ETS| TS 129 198-3 V7.1.0 (2007-06)

Technical Specification

Universal Mobile Telecommunications System (UMTS);
Open Service Access (OSA)

Application Programming Interface (API);

Part 3: Framework

(B3GPP TS 29.198-03 version 7.1.0 Release 7)

G

—

D

3GPP TS 29.198-03 version 7.1.0 Release 7 1 ETSI TS 129 198-3 V7.1.0 (2007-06)

Reference
RTS/TSGC-0529198-03v710

Keywords
UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2007.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3GPP TS 29.198-03 version 7.1.0 Release 7 2 ETSITS 129 198-3 V7.1.0 (2007-06)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETS! identities can be found under
http://webapp.etsi.org/key/queryform.asp.

ETSI

http://webapp.etsi.org/IPR/home.asp
http://webapp.etsi.org/key/queryform.asp

3GPP TS 29.198-03 version 7.1.0 Release 7 3 ETSI TS 129 198-3 V7.1.0 (2007-06)

Contents

INtellectual Property RIGNES.... ..ot b e et nb e b b nenn e 2
0 Yo (o SRS 2
1= 11 o SRS 12
gLl [N o1 o o ISP 12
1 o0 0= PP P RSP 14
2 RS L= (= 000 S 14
3 Definitions, symbols and abbreviationscceeiiieein et 15
31 D= T T (o) 1 15
3.2 F Y o] 1= V7= 0] P 15
4 OVErVIEW Of the FIramMEWOIK...........eeeieeese ettt et s e e e e e e tesneeneeseeenes 15
5 The Base Interface SPECITICAliON.........ccv it st re e e ne s 16
5.1 Interface SPECITiCatiON FOIMELcccui et s st et e e re e s reesreeste e teereeneenneesnes 16
511 INEEITACE ClBSS ...ttt ettt b e ekt h e eb et ae e e e s et bt sb e eb e e he e s e e e e b e ebesaeeb e e e enneneea 16
512 MELNOO AESCIILIONS. ...ttt bbbt bbbt bt et b et et b e s bt eb e b 17
513 PaArAMELES GESCITPIIONS. ...ttt ettt b e et b et b e et b e e st b e e et b e bt eb e b 17
514 S = (= 1Y, oo L= OO S S PSRRPSRRPR 17
52 RS S L1 = o RS 17
521 INtErface Class [PINTEITACE ..ottt b e et b e 17
53 SEIVICE INEEITACES ...ttt et b bbbt e e e e e b e bt sh e eb e s bt e bt e e e b e besbeebeeneenne e ennas 17
531 OVEIVIBW ..ottt sttt sttt sttt st s e st e be s e e st e ke s e e st e b e s e e st ebeseese e b e sees e eEeneeseebeseene e b e sbeneebenbe e ebenbeneesenbenennens 17
54 GENENIC SEIVICE INLEITACE ...ttt bbbttt e b bese e eb e s bt eh e e e e s e besreebesseene e e ennas 17
54.1 INLEITACE ClaSS IPSEIVICEcvie e ettt ettt e e s e sae e s te e teenteeneessaeste e seereenseeneennnennes 17
5411 MELNOO SEECAIIDACK() +..vvevereeiieteieeiete et sttt st sttt et see e et e sae e ebesbeneenens 18
54.1.2 Method setCallbaCkWithSESSIONID () .. .e.veveieeieririeieiesieeete ettt sttt seese st seesesbeseeneenens 18
6 Framework ACCESS SESSION APottt s e e re e e seeeneeneenneas 19
6.1 SEOUENCE DIBOIAITIS ...ttt st reete sttt sttt st et be et eb e se et b e s e e st e b e s e ebeeb e s e e bt e be s e e Rt eb e e ehe e b e ne e st ebene e st ebesbe e ebenneneees 19
6.1.1 Trust and Security Management SeqUENCE DIBgraIMSccuiirieirinieiniieesie e e 19
6.1.1.1 INETEBI ACCESS. .. et eeueeee ettt e et e st e sttt et et e st e e et e teseeebeeaeeseeneeneeneeseebeseeebeeneensenseseeseeeneeneeneensees 19
6.1.1.2 Framework TEIMINGEES ACCESSceeeeerierterterteeteeteteseeste sttt sbe st et e s e ssesbesaeebesaeeseese st esbeseesbesaeeneennens 20
6.1.1.3 APPlICaiON TEMINALES ACCESS.....ccteeteeeieeeesteesteesteestessteseeseesseesseaseaseesseesseessesssessesesssessseesseessesssenns 21
6.1.14 NON-API [evel AUNENLICALION.ccuiiieiietieee et sr e sb e nee 22
6.1.1.5 APl LEVE AULNENTICALIONeveeiieieiieseeest ettt st b et ebe e sr b sae b e e e e e 23
6.2 L= S D= =0 1SS 24
6.3 INEEITACE ClBSSES. ... ettt ettt ettt s et e e ee e beebeeaeeseemeeneese e seebesaeebeeaeeneeneeeeseeseesseeneeneeeeneeses 25
6.3.1 Trust and Security Management INterface ClaSSeS.......c.ciireiiirieirieseee e 25
6.3.1.1 Interface Class |pClientAPILevel AUhENEI CALION..........cooiviiiireiieeee e 25
6.3.111 Method abOrtAUNENTI CAETON()cveeeeereeeee ittt 26
6.3.1.1.2 Method authentiCatioNSUCCEEAEA()vevrrerrieetiriei ettt 26
6.3.1.1.3 MELNOA CHATENGE() ...t vttt b bbbt nb e enas 26
6.3.1.2 INtErface Class P I ENTACCESS.......ccuveieeieieesieeseesteerte st et e s e s e e e eteestessaessaesseesseessesneesseesseesseenseensenns 27
6.3.1.2.1 M ethod tErMINALEACCESS() ... veereeeereeiee st e st este et et e ste e st e e teestesseeseesreesseeteenseeseessaesseentennseensesneesnns 28
6.3.1.3 Interface ClasS IPINITIALc.coieiiei ettt e st et e et eteeeesseesaeesneesreeseenseans 28
6.3.1.3.1 Method initiateAuthentiCatioNWithVersion()ceceeeieeieeseese e 29
6.3.14 Interface Class IPAUINENLICALION............ccciieiee et e e e re e saeesneesneenseeneeens 30
6.3.14.1 MEthOO FEQUESIACCESS()vveuvereierteesieesieeste et eeeseesteeste e e e tesstesseesseesaeesseenseassesseassaeseentennseensesneesans 30
6.3.1.5 Interface Class IPAPILEVE AULNENLICALTIONc.coireiiieeeee e 31
6.3.1.5.1 Method abOrtAUNENTI CAETON()cveeeeereie ettt 31
6.3.1.5.2 Method authentiCatioNSUCCEEAEA()vevrrerrieeririeiei et 32
6.3.1.5.3 Method sel ectAuthenticationMeChaNi SIM()coerieerirerreere s 32
6.3.1.54 MELNOA CHATENGE() ... e vttt b bbbttt ens 32
6.3.1.6 INEErTACE ClaSS IPACCESScveete et ceie ettt etee st e st e te s te s e se e saeesteenseeateeseeeseesseesseenteensesneesneesanesseesseenseenseans 34

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 4 ETSI TS 129 198-3 V7.1.0 (2007-06)

6.3.1.6.1 Method OBtai NENEEMTACE() ..o vee et e et e e teeaeeneeenes 34
6.3.1.6.2 Method obtaininterfaceWithCallDack()cevvveeiieieriesie e 34
6.3.1.6.3 [V T= a0 To RS g (==) 35
6.3.1.6.4 Method selectSigniNGAIGOrTTRM()oiveeieee e 35
6.3.1.6.5 MethOd tErMINALEACCESS() ...e.veereeeereeieesee st esteete et e st e s e e teeteseeseesseesseeseentesseessaesseenseenseensenneesnes 36
6.3.1.6.6 Method relinqui SNINEEITACE()veieie et et e s e s re e eesnneenes 36
6.4 State TranSitionN DIBGIAIMS.......cctiieiitereeeete ettt sttt sttt b e b et bt s bt b e s b et e b e s e e st b e se e st ebe st et ebenrene e 37
6.4.1 Trust and Security Management State Transition Diagramsccceoeeeeerennenenesese e 37
6.4.1.1 State Transition Diagrams fOr IPINItIalcoooeiiii s 37
6.4.1.2 State Transition Diagrams for IpAPILevel AUthentiCation.............cceiienineineneree s 37
6.4.1.2.1 Lo [= (= TSP 38
6.4.1.2.2 Authenticating FrameWOrK SEELE..........c.vecuieiiiierie et te e e 38
6.4.1.2.3 Framework AULhentiCated SEALEccocviireerirecerr s 39
6.4.1.2.4 AuthentiCating CHENt SEALE..........ccuieiiciesee et e e e e reeteeaeeneennes 39
6.4.1.2.5 Client AUthENTICEEEH SEALE.........cciieeireieeer et 39
6.4.1.2.6 [AIE SEBLE....... ettt r e 40
6.4.1.2.7 Authenticating FrameWOrK SEALE..........c.eccuveiiiiecesie et ae e 40
6.4.1.2.8 Framework AUtNENtICAIEA SEALEcc.eeeeee ettt st 40
6.4.1.2.9 AUhentiCating ClIENT SLALE.........coueiieeetere et b et b e b e seene s 41
6.4.1.2.10 Client AUhENtiCAEEA SEALE........cce ettt e e e e s eesbesbesaesne e e eneeneens 41
6.4.1.3 State Transition Diagrams fOr PACCESS.........eeiiriieiirierie ettt se s 41
6.4.1.3.1 ot L= (= R 42
7 Framework-to-APPHICAHON APlo ettt re et e s aeeeesteeneeeeneeas 42
7.1 SOOUENCE DIAQIAIMS......ecuiietieieeie et eeesee e e s e e s e e tesee st e sae e seeateaseeaseeaseeseesseestesseesaeesaeesseesseenseanseensennsenneessenssens 42
711 Event Notification SeqUENCE DIiagramMS.........ccveiieiiiiieeie e s e sesie e s ee e ste e ea e e s e be e e sseeeaeeeesneesnes 42
7111 Enable EVENt NOUTICATIONc..cviriieeiireieciere e en e sre e ene 42
712 Integrity Management SEqQUENCE DIBGIaIMScooueiiirieireriet ettt 43
7121 Load Management: Suspend/resume notification from application...........c.ccoeeeverecenenceneneeneseeiens 43
7122 Load Management: Framework queries|0ad StatiStiCS........coovrerrirenieene e 44
7123 Load Management: Framework callback registration and Application load controlcccveneenene 45
7124 Load Management: Application reports current 10ad CONAItioN............covvreiereneienenecse e 46
7125 Load Management: Application queries 10ad StatiStiCS.ccoeeiireerereree e 47
7.1.2.6 Load Management: Application callback registration and load control.............ccceeeveeveevecciesceseeenen, 48
7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the applicationccccceeueeeee. 49
7.1.2.8 Fault Management: Framework detects a Service faillure ... v icee e 50
7.1.2.9 Fault Management: Application requests a Framework activity teStccecvvvvveenicieece e, 51
7.1.3 Service Discovery SEqQUENCE DIBOIAIMScecieiiiiieeeseeseeesaeseeseesteseeseesseesseeseesaessaesseeseenseensesneesnes 52
7131 SEIVICE DISCOVEIY ..ueeieeiieeiteete ettt e ee e e e et e st e st esae e s aeeteestesaeesse e teenteensesneesaeesneesseenseenseensennensseessnns 52
714 Service Agreement Management SequEnCe DIiagramsScoeereeeerieenrereeese st ereseeeenens 54
7141 SEIVICE SEIECHION. ...ttt ettt sttt et et et e e st e besbesaeeteeneese e e e seneeseesbesneeneeneenseneens 54
7.2 ClaSS DIAOIAMS. ...ttt ettt ettt sttt sttt bt bt s a et bt b e e bt s b e e eh e s R e st eb e e A e st e bt e b e e e bt b e ne e b e e e neebene et eb e s be e ebenbe e 56
7.3 1 10= g o To T O o PSR 59
731 Service DiSCOVErY INErfaCE ClasSeS. ..ottt b e e b b snenea 59
7311 Interface Class |PSErVICEDISCOVETYccuiiieiieriieiieeiesieeseeseesteeteeaesseesteesteeteesesseesseesseesseesseensesnsenns 59
73111 MethOd [HSESEIVICETYPES() «veveeveeriereeiieseeste et et eeesteeste e testesseesseesreesseeneeeseesseasseenseenseenseensesneesans 60
73112 Method desCriDESEIVICETYPE) .. ccueiieiee et ete ettt e e sre e et eeaeesre e re e e enteenaeeneennes 60
7.3.1.1.3 MethOd diSCOVErSEIVICE()...eeuveerieriereeiee st e st esteeteeee st e s e e s e e teeeeseesseesse e teenteenteesaessaenseenteenseaneennns 61
73114 Method [iStSUDSCITDEASENVICES()cvererirerieiieie s 62
7.3.2 Service Agreement Management INterface ClassesS.......ooveiieie e 62
7321 Interface Class |pAppServiceAgreementManagementcoveerreerererene e 62
73211 Method SIgNSErVICEAGIEEMENT() everreeererrereerert ettt b s e bbb e e enes 63
73212 Method terminateServiCEAGrEEMENT() ... cvrirreerrereeierieree sttt 63
7322 Interface Class |pServiceAgreementManagemENtccoereererereeererese et 64
73221 Method SIgNSErVICEAGIEEMENT() everreeererrereetert ettt se bt n e bbb e e enas 64
73222 Method terminateServiCEAGrEEMENT()cvverreerrireeieriere ettt b bbb 65
73223 MEthOO SEIECESEIVICE() ...veuereereierieree sttt en e 66
73224 Method initiateSigNServiCEAGrEBMENT()evverreerere e seeseeste e s e se e re e te e e s e re e e eneessaesneesnes 66
733 Integrity Management INtErfaCe ClaSSES.........cvuiuiriiiie et ese et te ettt e st e e eeaeeaesneesnes 67
7331 Interface Class IPAPPFAUITIMBNAGESccveiieiieie e st see st te et e e e e sreesreesseeseeeesseesreenseenseans 67
73311 MethOd BCHIVITY TESIRES() ...vevevererreireereierist ettt n et nen e 67
73312 Method aPPACEIVILYTESIREG() ...veeveerreeireerieeite et et es et e e e e see e s sreesaeete e e ereesraeste e teeneeeneeeneennes 68

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 5 ETSITS 129 198-3 V7.1.0 (2007-06)

7.3.3.1.3 Method <<deprecated>> fWFaUItREPOrtINA()ccvereeieeiere e 68
73314 Method <<deprecated>> fWFaUltRECOVENYINA()ccvveirreree e s 68
7.3.3.15 Method <<deprecated>> fwUnavailablelNd()ccceeerieiiiieie s 68
7.3.3.1.6 Method GCHIVITYTESIEIT() ..vveveeieeie ettt ste e s s esae et e e nte e e eeeeneeneennes 69
7.3.3.17 Method appUnavailablelNA()cceiieiieieeee et 69
7.3.3.1.8 Method SVCAVAI SLEEUSINA() ...evveeeeiie ettt e ee e 69
7.3.3.19 Method generateFaul tStati StiCSRECOTARES().....c.veverveurrierieirierieerie st 69
7.3.3.1.10 Method generateFaul tStati StiCSRECOTAEIT()ouvrvirieeeriirieiriereeesieeet e 70
733111 Method generateFaul tStati StiCSRECOTAREG() -...uvevevererrererieriireeierierieeeri et 70
7.3.3.1.12 Method FWAVEI SEBEUSINA()cevereeeeeeereeeet ettt 70
7.3.32 Interface Class IPFAUITIMANAGESoiiiiie ettt st sb e e 71
73321 MELhOd @CHIVITY TESEREG() .. vvereerereererreriireeterieietestee et sttt see sttt sbe s sesbe e ssesae e sesbesbenesbessenennes 71
7.3.32.2 Method QPPACHVITY TESIRES() ...veveeeevereieriiriiietestee ettt se et s e s b s s sbestenesseseeneenas 72
7.3.3.2.3 Method svcUnavai labDl€INa()ocvereeieesieii et e ae e snne s 72
73324 Y T= oo Iz o o AN W A 7L YA =S o =l) 72
7.3.3.25 Method apPAVEIT SEEEUSINA() «...vveveeiieieece et e b e b reeteeaesneennes 73
7.3.3.2.6 Method generateFaultStati StiCSRECOIAREY()vverveerrrrereeseeriereesee s e ste e eee e re e e enresraesraeseesnes 73
7.3.32.7 Method generateFaul tStati StiCSRECOTARES().....c.veverveuerierieiriirieerie st 74
7.3.3.2.8 Method generateFaul tStati StiCSRECOTAEIT() ...veuvrvirieeeriirieiriereeerieeet st 74
7333 Interface Class IPAPPHEABEAMOML........oiiiiirieiee et 74
7.333.1 Method enabl APPHEBIMBEAL()........covereeuertireeirtiree ettt 75
7.3.33.2 Method diSablEAPPHEBITBEAL()coverveuerrereeietertee ettt 75
7.3.3.3.3 Method ChanGEINEEIVEI()e.veuerrereeirierieiet ettt bbb e 75
7.3.34 Interface Class IPAPPHEABERL.cceeieeieece ettt e s e e e e e saeesneesreenseenneens 75
7.3.34.1 = (T To I a0 TSR 76
7.3.35 Interface Class IPHEArtBEAMOMIL.........ccuiiieiie e ae e s sre e s e e sneenseenneens 76
7.3.35.1 Method enablEHEAMBEEL()eeveeeereeieeseeseccte e ee st e e sae et e ereesre e e e e e teeaeennenaes 76
7.3.35.2 Method diSablEHEAMBEBE().. ... cerveereerieieieriiiete ettt enas 77
7.3.35.3 [V T= agTe o o gtz 10T 1= Fa U= AV 77
7.3.36 INterface Class IPHEAMBEALcoiirieiee ettt et b et 77
7.3.36.1 IMEENO PUISE() +.vneeeteeeieetere ettt b bbbt b e bt b et b b se bt nnas 77
7337 Interface Class IPAPPLOBAMENEGEccieriiiriirieieriere ettt sttt sttt be ettt se et be e sbe e 78
73371 Method [0adL eVelNOLIfiCaLTON()vevereeerrereeeet sttt 78
7.3.37.2 Method reSUMENOLIFiCaLION()erveeererriierire ettt 78
7.3.3.7.3 VY= 1gleTe RSUES 1= 0o |\ Lo] o= o] o 79
73374 Method createl 0adL eVelNOti fiCaION()ccverreeieeie e e 79
7.3.3.75 Method destroyL oadL evelNOtifiCaHON()vveveerieeeseee et 79
7.3.3.7.6 Method quEryAPPLOAASLEESREM() ... eerverreereereeieeseesireteseesreesteesteestesseeseesseesseesseeseensesnsessesnessnns 79
7.3.3.7.7 Method qQUErYLOBASEAISRES()ecvveiveeiieeie ettt e et et e e e aesneeenes 79
7.3.3.7.8 Method qUErYLOBASEAESEIT()veiveeiie ettt et 80
7.3.38 Interface Class IPLOAOMENEGETccur ittt sttt ettt b e bbb bt bese et b e 80
7.338.1 MELhO FEPOMLOBA()veveueeeereeeet sttt bbbt b e nn e ens 81
7.3.38.2 Method createl 0adL eVelNOLIfiCaION()coverreereirieiriieeree e 81
7.3.3.8.3 Method destroyL 0adL eVelNOtifiCaLiON()eoveverrereererieieeriee et 82
7.3.384 Method reSUMENOLIFICELION()eoveeererrieetere ettt 82
7.3.3.85 Method SUSPENANOLIfICATON() -...eveueeeerreeeierteet et 82
7.3.3.8.6 Method qUEryL0adStatSREG() ... eevverreeieerieii ettt e st e e e e e te e e sneeenes 83
7.3.3.8.7 Method qUErYAPPLOAASIEESRES()eeveeieieeieerieese et eeeteste e s sre e sre e e e e sraeste e reenteenansnnesnes 83
7.3.3.8.8 VY= 1gTeTo Mo 0= VAN o] o] I ar=o) =15 =l) I 84
7.3.39 INLErfaCe ClaSS IPOAM ..ottt s e e te et e et e e saeeseesteesteesseenseeneesaeesneenseenseenseans 84
7.3.39.1 Method systemDateTimEQUENY() ..evveiueereerieeiteeteeeesteeseeseesteseeseesreesreesseesseessessaesseesseesseeneesneesnes 84
7.3.3.10 Interface ClassS IPAPPOAM ...ttt ae e s e e s te e teeteestesstessaesseesseesseenseeneesseesseenseenseans 85
7.3.3.10.1 Method systemDaETIMEQUENY() ...eevervruerrereeieteriee ettt ettt sb e b e sbesn e enas 85
734 Event Notification INterface ClIasseS.......ooiii ettt e et st eeneeneea 85
7341 Interface Class |PAPPEVENINOLIFICATIONoiveiiirecieeer e e 85
73411 Method repOrtNOLIfi CaEION()everveeeeerrire ettt 86
73412 Method notificationTerMINAIEA()vreerireeree e 86
7.34.2 Interface Class IPEVENINOLIfICALIONc.ccueiee e sreenreenee e 86
73421 (VK= 1glelo Rerg= it \\ Lo 0] o= i1o] o) I 87
73422 VY= 1gTee o e o)V o 1N o= i o] ol 87
74 State TranSitioN DIBGIAIMS.......ccveieeieieieesee st e st erteetesee s e este e teesteestesseesseesseesseasesseesseesseeseanseensenseesseessenssens 87
74.1 Service Discovery State Transition DIagramSccueieeiiereeie e ceesees e eeete e see e sreesseseeseesseenseenseens 87

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 6 ETSI TS 129 198-3 V7.1.0 (2007-06)

74.1.1 State Transition Diagrams for [PServiCEDISCOVENYccouviierieeieeieseesee e erte e se e re e saesreesreeneees 87
74111 ACHVE SEALE ...ttt sttt sttt st ettt s e et et e see et e st et et esee et e s ae e renreneeneas 88
74.2 Service Agreement Management State Transition DIiagramsScc.eecevceieeieese e e e e s 88
74.3 Integrity Management State Transition DIagramsS..........ceceeieereeieiieeseeseeseesre e see e eseesessneesnes 88
7431 State Transition Diagrams for IPLOadManagerccuveuerierieiecie et ree e 88
74311 [AIE SEBEE.....ee ettt sttt sttt e bt e e bt s b e et e b e e b e b et b e st et bente e erenteneenens 89
74312 NOLifiCation SUSPENTEA SEALE..........c.eieeeiriiiitireeiet bbb 89
74313 ot L= (= 89
7432 State Transition Diagrams for LoadManagerInternal.............coeeiireerineinineeseeeeseese s 89
74321 [N To g r= L= o S = (TSR 20
74322 APPlICAioN OVENTOBH SEBLEc.eiviieiiiteeeiertere ettt st b e s b e e b b neene s 20
74323 INtErNal OVENTOBH SEALE.coueiieeieeeie ettt bbbttt e sr b et en e e s 90
74324 Internal and Application OVErload SEALEccccceieeiee e 90
7.4.3.3 State Transition Diagrams fOr IDOAM ..o et esnaesreesnees 91
74331 ACHVE SEALE ...ttt ettt ettt et e st et et e s e et et e st e e ke s ee e ebenae e erenreneeneas 91
74.34 State Transition Diagrams for [PFaUItManagerc.ocvereeieeiece e 91
74341 FrameWOrK ACHIVE SEBLE..........cooueriirieriieterieee ettt et b et e e bbb saeene e e e s 92
74342 Framework FAUITY SEBLE.........cc.ciiiieirteeet ettt b 92
74343 Framework ACHVILY TESE SELE........ccervieeueriiiet ettt 92
74344 SENVICE ACHIVITY TESE SEALEe.ecuiieieeeirtee ettt ettt b et b e e 92
744 Event Notification State Transition DiagraimS........coeererererieeneniee et sbe e 92
7441 State Transition Diagrams for IPEVENtNOLIfiCaLIONccooireiriiiceee s 92
8 Framework-10-SEIVICE AP ... ettt sttt sse et e s be e e e seeeneensenreas 93
8.1 SOOUENCE DIAQIAIMS......ecuiietieieeie et eeesee e e s e e s e e tesee st e sae e seeateaseeaseeaseeseesseestesseesaeesaeesseesseenseanseensennsenneessenssens 93
8.1.1 Service Discovery SEqQUENCE DIBOIAIMScccieiiiiieeeseeseeesteseeseestesseeseesseesseeseessessaesseeseensessesneesnes 93
8.1.2 Service Registration SequEnCe DIagraMS........ccccuvciieieiieie e siesee e steesre e s e sse e e aessaessee e eseeeesneesnes 93
8121 New SCF SUD TYPE REGISITAIIONc.eiviieviieiietereeeeie ettt e b e st sb e e ebesnennene 93
8122 NEW SCF REJISITALION. ...ttt sttt bbbt e bbbt s et beseese et et e sae e ebesbenneneas 94
8.13 Service Instance Lifecycle Manager Sequence DIiagraimsS.........coceeereerierieeneneeesie s seeeenens 96
8131 SigN SEIVICE AQIEEITIENE......e.eceiitiietertet ettt ettt ettt b b e st b s s e bt et b s e s e sb s e bt b e b e e b e e e enis 96
814 Integrity Management SEQUENCE DIBGIaIMSooueiiirieinieriee ettt ettt sb e 97
8141 Load Management: Service callback registration and [0ad control..............ccoeoevincinennienenccnceenene 97
8.1.4.2 Load Management: Framework callback registration and service load controlcccccveevvcenrieenen. 98
8.1.4.3 Load Management: Client and Service Load BalanCing..........ccccceveeveeieerescie e 99
8.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service.......ccccceecvvcvveenne 100
8.1.45 Fault Management: Service requests Framework activity teSt..........cccvvveveeveeiesiese e, 101
8.1.4.6 Fault Management: Service requests Application activity teStcccveveveecieece v 102
8.1.4.7 Fault Management: Application requests Service activity teStoccvveeveececce e 102
8.148 Fault Management: Application detects service isunavailable...........cccooveirineinineineneee 104
8.15 Event Notification SeqUENCE DIagramS.uoueeriirieirieieesieee sttt s 104
8.2 ClaSS DIAOIAMS. ...ttt ettt sttt h bbbt b bbb et e b e e b e e e bt E e s e bt b e e e bt e b e e e he e b e b e st e b et e st ebe b e 104
8.3 INEEITACE CIBSSES. ... eeueeeete sttt ettt sttt e et e s ee et s bt e st e st e e e eeseeeaesbesaeeseeneeneensenseseeseeeseeneenseneeneas 108
831 Service Registration INtErfate ClasSES. ..ottt 108
8311 Interface Class |pFWSErVIiCEREQISIIaLiONcccuieiiiieeeee et ee e e e esraesnees 108
83111 MethOd rEQISEEFSEIVICE() ...vveeveereeieriesiesee st e st e rte ettt e st e te e e e e e tesaeesreesreesseenseenseenseeneessaesseennens 108
8.3.11.2 Method announceServiCeAVa lability()oveeereere e 109
8.3.1.1.3 MethOd UNFEQISEEIrSEIVICE() ...vvereeieeieiieieesee st esteete et e s e e e e teeae e e sreesseenseenseenseeneesnaesseesneas 110
83114 MELhOO AESCIIDESEIVICE() ..vvvereeverteeeterieriete sttt sttt sttt sttt e b et e st st seste e ebesbeneenens 110
8.3.1.15 Method UNANNOUNCESENVICE()eeuveieieieesieesiee st esteeteeaesseesteesee e e steesteseesseesseasseenseenseensensansseessens 111
83116 Method regiSterServiCESUDTYPE() . ..ceiveerereererieerte sttt ettt st st sb e e b e sne i 111
832 Service Instance Lifecycle Manager Interface Classes.........coueiiinninenne e 112
8321 Interface Class |pServicel nstanceLifeCyCleManagercocirieirereereee e 112
83211 Method CreateServiCEMaNAGET()cvirerrerereeeeriereete ettt st se b et b e e eb e e e b sneneeneas 113
83212 Method destroyServiCEMaNAgEN()coceerereererieierie ettt eb et b e st b e s eb e e b sneneeneas 113
833 Service DIiSCOVErY INErfaCe ClasSES.......cciiiiiieree ittt ettt ettt 114
8331 Interface Class |PFWSENVICEDISCOVENYcuiiiiiiieieeieeste e eeeee s te et ae e e e saeenteeeeeneesneessaesneas 114
8.3.3.1.1 MELNO [ISESENVICETYPES() «evereevertereetirienietesieseetesteeeteseeeetestesesbeseesesbeseesesbeseeseesesaesesbeseeneesesseseesens 114
8.3.3.1.2 Method desCriDESEIVICETYPE() .. ecviiieiee ettt et e e et ae e sreesreesteeeesneeeneessaesraenreas 115
8.3.3.1.3 MethOd diSCOVEISEIVICE() .. eveereeierieiieeieesee st esteete e e sseesteesteesteesteenseseesseesseesseenseensenssessansseesses 115
83314 Method [StREQISLEr@ASEINVICES().. e veververerrerieieterieeete ettt sttt st seese st seesesbesbeseenens 116
834 Integrity Management INtErface ClaSSES........cccviiiiieiieiie sttt ee st e e sneenaeeneens 116

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 7 ETSI TS 129 198-3 V7.1.0 (2007-06)

8.34.1 Interface Class |PFWFaUITIMBNAGESccveiiieiie et ese et et e e eteete e e e sreesseeaeeneesneesneessaesneas 116
8.34.1.1 MELhOd ACHIVITY TESEREG() .. ervereerereererrerieietesieeereseeeete st steseeresbesee e sbeseesesbeseesesbeseesesbeseeneesesbeneenens 117
8.3.4.1.2 Method SVCACHVITY TESIRES()veiveeerierieieie sttt st sttt seeneas 118
8.34.1.3 Method appUnavailabl€lNd()ceeiriieiee et nneas 118
8.34.14 Method SVCACHVITY TESIEIT()..ecuveeeeereieieeseesie et eree et e et e s e e e e te e e e sreesreesseeneeensesneennaessaenneas 118
8.34.15 Method SVCAVEI SEAEUSINA() ...eevveeeveeie et et e sn e eraesraenneas 119
8.34.16 Method generateFaul tStati StiCSRECOTAREG() «...vvrveeererrereereriereeieriereete et ene 119
8.34.17 Method generateFaul tStati StiCSRECOTARES()......veverveuerrerieierie ettt r e eene 119
8.34.18 Method generateFaul tStati StiCSRECOTAENT() ...vevvrvirieririeieeerieiete ettt ene 120
8342 Interface Class |PSVCFAUIMBNAGEYcoririieirieeere bbb 120
83421 MEthOd CHIVITY TESERES() ...eveueererteeeterieeet sttt sttt sttt b e et b e et b e s eb e sb e e e b snenneneas 121
8.34.2.2 Method SVCACHIVITYTESIREM() ...veevverreeireerieesieeiteeiteete et estee s e e e e e etessaesreesreesseesseenseensesseessaesseessens 121
8.34.2.3 Method <<deprecated>> fWFaUItREPOrtINA()ccceveereerieeee e 122
8.34.24 Method <<deprecated>> fWFaUltReECOVErYINA()cccveiieieeeeeee e 122
8.34.25 Method <<deprecated>> fwUnavaillablelNd()ccoeveririenieceese e 123
8.34.2.6 Method svcUnavai labDl€INa()ooveeieiieiie e nneas 123
8.3.4.2.7 MELNOO CHIVITY TESEEIT() ..veveueeeeieeeete et sttt et sttt sttt se b be s besbe e sbeseeseeeebesbeneenens 123
8.34.28 Method aPPAVEI SEALUSINA() -..eveeeeereeeeiiitereeesere bbb e b e ene s 123
8.34.29 Method generateFaul tStati StiCSRECOTARES()......veverveuerrerieerie ettt eb e re e eene s 124
8.3.4.2.10 Method generateFaul tStati StiCSRECOTAENT() ..vevvrveriererieieierieieie ettt eene 124
834211 Method generateFaul tStati StiCSRECOTAREG() «...vvrveeererrereererienieieriereete sttt seeneene 125
8.34.2.12 Method FWAVEI SEBEUSINA()covereeeeeeereeeetere ettt 125
8343 Interface Class |PFWHEATBEAIMOIML.........ccoiiriiiiirieeer bbb 125
8.3.4.3.1 Method enablEHEAMBEAL()veverveeererieieierieie ettt sttt st et see e ebesbeneeneas 126
8.3.4.3.2 Method diSablEHEAMBEBE().......oervererrereeieiesieie ettt sttt s be b seeneas 126
8.3.4.3.3 Method ChanQEINLEIVEI()ccveeieeieeie et sre e sreesbeete et e eseesraesraesneas 126
8.34.4 Interface Class IPFWHEAIBERLcccceeiieie ettt ee st sae et e e ae e sneesnaesneas 127
8.3.4.4.1 IMEENOO PUISE() «.vneveieieterie ettt sttt sttt sttt et st et se et ebese et ebesee e ebesbeneenens 127
8.345 Interface Class |pSVCHEABEAIM QMLcoii ittt nnes 127
83451 Method enableSVCHEAMBEBL()veverveeetirieieterieet ettt 128
8.3.45.2 Method diSablESVCHEAIMBEAL()........veverreeeeiriereeierie ettt b e b e 128
8.3453 Method ChanGEINEEIVEI()oveuerrereeeeie ettt b e st se e b b nneneas 128
8.34.6 Interface Class IPSVCHEAMBERLcouiiiiirieee bbb 129
8.346.1 IMEENO PUISE() .ttt b et b e et b e et b e et b e se et eb e s b e e ebesbenneneas 129
8.34.7 Interface Class IPFWLOBAMEBNAJEScccueieereeieeieerieeeeseeseeste e e e tesaessaesreesreesseeseesseeneesseessanssens 129
8.34.7.1 V= 1o To = oo {0 7= o [USSR 130
8.34.7.2 Method createl 0adL eVelNOtIfiCaION()veiovereereeii e 131
8.34.7.3 Method destroyL oadL evelNOtifiCaLON()eereerreieeieiesee et neeas 131
8.34.74 Method SUSPENANOLIFICALTON() ...vveveeeeieeiee et sre e e nneesraesreenneas 131
8.34.75 Method reSUMENOLITICALTON()vveveeieiee e e e sre e sraesraennees 132
8.34.7.6 Method QUErYL OBOSIAISREG()....+eveverrereererrerieierte ettt sttt ettt b e et b e e eb e e ebesrenneneas 132
8.34.7.7 Method QUErYSVCL 0A0SEAESRES()veveueererieeeterieeete ettt sttt sr et sb e e sn i 132
8.34.7.8 Method qUErySVCL OAOSEEESEIT()veveveeereieeeeterteiet ettt 133
8.34.8 Interface Class IPSVCLOBAMBNAGEYc.curirieiriiieirie ettt bbb 133
83481 Method [0adL eVelNOLIfiCaTON() ... c.eevereererrerieeete et 134
8.3.4.8.2 Method SuSPENANOLIFICATON()e.veueerereeieterieeet et eb e e b e 134
8.3.4.8.3 Method reSUMENOLITICALTON()veeveeieiee e st re e sraesraenneas 134
8.34.84 Method createl 0adL eVelNOtIfiCaION()veivereereeie et neees 135
8.3.4.85 Method destroyL oadL evelNOtifiCaLiON()vereereeereieeesee et neeas 135
8.3.4.8.6 Method qUErySVCLOAOSIAISREI(). . . veereerrrerreeiriertreiiereeeeseeseeseesteestesseesseesreesseenseenseensesssesseessens 135
8.3.4.8.7 Method qUErYLOBASIAISRES()vveveeeereeiie sttt sttt e e sreesre e sraesraenneas 135
8.3.4.8.8 Method qQUErYLOBASIAESEIT()vveveiieiee ettt e e nneas 136
8.349 INtErface Class IPFWOAIMooiiiieet ettt ettt bbbt bbb 136
8.349.1 Method systemDaETIMEQUEY() ...veververerrerieiererieeete ettt eb bbb e b b e b b e sesreneenens 136
8.3.4.10 INtErface Class IPSVCOAM ..ottt b et b et b et be b 137
8.3.4.101 Method systemDaETIMEQUENY()eovereuirrerieieterieiete sttt b et b e e b e s e b e se b sreneenens 137
8.35 Event Notification INterface ClIassesS........oiiiiiieiieee ettt 138
8.35.1 Interface Class |PFWEVENINOLIfICALION...........ceii et 138
83511 VK= 1glee Rerg== it N\ Lo (] o= i o] o) IS 138
8.35.1.2 [\V/T= 1 gTee oo o)V \ o X o= i o] ol S 138
8.35.2 Interface Class |pSVCEVENINOLITICALIONcoveiicc et 139
8.35.2.1 (\V/T= 1o To = ool \\ o (Koo o] IS 139

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 8 ETSI TS 129 198-3 V7.1.0 (2007-06)

