

ETSI TS 129 198-13 V5.6.0 (2004-09)

Technical Specification

Universal Mobile Telecommunications System (UMTS);
Open Service Access (OSA)

Application Programming Interface (API);
Part 13: Policy management SCF

(3GPP TS 29.198-13 version 5.6.0 Release 5)

�

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 1 3GPP TS 29.198-13 version 5.6.0 Release 5

Reference
RTS/TSGN-0529198-13v560

Keywords
UMTS

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2004.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 2 3GPP TS 29.198-13 version 5.6.0 Release 5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under
http://webapp.etsi.org/key/queryform.asp .

http://webapp.etsi.org/IPR/home.asp
http://webapp.etsi.org/key/queryform.asp

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 3 3GPP TS 29.198-13 version 5.6.0 Release 5

Contents

Intellectual Property Rights ..2

Foreword...2

Foreword...7

Introduction ..7

1 Scope ..9

2 References ..9

3 Definitions and abbreviations...9
3.1 Definitions..9
3.2 Abbreviations ...10

4 Policy Management SCF..10

5 Sequence Diagrams ..10
5.1 Use of Policy Repository..10
5.2 Introduce condition and action into rule...12
5.3 Create and receive an event ..14
5.4 Create and modify domain ...16
5.5 ASP offering services to prepaid subscribers ...18

6 Class Diagrams...21

7 The Service Interface Specifications..23
7.1 Interface Specification Format ...23
7.1.1 Interface Class ..23
7.1.2 Method descriptions..23
7.1.3 Parameter descriptions ..23
7.1.4 State Model...23
7.2 Base Interface ...23
7.2.1 Interface Class IpInterface ..23
7.3 Service Interfaces ...24
7.3.1 Overview ..24
7.4 Generic Service Interface ...24
7.4.1 Interface Class IpService ..24
7.4.1.1 Method setCallback() ..24
7.4.1.2 Method setCallbackWithSessionID()..25

8 Policy Management Interface Classes..25
8.1 Interface Class IpPolicyManager..25
8.1.1 Method createDomain() ..26
8.1.2 Method getDomain()...26
8.1.3 Method removeDomain() ...27
8.1.4 Method getDomainCount()...27
8.1.5 Method getDomainIterator()...27
8.1.6 Method findMatchingDomains() ..28
8.1.7 Method createRepository() ...28
8.1.8 Method getRepository() ..29
8.1.9 Method removeRepository()...29
8.1.10 Method getRepositoryCount() ..29
8.1.11 Method getRepositoryIterator() ..30
8.1.12 Method startTransaction()...30
8.1.13 Method commitTransaction() ...30
8.1.14 Method abortTransaction() ...31
8.2 Interface Class IpPolicy..31
8.2.1 Attributes ..32
8.2.2 Method getAttribute() ...32

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 4 3GPP TS 29.198-13 version 5.6.0 Release 5

8.2.3 Method setAttribute() ...33
8.2.4 Method getAttributes() ...33
8.2.5 Method setAttributes() ..34
8.3 Interface Class IpPolicyDomain...34
8.3.1 Attributes ..35
8.3.2 Method getParentDomain() ..36
8.3.3 Method createDomain() ..37
8.3.4 Method getDomain()...37
8.3.5 Method removeDomain() ...37
8.3.6 Method getDomainCount()...38
8.3.7 Method getDomainIterator()...38
8.3.8 Method createGroup()...38
8.3.9 Method getGroup() ...39
8.3.10 Method removeGroup() ..39
8.3.11 Method getGroupCount() ...40
8.3.12 Method getGroupIterator() ...40
8.3.13 Method createRule() ...40
8.3.14 Method getRule()..41
8.3.15 Method removeRule()...41
8.3.16 Method getRuleCount() ..41
8.3.17 Method getRuleIterator() ..42
8.3.18 Method createEventDefinition() ...42
8.3.19 Method getEventDefinition()..43
8.3.20 Method removeEventDefinition()...43
8.3.21 Method getEventDefinitionCount() ..43
8.3.22 Method getEventDefinitionIterator() ..44
8.3.23 Method generateEvent() ...44
8.3.24 Method createNotification()..45
8.3.25 Method destroyNotification() ...45
8.3.26 Method createVariableSet() ..45
8.3.27 Method getVariableSet()...46
8.3.28 Method removeVariableSet()..46
8.3.29 Method getVariableSetCount()...46
8.3.30 Method getVariableSetIterator()...47
8.3.31 Method setVariable() ..47
8.3.32 Method getVariable()..47
8.4 Interface Class IpPolicyGroup ...48
8.4.1 Attributes ..49
8.4.2 Method getParentDomain() ..50
8.4.3 Method getParentGroup() ...50
8.4.4 Method createGroup()...50
8.4.5 Method getGroup() ...51
8.4.6 Method removeGroup() ..51
8.4.7 Method getGroupCount() ...51
8.4.8 Method getGroupIterator() ...52
8.4.9 Method createRule() ...52
8.4.10 Method getRule()..52
8.4.11 Method removeRule()...53
8.4.12 Method getRuleCount() ..53
8.4.13 Method getRuleIterator() ..53
8.5 Interface Class IpPolicyRepository ..54
8.5.1 Attributes ..55
8.5.2 Method getParentRepository()..56
8.5.3 Method createRepository() ...56
8.5.4 Method getRepository() ..57
8.5.5 Method removeRepository()...57
8.5.6 Method getRepositoryCount() ..57
8.5.7 Method getRepositoryIterator() ..58
8.5.8 Method createCondition()...58
8.5.9 Method getCondition() ...58
8.5.10 Method removeCondition() ..59
8.5.11 Method getConditionCount()..59

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 5 3GPP TS 29.198-13 version 5.6.0 Release 5

8.5.12 Method getConditionIterator()..59
8.5.13 Method createAction() ..60
8.5.14 Method getAction()...60
8.5.15 Method removeAction() ...61
8.5.16 Method getActionCount()...61
8.5.17 Method getActionIterator()...61
8.6 Interface Class IpPolicyRule ..62
8.6.1 Attributes ..64
8.6.2 Method getParentGroup() ...66
8.6.3 Method getParentDomain() ..66
8.6.4 Method createCondition()...67
8.6.5 Method getCondition() ...67
8.6.6 Method removeCondition() ..68
8.6.7 Method getConditionCount()..68
8.6.8 Method getConditionIterator()..68
8.6.9 Method createAction() ..69
8.6.10 Method getAction()...69
8.6.11 Method removeAction() ...70
8.6.12 Method getActionCount()...70
8.6.13 Method getActionIterator()...70
8.6.14 Method setValidityPeriodConditionByName() ..71
8.6.15 Method setValidityPeriodCondition()...71
8.6.16 Method getValidityPeriodCondition() ..71
8.6.17 Method unsetValidityPeriodCondition()...72
8.6.18 Method setConditionList()..72
8.6.19 Method getConditionList() ...72
8.6.20 Method setActionList()...73
8.6.21 Method getActionList() ..73
8.7 Interface Class IpPolicyCondition..73
8.7.1 Attributes ..75
8.7.2 Method getParentRepository()..75
8.7.3 Method getParentRule()..76
8.8 Interface Class IpPolicyTimePeriodCondition ...76
8.8.1 Attributes ..77
8.9 Interface Class IpPolicyAction...79
8.9.1 Attributes ..80
8.9.2 Method getParentRepository()..81
8.9.3 Method getParentRule()..81
8.10 Interface Class IpPolicyEventDefinition ..81
8.10.1 Attributes ..82
8.10.2 Method setRequiredAttributes() ...83
8.10.3 Method setOptionalAttributes() ..83
8.10.4 Method getRequiredAttributes()...83
8.10.5 Method getOptionalAttributes()..83
8.10.6 Method getParentDomain() ..84
8.11 Interface Class IpPolicyEventCondition ..84
8.11.1 Attributes ..84
8.12 Interface Class IpPolicyExpressionCondition ..85
8.12.1 Attributes ..86
8.13 Interface Class IpPolicyEventAction..87
8.13.1 Attributes ..87
8.14 Interface Class IpPolicyExpressionAction ...88
8.14.1 Attributes ..88
8.15 Interface Class IpPolicyIterator ..90
8.15.1 Attributes ..90
8.15.2 Method getList() ...91
8.16 Interface Class IpAppPolicyDomain ..91
8.16.1 Method reportNotification()..91

9 State Transition Diagrams ..92

10 PM Service Properties ..92

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 6 3GPP TS 29.198-13 version 5.6.0 Release 5

11 Data Definitions ...92
11.1 Policy Management Data Definitions...92
11.1.1 TpPolicyConditionListType ...93
11.1.2 TpPolicyConditionListElement ..93
11.1.3 TpPolicyConditionList..93
11.1.4 TpPolicyConditionType..93
11.1.5 TpPolicyActionListElement ...93
11.1.6 TpPolicyActionList...93
11.1.7 TpPolicyActionType...94
11.1.8 TpPolicyEvent ..94
11.1.9 TpPolicyKeyword...95
11.1.10 TpPolicyKeywordSet..95
11.1.11 IpPolicyDomain..95
11.1.12 IpPolicyDomainRef ..96
11.1.13 IpPolicyRepository ...96
11.1.14 IpPolicyRepositoryRef..96
11.1.15 IpPolicyGroup...96
11.1.16 IpPolicyGroupRef...96
11.1.17 IpPolicyRule ...96
11.1.18 IpPolicyRuleRef ...96
11.1.19 IpPolicyEventDefinition ...96
11.1.20 IpPolicyEventDefinitionRef ...96
11.1.21 IpAppPolicyDomain ...96
11.1.22 IpAppPolicyDomainRef ...96
11.1.23 IpPolicyCondition...96
11.1.24 IpPolicyConditionRef ...96
11.1.25 IpPolicyTimePeriodCondition ..97
11.1.26 IpPolicyTimePeriodConditionRef ..97

12 Policy Management Exception Classes..97

Annex A (normative): OMG IDL Description of Policy Management SCF...................................98

Annex B (informative): Java™ API Description of the Policy Management SCF...........................99

Annex C (informative): Change history ...100

History ..101

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 7 3GPP TS 29.198-13 version 5.6.0 Release 5

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction
The present document is part 13 of a multi-part TS covering the 3rd Generation Partnership Project: Technical
Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as
identified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1: Overview
Part 2: Common Data Definitions
Part 3: Framework
Part 4: Call Control SCF
Part 5: User Interaction SCF
Part 6: Mobility SCF
Part 7: Terminal Capabilities SCF
Part 8: Data Session Control SCF

Part 9: Generic Messaging SCF (not part of 3GPP Release 5)
Part 10: Connectivity Manager SCF (not part of 3GPP Release 5)
Part 11: Account Management SCF
Part 12: Charging SCF
Part 13 : Policy Management SCF (new in 3GPP Release 5)
Part 14 : Presence and Availability Management SCF (new in 3GPP Release 5)

The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 8 3GPP TS 29.198-13 version 5.6.0 Release 5

OSA API specifications 29.198-family OSA API Mapping - 29.998-family
29.198-01 Overview 29.998-01 Overview
29.198-02 Common Data Definitions 29.998-02 Not Applicable
29.198-03 Framework 29.998-03 Not Applicable

29.998-04-1 Generic Call Control – CAP mapping
29.998-04-2 Generic Call Control – INAP mapping
29.998-04-3 Generic Call Control – Megaco mapping

Call
Control
(CC)
SCF

29.198-
04-1
Common
CC data
definitions

29.198-
04-2
Generic
CC SCF

29.198-
04-3
Multi-
Party CC
SCF

29.198-
04-4
Multi-
media CC
SCF

29.998-04-4 Multiparty Call Control –ISC mapping

29.998-05-1 User Interaction – CAP mapping
29.998-05-2 User Interaction – INAP mapping
29.998-05-3 User Interaction – Megaco mapping

29.198-05 User Interaction SCF

29.998-05-4 User Interaction – SMS mapping
29.198-06 Mobility SCF 29.998-06 User Status and User Location – MAP mapping
29.198-07 Terminal Capabilities SCF 29.998-07 Not Applicable
29.198-08 Data Session Control SCF 29.998-08 Data Session Control – CAP mapping
29.198-09 Generic Messaging SCF 29.998-09 Not Applicable
29.198-10 Connectivity Manager SCF 29.998-10 Not Applicable
29.198-11 Account Management SCF 29.998-11 Not Applicable
29.198-12 Charging SCF 29.998-12 Not Applicable
29.198-13 Policy Management SCF 29.998-13 Not Applicable
29.198-14 Presence & Availability Management SCF 29.998-14 Not Applicable

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 9 3GPP TS 29.198-13 version 5.6.0 Release 5

1 Scope
The present document is part 13 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA
are contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Policy Management Service Capability Feature (SCF) aspects of the interface. All
aspects of the Policy Management SCF are defined here, these being:

• Sequence Diagrams

• Class Diagrams

• Interface specification plus detailed method descriptions

• State Transition diagrams

• Data Definitions

• IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI TISPAN and the Parlay Group, in co-
operation with a number of JAIN™ Community member companies.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TS 29.198-1: "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA)".

[3] 3GPP TS 23.127: "Virtual Home Environment".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 103GPP TS 29.198-13 version 5.6.0 Release 5

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Policy Management SCF
It is expected that more and more OSA services will use policies to express operational criteria. It is also expected that
network providers will host policy-enabled services that have been written by 3rd party application service providers. In
order to manage policy information and control access to it a policy management service is needed. Consistent with
this, a policy management service interface manager, IpPolicyManager, has been defined. All policy management
interfaces are accessible from IpPolicyManager.

A number of APIs have been defined to obtain services from a policy management service. These include APIs to
create, update or view policy information. Additionally APIs have been defined to facilitate interactions between clients
(e.g., a 3rd party application) and any policy enabled service. These include APIs to view policy events, to subscribe to
policy events and for the generation of events by clients. All APIs conform to an underlying policy information model.

Clients that perform administrative tasks, e.g., create, update or delete policy information must obtain access to
IpPolicyManager using the family of obtainInterface() methods supported by the IpAccess interface. Administrative
tasks may be performed through methods supported by IpPolicyManager.

Clients that need to interact with a specific policy enabled service (for non-administrative tasks) can obtain access to
that service's interface directly via the selectService() method supported by the IpAccess interface. It should be noted
that specific policy enabled services may support additional interfaces and methods that are not defined below.
Examples of policy enabled services include: A load balancing service that uses policies to manage application loads on
the network, a charging service that determines charging criteria based on policies, a call management service that uses
policies to direct end-user calls to appropriate call agents, etc.

The order is as follows:

• The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.

• The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another.

• The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

• The State Transition Diagrams (STD) show the transition between states in the SCF. The states and transitions
are well-defined; either methods specified in the Interface specification or events occurring in the underlying
networks cause state transitions.

• The Data Definitions clause shows a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part of this specification.

An implementation of this API which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method. Where a method is not supported by an implementation of a Service interface, the exception
P_METHOD_NOT_SUPPORTED shall be returned to any call of that method.

5 Sequence Diagrams

5.1 Use of Policy Repository
The example shown here shows the use of a Policy Repository. The repository is meant to hold unattached conditions
and actions. The Network Operator can populate the repository with the conditions and actions that it can support.
These may indeed be based on 'off-line' negotiations with the application developer. The application developer uses the
conditions and actions in the Policy Repository to create rules for his own application. In the example application logic

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 113GPP TS 29.198-13 version 5.6.0 Release 5

represented by AppLogic1 belongs to the Network Operator, whereas the application logic represented by AppLogic2
belongs to the ASP. This example uses the same conditions, actions, and rules as the ASP example.

AppLogic1 AppLogic2 : IpPolicy Manager : IpPolicy Repository : IpPolicy ExpressionCondition : IpPolicy ExpressionAct ion : IpPolicy Domain : IpPolicy R ule

1: startTransaction()

2: createRepository () 3: new()

4: createCondition()
5: new()

6: createAct ion()
7: new()

8: commitTransaction()

9: startTransaction()

10: get Repository ()

11: getRepos itory Count()

12: getConditionCount()

13: getConditionIterator()

14: getCondit ion()

15: getAc tionC ount ()

16: getActionIterator()

17: getAction()

18: createDomain()
19: new()

20: createRule()
21: new()

22: setConditionList()

23: setAc tionList()

24: commitTransaction()

1: The creation of the repository by the Network Operator takes place within one transaction.

