ETSI TS 136 141 V13.12.0 (2018-07)

LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) conformance testing (3GPP TS 36.141 version 13.12.0 Release 13)

Reference RTS/TSGR-0436141vdc0

Keywords

LTE

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: <u>http://www.etsi.org/standards-search</u>

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at <u>https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx</u>

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. The content of the PDF version shall not be modified without the written authorization of ETSI. The copyright and the foregoing restriction extend to reproduction in all media.

> © ETSI 2018. All rights reserved.

DECT[™], PLUGTESTS[™], UMTS[™] and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP**[™] and LTE[™] are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2M** logo is protected for the benefit of its Members.

GSM[®] and the GSM logo are trademarks registered and owned by the GSM Association.

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under <u>http://webapp.etsi.org/key/queryform.asp</u>.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intellectual Property Rights		2
Forew	ord	2
Modal	l verbs terminology	2
Forew	ord	15
1	Scope	16
2	References	16
	Definitions, symbols and abbreviations	
3.1	Definitions	
3.2	Symbols	
3.3	Abbreviations	21
	General test conditions and declarations	
4.1	Measurement uncertainties and Test Requirements	
4.1.1	General	
4.1.2	Acceptable uncertainty of Test System	
4.1.2.1		
4.1.2.2		
4.1.2.3	Print and a period and a second	
4.1.3	Interpretation of measurement results	
4.2	Base station classes	
4.3	Regional requirements	
4.4	Selection of configurations for testing	37
4.5	BS Configurations	37
4.5.1	Transmit configurations	37
4.5.1.1	Transmission with multiple transmitter antenna connectors	38
4.5.2	Receive configurations	
4.5.2.1		
4.5.3	Duplexers	
4.5.4	Power supply options	
4.5.5	Ancillary RF amplifiers	
4.5.6	BS with integrated Iuant BS modem	40
4.5.7	BS using antenna arrays	40
4.5.7.1	Receiver tests	40
4.5.7.2	Transmitter tests	40
4.6	Manufacturer's declarations of regional and optional requirements	41
4.6.1	Operating band and frequency range	41
4.6.2	Channel bandwidth	41
4.6.3	Base station output power	41
4.6.4	Spurious emissions Category	41
4.6.5	Additional operating band unwanted emissions	42
4.6.6	Co-existence with other systems	42
4.6.7	Co-location with other base stations	42
4.6.8	Manufacturer's declarations of supported RF configurations	42
4.6.9	NB-IoT sub-carrier spacing	44
4.6.10	NB-IoT power dynamic range	44
4.7	Specified frequency range and supported channel bandwidth	
4.7.1	Base Station RF Bandwidth position for multi-carrier and/or CA testing	
4.7.2	Aggregated Channel Bandwidth position for Contiguous CA occupied bandwidth testing	
4.7.3	NB-IoT testing	
4.8	Format and interpretation of tests	
4.9	Applicability of requirements	46
4.10	Test configurations for multi-carrier and/or CA operation	47
4.10.1	ETC1: Contiguous spectrum operation	
4.10.1.		
4.10.1.	2 ETC1 power allocation	47

4.10.2	ETC2: Contiguous CA occupied bandwidth	
4.10.2.1	ETC2 generation	
4.10.2.2	ETC2 power allocation	
4.10.3	ETC3: Non-contiguous spectrum operation	
4.10.3.1	ETC3 generation	
4.10.3.2	ETC3 power allocation	
4.10.3.24		
4.10.4	ETC4: Multi-band test configuration for full carrier allocation	
4.10.4.1	ETC4 generation	
4.10.4.2	ETC4 power allocation	
4.10.5	ETC5: Multi-band test configuration with high PSD per carrier	
4.10.5.1	ETC5 generation	
4.10.5.2	ETC5 power allocation	
4.10.6	ETC6: NB-IoT standalone multi-carrier operation	
4.10.6.1	ETC6 generation	
4.10.6.2	ETC6 power allocation	
4.10.7	ETC7: E-UTRA and NB-IoT standalone multi-carrier operation	
4.10.7.1	ETC7 generation	
4.10.7.2	ETC7 power allocation	
4.10.8	ETC8: E-UTRA and NB-IoT in-band multi-carrier operation	
4.10.8.1	ETC8 generation	
4.10.8.2	ETC8 power allocation	
4.10.8.2	ETC9 power and cation	
4.10.9	ETC9. E-OTKA and NB-101 guard-band multi-carrier operation	
4.10.9.1		
	ETC9 power allocation	
4.11 4.12	Applicability of test configurations	
4.12	Requirements for BS capable of multi-band operation	
5 O	perating bands and channel arrangement	
5.1	General	
5.2	Void	
5.3	Void	
5.4	Void	
5.5	Operating bands	
5.6	Channel bandwidth	
5.7	Channel arrangement	
5.7.1	Channel spacing	
5.7.1A	CA Channel spacing	
5.7.2	Channel raster	
5.7.3	Carrier frequency and EARFCN	78
5.8	Requirements for contiguous and non-contiguous spectrum	
6 Tı	ansmitter characteristics	
6.1	General	82
6.1.1	E-UTRA Test Models	
6.1.1.1	E-UTRA Test Model 1.1 (E-TM1.1)	82
6.1.1.2	E-UTRA Test Model 1.2 (E-TM1.2)	83
6.1.1.3	E-UTRA Test Model 2 (E-TM2)	85
6.1.1.3a	E-UTRA Test Model 2a (E-TM2a)	
6.1.1.4	E-UTRA Test Model 3.1 (E-TM3.1)	87
6.1.1.4a	E-UTRA Test Model 3.1a (E-TM3.1a)	
6.1.1.5	E-UTRA Test Model 3.2 (E-TM3.2)	
6.1.1.6	E-UTRA Test Model 3.3 (E-TM3.3)	
6.1.2	Data content of Physical channels and Signals for E-TM	94
6.1.2.1	Reference signals	94
6.1.2.2	Primary Synchronization signal	94
6.1.2.3	Secondary Synchronization signal	
6.1.2.4	PBCH	94
6.1.2.5	PCFICH	94
6.1.2.6	PHICH	95
6.1.2.7	PDCCH	95
6.1.2.8	PDSCH	

6.1.3	NB-IoT Test Model	96
6.1.4	Data content of Physical channels and Signals for N-TM	
6.1.4.1	Reference signals	
6.1.4.2	Synchronization signals	
6.1.4.3	NPBCH	
6.1.4.4	NPDCCH	
6.1.4.5	NPDSCH	
6.1.5	Test Model for NB-IoT guard band operation	
6.1.6	Test Model for NB-IoT in-band operation	
6.2	Base station output power	
6.2.1	Definition and applicability	
6.2.2	Minimum Requirement	
6.2.3	Test purpose	
6.2.4	Method of test	
6.2.4.1	Initial conditions	
6.2.4.2	Procedure	
6.2.5	Test Requirements	
6.2.6	Home BS output power for adjacent UTRA channel protection	
6.2.6.1	Definition and applicability	
6.2.6.2	Minimum Requirement	
6.2.6.3	Test purpose	
6.2.6.4	Method of test	
6.2.6.4.1	Initial conditions	
6.2.6.4.2	Procedure	
6.2.6.5	Test Requirements	
6.2.7	Home BS output power for adjacent E-UTRA channel protection	
6.2.7.1	Definition and applicability	
6.2.7.2	Minimum Requirement	
6.2.7.3	Test purpose	
6.2.7.4	Method of test	
6.2.7.4.1	Initial conditions	
6.2.7.4.2	Procedure	
6.2.7.5		
6.2.8	Test Requirements Home BS output power for co-channel E-UTRA protection	
6.2.8.1	Definition and applicability	
6.2.8.2	Minimum Requirement	
6.2.8.3	Test purpose	
6.2.8.4	Method of test	
	Initial conditions	
6.2.8.4.1 6.2.8.4.2	Procedure	
6.2.8.5	Test Requirements	
6.3	•	
6.3.1	Output power dynamics	
6.3.1.1	RE Power control dynamic range	
6.3.1.2	Definition and applicability	
6.3.1.2	Minimum Requirement	
6.3.2	Method of test	
6.3.2.1	Total power dynamic range	
6.3.2.1	Definition and applicability Minimum Requirement	
	1	
6.3.2.3 6.3.2.4	Test purpose	
	Method of test	
6.3.2.4.1	Initial conditions	
6.3.2.4.2	Procedure	
6.3.2.5	Test Requirement	
6.3.3	NB-IoT RB power dynamic range for in-band or guard band operation	
6.3.3.1	Definition and applicability	
6.3.3.2	Minimum Requirement	
6.3.3.3	Test purpose	
6.3.3.4	Method of test	
6.3.3.5	Test Requirement	
6.4	Transmit ON/OFF power	
6.4.1	Transmitter OFF power	110

6.4.1.1	Definition and applicability	
6.4.1.2	Minimum Requirement	.110
6.4.1.3	Test purpose	.110
6.4.1.4	Method of test	
6.4.1.4.1	Void	
6.4.1.4.2	Void	.110
6.4.1.5	Test requirement	
6.4.2	Transmitter transient period	
6.4.2.1	Definition and applicability	
6.4.2.2	Minimum Requirement	
6.4.2.3	Test purpose	
6.4.2.4	Method of test	
6.4.2.4.1	Initial conditions	
6.4.2.4.2	Procedure	
6.4.2.5	Test requirement	
6.5	Transmitted signal quality	
6.5.1	Frequency error	
6.5.1.1	Definition and applicability	
6.5.1.2	Minimum Requirement	
6.5.1.3	Test purpose	
6.5.1.4	Method of test	
6.5.1.5	Test requirement	
6.5.2	Error Vector Magnitude	
6.5.2.1	Definition and applicability	
6.5.2.2	Minimum Requirement	
6.5.2.3	Test purpose	
6.5.2.4	Method of test	
6.5.2.4.1	Initial conditions	
6.5.2.4.2	Procedure	
6.5.2.5	Test requirement	
6.5.3	Time alignment error	
6.5.3.1	Definition and applicability	
6.5.3.2	Minimum Requirement	
6.5.3.3	Test Purpose	
6.5.3.4	Method of Test	
6.5.3.4.1	Initial Conditions	
6.5.3.4.2	Procedure	
6.5.3.5	Test Requirement	
6.5.4	DL RS power	
6.5.4.1	Definition and applicability	
6.5.4.2	Minimum Requirement	
6.5.4.3	Test purpose	
6.5.4.4	Method of test	
6.5.4.4.1	Initial conditions	
6.5.4.4.2	Procedure	
6.5.4.5	Test requirement	
6.6	Unwanted emissions	
6.6.1	Occupied bandwidth	
6.6.1.1	Definition and applicability	
6.6.1.2	Minimum Requirements	
6.6.1.3	Test purpose	
6.6.1.4	Method of test	
6.6.1.4.1	Initial conditions	
6.6.1.4.2	Procedure	
6.6.1.5	Test requirements	
6.6.2	Adjacent Channel Leakage power Ratio (ACLR)	
6.6.2.1	Definition and applicability	
6.6.2.2	Minimum Requirement	
6.6.2.3	Test purpose	
6.6.2.4	Method of test	
6.6.2.4.1	Initial conditions	
6.6.2.4.1	Procedure	
0.0.2.7.2		• • • •

6.6.2.5	Test Requirement	121
6.6.2.6	Cumulative ACLR test requirement in non-contiguous spectrum	
6.6.3	Operating band unwanted emissions	
6.6.3.1	Definition and applicability	125
6.6.3.2	Minimum Requirement	
6.6.3.3	Test purpose	
6.6.3.4	Method of test	
6.6.3.4.1	Initial conditions	
6.6.3.4.2	Procedure	
6.6.3.5	Test requirement	
6.6.3.5.1 6.6.3.5.2	Test requirements for Wide Area BS (Category A)	
6.6.3.5.2A	Test requirements for Wide Area BS (Category B)	
6.6.3.5.2A		130
6.6.3.5.2D		
6.6.3.5.2C		.171
0.0.3.3.22	B)	145
6.6.3.5.2E		
6.6.3.5.3	Additional requirements	
6.6.4	Transmitter spurious emissions	
6.6.4.1	Definition and applicability	
6.6.4.2	Minimum Requirements	
6.6.4.3	Test Purpose	150
6.6.4.4	Method of Test	
6.6.4.4.1	Initial conditions	
6.6.4.4.2	Procedure	151
6.6.4.5	Test requirements	
6.6.4.5.1	Spurious emissions (Category A)	
6.6.4.5.2	Spurious emissions (Category B)	
6.6.4.5.3	Protection of the BS receiver of own or different BS	
6.6.4.5.4	Co-existence with other systems in the same geographical area	
6.6.4.5.5	Co-location with other base stations	
6.7 6.7.1	Transmitter intermodulation Definition and applicability	
6.7.2	Minimum Requirement	
6.7.2A	Additional requirement for Band 41	
6.7.3	Test purpose	
6.7.4	Method of test	
6.7.4.1	Initial conditions	
6.7.4.2	Procedures	
6.7.5	Test Requirements	
6.7.6	Additional test requirements for Band 41	
7 D.	-	
	ceiver characteristics	
7.1	General	
7.2 7.2.1	Reference sensitivity level Definition and applicability	
7.2.1	Minimum Requirement	
7.2.3	Test purpose	
7.2.4	Method of testing	
7.2.4.1	Initial conditions	
7.2.4.2	Procedure	
7.2.5	Test requirement	
7.3	Dynamic range	
7.3.1	Definition and applicability	
7.3.2	Minimum Requirement	
7.3.3	Test purpose	
7.3.4	Method of testing	182
7.3.4.1	Initial conditions	182
7.3.4.2	Procedure	
7.3.5	Test Requirements	
7.4	In-channel selectivity	185

7.4.1	Definition and applicability	185
7.4.2	Minimum Requirement	
7.4.3	Test purpose	
7.4.4	Method of testing	
7.4.4.1	Initial conditions	
7.4.4.2	Procedure	
7.4.5	Test Requirements	
7.5	Adjacent Channel Selectivity (ACS) and narrow-band blocking	189
7.5.1	Definition and applicability	189
7.5.2	Minimum Requirement	189
7.5.3	Test purpose.	189
7.5.4	Method of test	
7.5.4.1	Initial conditions	
7.5.4.2	Procedure for Adjacent Channel Selectivity	
7.5.4.3	Procedure for narrow-band blocking	
7.5.5		
	Test Requirements	
7.6	Blocking	
7.6.1	Definition and applicability	
7.6.2	Minimum Requirements	
7.6.3	Test purpose	
7.6.4	Method of test	
7.6.4.1	Initial conditions	197
7.6.4.2	Procedure	197
7.6.5	Test Requirements	
7.6.5.1	General requirement	
7.6.5.2	Co-location with other base stations	
7.7	Receiver spurious emissions.	
7.7.1		
	Definition and applicability	
7.7.2	Minimum Requirements	
7.7.3	Test purpose	
7.7.4	Method of test	
7.7.4.1	Initial conditions	
7.7.4.2	Procedure	218
7.7.5	Test requirements	218
7.8	Receiver intermodulation	219
7.8.1	Definition and applicability	
7.8.2	Minimum Requirement.	
7.8.3	Test purpose	
7.8.4	Method of test	219
7.8.4.1	Initial conditions	
7.8.4.2	Procedures	
7.8.5	Test requirements	221
8 Pe	rformance requirement	227
8.1	General	
8.2	Performance requirements for PUSCH	
		221
8.2.1	Performance requirements of PUSCH in multipath fading propagation conditions transmission on	227
	single antenna port	
8.2.1.1	Definition and applicability	
8.2.1.2	Minimum Requirement	227
8.2.1.3	Test Purpose	
8.2.1.4	Method of test	228
8.2.1.4.1	Initial Conditions	
8.2.1.4.2	Procedure	
8.2.1.5	Test Requirement	
8.2.1A	Performance requirements of PUSCH in multipath fading propagation conditions transmission on	
0.2.17		240
0 1 1 4 1	two antenna ports	
8.2.1A.1	Definition and applicability	
8.2.1A.2	Minimum Requirement	
8.2.1A.3	Test Purpose	
8.2.1A.4	Method of test	
8.2.1A.4.1	I Initial Conditions	240

8.2.1A.4.2	Procedure	240
8.2.1A.5	Test Requirement	
8.2.2 8.2.2	Performance requirements for UL timing adjustment.	
8.2.2.1	Definition and applicability	
8.2.2.1		
8.2.2.2	Minimum Requirement	
0	Test Purpose	
8.2.2.4	Method of test	
8.2.2.4.1	Initial Conditions	
8.2.2.4.2	Procedure	
8.2.2.5	Test Requirement	
8.2.3	Performance requirements for HARQ-ACK multiplexed on PUSCH	
8.2.3.1	Definition and applicability	
8.2.3.2	Minimum Requirement	
8.2.3.3	Test Purpose	
8.2.3.4	Method of test	
8.2.3.4.1	Initial Conditions	
8.2.3.4.2	Procedure	
8.2.3.5	Test Requirement	
8.2.4	Performance requirements for High Speed Train conditions	
8.2.4.1	Definition and applicability	
8.2.4.2	Minimum Requirement	
8.2.4.3	Test Purpose	246
8.2.4.4	Method of test	247
8.2.4.4.1	Initial Conditions	247
8.2.4.4.2	Procedure	247
8.2.4.5	Test Requirement	247
8.2.5	Performance requirements for PUSCH with TTI bundling and enhanced HARQ pattern	248
8.2.5.1	Definition and applicability	248
8.2.5.2	Minimum Requirement	249
8.2.5.3	Test Purpose	
8.2.5.4	Method of test	
8.2.5.4.1	Initial Conditions	
8.2.5.4.2	Procedure	
8.2.5.5	Test Requirement	
8.2.6	Enhanced performance requirements type A of PUSCH in multipath fading propagation conditions	
	with synchronous interference	
8.2.6.1	Definition and applicability	
8.2.6.2	Minimum Requirement	
8.2.6.3	Test Purpose	
8.2.6.4	Method of test	
8.2.6.4.1	Initial Conditions	
8.2.6.4.2	Procedure	
8.2.6.5	Test Requirement	
8.2.6A	Enhanced performance requirements type A of PUSCH in multipath fading propagation conditions	292
0.2.0A	with asynchronous interference	254
8.2.6A.1	Definition and applicability	
8.2.6A.2	Minimum Requirement	
8.2.6A.3	Test Purpose	
8.2.6A.4	Method of test	
8.2.6A.4.1		
8.2.6A.4.1 8.2.6A.4.2		
8.2.6A.5	Test Requirement	230
8.2.7	Performance requirements of PUSCH in multipath fading propagation conditions transmission on	250
0 7 7 1	single antenna port for coverage enhancment	
8.2.7.1	Definition and applicability	
8.2.7.2	Minimum Requirement	
8.2.7.3	Test Purpose	
8.2.7.4	Method of test	
8.2.7.4.1	Initial Conditions	
8.2.7.4.2	Procedure	
8.2.7.5	Test Requirement	
8.3	Performance requirements for PUCCH	260

8.3.1	ACK missed detection for single user PUCCH format 1a transmission on single antenna port	
8.3.1.1	Definition and applicability	
8.3.1.2	Minimum Requirement	
8.3.1.3	Test purpose	
8.3.1.4	Method of test	
8.3.1.4.1	Initial Conditions	
8.3.1.4.2	Procedure	
8.3.1.5	Test Requirement	
8.3.2	CQI performance requirements for PUCCH format 2 transmission on single antenna port	
8.3.2.1	Definition and applicability	
8.3.2.2	Minimum Requirement	
8.3.2.3	Test purpose	
8.3.2.4	Method of test	
8.3.2.4.1	Initial Conditions	
8.3.2.4.2	Procedure	
8.3.2.5	Test Requirement	
8.3.3	ACK missed detection for multi user PUCCH format 1a	
8.3.3.1	Definition and applicability	
8.3.3.2	Minimum Requirement	
8.3.3.3	Test purpose	
8.3.3.4	Method of test	
8.3.3.4.1	Initial Conditions	
8.3.3.4.2	Procedure	
8.3.3.5	Test Requirement	
8.3.4	ACK missed detection for PUCCH format 1b with Channel Selection	
8.3.4.1	Definition and applicability	
8.3.4.2	Minimum Requirement	
8.3.4.3	Test purpose	
8.3.4.4	Method of test	
8.3.4.4.1	Initial Conditions	
8.3.4.4.2	Procedure	
8.3.4.5	Test Requirement ACK missed detection for PUCCH format 3	
8.3.5 8.3.5.1		
8.3.5.2	Definition and applicability Minimum Requirement	
8.3.5.3		
8.3.5.4	Test purpose	
8.3.5.4.1	Initial Conditions	
8.3.5.4.2	Procedure	
8.3.5.5	Test Requirement	
8.3.6	NACK to ACK detection for PUCCH format 3	
8.3.6.1	Definition and applicability	
8.3.6.2	Minimum Requirement	
8.3.6.3	Test purpose	
8.3.6.4	Method of test	
8.3.6.4.1	Initial Conditions	
8.3.6.4.2	Procedure	
8.3.6.5	Test Requirement	
8.3.7	ACK missed detection for PUCCH format 1a transmission on two antenna ports	
8.3.7.1	Definition and applicability	
8.3.7.2	Minimum Requirement	
8.3.7.3	Test purpose	
8.3.7.4	Method of test	
8.3.7.4.1	Initial Conditions	
8.3.7.4.2	Procedure	270
8.3.7.5	Test Requirement	
8.3.8	CQI performance requirements for PUCCH format 2 transmission on two antenna ports	
8.3.8.1	Definition and applicability	271
8.3.8.2	Minimum Requirement	
8.3.8.3	Test purpose	
8.3.8.4	Method of test	
8.3.8.4.1	Initial Conditions	271

8.3.8.4.2	Procedure	
8.3.8.5	Test Requirement	272
8.3.9	CQI performance requirements for PUCCH format 2 with DTX detection	272
8.3.9.1	Definition and applicability	272
8.3.9.2	Minimum Requirement	272
8.3.9.3	Test purpose	272
8.3.9.4	Method of test	
8.3.9.4.1	Initial Conditions	273
8.3.9.4.2	Procedure	273
8.3.9.5	Test Requirement	273
8.3.10	ACK missed detection for PUCCH format 1a transmission on single antenna port for coverage	
	enhancement	274
8.3.10.1	Definition and applicability	274
8.3.10.2	Minimum Requirement	274
8.3.10.3	Test purpose	
8.3.10.4	Method of test	
8.3.10.4.1	Initial Conditions	
8.3.10.4.2	Procedure	
8.3.10.5	Test Requirement	
8.3.11	CQI performance requirements for PUCCH format 2 transmission on single antenna port for	
	coverage enhancement	
8.3.11.1	Definition and applicability	
8.3.11.2	Minimum Requirement	
8.3.11.3	Test purpose	
8.3.11.4	Method of test	
8.3.11.4.1	Initial Conditions	
8.3.11.4.2	Procedure	
8.3.11.5	Test Requirement	
8.3.12	ACK missed detection for PUCCH format 4	
8.3.12.1	Definition and applicability	
8.3.12.2	Minimum Requirement	
8.3.12.3	Test purpose	
8.3.12.4	Method of test	
8.3.12.4.1	Initial Conditions	
8.3.12.4.2	Procedure	
8.3.12.5	Test Requirement	
8.3.13	ACK missed detection for PUCCH format 5	
8.3.13.1	Definition and applicability	
8.3.13.2	Minimum Requirement	
8.3.13.3	Test purpose	
8.3.13.4	Method of test	
8.3.13.4.1	Initial Conditions	
8.3.13.4.2	Procedure	
8.3.13.5	Test Requirement	
	Performance requirements for PRACH	
8.4.1	PRACH false alarm probability and missed detection	
8.4.1.1	Definition and applicability	
8.4.1.2	Minimum Requirement	
8.4.1.3	Test purpose	
8.4.1.4	Method of test	
8.4.1.4.1	Initial Conditions	
8.4.1.4.2	Procedure	
8.4.1.5	Test Requirement	
8.5	Performance requirements for Narrowband IoT	
8.5.1	Performance requirements for NPUSCH format 1	
8.5.1.2	Minimum Requirement	
8.5.1.3	Test Purpose	
8.5.1.4	Method of test	
8.5.1.5	Test Requirement	
8.5.2	ACK missed detection for NPUSCH format 2	
8.5.2.1	Definition and applicability	
8.5.2.2	Minimum Requirement	
	1	

8.5.2.3	3 Test purpose	286
8.5.2.4	Method of test	286
8.5.2.4		
8.5.2.4		
8.5.2.5 8.5.3	5 Test Requirement Performance requirements for NPRACH	
8.5.3.1	•	
8.5.3.2		
8.5.3.3		
8.5.3.4		
8.5.3.4 8.5.3.4		
8.5.3.5		
	-	
9 9.1	Channel access procedures Downlink channel access procedure	
9.1.1	Definition and applicability	
9.1.2	Minimum requirement	
9.1.3	Test purpose	
9.1.4	Method of test	
9.1.4.1		
9.1.4.2 9.1.5	2 Procedure Test Requirements	
7.1.5		
Anne	x A (normative): Reference Measurement channels	291
A.0	General	291
A.1	Fixed Reference Channels for reference sensitivity and inchannel selectivity (QPSK, R=1/3)	
A.2	Fixed Reference Channels for dynamic range (16QAM, R=2/3)	292
A.3	Fixed Reference Channels for performance requirements (QPSK 1/3)	293
A.4	Fixed Reference Channels for performance requirements (16QAM 3/4)	293
A.5	Fixed Reference Channels for performance requirements (64QAM 5/6)	294
A.6	PRACH Test preambles	294
A.7	Fixed Reference Channels for UL timing adjustment (Scenario 1)	295
A.8	Fixed Reference Channels for UL timing adjustment (Scenario 2)	295
A.9	Multi user PUCCH test	296
A.10	PUCCH transmission on two antenna ports test	296
A.11	Fixed Reference Channel for PUSCH with TTI bundling and enhanced HARQ pattern	296
A.14	Fixed Reference Channels for NB-IOT reference sensitivity ($\pi/2$ BPSK, R=1/3)	297
A.14.1	• • • • • • •	
A.15	Fixed Reference Channels for NB-IoT dynamic range ($\pi/4$ QPSK, R=2/3)	298
A.16 A.16.1	Fixed Reference Channels for NB-IoT NPUSCH format 1 One PRB	
Anne	x B (normative): Propagation conditions	300
B.1	Static propagation condition	300
B.2	Multi-path fading propagation conditions	300
B.3	High speed train condition	
B.4	Moving propagation conditions	302
B.5	Multi-Antenna channel models	
B.5.1	Definition of MIMO Correlation Matrices	

B.5.2	MIMO Correlation Matrices at High, Medium and Low Level	304
B.5A	Multi-Antenna channel models using cross polarized antennas	306
B.5A.	- · ·	
B.5A.	1 I I I I I I I I I I I I I I I I I I I	
B.5A.		
B.5A.		
B.5A.	\mathcal{B}	
B.6.1 B.6.2	Dominant interferer proportion Interference model for synchronous scenario	
B.6.3	Interference model for asynchronous scenario	
Anne	K C (normative): Characteristics of the interfering signals	310
Anne	x D (normative): Environmental requirements for the BS equipment	311
D.1	General	311
D.2	Normal test environment	311
D.3	Extreme test environment	311
D.3.1	Extreme temperature	
D.4	Vibration	312
D.5	Power supply	
D.6	Measurement of test environments	
Anne	K E (normative): General rules for statistical testing	313
Anne	K F (normative): Global In-Channel TX-Test	314
F.1	General	314
F.2.1	Basic principle	314
F.2.2	Output signal of the TX under test	
F.2.3	Reference signal	
F.2.4	Measurement results	
F.2.5	Measurement points	
F.3.1 F.3.2	Pre FFT minimization process Timing of the FFT window	
F.3.3	Resource Element TX power	
F.3.4	Post FFT equalisation	
F.4.1	EVM	
F.4.2	Averaged EVM	
F.4.2.		
Anne	x G (informative): Test Tolerances and Derivation of Test Requirements	321
G.1	Measurement of transmitter	322
G.2	Measurement of receiver	328
G.3	Measurement of Performance Requirements	333
	x I (Informative): Measurement system set-up	
I.1 I.1.1	Transmitter Base station output power, output power dynamics, transmitted signal quality, Frequency error, EVM,	337
1.1.1	DL RS power, Unwanted emissions	227
I.1.2	Transmitter intermodulation	
I.1.2 I.1.3	Time alignment error	
I.1.4	Home BS output power for adjacent channel protection	
I.1.5	Home BS output power for co-channel E-UTRA protection	

I.2	Receiver	.339
I.2.1	Reference sensitivity level	339
I.2.2	Dynamic range	340
I.2.3	In-channel selectivity	340
I.2.4	Adjacent Channel Selectivity (ACS) and narrowband blocking	341
I.2.5	Blocking characteristics	341
I.2.6	Receiver spurious emission	341
I.2.7	Intermodulation characteristics	
I.3	Performance requirement	.342
I.3.1	Performance requirements for PRACH in static conditions	342
I.3.2	Performance requirements for PUSCH, PRACH, single user PUCCH in multipath fading conditions and	
	for High Speed Train conditions	343
I.3.3	Performance requirements for multi user PUCCH in multipath fading conditions	344
I.3.4	Performance requirement for UL timing adjustment	344
I.3.5	Performance requirements for PUCCH transmission on two antenna ports in multipath fading conditions	345
I.3.6	Performance requirements for PUSCH transmission on two antenna ports in multipath fading conditions	
I.3.7	Enhanced performance requirements type A of PUSCH in multipath fading propagation conditions with	
1.5.7	synchronous or asynchronous interference.	346
I.4	Channel access procedures	.350
Anne	ex J (Informative): Unwanted emission requirements for multi-carrier BS	.351
J.1	General	.351
J.2	Multi-carrier BS of different E-UTRA channel bandwidths	.351
J.3	Multi-carrier BS of E-UTRA and UTRA	351
0.0		.551
Anne	ex K (informative): Change history	.352
Histo	ry	36/
111500	1 y	.504

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document specifies the Radio Frequency (RF) test methods and conformance requirements for E-UTRA, E-UTRA with NB-IoT or NB-IoT Base Stations (BS) operating either in the FDD mode (used in paired bands) or the TDD mode (used in unpaired bands). These have been derived from, and are consistent with the E-UTRA, E-UTRA with NB-IoT or NB-IoT Base Station (BS) specifications defined in [2].

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications.
- [2] 3GPP TS 36 104: "E-UTRA Base Station (BS) radio transmission and reception".
- [3] ITU-R Recommendation M.1545, "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000".
- [4] ITU-R recommendation SM.328: "Spectra and bandwidth of emissions".
- [5] ITU-R recommendation SM.329: "Unwanted emissions in the spurious domain ".
- [6] IEC 60721-3-3 (2002): "Classification of environmental conditions Part 3: Classification of groups of environmental parameters and their severities Section 3: Stationary use at weather protected locations".
- [7] IEC 60721-3-4 (1995): "Classification of environmental conditions Part 3: Classification of groups of environmental parameters and their severities Section 4: Stationary use at non-weather protected locations".
- [8] IEC 60068-2-1 (2007): "Environmental testing Part 2: Tests. Tests A: Cold".
- [9] IEC 60068-2-2 (2007): "Environmental testing Part 2: Tests. Tests B: Dry heat".
- [10] IEC 60068-2-6 (2007): "Environmental testing Part 2: Tests Test Fc: Vibration (sinusoidal)".
- [11] 3GPP TR 25.942: "RF system scenarios".
- [12] 3GPP TS 36.211: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation".
- [13] 3GPP TS 36.212: "Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding".
- [14] 3GPP TR 36.942: "E-UTRA RF system scenarios".
- [15] 3GPP TS 25.104: " Base Station (BS) radio transmission and Reception (FDD)".
- [16] 3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures".
- [17] 3GPP TS 25.141: "Base Station (BS) conformance testing (FDD)".

- [18] 3GPP TS 37.141: " E-UTRA, UTRA and GSM/EDGE; Multi-Standard Radio (MSR) Base Station (BS) conformance testing".
- [19] CEPT ECC Decision (13)03, "The harmonised use of the frequency band 1452-1492 MHz for Mobile/Fixed Communications Networks Supplemental Downlink (MFCN SDL)".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Aggregated Channel Bandwidth: RF bandwidth in which a base station transmits and/or receives multiple contiguously aggregated carriers.

NOTE: The Aggregated Channel Bandwidth is measured in MHz.

Base station receive period: time during which the base station is receiving data subframes or UpPTS.

Base Station RF Bandwidth: RF bandwidth in which a base station transmits and/or receives single or multiple carrier(s) within a supported operating band.

NOTE: In single E-UTRA carrier operation, the Base Station RF Bandwidth is equal to the channel bandwidth.

Base Station RF Bandwidth edge: frequency of one of the edges of the Base Station RF Bandwidth.

Carrier: modulated waveform conveying the E-UTRA or UTRA (WCDMA) physical channels

Carrier aggregation: aggregation of two or more component carriers in order to support wider transmission bandwidths

Carrier aggregation band: set of one or more operating bands across which multiple carriers are aggregated with a specific set of technical requirements

NOTE: Carrier aggregation band(s) for an E-UTRA BS is declared by the manufacturer according to the designations in Tables 5.5-2 to 5.5-4

Channel bandwidth: RF bandwidth supporting a single E-UTRA RF carrier with the transmission bandwidth configured in the uplink or downlink of a cell.

NOTE The channel bandwidth is measured in MHz and is used as a reference for transmitter and receiver RF requirements.

Channel edge: lowest or highest frequency of the E-UTRA carrier.

NOTE: Channel edges are separated by the channel bandwidth.

Contiguous carriers: set of two or more carriers configured in a spectrum block where there are no RF requirements based on co-existence for un-coordinated operation within the spectrum block.

Contiguous spectrum: spectrum consisting of a contiguous block of spectrum with no sub-block gap(s).

DL RS power: resource element power of Downlink Reference Symbol.

DL NRS power: resource element power of Downlink Narrowband Reference Signal.

Downlink operating band: part of the operating band designated for downlink.

Enhanced performance requirements type A: This defines performance requirements assuming baseline receiver as demodulation reference signal based linear minimum mean square error interference rejection combining.

Highest Carrier: carrier with the highest carrier centre frequency transmitted/received in a specified operating band.

Inter RF Bandwidth gap: frequency gap between two consecutive Base Station RF Bandwidths that are placed within two supported operating bands.

Inter-band carrier aggregation: carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

Inter-band gap: The frequency gap between two supported consecutive operating bands.

Intra-band contiguous carrier aggregation: contiguous carriers aggregated in the same operating band.

Intra-band non-contiguous carrier aggregation: non-contiguous carriers aggregated in the same operating band.

Lower sub-block edge: frequency at the lower edge of one sub-block.

NOTE: It is used as a frequency reference point for both transmitter and receiver requirements.

Lowest Carrier: carrier with the lowest carrier centre frequency transmitted/received in a specified operating band.

Maximum Base Station RF Bandwidth: maximum Base Station RF Bandwidth supported by a BS within each supported operating band.

Maximum output power: mean power level per carrier of the base station measured at the antenna connector in a specified reference condition.

Maximum Radio Bandwidth: maximum frequency difference between the upper edge of the highest used carrier and the lower edge of the lowest used carrier.

Maximum throughput: maximum achievable throughput for a reference measurement channel.

Mean power: power measured in the channel bandwidth of the carrier.

NOTE: The period of measurement shall be at least one subframe (1ms), unless otherwise stated.

Multi-band Base Station:base station characterized by the ability of its transmitter and/or receiver to process two or more carriers in common active RF components simultaneously, where at least one carrier is configured at a different operating band (which is not a sub-band or superseding-band of another supported operating band) than the other carrier(s).

Multi-carrier transmission configuration: set of one or more contiguous or non-contiguous carriers that a BS is able to transmit simultaneously according to the manufacturer's specification.

Multi-band transmitter: transmitter characterized by the ability to process two or more carriers in common active RF components simultaneously, where at least one carrier is configured at a different operating band (which is not a subband or superseding-band of another supported operating band) than the other carrier(s).

Multi-band receiver: receiver characterized by the ability to process two or more carriers in common active RF components simultaneously, where at least one carrier is configured at a different operating band (which is not a sub-band or superseding-band of another supported operating band) than the other carrier(s).

Non-contiguous spectrum: spectrum consisting of two or more sub-blocks separated by sub-block gap(s).

NB-IoT In-band operation: NB-IoT is operating in-band when it utilizes the resource block(s) within a normal E-UTRA carrier.

NB-IoT guard band operation: NB-IoT is operating in guard band when it utilizes the unused resource block(s) within a E-UTRA carrier's guard-band.

NB-IoT standalone operation: NB-IoT is operating standalone when it utilizes its own spectrum, for example the spectrum currently being used by GERAN systems as a replacement of one or more GSM carriers, as well as scattered spectrum for potential IoT deployment.

Occupied bandwidth: width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean power of a given emission.

Operating band: frequency range (paired or unpaired) that is defined with a specific set of technical requirements, in which E-UTRA operates.

NOTE: The operating band(s) for an E-UTRA BS is declared by the manufacturer according to the designations in Table 5.5-1.

Output power: mean power of one carrier of the base station, delivered to a load with resistance equal to the nominal load impedance of the transmitter.

Rated output power: mean power level per carrier that the manufacturer has declared to be available at the antenna connector.

RE power control dynamic range: difference between the power of a RE and the average RE power for a BS at maximum output power for a specified reference condition.

Reference bandwidth: RF bandwidth in which an emission level is specified.

RRC filtered mean power: mean power as measured through a root raised cosine filter with roll-off factor α and a bandwidth equal to the chip rate of the radio access mode.

NOTE 1: The RRC filtered mean power of a perfectly modulated W-CDMA signal is 0.246 dB lower than the mean power of the same signal.

Sub-band: A sub-band of an operating band contains a part of the uplink and downlink frequency range of the operating band.

Sub-block: one contiguous allocated block of spectrum for transmission and reception by the same Base Station.

NOTE: There may be multiple instances of sub-blocks within a Base Station RF Bandwidth.

Sub-block bandwidth: RF bandwidth of one sub-block.

Sub-block gap: frequency gap between two consecutive sub-blocks within a Base Station RF Bandwidth, where the RF requirements in the gap are based on co-existence for un-coordinated operation.

Superseding-band: A superseding-band of an operating band includes the whole of the uplink and downlink frequency range of the operating band.

Synchronized operation: operation of TDD in two different systems, where no simultaneous uplink and downlink occur.

Throughput: he number of payload bits successfully received per second for a reference measurement channel in a specified reference condition.

Total power dynamic range: difference between the maximum and the minimum transmit power of an OFDM symbol for a specified reference condition.

Total RF Bandwidth: maximum sum of Base Station RF Bandwidths in all supported operating bands.

Transmission bandwidth: bandwidth of an instantaneous transmission from a UE or BS, measured in resource block units.

Transmission bandwidth configuration: highest transmission bandwidth allowed for uplink or downlink in a given channel bandwidth, measured in resource block units.

Transmitter OFF period: time period during which the BS transmitter is not allowed to transmit.

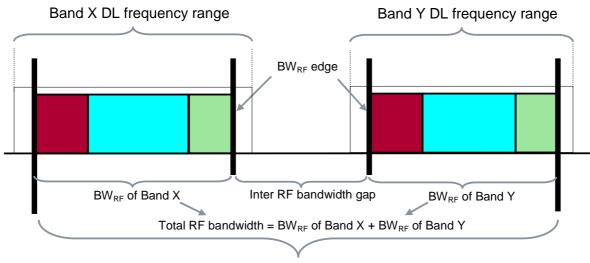
Transmitter ON period: time period during which the BS transmitter is transmitting data and/or reference symbols, i.e. data subframes or DwPTS.

Transmitter transient period: time period during which the transmitter is changing from the OFF period to the ON period or vice versa.

Unsynchronized operation: operation of TDD in two different systems, where the conditions for synchronized operation are not met.

Uplink operating band: part of the operating band designated for uplink.

Upper sub-block edge: frequency at the upper edge of one sub-block.


NOTE: It is used as a frequency reference point for both transmitter and receiver requirements.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

α	Roll-off factor
β	Percentage of the mean transmitted power emitted outside the occupied bandwidth on the assigned
DUI	channel
BW _{Channel}	Channel bandwidth
$BW_{Channel_CA}$	Aggregated Channel Bandwidth, expressed in MHz. $BW_{Channel_CA} = F_{edge_high} - F_{edge_low}$.
$BW_{Channel,block}$	Sub-block bandwidth, expressed in MHz. $BW_{Channel,block} = F_{edge,block,high} - F_{edge,block,low}$.
BW_{Config}	Transmission bandwidth configuration, expressed in MHz, where $BW_{Config} = N_{RB} \times 180 \text{ kHz}$ in the
	uplink and BWConfig = $15 \text{ kHz} + \text{NRB x} 180 \text{ kHz}$ in the downlink.
\mathbf{BW}_{\max}	Maximum Radio Bandwidth
$\mathbf{B}\mathbf{W}_{\mathrm{tot}}$	Total RF Bandwidth
CA_X	Intra-band contiguous CA of component carriers in one sub-block within band X where X is the
	applicable E-UTRA operating band
CA_X-X	Intra-band non-contiguous CA of component carriers in two sub-blocks within band X where X is
	the applicable E-UTRA operating band
CA_X-Y	Inter-band CA of component carrier(s) in one sub-blocks within band X and component carrier(s)
_	in one sub-block within Band Y where X and Y are the applicable E-UTRA operating bands
CA_X-X-Y	CA of component carriers in two sub-blocks within Band X and component carrier(s) in one sub-
_	block within Band Y where X and Y are the applicable E-UTRA operating bands
f	Frequency
Δf	Separation between the channel edge frequency and the nominal -3dB point of the measuring filter
	closest to the carrier frequency
Δf_{max}	The largest value of Δf used for defining the requirement
F_{C}	Carrier centre frequency
	Centre frequency of the highest transmitted/received carrier in a sub-block.
F _{C,block, high}	Centre frequency of the lowest transmitted/received carrier in a sub-block.
F _{C,block, low}	
F _{C_high}	The carrier centre frequency of the lowest carrier, expressed in MHz.
$F_{C_{low}}$	The carrier centre frequency of the lowest carrier, expressed in MHz.
F _{edge_low}	The lower edge of Aggregated Channel Bandwidth, expressed in MHz. $F_{edge_low} = F_{C_low} - F_{offset}$.
F _{edge_high}	The upper edge of Aggregated Channel Bandwidth, expressed in MHz. $F_{edge_high} = F_{C_high} + F_{offset}$.
F _{edge,block,low}	The lower sub-block edge, where $F_{edge,block,low} = F_{C,block,low} - F_{offset}$.
F _{edge,block,high}	The upper sub-block edge, where $F_{edge,block,high} = F_{C,block,high} + F_{offset}$.
Foffset	Frequency offset from $F_{C_{high}}$ to the upper Base Station RF Bandwidth edge or from $F_{C_{hlock, high}}$ to the upper Base Station RF Bandwidth edge or from F
	the upper sub-block edge, $F_{C,low}$ to the lower Base Station RF Bandwidth edge or from $F_{C,block,low}$
Б	to the lower sub-block edge.
F _{filter}	Filter centre frequency
f_offset	Separation between the channel edge frequency and the centre of the measuring filter
f_offset _{max}	The maximum value of f_offset used for defining the requirement
E _A :	EPRE (energy per resource element) of PDSCH REs (resource elements) type A, i.e. REs in
F	OFDM symbols that do not include reference symbols
E _B :	EPRE of PDSCH REs type B, i.e. REs in OFDM symbols that include reference symbols
E _{RS} :	EPRE of reference symbols REs
$F_{DL_{low}}$	The lowest frequency of the downlink operating band
F _{DL_high}	The highest frequency of the downlink operating band
$F_{UL_{low}}$	The lowest frequency of the uplink operating band
F_{UL_high}	The highest frequency of the uplink operating band
M _{DL}	Offset of NB-IoT Downlink channel number to Downlink EARFCN
M _{UL}	Offset of NB-IoT Uplink channel number to Uplink EARFCN
N _{DL}	Downlink EARFCN
N _{Offs-DL}	Offset used for calculating downlink EARFCN
N _{Offs-UL}	Offset used for calculating uplink EARFCN
$N_{ m ID}^{ m cell}$	Physical layer cell identity
N _{CS}	Number of Cyclic shifts for preamble generation in PRACH
N _{RB}	Transmission bandwidth configuration, expressed in units of resource blocks
$N_{\rm RB}^{\rm DL}$	• •
¹ ^v RB	Downlink bandwidth configuration, expressed in multiples of $N_{\rm sc}^{\rm RB}$

N _{UL}	Uplink EARFCN
$N_{\rm sc}^{\rm RB}$	Resource block size in the frequency domain, expressed as a number of subcarriers
$n_{\rm f}$	System frame number
<i>n</i> _{PRB}	Physical resource block number
<i>n</i> _{RNTI}	Radio network temporary identifier
n _s	Slot number within a radio frame
р	Antenna port number
Pd	Probability of PRACH preamble detection
Pfa	Total probability of false detection of the PRACH preamble
Pout	Output power
P _{EM,N}	Declared emission level for channel N
P _{EM,B32,ind}	Declared emission level in Band 32, ind=a, b, c, d, e
P _{rated,c}	Rated output power (per carrier)
P _{rated,t}	Rated Total Output PowerP _{max,c} Maximum carrier output power
PREFSENS	Reference sensitivity power level
q	Code word number
T _A	Timing advance command, as defined in [16]
T_s	Basic time unit, as defined in [12]
W_{gap}	Sub-block gap or Inter RF Bandwidth gap size

Maximum radio bandwith

Figure 3.2-1: Illustration of Maximum Radio Bandwidth BW_{max} and Total RF Bandwidth BW_{tot} for multi-band base station

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

AC	Alternating Current
ACLR	Adjacent Channel Leakage Ratio
CACLR	Cumulative ACLR
ACK	Acknowledgement (in HARQ protocols)
ACS	Adjacent Channel Selectivity
ATT	Attenuator
AWGN	Additive White Gaussian Noise
В	Bottom RF channel (for testing purposes)

BS	Base Station
C	Contiguous
CA	Carrier Aggregation
BW	Bandwidth
CCE	Control Channel Element
CP	Cyclic prefix
CW	Continuous Wave
DC	Direct Current
DFT	Discrete Fourier Transformation
DIP	Dominant Interferer Proportion
DTT	Digital Terrestrial Television
DUT	Device Under Test
EPRE	Energy per resource element
E-TM	E-UTRA Test Model
E-UTRA	Evolved UTRA
EARFCN	E-UTRA Absolute Radio Frequency Channel Number
EIRP	Effective Isotropic Radiated Power
EPA	Extended Pedestrian A model
ETC	E-UTRA Test Configuration
ETU	Extended Typical Urban model
EVA	Extended Vehicular A model
EVM	Error Vector Magnitude
FDD	Frequency Division Duplex
FFT	Fast Fourier Transformation
FRC	Fixed Reference Channel
GSM	Global System for Mobile communications
HARQ	Hybrid Automatic Repeat Request
ICS	In-Channel Selectivity
IQ	In-phase - Quadrature phase
ITU-R	Radiocommunication Sector of the ITU
Iuant	E-Node B internal logical interface between the implementation specific O&M function and the
- .	RET antennas and TMAs control unit function of the E-Node B
LA	Local Area
M	Middle RF channel (for testing purposes)
MC	Multi-carrier
MIMO	Multiple Input Multiple Output
MCS	Modulation and Coding Scheme
MR NB LoT	Medium Range
NB-IoT	Narrowband – Internet of Things
NC NPDSCH	Non-Contiguous Narrowband Physical Downlink Shared Channel
NPUSCH	Narrowband Physical Uplink Shared Channel
NRS	Narrowband Reference Signal
OBW	Occupied Band Width
OFDM	Orthogonal Frequency Division Multiplex
OOB	Out-Of-Band
PBCH	Physical Broadcast Channel
PCFICH	Physical control format indicator channel
PDCCH	Physical downlink control channel
PDSCH	Physical downlink shared channel
PHICH	Physical hybrid-ARQ indicator channel
PUCCH	Physical Uplink Control CHannel
PRACH	Physical Random Access Channel
PRB	Physical Resource Block
PSD	Power Spectral Density
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase-Shift Keying
RAT	Radio Access Technology
RB	Resource Block
RE	Resource Element
REG	Resource Element Group
RF	Radio Frequency

RS	Reference Symbol
RX	Receive
RRC	Root Raised Cosine
SINR	Signal-to-Interference-and-Noise Ratio
SNR	Signal-to-Noise Ratio
SQRT	SQuare RooT
SC	Single Carrier
SRS	Sounding Reference Signal
Т	Top RF channel (for testing purposes)
TA	Timing Advance
TC	Test Configuration
TDD	Time Division Duplex
TT	Test Tolerance
TX	Transmit
UE	User Equipment
UMTS	Universal Mobile Telecommunications System
UTRA	UMTS Terrestrial Radio Access
WA	Wide Area

4 General test conditions and declarations

Many of the tests in this specification measure a parameter relative to a value that is not fully specified in the E-UTRA specifications. For these tests, the Minimum Requirement is determined relative to a nominal value specified by the manufacturer.

Certain functions of a BS are optional in the E-UTRA specifications. Some requirements for the BS may be regional as listed in subclause 4.3.

When specified in a test, the manufacturer shall declare the nominal value of a parameter, or whether an option is supported.

4.1 Measurement uncertainties and Test Requirements

4.1.1 General

The requirements of this clause apply to all applicable tests in this specification.

The Minimum Requirements are given in 36.104 [2] and test requirements are given in this specification. Test Tolerances are defined in Annex G of this specification. Test Tolerances are individually calculated for each test. The Test Tolerances are used to relax the Minimum Requirements in 36.104 [2] to create Test Requirements.

4.1.2 Acceptable uncertainty of Test System

The maximum acceptable uncertainty of the Test System is specified below for each test, where appropriate. The Test System shall enable the stimulus signals in the test case to be adjusted to within the specified tolerance and the equipment under test to be measured with an uncertainty not exceeding the specified values. All tolerances and uncertainties are absolute values, and are valid for a confidence level of 95 %, unless otherwise stated.

A confidence level of 95% is the measurement uncertainty tolerance interval for a specific measurement that contains 95% of the performance of a population of test equipment.

For RF tests, it should be noted that the uncertainties in subclause 4.1.2 apply to the Test System operating into a nominal 50 ohm load and do not include system effects due to mismatch between the DUT and the Test System.

Unless otherwise stated, the uncertainties in subclause 4.1.2 apply to the Test System for testing BS that supports E-UTRA or E-UTRA with NB-IoT in-band/guard band operation or NB-IoT standalone operation.

4.1.2.1 Measurement of transmitter

Subclause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
6.2. Base station output power	$\pm 0.7 \text{ dB}, f \le 3.0 \text{GHz}$ $\pm 1.0 \text{ dB}, 3.0 \text{GHz} < f \le 4.2 \text{GHz}$ $\pm 1.5 \text{ dB}, 4.2 \text{GHz} < f \le 6.0 \text{GHz}$ $\pm 1.0 \text{ dB}$ for standalone NB-IoT	
6.3.2 Total power dynamic range	± 0.4 dB	Relative error of two OFDM Symbol TX power (OSTP) measurements
6.3.3 NB-IoT RB power dynamic range for in-band or guard band operation	± 0.4 dB	
6.4.1 Transmitter OFF power	±2.0 dB, f ≤ 3.0GHz ±2.5 dB, 3.0GHz < f ≤ 4.2GHz ±3 dB, 4.2GHz < f ≤ 6.0GHz	
6.4.2 Transmitter transient period	N/A	
6.5.1 Frequency error 6.5.2 EVM	± 12 Hz ± 1 %	
6.5.3 Time alignment error 6.5.4 DL RS power	± 25 ns ±0.8 dB, f ≤ 3.0GHz ±1.1 dB, 3.0GHz < f ≤ 4.2GHz ±1.6 dB, 4.2GHz < f ≤6.0GHz	
6.6.1 Occupied bandwidth	1.4MHz, 3MHz Channel BW: 30kHz 5MHz, 10MHz Channel BW: 100kHz 15MHz, ≥20MHz: Channel BW: 300kHz	
6.6.2 Adjacent Channel Leakage power Ratio (ACLR)	ACLR ±0.8 dB Absolute power ±2.0 dB, f ≤ 3.0GHz Absolute power ±2.5 dB, 3.0GHz < f ≤ 4.2GHz Absolute power ±3.0 dB, 4.2GHz < f ≤ 6.0GHz CACLR±0.8 dB Absolute power ±2.0 dB, f ≤ 3.0GHz Absolute power ±2.5 dB, 3.0GHz < f ≤ 4.2GHz Absolute power ±3.0 dB, 4.2GHz < f ≤ 6.0GHz	
6.6.3 Operating band unwanted emissions	± 1.5 dB, f ≤ 3.0 GHz ± 1.8 dB, 3.0GHz $< f \leq 4.2$ GHz ± 2.2 dB, 4.2GHz $< f \leq 6.0$ GHz	
6.6.4.5.1 Transmitter spurious emissions, Mandatory Requirements	9 kHz < f ≤ 4 GHz: ±2.0 dB 4 GHz < f ≤ 19 GHz: ±4.0 dB	
6.6.4.5.2 Transmitter spurious emissions, Mandatory Requirements	9 kHz < f ≤ 4 GHz:±2.0 dB 4 GHz < f ≤ 19 GHz:±4.0 dB	
6.6.4.5.3 Transmitter spurious emissions, Protection of BS receiver	±3.0 dB	
6.6.4.5.4 Transmitter spurious emissions, Additional spurious emissions requirements	$\pm 2.0 \text{ dB for} > -60 \text{dBm}, f \le 3.0 \text{GHz}$ $\pm 2.5 \text{ dB}, 3.0 \text{GHz} < f \le 4.2 \text{GHz}$ $\pm 3.0 \text{ dB}, 4.2 \text{GHz} < f \le 6.0 \text{GHz}$ $\pm 3.0 \text{ dB for} \le -60 \text{dBm}, f \le 3.0 \text{GHz}$ $\pm 3.5 \text{ dB}, 3.0 \text{GHz} < f \le 4.2 \text{GHz}$ $\pm 4.0 \text{ dB}, 4.2 \text{GHz} < f \le 6.0 \text{GHz}$	
6.6.4.5.5 Transmitter spurious emissions, Co- location	± 3.0 dB	
6.7 Transmitter intermodulation (interferer requirements)	The value below applies only to the interference signal and is unrelated to the measurement uncertainty of the tests (6.6.2, 6.6.3 and 6.6.4) which shall be carried out in the presence of the interferer.	The uncertainty of interferer has double the effect on the result due to the frequency offset.
	±1,0 dB	

4.1.2.2 Measurement of receiver

Subclause	Maximum Test System Uncertainty ¹	Derivation of Test System Uncertainty
7.2 Reference sensitivity level	±0.7 dB, f ≤ 3.0GHz ±1.0 dB, 3.0GHz < f ≤ 4.2GHz	
7.3 Dynamic range	±0.3 dB	Overall system uncertainty for static conditions is equal to signal-to-noise ratio uncertainty.
		Signal-to-noise ratio uncertainty ±0.3 dB
		Definitions of signal-to-noise ratio, AWGN and related constraints are given in Table 4.1.2-3.
7.4 In-channel selectivity	±1.4 dB, f ≤ 3.0GHz ±1.8 dB, 3.0GHz < f ≤ 4.2GHz	Overall system uncertainty comprises three quantities:
		 Wanted signal level error Interferer signal level error Additional impact of interferer leakage
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared to provide the ratio error of the two signals. The interferer leakage effect is systematic, and is added aritmetically.
		Test System uncertainty = [SQRT (wanted_level_error ² + interferer_level_error ²)] + leakage effect.
		$f \le 3.0 GHz$ Wanted signal level $\pm 0.7 dB$ Interferer signal level $\pm 0.7 dB$ $3.0 GHz < f \le 4.2 GHz$ Wanted signal level $\pm 1.0 dB$ Interferer signal level $\pm 1.0 dB$
		f ≤ 4.2GHz Impact of interferer leakage 0.4dB.

Table 4.1.2-2: Maximum Test System Uncertainty for receiver tests

7.5 Adjacent Channel Selectivity (ACS) and	±1.4 dB, f ≤ 3.0GHz ±1.8 dB, 3.0GHz < f ≤ 4.2GHz	Overall system uncertainty comprises three quantities:
narrow-band blocking		 Wanted signal level error Interferer signal level error Additional impact of interferer ACLR
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared to provide the ratio error of the two signals. The interferer ACLR effect is systematic, and is added aritmetically.
		Test System uncertainty = [SQRT (wanted_level_error ² + interferer_level_error ²)] + ACLR effect.
		$f \le 3.0 GHz$ Wanted signal level $\pm 0.7 dB$ Interferer signal level $\pm 0.7 dB$ $3.0 GHz < f \le 4.2 GHz$ Wanted signal level $\pm 1.0 dB$ Interferer signal level $\pm 1.0 dB$
		f ≤ 4.2GHz Impact of interferer ACLR 0.4dB. See Note 2.