8.35.2.2 Method notificatioNTerMiNALEO()veevereeieeieereerie e et sre e e e sr e e sreesreensaesreesneas 140
84 State TranSitioN DIBGIAIMS........cciiieiieieesee st ese et e este et e e seesseesreesteesseetesseesseesseenseanseasseaseessenssensseesesneennns 140
84.1 Service Registration State Transition DIagramsS.........ccvcueveerieenieesiesiesieeseeseesee e seesseesseessesssesseessesssees 140
84.1.1 State Transition Diagrams for |pFwWServiCeRegiISIration.ccveveeiieecesie e 140
84111 SCF REGISIENEA SEALE. ...ttt e b et a et b e e b e eae e e e e 141
84112 SCF ANNOUNCED SEBEE........eeueeueeteie et sttt sttt sttt h et e et se bbbt sb et e se e e et e sneene e e ennenes 141
84.2 Service Instance Lifecycle Manager State Transition Diagramsc.ccoeerereeneneieneneee s 141
84.3 Service Discovery State TranSition DIiaQramS.........coeoeeeiirieeneieee et 141
844 Integrity Management State TranSition DiagramsS...........ccviereererieniresieeses e 142
8441 State Transition Diagrams for |pFWLOA0M@NAJETc.ccvriiierieenerieesie et ere e eenens 142
84411 Fa [= (= PSSR 142
84.4.1.2 Notification SUSPENAEA SLALE...........ccceeiieri e sr e e e e e s e eraesraesneas 142
84413 ACTIVE SEBLE ...ttt bbbt bt e e b et bt bt eh e et e e et et b e ne e e e nns 142
8.4.4.2 State Transition Diagrams for [pFWFaUItManagerc.oevereerieece et ee e sre e 143
84421 FrameWOrK ACHIVE SEBLE..........ccuiieierie ittt st b e bt et sb e e e e 143
8.4.4.2.2 Framework ACHVITY TESE SEALE.......ccceiee ettt et sre e naesraenneas 143
8.4.4.2.3 ApPPlication ACHIVILY TESE SEALEeevieiee ettt e re e saeenreenreens 143
84424 Framework FaUITY SEBEE.........cccciiiieerieeeteriee ettt et s s b e neneene s 143
845 Event Notification State Transition DiagramS.........co.cceeereieririeieninie sttt s 143
9 SEIVICE PrOPEITIES. ...ttt bbbttt b e bbb s et et e e st e nenb b e e e 144
9.1 SErVICE SUPEN NG SUD TYPES.....eieeiiititeiirteriee sttt b et bbbt b st b e st b e bt et e b 144
9.2 S VLo c o o o< YN Y/ 0= 144
9.3 GENEral SEIVICE PrOPEITIES ... eeiieie ettt e st e e te e saeesaeeteeneeeseasseeeseesseesseenteeneeeneennns 146
931 SEIVICE INITIE.ttt ettt bbbt bt e st e e e b se e eb e s bt eh e e h e e e e bese e e b e s bt eh e e e e b e abesheebe e e entennen 147
932 S VT AT = £ o] o TR OO OS PP PRSPPI 147
9.33 SEIVICE D ..ttt bbb bttt b bRt b a e R R e R e bt Rt R e Rt ke e e e b e bt eheeb e e e nnennen 147
9.34 SEIVICE DESCIIPILION. ...ttt ettt b e et b e bbbt b se et b e s e e st e b e et eb e bt ebe b 147
9.35 0o [0 Tox B V=0 oS 147
9.3.6 (0o (U ot AT = £ T o SR 147
937 Yoo OSSP 148
9.38 OPEIALTON SEL ...ttt b et b bt h e b et bt b e e bt e b et e bt s b e e e b nb et e b e s e st eb e e et b e b e bt b e 148
9.39 COMPELIDIE SEIVICE. ...ttt et e et b et b et et b e bbb 148
9.3.10 Backward Compatibility LEVELcooi ettt ae e e e nreenneens 149
9.3.11 Y TTo = o T L= U] = o PR 150
9.3.12 (D= e AV H o= (= o (TSRO UR USSP 150
9.3.13 Migration Dale AN TiME......eeiieieeeieeeeee e e e se st e et e s e s e e s re e teesaeeseessaesseeteensesneesnnesaeesseenseensenns 151
9.3.14 Support for Regular EXpressions in AdAreSS RANGE.......c.vccvveeireereerieseesiesiesee e sreesse e ese e snaesseesnees 151
O T DT r= B = 11 1o PSSP 151
10.1 Common Framework Data DefiNitiONScoiiiiieieeeee et s se e seen 152
10.11 LI LGS 1= 172N o] o] 5 OO UTOTRSUROR 152
10.1.2 TPCHENEAPPIDLISE ...ttt b bbb bt bbb bt s b s e st bt e e bt b neens 152
10.1.3 TPDOMAINID ...ttt b ket s e bbb e e aeeae e e e e e b e sReeb e e Rt ehe e e e s e nbesreebeeneenne e enres 152
10.1.4 LI 1To g T o I Y o= 152
10.15 TPENLOPID ...t bbbttt e bbb e e st e e e e e R bt e Rt b e Rt e R e et et e Rt eh e a e e e nrenreras 152
10.1.6 QLI o 0] 0= Y]\ V=T 1T PSPPSR 153
10.1.7 QI oL 0o T= 1 YA = = S 153
10.1.8 I 0] (0] 0= ¢ TSROSO 153
10.1.9 TOPTOPEITYLISE ...ttt ettt bbb bbb b e bbbkt h e Rt e s bt et bt n e e enn 153
10.1.10 QLI =01 o1 5 = SRS 153
10.1.11 LI o USSR 153
10.1.12 LI 015 = LYot TSP 153
10.1.13 TSEIVICELISE .tttk b bt h b e bbbk b e R R bR bbb e bt e 153
10.1.14 TPSEIVICEDESCIIPLIONc.eeceeeetieeteeie et e e e st e e e e e e e e teeste e te e s e estessaesseesseesseensesneesneesneanseansennsenns 153
10.1.15 TPSEIVICEID ...ttt ettt b e bbbt bt e a e e e e e ee e e b e s bt e heeae et e s e et e b e besReebeeaeene e e ennan 154
10.1.16 TPSEIVICEIDLISE ...ttt ettt e bbbt e e e e b bt Rt e b e et e e e e et e besheeb e et enneneenres 154
10.1.17 TPSEIVICEINSIANCEID ... e et e e este et e et eesaessaeste e seeseentesnnesneesneenseanseensenns 154
10.1.18 T PSEIViCETYPEPIOPEITY ..o ettt e e e e s e st e e te et e es e estessaesseesseesseesesneesneesneanseensennsenns 154
10.1.19 T PSErViCETYPEPIOPEITY LIS ...ttt st se et e et et e st et e e be e e estessaesreesneesneenseenseensenns 154
10.1.20 TPSErVIiCETYPEPIOPEITYIMOUE. ... ettt bbbt b et 154
10.1.21 TPSErVICEPTOPEItY TYPENBIME.ctiieiiiteeeieet ettt b bbb bbbt b e b b seeb e e ens 154

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 9 ETSI TS 129 198-3 V7.1.0 (2007-06)

10.1.22
10.1.23
10.1.24
10.1.25
10.1.26
10.1.27
10.1.28
10.1.29
10.1.30
10.1.31
10.1.32
10.1.33
10.1.34
10.2
10.2.1
10.2.2
10.2.3
10.24
10.2.5
10.2.6
10.2.7
10.2.8
10.3
10.3.1
10.3.2
10.3.3
10.34
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9
10.3.10
10.3.11
10.3.12
10.3.13
10.3.14
104
104.1
104.2
10.4.3
104.4
10.4.5
10.4.6
104.7
10.4.8
10.4.9
10.4.10
10.4.11
10.4.12
10.4.13
10.4.14
10.4.15
10.4.16
10.4.17
10.4.18
10.4.19
10.4.20
10.4.21
10.4.22
10.4.23
10.4.24

TPSErViCEPTOPEITYINGIME.ee et ete sttt e e e te e se e s e e s te e te e teesteestessaesseesseesseenseeseesneesseenseensennsenns 154
TPSErViCeProPErtYNAMELISL......cviciecieee ettt et e e e e e tesnaesseesreesneesseenseensenns 155
TPSErVICEPIOPEITYV AIUE.eeieeie ettt e e s te e te e te et e s e ssaestaeste e teensesntesneesneesneanseenseensenns 155
TPSErViCEPrOPErtYV AlUELISL.....cciicieceece ettt et e s e st e st e s teenteeeesaeesneenneaseensenns 155
I 0SS V0= (0] 0T S 155
I 0SS Vo= (0] 0= 1 I S 155
TPSENVICESUPPIIEITD ...ttt bbb e bt bbbt bt et b et b e nn e ens 155
TPSErVICETYPEDESCIIPLION ...ttt ettt b ekt b et b bbb e st bbbt e e ens 155
TPSENVICETYPENGBIMIEottt t et b et b et b et b e et b b e e bt s bt e e bt b e b e bt s e st b et e e e bt ne e s ens 156
TPSEVICETYPENBMELISE ...ttt bbbttt b b e 156
I IS L= o I o= TSROSO 156
TPSErViCETYPEPIOPEITYV A UE.ottt sttt te s e st e e e sreenaeetesneesneenneenseensenns 157
TPServiceTYPePrOPErtYV A UELISEocieeeeciecee et e sae e s esneesneenaeenneens 157
Event Notification Data DEfiNitiONS..........cccoiieiriiiiieiee et s b e s 157
TPFWEVENTINGITIE ...ttt bbbt e st esa b e e s abeesab e e sbbeenbe e e sabeesabeesnbeesabeesareenares 157
I o T Y= o (O (- S 158
BN o T Y= 14 (TSR 158
TPFWMigrationServiceAVa labl€INFO ..o s 158
TPMigratioNAAditiONAITNTOc.eiiirieieee bbb e 159
TPMigratioNAdditi ONA I NFOTYPE. ...c.eeeiiiieceit bbbt e 159
TPMigratioNAdditiONAITNTFOSELc.eiiiir bbb e 160
TPFWAQGIEEMENTINTO ...ttt bbbt b b e st bbbt nn e ens 160
Trust and Security Management Data DefiNitioNns ..o e 160
QLI 0T e e =] Y/ o= TSP 160
LI TN U 1118/ =TS 160
RV 26 T TP S U PRSPPI 161
RV 26 T PSP PP UR USSP 161
RV 26 T PSSO PP USSP 161
QLI 07N U 110100 0 o S 161
TPINEEITACENGITIE ... ettt bbbt b et b bbbt b e et bt e bt e e ens 161
TPINEETACENGIMELISE ...ttt b et b et b et b e ne e ens 161
TPSEIVICET OKEN. ...ttt bbb et b et b bbbt b e bt b eh bt b et bt e e bt nn e e ens 161
TPSIGNALUrEANASENVICEMQE ...ttt b et b et b et b e bt e e eb e ese b b e e b b nnens 162
TPSIGNINGATGOITENM ... bbbt bbbt b et b e nn e ens 162
TpSigningAlgorithmCapahi lityLiStceeceieeiee e ne e e ae e e neeaeenreens 162
QLI TAN U Y = T o S 163
TPAUINMECHANISINILISE ... eeiteeie ettt e e st e te e e e e sseesaaesseesneesneenseenseensenns 163
Integrity Management Data DefiNitiONS...........coieiieiieicesesees ettt e e e saees 163
QI AN Y Y 1= € (=SS 163
QI o =5 (= oo o S 163
TOFAUIESEAES. ...ttt b et bbb e bt et b e bt s b R e R R b ne bbbt r e enn 163
TPFAUIESEALI SHICSETTON ...ttt ettt b et b et b et b s s bbbt b e bt b e et bt e b nn e e ens 164
TPFBLITSEBESSEL ...ttt b bbb et b et b et b s et bt s et eb e bt e e st b b e e bt n e enen 164
TPACHVITYTESIID ...ttt bbbt et b et b st b s b et bt b e b et b st e e e bt ne e s ens 164
TPINLEITACERAUIT ...t bbbt bbbt et b et b e se e ens 164
RV o Lo SO PE PR RURRR 164
TPFWUNQVAITREBSONoeeeeiecie ettt e e e sae e s te e te et e eseeeseesta e te e teensesneesneesneesneenseenseensenns 164
QLI 10 7= o | =Y 164
QI o oo I I 0= o] o S 165
QLI o070 | a2 S 165
LI o070 | o] 1T o S 165
I o070 S = oSS 165
Bl o1 Moz o S e (o L SO PRSPPSO 165
TPL OAOSEALI SHICD@IAcveaeeeeeeneetertee ettt ettt b et b e bbbt b b s b e eb b e s e e bt st e e bt e e ens 165
TPLOAOSEALI StICENTITYID ...ttt b bbb e 166
TPL OA0SEALT St CENII Y TYPE ...ttt sttt b ettt b et bt b e et b bbb ens 166
TPLOAOSEALISHCINTO ...ttt b bbbt b et b et b e nr e 166
QI I0r= 0 = S o L g (01N o S 166
QI o 0720 S = S o = o S 166
TPSVCAVAI SLALUSREASON.c.eeieeeieeiee et s et e st et e e eestessaesteesseeseensesneesneesneenseenseensenns 167
TPAPPAVA I SEBLUSREBSON......c.veeeeeiieeiieteeseesteee e e ssteseeseesaeesteesteeteesteessessaesseesseesseenseeeesseesseesseansennsenns 167
TPLOBATESIID ...ttt bbbt bt a et e e e b e s et eb e e bt e b e e e e b e nbesbeeb e e e e e e e e res 167

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 10 ETSITS 129 198-3 V7.1.0 (2007-06)

10.4.25 QI O L = = e I S 167
10.4.26 QLI o1 W L1 (= | 5 OSSP 167
10.4.27 TPFWAVEH SEBEUSREASON ...ttt sttt sttt se e s e st b et ese e bt st esesseseeneebessenesbesteneeseseeneens 168
10.5 Service Subscription Data DEfINITIONSccccviciiieiriesiee et e st e re e reeneeneeenes 168
10.5.1 QLI o 0] 0= Y]\ V=T 1T PSPPSR 168
10.5.2 QI oL 0 o T= 1 YA = L= S 168
10.5.3 TPPTOPEITY ... et h e s e e e e n e 168
1054 TOPTOPEITYLISE ...ttt etttk b bbbt h bbb bt ekt b e h Rt e bbb et bt e e a e e e enn 168
1055 TPENTOPPIOPEITIES ...ttt ettt ettt h bttt bbbt h bt e bt b s h bt e e bt b e e b b e st bt b e e bt e e ens 168
10.5.6 QLI =1L o PRSP PP PR ORP 169
10.5.7 TPSENVICECONIIBCLID ..ottt bbb et b bbbt b bbb ens 169
10.5.8 TPSErVICECONIIACIIDLISE ... eeceeecteesieeteee e e et e e et e st e e e esaessaesreesaeesseeseesneesneanseenseansenns 169
10.59 TPPEISONNGITIE ..ottt e et e s bt e s h b e e sate e s bt e e ea b e e s abeeeab e e sabeenbte e sabeesabeesabeesabeesnreenares 169
10.5.10 TPPOSLAI AGAIESS.......cueeterieieteriee ettt sttt st sttt se et et e sae st e bese e st e beseeneebesaeneebesbeneebenbeseenenbeneeneas 169
10.5.11 BN o= L= o 070 1 N [g o= S 169
10.5.12 LI 0] 7= SRR 169
10.5.13 TPHOMEPAGE ...ttt e e b e e be e et et e sb e e e bt e e e be e e s bbe e s ate e nabeesnreennres 169
10.5.14 TP SONPIOPEITIES.cve ettt ettt ettt sttt e et bt et eb e se et b e s e et e b e se e e e bt se et ebeseeneebesbe e ebenbeneeneebenreneas 169
10.5.15 I8 = £ o o DO P USRS P RSP OURPOPR 170
10.5.16 TPSENVICESIAIDE@LE. ...ttt ettt ettt bbb et b e et b e e bt e e e e bt s b e bt bt e st bt st e e ebenn e ens 170
10.5.17 TPSENVICEENUDEGLE.......cveeeeeiteieeieet ettt b b e bt e b et b et b b et b e e e bt st e e e bt ne s ens 170
10.5.18 TPSEIVICEREIUESION ...ttt ettt ettt b et b ettt b et e bt h s h bt s ekt e bt e e st e bt eae b e s e s e eb e et e e ebenn e s ens 170
10.5.19 TPBITINGCONLACTecveteeeteiteeet ettt bt e b b st b e bbbt b e s et bt e e bt e e e ens 170
10.5.20 TPServiCeSUDSCIi Pt ONPIOPEITIES.c..ecieeee e see e e ee st e e st e s et eertessaesreesreesreenseeeesreesneesseenseensenns 170
10.5.21 QI 05 V0T O 11 ot S 170
10.5.22 TPSErViCeCONtraCtDESCIIPLION.eciieieeeee ettt et e e e e teseesreesreesaeesaesreesneenseenseensenns 171
10.5.23 I o O I 01N o] o] o o= =S 171
10.5.24 I 0O I g 17N o] o] 1= o (o) o S 171
10.5.25 LI 015 o | TSP 171
10.5.26 TPSAGIDLISE «..eoveoeeecvececeee ettt s et s st en s n st s st en s s 171
10.5.27 TPSAODESCIIPLION ...ttt ettt bbbt b b e b bt b b e s bt bt e bt e b e e e bt bt s e st bt b e e bt e e enn 171
10.5.28 LI 015 o T TR 172
10.5.29 TPSENVICEPTOFITEID ...ttt bbbt b bbbt e et b et b e e ens 172
10.5.30 TPSENVICEPTOFTEIDLISE. ...ttt b bbb bbbt b e s 172
10.5.31 QI 0SS V0= (0 = S 172
10.5.32 TPSErViCePrOfilEDESCITPLION.ecviecieeieee et e et e e e e sraesre e teeteentesneesneesneenseenseensenns 173
10.5.33 I OIS o (0] T = T ST 173
105.34 TPAAASagM eMDErSCONTIICE......c.ei et e te s e s e s e e s reesteeaeeseesneenaeenseensenns 173
10.5.35 TPAAdSagM emMbErSCONTIICILISE.......eeiieieseestiesees et e e s e e e steeaessaesneesneeseenneens 174
10.5.36 TpPAsSIgnSagT 0ServiceProfil @CONTIICE.........oieeeeece e e 174
10.5.37 TPAsSIgNSagT 0SerViceProfil@CONTIHICELISE .. .o.veeeieieceereeeere e 174
R (= o 10 T O =S\ 175
Annex A (normative): OMG IDL Description of Frameworkcccccvveveveieccese e, 176
Annex B (informative): W3C WSDL Description of Framework...........cccecvvveeeveceeseseese e 177
Annex C (informative): Java™ API Description of the Frameworkccccevvvieecevicceese e, 178
Annex D (informative): Description of the Framework for 3GPP2 cdma2000 networks.............. 179
IR R =g 1= o= o1 o S 179
D S o= o) o (o= o1 o T 179
D.21 ClAUSE L: SCOPEeveteueeterteitete sttt ettt ettt h b st bt e bt b e eae e b e s e s e e b e b e s e b e Eeae e b e b e e e bt b e b ehe e b e s e ne e b e b e ne e b e be e e 179
D.2.2 ClalSE 2: REFEIBINCESc.ee ettt ettt ettt e e st e et e e et e se e besaeebeeaeeneessensesaesaeeneeneenseseens 179
D.2.3 Clause 3: Definitions and abreViations.............cooiieiieieiee e ae e see e saesse e eneeseens 179
D.24 Clause 4: OVerview Of the FramEBWOIK...........c.ooi et sre e enee e 179
D.25 Clause 5: The Base Interface SPeCifiCaliON..........cccuiiieiieiierese sttt ee s 179
D.2.6 Clause 6: Framework ACCESS SESSION APcoiiiieiiiiieiee ettt st b et e e et e sbe e e e 180
D.2.7 Clause 7 Framework-to-Application Sequence DiagramsS..........cceieeieeieereeieeeeeseesieeseee e saeseesreessesnessnns 180
D.2.8 Clause 8: Framework-t0-SErVICE APo ettt et e et sae b e e 180

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 11 ETSI TS 129 198-3 V7.1.0 (2007-06)

D.2.9 Clause 9: SEIVICE PrOPEITIES.iiie ettt ettt e st e s e e te e ae st e sae e aeenteesseeneeesaesseesseenseenseenneenns 180
D.2.10 Clause 10: Data DEfiNITIONS........cceieiieieriertesie st etese ettt st sh ettt s e s sesbesae et e saeese e e e nsesbesbesseeneenneseen 180
D.2.11 Clause 11: EXCEPLION CIASSES.....cc.uciiiiieiieeieeitee st este et eteeseesteesteesteestesaesseesseesseasseeseensesssesseesseessesssenssesnsesnes 180
D.2.12 Annex A (normative): OMG IDL Description of the Framework.............cccccevveieeercceneeseeseee e e 180
D.2.13 Annex B (informative): W3C WSDL Description of the Framework...........cccceevvevvecvcie e 180
D.2.14 Annex C (informative): Java™ API Description of the Frameworkcccovvveveeniece e 180
Annex E (informative): ChangE hiStOrYocueeiici e e e e 181
[TS (Y 182

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 12 ETSITS 129 198-3 V7.1.0 (2007-06)

Foreword
This Technical Specification has been produced by the 3" Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z
where:
x thefirst digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.

y the second digit isincremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z thethird digit isincremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part 3 of a multi-part TS covering the 3" Generation Partnership Project: Technical
Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as
identified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1: "Overview";

Part 2: "Common Data Definitions”;
Part 3: " Framework";

Part 4: "Cdl Control";

Sub-part 1: "Call Control Common Definitions*;
Sub-part 2: "Generic Call Control SCF";
Sub-part 3: "Multi-Party Call Control SCF";
Sub-part 4: "Multi-Media Call Control SCF";

Sub-part 5: "Conference Call Control SCF"; (not part of 3GPP Release 7)
Part 5: "User Interaction SCF";
Part 6: "Mobility SCF";
Part 7: "Terminal Capabilities SCF";
Part 8: "Data Session Control SCF";
Part 9: "Generic Messaging SCF"; (not part of 3GPP Release 7)
Part 10: "Connectivity Manager SCF"; (not part of 3GPP Release 7)
Part 11: " Account Management SCF";
Part 12: "Charging SCF".
Part 13: "Policy Management SCF";
Part 14: "Presence and Availability Management SCF";
Part 15: "Multi Media Messaging SCF";
Part 16: "Service Broker SCF". (new in 3GPP Release 7)

The M apping specification of the OSA APIsand network protocols (3GPP TR 29.998) is al so structured as above.
A mapping to network protocolsis however not applicable for al Parts, but the numbering of Partsis kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 13 ETSITS 129 198-3 V7.1.0 (2007-06)

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

OSA API specifications 29.198-family OSA API Mapping - 29.998-family
29.198-01 | Overview 29.998-01 Overview
29.198-02 | Common Data Definitions 29.998-02 Not Applicable
29.198-03 | Framework 29.998-03 Not Applicable
Cal 29.198- 29.198- | 29.198- 29.198- 29.998-04-1 Generic Call Control — CAP mapping
Control 04-1 04-2 04-3 04-4 29.998-04-2 Generic Call Control — INAP mapping
(CO) Common | Generic | Multi- Multi- 29.998-04-3 Generic Call Control — Megaco mapping
SCF CC data CCSCF | PatyCC | mediaCC | 29.998-04-4 Multiparty Call Control — ISC mapping

definitions SCF SCF

29.198-05 | User Interaction SCF 29.998-05-1 User Interaction — CAP mapping

29.998-05-2 User Interaction — INAP mapping

29.998-05-3 User Interaction — Megaco mapping

29.998-05-4 User Interaction — SM'S mapping

29.198-06 | Mobility SCF 29.998-06 User Status and User Location — MAP mapping
29.198-07 | Termina Capabilities SCF 29.998-07 Not Applicable

29.198-08 | Data Session Control SCF 29.998-08 Data Session Control — CAP mapping
29.198-09 | Generic Messaging SCF 29.998-09 Not Applicable

29.198-10 | Connectivity Manager SCF 29.998-10 Not Applicable

29.198-11 | Account Management SCF 29.998-11 Not Applicable

29.198-12 | Charging SCF 29.998-12 Not Applicable

29.198-13 | Policy Management SCF 29.998-13 Not Applicable

29.198-14 | Presence & Availability Management SCF 29.998-14 Not Applicable

29.198-15 | Multi Media Messaging SCF 29.998-15 Not Applicable

29.198-16 | Service Broker SCF 29.998-16 Not Applicable

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 14 ETSITS 129 198-3 V7.1.0 (2007-06)

1 Scope

The present document is Part 3 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application devel opers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA
are contained in 3GPP TS 23.198 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Framework aspects of the interface. All aspects of the Framework are defined in the
present document, these being:

e Sequence Diagrams,

e C(ClassDiagrams;

o Interface specification plus detailed method descriptions;
e State Transition diagrams;

e Datadefinitions;

e |IDL Description of the interfaces.

e WSDL Description of the interfaces

o Referenceto the Java™ API description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CT WG5, ETSI TISPAN and The Parlay Group, in co-
operation with a number of JAIN™ Community member companies.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

o References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

e For aspecific reference, subsegquent revisions do not apply.

o For anon-specific reference, the latest version applies. In the case of areference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TS 29.198-1: "Open Service Access; Application Programming Interface; Part 1:
Overview".

2] 3GPP TS 22.127: " Service Reguirement for the Open Services Access (OSA); Stage 1".

[3] 3GPP TS 23.198: "Open Service Access (OSA); Stage 2".

[4] |ETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996].

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 15 ETSI TS 129 198-3 V7.1.0 (2007-06)

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Overview of the Framework

This clause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating
applications.

The Framework API contains interfaces between the Application Server and the Framework, and between Network
Service Capability Server (SCS) and the Framework (these interfaces are represented by the yellow circlesin the figure
below). The description of the Framework in the present document separates the interfaces into two distinct sets:
Framework to Application interfaces and Framework to Service interfaces.

Figure:

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

- Authentication: Once an off-line service agreement exists, the application can access the authentication
interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be
mutual. The application must be authenticated beforeit is allowed to use any other OSA interface. Itisapolicy
decision for the application whether it must authenticate the framework or not. It isa policy decision for the
framework whether it allows an application to authenticate it before it has completed its authentication of the
application.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 16 ETSITS 129 198-3 V7.1.0 (2007-06)

- Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previously authenticated application is allowed to do. Authentication shall precede
authorisation. Once authenticated, an application is authorised to access certain SCFs.

- Discovery of Framework and network SCFs: After successful authentication, applications can obtain available
Framework interfaces and use the discovery interface to obtain information on authorised network SCFs.
The Discovery interface can be used at any time after successful authentication.

- Establishment of service agreement: Before any application can interact with a network SCF, a service
agreement shall be established. A service agreement may consist of an off-line (e.g. by physically exchanging
documents) and an on-line part. The application hasto sign the on-line part of the service agreement beforeiit is
allowed to access any network SCF.

- Accessto network SCFs. The Framework shall provide access control functions to authorise the access to SCFs
or service datafor any APl method from an application, with the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server (SCS):

- Registering of network SCFs:. SCFs offered by a SCS can be registered at the Framework. In this way the
Framework can inform the Applications upon request about available SCFs (Discovery). For example, this
mechanism is applied when installing or upgrading an SCS.

The following clauses describe each aspect of the Framework in the following order:

e The sequence diagrams give the reader a practical idea of how the Framework isimplemented.

e The class diagrams clause shows how each of the interfaces applicable to the Framework relate to one another.
e Theinterface specification clause describes in detail each of the interfaces shown within the class diagram part.

e The Sate Transition Diagrams (STD) show the transition between states in the Framework. The states and
transitions are well-defined; either methods specified in the Interface specification or events occurring in the
underlying networks cause state transitions.

e Thedata definitions clause shows a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
common data types part of the present document (29.198-2).

An implementation of this API which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method. Where a method is not supported by an implementation of a Framework or Service interface, the
exception P METHOD_NOT_SUPPORTED shall be returned to any call of that method. Where a method is not
supported by an implementation of an Application interface, a call to that method shall be possible, and no exception
shall be returned.

5 The Base Interface Specification

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specificationis
described below.

51.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for client applications are denoted by classes with name Ip<names.
The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces
between a Service and the Framework, the Service interfaces are typically denoted by classes with name | pSvc<name>,
while the Framework interfaces are denoted by classes with name |pFw<name>.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 17 ETSITS 129 198-3 V7.1.0 (2007-06)

5.1.2 Method descriptions

Each method (APl method ‘call’) is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a'Req' suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a'Res' or 'Exrr’ suffix for method results and errors, respectively. To handle

responses and reports, the application or service developer must implement the relevant IpApp<names> or
IpSvec<names interfacesto provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible val ues are described. Parameters described as 'in' represent those that must have
avalue when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

514 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class Ipinterface

All application, framework and service interfaces inherit from the following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

5.3 Service Interfaces

53.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface’. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

54 Generic Service Interface

54.1 Interface Class IpService
Inherits from: IpInterface

All service interfacesinherit from the following interface.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 18 ETSITS 129 198-3 V7.1.0 (2007-06)

<<Interface>>

IpService

setCallback (applinterface : in IpinterfaceRef) : void

setCallbackWithSessionID (applinterface : in IpinterfaceRef, sessionID : in TpSessionID) : void

541.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It isnot allowed to invoke this method on an interface that uses SessionlDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or isno
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef
Specifies areference to the application interface, which is used for callbacks.

Raises
TpCommonExceptions, P_INVALID INTERFACE TYPE

5.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. Itisnot alowed to invoke this method on an
interface that does not use SessionlDs. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters

appInterface : in IpInterfaceRef
Specifies areference to the application interface, which is used for callbacks.

sessionID : in TpSessionID
Specifies the session for which the service can invoke the application's callback interface.

Raises
TpCommonExceptions, P INVALID SESSION ID, P INVALID INTERFACE TYPE

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 19 ETSITS 129 198-3 V7.1.0 (2007-06)

6 Framework Access Session API

6.1 Sequence Diagrams

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access
The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For
this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained
through a URL, aNaming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage,
the client has no guarantee that thisis a Framework interface reference, but it isto initiate the authentication process
with the Framework. The Initial Contact interface supports the initiateA uthenticationWithV ersion method to allow the
authentication process to take place.

Once the client has been authenticated by the Framework, it can gain access to other framework interfaces and SCFs.
Thisis done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

Independently, the client could decide to authenticate the Framework, before deciding to continue using the interfaces
provided by the Framework.

Client - IpInitial : IpAPILevelAuthentication : IpAccess Eramework

IpClientAP ILevelAuthentication
T T T
| |

1: initiateAuthenticat:ionWithVersion(cIientDomain, authTypé‘e, frameworkVersion)

B

2: selectAuthenticationMechanism()
1

|
3: challenge(i)

| 4: authenticationSuc¢eeded()

T
|

5: challenge()
T

6: authenticationSucceeded()
\

H N

|
7: requestAccess()
Il

8: selectSigningAlgorithm()
1

9:: obtaininterface()

L
g
g
iy i
iy i
i g

1: Initiate Authentication

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 20 ETSITS 129 198-3 V7.1.0 (2007-06)

The client invokes initiateAuthenticationWithVersion on the Framework's "public” (initial contact) interface to initiate
the authentication process. It providesin turn areference to its own authentication interface. The Framework returns a
reference to its authentication interface.

2. Select Authentication Mechanism

The client invokes selectAuthenti cationM echanism on the Framework's APl Level Authentication interface, identifying
the authentication algorithm it supports for use with CHAP authentication. The Framework prescribes the method to be
used. OSA authentication is based on CHAP, which prescribes the MD5 hashing algorithm as the minimum to be
supported. Note however that the framework need not accept this algorithm.

3: The client authenticates the Framework, issuing a challenge in the challenge() method.
4: Theclient provides an indication if authentication succeeded.

5: The Framework authenticates the client. The sequence diagram illustrates one of a series of one or more invocations
of the challenge method on the client's APl Level Authentication interface. In each invocation, the Framework supplies
a challenge and the client returns the correct response. The Framework could authenticate the client before the client
authenticates the Framework, or afterwards, or the two authentication processes could be interleaved. However, the
client shall respond immediately to any challenge issued by the Framework, as the Framework might not respond to any
challenge issued by the client until the Framework has successfully authenticated the client.

6: The Framework provides an indication if authentication succeeded.
7. Request Access

Upon successful authentication of the client by the Framework, the client is permitted to invoke requestAccess on the
Framework's API Level Authentication interface, providing in turn areference to its own accessinterface. The
Framework returns areference to a framework Access interface that is unique for this client. The success or failure of
the client's authentication of the Framework does not affect the client's right to invoke requestAccess.

8: Theclient and framework negotiate the signing algorithm to be used for any signed exchanges.

9: The client invokes obtainlnterface or obtainlnterfaceWithCallback on the framework's Access interface. Thisis used
to obtain areference to a framework interface that supports the required framework functionality, such as service
discovery, integrity management, service subscription etc.

6.1.1.2 Framework Terminates Access

This sequence shows how a Framework could terminate an application's use of the Framework and of al service
instances. Thistype of termination is unusual, but possible with the terminateAccess method. Note that if at any point
the framework's level of confidence in the identity of the client becomestoo low, perhaps due to re-authentication
failing, the framework should terminate all outstanding service agreements for that client, and should take stepsto
terminate the client's access session WITHOUT invoking terminateAccess() on the client. Thisfollows a generally
accepted security model where the framework has decided that it can no longer trust the client and will therefore sever
ALL contact withit.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 21 ETSI TS 129 198-3 V7.1.0 (2007-06)

AppLoaic = ‘ : IpAccess ‘ : IpMultiPartyCallControlManag| _: IpUserLocationCamel

‘I AppService

‘ IpClientAccess

IpServiceAgreem EmManagEmel'\J
T T

|
1;signServiceAgreement()
i

|
|
|
2;signSenviceAgreement()

3: ceateNotification()

|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
b

4:

U

|
|
U
|

y 1
d 1
i "

T T
| |
| |
1 |
| |
| |
| |
| |
| [‘
	1
: 5: le:rrmnaleAcceﬂ) :

U ! |
\ | ‘
| | ‘
| | ‘
| | ‘
| | :

1: Following successful authentication and service discovery, the client initiates the service agreement signing process
(not shown). Thisis completed when the client invokes signServiceAgreement on the Framework's
I pServiceAgreementM anagement interface, and a reference to an instance of a service manager interface is returned.

2: Theclient (application) had initiated service agreement signing process for a second service agreement (not shown),
and when the client signs this second service agreement, a reference to an instance of another service manager, for
another service type, isreturned.

3: The application starts to use the new service manager interface.
4: The application starts to use the other new service manager interface.

5: The framework decides to terminate the application's access session, and to terminate all its service agreements.
Thisisan unusua and drastic step, but could be e.g. due to violation or expiry of the application's service agreements,
or some problem within the framework itself. The framework will also destroy each of the service managers the
application was using (not shown). The application is now no longer authenticated with the framework, and all
Framework and service interfaces it was using are destroyed.

6.1.1.3 Application Terminates Access

This sequence shows how an application could terminate its use of the Framework and of all serviceinstances. This
type of termination is unusual, but possible with the terminateAccess method.

App Logic : : IpAccess

IpCIient_Access
I

IpMulti PanyCaE?ontrolManager IQUserLocgtionCamel

1: destroyNotification()

I
|
|
|
|
|
|
|
|
2: triggeredLoqationReponingStop()

-

3: terminateAccess()

Lo |

@

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 22 ETSI TS 129 198-3 V7.1.0 (2007-06)

1. Theapplication terminatesits use of the multi-party call control service manager in a controlled manner.
2: The application ceases to use the user location camel SCF.

3: The application decides to terminate its access session and all its service agreementsin one go. The framework will
also destroy each of the service managers the application was using (not shown). The application is now no longer
authenticated with the framework, and all Framework and service interfaces it was using are destroyed. The
application could have terminated its service agreements one by one, by invoking terminateServiceAgreement on the
Framework's | pServiceAgreementManager interface, and then invoked terminateAccess on the Framework's | pAccess
interface, which would have been a more controlled shutdown.

6.1.1.4 Non-API level Authentication

The following figure shows a client accessing the OSA Framework for the first time. The client and the framework have
mutually authenticated one another using an underlying distribution technology mechanism, or the client and the
framework recognise each other as atrusted party, not requiring authentication.

Client . Ipinitial Framework . IpAuthentication . IpAccess

initiateAuthenticdtionWithVersion(cIientDomain, authTypé, frameworkVersion):
| | |

] |
U Underlying Distribution Technology Mechanism is used for application AN
identification and authentication, or both the client and the Framework
recognise each other as trusted parties not requiring API level
authentication. There is no requirement as to when authentication should
take place using the Underlying Distribution Technology Mechanism:
before initiateAuthenticationWithVersion is invoked, after requestAccess is
invoked, or between the two.

T

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

: 1

| | |

2: reques“tAccess() : :
1 1 []

| |

| | |

|

|

|

|
3, selectSigningAlgorithm()

!
!

|
:
4: obtaininterface()
|
|
|
|
|
|
|
|
|
|

1: Theclient callsinitiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to
specify the type of authentication process. In this case, the client selects to use the underlying distribution technology
mechanism for identification and authentication. What that mechanism is, if it even exists, is outside the scope of the
API.

2: Theclient invokes the requestAccess method on the Framework's Authentication interface. This returns areference
to the framework Accessinterface that is unique for the client.

3: If the authentication was successful, the client and the framework can negotiate, on the framework's Access
interface, the signing algorithm to be used for any signed exchanges.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 23 ETSITS 129 198-3 V7.1.0 (2007-06)

4. The client can now invoke obtaininterface or obtainl nterfaceWithCallback on the framework's Access interface.
Thisis used to obtain areference to aframework interface such as service discovery, integrity management, service
subscription etc.

6.1.1.5 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate
one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processesto
provide confidentiality, and by digital signaturesto ensure integrity. The inclusion of cryptographic processes and
digital signatures in the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the
Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1) Theclient callsinitiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to
specify the type of authentication process. This authentication process may be specific to the provider, or the
implementation technology used. The initiateAuthenticationWithVersion method can be used to specify the specific
process, (e.g. CORBA security). OSA defines a generic authentication interface (APl Level Authentication), which can
be used to perform the authentication process. The initiateA uthenticationWithV ersion method allows the client to pass a
reference to its own authentication interface to the Framework, and receive a reference to the authentication interface
preferred by the client, in return. In this case the API Level Authentication interface.

2) The client invokes the selectAuthenticationM echanism on the Framework's API Level Authentication interface. This
includes the authentication algorithms supported by the client. The framework then chooses a mechanism based on the
capabilities of the client and the Framework. If the client is capable of handling more than one mechanism, then the
Framework chooses one option, defined in the prescribedM ethod parameter. In some instances, the authentication
mechanism of the client may not fulfil the demands of the Framework, in which case, the authentication will fail, for
example CHAP prescribes the MD5 hashing a gorithm as the minimum to be supported, however the framework need
not accept this agorithm.

3) The application and Framework interact to authenticate each other by using the challenge method. For an
authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response
exchanges. This authentication protocol is performed using the challenge method on the API Level Authentication
interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. There arein fact
two authentication processes: authentication of the client performed by the Framework , and authentication of the
Framework performed by the client. Mutual authentication is achieved by both these processes terminating
successfully. Mutual authentication may not necessarily be required, i.e. it could be that a client may not need to
authenticate the Framework. Thereisalso no required order for the execution of these two authentication processes,
however, the client shall respond immediately to any challenge issued by the Framework, as the Framework might not
respond to any challenge issued by the client until the Framework has successfully authenticated the client.

Note that at any point during the access session, either side can request re-authentication of the other side.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 24 ETSI TS 129 198-3 V7.1.0 (2007-06)

: IpClientAPILevelAuthentication Client : IpInitial Framework : IpAPILevelAuthentication

[
|
| | I
1: initiateAuthenticationWithVersion(clientDomain, authType, frameworkVersion)
L |
|
|

IpClientAPILevel Authentication
reference is pased to framework
and IpAP ILevel Authentication
reference is rturned.

| |
2: selectAuthenticationMechanism()
| |

3: challenge()

sequence of

U Thisisan example of the AN
authentication

| operations. Different
5: challenge() | authenticati_on protocols
! may have different
requirementson the

order of operations.

6: authenticationSucceeded()

7: thallenge()

|
|
l
4: {:hallenge()
|
|
|
|
|
|
|
l
it
|
|
|

8: authenti:cationSucceeded()

|]
| |)
|]

|
9: requestAccess()
|

IpClientAccess reference is
passd to Framework, and

: IpAccess reference is
| returned.
|
|
|

!
:
u

6.2 Class Diagrams

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 25 ETSITS 129 198-3 V7.1.0 (2007-06)

<<Interface>> <<Interface>>
IpClientAccess IpClientAPILevelAuthentication
(from Client interfaces) (from Client interfaces)
%terminateAccess() SabortAuthentication()
A SauthenticationSucceeded)()
| Schallenge()
I
<<uses>> : :
| <<uses>>
I I
1 1
<<Interface>> <<Interface>>
<<Interface>> IpAccess IpAPILevelAuthentication
Iplnitial (from Framework interfaces) (from Frameworkinterfaces)
(from Framework interfaces)
Sobtaininterface() SabortAuthentication()
FinitiateAuthenticationWithVersion() obtaininterfaceWithCallback() SauthenticationSucceeded()
Slistinterfaces() SselectAuthenticationMechanism()
WselectSigningAlgorithm() Schallenge()
SterminateAccess()
Srelinquishinterface()

\
<<Interface>>
IpAuthentication
(from Framework interfaces)

SrequestAccess()

Figure: Trust and Security Management Package Overview

6.3 Interface Classes

6.3.1 Trust and Security Management Interface Classes

The Trust and Security Management Interfaces provide:

- thefirst point of contact for a client to access a Framework provider;

- the authentication methods for the client and Framework provider to perform an authentication protocol;
- theclient with the ability to select a service capability feature to make use of;

- theclient with aportal to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a
different Framework interface:

1) Initial Contact with the Framework;
2) Authentication;

3) Accessto Framework and Service Capability Features.

