ETSI TS 129 198-1 ve.5.0 2006-12)

Technical Specification

Universal Mobile Telecommunications System (UMTS);
Open Service Access (OSA)

Application Programming Interface (API);

Part 1: Overview

(B3GPP TS 29.198-01 version 6.5.0 Release 6)

G

—

D

3GPP TS 29.198-01 version 6.5.0 Release 6 1 ETSITS 129 198-1 V6.5.0 (2006-12)

Reference
RTS/TSGC-0529198-01v650

Keywords
UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2006.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3GPP TS 29.198-01 version 6.5.0 Release 6 2 ETSITS 129 198-1 V6.5.0 (2006-12)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETS! identities can be found under
http://webapp.etsi.org/key/queryform.asp .

ETSI

http://webapp.etsi.org/IPR/home.asp
http://webapp.etsi.org/key/queryform.asp

3GPP TS 29.198-01 version 6.5.0 Release 6 3 ETSITS 129 198-1 V6.5.0 (2006-12)

Contents

Intellectual Property RIGNES.........oo et 2
0 Yo (o SRS 2
0= 11 o OSSPSR 6
gLl [N o1 o] o [OOSR 6
1 o0 o< PSPPSR 9
2 REFEIBINCES ...ttt sttt b e e et et et e e e Rt e bt e bt e b e se e be st e se e st e benbesbeneenbeseneas 9
3 Definitions and @DDreVIELIONS...........ooueieieieieses ettt na e 9
31 D= T T (0] USSR 9
3.2 F Y o] 1= V7= 0] P 10
4 OPEN SEIVICE ACCESS APIS.....eieeee ettt bbbttt se bt eb e e bt e b en e b nnenn e 11
5 Structure of the OSA API (29.198) and Mapping (29.998) dOCUMENLS..........cccccuevririciiiininiciiine, 12
6 1YL= oo (o] o 1Y A SRS 14
6.1 TOOIS AN LANGUAGES. ... vttt sttt sttt sttt eb et sb e e st ebese st b e sb et eb e se e s e ebese et ek e s e e e eb e s b et ebesb e e et e sbe e ebesrennenens 14
6.2 PACKAGING ...ttt b bt h e h e bRt R h e R R £ R R R R R AR R Rt b et een e e ns 14
6.3 L0 o =PSRRI 14
6.4 INBIMING SCREITIEtttk ettt h ettt b et b et b e e e eb e e e eh e b ea s eb e b e e e bt eb e s e bbbt b e s e bt et e e ebe e e e ens 14
6.5 State Transition Diagram text and teXt SYMDOIS.........ccoiiriie e 15
6.6 Exception handling and Passing FESUITLS.c.eiueieeriee et s esee e e ee e sreesre et st e sreesre e teesseesteeseeneesneesnes 15
6.7 REFEIEINCES ...ttt bttt et bbbt h e e ae e st e e et se e e b e s Rt eh e e ne e e e b seeebesaeene e e ennenes 15
6.8 S o Y=o o= o) S 15
6.9 = D= 15
7. INErOUCTION T0 OSA APIS ...ttt b e bbb e st e et et seebenteabe st e neeneens 16
7.1 I IEEITACE TYPES. ..t ttiueetert ettt ettt ettt et h et b bt b et b et eb s e £ e e b b e e eb e b e e e b e bt e e n e e bt b e ne e bt b e e eb e e e ens 16
7.2 SEIVICE FACLOMY ...ttt ettt b et h b e h e b e h e E e bt E et e bt e b et e bt b e h e e b s e e neebesb et eb e s b et eb e b e e e 16
7.3 (LS S 0 =SS o RSN 16
74 INEEITACES BNO SESTIONS.......ceitiiteite ettt b bbbt et e st e s b e s b sh e e bt s aeeae e e e e e besreebesaeene e e enrenes 16
75 CallDBCK INEEITACES.....ceeieeceeeeee et s e bbbt h et se e b s ae b e e e e e s besbeeb e s neenne e ennas 16
7.6 S L o T o 7= o SRS 17
7.7 Synchronous versus ASynChronOUS MELNOUS...........coiiiiieii et nnees 17
7.8 OUL PAIGIMELENS ...ttt ettt ettt s et e sa e et eae e e h e e e Re e R e e Rt e s st e R e e s R e e sRe e eEe e she e nRe e st en s e enneennennnenrnennees 17
7.9 (o= o (0] o I 1= = o) 17
7.10 COMIMON EXCEPLIONS ...ttt sttt sttt sttt et b e et b e st b e s b e b s e bt b s e e bt b et e bt e b e e e ae b e ne et ebe s b et ebenn e e 18
7.11 USE OF INULL ..ttt ettt ettt et e s te e s he e s te e sbeeaseeaeeeaeaebe e beenbeesbeentesnsesnsesaeesaeesaeanreentenns 18
7.12 NOLfiCALETON HANAITNGttt bbb bbb et b bbbt 18
8 Backwards Compatibility CONSIAEIatioNS.eiiriiiirieieieiee e 19
8.1 Guidelines to enable backwards compatibility in implementationSccovcveveeie e 19
8.2 01 W 0T =Y 19
821 Server Side PErMItEd ChANQESccviie et e e b et et eesaesre e reenteeeeeneesnes 19
8.2.2 Client side permitted ChaNGES.........cooi e e st et e e e teeneeneeenes 20
8.2.3 Datatype permitted ChaNQES........cvoi et e st e et e teeteenesneeenes 20
8.3 Implementation Guidelines for SErver PrOgramMErS.ottt 20
8.4 Implementation Guidelines for Client ProgrammerS.........c.cevereerireeereiei s 20
8.5 Tracking the changes in the SPECITICALIONS..........c.ciiiiiie e 20
851 TS 1= o OO PP 20
852 (D= o g o= 1< o B K=o FO TSSOSO USSP UR ST PR 21
8.6 TechnNOlOgy rEAlTIZALTON TUIES ..ottt ettt ettt e et b e et eb e sb e bt s b e e ebe b neene 21
8.6.1 CODAIDL RUIES.......ceitiie et h ettt et bbb h et e e e se e b e s bt eb e et et e besheebesneene e s ennes 21
8.6.2 JAVATUIES ...ttt bkt a et e b s e e e b e bt b e ae e e et e se e eb e e Rt eh e e e e e e b e eh e Rt neene e e e re e 21
8.7 Rules for removal of deprecated items from the SPeCifiCations............ccovvevveceiieenecseee e 21

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 4 ETSITS 129 198-1 V6.5.0 (2006-12)

Annex A (normative): L@ 1Y N 1 | SR SORS 22
A.l TOOIS BN LBNQUBOES. ... eeuveeeeieeeiieeste et et eteesteestees e estesseesseesseesseanseanseassesseessaesseesseansesnsssseesseanseenseensessenssenssens 22
A A F 1= = o TSRS 22
A3 ODJECE REFEIENCES.......cueitiitiititeeee bbbttt b bbb bt e e e e e st e bt nb e n e e e e 22
YNV F=To o T a0 o)l DT = 1Y - TSR 22
A4l TS Lol = = 11 0= PSSR 22
A.4.2 L0001 = £ TP T TP O 22
A.4.3 LOC0] 1= 1 o] 0 TSP P TSR P TSR PS 22
Ad4 SEOUBICES. ...ttt ettt e e r et e e e e Rt s et e R e R e e bt e s e e s e Rt AR e AR e AR e SRt e e e e e e R e AR e R e Re R e e e n e E e Rt r et an e enns 23
A.45 [000 = o] S PSRS 23
A.46 L0130 T 0= PSSR 23
T U £ X o N [PP 24
E T o= o o SR 24
A.7 Naming space across CORBA MOAUIES...........cceeiiiieeieeii et steeste et ste et ste e aesre e e besreennesneens 24
Annex B (informative): W3BC WSDL .ttt sttt sttt sreen e s re e nesne e 25
B.1 TOOISANA LBNQUAJES.......ccueitiitiieieieeeiteiest sttt sttt st b et b e st b et et e b e e e e e e e b e nne b e nn e s e e 25
B.2 Proposed Namespaces for the OSA WSDL ..ot 25
T I @ o=l 2 = 1= (= (00 =- RO 26
B.4 Mapping UML Data TypesSto XIML SCREMAL......ccoiiiiiiieiee ettt st s ne 26
B.4.1 DAA TYPES.....ee et e e e e e h e b E e b e e e e sae e reene e 26
B.4.12 G 004 = 1| USRI 26
B.4.13 SN@MEV BIUBPAII>> ...ttt ettt sttt e sttt e et e e s e be et e e b e st sb e b et s e et ene b ebenessebeneseebenesenbeneana 27
B.4.14 <<SeqUENCEOTDALAEI EMENESS ...ttt et b et e 27
B.4.15 STYPEDESS . b e R R st e bt e R bt e Rt e R e bt 27
B.4.1.6 <<KNUMberedSetOf DAtAEI EMENISScciiierirreeeerree e 28
B.4.1.7 <<TaggedChoiCeOfDAAEI EMENIS>>........c.occiiciececie et e e teeaesrae e e sneesreenseenneens 28
B.5 Mapping of UML INErfaCeS IO WSDL ..ottt e 28
B.5.1 Mapping of UML Operations to WSDL meSSage el @mMENt...........ccoveeiireiririeireneeesieseeesi e 28
B.5.2 Mapping of Exception to WSDL meSSAge El@MENT........cc.ciiiriiiririeesteseeesi e 29
B.54 Mapping of Interface Classto WSDL portType and binding elements............coeoreinninneinesesees 29
B.5.5 Mapping of UML Interfacesto WSDL Service @lemMENt.........cocoiireeriniiiniesieeesee e 30
Annex C (informative): Java™ Realisation APl ...t 31
C.1 Java™ RealiSation OVEIVIEWcccuiiiieiiiiiiiiiciei e 31
C1l1 J2SETM AP .ottt E R R e R R e R R R R R R e R Rt E Rt e Rt e r e 31
C12 J2EET™ AP ..ottt h R R R R R R R R e R R e Rt R bt e Rt e rene e 31
C13 JAVAOOCT™ ...ttt E et h e R R R R R R R R R R e R R e R R e R Rt R Rt e Rt r et e 31
C.2 TOOISAN IANQUAGES......ccueiteeeeieciieite st ete sttt e te s e e ee st e s e e tesbeetestessa e besteeasessesseetesseessestesseensestesseensensenn 32
C.3 Generic mappings (Elements common to J2SE™ and J2ZEE™) ... 32
C31 NBMEGPACE ... e s s s e e s e e e s e b e e b e b e e a e s e e e e sae e sne e re e neea 32
C3.2 Package Naming CONVENTIONS...........ciireiiiieirierier ettt b bbb et sb et sb e et 32
C33 (@ o1 ol L= 1= =10 SRS 32
C34 =001 NN = 0o SR 33
C35 Element NaminNg COllISIONS.ccuiiiiiieeiee et e sttt e e sae e sreeste e e e saeesae e teesseeseessaesnsesneesneesseesseanseensenns 33
C36 (D= v B IV o =N I L T a1 o] S 33
C36.1 S Lol I = R Y o= 33
C.3.6.2 L0001 = £ USSR 33
C.3.6.3 NumberedSetsOf DataEl ements (COHECIIONS)coveiiirieiriereeerie et 34
C.3.6.4 SequenceOfDataEl @MENtS (SEIUCTUIES)civiieierieieiereei sttt et b bbb snesnenen 34
C.3.6.5 NameV alUePair (ENUMEIELIONS)c.civeeeueriereetesiereete sttt sttt sttt sttt st et be et sbe bbbt b e et sbe b 35
C.3.6.6 TaggedChoiceOf DataEI emMENtS (UNIONS)oiviiriieiriirieisies ettt bbb e 36
C.3.6.7 O ONS... .ttt bbb bt b e h e b e R b e R R e R R Rt bRt b e bbb 38

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 5 ETSITS 129 198-1 V6.5.0 (2006-12)

C36.7.1 Platf OFMEXCEPLIONeeceieeteeiie ettt e e e e tessaesseesteesseenteeneeeseenseenseenaenneesseensens 38
C.3.6.7.2 P XXX XXX EXCEPLIONS ...ttt sttt st sttt st ste st st seesesteseebesbeseesesseseesesbeneesesaeneesesseneesens 39
C.36.7.3 TPCOMMONEXCEPLIONS. ... eeuveeteeieriesee st steesteete et e st et e e te e e e seesseesaeesaeesaeeseanseaseesseenseessensseensennsenneesnes 39
C36.74 TpCommonEXception's assoCi ated EXCEPLIONS.ccuiiiereereee e e e s sae e e et re e esaesnaesneesnes 40
C.36.75 Additional abStraCt EXCEPLIONScvieieciecees et e e e et e e teetesaesneesreesneenseensenns 40
C.36.7.6 INValidUni ONA CCESSOTEXCEPLION.ecueeetieiieieeie ettt ste et e st et e e e e stessaesseesreesneesseeseenseans 41
C.3.6.7.7 INValidENUMY BIUEEXCEDTION ...ttt st 41
C.3.6.8 (D1 o 1< or= o] o OSSOSO TSSOSO VRS TRUPR 41
C.4 J2SE™ SPECITIC CONVENLIONS.......ccuiitiieititeieeeeee sttt sb b b s e et b e en e b e s nn e s 42
C4.1 S () o R I R = 1 ST 42
c4.2 L0012 0 | £ F TSRO OPP PP 42
c43 LS TV 0 O T o o= S 43
c44 Y=o o T o ol o 1= = SRR 43
c45 Y=o o T o o 5= Y7o = TSR 43
c4.6 MapPiNg Of UML OPEIELIONS.ccveiieiiieiieeeeiesteeseesteetestesaeseesseesseesseesseassesseesseesseessesssessesssessseesseesseensenns 43
cax MapPING Of TPSESSIONIDeiuiriiietirtiiet sttt bbbt bt a bbbt b et b e bt eb e e e 44
c48 Mapping of TpAssignmentID to the creation of an ACtiVity ODJECE...........ccviieininicineeee e 44
c49 CAlIDBCK RUIE ...ttt ettt e e se et e saeeaees e et emeeseeebesmeen e e e enseseeseeseesneeneeneeneas 47
CAA0 FBCEONY RUIE ...ttt b et b e et b e s e et eb e s e et eb e s e et eb e s e e e eb e s b e e ebesb e e ebenbeneenens 48
C.A11 J2SE™ SPECITIC EXCOPLIONS.....cecuiiteieeteite ettt et b bbbt b e b st ekt s b e e et e sb e e ebenbennenea 50
C4111 PeerUnavai laDI EEXCEDIION.........coiieee bbb et 50
C4.11.2 RNEE ot RS e 0 (o= o]) o 50
C.4.12 User Interaction SPECITIC RUIES.......ccuiiiicece sttt e e te e saeesre e aeeteenteentessaesseesrens 51
C4.121 Interfaces representing UML [pUl and [PUICEI] RUIEccoiiieiie e 51
C4.12.2 Naming Collisions of IpUl and IPUICAl RUIE.............ccveiieieece ettt 51
C4.123 Naming Collisions of IpUICall and IpUTAdmMIinManager RUIE...........cccevvevieie e 51
C5 J2EE™ SPeCific CONVENTIONScviuiiiiieiiiscieisiseii b 51
Ch.1 AV oo FO OSSR RRURRSROSPO 51
Cbh2 Remote INterface DEfiNItIONSoeoiieee ettt ettt se e besaesae e eneeneens 51
Cbh21 FPINEEITECE. .. .ttt b et b et b e bbb bR e b et b et b et bbb n e 51
Cbh.22 Methods fOr REMOLE INLEITACES........coeieeeeeie bbb e s b e neen 51
C53 LOCal INtErfaCe DEFINITIONS.ciiieeeieeeee sttt b e e b et ae et e e e e e sb e s besbesbeeneennennen 52
Cbh31 MethodS FOr LOCEI INEEITACES........eiueieeieeeee et bbb bt s b e e e 52
C54 Multi Party Call Control SPECITIC RUIES........cc.eeiiieiece ettt esne e reenneens 52
Cb54.1 IpCallLeg and IpAppCallLeg method name CONFIICES.......c.ccueveerierice e 52
Annex D (informative): Description of Overview for 3GPP2 cdma2000 networks..........ccccceeuennee. 53
D R €= g1 e (= o 1 o] = ST 53
D.2 SPECITIC EXCEPIIONS.eititiitistesteeee ettt b et e et h bbb e e e e st b e nre b e e e s e 53
D.21 ClAUSE L1 SCOPE ...ttt ettt ettt sttt st se et se st eb e s e e he b e seehe e b e s e e Rt e b e s e e bt eb e s e e bt e b e s e e Rt eb e e e ae e b e b e neeb e s e et eb e st et ebenbe e e 53
D2.2 ClalSE 2: REFEIEINCES ..o ettt ettt sttt e et ea e et e e e teseeebesaeese e e enseseesaeseeeneeneenennees 53
D2.3 Clause 3: Definitions and aDbreVIaHiONS...........cooiiiiiieieee bbb sr e bt eae e eneas 53
D2.4 Clause 4: OpeNn SErVICE ACCESS APIS.....oi ettt ettt e e st e e tesaesaeesaeesseeaeanseenseeseeeneesseensens 53
D25 Clause 5: Structure of the OSA API (29.198) and Mapping (29.998) dOCUMENLScccvveveeereerieseesieenenn 53
D.2.6 (O = TH S = G 1Y/ = 7o T (o] oo | RS 54
D.2.7 Clause 7: INtroduction 10 OSA APIS ..ottt b et he e st sre bt eae e eneas 54
D.28 ANNEX A (NOFMBELIVE): OM G IDL.....c.euiiiiieiiiteet ettt et b e et b e et eb e b e b b neene s 54
D.29 ANNEX B (infOrmative): W3C WSDL.......cuiiiiieiiitireeieste ettt sttt s eb e st eb e e eb b ebesne s 54
D.210 Annex C (informative): JAVAT™ AP ..ottt bbbt st s n e b e 54
Annex E (informative): ChangE NiSLOrYouececi e et beereas 55
[11 (TSR P PSPPSR 56