7.6.5.1 Blocking (General requirements)	In-band blocking, using modulated interferer: $\pm 1.6 \text{ dB}, \text{ f} \le 3.0 \text{GHz}$ $\pm 2.0 \text{ dB}, 3.0 \text{GHz} < \text{f} \le 4.2 \text{GHz}$	Overall system uncertainty can have these contributions:
	<u>Out of band blocking, using CW interferer:</u> <u>f_{wanted} ≤ 3GHz</u> 1MHz < f _{interferer} ≤ 3 GHz: ±1.3 dB	 Wanted signal level error Interferer signal level error Interferer ACLR Interferer broadband noise
	$\begin{array}{l} 3.0 \text{GHz} < f_{\text{interferer}} \leq 4.2 \text{ GHz: } \pm 1.5 \text{ dB} \\ 4.2 \text{GHz} < f_{\text{interferer}} \leq 12.75 \text{ GHz: } \pm 3.2 \text{ dB} \\ 3 \text{GHz} < f_{\text{wanted}} \leq 4.2 \text{GHz:} \\ 1 \text{MHz} < f_{\text{interferer}} \leq 3 \text{ GHz: } \pm 1.5 \text{ dB} \\ 3.0 \text{GHz} < f_{\text{interferer}} \leq 4.2 \text{ GHz: } \pm 1.7 \text{ dB} \\ 4.2 \text{GHz} < f_{\text{interferer}} \leq 12.75 \text{ GHz: } \pm 3.3 \text{ dB} \\ \end{array}$	Items 1 and 2 are assumed to be uncorrelated so can be root sum squared to provide the ratio error of the two signals. The Interferer ACLR or Broadband noise effect is systematic, and is added aritmetically.
		Test System uncertainty = [SQRT (wanted_level_error ² + interferer_level_error ²)] + ACLR effect + Broadband noise effect.
		$eq:linear_line$
		f ≤ 4.2GHz Interferer ACLR 0.4dB Broadband noise not applicable
		Out of band blocking, using CW interferer:Wanted signal level: $\pm 0.7dB$ f $\leq 3.0GHz$ $\pm 1.0dB$ 3.0GHz < f $\leq 4.2GHz$ Interferer signal level: $\pm 1.0dB$ up to 3GHz $\pm 1.2dB$ 3.0GHz < f $\leq 4.2GHz$ $\pm 3.0dB$ up to 12.75GHzInterferer ACLR not applicableImpact of interfererBroadband noise 0.1dB
7.6.5.2Blocking (Co- location with other base stations)	<u>Co-location blocking, using CW interferer:</u> $\pm 2.5 \text{ dB}, f \le 3.0 \text{GHz}$ $\pm 2.6 \text{ dB}, 3.0 \text{GHz} < f \le 4.2 \text{GHz}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
		f ≤ 4.2GHz Interferer signal level: ± 2.0dB Interferer ACLR not applicable Impact of interferer Broadband noise 0.4dB
7.7 Receiver spurious	$30 \text{ MHz} \le f \le 4 \text{ GHz} \pm 2.0 \text{ dB}$	
emissions	4 GHz < f ≤ 19 GHz: ±4.0 dB	

7.8 Recei		±1.8 dB, f ≤ 3.0GHz ±2.4 dB, 3.0GHz < f ≤ 4.2GHz	Overall system uncertainty comprises four quantities:
			 Wanted signal level error CW Interferer level error Modulated Interferer level error Impact of interferer ACLR
			The effect of the closer CW signal has twice the effect.
			Items 1, 2 and 3 are assumed to be uncorrelated so can be root sum squared to provide the combined effect of the three signals. The interferer ACLR effect is systematic, and is added aritmetically.
			Test System uncertainty = SQRT [(2 x CW_level_error) ² +(mod interferer_level_error) ² +(wanted signal_level_error) ²] + ACLR effect.
			f \leq 3.0GHz Wanted signal level \pm 0.7dB CW Interferer level \pm 0.5dB Mod Interferer level \pm 0.7dB 3.0GHz < f \leq 4.2GHz Wanted signal level \pm 1.0dB CW Interferer level \pm 0.7dB Mod Interferer level \pm 1.0dB
			f ≤ 4.2GHz Impact of interferer ACLR 0.4dB
Note 1:		noted, only the Test System stimulus error is considered	
Note 2:	 the throughput measurements due to finite test duration is not considered. The Test equipment ACLR requirement for a specified uncertainty contribution is calculated as below: a) The wanted signal to noise ratio for Reference sensitivity is calculated based on a 5dB noise figure b) The same wanted signal to (noise + interference) ratio is then assumed at the desensitisation level according to the ACS test conditions 		
	 c) The noise is subtracted from the total (noise + interference) to compute the allowable BS adjacent channel interference. From this an equivalent BS ACS figure can be obtained d) The contribution from the Test equipment ACLR is calculated to give a 0.4dB additional rise in interference. This corresponds to a Test equipment ACLR which is 10.2 dB better than the BS ACS e) This leads to the following Test equipment ACLR requirements for the interfering signal: 		
	E-UTRA 3MHz cl E-UTRA 5MHz cl	<u>Selectivity</u> channel bandwidth: 56dB nannel bandwidth: 56dB nannel bandwidth and above: 56dB IoT 200kHz channel bandwidth: 56dB	
	E-UTRA 3MHz cl E-UTRA 5MHz cl	<u>cking</u> channel bandwidth: 65dB nannel bandwidth: 61dB nannel bandwidth and above: 59dB loT 200kHz channel bandwidth: 66dB	

4.1.2.3 Measurement of performance requirement

Table 4.1.2-3: Maximum Test System Uncertainty for Performance Requirements

Subclause	Maximum Test System Uncertainty ¹	Derivation of Test System Uncertainty
8.2.1 Performance requirements of PUSCH in multipath fading propagation	± 0.6 dB	Overall system uncertainty for fading conditions comprises two quantities:
conditions transmission on single antenna port		 Signal-to-noise ratio uncertainty Fading profile power uncertainty
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = [SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)]
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB
8.2.1A Performance requirements of PUSCH in multipath fading propagation	± 0.8 dB	Overall system uncertainty for fading conditions comprises two quantities:
conditions transmission on two antenna ports		 Signal-to-noise ratio uncertainty Fading profile power uncertainty
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = [SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)]
		Signal-to-noise ratio uncertainty ± 0.3 dB Fading profile power uncertainty ± 0.7 dB for MIMO
8.2.2 Performance requirements for UL timing adjustment	± 0.6 dB	Overall system uncertainty for fading conditions comprises two quantities:
		 Signal-to-noise ratio uncertainty Fading profile power uncertainty
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = [SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)]
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB
	± 0.3 dB	Overall system uncertainty for static conditions is equal to signal-to-noise ratio uncertainty.
		Signal-to-noise ratio uncertainty ±0.3 dB
8.2.3 Performance requirements for HARQ-ACK multiplexed on PUSCH	± 0.6 dB	Overall system uncertainty for fading conditions comprises two quantities:
		 Signal-to-noise ratio uncertainty Fading profile power uncertainty
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = [SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)]
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB

0.0.4 Derfermense reguiremente for Llich		
8.2.4 Performance requirements for High Speed Train conditions	± 0.3 dB	Overall system uncertainty for static conditions is equal to signal-to-noise ratio uncertainty.
		Signal-to-noise ratio uncertainty ±0.3 dB
8.3.1 ACK missed detection for single user PUCCH format 1a transmission on single antenna port	± 0.6 dB	Overall system uncertainty for fading conditions comprises two quantities:
		 Signal-to-noise ratio uncertainty Fading profile power uncertainty
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = [SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)]
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB
8.3.2 CQI missed detection for PUCCH format 2 transmission on single antenna port	± 0.6 dB	Overall system uncertainty for fading conditions comprises two quantities:
		 Signal-to-noise ratio uncertainty Fading profile power uncertainty
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = [SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)]
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB
8.3.3 ACK missed detection for multi user PUCCH format 1a	± 0.6 dB	Overall system uncertainty for fading conditions comprises two quantities:
		 Signal-to-noise ratio uncertainty Fading profile power uncertainty
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = [SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)]
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB
8.3.4 ACK missed detection for PUCCH format 1b with Channel Selection	± 0.6 dB	Overall system uncertainty for fading conditions comprises two quantities:
		 Signal-to-noise ratio uncertainty Fading profile power uncertainty
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = [SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)]
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB

8.3.5 ACK missed detection for PUCCH	± 0.6 dB	Overall system uncertainty for fading
format 3		conditions comprises two quantities:
		 Signal-to-noise ratio uncertainty Fading profile power uncertainty
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = [SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)]
		Signal-to-noise ratio uncertainty ± 0.3 dB Fading profile power uncertainty ± 0.5 dB
8.3.6 NACK to ACK detection for PUCCH format 3	± 0.6 dB	Overall system uncertainty for fading conditions comprises two quantities:
		 Signal-to-noise ratio uncertainty Fading profile power uncertainty
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = [SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)]
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB
8.3.7 ACK missed detection for PUCCH format 1a transmission on two antenna ports	± 0.8 dB	Overall system uncertainty for fading conditions comprises two quantities:
		 Signal-to-noise ratio uncertainty Fading profile power uncertainty
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = [SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)]
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.7 dB for Tx diversity
8.3.8 CQI performance requirements for PUCCH format 2 transmission on two antenna ports	± 0.8 dB	Overall system uncertainty for fading conditions comprises two quantities:
		 Signal-to-noise ratio uncertainty Fading profile power uncertainty
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = [SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)]
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.7 dB for Tx diversity

9.2.0 COL portormonos requirements to		000	Overall eveter uncertainty for fading	
8.3.9 CQI performance requirements for PUCCH format 2 with DTX detection	± 0.6 dB for one antenna port		Overall system uncertainty for fading conditions comprises two quantities:	
	± 0.8 dB for antenna port		 Signal-to-noise ratio uncertainty Fading profile power uncertainty 	
			Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:	
			Test System uncertainty = [SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)]	
			Signal-to-noise ratio uncertainty ± 0.3 dB Fading profile power uncertainty ± 0.5 dB for transmission on one antenna port and ± 0.7 dB for transmission on two antenna ports	
8.4.1 PRACH false alarm probability and missed detection	± 0.6 dB		Overall system uncertainty for fading conditions comprises two quantities:	
			 Signal-to-noise ratio uncertainty Fading profile power uncertainty 	
			Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:	
			Test System uncertainty = [SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)]	
			Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB	
	± 0.3 dB		Overall system uncertainty for static conditions is equal to signal-to-noise ratio uncertainty.	
			Signal-to-noise ratio uncertainty ±0.3 dB	
In addition, the following Test System uncer	tainties and re	elated const	traints apply:	
AWGN Bandwidth		≥ 1.08MHz, 2.7MHz, 4.5MHz, 9MHz, 13.5MHz, 18MHz;		
		NRB x 180kHz according to BWConfig		
AWGN absolute power uncertainty, averaged over		±1.5 dB		
BW _{Config} AWGN flatness and signal flatness, max deviation for		±2 dB		
any resource block, relative to average over		12 00		
AWGN flatness over BW _{Channel} , max deviation for any		+2 dB		
resource block, relative to average over BW _{Config}				
AWGN flatness and signal flatness, max difference		±0.5 dB		
between adjacent resource blocks		>10 dB @0.001%		
AWGN peak to average ratio Signal-to noise ratio uncertainty, averaged over uplink		≥10 dB @0.001% ±0.3 dB		
transmission Bandwidth		10.0 dD		
Fading profile power uncertainty		Test-specific		
Fading profile delay uncertainty, relative to frame		±5 ns (excludes absolute errors related to baseband		
timing		timing)		
Note 1: Only the overall stimulus error is considered here. The effect of errors in the throughput measurements due to finite test duration is not considered.				

4.1.3 Interpretation of measurement results

The measurement results returned by the Test System are compared - without any modification - against the Test Requirements as defined by the Shared Risk principle.

The Shared Risk principle is defined in ITU-R M.1545 [3].

The actual measurement uncertainty of the Test System for the measurement of each parameter shall be included in the test report.

The recorded value for the Test System uncertainty shall be, for each measurement, equal to or lower than the appropriate figure in subclause 4.1.2 of this specification.

If the Test System for a test is known to have a measurement uncertainty greater than that specified in subclause 4.1.2, it is still permitted to use this apparatus provided that an adjustment is made as follows.

Any additional uncertainty in the Test System over and above that specified in subclause 4.1.2 shall be used to tighten the Test Requirement, making the test harder to pass. (For some tests e.g. receiver tests, this may require modification of stimulus signals). This procedure (defined in Annex G) will ensure that a Test System not compliant with subclause 4.1.2 does not increase the chance of passing a device under test where that device would otherwise have failed the test if a Test System compliant with subclause 4.1.2 had been used.

4.2 Base station classes

The requirements in this specification apply to Wide Area Base Station, Medium Range Base Station, Local Area Base Station and Home Base Station unless other wise stated.

Wide Area Base Stations are characterised by requirements derived from Macro Cell scenarios with a BS to UE minimum coupling loss equals to 70 dB. The Wide Area Base Station class has the same requirements as the base station for General Purpose application in Release 8.

Medium Range Base Stations are characterised by requirements derived from Micro Cell scenarios with a BS to UE minimum coupling loss equals to 53 dB.

Local Area Base Stations are characterised by requirements derived from Pico Cell scenarios with a BS to UE minimum coupling loss equal to 45 dB.

Home Base Stations are characterised by requirements derived from Femto Cell scenarios.

The manufacturer shall declare the intended class of the BS under test.

4.3 Regional requirements

Some requirements in the present document may only apply in certain regions either as optional requirements or set by local and regional regulation as mandatory requirements. It is normally not stated in the 3GPP specifications under what exact circumstances that the requirements apply, since this is defined by local or regional regulation.

Table 4.3-1 lists all requirements that may be applied differently in different regions.

Table 4.3-1: List of regional requirements

Clause number	Requirement	Comments
5.5	Operating bands	Some bands may be applied regionally.
5.6	Channel bandwidth	Some channel bandwidths may be applied regionally.
5.7	Channel arrangement	The requirement is applied according to what operating bands in Clause 5.5 that are supported by the BS.
6.2.	Base station maximum output power	In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the range of conditions defined as normal. In certain regions, additional regional requirement specified in subclause 6.2.2 in [1] is applied
		for rated output power declared by the manufacturer. In addition for Band 46 operation, the BS may have to comply with the applicable BS power limits established regionally, when deployed in regions where those limits apply and under the conditions declared by the manufacturer.
6.6.1	Occupied bandwidth	For Band 46 operation in Japan, the occupied bandwidth for each E-UTRA carrier shall be less than or equal to 19 MHz or 19.7MHz.
6.6.3.5.1	Operating band unwanted emissions (Category A)	This requirement is mandatory for regions where Category A limits for spurious emissions, as defined in ITU-R Recommendation SM.329 [5] apply.
6.6.3.5.2	Operating band unwanted emissions (Category B)	This requirement is mandatory for regions where Category B limits for spurious emissions, as defined in ITU-R Recommendation SM.329 [5], apply.
6.6.3.5.3	Additional requirements	These requirements may apply in certain regions as additional Operating band unwanted emission limits.
6.6.4.5.1	Spurious emissions (Category A)	This requirement is mandatory for regions where Category A limits for spurious emissions, as defined in ITU-R Recommendation SM.329 [5] apply.
6.6.4.5.2	Spurious emissions (Category B)	This requirement is mandatory for regions where Category B limits for spurious emissions, as defined in ITU-R Recommendation SM.329 [5], apply.

6.6.4.5.4	Additional spurious emission requirements	These requirements may be applied for the protection of system operating in frequency ranges other than the E-UTRA BS operating band. In addition for Band 46 operation, the BS may have to comply with the applicable operating band unwanted emission limits established regionally, when deployed in regions where those limits apply and under the conditions declared by the manufacturer.
6.6.4.5.5	Co-location with other base stations	These requirements may be applied for the protection of other BS receivers when a BS operating in another frequency band is co-located with an E-UTRA BS.
6.7.2A	Additional requirements for Band 41	These requirements may apply in certain regions for Band 41.
6.7.6	Additional test requirements for Band 41	These requirements may apply in certain regions for Band 41.
7.6.5.2	Co-location with other base stations	These requirements may be applied for the protection of the BS receivers when a BS operating in another frequency band is co located with an E-UTRA BS.

4.4 Selection of configurations for testing

Most tests in the present document are only performed for a subset of the possible combinations of test conditions. For instance:

- Not all transceivers in the configuration may be specified to be tested;
- Only one RF channel may be specified to be tested;
- Not all channel bandwidths may be specified to be tested.

4.5 BS Configurations

4.5.1 Transmit configurations

Unless otherwise stated, the transmitter characteristics in clause 6 are specified at the BS antenna connector (test port A) with a full complement of transceivers for the configuration in normal operating conditions. If any external apparatus such as a TX amplifier, a filter or the combination of such devices is used, requirements apply at the far end antenna connector (test port B).

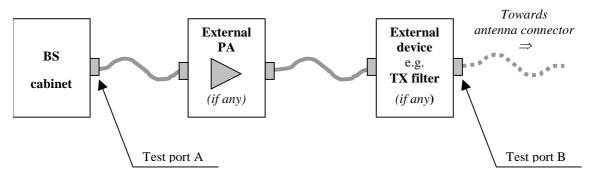
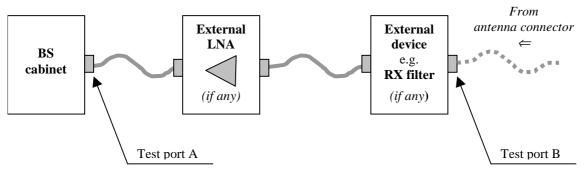


Figure 4.5-1: Transmitter test ports


4.5.1.1 Transmission with multiple transmitter antenna connectors

Unless otherwise stated, for the tests in clause 6 of the present document, the requirement applies for each transmitter antenna connector in the case of transmission with multiple transmitter antenna connectors.

Transmitter requirements are tested at the antenna connector, with the remaining antenna connector(s) being terminated. If the manufacturer has declared the transmitter paths to be equivalent, it is sufficient to measure the signal at any one of the transmitter antenna connectors,.

4.5.2 Receive configurations

Unless otherwise stated, the receiver characteristics in clause 7 are specified at the BS antenna connector (test port A) with a full complement of transceivers for the configuration in normal operating conditions. If any external apparatus such as a RX amplifier, a filter or the combination of such devices is used, requirements apply at the far end antenna connector (test port B).

Figure 4.5-2: Receiver test ports

4.5.2.1 Reception with multiple receiver antenna connectors, receiver diversity

For the tests in clause 7 of the present document, the requirement applies at each receiver antenna connector for receivers with antenna diversity or in the case of multi-carrier reception with multiple receiver antenna connectors.

Receiver requirements are tested at the antenna connector, with the remaining receiver(s) disabled or their antenna connector(s) being terminated. If the manufacturer has declared the receiver paths to be equivalent, it is sufficient to apply the specified test signal at any one of the receiver antenna connectors.

For a multi-band BS, multi-band tests for ACS, blocking and intermodulation are performed with the interferer(s) applied to each antenna connector mapped to the receiver for the wanted signal(s), however only to one antenna at a time. Antenna connectors to which no signals are applied are terminated.

4.5.3 Duplexers

The requirements of the present document shall be met with a duplexer fitted, if a duplexer is supplied as part of the BS. If the duplexer is supplied as an option by the manufacturer, sufficient tests should be repeated with and without the duplexer fitted to verify that the BS meets the requirements of the present document in both cases.

The following tests shall be performed with the duplexer fitted, and without it fitted if this is an option:

- 1) subclause 6.2, base station output power, for the highest static power step only, if this is measured at the antenna connector;
- 2) subclause 6.6, unwanted emissions; outside the BS transmit band;
- 3) subclause 6.6.4.5.3, protection of the BS receiver;
- 4) subclause 6.7, transmit intermodulation; for the testing of conformance, the carrier frequencies should be selected to minimize intermodulation products from the transmitters falling in receive channels.

The remaining tests may be performed with or without the duplexer fitted.

- NOTE 1: When performing receiver tests with a duplexer fitted, it is important to ensure that the output from the transmitters does not affect the test apparatus. This can be achieved using a combination of attenuators, isolators and filters.
- NOTE 2: When duplexers are used, intermodulation products will be generated, not only in the duplexer but also in the antenna system. The intermodulation products generated in the antenna system are not controlled by 3GPP specifications, and may degrade during operation (e.g. due to moisture ingress). Therefore, to ensure continued satisfactory operation of a BS, an operator will normally select EARFCNs to minimize intermodulation products falling on receive channels. For testing of complete conformance, an operator may specify the EARFCNs to be used.

4.5.4 Power supply options

If the BS is supplied with a number of different power supply configurations, it may not be necessary to test RF parameters for each of the power supply options, provided that it can be demonstrated that the range of conditions over which the equipment is tested is at least as great as the range of conditions due to any of the power supply configurations.

This applies particularly if a BS contains a DC rail which can be supplied either externally or from an internal mains power supply. In this case, the conditions of extreme power supply for the mains power supply options can be tested by testing only the external DC supply option. The range of DC input voltages for the test should be sufficient to verify the performance with any of the power supplies, over its range of operating conditions within the BS, including variation of mains input voltage, temperature and output current.

4.5.5 Ancillary RF amplifiers

The requirements of the present document shall be met with the ancillary RF amplifier fitted. At tests according to clauses 6 and 7 for TX and RX respectively, the ancillary amplifier is connected to the BS by a connecting network (including any cable(s), attenuator(s), etc.) with applicable loss to make sure the appropriate operating conditions of the ancillary amplifier and the BS. The applicable connecting network loss range is declared by the manufacturer. Other characteristics and the temperature dependence of the attenuation of the connecting network are neglected. The actual attenuation value of the connecting network is chosen for each test as one of the applicable extreme values. The lowest value is used unless otherwise stated.

Sufficient tests should be repeated with the ancillary amplifier fitted and, if it is optional, without the ancillary RF amplifier to verify that the BS meets the requirements of the present document in both cases.

When testing, the following tests shall be repeated with the optional ancillary amplifier fitted according to the table below, where x denotes that the test is applicable:

Receiver Tests	Subclause	TX amplifier only	RX amplifier only	TX/RX amplifiers combined (Note)
	7.2		Х	Х
	7.5 (Narrowband blocking)		Х	Х
	7.6		Х	Х
	7.7		Х	Х
	7.8		Х	
Transmitter	6.2	Х		Х
Tests	6.6.1	Х		Х
	6.6.2	Х		Х
	6.6.3	Х		х
	6.6.4	Х		Х
	6.7	Х		Х

 Table 4.5-1: Tests applicable to Ancillary RF Amplifiers

NOTE: Combining can be by duplex filters or any other network. The amplifiers can either be in RX or TX branch or in both. Either one of these amplifiers could be a passive network.

In test according to subclauses 6.2 and 7.2 highest applicable attenuation value is applied.

4.5.6 BS with integrated luant BS modem

Unless otherwise stated, for the tests in the present document, the integrated Iuant BS modem shall be switched off. Spurious emissions according to clauses 6.6.4 and 7.7 shall be measured only for frequencies above 20MHz with the integrated Iuant BS modem switched on.

4.5.7 BS using antenna arrays

A BS may be configured with a multiple antenna port connection for some or all of its transceivers or with an antenna array related to one cell (not one array per transceiver). This subclause applies to a BS which meets at least one of the following conditions:

- the transmitter output signals from one or more transceiver appear at more than one antenna port; or
- there is more than one receiver antenna port for a transceiver or per cell and an input signal is required at more than one port for the correct operation of the receiver thus the outputs from the transmitters as well as the inputs to the receivers are directly connected to several antennas (known as "aircombining"); or
- transmitters and receivers are connected via duplexers to more than one antenna.

In case of diversity or spatial multiplexing, multiple antennas are not considered as an antenna array.

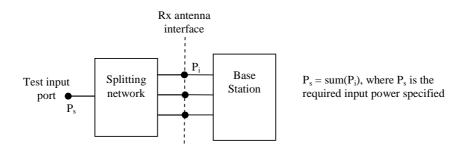
If a BS is used, in normal operation, in conjunction with an antenna system which contains filters or active elements which are necessary to meet the E-UTRA requirements, the conformance tests may be performed on a system comprising the BS together with these elements, supplied separately for the purposes of testing. In this case, it must be demonstrated that the performance of the configuration under test is representative of the system in normal operation, and the conformance assessment is only applicable when the BS is used with the antenna system.

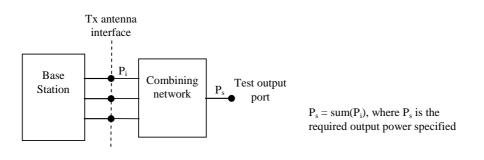
For conformance testing of such a BS, the following procedure may be used.

4.5.7.1 Receiver tests

For each test, the test signals applied to the receiver antenna connectors shall be such that the sum of the powers of the signals applied equals the power of the test signal(s) specified in the test.

An example of a suitable test configuration is shown in figure 4.5.7.1-1.




Figure 4.5.7.1-1: Receiver test set-up

For spurious emissions from the receiver antenna connector, the test may be performed separately for each receiver antenna connector.

4.5.7.2 Transmitter tests

For each test, the test signals applied to the transmitter antenna connectors (\mathbf{P}_i) shall be such that the sum of the powers of the signals applied equals the power of the test signal(s) (\mathbf{P}_s) specified in the test. This may be assessed by separately measuring the signals emitted by each antenna connector and summing the results, or by combining the signals and performing a single measurement. The characteristics (e.g. amplitude and phase) of the combining network should be such that the power of the combined signal is maximised.

An example of a suitable test configuration is shown in figure 4.5.7.2-1.

Figure 4.5.7.2-1: Transmitter test set-up

For Intermodulation attenuation, the test may be performed separately for each transmitter antenna connector.

4.6 Manufacturer's declarations of regional and optional requirements

4.6.1 Operating band and frequency range

The manufacturer shall declare which operating band(s) specified in clause 5.5 that is supported by the BS under test and if applicable, which frequency ranges within the operating band(s) that the base station can operate in. Requirements for other operating bands and frequency ranges need not be tested.

The manufacturer shall declare which operating band(s) specified in clause 5.5 are supported by the BS under test for carrier aggregation.

The manufacturer shall declare which NB-IoT operating mode (standalone, in-band and/or guard band) the BS supports for the declared supported band.

4.6.2 Channel bandwidth

The manufacturer shall declare which of the channel bandwidths specified in TS36.104 [2] subclause 5.6 that are supported by the BS under test. Requirements for other channel bandwidths need not be tested.

For each supported channel bandwidth, manufacturer shall declare if BS supports NB-IoT in-band and/or guard band operation and the number of supported NB-IoT carriers.

4.6.3 Base station output power

The manufacturer shall declare for the BS under test the rated output power for each supported transmit channel bandwidth.

4.6.4 Spurious emissions Category

The manufacturer shall declare one of the following:

- a) The BS is tested against Category A limits for spurious emissions, as defined in ITU-R Recommendation SM.329 [5]. In this case
 - conformance with the operating band unwanted emissions requirements in clause 6.6.3.5.1 is mandatory, and the requirements specified in clause 6.6.3.5.2 need not be tested.
 - conformance with the spurious emissions requirements in clause 6.6.4.5.1 is mandatory, and the requirements specified in clause 6.6.4.5.2 need not be tested.
- b) The BS is tested against Category B limits for spurious emissions, as defined in ITU-R Recommendation SM.329 [5]. In this case,

- conformance with the operating band unwanted emissions requirements in clause 6.6.3.5.2 is mandatory, and the requirements specified in clause 6.6.3.5.1 need not be tested.
- conformance with the spurious emissions requirements in clause 6.6.4.5.2 is mandatory, and the requirements specified in clause 6.6.4.5.1 need not be tested.

4.6.5 Additional operating band unwanted emissions

The manufacturer shall declare whether the BS under test is intended to operate in geographic areas where the additional operating band unwanted emission limits defined in clause 6.6.3.5.3 apply. If this is the case, compliance with the test requirement specified in Tables 6.6.3.5.3-1, 6.6.3.5.3-2 or 6.6.3.5.3-3 are mandatory; otherwise these requirements need not be tested.

For a BS declared to support Band 20 and to operate in geographic areas within the CEPT in which frequencies are allocated to broadcasting (DTT) service, the manufacturer shall additionally declare the following quantities associated with the applicable test conditions of Table 6.6.3.5.3-4 and information in annex G of [2] :

P_{EM,N} Declared emission level for channel N

P_{10MHz} Maximum output Power in 10 MHz

For a BS declared to support Band 24 and intended to operate in geographic areas in which the conditions for emissions falling into the 1559-1610 MHz band according to FCC Order DA 10-534 apply, the manufacturer shall additionally declare the following quantities associated with the applicable test conditions of Table 6.6.4.5.4-4:

 P_{E_1kHz} Declared emission level (measurement bandwidth = 1kHz)

 $P_{E_{1}MHz}$ Declared emission level (measurement bandwidth = 1MHz)

For a BS declared to support Band 32 and to intended operate in geographic areas within the CEPT, the manufacturer shall additionally declare the following quantities associated with the applicable test conditions of Table 6.6.3.5.3-8 and Table 6.6.3.5.3-9:

P_{EM,B32,ind} Declared emission level in Band 32, ind=a, b, c, d, e

4.6.6 Co-existence with other systems

The manufacturer shall declare whether the BS under test is intended to operate in geographic areas where one or more of the systems GSM850, GSM900, DCS1800, PCS1900, UTRA FDD, UTRA TDD, E-UTRA and/or PHS operating in another band are deployed. If this is the case, compliance with the applicable test requirement for spurious emissions specified in clause 6.6.4.5.4 shall be tested.

4.6.7 Co-location with other base stations

The manufacturer shall declare whether the BS under test is intended to operate co-located with base stations of one or more of the systems GSM850, GSM900, DCS1800, PCS1900, UTRA FDD, UTRA TDD and/or E-UTRA operating in another band. If this is the case,

- compliance with the applicable test requirement for spurious emissions specified in clause 6.6.4.5.5 shall be tested.
- compliance with the applicable test requirement for receiver blocking specified in clause 7.6 shall be tested.

4.6.8 Manufacturer's declarations of supported RF configurations

The manufacturer shall declare which operational configurations the BS supports by declaring the following parameters:

- Support of the BS in non-contiguous spectrum operation. If the BS does not support non-contiguous spectrum operation the parameters for non-contiguous spectrum operation below shall not be declared.
- The supported operating bands defined in subclause 5.5 for E-UTRA;

- The frequency range within the above operating band(s) supported by the BS for E-UTRA;
- The supported operating band defined in subclause 5.5 for NB-IoT and the operating mode(s);
- The frequency range within the above operating band supported by the BS for NB-IoT;
- The maximum Base Station RF Bandwidth supported by a BS within each operating band;
 - for contiguous spectrum operation
 - for non-contiguous spectrum operation
- The supported operating configurations (multi-carrier, carrier aggregation, and/or single carrier) within each operating band.
- The supported component carrier combinations at nominal channel spacing within each operating band and subblock.
- The rated output power per carrier;
 - for contiguous spectrum operation
 - for non-contiguous spectrum operation
 - NOTE 1: Different rated output powers may be declared for different operating configurations.
 - NOTE 2: Different rated output power may be declared for BS configured for 256QAM downlink operation.
- The rated total output power P_{rated,t} as a sum of all carriers;
 - for contiguous spectrum operation
 - for non-contiguous spectrum operation
 - NOTE: Different rated total output powers may be declared for BS configured for 256QAM downlink operation.
- Maximum number of supported carriers within each band;
 - for contiguous spectrum operation
 - for non-contiguous spectrum operation

If the rated total output power $P_{rated,t}$ and total number of supported carriers are not simultaneously supported, the manufacturer shall declare the following additional parameters:

- The reduced number of supported carriers at the rated total output power Prated,t;
- The reduced total output power at the maximum number of supported carriers.

For BS capable of multi-band operation, the parameters above shall be declared for each supported operating band, in which declarations of the maximum Base Station RF Bandwidth, the rated output power per carrier, the rated total output power $P_{rated,t}$ and maximum number of supported carriers are applied for single-band operation only. In addition the manufacturer shall declare the following additional parameters for BS capable of multi-band operation:

- Supported operating band combinations of the BS
- Supported operating band(s) of each antenna connector
- Support of multi-band transmitter and/or multi-band receiver, including mapping to antenna connector(s)
- Total number of supported carriers for the declared band combinations of the BS
- Maximum number of supported carriers per band in multi-band operation
- Total RF Bandwidth BW_{tot} of transmitter and receiver for the declared band combinations of the BS

- Maximum Base Station RF Bandwidth of each supported operating band in multi-band operation
- Maximum Radio Bandwidth BW_{max} in transmit and receive direction for the declared band combinations of the BS
- Any other limitations under simultaneous operation in the declared band combinations of the BS which have any impact on the test configuration generation
- Total output power as a sum over all supported operating bands in the declared band combinations of the BS
- Maximum supported power difference between any two carriers in any two different supported operating bands
- The rated output power per carrier in multi-band operation
- Rated total output power $P_{\text{rated},t}$ of each supported operating band in multi-band operation

4.6.9 NB-IoT sub-carrier spacing

If the BS supports NB-IoT, manufacturer shall declare if it supports 15 kHz sub-carrier spacing, 3.75 kHz sub-carrier spacing, or both for NPUSCH.

4.6.10 NB-IoT power dynamic range

If the BS supports E-UTRA with NB-IoT operating in-band and/or in guard band, manufacturer shall declare the maximum power dynamic range it could support with a minimum of +6dB as mentioned in TS 36.104 [2] clause 6.3.3.

If the BS supports 5 MHZ E-UTRA with NB-IoT operating in guard band, manufacturer shall declare the maximum power that could be allocated to this NB-IoT carrier.

4.7 Specified frequency range and supported channel bandwidth

Unless otherwise stated, the E-UTRA test shall be performed with a lowest and the highest bandwidth supported by the BS. The manufacturer shall declare that the requirements are fulfilled for all other bandwidths supported by the BS which are not tested.

The manufacturer shall declare:

- Which of the E-UTRA operating bands defined in subclause 5.5 are supported by the BS.
- The E-UTRA frequency range within the above frequency band(s) supported by the BS.
- Which NB-IoT operating band defined in subclause 5.5 is supported by the BS.
- The NB-IoT frequency range within the above frequency band supported by the BS.
- The E-UTRA channel bandwidths supported by the BS.
- For each E-UTRA channel bandwidth, the NB-IoT operating mode(s) supported by the BS.

For CA specific testing in section 4.7.2, the manufacturer's declaration in section 4.6.8 will be applied.

For the single carrier testing many tests in this TS are performed with appropriate frequencies in the bottom, middle and top channels of the supported frequency range of the BS. These are denoted as RF channels B (bottom), M (middle) and T (top).

Unless otherwise stated, the test shall be performed with a single carrier at each of the RF channels B, M and T.

Unless otherwise stated, the NB-IoT standalone test shall be performed with a single carrier at each of the RF channels B (bottom), M (middle) and T (top).

When a test is performed by a test laboratory, the EARFCNs to be used for RF channels B, M and T shall be specified by the laboratory. The laboratory may consult with operators, the manufacturer or other bodies.

When a test is performed by a manufacturer, the EARFCNs to be used for RF channels B, M and T may be specified by an operator.

4.7.1 Base Station RF Bandwidth position for multi-carrier and/or CA testing

Many tests in this TS are performed with the maximum Base Station RF Bandwidth located at the bottom, middle and top of the supported frequency range in each operating band. These are denoted as B_{RFBW} (bottom), M_{RFBW} (middle) and T_{RFBW} (top).

Unless otherwise stated, the test shall be performed at B_{RFBW}, M_{RFBW} and T_{RFBW} defined as following:

- B_{RFBW}: maximum Base Station RF Bandwidth located at the bottom of the supported frequency range in each operating band;
- M_{RFBW}: maximum Base Station RF Bandwidth located in the middle of the supported frequency range in each operating band;
- T_{RFBW}: maximum Base Station RF Bandwidth located at the top of the supported frequency range in each operating band.

For BS capable of dual-band operation, unless otherwise stated, the test shall be performed at $B_{RFBW}T'_{RFBW}$ and $B'_{RFBW}T_{RFBW}$ defined as following:

- B_{RFBW} T'_{RFBW}: the Base Station RF Bandwidths located at the bottom of the supported frequency range in the lower operating band and at the highest possible simultaneous frequency position, within the Maximum Radio Bandwidth, BW_{max}, in the upper operating band.
- B'_{RFBW}_T_{RFBW}: the Base Station RF Bandwidths located at the top of the supported frequency range in the upper operating band and at the lowest possible simultaneous frequency position, within the Maximum Radio Bandwidth, BW_{max}, in the lower operating band.
- NOTE: $B_{RFBW}T'_{RFBW} = B'_{RFBW}T_{RFBW} = B_{RFBW}T_{RFBW}$ when the declared Maximum Radio Bandwidth BW_{max} , spans both operating bands. $B_{RFBW}T_{RFBW}$ means the Base Station RF Bandwidths are located at the bottom of the supported frequency range in the lower operating band and at the top of the supported frequency range in the upper operating band.

When a test is performed by a test laboratory, the position of B_{RFBW} , M_{RFBW} and T_{RFBW} in each supported operating band, as well as the position of B_{RFBW} , T'_{RFBW} and B'_{RFBW} , T_{RFBW} in the supported operating band combinations, shall be specified by the laboratory. The laboratory may consult with operators, the manufacturer or other bodies.

4.7.2 Aggregated Channel Bandwidth position for Contiguous CA occupied bandwidth testing

Occupied bandwidth test in this TS is performed with the Aggregated Channel Bandwidth and sub-block bandwidths located at the bottom, middle and top of the supported frequency range in the operating band. These are denoted as B_{BW} _{Channel CA} (bottom), $M_{BW \text{ Channel CA}}$ (middle) and $T_{BW \text{ Channel CA}}$ (top) for contiguous spectrum operation.

Unless otherwise stated, the test for contiguous spectrum operation shall be performed at $B_{BW \ Channel \ CA}$, $M_{BW \ Channel \ CA}$ and $T_{BW \ Channel \ CA}$ defined as following:

- B_{BW Channel CA}: Aggregated Channel Bandwidth located at the bottom of the supported frequency range in each operating band;
- M_{BW Channel CA}: Aggregated Channel Bandwidth located close in the middle of the supported frequency range in each operating band, with the center frequency of each component carrier aligned to the channel raster;
- T_{BW Channel CA}: Aggregated Channel Bandwidth located at the top of the supported frequency range in each operating band.

When a test is performed by a test laboratory, the position of $B_{BW \ Channel \ CA}$, $M_{BW \ Channel \ CA}$ and $T_{BW \ Channel \ CA}$ for contiguous spectrum operation in the operating band shall be specified by the laboratory. The laboratory may consult with operators, the manufacturer or other bodies.

4.7.3 NB-IoT testing

Unless otherwise stated, the NB-IoT standalone Rx test shall be performed by using one tone at one or both NB-IoT PRB's edge positions; those are denoted B_{NB-IoT} and T_{NB-IoT} .

Unless otherwise stated, the NB-IoT in-band test shall be performed by puncturing one E-UTRA PRB at the eligible (as specified in sub-clause 5.7.3) in-band position closest to E-UTRA guard band; those are denoted L_{NB-IoT} (Left) and R_{NB-IoT} (Right).

Unless otherwise stated, the NB-IoT in-band Rx test shall be performed by using the tone located on the NB-IoT PRB's edge, which is closest to E-UTRA guard band; those are denoted B_{NB-IoT} for L_{NB-IoT} and T_{NB-IoT} for R_{NB-IoT} .

Unless otherwise stated, the NB-IoT guard band test shall be performed by selecting the eligible (as specified in subclause 5.7.3) guard band position closest to E-UTRA PRBs; those are denoted L_{NB-IoT} (Left) and R_{NB-IoT} (Right),

Unless otherwise stated, the NB-IoT guard band Rx test shall be performed by using the tone located on the NB-IoT PRB's edge, which is closest to E-UTRA channel edge; those are denoted B_{NB-IoT} for L_{NB-IoT} and T_{NB-IoT} for R_{NB-IoT} .

4.8 Format and interpretation of tests

Each test in the following clauses has a standard format:

X Title

All tests are applicable to all equipment within the scope of the present document, unless otherwise stated.

X.1 Definition and applicability

This subclause gives the general definition of the parameter under consideration and specifies whether the test is applicable to all equipment or only to a certain subset. Required manufacturer declarations may be included here.

X.2 Minimum Requirement

This subclause contains the reference to the subclause to the 3GPP reference (or core) specification which defines the Minimum Requirement.

X.3 Test Purpose

This subclause defines the purpose of the test.

X.4 Method of test

X.4.1 Initial conditions

This subclause defines the initial conditions for each test, including the test environment, the RF channels to be tested and the basic measurement set-up.

X.4.2 Procedure

This subclause describes the steps necessary to perform the test and provides further details of the test definition like point of access (e.g. test port), domain (e.g. frequency-span), range, weighting (e.g. bandwidth), and algorithms (e.g. averaging).

X.5 Test Requirement

This subclause defines the pass/fail criteria for the equipment under test. See subclause 4.1.2.5 Interpretation of measurement results.

4.9 Applicability of requirements

For BS that is E-UTRA (single-RAT) capable only, the requirements in the present document are applicable and additional conformance to TS 37.141 [18] is optional. For a BS additionally conforming to TS 37.141 [18], conformance to some of the RF requirements in the present document can be demonstrated through the corresponding requirements in TS 37.141 [18] as listed in Table 4.9-1

RF requirement	Clause in the present document	Alternative clause in TS 37.141 [18]
Base station output power	6.2.5	6.2.1.5
Transmit ON/OFF power	6.4	6.4
Unwanted emissions		
Transmitter spurious emissions	6.6.4.5	6.6.1.5 (except for 6.6.1.5.3)
Operating band unwanted	6.6.3.5.1, 6.6.3.5.2	6.6.2.5 (except for
emissions	(NOTE 1)	6.6.2.5.3 and 6.6.2.5.4)
Transmitter intermodulation	6.7.5	6.7.5.1
Narrowband blocking	7.5.5	7.4.5.2
Blocking	7.6.5.1	7.4.5.1
Out-of-band blocking	7.6.5.1	7.5.5.1
Co-location with other base stations	7.6.5.2	7.5.5.2
Receiver spurious emissions	7.7.5	7.6.5.1
Intermodulation	7.8.5	7.7.5.1
Narrowband intermodulation	7.8.5	7.7.5.2
NOTE 1: This does not apply when the lowest or highest carrier frequency is configured as 1.4 or 3 MHz carrier in bands of Band Category 1 or 3 according to clause 4.4 in TS 37.141 [18].		

Table 4.9-1: Alternative RF test requirements for a BS additionally conforming to TS 37.141 [18]

4.10 Test configurations for multi-carrier and/or CA operation

The test configurations shall be constructed using the methods defined below, subject to the parameters declared by the manufacturer for the supported RF configurations as listed in subclause 4.6.8. The test configurations to use for conformance testing are defined for each supported RF configuration in subclause 4.11.

The applicable test models for generation of the carrier transmit test signal are defined in subclause 6.1.1.

4.10.1 ETC1: Contiguous spectrum operation

The purpose of test configuration ETC1 is to test all BS requirements excluding CA occupied bandwidth.

For ETC1 used in receiver tests only the two outermost carriers within each supported operating band need to be generated by the test equipment.

4.10.1.1 ETC1 generation

ETC1 shall be constructed on a per band basis using the following method:

- Declared maximum Base Station RF Bandwidth supported for contiguous spectrum operation shall be used;
- Select the narrowest supported carrier and place it adjacent to the lower Base Station RF Bandwidth edge. Place a 5 MHz carrier adjacent to the upper Base Station RF Bandwidth edge.
- For transmitter tests, select as many 5 MHz carriers that the BS supports within a band and fit in the rest of the declared maximum Base Station RF Bandwidth. Place the carriers adjacent to each other starting from the upper Base Station RF Bandwidth edge. The nominal carrier spacing defined in subclause 5.7 shall apply;
- If 5 MHz carriers are not supported by the BS the narrowest supported channel BW shall be selected instead.

The test configuration should be constructed on a per band basis for all component carriers of the inter-band CA bands declared to be supported by the BS and are transmitted using the same antenna port. All configured component carriers are transmitted simultaneously in the tests where the transmitter should be on.

4.10.1.2 ETC1 power allocation

For a BS declared to support MC operation,

Set the power of each carrier to the same level so that the sum of the carrier powers equals the rated total output power $P_{rated,t}$ according to the manufacturer's declaration in subclause 4.6.8.

3GPP TS 36.141 version 13.12.0 Release 13

48

For a BS declared to support only CA operation,

Set the power spectral density of each carrier to the same level so that the sum of the carrier powers equals the rated total output power $P_{rated,t}$ according to the manufacturer's declaration in subclause 4.6.8.

4.10.2 ETC2: Contiguous CA occupied bandwidth

ETC2 in this subclause is used to test CA occupied bandwidth.

4.10.2.1 ETC2 generation

The CA specific test configuration should be constructed on a per band basis using the following method:

- All component carrier combinations supported by the BS, which have different sum of channel bandwidth of component carrier, shall be tested. For all component carrier combinations which have the same sum of channel bandwidth of component carriers, only one of the component carrier combinations shall be tested.
- Of all component carrier combinations which have same sum of channel bandwidth of component carrier, select those with the narrowest carrier at the lower Base Station RF Bandwidth edge.
- Of the combinations selected in the previous step, select one with the narrowest carrier at the upper Base Station RF Bandwidth edge.
- If there are multiple combinations fulfilling previous steps, select the one with the smallest number of component carrier.
- If there are multiple combinations fulfilling previous steps, select the one with the widest carrier being adjacent to the lowest carrier.
- If there are multiple combinations fulfilling previous steps, select the one with the widest carrier being adjacent to the highest carrier
- If there are multiple combinations fulfilling previous steps, select the one with the widest carrier being adjacent to the carrier which has been selected in the previous step.
- If there are multiple combinations fulfilling previous steps, repeat the previous step until there is only one combination left.
- The nominal carrier spacing defined in subclause 5.7.1A shall apply.

4.10.2.2 ETC2 power allocation

Set the power spectral density of each carrier to be the same level so that the sum of the carrier powers equals the rated total output power $P_{rated,t}$ for E-UTRA according to the manufacturer's declaration in subclause 4.6.8.

4.10.3 ETC3: Non-contiguous spectrum operation

The purpose of ETC3 is to test all BS requirements excluding CA occupied bandwidth.

For ETC3 used in receiver tests, outermost carriers for each sub-block need to be generated by the test equipment.

4.10.3.1 ETC3 generation

ETC3 is constructed on a per band basis using the following method:

- The Base Station RF Bandwidth shall be the maximum Base Station RF Bandwidth supported for noncontiguous spectrum operation. The Base Station RF Bandwidth consists of one sub-block gap and two subblocks located at the edges of the declared maximum supported Base Station RF Bandwidth.
- For transmitter tests, place a 5MHz carrier adjacent to the upper Base Station RF Bandwidth edge and a 5MHz carrier adjacent to the lower Base Station RF Bandwidth edge. If 5 MHz carriers are not supported by the BS, the narrowest supported channel BW shall be selected instead.

- For receiver tests, place a 5MHz carrier adjacent to the upper Base Station RF Bandwidth edge and a 5MHz carrier adjacent to the lower Base Station RF Bandwidth edge. If 5 MHz E-UTRA carriers are not supported by the BS, the narrowest supported channel BW shall be selected instead.
- For single-band operation receiver tests, if the remaining gap is at least 15 MHz plus two times the channel BW used in the previous step and the BS supports at least 4 carriers, place a carrier of this BW adjacent to each already placed carrier for each sub-block. The nominal carrier spacing defined in subclause 5.7 shall apply.
- The sub-block edges adjacent to the sub-block gap shall be determined using the specified F_{Offset} for the carrier adjacent to the sub-block gap.

4.10.3.2 ETC3 power allocation

Set the power of each carrier to the same level so that the sum of the carrier powers equals the rated total output power $P_{rated,t}$ according to the manufacturer's declaration in subclause 4.6.8.

4.10.3.24 VOID

4.10.4 ETC4: Multi-band test configuration for full carrier allocation

The purpose of ETC4 is to test multi-band operation aspects considering maximum supported number of carriers.

4.10.4.1 ETC4 generation

ETC4 is based on re-using the existing test configuration applicable per band involved in multi-band operation. It is constructed using the following method:

- The Base Station RF Bandwidth of each supported operating band shall be the declared maximum Base Station RF Bandwidth in multi-band operation.
- The number of carriers of each supported operating band shall be the declared maximum number of supported carriers in multi-band operation. Carriers shall first be placed at the outermost edges of the declared Maximum Radio Bandwidth. Additional carriers shall next be placed at the Base Station RF Bandwidths edges, if possible.
- The allocated Base Station RF Bandwidth of the outermost bands shall be located at the outermost edges of the declared Maximum Radio Bandwidth.
- Each concerned band shall be considered as an independent band and the carrier placement in each band shall be according to ETC1, where the declared parameters for multi-band operation shall apply. The mirror image of the single-band test configuration shall be used in the highest band being tested for the BS to ensure a narrowband carrier being placed at both edges of the Maximum Radio Bandwidth.
- If a multi-band BS supports three carriers only, two carriers shall be placed in one band according to ETC1 while the remaining carrier shall be placed at the Maximum Radio Bandwidth edge in the other band.
- If the sum of the maximum Base Station RF Bandwidths of each supported operating bands is larger than the declared Total RF Bandwidth of transmitter and receiver for the declared band combinations of the BS, repeat the steps above for test configurations where the Base Station RF Bandwidth of one of the operating band shall be reduced so that the Total RF Bandwidth BW_{tot} of transmitter and receiver is not exceeded and vice versa.
- If the sum of the maximum number of supported carrier of each supported operating bands in multi-band operation is larger than the declared total number of supported carriers for the declared band combinations of the BS, repeat the steps above for test configurations where in each test configuration the number of carriers of one of the operating band shall be reduced so that the total number of supported carriers is not exceeded and vice versa.

4.10.4.2 ETC4 power allocation

Unless otherwise stated, set the power of each carrier in all supported operating bands to the same power so that the sum of the carrier powers equals the total output power according to the manufacturer's declaration.

If the allocated power of a supported operating band(s) exceeds the declared rated total output power $P_{rated,t}$ of the operating band(s) in multi-band operation, the exceeded part shall, if possible, be reallocated into the other band(s). If the power allocated for a carrier exceeds the rated output power declared for that carrier, the exceeded power shall, if possible, be reallocated into the other carriers.

4.10.5 ETC5: Multi-band test configuration with high PSD per carrier

The purpose of ETC5 is to test multi-band operation aspects considering higher PSD cases with reduced number of carriers and non-contiguous operation (if supported) in multi-band mode.

4.10.5.1 ETC5 generation

ETC5 is based on re-using the existing test configuration applicable per band involved in multi-band operation. It is constructed using the following method:

- The Base Station RF Bandwidth of each supported operating band shall be the declared maximum Base Station RF Bandwidth in multi-band operation.
- The allocated Base Station RF Bandwidth of the outermost bands shall be located at the outermost edges of the declared Maximum Radio Bandwidth.
- The maximum number of carriers is limited to two per band. Carriers shall first be placed at the outermost edges of the declared Maximum Radio Bandwidth. Additional carriers shall next be placed at the Base Station RF Bandwidths edges, if possible.
- Each concerned band shall be considered as an independent band and the carrier placement in each band shall be according to ETC3, where the declared parameters for multi-band operation shall apply. Narrowest supported E-UTRA channel bandwidth shall be used in the test configuration.
- If a multi-band BS supports three carriers only, two carriers shall be placed in one band according to ETC3 while the remaining carrier shall be placed at the Maximum Radio Bandwidth edge in the other band.
- If the sum of the maximum Base Station RF Bandwidth of each supported operating bands is larger than the declared Total RF Bandwidth BW_{tot} of transmitter and receiver for the declared band combinations of the BS, repeat the steps above for test configurations where the Base Station RF Bandwidth of one of the operating band shall be reduced so that the Total RF Bandwidth BW_{tot} of transmitter and receiver is not exceeded and vice versa.

4.10.5.2 ETC5 power allocation

Unless otherwise stated, set the power of each carrier in all supported operating bands to the same power so that the sum of the carrier powers equals the total output power according to the manufacturer's declaration.

If the allocated power of a supported operating band(s) exceeds the declared rated total output power $P_{rated,t}$ of the operating band(s) in multi-band operation, the exceeded part shall, if possible, be reallocated into the other band(s). If the power allocated for a carrier exceeds the rated output power declared for that carrier, the exceeded power shall, if possible, be reallocated into the other carriers.

4.10.6 ETC6: NB-IoT standalone multi-carrier operation

The purpose of the ETC6 is to test NB-IoT standalone multi-carrier aspects.

4.10.6.1 ETC6 generation

ETC6 is constructed using the following method:

- The Base Station RF Bandwidth shall be the declared maximum Base Station RF Bandwidth.
- Place a NB-IoT carrier at the upper edge and a NB-IoT carrier at the lower Base Station RF Bandwidth edge.
- For transmitter tests, add NB-IoT carriers at the edges using 600 kHz spacing until no more NB-IoT carriers are supported or no more NB-IoT carriers fit.

4.10.6.2 ETC6 power allocation

Set the power of each carrier to the same level so that the sum of the carrier powers equals the rated total output power $P_{rated,t}$ according to the manufacturer's declaration in subclause 4.6.8.

4.10.7 ETC7: E-UTRA and NB-IoT standalone multi-carrier operation

The purpose of the ETC7 is to test E-UTRA and NB-IoT standalone multi-carrier aspects.

4.10.7.1 ETC7 generation

ETC7 is constructed using the following method:

- The Base Station RF Bandwidth shall be the declared maximum Base Station RF Bandwidth.
- For receiver tests, place a NB-IoT carrier at the lower edge and a 5MHz E-UTRA carrier at the upper Base Station RF Bandwidth edge. If the BS does not support 5 MHz channel BW use the narrowest supported BW.
- For transmitter tests and in the case of a BS supporting only one NB-IoT carrier, place a NB-IoT carrier at the lower edge and a 5MHz E-UTRA carrier at the upper Base Station RF Bandwidth edge. If the BS does not support 5 MHz channel BW use the narrowest supported BW. Add additional E-UTRA carriers of the same bandwidth as the already allocated E-UTRA carriers in the middle if possible.
- For transmitter tests and in the case of a BS supporting more than one NB-IoT carrier, carry out the following steps.
 - Place a NB-IoT carrier at the upper edge and a NB-IoT carrier at the lower Base Station RF Bandwidth edge.
 - Place two 5 MHz E-UTRA carriers in the middle of the Base Station RF Bandwidth. If the BS does not support 5 MHz channel BW use the narrowest supported BW, if only one carrier is supported or two carriers do not fit place only one carrier.
 - Add NB-IoT carriers at the edges using 600 kHz spacing until no more NB-IoT carriers are supported or no more NB-IoT carriers fit.
 - Add additional E-UTRA carriers of the same bandwidth as the already allocated E-UTRA carriers in the middle if possible.

4.10.7.2 ETC7 power allocation

Set the power of each carrier to the same level so that the sum of the carrier powers equals the rated total output power $P_{rated,t}$ according to the manufacturer's declaration in subclause 4.6.8.

4.10.8 ETC8: E-UTRA and NB-IoT in-band multi-carrier operation

The purpose of the ETC8 is to test E-UTRA and NB-IoT in-band multi-carrier aspects.

4.10.8.1 ETC8 generation

ETC8 is constructed using the following method:

- The Base Station RF Bandwidth shall be the declared maximum Base Station RF Bandwidth.
- Place a 5 MHz E-UTRA carrier adjacent to the lower Base Station RF Bandwidth edge. Place the power boosted NB-IoT PRB at the outermost in-band position eligible for NB-IoT PRB at the lower Base Station RF Bandwidth edge. Place a 5 MHz E-UTRA carrier adjacent to the upper Base Station RF Bandwidth edge. In the case of a BS supporting more than one NB-IoT in-band carrier, place the power boosted NB-IoT PRB at the outermost in-band position eligible for NB-IoT PRB at the upper Base Station RF Bandwidth edge.
- For transmitter tests, select as many 5 MHz E-UTRA carriers that the BS supports and that fit in the rest of the Base Station RF Bandwidth. Place the carriers adjacent to each other starting from the high Base Station RF Bandwidth edge. The nominal carrier spacing defined in subclause 5.7 shall apply.
- If 5 MHz E-UTRA carriers are not supported by the BS the narrowest supported channel BW shall be selected instead.

