

ETSI TS 129 198-3 V4.7.0 (2003-03)

Technical Specification

Universal Mobile Telecommunications System (UMTS);
Open Service Access (OSA)

Application Programming Interface (API);
Part 3: Framework

(3GPP TS 29.198-3 version 4.7.0 Release 4)

�

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1 3GPP TS 29.198-3 version 4.7.0 Release 4

Reference
RTS/TSGN-0529198-03v470

Keywords
UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2003.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

mailto:editor@etsi.org
http://portal.etsi.org/tb/status/status.asp
http://www.etsi.org/

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 2 3GPP TS 29.198-3 version 4.7.0 Release 4

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

All published ETSI deliverables shall include information which directs the reader to the above source of information.

Foreword
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under
http://webapp.etsi.org/key/queryform.asp .

http://webapp.etsi.org/key/queryform.asp
http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 3 3GPP TS 29.198-3 version 4.7.0 Release 4

Contents

Intellectual Property Rights ..2

Foreword...2

Foreword...8

Introduction ..8

1 Scope ..10

2 References ..10

3 Definitions, symbols and abbreviations ...11
3.1 Definitions..11
3.2 Abbreviations ...11

4 Overview of the Framework...11
4.1 General requirements on support of methods...12

5 The Base Interface Specification..12
5.1 Interface Specification Format ...12
5.1.1 Interface Class ..13
5.1.2 Method descriptions..13
5.1.3 Parameter descriptions ..13
5.1.4 State Model...13
5.2 Base Interface ...13
5.2.1 Interface Class IpInterface ..13
5.3 Service Interfaces ...13
5.3.1 Overview ..13
5.4 Generic Service Interface ...14
5.4.1 Interface Class IpService ..14

6 Framework Access Session API...15
6.1 Sequence Diagrams ..15
6.1.1 Trust and Security Management Sequence Diagrams ..15
6.1.1.1 Initial Access for trusted parties..15
6.1.1.2 Initial Access...15
6.1.1.3 Authentication...17
6.1.1.4 API Level Authentication ...17
6.2 Class Diagrams...19
6.3 Interface Classes...20
6.3.1 Trust and Security Management Interface Classes ...20
6.3.1.1 Interface Class IpClientAPILevelAuthentication..21
6.3.1.2 Interface Class IpClientAccess..22
6.3.1.3 Interface Class IpInitial ...23
6.3.1.4 Interface Class IpAuthentication...24
6.3.1.5 Interface Class IpAPILevelAuthentication ...25
6.3.1.6 Interface Class IpAccess ...27
6.4 State Transition Diagrams ..29
6.4.1 Trust and Security Management State Transition Diagrams ..30
6.4.1.1 State Transition Diagrams for IpInitial ...30
6.4.1.1.1 Active State ...30
6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication..30
6.4.1.2.1 Idle State..31
6.4.1.2.2 Selecting Method State..31
6.4.1.2.3 Authenticating Client State..31
6.4.1.2.4 Client Authenticated State ...32
6.4.1.3 State Transition Diagrams for IpAccess..32
6.4.1.3.1 Active State ...32

7 Framework-to-Application API ...33

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 4 3GPP TS 29.198-3 version 4.7.0 Release 4

7.1 Sequence Diagrams ..33
7.1.1 Event Notification Sequence Diagrams ..33
7.1.1.1 Enable Event Notification ...33
7.1.2 Integrity Management Sequence Diagrams ..34
7.1.2.1 Load Management: Suspend/resume notification from application..34
7.1.2.2 Load Management: Framework queries load statistics ...35
7.1.2.3 Load Management: Framework callback registration and Application load control36
7.1.2.4 Load Management: Application reports current load condition..37
7.1.2.5 Load Management: Application queries load statistics...38
7.1.2.6 Load Management: Application callback registration and load control..38
7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the application39
7.1.2.8 Fault Management: Framework detects a Service failure ...40
7.1.2.9 Fault Management: Application requests a Framework activity test ..41
7.1.3 Service Discovery Sequence Diagrams ..42
7.1.3.1 Service Discovery ...42
7.1.4 Service Agreement Management Sequence Diagrams ...44
7.1.4.1 Service Selection...44
7.2 Class Diagrams...46
7.3 Interface Classes...49
7.3.1 Service Discovery Interface Classes ...49
7.3.1.1 Interface Class IpServiceDiscovery ..49
7.3.2 Service Agreement Management Interface Classes ..52
7.3.2.1 Interface Class IpAppServiceAgreementManagement ...52
7.3.2.2 Interface Class IpServiceAgreementManagement ..54
7.3.3 Integrity Management Interface Classes...56
7.3.3.1 Interface Class IpAppFaultManager ...56
7.3.3.2 Interface Class IpFaultManager ..60
7.3.3.3 Interface Class IpAppHeartBeatMgmt..63
7.3.3.4 Interface Class IpAppHeartBeat..64
7.3.3.5 Interface Class IpHeartBeatMgmt...65
7.3.3.6 Interface Class IpHeartBeat ..66
7.3.3.7 Interface Class IpAppLoadManager ...67
7.3.3.8 Interface Class IpLoadManager ..69
7.3.3.9 Interface Class IpOAM ...73
7.3.3.10 Interface Class IpAppOAM ..73
7.3.4 Event Notification Interface Classes...74
7.3.4.1 Interface Class IpAppEventNotification ...74
7.3.4.2 Interface Class IpEventNotification ..75
7.4 State Transition Diagrams ..76
7.4.1 Service Discovery State Transition Diagrams ..76
7.4.1.1 State Transition Diagrams for IpServiceDiscovery...76
7.4.1.1.1 Active State ...77
7.4.2 Service Agreement Management State Transition Diagrams ...77
7.4.3 Integrity Management State Transition Diagrams ..77
7.4.3.1 State Transition Diagrams for IpLoadManager...77
7.4.3.1.1 Idle State..78
7.4.3.1.2 Notification Suspended State...78
7.4.3.1.3 Active State ...78
7.4.3.2 State Transition Diagrams for LoadManagerInternal..78
7.4.3.2.1 Normal load State ..79
7.4.3.2.2 Application Overload State ...79
7.4.3.2.3 Internal overload State...79
7.4.3.2.4 Internal and Application Overload State ...79
7.4.3.3 State Transition Diagrams for IpOAM..80
7.4.3.3.1 Active State ...80
7.4.3.4 State Transition Diagrams for IpFaultManager...80
7.4.3.4.1 Framework Active State ..81
7.4.3.4.2 Framework Faulty State...81
7.4.3.4.3 Framework Activity Test State..81
7.4.3.4.4 Service Activity Test State ..81
7.4.4 Event Notification State Transition Diagrams ..81
7.4.4.1 State Transition Diagrams for IpEventNotification ..81

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 5 3GPP TS 29.198-3 version 4.7.0 Release 4

8 Framework-to-Service API ..82
8.1 Sequence Diagrams ..82
8.1.1 Service Discovery Sequence Diagrams ..82
8.1.2 Service Registration Sequence Diagrams ...82
8.1.2.1 New SCF Registration...82
8.1.3 Service Instance Lifecycle Manager Sequence Diagrams ...84
8.1.3.1 Sign Service Agreement..84
8.1.4 Integrity Management Sequence Diagrams ..85
8.1.4.1 Load Management: Service callback registration and load control...85
8.1.4.2 Load Management: Framework callback registration and service load control86
8.1.4.3 Load Management: Client and Service Load Balancing ...86
8.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service..................................87
8.1.4.5 Fault Management: Service requests Framework activity test ..88
8.1.4.6 Fault Management: Service requests Application activity test ...89
8.1.4.7 Fault Management: Application requests Service activity test ...89
8.1.4.8 Fault Management: Application detects service is unavailable...91
8.1.5 Event Notification Sequence Diagrams ..91
8.2 Class Diagrams...91
8.3 Interface Classes...95
8.3.1 Service Registration Interface Classes..95
8.3.1.1 Interface Class IpFwServiceRegistration ..95
8.3.2 Service Instance Lifecycle Manager Interface Classes ..98
8.3.2.1 Interface Class IpServiceInstanceLifecycleManager ..98
8.3.3 Service Discovery Interface Classes ...100
8.3.3.1 Interface Class IpFwServiceDiscovery ...100
8.3.4 Integrity Management Interface Classes...102
8.3.4.1 Interface Class IpFwFaultManager ...102
8.3.4.2 Interface Class IpSvcFaultManager ..106
8.3.4.3 Interface Class IpFwHeartBeatMgmt..111
8.3.4.4 Interface Class IpFwHeartBeat ...112
8.3.4.5 Interface Class IpSvcHeartBeatMgmt...113
8.3.4.6 Interface Class IpSvcHeartBeat ..114
8.3.4.7 Interface Class IpFwLoadManager ...115
8.3.4.8 Interface Class IpSvcLoadManager ..119
8.3.4.9 Interface Class IpFwOAM ..122
8.3.4.10 Interface Class IpSvcOAM ...123
8.3.5 Event Notification Interface Classes...124
8.3.5.1 Interface Class IpFwEventNotification ...124
8.3.5.2 Interface Class IpSvcEventNotification ..125
8.4 State Transition Diagrams ..126
8.4.1 Service Registration State Transition Diagrams ...126
8.4.1.1 State Transition Diagrams for IpFwServiceRegistration...126
8.4.1.1.1 SCF Registered State ...127
8.4.1.1.2 SCF Announced State..127
8.4.2 Service Instance Lifecycle Manager State Transition Diagrams ...127
8.4.3 Service Discovery State Transition Diagrams ..128
8.4.4 Integrity Management State Transition Diagrams ..128
8.4.4.1 State Transition Diagrams for IpFwLoadManager..128
8.4.4.1.1 Idle State..128
8.4.4.1.2 Notification Suspended State...128
8.4.4.1.3 Active State ...129
8.4.5 Event Notification State Transition Diagrams ..129

9 Service Properties...129
9.1 Service Property Types ..129
9.2 General Service Properties ...130
9.2.1 Service Name..130
9.2.2 Service Version...130
9.2.3 Service Instance ID...130
9.2.4 Service Instance Description...130
9.2.5 Product Name ...130
9.2.6 Product Version ..130

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 6 3GPP TS 29.198-3 version 4.7.0 Release 4

9.2.7 Supported Interfaces ...130
9.2.8 Operation Set ..131

10 Data Definitions ...131
10.1 Common Framework Data Definitions ..131
10.1.1 TpClientAppID ...131
10.1.2 TpClientAppIDList ...131
10.1.3 TpDomainID...131
10.1.4 TpDomainIDType...132
10.1.5 TpEntOpID ...132
10.1.6 TpPropertyName...132
10.1.7 TpPropertyValue...132
10.1.8 TpProperty ..132
10.1.9 TpPropertyList ..132
10.1.10 TpEntOpIDList ...132
10.1.11 TpFwID ..132
10.1.12 TpService..133
10.1.13 TpServiceList..133
10.1.14 TpServiceDescription ...133
10.1.15 TpServiceID..133
10.1.16 TpServiceIDList ...133
10.1.17 TpServiceInstanceID ..133
10.1.18 TpServiceSpecString ..133
10.1.19 TpServiceTypeProperty ..134
10.1.20 TpServiceTypePropertyList ..134
10.1.21 TpServiceTypePropertyMode...134
10.1.22 TpServicePropertyTypeName...134
10.1.23 TpServicePropertyName...134
10.1.24 TpServicePropertyNameList...134
10.1.25 TpServicePropertyValue...134
10.1.26 TpServicePropertyValueList...134
10.1.27 TpServiceProperty ..135
10.1.28 TpServicePropertyList ..135
10.1.29 TpServiceSupplierID ..135
10.1.30 TpServiceTypeDescription ...135
10.1.31 TpServiceTypeName ..136
10.1.32 TpServiceTypeNameList ..136
10.1.33 TpSubjectType..136
10.2 Event Notification Data Definitions ...137
10.2.1 TpFwEventName ..137
10.2.2 TpFwEventCriteria ...137
10.2.3 TpFwEventInfo...137
10.3 Trust and Security Management Data Definitions ...137
10.3.1 TpAccessType ..137
10.3.2 TpAuthType..138
10.3.3 TpEncryptionCapability..138
10.3.4 TpEncryptionCapabilityList ...138
10.3.5 TpEndAccessProperties ..138
10.3.6 TpAuthDomain ...138
10.3.7 TpInterfaceName ..139
10.3.8 TpInterfaceNameList ..139
10.3.9 TpServiceToken..139
10.3.10 TpSignatureAndServiceMgr ...139
10.3.11 TpSigningAlgorithm...140
10.4 Integrity Management Data Definitions ...140
10.4.1 TpActivityTestRes ..140
10.4.2 TpFaultStatsRecord ..140
10.4.3 TpFaultStats ..140
10.4.4 TpFaultStatisticsError...140
10.4.5 TpFaultStatsSet...141
10.4.6 TpActivityTestID..141
10.4.7 TpInterfaceFault ...141

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 7 3GPP TS 29.198-3 version 4.7.0 Release 4

10.4.8 TpSvcUnavailReason..141
10.4.9 TpFwUnavailReason ..141
10.4.10 TpLoadLevel...141
10.4.11 TpLoadThreshold ...142
10.4.12 TpLoadInitVal ..142
10.4.13 TpLoadPolicy ...142
10.4.14 TpLoadStatistic...142
10.4.15 TpLoadStatisticList...142
10.4.16 TpLoadStatisticData ...142
10.4.17 TpLoadStatisticEntityID...143
10.4.18 TpLoadStatisticEntityType ...143
10.4.19 TpLoadStatisticInfo ..143
10.4.20 TpLoadStatisticInfoType ..143
10.4.21 TpLoadStatisticError ..143
10.5 Service Subscription Data Definitions ...144
10.5.1 TpPropertyName...144
10.5.2 TpPropertyValue...144
10.5.3 TpProperty ..144
10.5.4 TpPropertyList ..144
10.5.5 TpEntOpProperties ...144
10.5.6 TpEntOp ...144
10.5.7 TpServiceContractID ..144
10.5.8 TpServiceContractIDList..144
10.5.9 TpPersonName ...144
10.5.10 TpPostalAddress ...145
10.5.11 TpTelephoneNumber ..145
10.5.12 TpEmail ..145
10.5.13 TpHomePage ..145
10.5.14 TpPersonProperties...145
10.5.15 TpPerson...145
10.5.16 TpServiceStartDate...145
10.5.17 TpServiceEndDate ..145
10.5.18 TpServiceRequestor..145
10.5.19 TpBillingContact ..145
10.5.20 TpServiceSubscriptionProperties..146
10.5.21 TpServiceContract ..146
10.5.22 TpServiceContractDescription..146
10.5.23 TpClientAppProperties ...146
10.5.24 TpClientAppDescription...146
10.5.25 TpSagID..146
10.5.26 TpSagIDList ...147
10.5.27 TpSagDescription ...147
10.5.28 TpSag..147
10.5.29 TpServiceProfileID...147
10.5.30 TpServiceProfileIDList...147
10.5.31 TpServiceProfile ...147
10.5.32 TpServiceProfileDescription...147

11 Exception Classes...148

Annex A (normative): OMG IDL Description of Framework ...149

Annex B (informative): Change history ...150

History ..151

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 8 3GPP TS 29.198-3 version 4.7.0 Release 4

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction
The present document is part 3 of a multi-part TS covering the 3rd Generation Partnership Project: Technical
Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as
identified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1: Overview
Part 2: Common Data Definitions
Part 3: Framework
Part 4: Call Control SCF
Part 5: User Interaction SCF
Part 6: Mobility SCF
Part 7: Terminal Capabilities SCF
Part 8: Data Session Control SCF

Part 9: Generic Messaging SCF (not part of 3GPP Release 4)
Part 10: Connectivity Manager SCF (not part of 3GPP Release 4)
Part 11: Account Management SCF
Part 12: Charging SCF

The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

OSA API specifications 29.198-family OSA API Mapping - 29.998-family
29.198-1 Part 1: Overview 29.998-1 Part 1: Overview
29.198-2 Part 2: Common Data Definitions 29.998-2 Not Applicable
29.198-3 Part 3: Framework 29.998-3 Not Applicable

29.998-4-1 Subpart 1: Generic Call Control – CAP mapping 29.198-4 Part 4: Call Control SCF
29.998-4-2
29.998-5-1 Subpart 1: User Interaction – CAP mapping
29.998-5-2
29.998-5-3

29.198-5 Part 5: User Interaction SCF

29.998-5-4 Subpart 4: User Interaction – SMS mapping
29.198-6 Part 6: Mobility SCF 29.998-6 User Status and User Location – MAP mapping
29.198-7 Part 7: Terminal Capabilities SCF 29.998-7 Not Applicable
29.198-8 Part 8: Data Session Control SCF 29.998-8 Data Session Control – CAP mapping
29.198-9 Part 9: Generic Messaging SCF 29.998-9 Not Applicable
29.198-10 Part 10: Connectivity Manager SCF 29.998-10 Not Applicable

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 9 3GPP TS 29.198-3 version 4.7.0 Release 4

29.198-11 Part 11: Account Management SCF 29.998-11 Not Applicable
29.198-12 Part 12: Charging SCF 29.998-12 Not Applicable

The present document is a subset of ETSI ES 201 915-03 v1.4.1 (Parlay 3.3).

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 103GPP TS 29.198-3 version 4.7.0 Release 4

1 Scope
The present document is Part 3 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA
are contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Framework aspects of the interface. All aspects of the Framework are defined in the
present document, these being:

• Sequence Diagrams;

• Class Diagrams;

• Interface specification plus detailed method descriptions;

• State Transition diagrams;

• Data definitions;

• IDL Description of the interfaces.

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium,
in co-operation with a number of JAIN™ Community member companies.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 4)".

[3] 3GPP TS 23.127: "Virtual Home Environment (Release 4)".

[4] IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996].

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 113GPP TS 29.198-3 version 4.7.0 Release 4

3 Definitions, symbols and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Overview of the Framework
This clause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating
applications.

The Framework API contains interfaces between the Application Server and the Framework, and between Network
Service Capability Server (SCS) and the Framework (these interfaces are represented by the yellow circles in the figure
below). The description of the Framework in the present document separates the interfaces into two distinct sets:
Framework to Application interfaces and Framework to Service interfaces.

Figure:

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

- Authentication: Once an off-line service agreement exists, the application can access the authentication
interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be
mutual. The application must be authenticated before it is allowed to use any other OSA interface. It is a policy
decision for the application whether it must authenticate the framework or not. It is a policy decision for the
framework whether it allows an application to authenticate it before it has completed its authentication of the
application.

Registered Services

Client Application

Framework
Call

Control Mobility UI

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 123GPP TS 29.198-3 version 4.7.0 Release 4

- Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previously authenticated application is allowed to do. Authentication shall precede
authorisation. Once authenticated, an application is authorised to access certain SCFs.

- Discovery of Framework and network SCFs: After successful authentication, applications can obtain available
Framework interfaces and use the discovery interface to obtain information on authorised network SCFs.
The Discovery interface can be used at any time after successful authentication.

- Establishment of service agreement: Before any application can interact with a network SCF, a service
agreement shall be established. A service agreement may consist of an off-line (e.g. by physically exchanging
documents) and an on-line part. The application has to sign the on-line part of the service agreement before it is
allowed to access any network SCF.

- Access to network SCFs: The Framework shall provide access control functions to authorise the access to SCFs
or service data for any API method from an application, with the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server (SCS):

- Registering of network SCFs. SCFs offered by a SCS can be registered at the Framework. In this way the
Framework can inform the Applications upon request about available SCFs (Discovery). For example, this
mechanism is applied when installing or upgrading an SCS.

The following clauses describe each aspect of the Framework in the following order:

• The sequence diagrams give the reader a practical idea of how the Framework is implemented.

• The class diagrams clause shows how each of the interfaces applicable to the Framework relate to one another.

• The interface specification clause describes in detail each of the interfaces shown within the class diagram part.

• The State Transition Diagrams (STD) show the transition between states in the Framework. The states and
transitions are well-defined; either methods specified in the Interface specification or events occurring in the
underlying networks cause state transitions.

• The data definitions clause shows a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
common data types part of the present document (29.198-2).

4.1 General requirements on support of methods
An implementation of this API which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method.

Where a method is not supported by an implementation of a Framework or Service interface, the exception
P_METHOD_NOT_SUPPORTED shall be returned to any call of that method.

Where a method is not supported by an implementation of an Application interface, a call to that method shall be
possible, and no exception shall be returned.

5 The Base Interface Specification

5.1 Interface Specification Format
This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 133GPP TS 29.198-3 version 4.7.0 Release 4

5.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for client applications are denoted by classes with name Ip<name>.
The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces
between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>,
while the Framework interfaces are denoted by classes with name IpFw<name>

5.1.2 Method descriptions

Each method (API method “call”) is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle
responses and reports, the application or service developer must implement the relevant IpApp<name> or
IpSvc<name> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
a value when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

5.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

<<Interface>>

IpInterface

5.3 Service Interfaces

5.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 143GPP TS 29.198-3 version 4.7.0 Release 4

5.4 Generic Service Interface

5.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

Method
setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method
setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 153GPP TS 29.198-3 version 4.7.0 Release 4

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

6 Framework Access Session API

6.1 Sequence Diagrams

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access for trusted parties

The following figure shows a trusted party, typically within the same domain as the Framework, accessing the OSA
Framework for the first time. Trusted parties do not need to be authenticated and after contacting the Initial interface the
Framework will indicate that no further authentication is needed and that the application can immediately gain access to
other framework interfaces and SCFs. This is done by invoking the requestAccess method.

 : IpClientAPILevelAuthentication Client : IpInitial :
IpAPILevelAuthentication

 : IpAccess Framework

1: initiateAuthentication()

2: authenticationSucceeded()

3: requestAccess()

1: The Client invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the
authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a
reference to its authentication interface.

2: Based on the domainID information that was supplied in the Initiate Authentication step, the Framework knows it
deals with a trusted party and no further authentication is needed. Therefore the Framework provides the authentication
succeeded indication.

3: The Client invokes requestAccess on the Framework's API Level Authentication interface, providing in turn a
reference to its own access interface. The Framework returns a reference to its access interface.

6.1.1.2 Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For
this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained
through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage,

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 163GPP TS 29.198-3 version 4.7.0 Release 4

the client has no guarantee that this is a Framework interface reference, but it to initiate the authentication process with
the Framework. The Initial Contact interface supports only the initiateAuthentication method to allow the authentication
process to take place.

Once the client has authenticated with the Framework, it can gain access to other framework interfaces and SCFs. This
is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

Cli en t : IpIniti al : IpAPILevelAuthentication Framework : IpAccess :
IpClientAPILevelAuthentication

1: initiateAuthentication()

2: selectEncryptionMethod()

3: authenticate()

5: authenticate()

8: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

7: requestAccess()

1: Initiate Authentication

The client invokes initiateAuthentication on the Framework's "public" (initial contact) interface to initiate the
authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a
reference to its authentication interface.