2: The method createRepository is invoked on the IpPolicyManager interface to create a new repository.

3: As a result of the createRepository method a new instance of the IpPolicyRepository interface is created. Its
interface reference is returned as return parameter of the createRepository method.

4: The Network Operator creates an unattached condition in the new repository by invoking the createCondition
method. For simplicity reasons, this is the same condition as in sequence 8 of the ASP example. The same condition
attributes apply.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 123GPP TS 29.198-13 version 5.6.0 Release 5

5: A new instance of the IpPolicyExpressionCondition interface is created.

6: The Network Operator creates an unattached action in the repository. Again, this is the same action as in sequence
10 of the ASP example. The same action attributes apply.

7: A new instance of the IpPolicyExpressionAction interface is created.

8: The Network Operator is finished with creating and populating the repository and closes the transaction.

9: Now that a repository exists, the ASP application can open a transaction to start creating a rule based on the
conditions and actions stored in the repository.

10: The application invokes the getRepository to obtain a reference to the top-level repository. The returned reference in
this case is the reference to the new repository just created by the Network Operator.

11: The application can invoke the getRepositoryCount method on the IpPolicyRepository interface to check whether
there are any sub-repositories available. This is not the case for this example.

12: Before trying to obtain all available conditions in this repository the application retrieves the number of conditions
by invoking the method getConditionCount.

13: The application can now invoke the getConditioniterator method to obtain the reference to an iterator that contains
the names of each of the conditions contained by this repository that the application is authorized to see. As the previous
method only return one available condition, this would be only one name, i.e. "SufficientCredit".

14: A reference to the condition can be obtained by invoking getCondition, with the condition name from the iterator as
input parameter.

15: Similar to 12.

16: Similar to 13.

17: Similar to 14.

18: At this point in time the application has the names and references to the unattached condition and action from the
repository it wants to use to create the rule. First a domain is created by invoking the createDomain method on the
IpPolicyManager interface.

19: A new instance of the IpPolicyDomain interface is created.

20: The application invokes createRule to create a rule within the domain that was just created in flow 18 and 19.

21: A new instance of the IpPolicyRule interface is created.

22: By invoking the method setConditionList, the application can now apply the condition from the repository to this
rule, by passing the condition reference, obtained by getCondition in flow 14, as an input parameter.

23: Similarly the application can apply the action to the rule by invoking setActionList.

24: Finally, once the rule is created using the condition and action from the policy repository, the transaction can be
closed.

5.2 Introduce condition and action into rule
This sequence diagram describes how a specific policy rule is managed. A rule consists generally of conditions and of
actions, the latter being evaluated if all conditions evaluate to true.

This sequence includes:

- creation of a condition and introduction of it into the rule;

- retrieval of an already defined action object from a repository and introduction into the rule;

- establishing a transaction bracket.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 133GPP TS 29.198-13 version 5.6.0 Release 5

Presumption: the Application got a reference to the group, e.g. by having performed the sequence "create&modify"
domain.

 : (Logical
View::Applicat ion)

 :
IpPolicyGroup

 : IpPolicyRule :
IpPolicyManager

 :
IpPol icyRepository

2: createRule()

5: createCondition()

7: getRepository()

8: getAction()

10: setActionList()

11: setConditionList()

1: startTransaction()

3: commitTransaction()

4: startTransaction()

6: commitTransaction()

9: startTransaction()

12: commitTransaction()

1: Opens the transaction bracket.

2: creates a rule object in the group by passing the name as parameter. The method returns the reference to the new rule
object.

3: Closes the transaction bracket.

4: Opens the transaction bracket.

5: After having created the rule object one can "fill" it with actions and conditions. Here a condition is created on the
rule object, thus becoming a part of the rule. Conditions defined in such a way cannot be reused in other rules. For this
the repository approach should be used.

Parameters passed are the condition name and the condition type.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 143GPP TS 29.198-13 version 5.6.0 Release 5

Returns a reference to this condition object.

Note that: the type of condition object that is to be created must be one of those specified in TpPolicyConditionType,
section 11.1.4.

The method createCondition() is used to create a new instance of a condition type in the repository or rule. This method
passes the name of the condition, the type of the condition and an approriate set of attribute-value pairs. Note that it is
necessary to include, within the conditionAttributes argument of createCondition(), all those attribute-value pairs that
are not inherited from IpPolicyCondition - if the inherited attribute-value pairs are included in this argument then their
assigned values will override the values assigned prior to this assignment. Thus, for example, if the new condition type
to be created is TpPolicyExpressionCondition, then the attribute named "Expression" and its value must be included in
conditionAttributes (also see section 8.1.12). Note that this call may throw an exception if the value of "Expression" is
not parsable.

The steps to create an action object instance are similar to those taken to create a condition object instance. We use the
method createAction() to create a new action instance. Note that an action object must be one of those specified in
TpPolicyActionType, section 11.1.7. It is necessary to include all the attribute-value pairs that are not inherited from
IpPolicyAction, in the actionAttributes argument of createAction().

6: Closes the transaction bracket.

7: Now we're using the repository approach, i.e. reusable condition or action objects. In this example we reuse an
action.

For that purpose we ask at the IpPolicyManager interface for a reference to a named repository.

The repository name is passed.

Returns the reference to the repository.

8: If we know already the name of the action object one retrieves the action directly by passing the name as parameter.
Otherwise one has to retrieve the name first by using an action iterator.

Returns a reference to the action object.

9: Opens the transaction bracket.

10: Now, the action(s) must be assigned to the rule. Furthermore and different to the conditions, one has to assign an
ordering number to the action.

Passed parameter is the action list, which is a list of action reference/ sequence pairs.

11: After having created or retrieved all needed conditions they must be assigned to the rule. This is done by passing the
list of condition to that method.

This is explicitly done by passing TpPolicyConditionList again consisting of TpPolicyConditionListElements which
contains the reference the IpPolicyRule object created with message 2.

If the rule is active, this will then cause the expression defined in the condition to be evaluated (as often as necessary).
Note that the binding between the variables referenced in the expression and the instances of the variable available is
done each time the expression is evaluated. That is, when evaluating a variable reference, each enclosing domain is
searched in order (from closest to farthest) for a matching variable. If one is found, it is used. If no matching variable is
set, the expression condition fails (evaluates to FALSE).

Activation of actions is done similarly.

12: Closes the transaction bracket.

5.3 Create and receive an event
This sequence shows how policy events are used.

For clarification we list the different policy related objects used:

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 153GPP TS 29.198-13 version 5.6.0 Release 5

- IpPolicyEventDefinition: The "template" used to define allowable events. The template is used to define formally a
distinct type of rule condition and rule action, namely, IpPolicyEventCondition and IpPolicyEventAction.

- IpPolicyEventCondition: A special instance of a policy condition used in a rule. The condition evaluates to "True" on
the occurrence of the event instance that is formally associated with it.- IpPolicyEventAction: A special instance of a
policy action used in a rule. The action results in the generation of an instance of the formal event associated with it.

- TpPolicyEvent: This data type is passed as a parameter in the formal notification (to a client) of the occurrence of an
instance of an event.

Presumption: the reference to a rule has been somehow retrieved.

 : (Logical
View::Application)

 : IpPolicyRule : (Logical
View::PolicyEng...

 :
IpPolicyManager

 :
IpPolicyEventDefinition

 :
IpPolicyDomain

 :
IpAppPolicyDomain

8: createAction()

11: createNotification()

12: reportNotification()

2: createEventDefinition()

3: setRequiredAttributes()

4: setOptionalAttributes()

5: generateEvent()

6: createCondition()

7 : se tValidityPeriodCondi tion()

9: setActionList()

1: startTransaction()

10: commitTransaction()

1: All changes of policy objects must be performed in a transaction bracket. This method opens the bracket.

2: This method creates a new event type. Event definitions describe the attributes of a specific event class, which can
than be instantiated as policy condition or policy event. Returns the reference to the newly created EventDefinition
instance which then can be modified according to ones needs.

3: Now, after having created a new instance of a policy event definition, one can set the required attributes by passing
the respective attribute set ...

4: ... and the optional attributes. Such attributes may be (...).

5: This method can be used to test the newly created event by passing a attribute set and checking whether the expected
event is generated.

6: This createCondition() method creates locally an instance of PolicyTimePeriodCondition defining the validity
period of this rule.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 163GPP TS 29.198-13 version 5.6.0 Release 5

Returns a reference to the new instance of IpPolicyTimePeriodCondition object.

Using createCondition() assign the appropriate values to relevant attributes of this new instance of
IpPolicyTimePeriodCondition. For example,

TpAttribute.AttributeName = "TimePeriod"

TpAttribute.AttributeValue.SimpleValue.StringValue = "20000101T080000/20000131T120000"

the latter indicating the time period "January 1, 2000, 0800 through January 31, 2000, noon".

7: Using the reference got with createCondition() the validity period is set to rule. Before this created condition will
not become valid.

8: The assignment of a policy event is made as for other actions. The difference is the action type passed as parameter:
it MUST be of type IpPolicyEventAction.

Passed parameters are the name of the created action, the action type and the attributes of the action; one of these
attributes refers by name to the event definition as created before in this sequence.

Returns the reference to the newly created action object.

9: This method activates the action (here the action event) for this rule. After creation this action is not yet active.

The name of the action object is passed.

10: This closes the transaction bracket.

11: Now - independently of the activities before - the application can register with the policy domain for events of a
certain type. If such an event occurs (as a result of rule's action) the application is notified.

Passed parameters are the callback interface reference and the list of event types the application is interested in.

Returns a sessionID.

12: In the policy engine complex, a certain event action is performed leading to an event the application registered for.
In that case, the application is notified via the callback interface whose reference has been sent with
enablePolicyNotification().

Parameters are the sessionID relating the this notification to the specific enablePolicyNotification()-call and the
policyEvent arising.

5.4 Create and modify domain
This sequence describes how

- a top-level policy domain is created which is then maintained by the policy manager object;

- a list of domains managed by the policy manager is retrieved and a specific domain is accessed;

- how manipulations on this domain (in this example creation of group and removal of a rule) are performed;

- how the transaction control is initiated.

Presumption: the Application has received a reference to the IpPolicyManager interface.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 173GPP TS 29.198-13 version 5.6.0 Release 5

 :
IpPol icyManager

 : (Logical
View::Application)

2: createDomain()

 :
IpPolicyDomain

 :
IpPolicyIterator

4: getDomainIterator()

5: getList()

8: createGroup()

6: getDomain()

9: removeRule()

1: startTransaction()

3: commitTransaction()

7: startTransaction()

10: commitTransaction()

1: Opens the transaction bracket.

2: Creates a domain by providing the name of the to be created domain object as parameter. The method returns the
reference to the domain object.

3: Closes the transaction bracket.

4: The user wants to get all domains handled by the policy manager. This method returns a policy iterator object which
can be used to go through the available domains.

5: This method returns the list of domains starting with "index". For efficiency reasons the number of returned entries
can be set with the parameter "numberRequested".

6: After having extracted one of the domain name as returned with getList(), the reference to this specific domain get
be retrieved by passing the domain name with getDomain(). Returns the domain reference.

7: Opens the transaction bracket.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 183GPP TS 29.198-13 version 5.6.0 Release 5

8: Now, one can act upon the domain, i.e. one can create, modify or delete objects in that domain. Valid objects are
domains, groups, and rules.

In this example one creates a group by passing the name of the group to be created with createGroup().

Returns the reference to the new group.

9: Another action is to remove a rule. We assume here that the name of the rule (which is passed as parameter) is
already known. Otherwise one has to retrieve the name by using the IpRuleIterator interface (the reference is got with
getRuleIterator()).

Returns void.

10: Closes the transaction bracket.

5.5 ASP offering services to prepaid subscribers
The example shown here is based on an Application Service Provider (ASP) offering services to the prepaid subscribers
of a certain Network Operator. The ASP discovers that, as part of the business logic of the applications it offers, the
prepaid credit of the subscriber needs to be verified with regards to the current charge for the service in order to
determine whether the purchase should be allowed or not. Rather than including this credit check in the business logic
of each and every application that the ASP has in its service portfolio, the ASP may decide to enable a Policy Rule to be
hosted in the Policy Engine of the Network Operator.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 193GPP TS 29.198-13 version 5.6.0 Release 5

AppLogic : IpPolicyManager : IpPolicyDomain : IpPolicyGroup : IpPolicyRule : IpPolicyExpressionCondition : IpPolicyExpressionAction

1: startTransaction()

2: createDomain()

3: new()

4: createGroup()

5: new()

6: cre ateRule()

7: new()

8: createCondition()

9: new()

10: createAction()

11 : n ew()

12: setConditionList()

13: setActionList()

14: commitTransaction()

1: For the sake of this example, all activities to create a Domain, a Group, and the Rule are contained within a single
transaction. The method startTransaction is used by the application to open the transaction.

2: The rule in this simplistic example is part of a single group, which in turn is contained within a single domain. The
application creates that domain by invoking the method createDomain. The value of the parameter domainName is
"eCommerceDomain".

3: As a result of the createDomain method a new instance of the IpPolicyDomain interface is created. Its interface
reference is returned as return parameter of the createDomain method.

4: Once the domain is created a group is created within that domain. The application invokes the createGroup method,
where the parameter groupName has value "PrePaidGroup".

5: As a result of the createGroup method a new instance of the IpPolicyGroup interface is created. Its interface
reference is returned as return parameter of the createGroup method.

6: At this point in time there exists the "PrePaidGroup" group within the "eCommerceDomain" domain. The actual rule
can be created, using the method createRule. The parameter ruleName has value "SufficientCreditRule". The new rule
SufficientCreditRule has the following attributes:

- Enabled == TRUE; the policy rule is currently enabled.

- RuleUsage == NULL; no free-format usage recommendation is provided.

- Priority == 0; default value, as there is only one rule.

- Mandatory == TRUE; mandatory rule, evaluation of the expression must be attempted

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 203GPP TS 29.198-13 version 5.6.0 Release 5

- PolicyRoles == NULL; no roles defined

- ConditionListType == P_PM_DNF; disjunctive normal form (DNF)

- SequencedActions == 3; do not care, as there is only one rule.

7: A new instance of the IpPolicyRule interface is created. createRule returns the reference to this newly created
interface.

8: Once an instance of IpPolicyRule exists, the actual policy rule can be constructed by means of conditions and
actions. Invoking the method createCondition creates the condition. The parameter conditionName has value
"SufficientCredit". The parameter conditionType has value "P_PM_EXPRESSION_CONDITION", to indicate that the
condition must satisfy certain expressional syntax. The parameter conditionAttributes is a set of structures. For this
example the set contains of only one attribute structure.

- ConditionAttribute.AttributeName = "SufficientCreditExpression"

- ConditionAttribute.AttributeValue.SimpleValue.StringValue = "PrePaidCredit > CurrentCharge"

Note that the variables "PrePaidCredit" and "CurrentCharge" in the expression of AttributeValue are assumed to be
defined a priori. The value of the expression is derived from the core grammar expressed in the PM information model.

9: A new instance of the IpPolicyExpressionCondition interface is created.

10: The construction of the rule is completed by creating the action that is to be performed when the condition
expression evaluates to TRUE. The parameter actionName has value "PurchaseAllowed". The parameter actionType
has value "P_PM_EXPRESSION_ACTION" to indicate that the action must satisfy certain expressional syntax. The
actionAttributes are again a set containing of only one structure.

- ActionAttribute.AttributeName = "PurchaseAllowedExpression"

- ActionAttribute.AttributeValue.SimpleValue.StringValue = "AllowedPurchase == TRUE".

11: A new instance of the IpPolicyExpressionAction interface is created.

12: The attributes for the condition are set by invoking the method setConditionList. The conditionList is a list
consisting of one structure:

- conditionList.Condition == <reference to the IpPolicyCondition interface returned by 9>

- conditionList.GroupNumber == 1; indicates how the conditions need to be grouped in DNF or CNF in case more
groups of rules exist.

- conditionList.Negated == FALSE.

