke the method at a later time.

USER_NOT_SUBSCRIBED
Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED
Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION
Returned if the requests violates the end-user’s privacy setting

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)483G TS 23.127 version 3.0.0

Method locationReportRes()

Delivery of a mobile location report. The report is containing mobile-related location
information for one or several users.

Direction Network to application

Parameters assignmentId
Specifies the assignment ID of the location-report request.

locations
Specifies the location(s) of one or several users.

Returns -

Errors INVALID_PARAMETER_VALUE
A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID
The assignment ID does not correspond to one of a valid assignment.

Method locationReportErr()

This method indicates that the location report request has failed.

Direction Network to application

Parameters assignmentId
Specifies the assignment ID of the failed location report request.

cause
Specifies the error that led to the failure.

diagnostic
Specifies additional information about the error that led to the failure

Returns -

Errors -

Method periodicLocationReportingStartReq()

Request for periodic mobile location reports on one or several users.

Direction Application to network

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)493G TS 23.127 version 3.0.0

Parameters appLocation
If this parameter is set (i.e. not NULL) it specifies a reference to the application
interface, which is used for callbacks. If set to NULL, the application interface defaults
to the interface specified via the obtainInterface() method (refer to
Authentication interface).

users
Specifies the user(s) for which the location shall be reported.

reportingInterval
Specifies the requested interval in seconds between the reports.

Returns assignmentId
Specifies the assignment ID of the periodic location-reporting request.

Errors INVALID_PARAMETER_VALUE
A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET
The requested method has been refused, because no callback address is set.

RESOURCES_UNAVAILABLE
The required resources in the network are not available.
The application may try to invoke the method at a later time.

USER_NOT_SUBSCRIBED
Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED
Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION
Returned if the requests violates the end-user’s privacy setting

Method periodicLocationReportingStop()

This method stops the sending of periodic mobile location reports for one or several
users.

Direction Application to network

Parameters stopRequest
Specifies how the assignment shall be stopped, i.e. if whole or just parts of the
assignment should be stopped.

Returns -

Errors INVALID_ASSIGNMENT_ID
The assignment ID does not correspond to one of a valid assignment.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)503G TS 23.127 version 3.0.0

Method periodicLocationReport()

Periodic delivery of mobile location reports. The reports are containing mobile-related
location information for one or several users.

Direction Network to application

Parameters assignmentId
Specifies the assignment ID of the periodic location-reporting request.

locations
Specifies the location(s) of one or several users.

Returns -

Errors INVALID_PARAMETER_VALUE
A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID
The assignment ID does not correspond to one of a valid assignment.

Method periodicLocationReportErr()

This method indicates that a requested periodic location report has failed. Note that
errors only concerning individual users are reported in the ordinary
periodicLocationReport() message.

Direction Network to application

Parameters assignmentId
Specifies the assignment ID of the failed periodic location reporting start request.

cause
Specifies the error that led to the failure.

diagnostic
Specifies additional information about the error that led to the failure.

Returns -

Errors -

Method triggeredLocationReportingStartReq()

Request for user location reports, containing mobile related information, when the
location is changed (the report is triggered by the location change, e.g. change of VLR
number, change of Global Cell Identification).

Direction Application to network

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)513G TS 23.127 version 3.0.0

Parameters appLocation
If this parameter is set (i.e. not NULL) it specifies a reference to the application
interface, which is used for callbacks. If set to NULL, the application interface defaults
to the interface specified via the obtainInterface() method (refer to
Authentication interface).

users
Specifies the user(s) for which the location shall be reported.

triggers
Specifies the trigger conditions.

Returns assignmentId
Specifies the assignment ID of the triggered location-reporting request.

Errors INVALID_PARAMETER_VALUE
A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET
The requested method has been refused, because no callback address is set.

RESOURCES_UNAVAILABLE
The required resources in the network are not available.
The application may try to invoke the method at a later time.

USER_NOT_SUBSCRIBED
Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED
Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION
Returned if the requests violates the end-user’s privacy setting

Method triggeredLocationReportingStop()

Request that triggered mobile location reporting should stop.

Direction Application to network

Parameters stopRequest
Specifies how the assignment shall be stopped, i.e. if whole or just parts of the
assignment should be stopped.

Returns -

Errors INVALID_ASSIGNMENT_ID
The assignment ID does not correspond to one of a valid assignment

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)523G TS 23.127 version 3.0.0

Method triggeredLocationReport()

Delivery of a report that is indicating that one or several user's mobile location has
changed.

Direction Network to application

Parameters assignmentId
Specifies the assignment ID of the triggered location-reporting request.

location
Specifies the location of the user.

criterion
Specifies the criterion that triggered the report.