2: Select Encryption Method

The client invokes selectEncryptionMethod on the Framework's API Level Authentication interface, identifying the
encryption methods it supports. The Framework prescribes the method to be used.

3: Authenticate

4: The client provides an indication if authentication succeeded.

5: The client and Framework authenticate each other. The sequence diagram illustrates one of a series of one or more
invocations of the authenticate method on the Framework's API Level Authentication interface. In each invocation, the
client supplies a challenge and the Framework returns the correct response. Alternatively or additionally the
Framework may issue its own challenges to the client using the authenticate method on the client's API Level
Authentication interface.

6: The Framework provides an indication if authentication succeeded.

7: Request Access

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 173GPP TS 29.198-3 version 4.7.0 Release 4

Upon successful (mutual) authentication, the client invokes requestAccess on the Framework's API Level
Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference
to its access interface.

8: The client invokes obtainInterface on the framework's Access interface to obtain a reference to its service discovery
interface.

6.1.1.3 Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another using an underlying distribution technology mechanism.

Client : IpIni tial Framework : IpAuthentication : IpAccess

1: initiateAuthentication()

2: requestAccess()

3: obtainInterface()

Underlying Distribution
Technology Mechanism is used
for application identification and
authentication.

1: The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the
type of authentication process. In this case, the client selects to use the underlying distribution technology mechanism
for identification and authentication.

2: The client invokes the requestAccess method on the Framework's Authentication interface. The Framework now
uses the underlying distribution technology mechanism for identification and authentication of the client.

3: If the authentication was successful, the client can now invoke obtainInterface on the framework's Access interface
to obtain a reference to its service discovery interface.

6.1.1.4 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and
digital signatures in the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 183GPP TS 29.198-3 version 4.7.0 Release 4

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the
Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1) The client calls initiateAuthentication on the OSA Framework Initial interface. This allows the client to specify the
type of authentication process. This authentication process may be specific to the provider, or the implementation
technology used. The initiateAuthentication method can be used to specify the specific process, (e.g. CORBA security).
OSA defines a generic authentication interface (API Level Authentication), which can be used to perform the
authentication process. The initiateAuthentication method allows the client to pass a reference to its own authentication
interface to the Framework, and receive a reference to the authentication interface preferred by the client, in return. In
this case the API Level Authentication interface.

2) The client invokes the selectEncryptionMethod on the Framework's API Level Authentication interface. This
includes the encryption capabilities of the client. The framework then chooses an encryption method based on the
encryption capabilities of the client and the Framework. If the client is capable of handling more than one encryption
method, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the
encryption capability of the client may not fulfil the demands of the Framework, in which case, the authentication will
fail.

3) The application and Framework interact to authenticate each other. For an authentication method of
P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response exchanges. This
authentication protocol is performed using the authenticate method on the API Level Authentication interface.
P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. Mutual authentication is
achieved by the framework invoking the authenticate method on the client's APILevelAuthentication interface.

Note that at any point during the access session, either side can request re-authentication. Re-authentication does not
have to be mutual.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 193GPP TS 29.198-3 version 4.7.0 Release 4

 : IpClientAPILevelAuthentication Client : IpInitial Framework : IpAPILevelAuthentication

1: init ia teA uthent icat ion()

2: selectEncryptionMethod()

3: authenticate()

4: authenticate()

5: authenticate()

7: authenticate()

IpClientA PILevel Au the nti ca ti on
reference i s passed to f ramework
and IpAP IL evel Authentication
reference i s returned.

This is an example of the
sequence of
authentication
operations. Different
authentication protocols
may have different
requirements on the
order of operations.

IpClientAccess reference is
passed to Framework, and
IpAccess reference is
returned.

9: requestAccess()

6: authenticationSucceeded()

8: authenticationSucceeded()

6.2 Class Diagrams

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 203GPP TS 29.198-3 version 4.7.0 Release 4

IpInitial

ini tiateAuthentication()

(f rom Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()
obtainInterfaceWithCallback()
endAccess()
listInterfaces()
releaseInterface()

(from Frame work in terfaces)

<<Interface>> IpAPILevelAuthentication

selectEncryptionMethod()
authenticate()
abortAuthentication()
authenticationSucceeded()

(from Framework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>
IpClientAPILevelAuthentication

authenticate()
abortAuthentication()
authenticationSucceeded()

(f rom Cl ient i nterfaces)

<<Interface>>

<<uses>> <<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview

6.3 Interface Classes

6.3.1 Trust and Security Management Interface Classes

The Trust and Security Management Interfaces provide:

- the first point of contact for a client to access a Framework provider;

- the authentication methods for the client and Framework provider to perform an authentication protocol;

- the client with the ability to select a service capability feature to make use of;

- the client with a portal to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a
different Framework interface:

1) Initial Contact with the Framework;

2) Authentication to the Framework;

3) Access to Framework and Service Capability Features.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 213GPP TS 29.198-3 version 4.7.0 Release 4

6.3.1.1 Interface Class IpClientAPILevelAuthentication

Inherits from: IpInterface.

If the IpClientAPILevelAuthentication interface is implemented by a client, authenticate(), abortAuthentication() and
authenticationSucceeded() methods shall be implemented.

<<Interface>>

IpClientAPILevelAuthentication

authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

Method
authenticate()

This method is used by the framework to authenticate the client. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The client must respond with the correct responses to the challenges presented
by the framework. The number of exchanges is dependent on the policies of each side. The whole authentication
process is deemed successful when the authenticationSucceeded method is invoked. The invocation of this method may
be interleaved with authenticate() calls by the client on the IpAPILevelAuthentication interface.

Returns <response> : This is the response of the client application to the challenge of the framework in the current
sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by
selectEncryptionMethod().

Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge mechanism used will be in
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().

Returns

TpOctetSet

Method
abortAuthentication()

The framework uses this method to abort the authentication process. This method is invoked if the framework wishes to
abort the authentication process, (unless the client responded incorrectly to a challenge in which case no further
communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on
IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been properly
authenticated.

Parameters
No Parameters were identified for this method

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 223GPP TS 29.198-3 version 4.7.0 Release 4

Method
authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt.

Parameters
No Parameters were identified for this method

6.3.1.2 Interface Class IpClientAccess

Inherits from: IpInterface.

IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access
session. This interface and the terminateAccess() method shall be implemented by a client.

<<Interface>>

IpClientAccess

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature :
in TpOctetSet) : void

Method
terminateAccess()

The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() is invoked, the client will no longer be authenticated with the framework. The client will not be
able to use the references to any of the framework interfaces gained during the access session. Any calls to these
interfaces will fail. If at any point the framework's level of confidence in the identity of the client becomes too low,
perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for that
client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the
client. This follows a generally accepted security model where the framework has decided that it can no longer trust the
client and will therefore sever ALL contact with it.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client,
the P_INVALID_SIGNING_ALGORITHM exception will be thrown.

digitalSignature : in TpOctetSet

This is a signed version of a hash of the termination text. The framework uses this to confirm its identity to the client.
The client can check that the terminationText has been signed by the framework. If a match is made, the access session
is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 233GPP TS 29.198-3 version 4.7.0 Release 4

Raises

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE

6.3.1.3 Interface Class IpInitial

Inherits from: IpInterface.

The Initial Framework interface is used by the client to initiate the mutual authentication with the Framework. This
interface and the initiateAuthentication() method shall be implemented by a client.

<<Interface>>

IpInitial

initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

Method
initiateAuthentication()

This method is invoked by the client to start the process of mutual authentication with the framework, and request the
use of a specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication
interface of the framework.
 structure TpAuthDomain {
 domainID: TpDomainID;
 authInterface: IpInterfaceRef;
 };
 The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the
framework to the client.
 The authInterface parameter is a reference to the authentication interface of the framework. The type of this
interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

 structure TpAuthDomain {
 domainID: TpDomainID;
 authInterface: IpInterfaceRef;
 };
 The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise
operator (i.e. TpEntOpID), or for an existing registered service (i.e. TpServiceID) or for a service supplier (i.e.
TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on
IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code
(P_INVALID_DOMAIN_ID).
 The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface
is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 243GPP TS 29.198-3 version 4.7.0 Release 4

authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication is the default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If
P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type
IpAuthentication which is used when an underlying distribution technology authentication mechanism is used.

Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE,
P_INVALID_AUTH_TYPE

6.3.1.4 Interface Class IpAuthentication

Inherits from: IpInterface.

The Authentication Framework interface is used by client to request access to other interfaces supported by the
Framework. The mutual authentication process should in this case be done with some underlying distribution
technology authentication mechanism, e.g. CORBA Security.
 One of IpAuthentication or IpAPILevelAuthentication interfaces shall be implemented by a Framework. The
requestAccess() method shall be implemented in each.

<<Interface>>

IpAuthentication

requestAccess (accessType : in TpAccessType, clientAccessInterface : in IpInterfaceRef) : IpInterfaceRef

Method
requestAccess()

Once client and framework are authenticated, the client invokes the requestAccess operation on the IpAuthentication or
IpAPILevelAuthentication interface. This allows the client to request the type of access they require. If they request
P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Operators can define their own access
interfaces to satisfy client requirements for different types of access.)

If this method is called before the client and framework have successfully completed the authentication process, then
the request fails, and an error code (P_ACCESS_DENIED) is returned.

Returns <fwAccessInterface> : This provides the reference for the client to call the access interface of the framework.

Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the client. If the framework does not provide the type of access
identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 253GPP TS 29.198-3 version 4.7.0 Release 4

clientAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client. If the interface reference is not
of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ACCESS_TYPE,
P_INVALID_INTERFACE_TYPE

6.3.1.5 Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.

The API Level Authentication Framework interface is used by client to perform its part of the mutual authentication
process with the Framework necessary to be allowed to use any of the other interfaces supported by the Framework.
 If the IpAPILevelAuthentication interface is implemented by a Framework, the selectEncryptionMethod(),
authenticate(), abortAuthentication() and authenticationSucceeded() methods shall be implemented.
IpAPILevelAuthentication inherits the requirements of IpAuthentication, therefore requestAccess() shall be
implemented.

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) : TpEncryptionCapability

authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

Method
selectEncryptionMethod()

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism. This
should be within capability of the client. If a mechanism that is acceptable to the framework within the capability of the
client cannot be found, the framework throws the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception.
Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the
client's authenticate() method (the wait is to ensure that the client can initialise any resources necessary to use the
prescribed encryption method).

Returns <prescribedMethod> : This is returned by the framework to indicate the mechanism preferred by the framework
for the encryption process. If the value of the prescribedMethod returned by the framework is not understood by the
client, it is considered a catastrophic error and the client must abort.

Parameters

encryptionCaps : in TpEncryptionCapabilityList

This is the means by which the encryption mechanisms supported by the client are conveyed to the framework.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 263GPP TS 29.198-3 version 4.7.0 Release 4

Returns

TpEncryptionCapability

Raises

TpCommonExceptions, P_ACCESS_DENIED,
P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY

Method
authenticate()

This method is used by the client to authenticate the framework. The challenge will be encrypted using the mechanism
prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges
presented by the client. The domainID received in the initiateAuthentication() can be used by the framework to
reference the correct public key for the client (the key management system is currently outside of the scope of the OSA
APIs). The number of exchanges is dependent on the policies of each side. The whole authentication process is deemed
successful when the authenticationSucceeded method is invoked. The invocation of this method may be interleaved
with authenticate() calls by the framework on the client's APILevelAuthentication interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The
response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will be in
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996]. The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().

Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED

Method
abortAuthentication()

The client uses this method to abort the authentication process. This method is invoked if the client no longer wishes to
continue the authentication process, (unless the client responded incorrectly to a challenge in which case no further
communication with the client should occur.) If this method has been invoked, calls to the requestAccess operation on
IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been properly
authenticated.

Parameters
No Parameters were identified for this method

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 273GPP TS 29.198-3 version 4.7.0 Release 4

Raises

TpCommonExceptions,P_ACCESS_DENIED

Method
authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions, P_ACCESS_DENIED

6.3.1.6 Interface Class IpAccess

Inherits from: IpInterface.

This interface shall be implemented by a Framework. As a minimum requirement the obtainInterface(),
obtainInterfaceWithCallback() and endAccess() methods shall be implemented.

<<Interface>>

IpAccess

obtainInterface (interfaceName : in TpInterfaceName) : IpInterfaceRef

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, clientInterface : in IpInterfaceRef) :
IpInterfaceRef

endAccess (endAccessProperties : in TpEndAccessProperties) : void

listInterfaces () : TpInterfaceNameList

releaseInterface (interfaceName : in TpInterfaceName) : void

Method
obtainInterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces. (The obtainInterfaceWithCallback method should be used if the client is required to supply
a callback interface to the framework.)

Returns <fwInterface> : This is the reference to the interface requested.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 283GPP TS 29.198-3 version 4.7.0 Release 4

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

Returns

IpInterfaceRef

Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_INTERFACE_NAME

Method
obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface
method should be used when no callback interface needs to be supplied.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

clientInterface : in IpInterfaceRef

This is the reference to the client interface, which is used for callbacks. If a client interface is not needed, then this
method should not be used. (The obtainInterface method should be used when no callback interface needs to be
supplied.) If the interface reference is not of the correct type, the framework returns an error code
(P_INVALID_INTERFACE_TYPE).

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME,
P_INVALID_INTERFACE_TYPE

Method
endAccess()

The endAccess operation is used by the client to request that its access session with the framework is ended. After it is
invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references
to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 293GPP TS 29.198-3 version 4.7.0 Release 4

Parameters

endAccessProperties : in TpEndAccessProperties

 This is a list of properties that can be used to tell the framework the actions to perform when ending the access session
(e.g. existing service sessions may be stopped, or left running). If a property is not recognised by the framework, an
error code (P_INVALID_PROPERTY) is returned.

Raises

TpCommonExceptions,P_ACCESS_DENIED, P_INVALID_PROPERTY

Method
listInterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the
interfaces it wishes to use using either obtainInterface() or obtainInterfaceWithCallback().

Returns <frameworkInterfaces> : The frameworkInterfaces parameter contains a list of interfaces that the framework
makes available.

Parameters
No Parameters were identified for this method

Returns

TpInterfaceNameList

Raises

TpCommonExceptions, P_ACCESS_DENIED

Method
releaseInterface()

The client uses this method to release a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework
throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME

6.4 State Transition Diagrams
This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also events internal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 303GPP TS 29.198-3 version 4.7.0 Release 4

6.4.1 Trust and Security Management State Transition Diagrams

6.4.1.1 State Transition Diagrams for IpInitial

Active

initiateAuthentication / return new IpAuthe

Figure : State Transition Diagram for IpInitial

6.4.1.1.1 Active State

6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 313GPP TS 29.198-3 version 4.7.0 Release 4

Idle

Select ing
Method

Authenticating
Client

Client
Authenticated

IpInitial.initiateAuthentication

requestAccess
 P̂_ACCESS_DENIED

selectEncryptionMethod

requestAccess
 ^P_ACCESS_DENIED

"no method found"
 ^P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY

"found method" / return prescribedMethod ĉlient.authenticate

authenticate / "Buffer request"
requestAccess ^P_ACCESS_DENIED

authenticate result (VALID)[Auth
Incomplete] ĉlient.authenticate

requestAccess / new IpAccess

"re-authenticate"
 ĉlient.authenticate

authenticate result(VALID)[AuthComplete] /
"Process authenticate requests" ĉlient.authenticationSucceeded

result(INVALID)

All States

Figure : State Transition Diagram for IpAPILevelAuthentication

6.4.1.2.1 Idle State

When the client has invoked the IpInitial initiateAuthentication method, an object implementing the
IpAPILevelAuthentication interface is created. The client now has to provide its encryption capabilities by invoking
selectEncryptionMethod.

6.4.1.2.2 Selecting Method State

In this state the Framework selects the preferred encryption mechanism within the capability of the client. It is a policy
of the framework (perhaps agreed off-line with the enterprise operator) whether the client has to be authenticated or not.
In case no mechanism can be found the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception is thrown
and the Authentication object moves back to the IDLE state The client can now revisit its list of supported capabilities
to identify whether it is complete. If it has no more encryption capabilities to use, then it must invoke
abortAuthentication.

6.4.1.2.3 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself by invoking the Authenticate method
on the client. In case the client requests the Framework to authenticate itself by invoking Authenticate on the
IpAPILevelAuthentication interface, the Framework will either buffer the requests and respond when the client has
been authenticated, or respond immediately, depending on policy. When the Framework has processed the response
from the Authenticate request on the client, the response is analysed. If the response is valid but the authentication
process is not yet complete, then another Authenticate request is sent to the client. If the response is valid and the
authentication process has been completed, then a transition to the state ClientAuthenticated is made, the client is
informed of its success by invoking authenticationSucceeded, then the framework begins to process any buffered

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 323GPP TS 29.198-3 version 4.7.0 Release 4

authenticate requests. In case the response is not valid, the Authentication object is destroyed. This implies that the
client has to re-initiate the authentication by calling once more the initiateAuthentication method on the IpInitial
interface.

6.4.1.2.4 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface. In case
the client requests the Framework to authenticate itself by invoking Authenticate on the IpAPILevelAuthentication
interface, the Framework provides the correct response to the challenge. If the framework decides to re-authenticate the
client, then the authenticate request is sent to the client and a transition back to the AuthenticatingClient state occurs.

6.4.1.3 State Transition Diagrams for IpAccess

Active

IpInitial.requestAccess

obtainInterface / return requested FW interface

obtainInterfaceW ithCallback / return requested F

endAccess / destroy all interface objects used by the client

network operator initiated endAccess / destroy all interface

Figure : State Transition Diagram for IpAccess

6.4.1.3.1 Active State

When the client requests access to the Framework on the IpInitial interface, an object implementing the IpAccess
interface is created. The client can now request other Framework interfaces, including Service Discovery. When the
client is no longer interested in using the interfaces it calls the endAccess method. This results in the destruction of all

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 333GPP TS 29.198-3 version 4.7.0 Release 4

interface objects used by the client. In case the network operator decides that the client has no longer access to the
interfaces the same will happen.

7 Framework-to-Application API

7.1 Sequence Diagrams

7.1.1 Event Notification Sequence Diagrams

7.1.1.1 Enable Event Notification

AppLogic : IpAppEventNotification : IpAccess : IpEventNotification

2: ob tainInterfaceWithCallback()

3: new()

1: new()

4: createNotification()

5: rep ortNoti ficati on()

1: This message is used to create an object implementing the IpAppEventNotification interface.

2: This message is used to receive a reference to the object implementing the IpEventNotification interface and set the
callback interface for the framework.

3: If there is currently no object implementing the IpEventNotification interface, then one is created using this
message.

4: createNotification(eventCriteria : in TpFwEventCriteria) : TpAssignmentID

This message is used to enable the notification mechanism so that subsequent framework events can be sent to the
application. The framework event the application requests to be informed of is the availability of new SCFs.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 343GPP TS 29.198-3 version 4.7.0 Release 4

Newly installed SCFs become available after the invocation of registerService and announceServiceAvailability on the
Framework. The application uses the input parameter eventCriteria to specify the SCFs of whose availability it wants to
be notified: those specified in ServiceTypeNameList.

The result of this invocation has many similarities with the result of invoking listServiceTypes: in both cases the
application is informed of the availability of a list of SCFs. The differences are:

· in the case of invoking listServiceTypes, the application has to take the initiative, but it is informed of ALL SCFs
available

· in the case of using the event notification mechanism, the application needs not take the initiative to ask about the
availability of SCFs, but it is only informed of the ones that are newly available.

Alternatively, or additionally, the application can request to be informed of SCFs becoming unavailable.

5: The application is notified of the availability of new SCFs of the requested type(s).

7.1.2 Integrity Management Sequence Diagrams

7.1.2.1 Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the
evaluation of the load balancing policy as a result of the detection of a change in load level of the framework.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 353GPP TS 29.198-3 version 4.7.0 Release 4

 :
IpAppLoadManager

 :
IpLoadManager

1: load change detection and policy evaluation

2: suspendNotification()

3: load change detection and policy evaluation

4: resumeNotification()

This is
implementation
detai l

Load balancing service
makes a decision based
on pre-defined policy

5: reportLoad()

Application provides
initial load report on
notificat ion
resumption

7.1.2.2 Load Management: Framework queries load statistics

This sequence diagram shows how the framework requests load statistics for an application.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 363GPP TS 29.198-3 version 4.7.0 Release 4

 : IpLoadManager : IpAppLoadManager

1: queryAppLoadReq()

2: get load information

3: queryAppLoadRes()

This is the
implementation
detail

7.1.2.3 Load Management: Framework callback registration and Application load
control

This sequence diagram shows how the framework registers itself and the application invokes load management function
to inform the framework of application load.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 373GPP TS 29.198-3 version 4.7.0 Release 4

 :
IpAppLoadManager

 :
IpLoadManager

1: createLoadLevelNotification()

3: load change detection

4: reportLoad()

This is Application
implementation detail.
The Application may take
appropriate load control
action.

5: load change detection

6: reportLoad()

This is Application
implementation detail.
The Application may take
appropriate load control
action.

7: destroyLoadLevelNotification()

Application detects a load
condition change and
reports to framework. The
framework may take
appropriate load control
action - implementation
detail.

2: reportLoad()

Application reports its initial
load condition on notification
creation

7.1.2.4 Load Management: Application reports current load condition

This sequence diagram shows how an application reports its load condition to the framework load manager.

 : IpAppLoadManager : IpLoadManager

2: evaluate policy

This is the implementation
detail

1: reportLoad()

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 383GPP TS 29.198-3 version 4.7.0 Release 4

7.1.2.5 Load Management: Application queries load statistics

This sequence diagram shows how an application requests load statistics for the framework.

 : IpAppLoadManager : IpLoadManager

1: queryLoadReq()

3: queryLoadRes()

2: get load information

This is the
implementation
detail

7.1.2.6 Load Management: Application callback registration and load control

This sequence diagram shows how an application registers itself and the framework invokes load management function
based on policy.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 393GPP TS 29.198-3 version 4.7.0 Release 4

 : IpAppLoadManager : IpLoadManager

1: createLoadLevelNotification()

Framework detects a load
condition change
and notifies the application.
 The application may take
appropriate load control
action - implementation
detail.

4: loadLevelNotification()

3: load change detection & policy evaluation

This is Framework implementation
detail. The Framework may take
appropriate load control action.

6: loadLevelNotification()

7: destroyLoadLevelNotification()

5: load change detection & policy evaluation

This is Framework implementation
detail. The Framework may take
appropriate load control action.