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 6 ETSITS 129 198-1 V6.5.0 (2006-12)

Foreword
This Technical Specification has been produced by the 3" Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z
where:
x thefirst digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.

y the second digit isincremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z thethird digit isincremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part 1 of a multi-part TS covering the 3" Generation Partnership Project: Technical
Specification Group Core Network and Terminals, Open Service Access (OSA); Application Programming Interface
(API), asidentified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1: "Overview";

Part 2: "Common Data Definitions";
Part 3: "Framework";

Part 4: "Cdl Control";

Sub-part 1: "Call Control Common Definitions*;
Sub-part 2: "Generic Call Control SCF";
Sub-part 3: "Multi-Party Call Control SCF";
Sub-part 4: "Multi-Media Call Control SCF";

Sub-part 5: "Conference Call Control SCF"; (not part of 3GPP Release 6)
Part 5: "User Interaction SCF";
Part 6: "Mobility SCF";
Part 7: "Terminal Capabilities SCF";
Part 8: "Data Session Control SCF";
Part 9: "Generic Messaging SCF*; (not part of 3GPP Release 6)
Part 10: "Connectivity Manager SCF"; (not part of 3GPP Release 6)
Part 11: " Account Management SCF";
Part 12: "Charging SCF".
Part 13: "Policy Management SCF";
Part 14: "Presence and Availability Management SCF";
Part 15: "Multi Media Messaging SCF"; (new in Release 6)

The M apping specification of the OSA APIsand network protocols (3GPP TR 29.998) is al so structured as above.
A mapping to network protocolsis however not applicable for al Parts, but the numbering of Partsis kept.
Also in case aPart is not supported in a Release, the numbering of the partsis maintained.

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 7 ETSITS 129 198-1 V6.5.0 (2006-12)

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

OSA API specifications 29.198-family OSA API Mapping - 29.998-family
20.198-01 | Overview 29.998-01 Overview
29.198-02 | Common Data Definitions 29.998-02 Not Applicable
29.198-03 | Framework 29.998-03 Not Applicable
Cal 29.198- 29.198- | 29.198- 29.198- 29.998-04-1 Generic Call Control — CAP mapping
Control 04-1 04-2 04-3 04-4 29.998-04-2 Generic Call Control — INAP mapping
(CO) Common | Generic | Multi- Multi- 29.998-04-3 Generic Call Control — Megaco mapping
SCF CC data CC SCF | Paty CC | mediaCC | 29.998-04-4 Multiparty Call Control — ISC mapping

definitions SCF SCF

29.198-05 | User Interaction SCF 29.998-05-1 User Interaction — CAP mapping

29.998-05-2 User Interaction — INAP mapping

29.998-05-3 User Interaction — Megaco mapping

29.998-05-4 User Interaction — SM'S mapping

29.198-06 | Mobility SCF 29.998-06 User Status and User Location — MAP mapping
29.198-07 | Termina Capabilities SCF 29.998-07 Not Applicable

29.198-08 | Data Session Control SCF 29.998-08 Data Session Control — CAP mapping
29.198-09 | Generic Messaging SCF 29.998-09 Not Applicable

29.198-10 | Connectivity Manager SCF 29.998-10 Not Applicable

29.198-11 | Account Management SCF 29.998-11 Not Applicable

29.198-12 | Charging SCF 29.998-12 Not Applicable

29.198-13 | Policy Management SCF 29.998-13 Not Applicable

29.198-14 | Presence & Availability Management SCF 29.998-14 Not Applicable

29.198-15 | Multi-media Messaging SCF 29.998-15 Not Applicable

The following table explains how the various releases of ETSI, Parlay and 3GPP OSA specifications correspond. Each
ETSI and 3GPP specification carries a version number and is updated independently. The frequency of 3GPP updates
may be up to every 3 months, which is greater than that of ETSI or Parlay, therefore, while there is a corresponding
version of 3GPP TS 29.198 for every version of ETS| ES 201 915 or ES 202 915, there is not necessarily a
corresponding version of the ETSI specification for each version of the 3GPP specification. For example, thereisno
ETSl/Parlay specification version which corresponds exactly to the 3GPP issue of TS 29.198 Release 4 from December
2001.

ETSI ES 201 915/ Parlay 3/ 3GPP TS 29.198 Release 4 (version 4.x.X)

ETSI OSA Specification Set Parlay Phase 3GPP TS 29.198 version

- - Release 4, March 2001 Plenary

Release 4, June 2001 Plenary

ES 201 915 v.1.1.1 (complete release) Parlay 3.0 Release 4, September 2001 Plenary

- - Release 4, December 2001 Plenary
ES 201 915 v.1.2.1 (complete release) Parlay 3.1 Release 4, March 2002 Plenary
ES 201 915 v.1.3.1 (complete release) Parlay 3.2 Release 4, June 2002 Plenary

- - Release 4, September 2002 Plenary
ES 201 915 v.1.4.1 (complete release) Parlay 3.3 Release 4, March 2003 Plenary

- - Release 4, June 2003 Plenary

- - Release 4, December 2003 Plenary

Release 4, June 2004 Plenary

ES 201 915 v1.5.1 (Partial Release) Parlay 3.4 Release 4, September 2004 Plenary

- - Release 4, December 2004 Plenary

Release 4, December 2005 Plenary

ES 201 915 v1.6.1 (Partial Release) Parlay 3.5 Release 4, June 2006 Plenary

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6

ETSI TS 129 198-1 V6.5.0 (2006-12)

ETSI ES 202 915/ Parlay 4 / 3GPP TS 29.198 Release 5 (version 5.x.x)

ETSI OSA Specification Set

Parlay Phase

3GPP TS 29.198 version

Release 5, March 2002 Plenary

ES 202 915 v.1.1.1 (complete release)

Parlay 4.0

Release 5, September 2002 Plenary

Parlay 4.1

Release 5, March 2003 Plenary

ES 202 915 v.1.2.1 (not parts 9, 13, 14)

Release 5, June 2003 Plenary

Release 5, September 2003 Plenary

Release 5, December 2003 Plenary

Release 5, March 2004 Plenary

Release 5, June 2004 Plenary

ES 202 915v1.3.1, (v1.2.1 for parts 9, 13, 14)

Parlay 4.2

Release 5, September 2004 Plenary

Release 5, December 2004 Plenary

Release 5, June 2005 Plenary

Release 5, December 2005 Plenary

ES 202 915 v1.4.1, (v1.3.1 for parts 9, 13)

Parlay 4.3

Release 5, June 2006 Plenary

ETSIES 203 915/ Parlay 5/ 3GPP TS 29.198 Release 6 (version 6.x.x)

ETSI OSA Specification Set

Parlay Phase

3GPP TS 29.198 version

Release 6, June 2003 Plenary

Release 6, December 2003 Plenary

Release 6, June 2004 Plenary

ES 203915v1.11

Parlay 5.0

Release 6, September 2004 Plenary

Release 6, December 2004 Plenary

Release 6, March 2005 Plenary

Release 6, June 2005 Plenary

Release 6, December 2005 Plenary

ES 203915v1.2.1

Parlay 5.1

Release 6, June 2006 Plenary

Release 6, December 2006 Plenary

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 9 ETSITS 129 198-1 V6.5.0 (2006-12)

1 Scope

The present document isthe first part of the 3GPP Specification defining the Application Programming Interface (API)
for Open Service Access (OSA), and provides an overview of the content and structure of the various parts of this
specification, and of the relation to other standards documents.

The OSA-specifications define an architecture that enables service application developers to make use of network
functionality through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture
for the OSA are contained in 3GPP TS 23.198 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

This specification has been defined jointly between 3GPP TSG CT WG5, ETSI TISPAN and The Parlay Group, in co-
operation with a number of JAIN™ Community member companies.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

« References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

» For aspecific reference, subsequent revisions do not apply.

« For anon-specific reference, the latest version applies. 1n the case of areference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications'.

2] 3GPP TS 22.127: " Service Reguirement for the Open Service Access (OSA); Stage 1".

[3] 3GPP TS 23.198: "Open Service Access (OSA); Stage 2".

[4] Void.

[5] 3GPP TS 22.101: "Service Aspects; Service Principles’.

[6] Void.

[7] 3GPP TS 29.002: "Mobile Application Part (MAP) specification".

[8] 3GPP TS 29.078: " Customised Applications for Mobile network Enhanced Logic (CAMEL);

CAMEL Application Part (CAP) specification”.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TS 22.101 [5] and the following
apply.

Applications: Services, which are designed using Service Capability Features (SCFs).

Gateway: Synonym for Service Capability Server (SCS). From the viewpoint of applications, an SCS can be seen as a
gateway to the core network.

HE-VASP: Home Environment Value Added Service Provider. ThisisaVASP that has an agreement with the Home
Environment to provide services.

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 10 ETSITS 129 198-1 V6.5.0 (2006-12)

Home Environment: responsible for overall provision of servicesto users.

Local Service: A service, which can be exclusively provided in the current serving network by a Vaue Added Service
Provider.

OSA Interface: Standardised Interface used by application to access service capability features.

Personal Service Environment (PSE): contains personalised information defining how subscribed services are
provided and presented towards the user. The Personal Service Environment is defined in terms of one or more User
Profiles.

Service Capabilities: Bearers defined by parameters, and/or mechanisms needed to realise services. These are within
networks and under network control.

Service Capability Feature (SCF): Functionality offered by service capabilities that are accessible via the standardised
OSA interface.

Service Capability Server (SCS): Functional Entity providing OSA interfaces towards an application.
Service: term used as an alternative for Service Capability Feature in this specification.

User Interface Profile: Contains information to present the personalised user interface within the capabilities of the
terminal and serving network.

User Profile: Thisisalabel identifying a combination of one user interface profile, and one user services profile.
User Services Profile: Containsidentification of subscriber services, their status and reference to service preferences.

Value Added Service Provider: provides services other than basic telecommunications service for which additional
charges may be incurred.

Virtual Home Environment: A concept for personal service environment portability across network boundaries and
between terminals.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply.

API Application Programming Interface

CAMEL Customised Application for Mobile network Enhanced Logic
CAP CAMEL Application Part

CSE CAMEL Service Environment

FW Framework

HE Home Environment

HE-VASP Home Environment - Value Added Service Provider
HLR Home Location Register

INAP Intelligent Networks Application Part

IDL Interface Description Language

JSR Java™ Specification Reguest

MAP Mobile Application Part

ME M obile Equipment

MEXE Mobile Station (Application) Execution Environment
MS Mobile Station

MSC Mobile Switching Centre

OSA Open Service Access

PLMN Public Land Mobile Network

PSE Personal Service Environment

RMI Java™ Remote Method Invocation

SAT SIM Application Tool-Kit

SCF Service Capability Feature

SCP Service Control Point

SCS Service Capability Server

SIM Subscriber Identity Module

SMS Short Message Service

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 11
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
SPA Service Provider API
UE User Equipment
USIM Universal Subscriber Identity Module
VLR Visited Location Register
VASP Value Added Service Provider
VHE Virtual Home Environment
WAP Wireless Application Protocol
WGP Wireless Gateway Proxy
WPP Wireless Push Proxy
WSDL Web Services Definition Language
XML Extensible Markup Language

ETSI TS 129 198-1 V6.5.0 (2006-12)

4

Open Service Access APIs

The OSA-specifications define an architecture that enables service application developers to make use of network
functionality through an open standardised interface, i.e. the OSA APIs. The network functionality is describes as
Service Capability Features (SCFs) or Services. The OSA Framework is ageneral component in support of Services
(Service Capabilities) and Applications. The concepts and the functional architecture for the OSA are contained in
3GPP TS 23.198 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The OSA APl is split into three types of interface classes, Service and Framework (FW).

- Interface classes between the Applications and the Framework (FW) that provide applications with basic
mechanisms (e.g. Authentication) that enable them to make use of the service capabilities in the network.

- Interface classes between Applications and SCFs, which are individual servicesthat may be required by the
client to enable the running of third party applications over the interface e.g. Messaging type service.

- Interface classes between the Framework (FW) and the SCFs that provide the mechanisms necessary for a multi-
vendor environment.

These interfaces represent interfaces 1, 2 and 3 in Figure 1 below. The other interfaces are not yet part of the scope of

the work.

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 12 ETSITS 129 198-1 V6.5.0 (2006-12)

Enterprise

operator
admin tool

Not in the scope
of the present API
version

Client

Not in the scope
of the present API
version

o Service
} ’J ---f- supplier

(1] e

Not in the scope
of the present API

Application

Framewor k ’J
operator e J
admin

& Telecom Network S

Figure 1:

Within the OSA concept a set of Service Capability Features (SCFs) has been specified. The OSA documentation is
structured in parts. The first part (the present document) contains an overview, the second part contains common data
definitions, the third part the Framework interfaces and the following parts contain the description of the SCFs.

