ETS| TS 129 198-4-3 V8.0.0 (2009-01)

Technical Specification

Universal Mobile Telecommunications System (UMTS);
LTE;

Open Service Access (OSA)

Application Programming Interface (API);

Part 4: Call control;

Subpart 3: Multi-party call control

Service Capability Feature (SCF)

(B3GPP TS 29.198-04-3 version 8.0.0 Release 8)

p
g e Lte

—

D

3GPP TS 29.198-04-3 version 8.0.0 Release 8 1 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Reference
RTS/TSGC-0029198-04-3v800

Keywords
LTE, UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2009.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™, TIPHON™, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered
for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered
for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3GPP TS 29.198-04-3 version 8.0.0 Release 8 2 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETS! identities can be found under
http://webapp.etsi.org/key/queryform.asp.

ETSI

http://webapp.etsi.org/IPR/home.asp
http://webapp.etsi.org/key/queryform.asp

3GPP TS 29.198-04-3 version 8.0.0 Release 8 3 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Contents

INtellectual Property RIGNES.... ..ottt b e b b nenn e 2
0 Yo (o SRS 2
0= 11 o OSSR 7
gLl [N o1 o] o [OOSR 7
1 o0 0TSPTSRO 9
2 REFEIBINCES ...ttt b ettt e et et e st e st e bt e bt e bt et e se e ae st e se e st e bt ebeebeneenbenteneas 9
3 Definitions and @DBreVIatiONS...........coueieieiriisese e ettt 10
31 D= T T (o) 13RS 10
3.2 F Y o] 1= V7= 0] 1 R 10
4 MultiParty Call Control Service SequenCe DIagrams..........ccoceerirererinieseseseeeee e 10
4.1 Application INItIAEA Call SEEUD.....cviiieeieciee et e e s e sae e sreesaeeseenteenseeneesseesreas 10
4.2 (0= I Y= 1 0 2SS 12
4.3 Call Forwarding ON BUSY SENVICEeeciieiicece ettt e st e e e te s e e saeesseesseenseensesseeenaenseensenn 13
4.4 Call INfOrmMation COlECE SEIVICE.cueeierieiteste ettt et sb et ae e b et sbe b e sneenee e annas 15
45 COMPIEX CBIU SEIVICE....eotieiieie et ce st e e e st e sae e sttt e ese e e st e e se e teenteestesseesaeesseesseesseenseenseentenseesneesseessens 18
4.6 HOU NG SEIVICE.. .ttt ettt ettt ettt et e te s b e bt s st eae e e e e e eeseeebeseeebeemeenseneeaseseesneeneeneanseseens 21
47 Network Controlled NOfICATONScovieieie ettt se s e ene e e eneees 24
48 USe Of the REAITECIEA BVENL.........eiieecee ettt ae et e e e e e neeseesbesaesseeneeneeneens 25
5 ClaSS DIBOIAIMS. ...ttt s bt e b e e e e st h e e bt e bt eb e b e e e e s e s e e e e e s e e st nbeanenbennennennan 25
6 MultiParty Call Control Service Interface Classes.........coeeiiieeiiiice et 27
6.1 Interface Class IpMultiPartyCall CONtrOIM@aNagEYcocueeierieiee e et ete e e e sae e ee e ee e s 27
6.1.1 [E= g oo e 1= O | 28
6.1.2 Method CreateNOLITiCaIION()... .. .cevereeeetereee ettt bbbt b 28
6.1.3 Method destroyNOLIFICATON()veverereeeeiereeete bbb ettt b e 30
6.1.4 Method changeNOLI FICAHTON()evererieeete ettt b e e 30
6.1.5 Method SetCallLOBACONTION()eveueererieeeie sttt st eb e 30
6.1.6 Method enabl ENOLIFICAONS()cveveuerteieiere bbb sb e 31
6.1.7 Method diSabl ENOLIFICATONS()veeeverreeeiesiereee bbbt 32
6.1.8 Method gEtNEXINOLITICALTON() ...oiveieiee et et e s e et e e te e teeteennesnnennes 32
6.2 Interface Class |pAppMultiPartyCall CONtrolMaNaQEYouverieereeiierie e seeseeseeete e e se e e eae e seesneesnes 33
6.2.1 VK= g loTo =" ool d\\ Lo (] o= i o] ol S 33
6.2.2 V=1 To o AN oo T = [T 35
6.2.3 Method mManager I NEENTUPLEA() .. .o veerreereeee e sae et e re e s et e e be e e e nteeneesneesnes 35
6.24 Method MaNAgErRESUMEA()eeerertereeterieeeie sttt sttt b e et bbbt b b 35
6.2.5 Method callOVerl Oa0ENCOUNEEIEA()......c.eevereeiertereeieste ettt 35
6.2.6 Method CallOVErTOa0CEBSEU()evevereeeeieiteeete ettt ettt bt sb e 35
6.2.7 Method aDOrtMUIIPIECAIIS()eoveeeeerieeeie ettt 36
6.3 Interface Class IPMUITIPAIYCElcociiiriiiiee bbb 36
6.3.1 L= (oo o = (@ = T OO OSSPSR PSSP 37
6.3.2 [V E= g oo e i1 O | L=) 37
6.3.3 Method createANAROULECEIILEGREG() «...vverveerrerieireriesteesieesesieseeseeseesteesseeaesseesseesseenteesseeseesnsesnessneesnns 38
6.34 MELNOO FEIEASE()veveetie ettt sttt ettt e e et e e et e saee s aeesaeesaeeseenseaneeeseesseesteesseeseenseeneenneennes 39
6.3.5 VTS g leTe e o= ST [I PSR 39
6.3.6 VK= g oo la T {1 e] o) S 39
6.3.7 = g oo s = (O o T ST 40
6.3.8 Method SEEAAVICEOFCNAITGE() ..o eevereereeteriee ettt sttt b ettt b e bbb 40
6.3.9 MELNOA SUPEIVISEREG() -+ veueeverteeetertereete sttt sttt sttt sttt b e it be bbb e bt b se bt b e ne et be e et st e st 41
6.4 Interface Class IPAPPMUILIPAITYCEIcooiiiiieiiiee e 41
6.4.1 MELNOA GELINFORES()cve vttt bbbt b et b e et bbb et 42
6.4.2 T (g leTo o 7= ([o1 o =17 ¢ T OSSPSR USSP 42
6.4.3 MEthOO SUPEIVISERES()veeuveieierieesieeiee st et ete et e st e s te et e e e e teestesseesaeesaeesaeesseenseesseeseeasensteeseentennsenneesnnesnes 42

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 4 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

6.4.4
6.4.5
6.4.6
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12
6.5.13
6.5.14
6.5.15
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7
6.6.8
6.6.9
6.6.10
6.6.11
6.6.12

7
7.1
711
712
7.13
7.2
721
722
7.2.3
724
7.3
731
7311
7312
7313
7314
7.3.15
732
7321
7322
7323
7324

8
8.1
8.2

9
9.1
9.2

V= g oo ST o= AV) S 42
Y=ol o= g o (= [OSSPSR 43
Method createANAROULECEIILEGEIT()......veiieireeieeieeieseeseesieesiestesee s e se e st e eaeeaeeraessaesteesseesseeneeeneesneesnes 43
INtErface ClasS IPCAIILEG......cuiieeciesiee ettt et e st e s e e saeesaeesbeenteessessaesseesseesseeseensenneennns 43
V= g oo o TU (o) S 44
Method eVENTREPOIREG() +v.vveereerreerieereerieeie st e st e e e st e et eetesreesteeste e teeseeaseesseesreesseenseenseeseeseenseeneesneesnns 45
MELNOO FEIEBSE() ... ettt ettt b e et b e et b et b e et b e s e et b b et b b 45
MEthOd GELINFOREG() +..vvevereeeeete ettt ettt b e et b et b e et b et b e 46
Y=o I = (O SRS 46
Method attaChMEdIAREG()e.veverreeereriereeie ettt b e bbbt sb e n et 46
Method detaChMEdIAREG()veveivereeierieiee ettt sttt sa s s besaesesbesaesesbesaenensessenens 47
Method getCurrentDestiNati ONAAUAIESS()ccvieeeriesieiee e eeee e se e e e e s e e e teenteeeeeneesneesnes 47
Method CONLINUEPTOCESSING() «..veivverreeieerieriieiee et se e s e e e e testeseesreesreesaeeseenaeeseesseesseenteeseenseensesnsesnnesnes 47

= g oo s = (O o T T 48
Method SEtAAVICEOTCNAITE() ... e v eerreerieeeeieeee sttt et e e s e e s e e saeete e e e eseesreasse e te e seeteensesneesnnesnes 48
MEthOd SUPEIVISEREM() - +vvveerreererrreesrersieesieesieesteeeesteesseesseeteestesssessessseesaeesseeseanseasseasenssenssesssenssennsesnsssnessnes 48
V= 1 oTe 0 o= T o S 49
MELhOO GEIPrOPEITIES()veveueete ettt sttt b et b e et b ne et b e bbb 49
MELNOO SEEPrOPEITIES()ccverveeeete ettt ettt et b et b e et b et b et s e e b e e et b b et nb e n s 50
INterface Class IPAPPCAIILEGoieirieirtee ettt bbbttt b et eb b ens 50
Method EVENtREPOIMRES()eivereeieiteieeie ettt b e b se et b e bt eb e e 51
Method EVENTREPOIETT().....ccveieeeeeeieeeete ettt b et b e b et bbb n e 51
Method attaChM EJIARES().....c.vcveiiereeriiiereee ettt ste ettt te e s be st se s be e esesbe e esesbesaesestesaeseesensenens 52
Method attaChIMEAIAETT()eeiveecieeie ettt et e e e sae e te e te et e esaessaeste e seeseenseeneesnnennns 52
Method detaChM EAIARES()ceveiveeeierieee et sttt et ettt e e ebe b e es 52

[V T= g loTo e = o LY=o =t TP 52

[V T= g oo e {0 o 53

VK= 1o To e T o] =t S 53
V=1 0o o TU (o 53
MELNOO SUPEIVISERES()veueetiiteeeteste ettt st b et b et b e et bese et b e e et st s e 53
MELNOO SUPEIVISEEIT() ...ttt sttt sttt b et b et b e b et b e et bbb st 54
MeEthOd CaIILEGENGEU() -....eveueeeereeieete ettt sttt s b e et b et b 54
MultiParty Call Control Service State Transition DiagramsS.........cceeceveeeeneseeseseeeeseseeseeseeseeseeeeens 54
State Transition Diagrams for [pM ultiPartyCall ControlManagerccveveeverieiee e ese e 54
AACTIVE SEBLE. ...ttt ekt b e h e st et e e bt s et eh e e bt eh e e he e e e a b e se ekt eb e eh e et e e e b e eb e eReeneene e e enne e 55

LS U100 RS (T 55
Overview Of alloWed MELNOUSooiiiee et e sb e 55
State Transition Diagrams for IPMUItiPartyCallccoeoeeiiei e 56
LS S 56

F N O I AV RS - (TS 57
RELEASED SEALE.....c..eii e cie ettt ettt e st e e s e e et e e s a b e e eateesateesnseesateesnseenseeesnaeesneeesnneennren 57
Overview Of alloWEd MELNOSooiieee e et eesa e e eneas 57
State Transition Diagrams fOr IPCAIILEGcoeiierieiieiee bbb 57
(O 4T Nqr= 1T g0 K021 = o PSR 58
L= 1T g0 = = SRS 59

F N 0 S 1 00 RS = =P 61
ACTIVE SEBEE.. ...ttt bttt bbbt bt e a e e e b e be s et bt e Rt e R e et et e e R e e bt e Rt e r e e e e e 62

LR e Lo o [= SR 64
Overview of allowed methods, Originating Call Leg STDcccoevievieieeie e 65
TerMINGLING Call LEG....ueeeiiitiieeiieieee ettt bbbt bbbt b e 66
[dle (LErMINGLING) SEALE ... ecveieieeeeiteeet ettt b et b et b et b nn e 67
ACHIVE (TErMINGLING) SEALEceeeiitiieeierie ettt sttt b et b e et eb e et b sn e 68
Releasing (terminating) SEALE........c..ciiirieiie ettt b e b e e eb e sa e eb e b snenea 71
Overview of allowed methods and trigger events, Terminating Call Leg STDccccvvveerinecnienene, 72
Multi-Party Call CoNntrol ServiCe PrOPEIMIEScooiieee ettt eee st sneeneeneeas 73
LiSt Of SEIVICE PrOPEITIES ... eciiceeeiee ettt sttt ettt et e st e st e s e s aeesaeeteenteaneeeseessaesseesseenseensenneennns 73
Service Property values for the CAMEL Service ENVIrONMENL.cccoccveieeiieveese e e 75
Multi-Party Call Control Data DefiNitioNS..........c.coiieeiiiieesi et ereas 77
Event Notification Data DefiNitiONS..........cccoiiiiiiiieeee ettt sre e e e neens 77
Multi-Party Call Control Data DefiNitioNS.........ccciirieiiiieirieree e 77

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 5 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

9.21 FoT0r: 1= TSSOSO USSP PRSP 77
9.2.2 IPCAIILEGRES ...ttt bbb e R e R et b et 77
9.2.3 L1070 1 1 I o S 77
9.24 L0 AN o] L= L= R 77
9.25 IPMUITIPAITYCEILooeeeeiiietet bbbt b et ne et b et e n e 77
9.2.6 IPMUILIPAITYCEITRES ...ttt bbbt en e 78
9.27 IPAPPMUITIPAITYCEcveeeiiitieeeete bbbt b e b et b e et et n e 78
9.28 IPAPPMUITIPAIYCEIIRES ...t b et b e e 78
9.29 IPMUlti PartyCall CONtIOIMBNAGES ..ottt sttt b e et b e 78
9.2.10 IpMulti PartyCall ControlManagerRES ..o 78
9211 IPAPPM Ulti PartyCal | CONtrOIMBNAGESc.ccuiiiieeeiitereeit ettt ettt st sb e 78
9.2.12 IpAppMultiPartyCall ControlManagerRESooeiiieecece s 78
9.2.13 TPAPPCAILEGREISELooee ettt ettt e e et e st e saeesaeesaeeseenteenteeneeeneesraennens 78
9.2.14 TPMUItIPartyCalllAENEFIEN ...t 78
9.2.15 TPAPPMUILIPArtYCallBACKcccvieieee ettt st e te e e e s neentesnaesnaesnaennens 78
9.2.16 TPAPPMUItI PartyCal | BaCKREI TYPE.....cceeieeeciieie ettt ettt st ste e e e e sneesnaeeraesraenneas 79
9.2.17 TPAPPCAILEGCAIBACKcveeiieeiciecteesties ettt s sttt e s et e st et e teestessaesaeesneenseenseenseensessensseessens 79
9.2.18 TPMUItiPartyCal llAentifierSELcoueieireiee bbb 79
9.2.19 QLI o102 Y o] o] [oo TSSOSO TSP TSRO 79
9.2.20 TP A LA PP NTOT Y. ..ttt b bbbt bbbt bbb e st b et b et e 80
9221 TPCAITAPPINTOSEL......ceeeeeeeteree ettt bbbt b et b bt a s b et b e n et e b b 80
9.2.22 TPCAIEVENTREGUESE ..ottt bbbt bt b et b et 80
9.2.23 TPCAIEVENTREQUESISELceeeeeiitiiet itttk b bbb et b et b e e e 80
9.2.24 QLI L LN o 1 oSS 8l
9.2.25 TPAAditiONAl CallEVENTCTITEIIA.eteeieeie et e et e e sre e steenaeenseenseenaesneesreesnens 83
9.2.26 LI L LY=o 4 o (SRS 83
9.2.27 TPCalAAItIONAIEVENIINTO ...t s esre e nreenee e nteenaesreesraesneas 84
9.2.28 TPCaINOLIfiCATONREGUESLeeveeieeieeie ettt ree et et e e e sseessaesreesseetesnaesseesseesseenseenseensessenssaesses 84
9.2.29 TPCAINOLfICAIONSCOPEveveeteeieeieete et e st e sttt et e s e s e et e e sstessaesseesreesseeneesseesneesseenseenseansensenssanssens 84
9.2.30 TPCAINOLTICALIONINTOveeeeieiei bbbt b et b e e 85
9.2.31 TPCallNOLifiCati ONREPOITSCOPEc.viueeeirtieeterte ettt sb et b et b bbbt b b st b e 85
9.2.32 TPNOLIfi CAIONREQUESLED ...ttt bbb et b et b e 85
9.2.33 TPNOLIfi CAtIONREQUESIEASELccveeieeetirtee ettt bbbttt bt b e 85
9.2.34 TPREIEASECALSE.ttt ettt ettt s bbb h b h b h £ b e e h b e b e bt b e b e e e Rt e b e e he bbb b 85
9.2.35 TPREIEASECAUSESEL.cceeeeeeetieie ettt sttt te et e st e s e e s te e te et e eseesse e te e teentesseesseesseesseenseanseenseensesnennnanssens 86
9.2.36 QLI O L I=o o = TS 86
9.2.37 TPCAILEGIABNITIEISEL ..ottt nn e 86
9.2.38 TPCallLegAttaChMECNANISIM......c..iiece et e s teeteeneesaeeeneeenaesreessaeseens 86
9.2.39 TPCallLegCoNNECtiONPIOPEITIES.......cc.veieeiteesieiestesee st e seeste e teeste et e s e e steetessaesseesreesseenseenseanaessenssanssens 86
9.2.40 LI 0O L I=o g e oo o USSR 87
9.241 TP Al LG NI OT YR .ttt bbbt bbbttt b st b et b e et 87
9.2.42 TPCall LEgSUPEIVISETTEAIMENT ..ottt b et b e bt b et b st ebe st b e 87
9.2.43 TpCallHighProbabilityCOMPIELION.c.ciuiieiriieree bbb 87
9.244 TPNOLifi CatiONREQUESLEASELENTIYeeueitiietirtieetertee ettt bbbt b e e 88
9.2.45 TPCAITIEISAL ...ttt b et bbb b £ s b £ b b e b b e e e bt b e e e Rt e b b ne b et b ne e 88
9.2.46 LI €102 g 11 SO PSPPSR TSRO 88
9.2.47 LI 0 = o USSR 88
9.2.48 TPCATIErSElECHONFIEI. ..o et e see e e sre e s seenteenteenaeenaesneesneas 88
9.2.49 TPCAlLEGPIOPEITYNGIIE.cceiceieceeeeteetee et e e rte et este e be e e estesseesse e seeteentesneeenseenseensensensseessens 89
9.2.50 TPCallLegPrOPertyNAMELISE.cciieieseeee ettt te s et e st e teetesneessaeenseenaessaesseesnens 89
9.251 O LT I=o o o= o YA L= USSR 89
9.2.52 QLI O Lo o o= o USSR 89
9.2.53 TPC A LEGPIOPEITYLISE . .c.eceeeieeeet ettt bbbt b bbb 89
Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF...........ccccenee.. 20
Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF 91
Annex C (informative): Java API Description of the Call Control SCFs..........ccoovveieieiiinencnee, 92

Annex D (informative): Description of Call Control Sub-part 3: Multi-party call control SCF

for 3GPP2 cdmMaZ000 NEEWOTKS.......coieieeeeeeeeeee e eeeeeeeeeee e e e s e eeeeeereeesereeaanaees 93

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 6 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

D.1 GENEral EXCEPLIONS......ccueeitiiiiciiitieee st te sttt s e s teeste st e e e s tesaeesbesteentesaeeseeteaseesesseensestesteenaensesseensesseens 93
D.2 SPECITIC EXCEPLIONS.....c.ueeiiiiectecti ettt ettt e st e st e st e e be s beeae e besaeetesbeensestesteensentesreensenneens 93
D.21 ClAUSE L2 SCOPE ...ttt sttt ettt ettt sttt st ie b st ae bt s e ekt e b e seehe e b e s e e Rt eh e s e e bt eb e s e e bt e b e a e e Rt e b e e e Rt e b e s e e neebene e st ebenbe e eb e e b e e e 93
D.2.2 ClalSE 2: REFEIEINCES ..o ettt ettt sttt e e e st e e et e teseeebesaeese e e eseseesaesseeneeneeneeneas 93
D.23 Clause 3: Definitions and abreVialionS...........coooiiiieeieee et se e tesresre e eneeeeneas 93
D.24 Clause 4: MultiParty Call Control Service Sequence DiagramsSc..cceeereierereeesieseee e 93
D.25 ClauSe 5: ClaSS DIBGIAIMS.c.eiuiieuirierietestereete ettt sttt sttt et ebe s e et b e b et be s e et ebesb et eb e s e e st ebe st e st ebesbe e sbenreneees 93
D.2.6 Clause 6: MultiParty Call Control Service Interface ClaSSeS.......occviiiieieeiie e 94
D.2.7 Clause 7: MultiParty Call Control Service State Transition DiagramsS..........ccevceevveveeeeesieeseeneeeeeee e e 94
D.2.8 Clause 8: Multi-Party Call Control Service Properties..........ccveueeirieesieieesiessesieeseeseeesteesae e sseesseesaesseessens 94
D.2.9 Clause 9: Multi-Party Call Control Data DefiNItiONSc.ccieiieiieie e e e e 94
D.2.10 Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF...........ccccvevevvevvvceeceeseeiee 94
D.211 Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF...........ccccooevviinennienieenn 94
D.2.12 Annex C (informative): Java™ API Description of the Multi-Party Call Control SCF............ccccoceveinenienenn 94
Annex E (informative): ChangE NiStOrY ..ot e s 95
[TS 0] YRS 97

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 7 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Foreword
This Technical Specification has been produced by the 3" Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z
where:
x thefirst digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.

y the second digit isincremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z thethird digit isincremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part 4, sub-part 3 of a multi-part TS covering the 3 Generation Partnership Project: Technical
Specification Group Core Network and Terminals, Open Service Access (OSA); Application Programming Interface
(API), asidentified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1: "Overview";

Part 2: "Common Data Definitions";
Part 3: "Framework";

Part 4. " Call Contral";

Sub-part 1: "Call Control Common Definitions*;
Sub-part 2: "Generic Call Control SCF";
Sub-part 3: " Multi-Party Call Control SCF";
Sub-part 4: "Multi-Media Call Control SCF";
Sub-part 5: "Conference Call Control SCF";

Part 5: "User Interaction SCF";

Part 6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part 9: "Generic Messaging SCF"; (not part of 3GPP Release 8)
Part 10: "Connectivity Manager SCF"; (new in 3GPP Release 8)
Part 11: " Account Management SCF";

Part 12: "Charging SCF".