6.3.1.1 Interface Class IpClientAPILevelAuthentication
Inherits from: Iplnterface.

If the IpClientAPILevel Authentication interface isimplemented by a client, challenge(), abortAuthentication() and
authenticationSucceeded() methods shall be implemented.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 26 ETSITS 129 198-3 V7.1.0 (2007-06)

<<Interface>>

IpClientAPILevelAuthentication

abortAuthentication () : void
authenticationSucceeded () : void

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.1.1 Method abortAuthentication()

The framework uses this method to abort the authentication process where the client is authenticating the Framework.
This method isinvoked if the framework wishes to abort the authentication process before it has been authenticated by
the client, (unless the client responded incorrectly to a challenge in which case no further communication with the client
should occur.) Callsto this method after the Framework has been authenticated by the client shall not result in an
immediate removal of the Framework's authentication (the client may wish to authenticate the Framework again,
however).

Parameters
No Parameters were identified for this method.

6.3.1.1.2 Method authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt. The client may
invoke requestAccess on the Framework's API Level Authentication interface following invocation of this method.

Parameters
No Parameters were identified for this method.

6.3.1.1.3 Method challenge()

This method is used by the framework to authenticate the client. The client must respond with the correct responsesto
the challenges presented by the framework. The number of exchangesis dependent on the policies of each side. The
authentication of the client is deemed successful when the authenticationSucceeded method isinvoked by the
Framework.

The invocation of this method may be interleaved with challenge() calls by the client on the IpAPILevel Authentication
interface. The client shall respond immediately to authentication challenges from the Framework, and not wait until the
Framework has responded to any challenge the client may issue.

Returns <response> : Thisisthe response of the client application to the challenge of the framework in the current
sequence. The formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A complete
CHAP Response packet shall be used to carry the response octet set. That octet set will be the result of applying the
designated hashing algorithm, which isindicated viathe client'sinvocation of selectAuthenticationMechanism(), to an
octet set consisting of the concatenation of the CHAP Identifier, the shared "secret”, and the supplied challenge value.
The Name field of the CHAP Response packet must be present and contain avalid value in order for the CHAP
Response to be valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1. Extract the Identifier and Vaue fields from the CHAP Challenge packet passed in the challenge() method's
challenge parameter

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 27 ETSI TS 129 198-3 V7.1.0 (2007-06)
2. Build an octet set consisting of the concatenation of the Identifier, the "shared secret”, and the Vaue from the CHAP
Challenge

3. Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm

4. Construct acomplete CHAP Response packet with the resulting octet set from previous step as the CHAP Vaue
Steps for validating the response octet set:

1. Verify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP
Response. If it does not, authentication fails.

2. Build an octet set consisting of the concatenation of the original Identifier, the " shared secret”, and the original
challenge value

3. Compute the hash of the resulting octet set from the previous step using the designated hashing algorithm

4. Verify the octet set resulting from the previous step matches the octet set contained in the Value field of the CHAP
Response. A match indicates successful authentication.

Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge format used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A
complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet
must be present and contain avalid value in order for the CHAP Response to be valid. However, the Name field is not
used in the authentication process.

Steps for constructing the challenge octet set:
1. Create arandom challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octets in length.

2. Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set from the previous step passed in
the Value field within the CHAP Challenge.

Returns
TpOctetSet

6.3.1.2 Interface Class IpClientAccess
Inherits from: Iplnterface.

IpClientAccessinterfaceis offered by the client to the framework to allow it to initiate interactions during the access
session. Thisinterface and the terminateAccess() method shall be implemented by a client.

<<Interface>>

IpClientAccess

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature :
in TpOctetSet) : void

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 28 ETSITS 129 198-3 V7.1.0 (2007-06)

6.3.1.2.1 Method terminateAccess()
The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() isinvoked, the client will no longer be authenticated with the framework. The client will not be
able to use the references to any of the framework interfaces gained during the access session. Any calls to these
interfaces will fail. The framework shall also identify and terminate all remaining service instances that apply asa
result of the client access termination. If at any point the framework's level of confidence in the identity of the client
becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service
agreements for that client, and should take steps to terminate the client's access session WITHOUT invoking
terminateAccess() on the client. Thisfollows a generally accepted security model where the framework has decided
that it can no longer trust the client and will therefore sever ALL contact withiit.

Parameters

terminationText : in TpString
Thisisthe termination text describes the reason for the termination of the access session.

signingAlgorithm : in TpSigningAlgorithm

Thisisthe agorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to I pAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, isinvalid, or unknown
totheclient, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. Thelist of possible algorithmsis as
specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm
and signatureAlgorithm fields in the Signerinfo field in the digital Signature (see below).

digitalSignature : in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The
"external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630,
shall also be used to provide replay prevention. The framework uses thisto confirm itsidentity to the client. The client
can check that the terminationText has been signed by the framework. If a match is made, the access session is
terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P INVALID SIGNING ALGORITHM, P INVALID SIGNATURE

6.3.1.3 Interface Class Iplnitial
Inherits from: Iplnterface.

The Initial Framework interface is used by the client to initiate the authentication with the Framework. Thisinterface
and the initiateAuthenticationWithVersion() method shall be implemented by a Framework.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 29 ETSITS 129 198-3 V7.1.0 (2007-06)

<<Interface>>

IpInitial

initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType,
frameworkVersion : in TpVersion) : TpAuthDomain

6.3.1.3.1 Method initiate AuthenticationWithVersion()

This method isinvoked by the client to start the process of authentication with the framework, and request the use of a
specific authentication method using the new method with support for backward compatibility in the framework. The
returned fwDomain authlnterface will be selected to match the proposed version from the Client in the Framework
response. If the Framework cannot work with the proposed framework version the framework returns an error code
(P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with a framework identifier, and areference to call the authentication
interface of the framework.

structure TpAuthDomain {
domainiD: TpDomainiD;
authinterface: IpInterfaceRef;
1

The domainlD parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
client.

The authinterface parameter is a reference to the authentication interface of the framework that is unique for each
requesting client. The type of thisinterface is defined by the authType parameter. The client uses this interface to
authenticate with the framework.

Note, there are no identifiers used in the authentication interface to correlate requests and responses, therefore the
authentication interface may not be shared amongst multiple clients.

Parameters

clientDomain : in TpAuthDomain
Thisidentifies the client domain to the framework, and provides a reference to the authentication interface.

structure TpAuthDomain {
domainiD: TpDomainiD;
authinterface: IpInterfaceRef;
¥

The domainiD parameter is an identifier either for aclient application (i.e. TpClientApplD) or for an enterprise operator
(i.e. TPENtOpID), or for an instance of a service for which a client application has signed a service agreement (i.e.
TpServicelnstancel D), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the
framework, (see challenge() on IpAPILevel Authentication). If the framework does not recogni se the domainiD, the
framework returns an error code (P_INVALID_DOMAIN_ID).

A client application (identifiable by a given TpClientAppl D) may optionally initiate authentication with the Framework
by invoking this method multiple times. The Framework may elect to reject these subsequent requests, or may choose to
associate them together as independent sessions under the same TpClientApplD.

The authinterface parameter is areference to call the authentication interface of the client. The type of thisinterfaceis
defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 30 ETSITS 129 198-3 V7.1.0 (2007-06)

authType : in TpAuthType

Thisidentifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the I pAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication is the default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain
authlnterface parameters are references to interfaces of type Ip(Client) APILevel Authentication. If
P_AUTHENTICATION is selected, the fwDomain authl nterface parameter references to interfaces of type

I pAuthentication that is used when an underlying distribution technology authentication mechanism is used.

frameworkVersion : in TpVersion

Thisidentifies the version of the Framework implemented in the client. The TpVersion is a String containing the
version number. Valid version numbers are defined in the respective framework specification.

Returns
TpAuthDomain
Raises

TpCommonExceptions, P_INVALID DOMAIN ID, P INVALID INTERFACE TYPE,
P _INVALID AUTH TYPE, P_INVALID VERSION

6.3.1.4 Interface Class IpAuthentication
Inherits from: Ipinterface.

The Authentication Framework interface is used by client to request access to other interfaces supported by the
Framework. The authentication process should in this case be done with some underlying distribution technology
authentication mechanism, e.g. CORBA Security.

At least one of IpAuthentication or IpAPILevel Authentication interfaces shall be implemented by a Framework as a
minimum requirement. The requestAccess() method shall be implemented in each.

<<Interface>>

IpAuthentication

requestAccess (accessType : in TpAccessType, clientAccessinterface : in IpinterfaceRef) : IpinterfaceRef

6.3.1.4.1 Method requestAccess()

Once the client has been authenticated by the framework, the client may invoke the requestAccess operation on the
IpAuthentication or IpAPILevel Authentication interface. This allows the client to request the type of access they
require. If they request P_OSA_ACCESS, then areference to the IpAccessinterface is returned. (Operators can define
their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client has been successfully authenticated, then the request fails, and an error code
(P_ACCESS_DENIED) isreturned.

This method may be invoked by the client immediately on IpAuthentication, when API Level authentication is not
being used, since there is no indication to the client at API level that it is authenticated with the Framework.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 31 ETSITS 129 198-3 V7.1.0 (2007-06)

Returns <fwA ccesslnterface> : This provides the reference for the client to call the access interface of the framework.
The access reference provided is unique to the requesting client.

Parameters

accessType : in TpAccessType

Thisidentifies the type of access interface requested by the client. If the framework does not provide the type of access
identified by accessType, then an error code (P_INVALID_ACCESS TY PE) isreturned.

clientAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the accessinterface of the client. If the interface referenceis not
of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).

Returns
IpInterfaceRef
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID ACCESS TYPE,
P INVALID INTERFACE TYPE

6.3.1.5 Interface Class IpAPILevelAuthentication
Inherits from: |pAuthentication.

The API Level Authentication Framework interface is used by the client to authenticate the Framework. It isalso used
to initiate the authentication process.

If the IpAPILevel Authentication interface isimplemented by a Framework, then selectA uthenticationM echanism(),
challenge(), abortAuthentication() and authenticationSucceeded () shall be implemented. |pAPILevel Authentication
inherits the requirements of |pAuthentication, therefore requestAccess() shall be implemented.

<<Interface>>

IpAPILevelAuthentication

abortAuthentication () : void
authenticationSucceeded () : void
selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) : TpAuthMechanism

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.5.1 Method abortAuthentication()

The client uses this method to abort the authentication process where the framework is authenticating the client. This
method isinvoked if the client no longer wishes to continue the authentication process, (unless the framework
responded incorrectly to a challenge in which case no further communication with the framework should occur.) If this
method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess
operation on |pAPILevel Authentication will return an error code (P_ACCESS_DENIED), until the client has been
properly authenticated. If this method isinvoked after the client has been authenticated by the Framework, it shall not
result in the immediate removal of the client's authentication. (The Framework may wish to authenticate the client
again, however).

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 32 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters
No Parameters were identified for this method.

Raises
TpCommonExceptions, P_ACCESS DENIED

6.3.1.5.2 Method authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt. Callsto this method
have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework'’s successful
authentication of the client.

Parameters
No Parameters were identified for this method.

Raises
TpCommonExceptions, P_ACCESS DENIED

6.3.1.5.3 Method selectAuthenticationMechanism()

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of
API level Authentication. The Framework will select one of the suggested authentication mechanisms and that
mechanism shall be used for authentication by both Framework and Client. The authentication mechanism chosen as a
result of the response to this method remains valid for an instance of IpAPILevel Authentication and until this method is
re-invoked by the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be
found, the framework throwsthe P_ NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.

Returns: selectedMechanism. Thisis the authentication mechanism chosen by the Framework. The chosen mechanism
shall be taken from the list of mechanisms proposed by the Client.

Parameters

authMechanismList : in TpAuthMechanismList
Thelist of authentication mechanisms supported by the client.

Returns
TpAuthMechanism
Raises

TpCommonExceptions, P_ACCESS DENIED,
P NO ACCEPTABLE AUTHENTICATION MECHANISM

6.3.1.5.4 Method challenge()

This method is used by the client to authenticate the framework. The framework must respond with the correct
responses to the challenges presented by the client. The domainID received in the initiateA uthenticationWithVersion()
can be used by the framework to reference the correct public key for the client (the key management system is currently
outside of the scope of the OSA APIs). The number of exchangesis dependent on the policies of each side. The
authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the
client.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 33 ETSI TS 129 198-3 V7.1.0 (2007-06)
The invocation of this method may be interleaved with challenge() calls by the framework on the client's
APILevel Authentication interface.

Returns <response> : Thisis the response of the framework to the challenge of the client in the current sequence. The
formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP
Response packet shall be used to carry the response octet set. That octet set will be the result of applying the designated
hashing algorithm, which isindicated viathe client's invocation of selectAuthenticationMechanism(), to an octet set
consisting of the concatenation of the CHAP Identifier, the shared "secret”, and the supplied challenge value. The Name
field of the CHAP Response packet must be present and contain avalid value in order for the CHAP Response to be
valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1. Extract the Identifier and Vaue fields from the CHAP Challenge packet passed in the challenge() method's
challenge parameter

2. Build an octet set consisting of the concatenation of the Identifier, the "shared secret”, and the Vaue from the CHAP
Challenge

3. Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm
4. Construct acomplete CHAP Response packet with the resulting octet set from previous step as the CHAP Vaue
Steps for validating the response octet set:

1. Verify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP
Response. If it does not, authentication fails.

2. Build an octet set consisting of the concatenation of the original Identifier, the " shared secret”, and the original
challenge value

3. Compute the hash of the resulting octet set from the previous step using the designated hashing algorithm
4. Verify the octet set resulting from the previous step matches the octet set contained in the Value field of the CHAP
Response. A match indicates successful authentication.

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge format used will bein
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A
complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet
must be present and contain avalid value in order for the CHAP Response to be valid. However, the Name field is not
used in the authentication process.

Steps for constructing the challenge octet set:
1. Create arandom challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octets in length.

2. Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set from the previous step passed in
the Value field within the CHAP Challenge.

Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS DENIED

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 34 ETSITS 129 198-3 V7.1.0 (2007-06)

6.3.1.6 Interface Class IpAccess
Inherits from: Iplnterface.

Thisinterface shall be implemented by a Framework. Asaminimum requirement the obtaininterface() and
obtainlnterfaceWithCallback(), selectSigningAlgorithm() and terminateAccess() methods shall be implemented.

<<Interface>>

IpAccess

obtaininterface (interfaceName : in TpinterfaceName) : IpinterfaceRef

obtaininterfaceWithCallback (interfaceName : in TpinterfaceName, clientinterface : in IpinterfaceRef) :
IpinterfaceRef

listinterfaces () : TpInterfaceNameList
selectSigningAlgorithm (signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList) : TpSigningAlgorithm
terminateAccess (terminationText : in TpString, digitalSignature : in TpOctetSet) : void

relinquishinterface (interfaceName : in TplnterfaceName, terminationText : in TpString, digitalSignature : in
TpOctetSet) : void

6.3.1.6.1 Method obtaininterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface referencesto
other framework interfaces. (The obtainlnterfaceWithCallback method should be used if the client is required to supply
a callback interface to the framework.)

Returns <fwlnterface> : Thisis the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which areference to the interface is requested. If the interfaceNameisinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID INTERFACE NAME

6.3.1.6.2 Method obtaininterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces, when it isrequired to supply a callback interface to the framework. (The obtaininterface
method should be used when no callback interface needs to be supplied.)

Returns <fwlnterface> : Thisis the reference to the interface requested.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 35 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName isinvalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

clientInterface : in IpInterfaceRef

Thisisthe reference to the client interface, which is used for callbacks. If a client interface is not needed, then this
method should not be used. (The obtainlnterface method should be used when no callback interface needsto be
supplied.) If the interface reference is not of the correct type, the framework returns an error code
(P_INVALID_INTERFACE_TYPE).

Returns
IpInterfaceRef
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID INTERFACE NAME,
P INVALID INTERFACE TYPE

6.3.1.6.3 Method listinterfaces()

The client uses this method to obtain the names of al interfaces supported by the framework. It can then obtain the
interfaces it wishes to use using either obtainlnterface() or obtainlnterfaceWithCallback().

Returns <frameworklnterfaces> : The frameworklnterfaces parameter contains alist of interfaces that the framework
makes available.

Parameters
No Parameters were identified for this method.

Returns

TpInterfaceNameList

Raises

TpCommonExceptions, P_ACCESS DENIED

6.3.1.6.4 Method selectSigningAlgorithm()

The client uses this method to inform the Framework of the different signing algorithms it supports for usein all cases
where digital signatures are required. The Framework will select one of the suggested algorithms. This method shall
be the first method invoked by the client on IpAccess. The algorithm chosen as a result of the response to this method
remains valid for an instance of IpAccess and until this method is re-invoked by the client.

Subsequent invocations of selectSigningAlgorithm() may change the signing algorithm used during the access session.
However, once signServiceAgreement() has been called on the client by the framework, the signing algorithm currently
selected must be used for the client's invocation of signServiceAgreement() on the Framework as well as for subsequent
calls to terminateServiceAgreement(). Other operations requiring digital signatures will use the latest algorithm
specified by selectSigningAlgorithm().

If an algorithm that is acceptable to the framework within the capability of the client cannot be found, the framework
throwsthe P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 36 ETSITS 129 198-3 V7.1.0 (2007-06)

Returns: selectedAlgorithm. Thisisthe signing algorithm chosen by the Framework. The chosen agorithm shall be
taken from the list proposed by the Client.

Parameters
signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList
The list of signing algorithms supported by the client.

Returns
TpSigningAlgorithm

Raises
TpCommonExceptions, P_ACCESS DENIED, P NO ACCEPTABLE SIGNING ALGORITHM

6.3.1.6.5 Method terminateAccess()

The terminateAccess method is used by the client to request that its access session with the framework is ended. After
it isinvoked, the client will no longer be authenticated with the framework. The client will not be able to use the
references to any of the framework interfaces gained during the access session. Any callsto these interfaces will fail.
Also, al remaining service instances created by the framework either directly in this access session or on behalf of the
client during this access session shall be terminated.

Parameters

terminationText : in TpString
Thisisthe termination text describes the reason for the termination of the access session.

digitalSignature : in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with
selectSigningAlgorithm(). The content is made of the termination text. The "external signature” construct shall not be
used (i.e. the eContent field in the Encapsul atedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The client uses this to confirm its identity to the framework. The framework can check that the
terminationText has been signed by the client. If a match is made, the access session is terminated, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P_INVALID SIGNATURE

6.3.1.6.6 Method relinquishinterface()

The client uses this method to release an instance of a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName

Thisisthe name of the framework interface which is being released. If the interfaceName isinvalid, the framework
throwsthe P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

terminationText : in TpString

Thisis the termination text describes the reason for the release of the interface. Thistext isrequired simply because the
digital Signature parameter requires aterminationText to sign.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 37 ETSITS 129 198-3 V7.1.0 (2007-06)

digitalSignature : in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the latest signing a gorithm selected with
selectSigningAlgorithm(). The content is made of the termination text. The "external signature” construct shall not be
used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The client uses this to confirm itsidentity to the framework. The framework can check that the
terminationText has been signed by the client. If amatch is made, the interface is released, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P INVALID SIGNATURE, P INVALID INTERFACE NAME

6.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These interna events
are shown between quotation marks.

6.4.1 Trust and Security Management State Transition Diagrams

6.4.1.1 State Transition Diagrams for Ipinitial

initiat eAuthenticationWithVersion / return new
IpAuthentication

Active

AN /

Figure : State Transition Diagram for Iplnitial

6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7

38

ETSI TS 129 198-3 V7.1.0 (2007-06)

Ipinitial.initiateAuthenticationWithVersion

o

selectAuthenticationMechanism

selectAuthenticationMechanism

challenge / Client

challenges FW

‘ Framework

‘ Authenticating

/ Client
Framework

challenge

satisfied with FW
re-challenges

authenticationSucceeded / Client
response

FW Aborts
NpClientAPILevelAuthentication.
abortAuthentication

selectA uthenticationMec hanism

‘ Framework

‘ Authenticated

Figure : STD for IpAPILevelAuthentication: Client authenticates Framework using
initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.1 Idle State

When the client has invoked the Iplnitia initiateAuthenticationWithV ersion method, an object implementing the
IpAPILevel Authentication interface is created. The client now hasto select the authentication mechanism to be used

using selectA uthenticationM echanism.

6.4.1.2.2 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the challenge
method on the Framework. The Framework may either buffer the requests and respond when the client has been

authenticated, or respond immediately, depending on policy.

When the client has processed the response from the

authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process
isnot yet complete, then another authenticate request or challenge is sent to the Framework. If the responseisvalid and
the authentication process has been completed, then atransition to the state Framework Authenticated is made and the
Framework isinformed of its success by invoking authenticationSucceeded. At any time the Framework may abort the

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 39 ETSITS 129 198-3 V7.1.0 (2007-06)

authentication process by calling abortAuthentication on the client's APILevel Authentication interface. The client may
aso call selectAuthenticationM echanism to choose another hash algorithm.

6.4.1.2.3 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling

authenti cationSucceeded on the Framework's IpAPILevel Authentication interface. The client may at any time request
re-authentication of the Framework by calling the challenge method, resulting in atransition back to Authenticating
Framework state. The client may also call selectAuthenticationM echanism to choose another hash algorithm.

6.4.1.2.4 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the challenge
method on the client. When the Framework has processed the response from the authenticate request or challenge on
the client, the response is analysed. If the response is valid but the authentication processis not yet complete, then
another authenticate request or challenge is sent to the client. If the response is valid and the authentication process has
been completed, then atransition to the state Client Authenticated is made, the client isinformed of its success by
invoking authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. Thisimplies
that the client has to re-initiate the authentication by calling once more the initiateAuthenti cationWithV ersion method
on the Iplnitial interface. At any time the client may abort the authentication process by calling abortAuthentication on
the Framework's | pAPILevel Authentication interface. The client may also call selectAuthenticationM echanism to
choose another hash algorithm.

6.4.1.2.5 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccessinterface If the
framework decides to re-authenticate the client, then the challenge is sent to the client and a transition back to the
AuthenticatingClient state occurs. The client may also call selectAuthenticationM echanism to choose another hash
algorithm.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 40 ETSI TS 129 198-3 V7.1.0 (2007-06)

IpInitial.initiateA ut henticationWith Version

requestAccess
"P_ACCESS_DENIED

Idle _
([
Ej L)
Invalid Client Response

selectAuthenticationMechanism

requestAccess
"P_ACCESS_DENIED

selectAuthenticationMechanism

FW challenges Client
ApClientAPILevelAuthentication.challenge

Authenticating

ﬂ Client

abort Authentication
FW satisfied with Client response / Client Aborts

ANpClientAPILevelAuthentication.jauthenticationSucceede

requestAccess / new IpAccess
selectAuthenticationMechanism

FW rechallenges Client
ANpClientAPILe\elAuthentication.challenge

Client
Authenticated

Figure : STD for IpAPILevelAuthentication: Framework authenticates Client using
initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.6 Idle State

When the client has invoked the Iplnitial initiateA uthenticationWithV ersion method, an object implementing the
IpAPILevel Authentication interface is created. The client now has to select the authentication mechanism to be used
using sel ectAuthenticationM echanism.

6.4.1.2.7 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the challenge
method on the Framework. The Framework may either buffer the requests and respond when the client has been
authenticated, or respond immediately, depending on policy. When the client has processed the response from the
authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process
is not yet complete, then another authenticate request or challenge is sent to the Framework. If the responseisvalid and
the authentication process has been completed, then atransition to the state Framework Authenticated is made and the
Framework isinformed of its success by invoking authenticationSucceeded. At any time the Framework may abort the
authentication process by calling abortAuthentication on the client's APILevel Authentication interface. The client may
also call selectAuthenticationM echanism to choose another hash algorithm.

6.4.1.2.8 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's IpAPILevel Authentication interface. The client may at any time request

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 41 ETSITS 129 198-3 V7.1.0 (2007-06)

re-authentication of the Framework by calling the challenge method, resulting in atransition back to Authenticating
Framework state. The client may also call selectAuthenticationM echanism to choose another hash a gorithm.

6.4.1.2.9 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the challenge
method on the client. When the Framework has processed the response from the authenticate request or challenge on
the client, the response is analysed. If the response is valid but the authentication processis not yet complete, then
another authenticate request or challenge is sent to the client. If the response is valid and the authentication process has
been completed, then atransition to the state Client Authenticated is made, the client isinformed of its success by
invoking authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. Thisimplies
that the client has to re-initiate the authentication by calling once more the initiateA uthenti cationWithV ersion method
on the Iplnitia interface. At any time the client may abort the authentication process by calling abortAuthentication on
the Framework's IpAPILevel Authentication interface. The client may also call selectAuthenticationMechanism to
choose another hash algorithm.

6.4.1.2.10 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccessinterface If the
framework decides to re-authenticate the client, then the challenge is sent to the client and atransition back to the
AuthenticatingClient state occurs. The client may also call selectAuthenticationM echanism to choose another hash
algorithm.

6.4.1.3 State Transition Diagrams for IpAccess

IpAuthentication.requestAccess

obtaininterface / return requested FW interface
obtaininterfaceWithCallback / return requested FW interface
listinterfaces

At select SigningAlgorithm
(ctive relinquishinterface
~

network operator initiated access termination
/ destroy all interface objects used by the client
ApClientAccess.terminateAccess

application initiated access termination
terminateAccess / destroy all interface objects used by the client

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 42 ETSITS 129 198-3 V7.1.0 (2007-06)

Figure : State Transition Diagram for IpAccess

6.4.1.3.1 Active State

When the client requests access to the Framework on the |pAuthentication (IpAPILevel Authentication) interface, an
object implementing the IpAccess interface is created. The client can now request other Framework interfaces,
including Service Discovery, Integrity Management, Service Subscription etc., and if at any point these framework
interfaces are no longer required, to relinquish these. In addition the client can select the signing algorithm that shall be
used during the access session in cases where adigital signature isrequired. When the client is no longer interested in
using the interfaces it calls the terminateAccess method. This resultsin the destruction of all interface objects used by
the client. In case the network operator decides that the client has no longer access to the interfaces the same will

happen.

7 Framework-to-Application API

7.1 Sequence Diagrams

7.1.1 Event Notification Sequence Diagrams

7.11.1 Enable Event Notification
Applogic : IpAppEventNotification . IpAccess . IpEventNotification
i 1: new() i

. 2: obtainlinterfaceWithCallback()
|

1

3: new()

4: createNotification()

|
|
|
|
|
|
|
|
|
|
|
|
:
|
5: reportNotification()

[

1. This message is used to create an object implementing the I pAppEventNotification interface.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 43 ETSI TS 129 198-3 V7.1.0 (2007-06)
2: Thismessage is used to receive areference to the object implementing the | pEventNotification interface and set the
callback interface for the framework.

3: If thereis currently no object implementing the | pEventNotification interface, then oneis created using this
message.

4. createNotification(eventCriteria: in TpFwEventCriteria) : TpAssignmentiD.

This message is used to enable the notification mechanism so that subsequent framework events can be sent to the
application. The framework event the application requests to be informed of is the availability of new SCFs.

Newly installed SCFs become available after the invocation of registerService and announceServiceAvailability on the
Framework. The application uses the input parameter eventCriteriato specify the SCFs of whose availability it wantsto
be notified: those specified in ServiceTypeNameList.

The result of thisinvocation has many similarities with the result of invoking listServiceTypes: in both cases the
application isinformed of the availability of alist of SCFs. The differences are:

in the case of invoking listServiceTypes, the application has to take the initiative, but it isinformed of ALL SCFs
available

in the case of using the event notification mechanism, the application needs not take the initiative to ask about the
availability of SCFs, but it is only informed of the ones that are newly available.

Alternatively, or additionally, the application can request to be informed of SCFs becoming unavailable.

5: The application is notified of the availability of new SCFs of the requested type(s).

7.1.2 Integrity Management Sequence Diagrams

7.1.2.1 Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the
evauation of the load balancing policy as aresult of the detection of achangein load level of the framework.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7

. IpAppLoadManager

44

ETSI TS 129 198-3 V7.1.0 (2007-06)

. IpLoadManager

1: load change detection and policy evaluation

<]
N
.
N

N

| This is

Load balancing senice i
makes a decision based :
on pre-defined policy |

- 4 [Qs\qmeNotiﬁcation() !

implementation
detail

-
-

3: load change det:ection/ana policy evaluation

<

5: reportLoad()

Application provides - /u/ o

initial load report on
notification
resumption

7.1.2.2

1

Load Management: Framework queries load statistics

This sequence diagram shows how the framework requests load statistics for an application.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 45 ETSI TS 129 198-3 V7.1.0 (2007-06)

. IpLoadManager . IpAppLoadManager

1: queryAppLoadStatsReq()

2: geti load information

<
3: queryAppLoadStatsRes() -

D< This is the

implementation
detalil

7.1.2.3 Load Management: Framework callback registration and Application load
control

This sequence diagram shows how the framework registersitself and the application invokes load management function
to inform the framework of application load.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 46 ETSI TS 129 198-3 V7.1.0 (2007-06)

IDADDLoeGManaqer IQLoadManager

! 1: createLoadLewelNotification() |

! 2: reportLoad()

U e - ﬂ Application reports its

+ —| . g age

; initial load condition on
: notification creation
|

|

|

|

|

|

|

|

This is implementation
detail. The Application

|
may take appropriate ' 3: load change detection
load control action. = |

4: reportLoad()

T~ w Application detects a load AN
This is implementation T~ condition change and

detail. The Application - ~ - _|reports to Framework.

may take appropriate . . The Framework may take
load control action. -- 15 load change detection appropriate load control

< action - implementation
i /T/ detail.
| 6: reportLoad()-~ |
| 7: destroyLoadLevel Notification() |
7124 Load Management: Application reports current load condition

This sequence diagram shows how an application reportsits load condition to the framework load manager.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7

. IpAppLoadManager

a7

ETSI TS 129 198-3 V7.1.0 (2007-06)

. IpLoadM anager

1: reportLoad()

I

2: evaluate policy

T
|
|
|
|
|
|
i

l This is the implementation
| detail
7.1.25 Load Management: Application queries load statistics

This sequence diagram shows how an application requests load statistics for the framework.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 48 ETSI TS 129 198-3 V7.1.0 (2007-06)

: IpAppLoadManager . IpLoadManager

1: queryLoadStatsReq()

LF This is the
‘ implementation
i L detail
7.1.2.6 Load Management: Application callback registration and load control

This sequence diagram shows how an application registersitself and the framework invokes load management function
based on policy.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 49

ETSI TS 129 198-3 V7.1.0 (2007-06)

: IpAppLoadManager

: IpLoadManager

1: createLoadLevelN otification()

Framework reports its
initial load condition on
-~ “Inotification creation

!

! 2:loadLevelNotification() - - -

3:load change cfetection & policy evaluation

|
|
|
l
| -~ This is Framework
|
|
|
|
|
|

implementation detail.
The Framework may take
appropriate load control
action.

Framework detects a load
condition change
and notifies the
application. The
application may take

5:load change detection & policyevaluation
i N

appropriate load control R
tion - impl tati Tl AN
thl‘;rl]_ AR 6 loagl_g\{elNotification() -
u\ This is Framework
| T implementation detail. The
! 7: destroyLoadLevelNotification() | Framework may take
‘U appropriate load control
U ‘ action.
|
| |
| |
| |
| |
| |
| |
| |
7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the

application

In this sequence diagram, the framework has decided that it wishes to monitor the application, and has therefore
requested the application to commence sending its heartbeat. The application responds by sending its heartbeat at the
specified interval. The framework then decides that it is satisfied with the application's health and disables the heartbeat
mechanism. |f the heartbeat was not received from the application within the specified interval, the framework can
decide that the application has failed the heartbeat and can then perform some recovery action.

ETSI

ETSI TS 129 198-3 V7.1.0 (2007-06)

3GPP TS 29.198-03 version 7.1.0 Release 7 50
Fram ework : IpHeart Beat

. IpAppHeartBeatMgmt

1: enableAppHeartBeat()

3: pulse()

u
[

7 | At a certain point of
.| time the framework

. |decides to stop

i heartbeat supenision
|

|

|

|

4: disableAppHeartBeat()

7.1.2.8 Fault Management: Framework detects a Service failure

The framework has detected that a service instance has failed (probably by the use of the heartbeat mechanism). The
framework informs the client application.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 51 ETSITS 129 198-3 V7.1.0 (2007-06)

Client Application : IpAppFaultManager Framework : IpFaultManager

The framework should detect if a senice instance
fails, for example via an unreturned heartbeat. The
framework should inform the application that is
using that senice instance, with the reason:
SVC_UNAVAILABLE_NO_RESPONSE.

1: swcAwailStatusind() i

“ U

The application may wait until i
it receives SVC_AVAILABLE !

1. Theframework informsthe client application that is using the service instance that the service isunavailable. The
client application may wait to receive a new call to the svcAvail Statusind with the reason SVC_AVAILABLE when the
Service has become available again. The different Unavailability reasons used by the Framework

(TpSvcAvail StatusReason) guides the client application devel opers to make the decision.

7.1.2.9 Fault Management: Application requests a Framework activity test

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 52 ETSITS 129 198-3 V7.1.0 (2007-06)

Client Application : IpAppFaultManager Framework : IpFaultManager

Client application asks framework to
carry out an actiuvty test. The
framework is denoted as the target by
an empty string value for svcld
parameter value.

1: activity TestReq()

Framework carries out test and
returns result to client application.

2: activityTestRes()

1. Theclient application asks the framework to do an activity test. The client identifies that it would like the activity
test done for the framework, rather then a service, by supplying an empty string value for the svcld parameter.

2: Theframework does the requested activity test and sends the result to the client application.

7.1.3 Service Discovery Sequence Diagrams

7.1.3.1 Service Discovery

The following figure shows how Applications discover anew Service Capability Feature in the network. Even
applications that have already used the OSA API of a certain network know that the operator may upgrade it any time;
thisis why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs a reference to the Framework's Service Discovery
interface; thisis done via an invocation the method obtaininterface on the Framework's Access interface.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 53 ETSI TS 129 198-3 V7.1.0 (2007-06)

Discovery can be athree-step process. The first two steps have to be performed initially, but can subsequently be
skipped (if the service type and its properties are already known, the application can invoke discoverService() without
having to re-invoke the list/discoverServiceT ype methods).

Application : IpAccess : IpSeniceDiscovery

T
! 1: obtainInterface() |

gl

| 2: listSeniceTypes()

3: describeSeniceType()

-

|
! 4: discowerSenice()

S

2: Discovery: first step - list service types.

In thisfirst step the application asks the Framework what service types that are available from this network. Service
types are standardized or non-standardised SCF names, and thus this first step allows the Application to know what
SCFs are supported by the network.

The following output is the result of this first discovery step:
out listTypes.

Thisisalist of service type names, i.e., alist of strings, each of them the name of a SCF or a SCF specialization (e.g.
"P_MPCC").

3: Discovery: second step - describe service type.

In this second step the application requests what are the properties that describe a certain service type that it isinterested
in, among those listed in the first step.

The following input is necessary:
in name.

Thisis aservice type name: a string that contains the name of the SCF whose description the Application isinterested in
(eg."P_MPCC").

And the output is:
out serviceTypeDescription.

The description of the specified SCF type. The description provides information about:
the property names associated with the SCF;

the corresponding property value types;

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 54 ETSITS 129 198-3 V7.1.0 (2007-06)

the corresponding property mode (mandatory or read only) associated with each SCF property;
the names of the super types of thistype; and
whether the typeis currently enabled or disabled.

4: Discovery: third step - discover service

In thisthird step the application requests for a service that matches its needs by tuning the service properties (i.e.
assigning values for certain properties).

The Framework then checks whether there is a match, in which case it sends the Application the servicel D that isthe
identifier this network operator has assigned to the SCF version described in terms of those service properties. Thisis
the moment where the servicel D identifier is shared with the application that is interested on the corresponding service.

Thisisdone for either one service or more (the application specifies the maximum number of responsesit wishesto
accept).

Input parameters are:
in serviceTypeName.

Thisisastring that contains the name of the SCF whose description the Application isinterested in (e.g. "P_MPCC").
in desiredPropertyL.ist.

Thisisagain alist like the one used for service registration, but where the val ue of the service properties have been fine

tuned by the Application to (they will be logically interpreted as " minimum", "maximum", etc. by the Framework).
The following parameter is necessary as input:
in max.
This parameter states the maximum number of SCFsthat are to be returned in the " ServiceList" result.
And the output is:
out servicelist.

Thisisalist of duplets: (servicel D, servicePropertyList). It provides alist of SCFs matching the requirements from the
Application, and about each: the identifier that has been assigned to it in this network (servicel D), and once again the
service property list.

7.1.4 Service Agreement Management Sequence Diagrams

7.14.1 Service Selection
The following figure shows the process of selecting an SCF.

After discovery the Application gets alist of one or more SCF versions that match its required description. It now needs
to decide which serviceit is going to use; it also needsto actually get away to useit.

Thisis achieved by the following two steps:

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 55 ETSITS 129 198-3 V7.1.0 (2007-06)

Application : Framework

IpSeniceAgreementManagement
T

IpAppSeniceAgreementManagement

1: selectService()

U "1

|

|

|

:
: initiateSignSenic eAg reement(b

|

B U

-

3: signSeniceAgreement(|)

u

4: signSeniceAgreement()

!

1: Service Selection: first step - selectService

Inthisfirst step the Application identifies the SCF version it has finally decided to use. This is done by means of the
servicel D, which isthe agreed identifier for SCF versions. The Framework acknowledges this selection by returning to
the Application an identifier for the service chosen: a service token, that is a private identifier for this service between
this Application and this network, and is used for the process of signing the service agreement.

Inputis:

in servicel D.
Thisidentifies the SCF required.
And output:

out serviceToken.

Thisisafree format text token returned by the framework, which can be signed as part of a service agreement. It
contains operator specific information relating to the service level agreement. An application (identifiable by a given
TpClientAppl D) may select the same service on more than one occasion in which case the same serviceT oken, that
identifies the relationship between the Application and the network, and the service agreement that applies, shall be
returned.