NOTE: Theterms"Service" and " Service Capability Feature” are used as aternatives for the same concept in the
present document. In the OSA AP itself the SCFs as identified in the 3GPP requirements and architecture
are reflected as "service", in terms like service instance lifecycle manager, service Discovery.

5 Structure of the OSA API (29.198) and Mapping
(29.998) documents

The Open Service Access (OSA) Application Programming Interface (API) specifications consist of two sets of
documents:

API specification (3GPP TS 29.198)

The Parts of 29.198 - apart from Part 1 (the present document) and Part 2 - define the interfaces, parameters and
state models that belong to the API specification. UML (Unified Modelling Language) is used to specify the
interface classes.

Assuch it provides a UML interface class description of the methods (API calls) supported by that interface and the

relevant parameters and types. The interfaces are specified in IDL (Interface Description Language), WSDL (Web
Services Definition Language) and in Java™.

M apping specification of the OSA APIsand network protocols (3GPP TR 29.998)

The Parts of 29.998 contain a possible mapping from the APIs defined in 29.198 to various network protocols (i.e.
MAP [7], CAP[§], etc.). It is an informative document, since this mapping is considered as implementation- /
vendor-dependent. On the other hand this mapping will provide potential service designers with a better

understanding of the relationship of the OSA API interface classes and the behaviour of the network associated to
these interface classes.

The purpose of the OSA API isto shield the complexity of the network, its protocols and specific implementation from
the applications. This means that applications do not have to be aware of the network nodes, a Service Capability Server
interacts with, in order to provide the SCFsto the application. The specific underlying network and its protocols are

transparent to the application.

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 13 ETSITS 129 198-1 V6.5.0 (2006-12)

The API specification (3GPP TS 29.198) is structured in the following Parts:

29.198-1 Part1: Overview

29.198-2 Part 22 Common Data Definitions

29.198-3 Part 3: Framework

29.198-4 Part 4: Call Control SCF

29.198-5 Part5: User Interaction SCF

29.198-6 Part6: Mobility SCF

29.198-7 Part 7. Terminal Capabilities SCF

29.198-8 Part 8: Data Session Control SCF

29.198-9 Part9: Generic Messaging SCF

29.198-10 Part 10: Connectivity Manager SCF

29.198-11 Part 11: Account Management SCF

290.198-12 Part 12: Charging SCF

29.198-13 Part 13: Policy Management SCF

29.198-14 Part 14: Presence & Availability Management SCF
29.198-15 Part 15: Multi-media Messaging (MM) Service Capability Feature (SCF)

The M apping specification of the OSA APIsand network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocolsis however not applicable for al Parts, but the numbering of Partsis kept.
Also in case aPart is not supported in a Release, the numbering of the partsis maintained.

Structure of the partsof TS 29.198

The parts with API specification themselves are structured as follows:

The Sequence diagrams give the reader a practical idea of how each of the SCF isimplemented.
The Class relationships clause shows how each of the interfaces applicable to the SCF, relate to one another.
The Interface specification clause describesin detail each of the interfaces shown within the Class diagram part.

The State Transition Diagrams (STD) show the progression of internal processes either in the application, or
Gateway.

The Data definitions clauses show a detailed expansion of each of the data types associated with the methods
within the classes. It isto be noted that some data types are used in other methods and classes and are therefore
defined within the Common Data types part of this specification.

The OSA API isdefined using UML and as such is technology independent. OSA can be realised in a number of ways
and in addition to the UML defined OSA API, the OSA specification includes:

A normative annex with the OSA API in IDL that specifiesthe CORBA distribution technology realisation

Aninformative annex with the OSA API in WSDL that specifies the SOAP/HTTP distribution technology
realisation

An informative annex that references the OSA API in Java™ (known as JAIN™ Service Provider API) that
specifies the Java™ local API technology realisation

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 14 ETSITS 129 198-1 V6.5.0 (2006-12)

6 Methodology

Following is a description of the methodology used for the establishment of API specification for OSA.

6.1 Tools and Languages

The Unified Modelling Language (UML) (http://www.omg.org/uml) is used as the means to specify class and state
transition diagrams.

6.2 Packaging
A hierarchical packaging scheme is used to avoid polluting the global name space. The root is defined as:

org.csapi

6.3 Colours

For clarity, class diagrams follow a certain colour scheme: blue for application interface packages and yellow for al the
others.

6.4 Naming scheme

The following naming scheme is used for documentation.
packages
lowercase.
Using the domain-based naming (For example, org.csapi)
classes, structuresand types. Start with T
TpCapitalizedWithl nternal WordsAl soCapitalized
Exception class:
TpClassNameEndsWithException and P_UPPER_CASE_WITH_UNDERSCORES AND_START WITH_P
Interface. Start with Ip:
IpThislsAninterface
constants:
P_UPPER_CASE_WITH_UNDERSCORES AND_START WITH_P
methods:
firstWordL owerCaseButl nternal WordsCapitalized()
method" s parameters
firstWordL owerCaseButl nternal WordsCapitalized
collections (set, array or list types)
TpCollectionEndswWithSet

class/structure members

ETSI

http://www.omg.org/uml

3GPP TS 29.198-01 version 6.5.0 Release 6 15 ETSITS 129 198-1 V6.5.0 (2006-12)

FirstWordAndl nternal WordsCapitalized

Spaces in-between words are not allowed.

6.5 State Transition Diagram text and text symbols
The descriptions of the State Transitionsin the State Transition Diagrams follow the convention:
when_this event_is received [guard conditionistrue] /do_this action ~send_this message

Furthermore, text underneath a line through the middle of a State indicates an exit or entry event (normally specified
which one).

6.6 Exception handling and passing results

OSA methods communicate errorsin the form of exceptions. OSA methods themselves aways use the return
parameter to pass results. If no results are to be returned a void is used instead of the return parameter. In order to
support mapping to as many languages as possible, no method out parameters are allowed.

6.7 References

In the interface specification whenever Interface parameters are to be passed as an in parameter, they are done so by
reference, and the "Ref" suffix is appended to their corresponding type (e.g. I pAninterfaceRef anlnterface), areference
can also be viewed as alogical indirection.

Original type IN parameter declaration
Ipinterface parm : IN IpinterfaceRef

6.8 Strings and Collections

For character strings, the String data type is used without regard to the maximum length of the string.

For homogeneous collections of instances of a particular data type the following naming scheme is used: <datatype>Set

6.9 Prefixes

OSA constants and data types are defined in the global name space: org.csapi.

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 16 ETSITS 129 198-1 V6.5.0 (2006-12)

7. Introduction to OSA APIs

This section contains the general rules that were followed by the design of the OSA APIs and advice for how to use
them. Note however that exceptions to these 'rules' may exist and that examples are not exhaustive.

7.1 Interface Types
In the OSA specifications different types of interfaces are distinguished:

e Application side (callback) interfaces. Thistype of interface needs to be implemented by an application (client)
and the name of such an interface is prefixed with 'IpApp'.

¢ Interfaces of an SCF that are used by the Framework. The name of thistype of server interface is prefixed with
'IpSvc'.

e Application side interfaces and SCF interfaces that are shared. The name of this type of interface is prefixed with
'IpClient’

* Interfaces of the Framework that are used by an SCF. The name of thistype of server interfaceis prefixed with
'IpFw'.

The name of all other interfaces of the Framework and SCFsthat are used by an application, is prefixed with 'Ip'.

7.2 Service Factory

For each application that uses an SCF, a separate object is created to handle all communication to the application. This
object isreferred to as the Service Manager. The pattern used is often referred to as the Factory Pattern. The Service
Manager creates any new objectsin the SCF. The Service Manager and all the objects created by it are referred to as
'service instance'.

Once an application is granted access to an SCF, the Framework requests the SCF to create a new Service Manager.
The reference to this Service Manager is provided to the application. From this moment onwards the application can
start using the SCF.

7.3 Use of Sessions

A session is a series of interactions between two communication end points that occur during the span of asingle
connection. An example is all operations to set-up, control, and tear down a (multi-party) call. A session isidentified by
aSession ID. This|D is unique within the scope of a service instance and can be related to session numbers used in the
network.

7.4 Interfaces and Sessions

Some interfaces have a one-to-one relation with a session. For every session there is a separate interface instance. In this
case, thisinstance of an interface represents the session. All methods invoked on such an interface operate on the same
session. These interfaces make no use of Session IDs.

Other interfaces can represent multiple sessions. The underlying implementation can then either create an instance per
session or it can handle multiple sessions per instance (e.g., to combat extensive resource usage). When a method on
such an interface isinvoked it requires a Session |D to uniquely identify the session to which it applies.

7.5 Callback Interfaces

Some OSA interfaces require an application to register a callback interface. Thisinterface resides on the client
(application) side and is used by the server (service) to report events, results, and errors. An application shall register its
callback interface as soon as the corresponding server side interface is created.

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 17 ETSITS 129 198-1 V6.5.0 (2006-12)

7.6 Setting Callbacks

Two methods are available in every service interface that can be used for setting the callback interface: setCallback()
and setCallbackWithSessionl D(). Interfaces that do not use sessions shall (obvioudly) only implement setCallback(). An
invocation of setCallbackWithSessionlD() on such interfaces shall result in an exception (P_TASK_REFUSED).

Interfaces that use sessions shall only implement setCallbackWithSessionI D(). An invocation of setCallback() on such
interfaces shall result in an exception (P_TASK_REFUSED). This regardless of whether an interface instance actually
implements multiple sessions or not.

7.7 Synchronous versus Asynchronous Methods

Two types of methods exist in OSA interfaces. When a method does not reguire the SCS to contact other nodesin the
network it isimplemented as a synchronous method. When the method returns, the result (if applicable) of the operation
is provided to the application. When an error occurs, an exception is thrown. Examples of synchronous methods are
methods to retrieve datathat is available in the SCS and methods that create an object.

In other cases, a method requires the SCS to contact other nodesin the network. There can be a delay between the
moment a message is sent into the network and the moment that the result is received or an error is detected. To prevent
that the application is blocked or that an application has to 'guess whether there is a problem in the SCS, these types of
methods are made asynchronous.

An asynchronous method of an interface can be recognized by the fact that its name ends with 'Req’ (from request) and
that in the corresponding callback interface two methods are included with the same name but ending with 'Res' (from
result) and 'Err' (from error) instead. When no error has occurred, the 'Res' method will be invoked when the result is
available. In case an error has been detected, the 'Err' method isinvoked. Problems that can be detected by the SCS
itself (for instance illegal parameter values) will result in exceptions being thrown when the 'Req’ method is called.
After a'Req' method has returned, only errors shall be reported.

Because it is possible that multiple requests can be done in parallel (invoking multiple times a'Req’ method without
having received aresult or error) a mechanism is needed to link requests with responses. Therefore, the 'Req' method
returns an Assignment 1D and the 'Res and 'Err' methods have this Assignment ID as input parameter. For session based
interfaces the Session ID can be used also.

Some 'Req’ methods can result in multiple 'Res methods being invoked. However, the corresponding 'Err' method will
never be invoked more than once.

Note that methods on client side interfaces shall never raise an exception unless thisis explicitly described in the
specification.

Some methods switch on/off reports (for instance triggered location reports). These methods are of a different kind and
do not follow the pattern that is described in this section.

A deadlock is a potential danger when using asynchronous methods, especially in single threaded systems. It can occur
that client and server are waiting for each other for atask to be completed. It is considered good practice to build in
mechanisms to prevent deadlock from occurring, for instance by using multiple threads or using time-outs on remote
method calls.

7.8 Out Parameters

Methods used in OSA interfaces only have input parameters. Any result can only be reported by areturn value. If
multiple values need to be returned, a datatype is required that consists of a sequence of values. A value of this datatype
isthen returned by a method. This approach has been chosen because not all middleware solutions are (or may be)
capable of dealing with (multiple) output parameters.

7.9 Exception Hierarchy

Exceptions are organized in an exception hierarchy. For the general exceptions and for each service type an abstract
exception classis defined. Advantage for an application programmer is that (s)he does not need to catch all the specific
exceptions, but may catch only the abstract exceptions.

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 18 ETSITS 129 198-1 V6.5.0 (2006-12)

Note however that the exception hierarchy is only available when the applicable OSA realisation supports this.
Java™ does, but CORBA and SOAP does not.

7.10 Common Exceptions

Exception TpCommonExceptions can be thrown by any method. It is an aggregate of a number of general problems. To
prevent that each method"s signature requires all these exceptions they are al included in a single exception class.

The following rules apply on when what type of general exception shall be thrown:

¢ P_RESOURCES UNAVAILABLE isthrown when a physical resource in the network is not available.

P_INVALID_STATE isthrown when a method is called that is not allowed in the state that the OSA state
machines arein.

e P_TASK_CANCELLED isthrown in case of atemporary problem.
e P_TASK_NO _CALLBACK_ADDRESS SET isthrown when no callback address has been set.

e P_METHOD_NOT_SUPPORTED isthrown when the application initiates methods that are either not according
to the Service Level Agreement or not supported in the SCS.

e P_TASK_REFUSED isthrown in case of a problem that is not temporary and when none of the other common
or dedicated exceptions apply.

e P_POLICY_VIOLATION isthrown when the service has accepted the input for the method, but failed to meet
some policy criteria.

Note that methods on application side callback interfaces shall never raise an exception unless explicitly stated in the
specification.

7.11 Use of NULL

The OSA specifications contain references to the NULL value to indicate the absence of a certain parameter. An
example where thisis used is for specifying NULL as a callback reference.

A parameter description for parameters of any datatype can indicate that NULL isa possible value. The realisation of
NULL can differ per technology. A NULL value for a sequencein CORBA means that all its members shall be NULL
whilein Java™ the whole structure could be NULL.

Note that it always shall be stated in the specification when a NULL value can be expected.

7.12 Notification Handling

Several OSA SCFs provide a mechanism for creating and receiving notifications. A notification is the reporting of an
event occurring in the network or SCS. Examples of notifications are answer, busy, and on hook events.

This section describes the general mechanism of notification handling. Note that it might not apply (exactly) to every
API.

There are two types of notifications. One that is created by an application and one that is controlled by the network. The
first type normally is used when an ASP is responsible for service provisioning and hasto create its own notificationsin
order to be able to serve subscribers. The second type is used when the network operator does service provisioning. The
network operator creates the notifications and an application only needs to handle them.

Note that normally both mechanisms will not be used by one application. However, the OSA interfaces do not prohibit
this.

Another way to distinguish notifications is by monitor mode. Notifications can be requested in either NOTIFY or
INTERRUPT mode. When requested in NOTIFY mode, the notifications is reported to the application but the SCS
continues processing. For notifications requested in INTERRUPT mode, processing in the SCSis suspended when the

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 19 ETSITS 129 198-1 V6.5.0 (2006-12)

notification is reported to the application. The application has to instruct the SCS explicitly (within a certain maximum
time) how to proceed the processing. Note that not all SCFs support naotificationsin INTERRUPT mode.

When anotification is created and when an application registers for network controlled notifications a callback interface
needs to be provided. This callback interface is used for reporting the notifications. There are however a few things that
are worth mentioning here:

« Eachtime a(set of) notification(s) is created, a callback is specified that is used for reporting the requested
notifications. This callback interface may be the same, but may also differ. The assignment ID can be used to
link a notification report to the creation of registration.