Part 13: "Policy Management SCF";

Part 14: "Presence and Availability Management SCF";

Part 15: "Multi Media Messaging SCF";

Part 16: "Service Broker SCF".

The M apping specification of the OSA APIsand network protocols (3GPP TR 29.998) is al so structured as above.
A mapping to network protocolsis however not applicable for al Parts, but the numbering of Partsis kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 8 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

OSA API specifications 29.198-family OSA API Mapping - 29.998-family
29.198-01 | Overview 29.998-01 Overview
29.198-02 | Common Data Definitions 29.998-02 Not Applicable
29.198-03 | Framework 29.998-03 Not Applicable
Call 29.198- 29.198- | 29.198- 29.198- 29.998-04-1 Generic Call Control — CAP mapping
Control 04-1 04-2 04-3 04-4 29.998-04-2 Generic Call Control — INAP mapping
(Co) Common | Generic | Multi- Multi- 29.998-04-3 Generic Call Control — Megaco mapping
SCF CCdata | CCSCF | Party CC | mediaCC [29.998-04-4 | Multiparty Call Control — ISC mapping

definitions SCF SCF

29.198-05 | User Interaction SCF 29.998-05-1 User Interaction — CAP mapping

29.998-05-2 User Interaction — INAP mapping

29.998-05-3 User Interaction — Megaco mapping

29.998-05-4 User Interaction — SM'S mapping

29.198-06 | Mobility SCF 29.998-06 User Status and User Location — MAP mapping
29.198-07 | Termina Capabilities SCF 29.998-07 Not Applicable

29.198-08 | Data Session Control SCF 29.998-08 Data Session Control — CAP mapping
29.198-09 | Generic Messaging SCF 29.998-09 Not Applicable

29.198-10 | Connectivity Manager SCF 29.998-10 Not Applicable

29.198-11 | Account Management SCF 29.998-11 Not Applicable

29.198-12 | Charging SCF 29.998-12 Not Applicable

29.198-13 | Policy Management SCF 29.998-13 Not Applicable

29.198-14 | Presence & Availability Management SCF 29.998-14 Not Applicable

29.198-15 | Multi Media Messaging SCF 29.998-15 Not Applicable

29.198-16 | Service Broker SCF 29.998-16 Not Applicable

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 9 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

1 Scope

The present document is Part 4, Sub-Part 3 of the Stage 3 specification for an Application Programming Interface (API)
for Open Service Access (OSA).

The OSA specifications define an architecture that enables application devel opers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA are
contained in 3GPP TS 23.198 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Multi-Party Call Control Service Capability Feature (SCF) aspects of the interface.
All aspects of the Multi-Party Call Control SCF are defined here, these being:

e Sequence Diagrams

e C(ClassDiagrams

o Interface specification plus detailed method descriptions
e State Transition diagrams

e Datadefinitions

e |IDL Description of the interfaces

e WSDL Description of the interfaces

o Referenceto the Java™ API description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CT WG5, ETSI TISPAN and the Parlay Group, in co-
operation with a number of JAIN™ Community member companies.

Maintenance of up to 3GPP Rel-8 and new OSA Stage 1, 2 and 3 work beyond Rel-9 was moved to OMA in June 2008.

2 References

The following documents contain provisions which, through reference in thistext, constitute provisions of the present
document.

o References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

o For aspecific reference, subsequent revisions do not apply.
e For anon-specific reference, the latest version applies. In the case of areference to a 3GPP document (including

aGSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TS 29.198-01: "Open Service Access (OSA) Application Programming Interface (API);
Part 1: Overview".

[2] 3GPP TS 22.127: " Service Requirement for the Open Services Access (OSA); Stage 1".

[3] 3GPP TS 23.198: "Open Service Access (OSA); Stage 2".

[4] 3GPP TS 22.002: "Circuit Bearer Services (BS) supported by a Public Land Mobile Network
(PLMN)".

[5] SO 4217 (1995): "Codes for the representation of currencies and funds .

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 10 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

[6] 3GPP TS 24.002: "GSM-UMTS Public Land Mobile Network (PLMN) Access Reference
Configuration”.
[7] 3GPP TS 22.003: "Circuit Teleservices supported by a Public Land Maobile Network (PLMN)".
[8] ITU-T Q.763: "Signalling System No. 7 - ISDN user part formats and codes".
[9] ,SNSI T1.113: "Signaling System No. 7 (SS7) - Integrated Services Digital Network (ISDN) User
art”.
3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions givenin TS 29.198-1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 MultiParty Call Control Service Sequence Diagrams

The Multi-Party Call Control API of 3GPP Rel4 relies on the CAMEL Service Environment (CSE). It should be noted
that a number of restrictions exist because CAMEL phase 3 supports only two-party calls and no leg based operations.
Furthermore application initiated calls are not supported in CAMEL phase 3. The detailed description of the supported
methodsis given in the chapter 8.

4.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, acall is
created first. Then party A'scall leg is created before events are requested on it for answer and then routed to the call.
On answer from Party A, an announcement is played indicating that the call is being set up to party B. While the
announcement is being played, party B's call legis created and then events are requested on it for answer. On answer
from Party B the announcement is cancelled and party B is routed to the call.

The service may as avariation be extended to include 3 parties (or more). After the two party call is established, the
application can create a new leg and request to route it to a new destination address in order to establish a 3 party call.

The event that causes this to happen could for example be the report of answer event from B-party or controlled by the
A-party by entering a service code (mid-call event).

The procedure for call setup to party C is exactly the same as for the set up of the connection to party B (sequence 13 to
17 in the sequence diagram).

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 11 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

: (Logical o AppPartyA : AppPartyB : L - - PartyA: PartyB : - :IpUICall
View::IpAppLogic] IpAppMultiPartyCall | | (IpAppMultiPartyCallLeg) | |(IpAppMultiPartyCallLeg) | | IpAppUICall | |IpMultiPartyCallControlManager| | IpMultiPartyCall || IpCallLeg || IpCaliLeg ||IpUlManager
I L new) | I I I I I

|

2: createCall()

g

19: deassigpCall()

I I I I
| | | I I I I
| | | | I I I I
; ; " I I I I
| | | | 3: new() | | | |
I I I I >Q I I I I
I I I I I I I I
U I I | I T I I I I I
‘ ‘ | 4: setCallback() | | | | | ! !
H | | | | | U I I I |
I I e I I | I I I I
| | | 5: createCajlLeg() | | | | | | |
6:
| [[[| rend I I I
I I I I I I I I
I I I I I I I I I
e ! ! 7 ‘ev tReportReq() ! ! ! ! ! ‘ ‘
L Il Il Il Il Il Il L | I I
u | | | | | | 1 | | |
| | b outeReg() ! ! ! ! ! ! !
L Il Il Il Il Il Il L | I I
u I I I I I I 1 I I I
| | | | 9: eventReportRes () | | | [| !
I I 1] [[[[I I I
I I [I | I I I I I
| | | | 10: reale).HCall() | | | | | |
H | | | | | | | | 0 |
| | | | 11: sendinfoReq(] | | | | |
T T T T T [T T 1 0
| | | | | 12: sendinfores() | ! ! !
7 | | | t t t t
| | ! 13: createCdliLeg() Lrl\ ! ! ! ! ! u
L } ' + b + | [!
14;
| | | | | il E] !
: : : 15: EvEnIREpDrIREq(:) : :
I | | | I ﬂ I
! ! ! 16: routeReq() ! ! ! !
L Il Il Il | h |
I I I I I I
: : ! 1 17 A‘ ntReportRes () ! :
I I E] I I I
I I I | I
| | | 18 abortActionRed() |
| | | |
I I I I
I I I
I I I
[[I
I I I
I I I
I I I
I I I

e s [e N s Y

1. Thismessageis used to create an object implementing the IpAppMultiPartyCall interface.

2: This message requests the object implementing the I pMulti PartyCall ControlManager interface to create an object
implementing the IpMultiPartyCall interface.

3: Assuming that the criteriafor creating an object implementing the IpMultiPartyCall interface (e.g. load control
values not exceeded) is met it is created.

4. Once the object implementing the IpMultiPartyCall interfaceis created it is used to pass the reference of the object
implementing the IpAppM ultiPartyCall interface as the callback reference to the object implementing the
IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in the
createCall.

5: This message instructs the object implementing the IpMulti PartyCall interface to create a call leg for customer A.

6: Assuming that the criteriafor creating an object implementing the IpCallLeg interface is met, message 6 is used to
create it.

7: This message requests the call leg for customer A to inform the application when the call leg answers the call.
8: Thecall isthen routed to the originating call leg.

9: Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

10: A UICall object is created and associated with the just created call leg.
11: This message is used to inform party A that the call is being routed to party B.

12: Anindication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded
via another message (not shown) to the object implementing the IpAppLogic interface.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 12 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

13: This message i nstructs the object implementing the IpMultiPartyCall interface to create acall leg for customer B.
14: Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is created.
15: This message requests the call leg for customer B to inform the application when the call leg answers the call.
16: The call is then routed to the call leg.

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to party
A.

19: The application deassigns the call. Thiswill also deassign the associated user interaction.

4.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code.
The code isrejected and the call is cleared.

(15: release()

: (Logical = = = : IpMultiPartyCallControlManager o o : IpUICall
View:IpAppL... IpAppMultiPartyCallControlManager IpAppMultiPartyCall IpAppUICall IpMultiP artyCall IpUIManager
T T T T T T T T
| 1: new() | | | | | | |
| | | | | |
U | | | | | |
| | | | | | |
! ! 2: createNotification() ! ! ! ! !
I I | I | | |
H | | | /D | | |
7 ! 3: :reponNotifk:auon() : : : : :
4: 'forward event'				
5: new)				
D				
	6 getCallLegs()			
t t t t				
U				/U
)			
		7 createUICﬁH()		
				D
‘ : : 8 sendlnf‘éAndCUHectReq() : : : !				
! ! ! ! ! 9: sendInfoAndCollectRes{) ! !				
! : 10: 'forward event' : ! : ‘ : !				
U<				
! ! ! 11: seadInfoRe ! ! !				
		5§ ac)		
			12: sendinfoRes()	
! : 13: 'forward event' : : :				
ﬁ\				
! ! ! ! !				
[
[l [l [l				

1?: release()
|
|
[l
|
|
|
|
|
|

?

g

-

1: Thismessage is used by the application to create an object implementing the | pAppM ulti PartyCall Control M anager
interface.

2: Thismessage is sent by the application to enable notifications on new call events. Asthis sequence diagram depicts
acall barring service, it islikely that al new call events destined for a particular address or address range prompted for

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 13 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

apassword before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message
(not shown) is directed to the object implementing the IpMultiPartyCall ControlManager. Assuming that the criteriafor
creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other
messages (not shown) are used to create the call and associated call leg object.

3: Thismessage is used to pass the new call event to the object implementing the
[pAppMuultiPartyCall Control Manager interface.

4: Thismessageis used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the | pMulti PartyCall ControlManager using the return
parameter of the callEventNotify.

6: The application requests alist of all the legs currently in the call.

7: Thismessage is used to create a UICall object that is associated with the incoming leg of the call.
8: Thecall barring service dialogue is invoked.

9: Theresult of the dialogue, which in this caseisthe PIN code, is returned to its callback object.
10: This message is used to forward the previous message to the IpAppLogic

11: Assuming an incorrect PIN is entered, the calling party isinformed using additional dialogue of the reason why the
call cannot be completed.

12: This message passes the indication that the additional dialogue has been sent.
13: This message is used to forward the previous message to the IpAppLogic.
14: No more Ul is required, so the UICall object is released.

15: This message is used by the application to clear the call.

4.3 Call forwarding on Busy Service
The following sequence diagram shows an application establishing a call forwarding on busy.

When acall is made from A to B but the B-party is detected to be busy, then the application isinformed of thisand sets
up aconnection towards a C party. The C party can for instance be a voicemail system.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 14 ETSI TS 129 198-4-3 vV8.0.0 (2009-01)
Laic ADDLeqC Appleg A: App Call : ADDCCM : ccM: Call: LegA: SCS
IpAppCalileg | | IpAppMultiPartyCall | | IpAppMuli pamr allC: IpMultiPartyCallCa bMuliPatyCal w uCaJILea pcan.eg
T T T T T
| \ I L'new | \ \ | \ \ |
T T T | | \ | | |
2: createNotificati
: : chae otification() /I.,‘.‘ “ 1 N ":armtrigger” : 1 1
| | | | /U | | | | I
| | | | | | | | |
| | | | | | 4:"trigger event: Busy' | | |
! ! ! ! ! 5:"checki{ 4pf cation interesed” | : : T u
				-			
				6:"new’	! !		
				7new'			
				i B			
				8: "state-ffansition to Actlvq"			
				9: e			
				L [10 statdyansiion o Releasing”			
					T		
	ho: "forward event”		11: reportNotification()				
- t t f | | | |
U\ | | | H\ | | | | |
| | 1Tew | | | | | |
| | gl | L | | | | |
14: "hew" | T | | | | | | |
| | | | | | | |
| D | | | | | | | |
18 "new | | | | | | | | | |
| | y | | | | | | |
/IT‘ | | 16: createCallLeg() | | “ |17 new | | |
| | | | | T I |
| | | | | U | | 18: "state transition to Idle}
| | | | | | | |
| | | | | 19 ewentReportReq() | | | | < i
| | | | | | i i
| | | | 20: routeReq() | | | | | |
| | | | | | T 7 21 "statb Jransition to Activg”
| | | | | | | | iz
T ! ! ! ! ! ! zz‘! “inform Call ut,e‘tr' |
| | | | | - |
| | | | 23: oihinuePr ocessing() | iy | | |
I I I I I T t . |
U | | | | | | | /H | |
| | | | | | | | | | |
| | | | | | | 24; "inform Ctall object’ ! | |
| | | | | | | |
| | | | | | | | |
| | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | 25: "continue call processing” | |
| | | | | | t +
| | | | | | U | | | U
l l l l l l ‘ l l 25 o pryarsvel
| | | | | | | | | H
| | | | | 27: eventReportRes() | | | |
| 28: "forwdrd event" T T T T T T u
T | | | | | |
U\ | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |

-

1: Thismessage is used by the application to create an object implementing the | pAppM ulti PartyCall Control M anager
interface.

2: Thismessageis sent by the application to enable notifications on new call events.

4. When anew call, that matches the event criteria, arrives a message ("busy") is directed to the object implementing
the IpMuultiPartyCall ControlM anager. Assuming that the criteriafor creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg objects.

6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.
8: Thenew Call Leg instance transits to state Active.

11: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCall Control Manager interface. Applied monitor mode is "interrupt"

12: This message is used to forward the message to the IpAppLogic.

13: This message is used by the application to create an object implementing the | pAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the | pMulti PartyCall ControlManager using the return
parameter of the reportNotification.

14: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
15: A new AppCallLeg C is created to receive callbacks for another leg.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 15 ETSI TS 129 198-4-3 vV8.0.0 (2009-01)
16: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

19: The application requests to be notified (monitor mode "INTERRUPT") when party C answers the call.

20: The application requests to route the terminating leg to reach the associated party C.

The application may request information about the original destination address be sent by setting up the field
P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCalApplInfo in the request to route the call leg to the
remote party C.

23: The application requests to resume call processing for the terminating call leg to party B to terminate the leg.
Alternative the application could request to deassign the leg to party B for exampleif it is not interested in possible
requested call leg information (getlnfoRes, superviseRes).

When the terminating call leg is destroyed, the AppLeg B is notified (callLegEnded) and the event is forwarded to the
application logic (not shown).

25: Asaresult call processing is resumed in the network that will try to reach the associated party C.
26: When the party C answers the call, the termination call leg is notified.

27: Assuming the call is answered, the object implementing party C's IpCallLeg interface passes the result of the call
being answered back to its callback object.

28: This answer message is then forwarded to the object implementing the IpAppLogic interface.

4.4 Call Information Collect Service

The following sequence diagram shows an application monitoring a call between party A and a party B in order to
collect call information at the end of the call for e.g. charging and/or statistic information collection purposes. The
service may apply to ordinary two-party calls, but could also include a number trandation of the dialled number and
special charging (e.g. a premium rate service).

Additional call leg related information is requested with the getlnfoReq and superviseReq methods.

The answer and call release events are in this service example requested to be reported in notify mode and additional
call leg related information is requested with the getlnfoReq and superviseReq methods in order to illustrate the
information that can be collected and sent to the application at the end of the call.

Furthermore the diagram shows the order in which information is sent to the application: network release event
followed by possible requested call leg information, then the destruction of the call leg object (callLegEnded) and
finally the destruction of the call object (callEnded).

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 16 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

17 é‘wemReponReq()

18: puperviseReq()

15‘5 gethfcReq ()
20: setCharg ()

O H T

Zi‘.‘ raueReq()

22: ”SIEIQ‘TEHSIHDH to Active't

23: “informCall object” P

|
|
|
|
24: eventReporfReq()

25: getinbReq ()

AmLogic ApplegB: Appleg A: p Call : App CCM : CCM: Call : Leg B: scs
I alllL IpAppCallLeg %mMulthargQall IpAppMul pammur IpMulti ParM‘all(‘ IpMultiPartyCall | IpCallLeg all
T T T T T
| | | \ \ | \ \ |
L + + + L | | | | |
| | 2: createNotification() 1 | | | | |
" " " | | 3 "armitrigger” | |
| | | I I I /I-r‘
| | | | | |
: : : T‘ 4 “}rlgger event: Analy%ed Information” : :
| | | | 5:"check f fpplication interested” | | | H
| | | | *: | | |
| | | | 6: "new" | | |]
			8: "statetransition to Active"		
			[P=m—		
			9: reportN dificaion()		
		10: "forward event”			
N ! 11: "new’ ! ! ! !					
1 L					
12: ‘new					
T					
o					
mew i I I \ I I					
1 14 createCalleg() ! ! ! !					
; ! 15 :new\/ : :					
\; 16: “sléll}lramlllon toldle"					
1					
T					
!					
!					

R

(=

T
26: continueProcessing ()
T

l il
‘ il

27:“inform Call object"

o i

]

28:["¢ontinuecal | pr(ress‘lng

|

|

|

|

|

|

|

|

l

H : >
|
|
|
|
[
|
|
|

| [l
| |
129: "B party answer")

30: eventReportRes()
31: forward event'

32 "Di om A-party"

33: "state L‘L’BI“OH to Releaslnd"
[

=

%

34: eventReportRes()

|
|
|
|
|
|
| 35: "forwgrd event"
i |
3 “forw%rd ewent"
|

|
39: "forwdrd event’

=

36: getinfoRes()

38: callLegEnded()

ST -1 ----------—7

): “inform Call object

|
|
|
|
|
|
|
|
|
|
| |
41 “blscmnec\ from B-| ;%arty‘

42: "state ition to Releasing"”
I ﬁ

43: eventReportRes()

44: "forward event

45: getinfoRes()
|
146: forward event' |

(-

:48: forward evert'|

[~

150: forward event]

[

47: supenviseRes()

L
|
|
|
|
t
|
|
\
|
|
|
\
|

49: callLegEnded) |

T

|
51: "informiCall object”
T

|
|
|
|
|
|
|
|
|
|
|
|
:
U
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
[
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
[
|
1
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

52: callEnded()

I | A |

I L N i i Hih S s

et s [s s

|
|
|
o
|
|
|
|
|

1: Thismessage is used by the application to create an object implementing the | pAppM ulti PartyCall Control M anager
interface.