4.10.8.2 ETC8 power allocation

Set the power of each carrier to the same level so that the sum of the carrier powers equals the rated total output power $P_{rated,t}$ according to the manufacturer's declaration in subclause 4.6.8.

4.10.9 ETC9: E-UTRA and NB-IoT guard-band multi-carrier operation

The purpose of the ETC9 is to test E-UTRA and NB-IoT guard-band multi-carrier aspects.

4.10.9.1 ETC9 generation

ETC9 is constructed using the following method:

- The Base Station RF Bandwidth shall be the declared maximum Base Station RF Bandwidth.
- Place a 10 MHz E-UTRA carrier adjacent to the lower Base Station RF Bandwidth edge. Place the power boosted NB-IoT PRB at the outermost guard-band position eligible for NB-IoT PRB at the lower Base Station RF Bandwidth edge and adjacent to the E-UTRA PRB edge as close as possible (i.e., away from the lower Base Station RF Bandwidth edge). Place a 10 MHz E-UTRA carrier adjacent to the upper Base Station RF Bandwidth edge. In the case of a BS supporting more than one NB-IoT guard-band carrier, place the power boosted NB-IoT PRB at the outermost guard-band position eligible for NB-IoT PRB at the upper Base Station RF Bandwidth edge and adjacent to the E-UTRA PRB edge as close as possible (i.e., away from the upper Base Station RF Bandwidth edge and adjacent to the E-UTRA PRB edge as close as possible (i.e., away from the upper Base Station RF Bandwidth edge and adjacent to the E-UTRA PRB edge as close as possible (i.e., away from the upper Base Station RF Bandwidth edge).
- For transmitter tests, select as many 10 MHz E-UTRA carriers that the BS supports and that fit in the rest of the Base Station RF Bandwidth. Place the carriers adjacent to each other starting from the high Base Station RF Bandwidth edge. The nominal carrier spacing defined in subclause 5.7 shall apply.
- If 10 MHz E-UTRA carriers are not supported by the BS the narrowest supported channel BW shall be selected instead.

4.10.9.2 ETC9 power allocation

Set the power of each carrier to the same level so that the sum of the carrier powers equals the rated total output power $P_{rated,t}$ according to the manufacturer's declaration in subclause 4.6.8.

4.11 Applicability of test configurations

The present subclause defines for each RF test requirement the set of mandatory test configurations which shall be used for demonstrating conformance. The applicable test configurations are specified in the tables below for each the supported RF configuration, which shall be declared according to subclause 4.6.8. The generation and power allocation for each test configuration is defined in subclause 4.10.

For a E-UTRA BS declared to be capable of single carrier operation only, a single carrier (SC) shall be used for testing.

For a E-UTRA BS declared to be capable of multi-carrier and/or CA operation in contiguous spectrum operation in single band only, the test configurations in Table 4.11-1 shall be used for testing.

BS test case	Contiguous spectrum capable BS
6.2 Base station output power	ETC1
6.3 Output power dynamics	
6.3.1 RE Power control dynamic range	Tested with Error Vector Magnitude
6.3.2 Total power dynamic range	SC
6.4 Transmit ON/OFF power (only applied for E-UTRA TDD BS)	ETC1
6.5 Transmitted signal quality	-
6.5.1 Frequency error	Tested with Error Vector Magnitude
6.5.2 Error Vector Magnitude	ETC1
6.5.3 Time alignment error	ETC1
6.5.4 DL RS power	SC
6.6 Unwanted emissions	-
6.6.1 Occupied bandwidth	SC, ETC2 (Note)
6.6.2 Adjacent Channel Leakage power Ratio (ACLR)	ETC1
6.6.3 Operating band unwanted emissions	ETC1
6.6.4 Transmitter spurious emissions	ETC1
6.7 Transmitter intermodulation	ETC1
7.2 Reference sensitivity level	SC
7.3 Dynamic range	SC
7.4 In-channel selectivity	SC
7.5 Adjacent Channel Selectivity(ACS) and narrow-band blocking	ETC1
7.6 Blocking	ETC1
7.7 Receiver spurious emissions	ETC1
7.8 Receiver intermodulation	ETC1
Note: ETC2 is only applicable when contiguous CA is	supported.

Table 4.11-1: Test configurations for a E-UTRA BS capable of multi-carrier and/or CA operation in contiguous spectrum in single band only

For a E-UTRA BS declared to be capable of multi-carrier and/or CA operation in contiguous and non-contiguous spectrum in single band and where the parameters in the manufacture's declaration according to subclause 4.6.8 are identical for contiguous (C) and non-contiguous (NC) spectrum operation, the test configurations in the second column of Table 4.11-2 shall be used for testing.

For a E-UTRA BS declared to be capable of multi-carrier and/or CA operation in contiguous and non-contiguous spectrum and in single band where the parameters in the manufacture's declaration according to subclause 4.6.8 are not identical for contiguous and non-contiguous spectrum operation, the test configurations in the third column of Table 4.11-2 shall be used for testing.

BS test case	C and NC capable BS with identical parameters	C and NC capable BS with different parameters	
6.2 Base station output power	ETC1	ETC1, ETC3	
6.3 Output power dynamics			
6.3.1 RE Power control dynamic range	Tested with Error Vector Magnitude	Tested with Error Vector Magnitude	
6.3.2 Total power dynamic range	SC	SC	
6.4 Transmit ON/OFF power (only applied for E-UTRA TDD BS)	ETC1	ETC1, ETC3	
6.5 Transmitted signal quality	-	-	
6.5.1 Frequency error	Tested with Error Vector Magnitude	Tested with Error Vector Magnitude	
6.5.2 Error Vector Magnitude	ETC1	ETC1, ETC3	
6.5.3 Time alignment error	ETC1	ETC1, ETC3	
6.5.4 DL RS power	SC	SC	
6.6 Unwanted emissions	-	-	
6.6.1 Occupied bandwidth	SC, ETC2 (Note)	SC, ETC2 (Note)	
6.6.2 Adjacent Channel Leakage power Ratio (ACLR)	ETC3	ETC1, ETC3	
6.6.2.2 Cumulative ACLR requirement in non-contiguous spectrum	ETC3	ETC3	
6.6.3 Operating band unwanted emissions	ETC1, ETC3	ETC1, ETC3	
6.6.4 Transmitter spurious emissions	ETC3	ETC1, ETC3	
6.7 Transmitter intermodulation	Same TC as used in 6.6	Same TC as used in 6.6	
7.2 Reference sensitivity level	SC	SC	
7.3 Dynamic range	SC	SC	
7.4 In-channel selectivity	SC	SC	
7.5 Adjacent Channel Selectivity(ACS) and narrow-band blocking	ETC3	ETC1, ETC3	
7.6 Blocking	ETC3	ETC1, ETC3	
7.7 Receiver spurious emissions	ETC3	ETC1, ETC3	
7.8 Receiver intermodulation	ETC3	ETC1, ETC3	
Note: ETC2 is only applicable when contiguous CA is supported.			

Table 4.11-2: Test configuration for a E-UTRA BS capable of multi-carrier and/or CA operation in both contiguous and non-contiguous spectrum in single band

For a E-UTRA BS declared to be capable of multi-band operation, the test configuration in Table 4.11-3 shall be used for testing. In the case where multiple bands are mapped on common antenna connector, the test configuration in the second column of Table 4.11-3 shall be used. In the case where multiple bands are mapped on separate antenna connectors, the test configuration in the third column of Table 4.11-3 shall be used.

BS test case	Test configuration	
	Common antenna connector	Separate antenna connector
6.2 Base station output power	ETC1/3 (Note 1), ETC4	ETC1/3 (Note 1), ETC4
6.3 Output power dynamics		
6.3.1 RE Power control dynamic range	Tested with Error Vector Magnitude	Tested with Error Vector Magnitude
6.3.2 Total power dynamic range	SC	SC
6.4 Transmit ON/OFF power (only applied for E-UTRA TDD BS)	ETC4	ETC4
6.5 Transmitted signal quality		
6.5.1 Frequency error	Tested with Error Vector Magnitude	Tested with Error Vector Magnitude
6.5.2 Error Vector Magnitude	ETC1/3 (Note 1), ETC4	ETC1/3 (Note 1), ETC4
6.5.3 Time alignment error	ETC1/3 (Note 1), ETC5 (Note 2)	ETC1/3 (Note 1), ETC5 (Note 2)
6.5.4 DL RS power	SC	SC
6.6 Unwanted emissions		
6.6.1 Occupied bandwidth	SC, ETC2 (Note 3)	SC, ETC2 (Note 3)
6.6.2 Adjacent Channel Leakage power Ratio (ACLR)	ETC1/3 (Note 1), ETC5 (Note 4)	ETC1/3 (Note 1, 5), ETC5 (Note 4, 5)
6.6.2.6 Cumulative ACLR requirement in non-contiguous spectrum	ETC3 (Note 1), ETC5 (Note 4)	ETC3 (Note 1, 5)
6.6.3 Operating band unwanted emissions	ETC1/3 (Note 1), ETC5	ETC1/3 (Note 1, 5), ETC5 (Note 5)
6.6.4 Transmitter spurious emissions	ETC1/3 (Note 1), ETC5	ETC1/3 (Note 1, 5), ETC5 (Note 5)
6.7 Transmitter intermodulation	ETC1/3 (Note 1)	ETC1/3 (Note 1, 5)
7.2 Reference sensitivity level	SC	SC
7.3 Dynamic range	SC	SC
7.4 In-channel selectivity	SC	SC
7.5 Adjacent Channel Selectivity(ACS) and narrow-band blocking	ETC5	ETC1/3 (Note 1), ETC5 (Note 6)
7.6 Blocking	ETC5	ETC1/3 (Note 1), ETC5 (Note 6)
7.7 Receiver spurious emissions	ETC1/3 (Note 1), ETC5	ETC1/3 (Note 1, 5), ETC5 (Note 5)
7.8 Receiver intermodulation	ETC5	ETC1/3 (Note 1), ETC5 (Note 6)
Note 1: ETC1 and/or ETC3 shall be applied in each supported operating band according to Tables 4.11-1 and 4.11-2. Note 2: ETC5 is only applicable when inter-band CA is supported. Note 3: ETC2 is only applicable when contiguous CA is supported. Note 4: ETC5 may be applied for Inter RF Bandwidth gap only. Note 5: Single-band requirement apply to each antenna connector for both multi-band operation test and single-band operation test. For single-band operation test, other antenna connector(s) is (are) terminated.		
Note 6: ETC5 is only applicable for multi-band receiver.		

Table 4.11-3: Test configuration for a E-UTRA BS capable of multi-band operation

For a NB-IoT standalone BS declared to be capable of single carrier operation only, a single carrier (SCNS) shall be used for testing.

For a NB-IoT standalone BS declared to be capable of multi-carrier in contiguous spectrum operation in single band only, the test configurations in Table 4.11-4 shall be used for testing.

Table 4.11-4:	Table 4.11-4: Test configurations for a NB-IoT standalone BS capable of multi-carrier in contiguousspectrum in single band only		
	BS test case	Contiguous spectrum capable BS	

	capable BS
6.2 Base station output power	ETC6
6.3 Output power dynamics	
6.3.1 RE Power control dynamic range	Not applicable
6.3.2 Total power dynamic range	Not applicable
6.3.3 NB-IoT RB power dynamic range for in-band or	Not applicable
guard band operation	
6.4 Transmit ON/OFF power (only applied for E-UTRA	Not Applicable
TDD BS)	
6.5 Transmitted signal quality	-
6.5.1 Frequency error	Tested with Error Vector
	Magnitude
6.5.2 Error Vector Magnitude	ETC6
6.5.3 Time alignment error	ETC6
6.5.4 DL RS power	SCNS
6.6 Unwanted emissions	-
6.6.1 Occupied bandwidth	SCNS
6.6.2 Adjacent Channel Leakage power Ratio (ACLR)	ETC6
6.6.3 Operating band unwanted emissions	ETC6
6.6.4 Transmitter spurious emissions	ETC6
6.7 Transmitter intermodulation	ETC6
7.2 Reference sensitivity level	SCNS
7.3 Dynamic range	SCNS
7.4 In-channel selectivity	Not applicable
7.5 Adjacent Channel Selectivity(ACS) and narrow-band	ETC6
blocking	
7.6 Blocking	ETC6
7.7 Receiver spurious emissions	ETC6
7.8 Receiver intermodulation	ETC6

For a BS supporting NB-IoT in-band and declared to be capable of single NB-IoT carrier operation only, a single carrier (SCNI) shall be used for testing. For a BS supporting NB-IoT in guard band and declared to be capable of single NB-IoT carrier operation only, a single carrier (SCNG) shall be used for testing.

For a E-UTRA with NB-IoT operating in-band and/or guard band BS declared to be capable of multi-carrier in contiguous spectrum operation in single band only, the test configurations in Table 4.11-5 shall be used for testing.

Table 4.11-5: Test configurations for a E-UTRA with NB-IoT operating in-band and/or guard band BS
capable of multi-carrier in contiguous spectrum in single band only

BS test case	NB-loT operating in- band	NB-IoT operating in guard band or NB-IoT operating in-band and in guard band
6.2 Base station output power	ETC8	ETC9
6.3 Output power dynamics		
6.3.1 RE Power control dynamic range	Tested with Error Vector Magnitude	Tested with Error Vector Magnitude
6.3.2 Total power dynamic range	SC (Note 1)	SC (Note 1)
6.3.3 NB-IoT RB power dynamic range for in-band or	Tested with Unwanted	Tested with Unwanted
guard band operation	Emission	Emission
6.4 Transmit ON/OFF power (only applied for E-UTRA TDD BS)	Not applicable	Not applicable
6.5 Transmitted signal quality	-	
6.5.1 Frequency error	Tested with Error Vector Magnitude	Tested with Error Vector Magnitude
6.5.2 Error Vector Magnitude	ETC1 (Note 1)	ETC1 (Note 1)
6.5.3 Time alignment error	ETC1 (Note 1)	ETC1 (Note 1)
6.5.4 DL RS power	SC and SCNI	SC and SCNG
6.6 Unwanted emissions	-	
6.6.1 Occupied bandwidth	SC and SCNI	SC and SCNG
6.6.2 Adjacent Channel Leakage power Ratio (ACLR)	ETC8, ETC1	ETC9, ETC1
6.6.3 Operating band unwanted emissions	ETC8, ETC1	ETC9, ETC1
6.6.4 Transmitter spurious emissions	ETC8	ETC9
6.7 Transmitter intermodulation	ETC8	ETC9
7.2 Reference sensitivity level	SC and SCNI	SC and SCNG
7.3 Dynamic range	SC and SCNI	SC and SCNG
7.4 In-channel selectivity	SC and SCNI	SC and SCNI (Note 2)
7.5 Adjacent Channel Selectivity(ACS) and narrow-band	ETC8	ETC9
blocking		
7.6 Blocking	ETC8	ETC9
7.7 Receiver spurious emissions	ETC8	ETC9
7.8 Receiver intermodulation ETC8 ETC9		
Note 1: There is no specific test with NB-IoT for those requirements, tests could be performed using E-UTRA signal only, without NB-IoT. Note 2: Applicable only if BS supports NB-IoT operating in-band and guard band.		

For a E-UTRA and NB-IoT standalone BS declared to be capable of multi-carrier in contiguous spectrum operation in single band only, the test configurations in Table 4.11-6 shall be used for testing.

Table 4.11-6: Test configurations for a E-UTRA and NB-IoT standalone BS capable of multi-carrier in contiguous spectrum in single band only

BS test case	Contiguous spectrum capable BS
6.2 Base station output power	ETC7
6.3 Output power dynamics	
6.3.1 RE Power control dynamic range	Tested with Error Vector Magnitude
6.3.2 Total power dynamic range	SC
6.3.3 NB-IoT RB power dynamic range for in-band or guard band operation	Not applicable
6.4 Transmit ON/OFF power (only applied for E-UTRA TDD BS)	ETC7
6.5 Transmitted signal quality	-
6.5.1 Frequency error	Tested with Error Vector
	Magnitude
6.5.2 Error Vector Magnitude	ETC7
6.5.3 Time alignment error	ETC7
6.5.4 DL RS power	SC and SCNS
6.6 Unwanted emissions	-
6.6.1 Occupied bandwidth	SC and SCNS
6.6.2 Adjacent Channel Leakage power Ratio (ACLR)	ETC7
6.6.3 Operating band unwanted emissions	ETC7
6.6.4 Transmitter spurious emissions	ETC7
6.7 Transmitter intermodulation	ETC7
7.2 Reference sensitivity level	SC and SCNS
7.3 Dynamic range	SC and SCNS
7.4 In-channel selectivity	SC
7.5 Adjacent Channel Selectivity(ACS) and narrow-band blocking	ETC7
7.6 Blocking	ETC7
7.7 Receiver spurious emissions	ETC7
7.8 Receiver intermodulation	ETC7

4.12 Requirements for BS capable of multi-band operation

For BS capable of multi-band operation, the RF requirements in clause 6 and 7 apply for each supported operating band unless otherwise stated. For some requirements it is explicitly stated that specific additions or exclusions to the requirement apply for BS capable of multi-band operation.

For BS capable of multi-band operation, various structures in terms of combinations of different transmitter and receiver implementations (multi-band or single band) with mapping of transceivers to one or more antenna port(s) in different ways are possible. In the case where multiple bands are mapped on separate antenna connectors, the following applies:

- Single-band ACLR, operating band unwanted emissions, transmitter spurious emissions, transmitter intermodulation and receiver spurious emissions requirements apply to each antenna connector.
- If the BS is configured for single-band operation, single-band requirements shall apply to the antenna connector configured for single-band operation and no exclusions or provisions for multi-band capable BS are applicable. Single-band requirements are tested separately at the antenna connector configured for single-band operation, with all other antenna connectors terminated.

For a BS capable of multi-band operation supporting bands for TDD, the RF requirements in the present specification assume synchronized operation, where no simultaneous uplink and downlink occur between the supported operating bands.

The RF requirements in the present specification are FFS for multi-band operation supporting bands for both FDD and TDD.

5 Operating bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

- NOTE: Other operating bands and channel bandwidths may be considered in future releases.
- 5.2 Void
- 5.3 Void
- 5.4 Void
- 5.5 Operating bands

E-UTRA is designed to operate in the operating bands defined in Table 5.5-1. Unless stated otherwise, requirements specified for the TDD duplex mode apply for downlink and uplink operations in Frame Structure Type 2.

NB-IoT is designed to operate in the E-UTRA operating bands 1, 2, 3, 5, 8, 12, 13, 17, 18, 19, 20, 26, 28, 66 which are defined in Table 5.5-1.

Table 5.5-1: E-UTRA operating bands

E-UTRA Operating		opera recei E tran		BS		perating band smit	Duplex
Band	-						Mode
		ow —	FUL_high	FDL_low		FDL_high	
1	1920 MHz	-	1980 MHz	2110 MHz	-	2170 MHz	FDD
2	1850 MHz	-	1910 MHz	1930 MHz	-	1990 MHz	FDD
3	1710 MHz	-	1785 MHz	1805 MHz	-	1880 MHz	FDD
4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz	FDD
5	824 MHz	-	849 MHz	869 MHz	—	894MHz	FDD
6 (NOTE 1)	830 MHz	-	840 MHz	875 MHz	-	885 MHz	FDD
7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	FDD
8	880 MHz	_	915 MHz	925 MHz	_	960 MHz	FDD
9	1749.9 MHz	-	1784.9 MHz	1844.9 MHz	—	1879.9 MHz	FDD
10	1710 MHz	_	1770 MHz	2110 MHz	_	2170 MHz	FDD
11	1427.9 MHz	_	1447.9 MHz	1475.9 MHz	_	1495.9 MHz	FDD
12	699 MHz	_	716 MHz	729 MHz	_	746 MHz	FDD
13	777 MHz	-	787 MHz	746 MHz	-	756 MHz	FDD
14	788 MHz	_	798 MHz	758 MHz	_	768 MHz	FDD
15	Reserved			Reserved			FDD
16	Reserved			Reserved			FDD
17	704 MHz		716 MHz	734 MHz		746 MHz	FDD
18	815 MHz	_	830 MHz	860 MHz	_	875 MHz	FDD
19	830 MHz	_	845 MHz	875 MHz	_	890 MHz	FDD
20	832 MHz	_	862 MHz	791 MHz	_	821 MHz	FDD
21	1447.9 MHz	_	1462.9 MHz	1495.9 MHz	_	1510.9 MHz	FDD
22	3410 MHz	_	3490 MHz	3510 MHz	_	3590 MHz	FDD
23	2000 MHz	_	2020 MHz	2180 MHz	_	2200 MHz	FDD
24	1626.5 MHz	_	1660.5 MHz	1525 MHz	_	1559 MHz	FDD
25	1850 MHz	_	1915 MHz	1930 MHz	_	1995 MHz	FDD
26	814 MHz	_	849 MHz	859 MHz	_	894 MHz	FDD
27	807 MHz	_	824 MHz	852 MHz	_	869 MHz	FDD
28	703 MHz	_	748 MHz	758 MHz	_	803 MHz	FDD
29	100 11112	N/A		717 MHz	_	728 MHz	FDD
30	2305 MHz	_	2315 MHz	2350 MHz	-	2360 MHz	FDD (NOTE 2)
31	452.5 MHz	_	457.5 MHz	462.5 MHz	_	467.5 MHz	FDD
32	N/A		107.0 10112	1452 MHz	_	1496 MHz	FDD
02	1.1/7 (1400 10112	(NOTE 2)
33	1900 MHz	_	1920 MHz	1900 MHz	_	1920 MHz	TDD
34	2010 MHz	_	2025 MHz	2010 MHz	_	2025 MHz	TDD
35	1850 MHz	_	1910 MHz	1850 MHz	_	1910 MHz	TDD
36	1930 MHz	_	1990 MHz	1930 MHz	_	1990 MHz	TDD
37	1910 MHz	_	1930 MHz	1910 MHz	_	1930 MHz	TDD
38	2570 MHz	_	2620 MHz	2570 MHz	_	2620 MHz	TDD
39	1880 MHz		1920 MHz	1880 MHz	_	1920 MHz	TDD
40	2300 MHz	_	2400 MHz	2300 MHz	_	2400 MHz	TDD
40	2496 MHz	_	2690 MHz	2300 MHZ 2496 MHz	_	2690 MHz	TDD
41	3400 MHz		3600 MHz	3400 MHz		3600 MHz	TDD
42	3600 MHz		3800 MHz	3600 MHz	_	3800 MHz	TDD
43	703 MHz	_		703 MHz	-	803 MHz	TDD
		_	803 MHz		_		TDD
45	1447 MHz	-	1467 MHz	1447 MHz	_	1467 MHz	
46	5150 MHz	_	5925 MHz	5150 MHz	-	5925 MHz	TDD (NOTE 3, NOTE 4)
65	1920 MHz	_	2010 MHz	2110 MHz	_	2200 MHz	FDD
66	1710 MHz		1780 MHz	2110 MHz	-	2200 MHz	FDD (NOTE 5)
67		N/A		738 MHz	-	758 MHz	FDD (NOTE 2)
	698 MHz	_	728 MHz	753 MHz	_	783 MHz	FDD

NOTE 1:	Band 6 is not applicable.
NOTE 2:	Restricted to E-UTRA operation when carrier aggregation is configured. The downlink
	operating band is paired with the uplink operating band (external) of the carrier aggregation
	configuration that is supporting the configured Pcell.
NOTE 3:	This band is an unlicensed band restricted to licensed-assisted operation using Frame
	Structure Type 3.
NOTE 4:	In this version of the specification, restricted to E-UTRA DL operation when carrier
	aggregation is configured. Band 46 is divided into four sub-bands as in Table 5.5-1A.
NOTE 5:	The range 2180 – 2200 MHz of the DL operating band is restricted to E-UTRA operation
	when carrier aggregation is configured.

Table 5.5-1A Sub-bands for Band 46	Table	5.5-1A	Sub-bands	for	Band 46
------------------------------------	-------	--------	-----------	-----	---------

E-UTRA Operating Band	Uplink (UL) operating band BS receive UE transmit	Downlink (DL) operating band BS transmit UE receive
	F _{UL_low} – F _{UL_high}	F _{DL_low} – F _{DL_high}
46a	5150 MHz – 5250 MHz	5150 MHz – 5250 MHz
46b	5250 MHz – 5350 MHz	5250 MHz – 5350 MHz
46c	5470 MHz – 5725 MHz	5470 MHz – 5725 MHz
46d	5725 MHz – 5925 MHz	5725 MHz – 5925 MHz

E-UTRA is designed to operate for the carrier aggregation bands defined in Tables 5.5-2 to 5.5-4.

Table 5.5-2: Intra-band contiguous carrier aggregation bands

CA Band	E-UTRA operating band
CA_1	1
CA_2	2
CA_3	3
CA_5	5
CA_7	7
CA_8	8
CA_12	12
CA_23	23
CA_27	27
CA_38	38
CA_39	39
CA_40	40
CA_41	41
CA_42	42
CA_66	66

CA Band	E-UTRA operating bands
CA_1-3	1 3
CA_1-5	1
	5
CA_1-7	7
CA_1-8	1 8
CA_1-11	1 11
CA_1-18	1
CA_1-19	18
CA_1-20	<u> </u>
	20
CA_1-21	21
CA_1-26	26
CA_1-28	1 28
CA_1-40	1 40
CA_1-41	1 41
CA_1-42	1 42
CA_1-46	1
 CA_2-4	<u> </u>
CA_2-2-4	4
	4 2
CA_2-2-4-4	4

Table 5.5-3: Inter-band carrier aggregation bands (two bands)

CA_2-4-4	2
	4 2
CA_2-5	5
CA_2-2-5	2 5
CA_2-2-3	
CA_2-7	2 7
	2
CA_2-12	12
CA 2-2-12	2
	12
CA_2-13	13
CA_2-2-13	2
07_2-2-13	13
CA_2-17	2 17
	2
CA_2-28	28
CA_2-29	2
	29
CA_2-30	30
CA_2-46	2
07(_2 +0	46
CA_3-5	3 5
	3
CA_3-7	7
CA_3-8	3
	8 3
CA_3-3-8	8
CA_3-19	3
<u> </u>	19
CA_3-20	<u> </u>
CA 2.20	3
CA_3-26	26
CA_3-27	3 27
	3
CA_3-28	28
CA_3-31	3
	31
CA_3-38	3 38
CA_3-40	3
07_3-40	40
CA_3-41	<u> </u>
04.0.40	3
CA_3-42	42
CA_3-46	3
	46
CA_4-5	4 5
	4
CA_4-4-5	5
CA_4-7	4
	7 4
CA_4-4-7	7
CA_4-12	4

12 A A $CA_4.13$ 13 $CA_4.4.13$ 13 $CA_4.4.17$ 4 $CA_4.27$ 27 $CA_4.28$ 28 $CA_4.29$ 4 $CA_4.4.29$ 4 $CA_4.4.29$ 29 $CA_4.4.29$ 4 $CA_4.4.29$ 4 $CA_4.4.29$ 4 $CA_4.4.29$ 4 $CA_4.4.30$ 30 $CA_4.4.30$ 30 $CA_5.12$ 12 $CA_5.7$ 7 $CA_5.12$ 12 $CA_5.12$ 12 $CA_5.13$ 13 $CA_5.25$ 25 $CA_5.25$ 25 $CA_5.30$ 30 $CA_5.40$ 5 $CA_7.40$ 7 $CA_7.72$ 7 $CA_7.72$ 7 $CA_7.42$ 7 $CA_7.42$ 7		
CA_4.4.12 12 CA_4.13 13 CA_4.4.13 13 CA_4.4.17 17 CA_4.27 4 CA_4.28 28 CA_4.29 4 CA_4.29 4 CA_4.4.10 30 CA_4.29 4 CA_4.20 4 CA_4.4.29 29 CA_4.4.30 30 CA_4.4.30 30 CA_4.4.4 4 CA_5.7 7 CA_5.12 12 CA_5.12 5 CA_5.13 13 CA_5.25 5 CA_5.25 5 CA_5.29 29 CA_5.30 30 CA_7.8 5 CA_7.4 7 CA_7.2 7 CA_7.2 7 CA_7.42 7 CA_7.42 7 CA_7.42 7 CA_7.42 7 CA_7.42 7		12
12 A CA_4-13 13 CA_4-413 13 CA_4-27 4 CA_4-27 27 CA_4-28 4 CA_4-29 29 CA_4-44-29 4 CA_4-29 29 CA_4-4-4-29 4 CA_4-4-30 30 CA_4-4-30 30 CA_4-4-30 30 CA_4-4-6 4 4 4 CA_5-17 7 CA_5-12 12 CA_5-13 5 CA_5-17 17 CA_5-29 25 CA_5-30 5 CA_5-30 5 CA_5-30 5 CA_5-38 38 CA_7-8 8 S 7 CA_7-12 7 CA_7-20 7 CA_7-21 7 CA_7-22 22 CA_7-42 7 CA_7-42 7 </td <td>CA 4-4-12</td> <td></td>	CA 4-4-12	
CA_4-13 13 CA_4-413 13 CA_4-17 17 CA_4-27 27 CA_4-28 28 CA_4-29 29 CA_4-429 4 CA_4-30 30 CA_4-44-29 4 CA_4-44-29 4 CA_4-40 4 CA_4-40 4 CA_4-46 4 CA_5-7 7 CA_5-12 5 CA_5-13 13 CA_5-14 5 CA_5-15 5 CA_5-17 7 CA_5-18 13 CA_5-29 5 CA_5-30 5 CA_5-30 5 CA_5-30 5 CA_5-30 5 CA_7-8 8 CA_7-8 8 CA_7-12 7 CA_7-20 20 CA_7-21 7 CA_7-22 7 CA_7-42 42	_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_4-13	
CA_4-4-13 13 CA_4-17 4 IT7 17 CA_4-27 27 CA_4-28 4 CA_4-29 4 CA_4-29 4 CA_4-29 4 CA_4-429 4 CA_4-40 4 CA_4-430 30 CA_4-46 4 CA_5-7 7 CA_5-12 12 CA_5-13 5 CA_5-14 5 CA_5-15 5 CA_5-16 5 CA_5-17 17 CA_5-25 5 CA_5-26 5 CA_5-27 7 CA_5-17 17 CA_5-18 5 CA_5-29 29 CA_5-30 5 CA_5-30 5 CA_7-8 8 CA_7-12 7 CA_7-20 7 CA_7-20 7 CA_7-28 7		
CA_4-17 4 CA_4-27 4 CA_4-28 28 CA_4-29 4 CA_4-29 4 CA_4-29 4 CA_4-30 30 CA_4-30 30 CA_4-4-30 4 CA_4-4-30 30 CA_4-4-6 46 CA_5-7 5 CA_5-12 12 CA_5-13 13 CA_5-14 5 CA_5-15 5 CA_5-17 17 CA_5-525 255 CA_5-526 5 CA_5-30 5 CA_5-38 5 CA_5-38 5 CA_7-8 7 CA_7-12 12 CA_7-20 7 CA_7-21 12 CA_7-22 22 CA_7-24 7 CA_7-24 7 CA_7-42 7 CA_7-42 7 CA_7-42 7	CA_4-4-13	
CA_4-17 17 CA_4-27 4 CA_4-28 28 CA_4-29 4 CA_4-29 4 CA_4-4-29 29 CA_4-30 4 CA_4-30 30 CA_4-46 4 CA_5-7 5 CA_5-12 12 CA_5-13 5 CA_5-14 5 CA_5-15 5 CA_5-16 5 CA_5-17 7 CA_5-18 5 CA_5-19 5 CA_5-25 25 CA_5-30 5 CA_5-38 5 CA_7-8 7 CA_7-8 7 CA_7-12 12 CA_7-20 7 CA_7-21 12 CA_7-22 22 CA_7-24 7 CA_7-28 7 CA_7-40 40 CA_7-42 7 CA_7-42 7 <		
$\begin{array}{c c} CA_4.27 & 27 \\ \hline 27 \\ \hline CA_4.28 & 28 \\ \hline CA_4.29 & 29 \\ \hline CA_4.4.29 & 4 \\ \hline 4 \\ \hline CA_4.4.29 & 4 \\ \hline 4 \\ \hline CA_4.4.30 & 30 \\ \hline CA_4.4.30 & 30 \\ \hline CA_4.4.6 & 46 \\ \hline CA_5.7 & 5 \\ \hline CA_5.7 & 5 \\ \hline CA_5.12 & 12 \\ \hline CA_5.13 & 5 \\ \hline CA_5.13 & 5 \\ \hline CA_5.17 & 5 \\ \hline CA_5.25 & 5 \\ \hline CA_5.25 & 5 \\ \hline CA_5.29 & 5 \\ \hline CA_5.30 & 5 \\ \hline CA_5.38 & 5 \\ \hline CA_5.38 & 5 \\ \hline CA_5.40 & 40 \\ \hline CA_7.42 & 7 \\ \hline CA_7.22 & 7 \\ \hline CA_7.22 & 7 \\ \hline CA_7.42 & 8 \\ \hline CA_7.42 & 7 \\ \hline CA_7.42 & 8 \\ \hline CA_7.42 & 7 \\ \hline CA_7.42 & 7 \\ \hline CA_7.42 & 8 \\ \hline CA_7.41 & 8 \\ \hline CA_7.41 & 8 \\ \hline CA_$	CA_4-17	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 4.27	4
$\begin{array}{c c} CA_4-28 & 28 \\ \hline CA_4-29 & 4 \\ \hline 29 & 29 \\ \hline CA_4-429 & 29 \\ \hline CA_4-30 & 30 \\ \hline CA_4-430 & 30 \\ \hline CA_4-46 & 4 \\ \hline 4 \\ \hline CA_4-46 & 46 \\ \hline CA_5-7 & 5 \\ \hline CA_5-7 & 7 \\ \hline CA_5-12 & 12 \\ \hline CA_5-13 & 5 \\ \hline CA_5-13 & 5 \\ \hline CA_5-17 & 5 \\ \hline CA_5-25 & 5 \\ \hline CA_5-29 & 5 \\ \hline CA_5-29 & 5 \\ \hline CA_5-30 & 5 \\ \hline CA_5-38 & 5 \\ \hline CA_5-38 & 5 \\ \hline CA_5-38 & 5 \\ \hline CA_5-40 & 40 \\ \hline CA_7-8 & 8 \\ \hline CA_7-12 & 7 \\ \hline CA_7-22 & 7 \\ \hline CA_7-22 & 7 \\ \hline CA_7-22 & 7 \\ \hline CA_7-24 & 7 \\ \hline CA_7-42 & 42 \\ \hline CA_7-42 & 42 \\ \hline CA_7-42 & 42 \\ \hline CA_7-42 & 7 \\ \hline CA_7-42 & 8 \\ \hline CA_8-11 & 11 \\ \hline CA_8-40 & 8 \\ \hline CA_8-41 & 8 \\ \hline \end{array}$	CA_4-27	27
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 4-28	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_4-29	
$\begin{array}{c c} CA_4-4-29 & 29 \\ \hline 29 \\ \hline CA_4-30 & 30 \\ \hline CA_4-4-30 & 30 \\ \hline CA_4-4-6 & 4 \\ \hline 4 \\ \hline CA_4-4-6 & 46 \\ \hline 0 \\ CA_5-7 & 5 \\ \hline 0 \\ CA_5-7 & 7 \\ \hline 7 \\ \hline 0 \\ CA_5-17 & 5 \\ \hline 0 \\ CA_5-13 & 13 \\ \hline 0 \\ CA_5-17 & 5 \\ \hline 0 \\ CA_5-25 & 5 \\ \hline 0 \\ CA_5-29 & 5 \\ \hline 0 \\ CA_5-29 & 5 \\ \hline 0 \\ CA_5-29 & 5 \\ \hline 0 \\ CA_5-30 & 5 \\ \hline 0 \\ CA_5-38 & 5 \\ \hline 0 \\ CA_5-40 & 40 \\ \hline 0 \\ CA_7-8 & 8 \\ \hline 0 \\ CA_7-12 & 7 \\ \hline 12 \\ CA_7-12 & 7 \\ \hline 12 \\ CA_7-20 & 7 \\ \hline 0 \\ CA_7-22 & 7 \\ \hline 0 \\ CA_7-22 & 7 \\ \hline 0 \\ CA_7-22 & 7 \\ \hline 0 \\ CA_7-40 & 40 \\ \hline 0 \\ CA_7-40 & 7 \\ \hline 0 \\ CA_7-42 & 7 \\ \hline 0 \\ CA_8-11 & 11 \\ \hline 1 \\ 11 \\ \hline 0 \\ CA_8-40 & 8 \\ \hline 0 \\ CA_8-41 & 8 \\ \hline \end{array}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_4-4-29	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c} CA_4.4-30 & 4 \\ \hline & 30 \\ \hline & 30 \\ CA_4.46 & 46 \\ \hline & 46 \\ \hline & CA_5.7 & 5 \\ \hline & 5 \\ CA_5.12 & 12 \\ \hline & 12 \\ CA_5.13 & 13 \\ \hline & 5 \\ CA_5.17 & 5 \\ \hline & 5 \\ CA_5.25 & 5 \\ \hline & 25 \\ CA_5.29 & 29 \\ \hline & CA_5.30 & 5 \\ \hline & CA_5.38 & 5 \\ \hline & CA_5.38 & 5 \\ \hline & CA_5.40 & 40 \\ \hline & CA_5.40 & 40 \\ \hline & CA_7.42 & 7 \\ \hline & CA_7.22 & 7 \\ \hline & CA_7.42 & 7 \\ \hline & CA_8.41 & 8 \\ \hline & CA_8.41 & 8 \\ \hline \end{array}$	CA_4-30	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 4 4 20	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	UA_4-4-30	30
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 4-46	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 5-7	
CA_5-12 12 CA_5-13 13 CA_5-17 5 CA_5-25 25 CA_5-29 29 CA_5-30 30 CA_5-38 5 CA_5-40 40 CA_7-8 8 CA_7-12 12 CA_7-20 7 CA_7-28 22 CA_7-40 7 CA_7-40 7 CA_7-40 7 CA_7-40 7 CA_7-40 8 CA_7-40 7 CA_7-40 7 CA_7-40 7 CA_7-40 8 CA_7-40 40 CA_7-42 42 CA_7-42 7 CA_7-42 7 CA_7-40 40 CA_7-42 7 CA_7-42 7 CA_7-42 7 CA_7-42 7 CA_7-42 8 CA_7-42 8		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_5-12	
$\begin{array}{c c} CA_5-13 & 13 \\ \hline 13 \\ \hline CA_5-17 & 5 \\ \hline 17 \\ \hline 17 \\ CA_5-25 & 25 \\ \hline 25 \\ \hline CA_5-29 & 5 \\ \hline 29 \\ \hline CA_5-30 & 5 \\ \hline 30 \\ \hline CA_5-38 & 5 \\ \hline 38 \\ \hline CA_5-38 & 5 \\ \hline 38 \\ \hline CA_5-40 & 40 \\ \hline CA_7-8 & 7 \\ \hline CA_7-8 & 8 \\ \hline CA_7-12 & 7 \\ \hline CA_7-12 & 7 \\ \hline CA_7-12 & 7 \\ \hline CA_7-20 & 7 \\ \hline CA_7-20 & 7 \\ \hline CA_7-20 & 7 \\ \hline CA_7-22 & 22 \\ \hline CA_7-20 & 7 \\ \hline CA_7-22 & 7 \\ \hline CA_7-24 & 7 \\ \hline CA_7-40 & 40 \\ \hline CA_7-42 & 7 \\ \hline CA_7-42 & 7 \\ \hline CA_7-42 & 42 \\ \hline CA_7-42 & 7 \\ \hline CA_7-42 & 42 \\ \hline CA_8-11 & 11 \\ \hline CA_8-20 & 8 \\ \hline CA_8-40 & 40 \\ \hline CA_8-41 & 8 \\ \hline \end{array}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_5-13	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0 5.47	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_5-17	17
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 5-25	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c} CA_{5-30} & \frac{5}{30} \\ \hline CA_{5-38} & \frac{5}{38} \\ \hline CA_{5-40} & \frac{5}{40} \\ \hline CA_{7-5} & \frac{7}{10} \\ \hline CA_{7-8} & \frac{7}{10} \\ \hline CA_{7-12} & \frac{7}{12} \\ \hline CA_{7-12} & \frac{7}{12} \\ \hline CA_{7-20} & \frac{7}{20} \\ \hline CA_{7-20} & \frac{7}{10} \\ \hline CA_{7-22} & \frac{7}{10} \\ \hline CA_{7-22} & \frac{7}{10} \\ \hline CA_{7-28} & \frac{7}{10} \\ \hline CA_{7-42} & \frac{7}{10} \\ \hline CA_{8-11} & \frac{8}{10} \\ \hline CA_{8-40} & \frac{8}{10} \\ \hline CA_{8-41} & \frac{8}{10} \\ \hline CA_{8-41} & \frac{8}{10} \\ \hline \end{array}$	CA_5-29	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_5-30	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA E 28	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_5-36	38
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 5-40	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c} CA_7-12 & \hline 7 \\ 12 \\ 12 \\ CA_7-20 & 20 \\ 20 \\ CA_7-22 & 7 \\ 22 \\ CA_7-28 & 7 \\ CA_7-28 & 28 \\ CA_7-40 & 7 \\ CA_7-40 & 40 \\ CA_7-42 & 7 \\ CA_7-42 & 7 \\ CA_7-42 & 7 \\ CA_7-42 & 42 \\ CA_8-11 & 11 \\ CA_8-20 & 8 \\ CA_8-41 & CA_8-41 \\ CA_8-41 & CA_8$	CA_7-8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c} CA_7-20 & \hline 7 \\ \hline 20 \\ \hline 7 \\ \hline 7$	CA_7-12	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	04 7 00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_7-20	20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 7-22	
$\begin{array}{c c} CA_{-7-28} & 28 \\ \hline 28 \\ \hline CA_{-7-40} & 7 \\ \hline & 7 \\ \hline CA_{-7-42} & 7 \\ \hline & 7 \\ \hline CA_{-7-42-42} & 7 \\ \hline & 7 \\ \hline & 42 \\ \hline & 7 \\ \hline & 42 \\ \hline & 42 \\ \hline & 7 \\ \hline & 7 \\ \hline & 42 \\ \hline & 7 \\ \hline \hline & 7 \\ \hline & 7 \\ \hline & 7 \\ \hline \hline & 7 \\ \hline & 7 \\ \hline \hline \hline & 7 \\ \hline \hline \hline & 7 \\ \hline \hline \hline \hline & 7 \\ \hline \hline$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CA_7-28	
$\begin{array}{c ccccc} CA_7-40 & & 40 & & \\ \hline CA_7-42 & & 7 & & \\ CA_7-42-42 & & 42 & & \\ \hline CA_8-11 & & & & \\ CA_8-20 & & & & & \\ \hline CA_8-40 & & & & & \\ \hline CA_8-40 & & & & & \\ \hline CA_8-41 & & & & & \\ \hline CA_8-41 & & & & & \\ \hline \end{array}$		
$\begin{array}{c c} CA_7-42 & \hline 7 \\ \hline 42 \\ \hline CA_7-42-42 & \hline 7 \\ \hline CA_8-11 & \hline 11 \\ \hline CA_8-20 & \hline 20 \\ \hline CA_8-40 & \hline 8 \\ \hline CA_8-40 & \hline 8 \\ \hline CA_8-41 & \hline 8 \\ \hline \end{array}$	CA_7-40	
$\begin{array}{c ccccc} CA_{-}7-42 & & 42 & & \\ \hline CA_{-}7-42-42 & & 7 & & \\ \hline CA_{-}8-11 & & & 8 & & \\ \hline CA_{-}8-20 & & & 8 & & \\ \hline CA_{-}8-40 & & & 8 & & \\ \hline CA_{-}8-40 & & & & 8 & & \\ \hline CA_{-}8-41 & & & & 8 & & \\ \hline \end{array}$	04 7 40	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CA_7-42	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CA 7-42-42	
CA_8-11 11 CA_8-20 8 CA_8-20 20 CA_8-40 8 CA_8-41 8		
$ \begin{array}{c ccccc} & & & & & & \\ \hline CA_8-20 & & & & & \\ \hline CA_8-40 & & & & & \\ \hline CA_8-41 & & \\ \hline CA_8-41$	CA_8-11	
CA_8-20 CA_8-40 CA_8-41 CA_8-41 CA_8-41 CA_8-41		
CA_8-40 CA_8-41 CA_8-41 8 8 8 8 8 8 8 8 8	CA_8-20	
CA_8-40 40 CA_8-41 8	01 1 1	
	CA_8-40	
41	CA 8-11	
	07_0-41	41

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Γ	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_8-42	
CA_11-18 18 CA_12-25 25 CA_12-30 30 CA_12-30 30 CA_18-28 18 CA_19-21 19 CA_19-28 19 CA_19-28 28 CA_19-28 19 CA_20-31 20 CA_20-32 20 CA_20-32 32 CA_20-32 20 CA_20-40 20 CA_20-42 42 CA_20-42 42 CA_20-67 67 CA_21-42 42 CA_23-29 23 CA_23-29 29 CA_25-26 25 CA_25-41 41 CA_28-40 40 CA_28-42 42 CA_28-42 </td <td>CA_11-18 18 CA_12-25 25 CA_12-30 30 CA_18-28 18 CA_19-21 19 CA_19-28 28 CA_19-28 28 CA_19-28 28 CA_19-29 19 CA_20-31 31 CA_20-32 32 CA_20-32 32 CA_20-33 38 CA_20-34 20 CA_20-35 32 CA_20-36 38 CA_20-37 20 CA_20-38 38 CA_20-40 20 CA_20-41 40 CA_20-42 42 CA_20-42 20 CA_20-42 42 CA_20-41 41 CA_20-42 42 CA_20-42 42 CA_20-42 42 CA_20-67 67 CA_21-42 42 CA_25-26 25 CA_25-26 26 CA_26-4</td> <td></td> <td></td>	CA_11-18 18 CA_12-25 25 CA_12-30 30 CA_18-28 18 CA_19-21 19 CA_19-28 28 CA_19-28 28 CA_19-28 28 CA_19-29 19 CA_20-31 31 CA_20-32 32 CA_20-32 32 CA_20-33 38 CA_20-34 20 CA_20-35 32 CA_20-36 38 CA_20-37 20 CA_20-38 38 CA_20-40 20 CA_20-41 40 CA_20-42 42 CA_20-42 20 CA_20-42 42 CA_20-41 41 CA_20-42 42 CA_20-42 42 CA_20-42 42 CA_20-67 67 CA_21-42 42 CA_25-26 25 CA_25-26 26 CA_26-4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_11-18	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_12-25	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	04,40,00	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_12-30	30
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 49.39	18
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} CA_{19:21} & 21 \\ \hline 21 \\ \hline 24 \\ 19 \\ \hline 28 \\ 28 \\$	CA_18-28	28
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CA 10.21	19
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CA_19-21	21
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 19-28	19
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	07_13-20	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 19-42	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 20-31	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_20-32	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_20-38	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_20-40	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_20-42	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_20-42-42	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_20-67	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	04.04.40	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_21-42	42
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 33.30	23
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_23-29	29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 25-26	25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	07_23-20	26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 25-41	25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 26-41	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA 28-40	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c cccccc} & & & & & & & & & & & & & & & & $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CA_28-41	
$\begin{array}{c ccccc} CA_{2}8-42 & 42 & \\ & 29 & \\ CA_{2}9-30 & 30 & \\ & 30 & \\ CA_{3}8-40 & 40 & \\ CA_{3}8-40-40 & 38 & \\ CA_{3}8-40-40 & 40 & \\ & 40 & \\ CA_{3}9-41 & 41 & \\ CA_{4}1-42 & 41 & \\ & 41 & \\ CA_{4}1-46 & 41 & \\ \end{array}$	$\begin{array}{c c} CA_{28-42} & 42 \\ & 29 \\ CA_{29-30} & 30 \\ \hline CA_{38-40} & 40 \\ \hline CA_{38-40-40} & 40 \\ \hline CA_{38-40-40} & 40 \\ \hline CA_{39-41} & 39 \\ \hline CA_{41-42} & 41 \\ \hline CA_{41-42} & 41 \\ \hline CA_{41-46} & 41 \\ \hline CA_{41-46} & 46 \\ \hline CA_{42-46} & 42 \\ \hline \end{array}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} CA_{29-30} & 29 \\ \hline & 30 \\ \hline & 30 \\ CA_{38-40} & 38 \\ \hline & 40 \\ \hline & 40 \\ CA_{38-40-40} & 38 \\ \hline & CA_{39-41} & 39 \\ \hline & CA_{41-42} & 41 \\ \hline & CA_{41-42} & 41 \\ \hline & CA_{41-46} & 41 \\ \hline & CA_{41-46} & 46 \\ \hline & CA_{42-46} & 42 \\ \hline \end{array}$	CA_28-42	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} CA_29-30 & 30 \\ \hline & 30 \\ CA_38-40 & 40 \\ \hline CA_38-40-40 & 40 \\ \hline CA_39-41 & 39 \\ \hline CA_39-41 & 41 \\ \hline CA_41-42 & 41 \\ \hline CA_41-46 & 41 \\ \hline CA_41-46 & 46 \\ \hline CA_42-46 & 42 \\ \hline \end{array}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} CA_{38-40} & 38 \\ & 40 \\ CA_{38-40-40} & 38 \\ CA_{39-41} & 39 \\ CA_{39-41} & 41 \\ CA_{41-42} & 41 \\ CA_{41-46} & 41 \\ CA_{41-46} & 46 \\ CA_{42-46} & 42 \\ \end{array}$	CA_29-30	
CA_38-40 40 CA_38-40-40 38 CA_39-41 39 CA_39-41 41 CA_41-42 42 CA_41-46 41	$\begin{array}{c c} CA_{38-40} & 40 \\ \hline & 40 \\ CA_{38-40-40} & 38 \\ \hline & 40 \\ \hline & 41 \\ \hline & CA_{41-46} \\ \hline & 46 \\ \hline & 42 \\ \hline & 42 \\ \hline & 6 \\ \hline & CA_{42-46} \\ \hline & 42 \\ \hline & 6 $		
CA_38-40-40 38 CA_39-41 39 CA_41-42 41 CA_41-46 41	$\begin{array}{c c} CA_{38-40-40} & 38 \\ \hline & 40 \\ CA_{39-41} & 39 \\ \hline & 41 \\ CA_{41-42} & 41 \\ \hline & CA_{41-42} & 42 \\ \hline & CA_{41-46} & 41 \\ \hline & CA_{42-46} & 42 \\ \hline \end{array}$	CA_38-40	
CA_38-40-40 40 CA_39-41 39 CA_41-42 41 CA_41-46 41	$\begin{array}{c c} CA_{38-40} & 40 \\ \hline & 40 \\ CA_{39-41} & 39 \\ \hline CA_{41-42} & 41 \\ \hline CA_{41-42} & 42 \\ \hline CA_{41-46} & 46 \\ \hline CA_{42-46} & 42 \\ \hline \end{array}$		
CA_39-41 39 CA_41-42 41 CA_41-42 42 CA_41-46 41	$\begin{array}{c c} CA_{39}-41 & & 39 \\ \hline & & 41 \\ CA_{41}-42 & & 41 \\ \hline CA_{41}-46 & & 42 \\ \hline CA_{41}-46 & & 46 \\ \hline CA_{42}-46 & & 42 \\ \hline \end{array}$	CA_38-40-40	
CA_39-41 41 CA_41-42 41 CA_41-46 41	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CA 20.44	
CA_41-42 42 CA_41-46 41	CA_41-42 42 CA_41-46 41 CA_42-46 42	CA_39-41	
CA_41-42 42 CA_41-46 41	CA_41-42 42 CA_41-46 41 CA_42-46 42		41
(:4 41-46	CA_41-46 CA_42-46 42	UA_41-42	
46	CA 42-46 42		41
	CA 42-46	07_41-40	
CA 42-46	46	CA 42-46	
46			46

Table 5.5-3A: Inter-band carrier aggregation bands (three bands)

CA Band	E-UTRA operating bands
CA_1-3-5	1 3 5
CA_1-3-7	1 3
CA_1-3-8	7 1 3
CA_1-3-19	8 1 3
	19 1
CA_1-3-20	3 20 1
CA_1-3-26	3 26 1
CA_1-3-28	3 28 1
CA_1-3-40	3 40
CA_1-3-42	1 3 42
CA_1-5-7	1 5 7
CA_1-5-40	1 5 40
CA_1-7-8	1 7
CA_1-7-20	8 1 7
CA_1-7-28	20 1 7
CA_1-8-11	28 1 8
	11 1
CA_1-8-40	8 40 1
CA_1-11-18	11 18 1
CA_1-18-28	18 28 1
CA_1-19-21	19 21
CA_1-19-28	1 19 28
CA_1-19-42	1 19 42

	1
CA_1-21-42	21
	42
	2
CA_2-4-5	4
	5
	2
CA_2-4-12	4
0,(12
	2
CA_2-2-4-5	
07_2-2-4-5	<u>4</u> 5
	2
	4
CA_2-4-4-5	
	5
	2
CA_2-4-7	4
	7
	2 4
CA_2-2-4-12	
	12
	2
CA_2-4-4-12	4
	12
	2
CA_2-4-13	4
	13
	2
CA_2-4-29	4
—	29
	2
CA_2-4-30	4
•··· <u>_</u> _ · · ••	30

	T
	2
CA_2-5-12	5
	12
	2
CA_2-2-5-12	5
_	12
	2
CA_2-5-13	5
6/(_2 8 18	13
04 0 5 00	2
CA_2-5-29	5
	29
	2
CA_2-5-30	5
	30
	2
CA_2-7-12	7
0/(_2 / 12	12
	2
CA_2-12-30	12
	30
	2
CA_2-29-30	29
	30
	3
CA_3-5-40	5
CA_5-5-40	
	40
	3
CA_3-7-8	7
	8
	3
CA_3-7-20	7
0/(_0 / 20	
	20
	3
CA_3-7-28	7
	28
	3
CA_3-7-38	7
_	38
	3
CA_3-8-40	8
CA_5-6-40	
	40
	3
CA_3-19-42	19
	42
	3
CA_3-28-40	28
	40
	3
CA_3-41-42	41
	42
	4
CA_4-5-12	5
	12
	4
CA 4-4-5-12	5
CA_4-4-5-12	5
CA_4-4-5-12	12
	12 4
CA_4-4-5-12 CA_4-5-13	12 4 5
	12 4
	12 4 5 13 4
	12 4 5 13
CA_4-5-13	12 4 5 13 4 5
CA_4-5-13 CA_4-5-29	12 4 5 13 4 5 29
CA_4-5-13	12 4 5 13 4 5

	20
	30
CA_4-4-5-30	4
	5
	30
CA_4-7-12	4
	7
	12
CA_4-12-30	4
	12
	30
CA_4-4-12-30	4
	12
	30
CA_4-29-30	4
	29
	30
CA_4-4-29-30	4
	29
	30
	7
CA_7-8-20	8
CA_7-0-20	
	20
CA_7-20-38	7
	20
	38
	19
CA_19-21-42	21
	42

CA Band	E-UTRA operating bands

	1
CA_1-3-5-40	3
	5
	40
	1
04 4 0 7 0	3
CA_1-3-7-8	7
	8
	1
	3
CA_1-3-7-28	7
	28
	1
	3
CA_1-3-8-40	8
	40
	1
CA_1-3-19-42	3
	19
	42
	2
CA_2-4-5-12	4
07_2-4-0-12	5
	12
CA_1-19-21-42	1
	19
	21
	42
-	2
	4
CA_2-4-5-29	5
	29
CA_2-4-5-30	2
0/(_2 10 00	4
	5
	30
CA_2-4-7-12	2
_	4
	7
	12
CA_2-4-12-30	2
	4
	12
	30
CA_2-4-29-30	2
	4
	29
	30

CA Band	E-UTRA operating band
CA_2-2	2
CA_3-3	3
CA_4-4	4
CA_5-5	5
CA_7-7	7
CA_23-23	23
CA_25-25	25
CA_40-40	40
CA_41-41	41
CA_42-42	42
CA_66-66	66

Table 5.5-4: Intra-band non-contiguous carrier aggregation bands (with two sub-blocks)

5.6 Channel bandwidth

For E-UTRA, requirements in present document are specified for the channel bandwidths listed in Table 5.6-1.