2: Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once these
contractual details have been agreed, then the Application can be given the meansto actually use it. The means are a
reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By
calling the createServiceM anager operation on the lifecycle manager the Framework retrieves this interface and returns
it to the Application. The service properties suitable for this application are also fed to the SCF (viathe lifecycle
manager interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

The sequence of events indicated above, where the application initiates the signature process by calling
initiateSignServiceAgreement, and where the framework calls signServiceAgreement on the application's

| pAppServiceAgreementM anagement interface before the application calls signServiceAgreement on the frameworks's
I pServiceAgreementM anagement, is the only sequence permitted.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 56 ETSITS 129 198-3 V7.1.0 (2007-06)

Input:
in serviceT oken.
Thisisthe identifier that the network and Application have agreed to privately use for a certain version of SCF.
in agreementText.
Thisisthe agreement text that isto be signed by the Framework using the private key of the Framework.
in signingAlgorithm.
Thisisthe algorithm used to compute the digital signature.
Output:
out signatureAndServiceMar.

Thisis areference to a structure containing the digital signature of the Framework for the service agreement, and a
reference to the manager interface of the SCF.

There must be only one service instance per client application. Therefore, in case an application (identifiable by a given
TpClientApplD) attempts to select a service for which it has already signed a service agreement and this service
agreement has not been terminated, the Framework may return a reference to the already existing service, or may raise
an exception to the client indicating that this request is denied.

7.2 Class Diagrams

<<Interface>>
IpAppEventNotification
(from App Interfaces)

@reportNotification ()
@notificationTerminated()

<<uses>> |

<<Interface>>

IpEventNotification
(from Framework Interfaces)

WcreateNotification()
®destroyNotification()

Figure: Event Notification Class Diagram

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 57

<<Interface>>
IpAppLoadManager

loadLevelNotification()
resumeNotification()
suspendNotification()

<<Interface>> createLoadLevelNotification()
IpAppHeartBeatMgmt <<Interface>> destroyLoadLeelNotification()
IpAppHeartBeat queryAppLoadStatsReq|()
enableAppHeartBeat() o queryLoadStatsRes()
disableAppHeartBeat() ” bulseo queryLoadStatsErr()
changelnterval() i /"\
A | |
| I |
| I |
|
<<uses>> | <<uses>> : <<uses>> :
| I |
| I |
| |
| | |
<<Interface>> —l <<Interface>>
IpHeartBeatMgmt <<Interface>> IpLoadManager
IpHeartBeat
enableHeart Beat
disabIeHeartBeat(()) 0..n ulse() reportLoad(
P createLoadLevelNotification()
changeintenal() destroyLoadLevelNotification()

resumeNotification()
suspendNotification()
queryLoadStatsReq()
queryAppLoadStatsRes()
queryAppLoadStatsErr()

ETSI TS 129 198-3 V7.1.0 (2007-06)

<<Interface>>
IpAppFaultManager

activityTestRes()
appActivityTestReq()
<<deprecated>> fwFaultReportind()

<<deprecated>> fwFaultRecoveryInd()

<<deprecated>> fwUnavailablelnd()
activity TestErr()

appUnavailablelnd()
swcAvailStatusind()
generateFaultStatisticsRecordRes()
generateFaultStatisticsRecordErr()
generateFaultStatisticsRecordReq()
fwAvailStatusInd()

<<Interface>>
IpPAppOAM

)
I
I
I
<<uses>> :
I
I
I

systemDateTimeQuery()

<<uses>>
|

<<Interface>>
IpFaultManager

<<Interface>>
IPOAM

systemDateTimeQuery()

activity TestReq|()

appActivity TestRes()
swcUnavailablelnd()

appActivity TestErr()
appAvailStatusind()
generateFaultStatisticsRecordReq()
generateFaultStatisticsRecordRes()
generateFaultStatisticsRecordErr()

Figure: Integrity Management Package Overview

<<Interface>>
IpServceDiscovery

(from Fram ewoik interfaces)

PlistSeniceTypes()

LdiscoverSenice()

$describeSeniceType()

WlistSubscribedSenices()

Figure: Service Discovery Package Overview

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7

58

<<Interface>>
IpClientAccess

(from Client interfaces)

[®terminateAccess()

|
|
|
|
<<uses>> |
|
|
|
|

ETSI TS 129 198-3 V7.1.0 (2007-06)

<<Interface>>
IpClientAPILevelAuthentication

(from Client interfaces)

[®abortAuthentication()
authenticationSucceeded()
challenge()

I
|
|
<«<uses>> :
|
|

<<Interface>>
IpInitial

(from Framework interfaces)

<<Interface>>
IpAccess

(from Framework interf aces)

<<Interface>>
IpAPILevelAuthentication
(from Framework interf aces)

[Sinitiate AuthenticationWithVersion()

obtaininterface()
[MobtaininterfaceWithCallback()
[®listinterfaces()
[®selectSigningAlgorithm ()
SterminateAccess()
[B®relinquishinterface()

I®abortAuthentication()
[®authenticationSucceeded()
[SiselectauthenticationMechanism ()

[Schallenge()

<<Interface>>
IpAuthentication
(from Framework interfaces)

[®requestAccess()

Figure: Trust and Security Management Package Overview

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 59 ETSITS 129 198-3 V7.1.0 (2007-06)

<<Interface>>

IpAppSeniceAgreementManagement
(from App Interfaces)

WsignSeniceAgreement()
PterminateSeniceAgreement()

i
\

[
<<uses>>

<<Interface>>

IpSeniceAgreementM anagement
(from Framework Interfaces)

¥signSeniceAgreement()
¥terminateSeniceAgreement()
WselectSenice()
FinitiateSignSeniceAgreement()

Figure: Service Agreement Management Package Overview

7.3 Interface Classes

7.3.1 Service Discovery Interface Classes

7.31.1 Interface Class IpServiceDiscovery
Inherits from: Ipinterface.

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the
enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and
what service "properties’ are applicable to each service type. The listServiceTypes() method returnsalist of al "service
types' that are currently supported by the framework and the " describeServiceType()" returns a description of each
service type. The description of service type includes the " service-specific properties’ that are applicable to each service
type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both
belong to a given type and possess the desired "property values', by using the "discoverService() method. Once the
enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these
services using the Subscription Interfaces. The enterprise operator (or the client applicationsin its domain) can find out
the set of servicesavailableto it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service
discovery APIs are invoked by the enterprise operators or client applications. They are described below.

Thisinterface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 60 ETSITS 129 198-3 V7.1.0 (2007-06)

<<Interface>>

IpServiceDiscovery

listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listSubscribedServices () : TpServiceList

7.3.1.1.1 Method listServiceTypes()

This operation returns the names of all service super and sub typesthat are in the repository. The details of the service
types can then be obtained using the describeServiceType() method. If a sub type of a service isregistered, this method
returns, besides the sub type, also the super type.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method.

Returns

TpServiceTypeNameList

Raises

TpCommonExceptions, P_ACCESS DENIED

7.3.1.1.2 Method describeServiceType()
This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about:
- the service properties associated with this service type: i.e. alist of service property { name, mode and type} tuples;
- the names of the super types of this service type; and
- whether the service type is currently available or unavailable.

Parameters

name : in TpServiceTypeName
The name of the service type to be described.

- If the "name" is malformed, then the P_ILLEGAL_SERVICE_TY PE exception is raised.

- 1f the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TY PE exception is raised.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 61 ETSITS 129 198-3 V7.1.0 (2007-06)

Returns

TpServiceTypeDescription
Raises

TpCommonExceptions, P_ACCESS DENIED, P ILLEGAL SERVICE TYPE,
P UNKNOWN SERVICE TYPE

7.3.1.1.3 Method discoverService()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services
that meet its requirements. The client application passesin alist of desired service properties to describe the serviceit is
looking for, in the form of attribute/value pairs for the service properties. The client application also specifies the
maximum number of matched responsesit is willing to accept. The framework must not return more matches than the
specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the
specified maximum. The discoverService() operation returns a servicel D/Property pair list for those services that match
the desired service property list that the client application provided. The service properties returned form a complete
view of what the client application can do with the service, as per the service level agreement. If the framework
supports service subscription, the service level agreement will be encapsulated in the subscription properties contained
in the contract/profile for the client application, which will be arestriction of the registered properties.

Returns <serviceList> : This parameter gives alist of matching services. Each service is characterised by its service ID
and alist of service properties { name and value list} associated with the service.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service
trading". It isthe basis for type safe interactions between the service exporters (viaregisterService) and service
importers (via discoverService). By stating a service type, the importer implies the service type and a domain of
discourse for talking about properties of service.

- If the string representation of the "type" does not obey the rules for service type identifiers, then the
P_ILLEGAL_SERVICE_TY PE exception israised.

- If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the
P_UNKNOWN_SERVICE_TY PE exception israised.

The framework may return a service of a subtype of the "type" requested. The requestor may also request for a service
of a specific subtype. The framework will not return the corresponding supertype(s) in this case.

desiredPropertyList : in TpServicePropertylList

The "desiredPropertyList" parameter isalist of service property { name, mode and value list} tuplesthat the discovered
set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the
desired service. The property valuesin the desired property list must be logically interpreted as "minimum®,
"maximum”, etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the
service criterion). It is suggested that, at the time of service registration, each property value be specified as an
appropriate range of values, so that desired property values can specify an "enclosing” range of valuesto help in the
selection of desired services.

The desiredPropertyList only contains service properties that are relevant for the application. If an application is not
interested in the value of a certain service property, this service property shall not be included in the
desiredPropertyL.ist.

P_INVALID_PROPERTY israised when an application includes an unknown service property name or invalid service
property value.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 62 ETSITS 129 198-3 V7.1.0 (2007-06)

max : in TpInt32
The "max" parameter states the maximum number of servicesthat areto be returned in the "servicelList" result.

Returns
TpServicelList
Raises

TpCommonExceptions, P_ACCESS DENIED, P ILLEGAL SERVICE TYPE,
P UNKNOWN SERVICE TYPE, P INVALID PROPERTY

7.3.1.14 Method listSubscribedServices()

Returns alist of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications
in the enterprise domain) can obtain alist of subscribed services that they are allowed to access.

Returns <serviceList> : The "serviceList" parameter returns alist of subscribed services. Each serviceis characterised
by its service ID and alist of service properties{name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns

TpServicelList
Raises
TpCommonExceptions, P_ACCESS DENIED

7.3.2 Service Agreement Management Interface Classes

7321 Interface Class IpAppServiceAgreementManagement
Inherits from: Iplnterface.

This interface and the signServiceAgreement() and terminateServiceAgreement() methods shall be implemented by an
application.

<<Interface>>

IpAppServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpOctetSet

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 63 ETSITS 129 198-3 V7.1.0 (2007-06)

7.3.21.1 Method signServiceAgreement()

Upon receipt of the initiateSignServiceAgrement() method from the client application, this method is used by the
framework to request that the client application sign an agreement on the service. The framework provides the service
agreement text for the client application to sign. The service manager returned will be configured as per the service
level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the
subscription properties contained in the contract/profile for the client application, which will be arestriction of the
registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the
framework.

Returns <digital Signature> : This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630)
with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the
agreement text given by the framework. The "external signature” construct shall not be used (i.e. the eContent field in
the EncapsulatedContentInfo field shall be present and contain the agreement text). The signing-time attribute, as
defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. If the signature is incorrect the
serviceToken will be expired immediately.

Parameters

serviceToken : in TpServiceToken

Thisisthe token returned by the framework in acall to the selectService() method. Thistoken is used to identify the
service instance to which this service agreement corresponds. (If the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token). If the
serviceTokenisinvalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exceptionis
thrown.

agreementText : in TpString
Thisisthe agreement text that is to be signed by the client application using the private key of the client application. If

the agreementText isinvalid, then the P_INVALID_AGREEMENT_TEXT exception is thrown.

signingAlgorithm : in TpSigningAlgorithm

Thisisthe algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to I pAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, isinvalid, or unknown
to the client application, the P_INVALID_SIGNING_ALGORITHM exception isthrown. Thelist of possible
algorithmsis as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the
digestAlgorithm and signatureAlgorithm fields in the Signerinfo field in the digital Signature (see below).

Returns
TpOctetSet
Raises

TpCommonExceptions, P INVALID AGREEMENT TEXT, P INVALID SERVICE TOKEN,
P INVALID SIGNING ALGORITHM

7.3.2.1.2 Method terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceTokenisinvalid, or unknown to the client application, the
P_INVALID_SERVICE_TOKEN exception will be thrown.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 64 ETSITS 129 198-3 V7.1.0 (2007-06)

terminationText : in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.

digitalSignature : in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to
initially sign the service agreement. The content is the termination text. The "external signature” construct shall not be
used (i.e. the eContent field in the Encapsul atedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The signing algorithm used is the same as the signing a gorithm given when the service agreement was
signed using signServiceAgreement(). The framework uses this to confirm itsidentity to the client application. The
client application can check that the terminationText has been signed by the framework. If a match is made, the service
agreement is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P_INVALID SERVICE TOKEN, P INVALID SIGNATURE

7.3.2.2 Interface Class IpServiceAgreementManagement
Inherits from: Ipinterface.

Thisinterface and the signServiceAgreement(), terminateServiceAgreement(), selectService() and
initiateSi gnServiceAgreement() methods shall be implemented by a Framework.

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

selectService (servicelD : in TpServicelD) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

7.3.2.2.1 Method signServiceAgreement()

After the framework has called signServiceAgreement() on the application's | pAppServiceAgreementM anagement
interface, this method is used by the client application to request that the framework sign the service agreement, which
alows the client application to use the service. A reference to the service manager interface of the service is returned to
the client application. The service manager returned will be configured as per the service level agreement. If the
framework uses service subscription, the service level agreement will be encapsulated in the subscription properties
contained in the contract/profile for the client application, which will be arestriction of the registered properties. If the
client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS DENIED) is
returned. If the client application invokes this method before the processing (i.e. digital signature verification) of the
response of signServiceAgreement() on the application's | pAppServiceAgreementM anagement interface has compl eted,
a TpCommonExceptions with ExceptionType P_INVALID_STATE may be raised to indicate that this method is
currently unable to complete the method due to arace condition. In this case, the TpCommonExceptions with
ExceptionType P_INVALID_STATE suggests the application to retry the method invocation after a reasonable amount
of time has passed.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 65 ETSITS 129 198-3 V7.1.0 (2007-06)

There must be only one service instance per client application. Therefore, in case the client attempts to select a service
for which it has aready signed a service agreement and this service agreement has not been terminated, a reference to
the already existing service manager will be returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement,
and a reference to the service manager interface of the service.
structure TpSignatureAndServiceMar {
digitalSignature: TpOctetSet;
serviceMgrinterface: |pServiceRef;
b

The digital Signature contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content
type Signed-data. The signatureis calculated and created as per section 5 of RFC 2630. The content is the agreement
text given by the client application. The "external signature” construct shall not be used (i.e. the eContent field in the
EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as

defined in section 11.3 of RFC 2630, shall aso be used to provide replay prevention.

The serviceMgrinterface is areference to the service manager interface for the selected service.

Parameters

serviceToken : in TpServiceToken

Thisisthe token returned by the framework in acall to the selectService() method. Thistoken is used to identify the
service instance requested by the client application. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

agreementText : in TpString

Thisisthe agreement text that is to be signed by the framework using the private key of the framework. If the
agreementText isinvalid, then an error code (P_INVALID_AGREEMENT_TEXT) isreturned.

signingAlgorithm : in TpSigningAlgorithm

Thisisthe algorithm used to compute the digital signature. It shall be identical to the one used by the framework when
invoking signServiceAgreement() on the client. If the signingAlgorithm is not the same one, isinvalid, or unknown to
the framework, an error code (P_INVALID_SIGNING_ALGORITHM) isreturned. Thelist of possible algorithmsis
as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the
digestAlgorithm and signatureAlgorithm fields in the Signerinfo field in the digital Signature (see below).

Returns

TpSignatureAndServiceMgr
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID AGREEMENT TEXT,
P _INVALID SERVICE TOKEN, P _INVALID SIGNING ALGORITHM,
P _SERVICE ACCESS DENIED

7.3.2.2.2 Method terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

Thisisthe token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken isinvalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) isreturned.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 66 ETSITS 129 198-3 V7.1.0 (2007-06)

terminationText : in TpString
Thisisthe termination text that describes the reason for the termination of the service agreement.

digitalSignature : in TpOctetSet

This contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.
The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to
initially sign the service agreement. The content is the termination text. The "external signature” construct shall not be
used (i.e. the eContent field in the Encapsul atedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The signing algorithm used is the same as the signing a gorithm given when the service agreement was
signed using signServiceAgreement(). The framework uses this to check that the terminationText has been signed by
the client application. If a match is made, the service agreement is terminated, otherwise an error code
(P_INVALID_SIGNATURE) isreturned.

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE TOKEN,
P INVALID SIGNATURE

7.3.2.2.3 Method selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client
application is not alowed to access the service, then the P_SERVICE_ACCESS DENIED exception isthrown.

Returns <serviceToken> : Thisis afree format text token returned by the framework, which can be signed as part of a
service agreement. This will contain operator specific information relating to the service level agreement. The
serviceToken has alimited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken
will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client
application or framework invokes the terminateAccess method on the other's corresponding access interface.

Parameters

serviceID : in TpServiceID

Thisidentifies the service required. If the servicel D is not recognised by the framework, an error code
(P_INVALID_SERVICE_ID) isreturned.

Returns

TpServiceToken
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE ID,
P SERVICE ACCESS DENIED

7.3.2.2.4 Method initiateSignServiceAgreement()

This method is used by the client application to initiate the sign service agreement process. This method shall be
invoked following the application's call to selectService(), and before the signing of the service agreement can take
place. If the client application is not allowed to initiate the sign service agreement process, the exception
(P_SERVICE_ACCESS DENIED) isthrown.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 67 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters

serviceToken : in TpServiceToken

Thisisthe token returned by the framework in acall to the selectService() method. Thistoken is used to identify the
service instance requested by the client application. If the serviceToken isinvalid, or has expired, the exception
(P_INVALID_SERVICE_TOKEN) isthrown.

Raises

TpCommonExceptions, P_INVALID SERVICE TOKEN, P SERVICE ACCESS DENIED

7.3.3 Integrity Management Interface Classes

7.3.3.1 Interface Class IpAppFaultManager
Inherits from: Iplnterface.

Thisinterface is used to inform the application of events that affect the integrity of the Framework, Service or Client
Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface
that is specified when the client application obtains the Fault Management interface: i.e. by use of the
obtainlnterfaceWithCallback operation on the IpAccessinterface

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
appActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportind (fault : in TpinterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwUnavailablelnd (reason : in TpFwUnavailReason) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

appUnavailablelnd (servicelD : in TpServicelD) : void

svcAvailStatusind (servicelD : in TpServicelD, reason : in TpSvcAvailStatusReason) : void

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord, servicelDs : in TpServicelDList) : void

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsErrorList, servicelDs : in TpServicelDList) : void

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimelnterval) :
void

fwAvailStatusind (reason : in TpFwAvailStatusReason) : void

7.3.3.1.1 Method activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 68 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters

activityTestID : in TpActivityTestID
Used by the client application to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

7.3.3.1.2 Method appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the
application must carry out atest on itself, to check that it is operating correctly. The application reports the test result
by invoking the appActivity TestRes method on the | pFaultManager interface.

Parameters

activityTestID : in TpActivityTestID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

7.3.3.1.3 Method <<deprecated>> fwFaultReportind()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable.

The framework invokes this method to notify the client application of afailure within the framework. The client
application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoverylnd).

Parameters

fault : in TpInterfaceFault
Specifies the fault that has been detected by the framework.

7.3.3.1.4 Method <<deprecated>> fwFaultRecoveryind()

This method is deprecated and will be removed in alater release. 1t is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application when the Framework becomes available again.

The framework invokes this method to notify the client application that a previously reported fault has been rectified.
The application may then resume using the framework.

Parameters

fault : in TpInterfaceFault
Specifies the fault from which the framework has recovered.

7.3.3.1.5 Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in alater release. It is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable and also when the Framework becomes available again.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 69 ETSITS 129 198-3 V7.1.0 (2007-06)

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavailReason
Identifies the reason why the framework is no longer available.

7.3.3.1.6 Method activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the application to correlate this response (when it arrives) with the original request.

7.3.3.1.7 Method appUnavailableInd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not
responding.

Parameters

serviceID : in TpServiceID
Specifies the service for which the indication of unavailability was received.

7.3.3.1.8 Method svcAvailStatusind()

The framework invokes this method to inform the client application about the Service instance availability status, i.e.
that it can no longer use its instance of the indicated service according to the reason parameter but as well information
when the Service Instance becomes available again. On receipt of this request, the client application either acts to reset
its use of the specified service (using the normal mechanisms, such as the discovery and authentication interfaces, to
stop use of this service instance and begin use of adifferent service instance). The client application can also wait for
the problem to be solved and just stop the usage of the service instance until the svcAvail Statusind() is called again with
the reason SVC_AVAILABLE.

Parameters

serviceID : in TpServiceID
Identifies the affected service.

reason : in TpSvcAvailStatusReason
Identifies the reason why the service is ho longer available or that it has become available again.
7.3.3.1.9 Method generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a client application in responseto a
generateFaul tStati sticsRecordReq method invocation on the | pFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID
Used by the client application to correlate this response (when it arrives) with the original regquest.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 70 ETSITS 129 198-3 V7.1.0 (2007-06)

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

serviceIDs : in TpServiceIDList
Specifies the framework or services that are included in the general fault statistics record. If the servicel Ds parameter is
an empty list, then the fault statistics are for the framework.

In the case where alist of servicesis present, thisis an ordered list in which the location of the servicein thislist
corresponds to the location of the related fault statistics in the TpFaultStatsRecord returned.

7.3.3.1.10 Method generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a generateFaultStati sticsRecordReq method invocation on the | pFaultM anager interface.

Parameters

faultStatsReqID : in TpFaultReqID
Used by the client application to correlate this error (when it arrives) with the original request.

faultStatistics : in TpFaultStatsErrorList
The list of fault statistics errors returned.

serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the list of fault statistics errorsreturned. If the servicel Ds
parameter is an empty list, then the fault statistics error relates to the framework.

In the case where a list of servicesis present, thisis an ordered list in which the location of the service in thislist
corresponds to the location of the related fault statistics error in the TpFaultStatsErrorList returned.

7.3.3.1.11 Method generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the
framework was asked for these statistics by a service instance by using the generateFaultStatisticsRecordReq operation
on the I pFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics
record, for the application during the specified timeinterval, which is returned to the framework using the
generateFaultStati sticsRecordRes operation on the I pFaultM anager interface.

Parameters

faultStatsReqID : in TpFaultReqID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the client application.

7.3.3.1.12 Method fwAvailStatusind()

The framework invokes this method to inform the client application about the Framework availability status, i.e. that it
can no longer use the Framework according to the reason parameter or that the Framework has become available again.
The client application may wait for the problem to be solved and just stop the usage of the Framework until the
fwAvailStatusind() is called again with the reason FRAMEWORK_AVAILABLE.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 71 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters

reason : in TpFwAvailStatusReason
I dentifies the reason why the framework is no longer available or that it has become available again.

7.3.3.2 Interface Class IpFaultManager
Inherits from: Iplnterface.

Thisinterface is used by the application to inform the framework of events that affect the integrity of the framework
and services, and to request information about the integrity of the system. The fault manager operations do not
exchange callback interfaces asit is assumed that the client application suppliesits Fault Management callback
interface at the time it obtains the Framework's Fault Management interface, by use of the obtainl nterfaceWithCallback
operation on the IpAccess interface.

If the IpFaultManager interface isimplemented by a Framework, at least one of these methods shall be
implemented. If the Framework is capable of invoking the | pAppFaultM anager.appActivity TestReq() method, it shall
implement appActivityTestRes() and appActivityTestErr() in thisinterface. If the Framework is capable of invoking
| pAppFaultM anager.generateFault Stati sticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and
generateFaultStati sticsRecordErr() in thisinterface.

<<Interface>>

IpFaultManager

activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServicelD) : void

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcUnavailablelnd (servicelD : in TpServicelD) : void

appActivityTestErr (activityTestID : in TpActivityTestID) : void

appAvailStatusind (reason : in TpAppAvailStatusReason) : void

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimelnterval,
servicelDs : in TpServicelDList) : void

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord) : void

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in
TpFaultStatisticsError) : void

7.3.3.2.1 Method activityTestReq()

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of
this request, the framework must carry out atest on itself or on the client's instance of the specified service, to check
that it is operating correctly. The framework reports the test result by invoking the activity TestRes method on the
IpAppFaultManager interface. If the application does not have access to a service instance with the specified servicel D,
the P_ UNAUTHORISED PARAMETER_VALUE exception shall be thrown. The extralnformation field of the
exception shall contain the corresponding servicel D.

For security reasons the client application has access to the service ID rather than the service instance ID. However, as
there is a one to one relationship between the client application and a service, i.e. there is only one service instance of
the specified service per client application, it is the obligation of the framework to determine the service instance ID
from the service ID.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 72 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters

activityTestID : in TpActivityTestID
The identifier provided by the client application to correlate the response (when it arrives) with this request.

svecID : in TpServiceID

Identifies either the framework or a service for testing. The framework is designated by an empty string.

Raises

TpCommonExceptions, P _INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.2.2 Method appActivityTestRes()

The client application uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

Raises

TpCommonExceptions, P_INVALID ACTIVITY TEST ID

7.3.3.2.3 Method svcUnavailablelnd()

This method is used by the client application to inform the framework that it can no longer use its instance of the
indicated service (either due to afailurein the client application or in the service instance itself). On receipt of this
request, the framework should take the appropriate corrective action.

Parameters

serviceID : in TpServiceID
I dentifies the service that the application can no longer use.

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.24 Method appActivityTestErr()

The client application uses this method to indicate that an error occurred during a framework-requested activity test.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 73 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters

activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

7.3.3.2.5 Method appAvailStatusind()

This method is used by the application to inform the framework of its availability status. If the Application has detected
afailureit uses one of the APP_UNAVAILABLE reason typesto indicate the problem and that it is ceasing its use of
all of its subscribed service instances. When the Application is working again it shall call this method again with the
APP_AVAILABLE reason to inform the Framework that it is working properly again. The Framework shall aso
attempt to inform all of the service instances used by the specific application and/or its administrator about the problem.

Parameters

reason : in TpAppAvailStatusReason

I dentifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Framework
and the Service that the Application is available again.

Raises

TpCommonExceptions

7.3.3.2.6 Method generateFaultStatisticsRecordReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the
framework must produce a fault statistics record, for either the framework or for the client's instances of the specified
services during the specified time interval, which is returned to the client application using the

generateFaul tStati sticsRecordRes operation on the |pAppFaultManager interface. |f the application does not have
access to a service instance with the specified servicel D, the P_ UNAUTHORISED PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

faultStatsReqID : in TpFaultReqID
The identifier provided by the application to correlate the response (when it arrives) with this request.

timePeriod : in TpTimelInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

serviceIDs : in TpServiceIDList

Specifies either the framework or servicesto be included in the general fault statistics record. If this parameter is not an
empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault
statistics record of the framework is returned.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 74 ETSITS 129 198-3 V7.1.0 (2007-06)

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.2.7 Method generateFaultStatisticsRecordRes()

This method is used by the client application to provide fault statistics to the framework in response to a
generateFaultStati sticsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID
Used by the framework to correlate this response (when it arrives) with the original request.

faultStatistics : in TpFaultStatsRecord
The fault statistics record.
Raises

TpCommonExceptions

7.3.3.2.8 Method generateFaultStatisticsRecordErr()

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in
response to a generateFaul tStatisticsRecordReq method invocation on the |pAppFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID
Used by the framework to correlate this error (when it arrives) with the original request.

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

Raises

TpCommonExceptions

7.3.3.3 Interface Class IpAppHeartBeatMgmt
Inherits from: Ipinterface.

Thisinterface allows the initialisation of a heartbeat supervision of the client application by the framework.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 75 ETSITS 129 198-3 V7.1.0 (2007-06)

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat (interval : in TpInt32, fwinterface : in IpHeartBeatRef) : void
disableAppHeartBeat () : void

changelnterval (interval : in TpInt32) : void

7.3.3.3.1 Method enableAppHeartBeat()

With this method, the framework instructs the client application to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval : in TpInt32
The time interval in milliseconds between the heartbeats.

fwInterface : in IpHeartBeatRef
This parameter refersto the callback interface the heartbeat is caling.

7.3.3.3.2 Method disableAppHeartBeat()

Instructs the client application to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

7.3.3.3.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32
Thetime interval in milliseconds between the heartbeats.

7.3.3.4 Interface Class IpAppHeartBeat
Inherits from: Ipinterface.

The Heartbeat Application interface is used by the Framework to send the client application its heartbeat.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 76 ETSITS 129 198-3 V7.1.0 (2007-06)

<<Interface>>

IpAppHeartBeat

pulse () : void

7.3.34.1 Method pulse()

The framework uses this method to send its heartbeat to the client application. The application will be expecting a pulse
at the end of every interval specified in the parameter to the |pHeartBeatM gmt.enableHeartbeat() method. 1f the pulse()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

7.3.35 Interface Class IpHeartBeatMgmt
Inherits from: Ipinterface.

Thisinterface allows the initialisation of a heartbeat supervision of the framework by aclient application. If the
IpHeartBeatM gmt interface is implemented by a Framework, as a minimum enableHeartBeat() and disableHeartBest()
shall be implemented.

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, applnterface : in IpAppHeartBeatRef) : void
disableHeartBeat () : void

changelnterval (interval : in TpInt32) : void

7.3.3.5.1 Method enableHeartBeat()

With this method, the client application instructs the framework to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval : in TpInt32
Thetimeinterval in milliseconds between the heartbeats.

appInterface : in IpAppHeartBeatRef
This parameter refersto the callback interface the heartbeat is caling.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 77 ETSITS 129 198-3 V7.1.0 (2007-06)

Raises

TpCommonExceptions

7.3.3.5.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

7.3.3.5.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32
The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

7.3.3.6 Interface Class IpHeartBeat
Inherits from: Ipinterface.

The Heartbeat Framework interface is used by the client application to send its heartbeat. If a Framework is capable of
invoking |pAppHeartBeatM gmt.enableHeartBeat(), it shall implement IpHeartBeat and the pulse() method.

<<Interface>>

IpHeartBeat

pulse () : void

7.3.3.6.1 Method pulse()

The client application uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the |pAppHeartBeatM gmt.enableA ppHeartbeat() method. |If

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 78 ETSITS 129 198-3 V7.1.0 (2007-06)

the pulse() is not received within the specified interval, then the client application can be deemed to have failed the
heartbeat.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

7.3.3.7 Interface Class IpAppLoadManager
Inherits from: Iplnterface.

The client application devel oper supplies the load manager application interface to handle requests, reports and other
responses from the framework |oad manager function. The application supplies the identity of this callback interface at
the time it obtains the framework's load manager interface, by use of the obtainl nterfaceWithCallback() method on the
IpAccess interface.

<<Interface>>

IpAppLoadManager

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

resumeNotification () : void

suspendNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

queryAppLoadStatsReq (loadStatsReqID : in TpLoadTestID, timelnterval : in TpTimelnterval) : void
gueryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void
queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void

7.3.3.7.1 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1 to O, for the SCFs or framework
which have been registered for load level notifications) this method isinvoked on the application. In addition this
method shall be invoked on the application in order to provide a notification of current load status, when load
notifications are first requested, or resumed after suspension.

Parameters

loadStatistics : in TpLoadStatisticList
Specifies the framework-supplied load statistics, which include the load level change(s).

7.3.3.7.2 Method resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 79 ETSITS 129 198-3 V7.1.0 (2007-06)

client application shall inform the framework of the current load using the reportL oad method on the corresponding
I pLoadManager.

Parameters
No Parameters were identified for this method.

7.3.3.7.3 Method suspendNoatification()

The framework uses this method to request the application to suspend sending it any notifications. e.g. while the
framework handles atemporary overload condition.

Parameters
No Parameters were identified for this method.

7.3.3.7.4 Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the
application. Upon receipt of this method the client application shall inform the framework of the current load using the
reportLoad method on the corresponding | pLoadM anager.

Parameters
No Parameters were identified for this method.

7.3.3.75 Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the application.

Parameters
No Parameters were identified for this method.

7.3.3.7.6 Method queryAppLoadStatsReq()

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

loadStatsReqID : in TpLoadTestID
Theidentifier provided by the framework to correlate the response (when it arrives) with this request.

timeInterval : in TpTimeInterval
Specifies the time interval for which load statistic records should be reported.
7.3.3.7.7 Method queryLoadStatsRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e.
in response to an invocation of the queryL oadStatsReq method on the I pLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID
Used by the client application to correlate this response (when it arrives) with the original request.

loadStatistics : in TpLoadStatisticList
Specifies the framework-supplied load statistics.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 80 ETSITS 129 198-3 V7.1.0 (2007-06)

7.3.3.7.8 Method queryLoadStatsErr()

The framework uses this method to return an error response to the application that requested the framework's load
statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadStatsReq method on the I pLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID
Used by the client application to correlate this error (when it arrives) with the original request.

loadStatisticsError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

7.3.3.8 Interface Class IpLoadManager
Inherits from: Iplnterface.

The framework API should alow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific client application. It might specify what
action the framework should take as the congestion level changes. For example, some real-time critical applications will
want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services
will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management
policy isrelated to the QoS level to which the application is subscribed. The framework load management functionis
represented by the |pLoadM anager interface. Most methods are asynchronous, in that they do not lock athread into
waiting whilst atransaction performs. To handle responses and reports, the client application developer must
implement the IpAppL oadManager interface to provide the callback mechanism. The application supplies the identity
of this callback interface at the time it obtains the framework's load manager interface, by use of the
obtainlnterfaceWithCallback operation on the IpAccessinterface.

If the IpLoadManager interface isimplemented by a Framework, at least one of the methods shall be implemented
as a minimum requirement. If load level notifications are supported, the createl oadL evelNotification() and
destroyL oadL evel Notification() methods shall be implemented. If suspendNotification() is implemented, then
resumeNotification() shall be implemented also. If a Framework is capable of invoking the
I pAppLoadM anager.queryAppL oadStatsReq() method, then it shall implement queryAppL oadStatsRes() and
gueryAppLoadStatskrr() methods in this interface.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 81 ETSITS 129 198-3 V7.1.0 (2007-06)

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void
createLoadLevelNotification (servicelDs : in TpServicelDList) : void
destroyLoadLevelNotification (servicelDs : in TpServicelDList) : void
resumeNotification (servicelDs : in TpServicelDList) : void
suspendNotification (servicelDs : in TpServicelDList) : void

queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, servicelDs : in TpServicelDList, timelnterval : in
TpTimelnterval) : void

queryAppLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

queryAppLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) :
void

7.3.3.8.1 Method reportLoad()

The client application uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load
level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is hot congested or overloaded). At
level 1 load, the application is overloaded. At level 2 load, the application is severely overloaded. In addition this
method shall be called by the application in order to report current load status, when load notifications are first
requested, or resumed after suspension.

Parameters

loadLevel : in TpLoadLevel
Specifies the application's load level.

Raises

TpCommonExceptions

7.3.3.8.2 Method createLoadLevelNotification()

The client application uses this method to register to receive notifications of load level changes associated with either
the framework or with its instances of the individual services used by the application. If the application does not have
access to a service instance with the specified servicel D, the P_ UNAUTHORISED PARAMETER_VALUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicel D. Upon receipt
of this method the framework shall inform the client application of the current framework or service instance load using
the loadL evel Natification method on the corresponding 1pAppL oadM anager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or SCFsto be registered for load control. To register for framework load control, the
servicel Ds parameter must be an empty list.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 82 ETSITS 129 198-3 V7.1.0 (2007-06)

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.8.3 Method destroyLoadLevelNotification()

The client application uses this method to unregister for notifications of load level changes associated with either the
framework or with itsinstances of the individual services used by the application. If the application does not have
access to a service instance with the specified servicel D, the P_UNAUTHORISED_PARAMETER_VALUE exception
shall bethrown. The extralnformation field of the exception shall contain the corresponding servicelD.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for
framework load control, the servicel Ds parameter must be an empty list.

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P UNAUTHORISED PARAMETER VALUE

7.3.3.8.4 Method resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. after a
period of suspension during which the application handled a temporary overload condition. If the application does not
have access to a service instance with the specified servicel D, the P UNAUTHORISED PARAMETER_VALUE
exception shall be thrown. The extralnformation field of the exception shall contain the corresponding servicelD.
Upon receipt of this method the framework shall inform the client application of the current framework or service
instance load using the loadL evel Notification method on the corresponding | pAppLoadManager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications of load level changes by the framework
should be resumed. To resume notifications for the framework, the servicel Ds parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P _SERVICE NOT ENABLED,
P UNAUTHORISED PARAMETER VALUE

7.3.3.8.5 Method suspendNoatification()

The client application uses this method to request the framework to suspend sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. while
the application handles a temporary overload condition. If the application does not have access to a service instance
with the specified servicel D, the P UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicelD.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 83 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications by the framework should be suspended.
To suspend notifications for the framework, the servicel Ds parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P _SERVICE NOT ENABLED,
P UNAUTHORISED PARAMETER VALUE

7.3.3.8.6 Method queryLoadStatsReq()

The client application uses this method to request the framework to provide load statistic records for the framework or
for itsinstances of the individual services. If the application does not have access to a service instance with the
specified servicel D, the P_UNAUTHORISED PARAMETER _VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicel D.

Parameters

loadStatsReqID : in TpLoadTestID
The identifier provided by the application to correlate the response (when it arrives) with this request.

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load
statistics record of the framework is returned.

timeInterval : in TpTimeInterval
Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P_SERVICE NOT ENABLED,
P UNAUTHORISED PARAMETER VALUE

7.3.3.8.7 Method queryAppLoadStatsRes()

The client application uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the queryAppL oadStatsReq method on the | pA ppLoadM anager
interface.

Parameters

loadStatsReqID : in TpLoadTestID
Used by the framework to correlate this response (when it arrives) with the original request.

loadStatistics : in TpLoadStatisticList
Specifies the application-supplied load statistics.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 84 ETSITS 129 198-3 V7.1.0 (2007-06)

Raises

TpCommonExceptions

7.3.3.8.8 Method queryAppLoadStatsErr()

The client application uses this method to return an error response to the framework that requested the application's load
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryAppL oadStatsReq method on the IpAppLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID
Used by the framework to correlate this error (when it arrives) with the original request.

loadStatisticsError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the application's load statistics.

Raises

TpCommonExceptions

7.3.3.9 Interface Class IpOAM
Inherits from: Ipinterface.

The OAM interface is used to query the system date and time. The application and the framework can synchronise the
date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA APIs. Thisinterface
and the systemDateTimeQuery() method are optional.

<<Interface>>
IpPOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.3.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client application passesin its own date and time to the
framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : Thisis the system date and time of the framework.

Parameters

clientDateAndTime : in TpDateAndTime

Thisisthe date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT isreturned if
the format of the parameter isinvalid.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 85 ETSITS 129 198-3 V7.1.0 (2007-06)

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID TIME AND DATE FORMAT

7.3.3.10 Interface Class IpAppOAM
Inherits from: Ipinterface.

The OAM client application interface is used by the Framework to query the application date and time, for
synchronisation purposes. This method is invoked by the Framework to interchange the framework and client
application date and time.

<<Interface>>
IpPAppOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.3.10.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The framework passes in its own date and time to the
application. The application responds with its own date and time.