2: Thismessageis sent by the application to enable notifications on new call events.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 17 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

4: When anew call, that matches the event criteria, arrives a message ("analysed information") is directed to the object
implementing the IpMulti PartyCall Control M anager. Assuming that the criteriafor creating an object implementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object

6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.
8: Thenew Call Leg instance transits to state Active.

9: Thismessage is used to pass the new call event to the object implementing the
IpAppMuultiPartyCall Control Manager interface. Applied monitor mode is "interrupt"

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the I pAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCall ControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create anew call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.
16: A transition to state Idle is made after the Call leg has been created.

17: The application requests to be notified (monitor mode "NOTIFY") when party B answers the call and when the leg
to B-party is released.

18: The application requests to supervise the call leg to party B.

19: The application requests information associated with the call leg to party B for example to calculate charging.
20: The application requests a specific charge plan to be set for the cal leg to party B.

21: The application requests to route the terminating leg to reach the associated party B.

22:The Call Leg instance transits to state Active.

24: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

25: The application requests information associated with the call leg to party A for example to calculate charging.

26: The application requests to resume call processing for the originating call leg. Asaresult call processing is resumed
in the network that will try to reach the associated party B.

29: When the B-party answers the call, the termination call leg is notified.

30: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object (monitor mode "NOTIFY").

31: This answer message is then forwarded.

32: When the A-party releases the call, the originating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "releasing state"

34: The application IpAppLeg A is notified, as the rel ease event has been requested to be reported in Notify mode.
35: The event is forwarded to the application logic
36: The call leg information is reported.

37: The event is forwarded to the application logic.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 18 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

38: The origination call leg is destroyed, the AppLeg A is notified.
39: The event is forwarded to the application logic

41: When the B-party releases the call or the call isreleased as aresult of the release request from party A, i.e. an
"originating release” indication, the terminating call leg is notified and makes atransition to "releasing state”.

43:1f anetwork release event is received being a "terminating release” indication from called party B, the application
IpAppLeg B is notified, as the release event from party B has been requested to be reported in NOTIFY mode.

Note that no report is sent if the release is caused by propagation of network release event being an "originating
release” indication coming from calling party A.

44: The event is forwarded to the application logic.

45: The cdll leg information is reported.

46: The event is forwarded to the application logic.

47: The supervised call leg information is reported.

48: The event is forwarded to the application logic.

49: The terminating call leg is destroyed, the AppLeg B is notified.
50: The event is forwarded to the application logic.

52: Assuming the IpCall object has been informed that the legs have been destroyed, the IpAppMultiPartyCall is
notified that the call isended .

53: The event is forwarded to the application logic.

4.5 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being
received by the call control service. Before the call is made, the calling party is asked for an ID and PIN code. If the ID
and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is
then set on the controlling leg (the calling party'sleg) such that if the calling party enters a'#5' an event will be sent to
the application. The cal isthen routed to the destination party. Sometime during the call the calling party enters '#5'
which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination
party, to which it is then routed.

ETSI

19 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

3GPP TS 29.198-04-3 version 8.0.0 Release 8

ar
IpCallLeg
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
'

AppParyB AppPartyA AopParyB’
all| |1 liL IpAppCaliLeg || WwAppCalleg
2 createf

()
gt

all

IpMultiPartyCal

uUlCall

5w

4 foward event

)) | o E [

14: new)

S m O — —m— ——m————— —
el - — - - — — - — — — — — — —[— — —
e -
/- |--t-3Fr-——-——-—-F-——T--——+ — e -
¢
]
— - - -t - ——7-—- — e
H
]
g
= ——
£
-1 -=-=--7 = — - - = =+ - -—4-——-——-F-——-—-—-— T - -
- — |- -+ ———— 1+ — === m— e i S
g 2
H 8
— e e e T i
&
\\\\\\\\\\\\\\\\\\\ — - - 3L -
H i
£
\\\\\\\\\\\\\\\\\\\ o
e —_—,— Oo--49----49- -

S

1: Thismessage is used by the application to create an object implementing the | pAppM ulti PartyCall Control M anager

interface.

2: Thismessageis sent by the application to enable notifications on new call events. Asthis sequence diagram depicts

acall barring service, it islikely that all new call events destined for a particular address or address range result in the
caller being prompted for a password before the call is alowed to progress. When a new call, that matches the event

criteria set in message 2, arrives a message (not shown) is directed to the object implementing the
I pMulti PartyCall ControlManager. Assuming that the criteriafor creating an object implementing the IpMultiPartyCall

interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and

associated call leg object.

3: This messageis used to pass the new call event to the object implementing the

IpAppMuultiPartyCall Control Manager interface.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 20 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

4. Thismessage is used to forward message 3 to the IpAppLogic.

5: Thismessage is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCall ControlManager using the return
parameter of message 3.

6: This message returnsthe call legs currently in the call. In principle areference to the call leg of the calling party is
aready obtained by the application when it was notified of the new call event.

7. Thismessage is used to associate a user interaction object with the calling party.
8: Theinitial card service dialogue isinvoked using this message.

9: Theresult of the dialogue, which in this caseisthe ID and PIN code, isreturned to its callback object using this
message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final dialogue isinvoked.

11: The result of the dialogue, which in this case is the destination address, isreturned and eventually forwarded via
another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.
13: The trigger for follow-on callsis set (on service code).

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg
object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionl Ds of the
legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

16: The application requests to be notified when the leg is answered.

17: The application routes the leg. As aresult the network will try to reach the associated party.
18: When the B-party answersthe call, the application is notified.

19: The event is forwarded to the application logic.

20: Legs that are created and routed explicitly are by default in state detached. This means that the mediais not
connected to the other partiesin the call. In order to allow inband communication between the new party and the other
partiesin the call the media have to be explicitly attached.

21: At some time during the call the calling party enters'#5'". This causes this message to be sent to the object
implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

22: The event is forwarded to the application.
23: This message rel eases the called party.
24: Another user interaction dialogue is invoked.

25: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

26: A new AppCallLeg is created to receive callbacks for another leg.
27: The call isthen forward routed to the new destination party.
28: Asaresult anew Callleg object is created.

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via
another message (not shown) to the IpAppLogic.

30: When the A-party terminates the application is informed.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 21 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

31: The event is forwarded to the application logic.

32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this
message.

33: The event is forwarded to the application logic.

34: Since the user interaction object were not released at the moment that the call terminated, the application receives
this message to indicate that the Ul resources are released in the gateway and no further communication is possible.

35: The event is forwarded to the application logic.

36: The application deassigns the call object.

4.6 Hotline Service

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B
defined to congtitute a hot-line address. The address of the destination party is provided by the application as the calling
party makes a call attempt (goes off-hook) and do not dial any humber within a predefined time. In this case a pre-
defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined destination
party.

The call release is monitored to enable the sending of information to the application at call release, e.g. for charging
pUrpOSES.

Note that this service could be extended as follows:

Sometime during the call the calling party enters ‘#5' which causes the called leg to be released. The calling party is now
prompted to enter the address of a new destination party, to which it is then routed.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 22 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

AppLogic Appleg B: ApplegA: AppCall: ApCCM ccm: call: Leg A: LegB: scs
IpAppCallleg IpAppCallLeg. iPartyCall i allC i allC ot dl IpCallleg IpCalleg
T T T T T T T T T T
! ! [1: "new’ | | | | | | |
- - - | | | | |
| 2 createNotificatin() g | | | | |
T T T | 3:"armtigger” | |
| | | | | /u
| | | | |
: : T & "mgge:r event: Originating Ca\l Attempt Aulhor\sed”: :
| | | 5: "checkjf hpplication interested" | | |
| | | Me—2 | | |
| | | 6 "new’ | | | T
| | | 7 "new | | |
| | | | |
| | | 8: "state'fransition to Initi ating‘i |
| | L et) ‘ — |
‘ ‘ 10: "forward event" r ‘ ‘ ‘
= | 11 "new | | | |
L | | | | |
12w | | | |
T | | | | |
ey | | | | | |
: | | | | | |
1 14: createCallleg() ! ! ! ! !
L I 15: "nbw" | |
| I I |
| | 16: ZHE transition to Idle" |
17: ‘E/emRepurlReq() : : :
| | | |
1p:routeReq() | | | |
T T T |
| | | 19: "statg transition to Active” |
L | | | <
: : : 20:“inform d‘all object”
! 21 ermepdhen) N !
| | U 0
22: continueProgessing() | | |
W T |
23: inform Call uqemu |
2 'H)mmue call pmcessw‘hg”
L# |
|

25: event "address_analysed"

26 ”SAA transition to AClI\B”‘
p—| |

| |
27: {Disconnect from B-pgrty”

e P,

28: "stateltransition to Releasin|

i

20 eventReportR es()
30: "forward event"

31 callLeg Enced()

32 “forward event"
| -

I

I

I

|

T

I

|

T
33:"inform d‘all object”

I

I

I I

| 34: "Disconnett from A-party"
+

|
|
:
: |

|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\
|
|
|
Il
|
|
|
Il
|
|
T
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
T
|
|
|
|
|
|
|
|
|
| : 36: callLegEnded()

i 37:"fowpr d event” N
i
-

|
|
|
|
| 35 "s(ateuansmnn to Releasing”
|
|
I
I

138: “inform Call object]

39: callEnded()

|
|
|
|
|
|
|
|
|
|
|
|
l
g
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
|
i

40: "forward event’

s S

|
|
| |
| |
| |
|)
1 1 1
| |
| |
| |
| |
| |
| |

U

—— e — —

1. This messageis used by the application to create an object implementing the |pAppM ulti PartyCall Control M anager
interface.

2: Thismessageis sent by the application to enable notifications on new call events.

4. When anew call, that matches the event criteria, arrives a message (" originating call attempt authorised") is directed
to the object implementing the IpMultiPartyCall ControlManager. Assuming that the criteriafor creating an object
implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg
object.

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 23 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

8: Thenew Call Leg instance transitsto state Initiating.

9: Thismessage is used to pass the new call event to the object implementing the
IpAppM ultiPartyCall ControlManager interface. Applied monitor mode is "interrupt”.

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the | pAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the IpMultiPartyCall ControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create anew call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.
16: A transition to state Idle is made after the Call leg has been created.
17: The application requests to be notified (monitor mode "NOTIFY") when the leg to party B is released.

18: The application requests to route the terminating leg to reach the associated party as specified by the application
("hot-line number").

19: The Call Leg instance transits to state Active.
21: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

22: The application requests to resume call processing for the originating call leg. Asaresult call processing is resumed
in the network that will try to reach the associated party as specified by the application (E.164 number provided by
application).

25: The originating call leg is notified that the number (provided by application) has been analysed by the network and
the originating call leg STD makes atransition to "active" state. The application is not notified as it has not requested
this event to be reported.

27: When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY™) and makes a
transition to "Releasing state".

29: The application is notified, as the rel ease event has been requested to be reported in Notify mode.
30: The event is forwarded to the application logic.

31: The terminating call leg is destroyed, the AppLeg B is notified.

32: This answer message is then forwarded.

34: When the call release ("terminating release” indication) is propagated in the network toward the party A, the
originating call leg is notified and makes atransition to "releasing state”. This release event (being propagated from
party B) is not reported to the application.

36: When the originating call leg is destroyed, the AppLeg A is notified.
37: The event is forwarded to the application logic.
39: When all legs have been destroyed, the IpAppMultiPartyCall is notified that the call is ended.

40: The event is forwarded to the application logic.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 24 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

4.7 Network Controlled Notifications

The following sequence diagram shows how an application can receive notifications that have not been created by the
application, but are provisioned from within the network.

AppLogic o e
IpAppMultiParty CallControlManager IpMultiPartyCallControlManager
! 1: new() !

|
|
|
| i
|
‘ 2: enableNoatifications() |
| g

3: reportNotification()

4: ‘forward ewent'

5: reportNotification(...

6: ‘forward event'

-
|
|
|

7: disableNotifications() i

1. Theapplication is started. The application creates a new |pAppMultiPartyCall ControlManager to handle callbacks.

2: The enableNotifications method is invoked on the I pMultiPartyCall ControlM anager interface to indicate that the
application is ready to receive notifications that are created in the network. For illustrative purposes we assume
notifications of type "B" are created in the network.

3: When anetwork created trigger occurs the application is notified on the callback interface.
4. The event isforwarded to the application.
5: When a network created trigger occurs the application is notified on the callback interface.
6: Theevent isforwarded to the application.

7: When the application does not want to receive notifications created in the network anymore, it invokes
disableNotifications on the IpMulti PartyCall ConrolManager interface. From now on the gateway will not send any
notifications to the application that are created in the network.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 25 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

4.8 Use of the Redirected event

AppLogic : IpAppCallLeg . IpCallLeg

T
/ |

, 1 ieventReportReq()

2: routeReq()

| /

; 3: eventReportRes()
The Call and the Leg

hawe already been u\ U

created.

4: eventReportRes()

1. The application has already created the call and acall leg. It places an event report request for the ANSWER and
REDIRECTED eventsin NOTIFY mode.

2: The application routes the call leg.

3: Thecall isredirected within the network and the application isinformed. The new destination address is passed
within the event. The event is not disarmed, so subsequent redirections will aso be reported. Also, the samecall legis
used so the application does not have to create a new one.

4. Thecall isanswered at its new destination.

5 Class Diagrams

The multiparty call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagramsin the following figures show the interfaces that make up the multi party call control application
package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call
control application package and their relations to the interfaces of the multi-party call control service package.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 26 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

<<Interface>>
Ipinterface
(from csapi)

7

<<Interface>>
IpAppCallLeg
<<Interface>> <cinterfacess (from mpccs)
IpAppMultiPartyCallControlManager IpAppl\r/]IueItii’caertyCall Blevenreponies)
frennees (fiomiTeces) [®eventReportEm()
[®reportNotificati [®attachMediaRes()
.reFI)I?Ab c:tl cljc(;11 on0 1 0.M®getinfoRes) 1 0..n|[®attachMediaErr()
.‘rfnaana oer?nterru wdg [®getinfoEn [T 77 [®detachMediaRes()
.managerResum'?ed [®superviseRes() [®detachMediaErr()
v 0 [®supenviseEn([®getinfoRes()
[®calloverloadEncountered() [ScallEnded(— .
Il 1
-2 e [®createAndRouteCallLegErr() [®routeEm()
[®abortMultipleCalls() —
[®superviseEm()
[®callLegEnded()

<<Interface>>
IpCallLeg
| - (from mpccs)
<<Interface>> <<Int§rface>>
IpMultiPartyCallControlManager lpM(‘;mi?x?a” =;ovit:§??3q(c)mRe 0
(frommpccs) .releaseop q
EScreatecall() [®getcallLegs) [®getinfoReq()
[BcreateNotification() 1 0. =createCaIILeg() 1 o.AE¥getcall) _
BdestoyNotification) | | ™createAndRouteCallLegReq() - - - - - - > .attachMedlgReq()
[®changeNotification() [®release() [®detachMediaReq()
[@deassignCall() 1 o..nE¥getCurrentDestinationAddress()
.setCaIILoaq_Coqtrolo [®getinfoReq) |- --> [continueProcessing()
=§-nazl|enon-ffl-cau-onso [®setchargePlan() [[setChargePlan()
BoeenNotifcationg [siadviceOiCharge(IsiadviceOiCharge(
[®supeniseReq() ®supenviseReq()
[®deassign()
[®getProperties()
[SsetProperties()

Figure: Application Interfaces

This class diagram shows the interfaces of the multi-party call control service package.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 27 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

<<Interface>>
IpSenice
(from csapi)

¥setCallback()
F¥setCallbackWith SessionID()

/\

<<Interface>>
IpCallLeg
(fom mpcc9y
P — <<Interface>>
IpMultiPartyCallControlManager AR :rouleReq()
P (from mpccs) eventReportReq()
Srelease()
SgetCallLegs() SgetinfoReq()
@ getCallLeg g q
sesieely ScreateCallLeg() SgetCall()
ScreateNotification() 1 0. 1 0..n)
ScestroyNotificationy | > ®createAndRouteCallLegReq()- — - - - - - - =/ [¥attachMediaReq()
— yottcatl Srelease() $detachMediaReq()
changeNotification() W . @ Y
— eassignCall() getCurrentDestinationAddress()
setCallLoadControl() @ " S .)
SenableNotifications() getinfoReq() continueProcessing()
. i WsetChargePlan() @setChargePlan()
SdisableNotifications () —Jpy h —ey h
SgetNextNotification() setAl \{|ceOfC arge() setA \{|ceOfC arge()
WsupeniseReq() WsupeniseReq()
®deassign()
SgetProperties()
SsetProperties()
Figure: Service Interfaces

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
management. It also allows for multi-party calls to be established, i.e. up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the | pMultiPartyCall ControlManager, |pMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they
do not lock athread into waiting whilst a transaction performs. In this way, the client machine can handle many more
calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement

I pAppM ultiPartyCall Control Manager, | pAppM ultiPartyCall and |pAppCallLeg to provide the callback mechanism.

6.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService

Thisinterface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
IpMultiPartyCall ControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCall ControlManager isin another state the method will throw an exception immediately.

Thisinterface shall be implemented by a Multi Party Call Control SCF. Asa minimum requirement either the
createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be
implemented, or the enableNotifications() and disableNatifications() methods shall be implemented.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 28 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallldentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
. in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentlID, notificationRequest : in TpCallNotificationRequest) :
void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentlD

enableNotifications (appCallControlManager : in IpAppMultiPartyCallControlManagerRef) : TpAssignmentID
disableNotifications () : void
getNextNotification (reset : in TpBoolean) : TpNotificationRequestedSetEntry

6.1.1 Method createCall()

This method is used to create anew call object. An IpAppMultiPartyCall ControlManager should already have been
passed to the IpMultiPartyCall ControlManager, otherwise the call control will not be able to report a call Aborted() to
the application. The application shall invoke setCallback() prior to createCall() if it wishesto ensurethis.

Returns callReference: Specifies the interface reference and sessionl D of the call created.

Parameters

appCall : in IpAppMultiPartyCallRef
Specifies the application interface for callbacks from the call created.

Returns
TpMultiPartyCallIdentifier

Raises
TpCommonExceptions, P_INVALID INTERFACE TYPE

6.1.2 Method createNotification()

This method is used to enable call notifications so that events can be sent to the application. Thisisthefirst step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application isinterested in other events during the
context of a particular call session it has to use the createAndRouteCallL egReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives the
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call eventstake place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 29 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

If some application already requested notifications with criteria that overlap the specified criteria or the specified
criteria overlap with criteria already present in the network (when provisioned from within the network), the request is
refused with P_INVALID_CRITERIA. The criteria are said to overlap when it leads to more than one application
controlling the call or session at the same point in time during call or session processing.

If anotification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteriafor overlapping with any existing request as the notify mode does not allow control on acall to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

If anatification is requested by an application with an event type that is mutually exclusive compared to existing
requested event types, then there is no need to check against the rest of the criteriafor overlap. An example could be
one application that trigger on "user busy" together with another application that trigger on "answer" - both requests
should be allowed as only one can occur on the same call or session.

The overlap criteria have been defined to prevent multiple points of control, leading to possible interaction problemsin
networks that have no multi service support. Notice that dynamic aspects cannot be taken into account in the overlap
criteria check. Therefore where dynamic event arming from an application causes a persistent control relationship it can
prevent other applicationsto be invoked in the case single point of application control appliesin the network.

However, the criteria check for overlap may as a network option be overruled by Multi Service networks allowing more
services or applications to gain control of the same call or session at the same point in time. Refer to Call Control
Common Definitions subpart of this specification for further details on application control over acall or session.

Setting the callback reference:

The callback reference can be registered either in @) createNotication() or b) explicitly with a setCallBack() method e.g.
depending on how the application providesits callback reference.

Casea
From an efficiency point of view the createNotification() with explicit registration may be the preferred method.
Case b:

The createNatification() with no callback reference ("Null” value) is used where (e.g. due to distributed application
logic) the callback referenceis provided previously in a setCallback(). If no callback reference has been provided
previously to the service, the exception, P_ NO_CALLBACK_ADDRESS_SET shall be raised.

In case the createNotification() contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Setting additional callback:

If the same application invokes this method multiple times with exactly the same criteria but with different callback
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignmentID. The gateway shall use the most recent callback interface provided by the application using this
method. In the event that a callback reference fails or is no longer available, the next most recent callback reference
available shall be used.

Returns assignmentID: Specifiesthe ID assigned by the call control manager interface for this newly-enabled event
notification.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified previously via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network”, "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 30 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Returns
TpAssignmentID
Raises

TpCommonExceptions, P_INVALID CRITERIA, P_INVALID INTERFACE TYPE,
P _INVALID EVENT TYPE

6.1.3 Method destroyNotification()

This method is used by the application to disable call notifications. This method only applies to notifications created
with createNotification().