Table 5.6-1: Transmission bandwidth configuration NRB in E-UTRA channel bandwidths

Channel bandwidth BW _{Channel} [MHz]	1.4	3	5	10	15	20
Transmission bandwidth configuration N _{RB}	6	15	25	50	75	100

For E-UTRA, figure 5.6-1 shows the relation between the Channel bandwidth ($BW_{Channel}$) and the Transmission bandwidth configuration (N_{RB}). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at F_C +/- $BW_{Channel}$ /2.

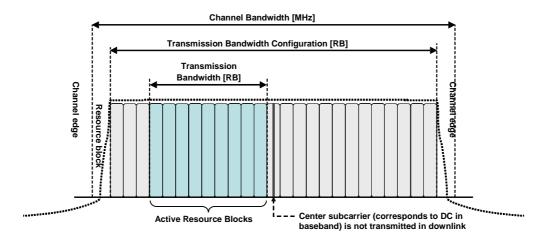
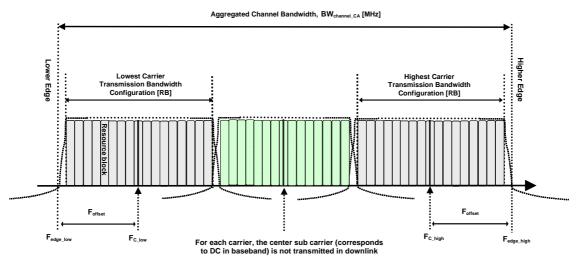


Figure 5.6-1: Definition of Channel Bandwidth and Transmission Bandwidth Configuration for one E-UTRA carrier.

Figure 5.6-2 illustrates the Aggregated Channel Bandwidth for intra-band carrier aggregation.



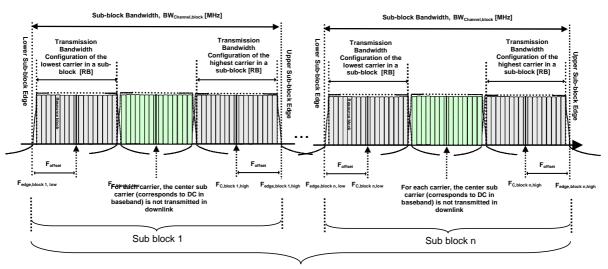


Figure 5.6-2: Definition of Aggregated Channel Bandwidth for intra-band carrier aggregation

The lower edge of the Aggregated Channel Bandwidth ($BW_{Channel_CA}$) is defined as $F_{edge_low} = F_{C_low} - F_{offset}$. The upper edge of the Aggregated Channel Bandwidth is defined as $F_{edge_high} = F_{C_high} + F_{offset}$. The Aggregated Channel Bandwidth, $BW_{Channel_CA}$, is defined as follows:

Base Station RF Bandwidth

Figure 5.6-3: Definition of Sub-block Bandwidth for intra-band non-contiguous spectrum

The lower sub-block edge of the sub-block bandwidth ($BW_{Channel,block}$) is defined as $F_{edge,block,low} = F_{C,block,low} - F_{offset}$. The upper sub-block edge of the sub-block bandwidth is defined as $F_{edge,block,high} = F_{C,block,high} + F_{offset}$. The sub-block bandwidth, $BW_{Channel,block}$, is defined as follows:

BW_{Channel,block} = F_{edge,block,high} - F_{edge,block,low} [MHz]

F_{offset} is defined in Table 5.6-2 below where BW_{Channel} is defined in Table 5.6-1.

Table	5.6-2:	Definition	of	Foffset
-------	--------	------------	----	---------

Channel Bandwidth of the Lowest or Highest Carrier: BW _{Channel} [MHz]	F _{offset} [MHz]
5, 10, 15, 20	BW _{Channel} /2

NOTE 1: Foffset is calculated separately for each Base Station RF Bandwidth edge / sub-block edge.

NOTE 2: The values of BW_{Channel_CA}/sub-block bandwidth for UE and BS are the same if the channel bandwidths of lowest and the highest component carriers are identical.

For NB-IoT, requirements in present document are specified for the channel bandwidths listed in Table 5.6-3.

Table 5.6-3: Transmission bandwidth configuration NRB, Ntone 15kHz and Ntone 3.75kHz in NB-IoT channel bandwidth

NB-IoT	NB-IoT Standalone		Guard Band	
Channel bandwidth BW _{Channel} [kHz]	200	E-UTRA channel bandwidth in Table 5.6-1 for BW _{Channel} >1.4MHz	E-UTRA channel bandwidth in Table 5.6-1 for BW _{Channel} >3MHz	
Transmission bandwidth configuration <i>N</i> _{RB}	1	1	1	
Transmission bandwidth configuration Ntone 15kHz	12	12	12	
Transmission bandwidth configuration N _{tone 3.75kHz}	48	48	48	

For NB-IoT standalone operation, figure 5.6-4 shows the relation between the channel bandwidth (BW_{Channel}) and the transmission bandwidth configuration (N_{RB} , $N_{\text{tone 15kHz}}$ and $N_{\text{tone 3.75kHz}}$) for NB-IoT standalone operation. The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at F_{C} +/- BW_{Channel}/2.

For NB-IoT standalone operation, NB-IoT requirements for receiver and transmitter shall apply with a frequency offset F_{offset} as defined in Table 5.6-3A.

Table 5.6-3A: Foffset for NB-IoT standalone operation

Lowest or Highest Carrier	Foffset
Standalone NB-IoT	200 kHz

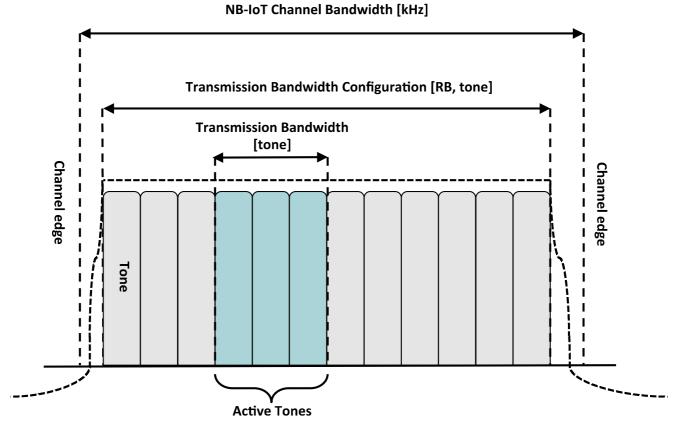
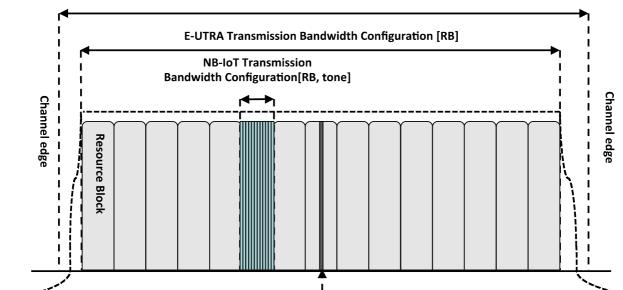
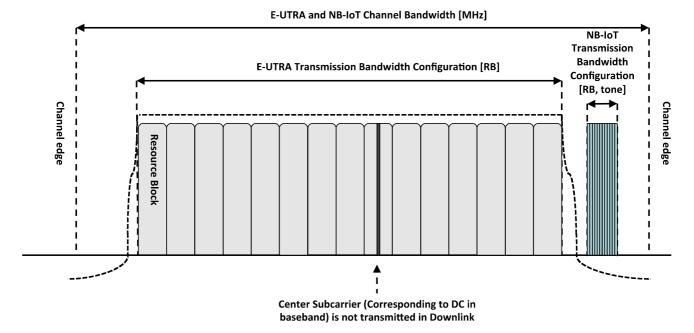



Figure 5.6-4 Definition of Channel Bandwidth and Transmission Bandwidth Configuration for NB-IoT standalone operation

For NB-IoT in-band operation, figure 5.6-5 shows the relation between the channel bandwidth (BW_{Channel}) and the transmission bandwidth configuration (N_{RB} , $N_{\text{tone 15kHz}}$ and $N_{\text{tone 3.75kHz}}$). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at F_C +/- BW_{Channel}/2.



E-UTRA and NB-IoT Channel Bandwidth [MHz]

Center Subcarrier (Corresponding to DC in baseband) is not transmitted in downlink

Figure 5.6-5 Definition of Channel Bandwidth and Transmission Bandwidth Configuration for NB-IoT in-band operation

For NB-IoT guard band operation, figure 5.6-6 shows the relation between the channel bandwidth (BW_{Channel}) and the transmission bandwidth configuration (N_{RB} , $N_{\text{tone 15kHz}}$ and $N_{\text{tone 3.75kHz}}$). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at F_C +/- BW_{Channel}/2.

Figure 5.6-6 Definition of Channel Bandwidth and Transmission Bandwidth Configuration for NB-IoT guard band operation

5.7 Channel arrangement

5.7.1 Channel spacing

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent E-UTRA carriers is defined as following:

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2$

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective E-UTRA carriers. The channel spacing can be adjusted to optimize performance in a particular deployment scenario.

For carriers in Band 46, the requirements apply for both 19.8 MHz and 20.1 MHz nominal carrier spacing.

5.7.1A CA Channel spacing

For intra-band contiguously aggregated carriers the channel spacing between adjacent component carriers shall be multiple of 300 kHz.

The nominal channel spacing between two adjacent aggregated E-UTRA carriers is defined as follows:

Nominal channel spacing =
$$\frac{BW_{Channel(1)} + BW_{Channel(2)} - 0.1 |BW_{Channel(1)} - BW_{Channel(2)}|}{0.6} |0.3|$$

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective E-UTRA component carriers according to Table 5.6-1 with values in MHz. The channel spacing for intra-band contiguous carrier aggregation can be adjusted to any multiple of 300 kHz less than the nominal channel spacing to optimize performance in a particular deployment scenario.

For intra-band contiguous carrier aggregation with two or more component carriers in Band 46, the requirements apply for both 19.8 MHz and 20.1 MHz nominal carrier spacing.

5.7.2 Channel raster

The channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

5.7.3 Carrier frequency and EARFCN

The carrier frequency in the uplink and downlink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) in the range 0 - 262143. The relation between EARFCN and the carrier frequency in MHz for the downlink is given by the following equation, where $F_{DL_{low}}$ and $N_{Offs-DL}$ are given in table 5.7.3-1 and N_{DL} is the downlink EARFCN.

 $F_{DL} = F_{DL \ low} + 0.1(N_{DL} - N_{Offs-DL})$

The relation between EARFCN and the carrier frequency in MHz for the uplink is given by the following equation where F_{UL_low} and $N_{Offs-UL}$ are given in table 5.7.3-1 and N_{UL} is the uplink EARFCN.

$$F_{UL} = F_{UL_low} + 0.1(N_{UL} - N_{Offs-UL})$$

The carrier frequency of NB-IoT in the downlink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) in the range 0 - 262143 and the Offset of NB-IoT Channel Number to EARFCN in the range $\{-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, -0.5, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. The relation between EARFCN, Offset of NB-IoT Channel Number to EARFCN and the carrier frequency in MHz for the downlink is given by the following equation, where F_{DL} is the downlink carrier frequency of NB-IoT, F_{DL_low} and $N_{Offs-DL}$ are given in table 5.7.3-1, N_{DL} is the downlink EARFCN, M_{DL} is the Offset of NB-IoT Channel Number to downlink EARFCN.

$$F_{DL} = F_{DL_{low}} + 0.1(N_{DL} - N_{Offs-DL}) + 0.0025*(2M_{DL}+1)$$

The carrier frequency of NB-IoT in the uplink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) in the range 0-262143 and the Offset of NB-IoT Channel Number to EARFCN in the range $\{-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. The relation between EARFCN, Offset of NB-IoT Channel Number to EARFCN and the carrier frequency in MHz for the uplink is given by the following equation, where F_{UL} is the uplink carrier frequency of NB-IoT, $F_{UL_{low}}$ and $N_{Offs-UL}$ are given in table 5.7.3-1, N_{UL} is the uplink EARFCN, M_{UL} is the Offset of NB-IoT Channel Number to uplink EARFCN.

$$F_{UL} = F_{UL_{low}} + 0.1(N_{UL} - N_{Offs-UL}) + 0.0025*(2M_{UL})$$

- NOTE 1: For NB-IoT, N_{DL} or N_{UL} is different than the value of EARFCN that corresponds to E-UTRA downlink or uplink carrier frequency for in-band and guard band operation.
- NOTE 2: For stand-alone operation, only $M_{DL} = -0.5$ and $M_{UL} = 0$ are applicable. $M_{DL} = -0.5$ is not applicable for inband and guard band operation.
- NOTE 3: For the carrier including NPSS/NSSS for in-band and guard band operation, MDL is selected from {-2,-1,0,1}.

Table 5.7.3-1: E-UTRA channel numbers

Band 1 2110 0 0 -599 1920 18000 19200 <th19200< th=""></th19200<>	E-UTRA		Downlink			Uplink	
2 1930 600 600-1199 1850 18600 19600-19 3 1805 1200 1950-239 1710 19200 19200-19 4 2110 1950 1200-1949 624 20400-2049 624 20400-2040-20 5 869 2400 2650-2749 630 20650-20 20750-2149 630 20650-20 20750-2149 630 20750-2140 21450-21 21450-21 9 1844.9 3800 3800-4149 1749.9 21450-21 2180-22 110 21450-21 2180-22 12 120-22150-22 22150-22 12 729 5010 5010-5179 699 23010-23 1630-23 140-2370 23180-23 141 758 5280 5289 815 23850-23 23850-23 23850-23 23850-23 23850-23 23850-23 23850-23 23850 23850-23 2350 23850-23 2350 23850-23 2350 23850-23 2350 23850-23 2350 23850-23 2350-25 </th <th></th> <th>FDL_low [MHz]</th> <th>Noffs-DL</th> <th>Range of NDL</th> <th>FUL_low [MHz]</th> <th>Noffs-UL</th> <th>Range of NuL</th>		FDL_low [MHz]	Noffs-DL	Range of NDL	FUL_low [MHz]	Noffs-UL	Range of NuL
3 1805 1200 1200 194 1710 19200 19200 19950 20150 20150 20150 20150 20150 22150 <td>1</td> <td>2110</td> <td>0</td> <td>0 - 599</td> <td>1920</td> <td>18000</td> <td>18000 - 18599</td>	1	2110	0	0 - 599	1920	18000	18000 - 18599
3 1805 1200 1940 1710 19200 19200 1980 1200 1980 1200 1980 1200 1980 1200 1980 1200 1980 1200 1980 1200 1980 1200 1980 1200 1980 1200 1980 1200	2	1930	600	600 – 1199	1850	18600	18600 - 19199
4 2110 1950 2399 1710 19950 2000 2400 20400 20400 20400 20400 20400 20400 20400 20400 20400 20400 20400 20400 20400 20400 20400 20450 <td>3</td> <td></td> <td>1200</td> <td></td> <td>1710</td> <td>19200</td> <td>19200 - 19949</td>	3		1200		1710	19200	19200 - 19949
5 869 2400 2640 2640 200 20400 200 6 875 2650 2750 2750 3449 2500 20750 20750 21750 21750 21750 21750 21750 21750 21750 21750 21750 21750 21750 21750 21750 21750 22180 730 5370 5649 704 23730 23730 23730 23730 23730 23730 23730 23730 23730 24450 244150 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>19950 - 20399</td>							19950 - 20399
6 875 2650 2749 830 20650 20650 - 20 7 2620 2750 2750 - 2449 2500 20750 20750 - 21 8 925 3450 3450 - 3799 880 21450 21450 - 21 9 1844.9 3800 3800 - 4149 1749.9 21800 22150 - 22 10 2110 4150 4750 - 4749 1710 22150 - 22 212 729 5010 - 5179 699 23010 - 23 23180 - 23 14 758 5280 - 5379 788 23280 - 23 13 746 5180 - 5179 699 23310 - 23 23180 - 23 14 758 5280 - 5379 788 23280 - 23 13 23850 - 23 14 23730 - 53 14 200 24 200 24 1400 - 24 24000 - 24 24000 - 24 200 24150 - 24 2450 - 24 2450 - 24 2450 - 24 2450 - 24 2450 - 24 2450 - 24 2450 - 24 2450 - 24 2450 - 24 2450 - 24 2450 - 24	5	869			824		20400 - 20649
7 2620 2750 2450 2450 2460 21450 21450 21450 21450 21450 21450 21800 21800 21800 21800 21800 21800 21800 21800 21800 22180 22 10 2110 4150 4150 4474 1710 22150 22750							20650 - 20749
8 925 3450 3450 3600 3800 21450 21450 21450 21450 21450 21450 21450 22150 2310 2310 2330 23100 23100 23100							20750 - 21449
9 1844.9 3800 3800 -4149 1749.9 21600 21200 -22150 22150 22150 22 10 2110 4150 4150 44750 4750 42750 22750 22 22750 22 22750 22 22750 22 22750 22 22750 22 2310 23100 23100 23100 23100 23100 23100 23100 23180 23280 23280 23280 23280 23280 23280 23280 23280 23280 23280 23280 23280 23280 23280 23280 2380 2							21450 - 21799
10 2110 4150 4150 4760 4949 1427.9 22150 225700 25700 25700 25700							21800 - 22149
11 1475.9 4750 4750 4949 1427.9 22750 2280 23800 23800 23800 23800 23800 23800 23800 23800 23800 23800 23800 23800 23800 23800 23750 23750 23750 23750 23750 23750 23750 24150 24150 24150 24150 24150 24150 24150 24150 24150 24150 24150 24150 24150 24150 24150 2415							22150 - 22749
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							22750 - 22949
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							23010 - 23179
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							23180 - 23279
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							23280 - 23379
18 660 5850 5850 5999 815 23850 23850 23850 23850 23850 23850 23850 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24600 24450 244 22 3510 6600 6600 7399 3410 24600 24600 250 25500 25500 25500 25500 25500 25500 25500 25500 25500 2550 2660 266 859 8690 8690 8690 8690 26690 27040 27040 27704 27 285 9140 9210 9659 703 27210 27210 27210 27210 27210 27210 27210 27210 27210 27 29 717 9660 9600 9703 27210 27660 27660 27660 27660 2760							
18 860 5850 5850 5999 815 23850 23850 23850 23850 23850 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24000 24600 2460 24350 24450 24500 26500 25500 25500 25500 25500 25500 25500 25500 25500 25500 25500 25500 25700 26690 27040 27040 27040 27040 2710 27210 27210 27210 27210 27210 27210 27210 27210 27210 27760 27760 27760		734	5730	5730 - 5849	704	23730	23730 - 23849
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	860	5850	5850 - 5999	815	23850	23850 - 23999
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19						24000 - 24149
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							24150 - 24449
22 3510 6600 6600-7399 3410 24600 24600-253 23 2180 7500 7500 7609 2000 25500 25500 25500 25500 25500 25500 25500 25500 25500 266 265 1930 8040 8040 8040 8690 26040 26040 26040 26040 26040 27040 27040 27040 27040 27040 27040 27210 2710 2710 2710 2710 2710 2710 2710 2710 2710 27160 27760 27760 27760 27760 2776	21	1495.9	6450	6450 - 6599	1447.9	24450	24450 - 24599
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					3410		24600-25399
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23						25500 - 25699
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							25700 - 26039
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							26040 - 26689
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							26690 - 27039
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							27040 - 27209
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							27210 - 27659
30 2350 9770 9770 - 9869 2305 27660 27660 - 27 31 462.5 9870 9870 - 9919 452.5 27760 27760 - 27 32 1452 9920 9920 - 10359 N/A 2000 36050 36350 37550	29						
31 462.5 9870 9870 - 9919 452.5 27760 27760 - 27 32 1452 9920 9920 - 10359 N/A		2350	9770	9770 - 9869	2305	27660	27660 - 27759
32 (NOTE 2) 1452 9920 9920 - 10359 N/A 33 1900 36000 36000 - 36199 1900 36000 36000 - 36 34 2010 36200 36200 - 36349 2010 36200 36200 - 36 35 1850 36350 36350 36350 36350 36350 36350 - 36 36 1930 36950 36950 - 37549 1930 36950 36950 - 37 37 1910 37550 37550 - 37749 1910 37550 37750 - 38 39 1880 38250 38250 - 38649 1880 38250 38250 - 38 40 2300 38650 38650 38650 - 39649 2300 38650 38650 - 39 41 2496 39650 39650 - 41589 2496 39650 39650 - 4159 42 3400 41590 41590 - 43589 3400 41590 43590 - 455 44 703 45590 46590 - 46789 703 45590 46590 -							27760 - 27809
33 1900 36000 36000 - 36199 1900 36000 36000 - 36 34 2010 36200 36200 - 36349 2010 36200 36200 - 36 35 1850 36350 36350 - 36949 1850 36350 36350 - 36 36 1930 36950 36950 - 37549 1930 36950 36950 - 37 37 1910 37550 37550 - 37749 1910 37550 37550 - 37 38 2570 37750 37750 - 38249 2570 37750 - 38 39 1880 38250 38650 38650 - 39649 2300 38650 38650 - 39 40 2300 38650 38650 - 39649 2300 38650 38650 - 39 41 2496 39650 39650 - 41589 2496 39650 39650 - 415 42 3400 41590 41590 - 43589 3400 41590 - 43 43 43 3600 43590 45590 - 46589 703 45590 46590	32					21100	
34 2010 36200 36200 36349 2010 36200 36200 36200 36200 36200 36200 36200 36200 36200 36350 36950 3775	· /	1900	36000	36000 - 36199	1900	36000	36000 - 36199
35 1850 36350 36350 - 36949 1850 36350 36350 - 36 36 1930 36950 36950 - 37549 1930 36950 36950 - 37 37 1910 37550 37550 - 37749 1910 37550 37550 - 37 38 2570 37750 37750 - 38249 2570 37750 37750 - 38 39 1880 38250 38250 - 38649 1880 38250 38250 - 38 40 2300 38650 38650 - 39649 2300 38650 38650 - 39 41 2496 39650 39650 - 41589 2496 39650 39650 - 415 42 3400 41590 41590 - 43589 3400 41590 41590 - 43 43 3600 43590 45590 - 46589 703 45590 46590 - 46 44 703 45590 46690 - 46789 1447 46590 46590 - 46 45 1447 46590 46790 - 5439 5150 46790 - 54 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>36200 - 36349</td></td<>							36200 - 36349
36 1930 36950 36950 - 37549 1930 36950 36950 - 37 37 1910 37550 37550 - 37749 1910 37550 37550 - 37 38 2570 37750 37750 - 38249 2570 37750 - 382 39 1880 38250 38250 - 38649 1880 38250 - 386 40 2300 38650 38650 - 39649 2300 38650 - 396 41 2496 39650 39650 - 41589 2496 39650 - 39650 - 41589 42 3400 41590 - 43589 3400 41590 - 43 43 3600 43590 - 45589 3600 43590 - 45589 3600 43590 - 455 44 703 45590 - 46589 703 45590 46590 - 46 45 1447 46590 46590 - 46789 1447 46590 - 46 46 5150 46790 46790 - 54539 5150 46790 - 54 (NOTE 3)							36350 - 36949
37 1910 37550 37550 - 37749 1910 37550 37550 - 37 38 2570 37750 37750 - 38249 2570 37750 37750 - 38 39 1880 38250 38250 - 38649 1880 38250 38250 - 38 40 2300 38650 38650 - 39649 2300 38650 38650 - 39 41 2496 39650 39650 - 41589 2496 39650 39650 - 41 42 3400 41590 41590 - 43589 3400 41590 41590 - 43 43 3600 43590 43590 - 45589 3600 43590 43590 - 45 44 703 45590 46590 - 46789 703 45590 46590 - 46 45 1447 46590 46790 - 54539 5150 46790 46790 - 54 (NOTE 3)							
38 2570 37750 37750 - 38249 2570 37750 37750 - 38 39 1880 38250 38250 - 38649 1880 38250 38250 - 38 40 2300 38650 38650 - 39649 2300 38650 38650 - 39 41 2496 39650 39650 - 41589 2496 39650 39650 - 413 42 3400 41590 41590 - 43589 3400 41590 41590 - 43 43 3600 43590 43590 - 45589 3600 43590 43590 - 455 44 703 45590 46590 - 46689 703 45590 46590 - 46 45 1447 46590 46590 - 46789 1447 46590 46590 - 46 46 5150 46790 46790 - 54539 5150 46790 - 54 (NOTE 3) - - - 131072 131072 66 2110 66436 66436 - 67335 1710 131972 132671 67 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
39 1880 38250 38250 - 38649 1880 38250 38250 - 38 40 2300 38650 38650 - 39649 2300 38650 38650 - 39 41 2496 39650 39650 - 41589 2496 39650 39650 - 41 42 3400 41590 41590 - 43589 3400 41590 41590 - 43 43 3600 43590 43590 - 45589 3600 43590 43590 - 455 44 703 45590 45590 - 46589 703 45590 46590 - 465 45 1447 46590 46590 - 46789 1447 46590 46790 - 54 46 5150 46790 46790 - 54539 5150 46790 - 54 131972 65 2110 65436 65536 - 66435 1920 131072 131972 66 2110 66436 66436 - 67335 1710 131972 132671 67 738 67336 67336 - 67535 N/A 132672 132672 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>37750 - 38249</td>							37750 - 38249
40 2300 38650 38650 - 39649 2300 38650 38650 - 39 41 2496 39650 39650 - 41589 2496 39650 39650 - 413 42 3400 41590 41590 - 43589 3400 41590 41590 - 435 43 3600 43590 43590 - 45589 3600 43590 43590 - 455 44 703 45590 45590 - 46589 703 45590 45590 - 46 45 1447 46590 46590 - 46789 1447 46590 46590 - 46 46 5150 46790 46790 - 54539 5150 46790 46790 - 54 (NOTE 3)							
41 2496 39650 39650 - 41589 2496 39650 39650 - 415 42 3400 41590 41590 - 43589 3400 41590 41590 - 43 43 3600 43590 43590 - 45589 3600 43590 43590 - 45589 44 703 45590 45590 - 46589 703 45590 45590 - 46 45 1447 46590 46590 - 46789 1447 46590 46590 - 46 46 5150 46790 46790 - 54539 5150 46790 46790 - 54 (NOTE 3)							
42 3400 41590 41590 - 43589 3400 41590 41590 - 43 43 3600 43590 43590 - 45589 3600 43590 43590 - 455 44 703 45590 45590 - 46589 703 45590 45590 - 46 45 1447 46590 46590 - 46789 1447 46590 46590 - 46 46 5150 46790 46790 - 54539 5150 46790 46790 - 54 (NOTE 3)	-						
43 3600 43590 43590 43590 43590 43590 43590 43590 43590 43590 43590 43590 43590 43590 43590 45590 46590 46590 46590 46590 46590 46590 46590 46590 46590 46590 46790 46790 46790 5150 46790 46790 54539 5150 46790 46790 54539 5150 46790 46790 54539 5150 46790 46790 54539 5150 46790 46790 54539 5150 46790 46790 54539 5150 46790 46790 54539 5150 46790 46790 54539 5150 46790 46790 54539 5150 46790 46790 54539 5150 46790 46790 54539 5150 46790 46790 54539 5150 46790 46790 2131072 131072 131971 66 66436 67336 67336 67336							
44 703 45590 45590 - 46589 703 45590 45590 - 46 45 1447 46590 46590 - 46789 1447 46590 46590 - 46 46 5150 46790 46790 - 54539 5150 46790 46790 - 54 (NOTE 3) - - - - - - - 65 2110 65536 65536 - 66435 1920 131072 131072 - 131072 - 131971 - 131971 66 2110 66436 66436 - 67335 1710 131972 131972 - 132671 67 738 67336 67336 - 67535 N/A - - - 132671 68 753 67536 67536 - 67835 698 132672 132672 132672 132672 132672							43590 - 45589
45 1447 46590 46590 - 46789 1447 46590 46590 - 46 46 5150 46790 46790 - 54539 5150 46790 46790 - 54 (NOTE 3) 2110 65536 65536 - 66435 1920 131072 131072 - 131072 - 131971 - 131971 66 2110 66436 66436 - 67335 1710 131972 131972 - 132671 67 738 67336 67336 - 67535 N/A N/A (NOTE 2) 753 67536 67536 - 67835 698 132672 132672							
46 (NOTE 3) 5150 46790 46790 46790 5150 46790 46790 5459 65 2110 65536 65536 66435 1920 131072 131072 131072 66 2110 66436 66436 67335 1710 131972 131972 67 738 67336 67336 67536 67535 N/A 68 753 67536 67536 67835 698 132672 132672							
65 2110 65536 65536 65536 66435 1920 131072 131072 131072 131072 131971 131971 131971 131972 131972 131972 131972 131972 131972 131972 131972 131972 131972 131972 131972 131972 131972 132671 132671 132671 132671 132671 132672	46						46790 - 54539
66 (NOTE 4) 2110 66436 66436 - 67335 1710 131972 131972 - 132671 67 (NOTE 2) 738 67336 67336 - 67535 N/A 68 753 67536 67536 - 67835 698 132672 132672		2110	65536	65536 - 66435	1920	131072	131072 – 131971
67 (NOTE 2) 738 67336 67336 - 67535 N/A 68 753 67536 67536 - 67835 698 132672 132672		2110	66436	66436 – 67335	1710	131972	131972 –
68 753 67536 67536 - 67835 698 132672 132672	67	738	67336	67336 – 67535	I	N/A	
102311		753	67536	67536 - 67835	698	132672	132672 - 132971

NOTE 1:	The channel numbers that designate carrier frequencies so close to the operating band edges that the
	carrier extends beyond the operating band edge shall not be used. This implies that the first 7, 15, 25, 50,
	75 and 100 channel numbers at the lower operating band edge and the last 6, 14, 24, 49, 74 and 99
	channel numbers at the upper operating band edge shall not be used for channel bandwidths of 1.4, 3, 5,
	10, 15 and 20 MHz respectively.

- NOTE 2: Restricted to E-UTRA operation when carrier aggregation is configured.
- NOTE 3: The following NDL and NUL are allowed for operation in Band 46 assuming 20MHz channel bandwidth: NDL =NUL = {n-2, n-1, n, n+1, n+2 | n = 46890 (5160 MHz), 47090 (5180 MHz), 47290 (5200 MHz), 47490 (5220 MHz), 47690 (5240 MHz), 47890 (5260 MHz), 48090 (5280 MHz), 48290 (5300 MHz), 48490 (5320 MHz), 48690 (5340 MHz), 50090 (5480 MHz), 50290 (5500 MHz), 50490 (5520 MHz), 50690 (5540 MHz), 50890 (5560 MHz), 51090 (5580 MHz), 51290 (5600 MHz), 51490 (5620 MHz), 51690 (5640 MHz), 51890 (5660 MHz), 52090 (5680 MHz), 52290 (5700 MHz), 52490 (5720 MHz), 52740 (5745 MHz), 52940 (5765 MHz), 53140 (5785 MHz), 53340 (5805 MHz), 53540 (5825 MHz), 53740 (5845 MHz), 53940 (5865 MHz), 54140 (5885 MHz), 54340 (5905 MHz)}
- NOTE 4: Downlink frequency range 2180 2200 MHz is restricted to E-UTRA operation when carrier aggregation is configured.

5.8 Requirements for contiguous and non-contiguous spectrum

A spectrum allocation where the BS operates can either be contiguous or non-contiguous. Unless otherwise stated, the requirements in the present specification apply for BS configured for both contiguous spectrum operation and non-contiguous spectrum operation.

For BS operation in non-contiguous spectrum, some requirements apply also inside the sub-block gaps. For each such requirement, it is stated how the limits apply relative to the sub-block edges.

6 Transmitter characteristics

6.1 General

General test conditions for transmitter tests are given in Clause 4, including interpretation of measurement results and configurations for testing. BS configurations for the tests are defined in Clause 4.5, while Annex H provides an informative description of E-UTRAN test cases. Unless otherwise stated, a BS declared to be capable of E-UTRA with NB-IoT in-band or guard band operations is only required to pass the transmitter tests for E-UTRA with NB-IoT inband or guard band; it is not required to perform the transmitter tests again for E-UTRA only.

Unless otherwise stated, a BS declared to be capable of E-UTRA with NB-IoT in-band and guard band operations needs only to pass the transmitter tests for E-UTRA with guard band operation.

6.1.1 E-UTRA Test Models

The set-up of physical channels for transmitter tests shall be according to one of the E-UTRA test models (E-TM) below. A reference to the applicable test model is made within each test.

The following general parameters are used by all E-UTRA test models:

- The test models are defined for a single antenna port (using p = 0); 1 code word (q = 0), 1 layer, precoding is not used; unless specified otherwise
- Duration is 10 subframes (10 ms)
- Normal CP
- Virtual resource blocks of localized type, no intra-subframe hopping for PDSCH
- UE-specific reference signals are not used

Power settings of physical channels are defined by physical channel EPRE relative to the EPRE of the RS. The relative accuracy of the physical channel EPRE as referred to the EPRE of the RS shall have a tolerance of ± 0.5 dB.

For E-UTRA TDD, test models are derived based on the uplink/downlink configuration 3 and special subframe configuration 8 defined in TS36.211, i.e. as showing in the table 6.1.1-1 (excluding Channel access procedure test for downlink operation in Band 46 where Frame structure Type 3 is defined in TS 36.211 clause 4.3 is used). Number of frames for the test models is 2.

Downlink-to-	Number of UL/DL sub-			
Uplink	frames per radio frame (10	DwPTS	GP	UpPTS
Switch-point	ms)			-

 $24144 \cdot T_{c}$

 $2192 \cdot T$

 $4384 \cdot T_{c}$

UL

3

Table 6.1.1-1: Configurations o	of TDD eNB test models
---------------------------------	------------------------

DL

6

This model shall be used for tests on:

periodicity

10ms

BS output power

- Unwanted emissions
 - Occupied bandwidth
 - ACLR
 - Operating band unwanted emissions
 - Transmitter spurious emissions

- Transmitter intermodulation
- RS absolute accuracy

Table 6.1.1.1-1: Physical channel parameters of E-TM1.1

Parameter	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Reference, Synchronisation Signals	1				1	
RS boosting, $P_B = E_B/E_A$	1	1	1	1	1	1
Synchronisation signal EPRE / E _{RS} [dB]	0.000	0.000	0.000	0.000	0.000	0.000
Reserved EPRE / E _{RS} [dB]	-inf	-inf	-inf	-inf	-inf	-inf
PBCH						
PBCH EPRE / E _{RS} [dB]	0.000	0.000	0.000	0.000	0.000	0.000
Reserved EPRE / E _{RS} [dB]	-inf	-inf	-inf	-inf	-inf	-inf
PCFICH	1					
# of symbols used for control channels	2	1	1	1	1	1
PCFICH EPRE / E _{RS} [dB]	3.222	0	0	0	0	0
PHICH	1				1	
# of PHICH groups	1	1	1	2	2	3
# of PHICH per group	2	2	2	2	2	2
PHICH BPSK symbol power / E _{RS} [dB]	-3.010	-3.010	-3.010	-3.010	-3.010	-3.010
PHICH group EPRE / E _{RS} [dB]	0	0	0	0	0	0
PDCCH	1					
# of available REGs	23	23	43	90	140	187
# of PDCCH	2	2	2	5	7	10
# of CCEs per PDCCH	1	1	2	2	2	2
# of REGs per CCE	9	9	9	9	9	9
# of REGs allocated to PDCCH	18	18	36	90	126	180
# of <nil> REGs added for padding</nil>	5	5	7	0	14	7
PDCCH REG EPRE / E _{RS} [dB]	0.792	2.290	1.880	1.065	1.488	1.195
<nil> REG EPRE / E_{RS} [dB]</nil>	-inf	-inf	-inf	-inf	-inf	-inf
PDSCH						
# of QPSK PDSCH PRBs which are boosted	6	15	25	50	75	100
$PRB\;P_{A}=E_{A}/E_{RS}\;[dB]$	0	0	0	0	0	0
# of QPSK PDSCH PRBs which are de-boosted	0	0	0	0	0	0
PRB $P_A = E_A/E_{RS}$ [dB]	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

6.1.1.2 E-UTRA Test Model 1.2 (E-TM1.2)

This model shall be used for tests on:

- Unwanted emissions
 - ACLR
 - Operating band unwanted emissions

Table 6.1.1.2-1: Phy	vsical channel	parameters of	E-TM1.2
	, e.e.a. eae.		

Parameter	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Reference, Synchronisation Signals	·					
RS boosting, $P_B = E_B/E_A$	1	1	1	1	1	1
Synchronisation signal EPRE / E _{RS} [dB]	0.000	-4.730	-4.730	-4.730	-4.730	-4.730
Reserved EPRE / E _{RS} [dB]	-inf	-inf	-inf	-inf	-inf	-inf
РВСН				•		•
PBCH EPRE / E _{RS} [dB]	0.000	-4.730	-4.730	-4.730	-4.730	-4.730

Reserved EPRE / E _{RS} [dB]	-inf	-inf	-inf	-inf	-inf	-inf
PCFICH				•		
# of symbols used for control channels	2	1	1	1	1	1
PCFICH EPRE / E _{RS} [dB]	3.222	0	0	0	0	0
PHICH						
# of PHICH groups	1	1	1	2	2	3
# of PHICH per group	2	2	2	2	2	2
PHICH BPSK symbol power / E _{RS} [dB]	-3.010	-3.010	-3.010	-3.010	-3.010	-3.010
PHICH group EPRE / E _{RS} [dB]	0	0	0	0	0	0
PDCCH				•		
# of available REGs	23	23	43	90	140	187
# of PDCCH	2	2	2	5	7	10
# of CCEs per PDCCH	1	1	2	2	2	2
# of REGs per CCE	9	9	9	9	9	9
# of REGs allocated to PDCCH	18	18	36	90	126	180
# of dummy REGs added for padding	5	5	7	0	14	7
PDCCH REG EPRE / E _{RS} [dB]	0.792	2.290	1.880	1.065	1.488	1.195
<nil> REG EPRE / E_{RS} [dB]</nil>	-inf	-inf	-inf	-inf	-inf	-inf
PDSCH						
# of QPSK PDSCH PRBs which are boosted	2	6	10	20	30	40
$PRB P_A = E_A / E_{RS} [dB]$	3 (Note 1)	3	3	3	3	3
# of QPSK PDSCH PRBs which are de-boosted	4	9	15	30	45	60
$PRB \; P_{A} = E_{A} / E_{RS} [dB]$	-2.990 (Note 1)	-4.730	-4.730	-4.730	-4.730	-4.730
Note 1: In subframes containing PBCH or s PRB $P_A = E_A/E_{RS} = 0$ [dB]	synchronisation	signal REs,	no PRB boos	ting/deboosti	ing shall be a	pplied, i.e.

Table 6.1.1.2-2: Numbers ($\mathit{n}_{\rm PRB}$) of the boosted PRBs (FDD)

	Subframe 0	Subframe 1	Subframe 2	Subframe 3	Subframe 4	Subframe 5	Subframe 6	Subframe 7	Subframe 8	Subframe 9
1.4 MHz	N.A.	13	13	23	25	N.A.	02	05	25	15
3 MHz	0 1 2 11 12 13	0 4 10 11 12 13	0356 1113	0 1 4 5 7 12	02349 10	1 2 3 11 12 14	4 6 8 11 13 14	2 5 6 12 13 14	03478 11	1 3 4 5 11 12
5 MHz	0 1 3 6 7 8 16 18 20 21	0 1 4 5 9 10 12 17 18 24	0 1 2 12 13 14 19 20 23 24	0 5 8 12 13 15 17 20 21 24	0 4 6 7 12 13 15 16 22 23	0 1 2 3 8 16 18 21 22 24	1 3 5 7 9 10 12 15 21 22	0 1 2 3 7 10 14 18 20 21	1 4 8 9 10 12 15 16 18 20	1 2 3 5 6 9 10 13 16 17
10 MHz	1 2 7 8 9 10 11 16 20 31 32 33 35 36 39 40 42 46 47 48	5 6 7 9 11 15 20 21 22 24 25 27 34 35 36 37 40 44 46 49	3 5 11 12 14 17 18 19 20 22 26 27 28 29 31 34 38 41 42 49	1 2 3 5 8 14 16 22 23 26 28 30 32 34 38 41 42 45 46 47	0 3 6 7 8 9 10 12 13 16 18 21 23 31 33 41 42 45 46 47	0 2 3 4 5 7 9 10 11 12 15 19 20 28 29 30 31 34 36 48	0 1 4 6 8 9 10 16 17 19 20 21 24 29 30 31 35 37 38 47	2 3 4 5 6 9 10 12 16 17 19 22 24 25 26 30 34 37 42 48	7 9 14 15 16 21 22 28 30 31 32 34 35 41 42 43 44 46 48 49	11 13 16 17 18 21 24 27 28 29 30 32 37 38 40 42 45 47 48 49
15 MHz	0 1 2 3 5 7 8 9 12 18 19 20 21 23 24 25 29 30 31 32 33 42 47 48 49 63 65	0 1 3 4 5 6 7 11 18 20 21 24 26 30 31 38 46 47 49 50 51 53 54 57 60 67 68	2 11 12 15 18 21 22 24 25 26 29 32 33 34 42 45 46 47 50 51 52 54 58 59	2 3 4 7 9 11 12 15 17 20 24 27 33 34 35 39 42 43 45 46 48 56 59 60 62 67 7 7 7 7 7	4 5 6 8 13 17 22 25 27 29 31 32 33 34 35 41 44 46 48 50 52 56 59 60 64	0 2 3 4 7 8 18 20 23 24 25 27 29 42 43 45 47 49 50 54 56 60 62 65 66 67 7 27 4 70	2 11 14 15 18 25 26 28 30 31 32 33 36 37 38 39 41 43 45 50 53 54 58 59 20 57 77	3 4 7 12 19 23 24 26 27 28 30 33 34 35 41 42 49 53 54 58 59 60 61 62 65 7 60 70	0 3 8 9 10 13 14 15 17 18 19 22 23 24 25 26 27 32 37 39 47 50 53 56 61	0 3 7 8 11 13 14 16 18 23 25 30 32 35 44 46 47 48 53 55 57 59 61 62 64
20 MHz	68 71 73 0 6 10 13 15 16 20 23 25 28 29 30 31 32 33 39 41 42 44 45 54 56	70 73 74 1 3 7 9 10 13 19 20 21 22 23 25 26 27 30 33 34 35 36 47 49 50	60 64 68 70 72 74 1 2 3 6 8 10 11 15 16 17 19 21 25 26 28 29 32 35 39 41 42 43 44	70 71 73 74 5 7 9 10 12 15 16 21 23 24 27 28 29 30 33 34 35 36 39 47 49 54	67 69 70 71 74 2 3 4 5 6 7 14 17 19 21 22 24 26 37 42 44 47 49 51 56 57 62 63	70 71 72 73 1 2 5 6 8 9 12 13 21 22 25 26 28 32 35 39 40 43 45 46 57 59 61	62 65 67 68 70 71 0 1 2 3 5 8 9 10 12 22 25 26 27 29 31 32 33 36 38 39 43 45 49 53	67 69 70 71 73 0 1 3 4 5 7 11 18 19 20 21 26 27 29 30 31 33 35 39 40 41 43 44	63 69 71 73 74 2 3 4 7 11 13 15 16 24 25 27 29 35 36 40 43 44 45 46 51 52 55	67 68 69 70 71 0 4 7 8 10 11 16 18 22 26 29 32 35 37 43 44 46 47 48 49 53 54
	57 63 66 67 68 76	51 53 55 57 60 61	51 52 54 60 64 69	55 56 57 64 66 70	65 67 70 71 73 76	62 64 66 68 71 73	55 59 62 63 64 71	46 47 50 53 55 56	56 57 63 64 65 68	57 59 60 61 64 66

77 79 82	64 68 76	76 79 81	72 76 77	77 81 83	77 78 84	72 73 75	62 64 66	71 77 78	67 69 70
84 85 88	77 80 83	84 86 88	80 81 86	85 86 87	85 86 93	77 78 81	67 69 70	81 82 83	76 78 81
92 94 95	84 86 87	89 90 93	87 90 91	89 94 95	94 95 96	84 89 97	72 74 92	84 85 86	84 87 89
97 98 99	89 95 99	94 99	92 98 99	97 99	97 99	98	93 98	90 94 98	91 95 96

Frame1	Subframe 0	Subframe 1	Subframe 5	Subframe 6	Subframe 7	Subframe 8	Subframe 9
1.4 MHz	N.A.	N.A.	N.A.	N.A	4 5	25	03
3 MHz	0 1 3 11 12 14	1 2 3 11 12 14	0 1 2 3 1113	1 3 11 12 13 14	1 4 8 10 11 12	16891112	023456
5 MHz	1 2 5 8 17 18 19 21 23 24	1 3 5 6 7 17 19 20 23 24	0 3 4 5 8 17 18 19 21 22	2 3 6 7 8 17 18 19 20 24	1 2 11 13 15 17 18 19 20 21	1 2 4 5 6 7 8 9 10 12	1 3 4 8 10 12 16 19 20 22
10 MHz	2 4 6 7 10 11 13 17 18 19 34 35 37 38 41 42 46 47 48 49	1 3 6 7 9 11 14 15 17 18 19 28 29 30 35 37 38 39 43 44	3 4 5 6 10 11 12 14 16 18 30 34 35 36 37 39 40 41 43 48	2 4 6 7 8 9 10 13 14 16 19 20 21 29 32 34 39 41 44 45	2 4 7 12 14 16 20 21 24 26 28 29 34 41 43 44 45 46 47 48	2 5 8 9 11 12 13 16 18 21 22 23 27 29 30 31 32 33 46 47	1 4 7 11 12 13 14 15 20 21 27 31 34 37 38 41 42 46 48 49
15 MHz	3 5 6 9 10 13 15 17 20 23 25 26 27 28 29 33 44 45 51 53 56 57 58 61 63 66 70 71 73 74	1 5 7 8 9 10 11 13 15 19 21 24 26 42 45 46 51 52 53 55 56 57 58 59 60 61 62 64 65 72	3 4 6 7 9 10 11 13 14 15 16 20 22 24 25 28 31 32 33 43 49 52 55 58 61 62 66 67 70 73	3 4 7 8 12 13 14 16 18 19 20 22 24 27 28 30 32 41 42 43 44 46 49 50 51 65 67 68 69 71	2 6 8 9 10 11 13 16 18 19 21 22 26 30 31 41 45 46 47 48 51 55 57 58 62 63 64 69 73 74	0 2 7 11 13 17 19 20 23 27 28 31 39 40 41 43 45 46 47 48 51 55 57 58 63 65 66 70 71 73	1 2 3 7 8 9 10 12 13 17 19 21 22 23 24 28 30 32 37 40 41 46 48 53 56 58 61 65 69 73
20 MHz	2 4 7 8 12 13 14 18 20 21 23 27 28 31 34 35 37 38 39 44 46 53 56 58 60 68 70 71 74 75 76 78 82 85 87 88 93 95 97 99	4 5 6 7 8 9 10 11 12 14 17 19 20 22 25 27 28 29 32 33 37 38 41 43 53 58 61 65 69 70 73 74 78 79 80 82 83 86 90 97	4 5 9 11 13 14 16 19 22 24 25 27 29 32 33 37 40 42 43 45 46 53 54 57 58 62 66 67 68 69 83 86 88 89 90 91 92 93 95 97	2 3 8 9 10 11 12 14 15 17 18 22 24 26 28 30 35 36 40 41 42 53 55 60 61 62 63 64 65 68 74 77 82 84 85 87 93 97 98 99	0 3 10 13 14 17 23 25 27 28 30 31 36 37 38 40 41 43 49 50 54 55 57 58 60 61 63 64 70 74 76 77 81 84 85 87 88 94 95 98	2 3 4 10 11 12 15 18 21 22 23 26 30 31 32 36 37 39 40 41 42 43 48 50 53 54 56 58 61 64 66 71 72 77 81 82 89 92 98 99	4 9 12 13 17 19 20 21 22 29 31 36 37 39 40 41 42 46 48 49 54 56 57 60 64 66 73 74 75 80 83 86 87 89 90 92 94 96 98 99

Frame2	Subframe 0	Subframe 1	Subframe 5	Subframe 6	Subframe 7	Subframe 8	Subframe 9
1.4 MHz	N.A.	N.A.	N.A.	N.A	4 5	12	13
3 MHz	0 1 2 11 12 13	0 1 2 3 13 14	0 1 2 3 12 14	0 1 2 3 11 13	0 3 4 6 10 12	269111314	1 5 7 9 13 14
5 MHz	1 2 3 8 17 20	12456716	1246816	0356717	2 3 8 10 13 15	04671314	0 2 5 9 14 18
	21 22 23 24	17 22 23	18 21 23 24	19 20 21 24	16 21 23 24	15 16 19 24	19 21 22 23
10 MHz	1456811	0 1 7 15 18 19	12568911	6 7 10 11 15	2 4 10 11 18	689101114	2578914
	12 13 15 17	20 21 29 30	13 14 15 16	18 19 20 21	20 23 24 28	15 16 18 19	16 18 23 30
	20 28 30 31	32 34 35 37	18 20 30 32	28 29 33 35	30 32 37 40	20 21 23 24	32 33 34 37
	32 42 43 46	38 40 42 43	33 40 41 46	36 38 40 41	41 43 44 45	27 28 36 37	41 42 44 45
	48 49	44 47	49	43 44 49	46 47 48	47 49	46 49
15 MHz	3 7 10 11 15	8 9 11 12 14	1 3 9 11 13 17	0 2 4 6 10 11	0135911	0458910	1 5 8 9 10 13
	16 17 23 27	15 17 22 23	21 22 23 24	13 14 15 16	14 15 16 19	12 13 15 20	14 15 20 21
	29 30 31 32	24 27 28 29	25 28 29 46	17 20 22 23	24 25 26 27	22 30 32 33	23 26 27 28
	42 43 48 49	31 41 42 45	48 49 51 52	28 29 43 44	28 31 33 34	35 37 38 42	29 32 33 34
	50 53 54 57	48 51 54 55	53 54 55 57	46 47 51 53	38 40 42 43	44 45 46 47	39 43 44 57
	60 62 64 65	56 62 63 67	61 64 65 67	54 56 59 61	46 48 50 52	48 51 52 55	60 62 64 65
	66 67 69 72	68 70 71 73	68 72 73 74	63 69 71 72	59 61 67 74	59 60 66 69	69 71 72 73
	74	74					
20 MHz	1 4 10 14 15	0135812	02456711	0246711	3567916	1 4 7 10 13 18	0123578
	17 18 19 23	14 15 17 19	12 13 14 16	12 13 17 18	20 21 23 24	19 25 26 27	10 11 15 19
	29 30 31 32	20 22 23 25	19 20 21 27	19 20 27 28	25 26 31 32	28 30 32 35	20 21 24 26
	33 37 38 39	26 28 29 30	30 32 33 35	31 35 37 38	35 37 41 42	37 38 41 46	28 31 32 33
	42 46 55 61	37 38 39 45	37 41 44 46	40 43 45 56	43 44 46 48	47 50 51 52	34 44 45 54
	64 65 66 68	58 59 62 63	53 56 58 60	57 59 63 68	51 54 59 60	53 54 57 60	58 59 61 63
	69 70 72 73	68 71 72 75	61 62 64 65	70 71 77 79	61 62 64 67	62 70 71 73	65 67 69 70
	76 82 83 84	78 82 84 85	67 68 70 73	80 82 85 87	76 77 78 79	78 79 81 83	77 85 88 89
	86 89 90 93	91 92 93 94	79 82 90 92	89 92 95 96	82 84 86 87	84 87 91 95	90 92 94 98
	95 97 99	96 98	98	97 98	88 95	98 99	99

6.1.1.3 E-UTRA Test Model 2 (E-TM2)

This model shall be used for tests on:

- Total power dynamic range (lower OFDM symbol power limit at min power),
 - EVM of single 64QAM PRB allocation (at min power)
 - Frequency error (at min power)

Table 6.1.1.3-1: Physical channel parameters of E-TM2

Parameter	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Reference, Synchronisation Signals						
RS boosting, $P_B = E_B/E_A$	1	1	1	1	1	1
Synchronisation signal EPRE / E _{RS} [dB]	0.000	0.000	0.000	0.000	0.000	0.000
Reserved EPRE / E _{RS} [dB]	-inf	-inf	-inf	-inf	-inf	-inf
PBCH						
PBCH EPRE / E _{RS} [dB]	0.000	0.000	0.000	0.000	0.000	0.000
Reserved EPRE / E _{RS} [dB]	-inf	-inf	-inf	-inf	-inf	-inf
PCFICH	•					
# of symbols used for control channels	2	1	1	1	1	1
PCFICH EPRE / E _{RS} [dB]	0	0	0	0	0	0
PHICH	•					
# of PHICH groups	1	1	1	2	2	3
# of PHICH per group	2	2	2	2	2	2
PHICH BPSK symbol power / E _{RS} [dB]	-3.010	-3.010	-3.010	-3.010	-3.010	-3.010
PHICH group EPRE / E _{RS} [dB]	0	0	0	0	0	0
PDCCH	•					
# of available REGs	23	23	43	90	140	187
# of PDCCH	1	1	1	1	1	1
# of CCEs per PDCCH	1	1	2	2	2	2
# of REGs per CCE	9	9	9	9	9	9
# of REGs allocated to PDCCH	9	9	18	18	18	18
# of <nil> REGs added for padding</nil>	14	14	25	72	122	169
PDCCH REG EPRE / E _{RS} [dB]	0	0	0	0	0	0
<nil> REG EPRE / E_{RS} [dB]</nil>	-inf	-inf	-inf	-inf	-inf	-inf
PDSCH				•		•
# of 64QAM PDSCH PRBs within a slot for which EVM is measured	1	1	1	1	1	1
$PRB P_A = E_A / E_{RS} [dB]$	0	0	0	0	0	0
# of PDSCH PRBs which are not allocated	5	14	24	49	74	99
$PRB P_{A} = E_{A}/E_{RS}[dB]$	-inf	-inf	-inf	-inf	-inf	-inf

Table 6.1.1.3-2: Numbers ($\mathit{n}_{\rm PRB}$) of the allocated PRB (64QAM) (FDD)

	Subframe 0	Subframe 1	Subframe 2	Subframe 3	Subframe 4	Subframe 5	Subframe 6	Subframe 7	Subframe 8	Subframe 9
1.4 MHz	4	1	1	2	5	3	0	0	5	4
3 MHz	13	11	13	5	9	14	6	13	0	1
5 MHz	8	17	21	8	22	2	9	14	0	13
10 MHz	16	36	19	26	42	30	17	48	9	0
15 MHz	32	46	18	72	22	4	31	58	27	3
20 MHz	63	34	44	7	94	2	97	19	56	32

Frame1	Subframe 0	Subframe 1	Subframe 5	Subframe 6	Subframe 7	Subframe 8	Subframe 9
1.4 MHz	4	5	5	2	0	0	3
3 MHz	10	14	12	5	0	1	7
5 MHz	17	24	21	8	1	2	12
10 MHz	35	49	42	17	2	4	25
15 MHz	53	74	63	26	3	6	38
20 MHz	71	99	85	35	4	8	51

Table 6.1.1.3-3: Numbers (n_{PRB}) of the allocated PRB (64QAM) (TDD)

Frame2	Subframe 0	Subframe 1	Subframe 5	Subframe 6	Subframe 7	Subframe 8	Subframe 9
1.4 MHz	4	5	2	1	3	1	4
3 MHz	11	14	5	3	8	3	11
5 MHz	18	23	8	5	13	5	19
10 MHz	37	46	17	10	26	11	38
15 MHz	56	70	25	15	40	17	57
20 MHz	75	93	34	20	53	23	76

6.1.1.3a E-UTRA Test Model 2a (E-TM2a)

This model shall be used for tests on:

- Total power dynamic range (lower OFDM symbol power limit at min power),
 - EVM of single 256QAM PRB allocation (at min power)
 - Frequency error (at min power)

Physical channel parameters and numbers of the allocated PRB are defined in Tables 6.1.1.3-1, 6.1.1.3-2, 6.1.1.3-3, with all 64QAM PDSCH PRBs replaced by 256QAM PDSCH PRBs.