¢ Registering a callback for network controlled notifications needs to be done only once. The callback interface
that is provided may be the same as the one used for creating a notification (note again that it is however not
recommended to use both mechanisms in the same application).

¢ The callback specified when creating or registering for events overrules the callback set with setCallback() or
setCallbackWithSessionl D(). This means that this one will NOT be used for reporting notifications . It will
however be used for all other methods that require the callback interface.

e Onlyif NULL isprovided as callback interface reference, the callback interface that was set using setCallback()
or setCallbackWithSessionl D() is used for reporting notifications.

e Itispossibleto recreate a (set of) notification(s) or re-register for notifications. Thisis only useful when
providing a different callback interface reference. In this case, the last provided interface is used for reporting
notifications. The earlier provided callback interface is used as 'backup' interface (this can be the one provided
with setCallback() or setCallbackWithSessionlD() if NULL was provided initially). Notifications are reported on
thisinterface when calls to the most recent provided callback interface fail (object providing the interfaceis
crashed or overloaded). When re-creating or re-registering, the same assignment ID is returned.

8 Backwards Compatibility Considerations

The backwards compatibility rules described below are intended to enable an older client to continue to interwork with
anewer server or gateway.

8.1 Guidelines to enable backwards compatibility in
implementations

1) The Gateway should require the usage of Framework versions and service versions. All Applications should
use these parameters.

2) ThelDL version parameter should not be used when generating the IDL.

3) If there are multiple versions of an SCF they should be all registered with the Framework, and the SCF should
create an instance of the version requested by the application when a new service manager is created.

8.2 Rule summary

The following types of changes can be made to these specifications while preserving backwards compatibility,
everything beyond these changesis not allowed.

8.2.1 Server side permitted changes
. Addition of anew interface
. Addition of anew method to an existing or new interface

. Addition and removal of exceptionsif the implementation uses the Application version as described above.

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 20 ETSITS 129 198-1 V6.5.0 (2006-12)

8.2.2 Client side permitted changes
. Addition of anew interface
. Addition of a new method

Note: The version the client requests should be used to indicate which interfaces and methods are supported on
the client side.

. Addition and removal of exceptionsif the implementation uses the Application version as described above.

8.2.3 Data type permitted changes

. Elements can be added to 'sequence’ data types. Care should be taken when adding elements to data types that
are sent back to the client: The client may be outdated and thus not be able to interpret the new element. Only
information that has not been avail able before (and therefore is not expected by the client) may be transferred
in added elements. Information that has been available before (and therefore possibly expected by the client)
may not be modified in any way.

. Elements can be added to ‘tagged choice of data elements' datatypes, if they are always sent from client to
server (either within a parameter of a server side method, or within the result of a client side method.

Every change beyond the rules listed above is forbidden. In particular, changes like the following should not be done:
. Changing the order of enumerated types
. Changing method signatures

. Removing or renaming methods

8.3 Implementation Guidelines for Server Programmers

. If methods are added at the client side, the server should call them only if it can be sure that the client has
implemented them. Basically, this means the server needs to make sure that the client supports the release,
where the new methods have been introduced, or alater one.

. Servers could ensure that references to dynamically created objects (service managers or calls) remain valid
even after a server upgrade. An aternative method is to be able to make so called graceful close of old
versions and running the new version in parallel. The old version will not allow any new requests but will
allow existing onesto execute until they are finished.

8.4 Implementation Guidelines for Client Programmers

. The backwards compatibility rules allow for ‘'smooth’ upgrades to new Parlay/OSA releases in the Gateway.
All existing functionality should still work without any changesin the client. Client programmers need to
change code only to enhance it; they should never need to change code just to adopt it to the new release.

Care should be taken when supporting features of a new release. The moment a client application use newer
release features, it should then support all of the client side features for that newer release, otherwise the server
may invoke newer release methods on the client and the client will not respond.

8.5 Tracking the changes in the specifications

8.5.1 New Tag

If aclient side interface is added, or methods are added to an existing interface, the new methods are marked with a
UML stereotype 'New'.

Thistag is merely a hint for the programmer.

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 21 ETSITS 129 198-1 V6.5.0 (2006-12)

8.5.2 Deprecated Tag

If interfaces, methods or service properties are deemed outdated or broken, the items are marked with aUML stereotype
'‘Deprecated'. The tag indicates that they are supported by this Framework or SCF release, but that they will not
necessarily be supported in subsequent releases. The respective items may be removed in the specification release.

Thetag isahint for the client programmer that an update to their client applications may be necessary.

8.6 Technology realization rules

8.6.1 Corba IDL Rules

In addition to the rules identified above, in order to ensure backwards compatibility of the IDL code, the following rules
shall be followed in updating this specification:

. IDL version numbering should not be used when generating the IDL.

8.6.2 Java rules

In addition to the rules identified above, in order to ensure backwards compatibility of the J2EE and J2SE code, the
following rules shall be followed in updating this specification:

. When elements are added to 'sequence’ data types, the Java constructor for these data types is updated with the
new elements when the Java code is re-generated. The old constructor, without the new elements, shall be
manually included in the generated Java code and marked as deprecated.

8.7 Rules for removal of deprecated items from the
specifications

. At the start of each major 3GPP Release n (during the development phase of a new release, prior to the closure
of the release to new functionality), we delete, using change requests, all deprecated methods and other
deprecated items, which are identified as deprecated in the most recent version of the Release n-2 edition of
specifications.

. When deleting deprecated methods, any unused data types can be deleted using the CR process.

. At the start of each major release, the <<new>> stereotypes that were present in the specifications prior to this
release are deleted. CRs are not required for this.

. Methods or stereotypes are never deleted following closure of arelease to new functionality.
. Names of deleted methods are never re-used.

. Exceptionally, we may choose not to delete certain deprecated methods, in the interest of preserving
backwards compatibility.

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 22 ETSITS 129 198-1 V6.5.0 (2006-12)

Annex A (normative):
OMG IDL

A.l Tools and Languages

The Object Management Group"s (OMG) (http://www.omg.org/) Interface Definition Language (IDL) isused asa
means to programmatically define the interfaces. IDL files are either generated manually from class diagrams or by
using a UML tool. In the case IDLs are manually written and/or being corrected manually, correctness has been verified
using a CORBAZ2 (orbog/97-02-25) compliant IDL compiler, e.g. (http://java.sun.com/products/jdk/idl/index.html).

A.2 Namespace

The used namespace in CORBA IDL isorg.csapi.

A.3 Object References

In CORBA IDL it isnot needed to explicitly indicate a reference to an object. Where the specifications explicitly
indicate areference to an object by adding 'Ref’ to the object type, this addition is removed when mapped to the IDL.

Example 1: struct TpMultiPartyCallldentifier {
IpMultiPartyCall CallReference;
TpSessionlD CallSessionID;

b

A.4 Mapping of Datatypes

A.4.1 Basic Datatypes

InIDL, the data type String is typedefed (see Note below) from the CORBA primitive string. This CORBA primitiveis
made up of alength and avariable array of byte.

NOTE: A typedef isatype definition declarationin IDL.

TpBoolean maps to a CORBA boolean, TpInt32 to a CORBA long, TpFloat to a CORBA float, and TpOctet to a
CORBA octet.

A.4.2 Constants

All constants are mapped to a CORBA const of type TpInt32.
Example 2 const Tpint32 P_TASK_REFUSED = 14;

A.4.3 Collections

In OMG IDL, collections (Numbered Set and Numbered List) map to a sequence of the datatype. A CORBA sequence
isimplicitly made of alength and avariable array of elements of the same type.

Example 3: typedef sequence<TpSessionl D> TpSessionl DSet;

ETSI

http://www.omg.org/
http://java.sun.com/products/jdk/idl/index.html

3GPP TS 29.198-01 version 6.5.0 Release 6 23 ETSITS 129 198-1 V6.5.0 (2006-12)

Collection types can be implemented (for example, in C++) as a structure containing an integer for the number part,
and an array for the data part.

Example 4. The TpAddressSet data type may be defined in C++ as:

typedef struct {
short nunber ;
TpAddr ess address [];
} TpAddressSet;

The array "address' is allocated dynamically with the exact number of required TpAddress elements based on
"number".

A.4.4 Sequences
In OMG IDL sequences map to a CORBA Struct.

Example5: struct TpAddress {
TpAddressPlan Plan;
TpString AddrString;
TpString Name;
TpAddressPresentation Presentation,;
TpAddressScreening Screening;
TpString SubAddressString;

}

A.4.5 Enumerations

In OMG IDL enumerations map to a CORBA enum.

Example 6: enum TpAddressScreening {
P_ADDRESS SCREENING_UNDEFINED ,
P_ADDRESS SCREENING_USER_VERIFIED PASSED,
P_ADDRESS SCREENING_USER_NOT_VERIFIED,
P_ADDRESS SCREENING _USER_VERIFIED FAILED,
P_ADDRESS SCREENING_NETWORK

b

A.4.6 Choices

A choice mapsto a CORBA union. For entries that do not have a corresponding type (defined asNULL in the
specification) no union entry is generated. These entries are grouped in the default clause where NULL is replaced by
short and the entry name (Undefined) by the name Dummy. When there are no NULL entries, the default clause is not
generated.

Example 7: union TpCallAdditional Errorinfo switch (TpCallErrorType) {
case P CALL_ERROR_INVALID_ADDRESS: TpAddressError CallErrorinvalidAddress,
default: short Dummy;

b

Example 8: union TpCallChargeOrder switch(TpCall ChargeOrderCategory) {
case P CALL_CHARGE_TRANSPARENT: TpOctetSet TransparentCharge;
case P CALL_CHARGE_PREDEFINED_SET: TpInt32 ChargePlan;

b

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 24 ETSITS 129 198-1 V6.5.0 (2006-12)

A.5 Use of NULL

CORBA alowsthe value NULL to be used for object references only. When the specification mentions NULL as
possible value of astruct, it means that each object reference in the struct shall be set to NULL. NULL does not apply to
other datatypes then object references.

A.6 Exceptions

The TpCommonExceptions is mapped to a CORBA exception containing a data item of type TpInt32 to indicate the
type of general exception and extrainformation of type TpString.

Example 9: exception TpCommonExceptions {
TpInt32 ExceptionType;
TpString Extralnformation;

b
All other exceptions are also mapped to CORBA exceptions but containing a data item of type TpString to indicate
additional information.

Example 10: exception P_INVALID_ASSIGNMENT _ID {
TpString Extralnformation;

b

A.7 Naming space across CORBA modules

The following shows the naming space used in this specification.

nodul e org {

nodul e csapi {

/* The fully qualified name of the followi ng constant is org::csapi::P_TH S IS AN OSA GLOBAL_CONST
*/

const long P TH S | S AN OSA GLOBAL_CONST= 1999;

/1 Add other OSA global constants and types here

nodul e fw {

/* no scoping required to access P_TH S IS AN OSA GLOBAL_CONST */

const long P_FWCONST= P_THI S | S AN OSA GLOBAL_CONST;

nodul e nm {

/] scoping required to access P_FW CONST
const |ong P_M CONST= fw : P_FW CONST;

}

}

b

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 25 ETSITS 129 198-1 V6.5.0 (2006-12)

Annex B (informative):
W3C WSDL

B.1 Tools and Languages

The W3C (http://www.w3c.org) WSDL (Web Services Definition Language) is an XML format for describing network
services as a set of endpoints operating on messages containing either document-oriented or procedure-oriented
information. WSDL files are generated from the UML. The generated WSDL files are verified using WSDL compilers.
The WSDL isbased on W3C WSDL 1.1. The approach to generating the WSDL is documented separately. This
document covers the type mappings, and should be viewed as reference only as the tools will generate all these
mappings automatically.

B.2 Proposed Namespaces for the OSA WSDL

Namespaces are an important part of an XML Schema. They are used to qualify the source of a particular XML
element.

There are several XML/SOAP/WSDL related Namespaces which are used within each of the WSDL documents. The
Namespace Prefix and the associated Namespace are noted bel ow.

xmins:wsdl = "http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xml soap.org/wsdl/soap/"

xmins: SOAP-ENC="http://schemas.xml soap.org/soap/encoding/"

xmins:xsd="http://www.w3c.org/2001/X ML Schema"

xmlns:addressing="http://www.w3.0rg/2005/08/addressing"

There are also OSA specific namespaces that are used within the OSA WSDL documents. The OSA related namespaces
present within each WSDL document depends on the WSDL document and which WSDL documents it imports. The
guidelines used to derive these namespaces are:

The root namespace for the OSA WSDL and XML schemasis http://www.csapi.or g/

Thereisone WSDL document generated for each interface. The WSDL document will have the name of the
UML component with the extension " .wsdl" For each WSDL document generated the following
additional namespaces will be included:

xmlns.<component name>="http://www.csapi.org/<component name>/wsdl"

xmlns.<component name>xsd="http://www.csapi.org/<component hame>/schema’

For each OSA WSDL document which is referenced by an import statement within the current WSDL
document then the following additional namespaces will be included.

xmins.<imported component name>="http://www.csapi.org/<imported component name>/wsdl"

xmlns:<imported component hame>xsd="http://www.csapi.org/<imported component name>/schema"

. Attributes that require a QName value shall use the appropriate Namespace Prefix (as defined in the
definitions element of the wsdl fil€) to qualify the element being referenced.

The namespaces are defined within the "definitions’ element of awsdl document. For example, the definitions element
of the am_logical.wsdl document would look like:

<definitions
nane='am | ogi cal '
tar get Nanespace="' http: // www. csapi . or g/ am wsdl '

ETSI

http://www.w3c.org/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/soap/encoding/
http://www.w3c.org/2001/XMLSchema
http://www.csapi.org
http://www.csapi.org
http://www.csapi.org
http://www.csapi.org
http://www.csapi.org

3GPP TS 29.198-01 version 6.5.0 Release 6 26 ETSITS 129 198-1 V6.5.0 (2006-12)

xm ns="http://schemas. xm soap. or g/ wsdl /'

xm ns: wsdl =" http://schemas. xm soap. or g/ wsdl /'

xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/"'

xm ns: SOAP- ENC=' htt p: // schemas. xii soap. or g/ soap/ encodi ng/'
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena'

xm ns: addr essi ng="htt p: / / www. w3. or g/ 2005/ 08/ addr essi ng"
xm ns: ame' http://ww. csapi . org/ an wsdl '

xm ns: anxsd="http://ww. csapi . org/ anf schena'

xm ns: osa=" http://ww. csapi.org/osa/ wsdl'

xm ns: osaxsd='http://ww. csapi . or g/ osa/ schema' >

<i mport namespace='http://ww. csapi.org/ osa/ wsdl'
| ocation='osa_| ogi cal .wsdl' />

B.3 Object References

Object references are used to identify particular remote object instances. Object references are used in two ways:

1) Passed asaparameter within a method to a remote object or passed as an attribute of a structured type
parameter within a method to the remote object.

Included within a message to identify the object for which the message isintended.

Within the context of Web Services, an object reference can be represented as by an Endpoint Reference as documented
in WS-Addressing. Thisis the standard approach for passing referencesin Web Services.

When an object reference is passed as a parameter, the parameter type is defined as a reference to an interface. When an
object reference is an attribute of a structured type, that attribute is defined as areference to an interface. Each interface
will have a corresponding reference element associated with it. The interface reference will be defined as:

<el ement nane="nanel nterface" type="addressi ng: Endpoi nt Ref erenceType"/ >
where name isthe name of the particular interface as defined in the UML.