Returns -

Errors INVALID_PARAMETER_VALUE
A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID
The assignment ID does not correspond to one of a valid assignment.

Method triggeredLocationReportErr()

This method indicates that a requested triggered location report has failed. Note that
errors only concerning individual users are reported in the ordinary
triggeredLocationReport() message.

Direction Network to application

Parameters assignmentId
Specifies the assignment ID of the failed triggered location reporting start request.

cause
Specifies the error that led to the failure.

diagnostic
Specifies additional information about the error that led to the failure.

Returns -

Errors -

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)533G TS 23.127 version 3.0.0

7.3 User Status
The User Status service capability feature provides general user status monitoring. It allows applications to obtain the
status of the user’s terminal. It consists of a single interface class.

Method statusReportReq()

Request for a report on the status of one or several users.

Direction Application to network

Parameters appStatus
If this parameter is set (i.e. not NULL) it specifies a reference to the application
interface, which is used for callbacks. If set to NULL, the application interface defaults
to the interface specified via the obtainInterface() method (refer to
Authentication interface).

users
Specifies the user(s) for which the status shall be reported.

Returns assignmentId
Specifies the assignment ID of the status-report request.

Errors INVALID_PARAMETER_VALUE
A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET
The requested method has been refused, because no callback address is set.

RESOURCES_UNAVAILABLE
The required resources in the network are not available.
The application may try to invoke the method at a later time.

USER_NOT_SUBSCRIBED
Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED
Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION
Returned if the requests violates the end-user’s privacy setting

Method statusReportRes()

Delivery of a report, that is containing one or several user's status.

Direction Network to application

Parameters assignmentId
Specifies the assignment ID of the status-report request.

status
Specifies the status of one or several users.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)543G TS 23.127 version 3.0.0

Returns -

Errors INVALID_PARAMETER_VALUE
A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID
The assignment ID does not correspond to one of a valid assignment.

Method statusReportErr()

This method indicates that the status report request has failed.

Direction Network to application

Parameters assignmentId
Specifies the assignment ID of the failed status report request.

cause
Specifies the error that led to the failure.

diagnostic
Specifies additional information about the error that led to the failure.

Returns -

Errors -

Method triggeredStatusReportingStartReq()

Request for triggered status reports when one or several user's status is changed. The
user status SCF will send a report when the status changes.

Direction Application to network

Parameters appStatus
If this parameter is set (i.e. not NULL) it specifies a reference to the application
interface, which is used for callbacks. If set to NULL, the application interface defaults
to the interface specified via the obtainInterface() method (refer to
Authentication interface).

users
Specifies the user(s) for which the status changes shall be reported.

Returns assignmentId
Specifies the assignment ID of the triggered status-reporting request.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)553G TS 23.127 version 3.0.0

Errors INVALID_PARAMETER_VALUE
A method parameter has an invalid value.

NO_CALLBACK_ADDRESS_SET
The requested method has been refused, because no callback address is set.

RESOURCES_UNAVAILABLE
The required resources in the network are not available.
The application may try to invoke the method at a later time.

USER_NOT_SUBSCRIBED
Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED
Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION
Returned if the requests violates the end-user’s privacy setting

Method triggeredStatusReportingStop()

This method stops the sending of status reports for one or several users.

Direction Application to network

Parameters stopRequest
Specifies how the assignment shall be stopped, i.e. if whole or just parts of the
assignment should be stopped.

Returns -

Errors INVALID_ASSIGNMENT_ID
The assignment ID does not correspond to one of a valid assignment.

Method triggeredStatusReport()

Delivery of a report that is indicating that a user's status has changed.

Direction Network to application

Parameters assignmentId
Specifies the assignment ID of the triggered status-reporting request.

status
Specifies the status of the user.

Returns -

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)563G TS 23.127 version 3.0.0

Errors INVALID_PARAMETER_VALUE
A method parameter has an invalid value.

INVALID_ASSIGNMENT_ID
The assignment ID does not correspond to one of a valid assignment.

Method triggeredStatusReportErr()

This method indicates that a requested triggered status reporting has failed. Note that
errors only concerning individual users are reported in the ordinary
triggeredStatusReport() message.

Direction Network to application

Parameters assignmentId
Specifies the assignment ID of the failed triggered status reporting start request.

cause
Specifies the error that led to the failure.

diagnostic
Specifies additional information about the error that led to the failure.