13: The attributes for the action are set by invoking the method setActionList. The actionList is a list consisting of only
one structure:

- actionList.Action == <reference to the IpPolicyAction interface returned by step 10>

- actionList.SequenceNumber == 1;

14: The "SufficientCreditRule" now exists in the "PrePaidGroup" of the "eCommerceDomain". The rules is as follows:

IF " PrePaidCredit > CurrentCharge " THEN "AllowedPurchase == TRUE". This policy rule is enabled upon creation
and it is mandatory for the policy engine to evaluate the rule.

The class IpPolicyDomain is defined as a generalized aggregation container, enabling PolicyDomains, PolicyGroups,
and PolicyRules to be aggregated in a single container. The following figure shows how this container looks for the
example.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 213GPP TS 29.198-13 version 5.6.0 Release 5

 +---+
 |PolicyDomain "eCommerceDomain" |
 | |
 | +---+ |
	PolicyGroup "PrePaidGroup"							
	+--+							
		PolicyRule "SufficientCreditRule"						
		+-------------------+ +-------------------+						
			PolicyCondition		PolicyAction			
			"SufficientCredit"		"PurchaseAllowed"			
		+-------------------+ +-------------------+						
	+--+							
+---+								
 +---+

6 Class Diagrams

I pI nterface
(from csapi)

<<Int er f ac. ..

IpPolicy
(from policy)

<<Interf ace>>
IpAppPolicy Domain

(from policy)

<<Interf ace>>

IpPolicy Iterator
(from policy)

<<Interf ace>>

IpPolicy Manager
(from policy)

IpPolicy Action
(from policy)

<<Interf ace>>
IpPolicy Condition

(from policy)

<<Int erf ace>>
IpPol icy Group

(from policy)

<<Interf ace>>

IpPolicy Ev entAction
(from policy)

<<Int er f ace>>
IpPolicy ExpressionAction

(from policy)

<<Interf ace>>
IpPolicy Ev entCondition

(from policy)

<<Interf ace>>
IpPo licy ExpressionC ond ition

(from policy)

<<Interf ace>>
IpPolicy TimePeriodCondition

(from policy)

<<Interf ace>>

IpPolicy Rule
(from policy)

<<Interf ace>>
I pPol icy Domain

(from policy)

<<Int er f ace>>
IpPolicy Repository

(from policy)

<<Interf ace>>
IpPolicy Ev entDef inition

(from policy)

<<Interf ace>>

Figure: Policy Classes

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 223GPP TS 29.198-13 version 5.6.0 Release 5

IpPolicy

CommonName : TpString
PolicyKeywords : TpStringSet
Caption : TpStri ng
Descri ption : TpString

IpInterface

Note: IpPolicyDomain, IpPolicyGroup,
IpPolicyRule, IpPolicyCondition,
IpPolicyAction and
IpPolicyEventDefinition are all derived
from IpPolicy

IpPolicyEventCondition

EventDefinitonName : T pString
MatchingAttri butes : TpAttributeSet

IpPolicyExpressionCondition

Expression : TpString

IpPolicyEventAction

EventDefinitionName : TpString
Attributes : TpAttributeSet

IpPolicyManager

IpPolicyEventDefinition

RequiredAttributes : TpAttributeSet
OptionalAttributes : TpAttributeSet

IpPolicyRepository

PolicyRepositoryInPolicyManager

PolicyRepositoryInPolicyRepository

PolicyEventDefinitionInPolicyRepository

IpPolicyDomain

PolicyDomainInPolicyDomain

PolicyDomainInPolicyManager

PolicyEventDefinitionInPolicyDomain

IpPolicyGroup

PolicyGroupInPolicyDomain

PolicyGroupInPolicyGroup

IpPolicyCondition

PolicyConditionInPolicyRepository

IpPolicyAction

PolicyActionInPolicyRepository

IpPolicyRule

Enabled : TpBoolean
RuleUsage : TpString
Priority : TpInt32
Mandatory : TpBoolean
PolicyRoles : TpStringSet
ConditionListType : TpPolicyConditionListType
SequencedActions : TpInt32

PolicyRuleInPolicyDomain

PolicyRuleInPolicyGroup

PolicyConditionInPolicyRule

PolicyActionInPolicyRule

IpPolicyTimePeriodCondition

TimePeriod : TpString
MonthOfYearMask : TpString
DayOfMonthMask : TpString
DayOfWeekMask : TpString
TimeOfDayMask : TpString
LocalOrUtcTime : TpInt32

PolicyRuleValidityPeriod

IpPolicyExpressionAction

Expression : TpString

Figure: Policy Management Information Model

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 233GPP TS 29.198-13 version 5.6.0 Release 5

7 The Service Interface Specifications

7.1 Interface Specification Format
This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

7.1.2 Method descriptions

Each method (API method “call”) is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by
asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle
responses and reports, the application or service developer must implement the relevant IpApp<name> or
IpSvc<name> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
a value when the method is called. Those described as 'out' are those that contain the return result of the method when
the method returns.

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not
provide any additional methods.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 243GPP TS 29.198-13 version 5.6.0 Release 5

<<Interface>>

IpInterface

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

7.4 Generic Service Interface

7.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

7.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 253GPP TS 29.198-13 version 5.6.0 Release 5

7.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

8 Policy Management Interface Classes
The Policy Management APIs defined below address the following :

· The creation, modification and viewing of policy information.

Generally, policy enabled services will be created by a network service provider. A policy service may also be created
by an application service provider (ASP) and hosted in the network. Such services need not be based on published OSA
specifications. However, they will be created using OSA policy management APIs, will conform to the OSA policy
information model and will be accessible via OSA defined interfaces.

· Publishing of policy events supported by a service.

· Subscription to policy events supported by a service.

· Generation of events.

· Obtaining statistics associated with the use of policies.

· Handling of service level agreements (SLA). SLAs may be used to convey authorisation for access or subscription
to policy information or to modify or create policy information.

8.1 Interface Class IpPolicyManager
Inherits from: IpInterface.

Clients that wish to participate in Policy Management obtain a reference to an instance of the IpPolicyManager interface
from the Framework. Using this reference, clients can obtain a reference to a policy domain of interest, iterate through
the names of all policy domains, create a new policy domain, or remove an existing one. Clients can also obtain a
reference to a policy repository, iterate through the names of all policy repositories, create a new policy repository or
remove an existing one.
 Note that all operations through Policy Management interfaces are subject to authorization checks - clients will only
have permission to invoke methods as are allowed by the client's privileges as established by a prior agreement between
the owner of the client and the owner of the policy management complex. Similarly, methods will only return data that
the client is authorized to see. For example, if the client is authorized to see some of the top-level domains and not
others, the IpPolicyIterator returned by getDomainIterator() will only return those domains that the client is authorized
for.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 263GPP TS 29.198-13 version 5.6.0 Release 5

<<Interface>>

IpPolicyManager

createDomain (domainName : in TpString) : IpPolicyDomainRef

getDomain (domainName : in org::csapi::Common Data::TpString) : IpPolicyDomainRef

removeDomain (domainName : in org::csapi::Common Data::TpString) : void

getDomainCount () : TpInt32

getDomainIterator () : IpPolicyIteratorRef

findMatchingDomains (matchingAttributes : in TpAttributeSet) : TpStringSet

createRepository (repositoryName : in org::csapi::Common Data::TpString) : IpPolicyRepositoryRef

getRepository (repositoryName : in org::csapi::Common Data::TpString) : IpPolicyRepositoryRef

removeRepository (repositoryName : in org::csapi::Common Data::TpString) : void

getRepositoryCount () : TpInt32

getRepositoryIterator () : IpPolicyIteratorRef

startTransaction () : void

commitTransaction () : TpBoolean

abortTransaction () : void

8.1.1 Method createDomain()

Create the specified top-level Policy Domain and get a reference to the new instance.

Returns a reference to the domain just created.

Parameters

domainName : in TpString

The name of the domain to create.

Returns

IpPolicyDomainRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.1.2 Method getDomain()

Get a reference to the specified top-level Domain.

Returns the reference to the domain.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 273GPP TS 29.198-13 version 5.6.0 Release 5

Parameters

domainName : in org::csapi::Common Data::TpString

The name of the domain.

Returns

IpPolicyDomainRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.1.3 Method removeDomain()

Remove the specified top-level domain.

Parameters

domainName : in org::csapi::Common Data::TpString

The name of the top-level domain to delete.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.1.4 Method getDomainCount()

Returns the number of top-level Policy Domains contained by the PolicyManager that the client is authorized to see.

Returns the number of domains.

Parameters
No Parameters were identified for this method

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.1.5 Method getDomainIterator()

Obtain a reference to an iterator that will return the names of each of the top-level Policy Domains known to the
PolicyManager that the client is authorized to see.

Returns the reference to the iterator.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 283GPP TS 29.198-13 version 5.6.0 Release 5

Parameters
No Parameters were identified for this method

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.1.6 Method findMatchingDomains()

Ask for the set of domains that contain attributes that match the specified set of attributes that the client is authorized to
see. This could be used, for example, to get a list of all of the domains whose 'Role' is 'QOS'.

Returns the names of the matching top-level domains.

Parameters

matchingAttributes : in TpAttributeSet

Returns

TpStringSet

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.1.7 Method createRepository()

Create the specified top-level Policy Repository and get a reference to the new instance.

Returns a reference to the repository just created.

Parameters

repositoryName : in org::csapi::Common Data::TpString

The name of the Repository to create.

Returns

IpPolicyRepositoryRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 293GPP TS 29.198-13 version 5.6.0 Release 5

8.1.8 Method getRepository()

Get a reference to the specified top-level repository.

Returns a reference to the repository.

Parameters

repositoryName : in org::csapi::Common Data::TpString

The name of the repository.

Returns

IpPolicyRepositoryRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.1.9 Method removeRepository()

Remove the specified top-level Policy Repository.

Parameters

repositoryName : in org::csapi::Common Data::TpString

The name of the top-level Repository to delete.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.1.10 Method getRepositoryCount()

Returns the number of top-level Policy Repositories contained by the PolicyManager that the client is authorized to see.

Returns: The number of repositories.

Parameters
No Parameters were identified for this method

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 303GPP TS 29.198-13 version 5.6.0 Release 5

8.1.11 Method getRepositoryIterator()

Obtain a reference to an iterator that will return the names of each of the top-level Policy Repositories known to the
PolicyManager that the client is authorized to see.

Returns: The reference to the iterator.

Parameters
No Parameters were identified for this method

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.1.12 Method startTransaction()

Open a transaction. All modifications to the policy information base up to the call to either commitTransaction() or
abortTransaction() will be treated as part of this transaction.

Note that transaction brackets consisting of startTransaction() and commitTransaction() are generally used to perform
changes in an atomic way, i.e. to ensure that either all changes are made persistent or all changes are undone in case of
failure of even a single action. Any other clients reading data modified by this transaction will see the existing data until
commitTransaction() is called. Any timeouts of this transaction are implementation specific. If a transaction is timed
out, any subsequent attempt to make requests that require a transaction will throw the exception
P_NO_TRANSACTION_IN_PROCESS.

Note, however, that the scope of transaction brackets is extended here: Large transaction brackets can be also useful for
efficiency reasons even if the different actions are not atomic. Creation of a transaction introduces a significant
overhead, reduction of the number of separate transactions reduces this. It is up to the application implementation to
reflect this fact.

Note that transactions can not be nested, that is, a second call to startTransaction() without calling commitTransaction()
or abortTransaction() in between will result in the exception P_TRANSACTION_IN_PROCESS being thrown during
the second call.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_TRANSACTION_IN_PROCESS

8.1.13 Method commitTransaction()

Commit a transaction. All modifications to the policy information base made since the last call to startTransaction() will
be committed.

Returns: TRUE is returned if the commit succeeded and the policy information base has been updated, FALSE
otherwise.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 313GPP TS 29.198-13 version 5.6.0 Release 5

Parameters
No Parameters were identified for this method

Returns

TpBoolean

Raises

TpCommonExceptions, P_NO_TRANSACTION_IN_PROCESS

8.1.14 Method abortTransaction()

Abort a transaction. All modifications to the policy information base made since the last call to startTransaction() will
be discarded.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions, P_NO_TRANSACTION_IN_PROCESS

8.2 Interface Class IpPolicy
Inherits from: IpInterface.

The base interface from which are derived all of the Policy interfaces (except IpPolicyManager). This interface
documents four attributes for describing a policy-related instance. In the same way that the generic attribute accessor
methods are defined in this base interface, these common attributes are documented here as well and each interface that
is derived from IpPolicy will provide support for them.
 Note that we could have defined dedicated get/set methods for each attribute, which would have the benefits of
being potentially faster and safer, but this design approach was not taken, primarily to make it simpler to add additional
attributes in the future without having to change the associated Interface.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 323GPP TS 29.198-13 version 5.6.0 Release 5

<<Interface>>

IpPolicy

getAttribute (attributeName : in TpString) : TpAttribute

setAttribute (targetAttribute : in TpAttribute) : void

getAttributes (attributeNames : in TpStringList) : TpAttributeSet

setAttributes (targetAttributes : in TpAttributeSet) : void

8.2.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

8.2.2 Method getAttribute()

Get a copy of the specified attribute from the policy object. Note that modifying the returned attribute will not update
the actual attribute of the object. See setAttribute() for that functionality.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 333GPP TS 29.198-13 version 5.6.0 Release 5

Returns: A copy of the attribute.

Parameters

attributeName : in TpString

The name of the attribute to retrieve.

Returns

TpAttribute

Raises

TpCommonExceptions, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR

8.2.3 Method setAttribute()

Set an attribute of a policy object.

Parameters

targetAttribute : in TpAttribute

The attribute to be set in this object.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_NO_TRANSACTION_IN_PROCESS

8.2.4 Method getAttributes()

Get a copy of the set of attributes for the policy object. Note that modifying the returned set will not update the actual
attributes of the object. See setAttributes() for that functionality.

Returns: A copy of the attributes.

Parameters

attributeNames : in TpStringList

The list of names of the attributes to retrieve. In case the list of names is null or empty, all of the attributes will be

returned.

Returns

TpAttributeSet

Raises

TpCommonExceptions

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 343GPP TS 29.198-13 version 5.6.0 Release 5

8.2.5 Method setAttributes()

Set one or more attributes of a policy object.

Parameters

targetAttributes : in TpAttributeSet

The attributes to be set in this object.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_NO_TRANSACTION_IN_PROCESS

8.3 Interface Class IpPolicyDomain
Inherits from: IpPolicy.

This class is a generalized aggregation container. It enables PolicyDomains, PolicyGroups, PolicyRules, or
PolicyEventDefinitions to be aggregated in a single container. Loops, including the degenerate case of a PolicyDomain
that contains itself, are not allowed when PolicyDomains contain other PolicyDomains.
 PolicyDomains and their nesting capabilities are shown in the figure below. Note that a PolicyDomain can nest other
PolicyDomains, and there is no restriction on the depth of the nesting in sibling PolicyDomains.
 +---+
 | PolicyDomain |
 | |
 | +--------------------+ +-----------------+ |
 | | PolicyDomain A | | PolicyDomain X | | | |
 | | | | | |
 | | +----------------+ | ooo | | |
 | | | PolicyDomain A1| | | | |
 | | +----------------+ | | | |
 | +--------------------+ +-----------------+ |
 +---+
 As a simple example, think of the highest level PolicyDomain shown in the figure above as a PolicyDomain for the
Call Control Service. This PolicyDomain may be called CallControlPolicy, and may aggregate several PolicyDomains
that provide specialized rules per client application.
 Hence, PolicyDomain A in the figure above may define call control rules for a third party application from company
A, while another PolicyDomain might define rules for third party application B (e.g. PolicyDomain X), and so forth.
 Note also that the depth of each PolicyDomain does not need to be the same. Thus, the ApplicationAPolicyDomain
might have several additional layers of PolicyDomains defined for any of several reasons (different locales, number of
customers, etc.). The PolicyRules are therefore contained at n levels from the ApplicationAPolicyDomain. Compare
this to the Application B PolicyDomain (PolicyDomain X), which might directly contain PolicyRules.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 353GPP TS 29.198-13 version 5.6.0 Release 5

<<Interface>>

IpPolicyDomain

getParentDomain () : IpPolicyDomainRef

createDomain (domainName : in TpString) : IpPolicyDomainRef

getDomain (domainName : in TpString) : IpPolicyDomainRef

removeDomain (domainName : in TpString) : void

getDomainCount () : TpInt32

getDomainIterator () : IpPolicyIteratorRef

createGroup (groupName : in TpString) : IpPolicyGroupRef

getGroup (groupName : in TpString) : IpPolicyGroupRef

removeGroup (groupName : in TpString) : void

getGroupCount () : TpInt32

getGroupIterator () : IpPolicyIteratorRef

createRule (ruleName : in TpString) : IpPolicyRuleRef

getRule (ruleName : in TpString) : IpPolicyRuleRef

removeRule (ruleName : in TpString) : void

getRuleCount () : TpInt32

getRuleIterator () : IpPolicyIteratorRef

createEventDefinition (eventDefinitionName : in TpString, requiredAttributes : in TpStringSet,
optionalAttributes : in TpStringSet) : IpPolicyEventDefinitionRef

getEventDefinition (eventDefinitionName : in TpString) : IpPolicyEventDefinitionRef

removeEventDefinition (eventDefinitionName : in TpString) : void

getEventDefinitionCount () : TpInt32

getEventDefinitionIterator () : IpPolicyIteratorRef

generateEvent (eventDefinitionName : in TpString, attributes : in TpAttributeSet) : void

createNotification (appPolicyDomain : in IpAppPolicyDomainRef, events : in TpStringSet) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID, events : in TpStringSet) : void

createVariableSet (variableSetName : in TpString) : void

getVariableSet (variableSetName : in TpString) : TpAttributeSet

removeVariableSet (variableSetName : in TpString) : void

getVariableSetCount () : TpInt32

getVariableSetIterator () : IpPolicyIteratorRef

setVariable (variableSetName : in TpString, variable : in TpAttribute) : void

getVariable (variableSetName : in TpString, variableName : in TpString) : TpAttribute

8.3.1 Attributes

CommonName : TpString

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 363GPP TS 29.198-13 version 5.6.0 Release 5

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

Role : TpString

This attribute provides a way to specify higher-level context associated with a top-level domain, e.g. Role = Charging,
Role = QOS, or Role = User Interaction, etc. This attribute can be used to search for domains that specify a particular
Role by using the findMatchingDomains() method of the IpPolicyManager interface. This attribute must be explicitly
set for each instance of an IpPolicyDomain. There is no default and values are not copied from the parent domain (if
any).