2: loadLevelNotification()

Framework reports its initial
load condition on notification
creation

7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the
application

In this sequence diagram, the framework has decided that it wishes to monitor the application, and has therefore
requested the application to commence sending its heartbeat. The application responds by sending its heartbeat at the
specified interval. The framework then decides that it is satisfied with the application's health and disables the heartbeat
mechanism. If the heartbeat was not received from the application within the specified interval, the framework can
decide that the application has failed the heartbeat and can then perform some recovery action.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 403GPP TS 29.198-3 version 4.7.0 Release 4

Framework : IpHeartBeat : IpAppHeartBeatMgmt

1: enableAppHeartBeat()

2: pulse()

3: pulse()

4: disableAppHeartBeat()

At a certain point of
time the framework
decides to stop
heartbeat supervision

7.1.2.8 Fault Management: Framework detects a Service failure

The framework has detected that a service instance has failed (probably by the use of the heartbeat mechanism). The
framework updates its own records and informs the client application using the service instance to stop.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 413GPP TS 29.198-3 version 4.7.0 Release 4

Client Application : IpAppFaultManager Framework : IpFaultManager

The framework should detect i f
a service ins tance fails, for
example via an unreturned
heartbeat . The framework
should inform the applicat ion
that is using that service
instance.

The application must
cease the use of this
service instance.

1: svcUnavailableInd()

1: The framework informs the client application that is using the service instance that the service is unavailable. The
client application is then expected to abandon use of this service instance and access a different service instance via the
usual means (e.g. discovery, selectService etc.). The client application should not need to re-authenticate in order to
discover and use an alternative service instance. The framework will also need to make the relevant updates to its
internal records to make sure the service instance is removed from service and no client applications are still recorded as
using it.

7.1.2.9 Fault Management: Application requests a Framework activity test

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 423GPP TS 29.198-3 version 4.7.0 Release 4

Client Application : IpAppFaultManager Framework : IpFaultManager

Client application asks framework to
carry out an activity test. The
framework is denoted as the target
by an empty string value for svcId.

Framework carries out test and
returns result to client application.

2: activityTestRes()

1: activityTestReq()

1: The client application asks the framework to do an activity test. The client identifies that it would like the activity
test done for the framework, rather then a service, by supplying an empty string value for the svcId parameter.

2: The framework does the requested activity test and sends the result to the client application.

7.1.3 Service Discovery Sequence Diagrams

7.1.3.1 Service Discovery

The following figure shows how Applications discover a new Service Capability Feature in the network. Even
applications that have already used the OSA API of a certain network know that the operator may upgrade it any time;
this is why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs a reference to the Framework's Service Discovery
interface; this is done via an invocation the method obtainInterface on the Framework's Access interface.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 433GPP TS 29.198-3 version 4.7.0 Release 4

Discovery can be a three-step process. The first two steps have to be performed initially, but can subsequently be
skipped (if the service type and its properties are already known, the application can invoke discoverService() without
having to re-invoke the list/discoverServiceType methods):

 : IpServiceDiscoveryApplicat ion

2: listServiceTypes()

3: describeServiceType()

4: discoverService()

 : IpAccess

1: obtainInterface()

2: Discovery: first step - list service types

In this first step the application asks the Framework what service types that are available from this network. Service
types are standardized or non-standardised SCF names, and thus this first step allows the Application to know what
SCFs are supported by the network.

The following output is the result of this first discovery step:

· out listTypes

This is a list of service type names, i.e., a list of strings, each of them the name of a SCF or a SCF specialization (e.g.
"P_MPCC").

3: Discovery: second step - describe service type

In this second step the application requests what are the properties that describe a certain service type that it is interested
in, among those listed in the first step.

The following input is necessary:

· in name

This is a service type name: a string that contains the name of the SCF whose description the Application is interested in
(e.g. "P_MPCC") .

And the output is:

· out serviceTypeDescription

The description of the specified SCF type. The description provides information about:

· the property names associated with the SCF,

· the corresponding property value types,

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 443GPP TS 29.198-3 version 4.7.0 Release 4

· the corresponding property mode (mandatory or read only) associated with each SCF property,

· the names of the super types of this type, and

· whether the type is currently enabled or disabled.

4: Discovery: third step - discover service

In this third step the application requests for a service that matches its needs by tuning the service properties (i.e.,
assigning values for certain properties).

The Framework then checks whether there is a match, in which case it sends the Application the serviceID that is the
identifier this network operator has assigned to the SCF version described in terms of those service properties. This is
the moment where the serviceID identifier is shared with the application that is interested on the corresponding service.

This is done for either one service or more (the application specifies the maximum number of responses it wishes to
accept).

Input parameters are:

· in serviceTypeName

This is a string that contains the name of the SCF whose description the Application is interested in (e.g. "P_MPCC").

· in desiredPropertyList

This is again a list like the one used for service registration, but where the value of the service properties have been fine
tuned by the Application to (they will be logically interpreted as "minimum", "maximum", etc. by the Framework).

The following parameter is necessary as input:

· in max

This parameter states the maximum number of SCFs that are to be returned in the "ServiceList" result.

And the output is:

· out serviceList

This is a list of duplets: (serviceID, servicePropertyList). It provides a list of SCFs matching the requirements from the
Application, and about each: the identifier that has been assigned to it in this network (serviceID), and once again the
service property list.

7.1.4 Service Agreement Management Sequence Diagrams

7.1.4.1 Service Selection

The following figure shows the process of selecting an SCF.

After discovery the Application gets a list of one or more SCF versions that match its required description. It now needs
to decide which service it is going to use; it also needs to actually get a way to use it.

This is achieved by the following two steps:

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 453GPP TS 29.198-3 version 4.7.0 Release 4

 :
IpServiceAgreementManagement

 :
IpAppServiceAgreementManagement

Application Framework

1: selectService()

3: signServiceAgreement()

4: signServiceAgreement()

2: initiateSignServiceAgreement()

1: Service Selection: first step - selectService

In this first step the Application identifies the SCF version it has finally decided to use. This is done by means of the
serviceID, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to
the Application a new identifier for the service chosen: a service token, that is a private identifier for this service
between this Application and this network, and is used for the process of signing the service agreement.

Input is:

· in serviceID

This identifies the SCF required.

And output:

· out serviceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. It
contains operator specific information relating to the service level agreement.

2: Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once this
contractual details have been agreed, then the Application can be given the means to actually use it. The means are a
reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By
calling the createServiceManager operation on the lifecycle manager the Framework retrieves this interface and returns
it to the Application. The service properties suitable for this application are also fed to the SCF (via the lifecycle
manager interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

Input:

· in serviceToken

This is the identifier that the network and Application have agreed to privately use for a certain version of SCF.

· in agreementText

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 463GPP TS 29.198-3 version 4.7.0 Release 4

This is the agreement text that is to be signed by the Framework using the private key of the Framework.

· in signingAlgorithm

This is the algorithm used to compute the digital signature.

Output:

· out signatureAndServiceMgr

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a
reference to the manager interface of the SCF.

7.2 Class Diagrams

IpAppEventNot ification

reportNotification()
notificationTerminated()

(from App Interfaces)

<<Interface>>

IpEventNotification

createNotification()
destroyNotification()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Class Diagram

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 473GPP TS 29.198-3 version 4.7.0 Release 4

IpAppFaultManager

activityTestRes()
appActivityTestReq()
fwFaultReportInd()
fwFaultRecoveryInd()
svcUnavailableInd()
genFaultStatsRecordRes()
fwUnavailableInd()
activityTestErr()
genFaultStatsRecordErr()
appUnavailableInd()
genFaultStatsRecordReq()

<<Interface>>

IpFaultManager

activityTestReq()
appActivityTestRes()
svcUnavailableInd()
genFaultStatsRecordReq()
appActivityTestErr()
appUnavailableInd()
genFaultStatsRecordRes()
genFaultStatsRecordErr()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()
disableHeartBeat()
changeInterval()

<<Interface>>

IpHeartBeat

pulse()

<<Interface>>

1 0..n1 0..n

IpAppHeartBeat

pulse()

<<Interface>>

<<uses>>

IpAppHeartBeatMgmt

enableAppHeartBeat()
disableAppHeartBeat()
changeInterval()

<<Interface>>

<<uses>>

0..n1 0..n1

IpAppLoadManager

queryAppLoadReq()
queryLoadRes()
queryLoadErr()
loadLevelNotification()
resumeNotification()
suspendNotification()
<<new>> createLoadLevelNotification()
<<new>> destroyLoadLevelNotification()

<<Interface>>

IpLoadManager

reportLoad()
queryLoadReq()
queryAppLoadRes()
queryAppLoadErr()
createLoadLevelNotification()
destroyLoadLevelNotification()
resumeNotification()
suspendNotification()

<<Interface>>

<<uses>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

Figure: Integrity Management Package Overview

IpServiceDiscovery

listServiceTypes()
describeServiceType()
discoverService()
listSubscribedServices()

(f rom Fram ework interfa ces)

<<Interface>>

Figure: Service Discovery Package Overview

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 483GPP TS 29.198-3 version 4.7.0 Release 4

IpClientAccess

terminateAccess()

(f rom Client interf aces)

<<Interface>> IpClientAPILevelAuthentication

authenticate()
abortAuthentication()
authenticationSucceeded()

(f rom Client interf aces)

<<Interface>>

IpInitial

initiateAuthentication()

(f rom Framework interf aces)

<<Interface>>

IpAccess

obtainInterface()
obtainInterfaceWithCallback()
endAccess()
listInterfaces()
releaseInterface()

(f rom Framework interf aces)

<<Interface>>

<<uses>>

IpAPILevelAuthentication

selectEncryptionMethod()
authenticate()
abortAuthentication()
authenticationSucceeded()

(f rom Framework interf aces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess()

(f rom Framework interf aces)

<<Interface>>

Figure: Trust and Security Management Package Overview

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 493GPP TS 29.198-3 version 4.7.0 Release 4

IpAppServiceAgreementManagement

signServiceAgreement()
terminateServiceAgreement()

(from App Interfaces)

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement()
terminateServiceAgreement()
selectService()
initiateSignServiceAgreement()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Service Agreement Management Package Overview

7.3 Interface Classes

7.3.1 Service Discovery Interface Classes

7.3.1.1 Interface Class IpServiceDiscovery

Inherits from: IpInterface.

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the
enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and
what service "properties" are applicable to each service type. The listServiceType() method returns a list of all "service
types" that are currently supported by the framework and the "describeServiceType()" returns a description of each
service type. The description of service type includes the "service-specific properties" that are applicable to each service
type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both
belong to a given type and possess the desired "property values", by using the "discoverService() method. Once the
enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these
services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out
the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service
discovery APIs are invoked by the enterprise operators or client applications. They are described below.
 This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 503GPP TS 29.198-3 version 4.7.0 Release 4

<<Interface>>

IpServiceDiscovery

listServiceTypes () : TpServiceTypeNameList

describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listSubscribedServices () : TpServiceList

Method
listServiceTypes()

This operation returns the names of all service types that are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method

Returns

TpServiceTypeNameList

Raises

TpCommonExceptions,P_ACCESS_DENIED

Method
describeServiceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about:
 · the service properties associated with this service type: i.e. a list of service property {name, mode and type} tuples,
 · the names of the super types of this service type, and
 · whether the service type is currently available or unavailable.

Parameters

name : in TpServiceTypeName

The name of the service type to be described.

· If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE exception is raised.

· If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE exception is raised.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 513GPP TS 29.198-3 version 4.7.0 Release 4

Returns

TpServiceTypeDescription

Raises

TpCommonExceptions,P_ACCESS_DENIED,P_ILLEGAL_SERVICE_TYPE,P_UNKNOWN_SERVI
CE_TYPE

Method
discoverService()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services
that meet its requirements. The client application passes in a list of desired service properties to describe the service it is
looking for, in the form of attribute/value pairs for the service properties. The client application also specifies the
maximum number of matched responses it is willing to accept. The framework must not return more matches than the
specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the
specified maximum. The discoverService() operation returns a serviceID/Property pair list for those services that match
the desired service property list that the client application provided. The service properties returned will form a
complete view of what the client application will be able to do with the service, as per the service level agreement. If
the framework supports service subscription, the service level agreement will be encapsulated in the subscription
properties contained in the contract/profile for the client application, which will be a restriction of the registered
properties.

Returns <serviceList> : This parameter gives a list of matching services. Each service is characterised by its service ID
and a list of service properties {name and value list} associated with the service.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service
trading". It is the basis for type safe interactions between the service exporters (via registerService) and service
importers (via discoverService). By stating a service type, the importer implies the service type and a domain of
discourse for talking about properties of service.

· If the string representation of the "type" does not obey the rules for service type identifiers, then the
P_ILLEGAL_SERVICE_TYPE exception is raised.

· If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the
P_UNKNOWN_SERVICE_TYPE exception is raised.

The framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList" parameter is a list of service properties {name and value list} that the discovered set of
services should satisfy. These properties deal with the non-functional and non-computational aspects of the desired
service. The property values in the desired property list must be logically interpreted as "minimum", "maximum", etc.
by the framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It
is suggested that, at the time of service registration, each property value be specified as an appropriate range of values,
so that desired property values can specify an "enclosing" range of values to help in the selection of desired services.

max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 523GPP TS 29.198-3 version 4.7.0 Release 4

Returns

TpServiceList

Raises

TpCommonExceptions,P_ACCESS_DENIED,P_ILLEGAL_SERVICE_TYPE,P_UNKNOWN_SERVI
CE_TYPE,P_INVALID_PROPERTY

Method
listSubscribedServices()

Returns a list of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications
in the enterprise domain) can obtain a list of subscribed services that they are allowed to access.

Returns <serviceList> : The "serviceList" parameter returns a list of subscribed services. Each service is characterised
by its service ID and a list of service properties {name and value list} associated with the service.

Parameters
No Parameters were identified for this method

Returns

TpServiceList

Raises

TpCommonExceptions,P_ACCESS_DENIED

7.3.2 Service Agreement Management Interface Classes

7.3.2.1 Interface Class IpAppServiceAgreementManagement

Inherits from: IpInterface.

This interface and the signServiceAgreement() and terminateServiceAgreement() methods shall be implemented by an
application.

<<Interface>>

IpAppServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpOctetSet

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 533GPP TS 29.198-3 version 4.7.0 Release 4

Method
signServiceAgreement()

Upon receipt of the initiateSignServiceAgrement() method from the client application, this method is used by the
framework to request that the client application sign an agreement on the service. The framework provides the service
agreement text for the client application to sign. The service manager returned will be configured as per the service
level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the
subscription properties contained in the contract/profile for the client application, which will be a restriction of the
registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the
framework.

Returns <digitalSignature> : The digitalSignature is the signed version of a hash of the service token and agreement text
given by the framework. If the signature is incorrect the serviceToken will be expired immediately.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance to which this service agreement corresponds. (If the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token.) If the
serviceToken is invalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exception is
thrown.

agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application. If
the agreementText is invalid, then the P_INVALID_AGREEMENT_TEXT exception is thrown.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the client
application, the P_INVALID_SIGNING_ALGORITHM exception is thrown.

Returns

TpOctetSet

Raises

TpCommonExceptions, P_INVALID_AGREEMENT_TEXT, P_INVALID_SERVICE_TOKEN,
P_INVALID_SIGNING_ALGORITHM

Method
terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken is invalid, or unknown to the client application, the
P_INVALID_SERVICE_TOKEN exception will be thrown.

terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 543GPP TS 29.198-3 version 4.7.0 Release 4

digitalSignature : in TpOctetSet

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same
as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework
uses this to confirm its identity to the client application. The client application can check that the terminationText has
been signed by the framework. If a match is made, the service agreement is terminated, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE

7.3.2.2 Interface Class IpServiceAgreementManagement

Inherits from: IpInterface.

This interface and the signServiceAgreement(), terminateServiceAgreement(), selectService() and
initiateSignServiceAgreement() methods shall be implemented by a Framework.

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

selectService (serviceID : in TpServiceID) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

Method
signServiceAgreement()

This method is used by the client application to request that the framework sign an agreement on the service, which
allows the client application to use the service. If the framework agrees, both parties sign the service agreement, and a
reference to the service manager interface of the service is returned to the client application. The service manager
returned will be configured as per the service level agreement. If the framework uses service subscription, the service
level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client
application, which will be a restriction of the registered properties. If the client application is not allowed to access the
service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement,
and a reference to the service manager interface of the service.
 structure TpSignatureAndServiceMgr {
 digitalSignature: TpOctetSet;
 serviceMgrInterface: IpServiceRef;
 };
 The digitalSignature is the signed version of a hash of the service token and agreement text given by the client
application.
 The serviceMgrInterface is a reference to the service manager interface for the selected service.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 553GPP TS 29.198-3 version 4.7.0 Release 4

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the
agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the
framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.

Returns

TpSignatureAndServiceMgr

Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_AGREEMENT_TEXT,P_INVALID_SER
VICE_TOKEN,P_INVALID_SIGNING_ALGORITHM,P_SERVICE_ACCESS_DENIED

Method
terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken is invalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.

digitalSignature : in TpOctetSet

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same
as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework
uses this to check that the terminationText has been signed by the client application. If a match is made, the service
agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_TOKEN,
P_INVALID_SIGNATURE

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 563GPP TS 29.198-3 version 4.7.0 Release 4

Method
selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client
application is not allowed to access the service, then the P_SERVICE_ACCESS_DENIED exception is thrown. The
P_SERVICE_ACCESS_DENIED exception is also thrown if the client attempts to select a service for which it has
already signed a service agreement for, and therefore obtained an instance of. This is because there must be only one
service instance per client application.

Returns <serviceToken> : This is a free format text token returned by the framework, which can be signed as part of a
service agreement. This will contain operator specific information relating to the service level agreement. The
serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken
will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client
application or framework invokes the endAccess method on the other's corresponding access interface.

Parameters

serviceID : in TpServiceID

This identifies the service required. If the serviceID is not recognised by the framework, an error code
(P_INVALID_SERVICE_ID) is returned.

Returns

TpServiceToken

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID,
P_SERVICE_ACCESS_DENIED

Method
initiateSignServiceAgreement()

This method is used by the client application to initiate the sign service agreement process. If the client application is
not allowed to initiate the sign service agreement process, the exception (P_SERVICE_ACCESS_DENIED) is thrown.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the
service instance requested by the client application. If the serviceToken is invalid, or has expired, the exception
(P_INVALID_SERVICE_TOKEN) is thrown.

Raises

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_SERVICE_ACCESS_DENIED

7.3.3 Integrity Management Interface Classes

7.3.3.1 Interface Class IpAppFaultManager

Inherits from: IpInterface.

This interface is used to inform the application of events that affect the integrity of the Framework, Service or Client
Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 573GPP TS 29.198-3 version 4.7.0 Release 4

that is specified when the client application obtains the Fault Management interface: i.e. by use of the
obtainInterfaceWithCallback operation on the IpAccess interface.

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportInd (fault : in TpInterfaceFault) : void

fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

svcUnavailableInd (serviceID : in TpServiceID, reason : in TpSvcUnavailReason) : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

fwUnavailableInd (reason : in TpFwUnavailReason) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in TpServiceIDList) :
void

appUnavailableInd (serviceID : in TpServiceID) : void

genFaultStatsRecordReq (timePeriod : in TpTimeInterval) : void

Method
activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the client application to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

Method
appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the
application must carry out a test on itself, to check that it is operating correctly. The application reports the test result
by invoking the appActivityTestRes method on the IpFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 583GPP TS 29.198-3 version 4.7.0 Release 4

Method
fwFaultReportInd()

The framework invokes this method to notify the client application of a failure within the framework. The client
application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.

Method
fwFaultRecoveryInd()

The framework invokes this method to notify the client application that a previously reported fault has been rectified.
The application may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.

Method
svcUnavailableInd()

The framework invokes this method to inform the client application that it can no longer use its instance of the indicated
service. On receipt of this request, the client application must act to reset its use of the specified service (using the
normal mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin
use of a different service instance).

Parameters

serviceID : in TpServiceID

Identifies the affected service.

reason : in TpSvcUnavailReason

Identifies the reason why the service is no longer available

Method
genFaultStatsRecordRes()

This method is used by the framework to provide fault statistics to a client application in response to a
genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the serviceIDs parameter is
an empty list, then the fault statistics are for the framework.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 593GPP TS 29.198-3 version 4.7.0 Release 4

Method
fwUnavailableInd()

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available

Method
activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the application to correlate this response (when it arrives) with the original request.

Method
genFaultStatsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

serviceIDs : in TpServiceIDList

Specifies the framework or services that were included in the general fault statistics record request. If the serviceIDs
parameter is an empty list, then the fault statistics were requested for the framework.

Method
appUnavailableInd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not
responding. On receipt of this indication, the application must end its current session with the service instance.

Parameters

serviceID : in TpServiceID

Specifies the service for which the indication of unavailability was received.

Method
genFaultStatsRecordReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the
framework was asked for these statistics by a service instance by using the genFaultStatsRecordReq operation on the
IpFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics record, for
the application during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes
operation on the IpFaultManager interface.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 603GPP TS 29.198-3 version 4.7.0 Release 4

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the client application.

7.3.3.2 Interface Class IpFaultManager

Inherits from: IpInterface.

This interface is used by the application to inform the framework of events that affect the integrity of the framework
and services, and to request information about the integrity of the system. The fault manager operations do not
exchange callback interfaces as it is assumed that the client application supplies its Fault Management callback
interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback
operation on the IpAccess interface.
 If the IpFaultManager interface is implemented by a Framework, at least one of these methods shall be
implemented. If the Framework is capable of invoking the IpAppFaultManager.appActivityTestReq() method, it shall
implement appActivityTestRes() and appActivityTestErr() in this interface. If the Framework is capable of invoking
IpAppFaultManager.genFaultStatsRecordReq(), it shall implement genFaultStatsRecordRes() and
genFaultStatsRecordErr() in this interface.

<<Interface>>

IpFaultManager

activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServiceID) : void

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcUnavailableInd (serviceID : in TpServiceID) : void

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void

appActivityTestErr (activityTestID : in TpActivityTestID) : void

appUnavailableInd (serviceID : in TpServiceID) : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void

Method
activityTestReq()

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of
this request, the framework must carry out a test on itself or on the client's instance of the specified service, to check
that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the
IpAppFaultManager interface. If the application does not have access to a service instance with the specified serviceID,
the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the
exception shall contain the corresponding serviceID.

For security reasons the client application has access to the service ID rather than the service instance ID. However, as
there is a one to one relationship between the client application and a service, i.e. there is only one service instance of
the specified service per client application, it is the obligation of the framework to determine the service instance ID
from the service ID.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 613GPP TS 29.198-3 version 4.7.0 Release 4

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the client application to correlate the response (when it arrives) with this request.

svcID : in TpServiceID

Identifies either the framework or a service for testing. The framework is designated by an empty string.