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment 1D given by the multi party call control manager interface when the previous
createNotification() was called. If the assignment ID does not correspond to one of the valid assignment 1Ds, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises
TpCommonExceptions, P_INVALID ASSIGNMENT ID

6.1.4 Method changeNoatification()

This method is used by the application to change the event criteriaintroduced with createNotification. Any stored
criteria associated with the specified assignmentI D will be replaced with the specified criteria

Parameters

assignmentID : in TpAssignmentID

Specifiesthe ID assigned by the multi party call control manager interface for the event notification. If two callbacks
have been registered under this assignment ID both of them will be changed.

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID ASSIGNMENT ID, P _INVALID CRITERIA,
P INVALID EVENT TYPE

6.1.5 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanismis similar as defined for TpCallEventCriteria.

Returns assignmentI D: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the call OverloadEncountered and call OverloadCeased methods with the request.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 31 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Parameters

duration : in TpDuration
Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e. until disabled by the application).
A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such asthe call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of callsthat are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange
Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID ADDRESS, P_UNSUPPORTED ADDRESS PLAN

6.1.6 Method enableNotifications()

This method is used to indicate that the application is able to receive notifications which are provisioned from within
the network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network management
system). If notifications provisioned for this application are created or changed, the application is unaware of this until
the notification is reported.

Setting the callback reference:

The callback reference can be registered either in a) enableNotications() or b) explicitly with a setCallback() method
e.g. depending on how the application providesits callback reference.

Casea
For an efficiency point of view the createNotification() with explicit registration may be the preferred method.
Caseb:

The enableNotifications() with no callback reference ("Null” value) is used where (e.g. due to distributed application
logic) the callback referenceis provided previousdly in a setCallback(). If no callback reference has been provided
previously to the service, the exception, P_ NO_CALLBACK_ADDRESS_SET shall be raised.

In case the enableNoatification() contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Setting additional Call back:

If the same application invokes this method multiple times with different |pAppM ultiPartyCall Control M anager
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignmentl D. The gateway shall use the most recent callback interface provided by the application using this

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 32 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

method. In the event that a callback reference fails or is no longer available, the next most recent callback reference
available shall be used.

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on
the same interface as long as the criteriain the network and provided by createNotification() do not overlap. However, it
isNOT recommended to use both mechanisms on the same service manager.

The methods changeNotification(), getNextNotification(), and destroyNotification() do not apply to notifications
provisioned in the network and enabled using enableNotifications(). These only apply to notifications created using
createNotification().

Returns assignmentI D: Specifiesthe ID assigned by the manager interface for this operation. ThisID is contained in
any reportNotification() that relates to notifications provisioned from within the networkRepeated calls to
enableNotifications() return the same assignment ID.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies areference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified previously viathe setCallback() method.

Returns
TpAssignmentID

Raises

TpCommonExceptions

6.1.7 Method disableNotifications()

This method is used to indicate that the application is not able to receive notifications for which the provisioning has
been done from within the network. (i.e. these notifications that are NOT set using createNotification() but via, for
instance, a network management system). After this method is called, no such notifications are reported anymore.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

6.1.8 Method getNextNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.
Since alot of data can potentially be returned (which might cause problem in the middleware), this method must be
used in an iterative way. Each method invocation may return part of the total set of notificationsif the set istoo large to
return it at once. The reset parameter permits the application to indicate whether an invocation to getNextNotification is
requesting more notifications from the total set of notifications or is requesting that the total set of notifications shall be
returned from the beginning.

Returns notificationRequestedSetEntry: The set of notifications and an indication whether al off the notifications have
been obtained or if more notifications are available that have not yet been obtained by the application. If no
notifications exist, an empty set is returned and the final indication shall be set to TRUE.

Note that the (maximum) number of items provided to the application is determined by the gateway.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 33 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Parameters

reset : in TpBoolean
TRUE: indicates that the application is intended to obtain the set of notifications starting at the beginning.

FALSE: indicates that the application requests the next set of notifications that have not (yet) been obtained since the
last call to this method with this parameter set to TRUE.

The first time this method is invoked, reset shall be set to TRUE. Following the receipt of afinal indication in
TpNotificationRequestedSetEntry, for the next call to this method reset shall be set to TRUE. P_TASK_REFUSED may
be thrown if these conditions are not met.

Returns
TpNotificationRequestedSetEntry
Raises

TpCommonExceptions

6.2 Interface Class IpAppMultiPartyCallControlManager
Inherits from: Iplnterface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallldentifier, callLegReferenceSet : in
TpCallLegldentifierSet, notificationinfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentiD) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void
managerinterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void
callOverloadCeased (assignmentID : in TpAssignmentID) : void

abortMultipleCalls (callReferenceSet : in TpSessionIDSet) : void

6.2.1 Method reportNotification()

This method notifies the application of the arrival of acall-related event.

If this method isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving arelease cause of P_TIMER_EXPIRY.

Setting the callback reference:

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 34 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back referenceis only applicableif the notification isin INTERRUPT mode.

When reportNotification() isinvoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the
application writer should ensure that no continue processing e.g. createAndRouteCallLegReq() is performed until the
callback interface for the new call and/or new call leg has been passed to the gateway, either through an explicit
setCallbackWithSessionl D() invocation, or viathe return of the reportNatification() method.

The call back reference can be registered either in @) reportNotification() or b) explicitly with a
setCallbackWithSessionl D() method depending on how the application provides its callback reference.

Casea
From an efficiency point of view the reportNotification() with explicit pass of registration may be the preferred method.
Caseb:

The reportNotification() with no callback reference ("Null" value) is used where (e.g. due to distributed application
logic) the callback referenceis provided previously in a setCallbackWithSessionl D(). If no callback reference has been
provided previoudly to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised, and no further
application invocations related to the call shall be permitted.

In case reportNotification() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered previously by setCallbackWithSessionl D().

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. If the application has previously explicitly passed a reference to the callback interface
using a setCallbackWithSessionl D() invocation, this parameter may be set to P_APP_CALLBACK_UNDEFINED, or
if supplied must be the same as that provided during the setCallbackWithSessionI D().

This parameter will be set to P APP_CALLBACK_UNDEFINED if the notification isin NOTIFY mode and in case
b).

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being givenin
NOTIFY mode, this parameter shall be ignored by the application client implementation, and consequently the
implementation of the SCS entity invoking reportNotification may populate this parameter as it chooses.

callLegReferenceSet : in TpCallLegIdentifierSet

Specifiesthe set of al call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationl nfo can be found on whose behalf the notification was sent.

However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client
implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this
parameter as it chooses.

notificationInfo : in TpCallNotificationInfo
Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNaotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 35 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Returns
TpAppMultiPartyCallBack

6.2.2 Method callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

callReference : in TpSessionID
Specifies the sessionID of call that has aborted or terminated abnormally.

6.2.3 Method managerinterrupted()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

6.2.4 Method managerResumed()

This method indicates to the application that event notifications are possible and method invocations are enabled.

Parameters
No Parameters were identified for this method

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentI D corresponding to the associated setCallL oadControl. Thisimplies the addressrange for
within which the overload has been encountered.

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 36 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentI D corresponding to the associated setCallLoadControl. Thisimplies the addressrange for
within which the overload has been ceased.

6.2.7 Method abortMultipleCalls()

The service may invoke this method on the IpAppCall ControlM anager interface to indicate that a number of ongoing
call sessions have aborted or terminated abnormally. No further communication will be possible between the
application and the calls. Thismay be used for example in the event of service failure and recovery in order to instruct
the application that a number of call sessions have failed. The service shall provide a set of call sessionlDsindicating to
the application the call sessions that have aborted. In the case that the service invokes this method and provides an
empty set of sessionlDs, this shall be used to indicate that all call sessions previously active on the

I pCallControlManager interface have been aborted.

Parameters

callReferenceSet : in TpSessionIDSet

Specifies the set of sessionlDs of calls that have aborted or terminated abnormally. The empty set shall be used to
indicate that all calls have aborted.

6.3 Interface Class IpMultiPartyCall

Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It aso gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

Thisinterface shall be implemented by a Multi Party Call Control SCF. The release() and deassignCall() methods,
and either the createCallLeg() or the createAndRouteCall L egReq|(), shall be implemented as a minimum requirement.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 37 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegldentifierSet
createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegldentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, applinfo : in
TpCallAppinfoSet, appLeglnterface : in IpAppCallLegRef) : TpCallLegldentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : void
setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClinfo : in TpAoClinfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

6.3.1 Method getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returnsthe legsin the
order of creation.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionl Ds and the
interface references.

Parameters

callSessionID : in TpSessionID
Specifiesthe call session ID of the call.

Returns
TpCallLegIdentifierSet

Raises
TpCommonExceptions, P_INVALID SESSION ID

6.3.2 Method createCallLeg()

This method requests the creation of anew call leg object.

Returns callLeg: Specifies the interface and sessionlD of the call leg created.

Parameters

callSessionID : in TpSessionID
Specifiesthe call session ID of the call.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 38 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

appCallleg : in IpAppCalllLegRef
Specifies the application interface for callbacks from the call leg created.

Returns
TpCallLegIdentifier

Raises
TpCommonExceptions, P_INVALID SESSION ID, P INVALID INTERFACE TYPE

6.3.3 Method createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMediaReq() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide
through the appL egl nterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the planis set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being aredirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

If this method isinvoked, and call reports have been requested, yet the IpAppCallLeg interface parameter isNULL, this
method shall throw the P_NO_CALLBACK_ADDRESS SET exception.

Note that for application initiated calls in some networks the result of the first createAndRouteCallLegReq() hasto be
received before the next createAndRouteCallLegReq() can be invoked. The Service Property
P_PARALLEL_INITIAL_ROUTING_REQUESTS (see clause 8.1 of the present document) indicates how a specific
implementation handles the initial createAndRouteCallLegReq(). This method shall throw P_TASK_REFUSED if an
application is not allowed to use parallel routing requests.

Returns call LegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

callSessionID : in TpSessionID
Specifiesthe call session ID of the call.

eventsRequested : in TpCallEventRequestSet
Specifies the event specific criteria used by the application to define the events required. Only events that meet these

criteria are reported. Examples of events are "address analysed", "answer" and "release”.

targetAddress : in TpAddress
Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress
Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 39 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

applegInterface : in IpAppCallLegRef

Specifies areference to the application interface that implements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on thisinterface.

Returns
TpCallLegIdentifier
Raises

TpCommonExceptions, P _INVALID SESSION ID, P_INVALID INTERFACE TYPE,
P _INVALID ADDRESS, P _UNSUPPORTED ADDRESS PLAN, P INVALID NETWORK STATE,
P_INVALID EVENT TYPE, P_INVALID CRITERIA

6.3.4 Method release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g. by means of getinfoReq) these reports
will still be sent to the application.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

cause : in TpReleaseCause
Specifies the cause of the release.

Raises
TpCommonExceptions, P_INVALID SESSION ID, P INVALID NETWORK STATE

6.3.5 Method deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If acall is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

When this method isinvoked, all outstanding supervision requests will be cancelled.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

Raises
TpCommonExceptions, P_INVALID SESSION ID

6.3.6 Method getinfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to atarget address.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 40 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call isended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID
Specifiesthe call session ID of the call.

callInfoRequested : in TpCallInfoType
Specifies the call information that is requested.

Raises
TpCommonExceptions, P_INVALID SESSION ID

6.3.7 Method setChargePlan()

Set an operator specific charge plan for the call.

Parameters

callSessionID : in TpSessionID
Specifiesthe call session ID of the call.

callChargePlan : in TpCallChargePlan
Specifies the charge plan to use.

Raises
TpCommonExceptions, P_INVALID SESSION ID

6.3.8 Method setAdviceOfCharge()

This method alows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID
Specifiesthe call session ID of the call.

aOCInfo : in TpAoCInfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 41 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Raises

TpCommonExceptions, P _INVALID SESSION ID, P_INVALID CURRENCY,
P_INVALID AMOUNT

6.3.9 Method superviseReq()

The application calls this method to supervise a cal. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon asthe call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection. Measurement will start as soon as the call is connected in
the network, e.g. answered by the B-party or the user-interaction system.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.
Raises

TpCommonExceptions, P_INVALID SESSION ID

6.4 Interface Class IpAppMultiPartyCall
Inherits from: Iplnterface

The Multi-Party call application interface isimplemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

getinfoRes (callSessionID : in TpSessionID, callinfoReport : in TpCalllnfoReport) : void
getinfoErr (callSessionID : in TpSessionlD, errorindication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void
callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegldentifier,
errorindication : in TpCallError) : void

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 42 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

6.4.1 Method getinfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getlnfoReq. Thisinformation may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of al cases where the call or aleg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID
Specifiesthe call session ID of the call.

callInfoReport : in TpCallInfoReport
Specifies the call information requested.

6.4.2 Method getinfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID
Specifiesthe call session ID of the call.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

6.4.3 Method superviseRes()

This asynchronous method reports a call supervision event to the application when it has indicated itsinterest in this
kind of event.

It is also called when the connection is terminated before the supervision event occurs.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

report : in TpCallSuperviseReport
Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration
Specifies the used time for the call supervision (in milliseconds).

6.4.4 Method superviseErr()

This asynchronous method reports a call supervision error to the application.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 43 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Parameters

callSessionID : in TpSessionID
Specifiesthe call session ID of the call.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

6.4.5 Method callEnded()

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

Parameters

callSessionID : in TpSessionID
Specifiesthe call sessioniD.

report : in TpCallEndedReport
Specifies the reason the call is terminated.

6.4.6 Method createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and
correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and
not by this operation.

Parameters

callSessionID : in TpSessionID
Specifiesthe call session ID of the call.

callLegReference : in TpCallLegIdentifier
Specifies the reference to the CallLeg interface that was created.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

6.5 Interface Class IpCallLeg

Inherits from: IpService

The call leg interface representsthe logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the |pCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 44 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Thisinterface shall be implemented by a Multi Party Call Control SCF. The routeReq(), eventReportReq(),
release(), continueProcessing() and deassign() methods shall be implemented as a minimum requirement.

<<Interface>>

IpCaliLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, applinfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void
release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getinfoReq (callLegSessionID : in TpSessionID, callLeginfoRequested : in TpCallLeginfoType) : void
getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallldentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOClinfo : in TpAoClnfo, tariffSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

getProperties (callLegSessionID : in TpSessionID, propertyNames : in TpCallLegPropertyNamelList) :
TpCallLegPropertyList

setProperties (callLegSessionID : in TpSessionID, properties : in TpCallLegPropertyList) : void

6.5.1 Method routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach M echanism val ues specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for thefield P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallApplnfo.

This operation continues processing of the call leg.

Note that for application initiated callsin some networks the result of the first routeReq() has to be received before the
next routeReq() can be invoked. The Service Property P_PARALLEL_INITIAL_ROUTING_REQUESTS (see clause
8.1 of the present document) indicates how a specific implementation handles the initial routeReq().This method shall
throw P_TASK_REFUSED if an application is not allowed to use parallel routing requests.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 45 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

targetAddress : in TpAddress
Specifies the destination party to which the call leg should be routed.

originatingAddress : in TpAddress
Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCalllLegConnectionProperties
Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID SESSION ID, P INVALID NETWORK STATE,
P INVALID ADDRESS, P UNSUPPORTED ADDRESS PLAN

6.5.2 Method eventReportReq()

This asynchronous method sets, clears or changes the criteriafor the events that the call leg object will be set to
observe.

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these
criteria are reported. Examples of events are "address analysed"”, "answer" and "release’.

Raises

TpCommonExceptions, P _INVALID SESSION ID, P_INVALID EVENT TYPE,
P _INVALID CRITERIA

6.5.3 Method release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the
call, and the call leg deleted. Note that in some cases rel easing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 46 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

cause : in TpReleaseCause
Specifies the cause of the release.

Raises
TpCommonExceptions, P_INVALID SESSION ID, P INVALID NETWORK STATE

6.5.4 Method getinfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType
Specifiesthe call leg information that is requested.

Raises
TpCommonExceptions, P_INVALID SESSION ID

6.5.5 Method getCall()
This method requests the call associated with this call leg.

Returns cal|Reference: Specifies the interface and sessionl D of the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID SESSION ID

6.5.6 Method attachMediaReq()

This method requests that the call leg be attached to its call object. Thiswill alow transmission on all associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to compl ete successfully.

In case this method isinvoked while there is still arequest to detach the Media pending, the exception
"P_TASK_REFUSED" will be raised.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 a7 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Parameters

callLegSessionID : in TpSessionID
Specifies the sessionl D of the call leg to attach to the call.

Raises
TpCommonExceptions, P INVALID SESSION ID, P INVALID NETWORK STATE

6.5.7 Method detachMediaReq()

This method will detach the call leg from its call, i.e. thiswill prevent transmission on any associated bearer
connections or media streams to and from other partiesin the call. The call leg must be in the connected state for this
method to compl ete successfully.

In case this method is invoked while thereis still arequest to attach the Media pending, the exception
"P_TASK_REFUSED" will be raised.

Parameters

callLegSessionID : in TpSessionID
Specifies the sessionl D of the call leg to detach from the call.

Raises
TpCommonExceptions, P INVALID SESSION ID, P INVALID NETWORK STATE

6.5.8 Method getCurrentDestinationAddress()

Queries the current address of the destination the leg has been directed to.

Returns the address of the destination point towards which the call leg has been routed.

If this method isinvoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call session ID of the call leg.

Returns

TpAddress

Raises

TpCommonExceptions, P_INVALID SESSION ID

6.5.9 Method continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation isinvoked and call leg processing is not interrupted the exception
P_INVALID NETWORK_STATE will be raised.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 48 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Parameters

callLegSessionID : in TpSessionID

Specifiesthe call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID SESSION ID, P INVALID NETWORK STATE

6.5.10 Method setChargePlan()

Set an operator specific charge plan for the call leg.

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call party.

callChargePlan : in TpCallChargePlan
Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID SESSION ID

6.5.11 Method setAdviceOfCharge()

This method alows for Advice of Charge (AoC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call party.

aOCInfo : in TpAoCInfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P _INVALID SESSION ID, P_INVALID CURRENCY,
P _INVALID AMOUNT

6.5.12 Method superviseReq()

The application calls this method to supervise acall leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 49 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call party.

time : in TpDuration

Specifies the granted time in milliseconds for the connection. Measurement will start as soon asthecallLegis
connected in the network.

treatment : in TpCallLegSuperviseTreatment
Specifies how the network should react after the granted connection time expired.

Raises
TpCommonExceptions, P_INVALID SESSION ID

6.5.13 Method deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If acall leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This
operation continues processing of the call leg.

When this method is invoked, all outstanding supervision requests will be cancelled.

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

Raises
TpCommonExceptions, P_INVALID SESSION ID

6.5.14 Method getProperties()

This synchronous method requests to receive the values of indicated property namesif they are available. Examples are
aP_CALL_LEG PROPERTY _ICON (references an image suitable as an iconic representation of the caller or calleg),
P_CALL_LEG PROPERTY_INFO (e.g. aweb page), or P_CALL_LEG PROPERTY_CARD (abusinesscard). The
caller's properties are available on the call leg object representing the originating address and the callee's properties are
available on the call leg object representing callee. If some property value is not available, the property name and value
will not be part of the returned list with properties. Note that parts of the caller and callee's public identity are also
made available through TpAddress.

The Service Property P_CALL_LEG_PROPERTIES (see clause 8.1) indicates the properties that are supported.

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

propertyNames : in TpCallLegPropertyNameList
Specifies the property names of the call leg to be made available.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 50 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Returns
TpCallLegPropertyList
Raises

TpCommonExceptions, P_INVALID SESSION ID, P INVALID NETWORK STATE,
P INFORMATION NOT AVAILABLE, P UNAUTHORISED PARAMETER VALUE

6.5.15 Method setProperties()

This synchronous method requests to set the values of indicated property names and their valuesiif they are supported.
ExamplesareaP_CALL_LEG PROPERTY_ICON (references an image suitable as an iconic representation of the
caler or calee), P_ CALL_LEG_PROPERTY_INFO (e.g. aweb page), or P_ CALL_LEG_PROPERTY_CARD (a
business card). The caller's properties are available on the call 1eg object representing the originating address and the
callee's properties are available on the call leg object representing callee. If some property name is not applicable, it
and its value will beignored. Note that parts of the caller and callee's public identity are also made available through
TpAddress.

The Service Property P_CALL_LEG_PROPERTIES (see clause 8.1) indicates the properties that are supported.

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

properties : in TpCallLegPropertyList
Specifies the properties of the call leg to be set.
Raises

TpCommonExceptions, P_INVALID SESSION ID, P INVALID NETWORK STATE,
P INFORMATION NOT AVAILABLE, P UNAUTHORISED PARAMETER VALUE

6.6 Interface Class IpAppCallLeg
Inherits from: Iplnterface

The application call leg interface isimplemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 51 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventinfo : in TpCallEventinfo) : void
eventReportErr (callLegSessionID : in TpSessionlD, errorindication : in TpCallError) : void
attachMediaRes (callLegSessionID : in TpSessionID) : void

attachMediaErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
detachMediaRes (callLegSessionID : in TpSessionID) : void

detachMediaErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
getinfoRes (callLegSessionID : in TpSessionID, callLeginfoReport : in TpCallLeglnfoReport) : void
getinfoErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

6.6.1 Method eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of the event type.

If this method isinvoked for a report with a monitor mode of P CALL_MONITOR_MODE_INTERRUPT, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving arelease cause of P TIMER_EXPIRY.