Owner : TpString

This attribute provides a way to specify an owner of a top-level domain. This attribute can be used to search for
domains that specify a particular Owner by using the findMatchingDomains() method of the IpPolicyManager interface.
This attribute must be explicitly set for each instance of an IpPolicyDomain. There is no default and values are not
copied from the parent domain (if any).

8.3.2 Method getParentDomain()

Return a reference to the domain that contains this one (if any). If this is a top-level domain, return a NULL reference.

Returns: A reference to the parent domain.

Parameters
No Parameters were identified for this method

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 373GPP TS 29.198-13 version 5.6.0 Release 5

Returns

IpPolicyDomainRef

Raises

TpCommonExceptions

8.3.3 Method createDomain()

Create the specified domain and get a reference to the new instance.

Returns: A reference to the domain just created.

Parameters

domainName : in TpString

The name of the domain to create.

Returns

IpPolicyDomainRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.3.4 Method getDomain()

Get a reference to the specified subdomain.

Returns: A reference to the domain.

Parameters

domainName : in TpString

The name of the subdomain to get.

Returns

IpPolicyDomainRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.3.5 Method removeDomain()

Remove the specified subdomain.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 383GPP TS 29.198-13 version 5.6.0 Release 5

Parameters

domainName : in TpString

The name of the subdomain to delete.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.3.6 Method getDomainCount()

Returns the number of subdomains contained by this one that the client is authorized to see.

Returns: The number of subdomains.

Parameters
No Parameters were identified for this method

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.3.7 Method getDomainIterator()

Obtain a reference to an iterator that will return the names of each of the subdomains contained by this one that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.3.8 Method createGroup()

Create the specified group and get a reference to the new instance.

Returns: A reference to the group just created.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 393GPP TS 29.198-13 version 5.6.0 Release 5

Parameters

groupName : in TpString

The name of the group to create.

Returns

IpPolicyGroupRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.3.9 Method getGroup()

Get a reference to the specified group.

Returns: A reference to the group.

Parameters

groupName : in TpString

The name of the group to get.

Returns

IpPolicyGroupRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.3.10 Method removeGroup()

Remove the specified group.

Parameters

groupName : in TpString

The name of the group to delete.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 403GPP TS 29.198-13 version 5.6.0 Release 5

8.3.11 Method getGroupCount()

Returns the number of groups contained by this domain that the client is authorized to see.

Returns: The number of groups.

Parameters
No Parameters were identified for this method

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.3.12 Method getGroupIterator()

Obtain a reference to an iterator that will return the names of each of the groups contained by this domain that the client
is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.3.13 Method createRule()

Create a rule with the specified name, and get a reference to the new instance.

Returns: A reference to the just created rule.

Parameters

ruleName : in TpString

The name of the rule to create.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 413GPP TS 29.198-13 version 5.6.0 Release 5

Returns

IpPolicyRuleRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.3.14 Method getRule()

Get a reference to the specified rule.

Returns: A reference to the rule.

Parameters

ruleName : in TpString

The name of the rule to get.

Returns

IpPolicyRuleRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.3.15 Method removeRule()

Remove the specified rule.

Parameters

ruleName : in TpString

The name of the rule to delete.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.3.16 Method getRuleCount()

Returns the number of rules contained by this domain that the client is authorized to see.

Returns: The number of rules.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 423GPP TS 29.198-13 version 5.6.0 Release 5

Parameters
No Parameters were identified for this method

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.3.17 Method getRuleIterator()

Obtain a reference to an iterator that will return the names of each of the rules contained by this domain that the client is
authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.3.18 Method createEventDefinition()

Define a new event type, specifying the definition's name and the required and optional attributes that must/may appear
in an instance of that event.

Returns: A reference to the newly created definition.

Parameters

eventDefinitionName : in TpString

The name of the definition of the new event.

requiredAttributes : in TpStringSet

The set of attributes that MUST be included in any event of this type.

optionalAttributes : in TpStringSet

A set of attributes that MAY be included in any event of this type.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 433GPP TS 29.198-13 version 5.6.0 Release 5

Returns

IpPolicyEventDefinitionRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.3.19 Method getEventDefinition()

Get a reference to the definition of an event type.

Returns: A reference to the definition.

Parameters

eventDefinitionName : in TpString

The name of the event definition to get.

Returns

IpPolicyEventDefinitionRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.3.20 Method removeEventDefinition()

Remove the definition for an event from the domain.

Parameters

eventDefinitionName : in TpString

The name of the definition to remove.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.3.21 Method getEventDefinitionCount()

Returns the number of event definitions contained by this domain that the client is authorized to see.

Returns: The number of event definitions.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 443GPP TS 29.198-13 version 5.6.0 Release 5

Parameters
No Parameters were identified for this method

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.3.22 Method getEventDefinitionIterator()

Obtain a reference to an iterator that will return the names of each of the definitions contained by this domain that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.3.23 Method generateEvent()

Generate an event using the attributes specified. Validate the attributes against the instance of IpPolicyEventDefinition
specified by the eventDefinitionName parameter. Validation includes verifying that all of the attributes specified as
required by the IpPolicyEventDefinition are included in the supplied attributes and that the supplied attributes do not
include any attributes that are not specified as either required or optional by the IpPolicyEventDefinition.

See also: IpPolicyEventAction

Parameters

eventDefinitionName : in TpString

The name of the definition of the event that will be used to validate attributes.

attributes : in TpAttributeSet

The attributes that will be included in the event instance that is generated.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 453GPP TS 29.198-13 version 5.6.0 Release 5

8.3.24 Method createNotification()

Allows a client to specify a set of events that they are interested in receiving. Once successfully subscribed, the client
will receive copies of all generated events on the callback provided by the appPolicyDomain parameter.

Returns: An identifier for this subscription. When the client is no longer interested in receiving these events, it should
call destroyNotification() with this identifier.

Parameters

appPolicyDomain : in IpAppPolicyDomainRef

The callback to be used to send generated events to the client.

events : in TpStringSet

The set of names of event definitions specifying the events the client wishes to subscribe to.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.3.25 Method destroyNotification()

Allows a client to indicate that it is no longer interested in receiving events that it previously subscribed to.

Parameters

assignmentID : in TpAssignmentID

The identifier the client received when it subscribed for the events.

events : in TpStringSet

If non-NULL and non-empty, this indicates the particular events that the client no longer wishes to receive. If NULL or
empty, then the client is unsubscribing from all events associated with the specified identifier.

Raises

TpCommonExceptions, P_SYNTAX_ERROR

8.3.26 Method createVariableSet()

Used by clients to define a named collection of variables. Variables are attributes that can be updated by the client to
reflect the current 'state' of the client. Since variables can be referenced by name from expression conditions and
actions, the act of updating a variable may have a side effect of satisfying conditions in rules that are currently active.
Variables that are defined by the network operator may be dynamically updated by the policy engine to reflect the
current 'state' of the modelled networks and services.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 463GPP TS 29.198-13 version 5.6.0 Release 5

Parameters

variableSetName : in TpString

The name of the new variable set.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.3.27 Method getVariableSet()

Get a variable set.

Returns: A variable set.

Parameters

variableSetName : in TpString

The name of the variable set to get.

Returns

TpAttributeSet

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.3.28 Method removeVariableSet()

Remove the variable set from the domain.

Parameters

variableSetName : in TpString

The name of the variable set to remove.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.3.29 Method getVariableSetCount()

Returns the number of variable sets contained by this domain that the client is authorized to see.

Returns: The number of variable sets.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 473GPP TS 29.198-13 version 5.6.0 Release 5

Parameters
No Parameters were identified for this method

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.3.30 Method getVariableSetIterator()

Obtain a reference to an iterator that will return the names of each of the variable sets contained by this domain that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.3.31 Method setVariable()

Set a variable within a variable set.

Parameters

variableSetName : in TpString

The name of the variable set within which to set the specified variable.

variable : in TpAttribute

The variable to set.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.3.32 Method getVariable()

Get a copy of a variable from a variable set.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 483GPP TS 29.198-13 version 5.6.0 Release 5

Returns: A copy of the variable.

Parameters

variableSetName : in TpString

The name of the variable set to find the variable in.

variableName : in TpString

The name of the variable to get a copy of.

Returns

TpAttribute

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.4 Interface Class IpPolicyGroup
Inherits from: IpPolicy.

This class is a generalized aggregation container. It enables either PolicyRules or PolicyGroups to be aggregated in a
single container. Loops, including the degenerate case of a PolicyGroup that contains itself, are not allowed when
PolicyGroups contain other PolicyGroups.
 PolicyGroups and their nesting capabilities are shown in the figure below. Note that a PolicyGroup can nest other
PolicyGroups, and there is no restriction on the depth of the nesting in sibling PolicyGroups.

 +---+
 | PolicyGroup |
 | |
 | +--------------------+ +-----------------+ |
 | | PolicyGroup A | | PolicyGroup X | | | |
 | | | | | |
 | | +----------------+ | ooo | | |
 | | | PolicyGroup A1 | | | | |
 | | +----------------+ | | | |
 | +--------------------+ +-----------------+ |
 +---+

 As a simple example, think of the highest level PolicyGroup shown in the figure above as a logon policy or US
employees of a company. This PolicyGroup may be called USEmployeeLogonPolicy, and may aggregate several
PolicyGroups that provide specialized rules per location.
 Hence, PolicyGroup A in the figure above may define logon rules for employees on the West Coast, while another
PolicyGroup might define logon rules for the Midwest (e.g. PolicyGroup X), and so forth.
 Note also that the depth of each PolicyGroup does not need to be the same. Thus, the WestCoast PolicyGroup might
have several additional layers of PolicyGroups defined for any of several reasons (different locales, number of subnets,
etc..). The PolicyRules are therefore contained at n levels from the USEmployeeLogonPolicyGroup. Compare this to
the Midwest PolicyGroup (PolicyGroup X), which might directly contain PolicyRules.
 No attributes are defined for this class since it inherits all its attributes from IpPolicy. The class exists to aggregate
PolicyRules or other PolicyGroups.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 493GPP TS 29.198-13 version 5.6.0 Release 5

<<Interface>>

IpPolicyGroup

getParentDomain () : IpPolicyDomainRef

getParentGroup () : IpPolicyGroupRef

createGroup (groupName : in TpString) : IpPolicyGroupRef

getGroup (groupName : in TpString) : IpPolicyGroupRef

removeGroup (groupName : in TpString) : void

getGroupCount () : TpInt32

getGroupIterator () : IpPolicyIteratorRef

createRule (ruleName : in TpString) : IpPolicyRuleRef

getRule (ruleName : in TpString) : IpPolicyRuleRef

removeRule (ruleName : in TpString) : void

getRuleCount () : TpInt32

getRuleIterator () : IpPolicyIteratorRef

8.4.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 503GPP TS 29.198-13 version 5.6.0 Release 5

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

8.4.2 Method getParentDomain()

Get a reference to the domain that directly contains this group (if any). If this is a subgroup (whose immediate container
is another group instead of a domain), return a NULL reference.

Returns: A reference to the containing domain.

Parameters
No Parameters were identified for this method

Returns

IpPolicyDomainRef

Raises

TpCommonExceptions

8.4.3 Method getParentGroup()

Return a reference to the group that contains this one (if any). If this is a top-level group, return a NULL reference.

Returns: A reference to the containing group.

Parameters
No Parameters were identified for this method

Returns

IpPolicyGroupRef

Raises

TpCommonExceptions

8.4.4 Method createGroup()

Create the specified group and get a reference to the new instance.

Returns: A reference to the group just created.

Parameters

groupName : in TpString

The name of the group to create.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 513GPP TS 29.198-13 version 5.6.0 Release 5

Returns

IpPolicyGroupRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.4.5 Method getGroup()

Get a reference to the specified group.

Returns: A reference to the group.

Parameters

groupName : in TpString

The name of the group to get.

Returns

IpPolicyGroupRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.4.6 Method removeGroup()

Remove the specified group.

Parameters

groupName : in TpString

The name of the group to delete.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.4.7 Method getGroupCount()

Returns the number of groups contained by this group that the client is authorized to see.

Parameters
No Parameters were identified for this method

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 523GPP TS 29.198-13 version 5.6.0 Release 5

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.4.8 Method getGroupIterator()

Obtain a reference to an iterator that will return the names of each of the groups contained by this group that the client is
authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.4.9 Method createRule()

Create a rule with the specified name, and get a reference to the new instance.

Returns: A reference to the just created rule.

Parameters

ruleName : in TpString

The name of the rule to create.

Returns

IpPolicyRuleRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.4.10 Method getRule()

Get a reference to the specified rule.

Returns: A reference to the rule.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 533GPP TS 29.198-13 version 5.6.0 Release 5

Parameters

ruleName : in TpString

The name of the rule to get.

Returns

IpPolicyRuleRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.4.11 Method removeRule()

Remove the specified rule.

Parameters

ruleName : in TpString

The name of the rule to delete.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.4.12 Method getRuleCount()

Returns the number of rules contained by this group that the client is authorized to see.

Parameters
No Parameters were identified for this method

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.4.13 Method getRuleIterator()

Obtain a reference to an iterator that will return the names of each of the rules contained by this group that the client is
authorized to see.

Returns: A reference to the iterator.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 543GPP TS 29.198-13 version 5.6.0 Release 5

Parameters
No Parameters were identified for this method

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.5 Interface Class IpPolicyRepository
Inherits from: IpPolicy.