Returns -

Errors -

7.4 Terminal Capabilities
It shall be possible for a application to request Terminal Capabilities as defined by MExE [3]. The terminal capabilities
are provided by a MExE compliant terminal to the MExE Service Environment either on request or by the terminal
itself.
Terminal Capabilities are available only after a Capability negotiation has previously taken place between the user´s
MExE terminal and the MExE Service environment as specified in [3].

Note: for Release 99 only WAP MExE devices can supply terminal capabilities.

The Terminal Capabilities service capability feature is supported by a unique interface class, which consists of the
following method.

The Terminal Capabilities service capability feature is supported by a unique interface class, which consists of the
following method.

Method getTerminalCapabilities()

This method is used by an application to get the capabilities of a user´s terminal.

Direction Application to Network

Parameters terminalIdentity
Identifies the terminal. It may be a logical address known by the WAP
Gateway/PushProxy.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)573G TS 23.127 version 3.0.0

Returns statusCode
Indicates whether or not the terminal capabilities are available.

terminalCapabilities

Specifies the latest available capabilities of the user´s terminal.
This information, if available, is returned as CC/PP headers as specified in W3C [12]
and adopted in the WAP UAProf specification [13]. It contains URLs; terminal
attributes and values, in RDF format; or a combination of both.

Errors -

7.5 Message Transfer

7.5.1 Generic User Interaction

The Generic User Interaction service capability feature is used by applications to interact with end users. It consists of
two interface classes:

1. User Interaction Manager, containing management functions for User Interaction related issues

2. Generic User Interaction, containing methods to interact with an end-user

The Generic User Interaction service capability feature is described in terms of the methods in the Generic User
Interaction interface classes.

The following table gives an overview of the Generic User Interaction methods and to which interface classes these
methods belong.

Table 2: Overview of Generic User Interaction interface classes and their methods

User Interaction Manager Generic User Interaction

createUI sendInfoReq

createUICall sendInfoRes

enableUINotification sendInfoErr

disableUINotification sendInfoAndCollectReq

userInteractionEventNotify sendInfoAndCollectRes

userInteractionAborted sendInfoAndCollectErr

release

userInteractionFaultDetected

7.5.1.1 User Interaction Manager

Inherits from the generic service interface.

The User Interaction Manager interface class provides the management functions to the User Interaction class interface.

Method createUI()

This method is used to create a new (non call related) user interaction object.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)583G TS 23.127 version 3.0.0

Direction Application to network

Parameters appUI
Specifies the application interface for callbacks from the user interaction created.

userAddress
Indicates the end-user whom to interact with

Returns userInteraction
Specifies the interface and sessionID of the user interaction created.

Errors USER_NOT_SUBSCRIBED
Returned if the end-user is not subscribed to the application

APPLICATION_NOT_ACTIVATED
Returned if the end-user has de-activated the application

USER_PRIVACY_VIOLATION
Returned if the requests violates the end-user’s privacy setting

Method createUICall()

This method is used to create a new call related user interaction object.

The user interaction can take place to the specified party (userAdress) or to all parties in a call
(callIdentifier). Only one of callIdentifier or userAdress may be defined (the
other should be set to NULL).

Note that for certain implementations user interaction can only be performed towards the controlling
call party, which shall be the only party in the call.

Direction Application to network

Parameters appUI
Specifies the application interface for callbacks from the user interaction created.

callIdentifier
Specifies the call interface and session ID of the call associated with the send info operation.

callLegIdentifier
Indicates the end-user whom to interact with

Returns userInteraction
Specifies the interface and sessionID of the user interaction created.

Errors

Method enableUINotification()

This method is used to enable the reception of user initiated user interaction.

Direction Application to network

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)593G TS 23.127 version 3.0.0

Parameters appInterface
If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is
used for callbacks. If set to NULL, the application interface defaults to the interface specified via the
setCallback() method.

eventCriteria
Specifies the event specific criteria used by the application to define the event required, like user
address and service code.

Returns assignmentID
Specifies the ID assigned for this newly-enabled event notification.

Errors

Method disableUINotification()

This method allows the application to remove notification for UI related actions previously set.

Direction Application to network

Parameters assignmentID
Specifies the assignment ID given by the user interaction manager interface when the previous
enableNotification() was called. If the assignment ID does not correspond to one of the
valid assignment IDs, the framework will return an error code.

Returns

Errors

Method userInteractionEventNotify()

This method notifies the application of a user initiated request for user interaction.

Direction Network to Application

Parameters ui
Specifies the reference to the interface and the sessionID to which the notification relates.

eventInfo
Specifies data associated with this event.

assignmentID
Specifies the assignment id which was returned by the enableNotification() method. The
application can use assignment id to associate events with event specific criteria and to act
accordingly.