Returns <clientDateAndTime> : Thisis the date and time of the client (application).

Parameters

systemDateAndTime : in TpDateAndTime
Thisisthe system date and time of the framework.

Returns
TpDateAndTime

7.3.4 Event Notification Interface Classes

7.34.1 Interface Class IpAppEventNotification
Inherits from: Ipinterface.

Thisinterface is used by the framework to inform the application of a generic service-related event. The Event
Notification Framework will invoke methods on the Event Notification Application Interface that is specified when the
Event Notification interface is obtained.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 86 ETSITS 129 198-3 V7.1.0 (2007-06)

<<Interface>>

IpAppEventNotification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

7.34.1.1 Method reportNotification()

This method notifies the application of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo
Specifies specific data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The
application can use assignment id to associate events with event specific criteria and to act accordingly.

7.3.4.1.2 Method notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to
faults detected).

Parameters
No Parameters were identified for this method.

7.3.4.2 Interface Class IpEventNotification
Inherits from: Ipinterface.

The event notification mechanism is used to notify the application of generic service related events that have occurred.
If Event Notifications are supported by a Framework, this interface and the createNotification() and
destroyNotification() methods shall be supported.

<<Interface>>

IpEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 87 ETSITS 129 198-3 V7.1.0 (2007-06)

7.3.4.2.1 Method createNotification()
This method is used to enable generic notifications so that events can be sent to the application.

Returns <assignmentl D> : Specifiesthe ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria : in TpFwEventCriteria
Specifies the event specific criteria used by the application to define the event required.

Returns
TpAssignmentID
Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID CRITERIA,
P INVALID EVENT TYPE

7.3.4.2.2 Method destroyNotification()

This method is used by the application to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment I Ds, the framework will return the error code
P INVALID_ASSIGNMENTID.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID ASSIGNMENT ID

7.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will
return an exception. Apart from the methods that can be invoked by the application also eventsinternal to the gateway
or related to network events are shown together with the resulting event or action performed by the gateway. These
internal events are shown between quotation marks.

7.4.1 Service Discovery State Transition Diagrams

74.1.1 State Transition Diagrams for IpServiceDiscovery

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 88 ETSITS 129 198-3 V7.1.0 (2007-06)

obtainFrameworkInterfac e(disc overyService)
obtaininterface WithCallback(dis coverySenice)

listSeniceTypes
describeSeniceType
listSubscribedServices

N discoverSenice

Active

IpAccess.endAccess

\

7
L)

Figure : State Transition Diagram for IpServiceDiscovery

74111 Active State

When the application requests Service Discovery by invoking the obtainl nterface or the obtainl nterfaceWithCallback
methods on the IpAccess interface, an instance of the |pServiceDiscovery will be created. Next the applicationis
allowed to request alist of the provided SCFs and to obtain a reference to interfaces of SCFs.

7.4.2 Service Agreement Management State Transition Diagrams

There are no State Transition Diagrams defined for Service Agreement Management
7.4.3 Integrity Management State Transition Diagrams

7.4.3.1 State Transition Diagrams for IpLoadManager

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 89 ETSI TS 129 198-3 V7.1.0 (2007-06)

reportLoad
"load change" NoadLevelNotification queryAppLoadStatsRes| load statistics requested by LoadManager]
queryAppLoadsStatsErr[load statistics requested by LoadManager]

createLoadLevelNotification NoadLevelNotification (Active } queryLoadStatsReq

destroyLoadLewelN otification

IpAccessyobtainl|
IpAccess ybtainlnterfaceWithCallback

resumeNotification
“NoadLewelNotification

reportLoad
queryAppLoadStatsRes|[load statistics requested by LoadManager]
ueryAppLoadStatsEr| load statistics requested by LoadManager]
Notification queryLoadStatsReq
Suspended

destroylLoadLevelNotification

All States

IpAccess terminateAccess

suspendNotification[all notifications
suspended]

®

Figure : State Transition Diagram for IpLoadManager

7.4.3.1.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

7.4.3.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the application has requested the LoadManager to suspend sending the load
level notification information.

7.4.3.1.3 Active State

In this state the application has indicated its interest in notifications by performing a createl oadL evel Notification()
invocation on the IpLoadManager. The load manager can now request the application to supply load statistics
information (by invoking queryAppL oadStatsReq|()). Furthermore the LoadManager can request the application to
control itsload (by invoking loadL evelNotification(), resumeNotification() or suspendNotification() on the application
side of interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the
method reportLoad().

7.4.3.2 State Transition Diagrams for LoadManagerinternal

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7

90

ETSI TS 129 198-3 V7.1.0 (2007-06)

A necessary action can
be suspending the load
notifictions to the
application or enabling
load control mechanisms
on certain senices.

FglstorLoadCOntroller ,'
1
reportLoad[loadlevel 1= 0] |
[Normal load Application Overload
reportLoad[loadlevel = 0]
"internal load change detection” /)
"internal load change b non owerloaded" interrjal load change detection
"internal load change/to non gverload"
reportLoad[loadlevel != 0]
Internal overload
Internal and Application Oerload
\\ reportLoad[loadlevel = 0]
\\
A necessary action can be AN
suspending the load
notifictions from the
application by invoking
sus pendNotific ation or ALL
enabling load control STATES
mechanisms on the
application by invoking
enableLoadControl. .
unregistefLoadControler
P
L)
Figure : State Transition Diagram for LoadManagerinternal
74321 Normal load State

In this state none of the entities defined in the load balancing policy between the application and the framework / SCFs
is overloaded.

7.4.3.2.2 Application Overload State

In this state the application hasindicated it is overloaded. When entering this state the load policy is consulted and the
appropriate actions are taken by the LoadManager.

7.4.3.2.3 Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this
state the load policy is consulted and the appropriate actions are taken by the LoadManager.

74324 Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load
policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 91 ETSITS 129 198-3 V7.1.0 (2007-06)

7.4.3.3 State Transition Diagrams for IpPOAM

IpAccess.obtaininterface
IpAccess.obtaininterffaceWithCallback

systemDateTimeQuery

Figure : State Transition Diagram for IpOAM

7.4.3.3.1 Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the
date / time of the Framework.

7.4.3.4 State Transition Diagrams for IpFaultManager

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 92 ETSI TS 129 198-3 V7.1.0 (2007-06)

IpAccess.obtaininterfaceWithCallback("FaultManagement") /
add application to fault management
‘change in framework availabililty (non fault)' ~fwAvailStatusind to all applications with callback
‘change in service availability' ~svcAvailStatusind to all applications using the service

svcUnavailablelnd / test the service, inform service that application is not using it
generateFaultStatisticsRecordReq "app.generateFaultStatisticsRecordRes / Err
service fault ~svcAvailStatusind to all applications using the service

Framework
A ‘ no fault detected
Active ‘

activityTestReq][scflD activityTestReq[
empty string]
no fault detected

Framework Activity T est

Service Activity Test
IpAccess.texpinateAccess entry/ test activity of framework

exit/ "lpAppFaultManager.activityTestRes
exit/ "lpAppFaultManager.activityTestErr

entry/ test activity of service
exit/ NlpAppFaultManager.activityTestRes
exit/ "lpAppFaultManager.activityTestErr

“terminateAccess/
Abort pendingteg reques

IpAccess.termingteAccess /
fault detected in fw Abort pending/test request
IpAccess.terminateAccess / remove
application from load management

~

Framework Faulty fault detected in fw

entry/ MwAvailStatusind to all applications with callback
exit/ MfwAvailStatusind to all applications with callback

Figure : State Transition Diagram for IpFaultManager

7.4.3.4.1 Framework Active State

Thisisthe normal state of the framework, which is fully functional and able to handle requests from both applications
and services capability features.

7.4.3.4.2 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the
framework return an error. If the framework ever recovers, applications with fault management callbacks will be
notified viaa fwAvail Statusl nd message.

7.4.3.4.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problemis diagnosed, all applications with fault
management callbacks are notified through a fwAvail Statuslnd message.

7.4.3.4.4 Service Activity Test State

In this state, the framework is performing atest on one service capability feature. If the SCF is faulty, applications with
fault management callbacks are notified accordingly through a svcAvail Statusind message.

7.4.4 Event Notification State Transition Diagrams

74.4.1 State Transition Diagrams for IpEventNotification

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 93 ETSITS 129 198-3 V7.1.0 (2007-06)

createNotification

IpAccess.obtaininterface destroyNotification

IpAccess.obtaiginterfaceWithCallback

createNotification

" Notification
Active

destroy Notification[no more notificationg’ installed]

IpAccess:terminateAccess

IpAccess.jerminateAccess

Figure : State Transition Diagram for IpEventNotification

8 Framework-to-Service API

8.1 Sequence Diagrams

8.1.1 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery
8.1.2 Service Registration Sequence Diagrams

8.1.2.1 New SCF Sub Type Registration

The following figure shows the process of registering a new proprietary Service Capability Feature in the Framework.
This SCF is a sub type of the standard SCF.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 94 ETSITS 129 198-3 V7.1.0 (2007-06)

IpFwS ervic;{eqistrati on

1: registerServiceSubType(

U 1

N—r

2: announceSenviceAvailability()

1: Registration: first step - register service sub type. For sub type registration, besides the values for the standard
service properties, the modes, types, and values for the additional service properties must be provided by the SCF.

2: Registration: second step - announce service availability. Thisisidentical to announcing availability of super types.

8.1.2.2 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service
Registration is atwo step process.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 95 ETSITS 129 198-3 V7.1.0 (2007-06)

IpFwService_Reqistration

1: registerSenice()

2: announceSenviceAvailability()

1. Registration: first step - register service.

The purpose of thisfirst step in the process of registration is to agree, within the network, on anameto call, internaly, a
newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from
different vendors. The goal isto make an association between the new SCF version, as characterized by alist of
properties, and an identifier called servicel D.

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs),
whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or
for withdrawing it later).

The following input parameters are given from the SCS to the Framework in thisfirst registration step:
in serviceTypeName

Thisisastring with the name of the SCF, among alist of standard names (e.g. "P_MPCC").
in servicePropertyList

Thisisalist of types TpServiceProperty; each TpServiceProperty isapair of (ServicePropertyName,
ServicePropertyValueList).

ServicePropertyName is a string that defines avalid SFC property name (valid SCF property names are listed in the
SCF data definition).

ServicePropertyValuelList isa numbered set of types TpServicePropertyVaue; TpServicePropertyVaueisastring
that describes avalid value of a SCF property (valid SCF property values are listed in the SCF data definition).

The following output parameter results from service registration:
out servicelD
Thisisastring, automatically generated by the Framework and unique within the Framework.

Thisisthe name by which the newly installed version of SCF, described by the list of properties above, is going to be
identified internally in this network.

2. Registration: second step - announce service availability.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 96 ETSI TS 129 198-3 V7.1.0 (2007-06)

At this point the network's Framework is aware of the existence of a new SCF, and could let applications know - but
they would have no way to useit. Instaling the SCSlogic and assigning a name to it does not make this SCF available.
In order to make the SCF available an "entry point”, called lifecycle manager, is used. The role of the lifecycle manager
isto control the life cycle of an interface, or set of interfaces, and provide clients with the references that are necessary
to invoke the methods offered by these interfaces. The starting point for a client to use an SCF isto obtain an interface
reference to alifecycle manager of the desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF
version, will instantiate a lifecycle manager for it that will allow client to useit. Then it will inform the Framework of
the value of the interface associated to the new SCF. After the receipt of thisinformation, the Framework makes the
new SCF (identified by the pair [servicel D, servicelnstancelifecycleManagerRef]) discoverable.

The following input parameters are given from the SCSto the Framework in this second registration step:
inservicelD.

Thisisthe identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needsto
include the servicel D, to know which SCF it is.

in servicelnstancel ifecycleM anagerRef.

Thisisthe interface reference at which the lifecycle manager of the new SCF is available. Note that the Framework will
have to invoke the method createServiceManager() in thisinterface when a client application signs an agreement to use
the SCF so that it can get the service manager interface necessary for applications as an entry point to any SCF.

8.1.3 Service Instance Lifecycle Manager Sequence Diagrams

8.1.3.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing of the service agreement and the corresponding actions towards the service. For more information on accessing
the framework, authentication and discovery of services, see the corresponding clauses.

: IpAppCalCont mlManager - Iplnitial

AppLogic ‘ ‘

o GenericCallControlService : : IpCallControlManager
IpSer IpSer ifec

IpAp pServiceAgreem ent Managem ent

. . | . . .
We assume that the application s already authenticated and discovered the service it warts touse ﬁ

U 2: sighServiceAgreement()

‘ (T l

!
1: selectService()

-

|
3: signServiceAgreement()

5: new()

7: setCallback()

g
g

| ;

1. The application selects the service, using a servicel D for the generic call control service. The servicel D could have
been obtained via the discovery interface. A ServiceToken is returned to the application.

2: Theclient application signs the service agreement.

3: The framework signs the service agreement. As aresult a service manager interface reference (in this case of type
IpCallControlManager) is returned to the application.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 97 ETSITS 129 198-3 V7.1.0 (2007-06)

4. Provided the signature information is correct and all conditions have been fulfilled, the framework will request the
service identified by the servicel D to return a service manager interface reference. The service manager istheinitial
point of contact to the service.

5: Thelifecycle manager creates a new manager interface instance (a call control manager) for the specified
application. It should be noted that thisis an implementation detail. The service implementation may use other
mechanism to get a service manager interface instance.

Following the creation of the service manager outlined above, a unique instance of the service particular to the
application client results. This service instance is assigned a servicelnstancel D by the Framework, which is provided to
the Service Instance Lifecycle manager during the createServiceManager operation. If it is necessary that Framework
Integrity Management functionality and operations are to be supported between the Framework and the service instance
identified by the defined servicelnstancel D, it is then necessary for the new service instance to establish an access
session with the Framework. This provides the Framework with the ability to manage and monitor the operation of the
service instance that relates to a particular application client. The steps required to establish a Framework access
session are outlined in clause 6 of the present document.

6: The application creates a new |pAppCall ControlManager interface to be used for callbacks.

7: The Application sets the callback interface to the interface created with the previous message.

An application (identifiable by a given TpClientApplD may carry out the sequence, as exemplified above, multiple
times.

8.1.4 Integrity Management Sequence Diagrams

8.14.1 Load Management: Service callback registration and load control

This sequence diagram shows how a service registersitself and the framework invokes load management function
based on policy.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 98 ETSI TS 129 198-3 V7.1.0 (2007-06)

. IpSwcLoadManager . IpFwLoadManager

T
| 1: createLoadLevelNotification() |

U m Framework reports its

! initial load condition on

2: loadLewelNotification() - -~~~ ~| notification creation

1

-

3: load change detection & policy evaluation

s =

4: loadLewelNotification() | This is Framework
u = implementation detail. The

-7 Framework may take

Framework detects aload -7 L |appropriate load control action.
condition change and notifies !
the senice. The service may
take appropriate load control
action - implementation %‘
detail. Tl N
6: loadLewvelNotification() T This is Framework
— ! implementation detail. The

;
|

u Framework may take
|
|
|
|

|
5: load change det‘ection & policy evaluation

appropriate load control action.

7: destroyLoadLeelNotification()

| ¢

8.1.4.2 Load Management: Framework callback registration and service load control

This sequence diagram shows how the framework registersitself and the service invokes load management function to
inform the framework of service load.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 99 ETSI TS 129 198-3 V7.1.0 (2007-06)

IQSchan Manager IQFWLanM anager

| 1: createLoadLeeINotification()

initial load condition on

Seniice reports its U
|
|

notification creation e

" T----_____2reportLoad()

|
3: load :change detection

|
u
u

——
This is Senice implementation - 4: reportLoad()
detail. The Senice may take ==<__ Senice detects a load condition
appropriate load control action. Tl ~ change and reports to

L] "~ |Framework. The Framework

! | |may take appropriate load

5: load :change detection : control action - implementation
- o , _| detail.

This is Senice implementation T 6: reportLoad() ~ B

detail. The Senice may take
appropriate load control action.

N 7: destroyLoadLevelNotification()

8.1.4.3 Load Management: Client and Service Load Balancing

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 100 ETSI TS 129 198-3 V7.1.0 (2007-06)

Application : Framework : . Service :
IpAppLoadManager IpLoadManager IpFwLoadManager IpSvcLoadManager

|

|

1

L |
Framework checks }
application load. :
|

|

I 1 queryAppLoadStatsReq() |

[~

| 2:queryApplLoadStatsRes() |
1 1

U /U Depending on the load, the

framework may choose to stop
sending notifications to the
application, to allowits load to
reduce.

3: querySvcLoadStatsReq()

=

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1

i . :
: The framework may then check
| the load on the senvice, and take
| action if (according to the load
! balancing policy) if required.
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

i 4: querySvcLoadStatsRes()

8.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the
service

In this sequence diagram, the framework has decided that it wishes to monitor the service, and has therefore requested
the service to commence sending its heartbeat. The service responds by sending its heartbeat at the specified interval.
The framework then decides that it is satisfied with the service's health and disables the heartbeat mechanism. If the
heartbeat was not received from the service within the specified interval, the framework can decide that the service has
failed the heartbeat and can then perform some recovery action.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 101 ETSI TS 129 198-3 V7.1.0 (2007-06)

Framework o L
IpFwHeartBeat IpSvcHeartBeatM gmt

|
| 1: enableéSvcHeartBeat()
| |

2: pulse()

3: pulse() At a certain point of

U\ time the framework
decides to stop

heartbeat supenision

|
|
1
|
4: disableSvcHeartBeat()

8.1.4.5 Fault Management: Service requests Framework activity test
Framework : Senice :
IpFwFaultManager IpSwvcFaultManager

T
|
|
1
1: activityTestReq() 1 The Senvice requests that the

[f U Framework does an activity test.

2: activityTestRes()

1: The service asksthe framework to carry out its activity test. The service denotes that it requires the activity test done
for the framework, rather than an application, by supplying an appropriate parameter.

2. Theframework carries out the test and returns the result to the service.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 102 ETSI TS 129 198-3 V7.1.0 (2007-06)

8.1.4.6 Fault Management: Service requests Application activity test
Senice : - Eramework : Application :
IpSwc Fault Manager IpFwFaultManager IpFaultManager IpAppFaultManager

The Framework identifies the senice

instance to conclude which

U m Application the test is directed at, and
comunicates internally to Framework
interface to the Application.

1: activityTestReq()

2: appActivity TestReq()

U /U The application

I carries out the
| activity test and
: returns the result to
the Framework.

3: appActivity TestRes() |

U

Communications.

Internal Fram ework ﬁ

4: activityTestRes()

===

1. The service instance asks the framework to invoke an activity test on the client application.

2. Theframework asks the application to do the activity test. It is assumed that there isinternal communication
between the service facing part of the framework (i.e. |pFwFaultManager interface) and the part that faces the client
application.

3: The application does the activity test and returns the result to the framework.

4. The framework internally passes the result from its application facing interface (IpFaultManager) to its service
facing side, and sends the result to the service.

8.1.4.7 Fault Management: Application requests Service activity test

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 103 ETSI TS 129 198-3 V7.1.0 (2007-06)

Client Application : Framework : o Senice :
IpAppFault Manager IpFaultManager IpFwFaultManager IlpSvcFaultManager

:
L |
The client application asks the !
framework to carry out the :
activity test on a senice. |
|
|
|
|
|
|

1: activity TestReq()

U 1

|

The Framework identifies which
senice the test is directed at by the
svclD parameter, and
communicates internally with the
appropriate framework interface.
W hich inwkes the call on the
senice.

| 2: sweActivity TestReq()

—

returns the result.

Senice does test and ﬁ

|
Framework passes result
internally from senvice facing
part to application facing part, U\ U

13: s\wcActivity TestRes()
|

and sends the result to the
application.

|
4: activityTestRes() |
|

A

1. Theclient application asks the framework to invoke an activity test on a service, the service isidentified by the
svcld parameter.

2: The framework asksthe service to do the activity test. It is assumed that there isinternal communication between
the application facing part of the framework (i.e. IpFaultManager interface) and the part that faces the service.

3: The service does the activity test and returns the result to the framework.

4. The framework internally passes the result from its service facing interface (IpFwFaultManager) to its application
facing side, and sends the result to the client application.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 104 ETSI TS 129 198-3 V7.1.0 (2007-06)

8.1.4.8 Fault Management: Application detects service is unavailable
Client Application : Framework : o Senvice :
IpAppFaultManager IpFaultManager | | IpFwFaultManager IpSvcFaultManager

|

|

:

L |

The application detects that !
the senice is not responding, :
soit informs the framework via |
the swcUnavailablelnd method. |
|

|

|

|

|

|

|

|

|

|

|

1: svcUnavailablelnd()

|
The framework informs
the senice.

2: swcUnavailablelnd()

1. The client application detects that the service instance is currently not available, i.e. the service instance is not
responding to the client application in the normal way, so it informs the framework.

2: Theframework informs the service instance that the client application was unable to get a response from it and can
no longer use the service instance. The service or framework may then decide to carry out an activity test to see whether
thereisagenera problem with the service instance that requires further action.

8.1.5 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification

8.2 Class Diagrams

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 105 ETSI TS 129 198-3 VV7.1.0 (2007-06)

<<Interface>>
IpFwSeniceDiscowvery
(from Framework interfaces)

®listSeniceTypes()
®describeServiceType()
¥discoverSenice()

Wi stRegisteredServices|()

Figure: Service Discovery Package Overview

<<Interface>>
IpFwSeniceRegistration
(from Framework interfaces)

WregisterSenice()
FannounceS eniceAvail ability ()
WunregisterSenice()
¥describeSenice()
PunannounceS ervice()
®registerSeniceSubType()

Figure: Service Registration Package Overview

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 106 ETSI TS 129 198-3 V7.1.0 (2007-06)

<<Interface>>
IpClientAPILevelAuthentication
<<Interface>> (from Client interfaces)
IpClientAccess
(from Client interfa ces) SabortAuthentication()
SauthenticationSucceeded()
SterminateAccess() Schallenge()
N N
1 1
<<uses>> , <<uses>> ,
I I
I I
1 1
<<Interface>> <<Interface>> <<Interface>>
Ipinitial IpAccess IPAP ILevel Authentication
(irom Frameworkinterfaces) (from Framework interfaces) (from Framework interfaces)
b etV) obtaininterface() WabortAuthentication()
SinitiateAuthenticationWithVersion)) .
0 SobtaininterfaceWithCallback() SauthenticationSucceeded()
Slistinterfaces() $selectAuthenticationMechanism()
selectSigningAlgorithm() Schallenge()
terminateAccess()
relinquishinterface()

<<Interface>>
IpAuthentication
(from Framework interfaces)

WrequestAccess()

Figure: Trust and Security Management Package Overview

<<lInterface>>
IpSenicelnstanceLifecycleManager
(from Service Interfaces)

WcreateSeniceManager()
WdestroySeniceManager()

Figure: Service Instance Lifecycle Manager Package Overview

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 107

<<Interface>>

<<Interface>>
IpSwvcLoadManager

loadLevelNotification()
suspendNotification()
resumeNotification()

createLoadLevelNotification()
IpSweHeartBeatMgmt <<Interface>> destroyLoadLevelNotification()
IpSwcHeartBeat querySwvcLoadStatsReq()
enableSvcHeartBeat() |1 o.n queryLoadStatsRes()
disableSvcHeartBeat() pulse() queryLoadStatsErr()
changelntenval() A
! |
} | I
| | |
<<uses>> ! <<uses>> | <<uses>>,
! |
| | |
Il | L
<<Interface>> ! <<hnterface>>
IpFwHeartBeatMgmt <<Interface>> IpFwLoadManager
IpFwHeartBeat
enableHeartBeat() 0..n reportLoad()
disableHeartBeat() pulse() createLoadLevelNotification()
changelnterval() destroyLoadLevelNotification()
suspendNotification()
resumeNotification()
queryLoadStatsReq|()
querySwcLoadStatsRes()
querySwcLoadStatsErr()
Figure:

ETSI TS 129 198-3 V7.1.0 (2007-06)

<<Interface>>
IpSwcFaultManager

activity TestRes()

svcActivity TestReq|()
<<deprecated>> fwFaultReportind()
<<deprecated>> fwFaultRecoveryInd()
<<deprecated>> fwUnavailablelnd()
svcUnavailableind()

activity TestErr()

appAuvailStatusind()
generateFaultStatisticsRecordRes()
generateFaultStatisticsRecordErr()
generateFaultStatisticsRecordReq()
fwAvailStatusInd()

<<Interface>>
IpPSVCOAM

AN
I
I
I
<<uses>> :
I
I
I

systemDateTimeQuery()

|
<<uses>> !
|

<<Interface>>
IpFWOAM

<<Interface>>
IpFwFaultManager

activityTestReq()

SVCActivity TestRes ()
appUnawailablelnd()

svcActivity TestEri()
svcAwilStatusind ()
generateFaultStatisticsRecordReq()
generateFaultStatisticsRecordRes()
generateFaultStatisticsRecordEri()

Integrity Management Package Overview

<<Interface>>

IpSwvc EventNotification

systemDateTimeQuery()

from Service Interfaces)

®reportNotification()
®notificationTerminated()

<<uses>>

<<Interface>>
IpFWE vent Notification
(from Framework Interfaces)

createNotification()
¥destroyNotification()

Figure: Event Notification Package Overview

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 108 ETSITS 129 198-3 V7.1.0 (2007-06)

8.3 Interface Classes

8.3.1 Service Registration Interface Classes

Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with
the Framework. Services are registered against a particular service type. Therefore service types are created first, and
then services corresponding to those types are accepted from the Service Suppliers for registration in the framework.
The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property
values' for the service. The service discovery functionality described in the previous clause enables the service supplier
to obtain alist of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative
applications. They are described below. Note that these methods cannot be invoked until the authentication methods
have been invoked successfully.

8.3.1.1 Interface Class IpFwServiceRegistration
Inherits from: Iplnterface.

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.
Thisinterface and at least the methods registerService(), announceServiceAvailability(), unregisterService() and
unannounceService() shall be implemented by a Framework.

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList)
: TpServicelD

announceServiceAvailability (servicelD : in TpServicelD, servicelnstanceLifecycleManagerRef : in
service_lifecycle::IpServicelnstanceLifecycleManagerRef) : void

unregisterService (servicelD : in TpServicelD) : void
describeService (servicelD : in TpServicelD) : TpServiceDescription
unannounceService (servicelD : in TpServicelD) : void

registerServiceSubType (serviceTypeName : in TpServiceTypeName, servicePropertyList : in
TpServicePropertyList, extendedServicePropertyList : in TpServiceTypePropertyValueList) : TpServicelD

8.3.1.1.1 Method registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent
discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known
to the Framework (ServiceTypeis 'available’). A service-ID isreturned to the service supplier when aserviceis
registered in the Framework. When the service is not registered because the ServiceTypeis'unavailable, a

P_SERVICE TYPE _UNAVAILABLE israised. The service-ID isthe handle with which the service supplier can
identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context
of the Framework that generated it.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 109 ETSITS 129 198-3 V7.1.0 (2007-06)

This method should be used for registration of service super types only. For registering service sub types, the
registerServiceSubType() method should be used.

Returns <servicel D> : Thisisthe unique handle that is returned as a result of the successful completion of this
operation. The Service Supplier can identify the registered service when attempting to access it via other operations
such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to
discover a service of thistype.

If aserviceisregistered with the property P COMPATIBLE_WITH_SERVICE inits servicePropertyList, then the
Framework shall notify all applications using instances of servicesidentified by this property, using the
P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE event, if they have registered for such anotification. If an
incorrect combination of propertiesisincluded in conjunction with P_COMPATIBLE_WITH_SERVICE, a
P_MISSING_MANDATORY_PROPERTY exception is raised.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey
therulesfor identifiers, thenaP_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically
but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TYPE exception is raised.

servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter isalist of property name and property value pairs. They describe the service being
registered. This description typically covers behavioural, non-functional and non-computational aspects of the service.
Service properties are marked "mandatory” or "readonly"”. These property mode attributes have the following semantics:

a. mandatory - a service associated with this service type must provide an appropriate value for this property when
registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may
not be modified.

Specifying both modifiersindicates that a value must be provided and that subsequently it may not be modified.
Examples of such properties are those which form part of a service agreement and hence cannot be modified by service
suppliers during the life time of service.

If the type or the semantics of the type of any of the property valuesis not the same as the declared type (declared in
the service type), then aP_PROPERTY _TYPE_MISMATCH exception israised. If the "servicePropertyList"
parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY _PROPERTY exceptionisraised. If two or more properties with the same property name
areincluded in this parameter, the P_DUPLICATE_PROPERTY _NAME exception is raised.

Returns
TpServiceID
Raises

TpCommonExceptions, P_PROPERTY TYPE MISMATCH, P DUPLICATE PROPERTY NAME,
P_ILLEGAL SERVICE TYPE, P_UNKNOWN SERVICE_TYPE,
P MISSING MANDATORY PROPERTY, P SERVICE TYPE UNAVAILABLE

8.3.1.1.2 Method announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The
announceServiceAvailability() method isinvoked after the service is authenticated and its service instance lifecycle
manager isinstantiated at a particular interface. This method informs the framework of the availability of "service
instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After
the receipt of this method, the framework makes the corresponding service discoverable.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 110 ETSITS 129 198-3 V7.1.0 (2007-06)

There exists a " service manager" instance per service instance. Each service implements the

I pServicel nstancelifecycleManager interface. The IpServicel nstancelLifecycleManager interface supports a method
called the createServiceManager(application: in TpClientAppl D, serviceProperties : in TpServicePropertyList,
servicelnstancel D : in TpServicelnstancel D) : 1pServiceRef. When the service agreement is signed for some servicel D
(using signServiceAgreement()), the framework calls the createServiceManager() for this service, getsa
serviceManager and returns this to the client application.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "servicel D" does not obey the
rules for service identifiers, thenaP_ILLEGAL_SERVICE_ID exceptionisraised. If the "servicel D" islegal but there
is no service offer within the Framework with that ID, thenaP_UNKNOWN_SERVICE_ID exception is raised.

serviceInstancelLifecycleManagerRef : in
service lifecycle::IpServicelInstancelLifecycleManagerRef

The interface reference at which the service instance lifecycle manager of the previously registered serviceis available.

Raises

TpCommonExceptions, P _ILLEGAL SERVICE ID, P_UNKNOWN SERVICE ID,
P _INVALID INTERFACE TYPE

8.3.1.1.3 Method unregisterService()

The unregisterService() operation is used by the service suppliersto remove a registered service from the Framework.
The serviceisidentified by the "service-ID" which was originally returned by the Framework in response to the
registerService() operation. The service must be in the SCF Registered state. All instances of the service will be
deleted.

Parameters

serviceID : in TpServiceID

The service to be withdrawn isidentified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for service identifiers,
thenaP_ILLEGAL_SERVICE_ID exception israised. If the "servicel D" islega but there is no service offer within the
Framework with that ID, then aP_UNKNOWN_SERVICE_ID exceptionis raised.

Raises
TpCommonExceptions, P ILLEGAL SERVICE ID, P UNKNOWN SERVICE ID

8.3.1.14 Method describeService()

The describeService() operation returns the information about a service that is registered in the framework. It
comprises, the "type" of the service, and the "properties’ that describe this service. The serviceisidentified by the
"service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for
example), and each getting a different servicel D assigned.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 111 ETSITS 129 198-3 V7.1.0 (2007-06)

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework.
It comprises the "type" of the service, and the properties that describe this service.

Parameters

serviceID : in TpServiceID

The service to be described isidentified by the "servicel D" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicel D" does not obey the rules for object identifiers,
thenan P_ILLEGAL_SERVICE_ID exceptionisraised. If the"servicelD" islegal but there is no service offer within
the Framework with that ID, thenaP_UNKNOWN_SERVICE_ID exception is raised.

Returns

TpServiceDescription
Raises
TpCommonExceptions, P ILLEGAL SERVICE ID, P UNKNOWN SERVICE ID

8.3.1.1.5 Method unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the
service ID is still associated with it. Applications currently using the service can continue to use the service but no new
applications should be able to start using the service. Also, al unused service tokens relating to the service will be
expired. Thiswill prevent anyone who has already performed a selectService() but not yet performed the
signServiceAgreement() from being able to obtain a new instance of the service.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being unannounced. If the string representation of the "servicel D" does hot obey
the rules for service identifiers, thenaP_ILLEGAL_SERVICE_ID exception israised. If the"servicelD" is legal but
there is no service offer within the Framework with that 1D, then aP_UNKNOWN_SERVICE_ID exception is raised.

Raises
TpCommonExceptions, P _ILLEGAL SERVICE ID, P_UNKNOWN SERVICE ID

8.3.1.1.6 Method registerServiceSubType()

The registerServiceSubType() operation is the means by which an extended service is registered in the Framework, for
subsequent discovery by the enterprise applications. Registration only succeeds if the service typeis known to the
Framework (ServiceTypeis 'available’). A service-ID isreturned to the service supplier when a serviceisregistered in
the Framework. When the service is not registered because the ServiceTypeis 'unavailable', a

P_SERVICE _TYPE_UNAVAILABLE exceptionisraised. The service-ID isthe handle with which the service
supplier can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in
the context of the Framework that generated it.

This method should be used for registration of service sub types only. For registering service super types, the
registerService () method should be used.

Returns <servicel D> : Thisisthe unique handle that is returned as a result of the successful completion of this
operation. The Service Supplier can identify the registered service when attempting to access it via other operations

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 112 ETSITS 129 198-3 V7.1.0 (2007-06)

such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to
discover aservice of thistype.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey
therulesfor identifiers, thenaP_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically
but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TY PE exception is raised.

servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter isalist of property name and property value pairs corresponding to the service
properties applicable to the standard service. They describe the service being registered.

If the type or the semantics of the type of any of the property valuesis not the same as the declared type (declared in the
service type), thenaP_PROPERTY_TYPE _MISMATCH exception is raised.

If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY_PROPERTY exception is raised.

If two or more properties with the same property name are included in this parameter, the
P_DUPLICATE_PROPERTY_NAME exception is raised.

extendedServicePropertyList : in TpServiceTypePropertyValueList

The "extendedServicePropertyList" parameter isalist of property name, mode, type, and property val ue tuples
corresponding to the service properties applicable to the extended standard service. They describe the service being
registered.

If two or more properties with the same property name are included in this parameter, the
P_DUPLICATE_PROPERTY_NAME exception is raised.

Returns
TpServiceID

Raises

TpCommonExceptions, P_PROPERTY TYPE MISMATCH, P _DUPLICATE PROPERTY NAME,
P _ILLEGAL SERVICE TYPE, P UNKNOWN SERVICE TYPE,
P MISSING MANDATORY PROPERTY, P SERVICE TYPE UNAVAILABLE

8.3.2 Service Instance Lifecycle Manager Interface Classes

The IpServicel nstanceLifecycleManager interface allows the framework to get access to a service manager interface of
aservice. It isused during the signServiceAgreement, in order to return a service manager interface reference to the
application. Each service has a service manager interface that is theinitial point of contact for the service. E.g. the
generic call control service uses the |pCall ControlManager interface.

8.3.2.1 Interface Class IpServicelnstanceLifecycleManager
Inherits from: Iplnterface.

The I pServicel nstancelL ifecycleManager interface allows the Framework to create and destroy Service Manager
Instances. Thisinterface and the createServiceManager() and destroyServiceManager() methods shall be implemented
by a Service.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 113 ETSITS 129 198-3 V7.1.0 (2007-06)

<<Interface>>

IpServicelnstanceLifecycleManager

createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList,
servicelnstancelD : in TpServicelnstancelD) : IpServiceRef

destroyServiceManager (servicelnstance : in TpServicelnstancelD) : void

8.3.2.1.1 Method createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will
be configured for the client application using the properties agreed in the service level agreement.

In case there is already a service manager available for the specified application and servicelnstancel D this referenceis
returned and no new service manager is created.

Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.

Parameters
application : in TpClientAppID
Specifies the application for which the service manager interface is requested.

serviceProperties : in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance. These properties
form a part of the service level agreement. An example of these propertiesisalist of methods that the client application
is allowed to invoke on the service interfaces.

serviceInstanceID : in TpServiceInstancelID
Specifies the Service Instance ID that the new Service Manager isto be identified by.

Returns
IpServiceRef

Raises
TpCommonExceptions, P_INVALID PROPERTY

8.3.2.1.2 Method destroyServiceManager()

This method destroys an existing service manager interface reference. Thiswill result in the client application being
unable to use the service manager any more.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 114 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters

serviceInstance : in TpServiceInstanceID
I dentifies the Service Instance to be destroyed.

Raises

TpCommonExceptions

8.3.3 Service Discovery Interface Classes
This APl complements the Service Registration functionality described in another clause.

Before a service can be registered in the framework, the service supplier must know what "types" of servicesthe
Framework supports and what service "properties’ are applicable to each service type. The "listServiceType()" method
returnsalist of all "service types' that are currently supported by the framework and the "describeServiceType()"
method returns a description of each service type. The description of service type includes the " service-specific
properties' that are applicable to each service type. Then the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values', by using the
"discoverService()" method.

Additionally the service supplier can retrieve alist of all registered services, without regard to type or property values,
by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework
implementation; e.g. a service supplier may only be permitted to retrieve alist of services that the service supplier has
previously registered.

8.3.3.1 Interface Class IpFwServiceDiscovery

Inherits from: Ipinterface.

Thisinterface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

<<Interface>>

IpFwServiceDiscovery

listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

8.3.3.1.1 Method listServiceTypes()

This operation returns the names of all service typesthat are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 115 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters
No Parameters were identified for this method.

Returns
TpServiceTypeNameList
Raises

TpCommonExceptions

8.3.3.1.2 Method describeServiceType()
This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information
about: the service properties associated with this service type: i.e. alist of service property { name, mode and type}
tuples, the names of the super types of this service type, and whether the service typeis currently available or
unavailable.

Parameters

name : in TpServiceTypeName

The name of the service type to be described. If the "name" is malformed, thenthe P_ILLEGAL_SERVICE _TYPE
exceptionisraised. If the"name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE
exception is raised.

Returns

TpServiceTypeDescription
Raises
TpCommonExceptions, P ILLEGAL SERVICE TYPE, P UNKNOWN SERVICE TYPE

8.3.3.1.3 Method discoverService()

The discoverService operation is the means by which the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values'. The service supplier passesin
alist of desired service properties to describe the serviceiit is looking for, in the form of attribute/value pairs for the
service properties. The service supplier aso specifies the maximum number of matched responsesit iswilling to accept.
The framework must not return more matches than the specified maximum, but it is up to the discretion of the
Framework implementation to choose to return less than the specified maximum. The discoverService() operation
returns a servicel D/Property pair list for those services that match the desired service property list that the service
supplier provided.

Returns <serviceList> : This parameter gives alist of matching services. Each service is characterised by its service ID
and alist of service properties { name and value list} associated with the service.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 116 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters

serviceTypeName : in TpServiceTypeName

The name of the required service type. If the string representation of the "type" does not obey the rules for service type
identifiers, thenthe P_ILLEGAL_SERVICE_TY PE exception israised. If the "type" is correct syntactically but is not
recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TY PE exception israised. The
framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertyList : in TpServicePropertylList

The "desiredPropertyList" parameter isalist of service properties { name and value list} that the required services
should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The
property values in the desired property list must be logically interpreted as " minimum", "maximum", etc. by the
framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). Itis
suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so
that desired property values can specify an "enclosing” range of valuesto help in the selection of desired services.

max : in TpInt32
The"max" parameter states the maximum number of servicesthat are to be returned in the "serviceList" result.