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg on which the event was detected.

eventInfo : in TpCallEventInfo
Specifies data associated with this event.

6.6.2 Method eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(for example, the parameters were incorrect, the request was refused, etc.).

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 52 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

6.6.3 Method attachMediaRes()

This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer
connectionsto thislegis now available.

Parameters

callLegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg to which the information relates.

6.6.4 Method attachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

6.6.5 Method detachMediaRes()

This asynchronous method reports the detachment of a call leg from a call has succeeded. The media channels or bearer
connections to thisleg isno longer available.

Parameters

callLegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg to which the information relates.

6.6.6 Method detachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 53 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

6.6.7 Method getinfoRes()

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg to which the information relates.

callLegInfoReport : in TpCallLegInfoReport
Specifies the call leg information requested.

6.6.8 Method getinfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

6.6.9 Method routeErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

6.6.10 Method superviseRes()

This asynchronous method reports a cal leg supervision event to the application when it has indicated its interest in this
kind of event.

It is also called when the connection to a party is terminated before the supervision event occurs.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 54 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

report : in TpCallSuperviseReport
Specifies the situation which triggered the sending of the call leg supervision response.

usedTime : in TpDuration
Specifies the used time for the call leg supervision (in milliseconds).

6.6.11 Method superviseErr()

Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

6.6.12 Method callLegEnded()

This method indicates to the application that the leg has terminated in the network. The application has received all
requested results (e.g. getlnfoRes) related to the call leg. The call leg will be destroyed after returning from this method.
Parameters

callLegSessionID : in TpSessionID
Specifiesthe call leg session ID of the call leg.

cause : in TpReleaseCause
Specifies the reason the connection is terminated.

7 MultiParty Call Control Service State Transition
Diagrams

7.1 State Transition Diagrams for
IpMultiPartyCallControlManager

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 55 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

“managerinterrupted

Interrupted

IpAccess.terminateSeniceAgreement
‘new'

IpAccess.terminateSeniceAgreement

7N
() ®
Figure : Application view and the Multi-Party Call Control Manager

7.1.1 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to
indicate that it isinterested in call related events. In case such an event occurs, the Manager will create a Call object
with the appropriate number of Call Leg objects and inform the application. The application can also indicate it is no
longer interested in certain call related events by calling destroyNotification().

7.1.2 Interrupted State

When the Manager isin the Interrupted state it is temporarily unavailable for use. Events requested cannot be
forwarded to the application and methods in the API cannot successfully be executed. A number of reasons can cause
this: for instance the application receives more notifications from the network than defined in the Service Agreement.
Another example is that the Service has detected it receives no notifications from the network due to e.g. alink failure.

7.1.3 Overview of allowed methods

Call Control Manager State Methods applicable

Active createCall,
createNotification,
destroyNotification,
changeNotification,
getNextNotification,
setCallLoadControl,
enableNotifications,
disableNotifications

Interrupted getNextNotification,
enableNotifications,
disableNotifications

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 56 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

7.2 State Transition Diagrams for [pMultiPartyCall

The state transition diagram shows the application view on the MultiParty Call object.

When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a
notification with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, an activity timer is started. The
activity timer is stopped when the application invokes a method on the IpMultiPartyCall. The action upon expiry of this
activity timer isto invoke callEnded() on the IpAppMultiPartyCall with arelease cause of P_TIMER_EXPIRY. Inthe
case when no I pAppMultiPartyCall is available on which to invoke callEnded(), call Aborted() shall be invoked on the
IpAppMultiPartyCall Control M anager as this is an abnormal termination.

' IpMultiPartyCallManager.createCall { IDLE }

oming call]
ApAppMultiPartyCallCo IManager.reportNotification

creatéCallLeg

ACTIVE

deassign
'last leg released'
deassignCall
A /
RELEASED callEnded \@
A\
A timer mechanisem preventsthatthe object AN

kee ps occupying resources. In case the timer
expires, callEnded()isinwledon the

IpAppM ul tiP artyCal | with a rele ase cause of
P_TIMER_EXPIRY. Inthe case when no

IpAppM ultiP artyCall isavailable on which to invoke
callEnded(), callAborted () shall be invoked on the
IpAppM ultiP artyCal IControIManagerasthisis an
abnormal termination.

Figure : Application view on the MultiParty Call object

7.2.1 IDLE State
In this state the Call object has no Call Leg object associated to it.
The application can request for charging related information reports, call supervision, set the charge plan and set Advice

Of Charge indicators. When the first Call Leg object is requested to be created a state transition is made to the Active
state.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 57 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

7.2.2 ACTIVE State

In this state the Call object has one or more Call Leg objects associated to it. The application is allowed to create
additional Call Leg objects.

Furthermore, the application can request for call supervision. The Application can request charging related information
reports, set the charge plan and set Advice Of Charge indicatorsin this state prior to call establishment.

7.2.3 RELEASED State

In this state the last Call leg object has released or the call itself was released. While the call isin this state, the
requested call information will be collected and returned through getinfoRes() and / or superviseRes(). As soon as all
information is returned, the application will be informed that the call has ended and Call object transition to the end
state.

7.2.4 Overview of allowed methods

Methods applicable Call Control Call Call Control
State Manager State

getCallLegs Idle, Active, Released | -

createCallLeg, Idle, Active Active

createAndRouteCallL

egReq,

setAdviceOfCharge,

superviseReq,

release Active Active

deassignCall Idle, Active -

setChargePlan, Idle, Active Active

getinfoReq

7.3 State Transition Diagrams for IpCallLeg

The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams, one for the originating call leg
and one for the terminating call leg.

Call Leg State Model General Objectives:

1) Eventsin backwards direction (upstream), coming from terminating leg, are not directly visible in originating leg
model. NOTE1

2) Eventsin forwards direction (downstream), coming from originating leg, are not directly visible in terminating
leg model. NOTE1

3) States are as seen from the application: if there is no change in the method an application is permitted to apply
on the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or aerting events on
terminating leg do not change state. NOTE 2

4) Call processing is suspended if for aleg a network event is met, which was requested to be monitored in the
P_CALL_MONITOR_MODE_INTERRUPT. The application shallsend a request to continue processing (using
an appropriate method like continueProcessing, deassign, release or routeReq) for each leg and event reported in
monitor mode ‘interrupt’.

If the event leads to a state transition, the call processing is suspended when entering the state.

5) In case on aleg more than one network event (for example amid-call event ‘service_code’ and a disconnection
event) isto be reported to the application at quasi the same time, then the events are to be reported one by one to
the application in the order received from the network. When for aleg an event isreported in interrupt mode, a
next pending event is not to be reported to the application until arequest to resume call processing for the current
reported event has been received on the leg.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 58 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

NOTEL: Although events coming from a specific party will always be tied to the callLeg related to that party, these
events might lead to state transitions of other callLegs. Examples of such events are terminating release,
where also the originating leg might transit to the releasing state and originating_release where the
terminating leg might transit to the releasing state.

NOTEZ2: Even though there in the Originating Call Leg STD is no change in the methods the applicationis
permitted to apply to the IpCallLeg object for the states Analysing and Active, separate states are
maintained. The states may therefore from an application viewpoint appear asjust one state that may be
have substates like Analysing and Active. The digit collection task in state Analysing state may be viewed
as a specialised task that may not at all be applicable in some networks and therefore here described as
being a state on its own.

7.3.1 Originating Call Leg

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 59 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Originating Call Leg. ﬁ
‘originating call attempt authorizem
IpAppMultiPartyCallControlManager.
Initiatin reportNotification(originating Call Attem
attachMedia g ‘ P (orig 9 2l
detachMedia
‘ IpAppMultiPartyCallControlManager
reportNotification(originating Call AttemptAuthorized)
'Address Collected'
‘networkRelease’

'Address_Cdlected'

attachMedia
detachMedia

"networkr elease’

'Address Analysed'

‘originating service_code'

Active IpAppMultiPartyCallControlManager.
reportNotification(address_analysed)

attachMedia

detachMedia
| pApp Mul tiPartyCallControlManager.

reportNotification(or iginaing ser\vce cade)

‘network release’

\

‘ Releasing

All States release do/ send reports if requested, or error reports if required
‘timer expiry ‘

deasign

Manager.
reportNotification(originating
release)

~@

NpAppCallLeg .callLegEnded

Transitions/events not shown:

All states:

continueProcessing, getLastRedirectedAddress, getCall: no state change
All states except Releasing:

eventReportReq, setAdviceOfCharge, getinfoReq, superviseReq,
setChargePlan

Figure : Originating Leg

7.3.1.1 Initiating State
Entry events:

- Sending of areportNotification() method by the IpMultiPartyCall ControlManager for an
'Originating_Call_Attempt' initial notification criterion.

- Sending of areportNotification() method by the IpMultiPartyCall ControlManager for an
'‘Originating_Call_Attempt_Authorised' initial notification criterion.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 60 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Functions:

In this state the network checks the authority/ability of the party to place the connection to the remote (destination)
party with the given properties, e.g. based on the originating party’ sidentity and service profile.

The setup of the connection for the party has been initiated and the application activity timer is being provided.

The figure below shows the order in which network events may be detected in the Initiating state and depending on the
monitor mode be reported to the application.

Initiating See OREL
State Note2

__ b oCA |__,J oCAA |_|] AC

See Notel

Note 1: Event oCA only applicable as an initial notification .

Note 2: The release event (OREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:

oCA: originating Call Attempt;

0CAA originating Call Attempt Authorized;

AC: Address Collected;

OREL originating RELease.

Figure : Application view on event reporting order in Initiating State

In this state the following functions are applicable:
- The detection of a'Originating_Call_Attempt' initial notification criterion.

- Thedetection of an 'Originating_Call_Attempt_Authorised' initial notification criterion as aresult that the call
attempt authorisation is successful.

- Thereport of the 'Originating_Call_Attempt_Authorised' event indication whereby the following functions are
performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is reported and call leg processing is
suspended.

i) WhentheP CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing
continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed.

- Thereceipt of destination address information, i.e. initial information package/dialling string as received from
caling party.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 61 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.
Exit events:

- Availability of destination address information, i.e. the initial information package/dialling string received from
the calling party.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg.

Receipt of adeassign() method.

Receipt of arelease() method.

Detection of a'originating release’ indication as aresult of a premature disconnect from the calling party.

7.3.1.2 Analysing State
Entry events:

- Availability of an 'Address_Collected' event indication as a result of the receipt of the (complete) initial
information package/dialling string from the calling party.

- Availability of an 'Address_Collected' event indication as a result of additional digits received from the calling
party as requested by the application (with eventReportReq).

- Sending of areportNotification() method by the I pM ultiPartyCall ControlManager for an ‘Address_Collected'
initial notification criterion.

Functions:
In this state the destination address provided by the calling party is collected and analysed.

The received information (dialled address string from the calling party) is being collected and examined in accordance
to the dialing plan in order to determine end of address information (digit) collection. Additional address digits can be
collected. Upon completion of address collection the address is analysed.

The address analysis is being made according to the dialling plan in force to determine the routing address of the call
leg connection and the connection type (e.g. local, transit, gateway).

The reguest (with eventReportReq method) to collect a variable number of more address digits and report them to the
application (within eventReportRes method) is handled within this state. The collection of more digits as requested and
the reporting of received digits to the application (when the digit collect criteriais met) is donein this state. This action
can be repeated, e.g. the application may request first for 3 digits to be collected and when reported request further
digits.

The figure below shows the order in which network events may be detected in the Analysing state and depending on the
monitor mode be reported to the application.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 62 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

OREL

Analysing Notel >
State

0CAA . AC S AA

Note 1: The release event (OREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:

0CAA: originating Call Attempt Authorized;

AC: Address Collected;

AA: Address Analysed;

OREL.: originating RELease.

Figure : Application view on event reporting order in Analysing State

In this state the following functions are applicable;
- The detection of an'Address_Collected' initial notification criterion.
- Onreceipt of the '‘Address_Collected' indication the following functions are performed:

i) WhentheP CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ADDRESS_COLLECTED then the event is reported and call leg processingis
suspended.

i) WhentheP CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ADDRESS COLLECTED then no monitoring is performed.

- Receipt of an eventReportReq() method defining the criteria for the events the call leg object is to observe.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq()
method.

Exit events:

- Detection of an 'Address Analysed' indication as a result of the availability of the routing address and nature of
address.

- Receipt of adeassign() method.
- Receipt of arelease() method.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg.

- Detection of a'originating release’ indication as aresult of a premature disconnect from the calling party.

7.3.1.3 Active State

Entry events:

- Receipt of an 'Address Analysed' indication as a result of the availability of the routing address and nature of
address.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 63 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Sending of areportNotification() method by the IpMultiPartyCallControlManager for an 'Address_Analysed'

initial indication criterion.

Functions:

In this state the call leg connection to the calling party exists and originating mid call events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

See Notel See
ﬂ Note2
0oSC AN
f
AC
o AA OREL
Active
State

Note 1: Only the detected service code or the range to which the service code belongs is disarmed as the service

code is reported to the application.

Note 2: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:
AC: Address Collected;

AA: Address Analysed;

0SC: originating Service Code;
OREL: originating RELease.

Figure : Application view on event reporting order Active State

In this state the following functions are applicable:

The detection of an Address_Analysed initia indication criterion.
On receipt of the'Address Analysed' indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then the event isreported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ADDRESS ANALY SED then no monitoring is performed.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

When entering this state the routing information is interpreted, the authority of the calling party to establish this
connection is verified. Note that no call leg connection is set up to the remote party at this point when the
application is till in control. The application explicitly has to create and route the terminating leg, optionally
using the address information from the Address_Analysed event. Only in case the call is deassigned (the

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 64 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

application relinguishes control) in this state, the network will setup the connection to terminating leg
automatically based on the received information.

In this state a connection to the calling party is established.
On receipt of the 'originating_service code' indication the following functions are performed:

i) WhentheP CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then the event is reported and call leg processing is
suspended.

i) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODED then the event is notified and call leg processing
continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

Detection of an 'originating release’ indication as aresult of a disconnect from the calling party.
Detection of a propagated disconnect from the called party

Receipt of adeassign() method.

Receipt of arelease() method from the application.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period while call processing is suspended.

7.3.1.4 Releasing State

Entry events:

Detection of an 'Originating_Release' indication as aresult of the network release initiated by calling party.
Propagated release from called party.

Release of the entire call (e.g., after invoking IpCall.release())

Reception of the release() method from the application.

A transition due to fault detection to this state is made when the Call leg object isin a state and no reguests from
the application have been received during a certain time period (timer expiry).

Functions:

In this state the connection to the call party is released as requested by the network or by the application and the reports
are processed and sent to the application if requested.

When the Releasing state is entered the order of actions to be performed is as follows:

i) The network release event handling is performed.

ii) The possible call leg information requested with getlnfoReq() and/ or superviseReq() is collected and send to
the application.

iii) The callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

In this state the following functions are applicable:

The detection of an 'originating_release' initial indication criterion..

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 65 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

- Onreceipt of the ‘originating_release’ indication the following functions are performed:
- The network release event handling is performed as follows:

i) WhentheP_ CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_RELEASE then the event is reported and call leg processing is suspended.

i) WhentheP CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_RELEASE then no monitoring is performed.

Note that this handling is not performed for propagated rel eases from the called party.
- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- Thepossible cal leg information requested with the getlnfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getinfoRes() and/or superviseRes() methods.

- ThecallLegEnded() method is sent to the application after al information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

- Incase of abnormal termination due to afault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the
application isinformed that the call leg object is destroyed (callLegEnded) and the leg isreleased in the
network.

Note: the call in the network may continue or be released, depending e.g. on the call state.

- Incasetherelease() method is received in Releasing state it will be discarded. The request from the application
to release the leg isignored in this case because release of the leg is aready ongoing.

Exit events:

- Incasethat the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application isinformed that the call leg connection has ended, by
sending the callLegEnded() method.

- After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the call LegEnded()
method.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg (re-enter releasing state).

- Receipt of adeassign() method. The leg will be released and call leg object destroyed, but no reports will be sent
to the application anymore. Also no CallLegEnded will be invoked.

7.3.1.5 Overview of allowed methods, Originating Call Leg STD

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 66

State

Methods allowed

Initiating

getProperties

setProperties

attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall ,

continueProcessing,

release (call leg),

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Analysing

getProperties

setProperties

attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall ,

continueProcessing,

release (call leg),

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active

getProperties
setProperties
attachMediaReq,
detachMediaReq,
getCall,
continueProcessing,
release

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing

getCall ,
continueProcessing,
release

deassign

7.3.2

Terminating Call Leg

ETSI

ETSI TS 129 198-4-3 V8.0.0 (2009-01)

3GPP TS 29.198-04-3 version 8.0.0 Release 8 67 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Terminating Call Leg. ﬁ

Idle

terminatini
(9 IpMultiPartyCall .createCallLeg '

routeReq

IpPAppMuulti Party CallControlManager.r
‘terminating call attempt authorized', eportNotification(“terminating call
‘alerting’, 'answer’, ‘terminating senfce attempt”, "terminating call attempt
code', 'redirected’, ‘queued' authorised", “alerting”, "answer",
"terminating senice code",
Active “redirected”, "queued")
(terminating)

attachMedia

detachMedi ’
etachiedia IpMultiPartyCall.createAndRouteCallLegReq
‘network|release’
All States release ‘ Releasing (terminating)
(terminating) i o 5 5 o IpAppMultiParty CallControlManager.
imer expiry ‘ do/ send reports if requested, or emor reports if requir.... reportNotification(terminating

release)

NpAppCallLeg.callLegEnded

®

deasign

Transitions/events not shown: N
All states:

continueProcessing, getLastRedirectedAddress, getCall, sending getinfoRes,
supeniseRes: no state change,

All states except Releasing:

ewventReportReq, setAdviceOfCharge, getinfoReq, superviseReq, setChargePlan.

When the application is notified in reportNotfication of an call related network event
associated with the Terminating Call Leg STD, then the Originating Call Leg STD is
created and is initialized to be in the Active state.

Figure : Terminating Leg

7.3.2.1 Idle (terminating) State
Entry events:
- Receipt of acreateCallLeg() method to start an application initiated call leg connection.
Functions:
In this state the call leg object is created and the interface connection isidled.

The application activity timer is being provided.

In this state the following functions are applicable:
- Invoking routeReq will result in arequest to actually route the call leg object and resumption of call processing.
Exit events:

- Receipt of arouteReq() method from the application.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 68 ETSI TS 129 198-4-3 vV8.0.0 (2009-01)

- Application activity timer expiry indicating that no requests from the application have been received during a

certain period to continue processing.

- Receipt of adeassign() method.

- Receipt of arelease() method.

- Propagation ofa network release event as aresult of a disconnect from the calling party.

- Application activity timer expiry indicating that no requests from the application have been received during a

certain period while processing is suspended for the leg.
7.3.2.2 Active (terminating) State
Entry events:

- Receipt of arouteReq will result in actually routing the call leg object.

- Receipt of acreateAndRouteCallLegReq() method to start an application initiated call leg connection.

- Sending of areportNotification() method by the IpMultiPartyCall ControlManager for the following trigger
criteriac 'Terminating_Call_Attempt’, Terminating_Call_Attempt_Authorised’, 'Alerting’, 'Answer’,
Terminating service code, 'Redirected' and '‘Queued'.

Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified
for the call leg connection. In this state a connection to the call party is established whereby events from the network
may indicate to the application when the party is alerted (acknowledge connection setup) and when the party answer
(confirmation of connection setup).

Furthermore, in this state terminating service code events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 69 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Active
State
Note3 \\
tCA 1—» I | tREL
Note 1
Note2 p tSC

Note 1: Event tCA applicable as initial notification.

Note 2: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application.

Note 3: The release event (tREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

tCA: Terminating Call Attempt;

tCAA: terminating Call Attempt Authorized;
AL: Alerting;

ANS: Answer;

tREL: terminating RELease;

Q: Queued;

RD: ReDirected;

tSC: terminating Service Code.

Figure : Application view on event reporting order in Active State

In this state the following functions are applicable:

- The detection and report of the ‘Terminating_Call_Attempt_Authorised' event indication whereby the following
functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is reported and call
leg processing is suspended.

i) WhentheP CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING _CALL_ATTEMPT_AUTHORISED then the event is notified and call
leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_CALL_TERMINATING_ATTEMPT_AUTHORISED then no monitoring is performed.

- Detection of an 'Queued' indication as aresult of the terminating call being queued.
- On receipt of the '‘Queued' indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_QUEUED then the event is reported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 70 ETSI TS 129 198-4-3 vV8.0.0 (2009-01)
iii) Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_QUEUED then no monitoring is performed.
- On receipt of the 'Alerting’ indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_ALERTING then the event is reported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ALERTING then no monitoring is performed.