A class representing a container for reusable policy-related information. Instances of PolicyConditions and
PolicyActions can be defined here and then referenced from one or more PolicyRules. Note that some instantiations of
the Policy Management service will have Repositories that have been pre-defined by the Service Provider, with pre-
defined PolicyConditions and PolicyActions. It may also be possible that clients with the appropriate authorizations will
be able to define new Repositories and/or add new PolicyConditions and PolicyActions to existing Repositories.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 553GPP TS 29.198-13 version 5.6.0 Release 5

<<Interface>>

IpPolicyRepository

getParentRepository () : IpPolicyRepositoryRef

createRepository (repositoryName : in TpString) : IpPolicyRepositoryRef

getRepository (repositoryName : in TpString) : IpPolicyRepositoryRef

removeRepository (repositoryName : in TpString) : void

getRepositoryCount () : TpInt32

getRepositoryIterator () : IpPolicyIteratorRef

createCondition (conditionName : in TpString, conditionType : in TpPolicyConditionType, conditionAttributes
: in TpAttributeSet) : IpPolicyConditionRef

getCondition (conditionName : in TpString) : IpPolicyConditionRef

removeCondition (conditionName : in TpString) : void

getConditionCount () : TpInt32

getConditionIterator () : IpPolicyIteratorRef

createAction (actionName : in TpString, actionType : in TpPolicyActionType, actionAttributes : in
TpAttributeSet) : IpPolicyActionRef

getAction (actionName : in TpString) : IpPolicyActionRef

removeAction (actionName : in TpString) : void

getActionCount () : TpInt32

getActionIterator () : IpPolicyIteratorRef

8.5.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 563GPP TS 29.198-13 version 5.6.0 Release 5

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

8.5.2 Method getParentRepository()

Return a reference to the repository that contains this one (if any). If this is a top-level repository, return a NULL
reference.

Returns: A reference to the parent repository.

Parameters
No Parameters were identified for this method

Returns

IpPolicyRepositoryRef

Raises

TpCommonExceptions

8.5.3 Method createRepository()

Create the specified repository and get a reference to the new instance.

Returns: A reference to the repository just created.

Parameters

repositoryName : in TpString

The name of the repository to create.

Returns

IpPolicyRepositoryRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 573GPP TS 29.198-13 version 5.6.0 Release 5

8.5.4 Method getRepository()

Get a reference to the specified subrepository.

Returns: A reference to the repository.

Parameters

repositoryName : in TpString

The name of the subrepository to get.

Returns

IpPolicyRepositoryRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.5.5 Method removeRepository()

Remove the specified subrepository.

Parameters

repositoryName : in TpString

The name of the subrepository to delete.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.5.6 Method getRepositoryCount()

Returns the number of subrepositories contained by this repository that the client is authorized to see.

Parameters
No Parameters were identified for this method

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 583GPP TS 29.198-13 version 5.6.0 Release 5

8.5.7 Method getRepositoryIterator()

Obtain a reference to an iterator that will return the names of each of the subrepositories contained by this one that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.5.8 Method createCondition()

Create a reusable condition. References to the newly created condition can be used in one or more PolicyRules.

Returns: The reference to the newly created condition.

Parameters

conditionName : in TpString

The name uniquely identifying this condition within this repository.

conditionType : in TpPolicyConditionType

The type specifying which IpPolicyCondition class should be created. For this version of the Policy Management API,
it must be one of P_PM_TIME_PERIOD_CONDITION, P_PM_EVENT_CONDITION, or
P_PM_EXPRESSION_CONDITION.

conditionAttributes : in TpAttributeSet

The attributes specifying the condition.

Returns

IpPolicyConditionRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.5.9 Method getCondition()

Get a reference to the specified condition.

Returns: A reference to the specified condition.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 593GPP TS 29.198-13 version 5.6.0 Release 5

Parameters

conditionName : in TpString

The name of the condition to get.

Returns

IpPolicyConditionRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.5.10 Method removeCondition()

Remove the specified condition.

Parameters

conditionName : in TpString

The name of the condition to delete.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.5.11 Method getConditionCount()

Returns the number of conditions contained by this repository that the client is authorized to see.

Returns: The number of conditions.

Parameters
No Parameters were identified for this method

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.5.12 Method getConditionIterator()

Obtain a reference to an iterator that will return the names of each of the conditions contained by this repository that the
client is authorized to see.

Returns: A reference to the iterator.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 603GPP TS 29.198-13 version 5.6.0 Release 5

Parameters
No Parameters were identified for this method

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.5.13 Method createAction()

Create a reusable action. References to the newly created action can be used in one or more PolicyRules.

Returns: The reference to the newly created action.

Parameters

actionName : in TpString

The name uniquely identifying this action within this repository.

actionType : in TpPolicyActionType

The type specifying which IpPolicyAction class should be created. For this version of the Policy Management API, it
must be one of P_PM_EVENT_ACTION, or P_PM_EXPRESSION_ACTION.

actionAttributes : in TpAttributeSet

The attributes specifying the action.

Returns

IpPolicyActionRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.5.14 Method getAction()

Get a reference to the specified action.

Returns: A reference to the specified action.

Parameters

actionName : in TpString

The name of the action to get.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 613GPP TS 29.198-13 version 5.6.0 Release 5

Returns

IpPolicyActionRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.5.15 Method removeAction()

Remove the specified action.

Parameters

actionName : in TpString

The name of the action to delete.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.5.16 Method getActionCount()

Returns the number of actions contained by this repository that the client is authorized to see.

Parameters
No Parameters were identified for this method

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.5.17 Method getActionIterator()

Obtain a reference to an iterator that will return the names of each of the actions contained by this repository that the
client is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 623GPP TS 29.198-13 version 5.6.0 Release 5

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.6 Interface Class IpPolicyRule
Inherits from: IpPolicy.

This class represents the "If Condition then Action" semantics associated with a policy. A PolicyRule condition, in the
most general sense, is represented as either an ORed set of ANDed conditions (Disjunctive Normal Form, or DNF) or
an ANDed set of ORed conditions (Conjunctive Normal Form, or CNF). Individual conditions may either be negated
(NOT C) or unnegated (C). The actions specified by a PolicyRule are to be performed if and only if the PolicyRule
condition (whether it is represented in DNF or CNF) evaluates to TRUE.
 The conditions and actions associated with a policy rule are modelled, respectively, with subclasses of the classes
PolicyCondition and PolicyAction. These condition and action objects are tied to instances of PolicyRule by the
setConditionList() and setActionList() methods.
 A policy rule may also be associated with one or more policy time periods, indicating the schedule according to
which the policy rule is active and inactive. In this case it is the setValidityPeriodCondition() method that provides the
linkage.
 A policy rule is illustrated conceptually in the figure below.

 +--+
 | PolicyRule |
 | |
 | +--------------------+ +-----------------+ |
 | | PolicyCondition(s) | | PolicyAction(s) | |
 | +--------------------+ +-----------------+ |
 | |
 | +------------------------------+ |
 | | PolicyTimePeriodCondition(s) | |
 | +------------------------------+ |
 +--+

 The PolicyRule class uses the structure TpConditionList to specify the list of conditions for the rule and uses the
attribute ConditionListType, to indicate whether the conditions for the rule are in DNF or CNF. The TpConditionList is
a list of structures, each element of which contains a reference to a condition and two additional attributes to complete
the representation of the rule's conditional expression. The first of these attributes is an integer to partition the
referenced conditions into one or more groups, and the second is a Boolean to indicate whether the referenced condition
is negated. An example shows how TpConditionList and these two additional attributes provide a unique representation
of a set of conditions in either DNF or CNF.
 Suppose we have a TpConditionList that aggregates five PolicyConditions C1 through C5, with the following values
in the attributes of the five elements of the list:
 C1: GroupNumber = 1, ConditionNegated = FALSE
 C2: GroupNumber = 1, ConditionNegated = TRUE
 C3: GroupNumber = 1, ConditionNegated = FALSE
 C4: GroupNumber = 2, ConditionNegated = FALSE
 C5: GroupNumber = 2, ConditionNegated = FALSE
 If ConditionListType = P_PM_DNF, then the overall condition for the PolicyRule is:
 (C1 AND (NOT C2) AND C3) OR (C4 AND C5)
 On the other hand, if ConditionListType = P_PM_CNF, then the overall condition for the PolicyRule is:
 (C1 OR (NOT C2) OR C3) AND (C4 OR C5)
 In both cases, there is an unambiguous specification of the overall condition that is tested to determine whether to
perform the actions associated with the PolicyRule.
 Similarly, The PolicyRule class uses the structure TpPolicyActionList to specify the list of actions for the rule and
uses the attribute SequencedActions to indicate whether the actions for the rule MUST be executed in the order
specified in the TpActionList, SHOULD be executed in the order specified, or it does not matter. The TpActionList is a

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 633GPP TS 29.198-13 version 5.6.0 Release 5

list of structures, each element of which contains a reference to an action and a attribute sequenceNumber. This attribute
provides an unsigned integer 'n' that indicates the relative position of an action in the sequence of actions associated
with a policy rule. When 'n' is a positive integer, it indicates a place in the sequence of actions to be performed, with
smaller integers indicating earlier positions in the sequence. The special value '0' indicates "do not care". If two or more
actions have the same non-zero sequence number, they may be performed in any order, but they must all be performed
at the appropriate place in the overall action sequence.

 A series of examples will make ordering of actions clearer:
 - If all actions have the same sequence number, regardless of whether it is '0' or non-zero, any order is acceptable.
 - The values
 1:ACTION A
 2:ACTION B
 1:ACTION C
 3:ACTION D
 indicate two acceptable orders: A,C,B,D or C,A,B,D, since A and C can be performed in either order, but only at
the '1' position.
 - The values
 0:ACTION A
 2:ACTION B
 3:ACTION C
 3:ACTION D
 require that B,C, and D occur either as B,C,D or as B,D,C. Action A may appear at any point relative to B,C, and D.
Thus the complete set of acceptable orders is: A,B,C,D; B,A,C,D; B,C,A,D; B,C,D,A; A,B,D,C; B,A,D,C; B,D,A,C;
B,D,C,A.
 Note that the non-zero sequence numbers need not start with '1', and they need not be consecutive. All that matters is
their relative magnitude.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 643GPP TS 29.198-13 version 5.6.0 Release 5

<<Interface>>

IpPolicyRule

getParentGroup () : IpPolicyGroupRef

getParentDomain () : IpPolicyDomainRef

createCondition (conditionName : in TpString, conditionType : in TpPolicyConditionType, conditionAttributes
: in TpAttributeSet) : IpPolicyConditionRef

getCondition (conditionName : in TpString) : IpPolicyConditionRef

removeCondition (conditionName : in TpString) : void

getConditionCount () : TpInt32

getConditionIterator () : IpPolicyIteratorRef

createAction (actionName : in TpString, actionType : in TpPolicyActionType, actionAttributes : in
TpAttributeSet) : IpPolicyActionRef

getAction (actionName : in TpString) : IpPolicyActionRef

removeAction (actionName : in TpString) : void

getActionCount () : TpInt32

getActionIterator () : IpPolicyIteratorRef

setValidityPeriodConditionByName (conditionName : in TpString) : void

setValidityPeriodCondition (conditionReference : in IpPolicyTimePeriodConditionRef) : void

getValidityPeriodCondition () : IpPolicyTimePeriodConditionRef

unsetValidityPeriodCondition () : void

setConditionList (conditionList : in TpPolicyConditionList) : void

getConditionList () : TpPolicyConditionList

setActionList (actionList : in TpPolicyActionList) : void

getActionList () : TpPolicyActionList

8.6.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 653GPP TS 29.198-13 version 5.6.0 Release 5

"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

Enabled : TpBoolean

This attribute indicates whether a policy rule is currently enabled, from an administrative point of view. Its purpose is
to allow a policy administrator to enable or disable a policy rule without having to add it to, or remove it from, the
policy repository.

Note that unlike [PCIM], this attribute does not support the value 'enabledForDebug'. It was considered confusing that
Enabled was not a boolean attribute. Support for debugging, including the ability to specify that the entity evaluating
the policy condition(s) is being told to evaluate the conditions for the policy rule, but not to perform the actions if the
conditions evaluate to TRUE, will be considered for a later release.

RuleUsage : TpString

This attribute is a free-form string that recommends how this policy should be used.

Priority : TpInt32

This attribute provides a non-negative integer for prioritising policy rules relative to each other. Larger integer values
indicate higher priority. Since one purpose of this attribute is to allow specific, ad hoc policy rules to temporarily
override established policy rules, an instance that has this attribute set has a higher priority than all instances that use or
set the default value of zero.

Prioritisation among policy rules provides a basic mechanism for resolving policy conflicts.

Mandatory : TpBoolean

This attribute indicates whether evaluation (and possibly action execution) of a PolicyRule is mandatory or not. Its
concept is similar to the ability to mark packets for delivery or possible discard, based on network traffic and device
load.

The evaluation of a PolicyRule MUST be attempted if the Mandatory attribute value is TRUE. If the Mandatory
attribute value of a PolicyRule is FALSE, then the evaluation of the rule is "best effort" and MAY be ignored.

PolicyRoles : TpStringSet

This attribute represents the roles and role combinations associated with a policy rule. Each value represents one role
combination. Since this is a multi-valued attribute, more than one role combination can be associated with a single
policy rule. Each value is a string of the form

 <RoleName>[&&<RoleName>]*

where the individual role names appear in alphabetical order.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 663GPP TS 29.198-13 version 5.6.0 Release 5

ConditionListType : TpPolicyConditionListType

This attribute is used to specify whether the list of policy conditions associated with this policy rule is in disjunctive
normal form (DNF) or conjunctive normal form (CNF). If this attribute is not present, the list type defaults to DNF.

SequencedActions : TpInt32

This attribute gives a policy administrator a way of specifying how the ordering of the policy actions associated with
this PolicyRule is to be interpreted. Three values are supported:

- mandatory(1): Do the actions in the indicated order, or do not do them at all.

- recommended(2): Do the actions in the indicated order if you can, but if you cannot do them in this order, do them in
another order if you can.

- dontCare(3): Do them -- I do not care about the order.

When error / event reporting is addressed for the Policy Framework, suitable codes will be defined for reporting that a
set of actions could not be performed in an order specified as mandatory (and thus were not performed at all), that a set
of actions could not be performed in a recommended order (and moreover could not be performed in any order), or that
a set of actions could not be performed in a recommended order (but were performed in a different order).

8.6.2 Method getParentGroup()

Return a reference to the PolicyGroup that directly contains this Rule (if any). If this Rule is contained by a
PolicyDomain, return a NULL reference.

Returns: The reference to the PolicyGroup.

Parameters
No Parameters were identified for this method

Returns

IpPolicyGroupRef

Raises

TpCommonExceptions

8.6.3 Method getParentDomain()

Return a reference to the PolicyDomain that directly contains this Rule (if any). If this Rule is contained by a
PolicyGroup, return a NULL reference.

Returns: The reference to the PolicyDomain to get.

Parameters
No Parameters were identified for this method

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 673GPP TS 29.198-13 version 5.6.0 Release 5

Returns

IpPolicyDomainRef

Raises

TpCommonExceptions

8.6.4 Method createCondition()

Create a new condition local to this Rule. Conditions created local to a Rule can only be referenced from that Rule. For
reusable conditions, see IpPolicyRepository.

Returns: The reference to the newly created condition.

Parameters

conditionName : in TpString

The name uniquely identifying this condition within this rule.

conditionType : in TpPolicyConditionType

The type specifying which IpPolicyCondition class should be created. For this version of the Policy Management API,
it must be one of P_PM_TIME_PERIOD_CONDITION, P_PM_EVENT_CONDITION, or
P_PM_EXPRESSION_CONDITION.

conditionAttributes : in TpAttributeSet

The initial attributes for this condition.

Returns

IpPolicyConditionRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.6.5 Method getCondition()

Get a reference to the specified condition.

Returns: A reference to the specified condition.

Parameters

conditionName : in TpString

The name of the condition to get.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 683GPP TS 29.198-13 version 5.6.0 Release 5

Returns

IpPolicyConditionRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.6.6 Method removeCondition()

Remove the specified condition.

Parameters

conditionName : in TpString

The name of the condition to delete.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.6.7 Method getConditionCount()

Returns the number of conditions contained by this rule that the client is authorized to see.

Parameters
No Parameters were identified for this method

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.6.8 Method getConditionIterator()

Obtain a reference to an iterator that will return the names of each of the conditions contained by this rule that the client
is authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 693GPP TS 29.198-13 version 5.6.0 Release 5

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.6.9 Method createAction()

Create a new action local to this Rule. Actions created local to a Rule can only be referenced from that Rule. For
reusable actions, see IpPolicyRepository.

Returns: The reference to the newly created action.

Parameters

actionName : in TpString

The name uniquely identifying this action within this rule.

actionType : in TpPolicyActionType

The type specifying which IpPolicyAction class should be created. For this version of the Policy Management API, it
must be one of P_PM_EVENT_ACTION, or P_PM_EXPRESSION_ACTION.

actionAttributes : in TpAttributeSet

The attributes specifying the action.