Raises

TpCommonExceptions,P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

Method
appActivityTestRes()

The client application uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

Raises

TpCommonExceptions,P_INVALID_SERVICE_ID,P_INVALID_ACTIVITY_TEST_ID

Method
svcUnavailableInd()

This method is used by the client application to inform the framework that it can no longer use its instance of the
indicated service (either due to a failure in the client application or in the service instance itself). On receipt of this
request, the framework should take the appropriate corrective action. The framework assumes that the session between
this client application and service instance is to be closed and updates its own records appropriately as well as
attempting to inform the service instance and/or its administrator. Attempts by the client application to continue using
this session should be rejected. If the application does not have access to a service instance with the specified
serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field
of the exception shall contain the corresponding serviceID.

Parameters

serviceID : in TpServiceID

Identifies the service that the application can no longer use.

Raises

TpCommonExceptions ,P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 623GPP TS 29.198-3 version 4.7.0 Release 4

Method
genFaultStatsRecordReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the
framework must produce a fault statistics record, for either the framework or for the client's instances of the specified
services during the specified time interval, which is returned to the client application using the genFaultStatsRecordRes
operation on the IpAppFaultManager interface. If the application does not have access to a service instance with the
specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The
extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

serviceIDs : in TpServiceIDList

Specifies either the framework or services to be included in the general fault statistics record. If this parameter is not an
empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault
statistics record of the framework is returned.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

Method
appActivityTestErr()

The client application uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

Method
appUnavailableInd()

This method is used by the application to inform the framework that it is ceasing its use of the service instance. This
may a result of the application detecting a failure. The framework assumes that the session between this client
application and service instance is to be closed and updates its own records appropriately as well as attempting to
inform the service instance and/or its administrator.

Parameters

serviceID : in TpServiceID

Identifies the affected application.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 633GPP TS 29.198-3 version 4.7.0 Release 4

Raises

TpCommonExceptions

Method
genFaultStatsRecordRes()

This method is used by the client application to provide fault statistics to the framework in response to a
genFaultStatsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

Raises

TpCommonExceptions

Method
genFaultStatsRecordErr()

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in
response to a genFaultStatsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

Raises

TpCommonExceptions

7.3.3.3 Interface Class IpAppHeartBeatMgmt

Inherits from: IpInterface.

This interface allows the initialisation of a heartbeat supervision of the client application by the framework.

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat (interval : in TpInt32, fwInterface : in IpHeartBeatRef) : void

disableAppHeartBeat () : void

changeInterval (interval : in TpInt32) : void

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 643GPP TS 29.198-3 version 4.7.0 Release 4

Method
enableAppHeartBeat()

With this method, the framework instructs the client application to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

fwInterface : in IpHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

Method
disableAppHeartBeat()

Instructs the client application to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method

Method
changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

7.3.3.4 Interface Class IpAppHeartBeat

Inherits from: IpInterface.

The Heartbeat Application interface is used by the Framework to send the client application its heartbeat.

<<Interface>>

IpAppHeartBeat

pulse () : void

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 653GPP TS 29.198-3 version 4.7.0 Release 4

Method
pulse()

The framework uses this method to send its heartbeat to the client application. The application will be expecting a pulse
at the end of every interval specified in the parameter to the IpHeartBeatMgmt.enableHeartbeat() method. If the pulse()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method

7.3.3.5 Interface Class IpHeartBeatMgmt

Inherits from: IpInterface.

This interface allows the initialisation of a heartbeat supervision of the framework by a client application. If the
IpHeartBeatMgmt interface is implemented by a Framework, as a minimum enableHeartBeat() and disableHeartBeat()
shall be implemented.

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, appInterface : in IpAppHeartBeatRef) : void

disableHeartBeat () : void

changeInterval (interval : in TpInt32) : void

Method
enableHeartBeat()

With this method, the client application instructs the framework to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

appInterface : in IpAppHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

Raises

TpCommonExceptions

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 663GPP TS 29.198-3 version 4.7.0 Release 4

Method
disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

Method
changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

7.3.3.6 Interface Class IpHeartBeat

Inherits from: IpInterface.

The Heartbeat Framework interface is used by the client application to send its heartbeat. If a Framework is capable of
invoking IpAppHeartBeatMgmt.enableHeartBeat(), it shall implement IpHeartBeat and the pulse() method.

<<Interface>>

IpHeartBeat

pulse () : void

Method
pulse()

The client application uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the IpAppHeartBeatMgmt.enableAppHeartbeat() method. If
the pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 673GPP TS 29.198-3 version 4.7.0 Release 4

Raises

TpCommonExceptions

7.3.3.7 Interface Class IpAppLoadManager

Inherits from: IpInterface.

The client application developer supplies the load manager application interface to handle requests, reports and other
responses from the framework load manager function. The application supplies the identity of this callback interface at
the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the
IpAccess interface.

<<Interface>>

IpAppLoadManager

queryAppLoadReq (timeInterval : in TpTimeInterval) : void

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

resumeNotification () : void

suspendNotification () : void

<<new>> createLoadLevelNotification () : void

<<new>> destroyLoadLevelNotification () : void

Method
queryAppLoadReq()

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.

Method
queryLoadRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e.
in response to an invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 683GPP TS 29.198-3 version 4.7.0 Release 4

Method
queryLoadErr()

The framework uses this method to return an error response to the application that requested the framework's load
statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryLoadReq method on the IpLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Method
loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the SCFs or framework
which have been registered for load level notifications) this method is invoked on the application. In addition this
method shall be invoked on the application in order to provide a notification of current load status, when load
notifications are first requested, or resumed after suspension.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).

Method
resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the
client application shall inform the framework of the current load using the reportLoad method on the corresponding
IpLoadManager.

Parameters
No Parameters were identified for this method

Method
suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the
framework handles a temporary overload condition.

Parameters
No Parameters were identified for this method

Method
<<new>> createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the
application. Upon receipt of this method the client application shall inform the framework of the current load using the
reportLoad method on the corresponding IpLoadManager.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 693GPP TS 29.198-3 version 4.7.0 Release 4

Parameters
No Parameters were identified for this method

Method
<<new>> destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the application.

Parameters
No Parameters were identified for this method

7.3.3.8 Interface Class IpLoadManager

Inherits from: IpInterface.

The framework API should allow the load to be distributed across multiple machines and across multiple component
processes, according to a load management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific client application. It might specify what
action the framework should take as the congestion level changes. For example, some real-time critical applications will
want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services
will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management
policy is related to the QoS level to which the application is subscribed. The framework load management function is
represented by the IpLoadManager interface. Most methods are asynchronous, in that they do not lock a thread into
waiting whilst a transaction performs. To handle responses and reports, the client application developer must
implement the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity
of this callback interface at the time it obtains the framework's load manager interface, by use of the
obtainInterfaceWithCallback operation on the IpAccess interface.
 If the IpLoadManager interface is implemented by a Framework, at least one of the methods shall be implemented
as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification() and
destroyLoadLevelNotification() methods shall be implemented. If suspendNotification() is implemented, then
resumeNotification() shall be implemented also. If a Framework is capable of invoking the
IpAppLoadManager.queryAppLoadReq() method, then it shall implement queryAppLoadRes() and queryAppLoadErr()
methods in this interface.

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : void

queryAppLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryAppLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

createLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

destroyLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

resumeNotification (serviceIDs : in TpServiceIDList) : void

suspendNotification (serviceIDs : in TpServiceIDList) : void

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 703GPP TS 29.198-3 version 4.7.0 Release 4

Method
reportLoad()

The client application uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load
level on the application has changed. In addition this method shall be called by the application in order to report current
load status, when load notifications are first requested, or resumed after suspension.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At
level 1 load, the application is overloaded. At level 2 load, the application is severely overloaded.

Parameters

loadLevel : in TpLoadLevel

Specifies the application's load level.

Raises

TpCommonExceptions

Method
queryLoadReq()

The client application uses this method to request the framework to provide load statistic records for the framework or
for its instances of the individual services. If the application does not have access to a service instance with the
specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The
extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load
statistics record of the framework is returned.

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED,
P_UNAUTHORISED_PARAMETER_VALUE

Method
queryAppLoadRes()

The client application uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the application-supplied load statistics.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 713GPP TS 29.198-3 version 4.7.0 Release 4

Raises

TpCommonExceptions

Method
queryAppLoadErr()

The client application uses this method to return an error response to the framework that requested the application's load
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryAppLoadReq method on the IpAppLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.

Raises

TpCommonExceptions

Method
createLoadLevelNotification()

The client application uses this method to register to receive notifications of load level changes associated with either
the framework or with its instances of the individual services used by the application. If the application does not have
access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception
shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID. Upon receipt
of this method the framework shall inform the client application of the current framework or service instance load using
the loadLevelNotification method on the corresponding IpAppLoadManager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or SCFs to be registered for load control. To register for framework load control, the
serviceIDs parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

Method
destroyLoadLevelNotification()

The client application uses this method to unregister for notifications of load level changes associated with either the
framework or with its instances of the individual services used by the application. If the application does not have
access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception
shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 723GPP TS 29.198-3 version 4.7.0 Release 4

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for
framework load control, the serviceIDs parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

Method
resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. after a
period of suspension during which the application handled a temporary overload condition. If the application does not
have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE
exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.
Upon receipt of this method the framework shall inform the client application of the current framework or service
instance load using the loadLevelNotification method on the corresponding IpAppLoadManager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications of load level changes by the framework
should be resumed. To resume notifications for the framework, the serviceIDs parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED,
P_UNAUTHORISED_PARAMETER_VALUE

Method
suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. while
the application handles a temporary overload condition. If the application does not have access to a service instance
with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The
extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications by the framework should be suspended.
To suspend notifications for the framework, the serviceIDs parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED,
P_UNAUTHORISED_PARAMETER_VALUE

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 733GPP TS 29.198-3 version 4.7.0 Release 4

7.3.3.9 Interface Class IpOAM

Inherits from: IpInterface.

The OAM interface is used to query the system date and time. The application and the framework can synchronise the
date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA APIs. This interface
and the systemDateTimeQuery() method are optional.

<<Interface>>

IpOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

Method
systemDateTimeQuery()

This method is used to query the system date and time. The client application passes in its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : This is the system date and time of the framework.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT is returned if
the format of the parameter is invalid.

Returns

TpDateAndTime

Raises

TpCommonExceptions,P_INVALID_TIME_AND_DATE_FORMAT

7.3.3.10 Interface Class IpAppOAM

Inherits from: IpInterface.

The OAM client application interface is used by the Framework to query the application date and time, for
synchronisation purposes. This method is invoked by the Framework to interchange the framework and client
application date and time.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 743GPP TS 29.198-3 version 4.7.0 Release 4

<<Interface>>

IpAppOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

Method
systemDateTimeQuery()

This method is used to query the system date and time. The framework passes in its own date and time to the
application. The application responds with its own date and time.

Returns <clientDateAndTime> : This is the date and time of the client (application).

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the framework.

Returns

TpDateAndTime

7.3.4 Event Notification Interface Classes

7.3.4.1 Interface Class IpAppEventNotification

Inherits from: IpInterface.

This interface is used by the services to inform the application of a generic service-related event. The Event
Notification Framework will invoke methods on the Event Notification Application Interface that is specified when the
Event Notification interface is obtained.

<<Interface>>

IpAppEventNotification

reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

Method
reportNotification()

This method notifies the application of the arrival of a generic event.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 753GPP TS 29.198-3 version 4.7.0 Release 4

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The
application can use assignment id to associate events with event specific criteria and to act accordingly.

Method
notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to
faults detected).

Parameters
No Parameters were identified for this method

7.3.4.2 Interface Class IpEventNotification

Inherits from: IpInterface.

The event notification mechanism is used to notify the application of generic service related events that have occurred.
If Event Notifications are supported by a Framework, this interface and the createNotification() and
destroyNotification() methods shall be implemented.

<<Interface>>

IpEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

Method
createNotification()

This method is used to enable generic notifications so that events can be sent to the application.

Returns <assignmentID> : Specifies the ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the application to define the event required.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 763GPP TS 29.198-3 version 4.7.0 Release 4

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
destroyNotification()

This method is used by the application to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENTID.

Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_ASSIGNMENT_ID

7.4 State Transition Diagrams
This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will
return an exception. Apart from the methods that can be invoked by the application also events internal to the gateway
or related to network events are shown together with the resulting event or action performed by the gateway. These
internal events are shown between quotation marks.

7.4.1 Service Discovery State Transition Diagrams

7.4.1.1 State Transition Diagrams for IpServiceDiscovery

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 773GPP TS 29.198-3 version 4.7.0 Release 4

Active

obtainFrameworkInterface(discoveryService)

obtainInterfaceWithCallback(discoveryService)

listServiceTypes

describeServiceType

listSubscribedServices

discoverService

IpAccess.endAccess

Figure : State Transition Diagram for IpServiceDiscovery

7.4.1.1.1 Active State

When the application requests Service Discovery by invoking the obtainInterface or the obtainInterfaceWithCallback
methods on the IpAccess interface, an instance of the IpServiceDiscovery will be created. Next the application is
allowed to request a list of the provided SCFs and to obtain a reference to interfaces of SCFs.

7.4.2 Service Agreement Management State Transition Diagrams

There are no State Transition Diagrams defined for Service Agreement Management

7.4.3 Integrity Management State Transition Diagrams

7.4.3.1 State Transition Diagrams for IpLoadManager

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 783GPP TS 29.198-3 version 4.7.0 Release 4

Idle

Notification
Suspended

Active

IpAccess.obtainInterface

reportLoad
querySvcLoadRes[load statistics requested by LoadMa

querySvcLoadErr[load statistics requested by LoadM

reportLoad

querySvcLoadRes[load statistics requested by LoadMana
querySvcLoadErr[load statistics requested by LoadMan

IpAccess.obtainInterfaceWithCallback

All States

IpAccess.endAccess

createLoadLevelNotification l̂oadLevelNotification

destroyLoadLevelNotification

suspendNotification
[all notifications suspended]

queryLoadReq

queryLoadReq

"load change" l̂oadLevelNotification

destroyLoadLevelNotification

resumeNotification
l̂oadLevelNotification

Figure : State Transition Diagram for IpLoadManager

7.4.3.1.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

7.4.3.1.2 Notification Suspended State

Due to e.g. a temporary load condition, the application has requested the LoadManager to suspend sending the load
level notification information.

7.4.3.1.3 Active State

In this state the application has indicated its interest in notifications by performing a createLoadLevelNotification()
invocation on the IpLoadManager. The load manager can now request the application to supply load statistics
information (by invoking queryAppLoadReq()). Furthermore the LoadManager can request the application to control its
load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the application side of
interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the
method reportLoad().

7.4.3.2 State Transition Diagrams for LoadManagerInternal

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 793GPP TS 29.198-3 version 4.7.0 Release 4

Normal load Application Overload

. ..

A necessary action can
be suspending the load
notifictions to the
application or enabling
load control mechanisms
on certain services.

Internal overload

...

A necessary action can be
suspending the load
noti fictions from the
applicat ion by invoking
suspendNot ification or
enabling load control
mechanisms on the
applicat ion by invoking
enableLoadControl.

Internal and Applicat ion Overload

...

reportLoad[loadlevel != 0]

reportLoad[loadlevel = 0]

"internal load change detection"

" internal load change to non overloaded"
"internal load change to non overload"

reportLoad[loadlevel = 0]

reportLoad[loadlevel != 0]

"internal load change detection"

registerLoadController

ALL
STATES

unregisterLoadControler

Figure : State Transition Diagram for LoadManagerInternal

7.4.3.2.1 Normal load State

In this state the none of the entities defined in the load balancing policy between the application and the framework /
SCFs is overloaded.

7.4.3.2.2 Application Overload State

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the
appropriate actions are taken by the LoadManager.

7.4.3.2.3 Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this
state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.4.3.2.4 Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load
policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 803GPP TS 29.198-3 version 4.7.0 Release 4

7.4.3.3 State Transition Diagrams for IpOAM

Active

systemDateTimeQuery

IpAccess.endAccess

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

Figure : State Transition Diagram for IpOAM

7.4.3.3.1 Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the
date / time of the Framework.

7.4.3.4 State Transition Diagrams for IpFaultManager

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 813GPP TS 29.198-3 version 4.7.0 Release 4

Framework
Active

Framework Faulty

entry/ ^fwFaultReportInd to all applications with cal lback
exit/ ^fwFaultRecoveryInd to all applications with callback

Framework Activity Test

entry/ test a ctivity of framework
exit/ ÎpAppFaultManager.activityT estRes

Service Activity Test

entry/ test activi ty of service
exit/ ^IpAppFaultManager.activityTestRes

genFaultStatsRecordReq ^app.genFaultStatsRecordRes

srvUnavailableInd / test the service, inform service that application is not using it

'service fault' ^svcUnavai lableInd to all applications using the service

IpAccess.endAccess / remove
application from load man agement

IpAccess.obtainInterfaceWithCallback("FaultManagement") /
add application to fault m anagement

faul t detected in fw

no fault detected

IpAccess.endAccess / Abort
pending test request

fault resolved

fault detected in fw

activityTestReq[
emtpy string]

activ ityTestReq[scfID]

IpAccess.endAccess

service fault ^srvUnavailableInd to all applications using the service

no fault detected

IpAccess.endAccess /
Abort pending test request

Figure : State Transition Diagram for IpFaultManager

7.4.3.4.1 Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications
and services capability features.

7.4.3.4.2 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the
framework return an error. If the framework ever recovers, applications with fault management callbacks will be
notified via a fwFaultRecoveryInd message.

7.4.3.4.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault
management callbacks are notified through a fwFaultReportInd message.

7.4.3.4.4 Service Activity Test State

In this state, the framework is performing a test on one service capability feature. If the SCF is faulty, applications with
fault management callbacks are notified accordingly through a svcUnavailableInd message.

7.4.4 Event Notification State Transition Diagrams

7.4.4.1 State Transition Diagrams for IpEventNotification

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 823GPP TS 29.198-3 version 4.7.0 Release 4

Idle

IpAccess.obtainInterface

Notification
Active

createNotification

destroyNotification

destroyNot ification[no more notificat ions installed]

IpAccess.endAccess

IpAccess.obtainInterfaceWithCallback

createNotification

IpAccess.endAccess

Figure : State Transition Diagram for IpEventNotification

8 Framework-to-Service API

8.1 Sequence Diagrams

8.1.1 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery

8.1.2 Service Registration Sequence Diagrams

8.1.2.1 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service
Registration is a two step process:

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 833GPP TS 29.198-3 version 4.7.0 Release 4

SCS :
IpFwServiceRegistration

1: registerService()

2: announceServiceAvailability()

1: Registration: first step - register service

The purpose of this first step in the process of registration is to agree, within the network, on a name to call, internally, a
newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from
different vendors. The goal is to make an association between the new SCF version, as characterized by a list of
properties, and an identifier called serviceID.

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs),
whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or
for withdrawing it later).

The following input parameters are given from the SCS to the Framework in this first registration step:

· in serviceTypeName

This is a string with the name of the SCF, among a list of standard names (e.g. "P_MPCC").

· in servicePropertyList

This is a list of types TpServiceProperty; each TpServiceProperty is a pair of (ServicePropertyName,
ServicePropertyValueList).

· ServicePropertyName is a string that defines a valid SFC property name (valid SCF property names are listed in the
SCF data definition).

· ServicePropertyValueList is a numbered set of types TpServicePropertyValue; TpServicePropertyValue is a string
that describes a valid value of a SCF property (valid SCF property values are listed in the SCF data definition).

The following output parameter results from service registration:

· out serviceID

This is a string, automatically generated by the Framework and unique within the Framework.

This is the name by which the newly installed version of SCF, described by the list of properties above, is going to be
identified internally in this network.

2: Registration: second step - announce service availability

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 843GPP TS 29.198-3 version 4.7.0 Release 4

At this point the network's Framework is aware of the existence of a new SCF, and could let applications know - but
they would have no way to use it. Installing the SCS logic and assigning a name to it does not make this SCF available.
In order to make the SCF available an "entry point", called lifecycle manager, is used. The role of the lifecycle manager
is to control the life cycle of an interface, or set of interfaces, and provide clients with the references that are necessary
to invoke the methods offered by these interfaces. The starting point for a client to use an SCF is to obtain an interface
reference to a lifecycle manager of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF
version, will instantiate a lifecycle manager for it that will allow client to use it. Then it will inform the Framework of
the value of the interface associated to the new SCF. After the receipt of this information, the Framework makes the
new SCF (identified by the pair [serviceID, serviceInstanceLifecycleManagerRef]) discoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:

· in serviceID

This is the identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needs to
include the serviceID, to know which SCF it is.

· in serviceInstanceLifecycleManagerRef

This is the interface reference at which the lifecycle manager of the new SCF is available. Note that the Framework will
have to invoke the method createServiceManager() in this interface, any time between now and when it accepts the first
application requests for discovery, so that it can get the service manager interface necessary for applications as an entry
point to any SCF.

8.1.3 Service Instance Lifecycle Manager Sequence Diagrams

8.1.3.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing of the service agreement and the corresponding actions towards the service. For more information on accessing
the framework, authentication and discovery of services, see the corresponding clauses.

 : IpAppCallCont rolManagerAppLogic : IpInitial :
IpServ iceAgreementManagement

 : IpCallControlManager :
IpAppServ iceAgreem ent Managem ent

GenericCallControlServ ice :
IpServ iceInstanceLif ecy cleManager

1: selectServ ice()

3: signServ ic eAgreement()
4: createServ iceManager() 5: new()

6: new()

7: setCallback()

W e assum e that t he appl ication is already authenticat ed and dis cov ered t he serv ice i t wants t o us e

2: signServ iceAgreement()

1: The application selects the service, using a serviceID for the generic call control service. The serviceID could have
been obtained via the discovery interface. A ServiceToken is returned to the application.

2: The framework signs the service agreement.

3: The client application signs the service agreement. As a result a service manager interface reference (in this case of
type IpCallControlManager) is returned to the application.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 853GPP TS 29.198-3 version 4.7.0 Release 4

4: Provided the signature information is correct and all conditions have been fulfilled, the framework will request the
service identified by the serviceID to return a service manager interface reference. The service manager is the initial
point of contact to the service.

5: The lifecycle manager creates a new manager interface instance (a call control manager) for the specified
application. It should be noted that this is an implementation detail. The service implementation may use other
mechanism to get a service manager interface instance.

6: The application creates a new IpAppCallControlManager interface to be used for callbacks.

7: The Application sets the callback interface to the interface created with the previous message.