6.1.1.4 E-UTRA Test Model 3.1 (E-TM3.1)

This model shall be used for tests on:

- Output power dynamics
 - Total power dynamic range (upper OFDM symbol power limit at max power with all 64QAM PRBs allocated)
- Transmitted signal quality
 - Frequency error
 - EVM for 64QAM modulation (at max power)

Table 6.1.1.4-1: Physical channel parameters of E-TM3.1

Parameter	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Reference, Synchronisation Signals			•			
RS boosting, $P_B = E_B/E_A$	1	1	1	1	1	1
Synchronisation signal EPRE / E _{RS} [dB]	0.000	0.000	0.000	0.000	0.000	0.000
Reserved EPRE / E _{RS} [dB]	-inf	-inf	-inf	-inf	-inf	-inf
PBCH						
PBCH EPRE / E _{RS} [dB]	0.000	0.000	0.000	0.000	0.000	0.000
Reserved EPRE / E _{RS} [dB]	-inf	-inf	-inf	-inf	-inf	-inf
PCFICH						
# of symbols used for control channels	2	1	1	1	1	1
PCFICH EPRE / E _{RS} [dB]	3.222	0	0	0	0	0
PHICH	·	•	•	•	•	•
# of PHICH groups	1	1	1	2	2	3

# of PHICH per group	2	2	2	2	2	2
PHICH BPSK symbol power / E _{RS} [dB]	-3.010	-3.010	-3.010	-3.010	-3.010	-3.010
PHICH group EPRE / E _{RS} [dB]	0	0	0	0	0	0
PDCCH		•			•	•
# of available REGs	23	23	43	90	140	187
# of PDCCH	2	2	2	5	7	10
# of CCEs per PDCCH	1	1	2	2	2	2
# of REGs per CCE	9	9	9	9	9	9
# of REGs allocated to PDCCH	18	18	36	90	126	180
# of <nil> REGs added for padding</nil>	5	5	7	0	14	7
PDCCH REG EPRE / E _{RS} [dB]	0.792	2.290	1.880	1.065	1.488	1.195
<nil> REG EPRE / E_{RS}[dB]</nil>	-inf	-inf	-inf	-inf	-inf	-inf
PDSCH			•			
# of 64QAM PDSCH PRBs within a slot for which EVM is measured	6	15	25	50	75	100
$PRB \ P_{A} = E_{A} / E_{RS} [dB]$	0	0	0	0	0	0
# of PDSCH PRBs within a slot for which EVM is not measured (used for power balancing only)	0	0	0	0	0	0
$PRB \ P_{A} = E_{A}/E_{RS} [dB]$	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

6.1.1.4a E-UTRA Test Model 3.1a (E-TM3.1a)

This model shall be used for tests on:

- Output power dynamics
 - Total power dynamic range (upper OFDM symbol power limit at max power with all 256QAM PRBs allocated)
- Transmitted signal quality
 - Frequency error
 - EVM for 256QAM modulation (at max power)

Physical channel parameters are defined in Table 6.1.1.4-1, with all 64QAM PDSCH PRBs replaced by 256QAM PDSCH PRBs.

6.1.1.5 E-UTRA Test Model 3.2 (E-TM3.2)

This model shall be used for tests on:

- Transmitted signal quality
 - Frequency error
 - EVM for 16QAM modulation

Table 6.1.1.5-1: Physical channel parameters of E-TM3.2

Parameter	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Reference, Synchronisation Signals						
RS boosting, $P_B = E_B/E_A$	1	1	1	1	1	1
Synchronisation signal EPRE / E _{RS} [dB]	0.000	1.573	2.426	2.426	3.005	2.426
Reserved EPRE / E _{RS} [dB]	-inf	-inf	-inf	-inf	-inf	-inf
PBCH	I					
PBCH EPRE / E _{RS} [dB]	0.000	1.573	2.426	2.426	3.005	2.426
Reserved EPRE / E _{RS} [dB]	-inf	-inf	-inf	-inf	-inf	-inf
PCFICH						•
# of symbols used for control channels	2	1	1	1	1	1

PCFICH EPRE / E _{RS} [dB]	3.222	0	0	0	0	0
PHICH						
# of PHICH groups	1	1	1	2	2	3
# of PHICH per group	2	2	2	2	2	2
PHICH BPSK symbol power / E _{RS} [dB]	-3.010	-3.010	-3.010	-3.010	-3.010	-3.010
PHICH group EPRE / E _{RS} [dB]	0	0	0	0	0	0
PDCCH	1 1					
# of available REGs	23	23	43	90	140	187
# of PDCCH	2	2	2	5	7	10
# of CCEs per PDCCH	1	1	2	2	2	2
# of REGs per CCE	9	9	9	9	9	9
# of REGs allocated to PDCCH	18	18	36	90	126	180
# of <nil> REGs added for padding</nil>	5	5	7	0	14	7
PDCCH REG EPRE / E _{RS} [dB]	0.792	2.290	1.880	1.065	1.488	1.195
<nil> REG EPRE / E_{RS} [dB]</nil>	-inf	-inf	-inf	-inf	-inf	-inf
PDSCH	1 1					
# of 16QAM PDSCH PRBs within a slot for which EVM is measured	4	7	15	30	50	60
$PRB P_A = E_A / E_{RS} [dB]$	-3 (Note 1)	-3	-3	-3	-3	-3
# of QPSK PDSCH PRBs within a slot for which EVM is not measured (used for power balancing only)	2	8	10	20	25	40
$PRB\;P_{A}=E_{A}/E_{RS}[dB]$	3.005 (Note 1)	1.573	2.426	2.426	3.005	2.426

	Subframe	Subframe	Subframe	Subframe	Subframe	Subframe	Subframe	Subframe	Subframe	Subframe
	0	1	2	3	4	5	6	7	8	9
1.4 MHz	1345	1235	0134	1235	0235	0124	0125	0245	1235	0135
3 MHz	0 1 2 3 11 12 13	0 3 4 10 11 12 13	0 2 3 5 6 11 13	0 1 4 5 7 10 12	0 2 3 4 9 10 13	0 1 2 3 11 12 14	4 5 6 8 11 13 14	2 5 6 9 12 13 14	03478 911	1 2 3 4 5 11 12
5 MHz	0 1 3 4 6 7 8 16 17 18 19 20 21 23 24	0 1 2 3 4 5 6 9 10 12 13 17 18 20 24	0 1 2 3 7 8 9 10 12 13 14 19 20 23 24	0 5 6 8 10 11 12 13 15 17 18 20 21 22 24	0 1 2 4 6 7 12 13 14 15 16 17 22 23 24	0 1 2 3 4 6 7 8 16 17 18 21 22 23 24	1 3 4 5 7 9 10 11 12 13 14 15 21 22 24	0 1 2 3 4 7 8 10 13 14 18 19 20 21 24	1 4 8 9 10 11 12 13 15 16 18 20 22 23 24	1 2 3 4 5 6 9 10 11 12 13 16 17 21 23
10 MHz	$\begin{array}{c}1&2&3&4&5\\6&7&8&9&10\\11&15&16\\17&20&21\\28&30&31\\32&33&35\\36&39&40\\42&44&46\\47&48\end{array}$	0 1 2 4 5 6 7 9 10 11 13 15 18 20 21 22 24 25 27 28 29 34 35 36 37 40 43 44 46 49	0 1 3 4 5 6 7 11 12 14 17 18 19 20 21 22 24 25 26 27 28 29 31 32 34 38 41 42 45 49	0 1 2 3 5 6 8 12 14 15 16 17 18 22 23 26 28 29 30 32 34 35 38 39 40 41 42 45 46 47	0 3 6 7 8 9 10 12 13 15 16 17 18 21 23 25 28 31 33 37 38 39 41 42 44 45 46 47 48 49	0 2 3 4 5 7 9 10 11 12 13 14 15 19 20 28 29 30 31 34 36 37 38 39 40 42 44 45 48 49	0 1 3 4 5 6 8 9 10 13 14 16 17 18 19 20 21 23 24 29 30 31 32 35 37 38 39 40 47 48	0 1 2 3 4 5 6 7 9 10 12 14 16 17 18 19 22 24 25 26 27 28 30 31 32 34 37 42 45 48	2 5 7 8 9 10 11 14 15 16 17 21 22 27 28 29 30 31 32 34 35 37 38 41 42 43 44 46 48 49	1 3 6 9 11 13 15 16 17 18 21 24 25 26 27 28 29 30 32 34 37 38 39 40 41 42 45 47 48 49
15 MHz	$\begin{array}{c} 0 \ 1 \ 2 \ 3 \ 5 \\ 6 \ 7 \ 8 \ 9 \ 12 \\ 14 \ 16 \ 17 \\ 18 \ 19 \ 20 \\ 21 \ 23 \ 24 \\ 25 \ 26 \ 28 \\ 29 \ 30 \ 31 \\ 32 \ 33 \ 41 \\ 42 \ 45 \ 47 \\ 48 \ 49 \ 50 \\ 52 \ 53 \ 56 \\ 57 \ 60 \ 62 \\ 63 \ 64 \ 65 \\ 67 \ 68 \ 69 \\ 70 \ 71 \ 72 \\ 73 \end{array}$	$\begin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \\ 5 \ 6 \ 7 \ 8 \ 11 \\ 18 \ 20 \ 21 \\ 24 \ 25 \ 26 \\ 27 \ 29 \ 30 \\ 31 \ 33 \ 36 \\ 37 \ 38 \ 39 \\ 40 \ 43 \ 45 \\ 46 \ 47 \ 48 \\ 49 \ 50 \ 51 \\ 53 \ 54 \ 55 \\ 57 \ 58 \ 59 \\ 60 \ 61 \ 65 \\ 67 \ 68 \ 69 \\ 70 \ 71 \ 73 \\ 74 \end{array}$	$\begin{array}{c}12349\\111213\\141517\\182021\\222425\\262829\\313233\\344042\\434445\\464748\\505152\\545658\\596061\\626364\\687071\\727374\end{array}$	$\begin{array}{c} 2 \ 3 \ 4 \ 6 \ 7 \\ 9 \ 11 \ 12 \\ 14 \ 15 \ 17 \\ 18 \ 20 \ 22 \\ 24 \ 25 \ 27 \\ 28 \ 29 \ 30 \\ 31 \ 33 \ 34 \\ 35 \ 38 \ 39 \\ 40 \ 42 \ 43 \\ 45 \ 46 \ 47 \\ 48 \ 49 \ 55 \\ 56 \ 59 \ 60 \\ 61 \ 62 \ 63 \\ 65 \ 66 \ 67 \\ 68 \ 69 \ 70 \\ 71 \ 73 \ 74 \end{array}$	$\begin{array}{c} 2 \ 4 \ 5 \ 6 \ 8 \\ 10 \ 13 \ 15 \\ 16 \ 17 \ 18 \\ 20 \ 22 \ 24 \\ 25 \ 26 \ 27 \\ 28 \ 29 \ 30 \\ 31 \ 32 \ 33 \\ 34 \ 35 \ 38 \\ 40 \ 41 \ 44 \\ 45 \ 46 \ 47 \\ 48 \ 50 \ 51 \\ 52 \ 53 \ 54 \\ 56 \ 59 \ 60 \\ 63 \ 64 \ 67 \\ 69 \ 70 \ 71 \\ 72 \ 73 \ 74 \end{array}$	$\begin{array}{c} 0\ 2\ 3\ 4\ 5\\ 7\ 8\ 11\ 12\\ 14\ 16\ 18\\ 20\ 22\ 23\\ 24\ 25\ 27\\ 28\ 29\ 30\\ 31\ 33\ 42\\ 43\ 45\ 46\\ 47\ 48\ 49\\ 50\ 51\ 53\\ 54\ 56\ 58\\ 60\ 61\ 62\\ 63\ 64\ 65\\ 66\ 67\ 68\\ 69\ 70\ 71\\ 72\ 73\\ \end{array}$	$\begin{array}{c} 0 \ 1 \ 2 \ 3 \ 9 \\ 11 \ 12 \ 14 \\ 15 \ 17 \ 18 \\ 20 \ 23 \ 25 \\ 26 \ 28 \ 29 \\ 30 \ 31 \ 32 \\ 33 \ 36 \ 37 \\ 38 \ 39 \ 41 \\ 42 \ 43 \ 45 \\ 46 \ 50 \ 52 \\ 53 \ 54 \ 57 \\ 58 \ 59 \ 60 \\ 61 \ 62 \ 63 \\ 64 \ 65 \ 67 \\ 68 \ 70 \ 71 \\ 72 \ 73 \ 74 \end{array}$	$\begin{array}{c} 0 \ 1 \ 3 \ 4 \ 5 \\ 6 \ 7 \ 8 \ 11 \\ 12 \ 14 \ 19 \\ 20 \ 21 \ 23 \\ 24 \ 26 \ 27 \\ 28 \ 30 \ 31 \\ 33 \ 34 \ 35 \\ 38 \ 40 \ 41 \\ 42 \ 44 \ 45 \\ 46 \ 49 \ 51 \\ 52 \ 53 \ 54 \\ 55 \ 58 \ 59 \\ 60 \ 61 \ 62 \\ 63 \ 65 \ 67 \\ 69 \ 70 \ 71 \\ 72 \ 73 \end{array}$	$\begin{array}{c} 0 \ 1 \ 2 \ 3 \ 7 \\ 8 \ 9 \ 10 \ 12 \\ 13 \ 14 \ 15 \\ 17 \ 18 \ 19 \\ 21 \ 22 \ 23 \\ 24 \ 25 \ 26 \\ 27 \ 28 \ 29 \\ 32 \ 33 \ 34 \\ 36 \ 37 \ 39 \\ 40 \ 43 \ 46 \\ 47 \ 48 \ 49 \\ 50 \ 53 \ 54 \\ 56 \ 61 \ 62 \\ 63 \ 66 \ 68 \\ 69 \ 71 \ 72 \\ 73 \ 74 \end{array}$	$\begin{array}{c} 0 & 1 & 3 & 7 & 8 \\ 11 & 13 & 14 \\ 16 & 18 & 19 \\ 20 & 21 & 22 \\ 23 & 25 & 27 \\ 28 & 29 & 30 \\ 32 & 34 & 35 \\ 36 & 40 & 41 \\ 42 & 43 & 44 \\ 45 & 46 & 47 \\ 48 & 50 & 51 \\ 53 & 54 & 55 \\ 57 & 59 & 61 \\ 62 & 63 & 64 \\ 66 & 67 & 68 \\ 69 & 70 & 71 \\ \end{array}$

20	01467	13567	01236	5679	02345	12568	01235	01345	23457	03467
MHz	8 9 10 11	9 10 13	8 10 11	10 12 14	671112	9 11 12	8 9 10 12	7 8 10 11	9 11 13	8 10 11
	13 14 15	17 19 20	15 16 17	15 16 17	14 15 17	13 15 21	13 14 16	15 18 19	15 16 17	13 16 18
	16 20 21	21 22 23	19 21 22	21 22 23	19 21 22	22 25 26	22 25 26	20 21 26	21 23 24	21 22 23
	22 23 25	24 25 26	23 25 26	24 27 28	24 26 32	27 28 29	27 28 29	27 29 30	25 27 28	25 26 28
	26 28 29	27 28 30	28 29 30	29 30 31	36 37 40	30 31 32	31 32 33	31 33 35	29 31 33	29 32 35
	30 31 32	32 33 34	32 33 35	33 34 35	42 43 44	34 35 38	34 36 37	37 38 39	35 36 40	36 37 38
	33 34 36	35 36 39	38 39 40	36 37 39	47 48 49	39 40 41	38 39 43	40 41 43	42 43 44	43 44 46
	39 41 42	41 47 48	41 42 43	41 44 45	50 51 54	43 44 45	44 45 46	44 45 46	45 46 48	47 48 49
	44 45 54	49 50 51	44 46 49	47 49 50	56 57 60	46 53 57	48 49 52	47 48 49	49 51 52	53 54 57
	56 57 58	53 54 55	51 52 53	53 54 55	62 63 65	58 59 61	53 55 59	50 52 53	53 54 55	58 59 60
	60 61 63	57 58 59	54 57 59	56 57 59	66 67 70	62 63 64	61 62 63	55 56 58	56 57 59	61 64 66
	66 67 68	60 61 64	60 62 63	64 65 66	71 73 76	65 66 68	64 70 71	60 62 64	61 63 64	67 68 69
	72 75 76	65 67 68	64 65 67	68 70 72	77 78 79	69 71 72	72 73 74	65 66 67	65 68 71	70 72 76
	77 79 81	75 76 77	69 71 72	75 76 77	81 82 83	73 75 77	75 77 78	69 70 71	76 77 78	77 78 80
	82 84 85	79 80 81	73 76 79	80 81 84	84 85 86	78 80 82	80 81 82	72 73 74	81 82 83	81 82 83
	87 88 91	83 84 86	81 84 86	85 86 87	87 89 91	83 84 85	84 86 89	81 83 84	84 85 86	84 86 87
	92 94 95	87 89 90	88 89 90	90 91 92	94 95 96	86 93 94	90 91 93	86 92 93	87 90 91	88 89 91
	97 98 99	91 93 95	92 93 94	94 95 97	97 98 99	95 96 97	97 98 99	94 96 98	93 94 98	92 94 95
		99	99	98 99		99			99	96

Table 6.1.1.5-3: Numbers ($\mathit{n}_{\rm PRB}$) of the 16QAM PRBs (TDD)

Frame1	Subframe 0	Subframe 1	Subframe 5	Subframe 6	Subframe 7	Subframe 8	Subframe 9
1.4 MHz	0345	1234	0124	0134	0245	2345	1245
3 MHz	0 1 2 3 11 12	0 1 2 3 11 12	0 1 2 3 11 12	0 1 2 3 11 12	1 2 7 8 10 13	2346813	0368910
	14	13	14	13	14	14	14
5 MHz	12345678	02345678	12345678	12345678	1246789	02356710	0234678
	17 18 19 20	17 18 19 20	16 17 18 19	16 17 20 21	11 14 15 16	13 15 16 17	13 14 15 16
	21 23 24	21 22 24	20 21 22	22 23 24	18 21 23 24	19 20 21 24	19 21 23 24
10 MHz	1234679	23456789	2456789	14567811	0125678	24567910	25678910
	10 11 13 14	10 11 12 13	11 12 13 14	12 13 14 15	11 13 14 15	11 15 18 19	11 14 15 16
	15 17 18 19	14 16 17 18	16 18 20 21	17 19 20 21	16 18 20 21	20 21 24 25	18 19 20 21
	28 29 30 34	19 21 30 32	28 29 30 31	28 29 30 31	24 25 27 30	26 28 29 30	23 27 28 30
	35 37 38 39	34 35 36 37	32 33 34 41	32 34 37 38	32 34 35 37	32 33 35 36	32 33 34 37
	41 42 44 46	39 40 41 43	43 44 45 46	41 42 44 46	38 40 41 43	38 40 41 43	41 42 44 45
	47 48 49	45 48	47 48 49	47 48 49	46 47 49	44 48 49	46 47 49
15 MHz	13456789	2346789	01236789	37891011	0123469	0134589	1345789
	10 11 13 15	10 11 12 13	10 11 12 13	12 13 14 15	10 11 13 14	10 11 12 13	10 12 13 14
	16 17 19 20	14 15 16 18	16 17 18 19	16 17 22 23	15 16 17 20	14 15 16 19	15 16 17 19
	21 22 23 24	19 20 22 24	20 21 22 23	24 27 28 29	21 22 23 24	20 22 24 25	20 21 23 26
	25 26 27 28	25 27 28 30	24 26 27 28	30 31 32 41	25 28 29 34	26 27 28 31	27 28 29 30
	29 33 42 44	31 32 41 42	30 31 32 41	42 43 45 46	37 43 44 46	32 33 34 35	31 32 33 34
	45 46 51 52	43 44 45 46	43 45 46 47	48 49 50 53	47 48 49 51	36 37 38 40	36 37 38 39
	53 55 56 57	48 49 50 51	48 51 53 55	54 55 56 57	52 53 54 55	42 43 44 45	42 43 44 45
	58 59 60 61	52 55 58 61	56 57 58 61	58 60 61 62	57 59 61 62	46 47 48 50	46 52 53 57
	62 63 64 65	62 63 65 66	62 63 64 65	63 64 65 66	63 64 65 67	51 52 55 56	58 59 60 62
	66 70 71 72	67 68 69 70	66 69 70 71	67 68 69 70	68 69 70 71	59 60 61 66	63 64 65 69
	73 74	71 73 74	73 74	71 72 73 74	72 73 74	67 69 74	71 72 73
20 MHz	2456789	2458910	0234910	1 4 9 10 12 13	0134578	02456711	1345679
	10 11 12 13	11 12 13 14	11 12 13 14	14 15 17 18	12 13 14 15	12 13 14 16	10 13 16 18
	14 17 18 19	16 17 18 19	15 17 18 21	19 20 21 22	17 19 20 22	17 18 19 20	20 21 24 25
	20 21 22 23	22 24 25 26	22 23 24 25	23 29 30 31	23 25 26 28	21 23 27 28	26 27 28 30
	25 27 28 29	27 29 30 32	26 27 28 30	32 33 36 37	30 31 33 35	30 31 32 35	31 32 35 37
	31 32 33 34	33 36 37 38	31 32 35 36	39 40 41 42	37 38 39 41	37 38 40 43	38 41 42 43
	35 37 38 39	40 41 42 43	37 38 40 41	43 46 53 54	45 48 49 50	44 45 46 47	44 46 47 48
	43 44 46 53	45 46 53 54	42 43 53 54	55 56 57 58	51 58 59 62	50 51 53 56	50 51 52 53
	56 58 60 61	55 57 58 60	55 57 60 61	60 61 64 66	63 65 67 68 69 70 71 72	57 58 59 60	54 57 59 60 61 62 64 67
	68 69 70 71	62 64 65 66	63 64 65 66 68 70 74 76	68 69 71 72	73 75 76 78	61 62 63 64 65 68 70 71	61 62 64 67 70 71 73 76
	73 74 75 76 78 79 80 82	67 68 69 74	68 70 74 76	73 74 75 80 82 83 84 86	73 75 76 78 82 84 85 86	73 77 79 80	70 71 73 76 77 78 79 81
	83 85 86 87	78 82 83 84 86 88 89 90	77 81 82 84 85 87 88 89	82 83 84 86 87 89 90 92	82 84 85 86 89 90 91 92	82 85 87 89	82 84 86 87
	88 93 95 97	91 92 93 95	83 87 88 89 93 94 95 97	87 89 90 92 93 94 95 96	93 94 96 97	82 85 87 89 92 95 96 97	88 91 95 98
	99	97 99	93 94 95 97 98 99	93 94 95 96 98 99	98 98	92 95 96 97 98	99
	55	51 99	20 22	20 22	30	30	55

Frame2	Subframe 0	Subframe 1	Subframe 5	Subframe 6	Subframe 7	Subframe 8	Subframe 9
1.4 MHz	0245	1245	0 1 3 4	0235	0124	1234	1235
3 MHz	0 1 2 3 12 13 14	0 1 2 3 11 12 13	1 2 3 11 12 13 14	0 1 2 11 12 13 14	2 4 7 8 9 10 11	0 1 3 4 5 13 14	0 4 6 8 9 11 12

5 MHz	0234567	01234578	1234578	0134578	01367912	2345679	01345810
	16 17 18 19	16 17 18 19	16 17 18 20	16 17 18 19	14 17 18 20	11 12 14 15	11 12 14 16
	20 21 22 23	20 23 24	21 22 23 24	20 21 22 24	21 22 23 24	17 18 21 24	17 20 22 24
10 MHz	0126789	02346789	01235678	12345689	1235613	0125912	01234578
	11 13 14 15	10 11 12 15	9 10 13 14 15	10 11 12 13	14 15 16 17	13 14 16 17	9 10 12 13 14
	16 19 29 30	16 17 18 19	16 18 20 21	15 16 17 18	19 20 23 25	18 22 25 26	15 16 18 22
	32 34 35 36	20 29 31 33	28 29 30 31	19 21 30 35	26 27 29 30	27 28 29 30	27 28 29 30
	37 38 39 41	34 35 36 37	32 34 35 39	38 39 40 41	31 32 33 35	31 33 35 36	31 32 33 34
	42 43 44 45	42 45 46 47	40 41 42 44	42 43 46 47	38 39 40 41	38 39 41 42	42 43 45 46
	47 48 49	48 49	46	48 49	43 44 47 49	44 45 47 49	49
15 MHz	01234567	12345678	01245678	01234567	1345679	13467810	01256710
	8 10 11 14 15	9 10 11 13 14	9 10 11 12 13	8 9 10 11 13	10 11 12 14	11 13 14 15	11 12 16 17
	16 18 19 20	15 16 18 20	14 15 16 18	14 15 16 17	15 16 17 18	21 22 23 24	18 19 22 23
	21 23 24 25	21 22 23 27	20 22 24 25	18 19 21 23	19 20 21 22	26 27 28 29	25 27 28 29
	26 27 28 31	28 29 30 33	26 29 32 33	24 26 29 30	24 26 29 30	30 31 32 35	30 31 33 34
	32 33 41 43	42 43 45 46	44 45 46 49	33 41 42 45	32 33 34 35	39 40 43 44	35 36 37 39
	44 45 46 47	47 49 50 51	50 51 52 55	46 47 49 50	36 38 39 41	45 46 47 48	40 43 45 46
	48 50 52 53	54 55 56 58	56 57 58 59	51 53 54 55	42 44 45 47	49 50 51 52	47 48 49 50
	55 57 58 59	59 60 61 64	60 61 63 64	56 57 58 60	48 49 50 52	53 54 55 56	52 54 55 56
	61 63 65 66	65 66 68 69	65 66 68 69	62 63 66 67	55 56 57 61	57 58 59 60	58 61 62 63
	67 68 69 71	70 71 72 73	70 71 72 73	69 71 72 73	62 63 69 70	63 64 65 66	64 66 67 68
	74	74	74	74	71 73 74	68 71 74	69 71 73
20 MHz	01234578	02347810	0124567	01234678	0124689	0123789	3467910
	9 10 11 15 17	11 12 13 14	10 11 12 13	9 12 13 15 16	10 11 14 15	13 15 16 21	11 12 13 14
	19 20 21 24	15 16 17 18	14 15 16 18	18 19 20 22	18 19 20 21	23 24 25 29	15 17 19 22
	26 27 28 29	19 20 22 24	19 20 21 23	24 25 27 28	25 29 31 32	30 31 33 34	23 25 26 27
	31 32 33 34	25 27 30 35	24 25 29 32	29 30 32 35	34 36 37 38	36 37 38 39	33 34 37 39
	36 37 44 45	37 39 41 42	33 34 40 42	39 40 42 43	40 41 42 47	40 41 42 44	40 41 43 45
	54 56 57 58	44 53 56 57	43 44 45 46	44 57 59 60	52 53 54 57	45 46 47 48	46 47 48 49
	59 60 61 63	59 61 62 63	53 54 55 57	61 63 64 65	58 59 60 62	49 52 53 57	50 53 55 56
	65 67 68 69	66 67 69 70	59 60 61 62	66 67 68 69	63 64 65 67	60 62 63 64	58 60 61 62
	70 73 77 79	73 74 75 76	63 67 68 71	70 72 73 74	68 69 70 71	65 66 69 72	63 65 69 71
	83 85 86 87	77 78 79 80	72 73 75 77	75 76 81 82	73 74 75 76	73 74 75 77	72 73 74 76
	88 89 90 91	81 82 84 85	81 82 84 85	83 84 88 89	77 78 79 80	81 82 83 84	77 78 79 80
	92 93 94 95	86 88 89 90	87 91 92 93	90 92 94 95	84 85 86 87	86 88 89 90	82 83 85 87
	96 98 99	91 92 94 96	95 96 97 98	97 98 99	88 90 92 95	91 92 93 95	91 92 94 95 96 99
		98	99		99	97	96 99

6.1.1.6 E-UTRA Test Model 3.3 (E-TM3.3)

This model shall be used for tests on:

- Transmitted signal quality
 - Frequency error
 - EVM for QPSK modulation

Table 6.1.1.6-1: Physical channel parameters of E-TM3.3

Parameter	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Reference, Synchronisation Signals	ł					
RS boosting, $P_B = E_B / E_A$	1	1	1	1	1	1
Synchronisation signal EPRE / E _{RS} [dB]	0.000	2.189	2.580	2.427	2.477	2.427
Reserved EPRE / E _{RS} [dB]	-inf	-inf	-inf	-inf	-inf	-inf
PBCH	ł			1		
PBCH EPRE / E _{RS} [dB]	0.000	2.189	2.580	2.427	2.477	2.427
Reserved EPRE / E _{RS} [dB]	-inf	-inf	-inf	-inf	-inf	-inf
PCFICH	•			1		
# of symbols used for control channels	2	1	1	1	1	1
PCFICH EPRE / E _{RS} [dB]	3.222	0	0	0	0	0
PHICH	•			1		
# of PHICH groups	1	1	1	2	2	3
# of PHICH per group	2	2	2	2	2	2
PHICH BPSK symbol power / E _{RS} [dB]	-3.010	-3.010	-3.010	-3.010	-3.010	-3.010
PHICH group EPRE / E _{RS} [dB]	0	0	0	0	0	0

PDCCH						
# of available REGs	23	23	43	90	140	187
# of PDCCH	2	2	2	5	7	10
# of CCEs per PDCCH	1	1	2	2	2	2
# of REGs per CCE	9	9	9	9	9	9
# of REGs allocated to PDCCH	18	18	36	90	126	180
# of <nil> REGs added for padding</nil>	5	5	7	0	14	7
PDCCH REG EPRE / E _{RS} [dB]	0.792	2.290	1.880	1.065	1.488	1.195
<nil> REG EPRE / E_{RS} [dB]</nil>	-inf	-inf	-inf	-inf	-inf	-inf
PDSCH						
# of QPSK PDSCH PRBs within a slot for which EVM is measured	3	7	13	25	38	50
$PRB P_A = E_A / E_{RS} [dB]$	-6 (Note 1)	-6	-6	-6	-6	-6
# of 16QAM PDSCH PRBs within a slot for which EVM is not measured (used for power balancing only)	3	8	12	25	37	50
$PRB\;P_{A}=E_{A}/E_{RS}[dB]$	2.427 (Note 1)	2.189	2.580	2.427	2.477	2.427
Note 1: In subframes containing PBCH or syn PRB PA = EA/ERS = 0 [dB]	chronisation sig	gnal REs, no	PRB boostin	lg/deboosting	g shall be app	blied, i.e

Table 6.1.1.6-2: Numbers ($\mathit{n}_{\rm PRB}$) of the QPSK PRBs (FDD)

	Subframe	Subframe	Subframe	Subframe	Subframe	Subframe	Subframe	Subframe	Subframe	Subframe
	0	1	2	3	4	5	6	7	8	9
1.4 MHz	235	123	013	123	235	125	025	025	125	135
3 MHz	0 1 2 3 11 12 13	0 3 4 10 11 12 13	02356 1113	0 1 4 5 7 10 12	0 2 3 4 9 10 13	0 1 2 3 11 12 14	4 5 6 8 11 13 14	2 5 6 9 12 13 14	03478 911	1 2 3 4 5 11 12
5 MHz	0 1 3 6 7 8 16 17 18 20 21 23 24	0 1 2 4 5 6 9 10 12 17 18 20 24	0 1 2 3 9 10 12 13 14 19 20 23 24	0 5 6 8 10 12 13 15 17 18 20 21 24	0 2 4 6 7 12 13 15 16 17 22 23 24	0 1 2 3 4 6 7 8 16 18 21 22 24	1 3 4 5 7 9 10 11 12 15 21 22 24	0 1 2 3 4 7 10 14 18 19 20 21 24	1 4 8 9 10 11 12 13 15 16 18 20 23	1 2 3 4 5 6 9 10 11 13 16 17 23
10 MHz	1 2 3 5 6 7 8 9 10 11 15 16 20 28 31 32 33 35 36 39 40 42 46 47 48	1 2 4 5 6 7 9 11 15 18 20 21 22 24 25 27 29 34 35 36 37 40 44 46 49	0 3 5 6 11 12 14 17 18 19 20 21 22 24 25 26 27 28 29 31 34 38 41 42 49	0 1 2 3 5 6 8 14 16 18 22 23 26 28 30 32 34 38 39 40 41 42 45 46 47	0 3 6 7 8 9 10 12 13 16 17 18 21 23 25 31 33 37 41 42 45 46 47 48 49	0 2 3 4 5 7 9 10 11 12 13 15 19 20 28 29 30 31 34 36 37 42 44 48 49	0 1 4 5 6 8 9 10 13 16 17 18 19 20 21 24 29 30 31 32 35 37 38 39 47	0 2 3 4 5 6 7 9 10 12 16 17 18 19 22 24 25 26 30 31 34 37 42 45 48	5789 141516 212227 283031 323435 373841 424344 464849	3 9 11 13 16 17 18 21 24 27 28 29 30 32 34 37 38 39 40 41 42 45 47 48 49
15 MHz	0 1 2 3 5 6 7 8 9 12 16 17 18 19 20 21 23 24 25 28 29 30 31 32 33 42 47 48 49 53 60 63 65 67 68 70 71 73	$\begin{array}{c} 0 \ 1 \ 3 \ 4 \ 5 \\ 6 \ 7 \ 8 \ 11 \\ 18 \ 20 \ 21 \\ 24 \ 25 \ 26 \\ 27 \ 29 \ 30 \\ 31 \ 38 \ 46 \\ 47 \ 49 \ 50 \\ 51 \ 53 \ 54 \\ 55 \ 57 \ 59 \\ 60 \ 61 \ 67 \\ 68 \ 69 \ 70 \\ 73 \ 74 \end{array}$	2 11 12 13 15 17 18 21 22 24 25 26 29 31 32 33 34 40 42 45 46 47 50 51 52 54 58 59 60 61 62 63 64 68 70 71 72 74	2 3 4 6 7 9 11 12 15 17 20 24 27 30 33 34 35 38 39 42 43 45 46 48 49 55 56 59 60 61 62 65 67 69 70 71 73 74	4 5 6 8 10 13 17 22 25 26 27 28 29 30 31 32 33 34 35 38 41 44 46 48 50 52 53 54 56 59 60 64 67 69 70 71 73 74	$\begin{array}{c} 0 \ 2 \ 3 \ 4 \ 7 \\ 8 \ 11 \ 14 \\ 18 \ 20 \ 23 \\ 24 \ 25 \ 27 \\ 29 \ 42 \ 43 \\ 45 \ 46 \ 47 \\ 48 \ 49 \ 50 \\ 51 \ 54 \ 56 \\ 60 \ 62 \ 63 \\ 65 \ 66 \ 67 \\ 68 \ 69 \ 70 \\ 71 \ 72 \ 73 \end{array}$	$\begin{array}{c} 1 \ 2 \ 9 \ 11 \\ 14 \ 15 \ 18 \\ 25 \ 26 \ 28 \\ 29 \ 30 \ 31 \\ 32 \ 33 \ 36 \\ 37 \ 38 \ 39 \\ 41 \ 43 \ 45 \\ 46 \ 50 \ 53 \\ 54 \ 58 \ 59 \\ 60 \ 62 \ 63 \\ 65 \ 67 \ 68 \\ 70 \ 71 \ 72 \\ 73 \end{array}$	$\begin{array}{r} 3 \ 4 \ 6 \ 7 \ 8 \\ 11 \ 12 \ 19 \\ 20 \ 23 \ 24 \\ 26 \ 27 \ 28 \\ 30 \ 33 \ 34 \\ 35 \ 40 \ 41 \\ 42 \ 46 \ 49 \\ 51 \ 53 \ 54 \\ 58 \ 59 \ 60 \\ 61 \ 62 \ 65 \\ 67 \ 69 \ 70 \\ 71 \ 72 \ 73 \end{array}$	0 1 2 3 7 8 9 10 13 14 15 17 18 19 22 23 24 25 26 27 28 32 36 37 39 46 47 50 53 56 61 62 63 68 69 71 73 74	0 3 7 8 11 13 14 16 18 19 23 25 27 28 29 30 32 35 41 42 44 46 47 48 50 53 55 57 59 61 62 64 66 67 68 69 70 71
20 MHz	0 1 4 6 10 13 14 15 16 20 22 23 25 26 28 29 30 31 32 33 36 39 41 42 44 45 54 56 57 60 63 66 67 68 72 76 77 79 82 84 85 87 88	$\begin{array}{c} 1 & 3 & 7 & 9 \\ 10 & 13 & 19 \\ 20 & 21 & 22 \\ 23 & 24 & 25 \\ 26 & 27 & 30 \\ 33 & 34 & 35 \\ 36 & 47 & 48 \\ 49 & 50 & 51 \\ 53 & 54 & 55 \\ 57 & 59 & 60 \\ 61 & 64 & 65 \\ 67 & 68 & 75 \\ 76 & 77 & 80 \\ 81 & 83 & 84 \\ \end{array}$	$\begin{array}{c} 12368\\ 101115\\ 161719\\ 212526\\ 282930\\ 32335\\ 383940\\ 414243\\ 444649\\ 515254\\ 606263\\ 646569\\ 727679\\ 818486 \end{array}$	$\begin{array}{c} 5 7 9 10 \\ 12 14 15 \\ 16 21 22 \\ 23 24 27 \\ 28 29 30 \\ 33 34 35 \\ 36 37 39 \\ 41 44 45 \\ 47 49 54 \\ 55 56 57 \\ 64 66 68 \\ 70 72 76 \\ 77 80 81 \\ 85 86 87 \end{array}$	$\begin{array}{c} 2 \ 3 \ 4 \ 5 \ 6 \\ 7 \ 14 \ 15 \\ 17 \ 19 \ 21 \\ 22 \ 24 \ 26 \\ 37 \ 40 \ 42 \\ 43 \ 44 \ 47 \\ 49 \ 51 \ 54 \\ 56 \ 57 \ 60 \\ 62 \ 63 \ 65 \\ 66 \ 67 \ 70 \\ 71 \ 73 \ 76 \\ 77 \ 78 \ 81 \\ 82 \ 83 \ 84 \\ 85 \ 86 \ 87 \end{array}$	$\begin{array}{c} 1\ 2\ 5\ 6\ 8\\ 9\ 12\ 13\\ 21\ 22\ 25\\ 26\ 27\ 28\\ 29\ 31\ 32\\ 34\ 35\ 39\\ 40\ 43\ 45\\ 46\ 53\ 57\\ 59\ 61\ 62\\ 63\ 69\ 71\\ 73\ 75\ 77\\ 78\ 82\ 83\\ 84\ 85\ 86\\ \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 5 \\ 9 \\ 10 \\ 12 \\ 13 \\ 22 \\ 25 \\ 26 \\ 27 \\ 29 \\ 31 \\ 32 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33$	0 1 3 4 5 7 10 11 15 18 19 20 21 26 27 29 30 31 33 35 39 40 41 43 44 46 47 49 50 53 55 56 62 64 65 66 67 69 70 71 72 74 83 84	2 3 4 7 9 11 13 15 16 24 25 27 29 31 33 35 36 40 43 44 45 46 49 51 52 53 54 55 56 57 59 63 64 65 68 71 77 78 81 82 83 84 85 86	$\begin{array}{c} 0 & 4 & 6 & 7 & 8 \\ 10 & 11 & 13 \\ 16 & 18 & 21 \\ 22 & 23 & 26 \\ 29 & 32 & 35 \\ 36 & 37 & 43 \\ 44 & 46 & 47 \\ 48 & 49 & 53 \\ 54 & 57 & 59 \\ 60 & 61 & 64 \\ 66 & 67 & 68 \\ 69 & 70 & 72 \\ 76 & 78 & 80 \\ 81 & 82 & 84 \\ \end{array}$

91 92 94	86 87 89	88 89 90	90 91 92	89 94 95	93 94 95	91 93 97	86 92 93	90 91 93	87 89 91
95 97 98	90 93 95	93 94 99	94 95 98	96 97 99	96 97 99	98 99	94 96 98	94 98 99	92 95 96
99	99		99						

Frame1	Subframe 0	Subframe 1	Subframe 5	Subframe 6	Subframe 7	Subframe 8	Subframe 9
1.4 MHz	134	145	012	024	245	034	125
3 MHz	0 1 2 3 11 12 14	0 1 2 3 11 12 13	0 1 2 3 11 12 14	0 1 2 3 11 12 13	1 2 7 8 10 13 14	2 3 4 6 8 13 14	0368910 14
5 MHz	1 2 3 5 6 8 17 18 19 20 21 23 24	0 1 2 3 4 5 7 8 17 18 19 20 22	1 2 3 5 6 7 8 17 18 19 20 21 24	1 2 3 4 5 6 8 16 17 19 20 22 23	1 2 3 8 12 13 14 17 20 21 22 23 24	1 4 5 6 7 10 11 13 14 15 16 22 23	1 2 4 6 7 8 9 14 16 18 21 23 24
10 MHz	2 3 4 6 7 10 11 13 15 17 18 19 29 30 34 35 37 38 39 41 42 46 47 48 49	1 3 4 5 6 7 9 10 12 14 16 17 28 30 34 35 36 37 38 39 40 41 43 44 48	2 3 4 6 7 8 9 10 11 13 14 16 18 19 20 21 29 32 34 39 41 43 44 45 46	2 5 8 9 11 12 13 14 16 18 20 21 28 29 30 31 32 33 34 42 44 45 46 47 49	1 4 5 6 7 11 12 13 14 15 17 20 21 26 27 31 32 34 37 38 41 42 46 48 49	0 1 5 6 7 8 11 12 13 15 19 20 26 28 29 30 31 32 37 38 42 43 44 47 49	1 2 5 6 8 11 13 14 15 16 18 20 21 24 25 27 30 32 34 35 37 40 43 46 47
15 MHz	$\begin{array}{c}1&3&5&6&9&10\\11&13&15&17\\20&21&23&24\\25&26&27&28\\29&33&42&44\\45&51&52&53\\56&57&58&61\\62&63&65&66\\70&71&73&74\end{array}$	$\begin{array}{r} 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \\ 10 \ 13 \ 14 \ 15 \\ 16 \ 19 \ 20 \ 21 \\ 22 \ 24 \ 25 \ 28 \\ 31 \ 32 \ 33 \ 43 \\ 45 \ 46 \ 49 \ 51 \\ 52 \ 55 \ 58 \ 59 \\ 60 \ 61 \ 62 \ 64 \\ 66 \ 67 \ 72 \end{array}$	3 4 7 8 10 11 12 13 14 16 18 19 20 22 24 25 27 28 30 32 41 42 43 44 45 46 48 50 51 62 65 67 68 69 70 71 73 74	2 6 7 8 9 10 11 13 16 17 18 19 20 21 22 23 26 30 31 41 43 45 46 47 48 51 55 75 8 62 63 64 65 69 70 71 73 74	0 1 2 3 7 8 9 10 11 12 17 19 21 22 23 24 27 28 30 31 32 37 40 41 45 48 51 53 55 56 57 58 61 63 65 66 70 73	3 7 10 11 13 15 16 17 23 27 29 30 31 32 35 36 37 40 42 43 45 46 48 49 50 53 54 57 60 62 64 65 66 67 68 69 72 74	1 3 8 9 11 12 13 14 15 17 22 23 24 25 28 29 30 31 34 37 40 41 42 46 48 49 51 54 55 56 61 62 63 67 70 71 73 74
20 MHz	$\begin{array}{c} 2 \ 4 \ 7 \ 8 \ 9 \ 10 \\ 11 \ 12 \ 13 \ 14 \\ 18 \ 20 \ 21 \ 23 \\ 25 \ 27 \ 28 \ 31 \\ 32 \ 34 \ 35 \ 37 \\ 38 \ 39 \ 44 \ 46 \\ 53 \ 56 \ 58 \ 60 \\ 61 \ 68 \ 69 \ 70 \\ 71 \ 74 \ 75 \ 76 \\ 78 \ 79 \ 80 \ 82 \\ 83 \ 85 \ 87 \ 88 \\ 93 \ 95 \ 97 \ 99 \end{array}$	$\begin{array}{c} 4\ 5\ 6\ 7\ 8\ 9\ 11\\ 12\ 13\ 14\ 16\\ 17\ 19\ 20\ 22\\ 25\ 27\ 29\ 33\\ 37\ 38\ 40\ 41\\ 42\ 43\ 44\ 45\\ 53\ 54\ 57\ 58\\ 61\ 62\ 65\ 67\\ 68\ 70\ 73\ 78\\ 80\ 82\ 83\ 86\\ 88\ 89\ 90\ 91\\ 93\ 95\ 97\\ \end{array}$	$\begin{array}{c} 2\ 3\ 4\ 5\ 8\ 9\ 10\\ 11\ 12\ 14\ 15\\ 17\ 18\ 19\ 22\\ 24\ 26\ 27\ 28\\ 30\ 32\ 35\ 36\\ 37\ 40\ 41\ 42\\ 46\ 53\ 55\ 58\\ 60\ 61\ 62\ 63\\ 64\ 65\ 66\ 68\\ 74\ 77\ 82\ 84\\ 85\ 87\ 92\ 93\\ 97\ 98\ 99\end{array}$	0 2 3 4 10 11 12 13 14 17 18 22 23 25 26 27 28 30 31 32 36 37 38 40 41 43 54 55 57 58 60 61 63 64 66 68 70 74 76 77 81 82 84 85 87 88 92 94 95 98	4 9 12 13 15 17 19 20 21 22 29 30 31 36 37 39 40 41 42 43 46 48 49 50 53 54 56 57 58 60 64 66 71 72 73 74 75 80 82 83 86 87 89 90 92 94 95 96 98 99	0 1 4 10 12 14 15 17 18 19 23 28 29 30 31 32 33 37 38 39 42 46 55 61 64 65 66 68 69 70 71 72 73 74 76 78 82 83 84 85 86 89 90 91 93 94 96 97 98 99	$\begin{array}{c} 0 & 1 & 3 & 4 & 5 & 7 & 8 \\ 12 & 13 & 14 & 15 \\ 17 & 19 & 20 & 22 \\ 23 & 25 & 26 & 30 \\ 32 & 33 & 35 & 37 \\ 38 & 39 & 41 & 44 \\ 45 & 48 & 49 & 50 \\ 51 & 58 & 59 & 62 \\ 63 & 67 & 68 & 70 \\ 72 & 75 & 82 & 84 \\ 85 & 90 & 92 & 93 \\ 94 & 96 & 98 \end{array}$

Frame2	Subframe 0	Subframe 1	Subframe 5	Subframe 6	Subframe 7	Subframe 8	Subframe 9
1.4 MHz	123	135	014	034	134	245	012
3 MHz	0 1 2 3 12 13	0 1 2 3 11 12	1 2 3 11 12 13	0 1 2 11 12 13	2478910	0134513	0468911
	14	13	14	14	11	14	12
5 MHz	0235678	0234567	01234567	1234578	1235710	1 4 5 9 11 13	34578910
	16 17 19 20	16 18 19 22	17 18 20 21	16 17 19 20	12 14 16 18	15 18 20 21	11 12 13 14
	21 24	23 24	23	22 24	20 21 24	22 23 24	18 24
10 MHz	2567910	2468910	02578911	01246789	02367810	01256789	0136910
	11 15 19 20	11 14 15 16	14 15 16 18	11 13 14 18	11 12 15 16	10 15 16 17	13 14 20 21
	21 28 29 30	18 19 20 21	19 32 33 34	19 29 34 35	19 20 22 24	18 22 23 25	22 23 25 28
	32 33 35 36	28 30 32 37	36 38 41 42	36 39 41 42	25 29 31 33	26 28 29 30	29 30 31 34
	38 40 41 43	40 43 44 45	43 44 45 46	44 45 47 48	35 37 42 46	31 32 39 41	35 36 39 40
	44 48 49	46 47 49	48 49	49	47 49	46	42 44 47
15 MHz	02346910	0134589	0158910	23457810	1234578	01234567	13568910
	11 13 14 15	10 12 14 15	13 14 15 20	12 15 16 17	14 18 19 20	8 11 13 14 15	11 13 14 16
	16 17 20 21	16 19 20 22	21 23 26 27	18 19 23 24	21 24 25 27	16 20 21 23	18 20 22 28
	22 23 28 29	24 25 26 27	28 29 30 32	26 28 30 31	28 33 35 38	24 27 33 35	29 30 35 36
	43 44 48 51	28 29 31 33	33 42 43 44	32 33 41 44	40 43 45 46	41 43 44 45	37 38 42 43
	52 53 54 55	42 43 46 47	45 47 51 52	45 46 47 48	47 50 52 53	47 48 50 51	46 47 49 50
	57 59 61 63	48 50 51 52	55 57 59 60	50 52 53 57	55 58 61 62	52 64 65 68	51 55 56 59
	64 65 67 68	56 59 61 67	62 64 65 66	58 59 61 63	63 65 66 67	69 70 71 73	60 61 68 69
	70 72 73	69 71 74	69 71 72 73	65 66 71	68 71 74	74	72 73 74
20 MHz	0256711	34567910	01234510	12345789	02371112	01256810	12346789
	12 13 14 16	13 16 20 21	11 15 18 19	11 15 17 19	13 14 15 16	11 12 13 14	15 18 19 20
	17 18 19 20	23 24 25 26	20 21 24 25	20 21 22 24	17 18 19 20	15 16 20 21	21 23 24 25
	21 27 28 30 31 35 37 38	28 30 31 32 35 37 38 41	26 27 28 32 33 34 37 44	27 28 29 30 31 32 33 36	22 25 27 30 35 37 39 42	24 27 29 33 34 39 40 42	28 29 30 32 35 39 44 45
	40 43 44 45	42 43 44 46	54 57 58 59	41 44 45 56	44 48 49 52	43 46 48 50	35 39 44 45 47 48 51 53
L	40 43 44 43	42 43 44 40	04 07 00 09	41 44 40 00	44 40 49 02	45 40 40 50	4/ 40 31 33

46 -	53 56 57 53 54	59 60 60 61 62 63	57 61 62 63	53 59 62 63	54 59 60 61	55 57 60 61
59	60 61 62 61 62	64 67 65 67 70 71	66 67 68 69	67 69 73 74	66 70 71 75	62 63 67 68
63	64 65 68 70 71	76 77 73 77 78 83	73 79 80 82	75 76 77 78	76 78 79 82	72 73 74 75
70	73 77 79 78 79	81 82 84 85 88 89	85 86 87 91	79 80 81 84	84 85 87 89	76 77 81 90
80 8	82 85 87 84 86	87 88 90 91 92 94	92 93 95 96	85 86 88 91	90 91 95 96	92 93 95 96
89	92 95 97 95 98	99 95 98 99	98 99	92 94 96 98	97 98 99	97 99

6.1.2 Data content of Physical channels and Signals for E-TM

Randomisation of the data content is obtained by utilizing the length-31 Gold sequence scrambling of TS36.211, Clause 7.2 [12] which is invoked by all physical channels prior to modulation and mapping to the RE grid. An appropriate number of '0' bits shall be generated prior to the scrambling.

In case multiple carriers are configured with E-TMs, the $N_{\rm ID}^{\rm cell}$ shall be incremented by 1 for each additional configured carrier.

Initialization of the scrambler and RE-mappers as defined in TS36.211 [12] use the following additional parameters:

- $n_{\rm f} = 0$ (used for PBCH)
- The E-TM shall start when $n_s = 0$
- $N_{\text{ID}}^{\text{cell}} = 1$ for the lowest configured carrier, $N_{\text{ID}}^{\text{cell}} = 2$ for the 2nd lowest configured carrier,..., $N_{\text{ID}}^{\text{cell}} = n$ for the nth configured carrier
- p = 0 (data generated according to definitions in TS36.211 for antenna port 0). p = 0 shall be used for the generation of the E-TM data, even if the signal is transmitted on a physical port other than port 0.
- q = 0 (single code word)

6.1.2.1 Reference signals

Sequence generation, modulation and mapping to REs according to TS36.211, clause 6.10.1

6.1.2.2 Primary Synchronization signal

Sequence generation, modulation and mapping to REs according to TS36.211, clause 6.11.1

6.1.2.3 Secondary Synchronization signal

Sequence generation, modulation and mapping to REs according to TS36.211, clause 6.11.2

6.1.2.4 PBCH

- 240 REs (480 bits) are available for PBCH for the duration of the E-UTRA test models (1 frame, 10 ms)
- Generate 480 bits of 'all 0' data
- Initialize scrambling generator for each invocation of the E-TM, i.e. set always $n_f = 0$
- Perform scrambling according to TS36.211, clause 6.6.1 of the 480 bits
- Perform modulation according to TS36.211, clause 6.6.2
- Perform mapping to REs according to TS36.211, clause 6.6.4

6.1.2.5 PCFICH

- Generate 32 bit CFI codeword according to TS36.212, clause 5.3.4.
- Perform scrambling according to TS36.211, clause 6.7.1
- Perform modulation according to TS36.211, clause 6.7.2

- Perform mapping to REs according to TS36.211, clause 6.7.4

6.1.2.6 PHICH

- PHICH duration is assumed as 'Normal' according to TS36.211, clause 6.9.3
- Set $N_g = 1/6$ to obtain N_{PHICH}^{group} , see TS36.211, clause 6.9
- Use 2 PHICH per group, $n_{\text{PHICH}}^{\text{seq}} = 0, 4$
- For frame structure type 2 the factor m_i shall not be set as per TS36.211, Table 6.9-1, but instead shall be set to $m_i = 1$ for all transmitted subframes (Note).
- For each subframe the required amount of HARQ Indicators (HI) is as follows: $N_{\text{PHICH}}^{\text{group}}$ *(2 PHICH per group).
- Generate this amount of HIs using '0' data for each HI.
- Generate 3 bit HI codeword according to TS36.212, clause 5.3.5
- Perform scrambling and modulation according to TS36.211, clause 6.9.1
- Perform mapping to REs according to TS36.211, clause 6.9.3

NOTE: This is in order to preserve commonality between FDD and TDD E-TM.

6.1.2.7 PDCCH

- For each subframe the required amount of bits for all PDCCHs is as follows: (# of PDCCH)*(# of CCE per PDCCH)* (9 REG per CCE)*(4 RE per REG)*(2 bits per RE) with these parameters according to the E-TM definitions in subclause 6.1.1
- Generate this amount of bits according to 'all 0' data
- Numbering of CCEs shall be according to TS36.211, clause 6.8.1. Mapping of PDCCHs to the available CCEs is performed as follows: First PDCCH is mapped to CCE(0), second PDCCH to CCE(0+ '# of CCEs per PDCCH'), ... etc. The remaining resources not used for PDCCH are treated as <NIL> REGs according to TS36.211, clause 6.8.2
- Perform PDCCH multiplexing and scrambling according to TS36.211, clause 6.8.2
- Perform modulation according to TS36.211, clause 6.8.3
- Perform mapping to REs according to TS36.211, clause 6.8.5

6.1.2.8 PDSCH

- For each subframe generate the required amount of bits for all PRBs according to 'all 0' data
- PRB numbering is according to TS36.211, clause 6.2.3
- E-TMs utilize 1 user or 2 user PDSCH transmissions distinguished by n_{RNTI} . For each E-TM, PRBs are mapped to users (n_{RNTI}) according to their respective PRB attribute as follows:

	n _{RNTI}
E-TM1.1	0 for all PRBs
E-TM1.2	0 for boosted PRBs or those with $P_A = 0dB$
	1 for de-boosted PRBs
E-TM2	0 for all PRBs
E-TM3.1	0 for all PRBs
E-TM3.2	0 for QPSKPRBs
	1 for 16QAM PRBs
E-TM3.3	0 for 16QAM PRBs
	1 for QPSK PRBs

Table 6.1.2.8-1: Mapping of PRBs to $n_{\rm RNTI}$ for each E-TM

- The required amount of PDSCH '0' bits within a subframes and allocated PRBs shall be generated for each user
- Perform user specific scrambling according to TS36.211, clause 6.3.1. This makes use of n_{RNTI} .
- Perform modulation of the scrambled bits with the modulation scheme defined for each user according to TS36.211, clause 6.3.2
- Perform mapping of the complex-valued symbols to PRBs according to TS36.211, clause 6.3.5

6.1.3 NB-IoT Test Model

The set-up of physical channels for transmitter tests shall be according to the NB-IoT Test Model (N-TM) below.

The following general parameters are used:

- The test models are defined for a single antenna port (using p = 1000);
- Duration is 10 subframes (10 ms)
- Normal CP

The following physical channel parameters are used:

- The ratio of synchronisation signal EPRE and NRS EPRE is 0 dB
- NPDCCH format 1

6.1.4 Data content of Physical channels and Signals for N-TM

Data content of physical channels and signals for NB-IoT should be fully aligned the specification statement in TS36.211. Detail configuration for the tranmister characteristic tests are used as follows,

In case multiple NB-IoT carriers are configured with N-TMs, the $N_{\rm ID}^{\rm cell}$ for the nth configured NB-IoT carrier shall be equal to 97+6*n+max(0,m-1), where m is equal to 0 for stand-alone NB-IoT carrier or equal to the Cell ID of the E-UTRA carrier containing the in-band/guard-band NB-IoT carrier.