Returns

IpPolicyActionRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.6.10 Method getAction()

Get a reference to the specified action.

Returns: A reference to the specified action.

Parameters

actionName : in TpString

The name of the action to get.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 703GPP TS 29.198-13 version 5.6.0 Release 5

Returns

IpPolicyActionRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR

8.6.11 Method removeAction()

Remove the specified action.

Parameters

actionName : in TpString

The name of the action to delete.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.6.12 Method getActionCount()

Returns the number of actions contained by this rule that the client is authorized to see.

Parameters
No Parameters were identified for this method

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.6.13 Method getActionIterator()

Obtain a reference to an iterator that will return the names of each of the actions contained by this rule that the client is
authorized to see.

Returns: A reference to the iterator.

Parameters
No Parameters were identified for this method

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 713GPP TS 29.198-13 version 5.6.0 Release 5

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.6.14 Method setValidityPeriodConditionByName()

Set the validity period for the rule, specifying the name of a condition of type IpValidityPeriodCondition. Since the
condition is specified by name, the condition must be defined local to this rule.

Parameters

conditionName : in TpString

Name identifying a condition local to this rule.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

8.6.15 Method setValidityPeriodCondition()

Set the validity period for the rule, providing a reference to a condition of type IpValidityPeriodCondition. Since the
condition is specified by reference, the condition may be defined local to rule or may be a condition defined in a
PolicyRepository.

Parameters

conditionReference : in IpPolicyTimePeriodConditionRef

Reference to the condition to be used to set the validity period condition.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_NO_TRANSACTION_IN_PROCESS

8.6.16 Method getValidityPeriodCondition()

Get a reference to the condition used to set the validity period condition for this rule.

Returns: The reference to the condition. This will be a NULL reference if the validity period condition is not set.

Parameters
No Parameters were identified for this method

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 723GPP TS 29.198-13 version 5.6.0 Release 5

Returns

IpPolicyTimePeriodConditionRef

Raises

TpCommonExceptions

8.6.17 Method unsetValidityPeriodCondition()

Unset the validity period condition for this rule. When the validity period condition is not set, the rule is always active.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_NO_TRANSACTION_IN_PROCESS

8.6.18 Method setConditionList()

Set the condition list of this rule, specifying each triple of condition, Group Number and Negated attributes. See the text
under IpPolicyRule above for a description of the use of these two attributes. Note that although a condition may be
contained by a rule (by creating the condition within the rule using createCondition(), it is not evaluated as part of the
rule's condition list until it is included in the list specified by this method.

Parameters

conditionList : in TpPolicyConditionList

List of (Condition reference, Group Number, Negated) triples and the value ConditionListType indicating whether the
conditions are in DNF or CNF.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NO_TRANSACTION_IN_PROCESS

8.6.19 Method getConditionList()

Get the condition list set for the rule.

Returns: The condition list currently set for this rule.

Parameters
No Parameters were identified for this method

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 733GPP TS 29.198-13 version 5.6.0 Release 5

Returns

TpPolicyConditionList

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.6.20 Method setActionList()

Set the list of actions for this rule, specifying each pair of Action and SequenceNumber. See the text under IpPolicyRule
above for a description of the use of this attribute. Note that although an action may be contained by a rule (by creating
the action within the rule using createAction(), it is not evaluated as part of the rule's actions until it is included in the
list specified by this method.

Parameters

actionList : in TpPolicyActionList

List of (Action Reference, Sequence Number) pairs.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR,
P_NO_TRANSACTION_IN_PROCESS

8.6.21 Method getActionList()

Get the action list set for the rule.

Returns: The action list currently set for this rule.

Parameters
No Parameters were identified for this method

Returns

TpPolicyActionList

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

8.7 Interface Class IpPolicyCondition
Inherits from: IpPolicy.

The purpose of a policy condition is to determine whether or not the set of actions (aggregated in the PolicyRule that the
condition applies to) should be executed or not. For the purposes of the Policy Core Information Model, all that matters
about an individual PolicyCondition is that it evaluates to TRUE or FALSE. (The individual PolicyConditions
associated with a PolicyRule are combined to form a compound expression in either DNF or CNF, but this is
accomplished via the ConditionList, discussed above. A logical structure within an individual PolicyCondition may also

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 743GPP TS 29.198-13 version 5.6.0 Release 5

be introduced, but this would have to be done in a subclass of PolicyCondition.
 Because it is general, the PolicyCondition class does not itself contain any "real" conditions. These will be
represented by attributes of the domain-specific subclasses of PolicyCondition.
 +---+
 | Policy Conditions in DNF |
 | +-------------------------+ +-----------------------+ |
 | | AND list | | AND list | | | | | |
 | | +-------------------+ | | +-----------------+ | |
 | | | PolicyCondition | | | | PolicyCondition | | |
 | | +-------------------+ | | +-----------------+ | |
 | | +-------------------+ | | +-----------------+ | |
 | | | PolicyCondition | | ... | | PolicyCondition | | |
 | | +-------------------+ | ORed | +-----------------+ | |
 | | ... | | ... | |
 | | ANDed | | ANDed | |
 | | +-------------------+ | | +-----------------+ | |
 | | | PolicyCondition | | | | PolicyCondition | | |
 | | +-------------------+ | | +-----------------+ | |
 | +-------------------------+ +-----------------------+ |
 +---+

 The figure above illustrates that when policy conditions are in DNF, there are one or more sets of conditions that are
ANDed together to form AND lists. An AND list evaluates to TRUE if and only if all of its constituent conditions
evaluate to TRUE. The overall condition then evaluates to TRUE if and only if at least one of its constituent AND lists
evaluates to TRUE.
 +---+
 | Policy Conditions in CNF |
 | +-------------------------+ +-----------------------+ |
 | | OR list | | OR list | | | | | |
 | | +-------------------+ | | +-----------------+ | |
 | | | PolicyCondition | | | | PolicyCondition | | |
 | | +-------------------+ | | +-----------------+ | |
 | | +-------------------+ | | +-----------------+ | |
 | | | PolicyCondition | | ... | | PolicyCondition | | |
 | | +-------------------+ | ANDed | +-----------------+ | |
 | | ... | | ... | |
 | | ORed | | ORed | |
 | | +-------------------+ | | +-----------------+ | |
 | | | PolicyCondition | | | | PolicyCondition | | |
 | | +-------------------+ | | +-----------------+ | |
 | +-------------------------+ +-----------------------+ |
 +---+

 In the figure above, the policy conditions are in CNF. Consequently, there are one or more OR lists, each of which
evaluates to TRUE if and only if at least one of its constituent conditions evaluates to TRUE. The overall condition then
evaluates to TRUE if and only if ALL of its constituent OR lists evaluate to TRUE.
 When identifying and using the PolicyCondition class, it is necessary to remember that a condition can be rule-
specific or reusable. This was discussed above. The distinction between the two types of policy conditions lies in the
associations in which an instance can participate, and in how the different instances are named. Conceptually, a reusable
policy condition resides in a policy repository, and is named within the scope of that repository. On the other hand, a
rule-specific policy condition is, as the name suggests, named within the scope of the single policy rule to which it is
related.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 753GPP TS 29.198-13 version 5.6.0 Release 5

<<Interface>>

IpPolicyCondition

getParentRepository () : IpPolicyRepositoryRef

getParentRule () : IpPolicyRuleRef

8.7.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

8.7.2 Method getParentRepository()

Return a reference to the repository that contains this condition (if any). If this condition is contained by a rule, return a
NULL reference.

Returns: A reference to the parent repository.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 763GPP TS 29.198-13 version 5.6.0 Release 5

Parameters
No Parameters were identified for this method

Returns

IpPolicyRepositoryRef

Raises

TpCommonExceptions

8.7.3 Method getParentRule()

Return a reference to the rule that contains this condition (if any). If this condition is contained by a PolicyRepository,
return a NULL reference.

Returns: A reference to the parent rule.

Parameters
No Parameters were identified for this method

Returns

IpPolicyRuleRef

Raises

TpCommonExceptions

8.8 Interface Class IpPolicyTimePeriodCondition
Inherits from: IpPolicyCondition.

This class provides a means of representing the time periods during which a policy rule is valid, i.e., active. At all times
that fall outside these time periods, the policy rule has no effect. A policy rule is treated as valid at all times if it does
not specify a PolicyTimePeriodCondition.
 In some cases a PDP may need to perform certain setup / cleanup actions when a policy rule becomes active /
inactive. For example, sessions that were established while a policy rule was active might need to be taken down when
the rule becomes inactive. In other cases, however, such sessions might be left up: in this case, the effect of
deactivating the policy rule would just be to prevent the establishment of new sessions. Setup / cleanup behaviours on
validity period transitions are not currently addressed by the PCIM, and must be specified in 'guideline' documents, or
via subclasses of PolicyRule, PolicyTimePeriodCondition or other concrete subclasses of Policy. If such behaviours
need to be under the control of the policy administrator, then a mechanism to allow this control must also be specified
in the subclass.
 PolicyTimePeriodCondition is defined as a subclass of PolicyCondition. This is to allow the inclusion of time-based
criteria in the AND/OR condition definitions for a PolicyRule.
 Instances of this class may have up to five attributes identifying time periods at different levels. The values of all
the attributes present in an instance are ANDed together to determine the validity period(s) for the instance. For
example, an instance with an overall validity range of January 1, 2000 through December 31, 2000; a month mask that
selects March and April; a day-of-the-week mask that selects Fridays; and a time of day range of 0800 through 1600
would represent the following time periods:
 Friday, March 5, 2000, from 0800 through 1600;
 Friday, March 12, 2000, from 0800 through 1600;
 Friday, March 19, 2000, from 0800 through 1600;

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 773GPP TS 29.198-13 version 5.6.0 Release 5

 Friday, March 26, 2000, from 0800 through 1600;
 Friday, April 2, 2000, from 0800 through 1600;
 Friday, April 9, 2000, from 0800 through 1600;
 Friday, April 16, 2000, from 0800 through 1600;
 Friday, April 23, 2000, from 0800 through 1600;
 Friday, April 30, 2000, from 0800 through 1600.
 Attributes not present in an instance of PolicyTimePeriodCondition are implicitly treated as having their value
"always enabled". Thus, in the example above, the day-of-the-month mask is not present, and so the validity period for
the instance implicitly includes a day-of-the-month mask that selects all days of the month. If we apply this "missing
attribute" rule to its fullest, we see that there is a second way to indicate that a policy rule is always enabled: have it
point to an instance of PolicyTimePeriodCondition whose only attributes are its naming attributes.
 The attribute LocalOrUtcTime indicates whether the times represented in the other five time-related attributes of an
instance of PolicyTimePeriodCondition are to be interpreted as local times for the location where a policy rule is being
applied, or as UTC times.

<<Interface>>

IpPolicyTimePeriodCondition

8.8.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 783GPP TS 29.198-13 version 5.6.0 Release 5

TimePeriod : TpString

This attribute identifies an overall range of calendar dates and times over which a policy rule is valid. It reuses the
format for an explicit time period defined in RFC 2445: a string representing a starting date and time, in which the
character 'T' indicates the beginning of the time portion, followed by the solidus character '/', followed by a similar
string representing an end date and time. The first date indicates the beginning of the range, while the second date
indicates the end. Thus, the second date and time must be later than the first. Date/times are expressed as substrings of
the form "yyyymmddThhmmss". For example:

 20000101T080000/20000131T120000

 January 1, 2000, 0800 through January 31, 2000, noon

There are also two special cases in which one of the date/time strings is replaced with a special string defined in

RFC 2445.

- If the first date/time is replaced with the string "THISANDPRIOR", then the attribute indicates that a policy rule is
valid [from now] until the date/time that appears after the '/'.

- If the second date/time is replaced with the string "THISANDFUTURE", then the attribute indicates that a policy rule
becomes valid on the date/time that appears before the '/', and remains valid from that point on.

Note that RFC 2445 does not use these two strings in connection with explicit time periods. Thus the PCIM is
combining two elements from RFC 2445 that are not combined in the RFC itself.

MonthOfYearMask : TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute, by explicitly specifying the months when the policy is valid. These attributes work together, with the
TimePeriod used to specify the overall time period during which the policy might be valid, and the MonthOfYearMask
used to pick out the specific months within that time period when the policy is valid.

This attribute is formatted as an octet string of size 2, consisting of 12 bits identifying the 12 months of the year,
beginning with January and ending with December, followed by 4 bits that are always set to '0'. For each month, the
value '1' indicates that the policy is valid for that month, and the value '0' indicates that it is not valid. The value X'08
30', for example, indicates that a policy rule is valid only in the months May, November, and December.

See section 5.4 for details of how CIM represents a single-valued octet string attribute such as this one. (Basically, CIM
prepends a 4-octet length to the octet string.)

If this attribute is omitted, then the policy rule is treated as valid for all twelve months.

DayOfMonthMask : TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute, by explicitly specifying the days of the month when the policy is valid. These attributes work together, with
the TimePeriod used to specify the overall time period during which the policy might be valid, and the
DayOfMonthMask used to pick out the specific days of the month within that time period when the policy is valid.

This attribute is formatted as an octet string of size 8, consisting of 31 bits identifying the days of the month counting
from the beginning, followed by 31 more bits identifying the days of the month counting from the end, followed by 2
bits that are always set to '0'. For each day, the value '1' indicates that the policy is valid for that day, and the value '0'
indicates that it is not valid.

The value X'80 00 00 01 00 00 00 00', for example, indicates that a policy rule is valid on the first and last days of the
month.

For months with fewer than 31 days, the digits corresponding to days that the months do not have (counting in both
directions) are ignored.

The encoding of the 62 significant bits in the octet string matches that used for the schedDay object in the DISMAN-
SCHEDULE-MIB. See reference [8] for more details on this object.

See section 5.4 for details of how CIM represents a single-valued octet string attribute such as this one. (Basically, CIM
prepends a 4-octet length to the octet string.)

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 793GPP TS 29.198-13 version 5.6.0 Release 5

DayOfWeekMask : TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute by explicitly specifying the days of the week when the policy is valid. These attributes work together, with the
TimePeriod used to specify the overall time period when the policy might be valid, and the DayOfWeekMask used to
pick out the specific days of the week in that time period when the policy is valid.

This attribute is formatted as an octet string of size 1, consisting of 7 bits identifying the 7 days of the week, beginning
with Sunday and ending with Saturday, followed by 1 bit that is always set to '0'. For each day of the week, the value '1'
indicates that the policy is valid for that day, and the value '0' indicates that it is not valid.

The value X'7C', for example, indicates that a policy rule is valid Monday through Friday.

See section 5.4 for details of how CIM represents a single-valued octet string attribute such as this one. (Basically, CIM
prepends a 4-octet length to the octet string.)

TimeOfDayMask : TpString

The purpose of this attribute is to refine the definition of the valid time period that is defined by the TimePeriod
attribute by explicitly specifying a range of times in a day the policy is valid for. These attributes work together, with
the TimePeriod used to specify the overall time period that the policy is valid for, and the TimeOfDayMask used to pick
out which range of time periods in a given day of that time period the policy is valid for.

This attribute is formatted in the style of RFC 2445 [10]: a time string beginning with the character 'T', followed by the
solidus character '/', followed by a second time string. The first time indicates the beginning of the range, while the
second time indicates the end. Times are expressed as substrings of the form "Thhmmss".

The second substring always identifies a later time than the first substring. To allow for ranges that span midnight,
however, the value of the second string may be smaller than the value of the first substring. Thus, "T080000/T210000"
identifies the range from 0800 until 2100, while "T210000/T080000" identifies the range from 2100 until 0800 of the
following day.

When a range spans midnight, it by definition includes parts of two successive days. When one of these days is also
selected by either the MonthOfYearMask, DayOfMonthMask, and/or DayOfWeekMask, but the other day is not, then
the policy is active only during the portion of the range that falls on the selected day. For example, if the range extends
from 2100 until 0800, and the day of week mask selects Monday and Tuesday, then the policy is active during the
following three intervals:

 From midnight Sunday until 0800 Monday;

 From 2100 Monday until 0800 Tuesday;

 From 2100 Tuesday until 23:59:59 Tuesday.

LocalOrUtcTime : TpInt32

This attribute indicates whether the times represented in the TimePeriod attribute and in the various Mask attributes
represent local times or UTC times. There is no provision for mixing of local times and UTC times: the value of this
attribute applies to all of the other time-related attributes. Note that LocalTime is designated by the integer 1 and
UtcTime by the integer 2. If no value is specified the default value is 2, i.e., UtcTime is used.

8.9 Interface Class IpPolicyAction
Inherits from: IpPolicy.

The purpose of a policy action is to execute one or more operations that will affect network traffic and/or systems,
devices, etc., in order to achieve a desired state. This (new) state provides one or more (new) behaviours. A policy
action ordinarily changes the configuration of one or more elements.
 A PolicyRule contains one or more policy actions. A policy administrator can assign an order to the actions
associated with a PolicyRule, complete with an indication of whether the indicated order is mandatory, recommended,
or of no significance. Ordering of the actions associated with a PolicyRule is accomplished via the setActionList()

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 803GPP TS 29.198-13 version 5.6.0 Release 5

method.
 The actions associated with a PolicyRule are executed if and only if the overall condition(s) of the PolicyRule
evaluates to TRUE.
 When identifying and using the PolicyAction class, it is necessary to remember that an action can be rule-specific or
reusable. This was discussed above. The distinction between the two types of policy actions lies in the associations in
which an instance can participate, and in how the different instances are named. Conceptually, a reusable policy action
resides in a policy repository, and is named within the scope of that repository. On the other hand, a rule-specific policy
action is named within the scope of the single policy rule to which it is related.

<<Interface>>

IpPolicyAction

getParentRepository () : IpPolicyRepositoryRef

getParentRule () : IpPolicyRuleRef

8.9.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 813GPP TS 29.198-13 version 5.6.0 Release 5

8.9.2 Method getParentRepository()

Return a reference to the repository that contains this action (if any). If this action is contained by a rule, return a NULL
reference.

Returns: A reference to the parent repository.

Parameters
No Parameters were identified for this method

Returns

IpPolicyRepositoryRef

Raises

TpCommonExceptions

8.9.3 Method getParentRule()

Return a reference to the rule that contains this action (if any). If this action is contained by a PolicyRepository, return a
NULL reference.

Returns: A reference to the parent rule.

Parameters
No Parameters were identified for this method

Returns

IpPolicyRuleRef

Raises

TpCommonExceptions

8.10 Interface Class IpPolicyEventDefinition
Inherits from: IpPolicy.

Instances of IpPolicyEventDefinition specify the required and optional attributes of events that can be subscribed to,
specified as conditions, and generated by clients or actions.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 823GPP TS 29.198-13 version 5.6.0 Release 5

<<Interface>>

IpPolicyEventDefinition

setRequiredAttributes (requiredAttributes : in TpAttributeSet) : void

setOptionalAttributes (optionalAttributes : in TpAttributeSet) : void

getRequiredAttributes () : TpAttributeSet

getOptionalAttributes () : TpAttributeSet

getParentDomain () : IpPolicyDomainRef

8.10.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

RequiredAttributes : TpAttributeSet

The names and types of the attributes that generated events must include.

OptionalAttributes : TpAttributeSet

The names and types of the attributes that generated events may include.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 833GPP TS 29.198-13 version 5.6.0 Release 5

8.10.2 Method setRequiredAttributes()

Specify the names and types of the attributes that generated events must include.

Parameters

requiredAttributes : in TpAttributeSet

The names and types of the attributes.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_NO_TRANSACTION_IN_PROCESS

8.10.3 Method setOptionalAttributes()

Specify the names and types of the attributes that may be included in a generated event.

Parameters

optionalAttributes : in TpAttributeSet

The names and types of the attributes.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_NO_TRANSACTION_IN_PROCESS

8.10.4 Method getRequiredAttributes()

Get the names and types of the attributes that a generated event is required to include.

Returns: A copy of the set of names and types.

Parameters
No Parameters were identified for this method

Returns

TpAttributeSet

Raises

TpCommonExceptions

8.10.5 Method getOptionalAttributes()

Get the names and types of the attributes that a generated event may optionally include.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 843GPP TS 29.198-13 version 5.6.0 Release 5

Returns: A copy of the set of names and types.

Parameters
No Parameters were identified for this method

Returns

TpAttributeSet

Raises

TpCommonExceptions

8.10.6 Method getParentDomain()

Return a reference to the domain that contains this event definition.

Returns: A reference to the containing domain.

Parameters
No Parameters were identified for this method

Returns

IpPolicyDomainRef

Raises

TpCommonExceptions

8.11 Interface Class IpPolicyEventCondition
Inherits from: IpPolicyCondition.

A PolicyCondition that is satisfied when the specified event, with the matching attributes, is generated.

<<Interface>>

IpPolicyEventCondition

8.11.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name' parameter used in most API methods.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 853GPP TS 29.198-13 version 5.6.0 Release 5

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

EventDefinitonName : TpString

The EventDefinition that defines the event this condition is waiting on.

MatchingAttributes : TpAttributeSet

The set of attributes that must match (name and value) for the condition to be satisfied. If this set is empty, then the
generation of the event is enough to satisfy the condition.

8.12 Interface Class IpPolicyExpressionCondition
Inherits from: IpPolicyCondition.

A PolicyCondition that is satisfied when the specified event, with the matching attributes, is generated.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 863GPP TS 29.198-13 version 5.6.0 Release 5

<<Interface>>

IpPolicyExpressionCondition

8.12.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

Expression : TpString

The expression to be evaluated as the condition.

In case this SCF supports both BNF and XML, then the TpAttributeTagInfo of the TpAttribute that populated this
expression is used to distinguish between XML and BNF string contents. A TpAttributeTagInfo value of
P_XML_TYPE indicates XML as contents of the Expression attribute and a TpAttributeTagInfo value of
P_SIMPLE_TYPE indicates BNF as contents of Expression attribute.

The BNF describing the expression is defined as follows:

Expression:= VariableName <Comparison Operator> Constant or VariableName | VariableName <Arithmetic
Operator> Constant or VariableName <Comparison Operator> Constant or VariableName |
(VariableName<ArithmeticOperator>Constant or VariableName) <ArithmeticOperator> Constant or VariableName
<Comparison Operator> Constant or VariableName

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 873GPP TS 29.198-13 version 5.6.0 Release 5

It is assumed that the Policy Engine is able to parse an expression defined in the above BNF. The BNF may be extended
as appropriate.

Note that:

1. Variable is assumed to be one of type {P_INT32, P_FLOAT or P_STRING} and consistency of type is assumed
when an expression is being defined.

2. Comparison Operator is one of: {==, !=, <=, >=}, and, Arithmetic Operator is one of {*, +, -, /}. These are reserved
symbols. Note that when Variable is of type P_INT32 or P_FLOAT the Comparison and Arithmetic operators have the
'usual' meanings. When Variable is of type string, the comparison operators are the 'standard' string comparison
operators. However, the only applicable Arithmetic operators are:

'*' := string concatenation, e.g. abc*cde12 is the string abccde12

'-' := string (positional) difference, e.g. ABCD - ABCD is the null string but abcdef-abc is the string 'def'

'/' := string (positional) overlap, e.g. acbcd/acBCd is the string 'acd'

3. Example showing an expression formed using Variables of type P_FLOAT (or P_INT32): (bandwidth.allocated -
bandwidth.used)/100 >= 36

Note that 'bandwidth' is assumed to be the name of a set of variables and 'allocated' and 'used' are variables (attributes)
included in that set.

8.13 Interface Class IpPolicyEventAction
Inherits from: IpPolicyAction.

Generate an instance of a specified event.

<<Interface>>

IpPolicyEventAction

8.13.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 883GPP TS 29.198-13 version 5.6.0 Release 5

"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

EventDefinitionName : TpString

The name of the EventDefinition that should be used to define the desired event.

Attributes : TpAttributeSet

The set of attributes that should be included with the generated event. Note that this set must contain all of the attributes
in the RequiredAttributes attribute of the specified EventDefinition and any remaining attributes must be included in the
OptionalAttributes attribute.

8.14 Interface Class IpPolicyExpressionAction
Inherits from: IpPolicyAction.

Evaluate an expression.

<<Interface>>

IpPolicyExpressionAction

8.14.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 893GPP TS 29.198-13 version 5.6.0 Release 5

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

Expression : TpString

The expression that should evaluated.

In case this SCF supports both BNF and XML, then the TpAttributeTagInfo of the TpAttribute that populated this
expression is used to distinguish between XML and BNF string contents. A TpAttributeTagInfo value of
P_XML_TYPE indicates XML as contents of the Expression attribute and a TpAttributeTagInfo value of
P_SIMPLE_TYPE indicates BNF as contents of Expression attribute.

The BNF describing the expression is defined as follows:

Expression:= VariableName<AssignmentOperator>Constant or VariableName<ArithmeticOperator> Constant or
VariableName | VariableName<AssignmentOperator>Constant

It is assumed that the Policy Engine is able to parse an expression defined in the above BNF. The BNF may be extended
as appropriate.

Note that:

1. Variable is assumed to be one of type {P_INT32, P_FLOAT or P_STRING} and consistency of type is assumed
when an expression is being defined.

2. Assignment Operator is denoted by the symbol (within quotes) '='. The assignment operator assigns the value of the
'right hand side' to the variable on the 'left hand side' -- see example below. Arithmetic Operator is one of {*, +, -, /}.
All the above mentioned symbols are reserved symbols. Note that when Variable is of type P_INT32 or P_FLOAT the
Arithmetic operators have the 'usual' meanings. When Variable is of type string the only applicable operators are the
operators (within quotes) '*' (concatenation), '-' (string difference) and '/' (string overlap).

3. Example showing an assignment expression formed using Variables of type P_FLOAT (or P_INT32):
content.charge = content.charge - 30.

Note that 'content' is assumed to be the name of a set of variables and 'charge' is a variable (attribute) included in that
set. In the above example, the value of content.charge is decremented by 30.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 903GPP TS 29.198-13 version 5.6.0 Release 5

8.15 Interface Class IpPolicyIterator
Inherits from: IpPolicy.

This interface supports paging through the names of the appropriate objects within a container. Rather than retrieving
one name at a time, this interface specifically allows the caller to specify how many names to retrieve on each call.

<<Interface>>

IpPolicyIterator

getList (startIndex : in TpInt32, numberRequested : in TpInt32) : TpStringSet

8.15.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by
the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or
categorizing a policy object. Keywords are of one of two types:

- Keywords defined in the present document, or in documents that define subinterfaces of the interfaces defined in the
present document. These keywords provide a vendor-independent, installation-independent way of characterizing policy
objects.

- Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and
"Review in December 2000".

The present document defines the following keywords: "P_PM_KEYWORD_UNKNOWN",
"P_PM_KEYWORD_CONFIGURATION", "P_PM_KEYWORD_USAGE", "P_PM_KEYWORD_SECURITY",
"P_PM_KEYWORD_SERVICE", "P_PM_KEYWORD_MOTIVATIONAL",
"P_PM_KEYWORD_INSTALLATION", and "P_PM_KEYWORD_EVENT". These concepts were originally defined
in [PCIM].

One additional keyword is defined: "P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-
related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository
implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords
to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface
definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 913GPP TS 29.198-13 version 5.6.0 Release 5

8.15.2 Method getList()

Return at most numberRequested names starting at location startLocation.

Returns: The list of names returned. The list can be examined to determine how many entries were actually returned.

Parameters

startIndex : in TpInt32

The index (starting at 0) of the first name to be returned

numberRequested : in TpInt32

The maximum number of names expected to be returned by this call.

Returns

TpStringSet

Raises

TpCommonExceptions

8.16 Interface Class IpAppPolicyDomain
Inherits from: IpInterface.

This interface is supported by the client. A reference to the interface is provided by the client by calling
createNotification() on a given IpPolicyDomain. When notifications that the client has indicated interest in are
available, they will be communicated to the client by calling the appropriate method on this interface.

<<Interface>>

IpAppPolicyDomain

reportNotification (assignmentID : in TpAssignmentID, event : in TpPolicyEvent) : void

8.16.1 Method reportNotification()

Notify the client about the specified event.

Parameters

assignmentID : in TpAssignmentID

The assignmentID returned by the call to createNotification that enabled notification for the specified event.

event : in TpPolicyEvent

The event.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 923GPP TS 29.198-13 version 5.6.0 Release 5

9 State Transition Diagrams
There are no State Transition Diagrams for the Policy Management SCF.

10 PM Service Properties
The following table lists properties relevant to all the PM SCFs

Property Type Description
P_SUPPORTED_ATTRIBUTE_TAGS STRING_SET Lists the supported attribute tags defined by

TpAttributeTagInfo

P_SUPPORTED_SIMPLE_ATTRIBUTE
_TYPES

STRING_SET Lists the supported attribute types defined by
TpSimpleAttributeTypeInfo

P_SUPPORTED_STRUCTURED_ATTRI
BUTE_TYPES

STRING_SET Lists the supported attribute types defined by
TpStructuredAttributeType, e.g. P_org/csapi/TpAddress.

P_SUPPORTED_XML STRING_SET Lists the supported versions of XML specifications such as
XML schema specifications (e.g. through URLs), XML
versions (e.g. version 1.0) or XPath (e.g. version 1.0)

Implementations of the PM APIs shall have the Service Properties set to the indicated values at a minimum:

P_SUPPORTED_ATTRIBUTE_TAGS = {
P_SIMPLE_TYPE
}
P_SUPPORTED_SIMPLE_ATTRIBUTE_TYPES = {
P_STRING,
P_FLOAT,
P_INT32,
}

11 Data Definitions
All data types referenced in this document but not defined in this clause are common data definitions which may be
found in 3GPP TS 29.198-2.

11.1 Policy Management Data Definitions
This section provides the Policy Management specific data definitions necessary to support the OSA interface
specification.

The general format of a data definition specification is the following:

• Data type, that shows the name of the data type.

• Description, that describes the data type.

• Tabular specification, that specifies the data types and values of the data type.

• Example, if relevant, shown to illustrate the data type.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 933GPP TS 29.198-13 version 5.6.0 Release 5

11.1.1 TpPolicyConditionListType

This data type defines the type condition list in a policy rule.

Name Value Description
P_PM_DNF 0 Disjunctive normal form

P_PM_CNF 1 Conjunctive normal form

11.1.2 TpPolicyConditionListElement

This data type is a Sequence of Data Elements which describes one element of a condition list. It is a
structured data type consisting of the following {condition, groupNumber, negated} tuple:

Sequence Element
Name

Sequence Element
Type

Condition IpPolicyCondition

GroupNumber TpInt32

Negated TpBoolean

11.1.3 TpPolicyConditionList

This data type is a Numbered Set of Data Elements of type TpPolicyConditionListElement.

11.1.4 TpPolicyConditionType

This data type defines the condition type in a policy rule.

Name Value Description
P_PM_TIME_PERIOD_CONDITION 0 IpPolicyTimePeriodCondition

P_PM_EVENT_CONDITION 1 IpPolicyEventCondition

P_PM_EXPRESSION_CONDITION 2 IpPolicyExpressionCondition

11.1.5 TpPolicyActionListElement

This data type is a Sequence of Data Elements which describes one element of a action list. It is a structured
data type consisting of the following {action, sequenceNumber) pair:

Sequence Element
Name

Sequence Element
Type

Action IpPolicyAction

SequenceNumber TpInt32

11.1.6 TpPolicyActionList

This data type is a Numbered Set of Data Elements of type TpPolicyActionListElement.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 943GPP TS 29.198-13 version 5.6.0 Release 5

11.1.7 TpPolicyActionType

This data type defines the action type in a policy rule.

Name Value Description
P_PM_EVENT_ACTION 0 IpPolicyEventAction

P_PM_EXPRESSION_ACTION 1 IpPolicyExpressionAction

11.1.8 TpPolicyEvent

This data type is a Sequence of Data Elements which describes a generic “event”. Events can be generated in
response to network activity, as a result of clients calling the generateEvent() method of IpPolicyDomain, or as a result
of the evaluation of an IpPolicyEventAction action. Each instance of a generated event is identified by a unique
EventID, a 32-bit integer. The time the event was generated is captured in the attribute TimeGenerated. All of the
attributes in the RequiredAttributes list of the EventDefinition associated with the given EventDefinitionName must be
present in Attributes. Any other attributes must be in the OptionalAttributes list of the same EventDefinition.

It is a structured data type consisting of the following fields:

Sequence Element
Name

Sequence Element
Type

EventID TpInt32

TimeGenerated TpDateAndTime

Attributes TpAttributeSet

EventDefinitionName TpString

EventDomainName TpString

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 953GPP TS 29.198-13 version 5.6.0 Release 5

11.1.9 TpPolicyKeyword

This data type is identical to a TpString, and is defined as a string of characters that identify the Policy Keywords that
are to be supported by the Policy Management API. Other Network operator specific keywords may also be used, but
should be preceded by the string "SP_". The following values are defined.

Name Description
P_PM_KEYWORD_UNKNOWN To be used when none of the defined values apply.

P_PM_KEYWORD_CONFIGURATION Configuration Policies define the default (or generic)
setup of a managed entity (for example, a network

service). Examples of Configuration Policies are the
setup of a network forwarding service or a network-

hosted print queue.

P_PM_KEYWORD_USAGE Usage Policies control the selection and configuration
of entities based on specific "usage" data. Configuration
Policies can be modified or simply re-applied by Usage

Policies. Examples of Usage Policies include
upgrading network forwarding services after a user is
verified to be a member of a "gold" service group, or

reconfiguring a printer to be able to handle the next job
in its queue.

P_PM_KEYWORD_SECURITY Security Policies deal with verifying that the client is
actually who the client purports to be, permitting or
denying access to resources, selecting and applying

appropriate authentication mechanisms, and performing
accounting and auditing of resources.

P_PM_KEYWORD_SERVICE Service Policies characterize network and other services
(not use them). For example, all wide-area backbone

interfaces shall use a specific type of queuing.

Service policies describe services available in the
network. Usage policies describe the particular binding

of a client of the network to services available in the
network.

P_PM_KEYWORD_MOTIVATIONAL Motivational Policies are solely targeted at whether or
how a policy's goal is accomplished. Configuration and

Usage Policies are specific kinds of Motivational
Policies. Another example is the scheduling of file

backup based on disk write activity from 8am to 3pm,
M-F.

P_PM_KEYWORD_INSTALLATION Installation Policies define what can and cannot be put
on a system or component, as well as the configuration
of the mechanisms that perform the install. Installation

policies typically represent specific administrative
permissions, and can also represent dependencies

between different components (e.g., to complete the
installation of component A, components B and C must

be previously successfully installed or uninstalled).

P_PM_KEYWORD_EVENT Error and Event Policies. For example, if a device fails
between 8am and 9pm, call the system administrator,

otherwise call the Help Desk.

P_PM_KEYWORD_POLICY The role of this keyword is to identify policy-related
instances that would not otherwise be identifiable as
being related to policy. It may be needed in some

repository implementations.

11.1.10 TpPolicyKeywordSet

This data type defines a Numbered Set of Data Elements of type TpPolicyKeyword

11.1.11 IpPolicyDomain

Defines the address of an IpPolicyDomain Interface.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 963GPP TS 29.198-13 version 5.6.0 Release 5

11.1.12 IpPolicyDomainRef

Defines a Reference to an IpPolicyDomain

11.1.13 IpPolicyRepository

Defines the address of an IpPolicyRepository Interface.

11.1.14 IpPolicyRepositoryRef

Defines a Reference to an IpPolicyRepository

11.1.15 IpPolicyGroup

Defines the address of an IpPolicyGroup Interface.

11.1.16 IpPolicyGroupRef

Defines a Reference to an IpPolicyGroup

11.1.17 IpPolicyRule

Defines the address of an IpPolicyRule Interface.

11.1.18 IpPolicyRuleRef

Defines a Reference to an IpPolicyRule

11.1.19 IpPolicyEventDefinition

Defines the address of an IpPolicyEventDefinition Interface.

11.1.20 IpPolicyEventDefinitionRef

Defines a Reference to an IpPolicyEventDefinition

11.1.21 IpAppPolicyDomain

Defines the address of an IpAppPolicyDomain Interface.

11.1.22 IpAppPolicyDomainRef

Defines a Reference to an IpAppPolicyDomain

11.1.23 IpPolicyCondition

Defines the address of an IpPolicyCondition Interface.

11.1.24 IpPolicyConditionRef

Defines a Reference to an IpPolicyCondition

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 973GPP TS 29.198-13 version 5.6.0 Release 5

11.1.25 IpPolicyTimePeriodCondition

Defines the address of an IpPolicyTimePeriodCondition Interface.

11.1.26 IpPolicyTimePeriodConditionRef

Defines a Reference to an IpPolicyTimePeriodCondition

12 Policy Management Exception Classes
The following are the list of exception classes which are used in this interface of the API.

Name Description
P_ACCESS_VIOLATION Thrown if the client does not have authorization to invoke this

method on this object with these parameters.

P_SYNTAX_ERROR Thrown if the specified name is formatted improperly.

P_NAME_SPACE_ERROR Thrown if the specified name matches or does not match the name of
an existing object of the appropriate type within this container.

P_NO_TRANSACTION_IN_PROCESS Thrown if there is currently no transaction in process.

P_TRANSACTION_IN_PROCESS Thrown if there is currently a transaction in process. Note that
transactions can not be nested, that is, a second call to

startTransaction() without calling commitTransaction() or
abortTransaction() in between will result in this exception being

thrown during the second call.

Each exception class contains the following structure:

Structure Element Name Structure Element Type Structure Element Description
ExtraInformation TpString Carries extra information to help identify the source of the

exception, e.g. a parameter name

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 983GPP TS 29.198-13 version 5.6.0 Release 5

Annex A (normative):
OMG IDL Description of Policy Management SCF
The OMG IDL representation of this interface specification is contained in a text file (pm.idl contained in archive
2919813V560IDL.ZIP) which accompanies the present document.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 993GPP TS 29.198-13 version 5.6.0 Release 5

Annex B (informative):
Java™ API Description of the Policy Management SCF
The Java™ API realisation of this specification is produced in accordance with the Java™ Realisation rules defined in
Part 1 of this specification series. These rules aim to deliver for Java™, a developer API, provided as a realisation,
supporting a Java™ API that represents the UML specifications. The rules support the production of both J2SE™ and
J2EE™ versions of the API from the common UML specifications.

The J2SE™ representation of this specification is provided as Java™ Code, contained in archive
2919813V560J2SE.ZIP that accompanies the present document.

The J2EE™ representation of this specification is provided as Java™ Code, contained in archive
2919813V560J2EE.ZIP that accompanies the present document.

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 1003GPP TS 29.198-13 version 5.6.0 Release 5

Annex C (informative):
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
April 2002 -- -- -- -- Draft v100 submitted to TSG CN email list for Information -- 1.0.0
June 2002 CN_16 NP-020195 -- -- Draft v200 submitted to TSG CN#16 for Approval 2.0.0 5.0.0
Sep 2002 CN_17 NP-020439 001 -- Add text to clarify requirements on support of methods 5.0.0 5.1.0
Sep 2002 CN_17 NP-020395 002 -- Add text to clarify relationship between 3GPP and ETSI/Parlay OSA

specifications
5.0.0 5.1.0

Sep 2003 CN_21 NP-030352 004 -- Correction to Java Realisation Annex 5.1.0 5.2.0
Dec 2003 CN_22 NP-030548 006 -- Correction of standard datatypes supported by TpPolicy - Align with

29.198-02
5.2.0 5.3.0

Apr 2004 CN_23bis NP-040155 008 -- Correct Java Code to conform with Java Rulebook in TS 29.198-01
and to remove errors

5.3.0 5.4.0

Jun 2004 CN_24 NP-040262 009 -- Correct Java Rulebook 5.4.0 5.5.0
Sep 2004 CN_25 NP-040355 011 -- Correct J2EE source 5.5.0 5.6.0

ETSI

ETSI TS 129 198-13 V5.6.0 (2004-09) 1013GPP TS 29.198-13 version 5.6.0 Release 5

History

Document history

V5.0.0 June 2002 Publication

V5.1.0 September 2002 Publication

V5.2.0 September 2003 Publication

V5.3.0 December 2003 Publication

V5.4.0 April 2004 Publication

V5.5.0 August 2004 Publication

V5.6.0 September 2004 Publication

	Intellectual Property Rights
	Foreword
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Policy Management SCF
	5 Sequence Diagrams
	5.1 Use of Policy Repository
	5.2 Introduce condition and action into rule
	5.3 Create and receive an event
	5.4 Create and modify domain
	5.5 ASP offering services to prepaid subscribers

	6 Class Diagrams
	7 The Service Interface Specifications
	7.1 Interface Specification Format
	7.1.1 Interface Class
	7.1.2 Method descriptions
	7.1.3 Parameter descriptions
	7.1.4 State Model

	7.2 Base Interface
	7.2.1 Interface Class IpInterface

	7.3 Service Interfaces
	7.3.1 Overview

	7.4 Generic Service Interface
	7.4.1 Interface Class IpService
	7.4.1.1 Method setCallback()
	7.4.1.2 Method setCallbackWithSessionID()

	8 Policy Management Interface Classes
	8.1 Interface Class IpPolicyManager
	8.1.1 Method createDomain()
	8.1.2 Method getDomain()
	8.1.3 Method removeDomain()
	8.1.4 Method getDomainCount()
	8.1.5 Method getDomainIterator()
	8.1.6 Method findMatchingDomains()
	8.1.7 Method createRepository()
	8.1.8 Method getRepository()
	8.1.9 Method removeRepository()
	8.1.10 Method getRepositoryCount()
	8.1.11 Method getRepositoryIterator()
	8.1.12 Method startTransaction()
	8.1.13 Method commitTransaction()
	8.1.14 Method abortTransaction()

	8.2 Interface Class IpPolicy
	8.2.1 Attributes
	8.2.2 Method getAttribute()
	8.2.3 Method setAttribute()
	8.2.4 Method getAttributes()
	8.2.5 Method setAttributes()

	8.3 Interface Class IpPolicyDomain
	8.3.1 Attributes
	8.3.2 Method getParentDomain()
	8.3.3 Method createDomain()
	8.3.4 Method getDomain()
	8.3.5 Method removeDomain()
	8.3.6 Method getDomainCount()
	8.3.7 Method getDomainIterator()
	8.3.8 Method createGroup()
	8.3.9 Method getGroup()
	8.3.10 Method removeGroup()
	8.3.11 Method getGroupCount()
	8.3.12 Method getGroupIterator()
	8.3.13 Method createRule()
	8.3.14 Method getRule()
	8.3.15 Method removeRule()
	8.3.16 Method getRuleCount()
	8.3.17 Method getRuleIterator()
	8.3.18 Method createEventDefinition()
	8.3.19 Method getEventDefinition()
	8.3.20 Method removeEventDefinition()
	8.3.21 Method getEventDefinitionCount()
	8.3.22 Method getEventDefinitionIterator()
	8.3.23 Method generateEvent()
	8.3.24 Method createNotification()
	8.3.25 Method destroyNotification()
	8.3.26 Method createVariableSet()
	8.3.27 Method getVariableSet()
	8.3.28 Method removeVariableSet()
	8.3.29 Method getVariableSetCount()
	8.3.30 Method getVariableSetIterator()
	8.3.31 Method setVariable()
	8.3.32 Method getVariable()

	8.4 Interface Class IpPolicyGroup
	8.4.1 Attributes
	8.4.2 Method getParentDomain()
	8.4.3 Method getParentGroup()
	8.4.4 Method createGroup()
	8.4.5 Method getGroup()
	8.4.6 Method removeGroup()
	8.4.7 Method getGroupCount()
	8.4.8 Method getGroupIterator()
	8.4.9 Method createRule()
	8.4.10 Method getRule()
	8.4.11 Method removeRule()
	8.4.12 Method getRuleCount()
	8.4.13 Method getRuleIterator()

	8.5 Interface Class IpPolicyRepository
	8.5.1 Attributes
	8.5.2 Method getParentRepository()
	8.5.3 Method createRepository()
	8.5.4 Method getRepository()
	8.5.5 Method removeRepository()
	8.5.6 Method getRepositoryCount()
	8.5.7 Method getRepositoryIterator()
	8.5.8 Method createCondition()
	8.5.9 Method getCondition()
	8.5.10 Method removeCondition()
	8.5.11 Method getConditionCount()
	8.5.12 Method getConditionIterator()
	8.5.13 Method createAction()
	8.5.14 Method getAction()
	8.5.15 Method removeAction()
	8.5.16 Method getActionCount()
	8.5.17 Method getActionIterator()

	8.6 Interface Class IpPolicyRule
	8.6.1 Attributes
	8.6.2 Method getParentGroup()
	8.6.3 Method getParentDomain()
	8.6.4 Method createCondition()
	8.6.5 Method getCondition()
	8.6.6 Method removeCondition()
	8.6.7 Method getConditionCount()
	8.6.8 Method getConditionIterator()
	8.6.9 Method createAction()
	8.6.10 Method getAction()
	8.6.11 Method removeAction()
	8.6.12 Method getActionCount()
	8.6.13 Method getActionIterator()
	8.6.14 Method setValidityPeriodConditionByName()
	8.6.15 Method setValidityPeriodCondition()
	8.6.16 Method getValidityPeriodCondition()
	8.6.17 Method unsetValidityPeriodCondition()
	8.6.18 Method setConditionList()
	8.6.19 Method getConditionList()
	8.6.20 Method setActionList()
	8.6.21 Method getActionList()

	8.7 Interface Class IpPolicyCondition
	8.7.1 Attributes
	8.7.2 Method getParentRepository()
	8.7.3 Method getParentRule()

	8.8 Interface Class IpPolicyTimePeriodCondition
	8.8.1 Attributes

	8.9 Interface Class IpPolicyAction
	8.9.1 Attributes
	8.9.2 Method getParentRepository()
	8.9.3 Method getParentRule()

	8.10 Interface Class IpPolicyEventDefinition
	8.10.1 Attributes
	8.10.2 Method setRequiredAttributes()
	8.10.3 Method setOptionalAttributes()
	8.10.4 Method getRequiredAttributes()
	8.10.5 Method getOptionalAttributes()
	8.10.6 Method getParentDomain()

	8.11 Interface Class IpPolicyEventCondition
	8.11.1 Attributes

	8.12 Interface Class IpPolicyExpressionCondition
	8.12.1 Attributes

	8.13 Interface Class IpPolicyEventAction
	8.13.1 Attributes

	8.14 Interface Class IpPolicyExpressionAction
	8.14.1 Attributes

	8.15 Interface Class IpPolicyIterator
	8.15.1 Attributes
	8.15.2 Method getList()

	8.16 Interface Class IpAppPolicyDomain
	8.16.1 Method reportNotification()

	9 State Transition Diagrams
	10 PM Service Properties
	11 Data Definitions
	11.1 Policy Management Data Definitions
	11.1.1 TpPolicyConditionListType
	11.1.2 TpPolicyConditionListElement
	11.1.3 TpPolicyConditionList
	11.1.4 TpPolicyConditionType
	11.1.5 TpPolicyActionListElement
	11.1.6 TpPolicyActionList
	11.1.7 TpPolicyActionType
	11.1.8 TpPolicyEvent
	11.1.9 TpPolicyKeyword
	11.1.10 TpPolicyKeywordSet
	11.1.11 IpPolicyDomain
	11.1.12 IpPolicyDomainRef
	11.1.13 IpPolicyRepository
	11.1.14 IpPolicyRepositoryRef
	11.1.15 IpPolicyGroup
	11.1.16 IpPolicyGroupRef
	11.1.17 IpPolicyRule
	11.1.18 IpPolicyRuleRef
	11.1.19 IpPolicyEventDefinition
	11.1.20 IpPolicyEventDefinitionRef
	11.1.21 IpAppPolicyDomain
	11.1.22 IpAppPolicyDomainRef
	11.1.23 IpPolicyCondition
	11.1.24 IpPolicyConditionRef
	11.1.25 IpPolicyTimePeriodCondition
	11.1.26 IpPolicyTimePeriodConditionRef

	12 Policy Management Exception Classes
	Annex A (normative): OMG IDL Description of Policy Management SCF
	Annex B (informative): JavaŽ API Description of the Policy Management SCF
	Annex C (informative): Change history
	History