When an object reference is used to identify the intended recipient of a message, then the To and Action elements from
the WS-Addressing schema should be used as outlined in this standard.

B.4 Mapping UML Data Types to XML Schema

B.4.1 Data Types

The following mappings apply to the basic data types:

UML Schema Realisation
TpBoolean xsd:boolean
TpInt32 xsd:int
TpInt64 xsd:ong
TpFloat xsd:float
TpOctet xsd:unsignedByte
TpString xsd:string
TpLongString xsd:string
TpAny xsd:anyType

B.4.1.2 <<Constant>>

The UML Constant data type contains the following attributes:

. Name

. Constant Vaue

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 27 ETSITS 129 198-1 V6.5.0 (2006-12)

These types are not mapped to WSDL, asthere is no concept of a constant value in schema. 1t may be possible in the
future to add a constant value using a restriction on a base type. The lack of this mapping does not limit the ability to
send constant values in messages.

B.4.1.3 <<NameValuePair>>

The UML NameVauePair data type contains the following attributes:

. Name
. Attributes
- Name

This type would then map to the following XML Schema construct:

<xsd: si npl eType name=' Nane' >
<xsd:restriction base='xsd:string' >
<xsd: enunerati on val ue=" Attri bute-Name' />
<xsd: enuneration val ue=" Attri bute-Name' />

<xsd: enunerati on val ue=" Attribute-Nane' />
</xsd:restriction>
</ xsd: si npl eType>

B.4.1.4 <<SequenceOfDataElements>>

The UML SequenceOfDataElements data type contains the following attributes:

« Name

. Roles
- Name
- Type

This type would then map to the following XML Schema construct:

<xsd: conmpl exType nane=' Nane
<xsd: sequence>
<xsd: el enent
Nanme=' Rol e- Nane
type=' Rol e-Type' />
<xsd: el enent
Nanme=' Rol e- Nane
type=' Rol e-Type' />

<xsd: el ement
Nane=' Rol e- Nane
type=' Rol e-Type' />
</ xsd: sequence>
</ xsd: conpl exType>

B.4.1.5 <<TypeDef>>

The UML TypeDef data type contains the following attributes:
« Name
. ImplementationType

Type definitions (typedefs) do not exist directly in schema so these types are unwound to their base data types. E.g.:

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 28 ETSITS 129 198-1 V6.5.0 (2006-12)

UML Schema Realisation
TpCallAlertingMechanism xsd:int
TpAccessType xsd:string

This support could be added in the future using restriction on a base type.

B.4.1.6 <<NumberedSetOfDataElements>>

The UML NumberedSetOf DataElements data type for sequences types contains the following attributes:
* Name
. ImplementationType

This type would then map to the following XML Schema construct:

<xsd: conmpl exType name=' Nane' >
<xsd: sequence>
<xsd: el enent
nanme='iten
type='Inpl enent ati onType
m nCccurs="'0'
maxCccur s=' unbounded' />
</ xsd: sequence>
</ xsd: conpl exType>

B.4.1.7 <<TaggedChoiceOfDataElements>>

The UML TaggedChoiceOf DataElements data type contains the following attributes:

. Name
. SwitchType
. Roles
- Name
- Type

This type would then map to the following XML Schema construct:

<xsd: conpl exType nanme=' Nane' >
<xsd: sequence>
<xsd: choi ce>
<xsd: el ement name=' Rol e- Nane' type='Rol e-Type' />
<xsd: el ement name=' Rol e- Nane' type='Rol e-Type' />

<xsd: el enent nane=' Rol e- Nane' type='Rol e-Type' />
</ xsd: choi ce>
</ xsd: sequence>
</ conpl exType>

B.5 Mapping of UML Interfaces to WSDL

B.5.1 Mapping of UML Operations to WSDL message element
An UML Operation contains the following attributes:

Interface

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 29 ETSITS 129 198-1 V6.5.0 (2006-12)

Operation Name
M odule Name
Return Type
Parameter
Name
Type
This type would then map to the following WSDL message construct:

<message nane="Mdul e_Nane. | nt erf ace_Nane. Oper ati onNane" >
<part name="paraneters"
el enent =" xsd1: Modul e_Nane. | nt er f ace_Nane. Oper ati onNane"/ >
</ nessage>
<message nane="Modul e_Nane. | nt erf ace_Name. Oper at i onNanmeResponse" >
<part name="paraneters"
el enent =" xsd1: Modul e_Nan®e. | nt erf ace_Nane. Oper at i onNameResul t"/ >
</ nessage>

This approach is conformant with the wrapped document literal style recommended by the WS-I (http://www.ws-
i.org/).

B.5.2 Mapping of Exception to WSDL message element
An UML Exception has the following attributes:

. Module

. Name

This type would then map to the following XML Schema Construct:

<message name=' Mbdul e_Nane. Excepti on_Nane' >
<part nanme=' exception'
el ement =' xsd1: Modul e_Nare. Excepti on_Nane' />
</ message>

B.5.4 Mapping of Interface Class to WSDL portType and binding
elements

A UML Interface contains the following attributes:
Interface Name
Module (i.e. component)
Operations
Name

Parameters

= Name
" Exceptions
= Name

This type would then map to the following WSDL portType element:

<port Type name="Modul eNare. | nt er f aceNanme" >

ETSI

http://www.ws-i.org/
http://www.ws-i.org/

3GPP TS 29.198-01 version 6.5.0 Release 6 30 ETSITS 129 198-1 V6.5.0 (2006-12)

<operation
nane=" COper at i on- Nane"
<i nput message="Cperati on- Nanme"/ >
<out put nessage="Operati on- NaneResponse"/ >
<fault name='" Modul e. Operati on- Excepti on- Name
nessage=' Mbdul e. Oper ati on—Excepti on—Nanme' />
</ oper ati on>
</ port Type>

This type would also then map into the following WSDL binding element:

<bi ndi ng
nane="Mdul e. | nt er f ace- NaneSOAPBi ndi ng"
t ype="Modul e. | nt er f ace- Nane" >
<soap: bi ndi ng styl e="docunment" transport="http://schemas. xm soap. org/ soap/ http"/>

<operati on name="Cperati on- Narme" >
<soap: operation styl e='docunent'"/>

<i nput >
<soap: body use="literal"/>
</input >
<out put >
<soap: body use="literal"/>
</ out put >
<faul t name=' Modul e. Excepti on- Narme>
<soap: fault name=' Modul e. Oper ati on- Excepti on- Name' use="literal"/>
</faul t>

...additional fault elenents
</ operati on>
...addi tional operation elenents
</ bi ndi ng>

B.5.5 Mapping of UML Interfaces to WSDL service element

A UML Interface contains the following attributes:
Interface Name
Module

This type would then map to the following WSDL service element:

<servi ce name="InterfaceNanme">
<port bindi ng="Modul e. | nt erf aceNanmreSOAPBi ndi ng" name="1Int er f aceNane" >
<soap: address | ocation="http://{Service Address}"/>
</ port>
...addi tional port elenents
</ servi ce>
</ definitions>

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 31 ETSITS 129 198-1 V6.5.0 (2006-12)

Annex C (informative):
Java™ Realisation API

C.1 Java™ Realisation Overview

The Parlay/OSA UML specifications are defined in atechnology neutral manner. This annex aimsto deliver for
Java™, a developer API, provided as arealisation, supporting a Java™ API that represents the UML specifications.

C.1.1 J2SE™ API

The J2SE™ API supports a J2SE™ development environment that
e provides an abstraction of the Parlay/OSA APIsthat provides alocal API for 2SE™ developers
e supports alistener based API for SCFs and a callback API for the Framework
e useslocal object references as correlation mechanisms as Java™ developers are familiar with object correlation

¢ isaloca API without visibility to the underlying transport

C.1.2 J2EE™ API

The J2EE™ API supports a development environment which allows the creation of J2EE™ and Java™ RMI interfaces
for both the server and client, ensuring consistent interfaces for interoperability. These interfaces may be used for
Java™ RMI on either JRMP or 11OP (RMI/110P), alowing use in 2EE™ environments. The interfaces may also be
used as athin layer on other transports, similar to other Java™ technologies that provide a RMI programming interface.

The J2EE™ API isasuitable base for Java™ across Java™ platforms, allowing creation of implementations that:
* may be athin layer on transport protocols
e may support 2EE™ remote interfaces
e may support 2EE™ local interfaces
The Java™ files created with the realisation will be made available with the Parlay/OSA specifications.
The remaining sections of this annex deal with the following areas:
e section C.2 covers the tools and languages used to produce and define the Java™ Realisation
¢ section C.3 covers the mappings that are common across both Java™ Realisation APIs
¢ section C.4 covers the mappings specific to the 2SE™ API

¢ section C.5 covers the mappings specific to the 2EE™ API

C1.3 Javadoc™

The Javadoc™ that accompanies the 2SE™ realisation of the Parlay/OSA API specification is provided as archive
2919801V 650J2SE.ZIP that accompanies the present document.

The Javadoc™ that accompanies the 2EE™ realisation of the Parlay/OSA API specification is provided as archive
2919801V 650J2EE.ZI P that accompanies the present document.

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 32 ETSITS 129 198-1 V6.5.0 (2006-12)

C.2 Tools and languages

The Java™ language is used as a means to programmatically define the interfaces. Java™ source files are generated
automatically from UML. The Java™ source files are created in accordance with the mappings defined within this
annex.

The generated Java™ source files are verified syntactically using Java™ compilers such asjavac. The Java™ API
comprises

e J2SE™ API designed to be compatible with the Java™ 2 SDK, Standard Edition, version 1.3
(http://java.sun.com/j2se/1.3/) or later and a

e J2EE™ API compatible with the Java™ 2 Enterprise Edition (http://java.sun.com/j 2eey).

The J2SE™ API, developed in accordance to the conventions defined in section C.3 and C.4 will enable:
e portable Java™ applications, asfar asthe Java™ API is concerned

¢ independence of distribution mechanism technology (e.g. CORBA, SOAP, RMI)

C.3 Generic mappings (Elements common to J2SE™
and J2EE™)

NOTE: All Java™ code examples given in this section are taken from the 2SE™ Java™ Redlisation API. See
the appropriate Java™ files for examples for 2EE™ classes.

C.3.1 Namespace
The UML namespace org.csapi is represented by the Java™ package org.csapi.jr.

Packages under the org.csapi.jr package will contain "se" packages for J2SE™ specific Java™ artefacts and "ee" and
‘eelocal’ packages for J2EE™ specific Java™ artefacts.

For example, the User Location Camel Service package structure would appear as follows:
org.csapi.jr.se.mm.ulc containing J2SE™ API Java™ artefacts
org.csapi.jr.eelocal.mm.ulc containing J2EE™ local APl Java™ artefacts

org.csapi.jr.ee.mm.ulc containing the 2EE™ remote/RMI API Java™ artefacts

C.3.2 Package Naming Conventions

UML packages will be represented by Java™ packages. The sub-namespaces below the root namespaces described
above will follow the naming used for the UML namespaces.

C.3.3 Object References

In Java™ there is no need to explicitly indicate areference to an object asin Java™ objects are passed by value and not
by reference. Where the specifications explicitly indicate areference to an object by adding 'Ref* to the object type, this
addition is removed in the Java™ realisation.

Example 1:
UML Java™ Realisation
IpUserLocationCamelRef UserLocationCamel
IpCallRef Call

ETSI

http://java.sun.com/j2se/1.3/
http://java.sun.com/j2ee/

3GPP TS 29.198-01 version 6.5.0 Release 6 33 ETSITS 129 198-1 V6.5.0 (2006-12)

C.3.4 Element Naming

The UML element names that begin with an uppercase will follow the Java™ naming conventions of with aleading
lower case letter and mixed case names. The UML elements are equivalent to Java™ field names.

Example 2:

UML

Java™ Realisation

AddressPlan

addressPlan

C.3.5 Element Naming Collisions

If an element name collides with a Java™ keyword, the element name will be prefixed with an underscore.

Example 3:

UML

Java™ Realisation

Final

_final

C.3.6 Data Type Definitions

C.3.6.1 Basic Data Types

Java™ does not support type definitions (typedefs); therefore types are unwound to their basic datatypese.g.:

Example 4:
UML Java™ Realisation
TpCallAlertingMechanism int
TpAccessType java.lang.String

The following mappings apply to the basic data types:

UML Java™ Realisation
TpBoolean boolean
TpInt32 int
TpInt64 long
TpFloat float
TpOctet byte
TpString java.lang.String
TpLongString java.lang.String
TpAny java.lang.Object

C.3.6.2 Constants

Constants are associated with a type definition or as a standalone entity. In both cases, the constant itself will be defined
asa"public final static"fiedusingitsnameand value.

When defined associated with a type definition, an interface using the name of the type definition will be defined
enclosing al constants associated with the type definition.

Standal one constants within a package are defined within a Java™ interface with the name "Constants' within that
package.

Example 5:

package org.csapi.jr.se;
public interface Constants {

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 34 ETSITS 129 198-1 V6.5.0 (2006-12)

nt METHOD NOT_SUPPORTED = 22;

nt NO_CALLBACK ADDRESS_SET = 17;
nt RESOURCES UNAVAI LABLE = 13;
nt TASK_CANCELLED = 15;

nt TASK_REFUSED = 14;

nt | NVALI D_STATE = 744;

public static final
public static final
public static final
public static final
public static final
public static final

Example 6:
package org.csapi.jr.se.cc;
public interface Call Supervi seReport {
public static final int CALL_SUPERVI SE TI MEQUT = 1;

public static final int CALL_SUPERVI SE CALL_ENDED = 2;
public static final int CALL_SUPERVI SE_ TONE _APPLI ED = 4;

C.3.6.3 NumberedSetsOfDataElements (Collections)
In Java™, Numbered Set and Numbered List are realised as an array of the data type.

Example 7:

UML Java™ Realisation
TpAddressSet Address|]

C.3.6.4 SequenceOfDataElements (Structures)
Struct data types are represented in Java™ as public final classes that implement java.io.Serializable, and have:
¢ each data element made available as a private variable in the class
e adefault constructor and a constructor for al values are provided
e accessor and mutator methods are given for each variable
e thefirst letter of each sequence element name is changed to lower case
« an equals method is provided determining the equality of objects by their content
» ahashCode method is provided supporting the rules for hashCode relative to equals

Example 8:

package org.csapi.jr.se;
public final class Address inplenents java.io.Serializable {
private AddressPl an plan;
private String addrString = "'";
private String name = '';
private AddressPresentati on presentation;
private AddressScreeni ng screening;
private String subAddressString = "'";

public Address () {
}

public Address (AddressPlan plan, String addrString,
String nanme, AddressPresentation presentation,
Addr essScreeni ng screening, String subAddressString) {
this.plan = plan;
this.addrString = addrString;
this. nare = nane;
this.presentation = presentation;
this. screening = screening;
t hi s. subAddressString = subAddressString;
}

publ i c TpAddressPlan getPlan () {

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 35 ETSITS 129 198-1 V6.5.0 (2006-12)

return (plan);

}

public void setPlan (TpAddressPl an plan) {
this.plan = plan;
}

public String getAddrString () {
return (addrString);
}

public void setAddrString (String addrString) {
this.addrString = addrString;
}

...other get and set methods ...

publ i c bool ean equal s (Object object) {
/1 equality logic
}

public int hashcode () {
/'l hash code cal cul ation

}

C.3.6.5 NameValuePair (Enumerations)

NameVauePair data types are represented in Java™ as public final classes that implement java.io.Seriaizable, and
have:

e two static final data members per name-value pair
e avalue returning method, named getV alue()

¢ aname returning method, named getValueT ext()
¢ aninteger conversion method, named getObject()

e aprivate constructor

readResolve(), hashCode and equal's implementations

No default constructor is provided. One of the data members per name-value pair has the same name as the name-value
pair name. The other has an underscore ' ' prepended and is intended for use in switch statements. Values are assigned
sequentially, starting with 0.