Initialization of the scrambler and RE-mappers as defined in TS36.211 use the following additional parameters:

- $n_{\rm f} = 0$
- The N-TM shall start when $n_s = 0$
- p = 1000 shall be used for the generation of the N-TM data

 $N_{\rm ID}^{\rm cell} = 103$ for the lowest configured NB-IoT stand-alone carrier or in-band/guard-band NB-IoT carrier(s) within the lowest E-UTRA carrier, $N_{\rm ID}^{\rm cell}$ = 109 for the 2nd lowest configured NB-IoT stand-alone carrier or 110

for the in-band/guard-band NB-IoT carrier(s) within the 2^{nd} lowest E-UTRA carrier,..., $N_{ID}^{cell} = 97+6*n+max(0,m-1)$ for the nth configured NB-IoT stand-alone carrier or in-band/guard-band NB-IoT carrier(s) within the mth E-UTRA carrier

6.1.4.1 Reference signals

Sequence generation, modulation and mapping to REs according to TS36.211, clause 10.2.6.

6.1.4.2 Synchronization signals

Sequence generation, modulation and mapping to REs according to TS36.211, clause 10.2.7.

6.1.4.3 NPBCH

- 100 REs (200 bits) are available for NPBCH for the duration of the NB-IoT test model (1 frame, 10 ms)
- Generate 200 bits of 'all 0' data
- Initialize scrambling generator for each invocation of the N-TM, i.e. set always $n_f = 0$
- Perform scrambling according to TS36.211, clause 10.2.4.1
- Perform modulation according to TS36.211, clause 10.2.4.2
- Perform mapping to REs according to TS36.211, clause 10.2.4.4

6.1.4.4 NPDCCH

- NPDCCH is on the first of all available subframes which not transmit synchronization signals and NPBCH in the duration of the NB-IoT test model. The number of available bits (304 bits for stand-alone and guard band operation, or 200 bits for in-band operation) for NPDCCH is depended on the higher layer parameter *operationModeInfo* according to TS36.213, clause 16.6.1.
- Generate the amount of NPDCCH bits according to 'all 0' data
- Perform NPDCCH scrambling according to TS36.211, clause 10.2.5.2
- Perform modulation according to TS36.211, clause 10.2.5.3
- Perform mapping to REs according to TS36.211, clause 10.2.5.5

6.1.4.5 NPDSCH

- NPDSCH is on the rest of subframes in the duration of NB-IoT test model. The number of available bits (304 bits for stand-alone and guard band operation, or 200 bits for in-band operation) in each subframe for NPDSCH is depended on the higher layer parameter *operationModeInfo* according to TS36.213, clause 16.6.1.
- Generate the required amount of bits according to 'all 0' data
- N-TM utilize 1 user NPDSCH transmissions indicated by $n_{\text{RNTI}} = 1000$
- Perform user specific scrambling according to TS36.211, clause 10.2.3.1. This makes use of n_{RNTI} .
- Perform modulation of the scrambled bits with the modulation scheme defined for each user according to TS36.211, clause 10.2.3.2
- Perform mapping of the complex-valued symbols to PRBs according to TS36.211, clause 10.2.3.4

6.1.5 Test Model for NB-IoT guard band operation

The physical channels for transmitter tests shall be configured according to E-TM1.1 on all E-UTRA carriers and N-TM on all NB-IoT carriers.

For guard band transmitter tests, NB-IoT PRB is placed closest to E-UTRA PRBs in the E-UTRA carrier containing the NB-IoT PRB.

The power for E-UTRA PRB and NB-IoT PRB is set by following procedures:

- The average power per PRB over all PRBs (from both NB-IoT and the E-UTRA carrier containing the NB-IoT PRB) is calculated according to manufacturer's declared rated output power (P_{rated,c});

Average power per PRB (P_{avg}) = $P_{rated,c} / (N_{RB} + 1)$ [W]

The power of boosted NB-IoT PRB (P_{NB-IoT}) is calculated according to manufacturer's declared rated NB-IoT maximum power dynamic range (X dB >= 6 dB)

Power per boosted NB-IoT PRB ($P_{\text{NB-IoT}}$) = $P_{\text{avg}} * 10^{(X/10)}$ [W]

- The remaining power is allocated to E-UTRA PRBs.

Power per E-UTRA PRB = $(P_{rated,c} - P_{NB-IoT}) / N_{RB}$ [W]

6.1.6 Test Model for NB-IoT in-band operation

The physical channels for transmitter tests shall be configured according to E-TM1.1 on all E-UTRA carriers and N-TM on all NB-IoT carriers.

For in-band transmitter tests, one E-UTRA PRB is punctured and replaced by NB-IoT PRB which also contains certain REs for the hosting E-UTRA carrier.

The power for E-UTRA RE and NB-IoT RE are set by following procedures:

- The average power per RE over all PRBs (from both NB-IoT and the E-UTRA carrier containing the NB-IoT PRB) is calculated according to manufacturer's declared rated output power (P_{rated,c});

Average power per RE (P_{avg}) = $P_{rated,c} / (N_{RB} * N_{sc}^{RB})$ [W]

The power per boosted NB-IoT RE (P_{NB-IoT}) is calculated according to manufacturer's declared rated NB-IoT maximum power dynamic range (X dB >= 6 dB), with the power boosting only applies on the N_{NB_IoT} REs containing NB-IoT signal.

Power per boosted NB-IoT RE ($P_{\text{NB-IoT}}$) = $P_{\text{avg}} * 10^{(\text{X}/10)}$ [W]

- The remaining power is allocated to N_{E-UTRA} E-UTRA REs.

Power per E-UTRA RE = $(P_{rated,c} - P_{NB-IoT} * N_{NB_IoT}) / N_{E-UTRA}$ [W]

6.2 Base station output power

6.2.1 Definition and applicability

Output power, Pout, of the base station is the mean power of one carrier delivered to a load with resistance equal to the nominal load impedance of the transmitter.

Rated total output power ($P_{rated,t}$) of the base station is the mean power for BS operating in single carrier, multi-carrier, or carrier aggregation configurations that the manufacturer has declared to be available at the antenna connector during the transmitter ON period.

Base station maximum output power ($P_{max,c}$), of the base station is the mean power level per carrier measured at the antenna connector during the transmitter ON period in a specified reference condition.

Rated output power ($P_{rated,c}$), of the base station is the mean power level per carrier for BS operating in single carrier, multi-carrier, or carrier aggregation configurations that the manufacturer has declared to be available at the antenna connector during the transmitter ON period.

NOTE: Different Prated, c may be declared for different configurations.

NOTE: For NB-IoT in-band and guard band operation, the LTE carrier and NB-IoT carrier shall be seen as a single carrier occupied LTE channel bandwidth, the output power over this carrier is shared between LTE and NB-IoT. This note is applied for Pout, Rated total output power, P_{max,c} and P_{rated,c}.

In certain regions, the minimum requirement for normal conditions may apply also for some conditions outside the ranges defined for the Normal test environment in Annex D.

The rated output power, Prated,c, of the BS shall be as specified in Table 6.2.1-1

	BS class	P _{rated,c}	
	Wide Area BS	(note)	
	Medium Range BS	<u><</u> + 38 dBm	
	Local Area BS	<u><</u> + 24 dBm	
Home BS		 ≤ + 20 dBm (for one transmit antenna port) ≤ + 17 dBm (for two transmit antenna ports) ≤ + 14 dBm (for four transmit antenna ports) < + 11 dBm (for eight transmit antenna ports) 	
NOTE:	There is no upper limit required for the rated output power of the Wide Area Base Station.		

Table 6.2.1-1: Base Station rated output power

In addition for Band 46 operation, the BS may have to comply with the applicable BS power limits established regionally, when deployed in regions where those limits apply and under the conditions declared by the manufacturer. The regional requirements may be in the form of conducted power, power spectral density, EIRP and other types of limits. In case of regulatory limits based on EIRP, assessment of the EIRP level is described in Annex H of TS 36.104 [2].

6.2.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.2.

6.2.3 Test purpose

The test purpose is to verify the accuracy of the maximum output power across the frequency range and under normal and extreme conditions for all transmitters in the BS.

6.2.4 Method of test

6.2.4.1 Initial conditions

Test environment: normal; see Annex D2.

RF channels to be tested for single carrier: B, M and T; see subclause 4.7

Base Station RF Bandwidth positions to be tested for multi-carrier and/or CA: B_{RFBW} , M_{RFBW} and T_{RFBW} in single-band operation, see subclause 4.7.1; B_{RFBW} _T'_{RFBW} and B'_{RFBW}_T_{RFBW} in multi-band operation, see subclause 4.7.1.

In addition, on one RF channel or Base Station RF Bandwidth position in case of multi-carrier and/or CA only, the test shall be performed under extreme power supply as defined in Annex D.5.

NOTE: Tests under extreme power supply also test extreme temperature.

1) Connect the power measuring equipment to the base station antenna connector as shown in Annex I.1.1.

6.2.4.2 Procedure

1) For an E-UTRA BS declared to be capable of single carrier operation only, set the base station to transmit a signal according to E-TM1.1.

For an E-UTRA BS declared to be capable of multi-carrier and/or CA operation, set the base station to transmit according to E-TM1.1 on all carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For an E-UTRA BS declared to be capable of NB-IoT in-band operation, start transmission according to E-TM1.1 with the NB-IoT PRB constructed according to N-TM at manufacturer's declared rated output power using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For an E-UTRA BS declared to be capable of NB-IoT guard-band operation, start transmission according to E-TM1.1 with the NB-IoT PRB constructed according to N-TM at manufacturer's declared rated output power using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For a NB-IoT BS declared to be capable of single carrier operation, start transmission according to N-TM at manufacturer's declared rated output power.

For a NB-IoT BS declared to be capable of multi-carrier operation, set the base station to transmit according to N-TM on all carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For an E-UTRA and NB-IoT standalone BS declared to be capable of multi-carrier operation, start transmission according to E-TM1.1 on all E-UTRA carriers and N-TM on all NB-IoT carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

2) Measure the mean power for each carrier at the antenna connector.

In addition, for a multi-band capable BS, the following step shall apply:

3) For multi-band capable BS and single band tests, repeat the steps above per involved band where single band test configurations and test models shall apply with no carrier activated in the other band. For multi-band capable BS with separate antenna connector, the antenna connector not being under test in case of single-band or multi-band test shall be terminated.

6.2.5 Test Requirements

In normal conditions, for E-UTRA the measurement result in step 2 of 6.2.4.2 shall remain:

- within +2.7 dB and -2.7 dB of the manufacturer's rated output power, $P_{rated,c}$, for carrier frequency f \leq 3.0GHz.
- within +3.0 dB and –3.0 dB of the manufacturer's rated output power, $P_{rated,c}$, for carrier frequency $3.0GHz < f \le 4.2GHz$.

In extreme conditions, for E-UTRA measurement result in step 2 of 6.2.4.2 shall remain:

within +3.2 dB and -3.2 dB of the manufacturer's rated output power, $P_{rated,c}$, for carrier frequency f \leq 3.0GHz.

within +3.5 dB and –3.5 dB of the manufacturer's rated output power, $P_{rated,c}$, for carrier frequency $3.0GHz < f \le 4.2GHz$.

In normal conditions, for standalone NB-IoT the measurement result in step 2 of 6.2.4.2 shall remain:

within +3.0 dB and -3.0 dB of the manufacturer's rated output power, Prated,c

In extreme conditions, for standalone NB-IoT measurement result in step 2 of 6.2.4.2 shall remain:

within +3.5 dB and -3.5 dB of the manufacturer's rated output power, $P_{rated,c}$

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance are given in Annex G.

6.2.6 Home BS output power for adjacent UTRA channel protection

6.2.6.1 Definition and applicability

The Home BS shall be capable of adjusting the transmitter output power to minimize the interference level on the adjacent channels licensed to other operators in the same geographical area while optimize the Home BS coverage.

These requirements are only applicable to Home BS. The requirements in this clause are applicable for AWGN radio propagation conditions.

The output power, Pout, of the Home BS shall be as specified in Table 6.2.6-1 under the following input conditions:

- CPICH Êc, measured in dBm, is the code power of the Primary CPICH on one of the adjacent channels present at the Home BS antenna connector for the CPICH received on the adjacent channels. If Tx diversity is applied on the Primary CPICH, CPICH Êc shall be the sum in [W] of the code powers of the Primary CPICH transmitted from each antenna.
- Ioh, measured in dBm, is the total received power density, including signals and interference but excluding the own Home BS signal, present at the Home BS antenna connector on the Home BS operating channel.

In case that both adjacent channels are licensed to other operators, the most stringent requirement shall apply for Pout. In the case when one of the adjacent channels is licensed to an E-UTRA operator while the other adjacent channel is licensed to a UTRA operator, the more stringent requirement of this subclause and subclause 6.2.7 shall apply for Pout. In case the Home BS's operating channel and both adjacent channels are licensed to the same operator, the requirements of this clause do not apply.

The input conditions defined for the requirements in this section are specified at the antenna connector of the Home BS. For Home BS receivers with diversity, the requirements apply to each antenna connector separately, with the other one(s) terminated or disabled. The requirements are otherwise unchanged. For Home BS(s) without measurement capability, a reference antenna with a gain of 0 dBi is assumed for converting these power levels into field strength requirements.

Table 6.2.6-1: Home BS output power for adjacent operator UTRA channel protection

Input Conditions	Output power, Pout
loh > CPICH Êc + 43 dB And CPICH Êc ≥ -105dBm	≤ 10 dBm
loh ≤ CPICH Êc + 43 dB and CPICH Êc ≥ -105dBm	≤ max(8 dBm, min(20 dBm, CPICH Êc + 100 dB))

- NOTE 1: The Home BS transmitter output power specified in Table 6.2.6-1 assumes a Home BS reference antenna gain of 0 dBi, an target outage zone of 47dB around the Home BS for an UE on the adjacent channel, with an allowance of 2 dB for measurement errors, an ACIR of 33 dB, an adjacent channel UE CPICH Ec/Io target of -18 dB and the same CPICH Êc value at the adjacent channel UE as for the Home BS.
- NOTE 2: For CPICH $\hat{E}c < -105$ dBm, the requirements in subclause 6.2 apply.
- NOTE 3: The output power Pout is the sum transmit power across all the antenna connectors of the Home BS, with each transmit power measured at the respective antenna connectors.

6.2.6.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.2.3.

6.2.6.3 Test purpose

The test purpose is to verify the capability of the Home BS to adjust the transmitter output power according to the input conditions, as specified in Table 6.2.6-1, across the frequency range and under normal and extreme conditions for all transmitters in the BS.

6.2.6.4 Method of test

6.2.6.4.1 Initial conditions

Test environment: normal; see Annex D2.

RF channels to be tested for single carrier: M; see subclause 4.7.

In addition, on one UARFCN only, the test shall be performed under extreme power supply as defined in Annex D.5.

NOTE: Tests under extreme power supply also test extreme temperature.

Signal generators delivering co-channel and adjacent channel interferers are switched off.

- 1) Set-up the equipment as shown as shown in Annex I.1.4.
- 2) The Home BS is configured such that the adjacent channel is known to belong to another operator.

6.2.6.4.2 Procedure

- 1) Connect the combined downlink interfering signals (referred to as point D in Figure I.1-4) to the dedicated measurement port (referred to as point 1 in Figure I.1-4) if available, otherwise connect to point 2.
- 2) Configure the signal generator for co-channel interference to transmit AWGN over a bandwidth according to BW_{Config} centred on RF channel M.
- Configure the signal generator for adjacent channel DL signal to transmit test model 1 in subclause 6.1.1.1 in [17] at the centre frequency equal to RF channel M + BW_{Channel}/2 + 2.5 MHz.
- 4) Switch on signal generators delivering co-channel and adjacent channel interferers, and adjust the ATT1 and ATT2 such that CPICH $\hat{E}c = -80 \text{ dBm}$ and Ioh = -50 dBm.
- 5) Trigger the Home BS power adjustment mechanism.
- 6) Configure the Home BS to transmit a signal according to E-TM1.1.
- NOTE: The signal shall be transmitted with the maximum allowed output power.
- 7) Measure Home BS output power, Pout, and check it is below the required value according to the CPICH Êc and Ioh values determined in step 4.
- 8) Repeat steps 3) to 7) with the frequency in step 3 set to RF channel M BW_{Channel}/2 2.5 MHz.
- 9) Repeat steps 3) to 8) with different settings for ATT1 and ATT2 to arrive the CPICH Êc and Ioh pairs as specified in Table 6.2.6-2.

Test Case	CPICH Êc (dBm)	loh (dBm)
2	-90	-60
3	-100	-70
4	-100	-50

Table 6.2.6-2: CPICH Êc and loh pairs

6.2.6.5 Test Requirements

In normal operating conditions, the output power, Pout, of the Home BS shall be equal to or less than:

- the value specified in Table 6.2.6-1 plus 2.7 dB for carrier frequency $f \le 3.0$ GHz.
- the value specified in Table 6.2.6-1 plus 3.0 dB for carrier frequency 3.0GHz < f \leq 4.2GHz.

In extreme operating conditions, the output power, Pout, of the Home BS shall be equal to or less than:

- the value specified in Table 6.2.6-1 plus 3.2 dB for carrier frequency $f \le 3.0$ GHz.
- the value specified in Table 6.2.6-1 plus 3.5 dB for carrier frequency 3.0GHz < f \leq 4.2GHz.
- NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance are given in Annex G.

6.2.7 Home BS output power for adjacent E-UTRA channel protection

6.2.7.1 Definition and applicability

The Home BS shall be capable of adjusting the transmitter output power to minimize the interference level on the adjacent channels licensed to other operators in the same geographical area while optimize the Home BS coverage. These requirements are only applicable to Home BS. The requirements in this clause are applicable for AWGN radio propagation conditions.

The output power, Pout, of the Home BS shall be as specified in Table 6.2.7-1 under the following input conditions:

- CRS Ês, measured in dBm, is the Reference Signal Received Power per resource element on one of the adjacent channels present at the Home BS antenna connector for the Reference Signal received on the adjacent channels. For CRS Ês determination, the cell-specific reference signal R0 according TS 36.211 [12] shall be used. If the Home BS can reliably detect that multiple TX antennas are used for transmission on the adjacent channel, it may use the average in [W] of the CRS Êc on all detected antennas.
- Ioh, measured in dBm, is the total received power density, including signals and interference but excluding the own Home BS signal, present at the Home BS antenna connector on the Home BS operating channel.

In case that both adjacent channels are licensed to other operators, the most stringent requirement shall apply for Pout. In the case when one of the adjacent channels is licensed to an E-UTRA operator while the other adjacent channel is licensed to a UTRA operator, the more stringent requirement of this subclause and subclause 6.2.6 shall apply for Pout. In case the Home BS's operating channel and both adjacent channels are licensed to the same operator, the requirements of this clause do not apply.

The input conditions defined for the requirements in this section are specified at the antenna connector of the Home BS. For Home BS receivers with diversity, the requirements apply to each antenna connector separately, with the other one(s) terminated or disabled. The requirements are otherwise unchanged. For Home BS(s) without measurement capability, a reference antenna with a gain of 0 dBi is assumed for converting these power levels into field strength requirements.

Input Conditions	Output power, Pout
loh > CRS Ês +	≤ 10 dBm
$10 \cdot \log_{10} \left(N_{RB}^{DL} \cdot N_{sc}^{RB} \right)$	
+ 30 dB	
and CRS Ês ≥ -127dBm	
loh ≤ CRS Ês +	≤ max(8 dBm, min(20 dBm, CRS
$10 \cdot \log_{10} \left(N_{RB}^{DL} \cdot N_{sc}^{RB} \right)$	Ês +
+ 30 dB	$10 \cdot \log_{10} \left(N_{\scriptscriptstyle RB}^{\scriptscriptstyle DL} \cdot N_{\scriptscriptstyle sc}^{\scriptscriptstyle RB} ight)$
and CRS Ês ≥ -127dBm	+ 85 dB))

Table 6.2.7-1: Home BS output power for adjacent operator E-UTRA channel protection

- NOTE 1: The Home BS transmitter output power specified in Table 6.2.7-1 assumes a Home BS reference antenna gain of 0 dBi, an target outage zone of 47dB around the Home BS for an UE on the adjacent channel, with an allowance of 2 dB for measurement errors, an ACIR of 30 dB, an adjacent channel UE Ês/Iot target of -6 dB and the same CRS Ês value at the adjacent channel UE as for the Home BS.
- NOTE 2: For CRS $\hat{E}s < -127$ dBm, the requirements in subclause 6.2 apply.
- NOTE 3: The output power Pout is the sum transmit power across all the antenna connectors of the Home BS, with each transmit power measured at the respective antenna connectors.
- NOTE 4: N_{RB}^{DL} is the number of downlink resource blocks in the own Home BS channel.

NOTE 5: N_{sc}^{RB} is the number of subcarriers in a resource block, $N_{sc}^{RB} = 12$.

6.2.7.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.2.4.

6.2.7.3 Test purpose

The test purpose is to verify the capability of the Home BS to adjust the transmitter output power according to the input conditions, as specified in Table 6.2.7-1, across the frequency range and under normal and extreme conditions for all transmitters in the BS.

6.2.7.4 Method of test

6.2.7.4.1 Initial conditions

Test environment: normal; see Annex D2.

RF channels to be tested for single carrier: M; see subclause 4.7.

In addition, on one EARFCN only, the test shall be performed under extreme power supply as defined in Annex D.5.

NOTE: Tests under extreme power supply also test extreme temperature.

Signal generators delivering co-channel and adjacent channel interferers are switched off.

- 1) Set-up the equipment as shown as shown in Annex I.1.4.
- 2) The Home BS is configured such that the adjacent channel is known to belong to another operator.

6.2.7.4.2 Procedure

- 1) Connect the combined downlink interfering signals (referred to as point D in Figure I.1-4) to the dedicated measurement port (referred to as point 1 in Figure I.1-4) if available, otherwise connect to point 2.
- 2) Configure the signal generator for co-channel interference to transmit AWGN over a bandwidth according to BW_{Config} centred on RF channel M.
- 3) Configure the signal generator for adjacent channel DL signal to transmit a signal according to E-TM1.1 at the centre frequency equal to RF channel M + BW_{Channel} MHz.
- 4) Switch on signal generators delivering co-channel and adjacent channel interferers, and adjust the ATT1 and ATT2 such that CRS $\hat{E}s = -65 10 \cdot \log_{10} (N_{RB}^{DL} \cdot N_{sc}^{RB}) dBm$ and Ioh = -50 dBm.
- 5) Trigger the Home BS power adjustment mechanism.
- 6) Configure the Home BS to transmit a signal according to E-TM1.1.
- NOTE: The signal is transmitted with the maximum allowed output power.
- 7) Measure Home BS output power, Pout, and check it is below the required value according to the CRS Ês and Ioh values determined in step 4.
- 8) Repeat steps 3) to 7) with the frequency in step 3 set to RF channel M BW_{Channel} MHz.
- 9) Repeat steps 3) to 8) with different settings for ATT1 and ATT2 to arrive the CRS Ês and Ioh pairs as specified in Table 6.2.7-2.

Test Case	CRS Ês (dBm)	loh (dBm)
2	-75 - $10 \cdot \log_{10} \left(N_{RB}^{DL} \cdot N_{sc}^{RB} \right)$	-60
3	-90 - $10 \cdot \log_{10} (N_{RB}^{DL} \cdot N_{sc}^{RB})$	-70
4	-90 - $10 \cdot \log_{10} \left(N_{RB}^{DL} \cdot N_{sc}^{RB} \right)$	-50

Table 6.2.7-2: CRS Ês and loh pairs

6.2.7.5 Test Requirements

In normal operating conditions, the output power, Pout, of the Home BS shall be equal to or less than:

the value specified in Table 6.2.7-1 plus 2.7 dB for carrier frequency $f \le 3.0$ GHz.

the value specified in Table 6.2.6-1 plus 3.0 dB for carrier frequency 3.0GHz < f \leq 4.2GHz.

In extreme operating conditions, the output power, Pout, of the Home BS shall be equal to or less than:

the value specified in Table 6.2.7-1 plus 3.2 dB for carrier frequency $f \le 3.0$ GHz.

the value specified in Table 6.2.6-1 plus 3.5 dB for carrier frequency 3.0GHz < f \leq 4.2GHz.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance are given in Annex G.

6.2.8 Home BS output power for co-channel E-UTRA protection

6.2.8.1 Definition and applicability

To minimize the co-channel DL interference to non-CSG macro UEs operating in close proximity while optimizing the CSG Home BS coverage, Home BS may adjust its output power according to the requirements set out in this clause. These requirements are only applicable to Home BS. The requirements in this clause are applicable for AWGN radio propagation conditions.

For Home BS that supports the requirements in this clause, the output power, Pout, of the Home BS shall be as specified in Table 6.2.8-1 under the following input conditions:

- CRS Ês, measured in dBm, is the Reference Signal Received Power per resource element present at the Home BS antenna connector received from the co-channel Wide Area BS. For CRS Ês determination, the cell-specific reference signal R0 according TS 36.211 [12] shall be used. If the Home BS can reliably detect that multiple TX antenna ports are used for transmission by the co-channel Wide Area Base Station, it may use the average in [W] of the CRS Ês on all detected TX antenna ports, including R0.
- Ioh, measured in dBm, is the total received DL power, including all interference but excluding the own Home BS signal, present at the Home BS antenna connector on the Home BS operating channel.
- Iob, measured in dBm, is the uplink received interference power, including thermal noise, within one physical resource block's bandwidth of N_{sc}^{RB} resource elements as defined in TS 36.214, present at the Home BS antenna connector on the Home BS operating channel.

The input conditions defined for the requirements in this section are specified at the antenna connector of the Home BS. For Home BS receivers with diversity, the requirements apply to each antenna connector separately, with the other one(s) terminated or disabled. The requirements are otherwise unchanged. For Home BS(s) without measurement capability, a reference antenna with a gain of 0 dBi is assumed for converting these power levels into field strength requirements.

Input Conditions	Output power, Pout	
loh (DL) > CRS Ês + 10log ₁₀ ($N_{\rm RB}^{\rm DL}$ $N_{\rm sc}^{\rm RB}$) + 30 dB	≤ 10 dBm	
and		
Option 1: CRS Ês ≥ -127 dBm or		
Option 2: CRS Ês ≥ -127 dBm and lob > -103 dBm		
loh (DL) ≤ CRS Ês + 10log ₁₀ ($N_{RB}^{DL} N_{sc}^{RB}$) + 30 dB	≤ max (Pmin, min (_{Pmax,c} , CRS Ês +	
	$10\log_{10}(N_{\rm RB}^{\rm DL} N_{\rm sc}^{\rm RB})$ + X))	
and		
Option 1: CRS Ês ≥ -127 dBm or	30 dB ≤ X ≤ 70 dB Pmin = - 10 dBm	
Option 2. CRS Ês ≥ -127 dBm and lob > -103 dBm		

Table 6.2.8-1: Home BS output power for co-channel E-UTRA channel protection

- Note 1: Only the option supported by the Home BS shall be tested.
- Note 2: For CRS $\hat{E}s < -127$ dBm, or Iob ≤ -103 dBm when Option 2 is supported, the requirements in sub-clauses 6.2.1 and 6.2.2 apply.
- Note 3: The output power Pout is the sum of transmits power across all the antennas of the Home BS, with each transmit power measured at the respective antenna connectors.
- Note 4: N_{RB}^{DL} is the number of downlink resource blocks in the own Home BS channel.
- Note 5: N_{sc}^{RB} is the number of subcarriers in a resource block, $N_{sc}^{RB} = 12$.
- Note 6: X is a network configurable parameter.
- Note 7: Pmin can be lower dependent on the Home BS total dynamic range.
- Note8: Other input conditions and output power to be applied for network scenarios other than co-channel E-UTRA macro channel protection shall not be precluded.

6.2.8.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.2.5.

6.2.8.3 Test purpose

The test purpose is to verify the capability of the Home BS to adjust the transmitter output power according to the input conditions, as specified in Table 6.2.8-1, across the frequency range and under normal and extreme conditions for all transmitters in the BS. For Home BS that supports the requirements in this clause, only the option in Table 6.2.8-1 supported by the Home BS shall be tested.

6.2.8.4 Method of test

6.2.8.4.1 Initial conditions

Test environment: normal; see Annex D2.

RF channels to be tested for single carrier: M; see subclause 4.7.

In addition, on one EARFCN only, the test shall be performed under extreme power supply as defined in Annex D.5.

NOTE: Tests under extreme power supply also test extreme temperature.

Signal generator delivering co-channel interferers is switched off.

- 1) Set-up the equipment as shown in Annex I.1.5, base on the option supported by Home BS.
- 2) The co-channel interference should be configured containing at least signals from a neighbouring Marco BS. For option 2 of Table 6.2.8-1, additional signal generator needed to deliver the MUE UL signal.

6.2.8.4.2 Procedure

- 1) Connect the downlink co-channel interfering signals (referred to as point D in Figure I.1-5) to the dedicated measurement port (referred to as point 1 in Figure I.1-5) if available, otherwise connect to point 2. Specifically for option 2 of Table 6.2.8-1, connect the UL interference to point 2 for UL receiving on the figure of I.1.5-b.
- 2) Configure the signal generator for co-channel interference to transmit AWGN over a bandwidth according to BW_{Config} centred on RF channel M.
- 3) Configure the X as 30 dB. Switch on signal generators delivering interferers, and adjust the ATT such that CRS $\hat{E}s = -10 10\log_{10}(N_{RB}^{DL} N_{sc}^{RB})$ dBm and Ioh = -50 dBm.
- 4) Trigger the Home BS power adjustment mechanism.
- 5) Configure the Home BS to transmit a signal according to E-TM1.1.
- NOTE: The signal is transmitted with the maximum allowed output power.
- 6) Measure Home BS output power, Pout, and check it is below the required value according to the CRS Ês and Ioh values determined in step 4. The value of Pmin for testing is -10dBm.
- 7) Repeat steps 4) to 6) with different settings for ATT to arrive the input parameter pairs as specified in Table 6.2.8-2 or 6.2.8-3, basing the option of Table 6.2.8-1 supported by the Home BS.

Test Case	CRS Ês (dBm)	loh (dBm)
1	-20- 10log ₁₀ ($N_{ m RB}^{ m DL}$ $N_{ m sc}^{ m RB}$)	-60
2	Pmin-30 -10log ₁₀ ($N_{\mathrm{RB}}^{\mathrm{DL}}$ $N_{\mathrm{sc}}^{\mathrm{RB}}$)	-70
3	-90 - 10log ₁₀ ($N_{ m RB}^{ m DL}$ $N_{ m sc}^{ m RB}$)	-50

Table 6.2.8-2: CRS Ês and loh pairs for option 1

Test Case	CRS Ês (dBm)	loh (dBm)	lob (dBm)
1	-20 - 10log ₁₀ ($N_{ m RB}^{ m DL}$ $N_{ m sc}^{ m RB}$)	-60	-98
2	Pmin-30 -10log ₁₀ ($N_{\rm RB}^{\rm DL}$ $N_{\rm sc}^{\rm RB}$)	-70	-98
3	-90 - 10log ₁₀ ($N_{ m RB}^{ m DL}$ $N_{ m sc}^{ m RB}$)	-50	-98

6.2.8.5 Test Requirements

In normal operating conditions, the output power, Pout, of the Home BS shall be equal to or less than the value specified in Table 6.2.8-1 plus 2.7 dB.

In extreme operating conditions, the output power, Pout, of the Home BS shall be equal to or less than the value specified in Table 6.2.8-1 plus 3.2 dB.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance are given in Annex G.

6.3 Output power dynamics

The requirements in subclause 6.3 apply during the transmitter ON period.

6.3.1 RE Power control dynamic range

6.3.1.1 Definition and applicability

The RE power control dynamic range is the difference between the power of an RE and the average RE power for a BS at maximum output power for a specified reference condition. Unwanted emissions (as specified in subclause 6.6) and Transmit modulation quality (as specified in subclause 6.5) shall be maintained within the whole power control dynamic range.

6.3.1.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.3.1.1.

6.3.1.3 Method of test

No specific test or test requirements are defined for RE Power control dynamic range. The Error Vector Magnitude test, as described in subclause 6.5.2 provides sufficient test coverage for this requirement.

6.3.2 Total power dynamic range

6.3.2.1 Definition and applicability

The total power dynamic range is the difference between the maximum and the minimum transmit power of an OFDM symbol for a specified reference condition.

NOTE: The upper limit of the dynamic range is the OFDM symbol power for a BS at maximum output power. The lower limit of the dynamic range is the OFDM symbol power for a BS when one resource block is transmitted. The OFDM symbol shall carry PDSCH and not contain RS, PBCH or synchronisation signals.

6.3.2.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.3.2.1.

6.3.2.3 Test purpose

The test purpose is to verify that the total power dynamic range is met as specified by the minimum requirement.

6.3.2.4 Method of test

6.3.2.4.1 Initial conditions

Test environment: normal; see Annex D.2.

RF channels to be tested for single carrier: B, M and T; see subclause 4.7.

Connect the signal analyzer to the base station antenna connector as shown in Annex I.1.1.

6.3.2.4.2 Procedure

- 1) Set-up BS transmission at maximum total power as specified by the supplier. Channel set-up shall be according to E-TM 3.1.
- 2) Measure the average OFDM symbol power as defined in Annex F.
- 3) Set the BS to transmit a signal according to E-TM 2.
- 4) Measure the average OFDM symbol power as defined in Annex F. The measured OFDM symbols shall not contain RS, PBCH or synchronisation signals.
- 5) Repeat step 1 and 2 for E-TM3.1a and step 3 and 4 for E-TM2a for 256QAM, if supported by the BS.

In addition, for a multi-band capable BS, the following step shall apply:

5) For multi-band capable BS and single band tests, repeat the steps above per involved band where single carrier test models shall apply with no carrier activated in the other band. For multi-band capable BS with separate antenna connector, the antenna connector not being under test shall be terminated.

6.3.2.5 Test Requirement

The downlink (DL) total power dynamic range for each E-UTRA carrier shall be larger than or equal to the level in Table 6.3.2-1.

E-UTRA channel bandwidth (MHz)	Total power dynamic range (dB)
1.4	7.3
3	11.3
5	13.5
10	16.5
15	18.3
20	19.6

Table 6.3.2-1 E-UTRA BS total power dynamic range, paired spectrum

- NOTE 1: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in Annex G. The explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.
- NOTE2: Additional test requirements for the Error Vector Magnitude (EVM) at the lower limit of the dynamic range are defined in subclause 6.5.2.

6.3.3 NB-IoT RB power dynamic range for in-band or guard band operation

6.3.3.1 Definition and applicability

The NB-IoT RB power dynamic range (or NB-IoT power boosting) for guard band operation is the difference between the power of NB-IoT RB (which occupies 180kHz in guard band of an E-UTRA carrier) and the average power over all RBs (from both NB-IoT and the E-UTRA carrier containing the NB-IoT RB).

The NB-IoT RB power dynamic range (or NB-IoT power boosting) for in-band operation is the difference between the average power of NB-IoT REs (which occupy certain REs in a RB of an E-UTRA carrier) and the average power over all REs (from both NB-IoT and the E-UTRA carrier containing the NB-IoT REs).

6.3.3.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.3.3.1.

6.3.3.3 Test purpose

The test purpose is to verify that the NB-IoT RB power dynamic range for in-band or guard band operation is met as specified by the minimum requirement.

6.3.3.4 Method of test

Requirement is tested together with unwanted emissions test, as described in subclause 6.6.3.

6.3.3.5 Test Requirement

NB-IoT power dynamic range shall be larger than or equal to +5.6 dB, except for guard band operation with E-UTRA 5 MHz channel bandwidth signal where BS manufacturer shall declare the NB-IoT dynamic range power it could support (in this version of the specification).

The +5.6 dB power dynamic range is only required for one NB-IoT RB for both in-band and guard band operation modes.

For guard band operation, this NB-IoT RB should be placed adjacent to the E-UTRA RB edge as close as possible (i.e., away from edge of channel bandwidth).

6.4 Transmit ON/OFF power

The requirements in section 6.4 are only applied for E-UTRA TDD BS.

6.4.1 Transmitter OFF power

6.4.1.1 Definition and applicability

Transmitter OFF power is defined as the mean power measured over 70 us filtered with a square filter of bandwidth equal to the transmission bandwidth configuration of the BS (BW_{Config}) centred on the assigned channel frequency during the transmitter OFF period.

For BS supporting intra-band contiguous CA, the transmitter OFF power is defined as the mean power measured over 70 us filtered with a square filter of bandwidth equal to the Aggregated Channel Bandwidth $BW_{Channel_CA}$ centred on $(F_{edge_high}+F_{edge_low})/2$ during the transmitter OFF period.

6.4.1.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.4.1.1.

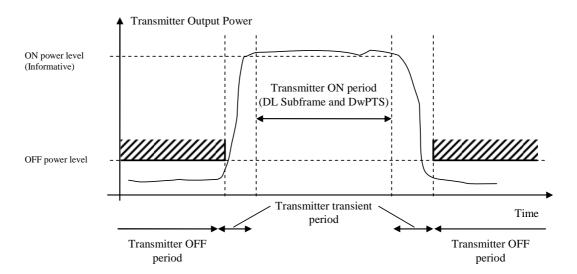
6.4.1.3 Test purpose

The purpose of this test is to verify the E-UTRA BS transmitter OFF power is within the limit of the minimum requirement.

6.4.1.4 Method of test

Requirement is tested together with transmitter transient period, as described in subclause 6.4.2.4.

- 6.4.1.4.1 Void
- 6.4.1.4.2 Void


6.4.1.5 Test requirement

The conformance testing of transmit OFF power is included in the conformance testing of transmitter transient period; therefore, see subclause 6.4.2.5 for test requirements.

6.4.2 Transmitter transient period

6.4.2.1 Definition and applicability

The transmitter transient period is the time period during which the transmitter is changing from the OFF period to the ON period or vice versa. The transmitter transient period is illustrated in Figure 6.4.2.1-1.

Figure 6.4.2.1-1 Illustration of the relations of transmitter ON period, transmitter OFF period and transmitter transient period.

6.4.2.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.4.2.1.

6.4.2.3 Test purpose

The purpose of this test is to verify the E-UTRA BS transmitter transient periods are within the limit of the minimum requirement.

6.4.2.4 Method of test

6.4.2.4.1 Initial conditions

Test environment: normal; see Annex D.2.

RF channels to be tested for single carrier: M; see subclause 4.7.

Base Station RF Bandwidth positions to be tested for multi-carrier and/or CA: M_{RFBW} in single-band operation, see subclause 4.7.1; B_{RFBW} T'_{RFBW} and B'_{RFBW} T_{RFBW} in multi-band operation, see subclause 4.7.1.

Connect the signal analyzer to the BS antenna connector as shown in Annex I.1.1.

As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity, efficiency and avoiding e.g. carrier leakage, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the equivalent bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.4.2.4.2 Procedure

1) For a BS declared to be capable of single carrier operation only, set the BS to transmit a signal according to E-TM1.1 at manufacturer's declared rated output power.

For a BS declared to be capable of multi-carrier and/or CA operation, set the BS to transmit according to E-TM1.1 on all carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

2) Measure the mean power spectral density over 70 μ s filtered with a square filter of bandwidth equal to the Transmission bandwidth configuration BW_{config} centred on the assigned channel frequency. 70 μ s average window centre is set from 35 μ s after end of one transmitter ON period + 17 μ s to 35 μ s before start of next transmitter ON period – 17 μ s.

3) For BS supporting contiguous CA, measure the mean power spectral density over 70µs filtered with a square filter of bandwidth equal to the Aggregated Channel Bandwidth $BW_{Channel_CA}$ centred on $(F_{edge_high}+F_{edge_low})/2$. 70µs average window centre is set from 35µs after end of one transmitter ON period + 17µs to 35µs before start of next transmitter ON period – 17µs.

For a multi-band capable BS,

with separate antenna connector, the antenna connector not being under test shall be terminated.

6.4.2.5 Test requirement

The measured mean power spectral density shall be less than -83dBm/MHz for carrier frequency $f \le 3.0$ GHz.

The measured mean power spectral density shall be less than -82.5dBm/MHz for carrier frequency $3.0GHz < f \leq 4.2GHz.$

For BS capable of multi-band operation, the requirement is only applicable during the transmitter OFF period in all supported operating bands.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance are given in Annex G.

6.5 Transmitted signal quality

The requirements in subclause 6.5 apply to the transmitter ON period.

6.5.1 Frequency error

6.5.1.1 Definition and applicability

Frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency. The same source shall be used for RF frequency and data clock generation.

It is not possible to verify by testing that the data clock is derived from the same frequency source as used for RF generation. This may be confirmed by the manufacturer's declaration.

6.5.1.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.5.1.

6.5.1.3 Test purpose

To verify that the Frequency Error is within the limit of the minimum requirement.

6.5.1.4 Method of test

Requirement is tested together with Error Vector Magnitude test, as described in subclause 6.5.2.

6.5.1.5 Test requirement

For E-UTRA, the modulated carrier frequency of each E-UTRA carrier configured by the BS shall be accurate to within the accuracy range given in Table 6.5.1-1 observed over a period of one subframe (1ms).

For NB-IoT, the modulated carrier frequency of each NB-IoT carrier configured by the BS shall be accurate to within the accuracy range given in Table 6.5.1-1 observed over a period of one subframe (1ms).

BS class	Accuracy
Wide Area BS	± (0.05 ppm + 12 Hz)
Medium Range BS	± (0.1 ppm + 12 Hz)
Local Area BS	± (0.1 ppm + 12 Hz)
Home BS	± (0.25 ppm + 12 Hz)

 Table 6.5.1-1: Frequency error test requirement

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance are given in Annex G.

6.5.2 Error Vector Magnitude

6.5.2.1 Definition and applicability

The Error Vector Magnitude is a measure of the difference between the ideal symbols and the measured symbols after the equalization. This difference is called the error vector. The equaliser parameters are estimated as defined in Annex F. The EVM result is defined as the square root of the ratio of the mean error vector power to the mean reference power expressed in percent.

6.5.2.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.5.2.

6.5.2.3 Test purpose

The test purpose is to verify that the Error Vector Magnitude is within the limit specified by the minimum requirement.

6.5.2.4 Method of test

6.5.2.4.1 Initial conditions

Test environment: normal; see Annex D.2.

RF channels to be tested for single carrier: B, M and T; see subclause 4.7.

Base Station RF Bandwidth positions to be tested for multi-carrier and/or CA: B_{RFBW} , M_{RFBW} and T_{RFBW} in single-band operation, see subclause 4.7.1; B_{RFBW} _T'_{RFBW} and B'_{RFBW}_T_{RFBW} in multi-band operation, see subclause 4.7.1.

Connect the signal analyzer to the base station antenna connector as shown in Annex I.1.1.

6.5.2.4.2 Procedure

1) For a BS declared to be capable of single carrier operation only, set the BS to transmit a signal according to E-TM 3.1 at manufacturer's declared rated output power.

For a BS declared to be capable of multi-carrier and/or CA operation, set the BS to transmit according to E-TM 3.1 on all carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For a NB-IoT BS declared to be capable of single carrier operation, start transmission according to N-TM at manufacturer's declared rated output power.

For a NB-IoT BS declared to be capable of multi-carrier operation, set the base station to transmit according to N-TM on all carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For an E-UTRA and NB-IoT standalone BS declared to be capable of multi-carrier operation, start transmission according to E-TM 3.1 on all E-UTRA carriers and N-TM on all NB-IoT carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

- 2) Measure the EVM and frequency error as defined in Annex F.
- 3) For E-UTRA repeat steps 1 and 2 for E-TM 3.2, E-TM 3.3 and E-TM 2. Repeat steps 1 and 2 for E-TM3.1a and E-TM 2a for 256QAM, if supported by the BS. For E-TM2 and E-TM2a the OFDM symbol power shall be at the lower limit of the dynamic range according to the test procedure in subclause 6.3.2.4.2 and test requirements in subclause 6.3.2.5.

In addition, for a multi-band capable BS, the following step shall apply:

4) For multi-band capable BS and single band tests, repeat the steps above per involved band where single band test configurations and test models shall apply with no carrier activated in the other band. For multi-band capable BS with separate antenna connector, the antenna connector not being under test in case of single-band or multi-band test shall be terminated.

6.5.2.5 Test requirement

The EVM of each E-UTRA carrier for different modulation schemes on PDSCH shall be less than the limits in table 6.5.2.5-1:

Modulation scheme for PDSCH	Required EVM [%]
QPSK	18.5 %
16QAM	13.5 %
64QAM	9 %
256QAM	4.5%

Table 6.5.2.5-1 EVM requirements for E-UTRA carrier

The EVM of each NB-IoT carrier on NB-PDSCH shall be less than the limits in table 6.5.2.5-1a:

Table 6.5.2.5-1a EVM requirements for NB-IoT carrier

Modulation scheme for NB-PDSCH	Required EVM [%]
QPSK	18.5 %

The EVM requirement shall be applicable within a time period around the centre of the CP therefore the EVM requirement is tested against the maximum of the RMS average of 10 subframes at the two window W extremities.

Table 6.5.2.5-2 and Table 6.5.2.5-2a specify EVM window length (W) for normal CP, the cyclic prefix length N_{cp} is 160 for symbols 0 and 144 for symbols 1-6.

Table 6.5.2.5-2 EVM window length for normal CP for E-UTRA

Channel Bandwidth MHz	FFT size	Cyclic prefix length for symbols 0 in FFT samples	Cyclic prefix length for symbols 1-6 in FFT samples	EVM window length <i>W</i>	Ratio of <i>W</i> to total CP for symbols 1-6* [%]	
1.4	128	10	9	5	55.6	
3	256	20	18	12	66.7	
5	512	40	36	32	88.9	
10	1024	80	72	66	91.7	
15	1536	120	108	102	94.4	
20	2048	160	144	136	94.4	
* Note: These percentages are informative and apply to symbols 1 through 6. Symbol 0 has a longer CP and therefore a lower percentage.						

FFT size	Cyclic prefix length for symbols 0 in FFT samples	Cyclic prefix length for symbols 1-6 in FFT samples	EVM window length <i>W</i>	Ratio of <i>W</i> to total CP for symbols 1-6 ¹ [%]	
128	10	9	3	33.3	
NOTE 1: These percentages are informative and apply to symbols 1 through 6. Symbol 0 has a longer CP and therefore a lower percentage.					

Table 6.5.2.5-2a EVM window length for normal CP for NB-IoT

NOTE 1: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in Annex G. The explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

6.5.3 Time alignment error

6.5.3.1 Definition and applicability

Frames of the LTE signals present at the BS transmitter antenna port(s) are not perfectly aligned in time. In relation to each other, the RF signals present at the BS transmitter antenna port(s) experience certain timing differences.

For a specific set of signals/transmitter configuration/transmission mode, time alignment error (TAE) is defined as the largest timing difference between any two signals. This test is only applicable for eNode B supporting TX diversity MIMO transmission, carrier aggregation and their combinations.

6.5.3.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.5.3.

6.5.3.3 Test Purpose

To verify that the timing alignment error in TX diversity, MIMO transmission, carrier aggregation and their combinations is within the limit specified by the minimum requirement.

6.5.3.4 Method of Test

6.5.3.4.1 Initial Conditions

Test environment: normal; see Annex D.2.

RF channels to be tested for single carrier: M; see subclause 4.7.

Base Station RF Bandwidth positions to be tested for multi-carrier and/or CA: M_{RFBW} in single-band operation, see subclause 4.7.1; B_{RFBW} T'_{RFBW} and B'_{RFBW} T_{RFBW} in multi-band operation, see subclause 4.7.1.

1) Connect two base station RF antenna ports to the measurement equipment according to Annex I.1.3. If available terminate the other unused antenna ports.

6.5.3.4.2 Procedure

- 1) Set the base station to transmit E-TM1.1 or any DL signal using TX diversity, MIMO transmission or carrier aggregation.
 - NOTE: For TX diversity and MIMO transmission, different ports may be configured in E-TM (using p = 0 and 1).

For a BS declared to be capable of single carrier operation only, set the BS to transmit according to manufacturer's declared rated output power.

If the BS supports intra band contiguous or non-contiguous Carrier Aggregation set the base station to transmit using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

If the BS supports inter band carrier aggregation set the base station to transmit, for each band, a single carrier or all carriers, using the applicable test configuration and corresponding power setting specified in sub clause 4.10 and 4.11.

For a NB-IoT BS declared to be capable of single carrier operation, start transmission according to N-TM at manufacturer's declared rated output power.

For a NB-IoT BS declared to be capable of multi-carrier operation, set the base station to transmit according to N-TM on all carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For an E-UTRA and NB-IoT standalone BS declared to be capable of multi-carrier operation, start transmission according to E-TM1.1 on all E-UTRA carriers and N-TM on all NB-IoT carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

- 2) Measure the time alignment error between the reference symbols on the carrier(s) from active antenna port(s).
- 3) Repeat the step 1 and 2 for any other possible configuration of transmit antennas.

In addition, for a multi-band capable BS, the following step shall apply:

4) For multi-band capable BS and single band tests, repeat the steps above per involved band where single band test configurations and test models shall apply with no carrier activated in the other band. For multi-band capable BS with separate antenna connector, the antenna connector not being under test in case of single-band or multi-band test shall be terminated.

6.5.3.5 Test Requirement

For E-UTRA:

- -For MIMO or TX diversity transmissions, at each carrier frequency, TAE shall not exceed 90 ns.
- For intra-band carrier aggregation, with or without MIMO or TX diversity, TAE shall not exceed 155 ns.
- For intra-band non-contiguous carrier aggregation, with or without MIMO or TX diversity, TAE shall not exceed 285 ns.
- For inter-band carrier aggregation, with or without MIMO or TX diversity, TAE shall not exceed 285 ns.

For NB-IoT:

- For TX diversity transmissions, at each carrier frequency, TAE shall not exceed 90 ns.
- NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance are given in Annex G.

6.5.4 DL RS power

6.5.4.1 Definition and applicability

For E-UTRA, DL RS power is the resource element power of Downlink Reference Symbol.

The absolute DL RS power is indicated on the DL-SCH. The absolute accuracy is defined as the maximum deviation between the DL RS power indicated on the DL-SCH and the DL RS power of each E-UTRA carrier at the BS antenna connector.

For NB-IoT, DL NRS power is the resource element power of the Downlink Narrow-band Reference Signal.

The absolute DL NRS power is indicated on the DL-SCH. The absolute accuracy is defined as the maximum deviation between the DL NRS power indicated on the DL-SCH and the DL NRS power of each NB-IoT carrier at the BS antenna connector.

6.5.4.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.5.4.

6.5.4.3 Test purpose

The test purpose is to verify that the DL RS/NRS power is within the limit specified by the minimum requirement.

6.5.4.4 Method of test

6.5.4.4.1 Initial conditions

Test environment: normal; see Annex D.2.

RF channels to be tested for single carrier: B, M and T; see subclause 4.7.

Connect the signal analyzer to the base station antenna connector as shown in Annex I.1.1.

6.5.4.4.2 Procedure

For E-UTRA, Set-up BS transmission at manufacturer's declared rated output power. Channel set-up shall be according to E-TM 1.1.

For NB-IoT, Set-up BS transmission at manufacturer's declared rated output power. Channel set-up shall be according to N-TM.

Measure the RS transmitted power according to annex F.

In addition, for a multi-band capable BS, the following step shall apply:

- For multi-band capable BS and single band tests, repeat the steps above per involved band where single carrier test models shall apply with no carrier activated in the other band. For multi-band capable BS with separate antenna connector, the antenna connector not being under test shall be terminated.

6.5.4.5 Test requirement

For E-UTRA, DL RS power of each E-UTRA carrier shall be:

within \pm 2.9 dB of the DL RS power indicated on the DL-SCH for carrier frequency f \leq 3.0GHz.

within \pm 3.2 dB of the DL RS power indicated on the DL-SCH for carrier frequency 3.0GHz < f \leq 4.2GHz.

For NB-IoT, DL NRS power of each NB-IoT carrier shall be:

within \pm 2.9 dB of the DL NRS power indicated on the DL-SCH for carrier frequency f \leq 3.0GHz.

- NOTE 1: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in Annex G. The explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.
- NOTE 2: PDSCH in E-TM1.1 is configured as "all 0" and DL RS power is not indicated on PDSCH during the measurement. The absolute DL RS power indicated on the DL-SCH can be calculated as $P_{max,c} 10log_{10}$ (12* N_{RB}) dBm, where N_{RB} is the transmission bandwidth configuration of E-TM1.1.

6.6 Unwanted emissions

Unwanted emissions consist of out-of-band emissions and spurious emissions [5]. Out of band emissions are unwanted emissions immediately outside the channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out of band emissions.

The out-of-band emissions requirement for the BS transmitter is specified both in terms of Adjacent Channel Leakage power Ratio (ACLR) and Operating band unwanted emissions. The Operating band unwanted emissions define all

unwanted emissions in each supported downlink operating band plus the frequency ranges 10 MHz above and 10 MHz below each band. Unwanted emissions outside of this frequency range are limited by a spurious emissions requirement.

For a BS supporting multi-carrier and/or CA, the unwanted emissions requirements apply to channel bandwidths of the outermost carrier larger than or equal to 5 MHz.

There is in addition a requirement for occupied bandwidth.

6.6.1 Occupied bandwidth

6.6.1.1 Definition and applicability

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean transmitted power.

The value of $\beta/2$ shall be taken as 0.5%.

6.6.1.2 Minimum Requirements

The minimum requirement is in TS 36.104 [2] subclause 6.6.1.

6.6.1.3 Test purpose

The occupied bandwidth, defined in the Radio Regulations of the International Telecommunication Union ITU, is a useful concept for specifying the spectral properties of a given emission in the simplest possible manner; see also ITU-R Recommendation SM.328 [4]. The test purpose is to verify that the emission of the BS does not occupy an excessive bandwidth for the service to be provided and is, therefore, not likely to create interference to other users of the spectrum beyond undue limits.

6.6.1.4 Method of test

6.6.1.4.1 Initial conditions

Test environment: normal; see Annex D.2.

RF channels to be tested for single carrier: B, M and T; see subclause 4.7.

Aggregated Channel Bandwidth positions to be tested for contiguous carrier aggregation: $B_{BW Channel CA}$, $M_{BW Channel CA}$ and $T_{BW Channel CA}$; see subclause 4.7.2.

- 1) Connect the Measurement device to the BS antenna connector as shown in Annex I.1.1.
- 2) For a E-UTRA BS declared to be capable of single carrier operation, start transmission according to E-TM1.1 at manufacturer's declared rated output power.

For a E-UTRA BS declared to be capable of contiguous carrier aggregation operation, set the base station to transmit according to E-TM1.1 on all carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For a E-UTRA BS declared to be capable of NB-IoT in-band operation, start transmission according to [E-TM1.1] with the NB-IoT PRB constructed according to N-TM at manufacturer's declared rated output power.

For a E-UTRA BS declared to be capable of NB-IoT guard-band operation, start transmission according to E-TM1.1 with the NB-IoT PRB constructed according to N-TM at manufacturer's declared rated output power.

For a NB-IoT BS declared to be capable of single carrier operation, start transmission according to N-TM at manufacturer's declared rated output power.

For a NB-IoT BS declared to be capable of multi-carrier in contiguous spectrum operation in single band only, start transmission according to N-TM on all carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For a E-UTRA and NB-IoT standalone BS declared to be capable of multi-carrier in contiguous spectrum operation in single band only, start transmission according to E-TM1.1 on all E-UTRA carriers and N-TM on all

NB-IoT carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

6.6.1.4.2 Procedure

1) Measure the spectrum emission of the transmitted signal using at least the number of measurement points, and across a span, as listed in Table 6.6.1.4.2-1. The selected resolution bandwidth (RBW) filter of the analyser shall be 30 kHz or less for E-UTRA and 10 kHz or less for NB-IoT.

Channel bandwidth BW _{Channel} [MHz]	0.2	1.4	3	5	10	15	20	>20
Span [MHz]	0.4	10	10	10	20	30	40	$2 \times BW_{Channel_CA}$
Minimum number of measurement points	400	1429	667	400	400	400	400	$\left[\frac{2 \times BW_{Channel_CA}}{100kHz}\right]$

Table 6.6.1.4.2-1: Span and number of measurement points for OBW measurements

- NOTE: The detection mode of the spectrum analyzer will not have any effect on the result if the statistical properties of the out-of-OBW power are the same as those of the inside-OBW power. Both are expected to have the Rayleigh distribution of the amplitude of Gaussian noise. In any case where the statistics are not the same, though, the detection mode must be power responding. The analyser may be set to respond to the average of the power (root-mean-square of the voltage) across the measurement cell.
- 2) Compute the total of the power, P0, (in power units, not decibel units) of all the measurement cells in the measurement span. Compute P1, the power outside the occupied bandwidth on each side. P1 is half of the total power outside the bandwidth. P1 is half of (100 % (occupied percentage)) of P0. For the occupied percentage of 99 %, P1 is 0.005 times P0.
- 3) Determine the lowest frequency, f1, for which the sum of all power in the measurement cells from the beginning of the span to f1 exceeds P1.
- 4) Determine the highest frequency, f2, for which the sum of all power in the measurement cells from f2 to the end of the span exceeds P1.
- 5) Compute the occupied bandwidth as f2 f1.