8.1.4 Integrity Management Sequence Diagrams

8.1.4.1 Load Management: Service callback registration and load control

This sequence diagram shows how a service registers itself and the framework invokes load management function
based on policy

 : IpSvcLoadManager : IpFwLoadManager

1: createLoadLevelNotification()

3: load change detection & policy evaluation

4: loadLevelNotification()

5: load change detection & policy evaluation

6: loadLevelNotification()

7: destroyLoadLevelNotification()

This is Framework
implementation detail. The
Framework may take appropriate
load control action.

This is Framework
implementation detail. The
Framework may take appropriate
load control action.

Fram ework detects a load
condi tion change
and notifies the service. The
service m ay take appropriate
load control action -
implementation detail.

2: loadLevelNotification()

Framework reports its initial load
condition on notification creation

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 863GPP TS 29.198-3 version 4.7.0 Release 4

8.1.4.2 Load Management: Framework callback registration and service load control

This sequence diagram shows how the framework registers itself and the service invokes load management function to
inform the framework of service load.

 :
IpFwLoadManager

 :
IpSvcLoadManager

1: createLoadLevelNotificat ion()

3: load change detection

4: reportLoad()

This is service
implementation detail .
The service may take
appropriate load control
ac tion.

5: load change detection

6: reportLoad()

7: destroyLoadLevelNotification()

This is service
implementation detail .
The service may take
appropriate load control
ac tion.

Service detects a load
condition change and reports
to framework. The Framework
may take appropriate load
control action -
implementation detail.

2: reportLoad()

Service reports its initial
load condition on
noti ficat ion creation

8.1.4.3 Load Management: Client and Service Load Balancing

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 873GPP TS 29.198-3 version 4.7.0 Release 4

Application :
IpAppLoadManager

Service :
IpSvcLoadManager

Framework :
IpLoadManager

 :
IpFwLoadManager

Framework checks
application load.

Depending on the load, the
framework may choose to stop
sending noti fications to the
application, to al low its load to
reduce.

The framework may then check
the load on the service, and take
action if (according to the load
balancing policy) if required.

1: queryAppLoadReq()

2: queryAppLoadRes()

3: querySvcLoadReq()

4: querySvcLoadRes()

8.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service

In this sequence diagram, the framework has decided that it wishes to monitor the service, and has therefore requested
the service to commence sending its heartbeat. The service responds by sending its heartbeat at the specified interval.
The framework then decides that it is satisfied with the service's health and disables the heartbeat mechanism. If the
heartbeat was not received from the service within the specified interval, the framework can decide that the service has
failed the heartbeat and can then perform some recovery action.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 883GPP TS 29.198-3 version 4.7.0 Release 4

Framework :
IpFwHeartBeat

 :
IpSvcHeartBeatMgmt

1: enableSvcHeartBeat()

2: pulse()

3: pulse()

4: disableSvcHeartBeat()

At a certain point of
time the framework
decides to stop
heartbeat supervision

8.1.4.5 Fault Management: Service requests Framework activity test

Framework :
IpFwFaultManager

Service :
IpSvcFaultManager

The Service requests that the
Framework does an activity test.

1: activityTestReq()

2: activityTestRes()

1: The service asks the framework to carry out its activity test. The service denotes that it requires the activity test done
for the framework, rather than an application, by supplying an appropriate parameter.

2: The framework carries out the test and returns the result to the service.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 893GPP TS 29.198-3 version 4.7.0 Release 4

8.1.4.6 Fault Management: Service requests Application activity test

Service :
IpSvcFaultManager

Application :
IpAppFaultManager

 :
IpFaultManager

Framework :
IpFaultManager

The Framework identifies the service
instance to conclude which
Application the test is directed at, and
comunicates internally to Framework
interface to the Application.

The application
carries out the
activity test and
returns the result to
the Framework.

Internal Framework
Communications.

1: activi tyTestReq()

2: appActivityTestReq()

3: appAc tivityTestRes()

4: activityTestRes()

1: The service asks the framework to invoke an activity test on a client application, the application is identified by the
appId parameter.

2: The framework asks the application to do the activity test. It is assumed that there is internal communication
between the service facing part of the framework (i.e. IpFwFaultManager interface) and the part that faces the client
application.

3: The application does the activity test and returns the result to the framework.

4: The framework internally passes the result from its application facing interface (IpFaultManager) to its service
facing side, and sends the result to the service.

8.1.4.7 Fault Management: Application requests Service activity test

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 903GPP TS 29.198-3 version 4.7.0 Release 4

Client Application :
IpAppFaultManager

Service :
IpSvcFaultManager

 :
IpFwFaultManager

Framework :
IpFaultManager

The client application asks the
framework to carry out the
activity test on a service.

The Framework identifies which
service the tes t is directed at by the
svcID parameter, and
communicates internally with the
appropriate framework interface.
Which invokes the call on the
service.

Service does test and
returns the result.

Framework passes result
internally from service facing
part to application facing part,
and sends the result to the
application.

1: activityTestReq()

2: svcActivityTestReq()

3: svcActivityTestRes()

4: activityTestRes()

1: The client application asks the framework to invoke an activity test on a service, the service is identified by the
svcId parameter.

2: The framework asks the service to do the activity test. It is assumed that there is internal communication between
the application facing part of the framework (i.e. IpFaultManager interface) and the part that faces the service.

3: The service does the activity test and returns the result to the framework.

4: The framework internally passes the result from its service facing interface (IpFwFaultManager) to its application
facing side, and sends the result to the client application.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 913GPP TS 29.198-3 version 4.7.0 Release 4

8.1.4.8 Fault Management: Application detects service is unavailable

Client Application :
IpAppFaultManager

Service :
IpSvcFaultManager

Framework :
IpFaultManager

 :
IpFwFaultManager

The application detects that
the service is not responding,
so it informs the framework via
the svcUnavailableInd method
and then ceases use of the
service.

The framework informs the
service that the application
is no longer using it.

1: svcUnavailableInd()

2: appUnavailableInd()

1: The client application detects that the service instance is currently not available, i.e. the service instance is not
responding to the client application in the normal way, so it informs the framework and takes action to stop using this
service instance and change to a different one (via the usual mechanisms, such as discovery, selectService etc.). The
client application should not need to re-authenticate in order to discover and use an alternative service instance.

2: The framework informs the service instance that the client application was unable to get a response from it and has
ceased to be one of its users. The framework and service instance must carry out the appropriate updates to remove the
client application as one of the users of this service instance. The service or framework may then decide to carry out an
activity test to see whether there is a general problem with the service instance that requires further action.

8.1.5 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification

8.2 Class Diagrams

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 923GPP TS 29.198-3 version 4.7.0 Release 4

IpFwServiceDiscovery

listServiceTypes()
describeServiceType()
discoverService()
listRegisteredServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview

IpFwServiceRegistration

regis terService()
announceServiceAvailability()
unregisterService()
describeService()
unannounceService()

(from Framework interfaces)

<<Interface>>

Figure: Service Registration Package Overview

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 933GPP TS 29.198-3 version 4.7.0 Release 4

IpInitial

initiateAuthentication()

(from Framework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpAccess

obtainInterface()
obtainInterfaceWithCallback()
endAccess()
listInterfaces()
releaseInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpClientAPILevelAuthentication

authenticate()
abortAuthentication()
authenticationSucceeded()

(from Client interfaces)

<<Interface>>

IpAPILevelAuthentication

selectEncryptionMethod()
authenticate()
abortAuthentication()
authenticationSucceeded()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthenticat ion

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview

IpServiceInstanceLifecycleManager

createServiceManager()
destroyServiceManager()

(from Service Interfaces)

<<Interface>>

Figure: Service Instance Lifecycle Manager Package Overview

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 943GPP TS 29.198-3 version 4.7.0 Release 4

IpSvcHeartBeatMgmt

enableSvcHeartBeat()
disableSvcHeartBeat()
changeInterval()

<<Interface>>

IpSvcHeartBeat

pulse()

<<Interface>>

1 0..n1 0..n

IpFwHeartBeat

pulse()

<<Interface>>

<<uses>>

IpFwHeartBeatMgmt

enableHeartBeat()
disableHeartBeat()
changeInterval()

<<Interface>>

<<uses>>

0..n1 0..n1

IpFwLoadManager

reportLoad()
queryLoadReq()
querySvcLoadRes()
querySvcLoadErr()
createLoadLevelNotification()
destroyLoadLevelNotification()
suspendNotification()
resumeNotification()

<<Interface>>

IpSvcLoadManager

querySvcLoadReq()
queryLoadRes()
queryLoadErr()
loadLevelNotification()
suspendNotification()
resumeNotification()
<<new>> createLoadLevelNotification()
<<new>> destroyLoadLevelNotification()

<<Interface>>

<<uses>>

IpSvcFaultManager

activityTestRes()
svcActivityTestReq()
fwFaultReportInd()
fwFaultRecoveryInd()
fwUnavailableInd()
svcUnavailableInd()
appUnavailableInd()
genFaultStatsRecordRes()
activityTestErr()
genFaultStatsRecordErr()
genFaultStatsRecordReq()

<<Interface>>

IpFwFaultManager

activityTestReq()
svcActivityTestRes()
appUnavailableInd()
genFaultStatsRecordReq()
svcUnavailableInd()
svcActivityTestErr()
genFaultStatsRecordRes()
genFaultStatsRecordErr()

<<Interface>>

<<uses>>

IpFwOAM

systemDateTimeQuery()

<<Interface>>

IpSvcOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

Figure: Integrity Management Package Overview

IpFwEventNotificat ion

createNotification()
destroyNotification()

(from Framework Interfaces)

<<Interface>>

IpSvcEventNot ification

reportNotification()
notificationTerminated()

(f rom Se rvice Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Package Overview

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 953GPP TS 29.198-3 version 4.7.0 Release 4

8.3 Interface Classes

8.3.1 Service Registration Interface Classes

Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with
the Framework. Services are registered against a particular service type. Therefore service types are created first, and
then services corresponding to those types are accepted from the Service Suppliers for registration in the framework.
The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property
values" for the service. The service discovery functionality described in the previous clause enables the service supplier
to obtain a list of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative
applications. They are described below. Note that these methods cannot be invoked until the authentication methods
have been invoked successfully.

8.3.1.1 Interface Class IpFwServiceRegistration

Inherits from: IpInterface.

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.
This interface and at least the methods registerService(), announceServiceAvailability(), unregisterService() and
unannounceService() shall be implemented by a Framework.

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList)
: TpServiceID

announceServiceAvailability (serviceID : in TpServiceID, serviceInstanceLifecycleManagerRef : in
service_lifecycle::IpServiceInstanceLifecycleManagerRef) : void

unregisterService (serviceID : in TpServiceID) : void

describeService (serviceID : in TpServiceID) : TpServiceDescription

unannounceService (serviceID : in TpServiceID) : void

Method
registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent
discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known
to the Framework (ServiceType is 'available'). A service-ID is returned to the service supplier when a service is
registered in the Framework. When the service is not registered because the ServiceType is 'unavailable', a
P_SERVICE_TYPE_UNAVAILABLE is raised. The service-ID is the handle with which the service supplier can
identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context
of the Framework that generated it.

Returns <serviceID> : This is the unique handle that is returned as a result of the successful completion of this
operation. The Service Supplier can identify the registered service when attempting to access it via other operations

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 963GPP TS 29.198-3 version 4.7.0 Release 4

such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to
discover a service of this type.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey
the rules for identifiers, then an P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct
syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TYPE exception is raised.

servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being
registered. This description typically covers behavioural, non-functional and non-computational aspects of the service.
Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:
 a. mandatory - a service associated with this service type must provide an appropriate value for this property when
registering.
 b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may
not be modified.
 Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified.
Examples of such properties are those which form part of a service agreement and hence cannot be modified by service
suppliers during the life time of service.
 If the type of any of the property values is not the same as the declared type (declared in the service type), then a
P_PROPERTY_TYPE_MISMATCH exception is raised. If an attempt is made to assign a dynamic property value to a
readonly property, then the P_READONLY_DYNAMIC_PROPERTY exception is raised. If the "servicePropertyList"
parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the same property name
are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.

Returns

TpServiceID

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID,
P_UNKNOWN_SERVICE_ID,P_PROPERTY_TYPE_MISMATCH,P_DUPLICATE_PROPERTY_NAME,
P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE,
P_MISSING_MANDATORY_PROPERTY, P_SERVICE_TYPE_UNAVAILABLE

Method
announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The
announceServiceAvailability() method is invoked after the service is authenticated and its service instance lifecycle
manager is instantiated at a particular interface. This method informs the framework of the availability of "service
instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After
the receipt of this method, the framework makes the corresponding service discoverable.

There exists a "service manager" instance per service instance. Each service implements the
IpServiceInstanceLifecycleManager interface. The IpServiceInstanceLifecycleManager interface supports a method
called the createServiceManager(application: in TpClientAppID, serviceProperties : in TpServicePropertyList,
serviceInstanceID : in TpServiceInstanceID) : IpServiceRef. When the service agreement is signed for some serviceID
(using signServiceAgreement()), the framework calls the createServiceManager() for this service, gets a
serviceManager and returns this to the client application.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 973GPP TS 29.198-3 version 4.7.0 Release 4

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "serviceID" does not obey the
rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but
there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.

serviceInstanceLifecycleManagerRef : in
service_lifecycle::IpServiceInstanceLifecycleManagerRef

The interface reference at which the service instance lifecycle manager of the previously registered service is available.

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID,
P_INVALID_INTERFACE_TYPE

Method
unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework.
The service is identified by the "service-ID" which was originally returned by the Framework in response to the
registerService() operation. The service must be in the SCF Registered state. All instances of the service will be
deleted.

Parameters

serviceID : in TpServiceID

The service to be withdrawn is identified by the "serviceID" parameter which was originally returned by the
registerService() operation. If the string representation of the "serviceID" does not obey the rules for service
identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service
offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.

Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID

Method
describeService()

The describeService() operation returns the information about a service that is registered in the framework. It
comprises, the "type" of the service , and the "properties" that describe this service. The service is identified by the
"service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for
example), and each getting a different serviceID assigned.

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework.
It comprises the "type" of the service , and the properties that describe this service.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 983GPP TS 29.198-3 version 4.7.0 Release 4

Parameters

serviceID : in TpServiceID

The service to be described is identified by the "serviceID" parameter which was originally returned by the
registerService() operation. If the string representation of the "serviceID" does not obey the rules for object identifiers,
then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within
the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.

Returns

TpServiceDescription

Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID

Method
unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the
service ID is still associated with it. Applications currently using the service can continue to use the service but no new
applications should be able to start using the service. Also, all unused service tokens relating to the service will be
expired. This will prevent anyone who has already performed a selectService() but not yet performed the
signServiceAgreement() from being able to obtain a new instance of the service.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being unannounced. If the string representation of the "serviceID" does not obey
the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but
there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.

Raises

TpCommonExceptions,P_ILLEGAL_SERVICE_ID,P_UNKNOWN_SERVICE_ID

8.3.2 Service Instance Lifecycle Manager Interface Classes

The IpServiceInstanceLifecycleManager interface allows the framework to get access to a service manager interface of
a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the
application. Each service has a service manager interface that is the initial point of contact for the service. E.g., the
generic call control service uses the IpCallControlManager interface.

8.3.2.1 Interface Class IpServiceInstanceLifecycleManager

Inherits from: IpInterface.

The IpServiceInstanceLifecycleManager interface allows the Framework to create and destroy Service Manager
Instances. This
interface and the createServiceManager() and destroyServiceManager() methods shall be implemented by a Service.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 993GPP TS 29.198-3 version 4.7.0 Release 4

<<Interface>>

IpServiceInstanceLifecycleManager

createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList,
serviceInstanceID : in TpServiceInstanceID) : IpServiceRef

destroyServiceManager (serviceInstance : in TpServiceInstanceID) : void

Method
createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will
be configured for the client application using the properties agreed in the service level agreement.

Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.

Parameters

application : in TpClientAppID

Specifies the application for which the service manager interface is requested.

serviceProperties : in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance. These properties
form a part of the service level agreement. An example of these properties is a list of methods that the client application
is allowed to invoke on the service interfaces.

serviceInstanceID : in TpServiceInstanceID

Specifies the Service Instance ID that the new Service Manager is to be identified by.

Returns

IpServiceRef

Raises

TpCommonExceptions, P_INVALID_PROPERTY

Method
destroyServiceManager()

This method destroys an existing service manager interface reference. This will result in the client application being
unable to use the service manager any more.

Parameters

serviceInstance : in TpServiceInstanceID

Identifies the Service Instance to be destroyed.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1003GPP TS 29.198-3 version 4.7.0 Release 4

Raises

TpCommonExceptions

8.3.3 Service Discovery Interface Classes

This API complements the Service Registration functionality described in another clause.

Before a service can be registered in the framework, the service supplier must know what "types" of services the
Framework supports and what service "properties" are applicable to each service type. The "listServiceType()" method
returns a list of all "service types" that are currently supported by the framework and the "describeServiceType()"
method returns a description of each service type. The description of service type includes the "service-specific
properties" that are applicable to each service type. Then the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values", by using the
"discoverService()" method.

Additionally the service supplier can retrieve a list of all registered services, without regard to type or property values,
by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework
implementation; e.g. a service supplier may only be permitted to retrieve a list of services that the service supplier has
previously registered.

8.3.3.1 Interface Class IpFwServiceDiscovery

Inherits from: IpInterface.

This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

<<Interface>>

IpFwServiceDiscovery

listServiceTypes () : TpServiceTypeNameList

describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

Method
listServiceTypes()

This operation returns the names of all service types that are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1013GPP TS 29.198-3 version 4.7.0 Release 4

Returns

TpServiceTypeNameList

Raises

TpCommonExceptions

Method
describeServiceType()

This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about: the service properties associated with this service type: i.e. a list of service property {name, mode and type}
tuples, the names of the super types of this service type, and whether the service type is currently available or
unavailable.

Parameters

name : in TpServiceTypeName

The name of the service type to be described. If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE
exception is raised. If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE
exception is raised.

Returns

TpServiceTypeDescription

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE

Method
discoverService()

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values". The service supplier passes in
a list of desired service properties to describe the service it is looking for, in the form of attribute/value pairs for the
service properties. The service supplier also specifies the maximum number of matched responses it is willing to accept.
The framework must not return more matches than the specified maximum, but it is up to the discretion of the
Framework implementation to choose to return less than the specified maximum. The discoverService() operation
returns a serviceID/Property pair list for those services that match the desired service property list that the service
supplier provided.

Returns <serviceList> : This parameter gives a list of matching services. Each service is characterised by its service ID
and a list of service properties {name and value list} associated with the service.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1023GPP TS 29.198-3 version 4.7.0 Release 4

Parameters

serviceTypeName : in TpServiceTypeName

The name of the required service type. If the string representation of the "type" does not obey the rules for service type
identifiers, then the P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but is not
recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TYPE exception is raised. The
framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList" parameter is a list of service properties {name and value list} that the required services
should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The
property values in the desired property list must be logically interpreted as "minimum", "maximum", etc. by the
framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is
suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so
that desired property values can specify an "enclosing" range of values to help in the selection of desired services.

max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.

Returns

TpServiceList

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE,
P_INVALID_PROPERTY

Method
listRegisteredServices()

Returns a list of services so far registered in the framework.

Returns <serviceList> : The "serviceList" parameter returns a list of registered services. Each service is characterised
by its service ID and a list of service properties {name and value list} associated with the service.

Parameters
No Parameters were identified for this method

Returns

TpServiceList

Raises

TpCommonExceptions

8.3.4 Integrity Management Interface Classes

8.3.4.1 Interface Class IpFwFaultManager

Inherits from: IpInterface.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1033GPP TS 29.198-3 version 4.7.0 Release 4

This interface is used by the service instance to inform the framework of events which affect the integrity of the API,
and request fault management status information from the framework. The fault manager operations do not exchange
callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the
time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on
the IpAccess interface.
 If the IpFwFaultManager interface is implemented by a Framework, at least one of these methods shall be
implemented. If the Framework is capable of invoking the IpSvcFaultManager.svcActivityTestReq() method, it shall
implement svcActivityTestRes() and svcActivityTestErr() in this interface. If the Framework is capable of invoking
IpSvcFaultManager.genFaultStatsRecordReq(), it shall implement genFaultStatsRecordRes() and
genFaultStatsRecordErr() in this interface.

<<Interface>>

IpFwFaultManager

activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appUnavailableInd () : void

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, recordSubject : in TpSubjectType) : void

svcUnavailableInd (reason : in TpSvcUnavailReason) : void

svcActivityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in TpServiceIDList) :
void

Method
activityTestReq()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of
this request, the framework must carry out a test on itself or on the application, to check that it is operating correctly.
The framework reports the test result by invoking the activityTestRes method on the IpSvcFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.

testSubject : in TpSubjectType

Identifies the subject for testing (framework or client application).

Raises

TpCommonExceptions

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1043GPP TS 29.198-3 version 4.7.0 Release 4

Method
svcActivityTestRes()

The service instance uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

Raises

TpCommonExceptions,P_INVALID_ACTIVITY_TEST_ID

Method
appUnavailableInd()

This method is used by the service instance to inform the framework that the client application is not responding. On
receipt of this indication, the framework must act to inform the client application that it should cease use of this service
instance.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

Method
genFaultStatsRecordReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the
framework must produce a fault statistics record, for the framework or for the application during the specified time
interval, which is returned to the service instance using the genFaultStatsRecordRes operation on the
IpSvcFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

recordSubject : in TpSubjectType

Specifies the subject to be included in the general fault statistics record (framework or application).

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1053GPP TS 29.198-3 version 4.7.0 Release 4

Raises

TpCommonExceptions

Method
svcUnavailableInd()

This method is used by the service instance to inform the framework that it is about to become unavailable for use. The
framework should inform the client application that is currently using this service instance that it is unavailable for use
(via the svcUnavailableInd method on the IpAppFaultManager interface).

Parameters

reason : in TpSvcUnavailReason

Identifies the reason for the service instance's unavailability.

Raises

TpCommonExceptions

Method
svcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

Method
genFaultStatsRecordRes()

This method is used by the service to provide fault statistics to the framework in response to a genFaultStatsRecordReq
method invocation on the IpSvcFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1063GPP TS 29.198-3 version 4.7.0 Release 4

serviceIDs : in TpServiceIDList

Specifies the services that are included in the general fault statistics record. The serviceIDs parameter is not allowed to
be an empty list.

Raises

TpCommonExceptions

Method
genFaultStatsRecordErr()

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a
genFaultStatsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

serviceIDs : in TpServiceIDList

Specifies the services that were included in the general fault statistics record request. The serviceIDs parameter is not
allowed to be an empty list.

Raises

TpCommonExceptions

8.3.4.2 Interface Class IpSvcFaultManager

Inherits from: IpInterface.