- Detection of an 'Answer' indication as a result of the remote party being connected (answered).
- On receipt of the '‘Answer' indication the following functions are performed:

i) WhentheP CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ANSWER then the event isreported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_ANSWER then no monitoring is performed.

- The detection of a'service _code' trigger criterion suspends call leg processing.
- Onreceipt of the 'service code' indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then the event is reported and call leg processing is
suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE CODE then thisis not avalid event (that event is not
notified) and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then no monitoring is performed.

- Onreceipt of the 'redirected' indication the following functions are performed:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is reported and call leg processing is suspended.

ii) WhentheP_CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is notified and call leg processing continues.

iii) Whenthe P_CALL_MONITOR_MODE DO _NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_REDIRECTED then no monitoring is performed.

- Resumption of call leg processing occurs on receipt of a continueProcessing() method.
Exit events:
- Detection of a network release event being a 'terminating release’ indication as aresult of the following events:

i) Unable to select aroute or indication from the remote party of the call leg connection cannot be presented
(thisisthe network determined busy condition).

i) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 71 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

iii) Detection of aroute busy condition received from the remote call leg connection portion.
iv) Detection of a no-answer condition received from the remote call leg connection portion.
v) Detection that the remote party was not reachable.

- Propagation of a network release event as aresult of the following events:
- Detection of a premature disconnect from the calling party.

- Receipt of adeassign() method.

- Receipt of arelease() method from the application.

- Propagation of network release event as aresult of a disconnect from the calling party .

- Detection of a network release event being a 'terminating release’ indication as aresult of a disconnect from the
caled party.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg.
7.3.2.3 Releasing (terminating) State
Entry events:
- Propagation ofa network release disconnect from the calling party.

- Detection of a network release event being a 'terminating release’ indication as a result of the network release
initiated by called party.

- Release of the entire call (e.g. after invoking IpCall.release())
- Sending of the release() method by the application.

- A transition due to fault detection to this state is made when the Call leg object awaits a request from the
application and thisis not received within a certain time period.

- Detection of a network event being a 'terminating release’ indication as aresult of the following events:

i) Unableto select aroute or indication from the remote party of the call leg connection cannot be presented
(thisis the network determined busy condition).

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of aroute busy condition received from the remote call leg connection portion.
iv) Detection of a no-answer condition received from the remote call leg connection portion.
v) Detection that the remote party was not reachable.
- Propagation of anetwork release event as aresult of the following events:
- Detection of a premature disconnect from the calling party.
Functions:

In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested .

When the Releasing state is entered the order of actionsto be performed is as follows:
i) Therelease event handling is performed.

ii) The possible cal leg information requested with getlnfoReq() and/ or superviseReq() is collected and send to the
application.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 72 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

iii) The callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or afault (e.g. timer expiry, no response from application) has been detected, then i) is not
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested
reports.

In this state the following functions are applicable;
- Thedetection of a Terminating Release' trigger criterion.

- Onreceipt of the network release event being a Terminating Release' indication the following functions are
performed:

- The network release event handling is performed as follows:

i) WhentheP_CALL_MONITOR_MODE_INTERRUPT isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is reported and call leg processing is
suspended.

i) WhentheP CALL_MONITOR_MODE_NOTIFY isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is notified and call leg processing
continues.

iii) Whenthe P_CALL_MONITOR_MODE_DO_NOT_MONITOR isrequested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then no monitoring is performed.

Note that this handling is not performed for propagated rel eases from the calling party.
- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- The possible call leg information requested with the getlnfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getinfoRes() and/or superviseRes() methods.

- ThecallLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

- Incase of abnormal termination due to a fault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the application
isinformed that the call leg object is destroyed (callLegEnded) and the leg is released in the network.

NOTE: Thecall inthe network may continue or be released, depending e.g. on the call state.

- In case the release() method is received in Releasing state it will be discarded. The request from the
application to release the leg isignored in this case because release of the leg is already ongoing.

Exit events:

- In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application isinformed that the call leg connection has ended, by
sending the callLegEnded() method.

- After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the call LegEnded()
method.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg (re-enter releasing state).

- Receipt of adeassign() method. The leg will be released and call leg object destroyed, but no reports will be sent
to the application anymore. Also no CallLegEnded will be invoked.

7.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 73

State

Methods allowed

Idle

routeReq,

getCall ,
getCurrentDestinationAddress,
release,

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active

getProperties
setProperties
attachMediaReq
detachMediaReq
getCall ,
getCurrentDestinationAddress,
continueProcessing,
release,

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing

getCall ,
getCurrentDestinationAddress,
continueProcessing,

release,

deassign

ETSI TS 129 198-4-3 V8.0.0 (2009-01)

8

8.1

Multi-Party Call Control Service Properties

List of Service Properties

The following table lists properties relevant for the MPCC API.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 74

ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Property

Type

Description / Interpretation

P_TRIGGERING_EVENT_TYPES

INTEGER_SET

Indicates the static event types supported by the SCS. Static
events are the events by which applications are initiated.

P DYNAMIC_EVENT_TYPES

INTEGER_SET

Indicates the dynamic event types supported by the SCS.
Dynamic events are the events the application can request
for during the context of acall.

P_ADDRESSPLAN

INTEGER_SET

Indicates the supported address plans (defined in
TpAddressPlan.) eg. {P_ADDRESS PLAN_E164,
P_ADDRESS_PLAN_IP}). Note that more than one
address plan may be supported.

P_Ul_CALL_BASED

BOOLEAN_SET

Value = TRUE : User interaction can be performed on call
level and areference to a Call object can be used in the
IpUIManager.createUICall() operation.

Value = FALSE: No User interaction on call level is
supported.

P Ul_AT ALL_STAGES

BOOLEAN_SET

Value = TRUE: User Interaction can be performed at any
stage during acall .

Value = FALSE: User Interaction can be performed in case
thereis only one party in the call.

P_MEDIA_TYPE

INTEGER_SET

Specifies the media type used by the Service. Values are
defined by data-type TpMediaType: P_AUDIO,
P VIDEO, P DATA.

P_MAX_CALLLEGS PER CALL

INTEGER_SET

Indicates the maximum number of legsin acall for which a
connection to acall party existsin the network. The
enforcement of this property is done only when alegis
created or routed by the application.

P_UI_CALLLEG BASED

BOOLEAN_SET

Value = TRUE : User interaction can be performed on leg
level and areference to a CallLeg object can be used in the
IpUIManager.createU1Call() operation.

Value= FALSE : No user interaction on leg level is
supported.

P_CALLLEG_PROPERTIES

STRING_SET

Indicates which of the user identity fields are available,
valid values are given by TpCallL egPropertiesName.

P_PARALLEL_INITIAL_ROUTING REQUESTS

BOOLEAN_SET

Indicates whether for application initiated callsit is possible
to issue multiple routing request methods in parallel or that
the application has to wait for the result of the first request
before another one can be invoked.

Value = TRUE: Multiple routing requests can be invoked in
paralel.

Value = FALSE: Result of first request hasto be received
before another request can be issued.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 75 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

The previous table lists properties related to capabilities of the SCSitself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the
SCS.

Property Type Description

P_NOTIFICATION_ADDRESS RANGES XML_ADDRESS RANGE_SET | Indicates for which numbers notifications may be set. More
than one range may be present. For terminating
notifications they apply to the terminating number, for
originating notifications they apply only to the originating

number.

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed to monitor in
interrupt and/or notify mode. Set is:
P_INTERRUPT
P_NOTIFY

P_NUMBERS TO BE _CHANGED INTEGER_SET Indicates which numbers the application is allowed to
change or fill for legsin an incoming call. Allowed value
Set:

{P_ORIGINAL_CALLED_PARTY_NUMBER,
P_REDIRECTING_NUMBER,
P_TARGET_NUMBER,
P_CALLING_PARTY_NUMBERY}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is alowed in the
setCallChargePlan indicator. Allowed values:

{P_TRANSPARANT_CHARGING,
P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP Indicates the mapping of chargeplans (we assume they can
be indicated with integers) to alogical network chargeplan
indicator. When the chargeplan supports indicates
P_CHARGE_PLAN then only chargeplansin this mapping
are alowed.

P_HIGH_PROBABILITY_OF COMPLETION | BOOLEAN_SET Value = TRUE : high probability of call completion field
can be set.

Value = FALSE : high probability of call completion field
can not be set. FALSE isthe default value.

The following table explains how the P_TRIGGERING_ADDRESSES property that is inherited via the Generic Call
Control properties should be interpreted with respect to which of the notifications apply to originating numbers and
which of the notifications apply to terminating numbers.

P_CALL EVENT ORIGINATING CALL ATTEMPT Originating
P_CALL EVENT ORIGINATING CALL_ATTEMPT AUTHORISED Originating
P_CALL_EVENT_ADDRESS_COLLECTED Originating
P_CALL EVENT_ADDRESS_ANALYSED Originating
P_CALL EVENT ORIGINATING_ SERVICE_CODE Originating
P_CALL EVENT ORIGINATING RELEASE Originating
P_CALL EVENT TERMINATING_ CALL_ATTEMPT Terminating
P_CALL EVENT TERMINATING_ CALL_ATTEMPT AUTHORISED Terminating
P_CALL EVENT ALERTING Terminating
P_CALL EVENT ANSWER Terminating
P_CALL EVENT TERMINATING RELEASE Terminating
P_CALL EVENT REDIRECTED Terminating
P_CALL EVENT TERMINATING_SERVICE_CODE Terminating
P _CALL EVENT QUEUED N/A

8.2 Service Property values for the CAMEL Service
Environment.

I mplementations of the MultiParty Call Control API relying on the CSE of CAMEL phase 4 shall have the Service
Properties outlined above set to the indicated values :

P_OPERATION SET = {

“IpMultiPartyCallControlManager.createCall”,
“IpMultiPartyCallControlManager.createNotification”,

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 76

“IpMultiPartyCallControlManager.destroyNotification”,
“IpMultiPartyCallControlManager.changeNotification”,

“IpMultiPartyCallControlManager.getNextNotification”,
“IpMultiPartyCallControlManager.enableNotifications”,

“IpMultiPartyCallControlManager.disableNotifications”,

“IpMultiPartyCallControlManager.setCallLoadControl”
“IpMultiPartyCall.getCallLegs”,
“IpMultiPartyCall.createCallLeg”,
“IpMultiPartyCall.createAndRouteCallLegReq”,
“IpMultiPartyCall.release”,
“IpMultiPartyCall.deassignCall”,
“IpMultiPartyCall.getInfoReq”,
“IpMultiPartyCall.setChargePlan”,
“IpMultiPartyCall.setAdviceOfCharge”,
“IpMultiPartyCall.superviseReq”,
“IpCallLeg.routeReqg”,
“IpCalllLeg.eventReportReq”,
“IpCallLeg.release”,

“IpCallLeg.getInfoReq”,

“IpCalllLeg.getCall”,
“IpCallLeg.continueProcessing”

P_TRIGGERING_EVENT TYPES = {

P_CALL_EVENT ADDRESS_COLLECTED,
P_CALL_EVENT ADDRESS ANALYSED,

P_CALL_EVENT ORIGINATING RELEASE,

P_CALL_EVENT TERMINATING_CALL_ATTEMPT AUTHORISED,
P_CALL_EVENT TERMINATING RELEASE

}

ETSI TS 129 198-4-3 V8.0.0 (2009-01)

NOTE: P _CALL_EVENT_ORIGINATING_RELEASE only for the routing failure case, TpReleaseCause =

P_ROUTING_FAILURE.

P _DYNAMIC EVENT TYPES = {

P_CALL_EVENT ALERTING,
P_CALI, EVENT ANSWER,

P CALL EVENT ORIGINATING RELEASE,

P CALL EVENT ORIGINATING SERVICE CODE,
P_CALL_EVENT TERMINATING RELEASE,
P_CALI, EVENT TERMINATING SERVICE_CODE

P_ADDRESS PLAN = {
P_ADDRESS PLAN E164

}

P UI_CALL BASED = {
TRUE

}

P UI AT ALL STAGES = {
FALSE

}
P_MEDIA TYPE = {
P_AUDIO

}

MAX_ CALLLEGS_PER CALL = {

—~— 0 U1 WIN ™

P_UI_CALLLEG_BASED = {
TRUE

}

P_MEDIA_ ATTACH EXPLICIT = {
FALSE

}

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 77 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

9 Multi-Party Call Control Data Definitions

This clause provides the MPCC data definitions necessary to support the API specification.
The general format of a data definition specification is described below:
e DataType
This shows the name of the datatype.
e Description
This describes the data type.
e Tabular Specification
This specifies the data types and values of the data type.
e Example
If relevant, an example is shown to illustrate the data type.
All datatypes referenced in the present document but not defined in this clause are defined either in the common call

control data definitionsin 3GPP TS 29.198-4-1 or in the common data definitions which may be found in
3GPP TS 29.198-2.

9.1 Event Notification Data Definitions

No specific event notification data defined.

9.2 Multi-Party Call Control Data Definitions

9.2.1 IpCallLeg

Defines the address of an IpCallLeg Interface.

9.2.2 IpCallLegRef

DefinesaReference to type IpCalLeg.

9.2.3 IpAppCallLeg

Defines the address of an IpAppCallLeg Interface.

9.24 IpAppCallLegRef

DefinesarReference to type IpAppCallLeg.

9.2.5 IpMultiPartyCall

Definesthe address of an IpMultiPartyCall Interface.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 78 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

9.2.6 IpMultiPartyCallRef

DefinesaRrReference to type IpMultiPartyCall.

9.2.7 IpAppMultiPartyCall

Defines the address of an IpAppMultiPartyCall Interface.

9.2.8 IpAppMultiPartyCallRef

DefinesaReference to type IpAppMultiPartyCall.

9.2.9 IpMultiPartyCallControlManager

Definesthe address of an IpMultiPartyCallControlManager Interface.

9.2.10 IpMultiPartyCallControlManagerRef

DefinesaReference to type IpMultiPartyCall ControlManager.

9.2.11 IpAppMultiPartyCallControlManager

Defines the address of an IpAppMultiPartyCallControlManager Interface.

9.2.12 IpAppMultiPartyCallControlManagerRef

DefinesaRrReference to type IpAppMultiPartyCall ControlManager..

9.2.13 TpAppCallLegRefSet

Definesa Numbered Set of Data Elements of IpAppCallLegRef.

9.2.14 TpMultiPartyCallldentifier

Defines the Sequence of Data Elements that unambiguously specify the Call object.

Sequence Element Sequence Element Sequence Element
Name Type Description
CallReference IpMultiPartyCallRef This element specifies the interface reference for the Multi-party call object.
CallSessionID TpSessionID This element specifiesthe call session ID.

9.2.15 TpAppMultiPartyCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces

Tag Element Type

TpAppMultiPartyCallBackRefType

Tag Element Value Choice Element Type Choice Element Name
P_APP CALLBACK UNDEFINED NULL Undefined
P_APP MULTIPARTY CALL CALLBACK IpAppMultiPartyCallRef AppMultiPartyCall
P_APP CALL LEG CALLBACK IpAppCall LegRef AppCallleg
P APP CALL AND CALL LEG CALLBACK TpAppCallLegCallBack AppMultiPartyCallAndCallLeg

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8

79

9.2.16 TpAppMultiPartyCallBackRefType

Defines the type application call back interface.

ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Name Value Description
P_APP CALLBACK UNDEFINED 0 Application Call back interface undefined
P_APP_MULTIPARTY CALL_ CALLBACK 1 Application Multi-Party Call interface
referenced
P_APP_CALL_ LEG_CALLBACK Application CallLeg interface referenced
P_APP_CALL_AND CALL_LEG_ CALLBACK 3 Application Multi-Party Call and CallLeg
interface referenced

9.2.17 TpAppCallLegCallBack

Defines the Sequence of Data Elements that referencesacall and acall leg application interface.

Sequence Element Name

Sequence Element Type

AppMultiPartyCall

IpAppMultiPartyCallRef

AppCallLegSet

TpAppCallLegRef Set

Specifies the set of al call leg call back
references. First in the set isthe reference
to the call back of the originating callLeg.
In case thereis acall back to a destination

call leg thiswill be second in the set.

9.2.18 TpMultiPartyCallldentifierSet

DefinesaNumbered Set of Data Elements of TpMultiPartyCallldentifier.

9.2.19 TpCallApplinfo

Definesthe Tagged Choice of Data Elements that specify application-related call information.

Tag Element Type

TpCallAppInfoType

Tag Element
Value

Type

Choice Element

Choice Element
Name

P CALL APP ALERTING MECHANISM

TpCallAlertingMechanism

CallAppAlertingMechanism

P CALL APP NETWORK ACCESS TYPE

TpCallNetworkAccessType

CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService
P_CALL_APP_BEARER SERVICE TpCallBearerService CallAppBearerService
P_CALL_APP_PARTY CATEGORY TpCallPartyCategory CallAppPartyCategory
P_CALL_APP_PRESENTATION_ ADDRESS TpAddress CallAppPresentationAddress
P_CALL_APP GENERIC_INFO TpString CallAppGenericInfo
P_CALL_APP_ADDITIONAL_ ADDRESS TpAddress CallAppAdditionalAddress
P_CALL_APP ORIGINAL DESTINATION ADDRESS | TpAddress CallAppOriginalDestinationAddress
P_CALL_APP_REDIRECTING_ADDRESS TpAddress CallAppRedirectingAddress

P_CALL_APP_HIGH PROBABILITY COMPLETION

TpCallHighProbabilityComple
tion

CallHighProbabilityCompletion

P_CALL_APP_CARRIER

TpCarrierSet

CallAppCarrier

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8

9.2.20 TpCallAppinfoType

80

ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Defines the type of call application-related specific information.

Name Value Description
P_CALL_APP_UNDEFINED 0 Undefined
P_CALL APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use
P_CALL APP NETWORK ACCESS TYPE 2 The network access type (e.g. ISDN)
P_CALL APP TELE SERVICE 3 Indicates the tele-service (e.g. telephony)
P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64 kbit/s unrestricted data)
P_CALL_APP_PARTY CATEGORY 5 The category of the calling party
P_CALL APP_ PRESENTATION ADDRESS 6 The address to be presented to other call parties
P_CALL APP GENERIC INFO 7 Carries unspecified service-service information
P_CALL APP_ADDITIONAL_ADDRESS 8 Indicates an additional address
P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS 9 Contains the original address specified by the originating user when

launching the call

P_CALL_APP_REDIRECTING_ADDRESS 10 Contains the address of the user from which the call isdiverting
P_CALL_APP_HIGH_PROBABILITY_ COMPLETION 11 Indicates high probability of completion and its priority
P_CALL_APP_CARRIER 12 Indicates the set of Carrier identifications to be used to route the call

9.2.21 TpCallAppinfoSet

DefinesaNumbered Set of Data Elements of TpCallApplnfo.

9.2.22 TpCallEventRequest

Definesthe Sequence of Data Elements that specify the criteriarelating to call report requests.

Sequence Element Name

Sequence Element Type

CallEventType

TpCallEventType

AdditionalCallEventCriteria

TpAdditional CallEventCriteria

CallMonitorMode

TpCallMonitorMode

9.2.23 TpCallEventRequestSet

DefinesaNumbered Set of Data Elements of TpCallEventRequest.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 81 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

9.2.24 TpCallEventType

Defines a specific call event report type.

Name Value Description

P_CALL_EVENT_UNDEFINED 0 Undefined

P_CALL_EVENT ORIGINATING_ CALL_ATTEMPT 1 An originating call attempt takes place (e.g. Off-hook event).

P_CALL EVENT ORIGINATING CALL_ ATTEMPT AUTHORISED 2 An originating call attempt is authorised

P_CALL_EVENT ADDRESS_COLLECTED 3 The destination address has been collected

P_CALL EVENT ADDRESS_ANALYSED 4 The destination address has been analysed

P_CALL EVENT ORIGINATING SERVICE CODE 5 Mid-call originating service code received

P_CALL EVENT ORIGINATING RELEASE 6 A originating call/call leg is released

P_CALL EVENT TERMINATING CALL_ ATTEMPT 7 A terminating call attempt takes place

P_CALL EVENT TERMINATING CALL_ATTEMPT AUTHORISED 8 A terminating call is authorized

P_CALL EVENT ALERTING 9 Call isalerting at the call party

P_CALL EVENT ANSWER 10 Call answered at address

P_CALL EVENT TERMINATING RELEASE 11 A terminating call leg has been released or the call could not

be routed

P_CALL_EVENT REDIRECTED 12 Call redirected to new address: an indication from the network

that the call has been redirected to a new address (no events
disarmed as aresult of this)
P_CALL EVENT TERMINATING SERVICE_CODE 13 Mid call terminating service code received
P_CALL_EVENT QUEUED 14 The Call Event has been queued. (no events are disarmed asa
result of this)

EVENT HANDLING RULES:

The following general event handling rules apply to dynamically armed events:

When requesting events for one leg;

e When the monitor modeissetto P_ CALL_MONITOR_MODE_DO_NOT_MONITOR al events armed for that
eventtype are disarmed. The additional EventCriteria are not taken into account.

e When reguesting two events for the same event type with different criteria and/or different monitor mode the last

used criteria and monitor mode apply.

e Eventsthat are not applicable to aleg are refused with exception P_INVALID_EVENT_TYPE. The same
exception is used when criteria are used that are not applicable to the leg,
e.g., requesting P CALL_EVENT_TERMINATING_SERVICE_CODE on an originating leg is refused with

exception P_INVALID_CRITERIA.