Returns

TpServicelist
Raises

TpCommonExceptions, P _ILLEGAL SERVICE TYPE, P UNKNOWN SERVICE TYPE,
P INVALID PROPERTY

8.3.3.14 Method listRegisteredServices()
Returns alist of services so far registered in the framework.

Returns <serviceList> : The "serviceList" parameter returns alist of registered services. Each service is characterised
by itsservice ID and alist of service properties { name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns

TpServicelList
Raises

TpCommonExceptions

8.3.4 Integrity Management Interface Classes

8.34.1 Interface Class IpFwFaultManager

Inherits from: Ipinterface.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 117 ETSITS 129 198-3 V7.1.0 (2007-06)

Thisinterface is used by the service instance to inform the framework of events which affect the integrity of the AP,
and request fault management status information from the framework. The fault manager operations do not exchange
callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the
time it obtains the Framework's Fault Management interface, by use of the obtainl nterfaceWithCallback operation on
the IpAccess interface.

If the IpFwFaultManager interface isimplemented by a Framework, at |east one of these methods shall be
implemented. |f the Framework is capable of invoking the IpSvcFaultManager.svcActivity TestReq() method, it shall
implement svcActivityTestRes() and svcActivityTestErr() in thisinterface. If the Framework is capable of invoking
| pSvcFaultM anager.generateFaul tStati sticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and
generateFaultStatisticsRecordErr() in thisinterface. If the Framework is capable of invoking
| pSvcFaultM anager.generateFaul tStati sticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and
generateFaul tStati sticsRecordErr() in this interface.

<<Interface>>

IpFwFaultManager

activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void
svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
appUnavailablelnd () : void

svcActivityTestErr (activityTestID : in TpActivityTestID) : void

svcAvailStatusind (reason : in TpSvcAvailStatusReason) : void

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimelnterval,
recordSubject : in TpSubjectType) : void

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord) : void

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in
TpFaultStatisticsError) : void

8.3.4.1.1 Method activityTestReq()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of
this request, the framework must carry out atest on itself or on the application, to check that it is operating correctly.
The framework reports the test result by invoking the activity TestRes method on the IpSvcFaultManager interface.

Parameters

activityTestID : in TpActivityTestID
The identifier provided by the service instance to correlate the response (when it arrives) with this request.

testSubject : in TpSubjectType
Identifies the subject for testing (framework or client application).

Raises

TpCommonExceptions

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 118 ETSITS 129 198-3 V7.1.0 (2007-06)

8.3.4.1.2 Method svcActivityTestRes()

The service instance uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

8.3.4.1.3 Method appUnavailablelnd()

This method is used by the service instance to inform the framework that the client application is not responding. On
receipt of thisindication, the framework must act to inform the client application.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.1.4 Method svcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 119 ETSITS 129 198-3 V7.1.0 (2007-06)

8.3.4.1.5 Method svcAvailStatusind()

This method is used by the service instance to inform the framework that it is about to become unavailable for use
according to the provided reason and as well to inform the Framework when the Service instance becomes available
again. The framework should inform the client applications that are currently using this service instance that it is
unavailable and as well when it becomes available again for use (via the svcAvail Statusind method on the

I pAppFaultManager interface).

Parameters

reason : in TpSvcAvailStatusReason
Identifies the reason for the service instance's unavailability and also the reason SERVICE_AVAILABLE to be used to

inform the Framework when the Service instance becomes available again.
Raises

TpCommonExceptions

8.3.4.1.6 Method generateFaultStatisticsRecordReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the
framework must produce a fault statistics record, for the framework or for the application during the specified time
interval, which is returned to the service instance using the generateFaultStatisticsRecordRes operation on the

I pSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID
The identifier provided by the service instance to correlate the response (when it arrives) with this request.

timePeriod : in TpTimelInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

recordSubject : in TpSubjectType
Specifies the subject to be included in the general fault statistics record (framework or application).
Raises

TpCommonExceptions

8.3.4.1.7 Method generateFaultStatisticsRecordRes()

This method is used by the service to provide fault statistics to the framework in response to a
generateFaul tStati sticsRecordReg method invocation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID
Used by the framework to correlate this response (when it arrives) with the original request.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 120 ETSITS 129 198-3 V7.1.0 (2007-06)

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

Raises

TpCommonExceptions

8.3.4.1.8 Method generateFaultStatisticsRecordErr()

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in responseto a
generateFaultStati sticsRecordReq method invocation on the | pSvcFaultM anager interface.

Parameters

faultStatsReqID : in TpFaultReqID
Used by the framework to correlate this error (when it arrives) with the original request.

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

Raises

TpCommonExceptions

8.3.4.2 Interface Class IpSvcFaultManager
Inherits from: Ipinterface.

Thisinterface is used to inform the service instance of events that affect the integrity of the Framework, Service or
Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified
when the service instance obtains the Fault Management Framework interface: i.e. by use of the
obtainlnterfaceWithCallback operation on the IpAccessinterface.

If the IpSvcFaultManager interface isimplemented by a Service, at least one of these methods shall be implemented.
If the Serviceis capable of invoking the IpFwFaultManager.activity TestReq() method, it shall implement
activityTestRes() and activityTestErr() in thisinterface. If the Serviceis capable of invoking
| pFwFaultM anager.generateFaul tStatisticsRecordReq(), it shall implement generateFaultStati sticsRecordRes() and
generateFaultStati sticsRecordErr() in thisinterface.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 121 ETSITS 129 198-3 V7.1.0 (2007-06)

<<Interface>>

IpSvcFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void
svcActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportind (fault : in TpinterfaceFault) : void

<<deprecated>> fwFaultRecoveryind (fault : in TpInterfaceFault) : void

<<deprecated>> fwUnavailableInd (reason : in TpFwUnavailReason) : void

svcUnavailablelnd () : void

activityTestErr (activityTestID : in TpActivityTestID) : void

appAvailStatusind (reason : in TpAppAvailStatusReason) : void

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticSError : in
TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimelnterval) :
void

fwAvailStatusind (reason : in TpFwAvailStatusReason) : void

8.3.4.2.1 Method activityTestRes()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the service to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

Raises

TpCommonExceptions, P_INVALID ACTIVITY TEST ID

8.3.4.2.2 Method svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service
instance must carry out atest on itself, to check that it is operating correctly. The service instance reports the test result
by invoking the svcActivityTestRes method on the |pFwFaultManager interface.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 122 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters

activityTestID : in TpActivityTestID
Theidentifier provided by the framework to correlate the response (when it arrives) with this request.

Raises

TpCommonExceptions

8.3.4.2.3 Method <<deprecated>> fwFaultReportind()

This method is deprecated and will be removed in alater release. 1t is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Service the reason why the Framework is unavailable.

The framework invokes this method to notify the service instance of afailure within the framework. The service
instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryind).

Parameters

fault : in TpInterfaceFault
Specifies the fault that has been detected by the framework.

Raises

TpCommonExceptions

8.3.4.2.4 Method <<deprecated>> fwFaultRecoveryInd()

This method is deprecated and will be removed in alater release. 1t is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Service when the Framework becomes available again.

The framework invokes this method to notify the service instance that a previously reported fault has been rectified.
The service instance may then resume using the framework.

Parameters

fault : in TpInterfaceFault
Specifies the fault from which the framework has recovered.

Raises

TpCommonExceptions

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 123 ETSITS 129 198-3 V7.1.0 (2007-06)

8.3.4.2.5 Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in alater release. 1t is strongly recommended not to implement this
method. The new method fwAvail Statusind shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable and also when the Framework becomes available again.

The framework invokes this method to inform the service instance that it is no longer available.

Parameters

reason : in TpFwUnavailReason
I dentifies the reason why the framework is no longer available.
Raises

TpCommonExceptions

8.3.4.2.6 Method svcUnavailablelnd()

The framework invokes this method to inform the service instance that the client application has reported that it can no
longer use the service instance.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.2.7 Method activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

Parameters
activityTestID : in TpActivityTestID

Used by the service instance to correlate this response (when it arrives) with the original request.
Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

8.3.4.2.8 Method appAvailStatusind()
The framework invokes this method to inform the service instance that the client application is no longer available

using different reasons for the unavailability. This may be aresult of the application reporting afailure. Alternatively,
the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 124 ETSITS 129 198-3 V7.1.0 (2007-06)

heartbeats, using the reason APP_UNAVAILABLE_NO_RESPONSE. When the application becomes available again
the reason APP_AVAILABLE shall be used to inform the Service about that.

Parameters

reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer available. APP_AVAILABLE isused to inform the Service that
the Application is available again.

Raises

TpCommonExceptions

8.3.4.2.9 Method generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a service instance in responseto a
generateFaultStati sticsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID
Used by the service instance to correlate this response (when it arrives) with the original request.

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

recordSubject : in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record has been provided.
Raises

TpCommonExceptions

8.3.4.2.10 Method generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a generateFaultStati sticsRecordReg method invocation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID
Used by the service instance to correlate this error (when it arrives) with the original request.

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

recordSubject : in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record was requested.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 125 ETSITS 129 198-3 V7.1.0 (2007-06)

Raises

TpCommonExceptions

8.3.4.2.11 Method generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the service instance, for example when the
framework was asked for these statistics by the client application using the generateFaultStati sticsRecordReq operation
on the IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record
during the specified time interval, which is returned to the framework using the generateFaultStatisticsRecordRes
operation on the | pFwFaultM anager interface.

Parameters

faultStatsReqID : in TpFaultReqID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the service.

Raises

TpCommonExceptions

8.3.4.2.12 Method fwAvailStatusind()

The framework invokes this method to inform the service instance about the Framework availability status, i.e. that it
can no longer use the Framework according to the reason parameter or that the Framework has become available again.
The service instance may wait for the problem to be solved and just stop the usage of the Framework until the

fwAvail Statusind() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason : in TpFwAvailStatusReason
I dentifies the reason why the framework is no longer available or that it has become available again.

8.3.4.3 Interface Class IpFwHeartBeatMgmt
Inherits from: Ipinterface.

Thisinterface allows the initialisation of a heartbeat supervision of the framework by a service instance. If the
I pFwHeartBeatM gmt interface is implemented by a Framework, as a minimum enableHeartBeat() and
disableHeartBeat() shall be implemented.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 126 ETSITS 129 198-3 V7.1.0 (2007-06)

<<Interface>>

IpFwHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, svcinterface : in IpSvcHeartBeatRef) : void
disableHeartBeat () : void

changelnterval (interval : in TpInt32) : void

8.3.4.3.1 Method enableHeartBeat()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters

interval : in TpInt32
Thetime interval in milliseconds between the heartbeats.

svcInterface : in IpSvcHeartBeatRef
This parameter refersto the callback interface the heartbeat is calling.

Raises
TpCommonExceptions, P _INVALID INTERFACE TYPE

8.3.4.3.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.3.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 127 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters

interval : in TpInt32
Thetime interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

8.34.4 Interface Class IpFwHeartBeat
Inherits from: Iplnterface.

The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat. If a
Framework is capable of invoking |pSvcHeartBeatM gmt.enableHeartBeat(), it shall implement |pFwHeartBeat and the
pulse() method.

<<Interface>>

IpFwHeartBeat

pulse () : void

8.34.4.1 Method pulse()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the |pSvcHeartBeatM gmt.enableSvcHeartbeat() method. If the
pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

8.3.4.5 Interface Class IpSvcHeartBeatMgmt
Inherits from: Iplnterface.

Thisinterface allows the initialisation of a heartbeat supervision of the service instance by the framework. If the
IpSvcHeartBeatM gmt interface isimplemented by a Service, as a minimum enableHeartBeat() and disableHeartBeat()
shall be implemented.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 128

ETSI TS 129 198-3 V7.1.0 (2007-06)

<<Interface>>

IpSvcHeartBeatMgmt

enableSvcHeartBeat (interval : in TpInt32, fwinterface : in IpFwHeartBeatRef) : void

disableSvcHeartBeat () : void

changelnterval (interval : in TpInt32) : void

8.3.4.5.1 Method enableSvcHeartBeat()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at

the specified interval.

Parameters

interval : in TpInt32
Thetime interval in milliseconds between the heartbeats.

fwInterface : in IpFwHeartBeatRef
This parameter refersto the callback interface the heartbeat is calling.

Raises
TpCommonExceptions, P _INVALID INTERFACE TYPE

8.3.4.5.2 Method disableSvcHeartBeat()

Instructs the service instance to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.5.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 129 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters

interval : in TpInt32
Thetime interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

8.3.4.6 Interface Class IpSvcHeartBeat
Inherits from: Iplnterface.

The service heartbeat interface is used by the framework to send the service instance its heartbeat. If a Serviceis
capable of invoking |pFwHeartBeatM gmt.enableHeartBest(), it shall implement IpSvcHeartBeat and the pulse()
method.

<<Interface>>

IpSvcHeartBeat

pulse () : void

8.3.4.6.1 Method pulse()

The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pulse at
the end of every interval specified in the parameter to the | pFwHeartBeatM gmt.enableHeartbeat() method. If the
pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.7 Interface Class IpFwLoadManager
Inherits from: Iplnterface.

The framework API should alow the load to be distributed across multiple machines and across multiple component
processes, according to aload management policy. The separation of the load management mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific service. It might specify what action the
framework should take as the congestion level changes. For example, some real-time critical applications will want to
make sure continuous service is maintained, below a given congestion level, at al costs, whereas other services will be
satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is
related to the QoS level to which the application is subscribed. The framework load management function is represented
by the IpFwLoadManager interface. To handle responses and reports, the service developer must implement the

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 130 ETSITS 129 198-3 V7.1.0 (2007-06)

I pSvcL oadManager interface to provide the callback mechanism.

If the IpFwL oadManager interface isimplemented by a Framework, at least one of the methods shall be
implemented as a minimum requirement. If load level notifications are supported, the createl oadlL evel Notification()
and destroyL oadL evel Notification() methods shall be implemented. 1f suspendNotification() isimplemented, then
resumeNotification() shall be implemented also. If a Framework is capable of invoking the
I pSvcL oadManager.querySvcL oadStatsReq() method, then it shall implement querySvcl oadStatsRes() and
querySvclL oadStatsErr() methodsin thisinterface.

<<Interface>>

IpFwLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

createLoadLevelNotification (notificationSubject : in TpSubjectType) : void
destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void
suspendNotification (notificationSubject : in TpSubjectType) : void
resumeNotification (notificationSubject : in TpSubjectType) : void

queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, querySubject : in TpSubjectType, timelnterval : in
TpTimelnterval) : void

querySvcLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

querySvcLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticError : in TpLoadStatisticError) :
void

8.34.7.1 Method reportLoad()

The service instance uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load
level on the service instance has changed.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded).
At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded. In
addition this method shall be called by the service instance in order to report current load status, when load notifications
arefirst requested, or resumed after suspension.

Parameters

loadLevel : in TpLoadLevel
Specifies the service instance's load level.

Raises

TpCommonExceptions

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 131 ETSITS 129 198-3 V7.1.0 (2007-06)

8.3.4.7.2 Method createLoadLevelNaotification()

The service instance uses this method to register to receive notifications of load level changes associated with the
framework or with the application that uses the service instance. Upon receipt of this method the framework shall
inform the service instance of the current framework or application load using the loadL evel Notification method on the
corresponding 1pSvcl oadM anager.

Parameters

notificationSubject : in TpSubjectType
Specifies the entity (framework or application) for which load level changes should be reported.

Raises

TpCommonExceptions

8.3.4.7.3 Method destroyLoadLevelNotification()

The service instance uses this method to unregister for notifications of load level changes associated with the
framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType
Specifies the entity (framework or application) for which load level changes should no longer be reported.

Raises

TpCommonExceptions

8.3.4.7.4 Method suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the
framework or with the application that uses the service instance; e.g. while the service instance handles a temporary
overload condition.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be
suspended.

Raises

TpCommonExceptions

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 132 ETSITS 129 198-3 V7.1.0 (2007-06)

8.3.4.7.5 Method resumeNotification()

The service instance uses this method to request the framework to resume sending it notifications associated with the
framework or with the application that uses the service instance; e.g. after a period of suspension during which the
service instance handled atemporary overload condition. Upon receipt of this method the framework shall inform the
service instance of the current framework or application load using the loadL evel Notification method on the
corresponding IpSvcl oadM anager.

Parameters

notificationSubject : in TpSubjectType
Specifies the entity (framework or application) for which the sending of notifications of load level changes by the

framework should be resumed.
Raises

TpCommonExceptions

8.3.4.7.6 Method queryLoadStatsReq()
The service instance uses this method to request the framework to provide load statistics records for the framework or
for the application that uses the service instance.

Parameters

loadStatsReqID : in TpLoadTestID
The identifier provided by the service instance to correlate the response (when it arrives) with this request.

querySubject : in TpSubjectType
Specifies the entity (framework or application) for which load statistics records should be reported.

timeInterval : in TpTimeInterval
Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions

8.3.4.7.7 Method querySvcLoadStatsRes()

The service instance uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the querySvcl oadStatsReq method on the | pSvcl oadM anager
interface.

Parameters

loadStatsReqID : in TpLoadTestID
Used by the framework to correlate this response (when it arrives) with the original request.

loadStatistics : in TpLoadStatisticList
Specifies the service-supplied load statistics.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 133 ETSITS 129 198-3 V7.1.0 (2007-06)

Raises

TpCommonExceptions

8.3.4.7.8 Method querySvcLoadStatsErr()

The service instance uses this method to return an error response to the framework that requested the service instance's
load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in
response to an invocation of the querySvcL oadStatsReq method on the I pSvcl oadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID
Used by the framework to correlate this error (when it arrives) with the original request.

loadStatisticError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.

Raises

TpCommonExceptions

8.3.4.8 Interface Class IpSvcLoadManager
Inherits from: Ipinterface.

The service developer supplies the load manager service interface to handle requests, reports and other responses from
the framework load manager function. The service instance supplies the identity of its callback interface at the time it

obtains the framework's load manager interface, by use of the obtainlnterfaceWithCallback() method on the IpAccess

interface.

If the IpSvcLoadManager interface isimplemented by a Service, at least one of the methods shall be implemented as
aminimum requirement. If load level notifications are supported, then loadLevel Notification() shall be implemented. If
a Service s capable of invoking the | pFwL oadM anager.queryL oadStatsReq() method, then it shall implement
querylL oadStatsRes() and queryL oadStatsErr() methods in thisinterface.

<<Interface>>

IpSvcLoadManager

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

suspendNotification () : void

resumeNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

querySvcLoadStatsReq (loadStatsReqID : in TpLoadTestID, timelnterval : in TpTimelnterval) : void
queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void
queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 134 ETSITS 129 198-3 V7.1.0 (2007-06)

8.3.48.1 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0to 2, 1 to O, for the application or
framework which has been registered for load level notifications) this method isinvoked on the SCF. In addition this
method shall be invoked on the SCF in order to provide a notification of current load status, when load notifications are
first requested, or resumed after suspension.

Parameters

loadStatistics : in TpLoadStatisticList
Specifies the framework-supplied load statistics, which include the load level change(s).

Raises

TpCommonExceptions

8.3.4.8.2 Method suspendNoatification()

The framework uses this method to reguest the service instance to suspend sending it any notifications: e.g. while the
framework handles a temporary overload condition.

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

8.3.4.8.3 Method resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the
service instance shall inform the framework of the current load using the reportL oad method on the corresponding
|pFwLoadManager.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 135 ETSITS 129 198-3 V7.1.0 (2007-06)

8.3.4.8.4 Method createLoadLevelNaotification()
The framework uses this method to register to receive notifications of load level changes associated with the service

instance. Upon receipt of this method the service instance shall inform the framework of the current load using the
reportL oad method on the corresponding | pFwL oadManager.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.8.5 Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the service
instance.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.8.6 Method querySvcLoadStatsReq()

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

loadStatsReqID : in TpLoadTestID
Theidentifier provided by the framework to correlate the response (when it arrives) with this request.

timeInterval : in TpTimeInterval
Specifies the time interval for which load statistic records should be reported.

Raises

TpCommonExceptions

8.3.4.8.7 Method queryLoadStatsRes()

The framework uses this method to send load statistic records back to the service instance that requested the
information; i.e. in response to an invocation of the queryl oadStatsReq method on the | pFwL oadM anager interface.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 136 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters

loadStatsReqID : in TpLoadTestID
Used by the service instance to correlate this response (when it arrives) with the original request.

loadStatistics : in TpLoadStatisticList
Specifies the framework-supplied load statistics.

Raises

TpCommonExceptions

8.3.4.8.8 Method queryLoadStatsErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics
information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryL oadStatsReq method on the | pFwL oadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID
Used by the service instance to correlate this error (when it arrives) with the original request.

loadStatisticsError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Raises

TpCommonExceptions

8.3.4.9 Interface Class IpFWOAM

Inherits from: Iplnterface.

The OAM interface is used to query the system date and time. The service and the framework can synchronise the date
and time to a certain extent. Accurate time synchronisation is outside the scope of this API. Thisinterface and the
systemDateTimeQuery() method are optional.

<<Interface>>

IpFWOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

8.3.4.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client (service) passesin its own date and time to the
framework. The framework responds with the system date and time.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 137 ETSITS 129 198-3 V7.1.0 (2007-06)

Returns <systemDateAndTime> : Thisis the system date and time of the framework.

Parameters

clientDateAndTime : in TpDateAndTime

Thisisthe date and time of the client (service). The error code P_INVALID _DATE_TIME_FORMAT isreturned if the
format of the parameter isinvalid.

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID TIME AND DATE FORMAT

8.3.4.10 Interface Class IpSvcOAM
Inherits from: Iplnterface.

Thisinterface and the systemDateTimeQuery() method are optional .

<<Interface>>
IpSvcOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

8.3.4.10.1 Method systemDateTimeQuery()

This method is used by the framework to send the system date and time to the service. The service responds with its
own date and time.

Returns <clientDateAndTime> : Thisisthe date and time of the client (service).

Parameters

systemDateAndTime : in TpDateAndTime

Thisisthe system date and time of the framework. The error code P_INVALID_DATE_TIME_FORMAT isreturned
if the format of the parameter isinvalid.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 138 ETSITS 129 198-3 V7.1.0 (2007-06)

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID TIME AND DATE FORMAT

8.3.5 Event Notification Interface Classes

8.35.1 Interface Class IpFwEventNotification
Inherits from: Iplnterface.

The event notification mechanism is used to notify the service of generic events that have occurred. If Event
Notifications are supported by a Framework, this interface and the createNotification() and destroyNotification()
methods shall be supported.

<<Interface>>

IpFwEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

8.3.5.1.1 Method createNotification()
This method is used to install generic notifications so that events can be sent to the service.

Returns <assignmentl D> : Specifies the ID assigned by the framework for this newly installed event notification.

Parameters

eventCriteria : in TpFwEventCriteria
Specifies the event specific criteria used by the service to define the event required.

Returns
TpAssignmentID

Raises
TpCommonExceptions, P INVALID EVENT TYPE, P INVALID CRITERIA

8.3.5.1.2 Method destroyNotification()

This method is used by the service to delete generic notifications from the framework.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 139 ETSITS 129 198-3 V7.1.0 (2007-06)

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment 1D given by the framework when the previous createNotification() was called. If the
assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENT_ID.

Raises
TpCommonExceptions, P_INVALID ASSIGNMENT ID

8.3.5.2 Interface Class IpSvcEventNotification
Inherits from: Ipinterface.

Thisinterface is used by the framework to inform the service of a generic event. The Event Notification Framework
will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface
isobtained. If Event Notifications are supported by a Service, this interface and the reportNotification() and
notificationTerminated() methods shall be supported.

<<Interface>>

IpSvcEventNoatification

reportNotification (eventinfo : in TpFwEventinfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

8.3.5.2.1 Method reportNotification()

This method notifies the service of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo
Specifies specific data associated with this event.

assignmentID : in TpAssignmentID
Specifies the assignment id which was returned by the framework during the createNotification() method. The service

can use the assignment id to associate events with event specific criteria and to act accordingly.

Raises
TpCommonExceptions, P _INVALID ASSIGNMENT ID

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 140 ETSITS 129 198-3 V7.1.0 (2007-06)

8.3.5.2.2 Method notificationTerminated()

This method indicates to the service that all generic event notifications have been terminated (for example, due to faults
detected).

Parameters
No Parameters were identified for this method.
Raises

TpCommonExceptions

8.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart from the methods that can be invoked by the client also eventsinternal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These interna events
are shown between quotation marks.

8.4.1 Service Registration State Transition Diagrams

8.4.1.1 State Transition Diagrams for IpFwServiceRegistration

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 141 ETSITS 129 198-3 V7.1.0 (2007-06)

registerService

" scF |
Registered

AN /

_ Qs I
unannounceSenice announceServiceAvailability

describeService

(SCF
‘ Announced

~.

unregisterService

@-

\ J

Figure : State Transition Diagram for IpFwServiceRegistration

8.4.1.1.1 SCF Registered State

Thisisthe state entered when a Service Capability Server (SCS) registersits SCF in the Framework, by informing it of
the existence of an SCF characterised by a service type and a set of service properties. As aresult the Framework
associates a service ID to this SCF, that will be used to identify it by both sides.

An SCF may be unregistered, the service ID then being no longer associated with the SCF.

84.1.1.2 SCF Announced State

Thisisthe state entered when the existence of the SCF has been announced, thus making it available for discovery by
applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it isno
longer available for discovery.

8.4.2 Service Instance Lifecycle Manager State Transition Diagrams

There are no State Transition Diagrams defined for Service Instance Lifecycle Manager

8.4.3 Service Discovery State Transition Diagrams

There are no State Transition Diagrams defined for Service Discovery

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 142 ETSI TS 129 198-3 V7.1.0 (2007-06)

8.4.4 Integrity Management State Transition Diagrams

8.4.4.1 State Transition Diagrams for IpFwLoadManager

reportLoad

load change” YoadLevelNofffication qyerySwcLoadStatsRes| load statistics requested by LoadManager]
uerySwvcLoadStatsEr| load statistics requested by LoadManager]

createLoadLevelNotification NoadLevelNotification J Active } queryLoadStatsReq

destroyLoadLevelNotification

IpAccess\obtainl|

IpAccess\QbtaipinterfaceWithCallback

resumeNotification
NoadLevelNotification

reportLoad
querySvcLoadStatsRes| load statistics requested by LoadManager]
uerySwc LoadStatsEri load statistics requested by LoadManager |

Notification queryLoadStatsReq
Suspended

destroyLoadLevelNotification

All States

IpAccess.terminateAccess

suspendNotification
[all notifications suspended]

@®
&/
Figure : State Transition Diagram for IpFwLoadManager
8.4.4.1.1 Idle State

In this state the service has obtained an interface reference of the LoadManager from the IpAccess interface.

8.4.4.1.2 Notification Suspended State

Dueto e.g. atemporary load condition, the service has requested the L oadM anager to suspend sending the load level
notification information.

8.4.4.1.3 Active State

In this state the service has indicated its interest in notifications by performing a createl.oadL evel Notification()
invocation on the IpFwLoadManager. The load manager can now request the service to supply load statistics
information (by invoking querySvcL oadStatsReq()). Furthermore the LoadManager can request the service to control
itsload (by invoking loadL evelNotification(), resumeNotification() or suspendNotification() on the service side of
interface). In case the service detects a changein load level, it reports this to the LoadManager by calling the method
reportLoad().

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 143 ETSI TS 129 198-3 V7.1.0 (2007-06)

8.4.4.2 State Transition Diagrams for IpFwFaultManager

IpAccess.obtaininterfaceWithCallback "FaultManagement")
/ add service to fault management

‘change in framework availability (non fault) ~fwAvailStatusind to all services with callback
‘change in application availability' ~appAvail Statusind to all services used by application

appUnavailablelnd / test the application, inform application that service isnot using it

. n .
application fault AappAvailStatusind to all generateFaultStatisticsRecordReq ~svc.generateFaultStatisticsRecordRes / Err
servicesused by the application Framework

Active

no fault detected

ctivityTestReq[framework]
activityTestRegfclient]

no fault detected

Application Activity Test .
IpAccessterminateAccess

— — entry/ test activity of framework
entry/ test activity of application

exit/ "lpSvcFaultManager.activityTestRes
exit/ "lpSvcFaultManager.activityTestErr

exit/ "lpSvcFaultManager.activityTestRes
exit/ "lpSvcFaultManager.activityTestEm

IpAccess.termifateAccess /
Abort pey(g test request

IpAccess.terminateAccess / remove
service from load management

Framework Activity Test

fault detected in fi

fault detected in fw

Framework Faulty ‘

entry/ MwAvailStatusind to all services with callback
exit/ MwAvailStatusind to all services with callback

Figure : State Transition Diagram for IpFwFaultManager

84421 Framework Active State

Thisisthe normal state of the framework, which is fully functional and able to handle requests from both applications
and service capability features.

8.4.4.2.2 Framework Activity Test State

In this state, the framework is performing a self-diagnostic test. If aproblem is diagnosed, all services with fault
management callbacks are notified through an fwAvail Statusind message.

8.4.4.2.3 Application Activity Test State

In this state, the framework is performing atest on one client application. If the application is faulty, services that are
used by the application and that have provided fault management callbacks are notified accordingly through an
appAvail Statusl nd message.

8.4.4.2.4 Framework Faulty State
In this state, the framework has detected an internal problem with itself such that application and service capability
features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the

framework return an error. If the framework ever recovers, services with fault management callbacks will be notified
viaafwAvail Statusind message.

8.4.5 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 144 ETSI TS 129 198-3 V7.1.0 (2007-06)

9 Service Properties

9.1 Service Super and Sub Types

Service Properties are used at service registration to indicate the capabilities of an SCF. They are normally used as an
indication for limitations an SCF has. These limitations can come from the way an SCF is implemented or from
limitations in the network. The service type of an SCF defines which properties the supplier shall provide at
registration of the SCF.

An application uses Service Properties at service discovery to find services that have the required capabilities. The
Framework validates the requested properties with the registered properties and provides the application with alist of
SCFsthat comply to the application's request.

The capabilities of an SCF can be extended by providing service properties in addition to the ones defined in this
standard. For this extended SCF, a dedicated sub-type of a service is defined. A sub-type of an SCF shall be fully
compatible with the standard SCF, that is, an application shall be able to use the sub type as if it was the standard type.
Thisimpliesthat the interface to the SCF remains unchanged. Also SCF sub types can be further extended. Thisway a
hierarchy of service types can be built with the standard type being the root.

An example of asub typeisaMulty Party Call Control service that allows the application to request a certain quality-
of-service level. An additional service property is added for this.

9.2 Service Property Types

At Service Registration the properties of atype shall be interpreted as the set of values that can be supported by the
service. If aservice type has a certain property (e.g. "CAN_DO_SOMETHING"), aservice registers with a property value
of {"true", "false"}. Thismeansthat the SCSis able to support Service instances where this property is used or
allowed and instances where this property is not used or allowed. This clarifies why sets of values shall be used for the
property values instead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agreement.
The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thuslead to a
sub-set of the service property values. When the correct SCF is instantiated during the discovery and selection
procedure (see Note), the Service Properties shall thus be interpreted as the requested property val ues.

NOTE: Thisisachieved through the createServiceManager() operation in the Service Instance Lifecycle Manager
interface.

All property values are represented by an array of strings. The following table shows all supported service property
types.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7

145

ETSI TS 129 198-3 V7.1.0 (2007-06)

Service Property type
name

Description

Example value (array of
strings)

Interpretation of example
value

BOOLEAN_SET

set of Booleans

{"FALSE"}

The set of Booleans consisting
of the Boolean "false".

INTEGER_SET set of integers {"1", 2", "5", "7} The set of integers consisting
of the integers 1, 2, 5and 7.
STRING_SET set of strings {"Sophia", "Rijen"} The set of strings consisting of

the string 'Sophia" and the
string "Rijen"

INTEGER_INTERVAL

interval of integers

{"5", "100"}

The integers that are between
or equal to 5 and 100.

STRING_INTERVAL

interval of strings

{'Rijen”, "Sophia"}

The strings that are between
or equal to the strings "Rijen"
and "Sophia", in
lexicographical order.

INTEGER_INTEGER_MAP

map from integers to

{"1", "10", "2", "20", "3",

The map that maps 1 to 10, 2

integers "30"} to 20 and 3 to 30.
XML_ADDRESS_RANGE_ | set of values of {"<AddressRangeSet> In case
SET TpAddressRange. <AddressRange> P_REGEX_SUPPORT_FOR_
Values of <Plan>P_ADDRESS_P | ADDRESS_RANGE is TRUE:

TpAddressRange are
described using XML.
An XML schema is
provided below for this
purpose.

LAN_E164</Plan>
<AddrString>123*</Add

rString>

</AddressRange>

<AddressRange>
<Plan>P_ADDRESS_P

LAN_E164</Plan>
<AddrString>456*</Add

rString>

</AddressRange>

</AddressRangeSet>"}

Any addresses containing 123
or containing 456 in the E.164
Address Plan.

In case
P_REGEX_SUPPORT_FOR_
ADDRESS_RANGE is FALSE:
Any addresses starting with
123 or starting with 456 in the
E.164 Address Plan.

FLOAT_SET

set of values of
TpFloat.

{'0.1",".2',°0.1e+3}

The set of floats containing
floating point numbers 0.1, 0.2
and 100

FLOAT_INTERVAL

interval of TpFloat
values

{-1.1, 5.0}

The floating point numbers
that are between or equal to —
1.1 and 5.0

The bounds of the string interval, integer interval and float interval types may hold the reserved value

"UNBOUNDED". If the left bound of the interval holds the value "UNBOUNDED", the lower bound of the interval is
the smallest value supported by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper
bound of the interval isthe largest value supported by the type.

When an SCF isregisterd by the Service Supplier, Service Properties of type BOOLEAN_SET shall not contain an
empty set. When a serviceis discovered by an application, this application shall specify either { TRUE} or { FALSE} as
value for service properties of type BOOLEAN_SET.

Thevaue of XML_ADDRESS RANGE_SET should comply with the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlins:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">
<xs:element name="AddressRangeSet">

<xs:complexType>
<xs:sequence>

<xs:element name="AddressRange" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="Plan" type="xs:string" default="P_ADDRESS_PLAN_ANY"/>
<xs:element name="AddrString" type="xs:string"/>
<xs:element name="Name" type="xs:string" minOccurs="0"/>

</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>

ETSI

nAn

3GPP TS 29.198-03 version 7.1.0 Release 7 146 ETSI TS 129 198-3 V7.1.0 (2007-06)

</xs:complexType>
</xs:element>
</xs:schema>

An example usage could be:

{ n<?xml version="1.0" encoding="UTF-8"?>
<AddressRangeSet xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemal ocation="xml_address_range_set.xsd">
<AddressRange>
<Plan>P_ADDRESS_PLAN_E164</Plan>
<AddrString>789*</AddrString>
</AddressRange>
<AddressRange>
<Plan>P_ADDRESS_PLAN_ANY</Plan>
<AddrString>123*</AddrString>
</AddressRange>
<AddressRange>
<Plan>P_ADDRESS_PLAN_SIP</Plan>
<AddrString><sip:*@parlay.org></AddrString>
<Name/>
</AddressRange>
</AddressRangeSet>"}

Note that the final address range corresponds to any sip address @parlay.org, i.e. <sip:* @parlay.org>.

9.3 General Service Properties
Each service instance has the following general properties:

e Service Name

e ServiceVersion

e ServicelD

e Service Description

e Product Name

e Product Version

e Operation Set

e Compatible Service

e Backward Compatibility Level
e Migration Required

e DataMigrated

e Migration Date and Time

e Support for Regular Expressionsin Address Range

The following sections describe these general service propertiesin more detail. The values for the mode are defined in
the type TpServiceTypePropertyM ode.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 147 ETSITS 129 198-3 V7.1.0 (2007-06)
9.3.1 Service Name
Property Type Mode Description
P_SERVICE_NAME STRING_SET MANDATORY_ | This property contains the name of the
READONLY service, e.g. 'UserLocation’,
'UserLocationCamel’,
‘UserLocationEmergency' or 'UserStatus'.
9.3.2 Service Version
Property Type Mode Description
P_SERVICE_VERSION STRING_SET MANDATORY This property contains the version of the
APIs, to which the service is compliant. Itis
a set of strings as specified in the TpVersion
type.
9.3.3 Service ID
Property Type Mode Description
P_SERVICE_ID STRING_INTERVAL | READONLY This property uniquely identifies a specific
service. Note that the Framework generates
this property value when the Service
Supplier registers the service. This property
should not be confused with the
servicelnstancelD generated by the
Framework when a Client Application signs
a Service Agreement to obtain the Service
Manager
9.3.4 Service Description
Property Type Mode Description
P_SERVICE_DESCRIPTION | STRING_SET MANDATORY_ | This property contains a textual description
READONLY of the service. It should not be interpreted
as a description of a Service Instance (as
identified by a servicelnstancelD generated
by the Framework when a Client Application
signs a Service Agreement to obtain the
Service Manager).
9.3.5 Product Name
Property Type Mode Description
P_PRODUCT_NAME STRING_SET READONLY This property contains the name of the
product that provides the service, e.g. 'Find
It', 'Locate.com'.
9.3.6 Product Version
Property Type Mode Description
P_PRODUCT_VERSION STRING_SET READONLY This property contains the version of the

product that provides the service, e.g.
'3.1.11"

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 148 ETSITS 129 198-3 V7.1.0 (2007-06)
9.3.7 Void
9.3.8 Operation Set
Property Type Mode Description
P_OPERATION_SET STRING_SET MANDATORY Specifies set of the operations the SCS
supports.
The notation to be used is :
{Interfacel.operationl','Interfacel.operation
2', 'Interface2.operation1'}, e.g.:
{'IpCall.createCall','IpCall.routeReq'}.
9.3.9 Compatible Service
Property Type Mode Description
P_COMPATIBLE_WITH_SERVICE | STRING_SET | READONLY Specifies the Set of Services, identified by

their ServicelDs, with which this new service
is compatible.

This property should at least be
accompanied with the properties
P_BACKWARD_COMPATIBILITY_LEVEL,
P_MIGRATION_REQUIRED.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties like Migration Required, Data
Migrated, etc.

For all these properties the order of the
Services shall be identical.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7

149

9.3.10 Backward Compatibility Level

ETSI TS 129 198-3 V7.1.0 (2007-06)

Property Type

Mode

Description

P_BACKWARD_COMPATIBILITY_
LEVEL

BOOLEAN_SET

READONLY

Specifies if the new service is completely
backwards compatible with each service
identified in the
P_COMPATIBLE_WITH_SERVICE
property:

Value = TRUE: Service is completely
backwards compatible

Value = FALSE: SCS is not completely
backwards compatible.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE

property.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7

9.3.11 Migration Required

150

ETSI TS 129 198-3 V7.1.0 (2007-06)

Property Type

Mode

Description

P_MIGRATION_REQUIRED

BOOLEAN_SET

READONLY

Specifies if the new service is replacing the
service identified in the
P_COMPATIBLE_WITH_SERVICE property:
Value = TRUE: new service is replacing the
existing one — migration is required before
the date/time indicated in
P_MIGRATION_DATE_AND_TIME property.
Value = FALSE: new service is not replacing
the existing one — migration not required, the
existing service is retained.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE property.
If the value set of
P_MIGRATION_REQUIRED contains
TRUE, P_DATA_MIGRATED and
P_MIGRATION_DATE_AND_TIME
properties shall also to be present.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical.