The getObject() method returns the name-value pair class with the specified value if the specified value corresponds to
an element of the name-value pair datatype. If the specified valueisout of range, an InvalidEnumV a ueException
exception is raised.

Example 9:

package org.csapi.jr.se;
public final class AddressScreening inplenents java.io.Serializable {
private int _val ue;
private static int _size = 5;
private static AddressScreening[] _array = new AddressScreeni ng[_si ze];

public static final int _ADDRESS SCREEN NG _UNDEFI NED = O0;
public static final AddressScreeni ng ADDRESS SCREENI NG UNDEFI NED = new
Addr essScr eeni ng(_ADDRESS SCREENI NG_UNDEFI NED) ;

public static final int _ADDRESS SCREEN NG USER VERI Fl ED PASSED = 1;
public static final AddressScreeni ng ADDRESS SCREENI NG USER VERI FI ED _PASSED = new
Addr essScr eeni ng(_ADDRESS SCREENI NG _USER VERI FI ED_PASSED) ;

public static final int _ADDRESS SCREEN NG USER NOT_VERI Fl ED = 2;

public static final AddressScreeni ng ADDRESS SCREENI NG USER NOT_VERI FI ED = new
Addr essScr eeni ng(_ADDRESS_SCREENI NG_USER _NOT_VERI FI ED) ;

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 36 ETSITS 129 198-1 V6.5.0 (2006-12)

public static final int _ADDRESS SCREEN NG USER VERI Fl ED FAI LED = 3;
public static final AddressScreeni ng ADDRESS SCREENI NG USER VERI FI ED FAI LED = new
Addr essScr eeni ng(_ADDRESS SCREENI NG _USER VERI FI ED_FAI LED);

public static final int _ADDRESS SCREENI NG NETWORK = 4;
public static final AddressScreeni ng ADDRESS SCREENI NG NETWORK = new
Addr essScr eeni ng(_ADDRESS_SCREENI NG_NETWORK) ;

private AddressScreening(int value) {
this._val ue = val ue;
this._array[this._value] = this;

}

private Object readResol ve() throws java.io.Object StreanException {
return _array[_val ue];
}

public int getValue() {
return _val ue;
}

public String getVal ueText () {
switch (_value) {
case _ADDRESS_SCREEN NG_UNDEFI NED:
return " ADDRESS_SCREENI NG_UNDEFI NED" ;
case _ADDRESS_SCREEN NG USER VERI Fl| ED_PASSED:
return "ADDRESS_SCREEN NG _USER_VERI FI ED_PASSED';
case _ADDRESS_SCREEN NG _USER _NOT_VERI Fl ED:
return " ADDRESS_SCREENI NG _USER_NOT_VERI FI ED";
case _ADDRESS_SCREEN NG USER VERI Fl ED_FAI LED:
return " ADDRESS_SCREENI NG _USER VERI FI ED_FAI LED';
case _ADDRESS SCREENI NG _NETWORK:
return "ADDRESS_SCREEN NG _NETWORK";
defaul t:
return "ERROR';
}

}

public static AddressScreeni ng get Object(int value) throws
org.csapi.jr.se.lnvalidEnunVval ueException {
if(value >= 0 && value < _size) {
return _array[val ue];
} else {
throw new org. csapi.jr.se.lnvalidEnunVal ueException();
}

}

publ i c bool ean equal s(Cbject o) {
/lequality |ogic
}

public int hashCode() ({
/' hash code cal cul ation

}

C.3.6.6 TaggedChoiceOfDataElements (Unions)

Union data types are represented in Java™ as public final classes that implement java.io.Serializable, and have:
* adefault constructor
e adiscriminator field
e adiscriminator accessor method, named getDiscriminator()

¢ anaccessor and modifier method for each data element, the names of which are derived from choice element
name

¢ hashCode and equal s implementations

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 37 ETSITS 129 198-1 V6.5.0 (2006-12)

Conflicting names should be resolved by prefixing the field name with an underscore for getDiscriminator if thereisa
name clash with the mapped data type name or any of the data element names.

Where choice element type and choice element name are 'NULL' and 'Undefined’, respectively, a Java™ Object set as
null replacesthe NULL. If multiple NULL/Undefined combinations occur in the tagged choice of data elements, the
method, setUndefined, will receive the discriminator as a parameter and set _object to null.

Accessor methods shall raise an InvalidUnionAccessorException exception if the expected data element has not been
Set.

Example 10:

package org.csapi.jr.se;

public final class AoCOrder inplenents java.io.Serializable {
private Cal |l AoCOrderCategory _discrimnator = null;
private java.lang. Obj ect _object;

public AoCOrder() {
}

public Cal | AoCOrder Category getDiscrimnator() throws
org.csapi.jr.se.lnvalidUni onAccessor Exception {
if(_discrimnator == null) {
throw new org. csapi.jr.se.lnvalidUni onAccessor Exception();

return _discrimnator;

}

public org.csapi.jr.se.ChargeAdvi cel nfo get ChargeAdvi cel nfo() throws
org.csapi.jr.se.lnvalidUni onAccessor Exception {
if (_discrimnator != Call AoCOr der Cat egory. CHARGE_ADVI CE_| NFO) {
throw new org. csapi.jr.se.lnvalidUni onAccessor Exception();

return ((org.csapi.jr.se.ChargeAdvi celnfo) _object);

public void set ChargeAdvi cel nfo(org. csapi.jr.se.ChargeAdvi celnfo val ue) {
_discrimnator = Call AoCOr der Cat egory. CHARGE_ADVI CE_| NFG,
_object = val ue;

}

public org.csapi.jr.se.ChargePerTi ne getChargePerTinme() throws
org. csapi.jr.se.lnvalidUni onAccessor Exception {
if (_discrimnator != Call AoCOrder Cat egory. CHARGE_PER Tl ME) {
throw new org. csapi.jr.se.lnvalidUni onAccessor Exception();

return ((org.csapi.jr.se.ChargePerTinme) _object);

public void set ChargePerTi ne(org. csapi.jr.se. ChargePerTi ne val ue) {
_discrimnator = Call AoCOr der Cat egory. CHARGE_PER TI ME;
_object = val ue;

}

public java.lang. String get Net workCharge() throws
org. csapi.jr.se.lnvalidUni onAccessor Exception {
if (_discrimnator != Call AoCOrder Cat egory. CHARGE_NETWORK) {
throw new org. csapi.jr.se.lnvalidUni onAccessor Exception();

return ((java.lang.String) _object);

public void set NetworkCharge(java.lang. String val ue) {
_discrimnator = Call AoCOr der Cat egory. CHARGE_NETWORK;
_object = val ue;

}

public void setUndefined(Call AocOrderCategory discrimnator) {
__discrimnator = discrinmnator;
__object = null;

}

publ i c bool ean equal s(bject o) {
/lequality |ogic

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 38 ETSITS 129 198-1 V6.5.0 (2006-12)

public int hashCode() ({
/' hash code cal cul ation

}

C.3.6.7 Exceptions

An exception maps to a constructed exception, providing appropriate constructors and accessor methods for the data
contained within the exception. Each exception is defined as a public class extending java.lang.Exception, and
containing a private field for each information element contained within the exception.

A default constructor is provided, along with a constructor containing only an embedded exception, a constructor
containing alist of the fields in the exception and a constructor that contains the fields plus an embedded exception.

An accessor method is provided for each field, and for the embedded exception.
The following Java™ Realisations apply to mapping of exceptions:

e PlatformException

e P_XXX_XXX Exceptions

¢ TpCommonExceptions

« TpCommonExceptions' associated exceptions

¢ Additiona abstract exceptions

¢ InvaidUnionAccessorException

¢ InvalidEnumV a ueException

C.3.6.7.1 PlatformException
PlatformException exception handles local platform and communication problem exceptions.

Example 11:

package org.csapi.jr.se;
public class PlatfornException extends java.lang. Runti neException {
private Throwabl e _cause = null;

public Pl atfornException () {
super () ;

public Pl atfornException (String nessage) {
super (nmessage) ;

public PlatfornmException (String nmessage, Throwabl e cause) {
super (nmessage) ;
_cause = cause;

}

public Pl atfornException (Throwabl e cause) {
_cause = cause;
}

publ i c Throwabl e get Cause() {
return _cause;
}

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 39 ETSITS 129 198-1 V6.5.0 (2006-12)

C.3.6.7.2 P_XXX_XXX Exceptions
P_XXX_XXX exceptions follow the XxxXxxException naming pattern, and inherit from java.lang.Exception.

Example 12:

package org.csapi.jr.se;
public class InvalidlnterfaceTypeException extends java.lang. Exception {
private Throwabl e _cause = null;

public InvalidlnterfaceTypeException() {
super ();

public InvalidlnterfaceTypeException(String nessage) {
super (nmessage) ;

public InvalidlnterfaceTypeException(String nessage, Throwabl e cause) {
super (nmessage) ;
_cause = cause;

}

public InvalidlnterfaceTypeException(Throwabl e cause) {
_cause = cause;
}

publ i c Throwabl e get Cause() {
return _cause;
}

C.3.6.7.3 TpCommonExceptions

The name for TpCommonExceptions exception is made singular, i.e. CommonException, and inherits from
javalang.Exception.

Example 13:

package org.csapi.jr.se;

public class CommpbnException extends java.lang. Exception {
private Throwabl e _cause = null;
private int _exceptionType;
private String _extral nformation;

publ i ¢ CommonException () {
super () ;

publ i ¢ CormmonException (String nessage) {
super (nmessage) ;

publ i ¢ CommobnException (String nessage, Throwabl e cause) {
super (nmessage) ;
_cause = cause;

}

publ i ¢ CormonException (Throwabl e cause) {
_cause = cause;
}

publ i c Throwabl e get Cause() {
return _cause;
}

public int getExceptionType() {
return _exceptionType;
}

public void set ExceptionType(int exceptionType) {
_exceptionType = exceptionType;
}

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 40 ETSITS 129 198-1 V6.5.0 (2006-12)

public String getExtralnformation() {
return _extral nformation;
}

public void setExtralnformation(String extralnformation) {
_extralnformati on = extral nformation;
}

C.3.6.7.4 TpCommonException's associated exceptions

P_XXX_XXX exception types (constants) associated with TpCommonExceptions follow the X xxXxxException
naming pattern and inherit from CommonException.

Example 14:

package org.csapi.jr.se;
public cl ass ResourcesUnavai |l abl eExcepti on extends org.csapi.jr.se. CoomonException {
private Throwabl e _cause = null;

publ i ¢ ResourcesUnavai | abl eException () {
super () ;

publ i ¢ ResourcesUnavai |l abl eException (String nessage) {
super (nmessage) ;

publ i ¢ ResourcesUnavai | abl eException (String nessage, Throwabl e cause) {
super (nmessage, cause);

publ i ¢ ResourcesUnavai | abl eExcepti on (Throwabl e cause) {
_cause = cause;
}

C.3.6.7.5 Additional abstract exceptions

Additional abstract exceptions (See ETSI ES 202 915-2, Annex D) have been defined which are
TplnvalidArgumentException, TpFrameworkException, TpMobilityException, TpDataSessionException,

TpM essagingException, TpConnectivityException, TpAccountException, TpPAM Exception and TpPolicyException
and are mapped as follows:

Example 15:

package org.csapi.jr.se;
public class InvalidArgunent Exception extends java.lang. Exception {
private Throwabl e _cause = null;

public I nvalidArgunent Exception () {
super () ;

public InvalidArgunent Exception (String nessage) {
super (nessage) ;

public I nvalidArgunent Exception (String nessage, Throwabl e cause) {
super (nmessage) ;
_Cause = cause;

}

public I nvalidArgunent Exception (Throwabl e cause) {
_cause = cause;
}

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 41 ETSITS 129 198-1 V6.5.0 (2006-12)

publ i c Throwabl e get Cause() {
return _cause
}

C.3.6.7.6 InvalidUnionAccessorException

An additional exception, InvalidUnionAccessorException, is defined which indicates that the expected data element has
not been set.

Example 16:
package org.csapi.jr.se;
public class |nvalidUni onAccessor Exception extends org.csapi.jr.se.|nvalidArgunent Exception {
private Throwabl e _cause = null;
public | nvalidUni onAccessor Exception (){
super ();

public | nvalidUni onAccessor Exception (String nessage){
super (message);

public I nvalidUni onAccessor Exception (String nmessage, Throwabl e cause)({
super (nmessage, cause);

public | nvalidUni onAccessor Exception (Throwabl e cause) {
_cause = cause;
}

C.3.6.7.7 InvalidEnumValueException

An additional exception, InvalidEnumV alueException, is defined which indicates that an enum data type was accessed
with an invalid request value.

Example 17:

package org.csapi.jr.se;
public class |nvalidEnunVal ueException extends org.csapi.jr.se.|nvalidArgunent Exception {
private Throwabl e _cause = null;

public I nvalidEnunVal ueException () {
super ();

public I nvalidEnunVal ueExceptions (String nessage) {
super (message);

public | nvali dEnunVal ueException (String message, Throwabl e cause) {
super (nmessage, cause);

public | nvalidEnunVal ueExcepti on (Throwabl e cause) ({
_cause = cause;
}

C.3.6.8 Deprecation
Java™ source can evolve between one version and the next. Three causes of evolution are identified:

¢ Through applying changes to the UML

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 42 ETSITS 129 198-1 V6.5.0 (2006-12)

¢ Through applying changes to the rulebook
e Through improving the Java™ production process

In order to maintain backward compatibility, the Java™ community applies the /** @deprecated */ tag. Java™ source
shall maintain backward compatibility. Changes between subsequent versions shall be indicated through applying the
deprecated tag.

Deprecated Java™ source remains deprecated for aslong as UML deprecation history is remained.

C.4 J2SE™ Specific Conventions

The UML interfaces are represented by Java™ public interfaces; those interfaces that inherit from other interfaces are
represented in Java™ as extending that interface. The Java™ realisations of OSA/Parlay SCFs use an Event Listener
design pattern while the Framework uses the Callback pattern.

This annex provides the information on realisation of the Java™ developer API including:
 How Java™ APIsarereaised from Parlay UML
e Wherethelistener patternis used, new classes to be generated from the UML
¢ Changes reguired to data types and methods to support correlation using object references

e Useof hierarchical exceptions

C.4.1 Removal of "Tp" Prefix

The UML data types labelled with the prefix 'Tp' are represented in Java™ without this prefix.

Example 18:

UML Java™ Realisation
TpCallAppinfo CallApplInfo

In the case of name collisions between data types and interfaces as with IpTerminal Capabilities and IpService the UML
data types labelled with the prefix Tp' are represented in Java™ with an aternative prefix "Type'.

Example 19:
UML Java™ Realisation
IpTerminalCapabilities TerminalCapabilities
TpTerminalCapabilities TypeTerminalCapabilities

The above example is based in conjunction with C.4.3 Removal of "Ip" Prefix.