This interface is used to inform the service instance of events that affect the integrity of the Framework, Service or
Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified
when the service instance obtains the Fault Management Framework interface: i.e. by use of the
obtainInterfaceWithCallback operation on the IpAccess interface.
 If the IpSvcFaultManager interface is implemented by a Service, at least one of these methods shall be implemented.
If the Service is capable of invoking the IpFwFaultManager.activityTestReq() method, it shall implement
activityTestRes() and activityTestErr() in this interface. If the Service is capable of invoking
IpFwFaultManager.genFaultStatsRecordReq(), it shall implement genFaultStatsRecordRes() and
genFaultStatsRecordErr() in this interface.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1073GPP TS 29.198-3 version 4.7.0 Release 4

<<Interface>>

IpSvcFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcActivityTestReq (activityTestID : in TpActivityTestID) : void

fwFaultReportInd (fault : in TpInterfaceFault) : void

fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

fwUnavailableInd (reason : in TpFwUnavailReason) : void

svcUnavailableInd () : void

appUnavailableInd () : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) :
void

genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void

Method
activityTestRes()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

Raises

TpCommonExceptions,P_INVALID_ACTIVITY_TEST_ID

Method
svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service
instance must carry out a test on itself, to check that it is operating correctly. The service instance reports the test result
by invoking the svcActivityTestRes method on the IpFwFaultManager interface.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1083GPP TS 29.198-3 version 4.7.0 Release 4

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

Raises

TpCommonExceptions

Method
fwFaultReportInd()

The framework invokes this method to notify the service instance of a failure within the framework. The service
instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.

Raises

TpCommonExceptions

Method
fwFaultRecoveryInd()

The framework invokes this method to notify the service instance that a previously reported fault has been rectified.
The service instance may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.

Raises

TpCommonExceptions

Method
fwUnavailableInd()

The framework invokes this method to inform the service instance that it is no longer available.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1093GPP TS 29.198-3 version 4.7.0 Release 4

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available

Raises

TpCommonExceptions

Method
svcUnavailableInd()

The framework invokes this method to inform the service instance that the client application has reported that it can no
longer use the service instance (either due to a failure in the client application or in the service instance itself). The
service should assume that the client application is leaving the service session and the service should act accordingly to
terminate the session from its own end too.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

Method
appUnavailableInd()

The framework invokes this method to inform the service instance that the client application is ceasing its current use of
the service. This may be a result of the application reporting a failure. Alternatively, the framework may have detected
that the application has failed: e.g. non-response from an activity test, failure to return heartbeats.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

Method
genFaultStatsRecordRes()

This method is used by the framework to provide fault statistics to a service instance in response to a
genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1103GPP TS 29.198-3 version 4.7.0 Release 4

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record has been provided.

Raises

TpCommonExceptions

Method
activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service instance to correlate this response (when it arrives) with the original request.

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

Method
genFaultStatsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record was requested.

Raises

TpCommonExceptions

Method
genFaultStatsRecordReq()

This method is used by the framework to solicit fault statistics from the service, for example when the framework was
asked for these statistics by the client application using the genFaultStatsRecordReq operation on the IpFaultManager

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1113GPP TS 29.198-3 version 4.7.0 Release 4

interface. On receipt of this request the service must produce a fault statistics record, for either the framework or for the
client's instances of the specified services during the specified time interval, which is returned to the framework using
the genFaultStatsRecordRes operation on the IpFwFaultManager interface. If the framework does not have access to a
service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be
thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the service.

serviceIDs : in TpServiceIDList

Specifies the services to be included in the general fault statistics record. This parameter is not allowed to be an empty
list.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

8.3.4.3 Interface Class IpFwHeartBeatMgmt

Inherits from: IpInterface.

This interface allows the initialisation of a heartbeat supervision of the framework by a service instance. If the
IpFwHeartBeatMgmt interface is implemented by a Framework, as a minimum enableHeartBeat() and
disableHeartBeat() shall be implemented.

<<Interface>>

IpFwHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, svcInterface : in IpSvcHeartBeatRef) : void

disableHeartBeat () : void

changeInterval (interval : in TpInt32) : void

Method
enableHeartBeat()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1123GPP TS 29.198-3 version 4.7.0 Release 4

svcInterface : in IpSvcHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

Raises

TpCommonExceptions,P_INVALID_INTERFACE_TYPE

Method
disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

Method
changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

8.3.4.4 Interface Class IpFwHeartBeat

Inherits from: IpInterface.

 The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat. If a
Framework is capable of invoking IpSvcHeartBeatMgmt.enableHeartBeat(), it shall implement IpFwHeartBeat and the
pulse() method.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1133GPP TS 29.198-3 version 4.7.0 Release 4

<<Interface>>

IpFwHeartBeat

pulse () : void

Method
pulse()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the IpSvcHeartBeatMgmt.enableSvcHeartbeat() method. If the
pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

8.3.4.5 Interface Class IpSvcHeartBeatMgmt

Inherits from: IpInterface.

This interface allows the initialisation of a heartbeat supervision of the service instance by the framework. If the
IpSvcHeartBeatMgmt interface is implemented by a Service, as a minimum enableHeartBeat() and disableHeartBeat()
shall be implemented.

<<Interface>>

IpSvcHeartBeatMgmt

enableSvcHeartBeat (interval : in TpInt32, fwInterface : in IpFwHeartBeatRef) : void

disableSvcHeartBeat () : void

changeInterval (interval : in TpInt32) : void

Method
enableSvcHeartBeat()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at
the specified interval.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1143GPP TS 29.198-3 version 4.7.0 Release 4

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

fwInterface : in IpFwHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

Raises

TpCommonExceptions,P_INVALID_INTERFACE_TYPE

Method
disableSvcHeartBeat()

Instructs the service instance to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

Method
changeInterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

8.3.4.6 Interface Class IpSvcHeartBeat

Inherits from: IpInterface.

The service heartbeat interface is used by the framework to send the service instance its heartbeat. If a Service is
capable of invoking IpFwHeartBeatMgmt.enableHeartBeat(), it shall implement IpSvcHeartBeat and the pulse()
method.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1153GPP TS 29.198-3 version 4.7.0 Release 4

<<Interface>>

IpSvcHeartBeat

pulse () : void

Method
pulse()

The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pulse at
the end of every interval specified in the parameter to the IpFwHeartBeatMgmt.enableHeartbeat() method. If the
pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

8.3.4.7 Interface Class IpFwLoadManager

Inherits from: IpInterface.

The framework API should allow the load to be distributed across multiple machines and across multiple component
processes, according to a load management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific service. It might specify what action the
framework should take as the congestion level changes. For example, some real-time critical applications will want to
make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be
satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is
related to the QoS level to which the application is subscribed. The framework load management function is represented
by the IpFwLoadManager interface. To handle responses and reports, the service developer must implement the
IpSvcLoadManager interface to provide the callback mechanism.
 If the IpFwLoadManager interface is implemented by a Framework, at least one of the methods shall be
implemented as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification()
and destroyLoadLevelNotification() methods shall be implemented. If suspendNotification() is implemented, then
resumeNotification() shall be implemented also. If a Framework is capable of invoking the
IpSvcLoadManager.querySvcLoadReq() method, then it shall implement querySvcLoadRes() and querySvcLoadErr()
methods in this interface.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1163GPP TS 29.198-3 version 4.7.0 Release 4

<<Interface>>

IpFwLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

queryLoadReq (querySubject : in TpSubjectType, timeInterval : in TpTimeInterval) : void

querySvcLoadRes (loadStatistics : in TpLoadStatisticList) : void

querySvcLoadErr (loadStatisticError : in TpLoadStatisticError) : void

createLoadLevelNotification (notificationSubject : in TpSubjectType) : void

destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void

suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

Method
reportLoad()

The service instance uses this method to report its current load level (0,1, or 2) to the framework: e.g. when the load
level on the service instance has changed. In addition this method shall be called by the service instance in order to
report current load status, when load notifications are first requested, or resumed after suspension.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded).
At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded.

Parameters

loadLevel : in TpLoadLevel

Specifies the service instance's load level.

Raises

TpCommonExceptions

Method
queryLoadReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or
for the application that uses the service instance.

Parameters

querySubject : in TpSubjectType

Specifies the entity (framework or application) for which load statistics records should be reported.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1173GPP TS 29.198-3 version 4.7.0 Release 4

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions

Method
querySvcLoadRes()

The service instance uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the service-supplied load statistics.

Raises

TpCommonExceptions

Method
querySvcLoadErr()

The service instance uses this method to return an error response to the framework that requested the service instance's
load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in
response to an invocation of the querySvcLoadReq method on the IpSvcLoadManager interface.

Parameters

loadStatisticError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.

Raises

TpCommonExceptions

Method
createLoadLevelNotification()

The service instance uses this method to register to receive notifications of load level changes associated with the
framework or with the application that uses the service instance. Upon receipt of this method the framework shall

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1183GPP TS 29.198-3 version 4.7.0 Release 4

inform the service instance of the current framework or application load using the loadLevelNotification method on the
corresponding IpSvcLoadManager.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should be reported.

Raises

TpCommonExceptions

Method
destroyLoadLevelNotification()

The service instance uses this method to unregister for notifications of load level changes associated with the
framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should no longer be reported.

Raises

TpCommonExceptions

Method
suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the
framework or with the application that uses the service instance; e.g. while the service instance handles a temporary
overload condition.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be
suspended.

Raises

TpCommonExceptions

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1193GPP TS 29.198-3 version 4.7.0 Release 4

Method
resumeNotification()

The service instance uses this method to request the framework to resume sending it notifications associated with the
framework or with the application that uses the service instance; e.g. after a period of suspension during which the
service instance handled a temporary overload condition. Upon receipt of this method the framework shall inform the
service instance of the current framework or application load using the loadLevelNotification method on the
corresponding IpSvcLoadManager.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the
framework should be resumed.

Raises

TpCommonExceptions

8.3.4.8 Interface Class IpSvcLoadManager

Inherits from: IpInterface.

The service developer supplies the load manager service interface to handle requests, reports and other responses from
the framework load manager function. The service instance supplies the identity of its callback interface at the time it
obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess
interface.
 If the IpSvcLoadManager interface is implemented by a Service, at least one of the methods shall be implemented as
a minimum requirement. If load level notifications are supported, then loadLevelNotification() shall be implemented. If
a the Service is capable of invoking the IpFwLoadManager.queryLoadReq() method, then it shall implement
queryLoadRes() and queryLoadErr() methods in this interface.

<<Interface>>

IpSvcLoadManager

querySvcLoadReq (timeInterval : in TpTimeInterval) : void

queryLoadRes (loadStatistics : in TpLoadStatisticList) : void

queryLoadErr (loadStatisticsError : in TpLoadStatisticError) : void

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

suspendNotification () : void

resumeNotification () : void

<<new>> createLoadLevelNotification () : void

<<new>> destroyLoadLevelNotification () : void

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1203GPP TS 29.198-3 version 4.7.0 Release 4

Method
querySvcLoadReq()

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.

Raises

TpCommonExceptions

Method
queryLoadRes()

The framework uses this method to send load statistic records back to the service instance that requested the
information; i.e. in response to an invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics

Raises

TpCommonExceptions

Method
queryLoadErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics
information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryLoadReq method on the IpFwLoadManager interface.

Parameters

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Raises

TpCommonExceptions

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1213GPP TS 29.198-3 version 4.7.0 Release 4

Method
loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the application or
framework which has been registered for load level notifications) this method is invoked on the SCF. In addition this
method shall be invoked on the SCF in order to provide a notification of current load status, when load notifications are
first requested, or resumed after suspension.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).

Raises

TpCommonExceptions

Method
suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the
framework handles a temporary overload condition.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

Method
resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the
service instance shall inform the framework of the current load using the reportLoad method on the corresponding
IpFwLoadManager.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1223GPP TS 29.198-3 version 4.7.0 Release 4

Method
<<new>> createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the service
instance. Upon receipt of this method the service instance shall inform the framework of the current load using the
reportLoad method on the corresponding IpFwLoadManager.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

Method
<<new>> destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the service
instance.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

8.3.4.9 Interface Class IpFwOAM

Inherits from: IpInterface.

The OAM interface is used to query the system date and time. The service and the framework can synchronise the date
and time to a certain extent. Accurate time synchronisation is outside the scope of this API. This interface and the
systemDateTimeQuery() method are optional.

<<Interface>>

IpFwOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

Method
systemDateTimeQuery()

This method is used to query the system date and time. The client (service) passes in its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : This is the system date and time of the framework.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1233GPP TS 29.198-3 version 4.7.0 Release 4

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (service). The error code P_INVALID_DATE_TIME_FORMAT is returned if the
format of the parameter is invalid.

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT

8.3.4.10 Interface Class IpSvcOAM

Inherits from: IpInterface.

This interface and the systemDateTimeQuery() method are optional.

<<Interface>>

IpSvcOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

Method
systemDateTimeQuery()

This method is used by the framework to send the system date and time to the service. The service responds with its
own date and time.

Returns <clientDateAndTime> : This is the date and time of the client (service).

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the framework. The error code P_INVALID_DATE_TIME_FORMAT is returned
if the format of the parameter is invalid.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1243GPP TS 29.198-3 version 4.7.0 Release 4

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT

8.3.5 Event Notification Interface Classes

8.3.5.1 Interface Class IpFwEventNotification

Inherits from: IpInterface.

The event notification mechanism is used to notify the service of generic events that have occurred. If Event
Notifications are supported by a Framework, this interface and the createNotification() and destroyNotification()
methods shall be implemented.

<<Interface>>

IpFwEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

Method
createNotification()

This method is used to install generic notifications so that events can be sent to the service.

Returns <assignmentID> : Specifies the ID assigned by the framework for this newly installed event notification.

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the service to define the event required.

Returns

TpAssignmentID

Raises

TpCommonExceptions,P_INVALID_EVENT_TYPE,P_INVALID_CRITERIA

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1253GPP TS 29.198-3 version 4.7.0 Release 4

Method
destroyNotification()

This method is used by the service to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENT_ID.

Raises

TpCommonExceptions,P_INVALID_ASSIGNMENT_ID

8.3.5.2 Interface Class IpSvcEventNotification

Inherits from: IpInterface.

This interface is used by the framework to inform the service of a generic event. The Event Notification Framework
will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface
is obtained. If Event Notifications are supported by a Service, this interface and the reportNotification() and
notificationTerminated() methods shall be implemented.

<<Interface>>

IpSvcEventNotification

reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

Method
reportNotification()

This method notifies the service of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The service
can use the assignment id to associate events with event specific criteria and to act accordingly.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1263GPP TS 29.198-3 version 4.7.0 Release 4

Raises

TpCommonExceptions,P_INVALID_ASSIGNMENT_ID

Method
notificationTerminated()

This method indicates to the service that all generic event notifications have been terminated (for example, due to faults
detected).

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

8.4 State Transition Diagrams
This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also events internal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

8.4.1 Service Registration State Transition Diagrams

8.4.1.1 State Transition Diagrams for IpFwServiceRegistration

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1273GPP TS 29.198-3 version 4.7.0 Release 4

SCF
Registered

registerService

SCF
Announced

describeService

unannounceService announceServiceAvailability

unregisterService

Figure : State Transition Diagram for IpFwServiceRegistration

8.4.1.1.1 SCF Registered State

This is the state entered when a Service Capability Server (SCS) registers its SCF in the Framework, by informing it of
the existence of an SCF characterised by a service type and a set of service properties. As a result the Framework
associates a service ID to this SCF, that will be used to identify it by both sides.

An SCF may be unregistered, the service ID then being no longer associated with the SCF.

8.4.1.1.2 SCF Announced State

This is the state entered when the existence of the SCF has been announced, thus making it available for discovery by
applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it is no
longer available for discovery.

8.4.2 Service Instance Lifecycle Manager State Transition Diagrams

There are no State Transition Diagrams defined for Service Instance Lifecycle Manager

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1283GPP TS 29.198-3 version 4.7.0 Release 4

8.4.3 Service Discovery State Transition Diagrams

There are no State Transition Diagrams defined for Service Discovery

8.4.4 Integrity Management State Transition Diagrams

8.4.4.1 State Transition Diagrams for IpFwLoadManager

Idle

Notification
Suspended

Active

All States

reportLoad
queryAppLoadRes[load statistics requested by LoadM

queryAppLoadErr[load statistics requested by Load

destroyLoadLevelNotification

queryLoadReq

reportLoad

queryAppLoadRes[load statistics requested by LoadManag
queryAppLoadErr[load statistics requested by LoadMana

createLoadLevelNotification l̂oadLevelNotification

destroyLoadLevelNotification

suspendNotification
[all notifications suspended]resumeNotification

l̂oadLevelNotification

queryLoadReq

"load change" l̂oadLevelNotification

pAccess.obtainInterface
IpAccess.obtainInterfaceWithCallback

IpAccess.endAccess

Figure : State Transition Diagram for IpFwLoadManager

8.4.4.1.1 Idle State

In this state the service has obtained an interface reference of the LoadManager from the IpAccess interface.

8.4.4.1.2 Notification Suspended State

Due to e.g. a temporary load condition, the service has requested the LoadManager to suspend sending the load level
notification information.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1293GPP TS 29.198-3 version 4.7.0 Release 4

8.4.4.1.3 Active State

In this state the service has indicated its interest in notifications by performing a createLoadLevelNotification()
invocation on the IpFwLoadManager. The load manager can now request the service to supply load statistics
information (by invoking querySvcLoadReq()). Furthermore the LoadManager can request the service to control its
load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the service side of
interface). In case the service detects a change in load level, it reports this to the LoadManager by calling the method
reportLoad().

8.4.5 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification

9 Service Properties

9.1 Service Property Types
The service type defines which properties the supplier of an SCF supplier shall provide when he registers an SCF.

At Service Registration the properties of a type shall be interpreted as the set of values that can be supported by the
service. If a service type has a certain property (e.g. "CAN_DO_SOMETHING"), a service registers with a property value
of {"true", "false"}. This means that the SCS is able to support Service instances where this property is used or
allowed and instances where this property is not used or allowed. This clarifies why sets of values shall be used for the
property values instead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agreement.
The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thus lead to a
sub-set of the service property values. When the correct SCF is instantiated during the discovery and selection
procedure (see Note), the Service Properties shall thus be interpreted as the requested property values.

NOTE: This is achieved through the createServiceManager() operation in the Service Instance Lifecycle Manager
interface.

All property values are represented by an array of strings. The following table shows all supported property types.

Property type name Description Example value (array of
strings)

Interpretation of example
value

BOOLEAN_SET set of Booleans {"FALSE"} The set of Booleans consisting
of the Boolean "false".

INTEGER_SET set of integers {"1", "2", "5", "7"} The set of integers consisting of
the integers 1, 2, 5 and 7.

STRING_SET set of strings {"Sophia", "Rijen"} The set of strings consisting of
the string “Sophia" and the
string "Rijen"

ADDRESSRANGE_SET set of address ranges {"123??*", "*.ericsson.se"} The set of address ranges
consisting of ranges 123??* and
*.ericsson.se.

INTEGER_INTERVAL interval of integers {"5", "100"} The integers that are between
or equal to 5 and 100.

STRING_INTERVAL interval of strings {"Rijen", "Sophia"} The strings that are between or
equal to the strings "Rijen" and
"Sophia", in lexicographical
order.

INTEGER_INTEGER_MAP map from integers to
integers

{"1", "10", "2", "20", "3",
"30"}

The map that maps 1 to 10, 2 to
20 and 3 to 30.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1303GPP TS 29.198-3 version 4.7.0 Release 4

The bounds of the string interval and the integer interval types may hold the reserved value "UNBOUNDED". If the left
bound of the interval holds the value "UNBOUNDED", the lower bound of the interval is the smallest value supported
by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper bound of the interval is the
largest value supported by the type.

9.2 General Service Properties
Each service instance has the following general properties:

• Service Name

• Service Version

• Service Instance ID

• Service Instance Description

• Product Name

• Product Version

• Supported Interfaces

• Operation Set

9.2.1 Service Name

This property contains the name of the service, e.g. “UserLocation”, “UserLocationCamel”, “UserLocationEmergency”
or “UserStatus”.

9.2.2 Service Version

This property contains the version of the APIs, to which the service is compliant, e.g. “2.1".

9.2.3 Service Instance ID

This property uniquely identifies a specific instance of the service. The Framework generates this property.

9.2.4 Service Instance Description

This property contains a textual description of the service.

9.2.5 Product Name

This property contains the name of the product that provides the service, e.g. “Find It”, “Locate.com”.

9.2.6 Product Version

This property contains the version of the product that provides the service, e.g. “3.1.11”.

9.2.7 Supported Interfaces

This property contains a list of strings with interface names that the service supports, e.g. “IpUserLocation”,
“IpUserStatus”.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1313GPP TS 29.198-3 version 4.7.0 Release 4

9.2.8 Operation Set

Property Type Description
P_OPERATION_SET STRING_SET Specifies set of the operations the SCS supports.

The notation to be used is :
{“Interface1.operation1”,”Interface1.operation2”,
“Interface2.operation1”}, e.g.:
{“IpCall.createCall”,”IpCall.routeReq”}.

10 Data Definitions
This clause provides the Framework specific data definitions necessary to support the OSA interface specification.

The general format of a data definition specification is the following:

− Data type, that shows the name of the data type;

− Description, that describes the data type;

− Tabular specification, that specifies the data types and values of the data type;

− Example, if relevant, shown to illustrate the data type.

All data types referenced but not defined in this clause are common data definitions which may be found in
3GPP TS 29.198-2.

10.1 Common Framework Data Definitions

10.1.1 TpClientAppID

This is an identifier for the client application. It is used to identify the client to the Framework. This data type is
identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this
string shall be unique for each OSA API implementation (or unique for a network operator’s domain). This unique
identifier shall be negotiated with the OSA operator and the application shall use it to identify itself.

10.1.2 TpClientAppIDList

This data type defines a Numbered Set of Data Elements of type TpClientAppID.

10.1.3 TpDomainID

Defines the Tagged Choice of Data Elements that specify either the Framework or the type of entity
attempting to access the Framework.

 Tag Element Type
 TpDomainIDType

Tag Element Value Choice Element Type Choice Element Name
P_FW TpFwID FwID

P_CLIENT_APPLICATION TpClientAppID ClientAppID

P_ENT_OP TpEntOpID EntOpID

P_SERVICE_INSTANCE TpServiceInstanceID ServiceID

P_SERVICE_SUPPLIER TpServiceSupplierID ServiceSupplierID

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1323GPP TS 29.198-3 version 4.7.0 Release 4

10.1.4 TpDomainIDType

Defines either the Framework or the type of entity attempting to access the Framework.

Name Value Description
P_FW 0 The Framework

P_CLIENT_APPLICATION 1 A client application

P_ENT_OP 2 An enterprise operator

P_SERVICE_INSTANCE 3 A service instance

P_SERVICE_SUPPLIER 4 A service supplier

10.1.5 TpEntOpID

This data type is identical to TpString and is defined as a string of characters that identifies an enterprise operator.
In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service
Capability Feature (SCF).