9.3.12 Data Migrated

Property Type

Mode

Description

P_DATA_MIGRATED

BOOLEAN_SET

READONLY

Indicates if the data (e.g. notifications) from
the existing service identified in the
P_COMPATIBLE_WITH_SERVICE property
is also available in this Service.

Value = TRUE: all data is migrated

Value = FALSE: no data is migrated

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE and the
P_MIGRATION_REQUIRED properties.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 151 ETSITS 129 198-3 V7.1.0 (2007-06)
9.3.13 Migration Date And Time

Property Type Mode Description
P_MIGRATION_DATE_AND_TIME | STRING_SET READONLY | This property contains the date and time, in

the format described in TpDateAndTime, by
which point applications shall have migrated
from existing services to this new service.
Migration to the new service requires the
application to terminate the existing service
agreement, and sign a new one.

Failure to do this by the migration date and
time indicated in this property may result in
the service agreement being terminated by
the Framework, since the service supplier
may choose to unregister the service
following this date and time.

Only one value of TpDateAndTime is
permitted to be present in this property at
service registration.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE,
P_MIGRATION_REQUIRED and
P_DATA_MIGRATED properties.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical. For those
services for which migration is not required
(P_MIGRATION_REQUIRED set to FALSE),
the corresponding value of this property shall
be ignored.

9.3.14 Support for Regular Expressions in Address Range

Property | Type

Mode |

Description

P_REGEX_SUPPORT_FOR_ADDRE
SS_RANGE

BOOLEAN_SET

READONLY

Indicates if the AddrString and
SubAddressString fields of
TpAddressRange are expressed as
regular expressions (TRUE) or not
(FALSE)

10 Data Definitions

This clause provides the Framework specific data definitions necessary to support the OSA interface specification.

The general format of a data definition specification is the following:

— Datatype, that shows the name of the data type;

— Description, that describes the data type;

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 152 ETSITS 129 198-3 V7.1.0 (2007-06)

— Tabular specification, that specifies the data types and values of the data type;
— Example, if relevant, shown to illustrate the data type.

All data types referenced but not defined in this clause are common data definitions which may be found in
3GPP TS 29.198-2.

10.1 Common Framework Data Definitions

10.1.1 TpClientAppID

Thisisan identifier for the client application. It is used to identify the client to the Framework. Thisdatatypeis
identical to TpString and is defined as a string of characters that uniquely identifies the application. The content of this
string shall be unique for each OSA API implementation (or unique for a network operator"s domain). This unique
identifier shall be negotiated with the OSA operator and the application shall use it to identify itself.

10.1.2 TpClientAppIDList

This data type defines a Numbered Set of Data Elements of type TpClientApplD.

10.1.3 TpDomainID

Definesthe Tagged Choice of Data Elements that specify either the Framework or the type of entity
attempting to access the Framework.

Tag Element Type

TpDomainiDType

Tag Element Value Choice Element Type Choice Element Name
P_FW TpFwID FwID
P_CLIENT_APPLICATION TpClientAppID ClientAppID
P_ENT_OP TpEntOpID EntOpID
P_SERVICE_INSTANCE TpServiceInstanceID ServiceID (See Note)
P_SERVICE_SUPPLIER TpServiceSupplierID ServiceSupplierID

Note: The Choice Element Name ServicelD of TpDomainID refers to a service instance.

10.1.4 TpDomainIiDType

Defines either the Framework or the type of entity attempting to access the Framework.

Name Value Description
P_FW 0 The Framework
P_CLIENT_APPLICATION 1 A client application
P_ENT OP 2 An enterprise operator
P_SERVICE INSTANCE 3 A serviceinstance
P_SERVICE SUPPLIER 4 A service supplier

10.1.5 TpEntOpID

This datatypeisidentical to TpString and is defined as a string of characters that identifies an enterprise operator.
In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service
Capability Feature (SCF).

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 153 ETSITS 129 198-3 V7.1.0 (2007-06)

10.1.6 TpPropertyName

Thisdatatypeisidentical to TpString. Itisthe name of a generic 'property’.

10.1.7 TpPropertyValue

Thisdatatypeisidentical to TpString. Itisthevalue (or thelist of values) associated with a generic ‘property’.

10.1.8 TpProperty

ThisdatatypeisaSequence of Data Elements which describesageneric ‘property’. It isa structured data type
consisting of the following { name,value} pair:

Sequence Element Sequence Element
Name Type
PropertyName TpPropertyName
PropertyValue TpPropertyValue

10.1.9 TpPropertyList

This datatype definesaNumbered List of Data Elements of type TpProperty.

10.1.10 TpENntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOplD.

10.1.11 TpFwID

Thisdatatypeisidentical to TpString and identifies the Framework.

10.1.12 TpService

This data type is a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists
of:

Sequence Element Sequence Element Documentation
Name Type
ServicelID TpServicelD
ServiceDescription TpServiceDescription This field contains the description of the service

10.1.13 TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

10.1.14 TpServiceDescription

This datatypeis a Sequence of Data Elements which describes aregistered SCF. It is a structured data type which
consists of:

Sequence Element Sequence Element Documentation
Name Type
ServiceTypeName TpServiceTypeName
ServicePropertyList TpServicePropertyList

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 154 ETSITS 129 198-3 V7.1.0 (2007-06)

10.1.15 TpServicelD

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies a registered SCF
interface. The string is automatically generated by the Framework.

10.1.16 TpServicelDList

This data type defines a Numbered Set of Data Elements of type TpServicel D.

10.1.17 TpServicelnstancelD

Thisdatatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a
registered SCF interface. The string is automatically generated by the Framework.

10.1.18 TpServiceTypeProperty

ThisdatatypeisaSequence of Data Elements which describes a service property associated with a service
type. It defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer.
Itissimilar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it definesthe
service property"s name and mode, but also defines the list of values assigned to it.

Sequence Element Sequence Element Documentation
Name Type
ServicePropertyName TpServicePropertyName
ServiceTypePropertyMode TpServiceTypePropertyMode
ServicePropertyTypeName TpServiceProperty TypeName

10.1.19 TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

10.1.20 TpServiceTypePropertyMode

This type defines SCF property modes.

Name Value Documentation
NORMAL 0 The value of the corresponding SCF property type may optionally be provided
MANDATORY 1 The value of the corresponding SCF property type shall be provided at service registration time
READONLY 2 The value of the corresponding SCF property typeis optional, but once given avalueit can not be
modified/restricted by a service level agreement
MANDATORY READONLY 3 The value of the corresponding SCF property type shall be provided but can not subsequently be
modified/restricted by a service level agreement.

10.1.21 TpServicePropertyTypeName

This datatypeisidentical to TpString and describes avalid SCF property type name. Valid service property type names
aredetailed in 10.1.

10.1.22 TpServicePropertyName
This datatypeisidentical to TpString. It definesavalid SCF property name. The valid service property names are

detailed in 10.3 and in the SCF data definitions. Additionally, service property names for proprietary service properties
(used for service sub types) are possible.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 155 ETSITS 129 198-3 V7.1.0 (2007-06)

10.1.23 TpServicePropertyNamelList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyName.

10.1.24 TpServicePropertyValue

This datatypeisidentical to TpString and describes a valid value of a SCF property.

10.1.25 TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue.

10.1.26 TpServiceProperty

This datatypeis a Sequence of Data Elements which describes an 'SCF property'. It is a structured data type which
consists of:

Sequence Element Sequence Element Documentation
Name Type
ServicePropertyName TpServicePropertyName
ServicePropertyValueList TpServicePropertyValuelist

10.1.27 TpServicePropertyList

This data type defines aNumbered Set of Data Elements of type TpServiceProperty.

10.1.28 TpServiceSupplierlD

Thisisan identifier for aservice supplier. It is used to identify the supplier to the Framework. Thisdatatypeis
identical to TpString.

10.1.29 TpServiceTypeDescription

This datatypeis a Sequence of Data Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element Sequence Element Documentation
Name Type
ServiceTypePropertyList TpServiceTypePropertyList a sequence of property name and property mode tuples associated with the
SCF type
ServiceTypeNameList TpServiceTypeNamelL.ist the names of the super types of the associated SCF type
AvailableOrUnavailable TpBoolean an indication whether the SCF type is available (true) or unavailable (false)

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 156 ETSITS 129 198-3 V7.1.0 (2007-06)

10.1.30 TpServiceTypeName

This datatypeisidentical to a TpString, and is defined as a string of characters that uniquely identifies the type of an
SCF interface. Other Network operator specific capabilities may also be used, but should be preceded by the string

"sp_". Thefollowing values are defined.

Character String Value

Description

NULL

An empty (NULL) string indicates no SCF name

P_GENERIC_CALL CONTROL

The name of the Generic Call Control SCF

P MULTI PARTY CALL CONTROL

The name of the MultiParty Call Control SCF

P_MULTI_MEDIA CALL_CONTROL

The name of the MultiMedia Call Control SCF

P_CONFERENCE_CALL_ CONTROL

The name of the Conference Call Control SCF

P_USER_INTERACTION

The name of the User Interaction SCFs

P_USER_INTERACTION_ADMIN

The name of the User Interaction Administration SCF

P_TERMINAL_ CAPABILITIES

The name of the Terminal Capabilities SCF

P USER_BINDING

The name of the User Binding SCF

P_USER_LOCATION

The name of the User Location SCF

P USER_LOCATION CAMEL

The name of the Network User Location SCF

P_USER_LOCATION_EMERGENCY

The name of the User Location Emergency SCF

P_USER_STATUS

The name of the User Status SCF

P_EXTENDED_USER_STATUS

The name of Extended User Status SCF

P_DATA_ SESSION_CONTROL

The name of the Data Session Control SCF

P_GENERIC_MESSAGING

The name of the Generic Messaging SCF

P_CONNECTIVITY MANAGER

The name of the Connectivity Manager SCF

P_CHARGING

The name of the Charging SCF

P_ACCOUNT_MANAGEMENT

The name of the Account Management SCF

P_POLICY_ PROVISIONING

The name of the Policy Management provisioning SCF

P_POLICY_ EVALUATION

The name of the Policy Management policy evaluation SCF

P_PAM ACCESS

The name of PAM presentity SCF

P_PAM EVENT MANAGEMENT

The name of PAM watcher SCF

P_PAM PROVISIONING

The name of PAM provisioning SCF

P_MULTI_MEDIA MESSAGING

The name of the Multimedia M essaging SCF

P_SERVICE_BROKER

The name of the Service Broker SCF

10.1.31 TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

10.1.32 TpSubjectType

Defines the subject of a query/notification request/result.

Name Value Description
P_SUBJECT_UNDEFINED 0 The subject is neither the framework nor the
client application

P_SUBJECT_CLIENT_APP

The subject is the client application

P_SUBJECT_ FW

2 The subject is the framework

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 157 ETSITS 129 198-3 V7.1.0 (2007-06)

10.1.33 TpServiceTypePropertyValue

ThisdatatypeisaSequence of Data Elements which describes a service property associated with aservice. It
defines the name and mode of the service property, the service property type (e.g. Boolean, integer), and also value. It
issimilar to, but distinct from, TpServiceProperty. The latter does not define the modes and types and is used to
register values for known service properties only.

Sequence ElementName Sequence ElementType Documentation
ServicePropertyName TpServicePropertyName The name of the service property.
ServiceTypePropertyMode TpServiceTypePropertyMode The mode of the service property.
ServicePropertyTypeName TpServiceProperty TypeName The type of the service property.
ServicePropertyValueList TpServicePropertyValuelist The Value-list of the service property.

10.1.34 TpServiceTypePropertyValueList

This data type defines aNumbered Set of Data Elements of type TpServiceTypePropertyValue.

10.2 Event Notification Data Definitions

10.2.1 TpFwEventName

Defines the name of event being notified.

Name Value Description

P_EVENT FW _NAME UNDEFINED 0 Undefined

P_EVENT FW SERVICE AVAILABLE 1 Notification of SCS(s) available

P_EVENT FW SERVICE UNAVAILABLE 2 Notification of SCS(s) becoming unavailable

P_EVENT FW MIGRATION SERVICE AVAILABLE 3 Notification of abackwards compatible SCS

becoming available, to which the application
can migrate.
P_EVENT FW APP SESSION CREATED 4 Notification of an application<->FW access
session created. (See note 1)

P_EVENT_FW_APP_SESSION_TERMINATED 5 Notification of an application<->FW access
session terminated. (See note 1)

P_EVENT FW APP AGREEMENT SIGNED 6 Notification that a service agreement has been

signed. (Seenote 1)

P_EVENT_FW_APP_AGREEMENT ENDED 7 Notification that a service agreement has been
ended/terminated. (See note 1)

NOTE: These events can only be requested by enterprise operators. If requested by any other entity then

the method will throw the P_INVALID CRITERIA exception.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 158 ETSITS 129 198-3 V7.1.0 (2007-06)

10.2.2 TpFwEventCriteria

Definesthe Tagged Choice of Data Elements that specifiesthe criteriafor an event notification to be
generated.

Tag Element Type
TpFwEventName
Tag Element Value Choice Element Type Choice Element Name
P_EVENT_FW_NAME_UNDEFINED TpString EventNameUndefined
P_EVENT_FW_SERVICE_AVAILABLE TpServiceTypeNameList ServiceTypeNameL.ist
P_EVENT_FW_SERVICE_UNAVAILABLE TpServiceTypeNameList UnavailableServiceTypeNameL.ist
P_EVENT_FW_MIGRATION_SERVICE_AVAILAB TpServiceTypeNameL.ist CompatibleServiceTypeNameL.ist
LE
P_EVENT_FW_APP_SESSION_CREATED TpClientApplDList SessionCreatedList
P_EVENT_FW_APP_SESSION_TERMINATED TpClientApplDList SessionTerminatedList
P_EVENT_FW_APP _AGREEMENT_SIGNED TpClientApplDList AgreementSignedList
P_EVENT_FW_APP AGREEMENT_ENDED TpClientApplDList AgreementEndedList

10.2.3 TpFwEventinfo

Definesthe Tagged Choice of Data Elements that specifiestheinformation returned to the client in an event
notification.

Tag Element Type
TpFwEventName
Tag Element Value Choice Element Type Choice Element Name
P_EVENT_FW_NAME_UNDEFINED TpString EventNameUndefined
P_EVENT_FW_ SERVICE_AVAILABLE TpServiceIDList ServiceIDList
P_EVENT_FW_SERVICE_UNAVAILABLE TpServiceIDList UnavailableServiceIDList
P_EVENT_FW_MIGRATION_SERVICE_AVAILAB TpFWMuigrationServiceAvailablelnfo MigrationServiceAvailable
LE
P_EVENT_FW_APP_SESSION_CREATED TpClientApplD AppSessionCreated
P_EVENT_FW_APP_SESSION_TERMINATED TpClientApplD AppSessionTerminated
P_EVENT_FW_APP_AGREEMENT_SIGNED TpFwAgreementinfo AppAgreementSigned
P_EVENT_FW_APP_AGREEMENT_ENDED TpFwAgreementinfo AppAgreementEnded

10.2.4 TpFwMigrationServiceAvailablelnfo

Defines the information to be supplied when an SCS becomes available.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 159 ETSITS 129 198-3 V7.1.0 (2007-06)

Sequence ElementName Sequence ElementType Documentation
ServiceType TpServiceTypeName Type of SCS that has become available
ServicelID TpServicelD ID of the SCSthat has become available
CompatibleServiceID TpServicelD ID of the SCS with which this new SCS is compatible with.
BackwardCompatibilityLevel TpBoolean Specifiesif the new SCSis completely backwards compatible
with the currently used SCS.

Value = TRUE: SCSis completely backwards compatible

Value = FALSE: SCSis not completely backwards compatible.
Contact the Framework operator for more information.on how
to migrate.

MigrationRequired TpBoolean Specifiesif the new SCSis replacing the existing SCS

Value = TRUE: new SCSisreplacing the existing one -
migration is required before the date/time indicated in
MigrationDateAndTime field

Value = FALSE: new SCSis not replacing the existing one, but
is provided in addition.

All migration to the new SCS, whether required or not, shall
involve the application terminating the existing service
agreement and signing anew one.

DataMigrated TpBoolean Indicates whether all the data the application set in the previous
SCS (e.g. natifications) is aso available in the new SCS.

Value = FALSE : the new SCS has not obtained all data (e.g.
notifications) related to the old SCS and the application needs
to reset all the previous data.

Value = TRUE: the new SCS has obtained data (e.g.
notifications) related to the old SCS, the application can use the
new SCS without resetting data.

MigrationDataAndTime TpDateAndTime Indicates the date and time before which applications shall have
migrated from existing the existing SCS to this new SCS.

Migration to the new SCS requires the application to terminate
the existing service agreement, and sign anew one.

Failure to do this by the migration date and time indicated in
thisfield may result in the service agreement being terminated
by the Framework, since the service supplier may choose to
unregister the service following this date and time.

The value of this parameter, if present, shall beignored if
MigrationRequired is set to FALSE

MigrationAdditionalInfo TpMigrationAdditionalInfoSet | Contains additional migration information. Thisisinitially
provided to permit addition of information in later releases
without impacting backwards compatibility.

10.2.5 TpMigrationAdditionallnfo

Definesthe Tagged Choice of Data Elements that specify additional migration-related information.

Tag Element Type
TpMigrationAdditional InfoType

Tag Element Value Choice Element Type Choice Element Name
P _MIGRATION INFO UNDEFINED NULL Undefined

10.2.6 TpMigrationAdditionalinfoType

Defines the type of migration-related additional information.

Name Value Description
P _MIGRATION INFO UNDEFINED 0 Undefined

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 160 ETSITS 129 198-3 V7.1.0 (2007-06)

10.2.7 TpMigrationAdditionallnfoSet

DefinesaNumbered Set of Data Elements of TpMigrationAdditionallnfo.

10.2.8 TpFwAgreementinfo

Definesthe Sequence of Data Elements that specifiesthe information returned to the enterprise operator
application in an event notification.

Sequence Element Name Sequence Element Type Description
ClientApplicationID TpClientApplD The ID of the client application
ServiceID TpServicelD The ID of the service for whom the agreement was
signed/terminated
ServiceContractID TpServiceContract|D The ID of the service contract related to the

agreement if available, an empty string otherwise.

ServiceProfilelD TpServiceProfilelD The ID of the service profile related to the
agreement if available, an empty string otherwise.

10.3 Trust and Security Management Data Definitions

10.3.1 TpAccessType

Thisdatatypeisidentical to a TpString. Thisidentifies the type of access interface requested by the client application.
If they request P_OSA_ACCESS, then areference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, but should be preceded by the string"SP_". The following value is defined:

String Value Description

P_OSA_ACCESS Access using the OSA Access Interfaces: IpAccess and IpClientAccess

10.3.2 TpAuthType

This datatypeisidentical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication isthe default
authentication method. Other Network operator specific capabilities may aso be used, but should be preceded by the
string 'SP_". The following values are defined:

String Value Description
P_OSA_AUTHENTICATION Authenticate using the OSA API Level Authentication Interfaces: IpAPILevel Authentication and
IpClientAPILevel Authentication
P _AUTHENTICATION Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 161 ETSITS 129 198-3 V7.1.0 (2007-06)

10.3.3 Void
10.3.4 Void
10.3.5 Void
10.3.6 TpAuthDomain

Thisissequence of Data Elements containing all the data necessary to identify a domain: the domain
identifier, and a reference to the authentication interface of the domain.

Sequence Element | Sequence Element Description
Name Type
DomainID TpDomainID Identifies the domain for authentication. This identifier is assigned to the domain during
theinitial contractual agreements, and is valid during the lifetime of the contract.
AuthInterface IpInterfaceRef Identifies the authentication interface of the specific entity. This dataelement has the same

lifetime as the domain authentication process, i.e. in principle a new interface reference

can be provided each time a domain intends to access another.

10.3.7 TplnterfaceName

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the names of the

Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used,

but should be preceded by the string "sP_". The following values are defined.

Character String Value

Description

P_DISCOVERY

The name for the Discovery interface.

P_EVENT_NOTIFICATION

The name for the Event Notification interface.

P_OAM

The name for the OA&M interface.

P_LOAD_MANAGER

The name for the Load Manager interface.

P_FAULT_MANAGER

The name for the Fault Manager interface.

P_HEARTBEAT MANAGEMENT

The name for the Heartbeat Management interface.

P_SERVICE_AGREEMENT_ MANAGEMENT

The name of the Service Agreement Management interface.

P_REGISTRATION

The name for the Service Registration interface.

P ENT OP_ACCOUNT MANAGEMENT

The name for the Service Subscription: Enterprise Operator Account Management
interface.

P ENT OP _ACCOUNT INFO QUERY

The name for the Service Subscription: Enterprise Operator Account Information Query
interface.

P_SVC_CONTRACT MANAGEMENT

The name for the Service Subscription: Service Contract Management interface.

P_SVC_CONTRACT INFO_QUERY

The name for the Service Subscription: Service Contract Information Query interface.

P_CLIENT APP_MANAGEMENT

The name for the Service Subscription: Client Application Management interface.

P_CLIENT APP_INFO_QUERY

The name for the Service Subscription: Client Application Information Query interface.

P_SVC_PROFILE_MANAGEMENT

The name for the Service Subscription: Service Profile Management interface.

P_SVC_PROFILE_INFO_QUERY

The name for the Service Subscription: Service Profile Information Query interface.

10.3.8 TplnterfaceNameList

This data type defines a Numbered Set of Data Elements of type TplnterfaceName.

10.3.9 TpServiceToken

This datatype isidentical to a TpString, and identifies a selected SCF. Thisis a free format text token returned by the
Framework, which can be signed as part of a service agreement. This will contain Network operator specific
information relating to the service level agreement. The serviceToken has alimited lifetime, which is the same as the
lifetime of the service agreement in normal conditions. If something goes wrong the serviceT oken expires, and any
method accepting the serviceToken will return an error code (P_INVALID SERVICE TOKEN). Service Tokens will

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 162 ETSITS 129 198-3 V7.1.0 (2007-06)

automatically expireif the client or Framework invokes the terminateAccess method on the other's corresponding
access interface.

10.3.10 TpSignatureAndServiceMgr

Thisis a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a
reference to the SCF manager interface of the SCF.

Sequence Element Sequence Element
Name Type
DigitalSignature TpOctetSet
ServiceMgrInterface IpServiceRef

The digital Signature contains a CM S (Cryptographic Message Syntax) object (as defined in RFC 2630) with content
type Signed-data. The signatureis calculated and created as per section 5 of RFC 2630. The content is the agreement
text given by the client application. The "external signature” construct shall not be used (i.e. the eContent field in the
EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as

defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The ServiceMgrinterface is areference to the SCF manager interface for the selected SCF.

10.3.11 TpSigningAlgorithm

This datatypeisidentical to a TpString, and is defined as a string of characters that identify the signing algorithm that
shall be used. Other Network operator specific capabilities may a so be used, but should be preceded by the string
"sp_". Thefollowing values are defined.

String Value Description
NULL An empty (NULL) string indicates no signing algorithm is required
P_MD5_RSA_ 512 M D5 takes an input message of arbitrary length and produces as output a 128-hit message digest of the

input. Thisisthen encrypted with the private key under the RSA public-key cryptography system
using a 512-bit modulus. The signature generation follows the process and format defined in RFC
2313 (PKCS#1 v1.5). The use of thissigning method is deprecated.

P_MD5_RSA_1024 M D5 takes an input message of arbitrary length and produces as output a 128-hit message digest of the
input. Thisisthen encrypted with the private key under the RSA public- key cryptography system
using a 1024-bit modulus. .The signature generation follows the process and format defined in RFC
2313 (PKCS#1 v1.5). The use of thissigning method is deprecated.

gIRiggiA_PKCﬂ_Vl_S_SH SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. RSA is

— then used to generate the signature value, following the process defined in section 8 of RFC 2437 and
format defined in section 9.2.1 of RFC 2437. The RSA private/public key pair is using a 1024-bit
modulus.

P_SHAL_DSA SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. DSA is
then used to generate the signature value. The signature generation follows the process and format
defined in section 7.2.2 of RFC 2459.

10.3.12 TpSigningAlgorithmCapabilityList

This datatypeisidentical to a TpString. It is a string of multiple TpSigningAlgorithm concatenated using a comma (,)
as the separation character.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 163 ETSITS 129 198-3 V7.1.0 (2007-06)

10.3.13 TpAuthMechanism

This datatypeisidentical to a TpString. It identifies an authentication mechanism to be used for API Level
Authentication. The following values are defined:

String Value Description

P_OSA_MD5 Authentication is based on the use of MD5 (RFC 1321) hashing algorithm to generate a response based on a
shared secret and a challenge received via challenge() method. The capability to use this algorithmis required
to be supported when using CHAP (RFC 1994) but its use is not recommended.

P_OSA_HMAC_SHA1_9% Authentication is based on the use of HMAC-SHA1 (RFC 2404) hashing algorithm to generate a response
based on a shared secret and a challenge received via challenge() method.
P_OSA_HMAC_MD5_9% Authentication is based on the use of HMAC-MD5 (RFC 2403) hashing algorithm to generate a response

based on a shared secret and a challenge received via challenge() method.

10.3.14 TpAuthMechanismList

Thisdatatypeisidentical to a TpString. It is a string of multiple TpAuthMechanism concatenated using acomma (,) as
the separation character.

10.4 Integrity Management Data Definitions

10.4.1 TpActivityTestRes

Thistypeisidentical to TpString and is an implementation specific result. The valuesin this data type are 'Available' or
'‘Unavailable'.

10.4.2 TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

Sequence Element Sequence Element
Name Type
Period TpTimeInterval
FaultStatsSet TpFaultStatsSet

10.4.3 TpFaultStats

This defines the sequence of data elements which provide the statistics on a per fault type basis.

Sequence Element Sequence Element Description
Name Type
Fault TpInterfaceFault
Occurrences TpInt32 The number of separate instances of this fault
MaxDuration TpInt32 The number of seconds duration of the longest fault
TotalDuration TpInt32 The cumulative duration (all occurrences)
NumberOfClientsAffected TpInt32 The number of clientsinformed of the fault by the Fw

Occurrencesis the number of separate instances of this fault during the period. MaxDuration and Total Duration are the
number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is
the number of clients informed of the fault by the Framework.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 164 ETSITS 129 198-3 V7.1.0 (2007-06)

10.4.4 TpFaultStatisticsError

Definestheerror code associated with a failed attempt to retrieve any fault
statistics information.

Name Value Description
P _FAULT INFO ERROR UNDEFINED 0 Undefined error
P _FAULT INFO UNAVAILABLE 1 Fault statistics unavailable

10.4.5 TpFaultStatsSet

This datatype definesaNumbered Set of Data Elements of type TpFaultStats

10.4.6 TpActivityTestID

This datatypeisidentical to a Tplnt32, and is used as atoken to match activity test requests with their results..

10.4.7 TplinterfaceFault

Defines the cause of the interface fault detected.

Name Value Description

INTERFACE FAULT UNDEFINED 0 Undefined

INTERFACE FAULT LOCAL_ FAILURE A fault in the local API software or hardware has been detected

1
INTERFACE FAULT GATEWAY FAILURE 2 A fault in the gateway API software or hardware has been detected
3

INTERFACE FAULT PROTOCOL ERROR An error in the protocol used on the client-gateway link has been detected

10.4.8 Void

10.4.9 TpFwUnavailReason

Defines the reason why the Framework is unavailable.

Name Value Description

FW_UNAVAILABLE UNDEFINED 0 Undefined

FW_UNAVAILABLE LOCAL FAILURE The Local API software or hardware has failed

FW_UNAVAILABLE GATEWAY FAILURE The gateway API software or hardware has failed

FW_UNAVAILABLE OVERLOADED The Framework is fully overloaded

FW_UNAVAILABLE CLOSED The Framework has closed itself (e.g. to protect from fraud or malicious attack)

ald|lwWw|IN|EF

FW_UNAVAILABLE PROTOCOL_FAILURE

The protocol used on the client-gateway link has failed

10.4.10 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

Name Value Description
LOAD LEVEL NORMAL 0 Normal load
LOAD LEVEL OVERLOAD 1 Overload
LOAD_LEVEL_SEVERE_OVERLOAD 2 Severe Overload

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 165 ETSITS 129 198-3 V7.1.0 (2007-06)

10.4.11 TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual |oad threshold valueis
application and SCF dependent, so is their relationship with load level.

Sequence Element
Name

Sequence Element
Type

LoadThreshold

TpFloat

10.4.12 TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

Sequence Element Sequence Element
Name Type
LoadLevel TpLoadLevel
LoadThreshold TpLoadThreshold

10.4.13 TpLoadPolicy

Defines the load balancing policy.

Sequence Element Name

Sequence Element Type

LoadPolicy

TpString

10.4.14 TpLoadStatistic

Definesthe Sequence of Data Elements that representsaload statistic record for a specific entity (i.e.

Framework, service or application) at a specific date and time.

Sequence Element Name

Sequence Element Type

LoadStatisticEntityID

TpLoadStatisticEntityID

TimeStamp

TpDateAndTime

LoadStatisticInfo

TpLoadStatisticInfo

10.4.15 TpLoadStatisticList

DefinesaNumbered List of Data Elements of type TpLoadStatistic.

10.4.16 TpLoadStatisticData

Definesthe Sequence of Data Elements that representsload statistic information.

Sequence Element Name

Sequence Element Type

LoadValue (see Note)

TpFloat

LoadLevel

TpLoadLevel

NOTE: LoadValue is expressed as a percentage.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 166 ETSITS 129 198-3 V7.1.0 (2007-06)

10.4.17 TpLoadStatisticEntitylD

Definesthe Tagged Choice of Data Elements that specify the type of entity (i.e. service, application or
Framework) providing load statistics.

Tag Element Type
TpLoadStatisticEntityType
Tag Element Value Choice Element Type Choice Element Name
P_LOAD_STATISTICS FW_TYPE TpFwID FrameworkID
P_LOAD_STATISTICS_SVC _TYPE TpServicelD ServiceID
P_LOAD_STATISTICS_APP_TYPE TpClientApplD ClientAppID

10.4.18 TpLoadStatisticEntityType

Defines the type of entity (i.e. service, application or Framework) supplying load statistics.

Name Value Description
P_LOAD_ STATISTICS_FW_TYPE 0 Framework-type load statistics
P_LOAD STATISTICS_SVC_TYPE 1 Service-type load statistics
P _LOAD STATISTICS APP TYPE 2 Application-type load statistics

10.4.19 TpLoadStatisticinfo

Definesthe Tagged Choice of Data Elements that specify the type of load statistic information (i.e. valid or
invalid).

Tag Element Type

TpLoadStatisticinfoType

Tag Element Value Choice Element Type Choice Element Name
P_LOAD_STATISTICS_VALID TpLoadStatisticData LoadStatisticData
P_LOAD_STATISTICS_INVALID TpLoadStatisticError LoadStatisticError

10.4.20 TpLoadStatisticinfoType

Defines the type of load statistic information (i.e. valid or invalid).

Name Value Description
P_LOAD_ STATISTICS_VALID 0 Valid load statistics
P_LOAD_ STATISTICS_INVALID 1 Invalid load dtatistics

10.4.21 TpLoadStatisticError

Defines the error code associated with afailed attempt to retrieve any load statistics information.

Name Value Description
P_LOAD INFO ERROR UNDEFINED 0 Undefined error
P_LOAD_INFO_UNAVAILABLE 1 Load statistics unavailable

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7

167 ETSI TS 129 198-3 V7.1.0 (2007-06)

10.4.22 TpSvcAvailStatusReason

Defines the reason detailing the change in status of Service Instance availability.

Name Value Description
SVC_UNAVAILABLE UNDEFINED 0 Undefined. A permanent failure. See Note 1.
SVC_ UNAVAILABLE LOCAL_ FAILURE 1 The Local API software or hardware has failed. A permanent failure. See Note
1.
SVC_UNAVAILABLE_GATEWAY_ FAILURE 2 The gateway API software or hardware has failed. A permanent failure. See
Note 1.

SVC_UNAVAILABLE OVERLOADED

The Service Instance is fully overloaded. A temporary problem. See Note 2.

SVC_UNAVAILABLE CLOSED

The Service Instance has closed itself (e.g. to protect from fraud or malicious
attack). A permanent failure. See Note 1.

SVC_UNAVAILABLE_NO_RESPONSE 5 The Framework has detected that a Service Instance hasfailed: e.g. non-
response from an activity test, failure to return heartbeats. A permanent failure.
See Note 1.
SVC_UNAVAILABLE_SW_UPGRADE 6 The Service Instance is unavailable due to software upgrade or other similar

maintenance. A permanent failure. See Note 1.

SVC_AVAILABLE

7 The Service has become available again

Note 1: The client application must act to reset its use of the specified service instance (using the normal
mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and
begin use of a different service instance).

Note 2: The "expected" recovery time could be defined within the SLA.

10.4.23 TpAppAvailStatusReason

Defines the reason detailing the change in status of Application availability.

Name Value Description

APP_UNAVAILABLE_UNDEFINED 0 Undefined. A permanent failure. See Note 1.

APP UNAVAILABLE LOCAL_ FAILURE 1 A local failurein the Application has been detected. A permanent failure. See Note 1.

APP_UNAVAILABLE_REMOTE_FAILURE 2 A remote failure to the application has been detected, e.g. a databaseis not working. A
permanent failure. See Note 1.

APP_UNAVAILABLE_OVERLOADED The Application is fully overloaded. A temporary problem. See Note 2.

APP_UNAVAILABLE_CLOSED The Application has closed itself (e.g. to protect from fraud or malicious attack) . A
permanent failure. See Note 1.

APP_UNAVAILABLE NO_RESPONSE 5 The Framework has detected that the application has failed: e.g. non-response from an

activity test, failure to return heartbests. A permanent failure. See Note 1.

APP_UNAVAILABLE_SW_UPGRADE 6 The Application is unavailable due to SW upgrade or other similar maintenance. A
permanent failure. See Note 1.

APP_ AVAILABLE 7 The Application has become available

Note 1: The client application is unable (or does not wish) to continue using the service instance.
Note 2: The "expected" recovery time could be defined within the SLA.

10.4.24 TpLoadTestID

Thisdatatypeisidentical to a TpInt32, and is used as atoken to match load statistics requests with their results.

10.4.25 TpFaultStatsErrorList

DefinesaNumbered List of Data Elements of type TpFaultStatisticsError.

10.4.26 TpFaultReqlD

Thisdatatypeisidentical to a TpInt32, and is used as atoken to match fault statistics requests with their results.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 168 ETSITS 129 198-3 V7.1.0 (2007-06)

10.4.27 TpFwAvailStatusReason

Defines the reason detailing the change in status of Framework availability.

Name Value Description
FRAMEWORK UNAVAILABLE UNDEFINED 0 Undefined. A permanent failure. See Note 1.
FRAMEWORK UNAVAILABLE LOCAL FAILURE 1 A local failure in the Framework has been detected. A permanent failure. See
Note 1.
FRAMEWORK_UNAVAILABLE_ REMOTE_FAILURE 2 A remote failure to the Framework has been detected, e.g. adatabaseis not
working. A permanent failure. See Note 1.

FRAMEWORK UNAVAILABLE OVERLOADED 3 The Framework is fully overloaded. A temporary problem. See Note 2.

FRAMEWORK UNAVAILABLE CLOSED 4 The Framework has closed itsdlf (e.g. to protect from fraud or malicious attack) .
A permanent failure. See Note 1.

FRAMEWORK _UNAVAILABLE PROTOCOL_FAILURE 5 The Framework has detected that the protocol used between client and

framework hasfailed. A permanent failure. See Note 1.

FRAMEWORK UNAVAILABLE SW UPGRADE 6 The Framework is unavailable due to SW upgrade or other similar maintenance.
A permanent failure. See Note 1.

FRAMEWORK_AVAILABLE 7 The Framework has become available

Note 1: The Framework is unable (or does not wish) to continue using the client or service instance.
Note 2: The 'expected' recovery time could be part of the Framework's local policies.

10.5 Service Subscription Data Definitions

10.5.1 TpPropertyName

Thisdatatypeisidentical to TpString. It isthe name of a generic 'property'.

10.5.2 TpPropertyValue

Thisdatatypeisidentical to TpString. Itisthevalue (or thelist of values) associated with a generic 'property’.

10.5.3 TpProperty

ThisdatatypeisasSequence of Data Elements which describesageneric ‘property'. It is a structured data type
consisting of the following { name,value} pair:

Sequence Element Sequence Element
Name Type
PropertyName TpPropertyName
PropertyValue TpPropertyVaue

10.5.4 TpPropertyList

This datatype definesaNumbered List of Data Elements of type TpProperty.

10.5.5 TpEntOpProperties

This datatypeis of type TpPropertyList. It identifiesthe list of properties associated with an enterprise operator: e.g.
name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 169 ETSITS 129 198-3 V7.1.0 (2007-06)

10.5.6 TpENntOp

ThisdatatypeisaSequence of Data Elements which describes an enterprise operator. Itisa structured data
type, consisting of a unique 'enterprise operator 1D and alist of ‘enterprise operator properties, as follows:

Sequence Element Sequence Element
Name Type
EntOpID TpENtOpID
EntOpProperties TpEntOpProperties

10.5.7 TpServiceContractID

Thisdatatypeisidentical to TpString. It uniquely identifies the contract, between an enterprise operator and the
Framework, for the use of an OSAservice by the enterprise.

10.5.8 TpServiceContractIDList

This datatype definesaNumbered List of Data Elements of type TpServiceContractiD.

10.5.9 TpPersonName

Thisdatatypeisidentical to TpString. It isthe name of a generic 'person'.

10.5.10 TpPostalAddress

Thisdatatypeisidentical to TpString. Itisthe mailing address of a generic 'person'.

10.5.11 TpTelephoneNumber

Thisdatatypeisidentical to TpString. It isthe telephone number of a generic 'person'.

10.5.12 TpEmall

Thisdatatypeisidentical to TpString. Itisthe email address of a generic 'person'.

10.5.13 TpHomePage

Thisdatatypeisidentical to TpString. It isthe web address of a generic 'person'.

10.5.14 TpPersonProperties

This datatypeis of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that
can be associated with a generic "person'.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 170 ETSITS 129 198-3 V7.1.0 (2007-06)

10.5.15 TpPerson

ThisdatatypeisaSequence of Data Elements which describesageneric ‘person’: e.g. abilling contact, a
service requestor. It isastructured data type which consists of:

Sequence Element Sequence Element
Name Type

PersonName TpPersonName
PostalAddress TpPostalAddress
TelephoneNumber TpTelephoneNumber
Email TpEmail
HomePage TpHomePage
PersonProperties TpPersonProperties

10.5.16 TpServiceStartDate

Thisis of type TpDateAndTime. It identifies the contractual start date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

10.5.17 TpServiceEndDate

Thisisof type TpDateAndTime. It identifies the contractual end date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

10.5.18 TpServiceRequestor

Thisis of type TpPerson. It identifies the enterprise person requesting use of an OSA service: e.g. the enterprise
operator.