Returns appInterface
Specifies the application interface for callbacks from the user interaction created.

Errors

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)603G TS 23.127 version 3.0.0

Method userInteractionAborted()

This method indicates to the application that the User Interaction SCF instance has terminated or
closed abnormally. No further communication will be possible between the User Interaction SCF
instance and application.

Direction Network to Application

Parameters userInteraction
Specifies the interface and sessionID of the user interaction SCF that has terminated.

Returns

Errors

7.5.1.2 Generic User Interaction

Inherits from the generic service interface. The Generic User Interaction interface class provides functions to send
information or data to, or gather information from, the user (or call party). The information to send can be an
announcement or a text. The data downloaded in the terminal is specified by a URL.

Method sendInfoReq()

This asynchronous method sends information to the user.

Direction Application to Network

Parameters userInteractionSessionID
Specifies the user interaction session ID of the user interaction.

info
Specifies the information to send to the user. This information can be:

- an infoID, identifying pre-defined information to be send (announcement and/or text);

- a string, defining the text to be sent;

- a URL , identifying pre-defined information or data to be sent to or downloaded into the
terminal

variableInfo
Defines the variable part of the information to send to the user.

repeatIndicator
Defines how many times the information shall be send to the end-user. In the case of a call related
user interaction, a value of zero (0) indicates that the announcement shall be repeated until the call
or call leg is released or an abortActionReq() is sent.

responseRequested
Specifies if a response is required from the call user interaction SCF, and any action the SCF should
take.

Returns assignmentID
Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Errors

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)613G TS 23.127 version 3.0.0

Method sendInfoRes()

This asynchronous method informs the application about the start or the completion of a
sendInfoReq(). This response is called only if the application has required a response.

Direction Network to Application

Parameters userInteractionSessionID
Specifies the user interaction session ID of the user interaction.

assignmentID
Specifies the ID assigned by the generic user interaction interface for a user interaction request.

response
Specifies the type of response received from the user.

Returns

Errors

Method sendInfoErr()

This asynchronous method indicates that the request to send information was unsuccessful.

Direction Network to Application

Parameters userInteractionSessionID
Specifies the user interaction session ID of the user interaction.

assignmentID
Specifies the ID assigned by the generic user interaction interface for a user interaction request.

error
Specifies the error which led to the original request failing.

Returns

Errors

Method sendInfoAndCollectReq()

This asynchronous method plays an announcement or sends other information to the user and
collects some information from the user. The announcement usually prompts for a number of
characters (for example, these are digits or text strings such as "YES" if the user’s terminal device is
a phone).

Direction Application to Network

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)623G TS 23.127 version 3.0.0

Parameters userInteractionSessionID
Specifies the user interaction session ID of the user interaction.

infoID
Specifies the ID of the information to send to the user.

variableInfo
Defines the variable part of the information to send to the user.

criteria
Specifies additional properties for the collection of information, such as the maximum and
minimum number of characters, end character, first character timeout and inter-character timeout.

Returns assignmentID
Specifies the ID assigned by the generic user interface

Errors

Method sendInfoAndCollectRes()

This asynchronous method returns the information collected to the application.

Direction Network to Application

Parameters userInteractionSessionID
Specifies the session ID of the user interaction.

assignmentID
Specifies the ID assigned by the generic user interaction interface for a user interaction request.

response
Specifies the type of response received from the user.

info
Specifies the information collected from the user.

Returns

Errors

Method sendInfoAndCollectErr()

This asynchronous method indicates that the request to send information and collect a response was
unsuccessful.

Direction Network to Application

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)633G TS 23.127 version 3.0.0

Parameters userInteractionSessionID
Specifies the user interaction session ID of the user interaction.

assignmentID
Specifies the ID assigned by the generic user interaction interface for a user interaction request.

error
Specifies the error which led to the original request failing.

Returns

Errors

Method release()

This method requests that the relationship between the application and the user interaction object be
released. It causes the release of the used user interaction resources and interrupts any ongoing user
interaction.

Direction Application to Network

Parameters userInteractionSessionID
Specifies the user interaction session ID of the user interaction.

Returns

Errors

Method userInteractionFaultDetected()

This method indicates to the application that a fault has been detected in the user interaction.

Direction Network to Application

Parameters userInteractionSessionID
Specifies the interface and sessionID of the user interaction SCF in which the fault has been
detected.

fault
Specifies the fault that has been detected.

Returns .