10.1.6 TpPropertyName

This data type is identical to TpString. It is the name of a generic “property”.

10.1.7 TpPropertyValue

This data type is identical to TpString. It is the value (or the list of values) associated with a generic “property”.

10.1.8 TpProperty

This data type is a Sequence of Data Elements which describes a generic “property”. It is a structured data
type consisting of the following {name,value} pair:

Sequence Element
Name

Sequence Element
Type

PropertyName TpPropertyName
PropertyValue TpPropertyValue

10.1.9 TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

10.1.10 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOpID.

10.1.11 TpFwID

This data type is identical to TpString and identifies the Framework to a client application (or Service Capability
Feature)

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1333GPP TS 29.198-3 version 4.7.0 Release 4

10.1.12 TpService

This data type is a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists
of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServiceID TpServiceID

ServiceDescription TpServiceDescription This field contains the description of the service

10.1.13 TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

10.1.14 TpServiceDescription

This data type is a Sequence of Data Elements which describes a registered SCF. It is a structured data type which
consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServiceTypeName TpServiceTypeName

ServicePropertyList TpServicePropertyList

10.1.15 TpServiceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies a registered SCF
interface. The string is automatically generated by the Framework.

10.1.16 TpServiceIDList

This data type defines a Numbered Set of Data Elements of type TpServiceID.

10.1.17 TpServiceInstanceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a
registered SCF interface. The string is automatically generated by the Framework

10.1.18 TpServiceSpecString

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the name of an
SCF specialization interface. Other network operator specific capabilities may also be used, but should be preceded by
the string "SP_". The following values are defined.

Character String Value Description
NULL An empty (NULL) string indicates no SCF specialization

P_CALL The Call specialization of the of the User Interaction SCF

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1343GPP TS 29.198-3 version 4.7.0 Release 4

10.1.19 TpServiceTypeProperty

This data type is a Sequence of Data Elements which describes a service property associated with a service
type. It defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer.
It is similar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the
service property’s name and mode, but also defines the list of values assigned to it.

Sequence Element
Name

Sequence Element
Type

Documentation

ServicePropertyName TpServicePropertyName

ServiceTypePropertyMode TpServiceTypePropertyMode

ServicePropertyTypeName TpServicePropertyTypeName

10.1.20 TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

10.1.21 TpServiceTypePropertyMode

This type defines SCF property modes.

Name Value Documentation
NORMAL 0 The value of the corresponding SCF property type may optionally be provided

MANDATORY 1 The value of the corresponding SCF property type shall be provided at service registration time

READONLY 2 The value of the corresponding SCF property type is optional, but once given a value it can not be
modified/restricted by a service level agreement

MANDATORY_READONLY 3 The value of the corresponding SCF property type shall be provided but can not subsequently be
modified/restricted by a service level agreement.

10.1.22 TpServicePropertyTypeName

This data type is identical to TpString and describes a valid SCF property name. The valid SCF property names are
listed in the SCF data definition.

10.1.23 TpServicePropertyName

This data type is identical to TpString. It defines a valid SCF property name.

10.1.24 TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyName.

10.1.25 TpServicePropertyValue

This data type is identical to TpString and describes a valid value of a SCF property.

10.1.26 TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1353GPP TS 29.198-3 version 4.7.0 Release 4

10.1.27 TpServiceProperty

This data type is a Sequence of Data Elements which describes an “SCF property”. It is a structured data type which
consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServicePropertyName TpServicePropertyName

ServicePropertyValueList TpServicePropertyValueList

10.1.28 TpServicePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceProperty.

10.1.29 TpServiceSupplierID

This is an identifier for a service supplier. It is used to identify the supplier to the Framework. This data type is
identical to TpString.

10.1.30 TpServiceTypeDescription

This data type is a Sequence of Data Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServiceTypePropertyList TpServiceTypePropertyList a sequence of property name and property mode tuples associated with the
SCF type

ServiceTypeNameList TpServiceTypeNameList the names of the super types of the associated SCF type

AvailableOrUnavailable TpBoolean an indication whether the SCF type is available (true) or unavailable (false)

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1363GPP TS 29.198-3 version 4.7.0 Release 4

10.1.31 TpServiceTypeName

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the type of an
SCF interface. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_". The following values are defined.

Character String Value Description
NULL An empty (NULL) string indicates no SCF name

P_GENERIC_CALL_CONTROL The name of the Generic Call Control SCF

P_MULTI_PARTY_CALL_CONTROL The name of the MultiParty Call Control SCF

P_MULTI_MEDIA_CALL_CONTROL The name of the MultiMedia Call Control SCF

P_CONFERENCE_CALL_CONTROL The name of the Conference Call Control SCF

P_USER_INTERACTION The name of the User Interaction SCFs

P_TERMINAL_CAPABILITIES The name of the Terminal Capabilities SCF

P_USER_LOCATION The name of the User Location SCF

P_USER_LOCATION_CAMEL The name of the Network User Location SCF

P_USER_LOCATION_EMERGENCY The name of the User Location Emergency SCF

P_USER_STATUS The name of the User Status SCF

P_DATA_SESSION_CONTROL The name of the Data Session Control SCF

P_GENERIC_MESSAGING The name of the Generic Messaging SCF

P_CONNECTIVITY_MANAGER The name of the Connectivity Manager SCF

P_CHARGING The name of the Charging SCF

P_ACCOUNT_MANAGEMENT The name of the Account Management SCF

P_POLICY_MANAGEMENT The name of the Policy Management SCF

P_PAM_PRESENCE_AND_AVAILABILITY The name of PAM presentity SCF

P_PAM_EVENT_MANAGEMENT The name of PAM watcher SCF

P_PAM_PROVISIONING The name of PAM provisioning SCF

10.1.32 TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

10.1.33 TpSubjectType

Defines the subject of a query/notification request/result.

Name Value Description
P_SUBJECT_UNDEFINED 0 The subject is neither the framework nor the

client application

P_SUBJECT_CLIENT_APP 1 The subject is the client application

P_SUBJECT_FW 2 The subject is the framework

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1373GPP TS 29.198-3 version 4.7.0 Release 4

10.2 Event Notification Data Definitions

10.2.1 TpFwEventName

Defines the name of event being notified.

Name Value Description
P_EVENT_FW_NAME_UNDEFINED 0 Undefined

P_EVENT_FW_SERVICE_AVAILABLE 1 Notification of SCS(s) available

P_EVENT_FW_SERVICE_UNAVAILABLE 2 Notification of SCS(s) becoming unavailable

10.2.2 TpFwEventCriteria

Defines the Tagged Choice of Data Elements that specify the criteria for an event notification to be
generated.

 Tag Element Type
 TpFwEventName

Tag Element Value Choice Element Type Choice Element Name
P_EVENT_FW_NAME_UNDEFINED TpString EventNameUndefined

P_EVENT_FW_ SERVICE_AVAILABLE TpServiceTypeNameList ServiceTypeNameList

P_EVENT_FW_SERVICE_UNAVAILABLE TpServiceTypeNameList UnavailableServiceTypeNameList

10.2.3 TpFwEventInfo

Defines the Tagged Choice of Data Elements that specify the information returned to the application in an
event notification.

 Tag Element Type
 TpFwEventName

Tag Element Value Choice Element Type Choice Element Name
P_EVENT_FW_NAME_UNDEFINED TpString EventNameUndefined

P_EVENT_FW_ SERVICE_AVAILABLE TpServiceIDList ServiceIDList

P_EVENT_FW_SERVICE_UNAVAILABLE TpServiceIDList UnavailableServiceIDList

10.3 Trust and Security Management Data Definitions

10.3.1 TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application.
If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, but should be preceded by the string "SP_". The following value is defined:

String Value Description
P_OSA_ACCESS Access using the OSA Access Interfaces: IpAccess and IpClientAccess

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1383GPP TS 29.198-3 version 4.7.0 Release 4

10.3.2 TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default
authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the
string “SP_”. The following values are defined:

String Value Description
P_OSA_AUTHENTICATION Authenticate using the OSA API Level Authentication Interfaces: IpAPILevelAuthentication and

IpClientAPILevelAuthentication
P_AUTHENTICATION Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

10.3.3 TpEncryptionCapability

This data type is identical to a TpString, and is defined as a string of characters that identify the encryption capabilities
that could be supported by the framework. Other Network operator specific capabilities may also be used, but should be
preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The
following values are defined.

String Value Description
NULL An empty (NULL) string indicates no client capabilities.
P_DES_56 A simple transfer of secret information that is shared between the client application and the Framework with protection

against interception on the link provided by the DES algorithm with a 56-bit shared secret key.
P_DES_128 A simple transfer of secret information that is shared between the client entity and the Framework with protection against

interception on the link provided by the DES algorithm with a 128-bit shared secret key.
P_RSA_512 A public-key cryptography system providing authentication without prior exchange of secrets using 512-bit keys.
P_RSA_1024 A public-key cryptography system providing authentication without prior exchange of secrets using 1024-bit keys.

10.3.4 TpEncryptionCapabilityList

This data type is identical to a TpString. It is a string of multiple TpEncryptionCapability concatenated using a comma
(,)as the separation character.

10.3.5 TpEndAccessProperties

This data type is of type TpPropertyList. It identifies the actions that the Framework should perform when an
application or service capability feature entity ends its access session (e.g. existing service capability or application
sessions may be stopped, or left running).

10.3.6 TpAuthDomain

This is Sequence of Data Elements containing all the data necessary to identify a domain: the domain
identifier, and a reference to the authentication interface of the domain

Sequence Element
Name

Sequence Element
Type

Description

DomainID TpDomainID Identifies the domain for authentication. This identifier is assigned to the domain during
the initial contractual agreements, and is valid during the lifetime of the contract.

AuthInterface IpInterfaceRef Identifies the authentication interface of the specific entity. This data element has the same
lifetime as the domain authentication process, i.e. in principle a new interface reference

can be provided each time a domain intends to access another.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1393GPP TS 29.198-3 version 4.7.0 Release 4

10.3.7 TpInterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the
Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used,
but should be preceded by the string "SP_". The following values are defined.

Character String Value Description
P_DISCOVERY The name for the Discovery interface.
P_EVENT_NOTIFICATION The name for the Event Notification interface.
P_OAM The name for the OA&M interface.
P_LOAD_MANAGER The name for the Load Manager interface.
P_FAULT_MANAGER The name for the Fault Manager interface.
P_HEARTBEAT_MANAGEMENT The name for the Heartbeat Management interface.
P_SERVICE_AGREEMENT_MANAGEMENT The name of the Service Agreement Management interface.
P_REGISTRATION The name for the Service Registration interface.
P_ENT_OP_ACCOUNT_MANAGEMENT The name for the Service Subscription: Enterprise Operator Account Management

interface.
P_ENT_OP_ACCOUNT_INFO_QUERY The name for the Service Subscription: Enterprise Operator Account Information Query

interface.
P_SVC_CONTRACT_MANAGEMENT The name for the Service Subscription: Service Contract Management interface.
P_SVC_CONTRACT_INFO_QUERY The name for the Service Subscription: Service Contract Information Query interface.
P_CLIENT_APP_MANAGEMENT The name for the Service Subscription: Client Application Management interface.
P_CLIENT_APP_INFO_QUERY The name for the Service Subscription: Client Application Information Query interface.
P_SVC_PROFILE_MANAGEMENT The name for the Service Subscription: Service Profile Management interface.
P_SVC_PROFILE_INFO_QUERY The name for the Service Subscription: Service Profile Information Query interface.

10.3.8 TpInterfaceNameList

This data type defines a Numbered Set of Data Elements of type TpInterfaceName.

10.3.9 TpServiceToken

This data type is identical to a TpString, and identifies a selected SCF. This is a free format text token returned by the
Framework, which can be signed as part of a service agreement. This will contain Network operator specific
information relating to the service level agreement. The serviceToken has a limited lifetime, which is the same as the
lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any
method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will
automatically expire if the client or Framework invokes the endAccess method on the other's corresponding access
interface.

10.3.10 TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a
reference to the SCF manager interface of the SCF.

Sequence Element
Name

Sequence Element
Type

DigitalSignature TpOctetSet

ServiceMgrInterface IpServiceRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client
application.

The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1403GPP TS 29.198-3 version 4.7.0 Release 4

10.3.11 TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that
shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SP_". The following values are defined.

String Value Description
NULL An empty (NULL) string indicates no signing algorithm is required
P_MD5_RSA_512 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input.

This is then encrypted with the private key under the RSA public-key cryptography system using a 512-bit key.
P_MD5_RSA_1024 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input.

This is then encrypted with the private key under the RSA public- key cryptography system using a 1024-bit key

10.4 Integrity Management Data Definitions

10.4.1 TpActivityTestRes

This type is identical to TpString and is an implementation specific result. The values in this data type are “Available”
or “Unavailable”.

10.4.2 TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

Sequence Element
Name

Sequence Element
Type

Period TpTimeInterval

FaultStatsSet TpFaultStatsSet

10.4.3 TpFaultStats

This defines the sequence of data elements which provide the statistics on a per fault type basis.

Sequence Element
Name

Sequence Element
Type

Description

Fault TpInterfaceFault

Occurrences TpInt32 The number of separate instances of this fault

MaxDuration TpInt32 The number of seconds duration of the longest fault

TotalDuration TpInt32 The cumulative duration (all occurrences)

NumberOfClientsAffected TpInt32 The number of clients informed of the fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDuration and TotalDuration are the
number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is
the number of clients informed of the fault by the Framework.

10.4.4 TpFaultStatisticsError

Defines the error code associated with a failed attempt to retrieve any fault
statistics information.

Name Value Description
P_FAULT_INFO_ERROR_UNDEFINED 0 Undefined error

P_FAULT_INFO_UNAVAILABLE 1 Fault statistics unavailable

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1413GPP TS 29.198-3 version 4.7.0 Release 4

10.4.5 TpFaultStatsSet

This data type defines a Numbered Set of Data Elements of type TpFaultStats

10.4.6 TpActivityTestID

This data type is identical to a TpInt32, and is used as a token to match activity test requests with their results..

10.4.7 TpInterfaceFault

Defines the cause of the interface fault detected.

Name Value Description
INTERFACE_FAULT_UNDEFINED 0 Undefined

INTERFACE_FAULT_LOCAL_FAILURE 1 A fault in the local API software or hardware has been detected

INTERFACE_FAULT_GATEWAY_FAILURE 2 A fault in the gateway API software or hardware has been detected

INTERFACE_FAULT_PROTOCOL_ERROR 3 An error in the protocol used on the client-gateway link has been detected

10.4.8 TpSvcUnavailReason

Defines the reason why a SCF is unavailable.

Name Value Description
SERVICE_UNAVAILABLE_UNDEFINED 0 Undefined

SERVICE_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed

SERVICE_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has failed

SERVICE_UNAVAILABLE_OVERLOADED 3 The SCF is fully overloaded

SERVICE_UNAVAILABLE_CLOSED 4 The SCF has closed itself (e.g. to protect from fraud or malicious attack)

10.4.9 TpFwUnavailReason

Defines the reason why the Framework is unavailable.

Name Value Description
FW_UNAVAILABLE_UNDEFINED 0 Undefined

FW_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed

FW_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has failed

FW_UNAVAILABLE_OVERLOADED 3 The Framework is fully overloaded

FW_UNAVAILABLE_CLOSED 4 The Framework has closed itself (e.g. to protect from fraud or malicious attack)

FW_UNAVAILABLE_PROTOCOL_FAILURE 5 The protocol used on the client-gateway link has failed

10.4.10 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

Name Value Description
LOAD_LEVEL_NORMAL 0 Normal load

LOAD_LEVEL_OVERLOAD 1 Overload

LOAD_LEVEL_SEVERE_OVERLOAD 2 Severe Overload

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1423GPP TS 29.198-3 version 4.7.0 Release 4

10.4.11 TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold value is
application and SCF dependent, so is their relationship with load level.

Sequence Element
Name

Sequence Element
Type

LoadThreshold TpFloat

10.4.12 TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

Sequence Element
Name

Sequence Element
Type

LoadLevel TpLoadLevel

LoadThreshold TpLoadThreshold

10.4.13 TpLoadPolicy

Defines the load balancing policy.

Sequence Element Name Sequence Element Type
LoadPolicy TpString

10.4.14 TpLoadStatistic

Defines the Sequence of Data Elements that represents a load statistic record for a specific entity (i.e.
Framework, service or application) at a specific date and time.

Sequence Element Name Sequence Element Type
LoadStatisticEntityID TpLoadStatisticEntityID

TimeStamp TpDateAndTime

LoadStatisticInfo TpLoadStatisticInfo

10.4.15 TpLoadStatisticList

Defines a Numbered List of Data Elements of type TpLoadStatistic.

10.4.16 TpLoadStatisticData

Defines the Sequence of Data Elements that represents load statistic information

Sequence Element Name Sequence Element Type
LoadValue (see Note) TpFloat

LoadLevel TpLoadLevel

NOTE: LoadValue is expressed as a percentage.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1433GPP TS 29.198-3 version 4.7.0 Release 4

10.4.17 TpLoadStatisticEntityID

Defines the Tagged Choice of Data Elements that specify the type of entity (i.e. service, application or
Framework) providing load statistics.

 Tag Element Type
 TpLoadStatisticEntityType

Tag Element Value Choice Element Type Choice Element Name
P_LOAD_STATISTICS_FW_TYPE TpFwID FrameworkID

P_LOAD_STATISTICS_SVC_TYPE TpServiceID ServiceID

P_LOAD_STATISTICS_APP_TYPE TpClientAppID ClientAppID

10.4.18 TpLoadStatisticEntityType

Defines the type of entity (i.e. service, application or Framework) supplying load statistics.

Name Value Description
P_LOAD_STATISTICS_FW_TYPE 0 Framework-type load statistics

P_LOAD_STATISTICS_SVC_TYPE 1 Service-type load statistics

P_LOAD_STATISTICS_APP_TYPE 2 Application-type load statistics

10.4.19 TpLoadStatisticInfo

Defines the Tagged Choice of Data Elements that specify the type of load statistic information (i.e. valid or
invalid).

 Tag Element Type
 TpLoadStatisticInfoType

Tag Element Value Choice Element Type Choice Element Name
P_LOAD_STATISTICS_VALID TpLoadStatisticData LoadStatisticData

P_LOAD_STATISTICS_INVALID TpLoadStatisticError LoadStatisticError

10.4.20 TpLoadStatisticInfoType

Defines the type of load statistic information (i.e. valid or invalid).

Name Value Description
P_LOAD_STATISTICS_VALID 0 Valid load statistics

P_LOAD_STATISTICS_INVALID 1 Invalid load statistics

10.4.21 TpLoadStatisticError

Defines the error code associated with a failed attempt to retrieve any load statistics information.

Name Value Description
P_LOAD_INFO_ERROR_UNDEFINED 0 Undefined error

P_LOAD_INFO_UNAVAILABLE 1 Load statistics unavailable

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1443GPP TS 29.198-3 version 4.7.0 Release 4

10.5 Service Subscription Data Definitions

10.5.1 TpPropertyName

This data type is identical to TpString. It is the name of a generic “property”.

10.5.2 TpPropertyValue

This data type is identical to TpString. It is the value (or the list of values) associated with a generic “property”.

10.5.3 TpProperty

This data type is a Sequence of Data Elements which describes a generic “property”. It is a structured data
type consisting of the following {name,value} pair:

Sequence Element
Name

Sequence Element
Type

PropertyName TpPropertyName

PropertyValue TpPropertyValue

10.5.4 TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

10.5.5 TpEntOpProperties

This data type is of type TpPropertyList. It identifies the list of properties associated with an enterprise operator: e.g.
name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

10.5.6 TpEntOp

This data type is a Sequence of Data Elements which describes an enterprise operator. It is a structured data
type, consisting of a unique “enterprise operator ID” and a list of “enterprise operator properties”, as follows:

Sequence Element
Name

Sequence Element
Type

EntOpID TpEntOpID

EntOpProperties TpEntOpProperties

10.5.7 TpServiceContractID

This data type is identical to TpString. It uniquely identifies the contract, between an enterprise operator and the
Framework, for the use of an OSAservice by the enterprise.

10.5.8 TpServiceContractIDList

This data type defines a Numbered List of Data Elements of type TpServiceContractID.

10.5.9 TpPersonName

This data type is identical to TpString. It is the name of a generic “person”.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1453GPP TS 29.198-3 version 4.7.0 Release 4

10.5.10 TpPostalAddress

This data type is identical to TpString. It is the mailing address of a generic “person”.

10.5.11 TpTelephoneNumber

This data type is identical to TpString. It is the telephone number of a generic “person”.

10.5.12 TpEmail

This data type is identical to TpString. It is the email address of a generic “person”.

10.5.13 TpHomePage

This data type is identical to TpString. It is the web address of a generic “person”.

10.5.14 TpPersonProperties

This data type is of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that
can be associated with a generic “person”.

10.5.15 TpPerson

This data type is a Sequence of Data Elements which describes a generic “person”: e.g. a billing contact, a
service requestor. It is a structured data type which consists of:

Sequence Element
Name

Sequence Element
Type

PersonName TpPersonName

PostalAddress TpPostalAddress

TelephoneNumber TpTelephoneNumber

Email TpEmail

HomePage TpHomePage

PersonProperties TpPersonProperties

10.5.16 TpServiceStartDate

This is of type TpDateAndTime. It identifies the contractual start date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

10.5.17 TpServiceEndDate

This is of type TpDateAndTime. It identifies the contractual end date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

10.5.18 TpServiceRequestor

This is of type TpPerson. It identifies the enterprise person requesting use of an OSA service: e.g. the enterprise
operator.

10.5.19 TpBillingContact

This is of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise’s
use of an OSA service.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1463GPP TS 29.198-3 version 4.7.0 Release 4

10.5.20 TpServiceSubscriptionProperties

This is of type TpServicePropertyList. It specifies a subset of all available service properties and service property
values that apply to an enterprise’s use of an OSA service.

10.5.21 TpServiceContract

This data type is a Sequence of Data Elements which represents a service contract. It is a structured data type
which consists of:

Sequence Element
Name

Sequence Element
Type

ServiceContractID TpServiceContractID

ServiceContractDescription TpServiceContractDescription

10.5.22 TpServiceContractDescription

This data type is a Sequence of Data Elements which describes a service contract. This contract should
conform to a previously negotiated high-level agreement (regarding OSA services, their usage and the price, etc.), if
any, between the enterprise operator and the framework operator. It is a structured data type which consists of:

Sequence Element
Name

Sequence Element
Type

ServiceRequestor TpServiceRequestor

BillingContact TpBillingContact

ServiceStartDate TpServiceStartDate

ServiceEndDate TpServiceEndDate

ServiceTypeName TpServiceTypeName

ServiceID TpServiceID

ServiceSubscriptionProperties TpServiceSubscriptionProperties

10.5.23 TpClientAppProperties

This is of type TpPropertyList. The client application properties is a list of {name,value} pairs, for bilateral agreement
between the enterprise operator and the Framework.