When P_CALL_EVENT_ORIGINATING_RELEASE is requested with P_BUSY in the criteriathe request is

refused with the same exception.

When receiving events:

o [f anarmed eventis met, then it is disarmed, unless explicit stated that it will not to be disarmed.

e |If an event is met that causes the release of the related leg, then al eventsrelated to that leg are disarmed .

e When an event is met on acall leg irrespective of the event monitor mode, then only events belonging to that call

leg may become disarmed (see table below) .

e |facdlisreleased, then dl events related to that call are disarmed.

NOTE 1: Event disarmed means monitor modeis set to DO_NOT_MONITOR. and
event armed means monitor mode is set to INTERRUPT or NOTIFY ..

The table below defines the disarming rules for dynamic events. In case such an event occurs on acal leg the table
shows which events are disarmed (are not monitored anymore) on that call leg and should be re-armed by
eventReportReq() in case the application is still interested in these events.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8

82 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Event Occurred

Events Disarmed

P_CALL_EVENT_UNDEFINED

Not Applicable

P_CALL_EVENT_ ORIGINATING_ CALL_ ATTEMPT

Not applicable, can only be armed astrigger

P_CALL_EVENT_ ORIGINATING CALL ATTEMPT_ AUTHORISED

P_CALL_EVENT_ ORIGINATING CALL ATTEMPT_ AUTHORISED

P_CALL_EVENT_ ADDRESS COLLECTED

P_CALL_EVENT_ADDRESS COLLECTED

P CALL EVENT ADDRESS ANALYSED

P CALL_EVENT ADDRESS COLLECTED
P_CALL_EVENT_ADDRESS ANALYSED

P_CALL_EVENT ALERTING

P CALL_EVENT ALERTING
P_CALL_EVENT_TERMINATING_RELEASE with criteria:
P_USER_NOT_AVAILABLE

P BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_CALL_EVENT ANSWER

P _CALL_EVENT ALERTING
P_CALL_EVENT_ANSWER
P_CALL_EVENT_TERMINATING_RELEASE with criteria:
P_USER NOT_AVAILABLE

P BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_NO_ANSWER

P_CALL_EVENT ORIGINATING RELEASE

All pending network events for the call leg are disarmed

P_CALL_EVENT_ TERMINATING RELEASE

All pending network events for the call leg are disarmed

P_CALL_ EVENT ORIGINATING SERVICE_ CODE

P_CALL_EVENT_ORIGINATING_SERVICE_CODE *) see NOTE 2

P_CALL_EVENT_ TERMINATING SERVICE_CODE

P_CALL_EVENT _TERMINATING_SERVICE_CODE *) see NOTE 2

NOTE 2: Only the detected service code or_the range to which the service code belongs is disarmed.

NOTE 3: ON MAPPING EVENTYPESTO IN TRIGGER DETECTION POINTS (TDPs):
When the eventtypes as defined above are used for requesting the initial notification (with
createNotification), not all events have a one to one correspondence with a Trigger Detection Point
(TDP). For instance, when the underlying network is ITU-T CS2 based, one cannot distinghuish in
createNotification whether the P_CALL_EVENT_ORIGINATING_RELEASE isintended to be on the
Originating side (O_BCSM) or the Terminating side (T_BCSM) of the call. Likewise, the
P_CALL_EVENT_ANSWER, P_CALL_EVENT_ALERTING and the
P_CALL_EVENT_TERMINATING_RELEASE.

The basic assumption is that the operator is responsible for provisioning of triggersin the network asin
this domain full awarness exists of all other services and applications.Therefore, createNotification does
not automatically lead to immediate provisioning of these triggers. And thus in createNotification it is not
necessary to indicate whether theinitial notification should be on the originating or terminating side of

the call.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8

83 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

9.2.25 TpAdditionalCallEventCriteria

Definesthe Tagged Choice of Data Elements that specify specific criteria

Tag Element Type

TpCallEventType

Tag Element

Choice Element

Choice Element

Value Type Name
P_CALL_EVENT UNDEFINED NULL Undefined
P_CALL_EVENT ORIGINATING CALL ATTEMPT NULL Undefined
P CALL_EVENT ORIGINATING CALL ATTEMPT AUTHO NULL Undefined
RISED
P_CALL_EVENT ADDRESS COLLECTED TpInt32 MinAddressLength
P_CALL_EVENT ADDRESS ANALYSED NULL Undefined

P_CALL_ EVENT ORIGINATING SERVICE_ CODE

TpCallServiceCodeSet

OriginatingServiceCode

P_CALL EVENT ORIGINATING_RELEASE TpReleaseCauseSet OriginatingRel easeCauseSet
P_CALL EVENT TERMINATING CALL ATTEMPT NULL Undefined

P_CALL EVENT TERMINATING CALL_ATTEMPT AUTHO NULL Undefined

RISED

P_CALL_EVENT ALERTING NULL Undefined
P_CALL_EVENT ANSWER NULL Undefined
P_CALL_EVENT TERMINATING RELEASE TpReleaseCauseSet TerminatingRel easeCaLiseSet
P_CALL_EVENT REDIRECTED NULL Undefined
P_CALL_EVENT TERMINATING SERVICE CODE TpCallServiceCodeSet TerminatingServiceCode
P_CALL_EVENT QUEUED NULL Undefined

9.2.26 TpCallEventinfo

Definesthe Sequence of Data Elements that specify the event report specific information.

Sequence Element
Name

Sequence Element
Type

CallEventType

TpCallEventType

Additional CallEventInfo

TpCallAdditional Eventinfo

CallMonitorMode

TpCallMonitorMode

CallEventTime

TpDateAndTime

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8

9.2.27 TpCallAdditionalEventinfo

Definesthe Tagged Choice of Data Elements that specify additional call event information for certain types

of events.

84 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Tag Element Type

TpCallEventType

Tag Element Choice Element Choice Element
Value Type Name

P_CALL_EVENT UNDEFINED NULL Undefined
P_CALL_EVENT ORIGINATING_CALL_ATTEMPT NULL Undefined
P_CALL_EVENT ORIGINATING_CALL_ATTEMPT AUTHORISED NULL Undefined
P_CALL_EVENT_ADDRESS_COLLECTED TpAddress CollectedAddress
P_CALL_EVENT_ADDRESS_ANALYSED TpAddress CalledAddress
P_CALL_EVENT ORIGINATING SERVICE_ CODE TpCallServiceCode OriginatingServiceCode
P_CALI_EVENT ORIGINATING RELEASE TpReleaseCause OriginatingReleaseCause
P_CALL_EVENT TERMINATING CALI, ATTEMPT NULL Undefined
P_CALL_EVENT TERMINATING_CALL_ATTEMPT AUTHORISED NULL Undefined
P_CALL_EVENT ALERTING NULL Undefined
P_CALL_EVENT ANSWER NULL Undefined
P_CALL_EVENT TERMINATING RELEASE TpReleaseCause TerminatingReleaseCause
P_CALL_EVENT_REDIRECTED TpAddress ForwardAddress
P_CALL_EVENT TERMINATING SERVICE_CODE TpCallServiceCode TerminatingServiceCode
P_CALL_EVENT QUEUED NULL Undefined

9.2.28 TpCallNotificationRequest

Defines the Sequence of Data Elements that specify the criteriafor an event notification.

Sequence Element Name Sequence Element

Type

Description

CallNotificationScope TpCallNotificationScope

Defines the scope of the notification request.

CallEventsRequested TpCallEventRequestSet

Defines the events which are requested.

9.2.29 TpCallNotificationScope

Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the

criteria.
Sequence Element Sequence Element Description
Name Type
DestinationAddress TpAddressRange Defines the destination address or address range for which the notification is
requested.
OriginatingAddress TpAddressRange Defines the origination address or address range for which the notification is
requested.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 85

ETSI TS 129 198-4-3 V8.0.0 (2009-01)

9.2.30 TpCallNotificationInfo

Definesthe Sequence of Data Elements that specify the information returned to the application in a Call

notification report.

Sequence Element Sequence Element Description
Name Type
CallNotificationReportScope TpCallNotificationReportScope Defines the scope of the notification report.
CallAppInfo TpCallAppInfoSet Contains additional call info.
CallEventInfo TpCallEventInfo Contains the event which is reported.

9.2.31 TpCallNotificationReportScope

Definesthe Sequence of Data Elements that specify the scope for which a notification report was sent.

Sequence Element Sequence Element Description
Name Type
DestinationAddress TpAddress Contains the destination address of the call.
OriginatingAddress TpAddress Contains the origination address of the call.

9.2.32 TpNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

Sequence Element Sequence Element
Name Type
AppCallNotificationRequest TpCallNotificationRequest
AssignmentID TpInt32
9.2.33 TpNotificationRequestedSet
Defines a numbered Set of Data Elements of TpNotificationRequested.
9.2.34 TpReleaseCause
Defines the reason for which a call is released.
Name Value Description
P_UNDEFINED 0 The reason of release is not known, because no info was received from the network.
P_USER_NOT_AVAILABLE 1 The user is not available in the network. This means that the number is not allocated or that the user is
not registered.
P_BUSY 2 The user isbusy.
P_NO_ANSWER 3 No answer was received.
P_NOT_REACHABLE 4 The user terminal is not reachable.
P_ROUTING_FAILURE 5 A routing failure occurred. For example an invalid address was received.
P_PREMATURE_DISCONNECT 6 The user disconnected the call / call leg during the setup phase.
P_DISCONNECTED 7 A disconnect was received.
P_CALL_RESTRICTED 8 The call was subject of restrictions.
P_UNAVAILABLE RESOURCE 9 The request could not be carried out as no resources were available.
P_GENERAL_FAILURE 10 A general network failure occurred.
P_TIMER EXPIRY 11 Thecall / call leg was released because an activity timer expired.
P_UNSUPPORTED MEDIA 12 Thecall / call leg was released either because the message body of the request isin aformat not
supported or because the mediais not supported.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 86 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

9.2.35 TpReleaseCauseSet

Defines a Numbered Set of Data Elements of TpReleaseCause.

9.2.36 TpCallLegldentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

Sequence Element Sequence Element Sequence Element

Name Type Description
CallLegReference IpCallLegRef This element specifies the interface reference for the callLeg object.
CallLegSessionID TpSessionID This element specifies the callLeg session ID.

9.2.37 TpCallLegldentifierSet

DefinesaNumbered Set of Data Elements of TpCallLegldentifier.

9.2.38 TpCallLegAttachMechanism
Defines how a CallLeg should be attached to the call.

Name Value Description
P_CALLLEG_ATTACH IMPLICITLY 0 CallLeg should be attached implicitly to the call.
P_CALLLEG_ATTACH_EXPLICITLY 1 CallLeg should be attached explicitly to the call by using the attachM ediaReq() operation. This
allows e.g. the application to do first user interaction to the party before he/sheis placed in the
call.

9.2.39 TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object.

Sequence Element Sequence Element Sequence Element
Name Type Description
AttachMechanism TpCalllLegAttachMechanism Defines how a CallLeg should be attached to the call.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 87 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

9.2.40 TpCallLegIinfoReport

Definesthe Sequence of Data Elements that specify the call leg information requested.

Sequence Element Sequence Element Description
Name Type
CallLegInfoType TpCallLegInfoType The type of call leg information.
CallLegStartTime TpDateAndTime The time and date when the call leg was started (i.e. the leg was routed).
CalllLegConnectedToResourceTime TpDateAndTime The date and time when the call leg was connected to the resource. If no

resource was connected the time is set to an empty string.
Either this element isvalid or the CallConnectedToAddressTime is valid,
depending on whether the report is sent as a result of user interaction.

CalllLegConnectedToAddressTime TpDateAndTime The date and time when the call leg was connected to the destination (i.e.
when the destination answered the call). If the destination did not
answer, thetimeis set to an empty string.
Either this element isvalid or the CallConnectedToResourceTimeis
valid, depending on whether the report is sent as a result of user

interaction.
CallLegEndTime TpDateAndTime The date and time when the call leg was released.
ConnectedAddress TpAddress The address of the party associated with the leg. If during the call the

connected address was received from the party then thisis returned,
otherwise the destination address (for legs connected to a destination) or
the originating address (for legs connected to the origination) is returned.

CallLegReleaseCause TpReleaseCause The cause of the termination. May be present with
P CALL_LEG INFO RELEASE_CAUSE was specified.
CallAppInfo TpCallAppInfoSet Additional information for the leg. May be present with

P CALL_LEG _INFO APPINFO was speified.

9.2.41 TpCallLegIinfoType
Defines the type of call leg information requested and reported. The values may be combined by alogical 'OR' function.

Name Value Description
P _CALL LEG INFO UNDEFINED 00h Undefined
P_CALL_LEG_INFO_TIMES 01h Relevant call times
P CALL LEG INFO RELEASE CAUSE 02h Call leg release cause
P_CALL_LEG_INFO_ADDRESS 04h Call leg connected address
P_CALL_LEG_INFO APPINFO 08h Call leg application related information

9.2.42 TpCallLegSuperviseTreatment

Defines the treatment of the call leg by the call control service when the call leg supervision timer expires. The values
may be combined by alogical 'OR' function.

Name Value Description
P_CALL_LEG_SUPERVISE_ RELEASE 01h Release the call leg when the call leg supervision timer expires
P_CALL_LEG_SUPERVISE_RESPOND 02h Notify the application when the call leg supervision timer expires
P_CALL_LEG_SUPERVISE_APPLY_ TONE 04h Send awarning tone on the call leg when the call leg supervision timer

expires. If call leg release is requested, then the call leg will be
rel eased following the tone after an administered time period

9.2.43 TpCallHighProbabilityCompletion

This datatypeisidentical to a TpInt32, and defines the probability of completion under network congestion. A value of
O indicates no special treatment (default). The other values of this data type are region specific. For example, a priority
value between 1, 2, 3, ..., nindicates specia treatment, where 1 is the highest priority and n the lowest priority other
than no special treatment.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 88

ETSI TS 129 198-4-3 V8.0.0 (2009-01)

9.2.44 TpNaotificationRequestedSetEntry

Defines the Sequence of Data Elements that specify a set of requested notifications and an indication whether more

notifications can be requested.

Sequence Element Name

Sequence Element Type

Description

NotificationRequestSet

TpNotificationRequestedSet

Numbered set of requested natifications.

Final TpBoolean

Indication whether the set of notificationsisthe final set
(TRUE)or if there are more notifications available
(FALSE).

9.2.45 TpCarrierSet

DefinesaNumbered Set of Data Elements of TpCarrier. In casethe set isempty, the SCF will assume

default processing.

9.2.46 TpCarrier

Definesthe Sequence of Data Elements that indicates carrier information. It consists of the carrier selection
field followed by the Carrier ID information to be used for routing a call to acarrier.

Sequence Element Name

Sequence Element Type

CarrierID

TpCarrierID

CarrierSelectionField

TpCarrierSelectionField

9.2.47 TpCarrierlD

Thisdatatypeisidentical to a TpOctetSet. For encoding of the field, depending on the network, either ITU-T

Recommendation Q.763 [8] or ANSI ISUP T.113 [9] applies.

9.2.48 TpCarrierSelectionField

Defines the type of Carrier Selection Field-related specific information. This parameter indicates how the selected

carrier is provided (e.g. pre-subscribed).

Name Value

Description

P_CIC UNDEFINED 0

No indication.

P _CIC NO INPUT 1

The carrier identification code (CIC) is pre subscribed (not provided by
the calling party).

P_CIC_INPUT

The carrier identification code (CIC) is pre subscribed and provided by
the calling party.

P_CIC _UNDETERMINED

The selected carrier identification code (CIC) is pre subscribed, but no
indication is present of whether it is provided by the calling party
(undetermined).

P _CIC NOT PRESCRIBED

The selected carrier identification code (CIC) is provided by calling party
(not pre subscribed).

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 89 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

9.2.49 TpCallLegPropertyName

Thisdatatypeisidentical to a TpString, and is defined as a string of characters that identify the names of the call leg
properties that are to be supported by the Multi Party Call Control API. Other Network operator specific properties may
also be used, but should be preceded by the string "sP_". The following values are defined.

Character String Value Description
P_CALL LEG PROPERTY INFO The info property nameis associated with a URL value that describes the caller or callee
in general, for example, through a web page.
P_CALL_LEG_PROPERTY_ ICON The icon parameter property name is associated with a URL value that points to data
suitable as an iconic representation of the caller or callee.
P_CALL_LEG_PROPERTY_ CARD The card property name is associated with a business card, for example, in vCard or
LDIF formats.

9.2.50 TpCallLegPropertyNameList

This datatype definesaNumbered List of Data Elements of type TpCallLegPropertyName.

9.2.51 TpCallLegPropertyValue

Thisdatatypeisidentical to TpString. Itisthe value associated with a property.

9.2.52 TpCallLegProperty

ThisdatatypeisaSequence of Data Elements which describesaproperty. It isa structured data type
consisting of the following { name,value} pair:

Sequence Element Name Sequence Element Type
CallLegPropertyName TpCallLegPropertyName
CallLegPropertyValue TpCallLegPropertyValue

9.2.53 TpCallLegPropertyList

This datatype definesaNumbered List of Data Elements of type TpCallLegProperty.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 90 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Annex A (normative):
OMG IDL Description of Multi-Party Call Control SCF

The OMG IDL representation of thisinterface specification is contained in text files mpcc_data.idl and
mpcc_interfaces.idl (contained in archive 291980403V 800IDL.ZIP) which accompany the present document.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 91 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Annex B (informative):
W3C WSDL Description of Multi-Party Call Control SCF

The W3C WSDL representation of thisinterface specification is contained in zip file 291980403V 800WSDL.ZIP,
which accompanies the present document.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 92 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Annex C (informative):
Java API Description of the Call Control SCFs

The Java API redlisation of thisinterface specification is produced in accordance with the Java Realisation rules defined
in Part 1 of this specification. These rules aim to deliver for Java, a developer API, provided as arealisation, supporting
aJava API that represents the UML specifications. The rules support the production of both J2SE and J2EE versions of
the API from the common UML specifications.

The J2SE representation of thisinterface specification is provided as Java Code, contained in archive
291980403V 800J2SE.ZIP that accompanies the present document.

The J2EE representation of this interface specification is provided as Java Code, contained in archive
291980403V 800J2EE.ZIP that accompanies the present document.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 93 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Annex D (informative):
Description of Call Control Sub-part 3: Multi-party call
control SCF for 3GPP2 cdma2000 networks

This annex isintended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications. It is an extension of OSA API specifications capabilities to enable operation in cdma2000 systems
environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in:

[1] 3GPP2 P.S0001-B: "Wireless P Network Standard”, Version 1.0, September 2000.

[2] 3GPP2 S.R0037-0: "IP Network Architecture Model for cdma2000 Spread Spectrum Systems”,
Version 2.0, May 14, 2002.

[3] 3GPP2 X.S0013: "All-IP Core Network Multimedia Domain”, December 2003.

These requirements are expressed as additions to and/or exclusions from the 3GPP specification.
Theinformation given hereisto be used by developersin 3GPP2 cdma2000 network architecture to interpret the 3GPP
OSA gpecifications.

D.1 General Exceptions

The terms 3GPP and UMTS are not applicable for the cdma2000 family of standards. Nevertheless these terms are used
(8GPP TR 21.905) mostly in the broader sense of "3G Wireless System". If not stated otherwise there are no additions
or exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

D.2 Specific Exceptions

D.2.1 Clause 1: Scope

There are no additions or exclusions.

D.2.2 Clause 2: References

Normative references on 3GPP TS 23.078 and on 3GPP TS 29.078 are not applicable for cdma2000 systems.

D.2.3 Clause 3: Definitions and abbreviations

There are no additions or exclusions.

D.2.4 Clause 4: MultiParty Call Control Service Sequence
Diagrams

There are no additions or exclusions.

D.2.5 Clause 5: Class Diagrams

There are no additions or exclusions.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 94 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

D.2.6 Clause 6: MultiParty Call Control Service Interface Classes

There are no additions or exclusions.

D.2.7 Clause 7: MultiParty Call Control Service State Transition
Diagrams

There are no additions or exclusions.

D.2.8 Clause 8: Multi-Party Call Control Service Properties

There are no additions or exclusions. Nevertheless, for cdma2000 systems the CAMEL data types and service
properties are not applicable.

D.2.9 Clause 9: Multi-Party Call Control Data Definitions

There are no additions or exclusions.