C.4.2 Constants

The UML constants |abelled with the prefix 'P_" are represented in Java™ without this prefix.

Example 20:

UML Constant Java™ Constant

P_NO_CALLBACK_ADDRESS_SET NO_CALLBACK_ADDRESS_SET

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 43 ETSITS 129 198-1 V6.5.0 (2006-12)

C.4.3 Removal of "Ip" prefix
The"Ip" prefix isremoved in the Java™ realisation of UML interfaces.

Example 21.

UML Java™

IpCallControlManager CallControlManager

C.4.4 Mapping of Ipinterface

IpInterface interface is represented by the Csapilnterface interface. Thisisa"marker" interface, in that it contains no
methods, but provides a common interface for related interfaces to inherit from. All interfaces to be serializable; this
can be done by Csapilnterface extending Serializable.

Example 22:
package org.csapi.jr.se;

public interface Csapilnterface extends Serializabl e{

}

C.4.5 Mapping of IpService

IpService interface is represented by the Java™ Service interface. This provides acommon interface for related
interfaces to inherit from.

Example 23:

Service Interface:

package org.csapi.jr.se;

public interface Service extends Csapilnterface {
public final static int | N _SERVICE_STATE=0 ;
public final static int OUT_OF SERVI CE_STATE=1,

voi d addServi ceSt at eChangelLi st ener (Servi ceSt at eChangelLi st ener |i stener)

int getServiceState();
voi d renoveServi ceSt at eChangelLi st ener (Servi ceSt at eChangelLi stener |istener) ;

Listener interface:
package org.csapi.jr.se;

public interface ServiceStateChangeli stener extends java.util.EventListener {
voi d onQut O Servi ce(Qut Of Servi ceEvent event);
}

Event class:

package org.csapi.jr.se;
public class QutOf ServiceEvent extends jav.util.EventObject {
publ i c Qut O Servi ceEvent (j ava. | ang. Obj ect source) {
super (source)

C.4.6 Mapping of UML Operations

The UML operations are represented in Java™ as methods.

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 44 ETSITS 129 198-1 V6.5.0 (2006-12)

Exceptions that can be raised by UML operations are represented in Java™ with the throws clause and the Java™
Redlisation of the UML Exceptions.

UML 'in' parameters, represented by 'in ' preceding the parameter type are represented in Java™ without this clause.

Example 24:
public void nanager Resurmed ();

public Csapilnterface obtainlnterface (InterfaceNane interfaceNane) throws
I nval i dl nt er f aceNaneExcepti on;

public Service createServi ceManager (CientApplD application, ServicePropertylist serviceProperties,
Servi cel nstancel D servi cel nstancel D);

The above example method signatures are based on generic mapping of interfaces, exceptions and data types.

C.4.7 Mapping of TpSessionID

The UML TpSessionlD datatypes will be hidden in the 2SE™ APIs (and optionally supported by the underlying
Java™ implementation). Consequently, the TpSessionl DSet data type and | pService.setCallbackWithSessionl D()
method are superfluous. Also, structures with only TpSessionlD and interface references (e.g. TpCallldentifier) are no
longer necessary and references to these structures should be replaced by just the reference to the interface. For data
types that contain TpSessionl D the Java™ API Realisation object replaces theTpSessioniD.

The following figure shows how Java™ API Realisation objects relate to Parlay UML objects and sessions. How thisis
realised in the adaptors is implementation dependent.

Java APl Realisation Objects

{ Relationships |

Parlay UML Object

Parlay UML Sessions

C.4.8 Mapping of TpAssignmentID to the creation of an Activity
object

The UML TpAssignmentI D data types, which differentiate between multiple parallel asynchronous method invocations
(activities) on the same (‘parent’) interface, are deleted and replaced with createXxx methods (one for each parallel
asynchronous activity) that create (‘child’) activity interfaces. Where this would result in method names of the pattern
createCreateXxx, this should be changed to method names with the pattern createXxx. Associated listeners would then
remove the Create prefix from their name. These activity interfaces, in addition to possibly supporting other methods,
will support one of the previously mentioned multiple parallel asynchronous method invocations. Hence, the Java™
API realisation creates multiple (activity) objects and invokes a single request per object rather than creating asingle
object and invoking multiple requests on that object, each request being differentiated using the TpAssignmentI D value.
The results of the asynchronous method invocation will be handled by the activity interface”s listener interface. To
create the activity interface, the original 1pXxx interface (to be named Xxx) will replace its parallel supporting

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 45 ETSITS 129 198-1 V6.5.0 (2006-12)

asynchronous method invocations, yyyY yyReq, with createY yyYyy methods that take no parameters but returns the
activity interface, YyyYyy. Where this would result in method names of the pattern createCreateX xx, this should be
changed to method names with the pattern createXxx. Associated listeners would then remove the Create prefix from
their name. The activity interface will extend Activity interface (see next rule), have asimple FSM, the
addYyyYyyListener, removeY yyY yyListener and the asynchronous method that previously supported a parallel
capability (typically named yyyYyyReq, but also yyyY yyStop).

An Activity interface, packaged in org.csapi.jr.se, is added as a parent to all activity interfaces. An application may add
listeners of type ActivityStateChangeL istener to an Activity if it wishes be explicitly informed when the activity
becomesinvalid.

The YyyYyyListener activity listener interfaces will extend java.util.EventListener. The asynchronous methods of
previously named | pAppXxx, typically labelled yyyYyyRes and yyyY yyErr but also yyyYyy, will be renamed
onYyyYyyRes and onYyyYyyErr but also onYyyYyy. Each method will have an event parameter, typically labelled
YyyYyyResEvent and YyyY yyErrEvent, but also YyyY yyEvent. Events will be classes that extend
java.util.EventObject and contain a public constructor (with multiple parameters — one per class carried by the event)
and a number of public getter methods (one per 'gettable’ class carried by the event). Asaresult of adding activity
listener interfaces, this may cause the requirement for the original IpAppXxx to disappear, since the yyyY yyRes and
yyyY yyErr methods will effectively be ported to the activity listener interfaces.

For data types that contain TpAssignmentID the activity object replaces the TpAssignmentID.
Example 25:

Activity Interface:

package org.csapi.jr.se;
public interface Activity extends Csapilnterface {
public final static int |DLE STATE = 0;
public final static int ACTIVE_STATE = 1;
public final static int |INVALID STATE = 2;
public int getState();
public void addActivityStateChangeli stener (ActivityStateChangelistener |istener);
public void renoveActivityStateChageli stener (ActivityStateChangelistener |istener);

Activity Listener Interface and Event class:

package org.csapi.jr.se;
public interface ActivityStateChangeli stener {

onlnval i dSt at eEvent (Il nvalidActivityEvent event)
}

public class InvalidActivityEvent extends java.util.Event Object {
public InvalidActivityEvent(java.lang. Object source){
super (source)

Parent interface:

package org.csapi.jr.se.mmul;

public interface UserlLocation extends org.csapi.jr.se.Service {
public LocationReport createlocati onReport();
publ i ¢ ExtendedLocati onReport creat eExt endedLocati onReport ();
public Periodi cLocationReporting createPeriodi cLocati onReporting();

Child Interface:

package org.csapi.jr.se.mmul;

public interface LocationReport extends org.csapi.jr.se.Activity {
public void addLocati onReportLi stener(Locati onReportlListener |istener)
public void renpvelLocati onReportListener(Locati onReportlListener |istener)
public void | ocationReportReq(Address[] users) throws ...

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 46 ETSITS 129 198-1 V6.5.0 (2006-12)

Listener Interface:

package org.csapi.jr.se.mmul;
public interface LocationReportListener extends java.util.EventListener {

public void onLocati onReport ResEvent (Locati onReport ResEvent event);
public void onLocationReportErrEvent (Locati onReportErrEvent event);

Event classes:

package org.csapi.jr.se.mmul;

public class LocationReportResEvent extends java.util.Event Object {
/1 with a public UserLocation[] constructor and a public getter
/1 method for the parameter of the event

}

public classLocationReportErrEvent extends java.util.EventCbject {
/1 with a public MbilityError and MobilityDi agnostic constructor
/1 and two public getter nethods, one for each of the paraneters
/1 of the event

The Finite State Model for the Activity interface is given below:

Idle

Active

Invalid

Thisinterface specifies an activity, which might be provided by a service. An activity has three states: "idle", "active"
and "invalid'. Theinitial stateis"idle" and here the listeners should be registered. It performsin the "active" state. It
entersthe "invalid" state when it has fulfilled its task or afatal error occurred. In specia cases state transition from
"idle" to "invalid" is possible.

An example activity interface FSM is given below for asingle activity request with a single response:

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 a7 ETSITS 129 198-1 V6.5.0 (2006-12)

addL ocationReportListener()
Idle removel ocationReportListener()

locationReportReq|()

A Ctl ve removel ocationReportListener()

"L ocationReportResEvent
"L ocationReportErrEvent

a‘ Invalid

An example activity interface FSM is given below for a single activity request with repeating responses:

locationReportReq() exception

addPeriodicL ocationReportingListener()
| dl e removePeriodicLocationReportingListener()

periodocL ocationReportingStartReq|()

) removePeriodicL ocationReportingListener()
Active "PeriodicL ocationReportEvent
periodicL ocationReportingStop(“ selected users’)

periodicLocationReportingStop(“all users’)
"PeriodicL ocationReportErrEvent

Invalid

periodicL ocationReportingStartReq() exceptjon

C.4.9 Callback Rule

The UML callback design pattern for all callbacks that return atype is represented in Java™ with the callback design
pattern. The UML callback design pattern for all callbacks that return void is represented in Java™ with the event
listener design pattern.

The UML client-to-service interfaces with the IpAppXxxx naming convention are represented in Java™ with the
XxxxListener naming convention.

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 48 ETSITS 129 198-1 V6.5.0 (2006-12)

The IpService.setCallback method can be deleted; the interfaces that inherited the setCallback method now have
associated addXxxxListener and removeX xxxListener methods. According to the TpSessionlD mapping,
I pService.setCallbackWithSessionl D() method is deleted.

The XxxxListener listener interfaces will extend java.util.EventListener. The asynchronous methods of previously
named IpAppXxxx, typically labelled yyyyYyyyRes and yyyyY yyyyErr but also yyyyYyyy, will be renamed
onYyyyYyyyRes and onYyyyY yyyErr but also onYyyyYyyy. Each method will have an event parameter, typically
labelled YyyyYyyyResEvent and YyyyY yyyErrEvent, but also YyyyYyyyEvent. Eventswill be classes that extend
java.util.EventObject and contain a private constructor (with multiple parameters — one per class carried by the event)
and a number of public getter methods (one per 'gettable’ class carried by the event). Events are read-only and
serializable.

Example 26:

Listener Interface:
package org.csapi.jr.se.cc. npccs;
Mul ti PartyCal | Li stener extends java.util.EventListener{

public void onGetlnfoResEvent (Get| nf oResEvent event)

public void onGetlnfoErrEvent (GetlnfoErrEvent event)

public void onSupervi seResEvent (Supervi seResEvent event)

public void onSupervi seErrEvent (Supervi seErr Event event)

public void onCal | EndedEvent (Cal | EndedEvent event)

public void onCreat eAndRout eCal | LegEr r Event (Cr eat eAndRout eCal | LegErr Event event)

}

MultiPartyCall Interface additional methods:

public void addMul ti PartyCal | Li stener (Ml ti PartyCallListener nultiPartyCallListener);
public void renoveMil ti PartyCal |l Li stener(MiltiPartyCallListener nmultiPartyCallListener);

C.4.10 Factory Rule

The following Factory class allows applications to obtain proprietary peer API objects. The term "peer” is Java™
nomenclature for a particular platform-specific implementation of a Java™ interface.

Example 27:

package org.csapi.jr.se.fw

i mport org.csapi.jr.se.PeerUnavail abl eExcepti on;

i nport org.csapi .se. I nval i dAr gunent Excepti on;

i nport org.csapi . se. Resour cesUnavai | abl eExcepti on;
i mport org.csapi .se.fw access.tsmlnitial;

import java.util.

g
jr
gr
jr

5 —

public class Initial Factory {
private static Initial Factory nyFactory;
private static String className = null;
private static String |ang "en";
private static String cntry "USs";

private Initial Factory() ({

}

public synchronized Initial createlnitial (String initial PeerReference) throws
Peer Unavai | abl eExcepti on, ResourcesUnavai | abl eException, |nvali dArgunent Exception {
Local e current Local e;
Resour ceBundl e nessages;
String tryMessage;

try {
currentLocal e = new Local e(l ang, cntry);

nmessages = ResourceBundl e. get Bundl e("Initial FactoryBundl e", currentLocal e);

/1 Validate all used val ues before using themlater
/1 avoiding error text exception to hide the real exception

tryMessage = nessages.getString("Initial PeerReferenceNull");

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 49 ETSITS 129 198-1 V6.5.0 (2006-12)

tryMessage
tryMessage

= nmessages. getString("InitiallnstFailure");
= nmessage. get String("Destroylnitial Failure");
}
catch (Exception e) {
t hr ow new Resour cesUnavai | abl eException ("Localisation failed to be initialized");

}

if (initial PeerReference == null) ({
String errmsg = messages.getString("Initial Peer ReferenceNul|");
throw new | nval i dAr gunent Exception (errnsg);

}

try {

Cass ¢ = Cass.forNane (getlnplenentati onCl assNane ());
if(initial PeerReference.equals('')){

/]l Creates a new instance of the Object class

/1 using default constructor

return (Initial)c.new nstance ();

}

Class[] paraniTypes = {initial Peer Reference. getC ass()};
java.lang.refl ect.Constructor ctor =
c. get Construct or (par anifypes) ;
bj ect[] params = {initial PeerRef erence};
return (Initial) ctor.new nstance(parans);
} catch (Exception e) {
String errnmsg = nessages.getString("InitiallnstFailure");
t hr ow new Peer Unavai | abl eException (errnsg);

}

public synchronized static Initial Factory getlnstance() {
if (nyFactory == null) {
nyFactory = new Initial Factory ();
}

return nyFactory;

}

public String getlnpl enentationd assNane () {
return cl assNane;
}

public static void setlnplenentationd assNane (String classNane) {
this.classNane = cl assNane;

}
public synchroni zed static void setlLocal e(String | anguage, String country) {
if (language == null) {
lang = "en";
el se {
| ang = | anguage;
}
if (country == null) {
cntry = "US";
el se {
cntry = country;
}
}
public void destroylnitial (Initial initiallnstance) {
if (initiallnstance == null) {
return;
}
try {
delete initiallnstance;
} catch (Exception e) {
String errnsg = nessages.getString("Destroylnitial Failure");
t hrow new Runti neException(errnsg);
}
}

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 50 ETSITS 129 198-1 V6.5.0 (2006-12)

C.4.11 J2SE™ Specific Exceptions

Exceptionsin this section are only applicable within a J2SE™ environment.

C.4.11.1 PeerUnavailableException
PeerUnavailableException indicates failure to access an implementation of the Initial interface.