10.5.19 TpBillingContact

Thisis of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise’s
use of an OSA service.

10.5.20 TpServiceSubscriptionProperties

Thisis of type TpServicePropertyList. It specifies a subset of all available service properties and service property
values that apply to an enterprise”s use of an OSA service.

10.5.21 TpServiceContract

ThisdatatypeisaSequence of Data Elements which represents aservice contract. Itisastructured datatype
which consists of:

Sequence Element Sequence Element
Name Type
ServiceContractID TpServiceContractlID
ServiceContractDescription TpServiceContractDescription

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 171 ETSITS 129 198-3 V7.1.0 (2007-06)

10.5.22 TpServiceContractDescription

ThisdatatypeisasSequence of Data Elements which describesaservice contract. This contract should
conform to a previously negotiated high-level agreement (regarding OSA services, their usage and the price, etc.), if
any, between the enterprise operator and the framework operator. It is a structured data type which consists of:

Sequence Element Sequence Element
Name Type

ServiceRequestor TpServiceReguestor
BillingContact TpBillingContact
ServiceStartDate TpServiceStartDate
ServiceEndDate TpServiceEndDate
ServiceTypeName TpServiceTypeName
ServicelD TpServicelD
ServiceSubscriptionProperties TpServiceSubscriptionProperties
InUse TpBoolean (See note)
Note: The InUse flag indicates if the contract, or one of its associated profiles, is currently in use by a service

instance and will be returned in describeServiceContract(). This flag will be ignored if it is passed in to
createServiceContract().

10.5.23 TpClientAppProperties

Thisis of type TpPropertyList. The client application propertiesis alist of { name,value} pairs, for bilateral agreement
between the enterprise operator and the Framework.

10.5.24 TpClientAppDescription

ThisdatatypeisaSequence of Data Elements which describesan enterprise client application. It isa
structured data type, consisting of a unique ‘client application 1D, password and alist of 'client application properties:

Sequence Element Sequence Element
Name Type
ClientAppID TpClientAppID
ClientAppProperties TpClientAppProperties
HasAccessSession TpBoolean (See note 1)
HasServiceInstances TpBoolean(See note 2)

Note 1: The HasAccessSession flag indicates if the client application currently has an access session active with the
framework and will be returned in describeClientApp(). This flag will be ignored if it is passed in to
createClientApp().

Note 2: The HasServicelnstances flag indicates if the client application currently has service instances active and will
be returned in describeClientApp(). This flag will be ignored if it is passed in to createClientApp(). This flag
must be false if hasAccessSession is false.

10.5.25 TpSagID

Thisdatatypeisidentical to TpString. It uniquely identifies a Subscription Assignment Group (SAG) of client
applications within an enterprise.

10.5.26 TpSagIDList

This datatype definesaNumbered List of Data Elements of type TpSaglD.

10.5.27 TpSagDescription

Thisdatatypeisidentical to TpString. It describesa SAG: e.g. alist of identifiers of the constituent client
applications, the purpose of the 'grouping'.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 172 ETSITS 129 198-3 V7.1.0 (2007-06)

10.5.28 TpSag

ThisdatatypeisaSequence of Data Elements which describes a Subscription Assignment Group (SAG) of
client applications within an enterprise. It is a structured data type consisting of a unique SAG ID and a description:

Sequence Element Sequence Element
Name Type
SagIb TpSagID
SagDescription TpSagDescription

10.5.29 TpServiceProfilelID

Thisdatatypeisidentical to TpString. It uniquely identifies the service profile, which further constrains how an
enterprise SAG uses an OSA service.

10.5.30 TpServiceProfilelDList

This datatype definesaNumbered List of Data Elements of type TpServiceProfilelD.

10.5.31 TpServiceProfile

ThisdatatypeisaSequence of Data Elements which representsa Service Profile. It isa structured datatype
which consists of:

Sequence Element Sequence Element
Name Type
ServiceProfileID TpServiceProfilelD
ServiceProfileDescription TpServiceProfileDescription

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 173 ETSITS 129 198-3 V7.1.0 (2007-06)

10.5.32 TpServiceProfileDescription

ThisdatatypeisaSequence of Data Elements which describesa Service Profile. A service contract contains
one or more Service Profiles, one for each SAG in the enterprise operator domain. A service profile is arestriction of
the service contract in order to provide restricted service featuresto a SAG. It isastructured data type which consists

of:

Sequence Element

Sequence Element

Name Type
ServiceContractID TpServiceContractlD
ServiceStartDate TpServiceStartDate
ServiceEndDate TpServiceEndDate
ServiceTypeName TpServiceTypeName (See note 1)

ServiceSubscriptionProperti
es

TpServiceSubscriptionProperties

InUse

TpBoolean (See note 2)

ServicelD

TpServicelD (See note 3)

Note 1: When the Framework returns a TpServiceProfileDescription to the enterprise operator, it should
set the ServiceTypeName field to the same value as the corresponding field of the service
contract; When the enterprise operator passes a TpServiceProfileDescription to the
Framework, the Framework should ignore the value sent in the ServiceTypeName field to
ensure interoperability; The enterprise operator should be required to set the
ServiceTypeName field to the correct value when passing a TpServiceProfileDescription to the
Framework.

Note 2: The InUse flag indicates if the profile is currently in use by a service instance and will be
returned in describeServiceProfile(). This flag will be ignored if it is passed in to
createServiceProfile().

Note 3: The ServicelD field is used to restrict a service type-based service contract to a specific
service. When the TpServiceProfileDescription is passed to the Framework by an enterprise
operator, the Framework should ensure that the ServicelD field, if not empty, contains a service
which is of the service type specified in the service contract. If the corresponding contract is for
a service ID then the Framework should ignore this field.

When a TpServiceProfileDescription is returned to the enterprise operator, the contents of this
field will depend on the associated service contract. If the contract is for a service ID, then this
field should be populated with the correct value. If the contract is for a service type, and the
profile is restricted to a specific service ID then this field should be populated with the correct
value. Otherwise, it should contain an empty string.

10.5.33 TpSagProfilePair

This data type is a Sequence of Data Elements which describes a pair of aSAG and a Service Profile. It isa structured
data type which consists of:

Sequence Element Name Sequence Element Type

Sag TpSagID

ServiceProfile

TpServiceProfilelD

10.5.34 TpAddSagMembersConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when client applications are
added to a SAG - see method addSagM embers(). This happens, when a client application is assigned to a service twice.

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is
already assigned to the service. It includes the current service profile. The ConflictGeneratingSagProfilePair describes
another SAG, to which the client application should be added, and the corresponding service profile, through which the
client application is also connected to this service. This creates a conflict, as there may exist only a single service profile
for each service.

The TpAddSagM embersConflict isa structured data type which consists of:

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 174 ETSITS 129 198-3 V7.1.0 (2007-06)

Sequence Element Name Sequence Element Type
ClientApplication TpClientApplD
ConflictGeneratingSagProfilePair TpSagProfilePair
AlreadyAssignedSagProfilePair TpSagProfilePair
Service TpServicelD

10.5.35 TpAddSagMembersConflictList

This datatype definesaNumbered List of Data Elements of type TpAddSagMembersConflict.

10.5.36 TpAssignSagToServiceProfileConflict

This datatypeis a Sequence of Data Elements which describes a conflict that may occur when a SAG isassigned to a
Service Profile - see method assign().

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is
aready assigned to the service.

The TpAssignSagT oServiceProfileConflict is a structured data type which consists of:

Sequence Element Name Sequence Element Type
ClientApplication TpClientApplD
AlreadyAssignedSagProfilePair TpSagProfilePair
Service TpServicelD

10.5.37 TpAssignSagToServiceProfileConflictList

This datatype definesaNumbered List of Data Elements of type TpAssignSagToServiceProfileConflict.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7

175 ETSITS 129 198-3 V7.1.0 (2007-06)

11 Exception Classes

The following are the list of exception classes which are used in thisinterface of the API.

Name

Description

P_ACCESS_DENIED

The client isnot currently authenticated with the framework

P_DUPLICATE PROPERTY NAME

A duplicate property name has been received

P ILLEGAL SERVICE ID

Illegal Service ID

P_ILLEGAL_SERVICE_TYPE

Illegal Service Type

P_INVALID ACCESS_TYPE

The framework does not support the type of access interface requested by the
client.

P INVALID ACTIVITY TEST ID

1D does not correspond to avalid activity test request

P INVALID ADDITION TO SAG

A client application cannot be added to the SAG because this would imply that the
client application has two concurrent service profiles at a particular moment in
time for a particular service.

P_INVALID AGREEMENT_ TEXT

Invalid agreement text

P_INVALID ENCRYPTION CAPABILITY

Invalid encryption capability

P INVALID AUTH TYPE

Invalid type of authentication mechanism

P INVALID CLIENT APP ID

Invalid Client Application ID

P_INVALID DOMAIN_ ID

Invalid client ID

P_INVALID ENT OP_ID

Invalid Enterprise Operator ID

P_INVALID PROPERTY

The framework does not recogni se the property supplied by the client

P_INVALID SAG ID

Invalid Subscription Assignment Group 1D

P INVALID SAG TO SERVICE PROFILE ASSIGNMENT

A SAG cannot be assigned to the service profile because this would imply that a
client application has two concurrent service profiles at a particular moment in
time for a particular service.

P_INVALID SERVICE_CONTRACT_ ID

Invalid Service Contract ID

P_INVALID SERVICE_ID

Invalid service ID

P INVALID SERVICE PROFILE ID

Invalid service profile ID

P_INVALID SERVICE TOKEN

The service token has not been issued, or it has expired.

P_INVALID SERVICE TYPE

Invalid Service Type

P_INVALID SIGNATURE

Invalid digital signature

P_INVALID SIGNING ALGORITHM

Invalid signing algorithm

P_MISSING_MANDATORY_ PROPERTY

Mandatory Property Missing

P_NO_ACCEPTABLE_ENCRYPTION_ CAPABILITY

No encryption mechanism, which is acceptable to the framework, is supported by
the client

P_NO_ACCEPTABLE_AUTHENTICATION_ MECHANISM

No authentication mechanism, which is acceptable to the framework, is supported
by the client

P_NO_ACCEPTABLE_SIGNING_ ALGORITHM

No signing algorithm, which is acceptable to the framework, is supported by the
client

P_PROPERTY_TYPE MISMATCH

Property Type Mismatch

P_SERVICE_ACCESS_DENIED

The client application is not allowed to access this service.

P SERVICE NOT ENABLED

The service ID does not correspond to a service that has been enabled

P_SERVICE_TYPE UNAVAILABLE

The service typeis not available according to the Framework.

P_UNKNOWN_SERVICE_ID

Unknown Service ID

P_UNKNOWN_SERVICE_ TYPE

Unknown Service Type

Each exception class contains the following structure:

Structure Element Name

Structure Element Type

Structure Element Description

ExtraInformation

TpString

Carries extrainformation to help identify the source of the
exception, e.g. a parameter name

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 176 ETSITS 129 198-3 V7.1.0 (2007-06)

Annex A (normative):
OMG IDL Description of Framework

The OMG IDL representation of this interface specification is contained in text files (fw_data.idl, fw_if_access.idl,
fw_if_app.idl, fw_if _service.idl contained in archive 2919803V 7101 DL.ZIP) which accompany the present document.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 177 ETSITS 129 198-3 V7.1.0 (2007-06)

Annex B (informative):
W3C WSDL Description of Framework

The W3C WSDL representation of thisinterface specification is contained in zip file 2919803V 710WSDL.ZIP, which
accompanies the present document.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 178 ETSITS 129 198-3 V7.1.0 (2007-06)

Annex C (informative):
Java™ API Description of the Framework

The Java™ API realisation of thisinterface specification is produced in accordance with the Java™ Realisation rules
defined in Part 1 of this specification series. These rules aim to deliver for Java™, a developer API, provided asa
realisation, supporting aJava™ API that represents the UML specifications. The rules support the production of both
J2SE™ and J2EE™ versions of the API from the common UML specifications.

The J2SE™ representation of thisinterface specification is provided as Java™, contained in archive
2919803V 710J2SE.ZIP that accompanies the present document.

The J2EE™ representation of this interface specification is provided as Java™, contained in archive
2919803V 710J2EE.ZI P that accompanies the present document.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 179 ETSITS 129 198-3 V7.1.0 (2007-06)

Annex D (informative):
Description of the Framework for 3GPP2 cdma2000
networks

This annex isintended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications for cdma2000-based systems. It is an extension of OSA API specifications capabilities to enable
operation in cdma2000 systems environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2
architecture defined in

[1] 3GPP2 P.S0001-B: "Wireless | P Network Standard", Version 1.0, September 2000;

2] 3GPP2 S.R0037-0: "IP Network Architecture Model for cdma2000 Spread Spectrum Systems”,
Version 2.0, May 14, 2002;

[3] 3GPP2 X.S0013: "All-IP Core Network Multimedia Domain”, December 2003.

These requirements are expressed as additions to and/or exclusions from the 3GPP Release 7 specification. The
information given here isto be used by developersin 3GPP2 cdma2000 network architecture to interpret the 3GPP
OSA gpecifications.

D.1 General Exceptions

Theterm UMTS s not applicable for the cdma2000 family of standards. Nevertheless the term UM TS is used in 3GPP
TR 21.905 (Vocabulary for 3GPP Specifications) mostly in the broader sense of "3G Wireless System”. If not stated
otherwise there are no additions or exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

D.2 Specific Exceptions

D.2.1 Clause 1: Scope

There are no additions or exclusions.

D.2.2 Clause 2: References

Normative references on 3GPP TS 23.078 and on 3GPP TS 29.078 are not applicable for cdma2000 systems.

D.2.3 Clause 3: Definitions and abbreviations

There are no additions or exclusions.

D.2.4 Clause 4: Overview of the Framework

There are no additions or exclusions.

D.2.5 Clause 5: The Base Interface Specification

There are no additions or exclusions.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 180 ETSITS 129 198-3 V7.1.0 (2007-06)

D.2.6 Clause 6: Framework Access Session API

There are no additions or exclusions.

D.2.7 Clause 7 Framework-to-Application Sequence Diagrams

There are no additions or exclusions.

D.2.8 Clause 8: Framework-to-Service API

There are no additions or exclusions.

D.2.9 Clause 9: Service Properties

Since CAMEL protocol is not applicable for cdma2000 systems, an SCS shall indicate support for the CAMEL feature
through service properties. For cdma2000 systems the CAMEL service properties shall be disabled (CAMEL shall be
turned aways off in the case of the 3GPP2 networks; e.g.: UserLocationCamel shall be set to false).

D.2.10 Clause 10: Data Definitions

There are no additions. P_USER_LOCATION_CAMELvalue of TpServiceTypeName is not required to be supported
in the 3GPP2 networks.

D.2.11 Clause 11: Exception Classes

There are no additions or exclusions.

D.2.12 Annex A (normative): OMG IDL Description of the
Framework

There are no additions or exclusions.

D.2.13 Annex B (informative): W3C WSDL Description of the
Framework

There are no additions or exclusions.

D.2.14 Annex C (informative): Java™ API Description of the
Framework

There are no additions or exclusions.

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7 181 ETSITS 129 198-3 V7.1.0 (2007-06)

Annex E (informative):
Change history

Change history

Date TSG# |TSG Doc. CR |Rev |Subject/Comment Old New

Jun 2006 |CT_32 |[CP-060205 |0133|-- Remove deprecated items from Trust and Security Management 6.6.1 |7.0.0
interfaces

Jun 2006 |CT_32 |[CP-060205 |0134|-- Remove deprecated items from Integrity Management: Fault and 6.6.1 |7.0.0
Load Management

Sep 2006 |- -- - - Added missing code attachments J2EE and J2SE. 7.0.0 |7.0.1

Dec 2006 |CT_34 ([CP-060721 |0136(1 Remove unintended limitation on the support of regular expressions |7.0.1 [7.1.0
within TpAddressRange

Dec 2006 |CT 34 [CP-060596 [0137]-- Add TpServiceTypeName to include name of Service Broker SCF 7.0.1]7.1.0

ETSI

3GPP TS 29.198-03 version 7.1.0 Release 7

182

ETSI TS 129 198-3 V7.1.0 (2007-06)

History

Document history

V7.1.0

June 2007

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions, symbols and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview of the Framework
	5 The Base Interface Specification
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService
	5.4.1.1 Method setCallback()
	5.4.1.2 Method setCallbackWithSessionID()

	6 Framework Access Session API
	6.1 Sequence Diagrams
	6.1.1 Trust and Security Management Sequence Diagrams
	6.1.1.1 Initial Access
	6.1.1.2 Framework Terminates Access
	6.1.1.3 Application Terminates Access
	6.1.1.4 Non-API level Authentication
	6.1.1.5 API Level Authentication

	6.2 Class Diagrams
	6.3 Interface Classes
	6.3.1 Trust and Security Management Interface Classes
	6.3.1.1 Interface Class IpClientAPILevelAuthentication
	6.3.1.1.1 Method abortAuthentication()
	6.3.1.1.2 Method authenticationSucceeded()
	6.3.1.1.3 Method challenge()

	6.3.1.2 Interface Class IpClientAccess
	6.3.1.2.1 Method terminateAccess()

	6.3.1.3 Interface Class IpInitial
	6.3.1.3.1 Method initiateAuthenticationWithVersion()

	6.3.1.4 Interface Class IpAuthentication
	6.3.1.4.1 Method requestAccess()

	6.3.1.5 Interface Class IpAPILevelAuthentication
	6.3.1.5.1 Method abortAuthentication()
	6.3.1.5.2 Method authenticationSucceeded()
	6.3.1.5.3 Method selectAuthenticationMechanism()
	6.3.1.5.4 Method challenge()

	6.3.1.6 Interface Class IpAccess
	6.3.1.6.1 Method obtainInterface()
	6.3.1.6.2 Method obtainInterfaceWithCallback()
	6.3.1.6.3 Method listInterfaces()
	6.3.1.6.4 Method selectSigningAlgorithm()
	6.3.1.6.5 Method terminateAccess()
	6.3.1.6.6 Method relinquishInterface()

	6.4 State Transition Diagrams
	6.4.1 Trust and Security Management State Transition Diagrams
	6.4.1.1 State Transition Diagrams for IpInitial
	6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication
	6.4.1.2.1 Idle State
	6.4.1.2.2 Authenticating Framework State
	6.4.1.2.3 Framework Authenticated State
	6.4.1.2.4 Authenticating Client State
	6.4.1.2.5 Client Authenticated State
	6.4.1.2.6 Idle State
	6.4.1.2.7 Authenticating Framework State
	6.4.1.2.8 Framework Authenticated State
	6.4.1.2.9 Authenticating Client State
	6.4.1.2.10 Client Authenticated State

	6.4.1.3 State Transition Diagrams for IpAccess
	6.4.1.3.1 Active State

	7 Framework-to-Application API
	7.1 Sequence Diagrams
	7.1.1 Event Notification Sequence Diagrams
	7.1.1.1 Enable Event Notification

	7.1.2 Integrity Management Sequence Diagrams
	7.1.2.1 Load Management: Suspend/resume notification from application
	7.1.2.2 Load Management: Framework queries load statistics
	7.1.2.3 Load Management: Framework callback registration and Application load control
	7.1.2.4 Load Management: Application reports current load condition
	7.1.2.5 Load Management: Application queries load statistics
	7.1.2.6 Load Management: Application callback registration and load control
	7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the application
	7.1.2.8 Fault Management: Framework detects a Service failure
	7.1.2.9 Fault Management: Application requests a Framework activity test

	7.1.3 Service Discovery Sequence Diagrams
	7.1.3.1 Service Discovery

	7.1.4 Service Agreement Management Sequence Diagrams
	7.1.4.1 Service Selection

	7.2 Class Diagrams
	7.3 Interface Classes
	7.3.1 Service Discovery Interface Classes
	7.3.1.1 Interface Class IpServiceDiscovery
	7.3.1.1.1 Method listServiceTypes()
	7.3.1.1.2 Method describeServiceType()
	7.3.1.1.3 Method discoverService()
	7.3.1.1.4 Method listSubscribedServices()

	7.3.2 Service Agreement Management Interface Classes
	7.3.2.1 Interface Class IpAppServiceAgreementManagement
	7.3.2.1.1 Method signServiceAgreement()
	7.3.2.1.2 Method terminateServiceAgreement()

	7.3.2.2 Interface Class IpServiceAgreementManagement
	7.3.2.2.1 Method signServiceAgreement()
	7.3.2.2.2 Method terminateServiceAgreement()
	7.3.2.2.3 Method selectService()
	7.3.2.2.4 Method initiateSignServiceAgreement()

	7.3.3 Integrity Management Interface Classes
	7.3.3.1 Interface Class IpAppFaultManager
	7.3.3.1.1 Method activityTestRes()
	7.3.3.1.2 Method appActivityTestReq()
	7.3.3.1.3 Method <<deprecated>> fwFaultReportInd()
	7.3.3.1.4 Method <<deprecated>> fwFaultRecoveryInd()
	7.3.3.1.5 Method <<deprecated>> fwUnavailableInd()
	7.3.3.1.6 Method activityTestErr()
	7.3.3.1.7 Method appUnavailableInd()
	7.3.3.1.8 Method svcAvailStatusInd()
	7.3.3.1.9 Method generateFaultStatisticsRecordRes()
	7.3.3.1.10 Method generateFaultStatisticsRecordErr()
	7.3.3.1.11 Method generateFaultStatisticsRecordReq()
	7.3.3.1.12 Method fwAvailStatusInd()

	7.3.3.2 Interface Class IpFaultManager
	7.3.3.2.1 Method activityTestReq()
	7.3.3.2.2 Method appActivityTestRes()
	7.3.3.2.3 Method svcUnavailableInd()
	7.3.3.2.4 Method appActivityTestErr()
	7.3.3.2.5 Method appAvailStatusInd()
	7.3.3.2.6 Method generateFaultStatisticsRecordReq()
	7.3.3.2.7 Method generateFaultStatisticsRecordRes()
	7.3.3.2.8 Method generateFaultStatisticsRecordErr()

	7.3.3.3 Interface Class IpAppHeartBeatMgmt
	7.3.3.3.1 Method enableAppHeartBeat()
	7.3.3.3.2 Method disableAppHeartBeat()
	7.3.3.3.3 Method changeInterval()

	7.3.3.4 Interface Class IpAppHeartBeat
	7.3.3.4.1 Method pulse()

	7.3.3.5 Interface Class IpHeartBeatMgmt
	7.3.3.5.1 Method enableHeartBeat()
	7.3.3.5.2 Method disableHeartBeat()
	7.3.3.5.3 Method changeInterval()

	7.3.3.6 Interface Class IpHeartBeat
	7.3.3.6.1 Method pulse()

	7.3.3.7 Interface Class IpAppLoadManager
	7.3.3.7.1 Method loadLevelNotification()
	7.3.3.7.2 Method resumeNotification()
	7.3.3.7.3 Method suspendNotification()
	7.3.3.7.4 Method createLoadLevelNotification()
	7.3.3.7.5 Method destroyLoadLevelNotification()
	7.3.3.7.6 Method queryAppLoadStatsReq()
	7.3.3.7.7 Method queryLoadStatsRes()
	7.3.3.7.8 Method queryLoadStatsErr()

	7.3.3.8 Interface Class IpLoadManager
	7.3.3.8.1 Method reportLoad()
	7.3.3.8.2 Method createLoadLevelNotification()
	7.3.3.8.3 Method destroyLoadLevelNotification()
	7.3.3.8.4 Method resumeNotification()
	7.3.3.8.5 Method suspendNotification()
	7.3.3.8.6 Method queryLoadStatsReq()
	7.3.3.8.7 Method queryAppLoadStatsRes()
	7.3.3.8.8 Method queryAppLoadStatsErr()

	7.3.3.9 Interface Class IpOAM
	7.3.3.9.1 Method systemDateTimeQuery()

	7.3.3.10 Interface Class IpAppOAM
	7.3.3.10.1 Method systemDateTimeQuery()

	7.3.4 Event Notification Interface Classes
	7.3.4.1 Interface Class IpAppEventNotification
	7.3.4.1.1 Method reportNotification()
	7.3.4.1.2 Method notificationTerminated()

	7.3.4.2 Interface Class IpEventNotification
	7.3.4.2.1 Method createNotification()
	7.3.4.2.2 Method destroyNotification()

	7.4 State Transition Diagrams
	7.4.1 Service Discovery State Transition Diagrams
	7.4.1.1 State Transition Diagrams for IpServiceDiscovery
	7.4.1.1.1 Active State

	7.4.2 Service Agreement Management State Transition Diagrams
	7.4.3 Integrity Management State Transition Diagrams
	7.4.3.1 State Transition Diagrams for IpLoadManager
	7.4.3.1.1 Idle State
	7.4.3.1.2 Notification Suspended State
	7.4.3.1.3 Active State

	7.4.3.2 State Transition Diagrams for LoadManagerInternal
	7.4.3.2.1 Normal load State
	7.4.3.2.2 Application Overload State
	7.4.3.2.3 Internal overload State
	7.4.3.2.4 Internal and Application Overload State

	7.4.3.3 State Transition Diagrams for IpOAM
	7.4.3.3.1 Active State

	7.4.3.4 State Transition Diagrams for IpFaultManager
	7.4.3.4.1 Framework Active State
	7.4.3.4.2 Framework Faulty State
	7.4.3.4.3 Framework Activity Test State
	7.4.3.4.4 Service Activity Test State

	7.4.4 Event Notification State Transition Diagrams
	7.4.4.1 State Transition Diagrams for IpEventNotification

	8 Framework-to-Service API
	8.1 Sequence Diagrams
	8.1.1 Service Discovery Sequence Diagrams
	8.1.2 Service Registration Sequence Diagrams
	8.1.2.1 New SCF Sub Type Registration
	8.1.2.2 New SCF Registration

	8.1.3 Service Instance Lifecycle Manager Sequence Diagrams
	8.1.3.1 Sign Service Agreement

	8.1.4 Integrity Management Sequence Diagrams
	8.1.4.1 Load Management: Service callback registration and load control
	8.1.4.2 Load Management: Framework callback registration and service load control
	8.1.4.3 Load Management: Client and Service Load Balancing
	8.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service
	8.1.4.5 Fault Management: Service requests Framework activity test
	8.1.4.6 Fault Management: Service requests Application activity test
	8.1.4.7 Fault Management: Application requests Service activity test
	8.1.4.8 Fault Management: Application detects service is unavailable

	8.1.5 Event Notification Sequence Diagrams

	8.2 Class Diagrams
	8.3 Interface Classes
	8.3.1 Service Registration Interface Classes
	8.3.1.1 Interface Class IpFwServiceRegistration
	8.3.1.1.1 Method registerService()
	8.3.1.1.2 Method announceServiceAvailability()
	8.3.1.1.3 Method unregisterService()
	8.3.1.1.4 Method describeService()
	8.3.1.1.5 Method unannounceService()
	8.3.1.1.6 Method registerServiceSubType()

	8.3.2 Service Instance Lifecycle Manager Interface Classes
	8.3.2.1 Interface Class IpServiceInstanceLifecycleManager
	8.3.2.1.1 Method createServiceManager()
	8.3.2.1.2 Method destroyServiceManager()

	8.3.3 Service Discovery Interface Classes
	8.3.3.1 Interface Class IpFwServiceDiscovery
	8.3.3.1.1 Method listServiceTypes()
	8.3.3.1.2 Method describeServiceType()
	8.3.3.1.3 Method discoverService()
	8.3.3.1.4 Method listRegisteredServices()

	8.3.4 Integrity Management Interface Classes
	8.3.4.1 Interface Class IpFwFaultManager
	8.3.4.1.1 Method activityTestReq()
	8.3.4.1.2 Method svcActivityTestRes()
	8.3.4.1.3 Method appUnavailableInd()
	8.3.4.1.4 Method svcActivityTestErr()
	8.3.4.1.5 Method svcAvailStatusInd()
	8.3.4.1.6 Method generateFaultStatisticsRecordReq()
	8.3.4.1.7 Method generateFaultStatisticsRecordRes()
	8.3.4.1.8 Method generateFaultStatisticsRecordErr()

	8.3.4.2 Interface Class IpSvcFaultManager
	8.3.4.2.1 Method activityTestRes()
	8.3.4.2.2 Method svcActivityTestReq()
	8.3.4.2.3 Method <<deprecated>> fwFaultReportInd()
	8.3.4.2.4 Method <<deprecated>> fwFaultRecoveryInd()
	8.3.4.2.5 Method <<deprecated>> fwUnavailableInd()
	8.3.4.2.6 Method svcUnavailableInd()
	8.3.4.2.7 Method activityTestErr()
	8.3.4.2.8 Method appAvailStatusInd()
	8.3.4.2.9 Method generateFaultStatisticsRecordRes()
	8.3.4.2.10 Method generateFaultStatisticsRecordErr()
	8.3.4.2.11 Method generateFaultStatisticsRecordReq()
	8.3.4.2.12 Method fwAvailStatusInd()

	8.3.4.3 Interface Class IpFwHeartBeatMgmt
	8.3.4.3.1 Method enableHeartBeat()
	8.3.4.3.2 Method disableHeartBeat()
	8.3.4.3.3 Method changeInterval()

	8.3.4.4 Interface Class IpFwHeartBeat
	8.3.4.4.1 Method pulse()

	8.3.4.5 Interface Class IpSvcHeartBeatMgmt
	8.3.4.5.1 Method enableSvcHeartBeat()
	8.3.4.5.2 Method disableSvcHeartBeat()
	8.3.4.5.3 Method changeInterval()

	8.3.4.6 Interface Class IpSvcHeartBeat
	8.3.4.6.1 Method pulse()

	8.3.4.7 Interface Class IpFwLoadManager
	8.3.4.7.1 Method reportLoad()
	8.3.4.7.2 Method createLoadLevelNotification()
	8.3.4.7.3 Method destroyLoadLevelNotification()
	8.3.4.7.4 Method suspendNotification()
	8.3.4.7.5 Method resumeNotification()
	8.3.4.7.6 Method queryLoadStatsReq()
	8.3.4.7.7 Method querySvcLoadStatsRes()
	8.3.4.7.8 Method querySvcLoadStatsErr()

	8.3.4.8 Interface Class IpSvcLoadManager
	8.3.4.8.1 Method loadLevelNotification()
	8.3.4.8.2 Method suspendNotification()
	8.3.4.8.3 Method resumeNotification()
	8.3.4.8.4 Method createLoadLevelNotification()
	8.3.4.8.5 Method destroyLoadLevelNotification()
	8.3.4.8.6 Method querySvcLoadStatsReq()
	8.3.4.8.7 Method queryLoadStatsRes()
	8.3.4.8.8 Method queryLoadStatsErr()

	8.3.4.9 Interface Class IpFwOAM
	8.3.4.9.1 Method systemDateTimeQuery()

	8.3.4.10 Interface Class IpSvcOAM
	8.3.4.10.1 Method systemDateTimeQuery()

	8.3.5 Event Notification Interface Classes
	8.3.5.1 Interface Class IpFwEventNotification
	8.3.5.1.1 Method createNotification()
	8.3.5.1.2 Method destroyNotification()

	8.3.5.2 Interface Class IpSvcEventNotification
	8.3.5.2.1 Method reportNotification()
	8.3.5.2.2 Method notificationTerminated()

	8.4 State Transition Diagrams
	8.4.1 Service Registration State Transition Diagrams
	8.4.1.1 State Transition Diagrams for IpFwServiceRegistration
	8.4.1.1.1 SCF Registered State
	8.4.1.1.2 SCF Announced State

	8.4.2 Service Instance Lifecycle Manager State Transition Diagrams
	8.4.3 Service Discovery State Transition Diagrams
	8.4.4 Integrity Management State Transition Diagrams
	8.4.4.1 State Transition Diagrams for IpFwLoadManager
	8.4.4.1.1 Idle State
	8.4.4.1.2 Notification Suspended State
	8.4.4.1.3 Active State

	8.4.4.2 State Transition Diagrams for IpFwFaultManager
	8.4.4.2.1 Framework Active State
	8.4.4.2.2 Framework Activity Test State
	8.4.4.2.3 Application Activity Test State
	8.4.4.2.4 Framework Faulty State

	8.4.5 Event Notification State Transition Diagrams

	9 Service Properties
	9.1 Service Super and Sub Types
	9.2 Service Property Types
	9.3 General Service Properties
	9.3.1 Service Name
	9.3.2 Service Version
	9.3.3 Service ID
	9.3.4 Service Description
	9.3.5 Product Name
	9.3.6 Product Version
	9.3.7 Void
	9.3.8 Operation Set
	9.3.9 Compatible Service
	9.3.10 Backward Compatibility Level
	9.3.11 Migration Required
	9.3.12 Data Migrated
	9.3.13 Migration Date And Time
	9.3.14 Support for Regular Expressions in Address Range

	10 Data Definitions
	10.1 Common Framework Data Definitions
	10.1.1 TpClientAppID
	10.1.2 TpClientAppIDList
	10.1.3 TpDomainID
	10.1.4 TpDomainIDType
	10.1.5 TpEntOpID
	10.1.6 TpPropertyName
	10.1.7 TpPropertyValue
	10.1.8 TpProperty
	10.1.9 TpPropertyList
	10.1.10 TpEntOpIDList
	10.1.11 TpFwID
	10.1.12 TpService
	10.1.13 TpServiceList
	10.1.14 TpServiceDescription
	10.1.15 TpServiceID
	10.1.16 TpServiceIDList
	10.1.17 TpServiceInstanceID
	10.1.18 TpServiceTypeProperty
	10.1.19 TpServiceTypePropertyList
	10.1.20 TpServiceTypePropertyMode
	10.1.21 TpServicePropertyTypeName
	10.1.22 TpServicePropertyName
	10.1.23 TpServicePropertyNameList
	10.1.24 TpServicePropertyValue
	10.1.25 TpServicePropertyValueList
	10.1.26 TpServiceProperty
	10.1.27 TpServicePropertyList
	10.1.28 TpServiceSupplierID
	10.1.29 TpServiceTypeDescription
	10.1.30 TpServiceTypeName
	10.1.31 TpServiceTypeNameList
	10.1.32 TpSubjectType
	10.1.33 TpServiceTypePropertyValue
	10.1.34 TpServiceTypePropertyValueList

	10.2 Event Notification Data Definitions
	10.2.1 TpFwEventName
	10.2.2 TpFwEventCriteria
	10.2.3 TpFwEventInfo
	10.2.4 TpFwMigrationServiceAvailableInfo
	10.2.5 TpMigrationAdditionalInfo
	10.2.6 TpMigrationAdditionalInfoType
	10.2.7 TpMigrationAdditionalInfoSet
	10.2.8 TpFwAgreementInfo

	10.3 Trust and Security Management Data Definitions
	10.3.1 TpAccessType
	10.3.2 TpAuthType
	10.3.3 Void
	10.3.4 Void
	10.3.5 Void
	10.3.6 TpAuthDomain
	10.3.7 TpInterfaceName
	10.3.8 TpInterfaceNameList
	10.3.9 TpServiceToken
	10.3.10 TpSignatureAndServiceMgr
	10.3.11 TpSigningAlgorithm
	10.3.12 TpSigningAlgorithmCapabilityList
	10.3.13 TpAuthMechanism
	10.3.14 TpAuthMechanismList

	10.4 Integrity Management Data Definitions
	10.4.3 TpFaultStats
	10.4.1 TpActivityTestRes
	10.4.2 TpFaultStatsRecord
	10.4.4 TpFaultStatisticsError
	10.4.5 TpFaultStatsSet
	10.4.6 TpActivityTestID
	10.4.7 TpInterfaceFault
	10.4.8 Void
	10.4.9 TpFwUnavailReason
	10.4.10 TpLoadLevel
	10.4.11 TpLoadThreshold
	10.4.12 TpLoadInitVal
	10.4.13 TpLoadPolicy
	10.4.14 TpLoadStatistic
	10.4.15 TpLoadStatisticList
	10.4.16 TpLoadStatisticData
	10.4.17 TpLoadStatisticEntityID
	10.4.18 TpLoadStatisticEntityType
	10.4.19 TpLoadStatisticInfo
	10.4.20 TpLoadStatisticInfoType
	10.4.21 TpLoadStatisticError
	10.4.22 TpSvcAvailStatusReason
	10.4.23 TpAppAvailStatusReason
	10.4.24 TpLoadTestID
	10.4.25 TpFaultStatsErrorList
	10.4.26 TpFaultReqID
	10.4.27 TpFwAvailStatusReason

	10.5 Service Subscription Data Definitions
	10.5.1 TpPropertyName
	10.5.2 TpPropertyValue
	10.5.3 TpProperty
	10.5.4 TpPropertyList
	10.5.5 TpEntOpProperties
	10.5.6 TpEntOp
	10.5.7 TpServiceContractID
	10.5.8 TpServiceContractIDList
	10.5.9 TpPersonName
	10.5.10 TpPostalAddress
	10.5.11 TpTelephoneNumber
	10.5.12 TpEmail
	10.5.13 TpHomePage
	10.5.14 TpPersonProperties
	10.5.15 TpPerson
	10.5.16 TpServiceStartDate
	10.5.17 TpServiceEndDate
	10.5.18 TpServiceRequestor
	10.5.19 TpBillingContact
	10.5.20 TpServiceSubscriptionProperties
	10.5.21 TpServiceContract
	10.5.22 TpServiceContractDescription
	10.5.23 TpClientAppProperties
	10.5.24 TpClientAppDescription
	10.5.25 TpSagID
	10.5.26 TpSagIDList
	10.5.27 TpSagDescription
	10.5.28 TpSag
	10.5.29 TpServiceProfileID
	10.5.30 TpServiceProfileIDList
	10.5.31 TpServiceProfile
	10.5.32 TpServiceProfileDescription
	10.5.33 TpSagProfilePair
	10.5.34 TpAddSagMembersConflict
	10.5.35 TpAddSagMembersConflictList
	10.5.36 TpAssignSagToServiceProfileConflict
	10.5.37 TpAssignSagToServiceProfileConflictList

	11 Exception Classes
	Annex A (normative): OMG IDL Description of Framework
	Annex B (informative): W3C WSDL Description of Framework
	Annex C (informative): JavaŽ API Description of the Framework
	Annex D (informative): Description of the Framework for 3GPP2 cdma2000 networks
	D.1 General Exceptions
	D.2 Specific Exceptions
	D.2.1 Clause 1: Scope
	D.2.2 Clause 2: References
	D.2.3 Clause 3: Definitions and abbreviations
	D.2.4 Clause 4: Overview of the Framework
	D.2.5 Clause 5: The Base Interface Specification
	D.2.6 Clause 6: Framework Access Session API
	D.2.7 Clause 7 Framework-to-Application Sequence Diagrams
	D.2.8 Clause 8: Framework-to-Service API
	D.2.9 Clause 9: Service Properties
	D.2.10 Clause 10: Data Definitions
	D.2.11 Clause 11: Exception Classes
	D.2.12 Annex A (normative): OMG IDL Description of the Framework
	D.2.13 Annex B (informative): W3C WSDL Description of the Framework
	D.2.14 Annex C (informative): JavaŽ API Description of the Framework

	Annex E (informative): Change history
	History