D.2.10 Annex A (normative): OMG IDL Description of Multi-Party
Call Control SCF

There are no additions or exclusions.

D.2.11 Annex B (informative): W3C WSDL Description of Multi-
Party Call Control SCF

There are no additions or exclusions.

D.2.12 Annex C (informative): Java™ API Description of the Multi-
Party Call Control SCF

There are no additions or exclusions.

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 95 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Annex E (informative):
Change history

Change history

Date TSG# |TSG Doc. |CR [Rev |Subject/Comment Old New
Mar 2001 CN_11 [NP-010134 |047 |- CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0]1.0.0
June 2001 |CN_12 |NP-010327 |-- -- Approved at TSG CN#12 and placed under Change Control 2.0.0 [4.0.0
Sep 2001 CN_13 [NP-010467 (001 |[-- Changing references to JAIN 4.0.0 |4.1.0
Sep 2001 CN_13 [NP-010467 |002 |-- Correction of text descriptions for methods enableCallNotification and [4.0.0 |4.1.0
createNotification
Sep 2001 CN_13 [NP-010467 |003 |-- Specify the behaviour when a call leg times out 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |004 |-- Removal of Faulty state in MPCCS Call State Transition Diagram and |4.0.0 [4.1.0
method callFaultDetected in MPCCS in OSA R4
Sep 2001 CN_13 [NP-010467 |005 |-- Missing TpCallAppInfoSet description in OSA R4 4.0.0 [4.1.0
Sep 2001 CN_13 [NP-010467 |006 |-- Redirecting a call leg vs. creating a call leg clarification in OSA R4 4.0.0 |4.1.0
Sep 2001 CN_13 [NP-010467 |007 |-- Introduction of MPCC Originating and Terminating Call Leg STDs for |4.0.0 |4.1.0
IpCallLeg
Sep 2001 CN_13 [NP-010467 |008 |-- Corrections to SetChargePlan() Addition of PartyToCharge parmeter |[4.0.0]4.1.0
Sep 2001 CN_13 [NP-010467 |009 |-- Corrections to SetChargePlan() 4.0.0 [4.1.0
Sep 2001 CN_13 [NP-010467 (010 |-- Remove distinction between final- and intermediate-report 4.0.0 |4.1.0
Sep 2001 CN_13 [NP-010467 |011 |-- Inclusion of TpMediaType 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |012 |-- Corrections to GCC STD 4.0.0 [4.1.0
Sep 2001 CN_13 [NP-010467 |013 |-- Introduction of sequence diagrams for MPCC services 4.0.0 [4.1.0
Sep 2001 CN_13 [NP-010467 (014 |-- The use of the REDIRECT event needs to be illustrated 4.0.0 |4.1.0
Sep 2001 CN_13 [NP-010467 |015 |-- Corrections to SetCallChargePlan() 4.0.0 [4.1.0
Sep 2001 CN_13 [NP-010467 (016 |-- Add one additional error indication 4.0.0 |4.1.0
Sep 2001 CN_13 [NP-010467 |017 |-- Corrections to Call Control — GCCS Exception handling 4.0.0 [4.1.0
Sep 2001 CN_13 [NP-010467 (018 |[-- Corrections to Call Control — Errors in Exceptions 4.0.0 |4.1.0
Dec 2001 CN_14 [NP-010597 [019 |-- Replace Out Parameters with Return Types 4.1.0 |4.2.0
Dec 2001 CN_14 [NP-010597 |020 |-- Removal of time based charging property 4.1.0 [4.2.0
Dec 2001 CN_14 [NP-010597 |021 |-- Make attachMedia() and detachMedia() asynchronous 4.1.0 |[4.2.0
Dec 2001 CN_14 [NP-010597 |022 |-- Correction of treatment datatype in superviseReq on call leg 4.1.0 [4.2.0
Dec 2001 CN_14 [NP-010597 |023 |-- Corrections to Call Control Data Types 4.1.0 |4.2.0
Dec 2001 CN_14 [NP-010597 |024 |-- Correction to Call Control (CC) 4.1.0 [4.2.0
Dec 2001 CN_14 [NP-010597 |025 |-- Amend the Generic Call Control introductory part 4.1.0 |4.2.0
Dec 2001 CN_14 [NP-010597 |026 |-- Correction in TpCallEventType 4.1.0 [4.2.0
Dec 2001 CN_14 [NP-010597 |027 |-- Addition of missing description of RouteErr() 4.1.0 |4.2.0
Dec 2001 CN_14 [NP-010597 |028 |-- Misleading description of createAndRouteCallLegErr() 4.1.0 [4.2.0
Dec 2001 CN_14 |NP-010597 |029 |-- Correction to values of TpCallNotificationType, 41.0 |4.20
TpCallLoadControlMechanismType
Dec 2001 CN_14 [NP-010695 |030 |-- Correction of method getLastRedirectionAddress 4.1.0 [4.2.0
Mar 2002 CN_15 [NP-020106 (031 |-- Add P_INVALID_INTERFACE_TYPE exception to 420 |43.0
IpService.setCallback() and IpService.setCallbackWithSessionID()
Mar 2002 CN_15 [NP-020106 (032 |[-- Correction of Event Subscription/Notification Data Type 4.2.0 |4.3.0
Mar 2002 CN_15 [NP-020106 |033 |-- Correction of parameter name in IpCallLeg.routeReq() and in 420 (4.3.0
IpCallLeg.setAdviceOfCharge()
Mar 2002 CN_15 [NP-020106 [034 |-- Clarification of ambiguous Event handling rules 4.2.0 14.3.0
Jun 2002 CN_16 [NP-020180 |035 |-- Correction to TpCallChargePlan 4.3.0 [4.4.0
Jun 2002 CN_16 |[NP-020180 [036 |-- Correction to CAMEL Service Property values 4.3.0 1440
Jun 2002 CN_16 |[NP-020181 |037 |- Addition of support for Java API technology realisation 4.4.0 |5.0.0
Jun 2002 CN_16 [NP-020182 |038 |- Addition of support for WSDL realisation 4.4.0 |5.0.0
Jun 2002 CN_16 |[NP-020187 |039 |- Addition of support for Emergency Telecommunications Service 4.4.0 |5.0.0
Jun 2002 CN_16 [NP-020183 |040 |- Addition of support for Network Controlled Notifications MPCC 4.4.0 |5.0.0
Jun 2002 CN_16 |[NP-020187 |041 |- Changes to getNotification() 4.4.0 |5.0.0
Jun 2002 CN_16 |NP-020187 |042 |- Addition of P_UNSUPPORTED_MEDIA release cause to 4.4.0 |5.0.0
TpReleaseCause
Jun 2002 CN_16 |[NP-020187 |043 |- Addition of CAMEL Phase 4 Service Property values 4.4.0 |5.0.0
Jun 2002 CN_16 |[NP-020187 |044 |- Addition of indication whether SCS supports initially multiple 44.0 |5.0.0
routeRegs in parallel
Jun 2002 CN_16 |NP-020187 |045 |- Explicit exception for continueProcessing when not in interrupted 440 |5.0.0
mode
Jun 2002 CN_16 |NP-020187 (046 |- Indication needed that supervision will be ended when call or callLeg |4.4.0 |5.0.0
is deassigned
Jun 2002 CN_16 |[NP-020187 |047 |- Clarify ambiguous Supervision duration 4.40 |5.0.0
Jun 2002 CN_16 |[NP-020187 |048 |- Detach/Attach request illegal during pending Attach/Detach request |4.4.0 |5.0.0
Jun 2002 CN_16 [NP-020187 |049 |- Correction of Multi-Party Call Control properties 4.4.0 |5.0.0
Jun 2002 CN_16 |[NP-020187 |050 |- Correcting the sequence diagram descriptions in GCC and MPCC 4.4.0 |5.0.0
Jun 2002 CN_16 |[NP-020187 |051 |- Correcting erroneous description of Ul behaviour in call control 4.4.0 |5.0.0

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8 96 ETSI TS 129 198-4-3 V8.0.0 (2009-01)

Jun 2002 CN_16 |NP-020187 [052 |- Correcting the descriptions of sequence diagrams that don't match the [4.4.0 |5.0.0
diagram
Jun 2002 CN_16 |[NP-020187 |053 |- Correcting erroneous references to GCC in MPCC 4.4.0 |5.0.0
Jun 2002 CN_16 [NP-020187 |054 |- Addition of the Multi-media APIs to Call control SCF (29.198-4) 4.4.0]5.0.0
Jun 2002 CN_16 |[NP-020187 |055 |- Updating Clause 4 for Release 5 4.4.0 |5.0.0
Jun 2002 CN_16 |[NP-020188 |056 |- Spliting of 29.198-04 into 4 separate TSs (sub-parts) 4.4.0 |5.0.0
Sep 2002 CN_17 [NP-020431 |001 29.198-04-3 Correction of error in Call Forward on Busy sequence 5.0.0 (5.1.0
diagram
Sep 2002 CN_17 [NP-020431 |002 Correct inconsistencies in IpCallLeg state transition diagrams 5.0.0 |[5.1.0
Sep 2002 CN_17 [NP-020431 |003 Clarification of the overlapping criteria definition and eventType 5.0.0 (5.1.0
mapping to IN TDPs
Sep 2002 CN_17 [NP-020431 |004 Add support for Carrier selection 5.0.0 [5.1.0
Sep 2002 CN_17 [NP-020431 [005 Correction on use of NULL in Call Control API 5.0.0 |5.1.0
Sep 2002 CN_17 [NP-020395 (006 Add text to clarify relationship between 3GPP and ETSI/Parlay OSA [5.0.0 (5.1.0
specifications
Mar 2003 CN_19 |[NP-030031 |007 |-- Correction of status of MPCC methods 5.1.0 |5.2.0
Mar 2003 CN_19 [NP-030031 |008 |-- Inconsistent description of use of secondary callback 5.1.0 [5.2.0
Mar 2003 CN_19 |[NP-030020 [009 |-- Correction to TpReleaseCauseSet in Multi Party Call Control IDL 5.1.0 |5.2.0
Mar 2003 CN_19 |[NP-030130 [010 |-- Correction of definition of the P MAX CALLLEGS PER CALL 5.1.0 |5.2.0
Jun 2003 CN_20 [NP-030238 [011 |-- Correction of the description for callEventNotify & reportNotification 5.2.0 |5.3.0
Jun 2003 CN_20 |NP-030305 |012 |1 Unclear overlap criteria for rejection of createNotification 5.3.0 [6.0.0
Jun 2003 CN_20 |[NP-030247 |013 |-- Add support for advanced subscriber presentation 5.3.0]6.0.0
Dec 2003 CN_22 [NP-030550 |017 |-- Correction of description of TpNotificationReguestedSetEntry 6.0.0]6.1.0
Dec 2003 CN_22 [NP-030553 |019 |-- Add OSA API support for 3GPP2 networks 6.0.0 |6.1.0
Jun 2004 CN_24 |[NP-040267 |021 |-- Correction of description in superviseRes - Align with Rel-5 6.1.0 [6.2.0
Jun 2004 CN_24 [NP-040256 |023 |-- Correct the P_ TRIGGERING_ADDRESSES service property 6.1.0 |6.2.0
Jun 2004 CN_24 |[NP-040273 |024 |-- Remove the <> stereotype from methods which are no longer new 6.1.0 [6.2.0
Jun 2004 CN_24 [NP-040257 |026 |-- Correction of callbacks sequence and timing conditions in MPCCS 6.1.0 |6.2.0
Sep 2004 CN_25 |[NP-040354 |019 |-- Correction to Java Realisation Annex 6.2.0 [6.3.0
Sep 2004 CN_25 [NP-040358 |021 |-- Support High Availability at API Level 6.2.0 |6.3.0
Dec 2004 CN_26 |NP-040485 |035 |-- Removal of OSA API SCFs description in W3C WSDL 6.3.0 |6.4.0
Dec 2004 - - -- -- Added missing code attachments 6.40 |6.4.1
Jun 2005 CT 28 |CP-050155 |0037|-- Correct support for Emergency Telecommunications Service 6.4.1 [6.5.0
Jun 2005 -- -- -- -- Java code attachments not available at TS delivery deadline 6.4.1]6.5.0
Jul 2005 - - -- -- Added the missing Java code attachments 6.5.0 |6.5.1
Jun 2006 CT 32 [CP-060195 (0038 |-- Change reference to OSA Stage 2 from 23.127 to 23.198 6.5.1 |6.6.0
Jun 2006 CT_32 [CP-060194 |0039 |-- Resubmission of OSA API SCFs description in W3C WSDL 6.5.1 |6.6.0
Jul 2006 -- -- -- -- Added missing code attachments 6.6.0 [6.6.1
Jul 2006 CT_32 [CP-060206 |0040 |-- Remove deprecated item: getNotification() method 6.6.1 |7.0.0
Sep 2006 -- -- -- -- Added missing code attachments J2EE and J2SE. 7.0.0 |7.0.1
Dec 2008 CT_42 Upgraded unchanged from Rel-7 7.0.1]8.0.0

ETSI

3GPP TS 29.198-04-3 version 8.0.0 Release 8

97

ETSI TS 129 198-4-3 V8.0.0 (2009-01)

History

Document history

Vv8.0.0

January 2009

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 MultiParty Call Control Service Sequence Diagrams
	4.1 Application initiated call setup
	4.2 Call Barring 2
	4.3 Call forwarding on Busy Service
	4.4 Call Information Collect Service
	4.5 Complex Card Service
	4.6 Hotline Service
	4.7 Network Controlled Notifications
	4.8 Use of the Redirected event

	5 Class Diagrams
	6 MultiParty Call Control Service Interface Classes
	6.1 Interface Class IpMultiPartyCallControlManager
	6.1.1 Method createCall()
	6.1.2 Method createNotification()
	6.1.3 Method destroyNotification()
	6.1.4 Method changeNotification()
	6.1.5 Method setCallLoadControl()
	6.1.6 Method enableNotifications()
	6.1.7 Method disableNotifications()
	6.1.8 Method getNextNotification()

	6.2 Interface Class IpAppMultiPartyCallControlManager
	6.2.1 Method reportNotification()
	6.2.2 Method callAborted()
	6.2.3 Method managerInterrupted()
	6.2.4 Method managerResumed()
	6.2.5 Method callOverloadEncountered()
	6.2.6 Method callOverloadCeased()
	6.2.7 Method abortMultipleCalls()

	6.3 Interface Class IpMultiPartyCall
	6.3.1 Method getCallLegs()
	6.3.2 Method createCallLeg()
	6.3.3 Method createAndRouteCallLegReq()
	6.3.4 Method release()
	6.3.5 Method deassignCall()
	6.3.6 Method getInfoReq()
	6.3.7 Method setChargePlan()
	6.3.8 Method setAdviceOfCharge()
	6.3.9 Method superviseReq()

	6.4 Interface Class IpAppMultiPartyCall
	6.4.1 Method getInfoRes()
	6.4.2 Method getInfoErr()
	6.4.3 Method superviseRes()
	6.4.4 Method superviseErr()
	6.4.5 Method callEnded()
	6.4.6 Method createAndRouteCallLegErr()

	6.5 Interface Class IpCallLeg
	6.5.1 Method routeReq()
	6.5.2 Method eventReportReq()
	6.5.3 Method release()
	6.5.4 Method getInfoReq()
	6.5.5 Method getCall()
	6.5.6 Method attachMediaReq()
	6.5.7 Method detachMediaReq()
	6.5.8 Method getCurrentDestinationAddress()
	6.5.9 Method continueProcessing()
	6.5.10 Method setChargePlan()
	6.5.11 Method setAdviceOfCharge()
	6.5.12 Method superviseReq()
	6.5.13 Method deassign()
	6.5.14 Method getProperties()
	6.5.15 Method setProperties()

	6.6 Interface Class IpAppCallLeg
	6.6.1 Method eventReportRes()
	6.6.2 Method eventReportErr()
	6.6.3 Method attachMediaRes()
	6.6.4 Method attachMediaErr()
	6.6.5 Method detachMediaRes()
	6.6.6 Method detachMediaErr()
	6.6.7 Method getInfoRes()
	6.6.8 Method getInfoErr()
	6.6.9 Method routeErr()
	6.6.10 Method superviseRes()
	6.6.11 Method superviseErr()
	6.6.12 Method callLegEnded()

	7 MultiParty Call Control Service State Transition Diagrams
	7.1 State Transition Diagrams for IpMultiPartyCallControlManager
	7.1.1 Active State
	7.1.2 Interrupted State
	7.1.3 Overview of allowed methods

	7.2 State Transition Diagrams for IpMultiPartyCall
	7.2.1 IDLE State
	7.2.2 ACTIVE State
	7.2.3 RELEASED State
	7.2.4 Overview of allowed methods

	7.3 State Transition Diagrams for IpCallLeg
	7.3.1 Originating Call Leg
	7.3.1.1 Initiating State
	7.3.1.2 Analysing State
	7.3.1.3 Active State
	7.3.1.4 Releasing State
	7.3.1.5 Overview of allowed methods, Originating Call Leg STD

	7.3.2 Terminating Call Leg
	7.3.2.1 Idle (terminating) State
	7.3.2.2 Active (terminating) State
	7.3.2.3 Releasing (terminating) State
	7.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

	8 Multi-Party Call Control Service Properties
	8.1 List of Service Properties
	8.2 Service Property values for the CAMEL Service Environment.

	9 Multi-Party Call Control Data Definitions
	9.1 Event Notification Data Definitions
	9.2 Multi-Party Call Control Data Definitions
	9.2.1 IpCallLeg
	9.2.2 IpCallLegRef
	9.2.3 IpAppCallLeg
	9.2.4 IpAppCallLegRef
	9.2.5 IpMultiPartyCall
	9.2.6 IpMultiPartyCallRef
	9.2.7 IpAppMultiPartyCall
	9.2.8 IpAppMultiPartyCallRef
	9.2.9 IpMultiPartyCallControlManager
	9.2.10 IpMultiPartyCallControlManagerRef
	9.2.11 IpAppMultiPartyCallControlManager
	9.2.12 IpAppMultiPartyCallControlManagerRef
	9.2.13 TpAppCallLegRefSet
	9.2.14 TpMultiPartyCallIdentifier
	9.2.15 TpAppMultiPartyCallBack
	9.2.16 TpAppMultiPartyCallBackRefType
	9.2.17 TpAppCallLegCallBack
	9.2.18 TpMultiPartyCallIdentifierSet
	9.2.19 TpCallAppInfo
	9.2.20 TpCallAppInfoType
	9.2.21 TpCallAppInfoSet
	9.2.22 TpCallEventRequest
	9.2.23 TpCallEventRequestSet
	9.2.24 TpCallEventType
	9.2.25 TpAdditionalCallEventCriteria
	9.2.26 TpCallEventInfo
	9.2.27 TpCallAdditionalEventInfo
	9.2.28 TpCallNotificationRequest
	9.2.29 TpCallNotificationScope
	9.2.30 TpCallNotificationInfo
	9.2.31 TpCallNotificationReportScope
	9.2.32 TpNotificationRequested
	9.2.33 TpNotificationRequestedSet
	9.2.34 TpReleaseCause
	9.2.35 TpReleaseCauseSet
	9.2.36 TpCallLegIdentifier
	9.2.37 TpCallLegIdentifierSet
	9.2.38 TpCallLegAttachMechanism
	9.2.39 TpCallLegConnectionProperties
	9.2.40 TpCallLegInfoReport
	9.2.41 TpCallLegInfoType
	9.2.42 TpCallLegSuperviseTreatment
	9.2.43 TpCallHighProbabilityCompletion
	9.2.44 TpNotificationRequestedSetEntry
	9.2.45 TpCarrierSet
	9.2.46 TpCarrier
	9.2.47 TpCarrierID
	9.2.48 TpCarrierSelectionField
	9.2.49 TpCallLegPropertyName
	9.2.50 TpCallLegPropertyNameList
	9.2.51 TpCallLegPropertyValue
	9.2.52 TpCallLegProperty
	9.2.53 TpCallLegPropertyList

	Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF
	Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF
	Annex C (informative): Java API Description of the Call Control SCFs
	Annex D (informative): Description of Call Control Sub-part 3: Multi-party call control SCF for 3GPP2 cdma2000 networks
	D.1 General Exceptions
	D.2 Specific Exceptions
	D.2.1 Clause 1: Scope
	D.2.2 Clause 2: References
	D.2.3 Clause 3: Definitions and abbreviations
	D.2.4 Clause 4: MultiParty Call Control Service Sequence Diagrams
	D.2.5 Clause 5: Class Diagrams
	D.2.6 Clause 6: MultiParty Call Control Service Interface Classes
	D.2.7 Clause 7: MultiParty Call Control Service State Transition Diagrams
	D.2.8 Clause 8: Multi-Party Call Control Service Properties
	D.2.9 Clause 9: Multi-Party Call Control Data Definitions
	D.2.10 Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF
	D.2.11 Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF
	D.2.12 Annex C (informative): JavaŽ API Description of the Multi-Party Call Control SCF

	Annex E (informative): Change history
	History