In addition, for a multi-band capable BS, the following step shall apply:

6) For multi-band capable BS and single band tests, repeat the steps above per involved band where single carrier test models shall apply, with no carrier activated in the other band. In addition, when contiguous CA is supported, single band test configurations and test models shall apply with no carrier activated in the other band. For multi-band capable BS with separate antenna connector, the antenna connector not being under test shall be terminated.

6.6.1.5 Test requirements

For E-UTRA, the occupied bandwidth for each E-UTRA carrier shall be less than the channel bandwidth as defined in Table 5.6-1. For contiguous CA, the occupied bandwidth shall be less than or equal to the Aggregated Channel Bandwidth as defined in subclause 5.6. For Band 46 operation in Japan, the occupied bandwidth for each E-UTRA carrier assigned within 5150-5350 MHz and 5470-5725 MHz shall be less than or equal to 19 MHz and 19.7MHz respectively.

For NB-IoT in-band operation, the occupied bandwidth for each E-UTRA carrier with NB-IoT shall be less than the channel bandwidth as defined in Table 5.6-1.

For NB-IoT guard-band operation, the occupied bandwidth for each E-UTRA carrier with NB-IoT shall be less than the channel bandwidth as defined in Table 5.6-1 for channel bandwidth larger than or equal to 5 MHz.

For NB-IoT stand-alone operation, the occupied bandwidth for each NB-IoT carrier shall be less than the channel bandwidth as defined in Table 5.6-3.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance are given in Annex G.

6.6.2 Adjacent Channel Leakage power Ratio (ACLR)

6.6.2.1 Definition and applicability

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

The requirements shall apply outside the Base Station RF Bandwidth or Maximum Radio Bandwidth whatever the type of transmitter considered (single carrier, multi-carrier and/or CA) and for all transmission modes foreseen by the manufacturer's specification.

For a BS operating in non-contiguous spectrum, the ACLR also applies for the first adjacent channel inside any subblock gap with a gap size $W_{gap} \ge 15$ MHz or $W_{gap} \ge 60$ MHz for Band 46. The ACLR requirement for the second adjacent channel applies inside any sub-block gap with a gap size $W_{gap} \ge 20$ MHz or $W_{gap} \ge 80$ MHz for Band 46. The CACLR requirement in subclause 6.6.2.6 applies in sub block gaps for the frequency ranges defined in Table 6.6.2-5/6.

For a BS operating in multiple bands, where multiple bands are mapped onto the same antenna connector, the ACLR also applies for the first adjacent channel inside any Inter RF Bandwidth gap with a gap size $W_{gap} \ge 15$ MHz. The ACLR requirement for the second adjacent channel applies inside any Inter RF Bandwidth gap with a gap size $W_{gap} \ge 20$ MHz. The CACLR requirement in subclause 6.6.2.6 applies in Inter RF Bandwidth gaps for the frequency ranges defined in Table 6.6.2-5/6.

The requirement applies during the transmitter ON period.

6.6.2.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.6.2.1

6.6.2.3 Test purpose

To verify that the adjacent channel leakage power ratio requirement shall be met as specified by the minimum requirement.

6.6.2.4 Method of test

6.6.2.4.1 Initial conditions

Test environment: normal; see Annex D.2.

RF channels to be tested for single-carrier: B, M and T; see subclause 4.7.

Base Station RF Bandwidth positions to be tested for multi-carrier and/or CA: B_{RFBW} , M_{RFBW} and T_{RFBW} in single-band operation, see subclause 4.7.1; B_{RFBW} _T'_{RFBW} and B'_{RFBW}_T_{RFBW} in multi-band operation, see subclause 4.7.1.

- 1) Connect measurement device to the base station antenna connector as shown in Annex I.1.1.
- 2) The measurement device characteristics shall be:
 - measurement filter bandwidth: defined in subclause 6.6.2.5;
 - detection mode: true RMS voltage or true average power.
- 3) For a E-UTRA BS declared to be capable of single carrier operation only, set the base station to transmit a signal according to E-TM1.1 at manufacturer's declared rated output power.

For a E-UTRA BS declared to be capable of multi-carrier and/or CA operation, set the base station to transmit according to E-TM1.1 on all carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For a E-UTRA BS declared to be capable of NB-IoT in-band operation, start transmission according to [E-TM1.1] with the NB-IoT PRB constructed according to N-TM at manufacturer's declared rated output power.

For a E-UTRA BS declared to be capable of NB-IoT guard-band operation, start transmission according to E-TM1.1 with the NB-IoT PRB constructed according to N-TM at manufacturer's declared rated output power.

For a NB-IoT BS declared to be capable of single carrier operation, start transmission according to N-TM at manufacturer's declared rated output power.

For a NB-IoT BS declared to be capable of multi-carrier in contiguous spectrum operation in single band only, start transmission according to N-TM on all carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For a E-UTRA and NB-IoT standalone BS declared to be capable of multi-carrier in contiguous spectrum operation in single band only, start transmission according to E-TM1.1 on all E-UTRA carriers and N-TM on all NB-IoT carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

4) Set carrier frequency within the frequency band supported by BS.

6.6.2.4.2 Procedure

- Measure Adjacent channel leakage power ratio for the frequency offsets both side of channel frequency as specified in Table 6.6.2-1 (Paired spectrum case) or Table 6.6.2-2 (Unpaired spectrum case) respectively. In multiple carrier case only offset frequencies below the lowest and above the highest carrier frequency used shall be measured.
- 2) For the ACLR requirement applied inside sub-block gap for non-contiguous spectrum operation: or inside Inter RF Bandwidth gap for multi-band operation
 - a) Measure ACLR inside sub-block gap or Inter RF Bandwidth gap as specified in subclause 6.6.2.5, if applicable.
 - b) For E-UTRA, measure CACLR inside sub-block gap or Inter RF Bandwidth gap as specified in subclause 6.6.2.6, if applicable.
- 3) For E-UTRA, repeat the test with the channel set-up according to E-TM1.2.

In addition, for a multi-band capable BS, the following step shall apply:

4) For multi-band capable BS and single band tests, repeat the steps above per involved band where single band test configurations and test models shall apply with no carrier activated in the other band. For multi-band capable BS with separate antenna connector, the antenna connector not being under test in case of single-band or multi-band test shall be terminated.

6.6.2.5 Test Requirement

The ACLR is defined with a square filter of bandwidth equal to the transmission bandwidth configuration of the transmitted signal (BW_{Config}) centred on the assigned channel frequency and a filter centered on the adjacent channel frequency according to the tables below.

For Category A Wide Area BS, either the ACLR limits in the tables below or the absolute limit of -13 dBm/MHz shall apply, whichever is less stringent.

For Category B Wide Area BS, either the ACLR limits in the tables below or the absolute limit of -15 dBm/MHz shall apply, whichever is less stringent.

For Medium Range BS, either the ACLR limits in the tables below or the absolute limit of -25 dBm/MHz shall apply, whichever is less stringent.

For Local Area BS, either the ACLR limits in the tables below or the absolute limit of -32dBm/MHz shall apply, whichever is less stringent.

For Home BS, either the ACLR limits in the tables below or the absolute limit of -50dBm/MHz shall apply, whichever is less stringent.

The ACLR requirements in Tables 6.6.2-1 to 6.6.2-4 (except Table 6.6.2-2b) apply to BS that supports E-UTRA or E-UTRA with NB-IoT (in band and/or guard band), in any operating band except for Band 46. The ACLR requirements

for Band 46 are in Table 6.6.2-2a and 6.6.2-4a. The ACLR requirements in Table 6.6.2-2b apply to BS that supports standalone NB-IoT.

For operation in paired spectrum, the ACLR shall be higher than the value specified in Table 6.6.2-1.

Table 6.6.2-1: Base Station ACLR in paired spectrum

Channel bandwidth of E-UTRA lowest/highest carrier transmitted BW _{Channel} [MHz]	BS adjacent channel centre frequency offset below the lowest or above the highest carrier centre frequency transmitted	Assumed adjacent channel carrier (informative)	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit	
1.4, 3.0, 5, 10, 15, 20	BWChannel	E-UTRA of same BW	Square (BW _{Config})	44.2 dB	
	2 x BW _{Channel}		Square (BW _{Config})	44.2 dB	
	BW _{Channel} /2 + 2.5 MHz		RRC (3.84 Mcps)	44.2 dB	
BW _{Channel} /2 + 7.5 MHz		3.84 Mcps UTRA	RRC (3.84 Mcps)	44.2 dB	
NOTE 1: BW _{Channel} and BW _{Config} are the channel bandwidth and transmission bandwidth configuration of the E-UTRA lowest/highest/ carrier transmitted on the assigned channel frequency. NOTE 2: The RRC filter shall be equivalent to the transmit pulse shape filter defined in [15], with a chip rate as defined in this table.					

For operation in unpaired spectrum, the ACLR shall be higher than the value specified in Table 6.6.2-2.

Channel bandwidth of E-UTRA lowest/highest carrier transmitted BW _{Channel} [MHz]	BS adjacent channel centre frequency offset below the lowest or above the highest carrier centre frequency transmitted	Assumed adjacent channel carrier (informative)	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit
1.4, 3.0	BW _{Channel}	E-UTRA of same BW	Square (BW _{Config})	44.2 dB
	2 x BW _{Channel}	E-UTRA of same BW	Square (BW _{Config})	44.2 dB
	BW _{Channel} /2 + 0.8 MHz	1.28 Mcps UTRA	RRC (1.28 Mcps)	44.2 dB
	BW _{Channel} /2 + 2.4 MHz	1.28 Mcps UTRA	RRC (1.28 Mcps)	44.2 dB
5, 10, 15, 20	BW _{Channel}	E-UTRA of same BW	Square (BW _{Config})	44.2 dB
	2 x BW _{Channel}	E-UTRA of same BW	Square (BW _{Config})	44.2 dB
	BW _{Channel} /2 + 0.8 MHz	1.28 Mcps UTRA	RRC (1.28 Mcps)	44.2 dB
	BW _{Channel} /2 + 2.4 MHz	1.28 Mcps UTRA	RRC (1.28 Mcps)	44.2 dB
	BW _{Channel} /2 + 2.5 MHz	3.84 Mcps UTRA	RRC (3.84 Mcps)	44.2 dB
	BW _{Channel} /2 + 7.5 MHz	3.84 Mcps UTRA	RRC (3.84 Mcps)	44.2 dB
	BW _{Channel} /2 + 5 MHz	7.68 Mcps UTRA	RRC (7.68 Mcps)	44.2 dB
	BW _{Channel} /2 + 15 MHz	7.68 Mcps UTRA	RRC (7.68 Mcps)	44.2 dB
 NOTE 1: BW_{Channel} and BW_{Config} are the channel bandwidth and transmission bandwidth configuration of the E-UTRA lowest/highest carrier transmitted on the assigned channel frequency. NOTE 2: The RRC filter shall be equivalent to the transmit pulse shape filter defined in [15], with a chip rate as defined in this table. 				

For operation in Band 46, the ACLR shall be higher than the value specified in Table 6.6.2-2a.

Channel bandwidth of E-UTRA lowest/highest carrier transmitted BW _{Channel} [MHz]	BS adjacent channel centre frequency offset below the lowest or above the highest carrier centre frequency transmitted	Assumed adjacent channel carrier (informative)	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit
20	BWChannel	E-UTRA of same BW	Square (BW _{Config})	35 dB
	2 x BW _{Channel}	E-UTRA of same BW	Square (BW _{Config})	40 dB
NOTE 1: BW _{Channel} and BW _{Config} are the channel bandwidth and transmission bandwidth configuration of the E-				
UTRA lowest/highest carrier transmitted on the assigned channel frequency.				

Table 6.6.2-2a: Base Station ACLR in Band 46

For stand-alone NB-IoT operation in paired spectrum, the ACLR shall be higher than the value specified in Table 6.6.2-2b.

Table 6.6.2-2b: Base Station ACLR for stand-alone NB-IoT	operation in paired spectrum
--	------------------------------

Channel bandwidth of NB-IoT lowest/highest carrier transmitted BW _{Channel} [kHz]	BS adjacent channel centre frequency offset below the lowest or above the highest carrier centre frequency transmitted	Assumed adjacent channel carrier (informative)	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit
200	300 kHz	Stand-alone NB-IoT	Square (180 kHz)	39.2 dB
	500 kHz	Stand-alone NB-IoT	Square (180 kHz)	49.2 dB

For operation in non-contiguous paired spectrum or multiple bands, the ACLR shall be higher than the value specified in Table 6.6.2-3.

Sub-block or Inter RF Bandwidth gap size (W _{gap}) where the limit applies	BS adjacent channel centre frequency offset below or above the sub-block edge or the Base Station RF Bandwidth edge (inside the gap)	Assumed adjacent channel carrier (informative)	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit
W _{gap} ≥ 15 MHz	2.5 MHz	3.84 Mcps UTRA	RRC (3.84 Mcps)	44.2 dB
W _{gap} ≥ 20 MHz	7.5 MHz	3.84 Mcps UTRA	RRC (3.84 Mcps)	44.2 dB
NOTE: The RRC chip rate a	filter shall be equivalent to the transmas defined in this table.	nit pulse shape filter	defined in TS 25.104 [15	i], with a

For operation in non-contiguous unpaired spectrum or multiple bands, the ACLR shall be higher than the value specified in Table 6.6.2-4.

Table 6.6.2-4: Base Station ACLR in non-contiguous unpaired spectrum or multiple bands

Sub-block or Inter RF Bandwidth gap size (Wgap) where the limit applies	BS adjacent channel centre frequency offset below or above the sub-block edge or the Base Station RF Bandwidth edge (inside the gap)	Assumed adjacent channel carrier (informative)	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit
W _{gap} ≥ 15 MHz	2.5 MHz	5MHz E-UTRA	Square (BW _{Config})	44.2 dB
W _{gap} ≥ 20 MHz	7.5 MHz	5MHz E-UTRA	Square (BW _{Config})	44.2 dB

For operation in non-contiguous spectrum in Band 46, the ACLR shall be higher than the value specified in Table 6.6.2-4a.

Table 6.6.2-4a: Base Station ACLR in non-contiguous spectrum in Band 46

Sub-block gap size (W _{gap}) where the limit applies	BS adjacent channel centre frequency offset below or above the sub-block edge (inside the gap)	Assumed adjacent channel carrier (informative)	Filter on the adjacent channel frequency and corresponding filter bandwidth	ACLR limit
W _{gap} ≥ 60 MHz	10 MHz	20MHz E-UTRA carrier	Square (BW _{Config})	35 dB
W _{gap} ≥ 80 MHz	30 MHz	20MHz E-UTRA carrier	Square (BW _{Config})	40 dB

6.6.2.6 Cumulative ACLR test requirement in non-contiguous spectrum

The following test requirement applies for the sub-block or Inter RF Bandwidth gap sizes listed in Table 6.6.2-5/6/6a,

- Inside a sub-block gap within an operating band for a BS operating in non-contiguous spectrum.
- Inside an Inter RF Bandwidth gap for a BS operating in multiple bands, where multiple bands are mapped on the same antenna connector.

The Cumulative Adjacent Channel Leakage power Ratio (CACLR) in a sub-block gap or Inter RF Bandwidth gap is the ratio of:

- a) the sum of the filtered mean power centred on the assigned channel frequencies for the two carriers adjacent to each side of the sub-block gap or Inter RF Bandwidth gap, and
- b) the filtered mean power centred on a frequency channel adjacent to one of the respective sub-block edges or Base Station RF Bandwidth edges.

The assumed filter for the adjacent channel frequency is defined in Table 6.6.2-5/6. Filters on the assigned channels are defined in Table 6.6.2-7.

For Wide Area Category A BS, either the CACLR limits in Table 6.6.2-5/6 or the absolute limit of -13dBm/MHz shall apply, whichever is less stringent.

For Wide Area Category B BS, either the CACLR limits in Table 6.6.2-5/6 or the absolute limit of -15dBm/MHz shall apply, whichever is less stringent.

For Medium Range BS, either the CACLR limits in Table 6.6.2-5/6 or the absolute limit of -25 dBm/MHz shall apply, whichever is less stringent.

For Local Area BS, either the CACLR limits in Table 6.6.2-5/6 or the absolute limit of -32 dBm/MHz shall apply, whichever is less stringent.

The ACLR requirements in Tables 6.6.2-5 and 6.6.2-6 apply toBS that supports E-UTRA, in any operating band except for Band 46. The ACLR requirements for Band 46 are in Table 6.6.2-6a.

For operation in non-contiguous spectrum or multiple bands, the CACLR for E-UTRA carriers located on either side of the sub-block gap or Inter RF Bandwidth gap shall be higher than the value specified in Table 6.6.2-5/6.

Table 6.6.2-5: Base Station CACLR in non-contiguous paired spectrum or multiple bands

Sub-block or Inter RF Bandwidth gap size (W _{gap}) where the limit applies	BS adjacent channel centre frequency offset below or above the sub-block edge or the Base Station RF Bandwidth edge (inside the gap)	Assumed adjacent channel carrier (informative)	Filter on the adjacent channel frequency and corresponding filter bandwidth	CACLR limit
5 MHz ≤ W _{gap} < 15 MHz	2.5 MHz	3.84 Mcps UTRA	RRC (3.84 Mcps)	44.2 dB
10 MHz < W _{gap} < 20 MHz	7.5 MHz	3.84 Mcps UTRA	RRC (3.84 Mcps)	44.2 dB
NOTE: The RRC filter shall be equivalent to the transmit pulse shape filter defined in TS 25.104 [15], with a chip rate as defined in this table.				

Table 6.6.2-6: Base Station CACLR in non-contiguous unpaired spectrum or multiple bands

Sub-block or Inter RF Bandwidth gap size (W _{gap}) where the limit applies	BS adjacent channel centre frequency offset below or above the sub-block edge or the Base Station RF Bandwidth edge (inside the gap)	Assumed adjacent channel carrier (informative)	Filter on the adjacent channel frequency and corresponding filter bandwidth	CACLR limit
5 MHz ≤ W _{gap} < 15 MHz	2.5 MHz	5MHz E-UTRA carrier	Square (BW _{Config})	44.2 dB
$10 \text{ MHz} < W_{qap}$	7.5 MHz	5MHz E-UTRA	Square (BW _{Config})	44.2 dB
< 20 MHz	7.5 WI 12	carrier		44.2 UD

For operation in non-contiguous spectrum in Band 46, the CACLR for E-UTRA carriers located on either side of the sub-block gap shall be higher than the value specified in Table 6.6.2-6a.

Table 6.6.2-6a: Base Station CACLR in non-contiguous spectrum in Band 46

Sub-block gap size (W _{gap}) where the limit applies	BS adjacent channel centre frequency offset below or above the sub-block edge (inside the gap)	Assumed adjacent channel carrier (informative)	Filter on the adjacent channel frequency and corresponding filter bandwidth	CACLR limit
20 MHz ≤ W _{gap} < 60 MHz	10 MHz	20MHz E-UTRA carrier	Square (BW _{Config})	34.2dB
40 MHz < W _{gap} < 80 MHz	30 MHz	20MHz E-UTRA carrier	Square (BW _{Config})	34.2 dB

Table 6.6.2-7: Filter parameters for the assigned channel

RAT of the carrier adjacent to the sub-block or Inter RF Bandwidth gap	Filter on the assigned channel frequency and corresponding filter bandwidth
E-UTRA	E-UTRA of same BW

NOTE: If the above Test Requirements differ from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance are given in Annex G.

6.6.3 Operating band unwanted emissions

6.6.3.1 Definition and applicability

Unless otherwise stated, the Operating band unwanted emission limits are defined from 10 MHz below the lowest frequency of each supported downlink operating band up to 10 MHz above the highest frequency of each supported downlink operating band (see Table 5.5-1).

The requirements shall apply whatever the type of transmitter considered (single carrier, multi-carrier and/or CA) and for all transmission modes foreseen by the manufacturer's specification. In addition, for a BS operating in non-contiguous spectrum, the requirements apply inside any sub-block gap. In addition, for a BS operating in multiple bands, the requirements apply inside any Inter RF Bandwidth gap.

For BS capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the singleband requirements apply and the cumulative evaluation of the emission limit in the Inter RF Bandwidth gap are not applicable.

For a BS supporting E-UTRA with guard band NB-IoT operation, the Operating band unwanted emissions requirements apply to E-UTRA carrier with channel bandwidth larger than or equal to 5 MHz.

The unwanted emission limits in the part of the downlink operating band that falls in the spurious domain are consistent with ITU-R Recommendation SM.329 [5].

For a multicarrier E-UTRA BS or BS configured for intra-band contiguous or non-contiguous carrier aggregation the definitions above apply to the lower edge of the carrier transmitted at the lowest carrier frequency and the upper edge of the carrier transmitted at the highest carrier frequency within a specified operating band.

For Wide Area BS, the requirements of either subclause 6.6.3.5.1 (Category A limits) or subclause 6.6.3.5.2 (Category B limits) shall apply.

For Local Area BS, the requirements of subclause 6.6.3.5.2A shall apply (Category A and B).

For Home BS, the requirements of subclause 6.6.3.5.2B shall apply (Category A and B).

For Medium Range BS, the requirements in subclause 6.6.3.5.2C shall apply (Category A and B).

The application of either Category A or Category B limits shall be the same as for Transmitter spurious emissions (Mandatory Requirements) in subclause 6.6.4.5.

For Category B Operating band unwanted emissions, there are two options for the limits that may be applied regionally. Either the limits in subclause 6.6.3.5.2.1 or subclause 6.6.3.5.2.2 shall be applied.

The requirements of suclauses 6.6.3.5.1 and 6.6.3.5.2 apply to BS that supports E-UTRA with NB-IoT (in band and/or guard band). The requirements for BS that supports standalone NB-IoT are in subclause 6.6.3.5.2E.

6.6.3.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.6.3.

6.6.3.3 Test purpose

This test measures the emissions of the BS, close to the assigned channel bandwidth of the wanted signal, while the transmitter is in operation.

6.6.3.4 Method of test

6.6.3.4.1 Initial conditions

Test environment: normal; see Annex D.2.

RF channels to be tested for single carrier: B, M and T; see subclause 4.7.

Base Station RF Bandwidth position to be tested for multi-carrier and/or CA: B_{RFBW} , M_{RFBW} and T_{RFBW} in single-band operation, see subclause 4.7.1; B_{RFBW} _T'_{RFBW} and B'_{RFBW}_T_{RFBW} in multi-band operation, see subclause 4.7.1.

1) Connect the signal analyzer to the base station antenna connector as shown in Annex I.1.1.

As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity, efficiency and avoiding e.g. carrier leakage, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth. When the resolution bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

2) Detection mode: True RMS.

6.6.3.4.2 Procedure

1) For a E-UTRA BS declared to be capable of single carrier operation only, set the BS transmission at manufacturer's declared rated output power. Channel set-up shall be according to E-TM 1.1.

For a E-UTRA BS declared to be capable of multi-carrier and/or CA operation, set the base station to transmit according to E-TM1.1 on all carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For a E-UTRA BS declared to be capable of NB-IoT in-band operation, start transmission according to E-TM1.1 with the NB-IoT PRB constructed according to N-TM at manufacturer's declared rated output power.

For a E-UTRA BS declared to be capable of NB-IoT guard-band operation, start transmission according to E-TM1.1 with the NB-IoT PRB constructed according to N-TM at manufacturer's declared rated output power.

For a NB-IoT BS declared to be capable of single carrier operation, start transmission according to N-TM at manufacturer's declared rated output power.

For a NB-IoT BS declared to be capable of multi-carrier in contiguous spectrum operation in single band only, start transmission according to N-TM on all carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For a E-UTRA and NB-IoT standalone BS declared to be capable of multi-carrier in contiguous spectrum operation in single band only, start transmission according to E-TM1.1 on all E-UTRA carriers and N-TM on all NB-IoT carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

2) Step the centre frequency of the measurement filter in contiguous steps and measure the emission within the specified frequency ranges with the specified measurement bandwidth. For BS operating in multiple bands or

non-contiguous spectrum, the emission within the Inter RF Bandwidth or sub-block gap shall be measured using the specified measurement bandwidth from the closest RF Bandwidth or sub block edge.

3) For E-UTRA, repeat the test with the channel set-up according to E-TM 1.2.

In addition, for a multi-band capable BS, the following step shall apply:

4) For multi-band capable BS and single band tests, repeat the steps above per involved band where single band test configurations and test models shall apply with no carrier activated in the other band. For multi-band capable BS with separate antenna connector, the antenna connector not being under test in case of single-band or multi-band test shall be terminated.

6.6.3.5 Test requirement

The measurement results in step 2 of 6.6.3.4.2 shall not exceed the maximum levels specified in the tables below, where:

- Δf is the separation between the Base Station RF Bandwidth edge frequency and the nominal -3dB point of the measuring filter closest to the carrier frequency.
- f_offset is the separation between the Base Station RF Bandwidth edge frequency and the centre of the measuring filter.
- f_offset_{max} is the offset to the frequency 10 MHz outside the downlink operating band.
- Δf_{max} is equal to f_offset_{max} minus half of the bandwidth of the measuring filter.

For BS operating in multiple bands, inside any Inter RF Bandwidth gaps with $W_{gap} < 20$ MHz, emissions shall not exceed the cumulative sum of the test requirements specified at the Base Station RF Bandwidth edges on each side of the Inter RF Bandwidth gap. The test requirement for Base Station RF Bandwidth edge is specified in Tables 6.6.3.5.1-1 to 6.6.3.5.3-3 below, where in this case:

- Δf is the separation between the Base Station RF Bandwidth edge frequency and the nominal -3 dB point of the measuring filter closest to the Base Station RF Bandwidth edge.
- f_offset is the separation between the Base Station RF Bandwidth edge frequency and the centre of the measuring filter.
- f_offset_{max} is equal to the Inter RF Bandwidth gap minus half of the bandwidth of the measuring filter.
- Δf_{max} is equal to f_offset_{max} minus half of the bandwidth of the measuring filter.

For BS capable of multi-band operation where multiple bands are mapped on the same antenna connector, the operating band unwanted emission limits apply also in a supported operating band without any carrier transmitted, in the case where there are carrier(s) transmitted in another supported operating band. In this case, no cumulative limit is applied in the inter-band gap between a supported downlink operating band with carrier(s) transmitted and a supported downlink operating band without any carrier transmitted and

- In case the inter-band gap between a supported downlink operating band with carrier(s) transmitted and a supported downlink operating band without any carrier transmitted is less than 20MHz, f_offset_{max} shall be the offset to the frequency 10 MHz outside the outermost edges of the two supported downlink operating bands and the operating band unwanted emission limit of the band where there are carriers transmitted, as defined in the tables of the present subclause, shall apply across both downlink bands.
- In other cases, the operating band unwanted emission limit of the band where there are carriers transmitted, as defined in the tables of the present subclause for the largest frequency offset (Δf_{max}), shall apply from 10 MHz below the lowest frequency, up to 10 MHz above the highest frequency of the supported downlink operating band without any carrier transmitted.

In addition inside any sub-block gap for a BS operating in non-contiguous spectrum, measurement results shall not exceed the cumulative sum of the test requirements specified for the adjacent sub blocks on each side of the sub block gap. The test requirement for each sub block is specified in Tables 6.6.3.5.1-1 to 6.6.3.5.3-3 below, where in this case:

- Δf is the separation between the sub block edge frequency and the nominal -3 dB point of the measuring filter closest to the sub block edge.
- f_offset is the separation between the sub block edge frequency and the centre of the measuring filter.
- f_offset_{max} is equal to the sub block gap bandwidth minus half of the bandwidth of the measuring filter.
- Δf_{max} is equal to f_offset_{max} minus half of the bandwidth of the measuring filter.

6.6.3.5.1 Test requirements for Wide Area BS (Category A)

For E-UTRA BS operating in Bands 5, 6, 8, 12, 13, 14, 17, 18, 19, 26, 27, 28, 29, 31, 44 emissions shall not exceed the maximum levels specified in Tables 6.6.3.5.1-1 to 6.6.3.5.1-3.

Table 6.6.3.5.1-1: Wide Area BS operating band unwanted emission limits for 1.4 MHz channel bandwidth (E-UTRA bands <1GHz) for Category A

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)			
$0 \text{ MHz} \le \Delta f < 1.4 \text{ MHz}$	0.05 MHz \leq f_offset < 1.45 MHz	$+0.5dBm - \frac{10}{1.4} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz			
1.4 MHz ≤ ∆f < 2.8 MHz	1.45 MHz ≤ f_offset < 2.85 MHz	-9.5 dBm	100 kHz			
$2.8 \text{ MHz} \le \Delta f \le \Delta f_{max}$	2.85 MHz \leq f_offset < f_offset _{max}	-13 dBm	100 kHz			
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -13dBm/100kHz.						
NOTE 2: For BS suppor Inter RF Band	ting multi-band operation with Inter R width gaps is calculated as a cumulati	NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.				

Table 6.6.3.5.1-2: Wide Area BS operating band unwanted emission limits for 3 MHz channel bandwidth (E-UTRA bands <1GHz) for Category A

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)			
0 MHz ≤ ∆f < 3 MHz	0.05 MHz \leq f_offset < 3.05 MHz	$-3.5dBm - \frac{10}{3} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz			
$3 \text{ MHz} \le \Delta f < 6 \text{ MHz}$	$3.05 \text{ MHz} \le f_{offset} < 6.05 \text{ MHz}$	-13.5 dBm	100 kHz			
$6 \text{ MHz} \le \Delta f \le \Delta f \text{max}$	$6.05 \text{ MHz} \le f_\text{offset} < f_\text{offsetmax}$	-13 dBm	100 kHz			
sub-block gaps	NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the					
where the test	sub block gap. Exception is $\Delta f \ge 10$ MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -13dBm/100kHz.					
	NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the					
		ve sum of contributions from adjacent sub-b	olocks or RF			
Bandwidth on	each side of the Inter RF Bandwidth g	ap.				

Table 6.6.3.5.1-3: Wide Area BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands <1GHz) for Category A

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)	
0 MHz ≤ ∆f < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-5.5dBm - \frac{7}{5} \cdot \left(\frac{f _ offset}{MHz} - 0.05\right) dB$	100 kHz	
5 MHz ≤ Δf <	5.05 MHz ≤ f_offset <	-12.5 dBm	100 kHz	
min(10 MHz, ∆f _{max})	min(10.05 MHz, f_offset _{max})			
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.05 MHz ≤ f_offset < f_offset _{max}	-13 dBm (Note 9)	100 kHz	
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -13dBm/100kHz.				
Inter RF Band		F Bandwidth gap < 20MHz the test requirem ve sum of contributions from adjacent sub-b jap.		

For E-UTRA BS operating in Bands 1, 2, 3, 4, 7, 9, 10, 11, 21, 23, 24, 25, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 65, 66, emissions shall not exceed the maximum levels specified in Tables 6.6.3.5.1-4, 6.6.3.5.1-5 and 6.6.3.5.1-6:

For E-UTRA BS operating in Bands 22, 42, 43, emissions shall not exceed the maximum levels specified in Tables 6.6.3.5.1-4a, 6.6.3.5.1-5a and 6.6.3.5.1-6a:

Table 6.6.3.5.1-4: Wide Area BS operating band unwanted emission limits for 1.4 MHz channel bandwidth (1GHz < E-UTRA bands ≤ 3GHz) for Category A

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 1.4 MHz	0.05 MHz \leq f_offset < 1.45 MHz	$+0.5dBm - \frac{10}{1.4} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz
1.4 MHz $\leq \Delta f < 2.8$ MHz	1.45 MHz ≤ f_offset < 2.85 MHz	-9.5 dBm	100 kHz
2.8 MHz $\leq \Delta f \leq \Delta f_{max}$	3.3 MHz \leq f_offset < f_offset _{max}	-13 dBm	1MHz
sub-block gaps sub block gap, bandwidth of th the sub-block g NOTE 2: For BS suppor Inter RF Bandwidth on	is is calculated as a cumulative sum of where the contribution from the far-en- ne near-end sub-block. Exception is Δ gap, where the test requirement within ting multi-band operation with Inter RI width gaps is calculated as a cumulati each side of the Inter RF Bandwidth g	ation within any operating band the test required contributions from adjacent sub blocks on a nd sub-block shall be scaled according to the f \ge 10MHz from both adjacent sub blocks or a sub-block gaps shall be -13dBm/1MHz. F Bandwidth gap < 20MHz the test requirem ve sum of contributions from adjacent sub-block gap, where the contribution from the far-end sub-block of the near-end sub-block of the near-	each side of the ne measurement n each side of nent within the plocks or RF sub-block or RF

Table 6.6.3.5.1-4a: Wide Area BS operating band unwanted emission limits for 1.4 MHz channel bandwidth (E-UTRA bands >3GHz) for Category A

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 1.4 MHz	0.05 MHz \leq f_offset < 1.45 MHz	$+0.8dBm - \frac{10}{1.4} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz
$1.4 \text{ MHz} \le \Delta f < 2.8 \text{ MHz}$	1.45 MHz \leq f_offset < 2.85 MHz	-9.2 dBm	100 kHz
$2.8 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$	$3.3 \text{ MHz} \le f_\text{offset} < f_\text{offset}_{\text{max}}$	-13 dBm	1MHz
sub-block gap sub block gap bandwidth of t the sub-block NOTE 2: For BS suppo Inter RF Band Bandwidth on	s is calculated as a cumulative sum of , where the contribution from the far-en- he near-end sub-block. Exception is Δ gap, where the test requirement within rting multi-band operation with Inter RI width gaps is calculated as a cumulati each side of the Inter RF Bandwidth g	ation within any operating band the test requires contributions from adjacent sub blocks on a nd sub-block shall be scaled according to the f \ge 10MHz from both adjacent sub blocks or a sub-block gaps shall be -13dBm/1MHz. F Bandwidth gap < 20MHz the test requirem ve sum of contributions from adjacent sub-block gap, where the contribution from the far-end sub-block of the near-end sub-block of the near-	each side of the e measurement n each side of nent within the blocks or RF sub-block or RF

Table 6.6.3.5.1-5: Wide Area BS operating band unwanted emission limits for 3 MHz channel bandwidth (1GHz < E-UTRA bands ≤ 3GHz) for Category A

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 3 MHz	0.05 MHz \leq f_offset < 3.05 MHz	$-3.5dBm - \frac{10}{3} \cdot \left(\frac{f _ offset}{MHz} - 0.05\right) dB$	100 kHz
3 MHz ≤ ∆f < 6 MHz	$3.05 \text{ MHz} \le f_{offset} < 6.05 \text{ MHz}$	-13.5 dBm	100 kHz
$6 \text{ MHz} \leq \Delta f \leq \Delta f_{\text{max}}$	$6.5 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$	-13 dBm	1MHz
sub-block gap sub block gap bandwidth of the sub-block NOTE 2: For BS suppo Inter RF Band Bandwidth on	s is calculated as a cumulative sum of , where the contribution from the far-end he near-end sub-block. Exception is Δ gap, where the test requirement within rting multi-band operation with Inter RI width gaps is calculated as a cumulati each side of the Inter RF Bandwidth g	ation within any operating band the test required contributions from adjacent sub blocks on a sub-block shall be scaled according to the f \ge 10MHz from both adjacent sub blocks or a sub-block gaps shall be -13dBm/1MHz. = Bandwidth gap < 20MHz the test requirem ve sum of contributions from adjacent sub-block gap, where the contribution from the far-end sub-block of the near-end sub-block of the near-en	each side of the ne measurement n each side of nent within the plocks or RF sub-block or RF

Table 6.6.3.5.1-5a: Wide Area BS operating band unwanted emission limits for 3 MHz channel bandwidth (E-UTRA bands >3GHz) for Category A

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 3 MHz	0.05 MHz \leq f_offset < 3.05 MHz	$-3.2dBm - \frac{10}{3} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz
$3 \text{ MHz} \le \Delta f < 6 \text{ MHz}$	$3.05 \text{ MHz} \le \text{f_offset} < 6.05 \text{ MHz}$	-13.2 dBm	100 kHz
$6 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$	$6.5 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$	-13 dBm	1MHz
sub-block gap sub block gap, bandwidth of ti the sub-block NOTE 2: For BS suppor Inter RF Band Bandwidth on	is is calculated as a cumulative sum of where the contribution from the far-en- ne near-end sub-block. Exception is Δ gap, where the test requirement within ting multi-band operation with Inter RI width gaps is calculated as a cumulati each side of the Inter RF Bandwidth g	ation within any operating band the test required contributions from adjacent sub blocks on a nd sub-block shall be scaled according to the f \ge 10MHz from both adjacent sub blocks or a sub-block gaps shall be -13dBm/1MHz. F Bandwidth gap < 20MHz the test requirem ve sum of contributions from adjacent sub-block gap, where the contribution from the far-end sub-block gap.	each side of the ne measurement n each side of nent within the plocks or RF sub-block or RF

Table 6.6.3.5.1-6: Wide Area BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (1GHz < E-UTRA bands ≤ 3GHz) for Category A

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-5.5dBm - \frac{7}{5} \cdot \left(\frac{f _ offset}{MHz} - 0.05\right) dB$	100 kHz
5 MHz $\leq \Delta f < min(10 MHz, \Delta f_{max})$	5.05 MHz \leq f_offset < min(10.05 MHz, f_offset _{max})	-12.5 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	$10.5 \text{ MHz} \le f_\text{offset} < f_\text{offset}_{max}$	-13 dBm (Note 9)	1MHz
sub-block gap sub block gap bandwidth of t the sub-block NOTE 2: For BS suppo Inter RF Band Bandwidth on	s is calculated as a cumulative sum of , where the contribution from the far-e he near-end sub-block. Exception is Δ gap, where the test requirement withir rting multi-band operation with Inter RI width gaps is calculated as a cumulati each side of the Inter RF Bandwidth g	ation within any operating band the test required contributions from adjacent sub blocks on a sub-block shall be scaled according to the f \ge 10MHz from both adjacent sub blocks on a sub-block gaps shall be -13dBm/1MHz. = Bandwidth gap < 20MHz the test requirem ve sum of contributions from adjacent sub-block gap, where the contribution from the far-end sub-block gap.	each side of the ne measurement n each side of nent within the plocks or RF sub-block or RF

Table 6.6.3.5.1-6a: Wide Area BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands >3GHz) for Category A

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-5.2dBm - \frac{7}{5} \cdot \left(\frac{f _ offset}{MHz} - 0.05\right) dB$	100 kHz
5 MHz ≤ Δf < min(10 MHz, Δf _{max})	5.05 MHz \leq f_offset < min(10.05 MHz, f_offset _{max})	-12.2 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	$10.5 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$	-13 dBm (Note 9)	1MHz
sub-block gaps sub block gap, bandwidth of tl the sub-block g NOTE 2: For BS suppor Inter RF Band Bandwidth on	is is calculated as a cumulative sum of where the contribution from the far-en- ne near-end sub-block. Exception is Δ gap, where the test requirement within ting multi-band operation with Inter RI width gaps is calculated as a cumulati each side of the Inter RF Bandwidth g	ation within any operating band the test required contributions from adjacent sub blocks on a nd sub-block shall be scaled according to the f \ge 10MHz from both adjacent sub blocks or a sub-block gaps shall be -13dBm/1MHz. F Bandwidth gap < 20MHz the test requirem ve sum of contributions from adjacent sub-block gap, where the contribution from the far-end ement bandwidth of the near-end sub-block of the	each side of the ne measurement n each side of nent within the plocks or RF sub-block or RF

6.6.3.5.2 Test requirements for Wide Area BS (Category B)

For Category B Operating band unwanted emissions, there are two options for the limits that may be applied regionally. Either the limits in subclause 6.6.3.5.2.1 or subclause 6.6.3.5.2.2 shall be applied.

6.6.3.5.2.1 Category B test requirements (Option 1)

For E-UTRA BS operating in Bands 5, 8, 12, 13, 14, 17, 20, 26, 27, 28, 29, 31, 44, 67, 68 emissions shall not exceed the maximum levels specified in Tables 6.6.3.5.2.1-1 to 6.6.3.5.2.1-3:

Table 6.6.3.5.2.1-1: Wide Area BS operating band unwanted emission limits for 1.4 MHz channel bandwidth (E-UTRA bands <1GHz) for Category B</th>

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 1.4 MHz	$0.05 \text{ MHz} \le f_{offset} < 1.45 \text{ MHz}$	$+0.5dBm - \frac{10}{1.4} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz
1.4 MHz ≤ ∆f < 2.8 MHz	1.45 MHz ≤ f_offset < 2.85 MHz	-9.5 dBm	100 kHz
$2.8 \text{ MHz} \le \Delta f \le \Delta f_{max}$	2.85 MHz \leq f_offset < f_offset _{max}	-16 dBm	100 kHz
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -16dBm/100kHz.			

NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.

Table 6.6.3.5.2.1-2: Wide Area BS operating band unwanted emission limits for 3 MHz channel bandwidth (E-UTRA bands <1GHz) for Category B</th>

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
$0 \text{ MHz} \le \Delta f < 3 \text{ MHz}$	0.05 MHz \leq f_offset < 3.05 MHz	$-3.5dBm - \frac{10}{3} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz
$3 \text{ MHz} \le \Delta f < 6 \text{ MHz}$	3.05 MHz ≤ f_offset < 6.05 MHz	-13.5 dBm	100 kHz
$6 \text{ MHz} \le \Delta f \le \Delta f_{max}$	$6.05 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$	-16 dBm	100 kHz
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap,			
where the test requirement within sub-block gaps shall be -16dBm/100kHz. NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.			

Table 6.6.3.5.2.1-3: Wide Area BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands <1GHz) for Category B

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-5.5dBm - \frac{7}{5} \cdot \left(\frac{f _ offset}{MHz} - 0.05\right) dB$	100 kHz
5 MHz ≤ ∆f <	5.05 MHz ≤ f_offset <	-12.5 dBm	100 kHz
min(10 MHz, Δf_{max})	min(10.05 MHz, f_offset _{max})		
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.05 MHz \leq f_offset < f_offset _{max}	-16 dBm (Note 9)	100 kHz
10 MHz ≤ Δf ≤ Δf _{max} 10.05 MHz ≤ f_offset < f_offset, and the test requirement within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -16dBm/100kHz.			

For E-UTRA BS operating in Bands 1, 2, 3, 4, 7, 10, 25, 30, 33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 65, 66, emissions shall not exceed the maximum levels specified in Tables 6.6.3.5.2.1-4, 6.6.3.5.2.1-5 and 6.6.3.5.2.1-6:

For E-UTRA BS operating in Bands 22, 42, 43, emissions shall not exceed the maximum levels specified in Tables 6.6.3.5.2.1-4a, 6.6.3.5.2.1-5a and 6.6.3.5.2.1-6a:

Table 6.6.3.5.2.1-4: Wide Area BS operating band unwanted emission limits for 1.4 MHz channel bandwidth (1GHz < E-UTRA bands ≤ 3GHz) for Category B

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 1.4 MHz	0.05 MHz ≤ f_offset < 1.45 MHz	$+0.5dBm - \frac{10}{1.4} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz
1.4 MHz ≤ ∆f < 2.8 MHz	1.45 MHz ≤ f_offset < 2.85 MHz	-9.5 dBm	100 kHz
$2.8 \text{ MHz} \le \Delta f \le \Delta f_{max}$	$3.3 \text{ MHz} \le f_\text{offset} < f_\text{offset}_{max}$	-15 dBm	1MHz
sub-block gap sub block gap bandwidth of the sub-block NOTE 2: For BS suppo Inter RF Band Bandwidth on	is is calculated as a cumulative sum of , where the contribution from the far-e the near-end sub-block. Exception is Δ gap, where the test requirement within rting multi-band operation with Inter RI width gaps is calculated as a cumulati each side of the Inter RF Bandwidth g	ation within any operating band the test required contributions from adjacent sub blocks on a nd sub-block shall be scaled according to the f \ge 10MHz from both adjacent sub blocks or a sub-block gaps shall be -15dBm/1MHz. F Bandwidth gap < 20MHz the test requirem ve sum of contributions from adjacent sub-block gap, where the contribution from the far-end sub-block of the near-end sub-block of the near-	each side of the e measurement n each side of nent within the blocks or RF sub-block or RF

Table 6.6.3.5.2.1-4a: Wide Area BS operating band unwanted emission limits for 1.4 MHz channel bandwidth (E-UTRA bands >3GHz) for Category B

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 1.4 MHz	0.05 MHz \leq f_offset < 1.45 MHz	$+0.8dBm - \frac{10}{1.4} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz
1.4 MHz ≤ ∆f < 2.8 MHz	$1.45 \text{ MHz} \le f_{\text{offset}} < 2.85 \text{ MHz}$	-9.2 dBm	100 kHz
2.8 MHz $\leq \Delta f \leq \Delta f_{max}$	$3.3 \text{ MHz} \le f_{offset} < f_{offset_{max}}$	-15 dBm	1MHz
sub-block gap sub block gap bandwidth of t the sub-block NOTE 2: For BS suppo Inter RF Band Bandwidth on	2.8 MHZ ≤ ΔI ≤ ΔI max 3.3 MHZ ≤ I_OISEC < I_OISEC < I_OISEC = I_OISE		

Table 6.6.3.5.2.1-5: Wide Area BS operating band unwanted emission limits for 3 MHz channel bandwidth (1GHz < E-UTRA bands ≤ 3GHz) for Category B

Frequency offset measurement filter -3dB point, <i>i</i>	measurement filter centre	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 3 M⊦	$0.05 \text{ MHz} \le f_{\text{offset}} < 3.05 \text{ MHz}$	$-3.5dBm - \frac{10}{3} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz
3 MHz ≤ ∆f < 6 MH	z $3.05 \text{ MHz} \le f_\text{offset} < 6.05 \text{ MHz}$	-13.5 dBm	100 kHz
$6 \text{ MHz} \le \Delta f \le \Delta f_{max}$	$6.5 \text{ MHz} \le f_\text{offset} < f_\text{offset}$	-15 dBm	1MHz
sub-block sub block bandwidtl the sub-b NOTE 2: For BS su Inter RF E Bandwidt	gaps is calculated as a cumulative sum of gap, where the contribution from the far-en- of the near-end sub-block. Exception is Δ ock gap, where the test requirement within porting multi-band operation with Inter R andwidth gaps is calculated as a cumulat on each side of the Inter RF Bandwidth of shall be scaled according to the measure	ation within any operating band the test requ f contributions from adjacent sub blocks on a nd sub-block shall be scaled according to th $f \ge 10MHz$ from both adjacent sub blocks or n sub-block gaps shall be -15dBm/1MHz. F Bandwidth gap < 20MHz the test requirem tive sum of contributions from adjacent sub-b gap, where the contribution from the far-end ement bandwidth of the near-end sub-block of	each side of the ne measurement n each side of nent within the plocks or RF sub-block or RF

Table 6.6.3.5.2.1-5a: Wide Area BS operating band unwanted emission limits for 3 MHz channel bandwidth (E-UTRA bands >3GHz) for Category B

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 3 MHz	0.05 MHz \leq f_offset < 3.05 MHz	$-3.2dBm - \frac{10}{3} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz
$3 \text{ MHz} \le \Delta f < 6 \text{ MHz}$	$3.05 \text{ MHz} \le \text{f_offset} < 6.05 \text{ MHz}$	-13.2 dBm	100 kHz
$6 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$	$6.5 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$	-15 dBm	1MHz
sub-block gaps sub block gap, bandwidth of tl the sub-block g NOTE 2: For BS suppor Inter RF Band Bandwidth on	is is calculated as a cumulative sum of where the contribution from the far-en- ne near-end sub-block. Exception is Δ gap, where the test requirement within ting multi-band operation with Inter RF width gaps is calculated as a cumulati each side of the Inter RF Bandwidth g	ation within any operating band the test required contributions from adjacent sub blocks on each sub-block shall be scaled according to the f \geq 10MHz from both adjacent sub blocks or a sub-block gaps shall be -15dBm/1MHz. F Bandwidth gap < 20MHz the test requirem ve sum of contributions from adjacent sub-block gap, where the contribution from the far-end sub-block of the near-end sub-block of the near	each side of the e measurement n each side of nent within the plocks or RF sub-block or RF

Table 6.6.3.5.2.1-6: Wide Area BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (1GHz < E-UTRA bands ≤ 3GHz) for Category B

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-5.5dBm - \frac{7}{5} \cdot \left(\frac{f _ offset}{MHz} - 0.05\right) dB$	100 kHz
5 MHz ≤ Δf < min(10 MHz, Δf _{max})	5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset _{max})	-12.5 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	$10.5 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$	-15 dBm (Note 9)	1MHz
sub-block gap sub block gap bandwidth of t the sub-block NOTE 2: For BS suppor Inter RF Band Bandwidth on	s is calculated as a cumulative sum of , where the contribution from the far-en- he near-end sub-block. Exception is Δ gap, where the test requirement within ting multi-band operation with Inter RI width gaps is calculated as a cumulati each side of the Inter RF Bandwidth g	ation within any operating band the test required contributions from adjacent sub blocks on a nd sub-block shall be scaled according to the $f \ge 10$ MHz from both adjacent sub blocks or a sub-block gaps shall be -15dBm/1MHz. F Bandwidth gap < 20MHz the test requirem ve sum of contributions from adjacent sub-block gap, where the contribution from the far-end sub-block of the near-end sub-block of the near-	each side of the e measurement n each side of nent within the blocks or RF sub-block or RF

Table 6.6.3.5.2.1-6a: Wide Area BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands >3GHz) for Category B

Frequency offset o measurement filter -3dB point, Δf	measurement filter centre	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-5.2dBm - \frac{7}{5} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz
5 MHz $\leq \Delta f < min(10 \text{ MHz}, \Delta f_{max})$	5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset _{max})	-12.2 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta fmax$		-15 dBm (Note 9)	1MHz
sub-block g sub block g bandwidth the sub-blo NOTE 2: For BS sup Inter RF Ba Bandwidth	aps is calculated as a cumulative sum of ap, where the contribution from the far-e of the near-end sub-block. Exception is Δ ck gap, where the test requirement within porting multi-band operation with Inter R ndwidth gaps is calculated as a cumulation on each side of the Inter RF Bandwidth g	ation within any operating band the test requ f contributions from adjacent sub blocks on a nd sub-block shall be scaled according to th $f \ge 10$ MHz from both adjacent sub blocks on n sub-block gaps shall be -15dBm/1MHz. F Bandwidth gap < 20MHz the test requirem tive sum of contributions from adjacent sub-block gap, where the contribution from the far-end ement bandwidth of the near-end sub-block	each side of the e measurement n each side of nent within the plocks or RF sub-block or RF

6.6.3.5.2.2 Category B (Option 2)

The limits in this subclause are intended for Europe and may be applied regionally for BS operating in band 1, 3, 8, 32, 33, 34 or 65.

For a BS operating in band 1, 3, 8, 32, 33, 34 or 65, emissions shall not exceed the maximum levels specified in Table 6.6.3.5.2.2-1 below for 5, 10, 15 and 20 MHz channel bandwidth:

Table 6.6.3.5.2.2-1: Regional Wide Area BS operating band unwanted emission limits in band 1, 3, 8,32, 33, 34 or 65 for 5, 10, 15 and 20 MHz channel bandwidth for Category B

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
$0 \text{ MHz} \le \Delta f < 0.2 \text{ MHz}$	$0.015MHz \le f_offset < 0.215MHz$	-12.5dBm	30 kHz
0.2 MHz ≤ ∆f < 1 MHz	0.215MHz ≤ f_offset < 1.015MHz	$-12.5dBm - 15 \cdot \left(\frac{f _ offset}{MHz} - 0.215\right) dB$	30 kHz
(Note 8)	1.015MHz ≤ f_offset < 1.5 MHz	-24.5dBm	30 kHz
1 MHz $\leq \Delta f \leq$	1.5 MHz ≤ f_offset <	-11.5dBm	1 MHz
min(10 MHz , Δf_{max})	min(10.5 MHz, f_offset _{max})		
10 MHz $\leq \Delta f \leq \Delta f_{max}$	$10.5 \text{ MHz} \le f_\text{offset} < f_\text{offset}_{max}$	-15 dBm (Note 9)	1 MHz
sub-block gap sub block gap bandwidth of t the sub-block NOTE 2: For BS suppor Inter RF Band Bandwidth on	10 MHz ≤ Δf ≤ Δf _{max} 10.5 MHz ≤ f_offset < f_offset < f_offsetmax -15 dBm (Note 9) 1 MHz NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap, where the contribution from the far-end sub-block shall be scaled according to the measuremen bandwidth of the near-end sub-block. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -15dBm/1MHz. NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF		

For a BS operating in band 3, 8 or 65, emissions shall not exceed the maximum levels specified in Table 6.6.3.5.2.2-2 below for 3 MHz channel bandwidth:

Table 6.6.3.5.2.2-2: Regional Wide Area BS operating band unwanted emission limits in band 3, 8 or65 for 3 MHz channel bandwidth for Category B

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 0.05 MHz	0.015 MHz ≤ f_offset < 0.065 MHz	$6.5dBm - 60 \cdot \left(\frac{f_{offset}}{MHz} - 0.015\right) dB$	30 kHz
0.05 MHz ≤ ∆f < 0.15 MHz	0. 065 MHz ≤ f_offset < 0.165 MHz	$3.5dBm - 160 \cdot \left(\frac{f_{offset}}{MHz} - 0.065\right) dB$	30 kHz
0.15 MHz ≤ ∆f < 0.2 MHz	0.165MHz ≤ f_offset < 0.215MHz	-12.5dBm	30 kHz
0.2 MHz ≤ ∆f < 1 MHz	0.215MHz ≤ f_offset < 1.015MHz	$-12.5 dBm - 15 \cdot \left(\frac{f - offset}{MHz} - 0.21\right)$	30 kHz
(Note 8)	$1.015MHz \le f_offset < 1.5 MHz$	-24.5dBm	30 kHz
$1 \text{ MHz} \le \Delta f \le 6 \text{ MHz}$	$1.5MHz \le f_{offset} < 6.5 MHz$,	-11.5dBm	1 MHz
$6 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$	6.5 MHz ≤ f_offset < f_offset _{max}	-15 dBm	1 MHz
6 MHz ≤ Δf ≤ Δfmax 6.5 MHz ≤ f_offset < f_offset < f_offsetmax -15 dBm 1 MHz NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -15dBm/1MHz. NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth.			

For a BS operating in band 3, 8 or 65, emissions shall not exceed the maximum levels specified in Table 6.6.3.5.2.2-3 below for 1.4 MHz channel bandwidth:

Table 6.6.3.5.2.2-3: Regional Wide Area BS operating band unwanted emission limits in band 3, 8 or
65 for 1.4 MHz channel bandwidth for Category B

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
$0 \text{ MHz} \le \Delta f < 0.05 \text{ MHz}$	$0.015 \text{ MHz} \le f_{offset} < 0.065 \text{ MHz}$	$6.5dBm - 60 \cdot \left(\frac{f_{offset}}{MHz} - 0.015\right) dB$	30 kHz
0.05 MHz ≤ ∆f < 0.15 MHz	0. 065 MHz ≤ f_offset < 0.165 MHz	$3.5dBm - 160 \cdot \left(\frac{f_{offset}}{MHz} - 0.065\right) dB$	30 kHz
0.15 MHz ≤ ∆f < 0.2 MHz	0.165MHz ≤ f_offset < 0.215MHz	-12.5 dBm	30 kHz
0.2 MHz ≤ ∆f < 1 MHz	0.215MHz ≤ f_offset < 1.015MHz	$-12.5 dBm - 15 \cdot \left(\frac{f - offset}{MHz} - 0.21\right)$	30 kHz
(Note 8)	1.015MHz ≤ f_offset < 1.5 MHz	-24.5 dBm	30 kHz
$1 \text{ MHz} \le \Delta f \le 2.8 \text{ MHz}$	1.5 MHz \leq f_offset < 3.3 MHz	-11.5 dBm	1 MHz
$2.8 \text{ MHz} \le \Delta f \le \Delta f_{max}$	$3.3 \text{ MHz} \le f_\text{offset} < f_\text{offset}_{\text{max}}$	-15 dBm	1 MHz

NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap, where the contribution from the far-end sub-block shall be scaled according to the measurement bandwidth of the near-end sub-block. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -15dBm/1MHz.

NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap, where the contribution from the far-end sub-block or RF Bandwidth shall be scaled according to the measurement bandwidth of the near-end sub-block or RF Bandwidth.

6.6.3.5.2A Test requirements for Local Area BS (Category A and B)

For Local Area BS in E-UTRA bands \leq 3GHz, emissions shall not exceed the maximum levels specified in Tables 6.6.3.5.2A-1, 6.6.3.5.2A-2 and 6.6.3.5.2A-3.