Example 28:

public class PeerUnavai |l abl eExcepti on extends java.l ang. Exception {
private Throwabl e _cause = null;
publ i ¢ Peer Unavai | abl eException () {
super () ;

publ i ¢ Peer Unavai | abl eException (String nmessage) {
super (nessage) ;

publ i ¢ Peer Unavai |l abl eException (String nessage, Throwabl e cause) {
super (nmessage) ;
_cause = cause;

}

publ i ¢ Peer Unavai | abl eExcepti on (Throwabl e cause) {
_cause = cause;
}

publ i c Throwabl e get Cause() {
return _cause;
}

C.4.11.2 lllegalStateException
I1legal StateException exception signal s that a method has been invoked at an illegal or inappropriate time.
Example 29:

package org.csapi.jr.se;
public class |1l egal StateException extends java.lang. Exception {

private int _state;
private java.lang.Object _object;

public |11l egal StateException(Cbject object, int state) {

super ();
_object = object;
_state = state;
}
public Illegal StateException(Cbject object, int state, String s) {
super (s);
_obj ect = object;
_state = state;
}

public Object getObject() {
return _object;
}

public int getState() {
return _state;
}

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 51 ETSITS 129 198-1 V6.5.0 (2006-12)

C.4.12 User Interaction Specific Rules

C.4.12.1 Interfaces representing UML IpUl and IpUICall Rule

The following mappings take account of the fact that when the TpAssignmentID rule is applied the Java™ interfaces
representing UML IpUICall does not extend the Java™ interfaces representing UML [pUI.

Java™ Ul Generic replaces the UML IpUl. Methods common to both the Java™ Ul Generic and Java™ UICall are
pulled up into a super-interface called Ul. UML IpAppUl and IpAppUiCall interfaces are replaced by a UlListener
interface.

C.4.12.2 Naming Collisions of IpUl and IpUICall Rule

Naming collisions that arise through IpUI and IpUlCall methods e.g. XXX, having the same name will be dealt with by
prefixing the Call Related Ul activities by 'CallRelated’. Methods to create the activity will become
createCallRelatedX X X () and events will become Call RelatedX X X Event.

C.4.12.3 Naming Collisions of IpUICall and IpUIAdminManager Rule

Naming collisions that arise through IpUICall and IpUlAdminManager methods, e.g. XXX, having the same name will
be dealt with by prefixing the Ul Admin activities by 'AdminRelated’. Methods to create the activity will become
createAdminRelatedX XX () and events will become AdminRelatedX X X Event.

C.5 J2EE™ Specific Conventions

J2EE™ supports both remote and local interfaces.

C.5.1 Void

C.5.2 Remote Interface Definitions

C.5.2.1 IpInterface

Thisinterface implements java.io.Serializable. Since it isthe root interface for al other interfaces, this makes all
defined interfaces seriaizable.

Example 30:

public interface Iplnterface extends javaio.Seriaizable

C.5.2.2 Methods for Remote Interfaces

A public method is defined within aremote interface for each method defined in the specification, with zero or one
output specified as the return value, and all other parameters listed without any input marker. Each method will return
java.rmi.RemoteException in addition to other exceptions, if any.

Example 31:

public void deassignCall (int callSessionlD) throws java.rmn .RenpoteException,
org.csapi.jr.ee. TpCommonException, org.csapi.jr.ee.lnvalidSessionl dException;

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 52 ETSITS 129 198-1 V6.5.0 (2006-12)

C.5.3 Local Interface Definitions

C.5.3.1 Methods for Local Interfaces

A public method is defined within alocal interface for each method defined in the specification, with zero or one output
specified asthe return value, and all other parameters listed without any input marker.

Example 32:

public void deassignCall (int callSessionlD) throws org.csapi.jr.ee. TpConmonExcepti ons,
org.csapi.jr.ee.lnvalidSessionl dExcepti on;

C.5.4 Multi Party Call Control Specific Rules

The Multi Party Call Control Manager interface has specific Java™ Realisation considerations.

C.5.4.1 IpCallLeg and IpAppCallLeg method name conflicts

Some method names within the IpAppCallLeg interface have the same names as methods in the IpAppMultiPartyCall
interface. These method names conflict when both interfaces are implemented on the same object within an RMI/11OP
or CORBA environment.

For the method names that are the same in both IpMultiPartyCall and IpCallLeg interfaces or |pAppMultiPartyCall and
IpAppCallLeg, the call leg related method names are modified to include 'CallLeg’ as part of the method name to avoid
name conflicts. The following method names result:

IpCallLeg Method Name Realisation Method Name
getinfoReq getCallLegInfoReq
superviseReq superviseCallLegReq

Table 1: IpCallLeg method name modifications

IpAppCallLeg Method Name Realisation Method Name
getinfoRes getCallLegIinfoRes
getinfoErr getCallLeglInfoErr
superviseRes superviseCallLegRes
superviseErr superviseCallLegErr

Table 2: IpAppCallLeg method name modifications

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 53 ETSITS 129 198-1 V6.5.0 (2006-12)

Annex D (informative):
Description of Overview for 3GPP2 cdma2000 networks

This annex isintended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications. It is an extension of OSA API specifications capabilities to enable operation in cdma2000 systems
environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in:

[1] 3GPP2 P.S0001-B: "Wireless | P Network Standard”, Version 1.0, September 2000.

2] 3GPP2 S.R0037-0: "IP Network Architecture Model for cdma2000 Spread Spectrum Systems',
Version 2.0, May 14, 2002.

[3] 3GPP2 X.S0013: "All-IP Core Network Multimedia Domain”, December 2003.

These requirements are expressed as additions to and/or exclusions from the 3GPP Release 6 specification.
The information given here is to be used by developers in 3GPP2 cdma2000 network architecture to interpret the 3GPP
OSA specifications.

D.1 General Exceptions

The terms 3GPP and UMTS are not applicable for the cdma2000 family of standards. Neverthel ess these terms are used
(8GPP TR 21.905 [1]) mostly in the broader sense of "3G Wireless System”. If not stated otherwise there are no
additions or exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

D.2 Specific Exceptions

D.2.1 Clause 1: Scope

There are no additions or exclusions.

D2.2 Clause 2: References

Normative references on 3GPP TS 23.078 and on 3GPP TS 29.078 [8] are not applicable for cdma2000 systems.

D2.3 Clause 3: Definitions and abbreviations

There are no additions or exclusions.

D2.4 Clause 4: Open Service Access APIs

There are no additions or exclusions.

D2.5 Clause 5: Structure of the OSA API (29.198) and Mapping
(29.998) documents

There are no additions or exclusions.

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 54

D.2.6 Clause 6: Methodology

There are no additions or exclusions.

D.2.7 Clause 7: Introduction to OSA APIs

There are no additions or exclusions.

D.2.8 Annex A (normative): OMG IDL

There are no additions or exclusions.

D.2.9 Annex B (informative): W3C WSDL

There are no additions or exclusions.

D.2.10 Annex C (informative): Java™ API

There are no additions or exclusions.

ETSI

ETSI TS 129 198-1 V6.5.0 (2006-12)

3GPP TS 29.198-01 version 6.5.0 Release 6 55 ETSITS 129 198-1 V6.5.0 (2006-12)

Annex E (informative):
Change history

Change history

Date TSG# |TSG Doc. |CR [Rev |Subject/Comment Old New
Dec 2003 CN_22 |NP-030553 |0027 |-- Add OSA API support for 3GPP2 networks 5.4.0 |6.0.0
Feb 2004 - - - - Added Java code attachment 2919801J2EE.zip which was delivered [6.0.0 [6.0.1
late by outside developers. See Annex C; clause C 1.3 Javadoc
Jun 2004 CN_24 [NP-040263 |0030 |-- Correct Java Rulebook to introduce Ul service naming rule 6.0.1 |6.1.0
Jun 2004 CN_24 [NP-040260 |0031|-- Correct Java Rulebook to support API design pattern introduced by 6.0.1 |6.1.0
PAM SCS
Jun 2004 CN_24 [NP-040260 |0033]|-- Correct Java Rulebook to conform to Java accepted standards 6.0.1 |6.1.0
Jun 2004 CN_24 [NP-040262 [0035|1 Correct Java Rulebook 6.0.1 [6.1.0
Sep 2004 CN_25 [NP-040355 |0037 |-- Remove J2EE rule on generation of Serialization UID rule 6.1.0 |6.2.0
Sep 2004 CN_25 |NP-040356 |0038|-- Add Description of Backwards Compatibility rules 6.1.0 [6.2.0
Dec 2004 CN_26 [NP-040485 |0040 |-- Removal of OSA API SCFs description in W3C WSDL 6.2.0 |6.3.0
Dec 2004 -- -- -- -- Added missing code attachments 6.3.0 [6.3.1
Dec 2005 - - -- -- Editorial update (new javadoc) 6.3.1 |6.3.2
Jun 2006 CT_32 [CP-060194 |0041 |-- Resubmission of OSA API SCFs description in W3C WSDL 6.3.2 16.4.0
Jul 2006 - - - - Added missing code attachments 6.40 |6.4.1
Dec 2006 CT_34 [CP-060584 |0042 |-- Add missing P_POLICY_VIOLATION in the TpCommonExceptions 6.4.1 |6.5.0

ETSI

3GPP TS 29.198-01 version 6.5.0 Release 6 56

ETSI TS 129 198-1 V6.5.0 (2006-12)

History

Document history

V6.3.0 December 2004 | Publication (Withdrawn)
V6.3.1 December 2004 | Publication (Withdrawn)
V6.3.2 December 2005 | Publication
V6.4.1 July 2006 Publication
V6.5.0 December 2006 | Publication

ETSI

	Intellectual Property Rights
	Foreword
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Open Service Access APIs
	5 Structure of the OSA API (29.198) and Mapping (29.998) documents
	6 Methodology
	6.1 Tools and Languages
	6.2 Packaging
	6.3 Colours
	6.4 Naming scheme
	6.5 State Transition Diagram text and text symbols
	6.6 Exception handling and passing results
	6.7 References
	6.8 Strings and Collections
	6.9 Prefixes

	7. Introduction to OSA APIs
	7.1 Interface Types
	7.2 Service Factory
	7.3 Use of Sessions
	7.4 Interfaces and Sessions
	7.5 Callback Interfaces
	7.6 Setting Callbacks
	7.7 Synchronous versus Asynchronous Methods
	7.8 Out Parameters
	7.9 Exception Hierarchy
	7.10 Common Exceptions
	7.11 Use of NULL
	7.12 Notification Handling

	8 Backwards Compatibility Considerations
	8.1 Guidelines to enable backwards compatibility in implementations
	8.2 Rule summary
	8.2.1 Server side permitted changes
	8.2.2 Client side permitted changes
	8.2.3 Data type permitted changes

	8.3 Implementation Guidelines for Server Programmers
	8.4 Implementation Guidelines for Client Programmers
	8.5 Tracking the changes in the specifications
	8.5.1 New Tag
	8.5.2 Deprecated Tag

	8.6 Technology realization rules
	8.6.1 Corba IDL Rules
	8.6.2 Java rules

	8.7 Rules for removal of deprecated items from the specifications

	Annex A (normative): OMG IDL
	A.1 Tools and Languages
	A.2 Namespace
	A.3 Object References
	A.4 Mapping of Datatypes
	A.4.1 Basic Datatypes
	A.4.2 Constants
	A.4.3 Collections
	A.4.4 Sequences
	A.4.5 Enumerations
	A.4.6 Choices

	A.5 Use of NULL
	A.6 Exceptions
	A.7 Naming space across CORBA modules

	Annex B (informative): W3C WSDL
	B.1 Tools and Languages
	B.2 Proposed Namespaces for the OSA WSDL
	B.3 Object References
	B.4 Mapping UML Data Types to XML Schema
	B.4.1 Data Types
	B.4.1.2 <<Constant>>
	B.4.1.3 <<NameValuePair>>
	B.4.1.4 <<SequenceOfDataElements>>
	B.4.1.5 <<TypeDef>>
	B.4.1.6 <<NumberedSetOfDataElements>>
	B.4.1.7 <<TaggedChoiceOfDataElements>>

	B.5 Mapping of UML Interfaces to WSDL
	B.5.1 Mapping of UML Operations to WSDL message element
	B.5.2 Mapping of Exception to WSDL message element
	B.5.4 Mapping of Interface Class to WSDL portType and binding elements
	B.5.5 Mapping of UML Interfaces to WSDL service element

	Annex C (informative): JavaŽ Realisation API
	C.1 JavaŽ Realisation Overview
	C.1.1 J2SEŽ API
	C.1.2 J2EEŽ API
	C 1.3 JavadocŽ

	C.2 Tools and languages
	C.3 Generic mappings (Elements common to J2SEŽ and J2EEŽ)
	C.3.1 Namespace
	C.3.2 Package Naming Conventions
	C.3.3 Object References
	C.3.4 Element Naming
	C.3.5 Element Naming Collisions
	C.3.6 Data Type Definitions
	C.3.6.1 Basic Data Types
	C.3.6.2 Constants
	C.3.6.3 NumberedSetsOfDataElements (Collections)
	C.3.6.4 SequenceOfDataElements (Structures)
	C.3.6.5 NameValuePair (Enumerations)
	C.3.6.6 TaggedChoiceOfDataElements (Unions)
	C.3.6.7 Exceptions
	C.3.6.7.1 PlatformException
	C.3.6.7.2 P_XXX_XXX Exceptions
	C.3.6.7.3 TpCommonExceptions
	C.3.6.7.4 TpCommonException's associated exceptions
	C.3.6.7.5 Additional abstract exceptions
	C.3.6.7.6 InvalidUnionAccessorException
	C.3.6.7.7 InvalidEnumValueException

	C.3.6.8 Deprecation

	C.4 J2SEŽ Specific Conventions
	C.4.1 Removal of "Tp" Prefix
	C.4.2 Constants
	C.4.3 Removal of "Ip" prefix
	C.4.4 Mapping of IpInterface
	C.4.5 Mapping of IpService
	C.4.6 Mapping of UML Operations
	C.4.7 Mapping of TpSessionID
	C.4.8 Mapping of TpAssignmentID to the creation of an Activity object
	C.4.9 Callback Rule
	C.4.10 Factory Rule
	C.4.11 J2SEŽ Specific Exceptions
	C.4.11.1 PeerUnavailableException
	C.4.11.2 IllegalStateException

	C.4.12 User Interaction Specific Rules
	C.4.12.1 Interfaces representing UML IpUI and IpUICall Rule
	C.4.12.2 Naming Collisions of IpUI and IpUICall Rule
	C.4.12.3 Naming Collisions of IpUICall and IpUIAdminManager Rule

	C.5 J2EEŽ Specific Conventions
	C.5.1 Void
	C.5.2 Remote Interface Definitions
	C.5.2.1 IpInterface
	C.5.2.2 Methods for Remote Interfaces

	C.5.3 Local Interface Definitions
	C.5.3.1 Methods for Local Interfaces

	C.5.4 Multi Party Call Control Specific Rules
	C.5.4.1 IpCallLeg and IpAppCallLeg method name conflicts

	Annex D (informative): Description of Overview for 3GPP2 cdma2000 networks
	D.1 General Exceptions
	D.2 Specific Exceptions
	D.2.1 Clause 1: Scope
	D2.2 Clause 2: References
	D2.3 Clause 3: Definitions and abbreviations
	D2.4 Clause 4: Open Service Access APIs
	D2.5 Clause 5: Structure of the OSA API (29.198) and Mapping (29.998) documents
	D.2.6 Clause 6: Methodology
	D.2.7 Clause 7: Introduction to OSA APIs
	D.2.8 Annex A (normative): OMG IDL
	D.2.9 Annex B (informative): W3C WSDL
	D.2.10 Annex C (informative): JavaŽ API

	Annex E (informative): Change history
	History