Errors

7.5.2 Call User Interaction

The Call User Interaction service capability feature is used by applications to interact with end users participating to a
call. It consists of two interface classes:

1. User Interaction Manager, containing management functions for User Interaction related issues. This class is the
same as the one defined in section 7.5.1.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)643G TS 23.127 version 3.0.0

2. Call User Interaction, extending Generic User Interaction for call-specific user interaction. It provides functions
to send information to, or gather information from, a user (or call party) in a call.

The Call User Interaction service capability feature is described in terms of the methods in the Call User Interaction
interface classes.

The following table gives an overview of the Call User Interaction methods and to which interface classes these
methods belong.

Table 3: Overview of Call User Interaction interface classes and their methods

User Interaction Manager Call User Interaction

As defined for the Generic User
Interaction SCF

Inherits from Generic User
Interaction and adds:

abortActionReq

abortActionRes

abortActionErr

Method abortActionReq()

This asynchronous method aborts a user interaction operation, e.g. a sendInfoCall_Req().
The call and call leg are otherwise unaffected. The call user interaction SCF interrupts the indicated
action.

Direction Application to Network

Parameters userInteractionSessionID
Specifies the user interaction session ID of the user interaction.

assignmentID : TAssignmentID
Specifies the user interaction request to be cancelled.

Returns

Errors

Method abortActionRes()

This asynchronous method confirms that the request to abort a user interaction operation on a call
leg was successful.

Direction Network to Application

Parameters userInteractionSessionID
Specifies the user interaction session ID of the user interaction.

assignmentID : TAssignmentID
Specifies the user interaction request to be cancelled.

Returns

Errors

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)653G TS 23.127 version 3.0.0

Method abortActionErr()

This asynchronous method indicates that the request to abort a user interaction operation on a call
leg resulted in an error.

Direction Network to Application

Parameters userInteractionSessionID
Specifies the user interaction session ID of the user interaction.

assignmentID : TAssignmentID
Specifies the user interaction request to be cancelled.

error
Specifies the error which led to the original request failing.

Returns

Errors

7.6 User Profile Management
User Profile information may be distributed between the Home Environment and the Home Environment Value-Added
Services Providers. The HE-VASP may manage information specific to the services supported by their OSA
applications. For this, they may use models and mechanisms, which are out of the scope of OSA release 99.

Home Environment User Profile information consists of various interface and service related information. Of particular
interest in the context of release 99 is the following information:

- list of services to which the end-user is subscribed

- service status (active/inactive)

- privacy status with regards to network service capabilities (e.g. user location, user interaction)

- terminal capabilities

Home Environment user profile information may be stored centrally, or the information may be distributed over
relevant physical entities.

Terminal capabilities may be accessed by OSA applications through the network Terminal Capabilities SCF.

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)663G TS 23.127 version 3.0.0

Annex A (Informative):
Change History

Change history
TSG SA# SA Doc Spec CR Rev Rel Cat Subject/Comment Old New

SA#07 23.127 - - - - Approved at SA#7 as version 3.0.0. Minor
editorial changes compared to v.2.0.0.

2.0.0 3.0.0

67

ETSI

ETSI TS 123 127 V3.0.0 (2000-03)3G TS 23.127 version 3.0.0 Release 1999

History

Document history

V3.0.0 March 2000 Publication

	Intellectual Property Rights
	Foreword
	Foreword
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Virtual Home Environment
	5 Open Service Architecture
	5.1 Overview of the Open Service Architecture
	5.2 Basic mechanisms in the Open Service Architecture
	5.3 Handling of end-user related security
	5.3.1 End-user authorisation to applications
	5.3.2 Application authorisation to end-users
	5.3.3 End-user s privacy

	5.4 Base interface classes
	5.4.1 Base Interface Class
	5.4.2 Base Service Interface class

	6 Framework service capability features
	6.1 Trust and Security Management SCFs
	6.1.1 Initial Contact
	6.1.2 Authentication
	6.1.3 OSA Access

	6.2 Discovery
	6.3 Integrity Management SCFs
	6.3.1 Load Manager
	6.3.2 Fault Manager

	7 Network service capability features
	7.1 Call Control
	7.1.1 Call Manager
	7.1.2 Call
	7.1.2.1 Sequence Diagrams
	7.1.2.2 Enable Call notification
	7.1.2.3 Number translation
	7.1.2.4 Call barring
	7.1.2.5 Pre-paid with advice of charge

	7.2 Network User Location
	7.3 User Status
	7.4 Terminal Capabilities
	7.5 Message Transfer
	7.5.1 Generic User Interaction
	7.5.1.1 User Interaction Manager
	7.5.1.2 Generic User Interaction

	7.5.2 Call User Interaction

	7.6 User Profile Management

	Annex A (Informative): Change History
	History

	h1:

