ETSI TS 131 122 V11.1.0 (2013-07)

Universal Mobile Telecommunications System (UMTS); LTE;

Universal Subscriber Identity Module (USIM) conformance test specification (3GPP TS 31.122 version 11.1.0 Release 11)

Reference RTS/TSGC-0631122vb10 Keywords LTE,UMTS

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: <u>http://www.etsi.org</u>

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: <u>http://portal.etsi.org/chaircor/ETSI_support.asp</u>

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2013. All rights reserved.

DECTTM, **PLUGTESTS**TM, **UMTS**TM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. **3GPP**TM and **LTE**TM are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Contents

Intelle	ectual Property Rights	2
Forew	vord	2
Forew	vord	14
1	Scope	
	•	
2	Normative References	
3	Definitions, symbols, abbreviations and coding	
3.1	Definitions	
3.2	Symbols	
3.3	Abbreviations	
3.4	Coding Conventions	
3.5	Applicability	
3.5.1 3.5.2	Applicability to the LUCC	
3.5.2 3.5.3	Applicability to the UICC	
3.5.4	Applicability of conformance requirements	
3.6	Table of optional features	
3.7	Applicability table	
4	Test environment	
4.1 4.1.1	Test equipment	
4.1.1 4.1.2	ME simulator	
4.1.2 4.1.2.1		
4.1.2.1		
4.1.2.3		
4.1.2.4		
4.1.3	Precision force-inducing contacting device	
4.1.4	Temperature controllable environment	
4.1.5	Temperature measuring device	
4.1.6	Voltage measuring device	
4.1.7	Precision measuring device	27
4.1.8	Current measuring device	27
4.1.9	Timing Measurements on contact I/O	
4.2	IUT default conditions	
4.3	Default data formatting	
4.4	Test definition and applicability	
4.5	Initial conditions	
4.6	Test procedure	
4.7	Test requirement	
5	Void	31
6	Test Procedure (TS 102.221)	31
6.1	Physical characteristics	
6.1.1	ID-1 UICC	31
6.1.1.1	1 Definition and applicability	31
6.1.1.2	2 Conformance requirement	32
6.1.1.3	1 1	
6.1.1.4		
6.1.2	Plug-in UICC	
6.1.2.1	11 2	
6.1.2.2	1	
6.1.2.3	1 1	
6.1.2.4		
6.1.3	Temperature range for card operation	
6.1.3.1 6.1.3.2	11 2	
0.1.5.2	2 Comormance requirement	

6.1.3.3	Test purpose	33
6.1.3.4	Method of test	
6.1.4	Contacts	34
6.1.4.1	Definition and applicability	34
6.1.4.2	Conformance requirement	34
6.1.4.3	Test purpose	
6.1.4.4	Method of test	
6.1.5	Mini-UICC	
6.1.5.1	Definition and applicability	
6.1.5.2	Conformance requirement	
6.1.5.3	Test purpose	
6.1.5.4	Method of test	
6.2	Electrical specifications of the UICC – Terminal interface	
6.2.1	Supply voltage Vcc (contact C1)	
6.2.1.1	Voltage limits	
6.2.1.1.1	Definition and applicability	
6.2.1.1.2	Conformance requirement	
6.2.1.1.3	Test purpose	
6.2.1.1.4	Method of test	
6.2.1.2	Idle current limits	
6.2.1.2.1	Definition and applicability	
6.2.1.2.2	Conformance requirement	
6.2.1.2.3	Test purpose	
6.2.1.2.4	Method of test	
6.2.1.3	Current limits in clk-stop-mode	
6.2.1.3.1	Definition and applicability	
6.2.1.3.2 6.2.1.3.3	Conformance requirement	
6.2.1.3.4	Test purpose	
	Method of test	
6.2.2 6.2.2.1	Reset RST (contact C2)	
6.2.2.1.1	Definition and applicability	
6.2.2.1.1	Conformance requirement	
6.2.2.1.3	Test purpose	
6.2.2.1.4	Method of test	
6.2.3	Programming voltage Vpp (contact C6)	
6.2.3.1	Static operation	
6.2.3.1.1	Definition and applicability	
6.2.3.1.2	Conformance requirement	
6.2.3.1.3	Test purpose	
6.2.3.1.4	Method of test	
6.2.4	Clock CLK (contact C3)	
6.2.4.1	Frequency and duty cycle	
6.2.4.1.1	Definition and applicability	
6.2.4.1.2	Conformance requirement	
6.2.4.1.3	Test purpose	
6.2.4.1.4	Method of test	
6.2.4.2	Voltage and current	41
6.2.4.2.1	Definition and applicability	41
6.2.4.2.2	Conformance requirement	41
6.2.4.2.3	Test purpose	42
6.2.4.2.4	Method of test	42
6.2.5	I/O (contact C7)	
6.2.5.1	Voltage and current	
6.2.5.1.1	Definition and applicability	
6.2.5.1.2	Conformance requirement	
6.2.5.1.3	Test purpose	
6.2.5.1.4	Method of test	
6.3	Initial communication establishment procedure	
6.3.1	Supply voltage switching	
6.3.1.1	Supply voltage classes	
6.3.1.1.1	Definition and applicability	47

6.3.1.1.2	Conformance requirement	
6.3.1.1.3	Test purpose	47
6.3.1.1.4	Method of test	
6.3.1.2	Power consumption of the UICC during ATR	47
6.3.1.2.1	Definition and applicability	47
6.3.1.2.2	Conformance requirement	47
6.3.1.2.3	Test purpose	
6.3.1.2.4	Method of test	
6.3.1.3	Application related electrical parameters	48
6.3.1.3.1	Definition and applicability	48
6.3.1.3.2	Conformance requirement	48
6.3.1.3.3	Test purpose	48
6.3.1.3.4	Method of test	
6.3.2	ATR content	
6.3.2.1	Major capabilities	
6.3.2.1.1	Definition and applicability	49
6.3.2.1.2	Conformance requirement	
6.3.2.1.3	Test purpose	49
6.3.2.1.4	Method of test	
6.3.2.2	Speed enhancement	
6.3.2.2.1	Definition and applicability	
6.3.2.2.2	Conformance requirement	
6.3.2.2.3	Test purpose	
6.3.2.2.4	Method of test	
6.3.2.3	Global Interface bytes	
6.3.2.3.1	Definition and applicability	
6.3.2.3.2	Conformance requirement	
6.3.2.3.3	Test purpose	
6.3.2.3.4	Method of test	
6.3.3	PPS procedure	
6.3.3.1	Definition and applicability	
6.3.3.2	Conformance requirement	
6.3.3.3	Test purpose	
6.3.3.4	Method of test	
6.3.4	Reset procedures	
6.3.4.1	Definition and applicability	
6.3.4.2	Conformance requirement	
6.3.4.3	Test purpose	
6.3.4.4	Method of test	
6.3.5	Clock stop mode	
6.3.5.1	Definition and applicability	
6.3.5.2	Conformance requirement	
6.3.5.3	Test purpose	
6.3.5.4 6.3.6	Method of test	
	Bit/character duration and sampling time	
6.3.6.1 6.3.6.2	Definition and applicability	
6.3.6.3	Test purpose	
6.3.6.4	Method of test	
6.3.7	Error handling	
6.3.7.1	<u> </u>	
6.3.7.1	Definition and applicability Conformance requirement	
6.3.7.3	Test purpose	
6.3.7.4	Method of test	
6.3.8	Compatibility	
6.3.8.1	Definition and applicability	
6.3.8.2	Conformance requirement	
6.3.8.3	Test purpose	
6.3.8.4	Method of test	
6.4	Transmission Protocols	
6.4.1	Physical Layer	
6411	Definition and applicability	57

6.4.1.2	Conformance requirement	57
6.4.1.3	Test purpose	57
6.4.1.4	Method of test	57
6.4.2	Data Link Layer	57
6.4.2.1	Character Frame	
6.4.2.1.1	Definition and applicability	
6.4.2.1.2	Conformance requirement	
6.4.2.1.3	Test purpose	
6.4.2.1.4	Method of test	
6.4.2.2	Transmission Protocol $T = 0$	
6.4.2.2.1	Definition and applicability	
6.4.2.2.2	Conformance requirement	
6.4.2.2.3	Test purpose	
6.4.2.2.4	Method of test	
6.4.2.3	Transmission Protocol $T = 1$	
6.4.2.3.1	Timing and specific options for blocks sent with $T = 1$	
6.4.2.3.1.1	Information field size	
6.4.2.3.1.1.1	Definition and applicability	
6.4.2.3.1.1.2	Conformance requirement	
6.4.2.3.1.1.3	Test purpose	
6.4.2.3.1.1.4	Method of test	
6.4.2.3.1.2	Character waiting integer	
6.4.2.3.1.2.1	Definition and applicability	
6.4.2.3.1.2.2	Conformance requirement	
6.4.2.3.1.2.3	Test purpose	
6.4.2.3.1.2.4	Method of test	
6.4.2.3.1.3	Character waiting time	
6.4.2.3.1.3.1	Definition and applicability	
6.4.2.3.1.3.2	Conformance requirement	
6.4.2.3.1.3.3	Test purpose	
6.4.2.3.1.3.4 6.4.2.3.1.4	Method of test	
	Block guard time	
6.4.2.3.1.4.1	Definition and applicability	
6.4.2.3.1.4.2 6.4.2.3.1.4.3	Conformance requirement Test purpose	
6.4.2.3.1.4.3	Method of test	
6.4.2.3.1.5	Waiting time extension	
6.4.2.3.1.5.1	Definition and applicability	
6.4.2.3.1.5.2	Conformance requirement	
6.4.2.3.1.5.3	Test purpose	
6.4.2.3.1.5.4	Method of test	
6.4.2.3.1.6	Error detection code	
6.4.2.3.1.6.1	Definition and applicability	
6.4.2.3.1.6.2	Conformance requirement	
6.4.2.3.1.6.3	Test purpose	
6.4.2.3.1.6.4	Method of test	
6.4.2.3.2	Block frame structure	
6.4.2.3.2.1	Prologue field	
6.4.2.3.2.1.1	Node address byte	
6.4.2.3.2.1.1.		
6.4.2.3.2.1.1.	11 7	
6.4.2.3.2.1.1.	<u> •</u>	
6.4.2.3.2.1.1.	1 1	
6.4.2.3.2.1.2	Protocol Control Byte	
6.4.2.3.2.1.2.		
6.4.2.3.2.1.2.	**	
6.4.2.3.2.1.2.	<u>*</u>	
6.4.2.3.2.1.2.	1 1	
6.4.2.3.2.1.3	Length	
6.4.2.3.2.1.3.	· · · · · · · · · · · · · · · · · · ·	
6.4.2.3.2.1.3.	11 7	
6/23213		60

6.4.2.3.2.1.3.4	Method of test	
6.4.2.3.2.1.4	Information field	69
6.4.2.3.2.1.4.1	Definition and applicability	
6.4.2.3.2.1.4.2	Conformance requirement	69
6.4.2.3.2.1.4.3	Test purpose	69
6.4.2.3.2.1.4.4	Method of test	70
6.4.2.3.2.2	Void	71
6.4.2.3.2.3	Epilogue field	71
6.4.2.3.2.3.1	Definition and applicability	71
6.4.2.3.2.3.2	Conformance requirement	71
6.4.2.3.2.3.3	Test purpose	71
6.4.2.3.2.3.4	Method of test	71
6.4.2.3.3	Error free operation	71
6.4.2.3.3.1	Definition and applicability	71
6.4.2.3.3.2	Conformance requirement	71
6.4.2.3.3.3	Test purpose	
6.4.2.3.3.4	Method of test	72
6.4.2.3.4	Error Handling for T = 1	72
6.4.2.3.4.1	Protocol initialisation	72
6.4.2.3.4.1.1	Definition and applicability	72
6.4.2.3.4.1.2	Conformance requirement	72
6.4.2.3.4.1.3	Test purpose	72
6.4.2.3.4.1.4	Method of test	72
6.4.2.3.4.2	Block dependant errors	73
6.4.2.3.4.2.1	Sending invalid blocks to the UICC	
6.4.2.3.4.2.1.1	Definition and applicability	73
6.4.2.3.4.2.1.2	Conformance requirement	
6.4.2.3.4.2.1.3	Test purpose	
6.4.2.3.4.2.1.4	Method of test	
6.4.2.3.5	Chaining	
6.4.2.3.5.1	Definition and applicability	
6.4.2.3.5.2	Conformance requirement	
6.4.2.3.5.3	Test purpose	
6.4.2.3.5.4	Method of test	
6.4.3 T	ransport Layer	75
6.4.3.1	Transportation of an APDU using $T = 0$	
6.4.3.1.1	Case 1	76
6.4.3.1.1.1	Definition and applicability	76
6.4.3.1.1.2	Conformance requirement	7 6
6.4.3.1.1.3	Test purpose	76
6.4.3.1.1.4	Method of test	76
6.4.3.1.2	Case 2	76
6.4.3.1.2.1	Definition and applicability	76
6.4.3.1.2.2	Conformance requirement	76
6.4.3.1.2.3	Test purpose	76
6.4.3.1.2.4	Method of test	
6.4.3.1.3	Case 3	
6.4.3.1.3.1	Definition and applicability	77
6.4.3.1.3.2	Conformance requirement	77
6.4.3.1.3.3	Test purpose	77
6.4.3.1.3.4	Method of test	77
6.4.3.1.4	Case 4	
6.4.3.1.4.1	Definition and applicability	
6.4.3.1.4.2	Conformance requirement	
6.4.3.1.4.3	Test purpose	
6.4.3.1.4.4	Method of test	
6.4.3.1.5	Use of Procedure Bytes '61xx' and '6Cxx'	
6.4.3.1.5.1	Case 2 Commands	
6.4.3.1.5.1.1	Definition and applicability	
6.4.3.1.5.1.2	Conformance requirement	
6.4.3.1.5.1.3	Test purpose	
6.4.3.1.5.1.4	Method of test	

6.4.3.1.5.2	Case 4 Commands	
6.4.3.1.5.2.1	Definition and applicability	81
6.4.3.1.5.2.2	Conformance requirement	81
6.4.3.1.5.2.3	Test purpose	81
6.4.3.1.5.2.4	Method of test	81
6.4.3.2	Transportation of an APDU using T = 1	
6.4.3.2.1	Case 1	
6.4.3.2.1.1	Definition and applicability	81
6.4.3.2.1.2	Conformance requirement	81
6.4.3.2.1.3	Test purpose	82
6.4.3.2.1.4	Method of test	82
6.4.3.2.2	Case 2	82
6.4.3.2.2.1	Definition and applicability	82
6.4.3.2.2.2	Conformance requirement	82
6.4.3.2.2.3	Test purpose	82
6.4.3.2.2.4	Method of test	
6.4.3.2.3	Case 3	83
6.4.3.2.3.1	Definition and applicability	83
6.4.3.2.3.2	Conformance requirement	83
6.4.3.2.3.3	Test purpose	83
6.4.3.2.3.4	Method of test	
6.4.3.2.4	Case 4	
6.4.3.2.4.1	Definition and applicability	
6.4.3.2.4.2	Conformance requirement	82
6.4.3.2.4.3	Test purpose	82
6.4.3.2.4.4	Method of test	84
6.4.4	Application Layer	84
6.4.4.1	Definition and applicability	
6.4.4.2	Conformance requirement	
6.4.4.3	Test purpose	
6.4.4.4	Method of test	
6.5 A ₁	pplication and File structure	
6.5.1	UICC Application structure	
6.5.1.1	Definition and applicability	
6.5.1.2	Conformance requirement	
6.5.1.3	Test purpose	
6.5.1.4	Method of test	
6.5.2	File types	
6.5.2.1	Dedicated files	
6.5.2.1.1	Definition and applicability	
6.5.2.1.2	Conformance requirement	
6.5.2.1.3	Test purpose	
6.5.2.1.4	Method of test	
6.5.2.2	Elementary files	
6.5.2.2.1	Transparent EF	
6.5.2.2.1.1	Definition and applicability	
6.5.2.2.1.2	Conformance requirement	
6.5.2.2.1.3	Test purpose	
6.5.2.2.1.4	Method of test	
6.5.2.2.2	Linear fixed EF	
6.5.2.2.2.1	Definition and applicability	
6.5.2.2.2.2	Conformance requirement	
6.5.2.2.2.3	Test purpose	
6.5.2.2.2.4	Method of test	
6.5.2.2.3	Cyclic EF	
6.5.2.2.3.1	Definition and applicability	
6.5.2.2.3.2	Conformance requirement	
6.5.2.2.3.3	Test purpose	
6.5.2.2.3.4	Method of test	
6.5.2.2.4	BER-TLV structure EF	
6.5.2.2.4.1	Definition and applicability	
6.5.2.2.4.2	Conformance requirement	

(= 2 2 4 2	7	0.1
6.5.2.2.4.3	1 1	
6.5.2.2.4.4		
6.5.3	File referencing	
6.5.3.1	Definition and applicability	
6.5.3.2	Conformance requirement	
6.5.3.3	Test purpose	
6.5.3.4	Method of test	
6.5.4	Methods for selecting a file	
6.5.4.1	SELECT by File Identifier Referencing	
6.5.4.1.1	Definition and applicability	
6.5.4.1.2	Conformance requirement	
6.5.4.1.3	Test purpose	
6.5.4.1.4	Method of test	
6.5.4.2	SELECT by Path Referencing	
6.5.4.2.1	Definition and applicability	
6.5.4.2.2	Conformance requirement	
6.5.4.2.3	Test purpose	
6.5.4.2.4	Method of test	
6.5.4.3	Short File Identifier	
6.5.4.3.1	Definition and applicability	
6.5.4.3.2	Conformance requirement	
6.5.4.3.3	Test purpose	
6.5.4.3.4	Method of test	
6.5.5	Application characteristic	
6.5.5.1	Explicit Application selection	
6.5.5.1.1	SELECT by DF Name	
6.5.5.1.1.1	TI	
6.5.5.1.1.2	- · · · · · · · · · · · · · · · · · · ·	
6.5.5.1.1.3	r r r	
6.5.5.1.1.4		
6.5.5.1.2	SELECT by partial DF Name	
6.5.5.1.2.1	11 -	
6.5.5.1.2.2	- · · · · · · · · · · · · · · · · · · ·	
6.5.5.1.2.3	r r r	
6.5.5.1.2.4		
6.5.5.2	Application session activation	
6.5.5.2.1	Definition and applicability	
6.5.5.2.2	Conformance requirement	
6.5.5.2.3	Test purpose	
6.5.5.2.4	Method of test	
6.5.5.3	Application session termination	
6.5.5.3.1	Definition and applicability	98
6.5.5.3.2	Conformance requirement	
6.5.5.3.3	Test purpose	98
6.5.5.3.4	Method of test	98
6.5.5.4	Application session reset	
6.5.5.4.1	Definition and applicability	
6.5.5.4.2	Conformance requirement	
6.5.5.4.3	Test purpose	
6.5.5.4.4	Method of test	
6.5.5.5	GSM/USIM application interaction and restrictions	101
6.5.5.5.1	Definition and applicability	101
6.5.5.5.2	Conformance requirement	101
6.5.5.5.3	Test purpose	
6.5.5.5.4	Method of test	101
6.5.6	Reservation of file IDs	101
6.5.6.1	Definition and applicability	101
6.5.6.2	Conformance requirement	102
6.5.6.3	Test purpose	102
6.5.6.4	Method of test	102
6.5.7	Logical channels	103
6571	No Logical Channel Support	103

6.5.7.2	Logical Channels – Basic Behaviour		
6.5.7.3	Opening a Logical Channel from the Basic Channel		
6.5.7.4	Opening a Logical Channel from a Non-Basic Channel		
6.5.7.5	Opening a Logical Channel on Non-Shareable Files	10	8
6.5.7.6	Logical Channels and Shareable Files	109	9
6.5.7.7	Command Interdependencies	110	(
6.5.7.8	Consistency of File Updates	11	3
6.6	Security features	،11	4
6.6.1	Supported security features		
6.6.1.1	Definition and applicability		
6.6.1.2	Conformance requirement		
6.6.1.3	Test purpose		
6.6.1.4	Method of test		
6.6.2	Security architecture		
6.6.2.1	Definition and applicability		
6.6.2.2	Conformance requirement		
6.6.2.3	Test purpose		
6.6.2.4	Method of test		
6.6.3	Security environment		
6.6.3.1	Definition and applicability		
6.6.3.2	Conformance requirement.		
6.6.3.3	Test purpose		
6.6.3.4	Method of test		
6.6.4	PIN definitions		
6.6.4.1			
	Definition and applicability		
6.6.4.2	Conformance requirement		
6.6.4.3	Test purpose		
6.6.4.4	Method of test		
6.6.5	PIN and key reference relationship		
6.6.5.1	Definition and applicability		
6.6.5.2	Conformance requirement		
6.6.5.3	Test purpose		
6.6.5.4	Method of test		
6.7	Structure of commands and responses		
6.7.1	Mapping principles		
6.7.1.1	Definition and applicability		
6.7.1.2	Conformance requirement		
6.7.1.3	Test purpose		
6.7.1.4	Method of test		
6.7.2	Response APDU Structure		
6.7.2.1	Status Conditions Returned by the UICC	12′	7
6.7.2.1.1	Definition and applicability	12	7
6.7.2.1.2	Conformance requirement	12	7
6.7.2.1.3	Test purpose	12	7
6.7.2.1.4	Method of test	12	7
6.7.2.2	Status Words of the Commands		
6.7.2.2.1	Definition and applicability	130	(
6.7.2.2.2	Conformance requirement		
6.7.2.2.3	Test purpose		
6.7.2.2.4	Method of test		
6.7.3.1	Definition and applicability		
6.7.3.2	Conformance requirement		
6.8.1.1.3	Test purpose		
6.8.1.1.4	Method of test		
6.8	Commands		
6.8.1	Generic Commands		
6.8.1.1			
6.8.1.1	SELECT		
	Definition and applicability		
6.8.1.1.2	Conformance requirement		
6.8.1.1.3	Test purpose		
6.8.1.1.4	Method of test	132 13	
n x I /	STATUS	1 4	4

6.8.1.2.1	Definition and applicability	
6.8.1.2.2	Conformance requirement	
6.8.1.2.3	Test purpose	
6.8.1.2.4	Method of test	135
6.8.1.3	READ BINARY	
6.8.1.3.1	Definition and applicability	
6.8.1.3.2	Conformance requirement	
6.8.1.3.3	Test purpose	
6.8.1.3.4	Method of test	
6.8.1.4	UPDATE BINARY	
6.8.1.4.1	Definition and applicability	
6.8.1.4.2	Conformance requirement	
6.8.1.4.3	Test purpose	
6.8.1.4.4	Method of test	
6.8.1.5	READ RECORD	
6.8.1.5.1	Definition and applicability	
6.8.1.5.2	Conformance requirement	
6.8.1.5.3	Test purpose	
6.8.1.5.4	Method of test	
6.8.1.6	UPDATE RECORD	
6.8.1.6.1	Definition and applicability	
6.8.1.6.2	Conformance requirement	
6.8.1.6.3	Test purpose	
6.8.1.6.4	Method of test	
6.8.1.7 6.8.1.7.1	SEARCH RECORD.	
6.8.1.7.2	Definition and applicability	
6.8.1.7.3	Conformance requirement	
6.8.1.7.4	Method of test	
6.8.1.8	INCREASE	
6.8.1.8.1	Definition and applicability	
6.8.1.8.2	Conformance requirement	
6.8.1.8.3	Test purpose	
6.8.1.8.4	Method of test	
6.8.1.9	VERIFY PIN	
6.8.1.9.1	Definition and applicability	
6.8.1.9.2	Conformance requirement	
6.8.1.9.3	Test purpose	156
6.8.1.9.4	Method of test	
6.8.1.10	CHANGE PIN	
6.8.1.10.1	Definition and applicability	
6.8.1.10.2	Conformance requirement	
6.8.1.10.3	Test purpose	
6.8.1.10.4	Method of test	
6.8.1.11	DISABLE PIN	
6.8.1.11.1	Definition and applicability	
6.8.1.11.2	Conformance requirement	
6.8.1.11.3	Test purpose	
6.8.1.11.4 6.8.1.12	Method of test	
6.8.1.12.1	ENABLE PIN	
6.8.1.12.1	Definition and applicability	
6.8.1.12.2	Conformance requirement	
6.8.1.12.4	Method of test	
6.8.1.13	UNBLOCK PIN	
6.8.1.13.1	Definition and applicability	
6.8.1.13.2	Conformance requirement	
6.8.1.13.3	Test purpose	
6.8.1.13.4	Method of test	
6.8.1.14	DEACTIVATE FILE	
6.8.1.14.1	Definition and applicability	
6.8.1.14.2	Conformance requirement	

6.8.1.14.3	1 1	
6.8.1.14.4		
6.8.1.15	ACTIVATE FILE	
6.8.1.15.1	Definition and applicability	
6.8.1.15.2	4	
6.8.1.15.3	Test purpose	
6.8.1.15.4		
6.8.1.16	AUTHENTICATE	
6.8.1.16.1	Definition and applicability	
6.8.1.16.2	- · · · · · · · · · · · · · · · · · · ·	
6.8.1.16.3	T T	
6.8.1.16.4		
6.8.1.17	MANAGE CHANNEL	
6.8.1.17.1	Definition and applicability	
6.8.1.17.2	1	
6.8.1.17.3	1 1	
6.8.1.17.4		
6.8.1.18	GET CHALLENGE	
6.8.1.18.1	Definition and applicability	
6.8.1.18.2	- · · · · · · · · · · · · · · · · · · ·	
6.8.1.18.3	T T	
6.8.1.18.4		
	Data Oriented Commands	
6.8.2.1	RETRIEVE DATA	
6.8.2.1.1	Definition and applicability	
6.8.2.1.2	Conformance requirement	
6.8.2.1.3	Test purpose	
6.8.2.1.4	Method of test	
6.8.2.2	SET DATA	
6.8.2.2.1	Definition and applicability	
6.8.2.2.2	Conformance requirement	
6.8.2.2.3	Test purpose	
6.8.2.2.4	Method of test	
6.8.2.3 6.8.2.3.1		
6.8.2.3.1	Definition and applicability	
6.8.2.3.3	Conformance requirement	
6.8.2.3.4	Test purpose	
6.8.2.4	Logical channel interactions	
6.8.2.4.1	Definition and applicability	
6.8.2.4.2	Conformance requirement	
6.8.2.4.3	Test purpose	
6.8.2.4.4	Method of test.	
6.9	Transmission Oriented Commands	
6.9.1	T = 0 specific commands	
6.9.1.1	GET RESPONSE	
6.9.1.1.1	Definition and applicability	
6.9.1.1.2	Conformance requirement	
6.9.1.1.3	Test purpose	
6.9.1.1.4	Method of test	
6.10	Application independent files	
6.10.1	Definition and applicability	
6.10.2	Conformance requirement	
6.10.3	Test purpose	
6.10.4	Method of test	
7 Te	st Procedure (31.102)	
7.1 7.1.1	Contents of the Elementary Files (EF)	
7.1.1 7.1.2	Definition and applicability	
7.1.2	Conformance requirement Test purpose	
	Method of test	
7.1.4	Method of test	

7.2	Security features	203
7.2.1	Definition and applicability	
7.2.2	Conformance requirement	203
7.2.3	Test purpose	203
7.2.4	Method of test	
7.3	USIM commands	204
7.3.1	AUTHENTICATE	
7.3.1.1	Definition and applicability	204
7.3.1.2	Conformance requirement	
7.3.1.3	Test purpose	
7.3.1.4	Method of test	
7.3.2	Status Conditions Returned by the USIM	
7.3.2.1	Security management	
7.3.2.1.1	Definition and applicability	
7.3.2.1.2		
7.3.2.1.3	•	
7.3.2.1.4		
7.3.2.2	Status Words of the Commands	
7.3.2.2.1	Definition and applicability	
7.3.2.2.2		
7.3.2.2.3	1	
7.3.2.2.4		
7.3.2.2.1	Void	
	est Procedure (31.101)	
8.1	General 3GPP platform requirements.	
8.1.1	GSM/USIM application interaction and restrictions	
8.1.1.1	Definition and applicability	
8.1.1.2	Conformance requirement	
8.1.1.3	Test purpose	
8.1.1.4	Method of test	
8.2	Physical and logical characteristics	
8.2.1	Transmission speed	
8.2.1.1	Definition and applicability	
8.2.1.2	Conformance requirement	
8.2.1.3	Test purpose	
8.2.1.4	Method of test	
8.2.2	Voltage classes	
8.2.2.1	Definition and applicability	
8.2.2.2	Conformance requirement	
8.2.2.3	Test purpose	
8.2.2.4	Method of test	
8.2.3	File Control Parameters (FCP)	
8.2.3.1	Definition and applicability	
8.2.3.2	Conformance requirement	
8.2.3.3	Test purpose	
8.2.3.4	Method of test	
8.3	User verification and file access conditions	
8.3.1	Definition and applicability	
8.3.2	Conformance requirement	
8.3.3	Test purpose	
8.3.4	Method of test	
8.4	Files	
8.4.1	Contents of the EFs at the MF level	
8.4.1.1	Definition and applicability	
8.4.1.2	Conformance requirement	
8.4.1.3	Test purpose	
8.4.1.4	Method of test	211
Annor	(informativa). Change history	212
AIIIIEX F	A (informative): Change history	
History		213

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

[18]

The present document provides the Conformance Test Specification for a Universal IC Card (UICC) defined in TS 31.101 [2] with Universal Subscriber Identity Module (USIM) defined in TS 31.102 [3].

2 Normative References

The following documents contain provisions, which through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference to a non-3GPP document, the latest version applies.
- For a non-specific reference to a 3GPP document, the latest version in the same release as the implementation release of the UICC under test applies.

rerease or th	to order that applies.
[1]	ETSI TS 102 221: "UICC-Terminal Interface; Physical and Logical Characteristics".
[2]	3GPP TS 31.101: "UICC-Terminal Interface; Physical and Logical Characteristics".
[3]	3GPP TS 31.102: "Characteristics of the USIM application".
[4]	ISO/IEC 7816-1: "Identification cards - Integrated circuit(s) cards with contacts, Part 1: Physical characteristics".
[5]	ISO/IEC 7816-2: "Identification cards - Integrated circuit cards - Part 2: Card with contacts - Dimensions and locations of the contacts".
[6]	ISO/IEC 7816-3: "Identification cards - Integrated circuit(s) cards with contacts, Part 3: Electronic signals and transmission protocols".
[7]	ISO/IEC 7816-4: "Identification cards - Integrated circuit cards - Part 4: Organization, security and commands for interchange".
[8]	Void
[9]	Void
[10]	Void
[11]	Void
[12]	ISO/IEC 7811-1: "Identification cards - Recording technique - Part 1: Embossing"
[13]	Void
[14]	3GPP TS 11.11: "Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module - Mobile Equipment (SIM - ME) interface".
[15]	ETSI TS 101 220: "Smart cards; ETSI numbering system for telecommunication application providers".
[16]	ETSI TS 102 221 Release 99: "UICC-Terminal Interface; Physical and Logical Characteristics".
[17]	ETSI TS 102 221 Release 4: "UICC-Terminal Interface; Physical and Logical Characteristics".

ETSI TS 102 221 Release 5: "UICC-Terminal Interface; Physical and Logical Characteristics".

[19] ISO/IEC 9646-7 (1995): "Information technology - Open Systems Interconnection - Conformance testing methodology and framework - Part 7: Implementation Conformance Statements".

3 Definitions, symbols, abbreviations and coding

3.1 Definitions

For the purposes of the present document, the following definitions apply in addition to the terms defined in TS 102.221 [1] and TS 31.102 [3].

Implementation Conformance Statement (ICS): A statement made by the supplier of an implementation or system claimed to conform to a given specification, stating which capabilities have been implemented. The ICS can take several forms: protocol ICS, profile ICS, profile Specific ICS, information object ICS, etc.

ICS proforma: A document, in the form of a questionnaire, which when completed for an implementation or system becomes an ICS.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

 $\begin{array}{ll} t_F & \quad \text{fall time} \\ t_R & \quad \text{rise time} \end{array}$

 $\begin{array}{lll} V_{IH} & & Input \ Voltage \ (high) \\ V_{IL} & & Input \ Voltage \ (low) \\ V_{OH} & & Output \ Voltage \ (high) \\ V_{OL} & & Output \ Voltage \ (low) \end{array}$

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

CRn Conformance Requirement 'n' IUT Implementation Under Test

ME Mobile Equipment TS Test Specification

UICC Universal Integrated Circuit Card
USIM Universal Subscriber Identity Module

3.4 Coding Conventions

The following coding conventions apply to the present document:

All lengths are presented in bytes, unless otherwise stated. Each byte is represented by bit b8 to b1, where b8 is the most significant bit (MSB) and b1 is the least significant bit (LSB). In each representation, the leftmost bit is the MSB.

3.5 Applicability

3.5.1 Applicability of the present document

The present document applies to a UICC which supports one or more USIMs.

3.5.2 Applicability to the UICC

The applicability to a UICC supporting one or more USIMs is specified in table B.1, unless otherwise specified in the specific clause.

3.5.3 Applicability of the individual tests

Table B.1 lists the optional, conditional or mandatory features for which the supplier of the implementation states the support. As pre-condition the supplier of the implementation shall state the support of possible options in table A.1.

The "Release XY UICC" columns shows the status of the entries as follows:

The following notations, defined in ISO/IEC 9646-7 [19], are used for the status column:

M	mandatory - the capability is required to be supported.
O	optional - the capability may be supported or not.
N/A	not applicable - in the given context, it is impossible to use the capability.
X	prohibited (excluded) - there is a requirement not to use this capability in the given context.
O.i	qualified optional - for mutually exclusive or selectable options from a set. "i" is an integer which identifies an unique group of related optional items and the logic of their selection which is defined immediately following the table.
Ci	conditional - the requirement on the capability ("M", "O", "X" or "N/A") depends on the support of other optional or conditional items. "i" is an integer identifying an unique conditional status expression which is defined immediately following the table. For nested conditional expressions, the syntax "IF THEN (IF THEN ELSE) ELSE" shall be used to avoid ambiguities.

References to items

For each possible item answer (answer in the support column) there exists a unique reference, used, for example, in the conditional expressions. It is defined as the table identifier, followed by a solidus character "/", followed by the item number in the table. If there is more than one support column in a table, the columns shall be discriminated by letters (a, b, etc.), respectively.

EXAMPLE: A.1/4 is the reference to the answer of item 4 in table A.1.

3.5.4 Applicability of conformance requirements

All conformance requirements are annotated with their applicability. This clause defines the notation used.

The basic notation is as follows:

(DefinedRelease) ReleaseRange: Options

The components of the notation are as follows:

Component	Content	Example content
DefinedRelease	Contains a single release. Optional (along with the surrounding parentheses). If present, it indicates the release of the core specification in which the conformance requirement was first defined. This is intended for conformance requirements which were defined in a certain release of the core specification but for which tests were not introduced into this document until a later release. If absent, this indicates that the conformance requirement was introduced in the first release	R99 Rel-6
ReleaseRange	contained in ReleaseRange. Contains a single release or a range of releases. An ellipsis () in the right-hand part indicates the current release of this document. Optional; but at least one of ReleaseRange and Options must be present. If present, it indicates the range of releases for which the conformance requirement is tested. If absent, it is equivalent to "R99".	R99 R99 - Rel-5 Rel-6
Options	A comma-separated list containing at least one of the options in table A.1. Optional (along with the preceding colon); but at least one of ReleaseRange and Options must be present. If present, this indicates that the conformance requirement is only applicable to UICCs supporting all of the specified options. If absent, this indicates that the conformance requirement applies to all UICCs.	O_LOG_CHANS O_LOG_CHANS, O_SHAREABLE

An additional shortcut notation for "R99 - \dots " is specified: "M". This indicates that the conformance requirement is mandatory for all UICCs of all releases.

Examples of the notation are as follows:

Example	Meaning
(Rel-4) Rel-6:	Conformance requirement introduced in Rel-4, but not tested until
O_LOG_CHANS	Rel-6, where it is only applicable if O_LOG_CHANS is supported.
(Rel-4) Rel-6 –:	Conformance requirement introduced in Rel-4, but not tested until
O_LOG_CHANS,	Rel-6, where it is only applicable if O_LOG_CHANS and
O_SHAREABLE	O_SHAREABLE are supported.
Rel-6 –:	Conformance requirement introduced in Rel-6, where it is only
O_LOG_CHANS	applicable if O_LOG_CHANS is supported.
Rel-6 –:	Conformance requirement introduced in Rel-6, where it is only
O_LOG_CHANS,	applicable if O_LOG_CHANS and O_SHAREABLE are supported.
O_SHAREABLE	
R99 - Rel-5	Mandatory for all UICCs from R99 to Rel-5.
Rel-6	Mandatory for all UICCs from all releases up to and including the
	current release of this document.
O_MONO_APP	Applies to all releases, but only applicable if O_MONO_APP is
	supported by the UICC.
M	Mandatory for all releases; equivalent to "R99".

3.6 Table of optional features

Support of several features is optional, release dependent or configuration dependent for the UICC. However, if a UICC states conformance with a specific 3GPP release, it is mandatory for the UICC to support all mandatory functions of that release, as stated in table A.1.

The "Option defined in Releases" column indicates the releases of the relevant core specification(s) in which the option is defined.

The supplier of the implementation shall state the support of possible options in table A.1.

A supplier may choose to use a single UICC and reconfigure it as required for each test; or may choose to use a number of UICCs which are based on the same platform but are configured differently. The supplier shall state the chosen solution and in the latter case shall confirm usage of identical platforms.

Table A.1: Options

Option	Status	Option defined in	Support	Mnemonic
		Releases		
ID-1 UICC	0.1	R99		O_ID1_UICC
Plug-in UICC	0.1	R99		O_PLUG_IN_UICC
Type 1 (i.e. UICC which always enters the negotiable mode after a warm reset)	0.2	R99		O_TYPE_1
Type 2 (UICC which always enters the specific mode after a warm reset)	0.2	R99		O_TYPE_2
T=0	0.3	R99		O_T0
T=1	0.3	R99		O_T1
Mono application UICC	0.4	R99		O_MONO_APP
Multi-application UICC	0.4	R99		O_MULTI_APP
Single verification capable UICC	0.5	R99		O_SINGLE_VER
Multi-verification capable UICC	0.5	R99		O_MULTI_VER
More than one logical channel supported	0	Rel-4		O_LOG_CHANS
More than two logical channels supported	0	Rel-4		O_LOG_CHANS_34
Shareable files	0	Rel-4		O_SHAREABLE
Non-shareable files	0	Rel-4		O_NON_SHAREABLE
GET CHALLENGE	0	Rel-4		O_GET_CHALLENGE
Mini-UICC	0.1	Rel-6		O_MINI_UICC
(F, D) = (512, 64)	0	Rel-6		O_F_D_512_64
Low impedance drivers	0	Rel-6		O_LOW_IMPEDANCE
BER-TLV structure EFs	0	Rel-6		O_BER_TLV_FILES

3.7 Applicability table

Table B.1: Applicability of tests

Clause	Description	Test procedure	Tested features defined in	R99 UICC	Rel-4 UICC	Rel-5 UICC	Rel-6 UICC	Rel-7 UICC	Support
0.4.4	ID 4 11100		Release	0004	0004	0004	0004	0004	
6.1.1	ID-1 UICC	1	R99	C001	C001	C001	C001	C001	
6.1.2 6.1.3	Plug-in UICC Temperature range	1 1	R99 R99	C002	C002	C002 M	C002	C002	
0.1.0	for card operation					141			
0.4.4	0	2	Rel-6				M	M	
6.1.4	Contacts	N/A	Dalic				0000	0000	
6.1.5 6.2.1.1	Mini-UICC Vcc – Voltage limits	1	Rel-6 R99	N 4	N.4	N 4	C003	C003	
6.2.1.1	Vcc - Voltage limits Vcc - Idle current	1 1	R99	M	M	M M	M M	M M	
	limits								
6.2.1.3	Vcc - Current limits in clk-stop-mode	1	R99	M	M	М	М	М	
6.2.2.1	RST - Static operation	1	R99	M	М	М	М	М	
6.2.3.1	Vpp - Static operation	1	R99	M	М	М	М	М	
6.2.4.1	CLK - Frequency and duty cycle	1	R99	М	М	М	М	М	
6.2.4.2	Voltage and current	1	R99	М	М	М	М	М	
6.2.5.1	I/O - Voltage and current	1	R99	М	М	М	C018	C018	
		2	Rel-6				C019	C019	
		3	Rel-6				C020	C020	
6.3.1.1	Supply voltage switching - Supply voltage classes	N/A							
6.3.1.2	Supply voltage switching - Power consumption of the UICC during ATR	1	R99	М	М	M	M	M	
6.3.1.3	Supply voltage switching - Application related electrical parameters	1	R99	M	M	M	M	M	
6.3.2.1	ATR - Major capabilities	1	R99	М	М	М	М	М	
6.3.2.2	ATR - Speed enhancement	1	R99	М	М	М	М	М	
6.3.2.3	Global Interface bytes	1	Rel-6				М	М	
6.3.3	PPS procedure	1	R99				М	М	
6.3.4	Reset procedures	1	R99	М	М	М	М	М	
		2	R99				М	М	
		3	R99				C004	C004	
		4	R99				C005	C005	
6.3.5	Clock stop mode	1	R99	M	М	M	M	М	
6.3.6	Bit/character duration and sampling time	N/A							
6.3.7	Error handling	1	R99	М	М	М	М	М	
6.3.8	Compatibility	N/A							
6.4.1	Physical Layer	N/A							
6.4.2.1	Character Frame	1	R99	М	М	М	М	М	
6.4.2.2	Transmission Protocol T=0	1	R99	C006	C006	C006	C006	C006	
6.4.2.3. 1.1	T=1 - Information field size	1	R99	C007	C007	C007	C007	C007	

Clause	Description	Test procedure	Tested features defined in Release	R99 UICC	Rel-4 UICC	Rel-5 UICC	Rel-6 UICC	Rel-7 UICC	Support
6.4.2.3. 1.2	T=1 - Character waiting integer	1	R99	C007	C007	C007	C007	C007	
6.4.2.3. 1.3	T=1 - Character waiting time	1	R99	C007	C007	C007	C007	C007	
6.4.2.3. 1.4	T=1 - Block guard time	1	R99	C007	C007	C007	C007	C007	
6.4.2.3. 1.5	T=1 - Waiting time extension	N/A							
6.4.2.3. 1.6	T=1 - Error detection code	1	R99	C007	C007	C007	C007	C007	
6.4.2.3. 2.1.1	T=1 - Prologue field - Node address byte	1	R99	C007	C007	C007	C007	C007	
6.4.2.3. 2.1.2	T=1 - Prologue field - Protocol Control Byte	N/A							
6.4.2.3. 2.1.3	T=1 - Prologue field - Length	1	R99	C007	C007	C007	C007	C007	
6.4.2.3. 2.1.4	T=1 - Information field	1	R99	C007	C007	C007	C007	C007	
6.4.2.3. 2.3	T=1 - Epilogue field	1	R99	C007	C007	C007	C007	C007	
6.4.2.3. 3	T=1 - Error free operation	1	R99	C007	C007	C007	C007	C007	
6.4.2.3. 4.1	T=1 - Error Handling - Protocol initialisation	1	R99	C007	C007	C007	C007	C007	
6.4.2.3. 4.2.1	T=1 - Error Handling - Sending invalid blocks to the UICC	1	R99	C007	C007	C007	C007	C007	
6.4.2.3. 5	T=1 - Chaining	1	R99	C007	C007	C007	C007	C007	
6.4.3.1. 1	Transportation of an APDU using T=0 - Case 1	1	R99	C006	C006	C006	C006	C006	
6.4.3.1. 2	Transportation of an APDU using T=0 - Case 2	1	R99	C006	C006	C006	C006	C006	
6.4.3.1. 3	Transportation of an APDU using T=0 - Case 3	1	R99	C006	C006	C006	C006	C006	
6.4.3.1. 4	Transportation of an APDU using T=0 - Case 4	1	R99	C006	C006	C006	C006	C006	
6.4.3.1. 5.1	Use of Procedure Bytes '61xx' and '6Cxx' - Case 2 Commands	1	R99	C006	C006	C006	C006	C006	
6.4.3.1. 5.2	Use of Procedure Bytes '61xx' and '6Cxx' - Case 4 Commands	N/A							
6.4.3.2. 1	Transportation of an APDU using T=1 - Case 1	1	R99	C007	C007	C007	C007	C007	
6.4.3.2. 2	Transportation of an APDU using T=1 - Case 2	1	R99	C007	C007	C007	C007	C007	
6.4.3.2. 3	Transportation of an APDU using T=1 - Case 3	1	R99	C007	C007	C007	C007	C007	
6.4.3.2. 4	Transportation of an APDU using T=1 - Case 4	1	R99	C007	C007	C007	C007	C007	
6.4.4	Application Layer	N/A							

Clause	Description	Test procedure	Tested features defined in Release	R99 UICC	Rel-4 UICC	Rel-5 UICC	Rel-6 UICC	Rel-7 UICC	Support
6.5.1	UICC Application structure	1	R99	М	М	М	М	М	
6.5.2.1	Dedicated files	N/A							
6.5.2.2. 1	Transparent EF	1	R99	М	М	М	М	М	
6.5.2.2. 2	Linear fixed EF	1	R99	М	М	M	М	М	
6.5.2.2. 3	Cyclic EF	1	R99	М	М	М	М	М	
6.5.2.2. 4	BER-TLV structure EF	N/A							
6.5.3	File referencing	N/A							
6.5.4.1	SELECT by File Identifier Referencing	1	R99	М	М	M	M	М	
6.5.4.2	SELECT by Path Referencing	1	R99	М	М	М	М	М	
6.5.4.3	Short File Identifier	1	R99	М	М	М	М	М	
6.5.5.1. 1	SELECT by DF Name	1	R99	M	М	М	М	М	
6.5.5.1. 2	SELECT by partial DF Name	1	R99				C009	C009	
		2	R99	C008	C008	C008			
		3	R99				C008	C008	
6.5.5.2	Application session activation	1	R99	M	М	M	М	М	
6.5.5.3	Application session termination	1	R99	C008	C008	C008	C008	C008	
		2	R99	M	М	М			
		3	Rel-6				М	M	
		4	R99	M	M	М	M	M	
0.5.5.4	A 11 41 1	5	Rel-4	.			C010	C010	
6.5.5.4	Application session reset	1	R99	М	М	M	М	М	
6.5.5.5	GSM/USIM application interaction and restrictions	1	R99	М	М	M			
6.5.6	Reservation of file IDs	1	R99	M	М	M	M	М	
		2	R99	М	М	М			
		3	R99				М	М	
6.5.7.1	No Logical Channel Support	1	Rel-4				C011	C011	
6.5.7.2	Logical Channels - Basic Behaviour	1	Rel-4				C010	C010	
		2	Rel-4				C012	C012	
6.5.7.3	Opening a Logical Channel from the Basic Channel	1	Rel-4				C010	C010	
6.5.7.4	Opening a Logical Channel from a Non- Basic Channel	1	Rel-4				C013	C013	
6.5.7.5	Opening a Logical Channel on Non- Shareable Files	1	Rel-4				C014	C014	
6.5.7.6	Logical Channels and Shareable Files	1	Rel-6				C014	C014	
		2	Rel-4				C015	C015	
6.5.7.7	Logical channels - Command Interdependencies	1	Rel-4				C015	C015	

Clause	Description	Test procedure	Tested features defined in Release	R99 UICC	Rel-4 UICC	Rel-5 UICC	Rel-6 UICC	Rel-7 UICC	Support
6.5.7.8	Logical channels - Consistency of File Updates	1	Rel-4				C015	C015	
6.6.1	Supported security features	1	R99	C016	C016	C016	C016	C016	
		2	R99	C017	C017	C017	C017	C017	
6.6.2	Security architecture	1	R99	M	М	М	M	M	
0.00	Coourity on vivo money	2	R99	0040	0040	0040	M	M	
6.6.3 6.6.4	Security environment PIN definitions	1 1	R99 R99	C016	C016	C016	C016	C016	
0.0.4	FIN Gennidons	2	R99	C016	COTO	COTO	C016	C016	
		3	R99	C017	C017	C017	C017	C010	
6.6.5	PIN and key reference relationship	1	R99	C016	C016	C016	C016	C016	
0.7.4	Managina na minarina la a	2	R99	C017	C017	C017	C017	C017	
6.7.1	Mapping principles	1	R99	M	M	M	M	M	
6.7.2.1	Status Conditions Returned by the UICC	-	R99	M	M	M	M	М	
6.7.2.2	Status Words of the Commands	N/A							
6.7.3	Logical Channels	N/A							
6.8.1.1	SELECT	1	R99	M	М	M	M	M	
	0=1=110	2	R99		1		M	M	
6.8.1.2	STATUS	1	R99	M	M	M	M	M	
6.8.1.3	READ BINARY	1	R99	M	M	M	M	M	
6.8.1.4 6.8.1.5	UPDATE BINARY READ RECORD	1	R99	M M	M	M	M M	M M	
0.6.1.5	READ RECORD	2	R99 R99	M	M M	M M	M	M	
		3	R99	M	M	M	M	M	
6.8.1.6	UPDATE RECORD	1	R99	M	M	M	M	M	
0.0.1.0	OI DATE RECORD	2	R99	M	M	M	M	M	
		3	R99	M	M	M	M	M	
6.8.1.7	SEARCH RECORD	1	R99	M	M	M	M	M	
		2	R99	М	М	М	М	М	
		3	R99	М	М	М	М	М	
		4	R99	C007	C007	C007	C007	C007	
6.8.1.8	INCREASE	1	R99	М	М	М	М	М	
6.8.1.9	VERIFY PIN	1	R99	M	М	М	М	М	
		2	Rel-4				C010	C010	
		3	R99				M	М	
6.8.1.1 0	CHANGE PIN	1	R99	М	M	М	М	M	
		2	Rel-4	1	 		C010	C010	
6.8.1.1 1	DISABLE PIN	1	R99	М	М	М	М	М	
6.8.1.1 2	ENABLE PIN	1	R99	М	М	М	М	М	
6.8.1.1 3	UNBLOCK PIN	1	R99	М	М	М	М	М	
		2	R99	M	М	М	М	М	
		3	R99	1	1		M	M	
0.0.1.1	DEACTIVATE ET E	4	Rel-4	1			C010	C010	
6.8.1.1 4	DEACTIVATE FILE	1	R99	М	М	М	М	M	
6.8.1.1 5	ACTIVATE FILE	1	R99	М	М	М	М	М	
6.8.1.1 6	AUTHENTICATE	N/A							
6.8.1.1 7	MANAGE CHANNEL	N/A							

Clause	Description	Test procedure	Tested features defined in Release	R99 UICC	Rel-4 UICC	Rel-5 UICC	Rel-6 UICC	Rel-7 UICC	Support
6.8.1.1 8	GET CHALLENGE	1	Rel-4				C021	C021	
6.8.2.1	RETRIEVE DATA	1	Rel-6				C022	C022	
		2	Rel-6				C022	C022	
		3	Rel-6				C022	C022	
6.8.2.2	SET DATA	1	Rel-6				C022	C022	
		2	Rel-6				C022	C022	
		3	Rel-6				C022	C022	
		4	Rel-6				C022	C022	
6.8.2.3	BER-TLV structure files	1	Rel-6				C022	C022	
		2	Rel-6				C022	C022	
		3	Rel-6				C022	C022	
6.8.2.4	Logical channel interactions	1	Rel-6				C023	C023	
		2	Rel-6				C023	C023	
		3	Rel-6				C023	C023	
6.9.1.1	GET RESPONSE	1	R99	М	М	М	М	M	
6.10	Application independent files	1	R99	М	М	М	М	М	
7.1	Contents of the Elementary Files (EF)	1	R99				M	M	
		2	R99	М	М	М			
7.2	Security features	1	R99	C016	C016	C016	C016	C016	
7.3.1	AUTHÉNTICATE	1	R99	М	М	М	М	М	
7.3.2.1	Security management	1	R99	М	М	М	М	М	
7.3.2.2	Status Words of the Commands	N/A							
8.1.1	GSM/USIM application interaction and restrictions	1	Rel-6				М	M	
8.2.1	Transmission speed	1	Rel-6				C006	C006	
		1	Rel-6				C007	C007	
8.2.2	Voltage classes	1	Rel-6				М	М	
8.2.3	File Control Parameters (FCP)	1	Rel-6				М	М	
8.3	User verification and file access conditions	1	Rel-6				C016	C016	
		2	Rel-6				C017	C017	
8.4.1	Contents of the EFs at the MF level	1	Rel-6				М	М	

Clause	Description	Test procedure	Tested features	R99 UICC	Rel-4 UICC	Rel-5 UICC	Rel-6 UICC	Rel-7 UICC	Support
			defined in						
			Release						
C001	IF O_ID1_UICC THEN	N M ELSE N/A							
C002	IF O_PLUG_IN_UICC	THEN M ELS	E N/A						
C003	IF O_MINI_UICC THE	EN M ELSE N/	A						
C004	IF O_TYPE_1 THEN								
C005	IF O_TYPE_2 THEN	M ELSE N/A							
C006	IF O_T0 THEN M ELS	SE N/A							
C007	IF O_T1 THEN M ELS	SE N/A							
C008	IF O_MULTI_APP TH	EN M ELSE N	/A						
C009	IF O_MONO_APP TH								
C010	IF O_LOG_CHANS T								
C011	IF (NOT O_LOG_CHA	,							
C012	IF O_LOG_CHANS_3								
C013	IF (O_LOG_CHANS_		,						
C014	IF (O_LOG_CHANS A		,						
C015	IF (O_LOG_CHANS A	_	,	M ELSE N	I/A				
C016	IF O_MULTI_VER TH	_							
C017	IF O_SINGLE_VER T								
C018	IF (NOT O_F_D_512_	- ,							
C019	IF O_F_D_512_64 Th								
C020	IF O_LOW_IMPEDAN								
C021	IF O_GET_CHALLEN								
C022	IF O_BER_TLV_FILE								
C023	IF (O_BER_TLV_FILE	S AND O_LO	G_CHANS AND	O_SHAF	REABLE)	THEN N	1 ELSE N	I/A	

4 Test environment

This clause specifies several requirements which shall be met, and a number of rules which shall be adhered to before testing can proceed.

4.1 Test equipment

This subclause recommends a minimum specification for each of the items of test equipment referenced in the tests.

4.1.1 ME simulator

This item of equipment shall allow T=0 and T=1 protocol communications to take place on both ID-1 and plug-in UICCs. It shall be able to generate and send any command APDU and receive any of the possible responses. These commands may be generated manually, one at a time, or automatically from a predefined batch procedure containing one or more commands.

The ME simulator shall be able to support clock stop modes.

The ME simulator shall be able to accept an external clock signal to drive CLK (contact C3) of the UICC.

It shall be possible to access all the UICC contacts either directly or through test points.

4.1.2 Signal generation device

4.1.2.1 Vcc

The voltage level for Vcc (contact C1) of the UICC shall be adjustable between -0,5 V and 6,0 V to an accuracy of 1% of the nominal Vcc voltage (e.g. 50 mV for class A operating conditions).

The ME simulator shall be able to source current on the Vcc contact in the range -2 mA to 12 mA statically and to deliver charges of > 400 nAs without lowering the Vcc voltage for more than 10 % of Vcc nominal.

4.1.2.2 RST

The generated voltage level for RST (contact C2) of the UICC shall be adjustable between -0.5 V and 6.0 V to an accuracy of 50 mV.

The rise and fall times shall be adjustable from $0 \mu s$ to $500 \mu s$ with an accuracy of $5 \mu s$. (to check if the USIM works with the defined rise and fall times.)

The beginning of the rising edge shall be programmable from 1 clk-cycle to 50,000 clk-cycles after enabling the clk-line.

4.1.2.3 CLK

This item of equipment shall be able to generate square wave signals for the clock on the UICC, any of which can be a single-shot or continuous signal, in the range 1 MHz to 5 MHz. The voltage levels for both high and low states shall be adjustable between -0,5 V and 6,0 V to an accuracy of 0,1 V. The duty cycle of the clock signal shall be adjustable between 40 % and 60 % to an accuracy of 1 %. It shall also provide control over the following parameters:

The voltage levels for both high and low states shall be adjustable between 0 V and 6 V to an accuracy of 1% of the nominal Vcc voltage. The duty cycle of the clock signal shall be adjustable between 40 % and 60 % to an accuracy of 1 % or 5 ns whichever is the worst.

It shall also provide control over the following parameters:

- rise and fall time to an accuracy of 1 % or 5 ns whichever is the worst. (5 ns = 2.5 % accuracy for $f_{max} = 5$ MHz).

4.1.2.4 I/O

The equipment shall be able to generate I/O-Signals according to TS 102.221 [1]

The voltage levels for high and low states shall be adjustable between -0,5 V and 6,0 V to an accuracy of 1 % of the nominal Vcc voltage. The I/O line in transmission mode (high bit) shall be programmable between state A (active driven output) and state Z (I/O-voltage-driver inactive, current source I-I/O-high active).

It shall also provide control over the rise and fall time of 100 ns to 1 000 ns with an accuracy of 50 ns.

The ME simulator shall be able to source and sink currents on the I/O contact in the range -20 μ A to +20 μ A in state high and 0 mA to -1 mA in state low (receiving mode) and shall be able to switch in transmission mode (outputting a high bit) between voltage and current driving mode.

The timing of the bitstream (jitter, guardtime, etu-value, etc.) on the I/O-Line shall be programmable with an accuracy of ≤ 0.01 etu or 2 clk-cycles whichever is the worst.

4.1.3 Precision force-inducing contacting device

This item of equipment shall be able to apply a prescribed and maintained level of force onto one or more contacts of the UICC. The range shall be between 0 and 0,5 N and accurate to 0,01 N.

4.1.4 Temperature controllable environment

This item of equipment shall be able to control the temperature of a chamber large enough to enclose the UICC and the card reader. The range of temperature control shall be between -25 $^{\circ}$ C and +85 $^{\circ}$ C to an accuracy of 0,5 $^{\circ}$ C.

4.1.5 Temperature measuring device

This item of equipment shall be able to measure the temperature of the UICC to within 0.5 °C. The range of this device shall allow measurement of temperatures between -25 °C and +85 °C.

4.1.6 Voltage measuring device

This item of equipment shall be able to measure static and transient voltages on any one of the contacts of the UICC. The measurable voltage range shall be between -2 V and +7 V to an accuracy of 1% of the nominal Vcc voltage (e.g. 30 mV for class B operating conditions) with a timebase accuracy of 25 ns.

4.1.7 Precision measuring device

This item of equipment shall be able to measure both linear and radius of curvature dimensions to an accuracy of 0,01 mm.

4.1.8 Current measuring device

This item of equipment shall be able to supervise the current levels for any one of the contacts of the USIM.

The simulator shall be able to detect an over - or underload with a time resolution of ≤ 100 ns.

Channel	Minimum	Maximum	Resolution
Vcc high	-2 mA	+12,5 mA	125 μΑ
Vcc low	-2 mA	+12,5 mA	125 μΑ
Vcc Burst	12 mA	+250 mA	2,5 mA
RST/CLK	-50 μA	+50 μΑ	1 μΑ
High state	•	•	·
RST/CLK	-250 μΑ	+250 μΑ	2,5 μΑ
Low state	•	·	·
I/O high state	-50 μΑ	+50 μΑ	1 μΑ
I/O low state	-1 500 μA	+1 500 μΑ	15 μΑ

4.1.9 Timing Measurements on contact I/O

To verify the timing of the I/O transmission from the UICC, the ME simulator shall be able to measure the I/O-Bit-Timing in clk-cycles with an accuracy of ≤ 0.01 etu or 2 clk-cycles whichever is the worst.

4.2 IUT default conditions

Unless otherwise stated, the following is default:

- The voltage level for Vcc (contact C1) shall be set to 3,0 V.
- The voltage levels for CLK (contact C3) shall be set to 0 V and 3,0 V for low and high respectively.
- The clock frequency CLK (contact C3) shall be set to 5 MHz with duty cycle 50 %.
- The ME simulator generated low transmission voltage level for I/O (contact C7) shall be set to 0 V and the current sources for high transmission and reception shall be set to -20 μA and +20 μA respectively
- Any level 1 user verification requirement (PIN) on the UICC shall be enabled with three VERIFY PIN attempts and ten UNBLOCK PIN attempts remaining.
- Any level 2 user verification requirement (PIN2) on the UICC shall be enabled with three VERIFY PIN2 attempts and ten UNBLOCK PIN2 attempts remaining, if assigned.
- A Universal PIN on the UICC shall be enabled, if IUT is a multi-verification capable UICC.

4.3 Default data formatting

All numeric data enclosed in single quotes ('') in this document are hexadecimal data.

Where 'X' is used in place of a hexadecimal digit, X ranges from '0' to 'F'. For example, the data '6X' ranges from '60' to '6F' inclusive.

Where data is expressed as a group of bytes, it shall be in the following format: 'XX XX XX... XX', indicating first byte, second byte, third byte etc. in that order.

A string of digits shall be formatted with a continuous string of numeric data and enclosed with single quotes. For example, the string 'XXXXXXXX' where X ranges from 0 to 9 inclusive.

4.4 Test definition and applicability

The following statements are applicable to the test definition and applicability clause for all test purposes contained within the present document:

- Unless otherwise stated, tests apply to both plug-in and ID-1 UICC cards.
- Unless otherwise stated, tests apply to each protocol supported by the UICC.
- The tests are performed on a UICC as defined in TS 31.101 [2] with a USIM application as defined in TS 31.102 [3]. The tests to check the requirement of TS 31.101 [2] use the files as defined in TS 31.102 [3].
- Unless otherwise stated, the tests apply to single and multi-verification capable UICCs with USIM application(s). In the case of a multi-verification capable UICC, there shall be only one application.

4.5 Initial conditions

Unless otherwise stated, all the PINs used in the test procedures shall be initially enabled.

Figure 1 shows the files in the UICC which shall be used for the test procedures, in the case where the EFs are not mandatory, they may be replaced with other EFs of the same file structure.

Unless otherwise stated, all the EFs used in the test procedure shall be activated.

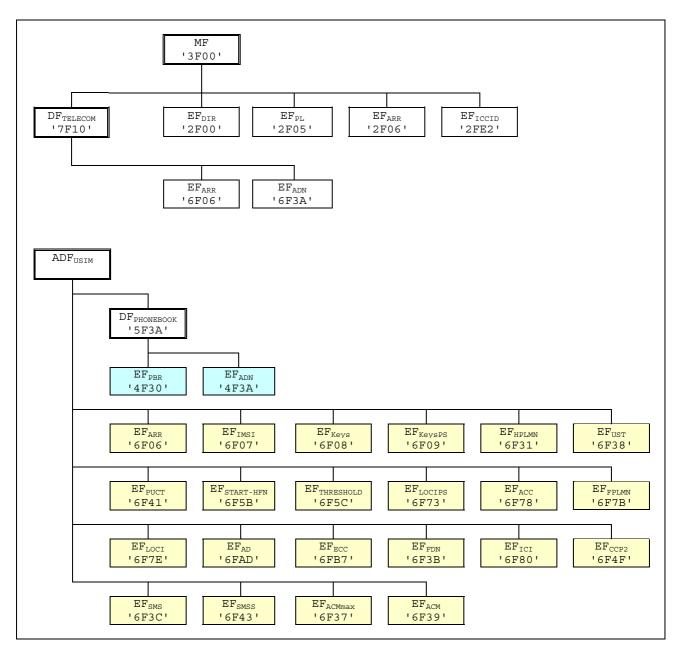


Figure 1: File identifiers and directory structures of UICC

The initial conditions for some of the EFs are given in the followings:

- PIN shall be set to '00000000'.
- PIN2 shall be set to '111111111'.
- Universal PIN shall be set to '22222222', if supported.
- EF_{FPLMN} shall contain the data string: '55 AA 0F 00 F0 FF 00 F0 FF 00 F0 FF'.
- EF_{LOCI} shall contain the data string: 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00'.
- The records in EF_{SMS} shall contain the following data for the first 20 bytes:

```
      1st
      record
      'A0
      A1
      A2
      B0
      B1
      B2
      A0
      A1
      A2
      A0
      A1
      A2
      FF
      A0
      A1
      A2
      A3
      A4
      A5
      A6

      2nd
      record
      'B0
      B1
      B2
      A0
      A1
      A2
      A0
      A1
      A2
      B0
      B1
      B2
      FF
      B0
      B1
      B2
      B3
      B4
      B5
      B6'

      3rd
      record
      'A0
      A1
      A2
      B0
      B1
      B2
      A0
      A1
      A2
      B0
      B1
      B2
      FF
      B0
      B1
      B2
      B3
      B4
      B5
      B6'

      4th
      record
      'A0
      A1
      A2
      B0
      B1
      B2
      B0
      B1
      B2
      FF
      B0
      B1
      B2
      B4
      B5
      B6'

      4th
      record
      'A0
      A1
      A2
      B0
      B1
      B2
      B0
      B1
      B2
      B0
      B1
      B2
      FF
      B0
      B1
      B2
      B0'
      B1
```

The data for the remainder of these four records and for all other records shall be 'FF'.

- The records in EF_{FDN} shall contain the following data for the first 10 bytes:

```
    1st record
    'A0
    A1
    A2
    B0
    B1
    B2
    A0
    A1
    A2
    A0'

    2nd record
    'B0
    B1
    B2
    A0
    A1
    A2
    A0
    A1
    A2
    B0'

    3rd record
    'B0
    B1
    B2
    A0
    A1
    A2
    B0
    B1
    B2
    A0'

    4th record
    'A0
    A1
    A2
    B0
    B1
    B2
    B0
    B1
    B2
    B0'
```

The data for the remainder of these four records and for all other records (if any) shall be 'FF'.

- The records in EF_{CCP2} shall contain the following data:

```
    1st
    record
    '10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    1A
    1B
    1C
    1D
    1E'

    2nd
    record
    '20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    2A
    2B
    2C
    2D
    2E'

    2nd
    last
    record
    'E0
    E1
    E2
    E3
    E4
    E5
    E6
    E7
    E8
    E9
    EA
    EB
    EC
    ED
    EE'

    Last
    record
    'F0
    F1
    F2
    F3
    F4
    F5
    F6
    F7
    F8
    F9
    FA
    FB
    FC
    FD
    FE'
```

- The records in EF_{ACM} shall contain the following data, if it is supported:

- The records in EF_{ICI} shall contain the following data:

```
1st record '01' for all bytes
2nd record '02' for all bytes
3rd record '03' for all bytes
Xth record byte value X for all bytes
```

- The records in EF_{ECC} shall contain the following data:

4.6 Test procedure

The following statements are applicable to the test procedure clause for all test purposes contained within the present document:

- Unless otherwise stated, all steps within the test procedure shall be carried out in order.
- Unless otherwise stated, all test procedures shall be applicable to both T = 0 and T = 1 protocols.
- Where steps indicate that a ME simulator shall select a particular DF or EF using an unspecified number of SELECT commands, the ME simulator is to send the correct sequence of SELECT commands in order to select the required file ID from the current file ID (this may be achieved most easily by selecting from the MF down each time).
- Unless otherwise stated, the Le (P3) for all READ RECORD commands and Lc (P3) for all UPDATE RECORD commands sent by the ME simulator is to be that of the record length of the EF currently selected. In the case where an EF is not currently selected, the length sent is to be 1 unless otherwise stated.
- Unless otherwise stated, the offset for all READ BINARY and UPDATE BINARY commands sent by the ME simulator is to be '00 00'.
- Unless otherwise specified, when the T=0 protocol is used, the necessary GET RESPONSE commands are assumed to be sent, or the same command header is assumed to be resent with P3 = L_{UICC} at the transport layer level in order to retrieve the available response data from the UICC.
- Unless otherwise stated, the length (Le) for all SELECT, STATUS and GET RESPONSE commands sent by the ME simulator is to be such that all available data is read.
- Unless otherwise stated, the PIN and Unblock PIN presented for VERIFY PIN, CHANGE PIN, DISABLE PIN, ENABLE PIN and UNBLOCK PIN commands sent by the ME simulator is to be correct.

- Unless otherwise stated, a SELECT command sent to the UICC to select ADF_{USIM} is with the application's AID, indicating in the command parameter that the application shall be activated.
- Unless otherwise stated, a SELECT command sent to the UICC is with P2 = '04', indicating that the FCP shall be returned.
- Unless otherwise stated, all RETRIEVE DATA commands sent to the UICC shall be with P2 indicating "current EF".
- Unless otherwise stated, all SET DATA commands sent to the UICC shall be with P2 indicating "current EF".
- Unless otherwise stated, all SET DATA commands sent to the UICC shall be sent with the maximum amount of data possible according to the data object being transmitted.

4.7 Test requirement

Where steps within a test procedure involve a ME simulator sending one or more commands to the UICC, these commands are required to be correctly executed, with the UICC responding with status conditions of '90 00', unless otherwise stated in the subclause for the test.

5 Void

6 Test Procedure (TS 102.221)

This clause details all the tests for testing the IUT against TS 102.221 [1]. This test suite allows testing of the IUT against the base specification with respect to:

- Physical characteristics
- Electrical specifications of the UICC Terminal interface
- Initial communication establishment procedure
- Transmission protocols
- Application and File structure
- Security features
- Structure of commands and responses
- Commands
- Transmission Oriented Commands
- Application independent files

6.1 Physical characteristics

The tests in this subclause ensure that the IUT conforms to the specification for both format and layout and contacts.

6.1.1 ID-1 UICC

6.1.1.1 Definition and applicability

See clause 3.5.3.

6.1.1.2 Conformance requirement

CR1	Format and layout of the ID-1 UICC shall be in accordance with ISO 7816-1 [4] and	O_ID1_UICC
	ISO 7816-2 [5], unless otherwise specified.	
CR2	Any embossing on the card shall be in accordance with ISO 7811-1 [12].	O_ID1_UICC
CR3	The contacts shall be located on the front (embossed face) of the card.	O_ID1_UICC

Reference: TS 102.221 [1], subclause 4.1.

6.1.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE 1: The testing of CR1 is outside the scope of the present document..

NOTE 2: The testing of CR2 is outside the scope of the present document.

6.1.1.4 Method of test

Initial conditions

N/A

Test procedure 1

- a) The card is examined for the following:
 - contact location.

The card shall have been observed to exhibit the following [CR3]:

- contact location on the front of the card.

6.1.2 Plug-in UICC

6.1.2.1 Definition and applicability

See clause 3.5.3.

6.1.2.2 Conformance requirement

CR1	The format and layout of the plug-in card shall be in accordance with ISO 7816-1 [4]	O_PLUG_IN_UICC
	and ISO 7816-2 [5], unless otherwise specified.	
CR2	The dimensions of the plug-in UICC shall be in accordance with Figure 4.1 of	O_PLUG_IN_UICC
	TS 102.221 [1].	

Reference: TS 102.221 [1], clause 4 and more specifically subclause 4.2.

6.1.2.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: The testing of CR1 is outside the scope of the present document.

6.1.2.4 Method of test

Initial conditions

N/A

Test procedure 1

a) The card is examined for the following:

- width;
- height;
- feature for orientation.

The card shall have been observed to exhibit the following [CR2]:

- correct width and height;
- feature for orientation.

6.1.3 Temperature range for card operation

6.1.3.1 Definition and applicability

See clause 3.5.3.

6.1.3.2 Conformance requirement

CR1	The temperature range for full operational use shall be between –25 °C and +85 °C.	Rel-6 -
CR2	The temperature range for full operational use shall be between -25 °C and +70 °C with occasional	R99 -
	peaks of up to +85 °C, where "occasional" means not more than 4 hours each time and not over	Rel-5
	100 times during the life time of the card.	

Reference: TS 102.221 [1], subclause 4.4.

6.1.3.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.1.3.4 Method of test

Initial conditions

- 1) The UICC shall be placed in a temperature-controllable environment and connected to a ME simulator.
- 2) A temperature measuring device shall be connected to the surface of the UICC.
- 3) The UICC shall have passed the Format and Layout tests in subclauses 6.1.1 or 6.1.2.

Test procedure 1

- a) The temperature of the UICC shall be set to +25 $^{\circ}\text{C}.$
- b) The ME simulator shall reset the UICC.
- c) The ME simulator shall perform the USIM initialisation procedure, as defined in TS 31.102 [3], subclause 5.1.1.

The UICC shall operate successfully [CR2].

- d) The temperature of the UICC shall be reduced to $-25~^{\circ}\text{C}$.
- e) Steps b) and c) shall be repeated.

The UICC shall operate successfully [CR2].

- f) The temperature of the UICC shall be increased to +70 °C.
- g) Steps b) and c) shall be repeated.

The UICC shall operate successfully [CR2].

h) The temperature of the UICC shall be increased to +85 °C.

i) Steps b) and c) shall be repeated continuously for a period of 4 hours.

The UICC shall operate successfully [CR2].

- j) The temperature of the UICC shall be reduced to +25 °C.
- k) Steps h), i) and j) shall be repeated a further 99 times.

The UICC shall operate successfully [CR2].

The UICC shall satisfy the test requirements of subclauses 6.1.1 or 6.1.2 [CR2].

Test procedure 2

- a) The temperature of the UICC shall be set to +25 °C.
- b) The ME simulator shall reset the UICC.
- c) The ME simulator shall perform the USIM initialisation procedure, as defined in TS 31.102 [3], subclause 5.1.1. *The UICC shall operate successfully [CR1]*.
- d) The temperature of the UICC shall be reduced to $-25~^{\circ}\text{C}$.
- e) Steps b) and c) shall be repeated.

The UICC shall operate successfully [CR1].

- f) The temperature of the UICC shall be increased to +85 °C.
- g) Steps b) and c) shall be repeated.

The UICC shall operate successfully [CR1].

6.1.4 Contacts

6.1.4.1 Definition and applicability

See clause 3.5.3.

6.1.4.2 Conformance requirement

CR1	If contacts C4 and C8 are provided, they shall not be connected internally in the UICC if the UICC only	
	contains a Telecom application.	
CR2	Contact C6 shall not be bonded in the UICC for any function other than supplying Vpp.	M
CR3	Contact C6 on a UICC not supporting class A operating conditions shall be RFU.	M

Reference: TS 102.221 [16], subclause 4.4.1.2; TS 102.221 [17], subclause 4.4.1.2; TS 102.221 [18], subclause 4.4.1.2; TS 102.221 [1], subclause 4.5.1.2.

6.1.4.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.1.4.4 Method of test

Initial Conditions

N/A

Test Procedure

N/A

6.1.5 Mini-UICC

6.1.5.1 Definition and applicability

See clause 3.5.3.

6.1.5.2 Conformance requirement

CR1	The format and layout of the Mini-UICC shall be in accordance with	Rel-6:
	ISO 7816-1 [4] and ISO 7816-2 [5], unless otherwise specified.	O_MINI_UICC
CR2	The dimensions of the Mini-UICC shall be in accordance with Figure 4.2 of	Rel-6:
	TS 102.221 [1].	O_MINI_UICC

Reference: TS 102.221 [1], clause 4 and more specifically subclause 4.3.

6.1.5.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: The testing of CR1 is outside the scope of the present document.

6.1.5.4 Method of test

Initial conditions

N/A

Test procedure 1

- a) The card is examined for the following:
 - width
 - height
 - feature for orientation

The card shall have been observed to exhibit the following [CR2]:

- correct width and height;
- feature for orientation.

6.2 Electrical specifications of the UICC – Terminal interface

The tests in this subclause ensure that the IUT conforms to the electrical specification for each of the contacts and the protocol.

6.2.1 Supply voltage Vcc (contact C1)

6.2.1.1 Voltage limits

6.2.1.1.1 Definition and applicability

See clause 3.5.3.

6.2.1.1.2 Conformance requirement

CR1	The UICC shall operate when the supply voltage on contact C1 (Vcc) is in the ranges specified in table	M
	1:	

Table 1: Electrical characteristics of Vcc under normal operating conditions

Operating Conditions	Vmin /V	Vmax /V
Class A Operating Conditions	4,5	5,5
Class B Operating Conditions	2,7	3,3
Class C Operating Conditions	1,62	1,98

Reference: TS 102.221 [1], subclause 5.1.1, 5.2.1 and 5.3.1.

6.2.1.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.2.1.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

NOTE: The voltage Vcc min/max depends on the voltage class the UICC provides.

- a) The following steps shall be repeated for every voltage class which the UICC provides.
- b) The voltage source for contact C1 (Vcc) shall be set to Vcc min, and the UICC interface signals shall be powered from a Vcc min source.
- c) The ME simulator shall reset the UICC.

The UICC shall send the correct ATR sequence.

d) The ME simulator shall send a CHANGE PIN command to the UICC with new PIN value of 8 zeros.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

e) The ME simulator shall reset the UICC.

The UICC shall send the correct ATR sequence.

f) The ME simulator shall send a CHANGE PIN command to the UICC to return the PIN to its original value.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

- g) The voltage source for contact C1 (Vcc) shall be set to Vcc max.
- h) Steps c) to f) shall be repeated for all the operating conditions supported by the UICC.

6.2.1.2 Idle current limits

6.2.1.2.1 Definition and applicability

See clause 3.5.3.

6.2.1.2.2 Conformance requirement

CR1	The idle current consumption of the UICC shall not exceed I _{max} at 1 MHz, +25 °C and Vcc _{max} .	M	ĺ
-----	--	---	---

Table 2: Current consumption in idle mode

Operating Conditions	lmax /μA in idle state clk frequency 1 MHz	Vcc _{max} /V maximum voltage on VCC during testing
Class A Operating Conditions	200	5,5
Class B Operating Conditions	200	3,3
Class C Operating Conditions	200	1,98

Reference: TS 102.221 [1], subclauses 5.1.1. 5.2.1, and 5.3.1

6.2.1.2.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.2.1.2.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) The frequency of the clock source shall be set to 1 MHz.
- 3) The temperature of the UICC shall be +25 °C.
- 4) The voltage on Vcc shall be set to Vcc_{max}.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The idle current consumption shall be measured after receiving the ATR over a period of ten seconds.

The current consumption of the UICC shall not exceed I_{max} [CR1].

c) Steps a) and b) shall be repeated for all the operating conditions supported by the UICC.

6.2.1.3 Current limits in clk-stop-mode

6.2.1.3.1 Definition and applicability

See clause 3.5.3.

6.2.1.3.2 Conformance requirement

CR1	The clk stop mode current consumption of the UICC shall not exceed I_{max} if clk stop mode is delivered	M
	by the UICC.	

Table 3: Current consumption in clk stop mode

	Imax /μA in clk-stop mode	Vcc _{max} /V maximum voltage on VCC during testing
Class A Operating Conditions	200	5,5
Class B Operating Conditions	100	3,3
Class C Operating Conditions	100	1.98

Reference: TS 102.221 [1], clause 5 and more specifically subclauses 5.1.1, 5.2.1, and 5.3.1.

6.2.1.3.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.2.1.3.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall wait at least for 1 860 clocks.
- c) The ME simulator shall stop the clock according to the clock stop mode which was read in the ATR.
- d) The current consumption shall be measured during clk stop mode over a period of ten seconds.

The current consumption of the UICC shall not exceed I_{max} in average during clk stop mode [CR1].

e) Steps a) to d) shall be repeated for all the operating conditions supported by the UICC.

6.2.2 Reset RST (contact C2)

6.2.2.1 Static operation

6.2.2.1.1 Definition and applicability

See clause 3.5.3.

6.2.2.1.2 Conformance requirement

CR1 The UICC shall operate within the limits for RST specified in table 4. M

Table 4: Electrical characteristics of RST under normal operating conditions

Operating Conditions	V _{OL} min/V	V _{OL} max/V	I _{oL} max/μA	V _{OH} min/V	V _{OH} max/V	Іон тах/µА
Class A Operating Conditions	-0,3	0,6	-200	Vcc - 0.7	Vcc +0,3	+20
Class B Operating Conditions	-0,3	0,2 × Vcc	-200	0,8 × Vcc	Vcc +0,3	+20
Class C Operating Conditions	-0,3	0,2 × Vcc	-200	0,8 × Vcc	Vcc +0,3	+200

NOTE: t_R and t_F shall not exceed 400 μ s, with C_{out} and C_{in} equal to 30 pF.

Reference: TS 102.221 [1], subclauses 5.1.2, 5.2.2 and 5.3.2.

6.2.2.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.2.2.1.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) A current measuring device shall be connected to RST (contact C2) of the UICC.
- 3) The capacitance, C_{in}, of RST (contact C2) shall be measured to be 30 pF.

Test procedure 1

a) The following parameters shall be set for RST:

- V_{OH} of the RST signal shall be set to V_{OH} min;
- V_{OL} of the RST signal shall be set to V_{OL} min;
- t_R and t_F shall be set to 400 μ s.
- b) The ME simulator shall reset the UICC.

The UICC shall send the correct ATR sequence [CR1].

- c) The following parameters shall be set for RST:
 - V_{OH} of the RST signal shall be set to V_{OH} max;
 - V_{OL} of the RST signal shall be set to V_{OL} max;
 - t_R and t_F shall be set to 400 μ s.
- d) The ME simulator shall reset the UICC.

The UICC shall send the correct ATR sequence [CR1].

e) Steps a) to d) shall be repeated for all the operating conditions supported by the UICC.

The following shall be true for all tests [CR1]:

- I_{OLmax} measured to be less than or equal to I_{OL} max;
- I_{OHmax} measured to be less than or equal to I_{OH} max.

6.2.3 Programming voltage Vpp (contact C6)

6.2.3.1 Static operation

6.2.3.1.1 Definition and applicability

See clause 3.5.3.

6.2.3.1.2 Conformance requirement

CR	The UICC shall not require any programming voltage on Vpp.	M
CR	2 If the Terminal supporting class A operating conditions only, provides contact C6, the same voltage	M
	shall be supplied on Vpp as on Vcc.	

Reference: TS 102.221 [1], subclause 5.1.3.

6.2.3.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.2.3.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) Contact C6 shall be connected to ground by the ME simulator.
- b) Vcc shall be applied to contact C1.
- c) Contact C2 (RST) shall be kept at low level, ground.

d) A valid clock signal shall be applied to Contact C3.

The dc power consumption on Contact C1 shall not exceed 10 mA under any condition [CR1, CR2].

NOTE: This test ensures that Vpp and Vcc are not bonded together in the UICC, if this would be the case Vpp would also supply the UICC with current for its operation.

- e) Contact C6 shall not be connected to the ME simulator.
- f) The ME simulator shall reset the UICC.
- g) The ME simulator shall send a CHANGE PIN command to the UICC with new PIN value of 8 zeros.

 The UICC operates successfully without requiring to set Vpp at programming state in protocol level [CR1].
- h) The ME simulator shall reset the UICC.
- i) The ME simulator shall send a CHANGE PIN command to the UICC to return the PIN to its original value.

 The UICC operates successfully without requiring to set Vpp at programming state in protocol level [CR1].
- j) Contact C6 shall be connected to Vpp which has the same voltage as Vcc.
- k) The ME simulator shall reset the UICC.
- The ME simulator shall send a CHANGE PIN command to the UICC with new PIN value of 8 zeros.
 The UICC operates successfully without requiring to set Vpp at programming state in protocol level [CR2].
- m) The ME simulator shall reset the UICC.
- n) The ME simulator shall send a CHANGE PIN command to the UICC to return the PIN to its original value.

 The UICC operates successfully without requiring to set Vpp at programming state in protocol level [CR2].

6.2.4 Clock CLK (contact C3)

6.2.4.1 Frequency and duty cycle

6.2.4.1.1 Definition and applicability

See clause 3.5.3.

6.2.4.1.2 Conformance requirement

CR1	The UICC shall not support an internal clock.	M
CR2	The UICC shall support a duty cycle between 40% and 60% of the period during stable operation.	M
CR3	The UICC shall operate within the limits for CLK specified in table 5.	M

Table 5: Electrical characteristics of CLK under normal operating conditions

Operating Conditions	V _{OL} min/V	V _{OL} max/V	V _{OH} min/V	V _{OH} max/V	t _R & t _F max	fmax /MHz		
Class A Operating	-0,3	0,5	0,7 × Vcc	Vcc +0,3	9% with a	5		
Conditions					max. of 0,5 μs			
Class B Operating	-0,3	0,2 × Vcc	0,7 × Vcc	Vcc +0,3	50 ns	5		
Conditions								
Class C Operating	-0,3	0,2 × Vcc	0,7 × Vcc	Vcc +0,3	50 ns	5		
Conditions								
NOTE: t _R and t _F have to be measured between 10 % and 90 % of V _{OL} max and V _{OH} min; C _{in} is equal to 30 pF.								

Calculation of the 10% and 90% thresholds for t_R and t_F measurements:

 $V_{OL~threshold} = (V_{OH~min} - V_{OLmax})*10\% + V_{OL~max}$

 $V_{OH threshold} = (V_{OH min} - V_{OLmax})*90\% + V_{OL max}$

Reference: TS 102.221 [1], subclauses 5.1.4, 5.2.3 and 5.3.3.

6.2.4.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR1 shall not be tested as the UICC supports an internal clock.

6.2.4.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The frequency of the clock source shall be set to 1 MHz.
- b) The duty cycle of the clock source shall be set to 40 % high.
- c) V_{OH} shall be set to V_{OH} max and V_{OL} shall be set to V_{OL} min.
- d) The ME simulator shall reset the UICC.

The UICC shall send the correct ATR sequence [CR2, CR3].

- e) The duty cycle of the clock source shall be set to 60 % high.
- f) The ME simulator shall reset the UICC.

The UICC shall send the correct ATR sequence [CR2, CR3].

- g) The frequency of the clock source shall be set to f_{max} .
- h) The duty cycle of the clock source shall be set to 40 % high.
- i) The ME simulator shall reset the UICC.

The UICC shall send the correct ATR sequence [CR2, CR3].

- j) The duty cycle of the clock source shall be set to 60 % high.
- k) The ME simulator shall reset the UICC.

The UICC shall send the correct ATR sequence [CR2, CR3].

- 1) Steps a) to j) shall be repeated with V_{OH} set to V_{OH} min and V_{OL} set to V_{OL} max.
- m) Steps a) to k) shall be repeated for all the operating conditions supported by the UICC.

6.2.4.2 Voltage and current

6.2.4.2.1 Definition and applicability

See clause 3.5.3.

6.2.4.2.2 Conformance requirement

CR1	The UICC shall operate within the limits for CLK specified in table 6.	M

Table 6: Electrical characteristics of CLK with current limits under normal operating conditions

Operating Conditions	V _{OL} min/V	V _{OL} max/V	I _{OL} max/μΑ	V _{OH} min/V	V _{OH} max/V	I _{OH} max/μΑ	t _R & t _F max	fmax /MHz
Class A Operating Conditions	-0,3	0,5	-200	0,7×Vcc	Vcc +0,3	+20	9 % with a max. of 0,5 μs	5
Class B Operating Conditions	-0,3	0,2×Vcc	-20	0,7×Vcc	Vcc +0,3	+20	50 ns	5
Class C Operating Conditions	-0,3	0,2×Vcc	-20	0,8×Vcc	Vcc +0,3	+20	50 ns	5
								to 30 pF.

Calculation of the 10% and 90% thresholds for t_R and t_F measurements:

 $V_{OL_threshold} = (V_{OH min} - V_{OLmax})*10\% + V_{OL max}$

 $V_{OH_threshold} = (V_{OH min} - V_{OLmax})*90\% + V_{OL max}$

Reference: TS 102.221 [1], subclauses 5.1.4, 5.2.3 and 5.3.3.

6.2.4.2.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.2.4.2.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) A current measuring device shall be connected to CLK (contact C3) of the UICC.
- 3) The capacitance of CLK (contact C3) shall be measured to be \leq 30 pF.

Test procedure 1

- a) The clock signal shall be set to 1 MHz.
- b) The following parameters shall be set for CLK:
 - V_{OH} at V_{OH} max;
 - V_{OL} at V_{OL}min;
 - t_R and t_F shall be set to t_R max and t_F max.
- c) The ME simulator shall reset the UICC.

The UICC shall send the correct ATR sequence [CR1].

- d) The following parameters shall be set for CLK:
- V_{OH} at V_{OH}min;
- V_{OL} at V_{OL}max.
- e) The ME simulator shall reset the UICC.

The UICC shall send the correct ATR sequence [CR1].

- f) Steps a) to e) shall be repeated with $f_{clk} = f_{max}$, $t_R = t_R \max$ and $t_F = t_f \max$.
- g) Steps a) to f) shall be repeated for all the operating conditions supported by the UICC.

The following shall be true for all the operating conditions:

- I_{OHmax} measured shall be less than or equal to +20 μ A [CR1];
- I_{Olmax} measured shall be less than or equal to -200 μ A [CR1];
- The UICC shall send the correct ATR sequence after a reset [CR1].

6.2.5 I/O (contact C7)

6.2.5.1 Voltage and current

6.2.5.1.1 Definition and applicability

See clause 3.5.3.

6.2.5.1.2 Conformance requirement

CR1	The UICC shall operate within the limits for I/O specified in tables 7 and 8.	M
CR2	When low impedance drivers are implemented on the I/O line, the I/O electrical circuit design shall	M
	ensure that potential contention on the line will not result in any permanent damage of the terminal or	
	the UICC.	

Table 7: Electrical characteristics of the output of the I/O under normal operating conditions

Operating Conditions	V _{OL} min/V	V _{OL} max/V	I _{OL} max/μA	V _{OH} min/V	V _{OH} max/V	I _{OH} max/μA	t _R max & t _F max	fmax /MHz
Class A Operating Conditions	-0,3	0,4	-1 000	3,8	Vcc +0,3 V	+20	1 μs or 100 ns (see note 1) or 400 ns (see note 2)	5
Class B Operating Conditions	-0,3	0,4	-1 000	0,7 × Vcc	Vcc +0,3 V	+20	1 μs or 100 ns (see note 1) or 400 ns (see note 2)	4
Class C Operating Conditions	-0,3	0,3	-1 000	0,7 × Vcc	Vcc +0,3 V	+20	1 μs or 100 ns (see note 1) or 400 ns (see note 2)	4

NOTE 1: The value of 100 ns applies when the low impedance buffer is selected via a PPS procedure.

NOTE 2: The value of 400 ns applies when the UICC supports (F, D) = (512, 64).

Table 8: Electrical characteristics of the input of the I/O under normal operating conditions

Operating Conditions	V _{IL} min/V	V _{IL} max/V	I _{I∟} max/μA	V _{IH} min/V	V _⊪ max/V	I _{IH} min/max /μΑ	t _R max & t _F max	fmax /MHz
Class A Operating Conditions	-0,3	0.15 x Vcc	+1 000	0,7 × Vcc	Vcc +0,3 V	±20	1 μs or 100 ns (see note 1) or 400 ns (see note 2)	5
Class B Operating Conditions	-0,3	0,2 × Vcc	+1 000	0,7 × Vcc	Vcc +0,3 V	±20	1 μs or 100 ns (see note 1) or 400 ns (see note 2)	4
Class C Operating Conditions	-0,3	0,2 × Vcc	+1 000	0,7 × Vcc	Vcc +0,3 V	±20	1 μs or 100 ns (see note 1) or 400 ns (see note 2)	4

NOTE 1: The value of 100 ns applies when the low impedance buffer is selected via a PPS procedure.

NOTE 2: The value of 400 ns applies when the UICC supports (F, D) = (512, 64)

Reference: TS 102.221 [1], subclauses 5.1.5, 5.2.4, 5.3.4 and 6.3.2.

6.2.5.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR 2 is not tested.

6.2.5.1.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) A current measuring device shall be connected to I/O (contact C7) of the UICC.
- 3) The capacitance, C_{out} and C_{in} , of I/O (contact C7) shall be measured to be 30 pF.

Test procedure 1

- a) The ME simulator shall be set to the following maximum range allowed by the UICC
 - Vcc to Vcc max;
 - V_{OL} to V_{OL} min and V_{OH} to V_{OH} max;
 - I_{IL} to $I_{IL}\, max$ and $I_{IH}\,$ to $I_{IH}\, max;$
 - t_R to t_R max and t_F to t_F max.
- b) The ME simulator shall reset the UICC.
- c) The ME simulator shall send a STATUS command to the UICC.
- d) The ME simulator shall be set to the following minimum range allowed by the UICC with V_{OH} inactive:
 - Vcc to Vcc min;
 - V_{OL} to V_{OL} max and V_{OH} to V_{OH} min;
 - I_{IL} to I_{IL}max and I_{IH} to I_{IH} min;
 - t_R to t_R max and t_F to t_F max.

- e) The ME simulator shall reset the UICC.
- f) The ME simulator shall send a STATUS command to the UICC.
- g) Steps a) to f) shall be repeated for all the operating conditions supported by the UICC.

Acceptance criteria for all the operating conditions [CR1]:

- I_{OL} shall be between 0 mA and I_{OL} max;
- I_{OH} shall be $\leq I_{OH}$ max;
- V_{IL} shall be between V_{IL} min and V_{IL} max;
- V_{IH} shall be between V_{IH} min and V_{IH} max;
- t_R generated by the UICC shall be $\leq t_R$ max;
- t_F generated by the UICC shall be $\leq t_F$ max.

Test procedure 2

- a) The ME simulator shall be set to the following maximum range allowed by the UICC
 - Vcc to Vcc max;
 - V_{OL} to V_{OL} min and V_{OH} to V_{OH} max;
 - I_{IL} to I_{IL} max and I_{IH} to I_{IH} max;
 - t_R to t_R max and t_F to t_F max.
- b) The ME simulator shall reset the UICC.
- c) The ME simulator shall send a PPS-Request to the UICC, selecting (F, D) = (512, 64).

 The UICC shall send a valid PPS-Response indicating support for the requested parameters.
- d) The ME simulator shall send a STATUS command to the UICC.
- e) The ME simulator shall be set to the following minimum range allowed by the UICC with V_{OH} inactive:
 - Vcc to Vcc min;
 - V_{OL} to V_{OL} max and V_{OH} to V_{OH} min;
 - I_{IL} to $I_{IL} max$ and $I_{IH}\,$ to $I_{IH}\,$ min;
 - t_R to t_R max and t_F to t_F max.
- f) The ME simulator shall reset the UICC.
- g) The ME simulator shall send a PPS-Request to the UICC, selecting (F, D) = (512, 64).

 $\label{thm:continuous} \textit{The UICC shall send a valid PPS-Response indicating support for the requested parameters.}$

- h) The ME simulator shall send a STATUS command to the UICC.
- i) Steps a) to h) shall be repeated for all the operating conditions supported by the UICC.

Acceptance criteria for all the operating conditions [CR1]:

- I_{OL} shall be between 0 mA and I_{OL} max;
- I_{OH} shall be $\leq I_{OH}$ max;
- V_{IL} shall be between V_{IL} min and V_{IL} max;
- V_{IH} shall be between V_{IH} min and V_{IH} max;

- t_R generated by the UICC shall be $\leq t_R$ max;
- t_F generated by the UICC shall be $\leq t_F$ max.

Test procedure 3

- a) The ME simulator shall be set to the following maximum range allowed by the UICC
 - Vcc to Vcc max:
 - V_{OL} to V_{OL} min and V_{OH} to V_{OH} max;
 - I_{IL} to $I_{IL}\, max$ and $I_{IH}\,$ to $I_{IH}\, max;$
 - t_R to t_R max and t_F to t_F max.
- b) The ME simulator shall reset the UICC.
- c) The ME simulator shall send a PPS-Request to the UICC, using a value of PPS2 which selects low impedance drivers.

The UICC shall send a valid PPS-Response indicating support for the requested parameters.

- d) The ME simulator shall send a STATUS command to the UICC.
- e) The ME simulator shall be set to the following minimum range allowed by the UICC with V_{OH} inactive:
 - Vcc to Vcc min;
 - V_{OL} to V_{OL} max and V_{OH} to V_{OH} min;
 - I_{IL} to I_{IL} max and I_{IH} to I_{IH} min;
 - t_R to t_R max and t_F to t_F max.
- f) The ME simulator shall reset the UICC.
- g) The ME simulator shall send a PPS-Request to the UICC, using a value of PPS2 which selects low impedance drivers.

The UICC shall send a valid PPS-Response indicating support for the requested parameters.

- h) The ME simulator shall send a STATUS command to the UICC.
- i) Steps a) to h) shall be repeated for all the operating conditions supported by the UICC.

Acceptance criteria for all the operating conditions [CR1]:

- I_{OL} shall be between 0 mA and I_{OL} max;
- I_{OH} shall be $\leq I_{OH}$ max;
- V_{IL} shall be between V_{IL} min and V_{IL} max;
- V_{IH} shall be between V_{IH} min and V_{IH} max;
- t_R generated by the UICC shall be $\leq t_R$ max;
- t_F generated by the UICC shall be $\leq t_F$ max.

6.3 Initial communication establishment procedure

6.3.1 Supply voltage switching

6.3.1.1 Supply voltage classes

6.3.1.1.1 Definition and applicability

See clause 3.5.3.

6.3.1.1.2 Conformance requirement

CR1	The supply voltage class shall be indicated in the ATR.	M
CR2	If the UICC supports several voltage classes, they shall be consecutive.	M

Reference: TS 102.221 [1], subclause 6.2.1.

6.3.1.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR1 and CR2 are tested in subclause 7.4.1.

6.3.1.1.4 Method of test

Initial conditions

N/A

Test procedure

N/A

6.3.1.2 Power consumption of the UICC during ATR

6.3.1.2.1 Definition and applicability

See clause 3.5.3.

6.3.1.2.2 Conformance requirement

CR1	The UICC power consumption during the ATR at the maximum external clock CLK shall not exceed	M
	the value defined in the table 6.2a in TS 102.221 [1], subclause 6.2.2, for each voltage class indicated in	
	the ATR.	
CR2	The UICC power consumption during the ATR at the 4MHz CLK shall not exceed the value defined in	M
	the table 6.2b in TS 102.221 [1], subclause 6.2.2, for each voltage class indicated in the ATR.	
CR3	The power consumption of the UICC is restricted to the values indicated in tables 6.2a and 6.2b	M
	TS 102.221 [1] until an application is selected.	

Reference: TS 102.221 [1], subclauses 6.2.2 and 6.2.3.

6.3.1.2.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.3.1.2.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

2) PIN of the UICC shall be set to '00000000'.

Test procedure 1

NOTE: Repeat the following steps for each voltage class supported by the UICC.

- a) The frequency of the clock source shall be set to 4 MHz.
- b) The ME simulator shall reset the UICC.

The UICC shall send the ATR sequence.

- c) The ME simulator shall send a CHANGE PIN command to the UICC with new PIN value '10101010'.
- d) The ME simulator shall send a CHANGE PIN command to the UICC to return the PIN to its original value.

The current consumption of the UICC shall not exceed the maximum values given in table 6.2b in TS 102.221 [1], subclause 6.2.1 according to the voltage class during b), c) and d) [CR1].

- e) The frequency of the clock source shall be set to the maximum frequency according to the voltage class.
- f) The ME simulator shall reset the UICC.

The UICC shall send the ATR sequence.

- g) The ME simulator shall send a CHANGE PIN command to the UICC with new PIN value of '10101010'.
- h) The ME simulator shall send a CHANGE PIN command to the UICC to return the PIN to its original value.

The current consumption of the UICC shall not exceed the maximum values given in table 6.2a in TS 102.221 [1], subclause 6.2.1 according to the voltage class during f), g) and h) [CR2].

6.3.1.3 Application related electrical parameters

6.3.1.3.1 Definition and applicability

See clause 3.5.3.

6.3.1.3.2 Conformance requirement

CR1	If an application specifies its own maximum power consumption values, it shall not exceed the	M
	maximum value defined in table 6.3 in TS 102.221 [1], subclause 6.2.3.	
CR2	If an application specifies its own maximum power consumption values, the current consumption shall conform to the voltage class indicated in the response for STATUS/SELECT commands, while the	M
	application is selected.	
CR3	If an application does not specify its own maximum power consumption values, the current consumption shall conform to the values defined in table 6.4 in TS 102.221 [1], subclause 6.2.3, while the application is selected.	M

Reference: TS 102.221 [1], subclause 6.2.3.

6.3.1.3.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.3.1.3.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

NOTE: Following steps shall be repeated for each application in the UICC.

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) If the power consumption is present in the FCP, the following steps shall be performed.

The power consumption in the FCP does not exceed maximum values defined in table 6.3 in TS 102.221 [1], subclause 6.2.3 [CR1].

- c-1) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- c-2) The ME simulator shall send a SELECT command to select EF_{LOCI}.
- c-3) The ME simulator shall send an UPDATE BINARY command with data string '11 22 33 44 55 66 77 88 99 AA BB'.

The power consumption of the UICC shall not exceed the maximum values given in the response data at b) during c-1, c-2 and c-3 [CR2].

- d) If the power consumption is not present in the FCP, following steps shall be performed.
- d-1) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- d-2) The ME simulator shall send a SELECT command to select EF_{LOCI}.
- d-3) The ME simulator shall send an UPDATE BINARY command with data string '11 22 33 44 55 66 77 88 99 AA BB'.

The power consumption of the UICC shall not exceed the maximum values defined in table 6.4 in TS 102.221 [1], subclause 6.2.3 during d-1), d-2) and d-3) [CR3].

e) The ME simulator shall send an UPDATE BINARY command with data string 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00'.

6.3.2 ATR content

6.3.2.1 Major capabilities

6.3.2.1.1 Definition and applicability

See clause 3.5.3.

6.3.2.1.2 Conformance requirement

CR1	The ATR shall be in accordance with ISO/IEC 7816-3 [6].	M
CR2	T = 15 parameters shall be present in the ATR.	M
CR3	The category indicator in the historical bytes shall be '80'.	M
CR4	The first information sent by the card in the historical byte shall be the "card service data" data object.	M
CR5	The second information sent by the card in the historical shall be the "card capabilities" data object.	M
CR6	The information carried by the historical bytes of the UICC shall follow clause 8 of ISO/IEC 7816-4 [7].	M

Reference: TS 102.221 [1], subclause 6.3

6.3.2.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: The testing of CR1 is outside the scope of the present document.

6.3.2.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

a) The ME simulator shall reset the UICC.

The UICC shall send the valid ATR sequence.

The ATR shall be in accordance with ISO/IEC 7816-3 [6].

The following parameters shall be present:

- T = 15 parameter [CR2].

The following parameters shall be present and in the following order in the historical bytes:

- The category indicator = '80' [CR3];
- "card service data" data object [CR4];
- "card capabilities" data object [CR5].

The historical bytes shall follow clause 8 of ISO/IEC 7816-4 [7][CR6].

6.3.2.2 Speed enhancement

6.3.2.2.1 Definition and applicability

See clause 3.5.3.

6.3.2.2.2 Conformance requirement

CR1	The UICC shall at least support $(F, D) = (512, 8)$ and $(512, 16)$ in addition to $(372, 1)$.	M
CR2	(F, D) = (372, 1) shall be the default value.	M

Reference: TS 102.221 [1], subclause 6.3.2.

6.3.2.2.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.3.2.2.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test Procedure 1

- a) The ME simulator shall cold reset the UICC.
- b) The ME simulator shall send a PPS-Request to the UICC, selecting T = 0 protocol and (F, D) = (512, 8).

The UICC shall send a valid PPS-Response indicating support for the requested parameters.

c) The ME simulator shall send a STATUS command with P2 = '00' at (F, D) = (512, 8).

The UICC shall send a valid FCP [CR1].

- d) The ME simulator shall cold reset the UICC.
- e) The ME simulator shall send a PPS-Request to the UICC, selecting T=0 protocol and (F, D)=(512, 16).

The UICC shall send a valid PPS-Response indicating support for the requested parameters.

f) The ME simulator shall send a STATUS command with P2 = '00' at (F, D) = (512, 16).

The UICC shall send a valid FCP [CR1].

- g) The ME simulator shall cold reset the UICC.
- h) The ME simulator shall send a STATUS command with P2 = '00' at (F, D) = (372, 1).

The UICC shall send a valid FCP [CR2].

- i) The ME simulator shall cold reset the UICC.
- j) The ME simulator shall send a PPS-Request to the UICC, selecting T = 0 protocol and (F, D) = (372, 1).

The UICC shall send a valid PPS-Response indicating support for the requested parameters.

k) The ME simulator shall send a STATUS command with P2 = '00' at (F, D) = (372, 1).

The UICC shall send a valid FCP [CR1].

6.3.2.3 Global Interface bytes

6.3.2.3.1 Definition and applicability

See clause 3.5.3.

6.3.2.3.2 Conformance requirement

CR1	The content and coding of the first TAi (i > 2) after T=15 is defined in ISO/IEC 7816-3 [6]	Rel-6 -
CR2	The content and coding of the first TBi (i > 2) after T=15 shall be as indicated in Table 6.7 of TS	Rel-6 -
	102 221 [1], as reproduced in table 8a.	

Table 8a: Coding of the first TB_i (i > 2) after T=15 of the ATR

b8	b7	b6	b5	b4	b3	b2	b1	Meaning
0	0	0	0	0	0	0	0	No additional global interface parameters supported
1	-	-	1	-	-	-		Low Impedance drivers and protocol available on the I/O line available (see clause 7.2.1)
NOTE: Any other value is RFU.								

Reference: TS 102 221 [1], subclause 6.3.3.

6.3.2.3.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: The testing of CR1 is outside the scope of the present document.

6.3.2.3.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test Procedure 1

a) The ME simulator shall cold reset the UICC.

The following shall be true of the returned ATR:

- If the first TBi (i > 2) is present after T=15, then its value shall be either '00' or '90' [CR2].

6.3.3 PPS procedure

6.3.3.1 Definition and applicability

See clause 3.5.3.

6.3.3.2 Conformance requirement

CR1	The UICC shall support the PPS procedure in order to use transmission parameters other than the							
	default values.							
CR2	The UICC shall respond to a PPS-Request from the terminal with a PPS-Response.	M						
CR3	If the transmission parameters are indicated in the ATR, these shall be interpreted in accordance with	M						
	ISO/IEC 7816-3 [6].							

Reference: TS 102.221 [1], subclause 6.4.

6.3.3.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR3 is not tested as it is out of the scope of the present document.

6.3.3.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test Procedure 1

- a) The ME simulator shall cold reset the UICC.
- b) Steps c) to d) shall only be carried out if the ATR contains the first TBi (i > 2) after T=15.
- c) The ME simulator shall send a PPS-Request to the UICC, containing a value of PPS2 equal to '00'.

The UICC shall send a valid PPS-Response indicating support for the requested parameters [CR1, CR2].

d) The ME simulator shall send a STATUS command with P2 = '00'.

The UICC shall send a status word indicating successful command execution.

- e) The ME simulator shall cold reset the UICC.
- f) Steps g) to h) shall only be carried out if the ATR contains the first TBi (i > 2) after T=15 with a value of '90'.
- g) The ME simulator shall send a PPS-Request to the UICC, containing a value of PPS2 equal to '90'.

The UICC shall send a valid PPS-Response indicating support for the requested parameters [CR1, CR2].

h) The ME simulator shall send a STATUS command with P2 = '00'.

The UICC shall send a status word indicating successful command execution.

6.3.4 Reset procedures

6.3.4.1 Definition and applicability

See clause 3.5.3.

6.3.4.2 Conformance requirement

CR1	After a cold reset, the UICC shall enter the negotiable mode.	M
CR2	After a cold reset, the security status shall be reset.	M
CR3	After a warm reset, the UICC shall enter either the negotiable mode (Type 1 UICC) or the specific mode (Type 2 UICC).	M
CR4	If the UICC enters the specific mode, it shall present the same protocol and interface	(R99) Rel-6:
	parameters (Fi, Di) as in the specific session prior to the warm reset.	O_TYPE_2
CR5	The UICC shall respond with an identical ATR after every warm reset issued within	(R99) Rel-6
	the same session regardless of what application was active.	
CR6	After a warm reset, the security status shall be reset.	M
CR7	A type 1 UICC shall always enter the negotiable mode after a warm reset.	(R99) Rel-6:
		O_TYPE_1
CR8	A type 2 UICC shall always enter the specific mode after a warm reset.	(R99) Rel-6:
		O_TYPE_2

Reference: TS 102.221 [1], subclause 6.5.

6.3.4.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.3.4.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test Procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- c) The ME simulator shall cold reset the UICC.

The UICC shall send the valid ATR sequence. The specific mode byte TA(2) shall not be present within the ATR returned by the UICC [CR1].

- d) The ME simulator shall send a SELECT command to the UICC to select $\mathsf{EF}_{\mathsf{PL}}$.
- e) The ME simulator shall send an UPDATE BINARY command using a length of 2 bytes, and data string '00 00' to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - Security status not satisfied [CR2].

- f) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- g) The ME simulator shall warm reset the UICC.

The UICC shall send the valid ATR sequence [CR3].

- h) The ME simulator shall send a SELECT command to the UICC to select EF_{PL} .
- i) The ME simulator shall send an UPDATE BINARY command using a length of 2 bytes, and data string '00 00' to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - Security status not satisfied [CR6].

Test Procedure 2

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall warm reset the UICC.

- c) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- d) The ME simulator shall warm reset the UICC.

The UICC shall respond with an identical ATR to that returned in response to step b) [CR5].

Test Procedure 3

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall warm reset the UICC.

The UICC shall send the valid ATR sequence. The specific mode byte TA(2) shall not be present within the ATR returned by the UICC [CR7].

- c) The ME simulator shall cold reset the UICC.
- d) The ME simulator shall warm reset the UICC.

The UICC shall send the valid ATR sequence. The specific mode byte TA(2) shall not be present within the ATR returned by the UICC [CR7].

Test Procedure 4

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall warm reset the UICC.

The UICC shall send the valid ATR sequence

The specific mode byte TA(2) shall be present within the ATR returned by the UICC [CR8].

- c) The ME simulator shall cold reset the UICC.
- d) The ME simulator shall send a PPS-Request to the UICC, selecting T=0 protocol and (F, D) = (512, 8)

The UICC shall send a valid PPS-Response indicating support for the requested parameters.

e) The ME simulator shall warm reset the UICC.

The UICC shall send the valid ATR sequence.

The specific mode byte TA(2) shall be present within the ATR returned by the UICC [CR8].

The Global Interface Character TA1 shall indicate (F, D) values of (512, 8) [CR4].

6.3.5 Clock stop mode

6.3.5.1 Definition and applicability

See clause 3.5.3.

6.3.5.2 Conformance requirement

CR1 The UICC shall support the clock stop procedure. M Reference: TS 102.221 [1], subclause 6.6.

6.3.5.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.3.5.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

a) The ME simulator shall reset the UICC.

The ATR shall contain a following character:

- TA(i) after the first occurrence of T = 15 in TD(i-1) for i>2;
- Both b8 and b7 shall not be equal to zero [CR1].
- b) The ME simulator shall stop the clock according to the clock stop mode after the ATR.
- c) The ME simulator shall pause for 10 seconds, then starts the clock again.
- d) The ME simulator shall wait for more than 744 clock cycles after having started the clock, and then shall send a SELECT command to the UICC to select the EF_{ICCID}.

The SELECT command shall be executed successfully [CR1].

6.3.6 Bit/character duration and sampling time

6.3.6.1 Definition and applicability

See clause 3.5.3.

6.3.6.2 Conformance requirement

CR1	The bit/character duration and sampling time specified in ISO/IEC 7816-3 [6], subclause 6.3.2 are valid	M
	for all communications.	

Reference: TS 102.221 [1], subclause 6.7.

6.3.6.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: The testing of CR1 is outside the scope of the present document.

6.3.6.4 Method of test

Initial conditions

N/A

Test procedure

N/A

6.3.7 Error handling

6.3.7.1 Definition and applicability

See clause 3.5.3.

6.3.7.2 Conformance requirement

CR1	Error detection and character repetition specified in ISO/IEC 7816-3 [6], subclause 6.3.3 is mandatory	M
	for the UICC for all communications using $T = 0$.	

Reference: TS 102.221 [1], subclause 6.8.

6.3.7.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.3.7.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

NOTE: The following steps shall be performed for each communication speed supported by the UICC for T = 0.

- a) The ME simulator shall cold reset the UICC.
- b) The ME simulator shall request character repetition (i.e. transmits an error signal during the guard time) to the UICC for all character frames during the ATR.

The UICC shall send the valid ATR with character repetition [CR1].

- c) The ME simulator shall send a correct PPS request to the UICC (conditional).
- d) The ME simulator shall send a SELECT command to the UICC to select the MF with incorrect character parity for all character frames.

The UICC shall request character repetition (i.e. transmits an error signal during the guard time) for all character frames [CR1].

e) The ME simulator shall receive the response from the UICC but request character repetition for all character frames.

The UICC shall send the valid FCP with character repetition [CR1].

6.3.8 Compatibility

6.3.8.1 Definition and applicability

See clause 3.5.3.

6.3.8.2 Conformance requirement

	response shall support this procedure in addition to the supply voltage class indication in the ATR.	
CR1	UICCs that are used in applications where the supply voltage class detection is based on the STATUS	M

Reference: TS 102.221 [1], subclause 6.9.

6.3.8.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE 1: The supply voltage class indication in the ATR and STATUS response are tested respectively in subclause 6.3.1 and subclause 6.8.1.2 in the present document as they are mandatory for all the UICCs except the UICCs supporting class A operating condition only.

NOTE 2: The supply voltage class detection based on STATUS response for compatibility purpose is out of the scope of the present document.

6.3.8.4 Method of test

Initial conditions

N/A

Test procedure

N/A

6.4 Transmission Protocols

6.4.1 Physical Layer

6.4.1.1 Definition and applicability

See clause 3.5.3.

6.4.1.2 Conformance requirement

CR1	Both protocols $T = 0$ and $T = 1$ shall use the physical layer and character frame as defined in subclause	M
	7.2.1.	

Reference: TS 102.221 [1], subclause 7.1.

6.4.1.3 Test purpose

To verify that the physical layer function conforms to the above requirements.

NOTE: CR1 is tested in the subclause 6.4.2.1

6.4.1.4 Method of test

Initial conditions

N/A

Test procedure

N/A

6.4.2 Data Link Layer

6.4.2.1 Character Frame

6.4.2.1.1 Definition and applicability

See clause 3.5.3.

6.4.2.1.2 Conformance requirement

CR1	Before the transmission of a character, the I/O line shall be in state H.	M
CR2	A character shall consist of 10 consecutive bits:	M
	- 1 start bit in state L;	
	- 8 bits, which comprise the data byte;	
	- 1 even parity checking bit.	
CR3	The parity bit shall be set, in a way, that there is an even number of bits set to	M
	'1' including the parity bit in the character frame.	
CR4	The receiver shall confirm the existence of a start bit before 0.7 etu (receiver	M
	time).	
CR5	Then the subsequent bits shall be received at intervals of $(n + 0.5 \pm 0.2)$ etu $(n + 0.5 \pm 0.2)$	M
	being the rank of the bit).	
CR6	Within a character, the time from the leading edge of the start bit to the	M
	trailing edge of the nth bit shall be $(n \pm 0.2)$ etu.	
CR7	The interval between the leading edges of the start bits of two consecutive	M
	characters shall comprise the character duration (10 \pm 0.2) etu, plus a	
	guardtime.	
CR8	Under error free transmission, during the guardtime both the UICC and the	M
	ME shall be in reception mode (I/O line in state H).	
CR9	The data shall always be passed over the I/O line with the most significant	M
	byte first.	
CR10	The order of bits within a byte (that is, whether the least significant or most	M
	significant bit is transferred first) shall be specified in character TS returned in	
	the answer to reset.	
CR11	If the low impedance driver on the I/O line has been selected, then during the	Rel-6:
	transmission state the transmitter shall drive the I/O line to the desired level	O_LOW_IMPEDANCE
	using the low impedance driver, with the exception of the error indication	
	period.	
CR12	If the low impedance driver on the I/O line has been selected, then when the	Rel-6:
	communication direction is changed, the entity that is in turn to transmit,	O_LOW_IMPEDANCE
	terminal or UICC, shall drive the I/O line to the high level using the low	
	impedance driver during the interface inactivity period.	
	TG 102 221 [1] . 1.1 7.2.1	

Reference: TS 102.221 [1], subclause 7.2.1.

6.4.2.1.3 Test purpose

To verify that the Physical Layer function conforms to the above requirements.

NOTE 1: CR11 is not tested, with the exception of the requirement to not drive the I/O line during the error indication period, which is tested in clause 6.4.2.2.

NOTE 2: CR12 is not tested.

6.4.2.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The following steps b) to h) shall be repeated for the all communication speeds and protocols supported by the UICC, and both with and without selecting low impedance drivers if the UICC supports low impedance drivers.
- b) The ME simulator shall cold reset the UICC.

The UICC shall send a valid ATR [CR5].

c) The ME simulator shall send a PPS-Request to select a valid protocol, a valid communication speed and low impedance drivers (if relevant) to the UICC.

The UICC shall send a valid PPS-Response [CR5].

- d) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR5].
- e) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- f) The ME simulator shall send a SELECT command to the UICC to select EF_{FPLMN}.
- g) The ME simulator shall send an UPDATE BINARY to update EF_{FPLMN} with data string '55 AA 0F 00 F0 FF 00 F0 FF 00 F0 FF'

The following conditions shall be true for all character frames:

- Before the transmission of a character, the I/O line shall be in state H [CR1];
- It consists of 10 consecutive bits [CR2];
- There is an even number of bits set to '1' including the parity bit [CR3];
- The existence of the start bit shall be confirmed to be at least 0.7 etu [CR4];
- The subsequent bits shall be received at intervals of $(n + 0.5 \pm 0.2)$ etu (n being the rank of the bit) [CR5];
- The time from the leading edge of the start bit to the trailing edge of the Nth bit shall be $(N \pm 0.2)$ etu [CR6];
- The interval between the leading edges of the start bits of two consecutive characters shall comprise the character duration (10 ± 0.2) etu, plus a guardtime [CR7];
- The data shall always be passed over the I/O line with the most significant byte first [CR8];
- The order of bits within a byte shall be specified in character TS returned in the ATR [CR10].
- h) The ME simulator shall send a READ BINARY to the UICC.

The data string returned by the UICC shall be '55 AA 0F 00 F0 FF 00 F0 FF 00 F0 FF'.

The following conditions shall be true for all character frames:

- Before the transmission of a character, the I/O line shall be in state H [CR1];
- It consists of 10 consecutive bits [CR2];
- There is an even number of bits set to '1' including the parity bit [CR3];
- The existence of the start bit shall be confirmed to be at least 0.7 etu [CR4];
- The subsequent bits shall be received at intervals of $(n + 0.5 \pm 0.2)$ etu (n being the rank of the bit) [CR5];
- The time from the leading edge of the start bit to the trailing edge of the Nth bit shall be $(N \pm 0.2)$ etu [CR6];
- The interval between the leading edges of the start bits of two consecutive characters shall comprise the character duration (10 ± 0.2) etu, plus a guardtime [CR7];
- The data shall always be passed over the I/O line with the most significant byte first [CR8];
- The response data sent from the UICC shall be passed over the I/O line with the most significant byte first [CR9];
- The order of bits within a byte shall be specified in character TS returned in the ATR [CR10].
- i) The time from the leading edge of the start bit to the trailing edge of the nth bit shall be set to be (n + 0.2) etu.
- j) The ME simulator shall cold reset the UICC.

The UICC shall send a valid ATR [CR5].

k) The ME simulator shall send a PPS-Request to select a valid protocol, a valid communication speed and low impedance drivers (if relevant) to the UICC.

The UICC shall send a valid PPS-Response [CR5].

1) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR5].

- m) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- n) The ME simulator shall send a SELECT command to the UICC to select EF_{FPLMN}.
- o) The ME simulator shall send a READ BINARY to the UICC.

The data string returned by the UICC shall be '55 AA 0F 00 F0 FF 00 F0 FF 00 F0 FF';

The following conditions shall be true for all character frames:

- Before the transmission of a character, the I/O line shall be in state H [CR1];
- It consists of 10 consecutive bits [CR2];
- There is an even number of bits set to '1' including the parity bit [CR3];
- The existence of the start bit shall be confirmed to be at least 0.7 etu [CR4];
- The subsequent bits shall be received at intervals of $(n + 0.5 \pm 0.2)$ etu (n being the rank of the bit) [CR5];
- The time from the leading edge of the start bit to the trailing edge of the Nth bit shall be $(N \pm 0.2)$ etu [CR6];
- The interval between the leading edges of the start bits of two consecutive characters shall comprise the character duration (10 \pm 0.2) etu, plus a guardtime [CR7];
- The data shall always be passed over the I/O line with the most significant byte first [CR8];
- The response data sent from the UICC shall be passed over the I/O line with the most significant byte first [CR9];
- The order of bits within a byte shall be specified in character TS returned in the ATR [CR10].
- p) The time from the leading edge of the start bit to the trailing edge of the nth bit shall be set to be (n 0.2) etu.
- q) The ME simulator shall cold reset the UICC.

The UICC shall send a valid ATR [CR2, CR5].

r) The ME simulator shall send a PPS-Request to select a valid protocol, a valid communication speed and low impedance drivers (if relevant) to the UICC.

The UICC shall send a valid PPS-Response [CR4, CR5].

s) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' –normal ending of the command [CR4, CR5].

- t) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- u) The ME simulator shall send a SELECT command to the UICC to select EF_{FPLMN}.
- v) The ME simulator shall send a READ BINARY to the UICC.

The data string returned by the UICC shall be '55 AA 0F 00 F0 FF 00 F0 FF 00 F0 FF'.

The following conditions shall be true for all character frames:

- Before the transmission of a character, the I/O line shall be in state H [CR1];
- It consists of 10 consecutive bits [CR2];
- There is an even number of bits set to '1' including the parity bit [CR3];
- The existence of the start bit shall be confirmed to be at least 0.7 etu [CR4];
- The subsequent bits shall be received at intervals of $(n + 0.5 \pm 0.2)$ etu (n being the rank of the bit) [CR5];
- The time from the leading edge of the start bit to the trailing edge of the Nth bit shall be $(N \pm 0.2)$ etu [CR6];
- The interval between the leading edges of the start bits of two consecutive characters shall comprise the character duration (10 \pm 0.2) etu, plus a guardtime [CR7];
- The data shall always be passed over the I/O line with the most significant byte first [CR8];
- The response data sent from the UICC shall be passed over the I/O line with the most significant byte first [CR];
- The order of bits within a byte shall be specified in character TS returned in the ATR [CR10].

6.4.2.2 Transmission Protocol T = 0

6.4.2.2.1 Definition and applicability

See clause 3.5.3.

6.4.2.2.2 Conformance requirement

CR1	The UICC shall support either T=0 or T=1 or both protocols.	O_T0
CR2	The protocol shall start after either the answer to reset or a successful PPS	O_T0
	exchange.	
CR3	The minimum interval between the leading edge of the start bits of two	O_T0
	consecutive characters shall be at least 12 etus.	
CR4	The value of the WWT shall not exceed $960 \times WI \times Fi/f$.	O_T0
CR5	Void.	O_T0
CR6	When the UICC has received the command header, a response containing a	O_T0
	procedure byte or a status byte shall be sent to the terminal.	
CR7	Both the terminal and the UICC shall be able to keep track of the direction	O_T0
	of the data flow and who has the access to the I/O-line.	
CR8	Procedure bytes shall be used to keep up the communication between the	O_T0
	terminal and the UICC.	
CR9	The status bytes SW1 SW2 form an end sequence indicating the status of the	O_T0
	UICC at the end of a command.	
CR10	A normal ending of a command shall be indicated by SW1 SW2 = '90 00'.	O_T0
CR11	The error detection and correction procedure shall be mandatory for T=0	O_T0
	protocol.	
CR12	An error, from the receivers point of view, is defined by an incorrect parity	O_T0
	and is indicated on the I/O line, which is set to state L after (10.5 \pm 0.2) etus	
	after the leading edge of the start bit for the character, and the I/O line shall	
	be in state L for a maximum of 2 etus and a minimum of 1 etu.	
CR13	The transmitter shall check the I/O line for parity error indication at	O_T0
	(11 ± 0.2) etus starting from the leading edge of the start bit, in the character	
	being transmitted.	
CR14	If the UICC or terminal as receiver detects a parity error in a character just	O_T0
	received, it shall set the I/O line to state L at (10.5 ± 0.2) etus after the	
	leading edge of the start bit for the character for a maximum of 2 etus to	
GD 15	indicate the error to the sender.	0. 50
CR15	If the transmitter detects an error indication at (11 ± 0.2) etus from the	O_T0
	leading edge of the start bit, in the character being transmitted, the character	
CD16	shall be sent again after a minimum delay of 2 etus.	D-1 6 . O TO
CR16	If the low impedance driver on the I/O line has been selected, then during	Rel-6: O_T0,
	the transmission state the transmitter shall not drive the I/O line during the	O_LOW_IMPEDANCE
	error indication period.	2 17224

Reference: TS 102.221 [1], clause 7 and more specifically subclause 7.2.1.1, 7.2.2.1, 7.2.2.3 and 7.2.2.4.

6.4.2.2.3 Test purpose

To verify that the Physical Layer function conforms to the above requirements.

NOTE: CR6 to CR10 are tested in the subclause 6.8.

6.4.2.2.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) EF_{FPLMN} shall contain the data string: '55 AA 0F 00 F0 FF 00 F0 FF 00 F0 FF'.

Test procedure 1

- a) Steps b) to g) shall be repeated for the all communication speeds supported by the UICC.
- b) The ME simulator shall cold reset the UICC.
- c) The ME simulator shall send a PPS-Request to the UICC to select the T = 0 protocol and the selected communication speed.

The UICC shall send a valid PPS-Response indicating support for the T=0 protocol and the selected communication speed [CR1].

- d) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- e) The ME simulator shall send a VERIFY PIN with PIN to the UICC.
- f) The ME simulator shall send a SELECT command to the UICC to select EF_{FPLMN}.
- g) The ME simulator shall send a READ BINARY command to the UICC.

The UICC shall send the data string '55 AA 0F 00 F0 FF 00 F0 FF 00 F0 FF' followed by SW1 = '90' and SW2 = '00' – normal ending of the command [CR2].

The following shall be true of the response data:

- The interval between the leading edge of the start bits of two consecutive characters shall be at least 12 etus [CR3];
- The value of the WWT shall not exceed 960 × WI × Fi/f [CR4];
- h) The ME simulator shall cold reset the UICC.
- i) The ME simulator shall request character repetition (i.e. transmits an error signal during the guard time) to the UICC for all character frames during the ATR.

The UICC shall send the valid ATR with character repetition [CR11].

- j) The ME simulator shall send a PPS-Request to the UICC to select the T = 0 protocol, the selected communication speed and low impedance drivers (if relevant).
- k) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- 1) The ME simulator shall send a VERIFY PIN with PIN to the UICC.
- m) The ME simulator shall send a SELECT command to the UICC to select EF_{FPLMN}.
- n) The ME simulator shall send a READ BINARY command to the UICC with incorrect character parity for all character frames.

The UICC shall request character repetition for all character frames, indicating the error to the sender by setting the I/O line to state L at (10.5 +- 0.2) etu after the leading edge of the start bit of each character with a parity error for a maximum of 2 etu and a minimum of 1 etu. [CR 11, CR 12, CR14]

- o) The ME simulator shall re-send a READ BINARY command to the UICC.
- p) The ME simulator shall request character repetition for all character frames from the UICC.

The UICC shall send the data string '55 AA 0F 00 F0 FF 00 F0 FF 00 F0 FF' followed by SW1 = '90' and SW2 = '00' – normal ending of the command [CR11].

The following shall be true of the response data:

The UICC shall check the I/O line for a parity error indication at (11 ± 0.2) etu starting from the leading edge of the start bit of the character being transmitted and the character shall be sent again after a minimum delay of 2 etu. [CR13, CR15, CR16]

6.4.2.3 Transmission Protocol T = 1

6.4.2.3.1 Timing and specific options for blocks sent with T = 1

This subclause defines conformance tests regarding timing, information field sizes and error detection parameters for blocks sent with T = 1.

The tests defined in this subclause only apply where the UICC under test supports the T=1 protocol. If the UICC under test does not support the T=1 protocol, then these tests do not apply.

The tests in this subclause assume that the T = 1 protocol is the first indicated protocol for the UICC. If the UICC under test supports T = 1 but it is not the first indicated protocol, then each test must be extended to configure the UICC to employ the T = 1 protocol, e.g. via the PPS mechanism.

6.4.2.3.1.1 Information field size

6.4.2.3.1.1.1 Definition and applicability

See clause 3.5.3.

6.4.2.3.1.1.2 Conformance requirement

CR1	IFSC shall be the maximum length of information field of blocks that can be received by the UICC.	O_T1
CR2	The default value of the IFSC shall be 32 bytes and another value may be indicated in TA3 of the	O_T1
	ATR.	
CR3	IFSD shall be the maximum length of information field of blocks that the terminal can receive.	O_T1
CR4	IFSD shall have a default value of 32 bytes and may be adjusted during the card session.	O_T1
CR5	The maximum value of the IFSD shall be 254 bytes.	O_T1

Reference: TS 102.221 [1], subclause 7.2.3.1.1

6.4.2.3.1.1.3 Test purpose

To verify that an I-block from the UICC has an INF field of length \leq IFSD.

NOTE: CR1 and CR2 shall not be tested as it depends on the capability of the UICC.

6.4.2.3.1.1.4 Method of test

NOTE: When EF_{SMS} is not supported by the UICC, any supported linear EF with record length more than or equal to 31 bytes may be chosen.

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{SMS}.
- d) The ME simulator shall send a VERIFY command with PIN to the UICC.
- e) The ME simulator shall send a READ RECORD command to read record 1 from EF_{SMS}.

The UICC shall return the contents of record 1 in a series of chained I-blocks, whose INF fields are \leq IFSD, i.e. less than or equal to 32 bytes in length [CR3, CR4].

- f) The ME simulator shall reset the UICC.
- g) The ME simulator shall send an IFS REQUEST to the UICC, requesting an adjustment of IFSD to 255 bytes.

The UICC shall reject the request and respond with an R-block with bits b1-b4 in the PCB-byte having a value of '2' – other errors [CR5].

- h) The ME simulator shall reset the UICC.
- i) The ME simulator shall send an IFS REQUEST to the UICC, requesting an adjustment of IFSD to 254 bytes.
- j) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- k) The ME simulator shall send a SELECT command to the UICC to select EF_{SMS}.

1) The ME simulator shall send a VERIFY command with PIN to the UICC.

m) The ME simulator shall send a READ RECORD command to read record 1 from EF_{SMS}.

The UICC returns the contents of record 1 in a single I-block or multiple I-blocks [CR5].

6.4.2.3.1.2 Character waiting integer

6.4.2.3.1.2.1 Definition and applicability

See clause 3.5.3.

6.4.2.3.1.2.2 Conformance requirement

CR1	CWI is used to calculate CWT and shall be in the range from 0 to 5. The value shall be set in bits b4	O_T1
	to b1 in TB3.	

Reference: TS 102.221 [1], subclause 7.2.3.1.2.

6.4.2.3.1.2.3 Test purpose

To verify that, if TB3 is present in the ATR, then the CWI, as coded in TB3, is in the range from 0 to 5.

6.4.2.3.1.2.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

a) The ME simulator shall reset the UICC.

The UICC shall respond with an ATR. If TB3 is present, bits b1-b4 shall be in the range 0 to 5 [CR1].

6.4.2.3.1.3 Character waiting time

6.4.2.3.1.3.1 Definition and applicability

See clause 3.5.3.

6.4.2.3.1.3.2 Conformance requirement

CR1	CWT is defined as the maximum delay between the leading edges of two consecutive characters in	O_T1
	the block.	

Reference: TS 102.221 [1], subclause 7.2.3.1.3.

6.4.2.3.1.3.3 Test purpose

To verify that the maximum delay between two consecutive characters in a block sent by the UICC is CWT.

6.4.2.3.1.3.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.

The ME simulator shall measure the delay between the leading edges of each pair of consecutive characters sent by the UICC in its I-block response to the SELECT command. The maximum delay between the leading edges of each pair of consecutive characters shall be < CWT [CR1].

6.4.2.3.1.4 Block guard time

6.4.2.3.1.4.1 Definition and applicability

See clause 3.5.3.

6.4.2.3.1.4.2 Conformance requirement

CR1	The delay between the last character of a block received by the UICC and the first character of the	O_T1
	next block sent from the UICC shall be in the interval: BGT < delay < BWT.	

Reference: TS 102.221 [1], subclause 7.2.3.1.5.

6.4.2.3.1.4.3 Test purpose

To verify that, except after an S(WTX request) and S(WTX response), the delay between the last character of a block sent by the Terminal and the first character of a block sent by the UICC is between BGT and BWT.

6.4.2.3.1.4.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.

The ME simulator shall measure the delay between the leading edge of the last character in the I-block SELECT command received by the UICC and the leading edge of the first character in its I-block response to the SELECT command. The measured delay shall be in the range: BGT < delay < BWT [CR1].

c) The ME simulator shall send a SELECT command to the UICC to select and terminate the USIM application at 22 etu after the UICC send the last character in b).

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

6.4.2.3.1.5 Waiting time extension

6.4.2.3.1.5.1 Definition and applicability

See clause 3.5.3.

6.4.2.3.1.5.2 Conformance requirement

	CR1	WTX shall be used to ask for more time to process a command.	O_T1
_			

Reference: TS 102.221 [1], subclause 7.2.3.1.6.

6.4.2.3.1.5.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR1 shall not be tested as it is not possible to force the UICC to issue a WTX request.

6.4.2.3.1.5.4 Method of test

Initial conditions

N/A

Test Procedure

N/A

6.4.2.3.1.6 Error detection code

6.4.2.3.1.6.1 Definition and applicability

See clause 3.5.3.

6.4.2.3.1.6.2 Conformance requirement

CR1 LRC shall be used (b1 = 0). All other bits in TCi are RFU and shall be set to 0. O_T1

Reference: TS 102.221 [1], subclause 7.2.3.1.7.

6.4.2.3.1.6.3 Test purpose

To verify that TCi, if present, is equal to 0.

6.4.2.3.1.6.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

a) The ME simulator shall reset the UICC.

The UICC shall respond with an ATR. All interface characters TCi which are present shall have a value of 0 [CR1].

6.4.2.3.2 Block frame structure

This subclause defines conformance tests regarding the T=1 block structure.

6.4.2.3.2.1 Prologue field

6.4.2.3.2.1.1 Node address byte

6.4.2.3.2.1.1.1 Definition and applicability

See clause 3.5.3.

6.4.2.3.2.1.1.2 Conformance requirement

CR1 Only the default value SAD = DAD = 0 shall be supported. O_T1

Reference: TS 102.221 [1], subclause 7.2.3.2.1.1.

6.4.2.3.2.1.1.3 Test purpose

To verify that only SAD = DAD = 0 is used.

6.4.2.3.2.1.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{ECC} , where the SAD and DAD are set, as default, to 0.

The UICC shall respond with an I-block where the SAD and the DAD are both set to 0 [CR1].

d) The ME simulator shall send a SELECT command to the UICC to select EF_{ECC} , where the SAD = 1 and DAD = 0.

The UICC shall either return an R-block with N(R) equal to the next expected sequence number (ignoring the erroneous I-block), or not return any response [CR1].

e) The ME simulator shall send a SELECT command to the UICC to select EF_{ECC} , where the SAD = 0 and DAD = 1.

The UICC shall either return an R-block with N(R) equal to the next expected sequence number (ignoring the erroneous I-block), or not return any response [CR1].

f) The ME simulator shall send a SELECT command to the UICC to select EF_{ECC} , where the SAD = 1 and DAD = 1.

The UICC shall either return an R-block with N(R) equal to the next expected sequence number (ignoring the erroneous I-block), or not return any response [CR1].

6.4.2.3.2.1.2 Protocol Control Byte

6.4.2.3.2.1.2.1 Definition and applicability

See clause 3.5.3.

6.4.2.3.2.1.2.2 Conformance requirement

CR1	All information needed to control the transmission shall be transferred in the protocol control byte PCB.	O_T1
CR2	The coding of the PCB byte shall specify the type of block.	O_T1
CR3	In the $T = 1$ protocol, the following three different types of blocks shall be supported:	O_T1
	- Information block, I-block which is used to transfer command and response APDUs;	
	- Receive-ready block, R-block, which is used to transfer acknowledgements;	
	- Supervisory block, S-block, which is used to send control information.	
CR4	The coding of the PCB byte for each block shall conform to the tables 7.5 - 7.9 in TS 102.221 [1].	O_T1

Reference: TS 102.221 [1], subclause 7.2.3.2.1.2.

6.4.2.3.2.1.2.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR1 to CR4 are tested in subclauses 6.4.2.3.3, 6.4.2.3.4 and 6.4.2.3.5.

6.4.2.3.2.1.2.4 Method of test

Initial conditions

N/A

Test procedure

N/A

6.4.2.3.2.1.3 Length

6.4.2.3.2.1.3.1 Definition and applicability

See clause 3.5.3.

6.4.2.3.2.1.3.2 Conformance requirement

CR1	The length byte shall code the number of bytes in the information field of the block.	O_T1
CR2	The number of bytes in the information field shall vary in the range from 0 to 254 bytes, depending	O_T1
	on the type of block.	

Reference: TS 102.221 [1], subclause 7.2.3.2.1.3.

6.4.2.3.2.1.3.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.4.2.3.2.1.3.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.

The UICC shall respond with an I-block containing the response to the SELECT command, where the I-block contain the LEN, length of the response data [CR1, CR2].

6.4.2.3.2.1.4 Information field

6.4.2.3.2.1.4.1 Definition and applicability

See clause 3.5.3.

6.4.2.3.2.1.4.2 Conformance requirement

CR1	The information field, INF, shall be optional and it depends on the type of the block and what the	O_T1
	field will be used for. In the case of an I-block, INF shall be present to transfer command and	
	response APDUs.	
CR2	The information field, INF, shall not be used for an R-block.	O_T1
CR3	The information field, INF, shall be optional and it depends on the type of the block and what the	O_T1
	field will be used for. In the case of an S-block, INF shall be present (single byte) to adjust IFS with	
	WTX.	
CR4	The information field, INF, shall be optional and it depends on the type of the block and what the	O_T1
	field will be used for. In the case of an S-block, INF shall be absent to signal error on VPP, or	
	managing chain abortion or resynchronisation.	

Reference: TS 102.221 [1], subclause 7.2.3.2.1.4.

6.4.2.3.2.1.4.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE 1: CR3 shall not be tested as it is not possible to force the UICC to issue a WTX.

NOTE 2: CR4 shall not be tested as the Error on Vpp state S-block is not supported.

6.4.2.3.2.1.4.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select the EF_{ECC} , where the I-block has an invalid EDC.

The UICC shall reject the command by sending an R-block response with bits b1-b4 in the PCB-byte having a value of '1' – EDC and/or parity error. The INF field shall be absent [CR1, CR2].

- d) The ME simulator shall send a SELECT command to the UICC to select the EF_{ECC} .
- e) The ME simulator shall reset the UICC.
- f) The ME simulator shall send an IFS REQUEST S-block to the UICC, requesting an adjustment of the IFSD to 254 bytes.

The UICC shall respond with an IFS RESPONSE S-block, whose INF field is present and has the value 254 [CR3].

- g) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- h) The ME simulator shall reset the UICC.
- i) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- j) The ME simulator shall send a RESYNCH request S-block to the UICC.

 The UICC shall respond with a RESYNCH response S-block, which shall not contain an INF field [CR4].
- k) The ME simulator shall send a SELECT command to the UICC to select $\mathsf{EF}_{\mathsf{ECC}}$.
- 1) The ME simulator shall reset the UICC.
- m) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- n) The ME simulator shall send a SELECT command to the UICC to select EF_{ECC}.
- o) The ME simulator shall send an IFS REQUEST S-block to the UICC, requesting an adjustment of the IFSD to the record length of $\mathrm{EF}_{\mathrm{ECC}}-1$ byte.
- p) The ME simulator shall send a READ RECORD command to read record 1 from EF_{ECC}.
- q) The ME simulator shall send an ABORT request S-block to the UICC after the 1st chained I-block response is received from the UICC.

The UICC shall respond with an ABORT response S-block, which shall not contain an INF field [CR4].

- r) The ME simulator shall send an IFS REQUEST S-block to the UICC, requesting an adjustment of the IFSD to 32 bytes.
- s) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.

6.4.2.3.2.2 Void

6.4.2.3.2.3 Epilogue field

6.4.2.3.2.3.1 Definition and applicability

See clause 3.5.3.

6.4.2.3.2.3.2 Conformance requirement

CR1 The LRC as defined in ISO/IEC 7816-3 [6] shall be used. O_T1

Reference: TS 102.221 [1], subclause 7.2.3.2.2.

6.4.2.3.2.3.3 Test purpose

To verify that the LRC is calculated correctly.

6.4.2.3.2.3.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.

The UICC shall respond with an I-block containing the response to the SELECT command. The epilogue field shall contain a 1 byte EDC – of type LRC – which shall be set to the correct value for the block [CR1].

c) The ME simulator shall send a SELECT command to the UICC to select and terminate the USIM application with invalid EDC.

The UICC shall reject the command by sending an R-block response of the format R(N), where N is the sequence number of the next expected I-block (ignoring the erroneous I-block) and with bits bI-b4 in the PCB-byte having a value of I' - EDC and/or parity error I' - EDC.

6.4.2.3.3 Error free operation

6.4.2.3.3.1 Definition and applicability

See clause 3.5.3.

6.4.2.3.3.2 Conformance requirement

CR1	To change the value of IFSD, the terminal sends an S(IFS request). The request shall be acknowledged by the UICC with an S(IFS response) with the same INF. The new IFSD is assumed to be valid as long as no new S(IFS request) has been received by the UICC.	O_T1
CR2	If a sender S sends $I(N_s(S), 0)$, the block is acknowledged by the receiver R with an $I(N_r(S), M)$.	O_T1
CR3	If a sender S sends an $I(N_s(S), 1)$, it should be acknowledged by the receiver R with $R(N_r(R))$, where	O_T1
	$N_s(S) \neq N_r(R)$, to indicate that the received block was correct and that the receiver is ready to receive	
	the next block.	

Reference: TS 102.221 [1], subclause 7.2.3.3.

6.4.2.3.3.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.4.2.3.3.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send an IFS REQUEST S-block to the UICC, requesting an adjustment of the IFSD to 254 bytes.

The UICC shall respond with an IFS RESPONSE S-block, whose INF field is present and has the value 254 [CR1].

c) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.

The UICC shall respond to the last I-block of the command $(I(N_s(S), 0))$ with the response to the SELECT command, where the first I-block of the response is of the format $I(N_r(S), M)$ where $N_r(S) = 0$ [CR2].

d) The ME simulator shall send a SELECT command to the UICC to select EF_{ECC}.

The UICC shall respond to the last I-block of the command $(I(N_s(S), 0))$ with the response to the SELECT command, where the first I-block of the response is of the format $I(N_r(S), M)$ where $N_r(S) \neq N_r(S)$ of the previous I-block sent by the UICC [CR2].

e) The ME simulator shall send a SELECT command to the UICC, with an invalid file ID whose length shall be 255 bytes long, where each byte shall be set to 'FF', split over at least 2 chained I-blocks.

The UICC shall respond to the first I-block from the ME simulator with a receive ready R-block of the format $R(N_r(R))$ where $N_s(S) \neq N_r(R)$ [CR3].

6.4.2.3.4 Error Handling for T = 1

This subclause describes a number of conformance tests to test the control of the error handling for the T=1 protocol.

6.4.2.3.4.1 Protocol initialisation

6.4.2.3.4.1.1 Definition and applicability

See clause 3.5.3.

6.4.2.3.4.1.2 Conformance requirement

CR1	If the terminal fails to receive an error free block, in the beginning of the protocol, a maximum of	O_T1		
	two consecutive attempts to receive the block shall be allowed before resetting or a deactivation of			
	the card takes place.			
CR2	When the protocol has been initiated and the first block received by the UICC is invalid, the UICC			
	responds with an R(0).			
CR3	If the terminal fails to receive an error free block, a maximum of two consecutive attempts shall be	O_T1		
	allowed before an S(RESYNCH request) is sent.			

Reference: TS 102.221 [1], subclause 7.2.3.4.1

6.4.2.3.4.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.4.2.3.4.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- c) The ME simulator shall send an R-block to the UICC, of the format R(0), to request the UICC to re-send the last block.
 - The UICC shall re-send the I-block, the response to the first SELECT command [CR1].
- d) The ME simulator shall send an R-block to the UICC, of the format R(0), to request the UICC to re-send the last block.
 - The UICC shall re-send the I-block, the response to the first SELECT command [CR1].
- e) The ME simulator shall reset the UICC.
- f) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application, where the I-block has an invalid EDC.
 - The UICC shall reject the command by sending an R-block response of the format R(0), with bits b1-b4 in the PCB-byte having a value of '1' EDC and/or parity error [CR2].
- g) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- h) The ME simulator shall send a SELECT command to the UICC to select EF_{IMSI}.
- i) The ME simulator shall send an R-block to the UICC, of the format R(0), to request the UICC to re-send the last block.
 - The UICC shall re-send the I-block, the response to the SELECT command in h) [CR3].
- j) The ME simulator shall send an R-block to the UICC, of the format R(0), to request the UICC to re-send the last block.
 - The UICC shall re-send the I-block, the response to the SELECT command in h) [CR3].
- k) The ME simulator shall send a S(RESYNCH, request) to the UICC.
 - The UICC shall return a S(RESYNCH, response) [CR3].
- 1) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- m) The ME simulator shall send a READ BINARY command to the UICC.

The UICC shall return the content of EF_{IMSI} [CR3].

6.4.2.3.4.2.1 Sending invalid blocks to the UICC

6.4.2.3.4.2.1.1 Definition and applicability

See clause 3.5.3.

6.4.2.3.4.2.1.2 Conformance requirement

CR1	When an I-block has been sent and a BWT time-out occurs or an invalid block has been received (with the terminal), an R-block is sent, which request with its $N(R)$ for the expected I-block with $N(S) = N(R)$.	O_T1
CR2	When an R-block was sent and an invalid block is received or BWT time-out, the R-block shall be	O_T1
	resent.	
CR3	When an S(request) has been sent and either a BWT time-out occurs or the received response is	O_T1
	not an S(response), the S(request) shall be resent.	

CR4 But if an S(response) has been sent and either an invalid block is received or a BWT time-or		O_T1		
	R-block shall be sent.			
CR5	When the UICC sends an S(IFS request) and receives an invalid block, the S(IFS request) shall be	O_T1		
	resent maximum one extra time to receive an S(IFS response). After the second failure to receive an			
	S(IFS response), the UICC shall stay in reception mode.			

Reference: TS 102.221 [1], subclause 7.2.3.4.2.

6.4.2.3.4.2.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR3 and CR5 shall not be tested as it is not possible to meet the test criteria.

6.4.2.3.4.2.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- c) The ME simulator shall send an R-block to the UICC, of the format R(N(R)) where N(R) = N(S) of the last I-block sent by the UICC, to request the UICC to re-send the last block.

The UICC shall re-send the last I-block of the response to the first SELECT command [CR1].

d) The ME simulator shall send another R-block to the UICC, of the format R(N(R)) where N(R) = N(S) of the last I-block sent by the UICC, to request the UICC to re-send the last block.

The UICC shall re-send the last I-block of the response to the first SELECT command [CR2].

- e) The ME simulator shall reset the UICC.
- f) The ME simulator shall send an IFS REQUEST S-block to the UICC, requesting an adjustment of the IFSD to 254 bytes.
- g) The ME simulator shall re-send an IFS REQUEST S-block to the UICC, requesting an adjustment of the IFSD to 254 bytes.

The UICC shall re-send the IFS RESPONSE S-block, whose INF field shall have the value 254 [CR4].

h) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.

6.4.2.3.5 Chaining

6.4.2.3.5.1 Definition and applicability

See clause 3.5.3.

6.4.2.3.5.2 Conformance requirement

CR1	When the UICC is the receiver, the UICC shall accept a sequence of chained I-blocks sent from the	O_T1
	terminal. The length of each block shall be equal to the value of IFSC except for the last block	
	whose length may be any value in the range 0 to IFSC.	
CR2	When the UICC is the sender, all I-blocks of a chain shall have LEN ≤ IFSD bytes per block.	O_T1
CR3	When the UICC is the receiver and receives a block with LEN > IFSC, the block shall be rejected	O_T1
	and acknowledged with an R-block with bits b1 to b4 in the PCB-byte having a value of 2.	

Reference: TS 102.221 [1], subclause 7.2.3.5.1.

6.4.2.3.5.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.4.2.3.5.4 Method of test

NOTE: When EF_{SMS} is not supported by the UICC, any supported linear EF with record length more than or equal to 31 bytes may be chosen.

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a SELECT command to the UICC, with an invalid file ID whose length shall be 255 bytes, where each byte shall be set to 'FF'. The SELECT command shall be spilt over at least 2 chained blocks.

For each I-block of format $I(N_s(S), 1)$ from the ME simulator (i.e all I-blocks apart from the last I-block), the UICC shall respond with a receive ready R-block of the format $R(N_r(R))$ where $N_r(R) \neq N_s(S)$.

For the last I-block from the ME simulator (i.e of format $I(N_s(S), 0)$), the UICC shall respond with an R-APDU containing a status word indicating an application level error regarding the SELECT command [CR1].

- d) The ME simulator shall reset the UICC.
- e) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- f) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- g) The ME simulator shall send a SELECT command to the UICC to select EF_{SMS}.
- h) The ME simulator shall send a READ RECORD command to read record 1 from EF_{SMS},

The UICC shall return the contents of record 1 in a series of chained I-blocks, whose INF fields are \leq IFSD, i.e. less than or equal to 32 bytes in length [CR2].

- i) The ME simulator shall reset the UICC.
- j) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- k) The ME simulator shall send a SELECT command to the UICC, with an invalid file ID whose length shall be 255 bytes long, where each byte shall be set to 'FF', where the INF field in the I-block shall be set to 255 bytes in length.

The UICC shall reject the command by sending an R-block response of the formatR(N), where N is the sequence number of the next expected I-block (ignoring the erroneous I-block) and with bits b1 to b4 in the PCB-byte having a value of 2' – other errors [CR3].

6.4.3 Transport Layer

6.4.3.1 Transportation of an APDU using T = 0

This subclause describes conformance tests relating to the mapping of C-APDUs and R-APDUs for T=0 protocol, the APDU exchange and the use of the GET RESPONSE command for case 2 and case 4 commands.

6.4.3.1.1 Case 1

6.4.3.1.1.1 Definition and applicability

See clause 3.5.3.

6.4.3.1.1.2 Conformance requirement

CR1	On receipt of the command header the UICC, under normal processing, shall return status to the	O_T0
	Transport Layer of the terminal.	
CR2	On receipt of the command header the UICC, under abnormal processing, shall return status to the	O_T0
	Transport Layer of the terminal.	
CR3	UICC shall analyse the $T = 0$ command header to determine whether this is a case 1 command or a	O_T0
	case 2 command requesting response data of maximum length.	

Reference: TS 102.221 [1], subclause 7.3.1.1.1.

6.4.3.1.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.4.3.1.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a VERIFY PIN command with parameter P2 indicating PIN and with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'CX' - unsuccessful PIN verification, X attempts left [CR1, CR3].

d) The ME simulator shall send a VERIFY PIN command with an incorrect parameter P2 and with an empty data field to the UICC.

The UICC shall return an error code appropriate to the command [CR2].

6.4.3.1.2 Case 2

6.4.3.1.2.1 Definition and applicability

See clause 3.5.3.

6.4.3.1.2.2 Conformance requirement

CR1	On receipt of the command header the UICC, under normal processing shall return data and status to	O_T0
	the Transport Layer of the terminal.	
CR2	On receipt of the command header the UICC, under abnormal processing shall return status only to	O_T0
	the Transport Layer of the terminal.	

Reference: TS 102.221 [1], subclause 7.3.1.1.2.

6.4.3.1.2.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.4.3.1.2.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) EF_{LOCI} shall contain the data string: 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00'.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{LOCI}.
- d) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- e) The ME simulator shall send a READ BINARY command using a length of 11 bytes to the UICC.

The UICC shall return the procedure byte 'B0' followed by the data string 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00', ending with the status condition SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

f) The ME simulator shall send a READ BINARY command with an incorrect P2 parameter and a length of 11 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '6B', SW2 = '00' - wrong parameter(s) P1-P2, or SW1 = '6A', SW2 = '86' - incorrect parameters P1-P2 [CR2].

6.4.3.1.3 Case 3

6.4.3.1.3.1 Definition and applicability

See clause 3.5.3.

6.4.3.1.3.2 Conformance requirement

CR1	On receipt of the command header, if the UICC:	O_T0
	a) returns a procedure byte, the Transport Layer of the terminal shall send the data portion of the	
	conditional body of the C-APDU to the UICC under the control of procedure bytes returned by	
	the UICC;	
	b) returns status, the Transport Layer of the terminal shall discontinue processing the command.	
CR2	If the processing was not discontinued, the UICC shall return status following receipt of the	O_T0
	conditional body of the C-APDU and completion of processing the command.	
CR3	On receipt of status from the UICC, the Transport Layer of the terminal shall discontinue processing	O_T0
	the command.	

Reference: TS 102.221 [1], subclause 7.3.1.1.3.

6.4.3.1.3.3 Test purpose

To verify that, under normal processing of a case 3 command, the UICC reads the command header, reads the command data under control of procedure bytes and returns status.

6.4.3.1.3.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.

- c) The ME simulator shall send a SELECT command to the UICC to select EF_{LOCI} .
- d) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- e) The ME simulator shall send an UPDATE BINARY command header using a length of 11 bytes to the UICC.

The UICC shall return the procedure byte 'D6' to the ME simulator [CR1].

f) The ME simulator shall send the data string '11 22 33 44 55 66 77 88 99 00 11' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2].

g) The ME simulator shall send an UPDATE BINARY command header with an incorrect P2 parameter, a length of 11 bytes and, if needed, data string '11 22 33 44 55 66 77 88 99 00 11' to the UICC.

The status condition returned by the UICC shall be SW1 = '6B', SW2 = '00' - wrong parameter(s) P1-P2, or SW1 = '6A', SW2 = '86' - incorrect parameters P1-P2 [CR3].

h) The ME simulator shall send an UPDATE BINARY command with the data 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00' to the UICC.

6.4.3.1.4 Case 4

6.4.3.1.4.1 Definition and applicability

See clause 3.5.3.

6.4.3.1.4.2 Conformance requirement

CR1	On receipt of the command header, if the UICC:	
	a) returns a procedure byte, the Transport Layer of the terminal shall send the data portion of the	
	conditional body of the C-APDU to the UICC under the control of procedure bytes returned by	
	the UICC;	
	b) returns status, the Transport Layer of the terminal shall discontinue processing of the	
	command.	
CR2	If processing was not discontinued in CR1(b), following receipt of the conditional body of the C-	O_T0
	APDU, the UICC:	
	a) under normal processing, shall return procedure bytes '61xx' to the Transport Layer of the	
	terminal requesting the Transport Layer of the terminal to issue a GET RESPONSE command	
	to retrieve the data from the UICC;	
	b) under abnormal processing, shall return status only to the Transport Layer of the terminal.	
CR3	On receipt of the procedure bytes or status returned in CR2, if the UICC:	O_T0
	a) returned '61xx' procedure bytes as in CR2(a), the Transport Layer of the terminal shall send a	
	GET RESPONSE command header to the UICC with P3 set to a value less than or equal to the	
	value contained in the 'xx' byte of '61xx' procedure bytes;	
	b) returned status as in CR2(b) that indicates a warning ('62xx' or '63xx'), or which is application	
	related ('9xxx' but not '9000'), the Transport Layer of the terminal shall send a GET	
	RESPONSE command with Le = '00';	
	c) returned status as in CR2(b) other than that described in CR3(b), the Transport Layer of the	
	terminal shall discontinue processing of the command.	
CR4	If processing was not discontinued in CR3(c), the GET RESPONSE command shall be processed	O_T0
	according to the rules for case 2 commands.	

Reference: TS 102.221 [1], subclause 7.3.1.1.4.

6.4.3.1.4.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.4.3.1.4.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a SELECT command header to the UICC with P2 = '04' and a length of 2 bytes to the UICC to select EF_{IMSI} .

The UICC shall return the procedure byte 'A4' to the ME simulator [CR1].

d) The ME simulator shall send the file ID of the EF_{IMSI} to the UICC.

The UICC shall return procedure bytes '61xx' to the ME simulator – where xx is the length of the FCP of the EF_{IMSI} [CR2].

e) The ME simulator shall send a GET RESPONSE command header to the UICC with P3 set to length 'xx'.

The UICC shall return the procedure byte 'C0' followed by the FCP of the EF_{IMSI} , ending with the status condition SW1 = '90', SW2 = '00' - normal ending of the command [CR4].

f) The ME simulator shall send a SELECT command header to the UICC with an incorrect P1 parameter, P2 = '04', a length of 2 bytes and, if needed, the file ID of EF_{LOCI} to the UICC.

The status condition returned by the UICC shall be SW1 = '6B', SW2 = '00' - wrong parameter(s) P1-P2, or SW1 = '6A', SW2 = '86' - incorrect parameters P1-P2 [CR1].

g) The ME simulator shall send a SELECT command to the UICC to select EF_{IMSI} .

The UICC shall return procedure bytes '61xx' to the ME simulator – where 'xx' is the length of the FCP of the EF_{IMSI} [CR2].

h) The ME simulator shall send a GET RESPONSE command to the UICC with P3 set to 'yy' where 'yy' is less than 'xx'.

The UICC shall return the first 'yy' bytes of the FCP of the EF_{IMSI} .

The status returned by the UICC shall be SW1 = '61', SW2 = 'zz' - where 'zz' is the remaining length of the FCP of the EF_{IMSI} [CR3].

i) The ME simulator shall send a GET RESPONSE command to the UICC with P3 set to 'zz'.

The UICC shall return the next 'zz' bytes of the FCP of the EF_{IMSL}

The status returned by the UICC shall be SWI = '90', SW2 = '00' - normal ending of the command [CR3].

6.4.3.1.5 Use of Procedure Bytes '61xx' and '6Cxx'

6.4.3.1.5.1 Case 2 Commands

6.4.3.1.5.1.1 Definition and applicability

See clause 3.5.3.

6.4.3.1.5.1.2 Conformance requirement

ſ	CR1	If the UICC receives a case 2 command header and Le = '00' (with Luicc < 256 bytes) or Le > Luicc,				
		under normal processing it shall return procedure bytes '6C Luicc' instructing the Transport Layer of				
		the Terminal to immediately re-send the command header with P3 = Luicc.				
ſ	CR2	If the UICC receives a case 2 command header and Le = '00' (with Luicc < 256 bytes) or Le> Luicc,	O_T0			
		under abnormal processing it shall return status indicating a warning or error condition (but not SW1				
		SW2 = '90 00').				

CR3	If the UICC receives a case 2 command header and Le = '00' (with Luicc = 256 bytes) or Le = Luicc, under	O_T0
	normal processing it shall return data of length Le (= Luicc) under the control of the INS, $\overline{\text{INS}}$, or '60' procedure bytes followed by the associated status or procedure bytes '61xx'.	
CR4	If the UICC receives a case 2 command header and Le = '00' (with Luicc = 256 bytes) or Le = Luicc,	O_T0
	under abnormal processing it shall return status indicating a warning or error condition (but not SW1	
	$SW2 = '90\ 00'$).	
CR5	If the UICC receives a case 2 command header and Le < Luicc, under normal processing it shall return data of	O_T0
	length Le under the control of the INS, INS	
	or '60' procedure bytes followed by procedure bytes '61xx'.	
CR6	If the UICC receives a case 2 command header and Le < Luicc, under abnormal processing it shall	O_T0
	return status indicating a warning or error condition (but not SW1 SW2 = '90 00').	

Reference: TS 102.221 [1], subclause 7.3.1.1.5.1.

6.4.3.1.5.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: For CR3 and CR6 the return of data from the UICC under the control of the INS '60' and '61xx' procedure bytes shall not be tested as it is not possible to force the UICC to behave in this way.

6.4.3.1.5.1.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) EF_{LOCI} shall contain the data string: 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00'.

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{LOCI}.
- d) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- e) The ME simulator shall send a READ BINARY command header to the UICC with the P3 parameter set to '00'. The UICC shall return the procedure bytes '6C 0B' to the ME simulator [CR1].
- f) The ME simulator shall send a READ BINARY command header to the UICC with the P3 parameter set to '0B'.
 - The UICC shall return the procedure byte 'B0' followed by the data string 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00', ending with the status condition SW1 = '90', SW2 = '00' normal ending of the command [CR3].
- g) The ME simulator shall send a READ BINARY command header to the UICC with an incorrect P2 parameter and the P3 parameter set to '00'.
 - The status condition returned by the UICC shall be SW1 = '6B', SW2 = '00' wrong parameter(s) P1-P2, or SW1 = '6A', SW2 = '86' incorrect parameters P1-P2 [CR2].
- h) The ME simulator shall send a READ BINARY command header to the UICC with an incorrect P2 parameter and the P3 parameter set to '15'.
 - The status condition returned by the UICC shall be SW1 = '6B', SW2 = '00' wrong parameter(s) P1-P2, or SW1 = '6A', SW2 = '86' incorrect parameters P1-P2 [CR2].
- i) The ME simulator shall send a READ BINARY command header to the UICC with an incorrect P2 parameter and the P3 parameter set to '0B'.

The status condition returned by the UICC shall be SW1 = '6B', SW2 = '00' - wrong parameter(s) P1-P2, or SW1 = '6A', SW2 = '86' - incorrect parameters P1-P2 [CR4].

j) The ME simulator shall send a READ BINARY command header to the UICC with an incorrect P2 parameter and the P3 parameter set to '05'.

The status condition returned by the UICC shall be SW1 = '6B', SW2 = '00' - wrong parameter(s) P1-P2, or SW1 = '6A', SW2 = '86' - incorrect parameters P1-P2 [CR6].

6.4.3.1.5.2 Case 4 Commands

6.4.3.1.5.2.1 Definition and applicability

See clause 3.5.3.

6.4.3.1.5.2.2 Conformance requirement

Ī	CR1	If th	ne UICC receives a case 4 command, after processing the data sent with the C-APDU,	O_T0
		-	it shall return procedure bytes '61xx';	
		Or		
		-	if the UICC receives a case 4 command, after processing the data sent with the C-APDU, it	
			shall return status indicating a warning or error condition (but not SW1 SW2 = '90 00').	

Reference: TS 102.221 [1], subclause 7.3.1.1.5.2.

6.4.3.1.5.2.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR1 and CR2 are tested in subclause 6.4.3.1.4.

6.4.3.1.5.2.4 Method of test

Initial Conditions

N/A

Test Procedure

N/A

6.4.3.2 Transportation of an APDU using T = 1

This subclause describes conformance tests relating to the transportation of an APDU using the T = 1 protocol.

The tests defined in this subclause only apply where the UICC under test supports the T=1 protocol. If the UICC under test does not support the T=1 protocol, then these tests do not apply.

The tests in this subclause assume that the T=1 protocol is the first indicated protocol for the UICC. If the UICC under test supports T=1 but it is not the first indicated protocol, then each test must be extended to configure the UICC to employ the T=1 protocol, e.g. via the PPS mechanism.

6.4.3.2.1 Case 1

6.4.3.2.1.1 Definition and applicability

See clause 3.5.3.

6.4.3.2.1.2 Conformance requirement

CR1	C-APDU shall be mapped to the INF of the I-Block and the received response from the INF in the I-	O_T1
	Block shall be mapped to R-APDU according to Figure 7.10 in TS 102.221 [1].	

Reference: TS 102.221 [1], subclause 7.3.2.1.

6.4.3.2.1.3 Test purpose

To verify that, under normal or abnormal processing of a case 1 command, the UICC returns status only.

6.4.3.2.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a VERIFY PIN command with parameter P2 indicating PIN and with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'CX' - unsuccessful PIN verification, X attempts left [CR1].

d) The ME simulator shall send a VERIFY PIN command with an incorrect parameter P2 and with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '6B', SW2 = '00' - wrong parameter(s) P1-P2, or SW1 = '6A', SW2 = '86' - incorrect parameters P1-P2 [CR1].

6.4.3.2.2 Case 2

6.4.3.2.2.1 Definition and applicability

See clause 3.5.3.

6.4.3.2.2.2 Conformance requirement

CR	R1 C-APDU shall be mapped to the INF of the I-Block a	nd the received response from the INF in the I-	O_T1
	Block shall be mapped to R-APDU according to Figu	re 7.11 in TS 102.221 [1].	

Reference: TS 102.221 [1], subclause 7.3.2.2.

6.4.3.2.2.3 Test purpose

To verify that, under normal processing of a case 2 command, the UICC returns data and status and that, under abnormal processing of a case 2 command, the UICC returns status only.

6.4.3.2.2.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) EF_{LOCI} shall contain the data string: 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00'.

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{LOCI} .

- d) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- e) The ME simulator shall send a READ BINARY command using a length of 11 bytes to the UICC.

The UICC shall return the data string 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00', ending with the status condition SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

f) The ME simulator shall send a READ BINARY command with an incorrect P2 parameter and a length of 11 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '6B', SW2 = '00' - wrong parameter(s) P1-P2, or SW1 = '6A', SW2 = '86' - incorrect parameters P1-P2 [CR1].

6.4.3.2.3 Case 3

6.4.3.2.3.1 Definition and applicability

See clause 3.5.3.

6.4.3.2.3.2 Conformance requirement

CR	R1	C-APDU shall be mapped to the INF of the I-Block and the received response from the INF in the I-	O_T1
		Block shall be mapped to R-APDU according to Figure 7.12 in TS 102.221 [1].	

Reference: TS 102.221 [1], subclause 7.3.2.3.

6.4.3.2.3.3 Test purpose

To verify that, under normal or abnormal processing of a case 3 command, the UICC returns status only.

6.4.3.2.3.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{LOCI}.
- d) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- e) The ME simulator shall send an UPDATE BINARY command with the data string '11 22 33 44 55 66 77 88 99 00 11' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

f) The ME simulator shall send an UPDATE BINARY command header with an incorrect P2 parameter and the data string '11 22 33 44 55 66 77 88 99 00 11' to the UICC.

The status condition returned by the UICC shall be SW1 = '6B', SW2 = '00' - wrong parameter(s) P1-P2, or SW1 = '6A', SW2 = '86' - incorrect parameters P1-P2 [CR1].

g) The ME simulator shall send an UPDATE BINARY command with the data 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00' to the UICC.

6.4.3.2.4 Case 4

6.4.3.2.4.1 Definition and applicability

See clause 3.5.3.

6.4.3.2.4.2 Conformance requirement

CR1	C-APDU shall be mapped to the INF of the I-Block and the received response from the INF in the I-	O_T1
	Block shall be mapped to R-APDU according to Figure 7.13 in TS 102.221 [1].	

Reference: TS 102.221 [1], subclause 7.3.2.4.

6.4.3.2.4.3 Test purpose

To verify that, under normal processing of a case 4 command, the UICC returns data and status and that, under abnormal processing of a case 4 command, the UICC returns status only.

6.4.3.2.4.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a SELECT command with P2 = '04' to the UICC to select EF_{IMSI} .

The UICC shall return the FCP of the EF_{IMSI} together with the status condition SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

d) The ME simulator shall send a SELECT command with incorrect P1 parameter and P2 = '04' to the UICC to select EF_{LOCI}

The status condition returned by the UICC shall be SWI = '6B', SW2 = '00' - wrong parameter(s) P1-P2, or SWI = '6A', SW2 = '86' - incorrect parameters P1-P2 [CR1].

6.4.4 Application Layer

6.4.4.1 Definition and applicability

See clause 3.5.3.

6.4.4.2 Conformance requirement

CR1	Each step in an Application Layer exchange consists of a command-response pair, where the	M
	Application Layer of the terminal sends a command to the UICC via the Transport Layer of the	
	terminal, and the UICC processes it and sends a response to Application Layer of terminal using the	
	Transport Layer of the UICC and the Transport Layer of the terminal.	
CR2	Four cases shall be managed by the transmission protocols via the transport layer.	M

Reference: TS 102.221 [1], subclause 7.4.

6.4.4.3 Test purpose

To verify that the Physical Layer function conforms to the above requirements.

NOTE: CR1 and CR2 are tested for each UICC commands described in subclause 6.8.

6.4.4.4 Method of test

Initial conditions

N/A

Test procedure

N/A

6.5 Application and File structure

The tests in this subclause ensure that the IUT is tested against the specification of the logical structure, for a UICC, the code associated with it, and the structure of the files used.

6.5.1 UICC Application structure

6.5.1.1 Definition and applicability

See clause 3.5.3.

6.5.1.2 Conformance requirement

CR1	The UICC shall contain EF _{DIR} under MF.	M
CR2	EF _{DIR} shall contain application identifier(s) available on the UICC.	M
CR3	The UICC shall contain EF _{PL} under MF.	M
CR4	The UICC shall contain EF _{ICCID} under MF.	M
CR5	If DF _{TELECOM} is present it shall reside under the MF and shall use the reserved FID '7F 10'.	M

Reference: TS 102.221 [1], subclause 8.1.

6.5.1.3 Test purpose

To verify that the Elementary Files within the UICC application structure conform to the above requirements.

6.5.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select EF_{DIR}.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

- c) The ME simulator shall send a READ RECORD command to read record 1 of the EF_{DIR}. The length used shall be that of bytes 5 and 6 in TLV DO with tag '82' of the response data in step b).
- d) The ME simulator shall send a SELECT command to the UICC to select and activate the ADF stated in EF_{DIR} of record 1.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2].

- e) The ME simulator shall reset the UICC.
- f) The ME simulator shall send a SELECT command to the UICC to select EF_{PL}.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR3].

g) The ME simulator shall send a SELECT command to the UICC to select EF_{ICCID}.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR4].

h) The ME simulator shall send a SELECT command to the UICC to select DF_{TELECOM}.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command, if the UICC supports $DF_{TELECOM}$, otherwise the status condition returned by the UICC shall be SW1 = '6A', SW2 = '82' - file ID not found [CR5].

6.5.2 File types

6.5.2.1 Dedicated files

6.5.2.1.1 Definition and applicability

See clause 3.5.3.

6.5.2.1.2 Conformance requirement

CR1	DFs shall be referenced by file identifiers.	M
CR2	The Application DF (ADF) shall be a particular DF containing all the DFs and EFs of the application.	M

Reference: TS 102.221 [1], subclause 8.2.1.

6.5.2.1.3 Test purpose

To verify that the Dedicated Files within the UICC file structure conform to the above requirements.

NOTE: CR1 and CR2 shall not be tested as the SELECT function requires the file ID in order to select the files.

6.5.2.1.4 Method of test

Initial conditions

N/A

Test procedure

N/A

6.5.2.2 Elementary files

Elementary File structures the way in which information is held on the UICC and provides security on how this information is accessed.

6.5.2.2.1 Transparent EF

6.5.2.2.1.1 Definition and applicability

See clause 3.5.3.

6.5.2.2.1.2 Conformance requirement

CR1	The first byte of a transparent EF has the relative address '00 00'.	M	
-----	--	---	--

CR2	The total data length of the body of an EF with transparent structure shall be indicated in the SELECT	M
	response of the EF.	

Reference: TS 102.221 [1], subclause 8.2.2.1.

6.5.2.2.1.3 Test purpose

To verify that the EFs within the UICC file structure conform to the above requirements.

6.5.2.2.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{UST}.
- d) The ME simulator shall fulfil the READ access condition of the EF_{UST}.
- e) The ME simulator shall send a READ BINARY command to the UICC. The length used shall be the TLV DO with tag '80' of the response data in step c).

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2].

f) The ME simulator shall send a READ BINARY command with offset '00 01' to the UICC. The length used shall be the TLV DO with tag '80' of the response data in step c) minus 1.

The length of data returned shall be Le and the status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

g) The ME simulator shall send a READ BINARY command with offset '00 01' to the UICC. The length used shall be the TLV DO with tag '80' of the response data in step c).

When T = 0 protocol is used:

The UICC shall return procedure bytes '6C Le-1'; or status indicating a warning or error condition (but not SW1 SW2 = '90 00').

When T = 1 protocol is used:

The length of data returned shall be Le minus 1 and the status condition returned by the UICC shall be SW1 = '62', SW2 = '82' – end of file/record reached before reading Le bytes [CR1, CR2].

6.5.2.2.2 Linear fixed EF

6.5.2.2.2.1 Definition and applicability

See clause 3.5.3.

6.5.2.2.2.2 Conformance requirement

CR1	A linear fixed EF consists of a sequence of records all having the same (fixed) length.	M
CR2	The first record shall be record number 1.	M
CR3	The length of a record shall be indicated in the SELECT response of the EF.	M
CR4	The length of a record multiplied by the number of records shall be indicated in the SELECT response	M
	of the EF.	

CR5	The UICC shall be able to access records within a linear fixed EF using all of the following:	M
	a) absolutely using the record number;	
	b) when the record pointer is not set, it shall be possible to perform an action on the first or the last	
	record by using the NEXT or PREVIOUS mode;	
	c) when the record pointer is set it shall be possible to perform an action on this record, the next	
	record (unless the record pointer is set to the last record) or the previous record (unless the record	
	pointer is set to the first record);	
	d) by identifying a record using pattern search.	
CR6	If an action following selection of a record is aborted (e.g. due to an unsuccessful execution of a	M
	command), then the record pointer shall remain set at the record at which it was set prior to the action.	

Reference: TS 102.221 [1], subclause 8.2.2.2.

6.5.2.2.2.3 Test purpose

To verify that the EFs within the UICC file structure conform to the above requirements.

NOTE: CR5 and CR6 are tested in subclause 6.8.1.

6.5.2.2.2.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) The records in EF_{FDN} shall contain the following data for the first 10 bytes:

```
      1st record
      'A0
      A1
      A2
      B0
      B1
      B2
      A0
      A1
      A2
      A0'

      2nd record
      'B0
      B1
      B2
      A0
      A1
      A2
      A0'
      A1
      A2
      B0'

      3rd record
      'B0
      B1
      B2
      A0
      A1
      A2
      B0
      B1
      B2
      A0'

      4th record
      'A0
      A1
      A2
      B0
      B1
      B2
      B0'
      B1
      B2
      B0'
```

3) The data for the remainder of these four records and for all other records (if any) shall be 'FF'.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- d) The ME simulator shall send a SELECT command to the UICC to select EF_{FDN} .

Following shall be true for the SELECT response data:

- the value of TLV DO with tag '80' shall be equal to product of byte 6 and byte 7 in TLV DO with tag '82' [CR4].
- e) The ME simulator shall send a READ RECORD command to the UICC using ABSOLUTE mode with record 1 and Le shall be the record length as indicated in byte 6 in TLV DO with tag '82' of the response data in step d).

The data returned by the UICC shall be that of the first record [CR2].

The length of the data returned shall be that of byte 6 in TLV DO with tag '82' of the response data in step d) [CR3].

The status condition returned by the UICC shall be SW1='90', SW2='00' - normal ending of the command.

f) The ME simulator shall repeat sending a READ RECORD command to the UICC using NEXT mode with Le being the record length as indicated in byte 6 in TLV DO with tag '82' of the response data in step d) until it reaches the last record whose record number is equal to the byte 7 in TLV DO with tag '82' of the response data in step d).

The length of the data returned in response to every READ RECORD command shall be that of byte 6 in TLV DO with tag '82' of the response data in step d) [CR1, CR3].

The status condition returned by the UICC in response to every READ RECORD command shall be SW1='90', SW2='00' - normal ending of the command.

g) The ME simulator shall send a READ RECORD command to the UICC using NEXT mode with Le being the record length as indicated in byte 6 in TLV DO with tag '82' of the response data in step d).

The UICC shall return an error code appropriate to the command (e.g. SW1='6A', SW2='83' - record not found) [CR4].

NOTE: Step g) confirms that the number of records indicated in byte 7 in the TLV DO with tag '82' of the response data is correct.

6.5.2.2.3 Cyclic EF

6.5.2.2.3.1 Definition and applicability

See clause 3.5.3.

6.5.2.2.3.2 Conformance requirement

CR1	An EF with a cyclic structure consists of a fixed number of records with the same (fixed) length.	M
CR2	In this file structure there shall be a link between the last record (n) and the first record.	M
CR3	When the record pointer is set to the last record n, then the next record shall be record number 1.	M
CR4	When the record pointer is set to record 1, then the previous record shall be record number n.	M
CR5	The last updated record containing the newest data shall be record number 1, and the oldest data shall be	M
	held in record number n.	
CR6	For update operations only PREVIOUS record shall be used.	M
CR7	For reading operations, the methods of addressing shall be Next, Previous, Current and Record Number.	M
CR8	If an action following selection of a record is aborted (e.g. due to an unsuccessful execution of a	M
	command), then the record pointer shall remain set at the record at which it was set prior to the action.	

Reference: TS 102.221 [1], subclause 8.2.2.3.

6.5.2.2.3.3 Test purpose

To verify that the EFs within the UICC file structure conform to the above requirements.

NOTE: CR8 are tested in subclause 6.8.1.

6.5.2.2.3.4 Method of test

NOTE: When EF_{ICI} is not supported by the UICC, any supported cyclic EF in ADF_{USIM} may be chosen.

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) EF_{ICI} shall have at least 4 records.
- 3) The records in EF_{ICI} shall contain the following data:

```
1st record '01' for all bytes
2nd record '02' for all bytes
3rd record '03' for all bytes
Xth record byte value X for all bytes
```

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- d) The ME simulator shall send a SELECT command to the UICC to select EF_{ICI}.

e) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC. The length used shall be that of bytes 5 and 6 in TLV DO with tag '82' of the response data in step d).

The response data shall be the data in the first record [CR1].

f) The ME simulator shall send a READ RECORD command using PREVIOUS mode to the UICC. The record length used shall be that of bytes 5 and 6 in TLV DO with tag '82' of the response data in step d).

The response data shall be the data in the last record [CR1, CR4].

g) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC. The record length used shall be that of bytes 5 and 6 in TLV DO with tag '82' of the response data in step d).

The response data shall be the data in the first record [CR2, CR3, CR4, CR7].

h) The ME simulator shall send a READ RECORD command using PREVIOUS mode to the UICC. The record length used shall be that of bytes 5 and 6 in TLV DO with tag '82' of the response data in step d).

The response data shall be the data in the last record [CR4, CR7].

- i) The ME simulator shall send an UPDATE RECORD command using PREVIOUS mode to the UICC with 'FF' for all the bytes. The record length used shall be that of bytes 5 and 6 in TLV DO with tag '82' of the response data in step d) [CR5].
- j) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 1 to the UICC. The length used shall be that of bytes 5 and 6 in TLV DO with tag '82' of the response data in step d).

The response data shall be the new data that has been updated in step i) [CR5].

k) The ME simulator shall send a READ RECORD command using PREVIOUS mode to the UICC. The length used shall be that of bytes 5 and 6 in TLV DO with tag '82' of the response data in step d).

The response data shall be the previous data in the second last record [CR5].

1) The ME simulator shall send an UPDATE RECORD command using ABSOLUTE mode with record 1 to the UICC with 'FF' for all the bytes. The length used shall be that of bytes 5 and 6 in TLV DO with tag '82' of the response data in step d).

The UICC shall return an error code appropriate to the command (e.g. SW1='69', SW2='81' – command incompatible with file structure) [CR6].

m) The ME simulator shall send an UPDATE RECORD command using CURRENT mode to the UICC with 'FF' for all the bytes. The length used shall be that of bytes 5 and 6 in TLV DO with tag '82' of the response data in step d).

The UICC shall return an error code appropriate to the command (e.g. SW1='69', SW2='81' – command incompatible with file structure) [CR6].

n) The ME simulator shall send an UPDATE RECORD command using NEXT mode to the UICC with 'FF' for all the bytes. The length used shall be that of bytes 5 and 6 in TLV DO with tag '82' of the response data in step d).

The UICC shall return an error code appropriate to the command (e.g. SW1='69', SW2='81'-command incompatible with file structure) [CR6].

6.5.2.2.4 BER-TLV structure EF

6.5.2.2.4.1 Definition and applicability

See clause 3.5.3.

6.5.2.2.4.2 Conformance requirement

CR1	A BER-TLV structure EF is seen at the interface as a set of data objects	Rel-6:
	accessible by commands for handling data objects.	O BER TLV FILES

CR2	The type of data objects in the EF is BER-TLV.	Rel-6:
		O BER TLV FILES

Reference: TS 102.221 [1], subclause 8.2.2.4.

6.5.2.2.4.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR1 and CR2 are tested in subclause 6.8.2.

6.5.2.2.4.4 Method of test

Initial conditions

N/A

Test procedure

N/A

6.5.3 File referencing

6.5.3.1 Definition and applicability

See clause 3.5.3.

6.5.3.2 Conformance requirement

CR1	A file ID shall be assigned at the time of creation of the file concerned.	M
CR2	Two files under the same parent shall never have the same ID.	
CR3	The immediate children of the current DF, the parent DF or the immediate children of the	M
	parent DF shall not have the same FID.	
CR4	No two files under the same parent shall have the same SFI.	M
CR5	The DF name shall be unique within a card.	M
CR6	The reserved FID '7F FF' can be used as a FID for the ADF of the current active application	(R99) Rel-6
	on a given logical channel.	

Reference: TS 102.221 [1], subclause 8.3.

6.5.3.3 Test purpose

To verify that all files within the UICC structure conform to the above requirements.

NOTE 1: CR1 shall not be tested as the SELECT function requires the file ID in order to select files.

NOTE 2: CR2, CR3 and CR5 shall not be tested due to the operation of the SELECT function which should only ever select a single file for a given file ID.

NOTE 3: CR4 shall not be tested due to the operation of commands which supports SFI referencing, they should only ever select a single file for a given SFI.

NOTE 4: CR6 is tested in subclause 6.5.7.

6.5.3.4 Method of test

Initial conditions

N/A

Test procedure

N/A

6.5.4 Methods for selecting a file

6.5.4.1 SELECT by File Identifier Referencing

6.5.4.1.1 Definition and applicability

See clause 3.5.3.

6.5.4.1.2 Conformance requirement

CR1	Selection of an ADF, DF or MF shall set the Current Directory on the UICC.	M	
CR2	After a selection of an ADF, DF or MF, there shall be no current EF.	M	
CR3	After a selection of an EF, the current EF shall be set to this EF and the Current Directory shall remain	M	
	the ADF, DF or MF which is the parent of this EF.		
CR4	Any application specific command shall only be operable if it is specific to the Current Directory.	M	
CR5	It shall be possible to select the following from the last selected file:	M	
	a) any file which is an immediate child of the Current Directory;		
	b) any DF which is an immediate child of the parent of the current DF;		
	c) the parent of the Current Directory;		
	d) the current DF;		
	e) the ADF of the current active application		
	f) the MF.		
	NOTE: Reselection of the last selected file shall be allowed.		
CR6	It shall be possible to select any of the 'valid selections' in Table 8.1, subclause 8.4.1 of TS 102.221 [1]	M	
	for each of the 'last selected file' entries.		

Reference: TS 102.221 [1], subclause 8.4.1.

6.5.4.1.3 Test purpose

To verify that the UICC conforms to the above requirements with regard to file selection by File Identifier Referencing.

NOTE 1: CR4 shall not be tested as it is outside the scope of the present document.

6.5.4.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a STATUS command to the UICC.

if a TLV DO with tag '83' is present ,then the response data shall indicate that ADF_{USIM} is the currently selected directory [CR1].

d) The ME simulator shall send a READ BINARY command using a length of 1 byte to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '86' - command not allowed (no EF selected) [CR2].

e) The ME simulator shall send a SELECT command to the UICC to select EF_{AD}.

TLV DO with tag '83' of the response data shall indicate that EF_{AD} is the currently selected EF [CR3].

f) The ME simulator shall send a STATUS command to the UICC.

If a TLV DO with tag '83' is present, then the response data shall indicate that ADF_{USIM} is the currently selected directory [CR3].

- g) Step h) shall be carried out for each line in Table 8.1, subclause 8.4.1 of TS 102.221 [1] for which a file is defined in Table 9.
- h) Step i) shall be carried out for each one of the 'valid selections' in that line of the table.
- i) Steps j) and then k) shall be carried out in turn.
- j) The ME simulator shall send a SELECT command to the UICC to select the 'last selected file'.
- k) The ME simulator shall send a SELECT command to the UICC to select the 'valid selection'.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR6, CR7].

1) The following file IDs shall be used to represent the IDs in the table:

Table 9: Actual File Selection

Table	Actual
MF	MF
ADF1	ADF _{USIM}
DF1	DF _{TELECOM}
DF4	DF _{PHONEBOOK}
EF1	EFICCID
EF2	EF _{ADN}
EF3	EF _{AD}
EF5	EF _{PBR}

NOTE 1: When EF_{ADN} is not supported by the UICC, any supported EF in DF_{TELECOM} may be chosen.

NOTE 2: When EF_{PBR} is not supported by the UICC, any supported EF in DF_{PHONEBOOK} may be chosen.

6.5.4.2 SELECT by Path Referencing

6.5.4.2.1 Definition and applicability

See clause 3.5.3.

6.5.4.2.2 Conformance requirement

CR1	It shall be possible to select any of the 'valid selections' in Table 8.2, subclause 8.4.2 of TS 102.221 [1]	M
	for each of the 'last selected file' entries, assuming the current ADF has been previously selected.	

Reference: TS 102.221 [1], subclause 8.4.2.

6.5.4.2.3 Test purpose

To verify that the UICC conforms to the above requirements with regard to file selection by path referencing.

6.5.4.2.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.

- c) Step d) shall be carried out for each line in Table 8.2, subclause 8.4.2 of TS 102.221 [1] for which a file is defined in Table 9.
- d) Step e) shall be carried out for each one of the 'example selections' in that line of the table.
- e) Steps f) and then g) shall be carried out in turn.
- f) The ME simulator shall send a SELECT command to the UICC to select the 'last selected DF'.
- g) The ME simulator shall send a SELECT by path command to the UICC to select the 'example selections'.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2].

6.5.4.3 Short File Identifier

6.5.4.3.1 Definition and applicability

See clause 3.5.3.

6.5.4.3.2 Conformance requirement

CR1	It shall be possible to use to the following commands.	M
	a) READ RECORD;	
	b) UPDATE RECORD;	
	c) READ BINARY;	
	d) UPDATE BINARY;	
	e) INCREASE;	
	f) SEARCH RECORD.	
CR2	SFI shall be found in the TLV DO with tag '88'.	M
CR3	If the length of the TLV DO with tag '88' is 0, it indicates that the file does not	M
	support referencing by SFI.	
CR4	If the TLV DO is not present in the FCP it indicates that the 5 least significant	M
	bits of the FID are used as SFI.	
CR5	When the READ RECORD command contains a valid SFI, it shall set the file as	M
	the current EF and reset the current record pointer. Subsequent records are read	
	with the READ RECORD command without SFI.	
CR6	When the UPDATE RECORD command contains a valid SFI, it shall set the	M
	file as the current EF and reset the current record pointer. Subsequent records	
	are updated with the UPDATE RECORD command without SFI.	
CR7	When the INCREASE command contains a valid SFI, it shall set the file as the	M
	current EF and reset the current record pointer. Subsequent records are	
	increased with the INCREASE command without SFI.	
CR8	When the SEARCH RECORD command contains a valid SFI, it shall set the	M
	file as the current EF and reset the current record pointer. Subsequent records	
	are searched with the SEARCH RECORD command without SFI.	
CR9	When the RETRIEVE DATA command contains a valid SFI, it sets the file as	Rel-6:
	the current EF and resets the current tag pointer. If segmentation over several	O_BER_TLV_FILES
	APDUs is used to retrieve long structures, subsequent RETRIEVE DATA	
	commands shall be used without SFI.	
CR10	When the SET DATA command contains a valid SFI, it sets the file as the	Rel-6:
	current EF and resets the current tag pointer. If segmentation over several	O_BER_TLV_FILES
	APDUs is used to set long structures, subsequent SET DATA commands shall	
	be used without SFI.	

Reference: TS 102.221 [1], subclause 8.4.3.

6.5.4.3.3 Test purpose

To verify that the UICC conforms to the above requirements with regard to selection by short file identifier.

NOTE 1: CR3 shall not be tested as it requires information on the files which do not support SFI.

NOTE 2: CR4 shall not be tested as it requires information on the file ID.

NOTE 3: CR1, CR5, CR6, CR7 and CR8 are tested in subclause 6.8.1.

NOTE 4: CR9 and CR10 are tested in subclause 6.8.2.

6.5.4.3.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{IMSI}.

TLV DO with tag '88' of the response data shall indicate the SFI of the EF_{IMSI} [CR2].

6.5.5 Application characteristic

6.5.5.1 Explicit Application selection

6.5.5.1.1 SELECT by DF Name

6.5.5.1.1.1 Definition and applicability

See clause 3.5.3.

6.5.5.1.1.2 Conformance requirement

CR1	A selectable application shall be referenced by a DF name coded on 1 to 16 bytes.	M
CR2	Each name shall be unique within a UICC.	M
CR3	A DF name can be used in the SELECT command to select a selectable application.	M

Reference: TS 102.221 [1], subclause 8.5.1.1.

6.5.5.1.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR3 is tested in the subclause 6.5.5.1.

6.5.5.1.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select $\ensuremath{\mathsf{EF}_{\mathsf{DIR}}}.$
- c) The ME simulator shall send a READ RECORD command with NEXT mode to the UICC.

The length of the TLV DO with tag '4F' in the response data shall not exceed 16 bytes [CR1].

The TLV DO with tag '4F' in the response data shall not be same with any other TLV DO with tag '4F' of the other records [CR2].

- d) Step c) shall be repeated until it reaches the end of file.
- e) Following steps f) and g) shall be repeated for each AIDs read in the step c).
- f) The ME simulator shall reset the UICC.
- g) The ME simulator shall send a SELECT command with AID to the UICC to select and activate the ADF.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

The FCP shall contain the following [CR3]:

- TLV DO with tag 82 shall be '38' or '78'(File Descriptor);
- TLV DO with tag 84 shall be the AID of the UICC (DF name AID).

6.5.5.1.2 SELECT by partial DF Name

6.5.5.1.2.1 Definition and applicability

See clause 3.5.3.

6.5.5.1.2.2 Conformance requirement

CR1	A selectable application shall be able to be selected by a partial DF name using	M
	the P2 parameters first and only occurrence, next, previous or last.	
CR2	DF name shall be right truncated.	M
CR3	If P2 indicates the "last" option, the last active application shall be selected even	M
	if it was a previous card-session.	
CR4	Selection of an application by a partial DF name shall be optional for mono	O_MONO_APP
	application cards.	
CR5	Selection of an application by a partial DF name shall be supported for multi-	O_MULTI_APP
	application cards.	
CR6	The support of this feature shall be indicated in the 'card service data' and 'card	M
	capabilities' compact-TLV objects of the ATR historical bytes.	
CR7	If the UICC does not support selection with partial DF name, the UICC shall	(R99) Rel-6:
	respond with an appropriate response (e.g. command parameters not supported	O_MONO_APP
	'6A86').	

Reference: TS 102.221 [1], subclause 8.5.1.2.

6.5.5.1.2.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: Selection by Partial DF name shall not be tested as it requires the interpretation of the next, previous and first occurrence.

6.5.5.1.2.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to select and activate the USIM application.
- c) The ME simulator shall reset the UICC.

d) The ME simulator shall send a SELECT command with partial DF name of an USIM application and P2 indicating "last occurrence" option to select and activate the last selected application.

If the ATR returned in a) indicates that partial selection by DF name is supported(as indicated in the "card service data" and the "card capabilities" compact-TLV objects of the ATR historical byte)s the UICC shall return the response indicating the USIM application is selected [CR3, CR4, CR6].

If the ATR returned in a) indicates that partial selection by DF name is not supported the UICC shall respond with an appropriate response (e.g. command parameters not supported '6A86') [CR7].

Test procedure 2

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to select and activate the USIM application.
- c) The ME simulator shall reset the UICC.
- d) The ME simulator shall send a SELECT command with partial DF name of an USIM application and P2 indicating "last occurrence" option to select and activate the last selected application.

The UICC shall return the response indicating the USIM application is selected [CR1, CR3].

Test procedure 3

a) The ME simulator shall reset the UICC.

The ATR returned by the UICC shall indicate that selection by partial DF name is supported in the "card service data" and the "card capabilities" compact-TLV objects of the ATR historical bytes. [CR5, CR6]

- b) The ME simulator shall send a SELECT command to select and activate the USIM application.
- c) The ME simulator shall reset the UICC.
- d) The ME simulator shall send a SELECT command with partial DF name of an USIM application and P2 indicating "last occurrence" option to select and activate the last selected application.

The UICC shall return the response indicating the USIM application is selected [CR1, CR3].

6.5.5.2 Application session activation

6.5.5.2.1 Definition and applicability

See clause 3.5.3.

6.5.5.2.2 Conformance requirement

CR1	The application session is initiated when the ME sends a SELECT command, with the application's	M
	AID, indicating in the command parameters that the application shall be activated.	
CR2	There shall be only one active selectable application session on a given logical channel.	
CR3	After having selected the application the UICC shall evaluate the security environment for this	
	application and set the SE according to the application's verification requirements.	

Reference: TS 102.221 [1], subclause 8.5.2.

6.5.5.2.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE 1: CR2 shall not be tested as it is impossible to investigate the number of applications which are activated in a logical channel.

NOTE 2: CR3 is not tested.

6.5.5.2.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command with AID to the UICC to select and activate USIM application.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

c) The ME simulator shall send a STATUS command with P2 = '01' to the UICC.

The response data shall contain the following [CR1]:

- TLV DO with tag '84' shall indicate an AID of the USIM application.

6.5.5.3 Application session termination

6.5.5.3.1 Definition and applicability

See clause 3.5.3.

6.5.5.3.2 Conformance requirement

CR1a	An application session shall be terminated implicitly if a SELECT by DF_{NAME} command with an AID different from the currently active application is performed by the UICC.	O_MULTI_APP
CR1b	An application session shall be terminated explicitly if the application is reselected using the SELECT command indicating in the command parameters that the application shall be terminated.	M
CR1c	An application session shall be terminated if the terminal performs a reset of the UICC.	M
CR1d	An application session shall be terminated if the logical channel is closed.	(Rel-4) Rel-6: O_LOG_CHANS
CR2	After the application has been terminated using a SELECT command indicating in the command parameters that the application shall be terminated (CR1b), the current DF shall be the MF and there shall be no current EF or current application.	Rel-6

Reference: TS 102.221 [1], subclause 8.5.3.

6.5.5.3.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.5.5.3.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

- a) The ME simulator shall reset the UICC.
- b) If no other application than the USIM application exists in the UICC, steps c), d) and e) shall not be carried out.

- c) The ME simulator shall send a SELECT command with AID to the UICC to select and activate the USIM application.
- d) The ME simulator shall send a SELECT command with AID to the UICC to select and activate an application different from the selected USIM application.
- e) The ME simulator shall send a STATUS command with P2 = '01' to the UICC.

The response data shall contain the following [CR1a]:

- TLV DO with tag '84' shall indicate an AID of the selected application different from the selected USIM application in step c).

Test procedure 2

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command with AID to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a SELECT command with AID to the UICC to select and terminate the USIM application.
- d) The ME simulator shall send a STATUS command with P2 = '00' to the UICC.

The response data shall not be that of the USIM application activated in step b) [CR1b].

Test procedure 3

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command with AID to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a SELECT command with AID to the UICC to select and terminate the USIM application.
- d) The ME simulator shall send a STATUS command with P2 = '00' to the UICC.

The response data shall be that of the MF [CR1b, CR2].

e) The ME simulator shall send a READ BINARY command without SFI referencing to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '86' - command not allowed (no EF selected) [CR1b, CR2].

f) The ME simulator shall send a SELECT command with P1 = '00' and a data field equal to '7FFF'.

The UICC shall return an error appropriate to the command. (e.g. SW1 = '6A', SW2 = '82' - File not found). [CR1b, CR2].

Test procedure 4

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command with AID to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a STATUS command with P2 = '01' to the UICC.

The response data shall contain the following:

- TLV DO with tag '84' is the AID of the USIM application (DF name AID).
- d) The ME simulator shall reset the UICC.
- e) The ME simulator shall send a STATUS command with P2='00' to the UICC.

The response data shall not be that of the USIM application activated in step b) [CR1c].

Test procedure 5

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC

The UICC shall return the channel number of the logical channel assigned by the UICC – call this channel 'a'

- c) The ME simulator shall send a SELECT command with AID to the UICC to select and activate the USIM application on channel 'a'.
- d) The ME simulator shall send a STATUS command with P2 = '01' to the UICC on channel 'a'.

The response data shall contain the following:

- TLV DO with tag '84' is the AID of the USIM application (DF name AID).
- e) The ME simulator shall send a MANAGE CHANNEL (CLOSE) command to the UICC to close channel 'a'.
- f) Repeat steps g) and h) for all non-basic logical channels.
- g) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC
- h) The ME simulator shall send a STATUS command with P2 = '00' to the UICC on the logical channel assigned in the response to step g)

The response data shall not be that of the USIM application activated in step c) [CR1d].

6.5.5.4 Application session reset

6.5.5.4.1 Definition and applicability

See clause 3.5.3.

6.5.5.4.2 Conformance requirement

CR1	An application shall be reset if the application is reselected using the SELECT command indicating in	M
	the command parameters that the application shall be activated.	

Reference: TS 102.221 [1], subclause 8.5.4.

6.5.5.4.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.5.5.4.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command with AID to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a SELECT command to the UICC with EF_{LOCI}.
- d) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- e) The ME simulator shall send a READ BINARY command to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

f) The ME simulator shall send a STATUS command with P2 = '01' to the UICC.

The response data shall contain the following:

- TLV DO with tag '84' is the AID of the USIM application (DF name AID).
- g) The ME simulator shall send a SELECT command with AID to the UICC to select and activate the USIM application.

The status condition returned by the USIM shall be SW1 = '90', SW2 = '00' [CR1].

6.5.5.5 GSM/USIM application interaction and restrictions

6.5.5.5.1 Definition and applicability

See clause 3.5.3.

6.5.5.5.2 Conformance requirement

CR1	Activation of a USIM session shall exclude the activation of a GSM session.	
		Rel-5
CR2	Once a USIM application session has been activated, commands sent to the UICC with CLA byte	R99 -
	set to 'A0' shall return SW1SW2 '6E 00' (class not supported) to the ME.	Rel-5
CR3	Activation of a GSM session shall exclude the activation of a USIM session.	R99 -
		Rel-5

Reference: TS 102.221 [16], subclause 8.5.5; TS 102.221 [17], subclause 8.5.5; TS 102.221 [18], subclause 8.5.5.

6.5.5.5.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR3 is not tested as it is out of the scope of the present document.

6.5.5.5.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a STATUS command with 'A0' as the class byte.

The status condition returned by the UICC shall be SW1 = '6E', SW2 = '00' - class not supported [CR1, CR2].

d) The ME simulator shall send a STATUS command with '80' as the class byte.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of a command [CR1].

6.5.6 Reservation of file IDs

6.5.6.1 Definition and applicability

See clause 3.5.3.

6.5.6.2 Conformance requirement

CR1	The following Application Dedicated File IDs shall be reserved for operational use by UICC:	
	- '7F FF'.	
CR2	The following Dedicated File IDs shall be reserved for operational use by UICC:	
	- '7F10' (DF _{TELECOM}), '7F20' (DF _{GSM}), '7F21' (DF _{DCS1800}), '7F22' (DF _{IS-41}), '7F23' (DF _{FP-CTS}),	
	'7F24'(DF _{TIA/EIA-136}), '7F25'(DF _{TIA/EIA-95}) and '7F2X', where X ranges from '6' to 'F'.	
	- '7F80' (DF _{PDC}) is used for the Japanese PDC specification	
	- '7F90' (DF _{TETRA}) is used for the TETRA specification	
	- '7F31' (DF _{IDEN}) is used in the iDEN specification	
	- reserved under '7F10'; '5F50'(DF _{GRAPHICS}); '5F3A'(DF _{PHONEBOOK})	
CR3	The following Elementary File Ids shall be reserved for operational use by UICC:	M
	- '6F 2X', '6F 3X', '6F 4X' in '7F 10' and '7F 2X';	
	- '4F YX', where Y ranges from '2' to 'F' in all 2nd level DFs;	
	- '2F05', '2F06' and '2F 1X' in the MF '3F 00';	
	- '2F00', '2F01' in the MF '3F00'.	
CR4	The following Dedicated File IDs shall be reserved for administrative use by UICC:	
	- '7F 4X', '5F1X' and '5F2X'.	
CR5	The following Elementary File Ids shall be reserved for administrative use by UICC:	M
	- '6F XX' in the DFs '7F 4X'; '4F XX' in the DFs '5F 1X', '5F2X';	
	- '6F 1X' in the DFs '7F 10', '7F 20', '7F 21';	
	- '4F 1X' in all 2nd level DFs;	
	- '2F EX' in the MF '3F 00'.	
CR6	The following Dedicated File IDs shall be reserved for operational use by UICC:	R99 - Rel-
	'5F50', '5F3A', '7F 10', '7F 2X', '7F 80' and '7F 90'.	5

Reference: TS 102.221 [1], subclause 8.6.

6.5.6.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR4 and CR5 shall not be tested as the administrative functionality is outside the scope of this test specification.

6.5.6.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command using FID '7F FF' to the UICC to select and activate USIM application.

The response data shall contain the following:

TLV DO with tag '84' is the AID of the UICC (DF name - AID) shall be the same as in step b) [CR1].

Test procedure 2

- a) The ME simulator shall reset the UICC.
- b) For all possible DFs and EFs on the UICC, the ME simulator shall send a SELECT command to the UICC to select each file in sequence.

For all successful selections, the ID of the selected file shall be either that of EF_{ATR} or one of those in Figure 4.1 and Figure 4.2, subclause 4.7 of TS 31.102 [3], or shall not be one of those listed as reserved for operational use in CR6 [CR6, CR3].

Test procedure 3

- a) The ME simulator shall reset the UICC.
- b) For all possible DFs and EFs on the UICC, the ME simulator shall send a SELECT command to the UICC to select each file in sequence.

For all successful selections, the ID of the selected file shall be either that of EF_{ATR} or one of those in Figure 4.1 and Figure 4.2, subclause 4.7 of TS 31.102 [3], or shall not be one of those listed as reserved for operational use in CR2 [CR2, CR3].

6.5.7 Logical channels

6.5.7.1 No Logical Channel Support

6.5.7.1.1 Definition and applicability

See clause 3.5.3.

6.5.7.1.2 Conformance requirement

CR1	There may be up to 3 logical channels in addition to the basic logical channel 0.	
CR2	A UICC which supports logical channels indicates it in the ATR, together with the assignment	(Rel-4) Rel-
	methods and maximum number of logical channels it supports.	6

Reference: TS 102 221 [1], subclause 8.7.

6.5.7.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.5.7.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

a) The ME simulator shall reset the UICC

The UICC shall return a valid ATR.

The following shall be true of the returned ATR:

• The Third Software Function in the Card Capabilities Object shall not be present [CR1, CR2]

Or

- If the Third Software Function is present it shall indicate that the UICC does not support logical channels [CR1, CR2]
- b) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC.

The UICC shall return an error code appropriate to the command. [CR2]

c) The ME simulator shall send a STATUS command to the UICC on channel 1.

The UICC shall return an error code appropriate to the command [CR2]

d) The ME simulator shall send a STATUS command to the UICC on channel 2.

The UICC shall return an error code appropriate to the command [CR2]

e) The ME simulator shall send a STATUS command to the UICC on channel 3.

The UICC shall return an error code appropriate to the command [CR2]

6.5.7.2 Logical Channels – Basic Behaviour

6.5.7.2.1 Definition and applicability

See clause 3.5.3.

6.5.7.2.2 Conformance requirement

CR1	There may be up to 3 logical channels in addition to the basic logical channel 0.	(Rel-4) Rel-6
CR2	Channel 0 is always available and open throughout the card session.	(Rel-4) Rel-6
CR3	A UICC which supports logical channels indicates it in the ATR, together with	(Rel-4) Rel-6:
	the assignment methods and maximum number of logical channels it supports.	O_LOG_CHANS
CR4	The UICC supporting logical channels shall support at least one channel in	(Rel-4) Rel-6:
	addition to the basic channel.	O_LOG_CHANS
CR5	The UICC supporting logical channels shall support logical channel number	(Rel-4) Rel-6:
	assignment by the UICC.	O_LOG_CHANS
CR6	There is no interleaving of commands and their responses across logical channels;	(Rel-4) Rel-6:
	between the receipt of the command APDU and the sending of the response	O_LOG_CHANS
	APDU to that command, only one logical channel is active.	
CR7	A logical channel is opened by using a MANAGE CHANNEL command, in	(Rel-4) Rel-6:
	which the card assigns a channel number and returns it in the response.	O_LOG_CHANS
CR8	The logical channel remains open until it is explicitly closed by a MANAGE	(Rel-4) Rel-6:
	CHANNEL command, or if the UICC is deactivated.	O_LOG_CHANS

Reference: TS 102 221 [1], subclause 8.7.

6.5.7.2.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR7 shall not be tested as it is not possible to interleave commands with current protocols.

6.5.7.2.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

a) The ME simulator shall reset the UICC.

The UICC shall return a valid ATR sequence.

The Third Software Function shall be present and it shall indicate that:

- The UICC supports logical channels.[CR3]
- The UICC supports logical channel number assignment by the card. [CR3]
- The maximum number of logical channels supported is between 2 and 4. [CR3, CR1, CR4]
- b) The ME simulator shall send a MANAGE CHANNEL (CLOSE) command to the UICC to close channel 0 (the basic channel).

The UICC shall return an error code appropriate to the command [CR2]

c) The ME simulator shall send a STATUS command to the UICC on the basic channel.

The status returned by the UICC shall be SW1 = '90', SW2 = '00' – normal ending of the command[CR2]

d) The ME simulator shall send a STATUS command to the UICC on channel 1.

The UICC shall return an error code appropriate to the command [CR7]

e) The ME simulator shall send a STATUS command to the UICC on channel 2.

The UICC shall return an error code appropriate to the command [CR7]

f) The ME simulator shall send a STATUS command to the UICC on channel 3.

The UICC shall return an error code appropriate to the command [CR7]

g) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC on the basic channel

The UICC shall return the number of the logical channel assigned by the UICC [CR4, CR5, CR7]

h) The ME simulator shall send a STATUS command to the UICC on the logical channel assigned by the UICC in step g).

The status returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

- i) Steps g) and h) shall be repeated for each of the remaining non basic logical channels supported by the UICC
- j) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC on the basic channel

The UICC shall return an error code appropriate to the command [CR1]

k) The ME simulator shall send a MANAGE CHANNEL (CLOSE) command to the UICC on the first open non-basic channel supported by the UICC.

The status returned by the UICC shall be 90 00[CR8]

1) The ME simulator shall send a STATUS command to the UICC on the same logical channel used in step k).

The UICC shall return an error code appropriate to the command.

m) Steps k) and l) should be repeated for each of the non basic logical channels supported by the UICC.

Test procedure 2

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC on the basic channel.

The UICC shall return the number of the logical channel assigned by the UICC – call this channel 'a' [CR7]

c) The ME simulator shall send a STATUS command to the UICC on channel 'a'.

The status returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

d) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC on channel 'a'

The UICC shall return the number of the logical channel assigned by the UICC - call this channel 'b'. [CR5, CR7]

e) The ME simulator shall send a STATUS command to the UICC on channel 'b'.

The status returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

- f) The ME simulator shall reset the UICC.
- g) The ME simulator shall send a STATUS command to the UICC on channel 'a'.

The UICC shall return an error code appropriate to the command [CR8].

6.5.7.3 Opening a Logical Channel from the Basic Channel

6.5.7.3.1 Definition and applicability

See clause 3.5.3.

6.5.7.3.2 Conformance requirement

CR1	When the open function is performed from the basic channel, then after a	(Rel-4) Rel-6:
	successful open, the MF shall be implicitly selected as the current DF.	O_LOG_CHANS
CR2	When the open function is performed from the basic channel, no current EF is	(Rel-4) Rel-6:
	selected in the new logical channel.	O_LOG_CHANS
CR3	When the open function is performed from the basic channel, then after a	(Rel-4) Rel-6:
	successful open, the ADF of the current active application is undefined.	O_LOG_CHANS

Reference: TS 102 221 [1], subclause 8.7.

6.5.7.3.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.5.7.3.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select DF_{TELECOM}
- d) The ME simulator shall send a SELECT command to the UICC to select EF_{ARR}
- e) The ME simulator shall send a STATUS command with P2 = '00' to the UICC.

The value of the File Identifier in the response data shall be '7F 10'.

f) The ME simulator shall send a MANAGE CHANNEL (OPEN) to the UICC.

The UICC shall return the channel number of the logical channel assigned by the UICC – call this channel 'a'.

g) The ME Simulator shall send a STATUS command on channel 'a' with P2 = '00' to the UICC.

The value of the File Identifier in the response data shall be '3F 00' [CR1]

h) The ME simulator shall send READ RECORD command using ABSOLUTE mode with record 1 on channel 'a'.

The UICC shall return an error appropriate to the command. (e.g. SW1 = '69', SW2 = '86; - Command not allowed (no EF selected)). [CR2]

i) The ME simulator shall send a SELECT command with P1 = '00' and a data field equal to '7FFF' on channel 'a'.

The UICC shall return an error appropriate to the command. (e.g. SW1 = '6A', SW2 = '82' - File not found). [CR3].

6.5.7.4 Opening a Logical Channel from a Non-Basic Channel

6.5.7.4.1 Definition and applicability

See clause 3.5.3.

6.5.7.4.2 Conformance requirement

CR1	When the open function is performed from a logical channel which is not	(Rel-4) Rel-6:
	the basic one, then after a successful open, the current DF of the logical	O_LOG_CHANS_34,
	channel from which the command was issued shall be selected as the	O_SHAREABLE
	current DF.	
CR2	When the open function is performed from a logical channel which is not	(Rel-4) Rel-6:
	the basic one, no current EF is selected in the new logical channel.	O_LOG_CHANS_34,
	·	O_SHAREABLE

Ī	CR3	When the open function is performed from a logical channel which is not	(Rel-4) Rel-6:
		the basic one, then after a successful open, the ADF of the current active	O_LOG_CHANS_34,
		application of the logical channel from which the command was issued	O_SHAREABLE
		shall be selected as the current active application.	

Reference: TS 102 221 [1], subclause 8.7.

6.5.7.4.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.5.7.4.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) The ME, DF_{TELECOM} and the USIM application shall be configured as shareable.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME shall send a MANAGE CHANNEL (OPEN) command to the UICC from the basic channel.

The UICC shall return the assigned logical channel number – call it 'a'

- c) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application on channel 'a'.
- d) The ME simulator shall send a SELECT command to the UICC to select DF_{TELECOM} on channel 'a'.
- e) The ME simulator shall send a SELECT command to the UICC to select EF_{ARR} on channel 'a'.
- f) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC on channel 'a'.

The UICC shall return the assigned logical channel number – call it channel 'b'.

g) The ME simulator shall send a STATUS command to the UICC on channel 'b'

The returned FCP shall contain the File ID of $DF_{TELECOM}$ [CR1].

h) The ME simulator shall send a READ RECORD (NEXT) command to the UICC on channel 'b'

The UICC shall return an error – no EF selected [CR2].

i) The ME simulator shall send a SELECT command with P1 = '00' and a data field equal to '7FFF' on channel 'b'.

The returned FCP shall contain the AID of the USIM [CR3].

- j) The ME simulator shall reset the UICC.
- k) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application on the basic channel.
- 1) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC on the basic channel.

The UICC shall return the assigned logical channel number – call it channel 'a'.

m) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICCC on channel 'a'.

The UICC shall return the assigned logical channel number – call it channel 'b'.

n) The ME simulator shall send a SELECT command with P1 = '00' and a data field equal to '7FFF' on channel 'b'.

The UICC shall return an error appropriate to the command. [CR3].

6.5.7.5 Opening a Logical Channel on Non-Shareable Files

6.5.7.5.1 Definition and applicability

See clause 3.5.3.

6.5.7.5.2 Conformance requirement

CR1	If the MANAGE CHANNEL command is performed on a DF or ADF	(Rel-4) Rel-6:
	that is not shareable, the card shall respond with a appropriate error	O_LOG_CHANS,
	message. The response shall indicate that the command is not allowed.	O_NON_SHAREABLE
CR2	If the MANAGE CHANNEL command is performed on a DF or ADF	(Rel-4) Rel-6:
	that is not shareable no new channel is opened.	O_LOG_CHANS,
		O_NON_SHAREABLE

Reference: TS 102 221 [1], subclause 8.7.

6.5.7.5.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.5.7.5.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) The MF and the USIM application shall be configured as non-shareable.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC on the basic channel.

The UICC shall return an error appropriate to the command. [CR1]

c) The ME simulator shall send a STATUS command to the UICC on channel 1.

The UICC shall return an error appropriate to the command. [CR2]

d) The ME simulator shall send a STATUS command to the UICC on channel 2.

The UICC shall return an error appropriate to the command. [CR2]

e) The ME simulator shall send a STATUS command to the UICC on channel 3.

The UICC shall return an error appropriate to the command. [CR2]

- f) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application on the basic channel.
- g) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC on the basic channel.

The UICC shall return an error appropriate to the command. [CR1]

h) The ME simulator shall send a STATUS command to the UICC on channel 1.

The UICC shall return an error appropriate to the command. [CR2]

i) The ME simulator shall send a STATUS command to the UICC on channel 2.

The UICC shall return an error appropriate to the command. [CR2]

j) The ME simulator shall send a STATUS command to the UICC on channel 3.

The UICC shall return an error appropriate to the command. [CR2]

6.5.7.6 Logical Channels and Shareable Files

6.5.7.6.1 Definition and applicability

See clause 3.5.3.

6.5.7.6.2 Conformance requirement

CR1	In order to be accessed from several logical channels at the same time, a	(Rel-4) Rel-6:
	given file (EF, DF, ADF) shall be indicated as "shareable" in its file	O_LOG_CHANS
	descriptor.	
CR2	If a file is indicated as shareable, then applications may perform authorized	Rel-6: O_LOG_CHANS,
	operations on the file independently of whether or not the file is the current	O_SHAREABLE
	file of any other application.	
CR3	If a file is indicated as not-shareable and is the current file of one	Rel-6: O_LOG_CHANS,
	application, then another application cannot perform any operation on the	O_NON_SHAREABLE
	file regardless of authorization. Access by any other application, including	
	an attempt to select the file, shall return the status word '6985' (Conditions	
	of use not satisfied).	

Reference: TS 102 221 [17], subclause 8.7; TS 102 221 [18], subclause 8.7; TS 102 221 [1], subclause 8.7 and 8.8.

6.5.7.6.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.5.7.6.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) For test procedure 1, EF_{ARR} (under the MF), DF_{TELECOM} and the USIM shall be configured as non-shareable.
- 3) For test procedure 2, the MF, $DF_{TELECOM}$, EF_{ARR} (under $DF_{TELECOM}$) and the USIM shall be configured as shareable.

Test procedure 1 (non-shareable files)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select DF_{TELECOM} on the basic channel.
- c) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC on the basic channel.

The UICC should return the assigned logical channel number – call it channel 'a'.

- d) The ME simulator shall send a SELECT command to the UICC to select the MF on the basic channel.
- e) The ME simulator shall send a SELECT command to the UICC to select EF_{ARR} (under the MF) on the basic channel.
- f) The ME simulator shall send a SELECT command to the UICC to select EF_{ARR} (under the MF) on channel 'a'.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '85' - Conditions of used not satisfied. [CR1, CR3]

- g) The ME simulator shall send a SELECT command to the UICC to select DF_{TELECOM} on the basic channel.
- h) The ME simulator shall send a SELECT command to the UICC to select DF_{TELECOM} on channel 'a'.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '85' - Conditions of used not satisfied [CR1, CR3]

i) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application on the basic channel.

j) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application on channel 'a'.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '85' - Conditions of used not satisfied.. [CR1, CR3]

Test procedure 2 (shareable files)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a MANAGE CHANNEL (OPEN) on the basic channel.

The UICC should return the assigned logical channel number – call it 'a' [CR1]

- c) The ME simulator shall send a SELECT command to the UICC to select DF_{TELECOM} on the basic channel.
- d) The ME simulator shall send a SELECT command to the UICC to select EF_{ARR} on the basic channel.
- e) The ME simulator shall send a READ RECORD (NEXT) command to the UICC on the basic channel.

The UICC shall return the contents of the first record in EF_{ARR} .

f) The ME simulator shall send a SELECT command to the UICC to select DF_{TELECOM} on channel 'a'.

The status returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command. [CR1, CR2]

g) The ME simulator shall send a SELECT command to the UICC to select EF_{ARR} on channel 'a'.

The status returned by the UICC shall be SW1 = '90', SW2 = '00' – normal ending of the command. [CR1, CR2]

h) The ME simulator shall send a READ RECORD (NEXT) command to the UICC on channel 'a'.

The UICC shall return the contents of the first record in EF_{ARR} . The data received shall be the same as that received in step e) [CR1, CR2].

- i) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application on the basic channel.
- j) The ME simulator shall send a STATUS command to the UICC on the basic channel.

The FCP returned by the UICC shall contain the AID of the USIM.

k) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application on channel 'a'.

The status returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command. [CR1, CR2]

1) The ME simulator shall send a STATUS command to the UICC on channel 'a'.

The FCP returned by the UICC shall contain the AID of the USIM [CR1, CR2].

6.5.7.7 Command Interdependencies

6.5.7.7.1 Definition and applicability

See clause 3.5.3.

6.5.7.7.2 Conformance requirement

CR1	Command interdependencies on one logical channel are independent	(Rel-4) Rel-6:
	of command interdependencies on another logical channel.	O_LOG_CHANS
CR2	File access should be managed independently on each opened logical	(Rel-4) Rel-6:
	channel.	O_LOG_CHANS
CR3	In particular, a record-based file shall have a different record pointer	(Rel-4) Rel-6:
	for each opened logical channel.	O_LOG_CHANS,
		O_SHAREABLE

CR4	Once a new channel is opened, the current DF and the current file are	(Rel-4) Rel-6:
	independent per each logical channel.	O_LOG_CHANS

Reference: TS 102 221 [1], subclauses 8.7 and 8.8.

6.5.7.7.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR1 is a general conformance requirement that is tested when the other CRs are tested.

6.5.7.7.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) DF_{TELECOM}, EF_{ARR} (under DF_{TELECOM}), EF_{FDN} and the USIM shall be configured as shareable.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select DF_{TELECOM} on the basic channel.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{ARR} on the basic channel.
- d) The ME simulator shall send a READ RECORD (NEXT) command to the UICC on the basic channel

The UICC shall return the contents of the first record in EF_{ARR} .

e) The ME simulator shall send a MANAGE CHANNEL (OPEN) command on the basic channel

The UICC shall return the logical channel number assigned by the UICC - call this channel 'a'.

- f) The ME simulator shall send a SELECT command to the UICC to select $DF_{TELECOM}$ on channel 'a'.
- g) The ME simulator shall send a SELECT command to the UICC to select EF_{ARR} on channel 'a'.
- h) The ME simulator shall send a READ RECORD (CURRENT) command to the UICC on the basic channel.

The UICC shall return the contents of the first record in EFARR. The data shall be the same as that received in step d).[CR2]

- i) The ME simulator shall send a SELECT command to the UICC to select EF_{ADN} on channel 'a'.
- j) The ME simulator shall send a READ RECORD (CURRENT) command to the UICC on the basic channel.

The UICC shall return the contents of the first record in EFARR. The data shall be the same as that received in step d). [CR2, CR4]

- k) The ME simulator shall send a SELECT command to select the MF on channel 'a'.
- 1) The ME simulator shall send a STATUS command with P1 P2 = '00 00' to the UICC on the basic channel.

The FCP returned by the UICC shall contain the File Identifier of DF_{TELECOM}. [CR4]

- m) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application on channel 'a'.
- n) The ME simulator shall send a STATUS command with P1 P2 = '00 00' to the UICC on the basic channel.

The FCP returned by the UICC shall contain the File Identifier of $DF_{TELECOM}$. [CR4]

o) The ME simulator shall send a SELECT command with P1 = '00' and the data field equal to '7FFF' to the UICC on the basic channel.

The UICC shall return an error appropriate to the command. [CR4]

p) The ME simulator shall send a READ RECORD (CURRENT) command to the UICC on the basic channel.

The UICC shall return the contents of the first record in EFARR. The data shall be the same as that received in step d).

- q) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM on the basic channel.
- r) The ME simulator shall send a SELECT command to the UICC to deselect the USIM on channel 'a'.
- s) The ME simulator shall send a STATUS command to the UICC on the basic channel.

The FCP returned by the UICC shall contain the AID of the USIM. [CR4]

- t) The ME simulator shall reset the UICC.
- u) The ME simulator shall send a SELECT command to the UICC to select DF_{TELECOM} on the basic channel.
- v) The ME simulator shall send a MANAGE CHANNEL (OPEN) to the UICC on the basic channel.

The UICC shall return the logical channel number assigned by the UICC – call this channel 'a'.

- w) The ME simulator shall send a SELECT command to the UICC to select EF_{ARR} on the basic channel.
- x) The ME simulator shall send a READ RECORD (NEXT) command to the UICC on the basic channel.
- y) The ME simulator shall send a READ RECORD (NEXT) command to the UICC on channel 'a'.

The UICC shall return an error appropriate to the command (e.g. 69 86 – Command not allowed (no EF selected)).[CR4]

- z) The ME simulator shall reset the UICC.
- aa) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the READ access condition for EF_{FDN} .
- bb) The ME simulator shall send a MANAGE CHANNEL (OPEN) to the UICC.

The UICC shall return the channel number of the logical channel assigned by the UICC – call this channel 'a'.

- cc) The ME simulator shall send a SELECT command to the UICC on the basic channel to select and activate the USIM application.
- dd) The ME simulator shall send a SELECT command to the UICC on the basic channel to select EF_{EDN} .
- ee) The ME simulator shall send a SELECT command to the UICC on the channel 'a' to select and activate the USIM application.
- ff) The ME simulator shall send a SELECT command to the UICC on channel 'a' to select EF_{FDN}.
- gg) The ME simulator shall send a READ RECORD (NEXT) command to the UICC on the basic channel.

The first 10 bytes of the data string returned by the UICC shall be 'A0 A1 A2 B0 B1 B2 A0 A1 A2 A0'.

hh) The ME simulator shall send a READ RECORD (NEXT) command to the UICC on channel 'a'.

The first 10 bytes of the data string returned by the UICC shall be 'A0 A1 A2 B0 B1 B2 A0 A1 A2 A0'. [CR3]

ii) The ME simulator shall send a READ RECORD (CURRENT) command to the UICC on the basic channel.

The first 10 bytes of the data string returned by the UICC shall be 'A0 A1 A2 B0 B1 B2 A0 A1 A2 A0'.

jj) The ME simulator shall send a READ RECORD (NEXT) command to the UICC on channel 'a'.

The first 10 bytes of the data string returned by the UICC shall be 'B0 B1 B2 A0 A1 A2 A0 A1 A2 B0'. [CR3]

kk) The ME simulator shall send a READ RECORD (CURRENT) command to the UICC on the basic channel.

The first 10 bytes of the data string returned by the UICC shall be 'A0 A1 A2 B0 B1 B2 A0 A1 A2 A0'. [CR3]

6.5.7.8 Consistency of File Updates

6.5.7.8.1 Definition and applicability

See clause 3.5.3.

6.5.7.8.2 Conformance requirement

CR1	Applications are responsible for keeping data consistency (in the card and the	(Rel-4) Rel-6:
	terminal) when accessing the same file from different logical channels. Note	O_LOG_CHANS,
	that special attention should be given to cyclic files, e.g. when the file is read	O_SHAREABLE
	in one channel and updated in the other.	

Reference: TS 102 221 [1], subclause 8.7.

6.5.7.8.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.5.7.8.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) EF_{LOCI} shall be shareable
- 3) EF_{CCP2} shall be shareable

Test Procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- c) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC.

The UICC shall return the assigned logical channel number – call this channel 'a'

- d) The ME simulator shall send a SELECT command to the UICC on the basic channel to select and activate the USIM.
- e) The ME simulator shall send a SELECT command to the UICC on the basic channel to select EF_{CCP2}.
- f) The ME simulator shall send a SELECT command to the UICC on channel 'a' to select and activate the USIM.
- g) The ME simulator shall send a SELECT command to the UICC on channel 'a' to select EF_{CCP2}.
- h) The ME simulator shall send a READ RECORD (NEXT) command to the UICC on the basic channel

The data string returned by the UICC shall be the contents of the first record in EF_{CCP2} i.e. '10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E'.

i) The ME simulator shall send a READ RECORD (NEXT) to the UICC on channel 'a'.

The data string returned by the UICC shall be the contents of the first record in EF_{CCP2} i.e. '10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E'.

- k) The ME simulator shall send a READ RECORD (CURRENT) command to the UICC on the basic channel.

- 1) The ME simulator shall send a SELECT command to the UICC to select EF_{LOCI} on the basic channel.
- m) The ME simulator shall send a SELECT command to the UICC to select EF_{LOCI} on channel 'a'.

n) The ME simulator shall send a READ BINARY command to the UICC on the basic channel using a length of 11 bytes.

The data string returned by the UICC shall be 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00'.

o) The ME simulator shall send a READ BINARY command to the UICC on channel 'a' using a length of 11 bytes.

The data string returned by the UICC shall be 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00'.

- q) The ME simulator shall send a READ BINARY command to the UICC on the basic channel using a length of 11 bytes.

The data string returned by the UICC shall be 'FF FF FF FF FF FF FF FF FF 00 00' [CR1].

6.6 Security features

Two types of UICC are defined in TS 102.221 [1], single verification capable UICC and multi-verification capable UICC. Every application shall conform to the security features defined in TS 102.221 [1].

6.6.1 Supported security features

6.6.1.1 Definition and applicability

See clause 3.5.3.

6.6.1.2 Conformance requirement

For a multi-verification capable UICC

CR1	The UICC shall support more than one level 1 user verification requirement (PIN).	O_MULTI_VER
CR2	The UICC shall support the use of a universal PIN.	O_MULTI_VER
CR3	The UICC shall have a level 2 user verification requirement (PIN2) on the application	O_MULTI_VER
	level, if assigned.	
CR4	The UICC shall support access rules defined in security attributes indicated in tag '8B'	O_MULTI_VER
	(i.e. referenced to expanded format).	
CR5	The UICC shall support one level 1 user verification requirement (PIN) as defined in	O_SINGLE_VER
	table 9.3 in TS 102.221 [1].	
CR6	The UICC shall have a level 2 user verification requirement (PIN2) on the application	O_SINGLE_VER
	level, if assigned.	

Reference: TS 102.221 [1], subclause 9.1.

6.6.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.6.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.

The following shall be true for PS Template DO (tag 'C6') in the response data:

- TLV DO with tag '83' shall be '11' (Universal PIN) [CR2];
- TLV DO with tag '83' shall be '01' (PIN Application 1) [CR1];
- TLV DO with tag '83' shall be '81' (Second PIN Application 1) [CR3], if assigned;

The response data shall also contain TLV DO with tag '8B' [CR4].

Test procedure 2

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.

The following shall be true for PS Template DO (tag 'C6') in the response data:

- TLV DO with tag '83' shall be '01' (PIN) [CR5];
- TLV DO with tag '83' shall be '81' (PIN2) [CR6], if assigned.
- c) Step b) shall be repeated for all the other USIM applications in the UICC.

6.6.2 Security architecture

6.6.2.1 Definition and applicability

See clause 3.5.3.

6.6.2.2 Conformance requirement

CR1	The security architecture shall contain the following:	M		
	a) security attributes as part of the DF/EF FCP using tag '8B', tag '8C' or tag 'AB';			
	b) access mode data object (AM_DO) defining for which group/type of command(s) the			
	security condition apply;			
	c) security condition data object (SC_DO) indicating which security related procedures (user			
	PIN verification) shall be satisfied before a command may be performed on a file;			
	d) access rule shall be stored in the EF _{ARR} which may be shared between files in the UICC.			
CR2	In order to perform commands other than SELECT and STATUS/GET RESPONSE the security	M		
	condition for the file shall be met.			
CR3	The content of each AM byte (in compact format) or AM_DO (in expanded format) shall be	M		
	unique within the same access rule.			
CR4	SC_DOs OR and AND relations shall contain at least two access conditions.	M		
CR5	If the UICC can not determine the access condition for the requested access to a file, then the	(R99)		
	requested access to this file shall not be granted and the card shall return an error Status Word	Rel-6 -		
	'6982' (Security status not satisfied).	•••		
CR6	If the UICC implements referenced access rules and EFarr is referenced by file ID then the	(R99)		
	following is applicable:	Rel-6 -		
	When searching for the access rules for an EF, if the EF(ARR) file with the file ID indicated in			
	tag '8B' can not be found in the current DF, the parent DF shall be searched for EF(ARR). This			
	process shall continue until the EF(ARR) is found or until an ADF or the MF is reached.			
	When searching for the access rules for a DF, if the EF(ARR) file with the file ID indicated			
	in tag '8B' cannot be found in the parent DF, the grandparent DF shall be searched for			
	EF(ARR). This process shall continue until the EF(ARR) is found or until an ADF or the			
	MF is reached.			
	for the MF or an ADF, the EF(ARR) file with the file ID indicated in tag '8B' shall be searched			
	under the MF.			
CR7	An application with multiple Security Environments shall specify SEID when referencing access	(R99)		
	rules.	Rel-6 -		
	TG 102 221 [1] 1 1 0 2			

Reference: TS 102.221 [1], subclause 9.2.

6.6.2.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE 1: CR2 is tested in the subclause 6.8.1.

NOTE 2: CR6 and CR7 are not tested.

6.6.2.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{IMSI}.

The response data shall contain either TLV DO with tag '8B', '8C' or 'AB' [CR1a].

If the TLV DO with tag '8B' is present, the structure shall be the same as stated in subclause 9.2.7of TS 102.221 [1] and the AM_DO and SC_DO shall be stored in EF_{ARR} [CR1d].

If the TLV DO with tag '8C' is present, the AM_DO and SC_DO shall be in a compact format according to ISO/IEC 7816-4 [7] [CR1b, CR1c].

If the TLV DO with tag 'AB' is present, the AM_DO and SC_DO shall be in an expanded format according to ISO/IEC 7816-4 [7] [CR1b, CR1c].

- d) The ME simulator shall send a SELECT command to select EF_{ARR} if the TLV DO with tag '8B' is present in the response data returned in step b) [CR1d].
- e) The ME simulator shall send a READ RECORD command to read record 1 of EF_{ARR} .

The response data shall contain the AM_DO and SC_DO in an expanded format according to ISO/IEC 7816-4 [7][CR1b, CR1c, CR4].

f) Step e) shall be repeated for all the records in EF_{ARR} [CR1d].

The content of each AM byte (in compact format) or AM_DO (in expanded format) shall be unique within the same access rule [CR3].

Test procedure 2

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to select EF_{ICCID} .

If the TLV DO with tag '8B' is present in the response data returned in step b) the following steps shall be carried out:

- c) The ME simulator shall send a SELECT command to select EF_{ARR} .
- d) The ME simulator shall send a VERIFY PIN command using ADM to the UICC.
- e) The ME simulator shall send a READ RECORD command to determine the access rules specified in the record number specified by tag '8B' of the response data returned in step b).
- f) The ME simulator shall send a UPDATE RECORD command to modify the record number specified in tag '8B' of the response data returned in step b) so as to remove the READ access condition.
- g) The ME simulator shall send a SELECT command to select EF_{ICCID} .

h) The ME simulator shall send a READ BINARY command to the UICC.

The response data returned by the UICC shall be SW1 = '69', SW2 = '82' – security status not satisfied [CR5].

- i) The ME simulator shall send a SELECT command to select EF_{ARR}.
- j) The ME simulator shall send a UPDATE RECORD command to modify the record number specified in tag '8B' so as to return it to the value prior to step c).

6.6.3 Security environment

6.6.3.1 Definition and applicability

See clause 3.5.3.

6.6.3.2 Conformance requirement

CR1	SE01 (default SE) and SE00 (no authentication method required) are defined.	O_MULTI_VER
CR2	When the SE00 is active, Universal PIN shall be used if known and enabled,	O_MULTI_VER
	otherwise no PIN shall be used.	
CR3	When the SE00 is active, Application PIN shall be disabled.	O_MULTI_VER
CR4	When the SE01 is active, Application PIN shall be used if enabled, otherwise no PIN	O_MULTI_VER
	shall be used.	
CR5	A multi-verification capable UICC shall support the use of SE00 and SE01 in order	O_MULTI_VER
	to allow application verification requirement to be replaced by the Universal PIN.	
CR6	The PIN shall map to the SE ID according to table 9.1 of the TS 102.221 [1].	O_MULTI_VER
CR7	The UICC shall have Security Environment SE00 active when no application is	(R99) Rel-6:
	active on a given logical channel and at least one of the application PINs is disabled	O_MULTI_VER
	except for the case(s) where the Universal PIN is enabled but the default usage	
	qualifier is set to "do not use" otherwise Security SE01 shall be active.	
CR8	The Security Environment on a logical channel opened from the basic logical	(R99) Rel-6:
	channel shall be as the Security Environment on the basic logical channel after ATR.	O_MULTI_VER
CR9	The Security Environment on a logical channel opened from a non basic logical	(R99) Rel-6:
	channel shall be as the Security Environment from the non basic logical channel	O_MULTI_VER
	from which the open was performed.	

Reference: TS 102.221 [1], subclause 9.3.1.

6.6.3.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE 1: CR7 is not tested.

NOTE 2: CR8 is not tested.

NOTE 3: CR9 is not tested.

6.6.3.4 Method of test

NOTE: The following test procedures shall be applicable only to a multi-verification capable UICC.

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) SE01 shall be active.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- c) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.

The following shall be true of the response data:

- TLV DO with tag '90' (PIN Status) under TLV DO with tag 'C6' shall indicate that the Application PINs and the Universal PIN are enabled;
- TLV DO with tag '8B' shall be as follows:

	EF _{ARR} FID		SE ID1	Record No X	SE ID2	Record No Y	
1	where	_	SE ID1 and	l SE ID2 can be eith	er 00 or 01.	but SE ID1 shall	not be the same as SE ID2.

- Record No X and Y are the record number of the EF_{ARR} [CR1].
- d) The ME simulator shall send a READ RECORD command to read the record number X of EFARR [CR4].

If SE ID1 is 00, either one of the following shall be true of the response data:

- The TLV_DO with tag '83' in the SC_DO shall be '11';
- The SC_DO shall be '90 00'.

If SE ID1 is 01, either one of the following shall be true of the response data:

- The TLV_DO with tag '83' in the SC_DO shall be '01';
- The SC_DO shall be '90 00'.
- e) Step d) shall be repeated for record number Y for SE ID2 [CR4].
- f) If the TLV_DO with tag 83 is '01' for SE01, steps f) to v shall be carried out.
- g) The ME simulator shall send a SELECT command to the UICC to select EFICCID.
- h) The ME simulator shall send a READ BINARY command to the UICC.

The response data returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR6].

- i) The ME simulator shall send a SELECT command to the UICC to select EFIMSI under ADFUSIM.
- j) The ME simulator shall send a READ BINARY command to the UICC.

The response data returned by the UICC shall be SW1 = '69', SW2 = '82' – security status not satisfied.

k) The ME simulator shall send a VERIFY PIN command using Universal PIN to the UICC.

The response data returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR4].

1) The ME simulator shall send a READ BINARY command to the UICC.

The response data returned by the UICC shall be SWI = '69', SW2 = '82' - security status not satisfied.

m) The ME simulator shall send a VERIFY PIN command using PIN Application 1 to the UICC.

The response data returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR4].

n) The ME simulator shall send a READ BINARY command to the UICC.

The response data returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR4, CR6].

- o) The ME simulator shall send a DISABLE PIN command to disable the PIN Application 1 to the UICC.
- p) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.

The following shall be true of the response data:

- TLV DO with tag '90' (PIN Status) under TLV DO with tag 'C6' shall indicate that the PIN Application 1 is disabled, and the Universal PIN is enabled and its Usage Qualifier is set to '00'.
- q) The ME simulator shall send a SELECT command to the UICC to select EFICCID.
- r) The ME simulator shall send a READ BINARY command to the UICC.

The response data returned by the UICC shall be SWI = '90', SW2 = '00' - normal ending of the command [CR6].

- s) The ME simulator shall send a SELECT command to the UICC to select EFIMSI under ADFUSIM.
- t) The ME simulator shall send a READ BINARY command to the UICC.

The response data returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR4, CR6].

- u) The ME simulator shall send an ENABLE PIN command to enable the PIN Application 1 to the UICC.
- v) The ME simulator shall send a DISABLE PIN command to disable and indicate the Universal PIN as a replacement of the PIN Application 1 to the UICC [CR5].
- w) The ME simulator shall reset the UICC.
- x) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.

The following shall be true of the response data:

- TLV DO with tag '90' (PIN Status) under TLV DO with tag 'C6' shall indicate that the PIN Application 1 is disabled and the Universal Pin is enabled [CR2, CR3].
- y) If the TLV_DO with tag 83 is '11' for SE00, steps z to mm) shall be carried out.
- z) The ME simulator shall send a SELECT command to the UICC to select EFICCID.
- aa) The ME simulator shall send a READ BINARY command to the UICC.

The response data returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR6].

- bb) The ME simulator shall send a SELECT command to the UICC to select EFIMSI under ADFUSIM.
- cc) The ME simulator shall send a READ BINARY command to the UICC.

The response data returned by the UICC shall be SW1 = '69', SW2 = '82' - security status not satisfied.

dd) The ME simulator shall send a VERIFY PIN command using PIN Application 1 to the UICC.

The response data returned by the UICC shall indicate an error.

ee) The ME simulator shall send a VERIFY PIN command using Universal PIN to the UICC.

The response data returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2].

ff) The ME simulator shall send a READ BINARY command to the UICC.

The response data returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2, CR6].

- gg) The ME simulator shall send a DISABLE PIN command to disable the Universal PIN to the UICC.
- hh) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.

The following shall be true of the response data:

- TLV DO with tag '90' (PIN Status) under TLV DO with tag 'C6' shall indicate that the PIN Application 1 and the Universal Pin are disabled.

- ii) The ME simulator shall send a SELECT command to the UICC to select EFICCID.
- jj) The ME simulator shall send a READ BINARY command to the UICC.

The response data returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR6].

- kk) The ME simulator shall send a SELECT command to the UICC to select EFIMSI under ADFUSIM.
- 11 The ME simulator shall send a READ BINARY command to the UICC.

The response data returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2, CR6].

mm) The ME simulator shall send an ENABLE PIN command to enable the Universal PIN to the UICC.

nn) The ME simulator shall send an ENABLE PIN command to enable the PIN Application 1 to the UICC.

6.6.4 PIN definitions

6.6.4.1 Definition and applicability

See clause 3.5.3.

6.6.4.2 Conformance requirement

CR1	A multi-verification capable UICC shall support the usage of Universal PIN.	O_MULTI_VER
CR2	The key reference value '11' shall only be reserved for Universal PIN.	O_MULTI_VER
CR3	The Universal PIN shall be part of the access condition for each USIM	O_MULTI_VER
	application that allows it on a multi-verification capable UICC.	
CR4	In case of a single verification capable UICC the Universal PIN shall not be	O_SINGLE_VER
	used.	
CR5	An application PIN shall be used based on which application it is assigned.	M
CR6	A local PIN shall only be valid within the ADF/DF where it is defined.	M
CR7	The verification status of the Universal PIN shall be unaffected by application	(R99) Rel-6:
	activation and termination procedures.	O_MULTI_VER
CR8	A PIN's status shall be independent of logical channels. That is to say a change	(R99) Rel-6
	to a PIN's state on one logical channel is reflected in that PIN's state on all	
	logical channels.	

Reference: TS 102.221 [1], subclause 9.4.

6.6.4.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE 1: CR3 is tested in subclause 6.6.3.

NOTE 2: CR6 is not fully tested.

NOTE 3: CR7 is not tested.

NOTE 4: CR8 is tested in sub clauses 6.8.1.9, 6.8.1.10 and 6.8.1.13.

6.6.4.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) For test procedure 1 and test procedure 2, SE01 shall be active.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.

The response data shall contain PS Template DO with tag 'C6'.

The following shall be true of the PS Template DO:

- One of the TLV DO with tag '83' shall be '11' indicating the key reference value for Universal PIN [CR1, CR2];
- One of the TLV DO with tag '83' shall be '01' indicating the key reference value for PIN Application 1 [CR5];
- One of the TLV DO with tag '83' shall be '81' indicating the key reference value for second Application/local PIN [CR6].

Test procedure 2

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.

The response data shall contain PS Template DO with tag 'C6'.

The following shall be true of the PS Template DO:

- One of the TLV DO with tag '83' shall be '11' indicating the key reference value for Universal PIN [CR1, CR2];
- One of the TLV DO with tag '83' shall be '01' indicating the key reference value for PIN Application 1 [CR5];
- One of the TLV DO with tag '83' shall be '81' indicating the key reference value for second Application/local PIN [CR6].
- c) Step b) shall be repeated for the remaining ADF_{USIM}s and DFs.

Test procedure 3

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.

The response data shall contain PS Template DO with tag 'C6'.

The following shall be true of the PS Template DO:

- Any of the TLV DO with tag '83' shall not be '11' indicating the key reference value for Universal PIN [CR4];
- One of the TLV DO with tag '83' shall be '01' indicating the key reference value for PIN Application 1 [CR5];
- One of the TLV DO with tag '83' shall be '81' indicating the key reference value for second Application/local PIN [CR6].

6.6.5 PIN and key reference relationship

6.6.5.1 Definition and applicability

See clause 3.5.3.

6.6.5.2 Conformance requirement

CR1	For access condition ALWAYS, the command shall be performed without any restriction.	M	
CR2	For access condition PIN, the command shall only be possible if the relevant application PIN is verified	M	
	successfully.		
CR3	For access condition Second PIN, the command shall only be possible if the relevant application PIN2 is M		
	verified successfully.		
CR4	For access condition NEVER, the command shall not be possible over the UICC/ME interface.	M	
CR5	The status of a PIN shall be stored in the PS Template DO with tag 'C6' and shall be indicated in the		
	FCP in a response to the SELECT or STATUS command issued at the application/DF level.		
CR6	The Universal PIN shall not be part of the PS Template DO in the single verification capable UICC.	M	

Reference: TS 102.221 [1], subclause 9.5.

6.6.5.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: Allocation of ADM levels and the respective requirements for their fulfilment are the responsibility of the appropriate administrative authority.

6.6.5.4 Method of test

NOTE: When EF_{FDN} is not supported by the UICC, any supported linear EF in ADF_{USIM} may be chosen.

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) The records in EF_{FDN} shall contain the following data for the first 10 bytes:

```
    1st
    record
    'A0
    A1
    A2
    B0
    B1
    B2
    A0
    A1
    A2
    A0'

    2nd
    record
    'B0
    B1
    B2
    A0
    A1
    A2
    A0
    A1
    A2
    B0'

    3rd
    record
    'B0
    B1
    B2
    A0
    A1
    A2
    B0
    B1
    B2
    A0'

    4th
    record
    'A0
    A1
    A2
    B0
    B1
    B2
    B0'
```

3) The data for the remainder of these four records and for all other records (if any) shall be 'FF'.

For a multi-verification capable UICC

4) SE01 shall be active.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.

The response data shall indicate the PS Template DO with tag 'C6' [CR5].

The PS Template DO with tag 'C6' shall contain for the Universal PIN the TLV DO with tag '95' indicating the usage qualifier [CR6].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

c) The ME simulator shall send a STATUS command to the UICC.

The response data shall indicate the PS Template DO with tag 'C6' [CR5].

The PS Template DO with tag 'C6' shall contain for the Universal PIN the TLV DO with tag '95' indicating the usage qualifier [CR6].

d) The ME simulator shall send a SELECT command to the UICC to select EF_{FDN}.

The response data shall not contain the PS Template DO with tag 'C6' [CR5].

- e) The ME simulator shall send a READ RECORD command to the UICC to read the first record in EF_{FDN}.

 The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' security status not satisfied [CR2].
- f) The ME simulator shall gain PIN Application 1 security access.
- g) The ME simulator shall send a READ RECORD command to the UICC to read the first record in EF_{FDN}.

The data string returned shall be 'A0 A1 A2 B0 B1 B2 A0 A1 A2 A0'. The data for the remainder of the returned data string shall be 'FF'.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2].

h) The ME simulator shall send an UPDATE RECORD command using CURRENT mode with data string 'B0' for all bytes to the UICC to update the first record in EF_{FDN}.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - security status not satisfied [CR3].

i) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC to read the first record in EF_{FDN}.

The data string returned shall be 'A0 A1 A2 B0 B1 B2 A0 A1 A2 A0'. The data for the remainder of the returned data string shall be 'FF'.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2].

- j) The ME simulator shall gain the second PIN Application 2 security access.
- k) The ME simulator shall send an UPDATE RECORD command using CURRENT mode with data string 'B1' for all bytes to the UICC to update the first record in EF_{FDN}.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR3].

1) The ME simulator shall send a READ RECORD command to the UICC to read the first record in EF_{EDN} .

The data string returned shall be 'B1' for all bytes.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2].

- m) The ME simulator shall send a SELECT command to the UICC to select MF.
- n) The ME simulator shall send a SELECT command to the UICC to select EF_{ICCID}.
- o) The ME simulator shall send a READ BINARY command to the UICC to read the byte in the EF_{ICCID} .

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

- p) The ME simulator shall send an UPDATE BINARY command to the UICC to update the byte in EF_{ICCID} .

 The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' security status not satisfied [CR4].
- q) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- r) The ME simulator shall send a DISABLE PIN command to disable and indicate the Universal PIN as a replacement of the PIN Application 1 to the UICC.
- s) The ME simulator shall send a SELECT command to the UICC to select EF_{FDN} .
- t) The ME simulator shall send a READ RECORD command to the UICC to read the first record in EF_{FDN}.

 The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' security status not satisfied [CR2].
- u) The ME simulator shall gain Universal PIN security access.

v) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC to read the first record in EF_{FDN}.

The data string returned shall be 'B1' for all bytes.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2].

w) The ME simulator shall send an UPDATE RECORD command using CURRENT mode with data string 'B2' for all bytes to the UICC to update the first record in EF_{FDN} .

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - security status not satisfied [CR3].

- x) The ME simulator shall gain the second PIN Application 2 security access.
- y) The ME simulator shall send an UPDATE RECORD command using CURRENT mode with data string 'B3' for all bytes to the UICC to update the first record in EF_{FDN} .

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR3].

- z) The ME simulator shall send an ENABLE PIN command to enable PIN Application 1 to the UICC.
- aa) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- bb) The ME simulator shall send a READ RECORD command to the UICC to read the first record in EF_{FDN}.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' – security status not satisfied [CR2].

- cc) The ME simulator shall gain PIN Application 1 security access.
- dd) The ME simulator shall send a READ RECORD command to the UICC to read the first record in EF_{FDN}.

The data string returned shall be 'B3' for all bytes.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2].

ee) The ME simulator shall send an UPDATE RECORD command using CURRENT mode with data string 'B4' for all bytes to the UICC to update the first record in EF_{FDN} .

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - security status not satisfied [CR3].

- ff) The ME simulator shall gain the second PIN Application 2 security access.
- gg) The ME simulator shall send an UPDATE RECORD command using CURRENT mode with data string 'A0 A1 A2 B0 B1 B2 A0 A1 A2 A0' to the UICC to update record in EF_{FDN} .

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR3].

Test procedure 2

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.

The response data shall indicate the PS Template DO with tag 'C6' [CR5].

The PS Template DO with tag 'C6' shall not contain the Universal PIN key reference '11' [CR6].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

c) The ME simulator shall send a STATUS command to the UICC.

The response data shall indicate the PS Template DO with tag 'C6' [CR5].

The PS Template DO with tag 'C6' shall not contain the Universal PIN key reference '11' [CR6].

- d) The ME simulator shall send a SELECT command to the UICC to select EF_{FDN}.
 - The response data shall not contain the PS Template DO with tag 'C6' [CR5].
- e) The ME simulator shall send a READ RECORD command to the UICC to read the first record in EF_{EDN} .
 - The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' security status not satisfied [CR2].
- f) The ME simulator shall gain PIN security access.
- g) The ME simulator shall send a READ RECORD command to the UICC to read the first record in EF_{FDN}.
 - The data string returned shall be 'A0 A1 A2 B0 B1 B2 A0 A1 A2 A0'. The data for the remainder of the returned data string shall be 'FF'.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR2].
- h) The ME simulator shall send an UPDATE RECORD command using CURRENT mode with data string 'C0' for all bytes to the UICC to update the first record in EF_{FDN} .
 - The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' security status not satisfied [CR3].
- i) The ME simulator shall gain the PIN2 security access.
- j) The ME simulator shall send an UPDATE RECORD command using CURRENT mode with data string 'C1' for all bytes to the UICC to update the first record in EF_{FDN} .
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR3].
- k) The ME simulator shall send a READ RECORD command to the UICC to read the first record in EF_{FDN}.
 - The data string returned shall be 'C1' for all bytes.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR2].
- 1) The ME simulator shall send an UPDATE RECORD command using CURRENT mode with data string 'A0 A1 A2 B0 B1 B2 A0 A1 A2 A0' to the UICC to update record in EF_{FDN}.
- m) The ME simulator shall send a SELECT command to the UICC to select MF.
- n) The ME simulator shall send a SELECT command to the UICC to select EF_{ICCID}.
- o) The ME simulator shall send a READ BINARY command to the UICC to read the byte in the EF_{ICCID}.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR1].
- p) The ME simulator shall send an UPDATE BINARY command to the UICC to update the byte in EF_{ICCID}.
 - The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' security status not satisfied [CR4].

6.7 Structure of commands and responses

The tests in this subclause ensure that the IUT conforms to the specification for the mapping of functions onto Application Protocol Data Units (APDUs) which are used by the transmission protocol.

6.7.1 Mapping principles

6.7.1.1 Definition and applicability

See clause 3.5.3.

6.7.1.2 Conformance requirement

CR1	The command APDU shall have format (CLA, INS, P1, P2 {, Lc, Data}{, Le}).	M
CR2	The response APDU shall have format ({data,} SW1, SW2).	M
CR3	The class '8X' and '0X' shall be accepted by the UICC with USIM application.	M
CR4	If the card supports the logical channel mechanism, the maximum number of	Rel-4:
	available logical channels is indicated in the card capabilities data object of	O_LOG_CHANS
	historical bytes of an ATR.	

Reference: TS 102.221, subclause 10.1 and 10.2.

6.7.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE 1: CR4 is tested in subclause 6.5.7.

6.7.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select MF with P2 = '04'. [Bytes sent: CLA = '00', INS = 'A4', P1 = '00', P2 = '04', Lc = '02', data = '3F 00', Le = '00' (Case 4)] [Bytes received: data, SW1, SW2]

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1, CR2, CR3].

c) The ME simulator shall send a SELECT command to the UICC to select MF with P2 = '0C'. [Bytes sent: CLA = '00', INS = 'A4', P1 = '00', P2 = '0C', Lc = '02', data = '3F 00' (Case 3)] [Bytes received: SW1, SW2]

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1, CR2, CR3].

d) The ME simulator shall send a STATUS command to the UICC with P2 = '00'. [Bytes sent: CLA = '80', INS = 'F2', P1 = '00', P2 = '00', Le = '00' (Case 2)] [Bytes received: data, SW1, SW2]

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1, CR2, CR3].

e) The ME simulator shall send a STATUS command to the UICC. [Bytes sent: CLA = '80', INS = 'F2', P1 = '00', P2 = '0C' (Case 1)] [Bytes received: SW1, SW2]

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1, CR2, CR3].

6.7.2 Response APDU Structure

6.7.2.1 Status Conditions Returned by the UICC

6.7.2.1.1 Definition and applicability

See clause 3.5.3.

6.7.2.1.2 Conformance requirement

CR1	The UICC shall respond with the appropriate SW1 and SW2 status words for commands which are	M
	correctly executed.	
CR2	The UICC shall respond with the appropriate SW1 and SW2 status words for commands which produce	M
	warnings.	
CR3	The UICC shall respond with the appropriate SW1 and SW2 status words for commands which produce	M
	execution errors.	
CR4	The UICC shall respond with the appropriate SW1 and SW2 status words for commands which produce	M
	checking errors.	
CR5	The UICC shall respond with the appropriate SW1 and SW2 status words for commands which produce	M
	application errors.	

Reference: TS 102.221 [1], subclause 10.2.1.

6.7.2.1.3 Test purpose

To verify that the UICC conforms to the above requirements when issuing SW1 and SW2 status words.

NOTE 1: CR3 is not tested as it is not possible to force a UICC to produce an execution error.

NOTE 2: CR5 is tested in subclause 6.8.1.8.

6.7.2.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

- c) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- d) The ME simulator shall send a READ BINARY command without SFI referencing to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '86' - command not allowed (no EF selected) [CR4].

- e) The ME simulator shall send a SELECT command to the UICC to select EF_{IMSI}.
- f) The ME simulator shall send a READ BINARY command with P2 = '0F' to the UICC.

The status condition returned by the UICC shall be SW1 = '6B', SW2 = '00' - wrong parameter(s) P1-P2, or SW1 = '6A', SW2 = '86' - incorrect parameters P1-P2 [CR4].

- g) The ME simulator shall send a SELECT command to the UICC to select EF_{ECC} .
- h) The ME simulator shall send a READ RECORD command using PREVIOUS mode to the UICC.

i) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC.

The status condition returned by the UICC shall be SWI = '6A', SW2 = '83' - record not found [CR4].

j) The ME simulator shall send a READ BINARY command using a length of 1 byte to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '81' - command incompatible with file structure [CR4].

k) The ME simulator shall send a SELECT command to the UICC to select EF_{LOCI} with Lc = 1.

The status condition returned by the UICC shall be SW1 = '67', SW2 = '00' - wrong length, or SW1 = '6A', SW2 = '87' - Lc inconsistent with P1 - P2 [CR4].

1) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' – security status not satisfied [CR2].

m) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C1' - security status not satisfied [CR2].

n) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C0' - security status not satisfied [CR2].

o) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '83' - authentication method blocked [CR4].

- p) The ME simulator shall send an UNBLOCK PIN command with Unblock PIN to the UICC.
- q) The ME simulator shall send a READ RECORD command using P2 = '01' to the UICC.

The status condition returned by the UICC shall be SW1 = '6B', $SW2 = '00' - wrong\ parameter(s)\ P1 - P2$, or SW1 = '6A', SW2 = '86' - incorrect parameter P1 or P2 [CR4].

r) The ME simulator shall send the following APDU to the UICC. [Bytes sent: CLA = '00', INS = '6F', P1 = '00', P2 = '00', P3 = '00']

The status condition returned by the UICC shall be SW1 = '6D', SW2 = '00' - instruction code not supported or invalid [CR4].

s) The ME simulator shall send a GET RESPONSE command to the UICC.

The status condition returned by the UICC shall be SW1 = '6F', SW2 = '00' - technical problem, no precise diagnosis [CR4].

t) The ME simulator shall send the following APDU to the UICC.

[Bytes sent: CLA = '30', INS = 'C0', P1 = '00', P2 = '00', P3 = '00']

The status condition returned by the UICC shall be SW1 = '6E', SW2 = '00' - class not supported [CR4].

u) The ME simulator shall send a STATUS command with CLA = '81' to the UICC.

The status condition returned by the UICC shall be SW1 = '68', SW2 = '81' - logical channel not supported or SW1 = '6E', SW2 = '00' - class not supported [CR4].

v) The ME simulator shall send a STATUS command with CLA = '84' to the UICC. [Bytes sent: CLA = '84', INS = 'F2', P1 = '00', P2 = '00', Le = '02']

The status condition returned by the UICC shall be SW1 = '68', SW2 = '82' - secure messaging not supported or SW1 = '6E', SW2 = '00' - class not supported [CR4].

w) The ME simulator shall reset the UICC.

x) The ME simulator shall send a SELECT command with an incorrect file ID to the UICC. [Bytes sent: CLA = '00', INS = 'A4', P1 = '00', P2 = '04', Lc = '02', data = '12 34']

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '82' - file not found [CR4].

- y) The ME simulator shall send a SELECT command to the UICC to select EF_{ICCID} .
- z) The ME simulator shall send an UPDATE BINARY command to the UICC. The data used shall be '00 00'.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - security status not satisfied [CR4].

Table 10: Status Words Tested in Subclause 6.7.2.1

SW1	SW2	Description	CR	TP
'90'	'00'	- Normal ending of the command	CR1	b)
'91'	'XX'	- Normal ending of the command, with extra information from	USAT	N/A
		the proactive UICC containing a command for the ME.		
		Length 'XX' of the response data		
SW1	SW2	Error description		
'93'	'00'	- SIM Application Toolkit is busy. Command cannot be	USAT	N/A
		executed at present, further normal commands are allowed.		
SW1	SW2	Description		
'62'	'00'	No information given, state of non volatile memory unchanged	CR2	N/A
'62'	'81'	- Part of returned data may be corrupted	CR2	N/A
'62'	'82'	- End of file/record reached before reading Le bytes	CR2	N/A
'62'	'83'	- Selected file invalidated	CR2	N/A
'62'	'85'	- Selected DF in termination state	CR2	N/A
'62'	'F1'	- More data available	CR2	6.8.2.1
'62'	'F2'	More data available and proactive command pending	CR2	6.8.2.1
'63'	'F1'	- More data expected	CR2	6.8.2.2
'63'	'F2'	More data expected and proactive command pending	CR2	6.8.2.2
'63'	'CX'	- Command successful but after using an internal update retry	CR2	l), m), n)
		routine 'X' times		,, ,, ,
		- Verification failed, 'X' retries remaining		
SW1	SW2	Description		
'64'	'00'	- No information given, state of non-volatile memory	CR3	N/A
		unchanged		
'65'	'00'	- No information given, state of non-volatile memory changed	CR3	N/A
'65'	'81'	- Memory problem	CR3	N/A
SW1	SW2	Description		
'67'	'00'	- Wrong length	CR4	k)
'67'	'XX'	- The interpretation of this status word is command	CR4	N/A
		dependent, except for SW2 = '00'		
'6B'	'00'	- Wrong parameter(s) P1-P2	CR4	f), q)
'6D'	'00'	Instruction code not supported or invalid	CR4	r)
'6E'	'00'	- Class not supported	CR4	t), u), v)
'6F'	'00'	- Technical problem, no precise diagnosis	CR4	s)
'6F'	'XX'	- The interpretation of this status word is command	CR4	N/A
		dependent, except for SW2 = '00'		
SW1	SW2	Description		
'68'	'00'	- No information given	CR4	N/A
'68'	'81'	- Logical channel not supported	CR4	u)
'68'	'82'	- Secure messaging not supported	CR4	v)
SW1	SW2	Description		
'69'	'00'	- No information given	CR4	N/A
'69'	'81'	- Command incompatible with file structure	CR4	j)
'69'	'82'	- Security status not satisfied	CR4	z)
'69'	'83'	- Authentication method blocked	CR4	0)
'69'	'84'	- Referenced data invalidated	CR4	N/A
'69'	'85'	- Conditions of used not satisfied	CR4	N/A
'69'	'86'	- Command not allowed (no EF selected)	CR4	d)
SW1	SW2	Description		
'6A'	'80'	- Incorrect parameters in the data field	CR4	N/A

'6A'	'81'	- Function not supported	CR4	N/A
'6A'	'82'	- File not found	CR4	x)
'6A'	'83'	- Record not found	CR4	i)
'6A'	'84'	- Not enough memory space	CR4	6.8.2.2
'6A'	'86'	- Incorrect parameters P1-P2	CR4	f), q)
'6A'	'87'	- Lc inconsistent with P1-P2	CR4	k)
'6A'	'88'	- Referenced data not found	CR4	N/A
SW1	SW2	Error description		
'98'	'50'	- INCREASE cannot be performed, max value reached.	CR5	6.8.1.8.4 h)
'98'	'62'	- Authentication error, application specific	CR5	N/A

6.7.2.2 Status Words of the Commands

6.7.2.2.1 Definition and applicability

See clause 3.5.3.

6.7.2.2.2 Conformance requirement

CR1	Table 10.16 in TS 102.221 [1], subclause 10.2.2 shows for each command the possible status conditions	M
	returned (marked by an asterisk *). The UICC shall not generate status conditions other than those	
	allowed for each command.	

Reference: TS 102.221 [1], subclause 10.2.2.

6.7.2.2.3 Test purpose

To verify for each command that the UICC only generates the allowed status conditions.

NOTE: The CR1 is tested in the subclause 6.7.2 and subclause 6.8.1.

6.7.2.2.4 Method of test

Initial conditions

N/A

Test procedure

N/A

6.7.3 Logical channels

6.7.3.1 Definition and applicability

See clause 3.5.3.

6.7.3.2 Conformance requirement

CR1	The basic logical channel (number 0) is permanently available.	Rel-4:
		O_LOG_CHANS
CR2	The MANAGE CHANNEL command shall be used to open and close a	Rel-4:
	logical channel.	O_LOG_CHANS
CR3	The channel number is assigned by the UICC.	Rel-4:
		O_LOG_CHANS

Reference: TS 102 221 [1], subclause 10.3.

6.8.1.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR1, CR2 and CR3 are tested in subclause 6.5.7.

6.8.1.1.4 Method of test

Initial conditions

N/A

Test procedure

N/A

6.8 Commands

6.8.1 Generic Commands

6.8.1.1 SELECT

6.8.1.1.1 Definition and applicability

See clause 3.5.3.

6.8.1.1.2 Conformance requirement

CR1	This function shall select a file according to the methods described in	M
	subclause 8.4 of TS 102.221 [1].	
CR2	The function shall accept as an input:	M
	a) a file ID (FID);	
	b) an application ID (AID);	
	c) a path;	
	d) empty.	
CR3	If the selected file is the MF, then the function shall output the file descriptor,	M
	file identifier, UICC characteristics, life cycle status integer, security attributes	
	and PIN status.	
CR4	If the selected file is the a ADF, then the function shall output the file	M
	descriptor, DF name, life cycle status integer, security attributes and PIN	
	status.	
CR5	If the selected file is an EF, then the function shall output the file descriptor,	M
	file identifier, security attributes, life cycle status integer and file size.	
CR6	After a successful selection the record pointer shall be undefined.	M
CR7	If P2 = '0C' the function shall output only SW1 and SW2.	M
CR8	If P1 = '00' and if P2 = '0C' ("No data returned") and the data field is empty	M
	then the MF shall be set as the Current Directory.	
CR9	It is mandatory for data objects to be provided in the order given in the	M
	description of each response.	
CR10	If the selected file is a DF, then the function shall output the file descriptor,	M
	file identifier, life cycle status integer, security attributes and PIN status.	
CR11	After a successful selection the current tag pointer is undefined.	Rel-6:
		O_BER_TLV_FILES
\	TC 100 001 F1	

Reference: TS 102.221 [1], subclause 11.1.1.

6.8.1.1.3 Test purpose

To verify that the SELECT function conforms to the above requirements for the different file types available.

NOTE 1: CR1 is tested in subclause 6.5.4.

NOTE 2: CR11 is tested in subclause 6.8.2.1.

6.8.1.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select DF_{TELECOM}.

The status returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2a].

The FCP shall contain the following tags [CR10]:

- Tag '82' (File Descriptor)

The first byte shall be '38' or '78' (indicating a DF or ADF);

- Tag '83' (File Identifier)

The value shall be '7F 10' (indicating $DF_{TELECOM}$);

- Tag '8A' (Life Cycle Status Integer);
- Tag 'C6' (PIN Status Template DO)

It shall contain tag '90' (PS_DO).

The FCP shall contain exactly one of the following tags:

- *Tag '8C' (Compact format);*
- Tag 'AB' (Expanded format);
- Tag '8B' (Referenced to Expanded Format).

The TLV DOs with the above Tags shall be provided in FCP in order given in the Table 11.3 of subclause 11.1.1.3 of the TS 102.221 [1] [CR9].

c) The ME simulator shall send a SELECT command to the UICC to select the MF.

The status returned by the UICC shall be SW1 = '90', SW2 = '00' – normal ending of the command [CR2a].

The FCP shall contain the following tags [CR3]:

- Tag '82' (File Descriptor)

The first byte shall be '38' or '78' (indicating a DF or ADF);

- Tag '83' (File Identifier)

The value shall be '3F 00' (indicating MF);

- Tag 'A5' (Proprietary information)

It shall contain tag '80' (UICC characteristics);

- Tag '8A' (Life Cycle Status Integer);
- Tag 'C6' (PIN Status Template DO)

It shall contain tag '90' (PS_DO).

The FCP shall contain exactly one of the following tags:

- Tag '8C' (Compact format);

- Tag 'AB' (Expanded format);
- Tag '8B' (Referenced to Expanded Format).

The TLV DOs with the above Tags shall be provided in FCP in order given in the Table 11.3 of subclause 11.1.1.3 of the TS 102.221 [1] [CR9].

d) The ME simulator shall send a SELECT command to the UICC to select EF_{DIR} .

The status returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2a].

The FCP shall contain the following tags [CR5]:

- Tag '82' (File Descriptor)

The first byte shall be '02' or '42' (indicating a linear fixed EF);

The length shall be '05' (i.e. containing record length etc);

- Tag '83' (File Identifier)

The value shall be '2F 00' (indicating EF_{DIR});

- Tag '8A' (Life Cycle Status Integer);
- Tag '80' (File size).

The FCP shall contain exactly one of the following tags:

- *Tag '8C' (Compact format);*
- Tag 'AB' (Expanded format);
- Tag '8B' (Referenced to Expanded Format).

The TLV DOs with the above Tags shall be provided in FCP in order given in the Table 11.4 of subclause 11.1.1.3 of the TS 102.221 [1] [CR9].

e) The ME simulator shall send a READ RECORD command using CURRENT mode to the UICC.

The UICC shall return an error code appropriate to the command (e.g. SW1 = '6A', SW2 = '83' - Record not found) [CR6].

f) The ME simulator shall send a SELECT command with P2 = '0C' to the UICC to select the MF.

The response from the UICC shall be only SW1 = '90', SW2 = '00' - normal ending of the command [CR7].

g) The ME simulator shall send a SELECT command to the UICC to select the EF_{ARR} under $DF_{TELECOM}$ by path selection

The response from the UICC shall be only SWI = '90', SW2 = '00' – normal ending of the command.

The TLV DO with Tag '83' in the FCP shall indicate the current EF is EF_{ARR} [CR2c].

h) The ME simulator shall send a SELECT command to the UICC to select the parent DF.

The response from the UICC shall be only SW1 = '90', SW2 = '00' - normal ending of the command.

The TLV DO with Tag '83' in the FCP shall indicate the current DF is MF [CR2d].

i) The ME simulator shall send a SELECT command with AID to the UICC to select and activate the USIM application.

The status returned by the UICC shall be SW1 = '90', SW2 = '00' – normal ending of the command [CR2b].

The FCP shall contain the following tags [CR4]:

Tag '82' (File Descriptor)

The first byte shall be '38' or '78' (indicating a DF or ADF);

- Tag '84' (DF name - AID)

The value shall be the AID of the USIM application;

- Tag '8A' (Life Cycle Status Integer);
- Tag 'C6' (PIN Status Template DO)

It shall contain tag '90' (PS_DO).

The FCP shall contain exactly one of the following tags:

- *Tag '8C' (Compact format);*
- Tag 'AB' (Expanded format);
- Tag '8B' (Referenced to Expanded Format).

The TLV DOs with the above Tags shall be provided in FCP in order given in the Table 11.4 of subclause 11.1.1.3 of the TS 102.221 [1] [CR9].

j) The ME simulator shall send a SELECT command with P1 = '00', P2 = '0C' and with empty data field to the UICC.

The response from the UICC shall be only SW1 = '90', SW2 = '00' - normal ending of the command [CR7, CR8].

Test procedure 2

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command with P1 = '00', P2 = '0C' and with empty data field to the UICC.

The response from the UICC shall be only SW1 = '90', SW2 = '00' - normal ending of the command [CR7, CR8].

d) The ME simulator shall send a STATUS command with P2 = '00' to the UICC.

The FCP returned shall contain the File ID of the MF [CR8].

6.8.1.2 STATUS

6.8.1.2.1 Definition and applicability

See clause 3.5.3.

6.8.1.2.2 Conformance requirement

CR1	If the parameter P2 = '00', then the STATUS function shall output the FCP of the currently selected MF,	M
	DF or ADF.	
CR2	If the parameter $P2 = '01'$, then the STATUS function shall output the DF_{name} TLV DO of the currently	M
	selected ADF.	
CR3	If the parameter P2 = '0C', then the STATUS function shall output only SW1 and SW2.	M

Reference: TS 102.221 [1], subclause 11.1.2.

6.8.1.2.3 Test purpose

To verify that the UICC conforms to the above requirements.

6.8.1.2.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a STATUS command with P2 = '00' to the UICC.

The FCP shall contain the following tags [CR1]:

- Tag '82' (File Descriptor)

The first byte shall be '38' or '78' (indicating a DF);

- Tag '83' (File Identifier)

The value shall be '3F 00' (indicating MF);

- Tag 'A5' (Proprietary information)

It shall contain tag '80' (UICC characteristics);

- Tag '8A' (Life Cycle Status Integer);
- Tag 'C6' (PIN Status Template DO)

It shall contain tag '90' (PS_DO).

The FCP shall contain exactly one of the following tags:

- Tag '8C' (Compact format);
- Tag 'AB' (Expanded format);
- Tag '8B' (Referenced to Expanded Format).
- c) The ME simulator shall send a SELECT command to select $\ensuremath{\mathsf{DF}_{\mathsf{TELECOM}}}.$
- d) The ME simulator shall send a STATUS command with P2 = '00' to the UICC.

The FCP shall contain the following tags [CR1]:

- Tag '82' (File Descriptor)

The first byte shall be '38' or '78' (indicating a DF);

- Tag '83' (File Identifier)

The value shall be '7F 10' (indicating $DF_{TELECOM}$);

- Tag '8A' (Life Cycle Status Integer);
- Tag 'C6' (PIN Status Template DO)

It shall contain tag '90' (PS_DO).

The FCP shall contain exactly one of the following tags:

- Tag '8C' (Compact format);
- Tag 'AB' (Expanded format);
- Tag '8B' (Referenced to Expanded Format).
- e) The ME simulator shall send a STATUS command with P2 = '01' to the UICC.

The UICC shall return an error code appropriate to the command [CR2].

- f) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- g) The ME simulator shall send a STATUS command with P2 = '00' to the UICC.

The FCP shall contain the following tags [CR1]:

- Tag '82' (File Descriptor)

The first byte shall be '38' or '78' (indicating an ADF);

- Tag '84' (DF name - AID)

The value shall be the AID of the USIM application;

- Tag '8A' (Life Cycle Status Integer);
- Tag 'C6' (PIN Status Template DO)

It shall contain tag '90' (PS_DO).

The FCP shall contain exactly one of the following tags:

- Tag '8C' (Compact format);
- Tag 'AB' (Expanded format);
- Tag '8B' (Referenced to Expanded Format).
- h) The ME simulator shall send a SELECT command to the UICC to select the DF_{PHONEBOOK}.
- i) The ME simulator shall send a STATUS command with P2 = '00' to the UICC.

The FCP shall contain the following tags [CR1]:

- Tag '82' (File Descriptor)

The first byte shall be '38' or '78' (indicating a DF);

- Tag '83' (File identifier)

The value shall be '5F 3A' (indicating $DF_{PHONEBOOK}$);

- Tag '8A' (Life Cycle Status Integer);
- Tag 'C6' (PIN Status Template DO)

It shall contain tag '90' (PS_DO).

The FCP shall contain exactly one of the following tags:

- Tag '8C' (Compact format);
- Tag 'AB' (Expanded format);
- Tag '8B' (Referenced to Expanded Format).
- j) The ME simulator shall send a STATUS command with P2 = '01' to the UICC.

The following shall be true of the response data [CR2]:

Value of tag '84' shall be the AID of the USIM application

k) The ME simulator shall send a STATUS command with P2 = '0C' to the UICC.

The following shall be true of the response data [CR3]:

- The response data from the UICC shall be only SW1 = '90', SW2 = '00' normal ending of the command [CR3]
- 1) The ME simulator shall send a SELECT command to select $DF_{TELECOM}$.
- m) The ME simulator shall send a STATUS command with P2 = '00' to the UICC.

The FCP shall contain the following tags [CR1]:

- Tag '82' (File Descriptor)

The first byte shall be '38' or '78' (indicating a DF);

- Tag '83' (File Identifier)

The value shall be '7F 10' (indicating $DF_{TELECOM}$);

- Tag '8A' (Life Cycle Status Integer);
- Tag 'C6' (PIN Status Template DO)

It shall contain tag '90' (PS_DO).

The FCP shall contain exactly one of the following tags:

- Tag '8C' (Compact format);
- Tag 'AB' (Expanded format);
- Tag '8B' (Referenced to Expanded Format).
- n) The ME simulator shall send a STATUS command with P2 = '01' to the UICC.

The following shall be true of the response data [CR2]:

Value of tag '84' shall be the AID of the USIM application.

6.8.1.3 READ BINARY

6.8.1.3.1 Definition and applicability

See clause 3.5.3.

6.8.1.3.2 Conformance requirement

CR1	The READ BINARY function shall read a string of bytes from the current transparent EF.	M
CR2	The function shall accept as an input, the relative address (offset) and the length (in bytes) of the string.	M
CR3	The function shall output the string of bytes.	M
CR4	The function shall only be performed if the READ access condition for the current EF is satisfied.	M
CR5	The function shall accept SFI referencing.	M
CR6	The function shall be aborted if it is applied to an EF without transparent structure.	M

Reference: TS 102.221 [1], subclause 11.1.3.

6.8.1.3.3 Test purpose

To verify that the READ BINARY function conforms to the above requirements.

6.8.1.3.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) EF_{LOCI} shall contain the data string: 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00'.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select the USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{LOCI}.
- d) The ME simulator shall send a READ BINARY command using a length of 11 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - security status not satisfied [CR4].

- e) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the access condition for EF_{LOCI} .
- f) The ME simulator shall send a READ BINARY command using a length of 11 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1-CR4].

The data string returned shall be 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00' [CR1- CR4].

g) The ME simulator shall send a READ BINARY command using a length of 1 byte to the UICC.

The data string returned shall be 'A1' [CR2].

h) The ME simulator shall send a READ BINARY command using an offset of '00 01' and length 10 bytes to the UICC.

The data string returned shall be 'A2 A3 A4 A5 A6 A7 A8 A9 00 00' [CR2].

- i) The ME simulator shall send a SELECT command to the UICC to select EF_{Kevs} .
- j) The ME simulator shall send a READ BINARY command using SFI reference to select EF_{LOCI} and length 11 bytes to the UICC.

The data string returned shall be 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00' [CR3, CR5].

- k) The ME simulator shall send a SELECT command to the UICC to select MF.
- 1) The ME simulator shall send a SELECT command to the UICC to select EF_{DIR} .
- m) The ME simulator shall send a READ BINARY command using a length of 1 byte to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '81' - command incompatible with file structure [CR6].

6.8.1.4 UPDATE BINARY

6.8.1.4.1 Definition and applicability

See clause 3.5.3.

6.8.1.4.2 Conformance requirement

CR1	The UPDATE BINARY function shall update the current transparent EF with a string of bytes.	M
CR2	The function shall accept as an input, the relative address (offset), the length (in bytes) of the string, and	M
	the string of bytes.	
CR3	The function shall only be performed if the UPDATE access condition for the current EF is satisfied.	M
CR4	The function shall accept SFI referencing.	M
CR5	The function shall be aborted if it is applied to an EF without transparent structure.	M

Reference: TS 102.221 [1], subclause 11.1.4.

6.8.1.4.3 Test purpose

To verify that the UPDATE BINARY function conforms to the above requirements.

6.8.1.4.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) EF_{LOCI} shall contain the data string: 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00'.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{LOCL}
- d) The ME simulator shall send an UPDATE BINARY command using a length of 11 bytes, and data string 'FF FF FF FF FF FF FF FF FF FO 00' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' security status not satisfied [CR3].
- e) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the access condition for the EF_{LOCI}.
- f) The ME simulator shall send a READ BINARY command using a length of 11 bytes to the UICC.
 - The data string returned shall be 'A1 A2 A3 A4 A5 A6 A7 A8 A9 00.
- g) The ME simulator shall send an UPDATE BINARY command using a length of 11 bytes, and data string 'FF FF FF FF FF FF FF FF 00 00' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' [CR3].
- h) The ME simulator shall send a READ BINARY command using a length of 11 bytes to the UICC.
 - The data string returned shall be 'FF FF FF FF FF FF FF FF FF 00 00' [CR1].
- i) The ME simulator shall send an UPDATE BINARY command using a length of 1 byte, and data string 'E4' to the UICC.
- j) The ME simulator shall send a READ BINARY command using a length of 11 bytes to the UICC.
 - The data string returned shall be 'E4 FF FF FF FF FF FF FF FF 00 00' [CR1].
- k) The ME simulator shall send an UPDATE BINARY command using an offset of '00 01', a length 1 byte, and data string 'E5' to the UICC.
- 1) The ME simulator shall send a READ BINARY command using a length of 11 bytes to the UICC.
 - The data string returned shall be 'E4 E5 FF FF FF FF FF FF FF 00 00' [CR1, CR2]
- m) The ME simulator shall send a SELECT command to the UICC to select EF_{Keys}.
- n) The ME simulator shall send an UPDATE BINARY command using SFI reference to select EF_{LOCI} and a length 1 byte, and string 'D1' to the UICC.
- o) The ME simulator shall send a READ BINARY command using a length of 11 bytes to the UICC.
 - The data string returned shall be 'D1 E5 FF FF FF FF FF FF FF 00 00' [CR1, CR4].
- p) The ME simulator shall send a SELECT command to the UICC to select EF_{SMS} .

q) The ME simulator shall send an UPDATE BINARY command using a length 1 byte and data string 'D2' to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '81' - command incompatible with file structure [CR5].

r) The ME simulator shall send an UPDATE BINARY command using SFI reference to select EF_{LOCI} and a length 11 byte, and string "A1 A2 A3 A4 A5 A6 A7 A8 A9 00 00' to the UICC.

6.8.1.5 READ RECORD

6.8.1.5.1 Definition and applicability

See clause 3.5.3.

6.8.1.5.2 Conformance requirement

CR1	The READ RECORD function shall read one complete record in the current linear fixed or cyclic EF.	M
CR2	The function shall accept as an input, the mode, record number if absolute mode, and the length of the	M
	record.	
CR3	The function shall output the record specified by the mode.	M
CR4	The function shall only be performed if the READ access condition for the current EF is satisfied.	M
CR5	If the mode is CURRENT, the current record shall be read.	M
CR6	If the mode is CURRENT, the record pointer shall not affected.	M
CR7	If the mode is ABSOLUTE, the record given by the record number shall be read.	M
CR8	If the mode is ABSOLUTE, the record pointer shall not be affected.	M
CR9	If the mode is NEXT, the record pointer shall be incremented before the function is performed and the	M
	pointed record shall be read.	
CR10	If the mode is NEXT, and the record pointer has not been previously been set within the selected EF,	M
	the first record shall be read and the record pointer shall be set to this record.	
CR11	If the mode is NEXT, and the record pointer addresses the last record in a linear fixed EF, the record	M
	pointer shall not change and no data shall be read.	
CR12	If the mode is NEXT, and the record pointer addresses the last record in a cyclic EF, the first record	M
	shall be read and the record pointer shall be set to this record.	
CR13	If the mode is PREVIOUS, the record pointer shall be decremented before the function is performed	M
	and the pointed record shall be read.	
CR14	If the mode is PREVIOUS, and the record pointer has not been previously been set within the selected	M
	EF, the last record shall be read and the record pointer shall be set to this record.	
CR15	If the mode is PREVIOUS, and the record pointer addresses the first record in a linear fixed EF, the	M
	record pointer shall not change and no data shall be read.	
CR16	If the mode is PREVIOUS, and the record pointer addresses the first record in a cyclic EF, the last	M
	record shall be read and the record pointer shall be set to this record.	
CR17	The record pointer shall not be changed if the function is unsuccessful.	M
CR18	The function shall accept the SFI as an input.	M
CR19	When the command contains a valid SFI, it shall set the file as the current EF, reset the current record	M
	pointer and subsequent records are read with the READ RECORD command without SFI.	

Reference: TS 102.221 [1], subclause 8.4.3 and 11.1.5.

6.8.1.5.3 Test purpose

To verify that the READ RECORD function conforms to the above requirements using three test procedures.

NOTE: CR12 and CR16 can only be tested if any cyclic EFs are present.

6.8.1.5.4 Method of test

NOTE 1: Test procedures have been separated into 3 parts. The first part is for testing CURRENT and ABSOLUTE mode, the second part is for testing NEXT and PREVIOUS mode and the third part is for testing the SFI referencing.

- NOTE 2: When EF_{CCP2} is not supported by the UICC, any supported linear EF in ADF_{USIM} supporting SFI may be chosen.
- NOTE 3: When EF_{ACM} is not supported by the UICC, any supported cyclic EF in ADF_{USIM} may be chosen.

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) The records in EF_{CCP2} shall contain the following data:

```
    1st record
    '10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    1A
    1B
    1C
    1D
    1E'

    2nd record
    '20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    2A
    2B
    2C
    2D
    2E'

    2nd 1st record
    'E0
    E1
    E2
    E3
    E4
    E5
    E6
    E7
    E8
    E9
    EA
    EB
    EC
    ED
    EE'

    Last record
    'F0
    F1
    F2
    F3
    F4
    F5
    F6
    F7
    F8
    F9
    FA
    FB
    FC
    FD
    FE'
```

3) The records in EF_{ACM} shall contain the following data, if it is supported:

Test procedure 1 (CURRENT and ABSOLUTE mode)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.
- d) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 1 to the UICC.

 The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' security status not satisfied [CR4].
- e) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- f) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 1 to the UICC.

 The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR4].

The record data returned shall be that of the first record in the EF_{CCP2} [CR1-CR4, CR7].

- g) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.
- h) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC.

The record data returned shall be that of the first record in the EF_{CCP2} .

- i) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 2 to the UICC. The record data returned shall be that of the second record in the EF_{CCP2} [CR7].
- j) The ME simulator shall send a READ RECORD command using CURRENT mode to the UICC.

The record data returned shall be that of the first record in the EF_{CCP2} [CR5, CR8].

k) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC.

The record data returned shall be that of the second record in the EF_{CCP2} [CR6].

1) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with the last record to the UICC.

The record data returned shall be that of the last record in the $EF_{CCP2}[CR7]$.

m) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with the last record + 1 to the UICC.

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '83' - record not found.

n) The ME simulator shall send a READ RECORD command using CURRENT mode to the UICC.

The record data returned shall be that of the second record in the EF_{CCP2} [CR17].

- o) The ME simulator shall send a SELECT command to the UICC to select EF_{ACM}.
- p) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC.

The record data returned shall be that of the first record in the EF_{ACM} [CR1].

q) The ME simulator shall send a READ RECORD command using CURRENT mode to the UICC.

The record data returned shall be that of the first record in the EF_{ACM} [CR5].

- r) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 3 to the UICC.
 - The record data returned shall be that of the record 3 in the EF_{ACM} [CR1, CR7].
- s) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with the last record + 1 to the UICC.

The status condition returned by the UICC shall be SWI = '6A', SW2 = '83' - record not found.

t) The ME simulator shall send a READ RECORD command using CURRENT mode to the UICC.

The record data returned shall be that of the first record in the EF_{ACM} [CR17].

Test procedure 2 (NEXT and PREVIOUS mode)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.
- d) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- e) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC.

The record data returned shall be that of the first record in the EF_{CCP2} [CR10].

f) The ME simulator shall send a READ RECORD command using CURRENT mode to the UICC.

The record data returned shall be that of the first record in the EF_{CCP2} [CR10].

g) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR11].

The record data returned shall be that of the second record in the EF_{CCP2} [CR9].

h) The ME simulator shall send a READ RECORD command using CURRENT mode to the UICC.

The record data returned shall be that of the second record in the EF_{CCP2} [CR9].

- i) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.
- j) The ME simulator shall send a READ RECORD command using PREVIOUS mode to the UICC.

The record data returned shall be that of the last record in the EF_{CCP2} [CR14].

k) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC.

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '83' - Record not found [CR11].

- 1) The ME simulator shall send a READ RECORD command using CURRENT mode to the UICC.
 - The record data returned shall be that of the last record in the EF_{CCP2} [CR11].
- m) The ME simulator shall send a READ RECORD command using PREVIOUS mode to the UICC.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR18].
 - The record data returned shall be that of the second last record in the EF_{CCP2} [CR13].
- n) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.
- o) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC.
 - The record data returned shall be that of the first record in the EF_{CCP2} [CR10].
- p) The ME simulator shall send a READ RECORD command using PREVIOUS mode to the UICC.
 - The status condition returned by the UICC shall be SW1 = '6A', SW2 = '83' record not found [CR15].
- q) The ME simulator shall send a READ RECORD command using CURRENT mode to the UICC.
 - The record data returned shall be that of the first record in the EF_{CCP2} [CR15].
- r) The ME simulator shall send a SELECT command to the UICC to select EF_{ACM}.
- s) The ME simulator shall send a READ RECORD command using PREVIOUS mode to the UICC.
 - The record data returned shall be that of the last record (record X) in the $EF_{ACM}[CR16]$.
- t) The ME simulator shall send a READ RECORD command using CURRENT mode to the UICC.
 - The record data returned shall be that of the last record (record X) in the EF_{ACM} [CR16].
- u) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC.
 - The record data returned shall be that of the first record (record 1) in the $EF_{ACM}[CR12]$.
- v) The ME simulator shall send a READ RECORD command using PREVIOUS mode to the UICC.
 - The record data returned shall be that of the last record (record X) in the $EF_{ACM}[CR16]$.

Test procedure 3 (SFI referencing)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- d) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 1 and with SFI to select EF_{CCP2} to the UICC.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR18].
 - The record data returned shall be that of the first record in the $EF_{CCP2}[CR18]$.
- e) The ME simulator shall send a READ RECORD command using CURRENT mode to the UICC.
 - The status condition returned by the UICC shall be SW1 = '6A', SW2 = '83' record not found [CR19].
- f) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC.
 - The record data returned shall be that of the first record (record 1) in the EF_{CCP2} [CR19].

6.8.1.6 UPDATE RECORD

6.8.1.6.1 Definition and applicability

See clause 3.5.3.

6.8.1.6.2 Conformance requirement

CR1	The UPDATE RECORD function shall update one complete record in the current linear fixed or cyclic	M
	EF.	
CR2	The function shall accept as an input, the mode, record number if absolute mode, the length of the	M
	record, and the data used for updating the record.	
CR3	The function shall only be performed if the UPDATE access condition for the current EF is satisfied.	M
CR4	For cyclic files, only PREVIOUS mode shall be allowed.	M
CR5	If the mode is CURRENT, the current record shall be updated.	M
CR6	If the mode is CURRENT, the record pointer shall not be affected.	M
CR7	If the mode is ABSOLUTE, the record given by the record number shall be updated.	M
CR8	If the mode is ABSOLUTE, the record pointer shall not be affected.	M
CR9	If the mode is NEXT, the record pointer shall be incremented before the function is performed and the	M
	pointed record shall be updated.	
CR10	If the mode is NEXT, and the record pointer has not previously been set within the selected EF, the	M
	first record shall be updated and the record pointer shall be set to this record.	
CR11	If the mode is NEXT, and the record pointer addresses the last record, the record pointer shall not	M
	change and no record shall be updated.	
CR12	If the mode is PREVIOUS, the record pointer shall be decremented before the function shall be	M
	performed and the pointed record shall be updated.	
CR13	If the mode is PREVIOUS, and the record pointer has not previously been set within the selected EF,	M
	the last record shall be updated and the record pointer set to this record.	
CR14	If the mode is PREVIOUS, the EF is a linear fixed, and the record pointer addresses the first record,	M
	the record pointer shall not change and no record shall be updated.	
CR15	If the mode is PREVIOUS and the EF is a cyclic file, the oldest record shall be updated, the record	M
	pointer set to this record, and this record shall become the first record.	
CR16	The record pointer shall not be changed if the function is unsuccessful.	M
CR17	For modes NEXT and PREVIOUS, P1 has no significance and shall be set to '00' by the terminal.	M
CR18	The function shall accept the SFI as an input.	M
CR19	When the command contains a valid SFI, it shall set the file as the current EF and resets the current	M
	record pointer.	

Reference: TS 102.221 [1], subclause 8.4.3 and 11.1.6.

6.8.1.6.3 Test purpose

To verify that the UPDATE RECORD function conforms to the above requirements for the different modes available.

NOTE: CR4 and CR13 can only be tested if any cyclic EF is present.

6.8.1.6.4 Method of test

NOTE 1: Test procedures have been separated into 3 parts. The first part is for testing CURRENT and ABSOLUTE mode, and the second part is for testing NEXT and PREVIOUS mode and the third part is for testing the SFI referencing.

NOTE 2: When EF_{CCP2} is not supported by the UICC, any supported linear EF in ADF_{USIM} supporting SFI may be chosen.

NOTE 3: When EF_{ACM} is not supported by the UICC, any supported cyclic EF in ADF_{USIM} may be chosen.

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1 (CURRENT and ABSOLUTE mode)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.
- d) The ME simulator shall send an UPDATE RECORD command using ABSOLUTE mode with record 1 to the UICC. The data used shall be 'C1' for all bytes.
 - The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' security status not satisfied [CR3].
- e) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- f) The ME simulator shall send an UPDATE RECORD command using ABSOLUTE mode with record 1 to the UICC. The data used shall be 'C2' for all bytes.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR3].
- g) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 1 to the UICC. The record data returned shall be 'C2' for all bytes [CR1-CR3, CR7].
- h) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.
- i) The ME simulator shall send an UPDATE RECORD command using NEXT mode to the UICC. The data used shall be 'FF' for all bytes.
- j) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 1 to the UICC. The record data returned shall be 'FF' for all bytes [CR7].
- k) The ME simulator shall send an UPDATE RECORD command using ABSOLUTE mode with record 2 to the UICC. The data used shall be 'C3' for all bytes.
- 1) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 2 to the UICC. The record data returned shall be 'C3' for all bytes [CR7].
- m) The ME simulator shall send an UPDATE RECORD command using CURRENT mode to the UICC. The data used shall be 'C4' for all bytes.
- n) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 1 to the UICC. The record data returned shall be 'C4' for all bytes [CR5, CR8].
- o) The ME simulator shall send an UPDATE RECORD command using NEXT mode to the UICC. The data used shall be 'C5' for all bytes.
- p) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 2 to the UICC. The record data returned shall be 'C5' for all bytes [CR8].
- q) The ME simulator shall send an UPDATE RECORD command using ABSOLUTE mode with the last record to the UICC. The data used shall be 'C6' for all bytes.
- r) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with the last record to the UICC.
 - The record data returned shall be 'C6' for all bytes [CR7].
- s) The ME simulator shall send an UPDATE RECORD command using ABSOLUTE mode with the last record + 1 to the UICC. The data used shall be 'C7' for all bytes.
 - The status condition returned by the UICC shall be SW1 = '6A', SW2 = '83' record not found.
- t) The ME simulator shall send an UPDATE RECORD command using CURRENT mode to the UICC. The data used shall be 'C8' for all bytes.

- u) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 2 to the UICC. The record data returned shall be 'C8' for all bytes [CR16].
- v) The ME simulator shall send a SELECT command to the UICC to select EF_{ACM}.
- w) The ME simulator shall send a VERIFY PIN command with the relevant PIN to the UICC.
- x) The ME simulator shall send an UPDATE RECORD command using CURRENT mode to the UICC. The data used shall be 'C9' for all bytes.
 - The UICC shall return an error code appropriate to the command [CR4].
- y) The ME simulator shall send an UPDATE RECORD command using ABSOLUTE mode with record 3 to the UICC. The data used shall be 'CA' for all bytes.
 - The UICC shall return an error code appropriate to the command [CR4].
- z) The ME simulator shall send an UPDATE RECORD command using NEXT mode to the UICC. The data used shall be 'CB' for all bytes.
 - The UICC shall return an error code appropriate to the command [CR4].
- aa) The ME simulator shall send an UPDATE RECORD command using PREVIOUS mode to the UICC. The data used shall be 'CC' for all bytes.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR4].
- bb) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 1 to the UICC.

 The record data returned shall be 'CC' for all bytes [CR16].
- cc) The ME simulator shall send an UPDATE RECORD command using PREVIOUS mode to the UICC. The data used shall be '00 00 01'.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR4].

Test procedure 2 (NEXT and PREVIOUS mode)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.
- d) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- e) The ME simulator shall send an UPDATE RECORD command using NEXT mode to the UICC. The data used shall be 'C2' for all bytes.
- f) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 1 to the UICC. The record data returned shall be 'C2' for all bytes [CR10].
- g) The ME simulator shall send an UPDATE RECORD command using CURRENT mode to the UICC. The data used shall be 'C3' for all bytes.
- h) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 1 to the UICC. The record data returned shall be 'C3' for all bytes [CR10].
- i) The ME simulator shall send an UPDATE RECORD command using NEXT mode to the UICC. The data used shall be 'C4' for all bytes.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR17].

- j) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 2 to the UICC. The record data returned shall be 'C4' for all bytes [CR9, CR17].
- k) The ME simulator shall send an UPDATE RECORD command using CURRENT mode to the UICC. The data used shall be 'C5' for all bytes.
- 1) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 2 to the UICC.

 The record data returned shall be 'C5' for all bytes [CR9].
- m) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.
- n) The ME simulator shall send an UPDATE RECORD command using PREVIOUS mode to the UICC. The data used shall be 'C6' for all bytes.
- The ME simulator shall send a READ RECORD command using ABSOLUTE mode with the last record to the UICC.
 - The record data returned shall be 'C6' for all bytes [CR13].
- p) The ME simulator shall send an UPDATE RECORD command using NEXT mode to the UICC. The data used shall be 'C7' for all bytes.
 - The status condition returned by the UICC shall be SW1 = '6A', SW2 = '83' record not found [CR11].
- q) The ME simulator shall send an UPDATE RECORD command using CURRENT mode to the UICC. The data used shall be 'C8' for all bytes.
- r) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with the last record to the UICC.
 - The record data returned shall be 'C8' for all bytes [CR16].
- s) The ME simulator shall send an UPDATE RECORD command using PREVIOUS mode to the UICC. The data used shall be 'C9' for all bytes.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR17].
- t) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with the second last record to the UICC.
 - The record data returned shall be 'C9' for all bytes [CR12, CR17].
- u) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.
- v) The ME simulator shall send an UPDATE RECORD command using NEXT mode to the UICC. The data used shall be 'CA' for all bytes.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command.
- w) The ME simulator shall send an UPDATE RECORD command using PREVIOUS mode to the UICC. The data used shall be 'CB' for all bytes.
 - The status condition returned by the UICC shall be SW1 = '6A', SW2 = '83' record not found [CR13].
- x) The ME simulator shall send an UPDATE RECORD command using CURRENT mode to the UICC. The data used shall be 'CC' for all bytes.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR13].
- y) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 1 to the UICC. The record data returned shall be 'CC' for all bytes [CR16].

Test procedure 3 (SFI referencing)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- d) The ME simulator shall send an UPDATE RECORD command using ABSOLUTE mode with record 1 and with SFI to select EF_{CCP2} under ADF_{USIM} to the UICC. The data used shall be 'C0' for all bytes.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR18].

e) The ME simulator shall send a READ RECORD command using CURRENT mode to the UICC.

The UICC shall return an error code appropriate to the command (e.g. SW1 = '6A', SW2 = '83' - record not found) [CR19].

f) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC.

The record data returned shall be 'C0' for all bytes [CR19].

6.8.1.7 SEARCH RECORD

6.8.1.7.1 Definition and applicability

See clause 3.5.3.

6.8.1.7.2 Conformance requirement

CR1	The SEARCH RECORD function shall search through a linear fixed EF or cyclic EF to find record(s)	M
	containing a specific pattern.	
CR2	The function shall only be performed if the READ access condition for the current EF is satisfied.	M
CR3	The search shall start:	M
	a) at the first byte of the record(s);	
	b) from a given offset in the record(s);	
	c) from the first occurrence of a given byte in the record(s).	
CR4	If one or more matches are found the record pointer shall be set to the first record where the search	M
	pattern was found.	
CR5	For a simple search, the function shall accept as input, the record number, search mode and search	M
	pattern.	
CR6	For an enhanced search, the function shall accept as input, the record number, search mode, search	M
	pattern and offset.	
CR7	The SEARCH RECORD function shall output either:	M
	a) none, if Le is empty or no matches were found;	
	b) at most the number of record(s) number(s) defined in Le.	
CR8	For a simple search, the function shall support the following modes:	M
	a) start forward search from record indicated in P1;	
	b) start backward search from record indicated in P1.	<u> </u>
CR9	For an enhanced search, the SEARCH RECORD function shall support the following modes:	M
	a) start forward search from record indicated in P1 with search indication;	
	b) start backward search from record indicated in P1 with search indication;	
	c) start forward search from next record with search indication;	
	d) start backward search from previous record with search indication.	
CR10	For the modes "forward search from next record" and "backward search from previous record", P1 has	M
GD 11	no significance within the scope of the present document and shall be set to '00'.	1.5
CR11	For a SEARCH RECORD function of forward search from next record (enhanced search), if the record	M
	pointer has not been previously set within the selected linear fixed or cyclic EF, the search shall begin	
	with the first record.	

CR12	For a SEARCH RECORD function of backward search from previous record (enhanced search), if the	M
	record pointer has not been previously set within the selected linear fixed EF, the search shall begin	
	with the last record.	
CR13	The record pointer shall not be changed by an unsuccessful SEARCH RECORD function.	M
CR14	The function shall accept the SFI as an input.	M
CR15	When the SEARCH RECORD command contains a valid SFI, it shall set the file as the current EF and	M
	resets the current record pointer.	

Reference: TS 102.221 [1], subclause 8.2.2, 8.4.3 and 11.1.7.

6.8.1.7.3 Test purpose

To verify that the SEARCH RECORD function conforms to the above requirements for the different modes available.

6.8.1.7.4 Method of test

NOTE: CR7 can not be tested for T = 0 protocol as the Le byte is not transmitted to the UICC. It is dependent on the design of the transport layer of a ME whether to pass all the response data bytes from the UICC to its application layer according to the Le byte. (CR7 is tested in test procedure 4)

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1 (simple search)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{SMS}.
- d) The ME simulator shall send a SEARCH RECORD command using the record number '01', the 'simple forward search from record indicated in P1' mode and search pattern 'A0 A1 A2 B0' with Le = '00' to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - security status not satisfied [CR2].

- e) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- f) The ME simulator shall send a SEARCH RECORD command using the record number '01', the 'simple forward search from record indicated in P1' mode and search pattern 'A0 A1 A2 B0' with Le = '00' to the UICC.

The UICC shall return '01 02 03 04' indicating that first, second, third and fourth record have been found [CR3a, CR8a].

The status condition returned by the UICC shall be SW1='90', SW2='00' - normal ending of the command [CR1, CR2, CR5].

g) The ME simulator shall send a SEARCH RECORD command using the record number '02', the 'simple backward search from record indicated in P1' mode and search pattern 'A0 A1 A2 B0' with Le = '00' to the UICC.

The response data shall be '02 01' indicating that the first and second record have been found [CR3a, CR8b].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

h) The ME simulator shall send a READ RECORD command using CURRENT mode to the UICC.

The record data returned shall be that of the second record in EF_{SMS} [CR4].

i) The ME simulator shall send a SEARCH RECORD command using the record number '01', the 'simple forward search from record indicated in P1' mode and search pattern 'A0 A2 A3 A4' with Le = '00' to the UICC.

No data shall be returned by the UICC as this search pattern can not be found in any of the records [CR7a].

The ME simulator shall send a READ RECORD command using CURRENT mode to the UICC.

The record data returned shall be that of the second record in EF_{SMS} [CR13].

- k) The ME simulator shall send a SELECT command to the UICC to select EF_{SMS}.
- 1) The ME simulator shall send a SEARCH RECORD command using the record number '00' (current record), the 'simple forward search from record indicated in P1' mode, search pattern 'A0 A1 A2 B0' with Le = '00' to the UICC.

The UICC shall return an error code appropriate to the command, as no current record exists.

- m) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC.
- n) The ME simulator shall send a SEARCH RECORD command using the record number '00' (current record), the 'simple forward search from record indicated in P1' mode, search pattern 'A0 A1 A2 B0' with Le = '00' to the UICC.

The response data shall be '01 02 03 04' indicating that the first, second, third and fourth record have been found [CR3a, CR8a].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

- o) The ME simulator shall send a SELECT command to the UICC to select EF_{SMS}.
- p) The ME simulator shall send a SEARCH RECORD command using the record number '00' (current record), the 'simple backward search from record indicated in P1' mode, search pattern 'A0 A1 A2 B0' with Le = '00' to the UICC.

The UICC shall return an error code appropriate to the command, as no current record exists.

- q) The ME simulator shall send a READ RECORD command using PREVIOUS mode to the UICC.
- r) The ME simulator shall send a SEARCH RECORD command using the record number '00' (current record), the 'simple backward search from record indicated in P1' mode, search pattern 'A0 A1 A2 B0' with Le = '00' to the UICC.

The response data shall be '04 03 02 01' indicating that the first, second, third and fourth record have been found [CR3a, CR8b].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

Test procedure 2 (enhanced search)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{SMS}.
- d) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- e) The ME simulator shall send a SEARCH RECORD command using the record number = '01', the 'enhanced forward search from record indicated in P1' mode, search pattern 'A0 A1 A2 B0' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '03' indicating that the search shall start from that offset.

The data returned shall be '02 03' indicating that the second and third records have been found [CR3b, CR9b].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

f) The ME simulator shall send a SEARCH RECORD command using the record number = '02', the 'enhanced backward search from record indicated in P1' mode, search pattern 'A0 A1 A2 B0' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '03' indicating that the search shall start from that offset.

The response data shall be '02' indicating that the second record has been found [CR3b, CR9b].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

g) The ME simulator shall send a SEARCH RECORD command using the P1 = '00', the 'enhanced forward search from next record' mode, search pattern 'A1 A2' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '07' indicating that the search shall start from that offset.

The response data shall be '03' indicating that the third record has been found [CR3b, CR9c].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

h) The ME simulator shall send a SEARCH RECORD command using the P1 = '01', the 'enhanced forward search from next record' mode, search pattern 'A1 A2' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '07' indicating that the search shall start from that offset.

The UICC shall return an error code appropriate to the command [CR10].

i) The ME simulator shall send a SEARCH RECORD command using the P1 = '04', the 'enhanced backward search from previous record' mode, search pattern 'A1 A2' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '07' indicating that the search shall start from that offset.

The UICC shall return an error code appropriate to the command [CR10].

j) The ME simulator shall send a SEARCH RECORD command using the P1 = '00', the 'enhanced backward search from previous record' mode, search pattern 'B1 B2' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '07' indicating that the search shall start from that offset.

The response data shall be '02' indicating that the second record has been found [CR3b, CR9d].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

k) The ME simulator shall send a SEARCH RECORD command using the record number = '03', the 'enhanced forward search from record indicated in P1' mode, search pattern 'B1 B2 A0' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '1' and the second byte shall be set to 'B0' indicating that the search shall start after the first occurrence of the value.

The response data shall be '03' indicating that the third record has been found [CR3c, CR9a].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

1) The ME simulator shall send a SEARCH RECORD command using the record number = '02', the 'enhanced backward search from record indicated in P1' mode, search pattern 'B1 B2 A0' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '1' and the second byte shall be set to 'B0' indicating that the search shall start after the first occurrence of the value.

The response data shall be '02 01' indicating that the first and second record has been found [CR3c, CR9b].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

m) The ME simulator shall send a SEARCH RECORD command using the P1 = '00', the 'enhanced forward search from next record' mode, search pattern 'B0 B1' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '1' and the second byte shall be set to 'A2' indicating that the search shall start after the first occurrence of the value.

The response data shall be '03 04' indicating that the third and fourth record have been found [CR3c, CR9c].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

n) The ME simulator shall send a SEARCH RECORD command using the P1 = '00', the 'enhanced backward search from previous record' mode, search pattern 'B0 B1' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '1' and the second byte shall be set to 'A2' indicating that the search shall start after the first occurrence of the value.

The response data shall be '02 01' indicating that the first and second record have been found [CR3c, CR9d].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

o) The ME simulator shall send a SEARCH RECORD command using the P1 = '00', the 'enhanced forward search from next record' mode, search pattern 'FF B0' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '1' and the second byte shall be set to 'FF' indicating that the search shall start after the first occurrence of the value.

No data shall be returned by the UICC as this search pattern can not be found in any of the records [CR7a].

- p) The ME simulator shall send a SELECT command to the UICC to select EF_{SMS}.
- q) The ME simulator shall send a SEARCH RECORD command using the P1 = '00', the 'enhanced forward search from record indicated in P1' mode, search pattern 'A0 A1 A2' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '00' indicating that the search shall start from that offset.

The UICC shall return an error code appropriate to the command, as no current record exists.

r) The ME simulator shall send a SEARCH RECORD command using the P1 = '00', the 'enhanced forward search from next record' mode, search pattern 'A0 A1 A2' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '00' indicating that the search shall start from that offset.

The response data shall be '01 02 03 04' indicating that the first, second, third and fourth record have been found [CR 11].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

s) The ME simulator shall send a SEARCH RECORD command using the P1 = '00', the 'enhanced forward search from next record' mode, search pattern 'A0 A1 A2' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '00' indicating that the search shall start from that offset.

The response data shall be '02 03 04' indicating that the second, third and fourth record have been found [CR4, CR9c]

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

- t) The ME simulator shall send a SELECT command to the UICC to select EF_{SMS}.
- u) The ME simulator shall send a SEARCH RECORD command using the P1 = '00', the 'enhanced backward search from record indicated in P1' mode, search pattern 'A0 A1 A2' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '00' indicating that the search shall start from that offset.

The UICC shall return an error code appropriate to the command, as no current record exists.

v) The ME simulator shall send a SEARCH RECORD command using the P1 = '00', the 'enhanced backward search from previous record' mode, search pattern 'A0 A1 A2' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '00' indicating that the search shall start from that offset.

The response data shall be '04 03 02 01' indicating that the first, second, third and fourth record have been found [CR12].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

w) The ME simulator shall send a SEARCH RECORD command using the P1 = '00', the 'enhanced backward search from previous record' mode, search pattern 'A0 A1 A2' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '00' indicating that the search shall start from that offset.

The response data shall be '03 02 01' indicating that the first, second and third record have been found [CR4, CR9d].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

x) The ME simulator shall send a SEARCH RECORD command using the P1 = '01', the 'enhanced forward search from next record' mode, search pattern 'A0 A1 A2' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '00' indicating that the search shall start from that offset.

The UICC shall return an error code appropriate to the command [CR 10].

y) The ME simulator shall send a SEARCH RECORD command using the P1 = '01', the 'enhanced backward search from previous record' mode, search pattern 'A0 A1 A2' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '00' indicating that the search shall start from that offset.

The UICC shall return an error code appropriate to the command [CR 10].

z) The ME simulator shall send a SEARCH RECORD command using the record number = '01', the 'enhanced forward search from record indicated in P1' mode and search pattern 'A0 A2 A3 A4' with Le = '00' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '03' indicating that the search shall start from that offset.

No data shall be returned by the UICC as this search pattern can not be found in any of the records [CR7a].

aa) The ME simulator shall send a READ RECORD command using CURRENT mode to the UICC.

The record data returned shall be that of the third record in EF_{SMS} [CR13].

Test procedure 3 (SFI)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- d) The ME simulator shall send a SEARCH RECORD command using the SFI of EF_{ECC} , the record number = '01', the 'simple forward search from record indicated in P1' mode and search pattern '21 F2 FF' with Le = '00' to the UICC.

The data returned shall be '01' indicating that the first record has been found.

The status condition returned shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR14].

e) The ME simulator shall send a SEARCH RECORD command using the SFI of EF_{ECC} , the record number = '01', the 'simple forward search from record indicated in P1' mode and search pattern '22 F2 FF' with Le = '00' to the UICC.

No data shall be returned by the UICC as this search pattern can not be found in any of the records.

f) The ME simulator shall send a READ RECORD command using NEXT mode to the UICC.

The record data returned shall be that of the first record in EF_{ECC} [CR15].

Test procedure 4 (Only applicable for T=1 protocol)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{SMS}.
- d) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- e) The ME simulator shall send a SEARCH RECORD command using the record number = '01', the 'simple forward search from record indicated in P1' mode and search pattern 'A0 A1 A2 B0' with an empty Le to the UICC.

The UICC shall not return any response data bytes [CR7a].

The status condition returned by the UICC shall be SW1='90', SW2='00' - normal ending of the command.

- f) The ME simulator shall send a SEARCH RECORD command using the record number = '01', the 'simple forward search from record indicated in P1' mode and search pattern 'A0 A2 A3 A4' with Le = '01' to the UICC.
 - No data shall be returned by the UICC as this search pattern can not be found in any of the records [CR7a].
- g) The ME simulator shall send a SEARCH RECORD command using the record number = '01', the 'simple forward search from record indicated in P1' mode and search pattern 'A0 A1 A2 B0' with Le = '01' to the UICC.
 - The data returned shall be '01' indicating that the first record has been found [CR7b].
 - The status condition returned by the UICC shall be SW1='90', SW2='00' normal ending of the command.
- h) The ME simulator shall send a SEARCH RECORD command using the record number = '01', the 'simple forward search from record indicated in P1' mode and search pattern 'A0 A1 A2 B0' with Le = '04' to the UICC.
 - The data returned shall be '01 02 03 04' indicating that the first, second, third and fourth record have been found [CR7b].
 - The status condition returned by the UICC shall be SW1='90', SW2='00' normal ending of the command.
- i) The ME simulator shall send a SEARCH RECORD command using the record number = '01', the 'enhanced forward search from record indicated in P1' mode, search pattern 'A0 A1 A2 B0' with Le = '04' to the UICC. The bit 4 of the first byte in the search indication shall be set to '0' and the second byte shall be set to '03' indicating that the search shall start from that offset.

The data returned shall be '02 03' indicating that the second and third record have been found [CR7b].

6.8.1.8 INCREASE

6.8.1.8.1 Definition and applicability

See clause 3.5.3.

6.8.1.8.2 Conformance requirement

CR1	This function shall add the value given by the terminal to the value of the last increased/updated record	M
	of the current cyclic EF and store the result into the oldest record.	
CR2	The record pointer shall be set to this record and this record becomes the record number 1.	M
CR3	The function shall only be used if the INCREASE access condition is fulfilled.	M
CR4	The function shall accept the input as the value to be added.	M
CR5	The function shall output the value of the increased record and the value which has been added.	M
CR6	The UICC shall not perform the INCREASE if the result would exceed the maximum value of the	M
	record (represented by all bytes set to 'FF').	
CR7	This command shall only be used on files that refer to an access rule where this INS code is indicated as	M
	part of the rule.	

Reference: TS 102.221 [1], subclause 11.1.8.

6.8.1.8.3 Test purpose

To verify that the INCREASE function conforms to the above requirements.

6.8.1.8.4 Method of test

NOTE 1: When EF ACM is not supported by the USIM application, any other cyclic EF which have the INCREASE access condition assigned may be used. In such case, the length of the value to be sent with an INCREASE command shall be equal to the record length of that EF.

Initial conditions

1) The UICC shall be connected to a ME simulator.

2) Each record in EF_{ACM} shall contain the data '00 00 01'.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{ACM}.
- d) The ME simulator shall send an INCREASE command with value '00 00 02' to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' – security status not satisfied [CR3].

- e) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- f) The ME simulator shall send an INCREASE command with value '00 00 03' to the UICC.

The response data shall be '00 00 04 00 00 03' [CR1, CR4, CR5].

g) The ME simulator shall send an INCREASE command with value '01 02 00' to the UICC.

The response data shall be '01 02 04 01 02 00' [CR1].

- h) The ME simulator shall send a READ RECORD command using ABSOLUTE mode with record 1 to the UICC. The data read shall be '01 02 04' [CR2].
- i) The ME simulator shall send an INCREASE command with value 'FF 00 00' to the UICC.

The status condition returned by the UICC shall be SW1 = '98', SW2 = '50' - INCREASE cannot be performed, maximum value reached [CR6].

j) The ME simulator shall send an INCREASE command with value '00 FF FD' to the UICC.

The response data shall be '02 02 01 00 FF FD' [CR5].

- k) The ME simulator shall send a SELECT command to the UICC to select EF_{ICI}.
- 1) The ME simulator shall send an INCREASE command with value '01 02 00' to the UICC.

The UICC shall return an error code appropriate to the command [CR7].

6.8.1.9 **VERIFY PIN**

6.8.1.9.1 Definition and applicability

See clause 3.5.3.

6.8.1.9.2 Conformance requirement

CR1	This command shall initiate the comparison in the UICC of the PIN verification data sent from the	M
	terminal with the PIN reference data stored in the card.	
CR2	The function shall accept as an input, an indication of PIN (key reference number), the PIN value, or	M
	empty.	
CR3	The security status set as a result of the verification process is valid regardless on which logical	M
	channel the verification is performed.	
CR4	The verification process shall be subject to the following conditions being fulfilled:	M
	a) PIN is not disabled;	
	b) PIN is not blocked.	
CR5	If the access condition for a function to be performed on the last selected file is PIN, then a successful	M
	verification of PIN shall be required prior to the use of the function on this file unless the PIN is	
	disabled.	

CR6	If the PIN presented is correct, the number of remaining PIN attempts for that PIN shall be reset to its	M
	initial value 3.	
CR7	If the PIN presented is false, the number of remaining PIN attempts for that PIN shall be decremented,	M
	regardless on which logical channel the VERIFY PIN command was issued.	
CR8	The UICC shall return SW1 SW2 = '63C2' after the first false PIN presentation.	M
CR9	The UICC shall return SW1 SW2 = '63C1' after the second consecutive false PIN presentation, not	M
	necessarily in the same card session.	
CR10	After 3 consecutive false PIN presentations, not necessarily in the same card session, the respective	M
	PIN shall be blocked and the UICC shall return SW1 SW2 = '63C0'.	
CR11	Any subsequent VERIFY PIN command applied to this blocked PIN shall return SW1 SW2 = '6983'.	M
CR12	The access condition can never be fulfilled until the UNBLOCK PIN function has been successfully	M
	performed on the respective PIN.	
CR13	The VERIFY PIN with empty data field is used to retrieve the PIN retry counter from the UICC. The	M
	parameter P2 indicates the PIN for which the retry counter value is to be retrieved.	
CR14	The VERIFY PIN with empty data field function is performed whether or not the relevant PIN is	M
	disabled or blocked (e.g. by 3 consecutive wrong PIN presentations).	
CR15	The number of retries, if any is indicated in the response by SW1 SW2 = '63CX', where X indicates	M
	the number of retries left.	
CR16	A VERIFY PIN command with empty data field applied to a blocked PIN shall return SW1 SW2 =	M
	'63C0' or SW1 SW2 = '6983'.	

Reference: TS 102.221 [1], subclause 11.1.9.

6.8.1.9.3 Test purpose

To verify that the VERIFY PIN function conforms to the above requirements.

NOTE 1: This function is only tested for PIN. It is assumed that if the function operates correctly for PIN, it will also operate correctly for PIN2 or other PIN.

NOTE 2: CR3 is tested in subclause 6.5.7.

6.8.1.9.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{IMSI}.
- d) The ME simulator shall send a READ BINARY command using a length of 2 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - access condition not fulfilled [CR5].

e) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1, CR2].

f) The ME simulator shall send a READ BINARY command using a length of 2 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR5].

g) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' - unsuccessful PIN verification, 2 attempts left [CR7, CR15].

- h) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- i) The ME simulator shall send a VERIFY PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C3' - unsuccessful PIN verification, 3 attempts left [CR6, CR13].

j) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' - unsuccessful PIN verification, 2 attempt left [CR8].

k) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C1' - unsuccessful PIN verification, 1 attempt left [CR9].

- 1) The ME simulator shall reset the UICC and select USIM application.
- m) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C0' - unsuccessful PIN verification, no attempts left [CR10].

n) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '83' - unsuccessful PIN verification, no attempts left [CR11].

o) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '83' - PIN blocked [CR4, CR11].

- p) The ME simulator shall reset the UICC and select and activate USIM application.
- q) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '83' - PIN blocked [CR4b, CR11].

- r) The ME simulator shall send a SELECT command to the UICC to select EF_{IMSI}.
- s) The ME simulator shall send a READ BINARY command using a length of 2 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - security status not satisfied [CR12].

t) The ME simulator shall send an UNBLOCK PIN command to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command

u) The ME simulator shall send a VERIFY PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C3' - unsuccessful PIN verification, 3 attempts left [CR1 of subclause 6.8.1.13.2].

- v) The ME simulator shall send a DISABLE PIN command to the UICC.
- w) The ME simulator shall reset the UICC.
- x) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- y) The ME simulator shall send a SELECT command to the UICC to select EF_{IMSI} .
- z) The ME simulator shall send a READ BINARY command using a length of 2 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR5].

aa) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.

The UICC shall return an error code appropriate to the command [CR4a].

bb)The ME simulator shall send an ENABLE PIN command with PIN to the UICC.

Test procedure 2

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' - unsuccessful PIN verification, 2 attempts left [CR7, CR15].

c) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC.

The UICC shall return the number of the assigned logical channel – call this channel 'a.'

d) The ME simulator shall send a VERIFY PIN command with an empty data field to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' - unsuccessful PIN verification, 2 attempts left [CR7, CR15].

Test procedure 3

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' - unsuccessful PIN verification, 2 attempt left [CR8].

c) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C1' - unsuccessful PIN verification, 1 attempt left [CR9].

d) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C0' - unsuccessful PIN verification, no attempts left [CR10].

e) The ME simulator shall send a VERIFY PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C0' - unsuccessful PIN verification, 0 attempts left or SW1 = '69', SW2 = '83' - authentication/PIN method blocked [CR14, CR16].

6.8.1.10 CHANGE PIN

6.8.1.10.1 Definition and applicability

See clause 3.5.3.

6.8.1.10.2 Conformance requirement

CR1	This command shall be used to initiate the comparison of the verification data with	M
	the PIN, and then to conditionally replace the existing PIN with the new PIN sent	
	to the UICC in the command.	
CR2	This function shall assign a new value to the relevant PIN subject to the following	M
	conditions being fulfilled:	
	a) PIN is not disabled;	
	b) PIN is not blocked.	
CR3	The function shall accept as input, an indication of PIN (key reference number),	M
	the old and new PIN.	

CR4	If the old PIN presented is correct, the number of remaining PIN attempts for that PIN shall be reset to its initial value 3 and the new value for the PIN becomes valid.	M
CR5		M
	PIN shall be decremented and the value of the PIN shall remain unchanged.	
CR6	After 3 consecutive false PIN presentations, not necessarily in the same card	M
	session, the respective PIN shall be blocked and the access condition can never be	
	fulfilled until the UNBLOCK PIN function has been performed successfully on the	
	respective PIN.	
CR7	Once successfully changed on a logical channel, the new value is immediately	(Rel-4) Rel-6:
	available to all channels.	O_LOG_CHANS

Reference: TS 102.221 [1], subclause 11.1.10.

6.8.1.10.3 Test purpose

To verify that the CHANGE PIN function conforms to the above requirements.

NOTE: This function is only tested for PIN. It is assumed that if the function operates correctly for PIN, it will also operate correctly for PIN2 or other PIN.

6.8.1.10.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) PIN of the UICC shall be set to '000000000'.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a CHANGE PIN command with an incorrect old PIN and new PIN of '33333333' to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' - unsuccessful PIN verification, 2 attempts left [CR5].

d) The ME simulator shall send a CHANGE PIN command with a correct old PIN and new PIN of '333333333' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1, CR2, CR3].

e) The ME simulator shall send a VERIFY PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C3' - unsuccessful PIN verification, 3 attempts left [CR4].

f) The ME simulator shall send a VERIFY PIN command with a new PIN of '333333333' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1, CR4].

g) The ME simulator shall send a CHANGE PIN command with an incorrect old PIN and new PIN of '55555555' to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' - unsuccessful PIN verification, 2 attempts left [CR5].

h) The ME simulator shall send a CHANGE PIN command with an incorrect old PIN and new PIN of '55555555' to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C1' - unsuccessful PIN verification, 1 attempt left [CR5].

- i) The ME simulator shall reset the UICC.
- j) The ME simulator shall send a CHANGE PIN command with an incorrect old PIN and new PIN of '55555555' to the UICC.

The status condition returned by the UICC shall be SWI = '63', SW2 = 'C0' - unsuccessful PIN verification, no attempt left [CR5].

k) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SWI = '69', SW2 = '83' - PIN blocked [CR6].

- 1) The ME simulator shall reset the UICC.
- m) The ME simulator shall send a CHANGE PIN command with an old PIN of '33333333' and new PIN of '55555555' to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '83' - PIN blocked [CR2b].

- n) The ME simulator shall send an UNBLOCK PIN command with Unblock PIN and a new PIN of '55555555' to the UICC.
- o) The ME simulator shall send a VERIFY PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C3' -unsuccessful PIN verification, 3 attempts left [CR1 of subclause 6.8.1.13.2].

p) The ME simulator shall send a VERIFY PIN command with a new PIN of '55555555' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR3].

- q) The ME simulator shall send a DISABLE PIN command to the UICC.
- r) The ME simulator shall reset the UICC.
- s) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- t) The ME simulator shall send a CHANGE PIN command with an old PIN '55555555' and new PIN of '7777777' to the UICC.

The UICC shall return an error code appropriate to the command [CR2a].

u) The ME simulator shall send an ENABLE PIN command to the UICC with PIN '55555555'.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

v) The ME simulator shall send a CHANGE PIN command with an old PIN '5555555' and new PIN of '00000000' to the UICC.

Test procedure 2

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a CHANGE PIN command with an old PIN '00000000' and new PIN of '55555555' to the UICC.
- c) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC.

The UICC shall return the number of the assigned logical channel – call this channel 'a'.

d) The ME simulator shall send a VERIFY PIN command with a PIN of '55555555' to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR7].

e) The ME simulator shall send a CHANGE PIN command with an old PIN '55555555' and new PIN of '00000000' to the UICC.

6.8.1.11 DISABLE PIN

6.8.1.11.1 Definition and applicability

See clause 3.5.3.

6.8.1.11.2 Conformance requirement

CR1	This function shall switch off the requirement to compare the PIN verification data with the PIN	M
	reference data.	
CR2	The command shall allow an indication whether to use an alternative global key reference, if	M
	enabled, or not when the application PIN is disabled.	
CR3	If an alternative global key reference is used as a replacement for the application PIN, the usage	M
	qualifier in the PS_DO template data object for the alternative global key reference is set to "use" =	
	'08' and the verification of the alternative global key reference shall be performed instead of the	
	application PIN verification to get access to the application.	
CR4	The successful execution of this function shall have the effect that files protected by PIN are now	M
	accessible as if they were marked "ALWAYS", except in the case where the alternative global key	
	reference is to be used as a replacement for the disabled PIN.	
CR5	In the case where the alternative global key reference is to be used as a replacement for the disabled	M
	PIN, the access condition for files containing only a reference to the disabled PIN is the alternative	
	global key reference.	
CR6	The function shall accept as input, PIN indication and PIN.	M
CR7	The function shall accept as input, Global key reference data number for verification replacement,	M
	PIN indication and PIN.	
CR8	For files having more than one global key reference indicated in the access rules the access	M
	condition is "ALWAYS" after disabling on of the key references used in the access rules.	
CR9	The function shall not be executed by the UICC when PIN is already disabled or blocked.	M
CR10	If the PIN presented is correct, the number of remaining PIN attempts shall be reset to its initial	M
	value 3 and PIN shall be disabled.	
CR11	If the PIN presented is false, the number of remaining PIN attempts shall be decremented and PIN	M
	remains enabled.	
CR12	After 3 consecutive false PIN presentations, not necessarily in the same card session, the PIN shall	M
	be blocked and the access condition can never be fulfilled until the UNBLOCK PIN function has	
	been successfully performed on PIN.	
CR13	The UICC shall perform a validation of the SE after the successful execution of this command as	Rel-4
	the current SE may have changed and this shall affect the access to files.	

Reference: TS 102.221 [1], subclause 11.1.11.

6.8.1.11.3 Test purpose

To verify that the DISABLE PIN function conforms to the above requirements.

NOTE 1: The test procedure for an alternative global key reference is not included as it is out of the scope of the present document.

NOTE 2: CR13 is not tested.

6.8.1.11.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

a) The ME simulator shall reset the UICC.

- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select EF_{IMSI}.
- d) The ME simulator shall send a READ BINARY command using a length of 2 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - access condition not fulfilled.

e) The ME simulator shall send a DISABLE PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' - unsuccessful PIN verification, 2 attempts left [CR11].

f) The ME simulator shall send a READ BINARY command using a length of 2 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - access condition not fulfilled [CR11].

g) The ME simulator shall send a STATUS command to the UICC.

The following shall be true of the response data [CR11]:

TLV DO with tag '90' in tag 'C6' in tag '62' shall be '80' indicating that PIN is still enabled.

h) The ME simulator shall send a VERIFY PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' - unsuccessful PIN verification, 2 attempts left [CR11].

i) The ME simulator shall send a DISABLE PIN command with PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR6].

j) The ME simulator shall send a STATUS command to the UICC.

The following shall be true of the response data [CR10]:

- TLV DO with tag '90' in the PS template DO of the response data shall indicate that PIN is disabled.
- k) The ME simulator shall send a VERIFY PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C3' - unsuccessful PIN verification, 3 attempts left [CR10].

- 1) The ME simulator shall reset the UICC.
- m) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- n) The ME simulator shall send a SELECT command to the UICC to select EF_{IMSI}.
- o) The ME simulator shall send a READ BINARY command using a length of 2 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

p) The ME simulator shall send an ENABLE PIN command with PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

q) The ME simulator shall send a DISABLE PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' - unsuccessful PIN verification, 2 attempt left.

r) The ME simulator shall send a DISABLE PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C1' - unsuccessful PIN verification, 1 attempt left.

- s) The ME simulator shall reset the UICC.
- t) The ME simulator shall send a DISABLE PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C0' - unsuccessful PIN verification, no attempt left [CR12].

u) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '83' - unsuccessful PIN verification, no attempt left [CR7, CR8b].

- v) The ME simulator shall reset the UICC.
- w) The ME simulator shall send a DISABLE PIN command with PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '83' - PIN blocked [CR9].

x) The ME simulator shall send an UNBLOCK PIN command with Unblock PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

y) The ME simulator shall send a VERIFY PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C3' - unsuccessful PIN verification, 3 attempts left [CR1 of subclause 6.8.1.13.2].

z) The ME simulator shall send a DISABLE PIN command with PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR6].

aa) The ME simulator shall send a DISABLE PIN command with PIN to the UICC.

The UICC shall return an error code appropriate to the command [CR9].

bb) The ME simulator shall send an ENABLE PIN command with PIN to the UICC.

6.8.1.12 ENABLE PIN

6.8.1.12.1 Definition and applicability

See clause 3.5.3.

6.8.1.12.2 Conformance requirement

CR1	This function shall switch on the requirement to compare the PIN verification data with the PIN	M
	reference data.	
CR2	The function shall not be executed by the UICC when PIN is already enabled or blocked.	M
CR3	If the PIN presented is correct, the number of remaining PIN attempts shall be reset to its initial	M
	value 3 and PIN shall be enabled.	
CR4	If the PIN presented is false, the number of remaining PIN attempts shall be decremented and PIN	M
	shall remains disabled.	
CR5	After 3 consecutive false PIN presentations, not necessarily in the same card session, PIN shall be	M
	blocked.	
CR6	If the PIN is blocked and enabled, the access condition can never be fulfilled until the UNBLOCK	M
	PIN function has been successfully performed on PIN.	
CR7	The function shall accept as input, PIN.	M

CR8	The usage of the alternative global key reference as a replacement shall be disabled upon enabling the PIN for which the alternative global key reference has been a replacement (setting the usage qualifier in the PS_DO template data object for the alternative global key reference to do not use = '00').	M
CR9	If the PIN is blocked and disabled, the access condition shall remain granted.	M
CR10	The UICC shall perform a validation of the SE after successful execution of this command as the	Rel-4
	current SE may have changed and this shall affect the access to files.	

Reference: TS 102.221 [1], subclause 11.1.12.

6.8.1.12.3 Test purpose

To verify that the ENABLE PIN function conforms to the above requirements.

NOTE 1: CR8 is tested in subclause 6.6.5.

NOTE 2: CR10 is not tested.

6.8.1.12.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a DISABLE PIN command with PIN to the UICC.
- c) The ME simulator shall reset the UICC.
- d) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- e) The ME simulator shall send a SELECT command to the UICC to select EF_{IMSI}.
- f) The ME simulator shall send a READ BINARY command using a length of 2 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

g) The ME simulator shall send an ENABLE PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' - unsuccessful PIN verification, 2 attempts left [CR4].

h) The ME simulator shall send a READ BINARY command using a length of 2 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

i) The ME simulator shall send a STATUS command to the UICC.

The following shall be true of the response data [CR4]:

- TLV DO with tag '90' in the PS template DO of the response data shall indicate that PIN is still disabled.
- j) The ME simulator shall send an ENABLE PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C1' - unsuccessful PIN verification, 1 attempt left.

k) The ME simulator shall send an ENABLE PIN command with PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2, CR7].

1) The ME simulator shall send a STATUS command to the UICC.

The following shall be true of the response data [CR4]:

- TLV DO with tag '90' in the PS template DO of the response data shall indicate that PIN is now enabled.
- m) The ME simulator shall send a VERIFY PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C3' - unsuccessful PIN verification, 3 attempts left [CR3]

- n) The ME simulator shall reset the UICC.
- o) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- p) The ME simulator shall send a SELECT command to the UICC to select EF_{IMSI}.
- q) The ME simulator shall send a READ BINARY command using a length of 2 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - access condition not fulfilled [CR1].

r) The ME simulator shall send a DISABLE PIN command with PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

s) The ME simulator shall send an ENABLE PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' - unsuccessful PIN verification, 2 attempt left.

t) The ME simulator shall send an ENABLE PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C1' - unsuccessful PIN verification, 1 attempt left.

- u) The ME simulator shall reset the UICC.
- v) The ME simulator shall send an ENABLE PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C0' - unsuccessful PIN verification, no attempt left [CR5].

w) The ME simulator shall send an ENABLE PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '83' - PIN blocked [CR5].

- x) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- y) The ME simulator shall send a SELECT command to the UICC to select EF_{IMSI} .
- z) The ME simulator shall send a STATUS command to the UICC.

If TLV DO with tag '90' in the PS template DO of the response data indicates that PIN is enabled, then aa1) to aa3) shall be carried out.

If TLV DO with tag '90' in the PS template DO of the response data indicates that PIN is disabled, then aa4) to aa6) shall be carried out.

aa1)The ME simulator shall send a READ BINARY command using a length of 2 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - security status not satisfied [CR6]. aa2)The ME simulator shall send a VERIFY PIN command with PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '83' - PIN blocked.

aa3)The ME simulator shall send a UNBLOCK PIN command with Unblock PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

aa4)The ME simulator shall send a READ BINARY command using a length of 2 bytes to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR9].

aa5)The ME simulator shall send an ENABLE PIN command with PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '83' - PIN blocked [CR2].

aa6)The ME simulator shall send a UNBLOCK PIN command with Unblock PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

- bb) The ME simulator shall reset the UICC.
- cc) The ME simulator shall send a STATUS command to the UICC.

The following shall be true of the response data [CR5]:

The TLV DO with tag '90' in the PS template DO of the response data shall indicate that PIN is enabled.

dd) The ME simulator shall send an ENABLE PIN command with PIN to the UICC.

The UICC shall return an error or warning code appropriate to the command [CR2].

6.8.1.13 UNBLOCK PIN

6.8.1.13.1 Definition and applicability

See clause 3.5.3.

6.8.1.13.2 Conformance requirement

CR1	This function shall be used to reset the PIN retry counter to its initial value and then to conditionally set a new PIN value.	M
CR2	The function shall accept as input, an indication of PIN, the Unblock PIN and the new PIN.	M
CR3	This function shall be performed regardless of whether or not the relevant PIN is blocked. (e.g. by 3 consecutive wrong PIN verifications).	M
CR4	The unblocking process is subject to the following condition being fulfilled: - UNBLOCK PIN is not blocked.	M
CR5	If the Unblock PIN presented is correct, the new PIN value, presented together with the Unblock PIN shall be stored in the relevant EF, the number of remaining UNBLOCK PIN attempts for that Unblock PIN shall be reset to its initial value 10 and the number of remaining PIN attempts for that PIN shall be reset to its initial value 3.	M
CR6	After a successful unblocking attempt, the PIN shall be enabled, and the relevant access condition level satisfied the new PIN value is available for all channels.	M
CR7	If the presented Unblock PIN is false, the number of remaining UNBLOCK PIN attempts for that Unblock PIN, regardless on which logical channel the UNBLOCK PIN command was issued, shall be decremented.	M
CR8	The UICC shall return SW1 SW2 = '63C9', '63C8',, '63C1' for up to the ninth consecutive false UNBLOCK PIN presentation, not necessarily in the same card session.	M
CR9	After 10 consecutive false Unblock PIN presentations, not necessarily in the same card session, the respective Unblock PIN shall be blocked and the UICC shall return SW1 SW2 = '63 C0'.	M
CR10	A false Unblock PIN shall have no effect on the status of the respective PIN itself.	M
CR11	The UNBLOCK PIN with empty data field is used to retrieve the UNBLOCK PIN retry counter from the UICC. The parameter P2 indicates the PIN for which the retry counter value is to be retrieved.	M
CR12	The UNBLOCK PIN with empty data field function is performed whether or not the relevant PIN is disabled or blocked (e.g. by 3 consecutive wrong PIN presentations).	M
CR13	The number of retries, if any is indicated in the response by SW1 SW2 = '63CX', where X indicates the number of retries left.	M
CR14	An UNBLOCK PIN command with empty data field applied to a blocked PIN shall return SW1 SW2 = '63C0' or SW1 SW2 = '6983'.	M

Reference: TS 102.221 [1], subclause 11.1.13.

6.8.1.13.3 Test purpose

To verify that the UNBLOCK PIN function conforms to the above requirements.

NOTE 1: CR1 is tested in subclauses 6.8.1.9, 6.8.1.10, 6.8.1.11, 6.8.1.12.

NOTE 2: This function is only tested for PIN. It is assumed that if the function operates correctly for PIN, it will also operate correctly for PIN2 or other PIN.

6.8.1.13.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send an UNBLOCK PIN command with incorrect Unblock PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C9' - unsuccessful Unblock PIN verification, 9 attempts left [CR3, CR8].

d) The ME simulator shall send a STATUS command to the UICC.

The following shall be true of the response data [CR10]:

- TLV DO with tag '90' in the PS template DO of the response data shall indicate that PIN is enabled.
- e) The ME simulator shall send a VERIFY PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C3' - unsuccessful PIN verification, 3 attempts left.

f) The ME simulator shall send an UNBLOCK PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C9' - unsuccessful PIN verification, 9 attempts left [CR11, CR13].

g) The ME simulator shall send a DISABLE PIN command with PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

h) The ME simulator shall send an UNBLOCK PIN command with incorrect Unblock PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C8' - unsuccessful Unblock PIN verification, 8 attempts left [CR7].

i) The ME simulator shall send a STATUS command to the UICC.

The following shall be true of the response data [CR10]:

- TLV DO with tag '90' in the PS template DO of the response data shall indicate that PIN is disabled.
- j) The ME simulator shall send an ENABLE PIN command with PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' – normal ending of the command.

k) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' - unsuccessful PIN verification, 2 attempts left.

1) The ME simulator shall send an UNBLOCK PIN command with Unblock PIN and new PIN '33333333' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2].

m) The ME simulator shall send a STATUS command to the UICC.

The following shall be true of the response data [CR5, CR6]:

- TLV DO with tag '90' in the PS template DO of the response data shall indicate that PIN is enabled.
- n) The ME simulator shall send a VERIFY PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C3' - unsuccessful PIN verification, 3 attempts left [CR5].

o) The ME simulator shall send a VERIFY PIN command with the new PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

p) The ME simulator shall send an UNBLOCK PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'CA' - unsuccessful PIN verification, 10 attempts left [CR5, CR11, CR13].

q) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' - unsuccessful PIN verification, 2 attempt left.

r) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C1' - unsuccessful PIN verification, 1 attempt left.

s) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C0' - unsuccessful PIN verification, no attempt left.

t) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '83' - unsuccessful PIN verification, no attempt left.

u) The ME simulator shall send an UNBLOCK PIN command with Unblock PIN and new PIN '00000000' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR3].

v) The ME simulator shall send a VERIFY PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C3' - unsuccessful PIN verification, 3 attempts left [CR3].

Test procedure 2 - *** Destructive test ***

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send 9 UNBLOCK PIN command with incorrect Unblock PIN to the UICC.

The status condition returned by the UICC each time shall be SW1 = '63', SW2 = 'CX' - unsuccessful Unblock PIN verification 'X' retries remaining. After 9 times of unsuccessful Unblock PIN verification, the SW shall be SW1 = '63', SW2 = 'C1', at least one attempt left [CR8, CR7].

- c) The ME simulator shall reset the UICC.
- d) The ME simulator shall send an UNBLOCK PIN command with incorrect Unblock PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C0' - unsuccessful Unblock PIN verification, no attempt left [CR9].

e) The ME simulator shall send an UNBLOCK PIN command with Unblock PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '83' - Unblock PIN blocked [CR9].

Test procedure 3

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send an UNBLOCK PIN command with incorrect Unblock PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C9' - unsuccessful Unblock PIN verification, 9 attempts left [CR3, CR8].

d) The ME simulator shall send an UNBLOCK PIN command with incorrect Unblock PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C8' - unsuccessful Unblock PIN verification, 8 attempts left [CR7].

e) The ME simulator shall send an UNBLOCK PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C8' - unsuccessful PIN verification, 8 attempts left [CR12].

f) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C2' - unsuccessful PIN verification, 2 attempt left.

g) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C1' - unsuccessful PIN verification, 1 attempt left.

h) The ME simulator shall send a VERIFY PIN command with incorrect PIN to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C0' - unsuccessful PIN verification, no attempt left.

i) The ME simulator shall send an UNBLOCK PIN command with an empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'CA' - unsuccessful PIN verification, 10 attempts left [CR12, CR14].

Test procedure 4

a) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC.

The UICC shall return the assigned logical channel – call this channel 'a'.

b) The ME simulator shall send a VERIFY PIN command with a PIN of '00000000' to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR6].

c) The ME simulator shall send an UNBLOCK PIN command with an incorrect Unblock PIN to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C9' - unsuccessful Unblock PIN verification, 9 attempts left [CR3, CR8].

d) The ME simulator shall send an UNBLOCK PIN command with an incorrect Unblock PIN to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'C8' - unsuccessful Unblock PIN verification, 8 attempts left [CR7].

6.8.1.14 DEACTIVATE FILE

6.8.1.14.1 Definition and applicability

See clause 3.5.3.

6.8.1.14.2 Conformance requirement

CR1	This function shall deactivate the EF.	M
CR2	The target EF shall be selected by following ways:	M
	a) Select by file id $(P1 = '00')$;	
	b) Select by path from MF (P1 = '08');	
	c) Select by path from current DF (P1 = '09').	
CR3	After a DEACTIVATE FILE function the respective flag in the file LCSI_DO shall be changed	M
	accordingly.	
CR4	The function shall only be performed if the DEACTIVATE FILE access condition for the designated EF	M
	is satisfied.	
CR5	In case of successful execution of the command, the EF on which the command was applied shall	M
	become the current EF.	
CR6	After unsuccessful execution, the current EF and current DF shall remain the same as prior to the	M
	execution.	
CR7	A deactivated file shall no longer be available within the application for any function except for the	M
	SELECT and ACTIVATE FILE functions.	
CR8	If $P1 = P2 = '00'$ and the data field is empty, then the command shall apply to the current EF.	M

Reference: TS 102.221 [1], subclause 11.1.14.

6.8.1.14.3 Test purpose

To verify that the DEACTIVATE FILE function conforms to the above requirements.

6.8.1.14.4 Method of test

NOTE 1: Deactivation requires the verification of ADM, and the respective requirements for their fulfilment are the responsibility of the appropriate administrative authority. Therefore, the following test procedure shall be understood as an example.

NOTE 2: When EF_{CCP2} under ADF_{USIM} is not supported by the UICC, any supported linear fixed EF in the USIM application may be chosen.

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.

c) The ME simulator shall send a DEACTIVATE FILE command using "file ID selection" to the UICC to deactivate EF_{CCP2}.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - access condition not fulfilled [CR4].

- d) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- e) The ME simulator shall send a READ RECORD command to the UICC to read record 1.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '86' - command not allowed (no EF selected) [CR6].

- f) The ME simulator shall reset the UICC.
- g) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- h) The ME simulator shall gain the security access condition(s) specified for both DEACTIVATE and ACTIVATE on EF_{CCP2}. (This procedure is dependent on the respective requirements of appropriate administrative authority and may require several steps).
- i) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.

The following shall be true of the response data:

- The value of Life Cycle Status Integer of the response data shall indicate that the EF is activated.
- j) The ME simulator shall send a DEACTIVATE FILE command using 'file ID selection' to the UICC to deactivate EF_{CCP2} .

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR2a, CR3, CR4].

- k) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- 1) The ME simulator shall send an UPDATE RECORD command to the UICC to update record 1.

The UICC shall return an error code appropriate to the command [CR5, CR7].

m) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2} .

The value of Life Cycle Status Integer of the response data shall indicate that the EF is deactivated.

The status condition returned by the UICC shall be SW1 = '62', SW2 = '83' - selected file invalidated.

n) The ME simulator shall send an UPDATE RECORD command to the UICC to update record 1.

The UICC shall return an error code appropriate to the command [CR7].

- o) The ME simulator shall send an ACTIVATE FILE command to the UICC to select and activate EF_{CCP2} .
- p) The ME simulator shall reset the UICC.
- q) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- r) The ME simulator shall gain the security access condition(s) specified for both DEACTIVATE and ACTIVATE on EF_{CCP2}. (This procedure is dependent on the respective requirements of appropriate administrative authority and may require several steps.)
- s) The ME simulator shall send a DEACTIVATE command using 'path selection from MF' to the UICC to deactivate EF_{CCP2}.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

t) The ME simulator shall send a SELECT command to the UICC to select the EF_{CCP2}.

The value of Life Cycle Status Integer of the response data shall indicate that the EF is deactivated [CR2b].

The status condition returned by the UICC shall be SW1 = '62', SW2 = '83' - selected file invalidated.

- u) The ME simulator shall send an ACTIVATE FILE command to the UICC to select and activate EF_{CCP2}.
- v) The ME simulator shall reset the UICC.
- w) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- x) The ME simulator shall gain the security access condition(s) specified for both DEACTIVATE and ACTIVATE on EF_{CCP2}. (This procedure is dependent on the respective requirements of appropriate administrative authority and may require several steps.)
- y) The ME simulator shall send a DEACTIVATE FILE command using 'path selection from current DF' to the UICC to deactivate EF_{CCP2} .

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

z) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.

The value of Life Cycle Status Integer of the response data shall indicate that the EF is deactivated [CR2b].

The status condition returned by the UICC shall be SW1 = '62', SW2 = '83' - selected file invalidated.

- aa) The ME simulator shall send an ACTIVATE FILE command to the UICC to select and activate EF_{CCP2}.
- bb) The ME simulator shall reset the UICC.
- cc) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- dd) The ME simulator shall gain the security access condition(s) specified for both DEACTIVATE and ACTIVATE on EF_{CCP2}. (This procedure is dependent on the respective requirements of appropriate administrative authority and may require several steps.)
- ee) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.
- ff) The ME simulator shall send a DEACTIVATE FILE command with P1 = P2 = '00' and with the empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR8].

gg) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.

The value of Life Cycle Status Integer of the response data shall indicate that the EF is deactivated [CR8].

The status condition returned by the UICC shall be SW1 = '62', SW2 = '83' -selected file invalidated.

hh) The ME simulator shall send an ACTIVATE FILE command to the UICC to select and activate EF_{CCP2}.

6.8.1.15 ACTIVATE FILE

6.8.1.15.1 Definition and applicability

See clause 3.5.3.

6.8.1.15.2 Conformance requirement

CR1	This function shall activate a deactivated EF.	M
CR2	The target EF shall be selected by following ways:	M
	a) Select by file id (P1 = '00');	
	b) Select by path from MF (P1 = '08');	
	c) Select by path from current DF (P1 = '09').	
CR3	After an ACTIVATE FILE function the respective flag in the file LCSI_DO byte shall be changed	M
	accordingly.	

CR4	The function shall only be performed if the ACTIVATE FILE access condition for the designated EF is satisfied.	M
CR5	Tr	M
	become the current EF.	
CR6	After unsuccessful execution, the current EF and current DF shall remain the same as prior to the	M
	execution.	
CR7	If $P1 = P2 = '00'$ and the data field is empty, the command shall be applicable to the current EF.	M

Reference: TS 102.221 [1], subclause 11.1.15.

6.8.1.15.3 Test purpose

To verify that the ACTIVATE FILE function conforms to the above requirements.

6.8.1.15.4 Method of test

NOTE 1: Activation requires the verification of ADM, and the respective requirements for their fulfilment are the responsibility of the appropriate administrative authority. Therefore, the following test procedure shall be understood as an example.

NOTE 2: When EF_{CCP2} under ADF_{USIM} is not supported by the UICC, any supported linear fixed EF in the USIM application may be chosen.

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- a) The ME simulator shall gain the security access condition(s) specified for both DEACTIVATE and ACTIVATE on EF_{CCP2}. (This procedure is dependent on the respective requirements of appropriate administrative authority and may require several steps.)
- b) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.
- c) The ME simulator shall send a DEACTIVATE FILE command to the UICC to deactivate EF_{CCP2}.
- f) The ME simulator shall reset the UICC.
- g) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- h) The ME simulator shall send an ACTIVATE FILE command using 'file ID selection' to the UICC to select and activate EF_{CCP2}.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - access condition not fulfilled [CR4].

- i) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- j) The ME simulator shall send a READ RECORD command to the UICC to read record 1.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '86' - command not allowed (no EF selected) [CR6].

- k) The ME simulator shall reset the UICC.
- 1) The ME simulator shall send a SELECT command to the UICC to select and activate the USIM application.
- m) The ME simulator shall gain the security access condition(s) specified for both DEACTIVATE and ACTIVATE on EF_{CCP2}. (This procedure is dependent on the respective requirements of appropriate administrative authority and may require several steps.)

n) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.

The value of Life Cycle Status Integer of the response data shall indicate that the EF is deactivated.

The status condition returned by the UICC shall be SW1 = '62', SW2 = '83' – selected file invalidated.

o) The ME simulator shall send an ACTIVATE FILE command using 'file ID selection' to the UICC to select and activate EF_{CCP2}.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1, CR2a, CR3, CR4].

- p) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- q) The ME simulator shall send a READ RECORD command to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR5].

r) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.

The value of Life Cycle Status Integer of the response data shall indicate that the EF is activated.

- s) The ME simulator shall send a DEACTIVATE FILE command to the UICC to deactivate EF_{CCP2}.
- t) The ME simulator shall reset the UICC.
- u) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- v) The ME simulator shall gain the security access condition(s) specified for both DEACTIVATE and ACTIVATE on EF_{CCP2}. (This procedure is dependent on the respective requirements of appropriate administrative authority and may require several steps.)
- w) The ME simulator shall send an ACTIVATE command using 'path selection from MF' to the UICC to select and activate EF_{CCP2} .

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

x) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.

The value of Life Cycle Status Integer of the response data shall indicate that the EF is activated.

- y) The ME simulator shall send a DEACTIVATE FILE command to the UICC to deactivate EF_{CCP2} .
- z) The ME simulator shall reset the UICC.
- aa) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- bb) The ME simulator shall gain the security access condition(s) specified for both DEACTIVATE and ACTIVATE on EF_{CCP2}. (This procedure is dependent on the respective requirements of appropriate administrative authority and may require several steps.)
- cc) The ME simulator shall send an ACTIVATE FILE command using 'path selection from current DF' to the UICC to select and activate EF_{CCP2}.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

dd) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2} .

The value of Life Cycle Status Integer of the response data shall indicate that the EF is activated.

- ee) The ME simulator shall send a DEACTIVATE FILE command to the UICC to deactivate EF_{CCP2}.
- ff) The ME simulator shall reset the UICC.
- gg) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.

- hh) The ME simulator shall gain the security access condition(s) specified for both DEACTIVATE and ACTIVATE on EF_{CCP2}. (This procedure is dependent on the respective requirements of appropriate administrative authority and may require several steps.)
- ii) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.
- jj) The ME simulator shall send an ACTIVATE FILE command with P1 = P2 = '00' and with the empty data field to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR7].

kk) The ME simulator shall send a SELECT command to the UICC to select EF_{CCP2}.

The value of Life Cycle Status Integer of the response data shall indicate that the EF is activated [CR7].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

6.8.1.16 AUTHENTICATE

6.8.1.16.1 Definition and applicability

See clause 3.5.3.

6.8.1.16.2 Conformance requirement

CR1 An appropriate application shall be selected in the UICC before issuing this command. M Reference: TS 102.221 [1], subclause 11.1.16.

6.8.1.16.3 Test purpose

To verify that the AUTHENTICATE function conforms to the above requirements.

6.8.1.16.4 Method of test

NOTE 1: Consequences are not clearly defined when the AUTHENTICATE command is performed where no application is being selected. Therefore, the test for CR1 should be left N/A.

NOTE 2: Authentication procedure for USIM application is tested in subclause 7.3.1 of this present document.

Initial conditions

N/A

Test procedure

N/A

6.8.1.17 MANAGE CHANNEL

6.8.1.17.1 Definition and applicability

See clause 3.5.3.

6.8.1.17.2 Conformance requirement

CR1	The MANAGE CHANNEL open function opens a new logical channel other than the basic	Rel-4 -
	channel '0'.	
CR2	The UICC shall support channel number assignment by the UICC.	Rel-4 -

CR3	The MANAGE CHANNEL close function explicitly closes a logical channel.	Rel-4 -
CR4	When a channel has been successfully closed, the channel can be reassigned.	Rel-4 -
CR5	The basic logical channel '0' is always available and cannot be closed.	Rel-4 -
CR6	The function shall accept no input data.	Rel-4 -
CR7	The function shall output either no data or the channel number of the logical channel assigned by	Rel-4 -
	the UICC.	
CR8	Response data shall only be returned if the value of the parameters P1-P2 of the command is	Rel-4 -
	'0000'.	

Reference: TS 102 221 [1], subclause 11.1.17.

6.8.1.17.3 Test purpose

To verify that the MANAGE CHANNEL function conforms to the above requirements.

NOTE: CR1, CR2, CR3, CR4, CR5, CR6, CR7 and CR8 are tested in subclause 6.5.7.

6.8.1.17.4 Method of test

Initial conditions

N/A

Test procedure

N/A

6.8.1.18 GET CHALLENGE

The tests defined in this subclause only apply where the UICC under test supports the GET CHALLENGE command. If the UICC under test does not support the GET CHALLENGE command, then these tests do not apply.

6.8.1.18.1 Definition and applicability

See clause 3.5.3.

6.8.1.18.2 Conformance requirement

CR1	This function is used to create a random number.	(Rel-4)
		Rel-6
CR2	The generated random number is associated with the logical channel specified in the GET	(Rel-4)
	CHALLENGE command CLA.	Rel-6
CR3	The maximum length of the random number returned by the UICC is specified by the Le	(Rel-4)
	parameter in the command parameters body.	Rel-6
CR4	The generated random number may be used internally by the UICC in procedures specified by	(Rel-4)
	the application.	Rel-6
CR5	The validity of the random number is at least for the next command, on the same logical	(Rel-4)
	channel, following the GET CHALLENGE command if not specified differently by the	Rel-6
	application.	
CR6	The random number referenced is always the latest generated on the logical channel specified	(Rel-4)
	in the CLA by the command referencing the usage of a random number.	Rel-6
CR7	The function shall accept no input data.	(Rel-4)
		Rel-6
CR8	The function shall output a random number.	(Rel-4)
		Rel-6

Reference: TS 102 221 [1], subclause 11.1.18.

6.8.1.18.3 Test purpose

To verify that the GET CHALLENGE function conforms to the above requirements.

Note 1: The testing of the quality of the random number generated by this command is outside the scope of the present document. (CR1, CR8)

Note 2: CR2, CR4, CR5 and CR6 are not tested.

6.8.1.18.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select the USIM application.
- c) The ME simulator shall send a GET CHALLENGE command to the UICC with a length value of 8.

The UICC shall return a data string containing a maximum of 8 bytes of response data. [CR3, CR7]

d) Step c) shall be repeated a further 99 times.

For each repetition the UICC shall return a data string containing a maximum of 8 bytes of response data that is different to that has been returned previously in this test. [CR8]

(Note: This does not test the quality of the returned Random Number merely that the same number is not returned twice in 100 calls of the GET CHALLENGE command.)

6.8.2 Data Oriented Commands

6.8.2.1 RETRIEVE DATA

6.8.2.1.1 Definition and applicability

See clause 3.5.3.

6.8.2.1.2 Conformance requirement

CR1	After a successful selection the current tag pointer is undefined.	Rel-6:
		O_BER_TLV_FILES
CR2	A data object transfer can be interleaved with any command not modifying the	Rel-6:
	current EF or the current tag pointer.	O_BER_TLV_FILES
CR3	Any interleaved command that modifies the current EF or the current tag	Rel-6:
	pointer shall abort an uncompleted data object transfer.	O_BER_TLV_FILES
CR4	A successful APDU indicating "First Block" sets the current tag pointer and	Rel-6:
	shall abort an uncompleted data object transfer. This applies for all tags defined	O_BER_TLV_FILES
	in this clause, even if the new tag is the same as the previous one.	
CR5	The current tag pointer and its associated context (e.g. current offset in the data	Rel-6:
	object) shall not be changed by an APDU resulting in an error status word.	O_BER_TLV_FILES
CR6	The setting "retransmit previous block" is only allowed if the previous	Rel-6:
	command did not result in an error status word.	O_BER_TLV_FILES
CR7	This function shall only be performed if the READ access condition for this EF	Rel-6:
	is satisfied.	O_BER_TLV_FILES
CR8	If the requested TLV object does not exist in the EF, the UICC shall answer	Rel-6:
	with "referenced data not found".	O_BER_TLV_FILES

CR9	The status word sent by the card after a successful RETRIEVE DATA	Rel-6:
	command is '62F1' or '62F2' if more data is available.	O_BER_TLV_FILES
CR10	Once a data object was fully retrieved, any subsequent RETRIEVE DATA	Rel-6:
	command on this data object with parameter P2 set to 'Next Block' shall be	O_BER_TLV_FILES
	rejected with the status word '6A86'.	
CR11	If P2 is set to 'First Block' the function shall output a BER-TLV data object or	Rel-6:
	the first part of it if segmented over several APDUs.	O_BER_TLV_FILES
CR12	If P2 is set to 'Next Block' and the previous RETRIEVE DATA command	Rel-6:
	ended with "more data available" the function shall output the next segment of	O_BER_TLV_FILES
	the segmented TLV object.	
CR13	If P2 is set to 'Retransmit Previous Block' the function shall output the data as	Rel-6:
	in the previous command.	O_BER_TLV_FILES

Reference: TS 102.221 [1], subclauses 11.3 and 11.3.1.

6.8.2.1.3 Test purpose

To verify that the RETRIEVE DATA function conforms to the above requirements.

NOTE: For CR9, only '62F1' is accepted as a status word, as the relevant test procedures do not send a TERMINAL PROFILE and therefore the UICC should never indicate that a proactive command is pending.

6.8.2.1.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) EF_{MMDF} shall contain only the following data objects:

Tag	Length field	Value
'81'	'02'	'01 02'
'A2'	'82 05 A0'	1440 bytes: '80 0E 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D' repeated 90 times.
'83'	'00'	''- i.e. empty value.

EF_{MMDF} shall not contain the following data objects:

Tag
'86'

3) $\overline{\text{EF}_{\text{MML}}}$ shall be present.

Test procedure 1 (basic)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall select EF_{MMDF} .
- c) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '81' to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' – security status not satisfied [CR7].

- d) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the READ access condition for EF_{MMDF} .
- e) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '81' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR7].

The data returned shall be '81 02 01 02' [CR11].

f) The ME simulator shall send a RETRIEVE DATA command indicating "Next block" to the UICC.

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '86' - Incorrect parameters P1 to P2 [CR10].

- g) The ME simulator shall select EF_{MMDF}.
- h) The ME simulator shall send a RETRIEVE DATA command indicating "Next block" to the UICC.

The UICC shall return an error code appropriate to the command [CR1].

i) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag 'A2' to the UICC.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available [CR9].

The response data returned by the UICC shall contain the first part of the data object with tag 'A2' [CR12].

j) The ME simulator shall send RETRIEVE DATA commands indicating "Next block" to the UICC until the status condition returned by the UICC is not SW1 = '62', SW2 = 'F1' - More data available.

For the last command, the status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

For all commands, the response data returned by the UICC shall contain the next part of the data object with tag 'A2' [CR12].

The last command shall contain the last part of the data object with tag 'A2' [CR12].

k) The ME simulator shall send a RETRIEVE DATA command indicating "Next block" to the UICC.

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '86' - Incorrect parameters P1 to P2 [CR10].

l) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '86' to the UICC.

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '88' - Referenced data not found [CR8].

m) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '83' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command. The data returned shall be '83 00' [CR11].

n) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag 'A2' to the UICC.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The response data returned by the UICC shall contain the first part of the data object with tag 'A2', with a length less than or equal to the maximum length of data expected by the terminal as encoded in the Le byte in the command.

o) The ME simulator shall send RETRIEVE DATA commands indicating "Next block", and with Le the smaller of the number of bytes still to be transferred and 50, to the UICC, until the status condition returned by the UICC is not SW1 = '62', SW2 = 'F1' - More data available.

For the last command, the status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

For all commands, the response data returned by the UICC shall contain the next part of the data object with tag 'A2', with a length less than or equal to 50.

The last command shall contain the last part of the data object with tag 'A2'.

Test procedure 2 (interleaving and aborting)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall select EF_{MMDF}.
- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the access condition for EF_{MMDF}.
- d) For each of the commands in the following table, steps e) to j) shall be repeated.

Command	Expected status condition	CRs tested
STATUS	SW1 = '90', SW2 = '00' - normal ending of the command	CR2
VERIFY PIN with PIN	SW1 = '90', SW2 = '00' - normal ending of the command	CR2
SELECT with file ID '2F 34'	An error code appropriate to the command	CR5, CR2
READ BINARY	An error code appropriate to the command	CR5, CR2
RETRIEVE DATA indicating "First block" and with tag '86'	An error code appropriate to the command	CR5, CR2
SET DATA indicating "Next block" and with data '85 01 01'	An error code appropriate to the command	CR5, CR2

e) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag 'A2' to the UICC.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The response data returned by the UICC shall contain the first part of the data object with tag 'A2'.

f) The ME simulator shall send the command indicated in the table in step d) to the UICC.

The UICC shall return the status condition indicated in the table in step d).

g) The ME simulator shall send a RETRIEVE DATA command indicating "Next block" to the UICC.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The response data returned by the UICC shall contain the next part of the data object with tag 'A2'.

h) The ME simulator shall send the command indicated in the table in step d) to the UICC.

The UICC shall return the status condition indicated in the table in step d).

i) The ME simulator shall send a RETRIEVE DATA command indicating "Next block" to the UICC.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The response data returned by the UICC shall contain the next part of the data object with tag 'A2'.

j) The ME simulator shall continue sending RETRIEVE DATA commands indicating "Next block" to the UICC until the status condition returned by the UICC is not SW1 = '62', SW2 = 'F1' - More data available.

For the last command, the status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

For all commands, the response data returned by the UICC shall contain the next part of the data object with tag 'A2'.

The last command shall contain the last part of the data object with tag 'A2'.

k) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag 'A2' to the UICC.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

1) The ME simulator shall send a SELECT command to select EF_{MML}.

m) The ME simulator shall send a RETRIEVE DATA command indicating "Next block" to the UICC.

The UICC shall return an error code appropriate to the command [CR3].

- n) The ME simulator shall send a SELECT command to select EF_{MMDF}.
- The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag 'A2' to the UICC.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The data returned shall be the start of the TLV with tag 'A2' [CR4].

p) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag 'A2' to the UICC.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The data returned shall be the start of the TLV with tag 'A2'.

q) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '81' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

The data returned shall be '81 02 01 02' [CR4].

r) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag 'A2' to the UICC.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The data returned shall be the start of the TLV with tag 'A2'.

s) The ME simulator shall send a SET DATA command indicating "First block" and with data '81 02 03 04' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

t) The ME simulator shall send a RETRIEVE DATA command indicating "Next block" to the UICC.

The UICC shall return an error code appropriate to the command [CR4].

u) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag 'A2' to the UICC.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

v) The ME simulator shall send a SET DATA command indicating "First block" and with data 'A2 03 01 01 00' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

w) The ME simulator shall send a RETRIEVE DATA command indicating "Next block" to the UICC.

The UICC shall return an error code appropriate to the command [CR4].

Test procedure 3 (retransmitting)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall select EF_{MMDF} .
- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the access condition for EF_{MMDF} .
- d) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '81' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command. The data returned shall be '81 02 01 02'.

e) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag 'A2' to the UICC.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

- f) The ME simulator shall send a RETRIEVE DATA command indicating "Next block" to the UICC.
 - The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' More data available.
- g) The ME simulator shall send a RETRIEVE DATA command indicating "Retransmit previous block" to the UICC.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The data returned shall be the same as in step f) [CR13, CR6].

- h) The ME simulator shall continue sending RETRIEVE DATA commands indicating "Next block" to the UICC until the UICC returns status condition SW1 = '90', SW2 = '00' normal ending of the command.
- i) The ME simulator shall send a RETRIEVE DATA command indicating "Retransmit previous block" to the LHCC

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

The data returned shall be the same as for the last RETRIEVE DATA command sent in step h) [CR13, CR6].

6.8.2.2 SET DATA

6.8.2.2.1 Definition and applicability

See clause 3.5.3.

6.8.2.2.2 Conformance requirement

CR1	For SET DATA, the UICC as receiver is in charge of the concatenation of the	Rel-6:
	data object.	O_BER_TLV_FILES
CR2	A data object transfer can be interleaved with any command not modifying the	Rel-6:
	current EF or the current tag pointer.	O_BER_TLV_FILES
CR3	Any interleaved command that modifies the current EF or the current tag	Rel-6:
	pointer shall abort an uncompleted data object transfer.	O_BER_TLV_FILES
CR4	A successful APDU indicating "First Block" sets the current tag pointer and	Rel-6:
	shall abort an uncompleted data object transfer. This applies for all tags defined	O_BER_TLV_FILES
	in this clause, even if the new tag is the same as the previous one.	
CR5	The current tag pointer and its associated context (e.g. current offset in the data	Rel-6:
	object) shall not be changed by an APDU resulting in an error status word.	O_BER_TLV_FILES
CR6	The setting "retransmit previous block" is only allowed if the previous	Rel-6:
	command did not result in an error status word.	O_BER_TLV_FILES
CR7	If P2 indicates "First Block", this command creates a new data object in the	Rel-6:
	current BER-TLV structure EF or replaces an already existing data object with	O_BER_TLV_FILES
	the same tag or deletes a data object.	
CR8	Subsequent commands with P2 indicating "Next Block" pass the remaining	Rel-6:
	content of the data object being replaced or created to the card.	O_BER_TLV_FILES
CR9	If P2 indicates "Retransmit Previous Block", the content sent with the previous	Rel-6:
	command is updated.	O_BER_TLV_FILES
CR10	This command shall only be performed if the UPDATE access condition for this	Rel-6:
	EF is satisfied.	O_BER_TLV_FILES

CR11	When a transfer to create or replace an object is initiated, the first APDU	Rel-6:
	identified by P2 indicating "First Block" shall at least contain the tag value and	O_BER_TLV_FILES
	length of the value field of the BER-TLV data object.	
CR12	When a SET DATA command is successfully executed, the UICC shall return	Rel-6:
	'9000' if it had received all expected data.	O_BER_TLV_FILES
CR13	If the length of a TLV object received in a SET DATA command is less than	Rel-6:
	was indicated by the length parameter of the TLV header, then the UICC shall	O_BER_TLV_FILES
	return '63F1' or '63F2'.	
CR14	A data object transfer is successfully completed when the number of bytes	Rel-6:
	received matches the length indicated for the data object.	O_BER_TLV_FILES
CR15	Once a data object transfer is successfully completed, any subsequent SET	Rel-6:
	DATA command on this data object with parameter P2 set to 'Next Block' shall	O_BER_TLV_FILES
	be rejected with the status word '6A86'.	
CR16	When a data object transfer is aborted, the data object with this tag shall no	Rel-6:
	longer be available in EF.	O_BER_TLV_FILES
CR17	If the data sent with this command is greater than the length of the value field of	Rel-6:
	the BER-TLV object, the card shall return status word '6700', the data object is	O_BER_TLV_FILES
	not updated and the data object transfer is not completed.	
CR18	If, in a SET DATA command with P2 indicating 'First Block', the data field	Rel-6:
	only contains a tag field, i.e. the length and the value field of the BER-TLV data	O_BER_TLV_FILES
	object are missing, the data object specified by the tag shall be deleted if present	
	in the current context.	
CR19	Deleting a non-existent object shall not be considered as an error.	Rel-6:
		O_BER_TLV_FILES
CR20	If the data field contains a tag field and a length field with zero value, the object	Rel-6:
	is not deleted but a zero length object is created.	O_BER_TLV_FILES

Reference: TS 102.221 [1], subclauses 11.3 and 11.3.2.

6.8.2.2.3 Test purpose

To verify that the SET DATA function conforms to the above requirements.

NOTE: For CR13, only '63F1' is accepted as a status word, as the relevant test procedures do not send a TERMINAL PROFILE and therefore the UICC should never indicate that a proactive command is pending.

6.8.2.2.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) EF_{MMDF} shall contain the following data objects:

Tag	Value	Reason
'81'	'01 02'	Existing – to be replaced.
'82'	1440 bytes: '80 0E 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D' repeated 90 times.	Existing – to be replaced.

EF_{MMDF} shall not contain the following data objects:

Tag	Reason
'86'	
'87'	Not existing – to be created.
'88'	Not existing – to be created.

3) EF_{MML} shall be present.

Test procedure 1 (basic)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall select EF_{MMDF}.
- c) The ME simulator shall send a SET DATA command indicating "First block" and with data '81 02 03 04' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' security status not satisfied [CR10].
- d) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the UPDATE access condition for EF_{MMDF}.
- e) The ME simulator shall send a SET DATA command indicating "First block" and with data '81 02 03 04' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR10, CR12, CR14].
- f) The ME simulator shall send a SET DATA command indicating "Next block" and with data '81 02 05 06' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '6A', SW2 = '86' Incorrect parameters P1 to P2 [CR15].
- g) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '81' to the UICC.
 - The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '81 02 03 04' (including the tag and length fields) [CR14].
- h) The ME simulator shall send a SET DATA command indicating "First block" and with data '87 02 05 06' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR12, CR14].
- i) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '87' to the UICC.
 - The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '87 02 05 06' (including the tag and length fields) [CR14].
- j) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 82 02 0E 01 02 .. FA FB' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' More data expected [CR7, CR13].
- k) The ME simulator shall send a SET DATA command indicating "Next block" and with data '01 02 .. FE FF' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' More data expected [CR8, CR13].
- 1) The ME simulator shall send a SET DATA command indicating "Next block" and with data '01 02 .. 13 14' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR12, CR14].
- m) The ME simulator shall send a SET DATA command indicating "Next block" and with data '11 12 .. 23 24' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '6A', SW2 = '86' Incorrect parameters P1 to P2 [CR15].
- n) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '82' to the UICC.

- The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '82 82 02 0E 01 02 .. FA FB 01 02 .. FE FF 01 02 .. 13 14' (including the tag and length fields) [CR14].
- o) The ME simulator shall send a SET DATA command indicating "First block" and with data '88 82 02 0E 01 02 .. FA FB' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' More data expected [CR7, CR13].
- p) The ME simulator shall send a SET DATA command indicating "Next block" and with data '01 02 .. FE FF' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' More data expected [CR8, CR13].
- q) The ME simulator shall send a SET DATA command indicating "Next block" and with data '01 02 .. 13 14' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR12, CR14].
- r) The ME simulator shall send a SET DATA command indicating "Next block" and with data '01 02 ... 13 14' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '6A', SW2 = '86' Incorrect parameters P1 to P2 [CR15].
- s) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '88' to the UICC.
 - The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '88 82 02 0E 01 02 .. FA FB 01 02 .. FE FF 01 02 .. 13 14' (including the tag and length fields) [CR14].
- t) The ME simulator shall send a SET DATA command indicating "First block" and with data '81 00' to the UICC. The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command.
- u) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '81' to the UICC.
 - The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '81 00' (including the tag and length fields) [CR20].
- v) The ME simulator shall send a SET DATA command indicating "First block" and with data '87' to the UICC.

 The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command.
- w) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '87' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '6A', SW2 = '88' Referenced data not found [CR18].
- x) The ME simulator shall send a SET DATA command indicating "First block" and with data '87' to the UICC.

 The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR19].
- y) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '87' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '6A', SW2 = '88' Referenced data not found [CR18].

Test procedure 2 (interleaving and aborting)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall select EF_{MMDF}.

- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the UPDATE access condition for EF_{MMDF}.
- d) For each of the commands in the following table, steps e) to k) shall be repeated.

Command	Expected status condition	CRs tested
STATUS	SW1 = '90', SW2 = '00' - normal ending of the command	CR2
VERIFY PIN with PIN	SW1 = '90', SW2 = '00' - normal ending of the command	CR2
SELECT with file ID '2F 34'	An error code appropriate to the command	CR5, CR2
READ BINARY	An error code appropriate to the command	CR5, CR2
RETRIEVE DATA indicating "First block" and with tag '86'	An error code appropriate to the command	CR5, CR2
SET DATA indicating "First block" and with data '85 01 01 02'	An error code appropriate to the command	CR5, CR2

e) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 82 02 0E 01 02 .. FA FB' to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

f) The ME simulator shall send the command indicated in the table in step d) to the UICC.

The UICC shall return the status condition indicated in the table in step d).

g) The ME simulator shall send a SET DATA command indicating "Next block" and with data '01 02 .. FE FF' to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

h) The ME simulator shall send the command indicated in the table in step d) to the UICC.

The UICC shall return the status condition indicated in the table in step d).

i) The ME simulator shall send a SET DATA command indicating "Next block" and with data '01 02 .. 13 14' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

j) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '82' to the UICC.

The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '82 82 02 0E 01 02 .. FA FB 01 02 .. FE FF 01 02 .. 13 14' (including the tag and length fields).

k) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 02 03 04' to the LHCC

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

1) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 82 02 0E 01 02 \dots FA FB' to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

m) The ME simulator shall select EF_{MML}.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

n) The ME simulator shall send a SET DATA command indicating "Next block" and with data '01 02 .. FE FF' to the UICC.

The UICC shall return an error code appropriate to the command.

o) The ME simulator shall select EF_{MMDF}.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

p) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '82' to the UICC.

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '88' - Referenced data not found [CR3, CR16].

q) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 02 03 04' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

r) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 82 02 0E 01 02 .. FA FB' to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

s) The ME simulator shall select EF_{MMDF}.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

t) The ME simulator shall send a SET DATA command indicating "Next block" and with data '01 02 .. FE FF' to the UICC.

The UICC shall return an error code appropriate to the command.

u) The ME simulator shall select EF_{MMDF} .

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

v) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '82' to the UICC.

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '88' - Referenced data not found [CR3, CR16].

w) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 02 03 04' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

x) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 82 02 0E 01 02 .. FA FB' to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

y) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '82' to the UICC.

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '88' - Referenced data not found [CR4, CR3, CR16].

z) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 02 03 04' to the LHCC

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

aa) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 82 02 0E 01 02 .. FA FB' to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

bb) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '81' to the UICC.

The status condition returned by the UICC shall be either SW1 = '90', SW2 = '00' - normal ending of the command, or SW1 = '62', SW2 = 'F1' - More data available.

cc) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '82' to the UICC.

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '88' - Referenced data not found [CR4, CR3, CR16].

dd) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 02 03 04' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

ee) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 82 02 0E 01 02 .. FA FB' to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

ff) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 02 03 04' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

gg) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '82' to the UICC.

The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '82 02 03 04' (including the tag and length fields) [CR4, CR3].

hh) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 02 03 04' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

ii) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 82 02 0E 01 02 $\,$. FA FB' to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

jj) The ME simulator shall send a SET DATA command indicating "First block" and with data '81 02 03 04' to the LHCC

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

kk) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '82' to the UICC.

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '88' - Referenced data not found [CR4, CR3, CR16].

Test procedure 3 (retransmitting)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall select EF_{MMDF} .
- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the UPDATE access condition for EF_{MMDF} .
- d) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 82 02 0E 01 02 .. FA FB' to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

e) The ME simulator shall send a SET DATA command indicating "Next block" and with data '01 02 .. FE FF' to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

- f) The ME simulator shall send a SET DATA command indicating "Retransmit previous block" and with data '01 02 .. FE FF' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' More data expected [CR6].
- g) The ME simulator shall send a SET DATA command indicating "Next block" and with data '01 02 .. 13 14' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command.
- h) The ME simulator shall send a SET DATA command indicating "Retransmit previous block" and with data '01 02 .. 13 14' to the UICC.
 - The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR6].
- i) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '82' to the UICC.
 - The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '82 82 02 0E 01 02 .. FA FB 01 02 .. FE FF 01 02 .. 13 14' (including the tag and length fields) [CR9].

Test procedure 4 (segmentation of data)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall select EF_{MMDF} .
- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the access condition for EF_{MMDF} .
- d) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 02' to the UICC.

 The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' More data expected [CR11].
- e) The ME simulator shall send a SET DATA command indicating "Next block" and with data '03' to the UICC.

 The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' More data expected.
- f) The ME simulator shall send a SET DATA command indicating "Next block" and with data '04' to the UICC.

 The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command.
- g) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '82' to the UICC.
 - The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '82 02 03 04' (including the tag and length fields) [CR1].
- h) The ME simulator shall send a SET DATA command indicating "First block" and with data '9F 1F' to the UICC.

 The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' normal ending of the command [CR19].
- i) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 02 05 06 01 02 03 04' to the UICC.
 - The status condition returned by the UICC shall be SW1='67', SW2='00' Wrong length [CR17].
- j) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '82' to the UICC.
 - The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '82 02 03 04' (including the tag and length fields) [CR1].

- k) The ME simulator shall send a SET DATA command indicating "First block" and with data '82 02' to the UICC.

 The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' More data expected.
- l) The ME simulator shall send a SET DATA command indicating "Next block" and with data '05 06 07 08' to the UICC.

The status condition returned by the UICC shall be SW1 = '67', SW2 = '00' - Wrong length [CR17].

m) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '82' to the UICC.

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '88' - Referenced data not found [CR16].

6.8.2.3 BER-TLV structure files

6.8.2.3.1 Definition and applicability

See clause 3.5.3.

6.8.2.3.2 Conformance requirement

CR1	The tag '5C' as defined in ISO/IEC 7816-4 [7] is reserved to get the list of tags	Rel-6:
	already allocated in a file.	O_BER_TLV_FILES
CR2	The value part of this TLV contains the concatenation of all top level tags of the	Rel-6:
	BER-TLV objects allocated in the file.	O_BER_TLV_FILES
CR3	Tags contained in the value part of a constructed BER-TLV object shall not be	Rel-6:
	included in the tag list.	O_BER_TLV_FILES
CR4	Tag '5C' shall not be considered as an allocated tag.	Rel-6:
		O_BER_TLV_FILES
CR5	The tag '5C' used in the command data is used to get the list of tags allocated in	Rel-6:
	the file.	O_BER_TLV_FILES
CR6	A data object transfer is successfully completed when the number of bytes	Rel-6:
	received matches the length indicated for the data object.	O_BER_TLV_FILES
CR7	The UICC shall support the following tag values for primitive TLV objects: '80'	Rel-6:
	to '9E' and '9F 1F' to '9F 7F' and '9F 81 XX' to '9F FF XX' with 'XX' from '00'	O_BER_TLV_FILES
	to 7F'.	
CR8	The UICC shall support the following tag values for constructed TLV objects:	Rel-6:
	'A0' to 'BE' and 'BF 1F' to 'BF 7F' and 'BF 81 XX' to 'BF FF XX' with 'XX'	O_BER_TLV_FILES
	from '00' to 7F'.	
CR9	If the tag of the object is not in the range specified in the present document, the	Rel-6:
	UICC shall answer with "incorrect parameters in the data field".	O_BER_TLV_FILES
CR10	If the tag of the object is not in the range specified in the present document, the	Rel-6:
	UICC shall answer with "incorrect parameters in the data field".	O_BER_TLV_FILES
CR11	For a BER-TLV structure EF, file size is the memory used by the allocated data	Rel-6:
	objects.	O_BER_TLV_FILES
CR12	For BER-TLV structured EF the amount of available memory shall be the	Rel-6:
	maximum amount of bytes that is available in the EF for the next TLV object to	O_BER_TLV_FILES
	be created. This shall include the space required for the tag and the length field.	
CR13	Space that is freed by a SET DATA command with P2 indicating "First Block"	Rel-6:
	shall be available for new objects.	O_BER_TLV_FILES
CR14	If the length requested in a SET DATA command with P2 indicating "First	Rel-6:
	Block" is not available, the card shall return '6A84'.	O_BER_TLV_FILES

Reference: TS 102.221 [1], subclauses 11.1.1.4.1, 11.3, 11.3.1 and 11.3.2.

6.8.2.3.3 Test purpose

To verify that the UICC under test uses '5C' correctly, uses the specified tag ranges correctly and uses the correct FCP content.

NOTE 2: CR13 is not tested.

6.8.2.3.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) EF_{MMDF} shall contain only the following data objects:

Tag	Length field	Value
'81'	'02'	'01 02'
'A2'	'82 05 A0'	1440 bytes: '80 0E 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D' repeated 90 times.
'83'	'00'	''- i.e. empty value.

Test procedure 1 (usage of '5C')

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall select EF_{MMDF}.
- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the READ and UPDATE access conditions for EF_{MMDF} .
- d) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '5C' to the UICC.

The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '5C 03' followed by '81', 'A2' and '83' in any order [CR1, CR2, CR3, CR4, CR5].

e) The ME simulator shall send appropriate SET DATA commands in order to achieve the updates indicated in the following table:

Function	Tag	Value (for create/replace)
Replace	'81'	'03 04'
Delete	'A2'	N/A
Create	'85'	'01 02'

f) The ME simulator shall send a SET DATA command indicating "First block" and with data '89 82 01 00 01 02 .. FA FB' to the UICC.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

- g) The ME simulator shall select EF_{MMDF}.
- h) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '5C' to the UICC.

The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '5C 03' followed by '81', '83' and '85' in any order [CR1, CR2, CR3, CR4, CR5, CR6].

i) The ME simulator shall send a SET DATA command indicating "First block" and with data '5C $02\ 01\ 02$ ' to the UICC.

The UICC shall return an error code appropriate to the command [CR1].

Test procedure 2 (supported tag values)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall select EF_{MMDF}.
- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the READ and UPDATE access conditions for EF_{MMDF}.

d) For each tag in the table below, the ME simulator shall send a RETRIEVE DATA command indicating "First block" and with the tag from the table to the UICC.

'80'	'8F'	'9E'
'9F 1F'	'9F 4F'	'9F 7F'
'9F 81 00'	'9F C3 40'	'9F FF 7F'
'A0'	'AF'	'BE'
'BF 1F'	'BF 4F'	'BF 7F'
'BF 81 00'	'BF C3 40'	'BF FF 7F'

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '88' - Referenced data not found [CR7, CR8].

- e) For each tag in the table in step d), steps f) to g) shall be repeated.
- f) The ME simulator shall send a SET DATA command indicating "First block" and with data consisting of the tag indicated in the table in step d) followed by '02 01 04' to the UICC.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR7, CR8].

g) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with the tag indicated in the table in step d) to the UICC.

The data object retrieved by the RETRIEVE DATA command(s) shall contain the data consisting of the tag indicated in the table in step d) followed by '02 01 04' (including the tag and length fields).

h) For each tag in the table below, the ME simulator shall send a RETRIEVE DATA command indicating "First block" and with the tag from the table to the UICC.

'01'	'40'	'C0'
'9F 00'	'9F 80 00'	
'9F 01'	'9F 1E'	
'9F 81 80 00'		
'BF 00'	'BF 80 00'	
'BF 01'	'BF 1E'	
'BF 81 80 00'		

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '80' - Incorrect parameters in the data field [CR7, CR8, CR9].

i) For each tag in the table in step h), the ME simulator shall send a SET DATA command indicating "First block" and with data consisting of the tag followed by '02 03 04' to the UICC.

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '80' - Incorrect parameters in the data field [CR7, CR8, CR10].

Test procedure 3 (FCP)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall select EF_{MMDF} .

The contents of the TLV with tag '80' (File size) shall be equal to the value 1 450 (decimal) [CR11].

- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the UPDATE access condition for EF_{MMDF}.
- d) The ME simulator shall send appropriate SET DATA commands in order to achieve the updates indicated in the following table:

Function	Tag	Value (for create/replace)
Replace	'81'	'03 04 05 06'
Delete	'A2'	N/A
Create	'85'	'01 02'

e) The ME simulator shall select EF_{MMDE}.

The contents of the TLV with tag '80' (File size) in the FCP shall be equal to the value 12 (decimal) [CR11].

Steps f) and g) shall only be carried out if the contents of the TLV with tag '83' (Amount of available memory) contained in the TLV with tag 'A5' (Proprietary information) in the FCP returned in step e) has a value of at least 2 (decimal).

f) The ME simulator shall send appropriate SET DATA command(s) in order to create a new (i.e. currently non-existing) data object such that the number of bytes in the TLV (including the tag, length and value fields) is the largest possible that does not exceed the amount of available memory. A tag of '91', '9F1F' or '9F8100' shall be used according to whether a 1-, 2- or 3-byte tag is used.

The UICC shall successfully execute all the SET DATA commands, such that the data object transfer is successfully completed [CR12].

- g) The ME simulator shall send a SET DATA command to delete the data object created in step f).
- h) The ME simulator shall select EF_{MMDF}.

Step i) shall only be carried out if the contents of the TLV with tag '83' (Amount of available memory) contained in the TLV with tag 'A5' (Proprietary information) in the FCP returned in step h) has a value of less than 16 777 222 (decimal).

Note: 16 777 222 is the number of bytes in the largest possible TLV – that having a 3-byte tag and a length of 'FF FF FF'.

i) The ME simulator shall send a SET DATA command indicating "First block" and with data containing a tag field of a tag which does not currently exist in the file and a length field containing a length such that the number of bytes in the TLV (including the tag, length and value fields) would exceed the amount of available memory by the smallest amount possible. A tag of '91', '9F1F' or '9F8100' shall be used according to whether a 1-, 2- or 3-byte tag is used.

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '84' - Not enough memory space [CR14].

6.8.2.4 Logical channel interactions

6.8.2.4.1 Definition and applicability

See clause 3.5.3.

6.8.2.4.2 Conformance requirement

CR1	For shareable files, file access shall be managed independently for	Rel-6: O_BER_TLV_FILES,
	each accessing application. In particular, a BER-TLV structure file	O_LOG_CHANS,
	shall have different pointers for each accessing application.	O_SHAREABLE
CR2	A data object transfer can be interleaved with any command not	Rel-6: O_BER_TLV_FILES
	modifying the current EF or the current tag pointer.	
CR3	For RETRIEVE DATA, if a current tag pointer associated with a SET	Rel-6: O_BER_TLV_FILES,
	DATA operation processed by another application points to the	O_LOG_CHANS,
	requested TLV object, the UICC shall answer with "conditions of use	O_SHAREABLE
	not satisfied".	
CR4	For SET DATA, if a current tag pointer associated with a SET or	Rel-6: O_BER_TLV_FILES,
	RETRIEVE DATA operation processed by another application points	O_LOG_CHANS,
	to the requested TLV object, the UICC shall answer with "conditions	O_SHAREABLE
	of use not satisfied".	

CR5	This command allows retrieving the list of the tags allocated (data	Rel-6: O_BER_TLV_FILES
	objects successfully completed) in the file.	
CR6	The tags of not yet completed SET DATA operations processed by	Rel-6: O_BER_TLV_FILES,
	other applications shall also be included in the list.	O_LOG_CHANS,
		O_SHAREABLE
CR7	When a data object transfer is aborted, the data object with this tag	Rel-6: O_BER_TLV_FILES
	shall no longer be available in EF.	

Reference: TS 102.221 [1], subclauses 11.1.1.4.1, 11.3, 11.3.1 and 11.3.2.

6.8.2.4.3 Test purpose

To verify that the UICC under test functions correctly when a BER-TLV structure file is accessed on more than one channel simultaneously.

6.8.2.4.4 Method of test

Initial conditions

- 1) The UICC shall be connected to a ME simulator.
- 2) EF_{MMDF} shall contain only the following data objects:

Tag	Length field	Value
'81'	'02'	'01 02'
'A2'	'82 05 A0'	1440 bytes: '80 0E 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D' repeated 90 times.
'83'	'00'	'' – i.e. empty value.

3) $DF_{MULTIMEDIA}$ and EF_{MMDF} shall be configured as shareable.

Test procedure 1 (management of tag pointers)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall select EF_{MMDF} .
- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the READ and UPDATE access conditions for EF_{MMDF}.
- d) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC on the basic channel.

The UICC should return the assigned logical channel number – call it channel 'a'.

- e) The ME simulator shall select EF_{MMDF} on channel 'a'.
- f) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag 'A2' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The response data returned by the UICC shall contain the first part of the data object with tag 'A2'.

g) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag 'A2' to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The response data returned by the UICC shall contain the first part of the data object with tag 'A2' [CR1].

h) The ME simulator shall send a RETRIEVE DATA command indicating "Next block" to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The response data returned by the UICC shall contain the next part of the data object with tag 'A2' as transferred on the basic channel [CR1, CR2].

i) The ME simulator shall send a RETRIEVE DATA command indicating "Next block" to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The response data returned by the UICC shall contain the next part of the data object with tag 'A2' as transferred on the basic channel [CR1, CR2].

j) The ME simulator shall send a RETRIEVE DATA command indicating "Next block" to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The response data returned by the UICC shall contain the next part of the data object with tag 'A2' as transferred on channel 'a' [CR1, CR2].

k) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag 'A2' to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The response data returned by the UICC shall contain the first part of the data object with tag 'A2' [CR1, CR2].

1) The ME simulator shall send a RETRIEVE DATA command indicating "Next block" to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The response data returned by the UICC shall contain the next part of the data object with tag 'A2' as transferred on the basic channel [CR1, CR2].

- m) The ME simulator shall select EF_{MMDF} on channel 'a'.
- n) The ME simulator shall send a RETRIEVE DATA command indicating "Next block" to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

The response data returned by the UICC shall contain the next part of the data object with tag 'A2' as transferred on the basic channel [CR1, CR2].

o) The ME simulator shall send a SET DATA command indicating "First block" and with data '84 1E 01 02 03 04 05' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

p) The ME simulator shall send a SET DATA command indicating "First block" and with data '85 1E 81 82 83 84 85' to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

q) The ME simulator shall send a SET DATA command indicating "Next block" and with data '06 07 08 09 0A' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected [CR2].

r) The ME simulator shall send a SET DATA command indicating "Next block" and with data '11 12 13 14 15' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected [CR2].

s) The ME simulator shall send a SET DATA command indicating "Next block" and with data '86 87 88 89 8A' to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected [CR2].

t) The ME simulator shall send a SET DATA command indicating "Next block" and with data '16 17 18 19 1A' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected [CR2].

u) The ME simulator shall send a SET DATA command indicating "First block" and with data '85 1E 81 82 83 84 85' to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

v) The ME simulator shall send a SET DATA command indicating "Next block" and with data '21 22 23 24 25' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected [CR2].

- w) The ME simulator shall select EF_{MMDF} on channel 'a'.
- x) The ME simulator shall send a SET DATA command indicating "Next block" and with data '26 27 28 29 2A' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1, CR2].

y) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '84' to the UICC on the basic channel.

The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '81 2A 01 02 03 04 05 06 07 08 09 0A 11 12 13 14 15 16 17 18 19 1A 21 22 23 24 25 26 27 28 29 2A ' (including the tag and length fields) [CR1].

z) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '85' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '6A', SW2 = '88' - Referenced data not found.

Test procedure 2 (concurrent access to data object)

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall select EF_{MMDF} .
- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the READ and UPDATE access conditions for EF_{MMDF} .
- d) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC on the basic channel.

The UICC should return the assigned logical channel number – call it channel 'a'.

- e) The ME simulator shall select EF_{MMDF} on channel 'a'.
- f) The ME simulator shall send a SET DATA command indicating "First block" and with data '84 0A 01 02 03 04 05' to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

g) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '84' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '85' - Conditions of use not satisfied [CR3].

h) The ME simulator shall send a SET DATA command indicating "Next block" and with data '06 07 08 09 0A' to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1, CR2].

i) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '84' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '85' - Conditions of use not satisfied [CR3].

- j) The ME simulator shall select EF_{MMDF} on channel 'a'.
- k) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag '84' to the UICC on the basic channel.

The status condition returned by the UICC shall be either SW1 = '90', SW2 = '00' - normal ending of the command, or SW1 = '62', SW2 = 'F1' - More data available.

- 1) The ME simulator shall select EF_{MMDF} .
- m) The ME simulator shall send a SET DATA command indicating "First block" and with data '84 0A 01 02 03 04 05' to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

n) The ME simulator shall send a SET DATA command indicating "First block" and with data '84 05 81 82 83 84 85' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '85' - Conditions of use not satisfied [CR3].

o) The ME simulator shall send a SET DATA command indicating "Next block" and with data '06 07 08 09 0A' to the UICC on channel 'a'.

The status condition returned by the UICC shall be SWI = '90', SW2 = '00' - normal ending of the command [CR1, CR2].

p) The ME simulator shall send a SET DATA command indicating "First block" and with data '84 05 81 82 83 84 85' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '85' - Conditions of use not satisfied [CR3].

- q) The ME simulator shall select EF_{MMDF} on channel 'a'.
- r) The ME simulator shall send a SET DATA command indicating "First block" and with data '84 05 81 82 83 84 85' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

- s) The ME simulator shall select EF_{MMDF} .
- t) The ME simulator shall send a RETRIEVE DATA command indicating "First block" and with tag 'A2' to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

u) The ME simulator shall send a SET DATA command indicating "First block" and with data 'A2 05 81 82 83 84 85' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '85' - Conditions of use not satisfied [CR4].

v) The ME simulator shall send a RETRIEVE DATA command indicating "Next block" to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '62', SW2 = 'F1' - More data available.

w) The ME simulator shall send a SET DATA command indicating "First block" and with data 'A2 05 81 82 83 84 85' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '85' - Conditions of use not satisfied [CR4].

- x) The ME simulator shall select EF_{MMDF} on channel 'a'.
- y) The ME simulator shall send a SET DATA command indicating "First block" and with data 'A2 05 81 82 83 84 85' to the UICC on the basic channel.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

Test procedure 3 (usage of '5C')

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall select EF_{MMDF} .
- c) The ME simulator shall send a VERIFY PIN command with PIN to the UICC to gain the READ and UPDATE access conditions for EF_{MMDF}.
- d) The ME simulator shall send a MANAGE CHANNEL (OPEN) command to the UICC on the basic channel.

The UICC should return the assigned logical channel number – call it channel 'a'.

- e) The ME simulator shall select EF_{MMDF} on channel 'a'.
- f) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '5C' to the UICC on the basic channel.

The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '5C 03' followed by '81', 'A2' and '83' in any order (including the tag and length fields of the '5C' TLV) [CR5].

g) The ME simulator shall send a SET DATA command indicating "First block" and with data '84 0A 01 02 03 04 05' to the UICC on channel 'a'.

The status condition returned by the UICC shall be SW1 = '63', SW2 = 'F1' - More data expected.

h) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '5C' to the UICC on the basic channel.

The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '5C 03' followed by '81', 'A2', '83' and '84' in any order (including the tag and length fields of the '5C' TLV) [CR6].

- i) The ME simulator shall select EF_{MMDF} on channel 'a'.
- j) The ME simulator shall send appropriate RETRIEVE DATA command(s) in order to read the data object with tag '5C' to the UICC on the basic channel.

The data object retrieved by the RETRIEVE DATA command(s) shall contain the data '5C 03' followed by '81', 'A2' and '83' in any order (including the tag and length fields of the '5C' TLV) [CR7].

6.9 Transmission Oriented Commands

6.9.1 T = 0 specific commands

6.9.1.1 GET RESPONSE

6.9.1.1.1 Definition and applicability

See clause 3.5.3.

6.9.1.1.2 Conformance requirement

CR1	The GET RESPONSE command shall provide response data where it is indicated in the procedure byte,	M
	see table 7.1 in TS 102.221 [1] or status byte, see table 7.2 in TS 102.221 [1].	
CR2	It is required that the GET RESPONSE command is executed immediately after the command it is	M
	related to (no other command shall come between the command/response pair and the command GET	
	RESPONSE).	
CR3	If the sequence is not respected, the UICC shall send the status information "technical problem, no	M
	diagnosis given" as a reaction to the GET RESPONSE.	

Reference: TS 102.221 [1], subclause 12.1.1.

6.9.1.1.3 Test purpose

To verify that the coding of the GET RESPONSE command conforms to the above requirements.

NOTE: CR1 is tested in relevant test procedures for commands which support GET RESPONSE.

6.9.1.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to select the MF to the UICC.
- c) The ME simulator shall send a GET RESPONSE command to the UICC.

The UICC shall send a valid FCP.

TLV DO with tag '83' in tag '62' shall indicate that MF is the currently selected file [CR1].

- d) The ME simulator shall send a STATUS command to the UICC with P2 = '0C'.
- e) The ME simulator shall send a GET RESPONSE command to the UICC.

The status condition returned by the UICC shall be SW1 = '6F', SW2 = '00' - technical problem, no precise diagnosis[CR2, CR3].

6.10 Application independent files

The subclause provides tests to ensure that the IUT contains all of the EFs need for a 3GPP session.

6.10.1 Definition and applicability

See clause 3.5.3.

6.10.2 Conformance requirement

The following conformance requirements refer to the tables for each EF in TS 102.221 [1], clause 13.

CR1	Each existing EF shall be selectable under the MF using the identifier given in the table for that EF.	M
CR2	All mandatory EFs shall exist on the UICC.	
CR3	The identifier of the EF shall be that given in the table for that EF.	M
CR4	The type and structure of the EF shall be that given in the table for that EF.	M
CR5	The file size shall be at least that given in the table for that EF.	M
CR6	The short file identifier shall exist if it is mandatory in the table for that EF.	M
CR7	The access conditions shall be those given in the table for that EF.	M

Reference: TS 102.221 [1], clause 13.

6.10.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: The contents and coding of the data within the files are not tested, but shall conform to the respective contents and coding of the data given for each file in TS 102.221 [1], clause 13.

6.10.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a STATUS command to the UICC.

TLV DO with tag '83' in the response data shall indicate the identifier of the MF '3F 00'.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

c) The ME simulator shall send a SELECT command to the UICC to select the first EF clause 13 of TS 102.221 [1].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1, CR2].

The following shall be true of the response data:

- TLV DO with tag '83' shall indicate the identifier of the file selected [CR3];
- TLV DO with tag '82' shall not be '38' and '78' indicating EF [CR4];
- TLV DO with tag '82' shall indicate the structure given in the table for the file in clause 13 of TS 102.221 [1] [CR4];
- TLV DO with tag '80' shall be at least the minimum file size given in the table for the file in clause 13 of TS 102.221 [1]. if the EF is transparent [CR5];
- Byte 5 and 6 of TLV DO with tag '82' shall be in accordance with the record length given in the table for the file in clause 13 of TS 102.221 [1]. if the EF is linear fixed or cyclic [CR5];
- TLV DO with tag '80' shall be an integer multiple of the record length if the EF is linear fixed or cyclic [CR5];
- TLV DO with tag '88' shall indicate the short file identifier given in the table for the file in clause 13 of TS 102.221 [1] [CR5, CR6];
- TLV DO with tag '86' or '8B' or '8C' or 'AB' shall indicate the access conditions given in the table for the file in clause 13 of TS 102.221 [1] [CR8].
 Note: if the access conditions indicate referenced security, the referenced record in the EF_{ARR} may be read at this point if necessary.
- d) Steps a) to c) shall be repeated for the remaining mandatory EFs in clause 13 of TS 102.221 [1].
- e) Steps a) to c) shall be repeated for the existing optional EFs in clause 13 of TS 102.221 [1].

7 Test Procedure (31.102)

This clause details all the tests for testing the IUT against TS 31.102 [3]. This test suite allows testing of the IUT against the base specification with respect to:

- Contents of the Elementary Files
- Security Features supported by USIM
- USIM commands.

7.1 Contents of the Elementary Files (EF)

The subclause provides tests to ensure that the IUT contains all of the EFs need for a Telecom session.

7.1.1 Definition and applicability

See clause 3.5.3.

7.1.2 Conformance requirement

The following conformance requirements refer to the tables for each EF in TS 31.102 [3], clause 4.

CR1	Each existing EF shall be selectable under the respective DF using the identifier given in	M
	the table for that EF.	
CR2	All mandatory EFs shall exist on the UICC.	M
CR3	The identifier of the EF shall be that given in the table for that EF.	M
CR4	The type and structure of the EF shall be that given in the table for that EF.	M
CR5	The file size shall be at least that given in the table for that EF.	M
CR6	The short file identifier shall be those given in the table for that EF.	M
CR7	The short file identifier shall exist if it is mandatory in the table for that EF. This includes	(R99) Rel-6 -
	EFs with SFI indicated by 'YY'.	•••
CR8	The access conditions shall be those given in the table for that EF.	M
CR9	If no SFI is indicated in the table for the EF, the EF shall not have an SFI.	(R99) Rel-6 -
		•••
CR10	The short file identifier shall exist if it is mandatory in the table for that EF.	M

Reference: TS 31.102 [3], clause 4.

7.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: The contents and coding of the data within the files are not tested, but shall conform to the respective contents and coding of the data given for each file in TS 31.102 [3], clause 4.

7.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select the respective DF for the first EF in clause 4 of TS 31.102 [3].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

c) The ME simulator shall send a SELECT command to the UICC to select the first EF in clause 4 of TS 31.102 [3].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1, CR2].

The following shall be true of the response data:

- TLV DO with tag '83' shall indicate the identifier of the file selected [CR3];
- TLV DO with tag '82' shall not be '38' and '78' indicating EF [CR4];
- TLV DO with tag '82' shall indicate the structure given in the table for the file in clause 4 of TS 31.102 [3] [CR4];
- TLV DO with tag '80' shall be at least the minimum file size given in the table for the file in clause 4 of TS 31.102 [3]. if the EF is transparent [CR5];
- Byte 5 and 6 of TLV DO with tag '82' shall be in accordance with the record length given in the table for the file in clause 4 of TS 31.102 [3]. if the EF is linear fixed or cyclic [CR5];
- TLV DO with tag '80' shall be an integer multiple of the record length if the EF is linear fixed or cyclic [CR5];
- If a value for the SFI is specified in the table for the file in clause 4 of TS 31.102 [3] and the value of the specified SFI is equal to the 5 least significant bits (bits b5 to b1) of the file identifier for the file, then the TLV DO with tag '88'shall either be absent, or shall be present with the specified SFI value [CR6, CR7];
- If a value for the SFI is specified in the table for the file in clause 4 of TS 31.102 [3] and the value of the specified SFI is not equal to the 5 least significant bits (bits b5 to b1) of the file identifier for the file, then the TLV DO with tag '88'shall be present with the specified SFI value [CR6, CR7];
- If an SFI is specified in the table for the file in clause 4 of TS 31.102 [3] but no actual value is specified (i.e. 'YY' is used), then the TLV DO with tag '88'shall either be absent, or shall be present with a value of length 1 [CR6, CR7];
- If no SFI is specified in the table for the file in clause 4 of TS 31.102 [3], then the TLV DO with tag '88'shall be present with an empty value [CR9]
- TLV DO with tag '86' or '8B' or '8C' or 'AB' shall indicate the access conditions given in the table for the file in clause 4 of TS 31.102 [3] [CR8].
 Note: if the access conditions indicate referenced security, the referenced record in the EF_{ARR} may be read at this point if necessary.
- d) Steps a) to c) shall be repeated for the remaining mandatory EFs clause 4 of TS 31.102 [3].
- e) Steps a) to c) shall be repeated for the existing optional EFs clause 4 of TS 31.102 [3].

Test procedure 2

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select the respective DF for the first EF in clause 4 of TS 31.102 [3].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

c) The ME simulator shall send a SELECT command to the UICC to select the first EF in clause 4 of TS 31.102 [3].

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1, CR2].

The following shall be true of the response data:

- TLV DO with tag '83' shall indicate the identifier of the file selected [CR3];
- TLV DO with tag '82' shall not be '38' and '78' indicating EF [CR4];
- TLV DO with tag '82' shall indicate the structure given in the table for the file in clause 4 of TS 31.102 [3] [CR4];
- TLV DO with tag '80' shall be at least the minimum file size given in the table for the file in clause 4 of TS 31.102 [3]. if the EF is transparent [CR5];
- Byte 5 and 6 of TLV DO with tag '82' shall be in accordance with the record length given in the table for the file in clause 4 of TS 31.102 [3]. if the EF is linear fixed or cyclic [CR5];
- TLV DO with tag '80' shall be an integer multiple of the record length if the EF is linear fixed or cyclic [CR5];
- TLV DO with tag '88' shall indicate the short file identifier given in the table for the file in clause 4 of TS 31.102 [3] [CR6, CR10];
- TLV DO with tag '86' or '8B' or '8C' or 'AB' shall indicate the access conditions given in the table for the file in clause 4 of TS 31.102 [3] [CR8].
 Note: if the access conditions indicate referenced security, the referenced record in the EF_{ARR} may be read at this point if necessary.
- d) Steps a) to c) shall be repeated for the remaining mandatory EFs clause 4 of TS 31.102 [3].
- e) Steps a) to c) shall be repeated for the existing optional EFs clause 4 of TS 31.102 [3].

7.2 Security features

7.2.1 Definition and applicability

See clause 3.5.3.

7.2.2 Conformance requirement

CR1	The USIM application shall use a global key reference as PIN and a local key reference	M
	as PIN2.	
CR2	Access with PIN2 shall be limited to the ADF (USIM).	M
CR3	For a USIM application on a multi-verification capable UICC, the only valid values for	O_MULTI_VER
	the usage qualifiers shall be '00' (verification requirement is not used) and '08' (user	
	authentication knowledge based (PIN)) as defined in ISO/IEC 7816-4 [7].	
CR4	Void	N/A
CR5	Void	N/A
CR6	Void	N/A
CR7	Void	N/A
CR8	For access to DF _{TELECOM} the PIN shall be verified.	M
	TTG 04 400 F03	

Reference: TS 31.102 [3], subclause 6.4.

7.2.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE 1: CR1, CR2 are tested in the subclause 6.6.4.

NOTE 2: CR8 is not currently tested.

7.2.4 Method of test

No test procedure is currently required for a single verification capable UICC.

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.

The following shall be true of the response data:

- TLV DO with tag 'C6' (PS Template DO) shall contain for the Universal PIN the TLV DO with tag '95' (Usage Qualifier) and the value of this TLV shall be '00' or '08' [CR3];

7.3 USIM commands

7.3.1 AUTHENTICATE

7.3.1.1 Definition and applicability

See clause 3.5.3.

7.3.1.2 Conformance requirement

CR1	This function shall cause the UICC to run the f1, f2, f3, f4, f5, and f1* algorithms using a 16 bytes	M
	random number, AUTN, and the subscriber authentication key K stored in the UICC.	
CR2	If the received sequence number SQN is in the correct range, the function shall return the response RES,	M
	cipher key CK, and integrity key IK.	
CR3	If the UICC detects the sequence numbers are not in the valid range, the function shall return the signed	M
	response AUTS.	
CR4	The function shall not be executable unless a particular USIM application has been selected as the	M
	Current Directory and activated and the current directory is the USIM ADF or any subdirectory under	
	this ADF.	
CR5	The function shall not be executable unless a successful PIN verification procedure has been performed.	M
CR6	The function shall not be executable unless the expected MAC-A is received.	M
CR7	If the UICC does not support 'GSM context' which is indicated in parameter P2, the function shall not be	M
	executable.	

Reference: TS 31.102 [3], subclause 7.1.

7.3.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

7.3.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select the USIM application.

c) The ME simulator shall send an AUTHENTICATE command to the UICC.

The status condition returned by the UICC shall be SW1 = '69', SW2 = '82' - security status not satisfied [CR5].

- d) The ME simulator shall reset the UICC.
- e) The ME simulator shall send a SELECT command to the UICC to select the USIM application.
- f) The ME simulator shall send a VERIFY PIN command with PIN to the UICC.
- g) The ME simulator shall send a SELECT command to the UICC to select the MF.
- h) The ME simulator shall send an AUTHENTICATE command to the UICC.

The command shall be aborted [CR4].

- i) The ME simulator shall send a SELECT command to the UICC to select the current ADF ('7FFF').
- j) The ME simulator shall send an AUTHENTICATE command to the UICC with incorrect signed data.

The status condition returned by the UICC shall be SW1 = '98', SW2 = '62' - authentication error, incorrect MAC [CR6].

k) If the 'GSM context' is not supported, the ME simulator shall send an AUTHENTICATE command with parameter P2 indicating 'GSM context'.

The status condition returned by the UICC shall be SW1 = '98', SW2 = '64' - authentication error, GSM security context not supported [CR7].

 The ME simulator shall send an AUTHENTICATE command to the UICC with incorrect sequence number SQN.

The data field returned shall begin with the tag 'DC', and the data shall be correct for the given f1* and f5 algorithms and K stored in the UICC [CR1, CR3].

m) The ME simulator shall send an AUTHENTICATE command to the UICC with correct data.

The data field returned shall begin with the tag 'DB', and the data shall be correct for the given f2, f3 and f4 algorithms and K stored in the UICC [CR1, CR2].

7.3.2 Status Conditions Returned by the USIM

7.3.2.1 Security management

7.3.2.1.1 Definition and applicability

See clause 3.5.3.

7.3.2.1.2 Conformance requirement

CR1	The UICC shall respond with the correct SW1 and SW2 status words for commands which produce	M
	authentication errors.	

Reference: TS 31.102 [3], subclause 7.3.1.

7.3.2.1.3 Test purpose

To verify that the UICC conforms to the above requirements when issuing SW1 and SW2 status words.

7.3.2.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select the USIM application.
- c) The ME simulator shall send a VERIFY PIN command with relevant PIN to the UICC.
- d) The ME simulator shall send an AUTHENTICATE command to the UICC with incorrect MAC.

The status condition returned by the UICC shall be SW1 = '98', SW2 = '62' - authentication error, incorrect MAC[CR1].

e) If the 'GSM context' is not supported, the ME simulator shall send an AUTHENTICATE command with parameter P2 indicating 'GSM context'.

The status condition returned by the UICC shall be SW1 = '98', SW2 = '64' - authentication error, GSM security context not supported [CR1].

7.3.2.2 Status Words of the Commands

7.3.2.2.1 Definition and applicability

See clause 3.5.3.

7.3.2.2.2 Conformance requirement

CR1	Table in TS 31.102 [3], subclause 7.3.2 shows for each command the possible status conditions returned	M
	(marked by an asterisk *). The UICC shall not generate status conditions other than those allowed for	
	each command.	

Reference: TS 31.102 [3], subclause 7.3.2.

7.3.2.2.3 Test purpose

To verify for each command that the UICC will only generate the allowed status conditions.

NOTE: CR1 shall not be tested as it is not possible to force the UICC to generate all of the allowed and disallowed status conditions for each command.

7.3.2.2.4 Method of test

Initial conditions

N/A

Test procedure

N/A

7.4 Void

8 Test Procedure (31.101)

This clause details each of the tests in each of the test groups within the Test Group TP31.101. This test suite allows testing of the IUT against the base specification with respect to:

- General 3GPP platform requirements
- Physical and logical characteristics

- User verification and file access conditions
- Files.

8.1 General 3GPP platform requirements

8.1.1 GSM/USIM application interaction and restrictions

8.1.1.1 Definition and applicability

See clause 3.5.3.

8.1.1.2 Conformance requirement

CR1	Activation of a USIM session shall exclude the activation of a GSM session.	Rel-6 -
CR2	Once a USIM application session has been activated, commands sent to the UICC with CLA byte	Rel-6 -
	set to 'A0' shall return SW1SW2 '6E 00' (class not supported) to the ME.	
CR3	Activation of a GSM session shall exclude the activation of a USIM session.	Rel-6 -

Reference: TS 31.101 [2], subclause 4.1.

8.1.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE: CR3 is not tested as it is out of the scope of the present document.

8.1.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a STATUS command with 'A0' as the class byte.

The status condition returned by the UICC shall be SW1 = '6E', SW2 = '00' - class not supported [CR1, CR2].

d) The ME simulator shall send a STATUS command with '80' as the class byte.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of a command [CR1].

8.2 Physical and logical characteristics

8.2.1 Transmission speed

8.2.1.1 Definition and applicability

See clause 3.5.3.

8.2.1.2 Conformance requirement

CR1 The UICC shall support (F, D) = (512, 32) in addition to those required by TS 102.221 [1]. Rel-6 - ... Reference: TS 31.101, subclause 5.1.

8.2.1.3 Test purpose

To verify that the UICC conforms to the above requirements.

8.2.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test Procedure 1

- a) The ME simulator shall cold reset the UICC.
- b) The ME simulator shall send a PPS-Request to the UICC, selecting T = 0 protocol and (F, D) = (512, 32).

 The UICC shall send a valid PPS-Response indicating support for the requested parameters.
- c) The ME simulator shall send a STATUS command with P2 = '00' at (F, D) = (512, 32).

 The UICC shall send a status word indicating successful command execution [CR1].

Test Procedure 2

- a) The ME simulator shall cold reset the UICC.
- b) The ME simulator shall send a PPS-Request to the UICC, selecting T = 1 protocol and (F, D) = (512, 32). *The UICC shall send a valid PPS-Response indicating support for the requested parameters.*
- c) The ME simulator shall send a STATUS command with P2 = '00' at (F, D) = (512, 32).

 The UICC shall send a status word indicating successful command execution [CR1].

8.2.2 Voltage classes

8.2.2.1 Definition and applicability

See clause 3.5.3.

8.2.2.2 Conformance requirement

CR1	A UICC holding a USIM application shall support at least two consecutive voltage classes as	Rel-6 -
	defined in TS 102.221 [1], e.g. AB or BC.	
CR2	If the UICC supports more than two classes, they shall all be consecutive, e.g. ABC.	Rel-6 -

Reference: TS 31.101 [2], subclause 5.2.

8.2.2.3 Test purpose

To verify that the UICC conforms to the above requirements.

8.2.2.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

a) The ME simulator shall reset the UICC.

The UICC shall send the ATR sequence.

The supply voltage class indicator (the lower 6 bits in TA(i) after the first occurrence of T = 15 in TD(i-1) for I > 2) shall be exist and one of the following values:

- '03', '06', '07' [CR1, CR2].

8.2.3 File Control Parameters (FCP)

8.2.3.1 Definition and applicability

See clause 3.5.3.

8.2.3.2 Conformance requirement

CR1	The value indicated in the Minimum application clock frequency object shall not exceed 3 MHz,	Rel-6 -
	corresponding to '1E'.	

Reference: TS 31.101 [2], subclause 5.3.

8.2.3.3 Test purpose

To verify that the UICC conforms to the above requirements.

8.2.3.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command with AID to the UICC to select and activate the USIM application.

The status returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command.

If the returned FCP contains the Proprietary Information object (Tag 'A5') and the Proprietary Information object contains the Minimum application clock frequency object (Tag '82') then:

- The Application minimum clock frequency value shall not exceed 'IE', which corresponds to 3 MHz. [CR1]

8.3 User verification and file access conditions

8.3.1 Definition and applicability

See clause 3.5.3.

8.3.2 Conformance requirement

(CR1	Every file related to a 3GPP application shall have a reference to an access rule	Rel-6
		stored in EF _{ARR} .	

CR2	A multi-verification capable UICC holding a 3GPP application shall support the	Rel-6:		
	referenced format using SEID as defined in TS 102 221 [1].	O_MULTI_VER		
CR3	A 3GPP application residing on a multi-verification capable UICC shall support the	Rel-6:		
	replacement of its application PIN with the Universal PIN, key reference '11', as	O_MULTI_VER		
	defined in TS 102 221 [1].			
CR4	Only the Universal PIN is allowed as a replacement.	Rel-6:		
		O_MULTI_VER		

Reference: TS 31.101 [2], subclause 7.

8.3.3 Test purpose

To verify that the UICC conforms to the above requirements.

NOTE 1: CR3 is tested in the subclause 6.6.3.

NOTE 2: CR4 is not currently tested in this document.

8.3.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select the first EF in the USIM application.

The response data shall contain the TLV DO with with tag '8B' indicating Referenced Security Attributes and shall contain the file ID and EF_{ARR} record numbers for SEID = 0 and SEID = 1 [CR1, CR2].

d) Step c) shall be repeated for all the EFs under the selected USIM in the UICC.

Test procedure 2

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select and activate USIM application.
- c) The ME simulator shall send a SELECT command to the UICC to select the first EF in the USIM application.

The response data shall contain the TLV DO with with tag '8B' indicating Referenced Security Attributes [CR1].

d) Step c) shall be repeated for all the EFs under the selected USIM in the UICC.

8.4 Files

8.4.1 Contents of the EFs at the MF level

8.4.1.1 Definition and applicability

See clause 3.5.3.

8.4.1.2 Conformance requirement

CR	EF _{ARR} under MF is mandatory.	Rel-6 -
		•••

CR2	EF _{DIR} entries for 3GPP applications shall contain the Application Identifier and the Application	Rel-6 -
	Label as mandatory elements.	• • •
CR3	EF _{DIR} entries for 3GPP applications shall not contain a path object for application selection.	Rel-6 -

Reference: TS 31.101 [2], subclause 8.1.

8.4.1.3 Test purpose

To verify that the Elementary Files within the UICC application structure conform to the above requirements.

8.4.1.4 Method of test

Initial conditions

1) The UICC shall be connected to a ME simulator.

Test procedure 1

- a) The ME simulator shall reset the UICC.
- b) The ME simulator shall send a SELECT command to the UICC to select EF_{ARR}.

The status condition returned by the UICC shall be SW1 = '90', SW2 = '00' - normal ending of the command [CR1].

- c) The ME simulator shall send a SELECT command to the UICC to select EF_{DIR}.
- d) Step e) shall be repeated for each record in EF_{DIR} .
- e) The ME simulator shall send a READ RECORD command with NEXT mode to the UICC.

If the EF_{DIR} entry contains a 3GPP application (i.e. contains an AID matching the AID of a 3GPP application as defined in TS 101 220 [15]), then:

- the Application Label shall be present [CR2];
- a File Reference (tag '51') TLV DO shall not be present [CR3].

Annex A (informative): Change history

Change history								
Date	TSG#	TSG Doc	CR	Re	Cat	Subject/Comment	Old	New
2000 12	TD 10	TD 000006	_	٧	_	Final draft was approved at TSG-T #10	2.0.0	3.0.0
2000-12	TP-10 TP-10	TP-000206 TP-010247	001	-	F	Corrections	3.0.0	3.1.0
2001-12	TP-10	TP-010247	004	1	F	Change test for TLV DO with tag '82' and '83'	3.0.0	3.1.0
2002-03	TP-15	TP-020067	005	-	F	Removal of an invalid transfer protocol test case	3.1.0	3.2.0
2002-03	TP-15	TP-020067	006	_	F	Corrections	3.1.0	3.2.0
2002-06	TP-16	TP-020118	007	-	F	General Corrections	3.2.0	3.3.0
2002-06	TP-16	TP-020118	008	-	F	Removal of test for use of procedure byte '61xx' for case	3.2.0	3.3.0
						2 commands		
2002-09	TP-17	TP-020216	009	-	F	Expected remainder of returned data string	3.3.0	3.4.0
2002-09	TP-17	TP-020216	010	-	F	Corrections and Clarifications	3.3.0	3.4.0
2002-09	TP-17	TP-020216	011	-	F	Correction of error in read binary test case for T=0	3.3.0	3.4.0
2002-09	TP-17	TP-020216	012	-	F	Alignment of conformance requirement due to CR 088 on TS 102 221	3.3.0	3.4.0
2002-09	TP-17	TP-020216	013	ı	F	Correction of case 3/case 4 command tests in case of wrong P1-P2.	3.3.0	3.4.0
2002-12	TP-18	TP-020287	014	-	F	Correction of test of Read Record on Linear Fixed EF and T=1 test	3.4.0	3.5.0
2003-03	TP-19	TP-030029	015	-	F	Correction to the returned FCP of the SELECT and the STATUS command	3.5.0	3.6.0
2003-12	TP-22	TP-030256	016	-	D	Editorial Corrections	3.6.0	3.7.0
2004-12	TP-26	TP-040264	017	-	F	Correction of non specific references	3.7.0	3.8.0
2004-12	TP-26	-	-	-		Upgrade to Rel-4	3.8.0	4.0.0
2005-06	CT-28	CP-050136	018	-	Α	Correction of ISO/IEC 7816 Series References	4.0.0	4.1.0
2005-06	CT-28	CP-050136	020	-	Α	ISO/IEC 7811 Series Revision	4.0.0	4.1.0
2005-09	CT-29	CP-050337	021	-	F	CR to TS 31.122, Release 4: Creation of a Release 6 Version of TS 31.122	4.1.0	6.0.0
2006-03	CT-31	CP-060158	022	1	F	Essential Corrections to many test cases, which would cause the USIM to fail essential tests	6.0.0	6.1.0
2006-09	CT-33	CP-060477	0023	2	F	Updates to Physical characteristics tests	6.1.0	6.2.0
2006-09	CT-33	CP-060477	0032	1	F	Updates based on changes to 31.102	6.1.0	6.2.0
2006-09	CT-33	CP-060477	0026	2	F	Updates to Protocol Tests	6.1.0	6.2.0
2006-09	CT-33	CP-060477	0031	1	F	Refinement of tests for shareable files	6.1.0	6.2.0
2006-09	CT-33	CP-060477	0027	1	F	Removal of Test Groups	6.1.0	6.2.0
2006-09	CT-33	CP-060477	0029	1	F	Addition of tests for current file after application session termination	6.1.0	6.2.0
2006-09	CT-33	CP-060477	0030	3	F	Addition of tests for 31.101	6.1.0	6.2.0
2006-11	CT-34	CP-060726	0028	5	F	Addition of tests for BER-TLV structure files and Data Oriented commands	6.2.0	6.3.0
2006-11	CT-34	CP-060726	0029	-	F	Addition of tests for (F, D) = (512, 64) and introduction of Test Cases related to Low Impedance Drivers	6.2.0	6.3.0
2007-03	CT-35	CP-070061	0036	2	F	Creation of combined R99 – Rel-6 version, by addition of applicability tables	6.3.0	6.4.0
2007-06	_		_	_	_	Update to Rel-7 version (MCC)	6.4.0	7.0.0
2007-00	CT-37	CP-070618	0037	-	F	Addition of applicability column for Rel-7	7.0.0	7.1.0
2007-09	CT-37	CP-070618	0037	1	F	Essential corrections to various tests	7.0.0	7.1.0
2007-09	CT-37	CP-070618	0039	1	F	Correction to test for Reservation of file IDs	7.0.0	7.1.0
2007-09	CT-37	CP-070618	0040	1	F	Replacement of EF _{SMS} with EF _{ECC} for SEARCH	7.0.0	7.1.0
						RECORD (SFI) test		
2007-09	CT-37	CP-070618	0046	1	F	Essential correction of FCP content in test 6.8.1.2	7.0.0	7.1.0
2009-03	CT-42					Upgraded without technical change to Rel-8	7.1.0	8.0.0
2009-04						Update history box	8.0.0	8.0.1
2009-12	CT-46					Upgraded without technical change to Rel-9	8.0.1	9.0.0
2010-09	CT-49	CP-100588	0049	1	F	Essential correction of SET DATA, Delete Tag test case	9.0.0	9.1.0
2010-12	CT-50	CP-100832	0050	1	F	Correction to RETRIEVE DATA test sequence	9.1.0	9.2.0
2010-12	SP-51					Upgraded without technical change to Rel-10	9.2.0	10.0.0
2012-09	SP-57					Upgraded without technical change to Rel-11	10.0.0	11.0.0
2013-06	CT-60	CP-130369	0051	1	F	Correction of a misleading note for threshold measurements on contact C3 (CLK).	11.0.0	11.1.0

History

	Document history							
V11.0.0	0.0 November 2012 Publication							
V11.1.0	July 2013	Publication						