10.5.24 TpClientAppDescription

This data type is a Sequence of Data Elements which describes an enterprise client application. It is a
structured data type, consisting of a unique “client application ID”, password and a list of “client application properties:

Sequence Element
Name

Sequence Element
Type

ClientAppID TpClientAppID

ClientAppProperties TpClientAppProperties

10.5.25 TpSagID

This data type is identical to TpString. It uniquely identifies a Subscription Assignment Group (SAG) of client
applications within an enterprise.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1473GPP TS 29.198-3 version 4.7.0 Release 4

10.5.26 TpSagIDList

This data type defines a Numbered List of Data Elements of type TpSagID.

10.5.27 TpSagDescription

This data type is identical to TpString. It describes a SAG: e.g. a list of identifiers of the constituent client
applications, the purpose of the “grouping”.

10.5.28 TpSag

This data type is a Sequence of Data Elements which describes a Subscription Assignment Group (SAG) of
client applications within an enterprise. It is a structured data type consisting of a unique SAG ID and a description:

Sequence Element
Name

Sequence Element
Type

SagID TpSagID

SagDescription TpSagDescription

10.5.29 TpServiceProfileID

This data type is identical to TpString. It uniquely identifies the service profile, which further constrains how an
enterprise SAG uses an OSA service.

10.5.30 TpServiceProfileIDList

This data type defines a Numbered List of Data Elements of type TpServiceProfileID.

10.5.31 TpServiceProfile

This data type is a Sequence of Data Elements which represents a Service Profile. It is a structured data type
which consists of:

Sequence Element
Name

Sequence Element
Type

ServiceProfileID TpServiceProfileID

ServiceProfileDescription TpServiceProfileDescription

10.5.32 TpServiceProfileDescription

This data type is a Sequence of Data Elements which describes a Service Profile. A service contract contains
one or more Service Profiles, one for each SAG in the enterprise operator domain. A service profile is a restriction of
the service contract in order to provide restricted service features to a SAG. It is a structured data type which consists
of:

Sequence Element
Name

Sequence Element
Type

ServiceContractID TpServiceContractID

ServiceStartDate TpServiceStartDate

ServiceEndDate TpServiceEndDate

ServiceTypeName TpServiceTypeName

ServiceSubscriptionProperties TpServiceSubscriptionProperties

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1483GPP TS 29.198-3 version 4.7.0 Release 4

11 Exception Classes
The following are the list of exception classes which are used in this interface of the API.

Name Description
P_ACCESS_DENIED The client is not currently authenticated with the framework

P_APPLICATION_NOT_ACTIVATED An application is unauthorised to access information and request
services with regards to users that have deactivated that particular

application.

P_DUPLICATE_PROPERTY_NAME A duplicate property name has been received

P_ILLEGAL_SERVICE_ID Illegal Service ID

P_ILLEGAL_SERVICE_TYPE Illegal Service Type

P_INVALID_ACCESS_TYPE The framework does not support the type of access interface requested
by the client.

P_INVALID_ACTIVITY_TEST_ID ID does not correspond to a valid activity test request

P_INVALID_AGREEMENT_TEXT Invalid agreement text

P_INVALID_ENCRYPTION_CAPABILITY Invalid encryption capability

P_INVALID_AUTH_TYPE Invalid type of authentication mechanism

P_INVALID_CLIENT_APP_ID Invalid Client Application ID

P_INVALID_DOMAIN_ID Invalid client ID

P_INVALID_ENT_OP_ID Invalid Enterprise Operator ID

P_INVALID_PROPERTY The framework does not recognise the property supplied by the client

P_INVALID_SAG_ID Invalid Subscription Assignment Group ID

P_INVALID_SERVICE_CONTRACT_ID Invalid Service Contract ID

P_INVALID_SERVICE_ID Invalid service ID

P_INVALID_SERVICE_PROFILE_ID Invalid service profile ID

P_INVALID_SERVICE_TOKEN The service token has not been issued, or it has expired.

P_INVALID_SERVICE_TYPE Invalid Service Type

P_INVALID_SIGNATURE Invalid digital signature

P_INVALID_SIGNING_ALGORITHM Invalid signing algorithm

P_MISSING_MANDATORY_PROPERTY Mandatory Property Missing

P_NO_ACCEPTABLE_ENCRYPTION_CAPABILIT
Y

An encryption mechanism, which is acceptable to the framework, is
not supported by the client

P_PROPERTY_TYPE_MISMATCH Property Type Mismatch

P_SERVICE_ACCESS_DENIED The client application is not allowed to access this service.

P_SERVICE_NOT_ENABLED The service ID does not correspond to a service that has been enabled

P_SERVICE_TYPE_UNAVAILABLE The service type is not available according to the Framework.

P_UNKNOWN_SERVICE_ID Unknown Service ID

P_UNKNOWN_SERVICE_TYPE Unknown Service Type

Each exception class contains the following structure:

Structure Element Name Structure Element Type Structure Element Description
ExtraInformation TpString Carries extra information to help identify the source of the

exception, e.g. a parameter name

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1493GPP TS 29.198-3 version 4.7.0 Release 4

Annex A (normative):
OMG IDL Description of Framework
The OMG IDL representation of this interface specification is contained in text files (fw_data.idl, fw_if_access.idl,
fw_if_app.idl, fw_if_service.idl contained in archive 2919803IDL.ZIP) which accompany the present document.

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1503GPP TS 29.198-3 version 4.7.0 Release 4

Annex B (informative):
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
Mar 2001 CN_11 NP-010134 047 -- CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0 4.0.0
Jun 2001 CN_12 NP-010330 001 -- Corrections to OSA API Rel4 4.0.0 4.0.1
Sep 2001 CN_13 NP-010466 002 -- Changing references to JAIN 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 003 -- Update to the definitions of method svcUnavailableInd 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 004 -- Only one subject per method invocation for fault and load

management
4.1.0 4.2.0

Sep 2001 CN_13 NP-010466 005 -- Fault management is missing some *Err methods 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 006 -- Method balance on Fault management interfaces 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 007 -- Change "TpString" into "TpOctetSets" in authentication and access 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 008 -- Replacement of register/unregisterLoadController 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 009 -- Redundant Framework Heartbeat Mechanism 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 010 -- Add a releaseInterface() method to IpAccess 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 011 -- Removal of serviceID from queryAppLoadReq() 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 012 -- Addition of listInterfaces() method 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 013 -- Introduction and use of new Service Instance ID 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 014 -- P_UNAUTHORISED_PARAMETER_VALUE thrown if non-accessible

serviceID is provided
4.1.0 4.2.0

Sep 2001 CN_13 NP-010466 015 -- Introduction of Service Instance Lifecycle Management 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 016 -- Add support for multi-vendorship 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 017 -- Removal of P_SERVICE_ACCESS_TYPE 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 018 -- Confusing meaning of prescribedMethod 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 019 -- A client should only have one instance of a given service 4.1.0 4.2.0
Sep 2001 CN_13 NP-010466 020 -- Some methods on the IpApp interfaces should throw exceptions 4.1.0 4.2.0
Dec 2001 CN_14 NP-010596 021 -- Replace Out Parameters with Return Types 4.2.0 4.3.0
Dec 2001 CN_14 NP-010596 022 -- Correctionto Framework (FW) 4.2.0 4.3.0
Mar 2002 CN_15 NP-020105 023 -- Add P_INVALID_INTERFACE_TYPE exception to

IpService.setCallback() and IpService.setCallbackWithSessionID()
4.3.0 4.4.0

Mar 2002 CN_15 NP-020105 024 -- Replace erroneous mention of P_OSA_ACCESS by the correct value
P_OSA_AUTHENTICATION

4.3.0 4.4.0

Mar 2002 CN_15 NP-020105 025 -- Add missing inheritance in service agreement management interfaces 4.3.0 4.4.0
Mar 2002 CN_15 NP-020105 026 -- Include Operation Set as part of General Service Properties 4.3.0 4.4.0
Mar 2002 CN_15 NP-020105 027 -- Improved description of activityTestReq with respect to

ServiceInstanceID
4.3.0 4.4.0

Mar 2002 CN_15 NP-020105 028 -- OSA Framework - Generate statistics records on behalf of another
entity using genFaultStatsRecordReq

4.3.0 4.4.0

Mar 2002 CN_15 NP-020105 029 -- Update the interface names for alignment between 3GPP and
ETSI/Parlay

4.3.0 4.4.0

Jun 2002 CN_16 NP-020179 030 -- Solving the problem in the OSA Framework with method
appUnavailableInd() in a scenario with multiple service sessions per
access session

4.4.0 4.5.0

Jun 2002 CN_16 NP-020179 031 -- Adding missing mandatory method (authenticationSucceeded) to
sequence flow

4.4.0 4.5.0

Sep 2002 CN_17 NP-020423 045 -- Correction on use of NULL in Framework API 4.5.0 4.6.0

Mar 2003 CN_19 NP-030019 060 -- Correction of status of methods to interfaces in clause 7.3 4.6.0 4.7.0
Mar 2003 CN_19 NP-030019 061 -- Correction of status of methods to interfaces in clause 8.3 4.6.0 4.7.0
Mar 2003 CN_19 NP-030019 062 -- Correction to Initial Access Sequence Diagram 4.6.0 4.7.0
Mar 2003 CN_19 NP-030019 064 -- Enable creation/destruction of load level notifications at the request of

Framework
4.6.0 4.7.0

Mar 2003 CN_19 NP-030019 066 -- Correction of Sequence for Framework – Service load management 4.6.0 4.7.0
Mar 2003 CN_19 NP-030019 072 -- Correction of status of methods to interfaces in clause 6.3 4.6.0 4.7.0
Mar 2003 CN_19 NP-030019 073 -- Add Initial Load Notification report for Framework Integrity

Management Load Notification model
4.6.0 4.7.0

ETSI

ETSI TS 129 198-3 V4.7.0 (2003-03) 1513GPP TS 29.198-3 version 4.7.0 Release 4

History

Document history

V4.0.0 March 2001 Publication

V4.1.0 June 2001 Publication

V4.2.0 September 2001 Publication

V4.3.0 December 2001 Publication

V4.4.0 March 2002 Publication

V4.5.0 June 2002 Publication

V4.6.0 September 2002 Publication

V4.7.0 March 2003 Publication

	Intellectual Property Rights
	Foreword
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions, symbols and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview of the Framework
	4.1 General requirements on support of methods

	5 The Base Interface Specification
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService

	6 Framework Access Session API
	6.1 Sequence Diagrams
	6.1.1 Trust and Security Management Sequence Diagrams
	6.1.1.1 Initial Access for trusted parties
	6.1.1.2 Initial Access
	6.1.1.3 Authentication
	6.1.1.4 API Level Authentication

	6.2 Class Diagrams
	6.3 Interface Classes
	6.3.1 Trust and Security Management Interface Classes
	6.3.1.1 Interface Class IpClientAPILevelAuthentication
	6.3.1.2 Interface Class IpClientAccess
	6.3.1.3 Interface Class IpInitial
	6.3.1.4 Interface Class IpAuthentication
	6.3.1.5 Interface Class IpAPILevelAuthentication
	6.3.1.6 Interface Class IpAccess

	6.4 State Transition Diagrams
	6.4.1 Trust and Security Management State Transition Diagrams
	6.4.1.1 State Transition Diagrams for IpInitial
	6.4.1.1.1 Active State

	6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication
	6.4.1.2.1 Idle State
	6.4.1.2.2 Selecting Method State
	6.4.1.2.3 Authenticating Client State
	6.4.1.2.4 Client Authenticated State

	6.4.1.3 State Transition Diagrams for IpAccess
	6.4.1.3.1 Active State

	7 Framework-to-Application API
	7.1 Sequence Diagrams
	7.1.1 Event Notification Sequence Diagrams
	7.1.1.1 Enable Event Notification

	7.1.2 Integrity Management Sequence Diagrams
	7.1.2.1 Load Management: Suspend/resume notification from application
	7.1.2.2 Load Management: Framework queries load statistics
	7.1.2.3 Load Management: Framework callback registration and Application load control
	7.1.2.4 Load Management: Application reports current load condition
	7.1.2.5 Load Management: Application queries load statistics
	7.1.2.6 Load Management: Application callback registration and load control
	7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the application
	7.1.2.8 Fault Management: Framework detects a Service failure
	7.1.2.9 Fault Management: Application requests a Framework activity test

	7.1.3 Service Discovery Sequence Diagrams
	7.1.3.1 Service Discovery

	7.1.4 Service Agreement Management Sequence Diagrams
	7.1.4.1 Service Selection

	7.2 Class Diagrams
	7.3 Interface Classes
	7.3.1 Service Discovery Interface Classes
	7.3.1.1 Interface Class IpServiceDiscovery

	7.3.2 Service Agreement Management Interface Classes
	7.3.2.1 Interface Class IpAppServiceAgreementManagement
	7.3.2.2 Interface Class IpServiceAgreementManagement

	7.3.3 Integrity Management Interface Classes
	7.3.3.1 Interface Class IpAppFaultManager
	7.3.3.2 Interface Class IpFaultManager
	7.3.3.3 Interface Class IpAppHeartBeatMgmt
	7.3.3.4 Interface Class IpAppHeartBeat
	7.3.3.5 Interface Class IpHeartBeatMgmt
	7.3.3.6 Interface Class IpHeartBeat
	7.3.3.7 Interface Class IpAppLoadManager
	7.3.3.8 Interface Class IpLoadManager
	7.3.3.9 Interface Class IpOAM
	7.3.3.10 Interface Class IpAppOAM

	7.3.4 Event Notification Interface Classes
	7.3.4.1 Interface Class IpAppEventNotification
	7.3.4.2 Interface Class IpEventNotification

	7.4 State Transition Diagrams
	7.4.1 Service Discovery State Transition Diagrams
	7.4.1.1 State Transition Diagrams for IpServiceDiscovery
	7.4.1.1.1 Active State

	7.4.2 Service Agreement Management State Transition Diagrams
	7.4.3 Integrity Management State Transition Diagrams
	7.4.3.1 State Transition Diagrams for IpLoadManager
	7.4.3.1.1 Idle State
	7.4.3.1.2 Notification Suspended State
	7.4.3.1.3 Active State

	7.4.3.2 State Transition Diagrams for LoadManagerInternal
	7.4.3.2.1 Normal load State
	7.4.3.2.2 Application Overload State
	7.4.3.2.3 Internal overload State
	7.4.3.2.4 Internal and Application Overload State

	7.4.3.3 State Transition Diagrams for IpOAM
	7.4.3.3.1 Active State

	7.4.3.4 State Transition Diagrams for IpFaultManager
	7.4.3.4.1 Framework Active State
	7.4.3.4.2 Framework Faulty State
	7.4.3.4.3 Framework Activity Test State
	7.4.3.4.4 Service Activity Test State

	7.4.4 Event Notification State Transition Diagrams
	7.4.4.1 State Transition Diagrams for IpEventNotification

	8 Framework-to-Service API
	8.1 Sequence Diagrams
	8.1.1 Service Discovery Sequence Diagrams
	8.1.2 Service Registration Sequence Diagrams
	8.1.2.1 New SCF Registration

	8.1.3 Service Instance Lifecycle Manager Sequence Diagrams
	8.1.3.1 Sign Service Agreement

	8.1.4 Integrity Management Sequence Diagrams
	8.1.4.1 Load Management: Service callback registration and load control
	8.1.4.2 Load Management: Framework callback registration and service load control
	8.1.4.3 Load Management: Client and Service Load Balancing
	8.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service
	8.1.4.5 Fault Management: Service requests Framework activity test
	8.1.4.6 Fault Management: Service requests Application activity test
	8.1.4.7 Fault Management: Application requests Service activity test
	8.1.4.8 Fault Management: Application detects service is unavailable

	8.1.5 Event Notification Sequence Diagrams

	8.2 Class Diagrams
	8.3 Interface Classes
	8.3.1 Service Registration Interface Classes
	8.3.1.1 Interface Class IpFwServiceRegistration

	8.3.2 Service Instance Lifecycle Manager Interface Classes
	8.3.2.1 Interface Class IpServiceInstanceLifecycleManager

	8.3.3 Service Discovery Interface Classes
	8.3.3.1 Interface Class IpFwServiceDiscovery

	8.3.4 Integrity Management Interface Classes
	8.3.4.1 Interface Class IpFwFaultManager
	8.3.4.2 Interface Class IpSvcFaultManager
	8.3.4.3 Interface Class IpFwHeartBeatMgmt
	8.3.4.4 Interface Class IpFwHeartBeat
	8.3.4.5 Interface Class IpSvcHeartBeatMgmt
	8.3.4.6 Interface Class IpSvcHeartBeat
	8.3.4.7 Interface Class IpFwLoadManager
	8.3.4.8 Interface Class IpSvcLoadManager
	8.3.4.9 Interface Class IpFwOAM
	8.3.4.10 Interface Class IpSvcOAM

	8.3.5 Event Notification Interface Classes
	8.3.5.1 Interface Class IpFwEventNotification
	8.3.5.2 Interface Class IpSvcEventNotification

	8.4 State Transition Diagrams
	8.4.1 Service Registration State Transition Diagrams
	8.4.1.1 State Transition Diagrams for IpFwServiceRegistration
	8.4.1.1.1 SCF Registered State
	8.4.1.1.2 SCF Announced State

	8.4.2 Service Instance Lifecycle Manager State Transition Diagrams
	8.4.3 Service Discovery State Transition Diagrams
	8.4.4 Integrity Management State Transition Diagrams
	8.4.4.1 State Transition Diagrams for IpFwLoadManager
	8.4.4.1.1 Idle State
	8.4.4.1.2 Notification Suspended State
	8.4.4.1.3 Active State

	8.4.5 Event Notification State Transition Diagrams

	9 Service Properties
	9.1 Service Property Types
	9.2 General Service Properties
	9.2.1 Service Name
	9.2.2 Service Version
	9.2.3 Service Instance ID
	9.2.4 Service Instance Description
	9.2.5 Product Name
	9.2.6 Product Version
	9.2.7 Supported Interfaces
	9.2.8 Operation Set

	10 Data Definitions
	10.1 Common Framework Data Definitions
	10.1.1 TpClientAppID
	10.1.2 TpClientAppIDList
	10.1.3 TpDomainID
	10.1.4 TpDomainIDType
	10.1.5 TpEntOpID
	10.1.6 TpPropertyName
	10.1.7 TpPropertyValue
	10.1.8 TpProperty
	10.1.9 TpPropertyList
	10.1.10 TpEntOpIDList
	10.1.11 TpFwID
	10.1.12 TpService
	10.1.13 TpServiceList
	10.1.14 TpServiceDescription
	10.1.15 TpServiceID
	10.1.16 TpServiceIDList
	10.1.17 TpServiceInstanceID
	10.1.18 TpServiceSpecString
	10.1.19 TpServiceTypeProperty
	10.1.20 TpServiceTypePropertyList
	10.1.21 TpServiceTypePropertyMode
	10.1.22 TpServicePropertyTypeName
	10.1.23 TpServicePropertyName
	10.1.24 TpServicePropertyNameList
	10.1.25 TpServicePropertyValue
	10.1.26 TpServicePropertyValueList
	10.1.27 TpServiceProperty
	10.1.28 TpServicePropertyList
	10.1.29 TpServiceSupplierID
	10.1.30 TpServiceTypeDescription
	10.1.31 TpServiceTypeName
	10.1.32 TpServiceTypeNameList
	10.1.33 TpSubjectType

	10.2 Event Notification Data Definitions
	10.2.1 TpFwEventName
	10.2.2 TpFwEventCriteria
	10.2.3 TpFwEventInfo

	10.3 Trust and Security Management Data Definitions
	10.3.1 TpAccessType
	10.3.2 TpAuthType
	10.3.3 TpEncryptionCapability
	10.3.4 TpEncryptionCapabilityList
	10.3.5 TpEndAccessProperties
	10.3.6 TpAuthDomain
	10.3.7 TpInterfaceName
	10.3.8 TpInterfaceNameList
	10.3.9 TpServiceToken
	10.3.10 TpSignatureAndServiceMgr
	10.3.11 TpSigningAlgorithm

	10.4 Integrity Management Data Definitions
	10.4.1 TpActivityTestRes
	10.4.2 TpFaultStatsRecord
	10.4.3 TpFaultStats
	10.4.4 TpFaultStatisticsError
	10.4.5 TpFaultStatsSet
	10.4.6 TpActivityTestID
	10.4.7 TpInterfaceFault
	10.4.8 TpSvcUnavailReason
	10.4.9 TpFwUnavailReason
	10.4.10 TpLoadLevel
	10.4.11 TpLoadThreshold
	10.4.12 TpLoadInitVal
	10.4.13 TpLoadPolicy
	10.4.14 TpLoadStatistic
	10.4.15 TpLoadStatisticList
	10.4.16 TpLoadStatisticData
	10.4.17 TpLoadStatisticEntityID
	10.4.18 TpLoadStatisticEntityType
	10.4.19 TpLoadStatisticInfo
	10.4.20 TpLoadStatisticInfoType
	10.4.21 TpLoadStatisticError

	10.5 Service Subscription Data Definitions
	10.5.1 TpPropertyName
	10.5.2 TpPropertyValue
	10.5.3 TpProperty
	10.5.4 TpPropertyList
	10.5.5 TpEntOpProperties
	10.5.6 TpEntOp
	10.5.7 TpServiceContractID
	10.5.8 TpServiceContractIDList
	10.5.9 TpPersonName
	10.5.10 TpPostalAddress
	10.5.11 TpTelephoneNumber
	10.5.12 TpEmail
	10.5.13 TpHomePage
	10.5.14 TpPersonProperties
	10.5.15 TpPerson
	10.5.16 TpServiceStartDate
	10.5.17 TpServiceEndDate
	10.5.18 TpServiceRequestor
	10.5.19 TpBillingContact
	10.5.20 TpServiceSubscriptionProperties
	10.5.21 TpServiceContract
	10.5.22 TpServiceContractDescription
	10.5.23 TpClientAppProperties
	10.5.24 TpClientAppDescription
	10.5.25 TpSagID
	10.5.26 TpSagIDList
	10.5.27 TpSagDescription
	10.5.28 TpSag
	10.5.29 TpServiceProfileID
	10.5.30 TpServiceProfileIDList
	10.5.31 TpServiceProfile
	10.5.32 TpServiceProfileDescription

	11 Exception Classes
	Annex A (normative): OMG IDL Description of Framework
	Annex B (informative): Change history
	History