For Local Area BS in E-UTRA bands >3GHz, emissions shall not exceed the maximum levels specified in Tables 6.6.3.5.2A-1a, 6.6.3.5.2A-2a and 6.6.3.5.2A-3a.

Table 6.6.3.5.2A-1: Local Area BS operating band unwanted emission limits	for 1.4 MHz channel
bandwidth (E-UTRA bands ≤3GHz)	

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 1.4 MHz	$0.05 \text{ MHz} \le f_{offset} < 1.45 \text{ MHz}$	$-19.5dBm - \frac{10}{1.4} \left(\frac{f _ offset}{MHz} - 0.05\right) dB$	100 kHz
1.4 MHz ≤ ∆f < 2.8 MHz	1.45 MHz ≤ f_offset < 2.85 MHz	-29.5 dBm	100 kHz
$2.8 \text{ MHz} \le \Delta f \le \Delta f_{max}$	2.85 MHz \leq f_offset < f_offset _{max}	-31 dBm	100 kHz
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -31 dBm/100 kHz.			
NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.			

Table 6.6.3.5.2A-1a: Local Area BS operating band unwanted emission limits for 1.4 MHz channel bandwidth (E-UTRA bands >3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 1.4 MHz	$0.05 \text{ MHz} \le f_{offset} < 1.45 \text{ MHz}$	$-19.2dBm - \frac{10}{1.4} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz
1.4 MHz ≤ ∆f < 2.8 MHz	1.45 MHz ≤ f_offset < 2.85 MHz	-29.2 dBm	100 kHz
$2.8 \text{ MHz} \le \Delta f \le \Delta f_{max}$	2.85 MHz ≤ f_offset < f_offset _{max}	-31 dBm	100 kHz
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -31 dBm/100 kHz.			

NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.

Table 6.6.3.5.2A-2: Local Area BS operating band unwanted emission limits for 3 MHz channel bandwidth (E-UTRA bands ≤3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 3 MHz	0.05 MHz \leq f_offset < 3.05 MHz	$-23.5dBm - \frac{10}{3} \left(\frac{f _ offset}{MHz} - 0.05 \right) dB$	100 kHz
3 MHz ≤ ∆f < 6 MHz	3.05 MHz ≤ f_offset < 6.05 MHz	-33.5 dBm	100 kHz
$6 \text{ MHz} \leq \Delta f \leq \Delta f_{\text{max}}$	$6.05 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$	-35 dBm	100 kHz
6 MHZ ≤ ΔT ≤ ΔTmax 6.05 MHZ ≤ 1_0ftset < 1_0ftset max			each side of the block gap, nent within the

Table 6.6.3.5.2A-2a: Local Area BS operating band unwanted emission limits for 3 MHz channel bandwidth (E-UTRA bands >3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
$0 \text{ MHz} \le \Delta f < 3 \text{ MHz}$	0.05 MHz \leq f_offset < 3.05 MHz	$-23.2dBm - \frac{10}{3} \cdot \left(\frac{f _ offset}{MHz} - 0.05\right) dB$	100 kHz
3 MHz ≤ ∆f < 6 MHz	3.05 MHz ≤ f_offset < 6.05 MHz	-33.2 dBm	100 kHz
$6 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$	6.05 MHz ≤ f_offset < f_offset _{max}	-35 dBm	100 kHz
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -35 dBm/100 kHz.			
NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF			

Bandwidth on each side of the Inter RF Bandwidth gap.

Table 6.6.3.5.2A-3: Local Area BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands ≤3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 5 MHz	0.05 MHz \leq f_offset < 5.05 MHz	$-28.5 dBm - \frac{7}{5} \left(\frac{f _ offset}{MHz} - 0.05 \right) dB$	100 kHz
$5 \text{ MHz} \le \Delta f < \\ \min(10 \text{ MHz}, \Delta f_{max})$	5.05 MHz \leq f_offset < min(10.05 MHz, f_offset _{max})	-35.5 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.05 MHz ≤ f_offset < f_offset _{max}	-37 dBm (Note 9)	100 kHz
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -37 dBm/100 kHz.			
NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.			

Table 6.6.3.5.2A-3a: Local Area BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands >3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)	
0 MHz ≤ ∆f < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-28.2dBm - \frac{7}{5} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz	
5 MHz ≤ ∆f <	5.05 MHz ≤ f_offset <	-35.2 dBm	100 kHz	
min(10 MHz, Δf_{max})	min(10.05 MHz, f_offset _{max})			
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.05 MHz ≤ f_offset < f_offset _{max}	-37 dBm (Note 9)	100 kHz	
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -37 dBm/100 kHz.				
NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.				

6.6.3.5.2B Test requirements for Home BS (Category A and B)

For Home BS in E-UTRA bands \leq 3GHz, emissions shall not exceed the maximum levels specified in Tables 6.6.3.5.2B-1, 6.6.3.5.2B-2 and 6.6.3.5.2B-3.

For Home BS in E-UTRA bands >3GHz, emissions shall not exceed the maximum levels specified in Tables 6.6.3.5.2B-1a, 6.6.3.5.2B-2a and 6.6.3.5.2B-3a.

Table 6.6.3.5.2B-1: Home BS operating band unwanted emission limits for 1.4 MHz channel bandwidth (E-UTRA bands ≤3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 1.4 MHz	$0.05 \text{ MHz} \le f_{offset} < 1.45 \text{ MHz}$	$-28.5 dBm + \frac{6}{1.4} \left(\frac{f _ offset}{MHz} - 0.05 \right) dB$	100 kHz
1.4 MHz ≤ ∆f < 2.8 MHz	1.45 MHz ≤ f_offset < 2.85 MHz	-34.5 dBm	100 kHz
$2.8 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$	$3.3 \text{ MHz} \le f_{offset} < f_{offset_{max}}$	$\begin{cases} P - 52dB, \ 2dBm \le P \le 20dBm \\ -50dBm, \ P < 2dBm \end{cases}$	1MHz

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 1.4 MHz	$0.05 \text{ MHz} \le f_{offset} < 1.45 \text{ MHz}$	$-28.2dBm - \frac{6}{1.4} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz
1.4 MHz ≤ ∆f < 2.8 MHz	1.45 MHz ≤ f_offset < 2.85 MHz	-34.2 dBm	100 kHz
$2.8 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$	$3.3 \text{ MHz} \leq f_{offset} < f_{offset_{max}}$	$\begin{cases} P - 52dB, \ 2\text{dBm} \le P \le 20\text{dBm} \\ -50dBm, \ P < 2\text{dBm} \end{cases}$	1MHz

Table 6.6.3.5.2B-1a: Home BS operating band unwanted emission limits for 1.4 MHz channel bandwidth (E-UTRA bands >3GHz)

Table 6.6.3.5.2B-2: Home BS operating band unwanted emission limits for 3 MHz channel bandwidth (E-UTRA bands ≤3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 3 MHz	0.05 MHz \leq f_offset < 3.05 MHz	$-32.5dBm - 2\left(\frac{f - offset}{MHz} - 0.05\right)dB$	100 kHz
3 MHz ≤ ∆f < 6 MHz	3.05 MHz ≤ f_offset < 6.05 MHz	-38.5 dBm	100 kHz
$6 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$	$6.5 \text{ MHz} \le f_\text{offset} < f_\text{offset}_{max}$	$\begin{cases} P - 52dB, \ 2dBm \le P \le 20dBm \\ -50dBm, \ P < 2dBm \end{cases}$	1MHz

Table 6.6.3.5.2B-2a: Home BS operating band unwanted emission limits for 3 MHz channel bandwidth(E-UTRA bands >3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 3 MHz	0.05 MHz \leq f_offset < 3.05 MHz	$-32.2dBm - 2 \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz
3 MHz ≤ ∆f < 6 MHz	3.05 MHz ≤ f_offset < 6.05 MHz	-38.2 dBm	100 kHz
$6 \text{ MHz} \leq \Delta f \leq \Delta f_{\text{max}}$	$6.5 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$	$\begin{cases} P - 52dB, \ 2dBm \le P \le 20dBm \\ -50dBm, \ P < 2dBm \end{cases}$	1MHz

Table 6.6.3.5.2B-3: Home BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands ≤3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-34.5dBm - \frac{6}{5} \left(\frac{f - offset}{MHz} - 0.05 \right) dB$	100 kHz
5 MHz ≤ ∆f < min(10 MHz, Δf _{max})	5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset _{max})	-40.5 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.5 MHz \leq f_offset < f_offset _{max}	$\begin{cases} P-52dB, \ 2dBm \le P \le 20dBm \\ -50dBm, \ P < 2dBm \\ (Note 9) \end{cases}$	1MHz

Table 6.6.3.5.2B-3a: Home BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth (E-UTRA bands >3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement	Measurement bandwidth (Note 6)
0 MHz $\leq \Delta f < 5$ MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-34.2dBm - \frac{6}{5} \cdot \left(\frac{f _offset}{MHz} - 0.05\right) dB$	100 kHz
5 MHz $\leq \Delta f < min(10 MHz, \Delta f_{max})$	5.05 MHz \leq f_offset < min(10.05 MHz, f_offset _{max})	-40.2 dBm	100 kHz
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.5 MHz \leq f_offset < f_offset _{max}	$\begin{cases} P - 52dB, 2dBm \le P \le 20dBm \\ 50 dBm, P \le 2dBm \end{cases}$	1MHz
		(−50 <i>dBm</i> , P<2dBm (Note 9)	

6.6.3.5.2C Test requirements for Medium Range BS (Category A and B)

For Medium Range BS in E-UTRA bands \leq 3GHz, emissions shall not exceed the maximum levels specified in Tables 6.6.3.5.2C-1, 6.6.3.5.2C-2, 6.6.3.5.2C-3, 6.6.3.5.2C-4, 6.6.3.5.2C-5 and 6.6.3.5.2C-6.

For Medium Range BS in E-UTRA bands >3GHz, emissions shall not exceed the maximum levels specified in Tables 6.6.3.5.2C-1a, 6.6.3.5.2C-2a, 6.6.3.5.2C-3a, 6.6.3.5.2C-4a, 6.6.3.5.2C-5a and 6.6.3.5.2C-6a.

Table 6.6.3.5.2C-1: Medium Range BS operating band unwanted emission limits for 1.4 MHz channel bandwidth, 31 < P_{max,c} ≤ 38 dBm (E-UTRA bands ≤3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)	
0 MHz ≤ ∆f < 1.4 MHz	0.05 MHz \leq f_offset < 1.45 MHz	$P_{\text{max}c} - 43.5 dB - \frac{10}{1.4} \left(\frac{f _ offset}{MHz} - 0.05 \right) dB$	100 kHz	
$1.4 \text{ MHz} \le \Delta f < 2.8 \text{ MHz}$	1.45 MHz \leq f_offset < 2.85 MHz	P _{max,c} -53.5dB	100 kHz	
$2.8 \text{ MHz} \le \Delta f \le \Delta f_{max}$	2.85 MHz \leq f_offset < f_offset _{max}	-25dBm	100 kHz	
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -25dBm/100kHz.				
NOTE 2: For BS suppor Inter RF Bandy	NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.			

Table 6.6.3.5.2C-1a: Medium Range BS operating band unwanted emission limits for 1.4 MHz channel bandwidth, $31 < P_{max,c} \le 38$ dBm (E-UTRA bands >3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)	
0 MHz ≤ ∆f < 1.4 MHz	0.05 MHz ≤ f_offset < 1.45 MHz	$P_{\max c} - 43.2 dB - \frac{10}{1.4} \left(\frac{f _ offset}{MHz} - 0.05 \right) dB$	100 kHz	
$1.4 \text{ MHz} \le \Delta f < 2.8 \text{ MHz}$	1.45 MHz ≤ f_offset < 2.85 MHz	P _{max,c} -53.2dB	100 kHz	
$2.8 \text{ MHz} \le \Delta f \le \Delta f_{\text{max}}$	$2.85 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$	-25dBm	100 kHz	
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -25dBm/100kHz.				
NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.				

Table 6.6.3.5.2C-2: Medium Range BS operating band unwanted emission limits for 1.4 MHz channel bandwidth, P_{max,c} ≤ 31 dBm (E-UTRA bands ≤3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)	
0 MHz ≤ ∆f < 1.4 MHz	0.05 MHz ≤ f_offset < 1.45 MHz	$-12.5 \text{dBm} - \frac{10}{1.4} \left(\frac{f _offset}{MHz} - 0.05 \right) \text{dB}$	100 kHz	
1.4 MHz ≤ ∆f < 2.8 MHz	1.45 MHz ≤ f_offset < 2.85 MHz	-22.5 dBm	100 kHz	
$2.8 \text{ MHz} \le \Delta f \le \Delta f_{max}$	2.85 MHz \leq f_offset < f_offset _{max}	-25dBm	100 kHz	
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -25dBm/100kHz.				
		F Bandwidth gap < 20MHz the test requiren ve sum of contributions from adjacent sub-t		

Table 6.6.3.5.2C-2a: Medium Range BS operating band unwanted emission limits for 1.4 MHz channel
bandwidth, $P_{max,c} \le 31$ dBm (E-UTRA bands >3GHz)

Bandwidth on each side of the Inter RF Bandwidth gap.

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)	
0 MHz ≤ ∆f < 1.4 MHz	0.05 MHz \leq f_offset < 1.45 MHz	$-12.2 dBm - \frac{10}{1.4} \left(\frac{f _offset}{MHz} - 0.05 \right) dB$	100 kHz	
1.4 MHz ≤ ∆f < 2.8 MHz	1.45 MHz ≤ f_offset < 2.85 MHz	-22.2 dBm	100 kHz	
2.8 MHz $\leq \Delta f \leq \Delta f_{max}$	$2.85 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$	-25dBm	100 kHz	
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -25dBm/100kHz.				
NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.				

Table 6.6.3.5.2C-3: Medium Range BS operating band unwanted emission limits for 3 MHz channel bandwidth, 31 < P_{max,c} ≤ 38 dBm (E-UTRA bands ≤3GHz)

Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)		
0.05 MHz \leq f_offset < 3.05 MHz	$P_{\text{max,c}} - 47.5 \text{dB} - \frac{10}{3} \left(\frac{f - offset}{MHz} - 0.05 \right) dB$	100 kHz		
$3.05 \text{ MHz} \le \text{f_offset} < 6.05 \text{ MHz}$	P _{max,c} -57.5dB	100 kHz		
$6.05 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$	Min(P _{max,c} -59dB, -25dBm)	100 kHz		
 NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be Min(P_{max,c}-59dB, -25dBm)/100kHz. NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF 				
	measurement filter centre frequency, f_offset $0.05 \text{ MHz} \leq f_offset < 3.05 \text{ MHz}$ $3.05 \text{ MHz} \leq f_offset < 6.05 \text{ MHz}$ $6.05 \text{ MHz} \leq f_offset < f_offset_max$ orting non-contiguous spectrum operationsis calculated as a cumulative sum of Exception is $\Delta f \geq 10 \text{ MHz}$ from both a requirement within sub-block gaps shore	measurement filter centre frequency, f_offset $0.05 \text{ MHz} \le f_offset < 3.05 \text{ MHz}$ $P_{max,c} - 47.5 \text{dB} - \frac{10}{3} \left(\frac{f_offset}{MHz} - 0.05 \right) \text{dB}$ $3.05 \text{ MHz} \le f_offset < 6.05 \text{ MHz}$ $P_{max,c} - 57.5 \text{dB}$ $6.05 \text{ MHz} \le f_offset < f_offset_{max}$ $Min(P_{max,c}-59 \text{dB}, -25 \text{dBm})$ orting non-contiguous spectrum operation within any operating band the test requises is calculated as a cumulative sum of contributions from adjacent sub blocks on exception is $\Delta f \ge 10 \text{MHz}$ from both adjacent sub blocks on each side of the sub-requirement within sub-block gaps shall be Min($P_{max,c}-59 \text{dB}, -25 \text{dBm}$)/100kHz.		

Table 6.6.3.5.2C-3a: Medium Range BS operating band unwanted emission limits for 3 MHz channel bandwidth, 31 < P_{max,c} ≤ 38 dBm (E-UTRA bands >3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
$0 \text{ MHz} \le \Delta f < 3 \text{ MHz}$	0.05 MHz ≤ f_offset < 3.05 MHz	$P_{\text{max,c}} - 47.2 \text{dB} - \frac{10}{3} \left(\frac{f - offset}{MHz} - 0.05 \right) dB$	100 kHz
3 MHz ≤ ∆f < 6 MHz	3.05 MHz ≤ f_offset < 6.05 MHz	P _{max,c} -57.2dB	100 kHz
$6 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$	$6.05 \text{ MHz} \le f_\text{offset} < f_\text{offset}_{max}$	Min(P _{max,c} -59dB, -25dBm)	100 kHz
 NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be Min(P_{max,c}-59dB, -25dBm)/100kHz. NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF 			

Table 6.6.3.5.2C-4: Medium Range BS operating band unwanted emission limits for 3 MHz channel bandwidth, P_{max,c} ≤ 31 dBm (E-UTRA bands ≤3GHz)

Bandwidth on each side of the Inter RF Bandwidth gap.

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)	
0 MHz ≤ ∆f < 3 MHz	0.05 MHz ≤ f_offset < 3.05 MHz	$-16.5 \text{dBm} - \frac{10}{3} \left(\frac{f _ offset}{MHz} - 0.05 \right) dB$	100 kHz	
$3 \text{ MHz} \le \Delta f < 6 \text{ MHz}$	$3.05 \text{ MHz} \le f_{offset} < 6.05 \text{ MHz}$	-26.5 dBm	100 kHz	
$6 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$	$6.05 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$	-28 dBm	100 kHz	
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -28dBm/100kHz.				
NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.				

Table 6.6.3.5.2C-4a: Medium Range BS operating band unwanted emission limits for 3 MHz channel bandwidth, P_{max,c} ≤ 31 dBm (E-UTRA bands >3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)	
0 MHz ≤ ∆f < 3 MHz	0.05 MHz ≤ f_offset < 3.05 MHz	$-16.2 \text{dBm} - \frac{10}{3} \left(\frac{f _offset}{MHz} - 0.05 \right) dB$	100 kHz	
3 MHz ≤ ∆f < 6 MHz	3.05 MHz ≤ f_offset < 6.05 MHz	-26.2 dBm	100 kHz	
$6 \text{ MHz} \leq \Delta f \leq \Delta f_{max}$	6.05 MHz ≤ f_offset < f_offset _{max}	-28 dBm	100 kHz	
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -28dBm/100kHz.				
Inter RF Band		F Bandwidth gap < 20MHz the test requirem ve sum of contributions from adjacent sub-b lap.		

Table 6.6.3.5.2C-5: Medium Range BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth, 31< P_{max,c} ≤ 38 dBm (E-UTRA bands ≤3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)
0 MHz ≤ ∆f < 5 MHz	0.05 MHz \leq f_offset < 5.05 MHz	$P_{\max,c} - 51.5 dB - \frac{7}{5} \left(\frac{f - offset}{MHz} - 0.05 \right) dB$	100 kHz
5 MHz $\leq \Delta f < min(10)$ MHz, Δf_{max}	5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset _{max})	P _{max,c} -58.5dB	100 kHz
$10 \text{ MHz} \le \Delta f \le \Delta f_{max}$ $10.05 \text{ MHz} \le f_{offset} < f_{offset_{max}}$		Min(P _{max,c} -60dB, -25dBm) (Note 9)	100 kHz
10 MHz ≤ Δf ≤ Δf _{max} 10.05 MHz ≤ f_offset < f_offset < f_offset, and the feat < f_offset, and the			

Table 6.6.3.5.2C-5a: Medium Range BS operating band unwanted emission limits for 5, 10, 15 and 20MHz channel bandwidth, 31< $P_{max,c} \leq 38$ dBm (E-UTRA bands >3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)	
0 MHz ≤ ∆f < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$P_{\max,c} - 51.2 dB - \frac{7}{5} \left(\frac{f - offset}{MHz} - 0.05 \right) dB$	100 kHz	
5 MHz $\leq \Delta f < min(10)$ MHz, Δf_{max}	5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset _{max})	P _{max,c} -58.2dB	100 kHz	
$10 \text{ MHz} \le \Delta f \le \Delta f_{max}$ $10.05 \text{ MHz} \le f_{offset} < f_{offset_{max}}$		Min(P _{max,c} -60dB, -25dBm) (Note 9)	100 kHz	
10 MHz ≤ Δf ≤ Δf _{max} 10.05 MHz ≤ f_offset < f_offset < f_offsetmax Min(Pmax,c-60dB, -25dBm) (Note 9) 100 kHz NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is Δf ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be Min(Pmax,c-60dB, -25dBm)/100kHz. NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.				

Table 6.6.3.5.2C-6: Medium Range BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth, P_{max,c} ≤ 31 dBm (E-UTRA bands ≤3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)	
0 MHz ≤ Δf < 5 MHz	0.05 MHz ≤ f_offset < 5.05 MHz	$-20.5 \text{ dBm} - \frac{7}{5} \left(\frac{f _ offset}{MHz} - 0.05 \right) dB$	100 kHz	
5 MHz $\leq \Delta f < min(10)$ MHz, Δf_{max}	5.05 MHz ≤ f_offset < min(10.05 MHz, f_offset _{max})	-27.5 dBm	100 kHz	
10 MHz $\leq \Delta f \leq \Delta f_{max}$	$10.05 \text{ MHz} \leq f_\text{offset} < f_\text{offset}_{max}$	-29 dBm (Note 9)	100 kHz	
10 MHz ≤ Δf ≤ Δfmax 10.05 MHz ≤ f_offset < f_offset max				

Table 6.6.3.5.2C-6a: Medium Range BS operating band unwanted emission limits for 5, 10, 15 and 20 MHz channel bandwidth, $P_{max,c} \le 31$ dBm (E-UTRA bands >3GHz)

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement (Note 1, 2)	Measurement bandwidth (Note 6)				
0 MHz ≤ ∆f < 5 MHz	0.05 MHz \leq f_offset < 5.05 MHz	$-20.2 \text{ dBm} - \frac{7}{5} \left(\frac{f - offset}{MHz} - 0.05 \right) dB$	100 kHz				
$5 \text{ MHz} \le \Delta f < \min(10)$	5.05 MHz \leq f_offset < min(10.05	-27.2 dBm	100 kHz				
MHz, Δf _{max})	MHz, f_offset _{max})						
10 MHz $\leq \Delta f \leq \Delta f_{max}$	10.05 MHz \leq f_offset < f_offset _{max}		100 kHz				
NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band the test requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 10MHz from both adjacent sub blocks on each side of the sub-block gap, where the test requirement within sub-block gaps shall be -29dBm/100kHz.							
Inter RF Bandy	width gaps is calculated as a cumulati	ve sum of contributions from adjacent sub-t	NOTE 2: For BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the test requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.				

6.6.3.5.2D Minimum requirements for Local Area and Medium Range BS in Band 46 (Category A and B)

For Local Area and Medium Range BS operating in Band 46, emissions shall not exceed the maximum levels specified in Tables 6.6.3.5.2D-1.

Table 6.6.3.5.2D-1: Local Area and Medium Range BS operating band unwanted emission limits in Band 46 for 20MHz channel bandwidth

Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement (Note 1)	Measurement bandwidth (Note 6)		
0 MHz ≤ ∆f < 1 MHz	0.05 MHz ≤ f_offset < 1.05 MHz	$Pmax, c-32.6dB-10\left(\frac{f_offset}{MHz}-0.05\right)dB$	100 kHz		
1 MHz ≤ ∆f < min(10 MHz, ∆f _{max})	1.05 MHz ≤ f_offset < min(10.05 MHz, f_offset _{max})	$Pmax, c - 42.6 dB - \frac{8}{9} \left(\frac{f _ offset}{MHz} - 1.05 \right) dB$	100 kHz		
10 MHz ≤ ∆f < min(20 MHz, ∆f _{max})	$\begin{array}{l} 10.05 \ \text{MHz} \leq f_offset < min(20.05 \\ \text{MHz}, \ f_offset_{max}) \end{array}$	$Pmax, c-50.6dB - \frac{12}{10} \left(\frac{f _ offset}{MHz} - 10.05 \right) dB$	100 kHz		
20 MHz ≤ Δf < min(170 MHz, Δf _{max})	20.05 MHz ≤ f_offset < min(170.05 MHz, f_offset _{max})	Max(P _{max,c} - 62.6dB, -40dBm)	100 kHz		
170 MHz ≤ ∆f < min(206 MHz, ∆f _{max})	170.05 MHz ≤ f_offset < min(206.05 MHz, f_offset _{max})	Max(P _{max,c} - 64.6dB, -40dBm)	100 kHz		
206 MHz $\leq \Delta f \leq \Delta f_{max}$	$206.05 \text{ MHz} \le f_offset < f_offset_max}$	Max(P _{max,c} - 69.6dB, -40dBm)	100 kHz		
within sub-bloc	NOTE 1: For a BS supporting non-contiguous spectrum operation within any operating band, the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. Exception is ∆f ≥ 20 MHz from both adjacent sub blocks on each side of the sub-block				

6.6.3.5.2E Minimum requirements for stand-alone NB-IoT Wide Area BS

For stand-alone NB-IoT BS in E-UTRA bands \leq 3GHz, emissions shall not exceed the maximum levels specified in Tables 6.6.3.5.2E-1.

Table 6.6.3.5.2E-1: Stand-alone NB-IoT BS operating band unwanted emission limits (E-UTRA bands ≤3GHz)

Frequency offset of measurement filter centre frequency, f_offset	Minimum requirement (Note 1, 2, 3, 4)	Measuremen t bandwidth (Note 6)	
0.015 MHz ≤ f_offset < 0.065 MHz	$Max(6.5dBm - 60 \cdot \left(\frac{f_{offset}}{MHz} - 0.015\right) dB + XdB,$ $-12.5dBm)$	30 kHz	
0.065 MHz ≤ f_offset < 0.165 MHz	$Max(3.5dBm - 160 \cdot \left(\frac{f_{offset}}{MHz} - 0.065\right) dB + XdB,$ $-12.5dBm)$	30 kHz	
0.165 MHz ≤ f_offset < 0.215 MHz	-12.5 dBm	30 kHz	
0.215 MHz ≤ f_offset < 1.015 MHz	$-12.5dBm - 15 \cdot \left(\frac{f - offset}{MHz} - 0.215\right) dB$	30 kHz	
1.015 MHz ≤ f_offset < 1.5 MHz	-24.5 dBm	30 kHz	
1.5 MHz ≤ f_offset < min(f_offsetmax, 10.5 MHz)	-11.5 dBm	1 MHz	
10.5 MHz ≤ f_offset < f_offset _{max}	-15 dBm (Note 9)	1 MHz	
 NOTE 1: The limits in this table only apply for operation with a standalone NB-IoT carrier adjacent to the Base Station RF Bandwidth edge. NOTE 2: For a BS supporting non-contiguous spectrum operation within any operating band the minimum requirement within sub-block gaps is calculated as a cumulative sum of contributions from adjacent sub blocks on each side of the sub block gap. NOTE 3: For a BS supporting multi-band operation with Inter RF Bandwidth gap < 20MHz the minimum requirement within the Inter RF Bandwidth gaps is calculated as a cumulative sum of contributions from adjacent sub-blocks or RF Bandwidth on each side of the Inter RF Bandwidth gap.] NOTE 4: In case the carrier adjacent to the RF bandwidth edge is a standalone NB-IoT carrier, the value of X = PNB-IoTcarrier – 43, where PNB-IoTcarrier is the power level of the standalone NB-IoT carrier adjacent to the RF bandwidth edge. In other cases, X = 0. NOTE 5: For BS that only support E-UTRA and NB-IoT multi-carrier operation, the requirements in this table do not apply to an E-UTRA BS from Release 8, which is upgraded to support E-UTRA and NB-IoT multi-carrier operation, where the upgrade does not affect existing RF parts of the radio unit related to the requirements in 			
	measurement filter centre frequency, f_offset $0.015 \text{ MHz} \leq f_offset < 0.065 \text{ MHz}$ $0.065 \text{ MHz} \leq f_offset < 0.165 \text{ MHz}$ $0.165 \text{ MHz} \leq f_offset < 0.165 \text{ MHz}$ $0.165 \text{ MHz} \leq f_offset < 0.215 \text{ MHz}$ $0.215 \text{ MHz} \leq f_offset < 1.015 \text{ MHz}$ $1.015 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $1.015 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $1.05 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $1.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $1.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $1.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $1.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ $10.5 \text{ MHz} \leq f_offset < 1.5 \text{ MHz}$ <td< td=""><td>measurement filter centre frequency, f_offset0.015 MHz < f_offset</td>0.065 MHz0.065 MHz0.065 MHz < f_offset < 0.165 MHz0.165 MHz1.015 MHz1.015 MHz1.015 MHz1.015 MHz1.015 MHz1.015 MHz1.015 MHz1.05 MHz</td<>	measurement filter centre frequency, f_offset0.015 MHz < f_offset	

6.6.3.5.3 Additional requirements

In certain regions the following requirement may apply. For E-UTRA BS operating in Bands 5, 26, 27 or 28, emissions shall not exceed the maximum levels specified in Tables 6.6.3.5.3-1.

Channel bandwidth	Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement	Measurement bandwidth (Note 6)
200 kHz	$0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$	0.005 MHz ≤ f_offset < 0.995 MHz	-6 dBm	10 kHz
1.4 MHz	$0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$	0.005 MHz ≤ f_offset < 0.995 MHz	-14 dBm	10 kHz
3 MHz	$0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$	0.015 MHz ≤ f_offset < 0.985 MHz	-13 dBm	30 kHz
5 MHz	$0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$	0.015 MHz ≤ f_offset < 0.985 MHz	-15 dBm	30 kHz
10 MHz	$0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$	$0.05 \text{ MHz} \le f_{\text{offset}} < 0.95 \text{ MHz}$	-13 dBm	100 kHz
15 MHz	0 MHz ≤ ∆f < 1 MHz	$0.05 \text{ MHz} \le f_{offset} < 0.95 \text{ MHz}$	-13 dBm	100 kHz
20 MHz	0 MHz ≤ ∆f < 1 MHz	$0.05 \text{ MHz} \le f_{offset} < 0.95 \text{ MHz}$	-13 dBm	100 kHz
All	1 MHz $\leq \Delta f < \Delta f_{max}$	1.05 MHz ≤ f_offset < f_offset _{max}	-13 dBm	100 kHz

Table 6.6.3.5.3-1: Additional operating band unwanted emission limits for E-UTRA bands <1GHz

In certain regions the following requirement may apply. For E-UTRA BS operating in Bands 2, 4, 10, 23, 25, 30, 35, 36, 41, 66, emissions shall not exceed the maximum levels specified in Table 6.6.3.5.3-2.

Channel bandwidth	Frequency offset of measurement	Frequency offset of measurement filter centre	Test requirement	Measurement bandwidth
	filter -3dB point, ∆f	frequency, f_offset		(Note 6)
200 kHz	$0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$	0.005 MHz ≤ f_offset < 0.995 MHz	-6 dBm	10 kHz
1.4 MHz	$0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$	0.005 MHz ≤ f_offset < 0.995 MHz	-14 dBm	10 kHz
3 MHz	$0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$	0.015 MHz ≤ f_offset < 0.985 MHz	-13 dBm	30 kHz
5 MHz	$0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$	0.015 MHz ≤ f_offset < 0.985 MHz	-15 dBm	30 kHz
10 MHz	0 MHz ≤ ∆f < 1 MHz	$0.05 \text{ MHz} \le \text{f_offset} < 0.95 \text{ MHz}$	-13 dBm	100 kHz
15 MHz	$0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$	$0.05 \text{ MHz} \le f_{offset} < 0.95 \text{ MHz}$	-15 dBm	100 kHz
20 MHz	$0 \text{ MHz} \le \Delta f < 1 \text{ MHz}$	$0.05 \text{ MHz} \le f_{offset} < 0.95 \text{ MHz}$	-16 dBm	100 kHz
All	1 MHz $\leq \Delta f < \Delta f_{max}$	1.5 MHz ≤ f_offset < f_offset _{max}	-13 dBm	1 MHz

Table 6.6.3.5.3-2: Additional operating band unwanted emission limits for E-UTRA bands>1GHz

In certain regions the following requirement may apply. For E-UTRA BS operating in Bands 12, 13, 14, 17, 29 emissions shall not exceed the maximum levels specified in Table 6.6.3.5.3-3.

Table 6.6.3.5.3-3: Additional operating band unwanted emission limits for E-UTRA (bands 12, 13, 14,17 and 29)

Channel bandwidth	Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement	Measurement bandwidth (Note 6)
All	0 MHz ≤ ∆f < 100 kHz	0.015 MHz ≤ f_offset < 0.085 MHz	-13 dBm	30 kHz
All	100 kHz $\leq \Delta f < \Delta f_{max}$	150 kHz \leq f_offset < f_offset _{max}	-13 dBm	100 kHz

In certain regions, the following requirements may apply to an E-UTRA TDD BS operating in the same geographic area and in the same operating band as another E-UTRA TDD system without synchronisation. For this case the emissions shall not exceed -52 dBm/MHz in each supported downlink operating band, except in:

- The frequency range from 10 MHz below the lower channel edge to the frequency 10 MHz above the upper channel edge of each supported band.

In certain regions the following requirement may apply for protection of DTT. For E-UTRA BS operating in Band 20, the level of emissions in the band 470-790 MHz, measured in an 8MHz filter bandwidth on centre frequencies F_{filter} according to Table 6.6.3.3-4, shall not exceed the maximum emission level $P_{EM,N}$ declared by the manufacturer. This requirement applies in the frequency range 470-790 MHz even though part of the range falls in the spurious domain.

Table 6.6.3.5.3-4: Declared emissions levels for protection of DTT

Filter centre frequency,	Measurement	Declared emission level
F _{filter}	bandwidth	[dBm]
F _{filter} = 8*N + 306 (MHz); 21 ≤ N ≤ 60	8 MHz	P _{EM,N}

Note: The regional requirement is defined in terms of EIRP (effective isotropic radiated power), which is dependent on both the BS emissions at the antenna connector and the deployment (including antenna gain and feeder loss). The requirement defined above provides the characteristics of the base station needed to verify compliance with the regional requirement. Compliance with the regional requirement can be determined using the method outlined in Annex G of [2].

In certain regions the following requirement may apply for the protection of systems operating in frequency bands adjacent to band 1 as defined in clause 5.5, in geographic areas in which both an adjacent band service E-UTRA are deployed.

The power of any spurious emission shall not exceed:

Operatin Band	g Frequency range	Maximum Level	Measurement Bandwidth
1	2100-2105 MHz	-30 + 3.4 · (f - 2100 MHz) dBm	1 MHz
	2175-2180 MHz	-30 + 3.4 · (2180 MHz - f) dBm	1 MHz

Table 6.6.3.5.3-5: Emissions limits for protection of adjacent band services

In regions where FCC regulation applies, requirements for protection of GPS according to FCC Order DA 10-534 applies for operation in Band 24. The following normative requirement covers the base station, to be used together with other information about the site installation to verify compliance with the requirement in FCC Order DA 10-534. The requirement applies to BS operating in Band 24 to ensure that appropriate interference protection is provided to the 1559 – 1610 MHz band. This requirement applies to the frequency range 1559-1610 MHz, even though part of this range falls within the spurious domain.

The level of emissions in the 1559 – 1610 MHz band, measured in measurement bandwidth according to Table 6.6.3.5.3-6 shall not exceed the maximum emission levels $P_{E_{\perp}IMHz}$ and $P_{E_{\perp}IkHz}$ declared by the manufacturer.

Operating Band	Frequency range	Declared emission level [dBW] (Measurement bandwidth = 1 MHz)	Declared emission level [dBW] of discrete emissions of less than 700 Hz bandwidth (Measurement bandwidth = 1 kHz)
24	1559 - 1610 MHz	PE_1MHz	PE_1kHz

Table 6.6.3.5.3-6: Declared emissions levels for protection of the 1559-1610 MHz band

Note: The regional requirement in FCC Order DA 10-534 is defined in terms of EIRP (effective isotropic radiated power), which is dependent on both the BS emissions at the antenna connector and the deployment (including antenna gain and feeder loss). The EIRP level is calculated using: $P_{EIRP} = P_E + G_{ant}$ where P_E denotes the BS unwanted emission level at the antenna connector, G_{ant} equals the BS antenna gain minus feeder loss. The requirement defined above provides the characteristics of the base station needed to verify compliance with the regional requirement.

The following requirement may apply to E-UTRA BS operating in Band 41 in certain regions. Emissions shall not exceed the maximum levels specified in Table 6.6.3.5.3-7.

Table 6.6.3.5.3-7: Additional operating band unwanted emission limits for Band 41

Channel bandwidth	Frequency offset of measurement filter -3dB point, ∆f	Frequency offset of measurement filter centre frequency, f_offset	Test requirement	Measurement bandwidth (Note 6)	
10 MHz	10 MHz ≤ ∆f < 20 MHz	10.5 MHz ≤ f_offset < 19.5 MHz	-22 dBm	1 MHz	
20 MHz	20 MHz ≤ ∆f < 40 MHz	20.5 MHz ≤ f_offset < 39.5 MHz	-22 dBm	1 MHz	
NOTE: This requirement applies for E-UTRA carriers allocated within 2545-2575MHz or 2595-2645MHz.					

In certain regions, the following requirements may apply to E-UTRA BS operating in Band 32 within 1452-1492 MHz. The level of operating band unwanted emissions, measured on centre frequencies f_{offset} with filter bandwidth, according to Table 6.6.3.5.3-8, shall neither exceed the maximum emission level $P_{EM,B32,a}$, $P_{EM,B32,b}$ nor $P_{EM,B32,c}$ declared by the manufacturer.

	ncy offset of measurement	Declared emission	Measurement			
filter o	centre frequency, f_offset	level [dBm]	bandwidth			
	2.5 MHz	P _{EM,B32,a}	5 MHz			
	7.5 MHz	P _{EM,B32,b}	5 MHz			
12.5 MI	$Hz \leq f_offset \leq f_offset_{max,B32}$	P _{EM,B32,c}	5 MHz			
NOTE:	NOTE: f_offset _{max,B32} denotes the frequency difference between the lower channel					
	edge and 1454.5 MHz, and the frequency difference between the upper					
	channel edge and 1489.5 MH	Iz for the set channel po	sition.			

Table 6.6.3.5.3-8: Declared operating band 32 unwanted emission within 1452-1492 MHz

NOTE: The regional requirement, included in [19], is defined in terms of EIRP per antenna, which is dependent on both the BS emissions at the antenna connector and the deployment (including antenna gain and feeder loss). The requirement defined above provides the characteristics of the base station needed to verify compliance with the regional requirement. The assessment of the EIRP level is described in Annex H of TS 36.104 [2].

In certain regions, the following requirement may apply to E-UTRA BS operating in Band 32 within 1452-1492 MHz for the protection of services in spectrum adjacent to the frequency range 1452-1492 MHz. The level of emissions, measured on centre frequencies F_{filter} with filter bandwidth according to Table 6.6.3.5.3-9, shall neither exceed the maximum emission level $P_{EM,B32,d}$ nor $P_{EM,B32,e}$ declared by the manufacturer. This requirement applies in the frequency range 1429-1518MHz even though part of the range falls in the spurious domain.

Table 6.6.3.5.3-9: Operating band 32 declared emission outside 1452-1492 MHz

Filter centre frequency, F _{filter}	Declared emission level [dBm]	Measurement bandwidth
1429.5 MHz ≤ F _{filter} ≤ 1448.5 MHz	P _{EM,B32,d}	1 MHz
F _{filter} = 1450.5 MHz	P _{EM,B32,e}	3 MHz
F _{filter} = 1493.5 MHz	P _{EM,B32,e}	3 MHz
1495.5 MHz ≤ F _{filter} ≤ 1517.5 MHz	P _{EM,B32,d}	1 MHz

NOTE: The regional requirement, included in [19], is defined in terms of EIRP, which is dependent on both the BS emissions at the antenna connector and the deployment (including antenna gain and feeder loss). The requirement defined above provides the characteristics of the base station needed to verify compliance with the regional requirement. The assessment of the EIRP level is described in Annex H of TS 36.104 [2].

In certain regions the following requirement may apply to E-UTRA BS operating in Band 45. Emissions shall not exceed the maximum levels specified in Table 6.6.3.5.3-10.

Operating Band	Filter centre frequency, F _{filter}	Maximum Level [dBm]	Measurement Bandwidth
45	F _{filter} = 1467.5	-20	1 MHz
	F _{filter} = 1468.5	-23	1 MHz
	F _{filter} = 1469.5	-26	1 MHz
	F _{filter} = 1470.5	-33	1 MHz
	F _{filter} = 1471.5	-40	1 MHz
	1472.5 MHz ≤ F _{filter} ≤ 1491.5 MHz	-47	1 MHz

Table 6.6.3.5.3-10: Emissions limits for protection of adjacent band services

In addition for Band 46 operation, the BS may have to comply with the applicable operating band unwanted emission limits established regionally, when deployed in regions where those limits apply and under the conditions declared by the manufacturer. The regional requirements may be in the form of conducted power, power spectral density, EIRP and other types of limits. In case of regulatory limits based on EIRP, assessment of the EIRP level is described in Annex H of TS 36.104 [2].

The following notes are common to all subclauses in 6.6.3.5:

- NOTE 6: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth can be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.
- NOTE 7: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in Annex G. The explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.
- NOTE 8: This frequency range ensures that the range of values of f_offset is continuous.
- NOTE 9: The requirement is not applicable when $\Delta f_{max} < 10$ MHz.
- NOTE 10: For Home BS, the parameter P is defined as the aggregated maximum output power of all transmit antenna connectors of Home BS.

6.6.4 Transmitter spurious emissions

6.6.4.1 Definition and applicability

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emission, intermodulation products and frequency conversion products, but exclude out of band emissions. This is measured at the base station antenna connector.

The transmitter spurious emission limits apply from 9 kHz to 12.75 GHz, excluding the frequency range from 10 MHz below the lowest frequency of the downlink operating band up to 10 MHz above the highest frequency of the downlink operating band (see Table 5.5-1). For BS capable of multi-band operation where multiple bands are mapped on the same antenna connector, this exclusion applies for each supported operating band. For BS capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the single-band requirements apply and the multi-band exclusions and provisions are not applicable.

Exceptions are the requirements in Table 6.6.4.5.4-2, Table 6.6.4.5.4-3, Table 6.6.4.5.4-4, and specifically stated exceptions in Table 6.6.4.5.4-1 and Table 6.6.4.5.4-1a that apply also closer than 10 MHz from the downlink operating band. For some operating bands the upper frequency limit is higher than 12.75 GHz.

The requirements shall apply to BS that supports E-UTRA or E-UTRA with NB-IoT in-band/guard band operation or NB-IoT standalone operation.

The requirements shall apply whatever the type of transmitter considered (single carrier, multi-carrier and/or CA) and for all transmission modes foreseen by the manufacturer's specification.

Unless otherwise stated, all requirements are measured as mean power (RMS).

6.6.4.2 Minimum Requirements

The minimum requirement is in TS 36.104 [2] subclause 6.6.4.

6.6.4.3 Test Purpose

This test measures conducted spurious emission from the E-UTRA or NB-IoT BS transmitter antenna connector, while the transmitter is in operation.

6.6.4.4 Method of Test

6.6.4.4.1 Initial conditions

Test environment: normal; see Annex D.2.

RF channels to be tested for single carrier: B, M and T; see subclause 4.7.

Base Station RF Bandwidth positions to be tested for multi-carrier and/or CA: B_{RFBW}, M_{RFBW} and T_{RFBW} in singleband operation, see subclause 4.7.1; B_{RFBW}_T'_{RFBW} and B'_{RFBW}_T_{RFBW} in multi-band operation, see subclause 4.7.1.

- 1) Connect the BS antenna connector to a measurement receiver according to Annex I.1.1 using an attenuator or a directional coupler if necessary
- 2) Measurements shall use a measurement bandwidth in accordance to the conditions in TS 36.104 [2] subclause 6.6.4.
- 3) Detection mode: True RMS.
- 4) Configure the BS with transmitter(s) active.

6.6.4.4.2 Procedure

1) For a E-UTRA BS declared to be capable of single carrier operation only, set the BS to transmit a signal according to E-TM1.1 at manufacturer's declared rated output power.

For a E-UTRA BS declared to be capable of multi-carrier and/or CA operation, set the base station to transmit according to E-TM1.1 on all carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For a E-UTRA BS declared to be capable of NB-IoT in-band operation, start transmission according to [E-TM1.1] with the NB-IoT PRB constructed according to N-TM at manufacturer's declared rated output power.

For a E-UTRA BS declared to be capable of NB-IoT guard-band operation, start transmission according to E-TM1.1 with the NB-IoT PRB constructed according to N-TM at manufacturer's declared rated output power.

For a NB-IoT BS declared to be capable of single carrier operation, start transmission according to N-TM at manufacturer's declared rated output power.

For a NB-IoT BS declared to be capable of multi-carrier in contiguous spectrum operation in single band only, start transmission according to N-TM on all carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For a E-UTRA and NB-IoT standalone BS declared to be capable of multi-carrier in contiguous spectrum operation in single band only, start transmission according to E-TM1.1 on all E-UTRA carriers and N-TM on all NB-IoT carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

2) Measure the emission at the specified frequencies with specified measurement bandwidth and note that the measured value does not exceed the specified value.

In addition, for a multi-band capable BS, the following step shall apply:

3) For multi-band capable BS and single band tests, repeat the steps above per involved band where single band test configurations and test models shall apply with no carrier activated in the other band. For multi-band capable BS with separate antenna connector, the antenna connector not being under test in case of single-band or multi-band test shall be terminated.

6.6.4.5 Test requirements

The measurement result in step 2 of 6.6.4.4.2 shall not exceed the maximum level specified in Table 6.6.4.5.1-1 to Table 6.6.4.5.6-1 if applicable for the BS under test.

NOTE: If a Test Requirement in this clause differs from the corresponding Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance are given in Annex G.

As mandatory requirement, either subclause 6.6.4.5.1 (Category A limits) or subclause 6.6.4.5.2 (Category B limits) shall apply. The application of either Category A or Category B limits shall be the same as for Operating band unwanted emissions in subclause 6.6.3.

6.6.4.5.1 Spurious emissions (Category A)

The power of any spurious emission shall not exceed the limits in Table 6.6.4.5.1-1.

Table 6.6.4.5.1-1: BS Spurious	emission limits,	Category A
--------------------------------	------------------	------------

Frequency range	Maximum level	Measurement Bandwidth	Note
9kHz - 150kHz		1 kHz	Note 1
150kHz - 30MHz		10 kHz	Note 1
30MHz - 1GHz		100 kHz	Note 1
1GHz – 12.75 GHz	-13 dBm	1 MHz	Note 2
12.75 GHz – 5 th harmonic		1 MHz	Note 2, Note 3
of the upper frequency			
edge of the DL operating			
band in GHz			
12.75 GHz - 26 GHz		1 MHz	Note 2, Note 4
NOTE 1: Bandwidth as in I	TU-R SM.329 [5] , s4.1		
NOTE 2: Bandwidth as in I	ГU-R SM.329 [5] , s4.1. U	pper frequency as in	n ITU-R SM.329 [5] , s2.5
table 1			
NOTE 3: Applies only for Ba	ands 22, 42 and 43.		
NOTE 4: Applies only for B	and 46.		

6.6.4.5.2 Spurious emissions (Category B)

The power of any spurious emission shall not exceed the limits in Table 6.6.4.5.2-1.

Table 6.6.4.5.2-1: BS Spurious emissions limits, Category B

Frequency range	Maximum Level	Measurement Bandwidth	Note		
9 kHz ↔ 150 kHz	-36 dBm	1 kHz	Note 1		
150 kHz \leftrightarrow 30 MHz	-36 dBm	10 kHz	Note 1		
$30 \text{ MHz} \leftrightarrow 1 \text{ GHz}$	-36 dBm	100 kHz	Note 1		
$1 \text{ GHz} \leftrightarrow 12.75 \text{ GHz}$	-30 dBm	1 MHz	Note 2		
12.75 GHz ↔ 5 th harmonic of the upper frequency edge of the DL operating band in GHz	-30 dBm	1 MHz	Note 2, Note 3		
12.75 GHz \leftrightarrow 26 GHz	-30 dBm	1 MHz	Note 2, Note 4		
NOTE 1:Bandwidth as in ITU-R SM.329 [5] , s4.1NOTE 2:Bandwidth as in ITU-R SM.329 [5], s4.1. Upper frequency as in ITU-R SM.329 [5] , s2.5table 1NOTE 3:Applies only for Bands 22, 42 and 43.					
NOTE 4: Applies only for Band 46.					

6.6.4.5.3 Protection of the BS receiver of own or different BS

This requirement shall be applied for E-UTRA FDD operation in paired operating bands in order to prevent the receivers of the BSs being desensitised by emissions from a BS transmitter. It is measured at the transmit antenna port for any type of BS which has common or separate Tx/Rx antenna ports.

The power of any spurious emission shall not exceed the limits in Table 6.6.4.5.3-1.

	Frequency range	Maximum Level	Measurement Bandwidth	Note
Wide Area BS	FUL_low - FUL_high	-96 dBm	100 kHz	
Medium Range BS	FUL_low - FUL_high	-91 dBm	100 kHz	
Local Area BS	FUL_low - FUL_high	-88 dBm	100 kHz	
Home BS	FUL_low - FUL_high	-88 dBm	100 kHz	
Note 1: For E-UTRA Band 28 BS operating in regions where Band 28 is only partially allocated for E-UTRA operations, this requirement only apllies in the UL frequency range of the partial allocation.				

Table 6.6.4.5.3-1: BS Spurious emissions limits for protection of the BS receiver

6.6.4.5.4 Co-existence with other systems in the same geographical area

6.6.4.5.4.1 Void

These requirements may be applied for the protection of system operating in frequency ranges other than the E-UTRA BS or NB-IoT operating band. The limits may apply as an optional protection of such systems that are deployed in the same geographical area as the E-UTRA BS, or they may be set by local or regional regulation as a mandatory requirement for an E-UTRA operating band. It is in some cases not stated in the present document whether a requirement is mandatory or under what exact circumstances that a limit applies, since this is set by local or regional regulation. An overview of regional requirements in the present document is given in Clause 4.3.

Some requirements may apply for the protection of specific equipment (UE, MS and/or BS) or equipment operating in specific systems (GSM, CDMA, UTRA, E-UTRA, etc.) as listed below. The power of any spurious emission shall not exceed the limits of Table 6.6.4.5.4-1 for a BS where requirements for co-existence with the system listed in the first column apply. For BS capable of multi-band operation the exclusions and conditions in the Note column of Table 6.6.4.5.4-1 apply for each supported operating band. For BS capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the exclusions and conditions in the Note column of Table 6.6.4.5.4-1 apply for the operating band supported at that antenna connector.

 Table 6.6.4.5.4-1: BS Spurious emissions limits for E-UTRA BS for co-existence with systems operating in other frequency bands

System type for E-UTRA to co-exist with	Frequency range for co-existence requirement	Maximu m Level	Measurement Bandwidth	Note
GSM900	921 - 960 MHz	-57 dBm	100 kHz	This requirement does not apply to E-UTRA BS operating in band 8
	876 - 915 MHz	-61 dBm	100 kHz	For the frequency range 880-915 MHz, this requirement does not apply to E-UTRA BS operating in band 8, since it is already covered by the requirement in subclause 6.6.4.5.3.
DCS1800	1805 - 1880 MHz	-47 dBm	100 kHz	This requirement does not apply to E-UTRA BS operating in band 3.
	1710 - 1785 MHz	-61 dBm	100 kHz	This requirement does not apply to E-UTRA BS operating in band 3, since it is already covered by the requirement in subclause 6.6.4.5.3.
PCS1900	1930 - 1990 MHz	-47 dBm	100 kHz	This requirement does not apply to E-UTRA BS operating in frequency band 2, band 25 or band 36.
	1850 - 1910 MHz	-61 dBm	100 kHz	This requirement does not apply to E-UTRA BS operating in frequency band 2 or 25, since it is already covered by the requirement in subclause 6.6.4.5.3. This requirement does not apply to E-UTRA BS operating in frequency band 35.
GSM850 or CDMA850	869 - 894 MHz	-57 dBm	100 kHz	This requirement does not apply to E-UTRA BS operating in frequency band 5 or 26. This requirement applies to E-UTRA BS operating in Band 27 for the frequency range 879-894 MHz.
	824 - 849 MHz	-61 dBm	100 kHz	This requirement does not apply to E-UTRA BS operating in frequency band 5 or 26, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 27, it applies 3 MHz below the Band 27 downlink operating band.
UTRA FDD Band I or	2110 - 2170 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 1 or 65.
E-UTRA Band 1	1920 - 1980 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 1 or 65, since it is already covered by the requirement in subclause 6.6.4.5.3.
UTRA FDD Band II or	1930 - 1990 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 2 or 25.
E-UTRA Band 2	1850 - 1910 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 2 or 25, since it is already covered by the requirement in subclause 6.6.4.5.3
UTRA FDD Band III or E-UTRA Band	1805 - 1880 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 3.
3	1710 - 1785 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 3 or 9, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 9, it applies for 1710 MHz to 1749.9 MHz and 1784.9 MHz to 1785 MHz, while the rest is covered in sub-clause 6.6.4.5.3.
UTRA FDD Band IV or	2110 - 2155 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 4, 10 or 66
E-UTRA Band 4	1710 - 1755 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 4, 10 or 66, since it is already covered by the requirement in subclause 6.6.4.5.3.
UTRA FDD Band V or E-UTRA Band 5	869 - 894 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 5 or 26. This requirement applies to E-UTRA BS operating in Band 27 for the frequency range 879-894 MHz.
	824 - 849 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 5 or 26, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 27, it applies 3 MHz below the Band 27 downlink operating band.
	860 - 890 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 6, 18, 19.

UTRA FDD Band VI, XIX 6, 18, 19 15 - 830 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 0.5, and 1.6 and 1.6 and 1.6 and 1.6 and 0.6 and 0.5 and operating in band 0.6 and 0.5 and 0.6 and 0.5 and operating in band 0.7 and 0.6 and 0.5 and 0.6 and 0.1 and 0.6 and 0.5 and 0.6 and 0.5 and 0.6 and 0.7 and 0.6 and 0.7 and 0.7 and 0.7 and 0.7 and 0.7 and 0.7 and 0.6 and 0.7	r		1 1		
E-UTRA Band 6, 18, 19 asso = 845 MHz 830 = 845 MHz -49 dBm -49 dBm 1 MHz 1 MHz 1 MHz This requirement does not apply to E-UTRA BS operating in band 6, 19, since it is already covered by the requirement in subclause 6, 45, 53. UTRA FDD Band VII or E-UTRA Band 7 2500 - 2570 MHz -49 dBm 1 MHz 1 MHz This requirement does not apply to E-UTRA BS operating in band 7. UTRA FDD Band VII or E-UTRA Band 8 925 - 960 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 8. UTRA FDD Band VII or E-UTRA Band 8 1844.9 - 1879.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3. UTRA FDD Band X or E-UTRA Band 10 1844.9 - 1879.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3. UTRA FDD Band X or E-UTRA Band 10 1749.9 - 1784.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9, since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band X or E-UTRA Band 10 110-1770 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 4, it or r66 UTRA FDD Band X or E-UTRA Band 10 1475.9 - 1510.9 -52 dBm 1 MHz This requirement in subclause 6.4.5.3. For E-UTRA BS operating in b		815 - 830 MHz	-49 dBm	1 MHz	
6, 18, 19 830 - 845 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 5, 93 since it is already covered by the requirement does not apply to E-UTRA BS operating in band 7. E-UTRA Band 2500 - 2570 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 7. 0 2500 - 2570 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 7. 0 250 - 2570 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 8. 0 1000 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 8. 0 1010 AV to E-UTRA BS -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9, since it is already covered by the requirement in subclause 6.6.4.5.3. 0 1749 - 1789.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9, since it is already covered by the requirement in subclause 6.6.4.5.3. 0 1749 - 1770 MHz -49 dBm 1 MHz This requirement in subclause 6.6.4.5.3. 0 1710 - 1770 MHz -49 dBm 1 MHz This requirement in subclause 6.6.4.5.3.					
utran FDD 2620 - 2690 MHz 52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 7. E-UTRA Band 2500 - 2570 MHz 49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 7. UTRA FDD 925 - 960 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 7. E-UTRA Band 880 - 915 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 8. Band Xil or 880 - 915 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9. Band Xio 7 1844.9 - 1879.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9. Band Xio 7X MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9. Band Xio 7X 1470 - 1770 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in Band A 10 or 66. Band Xio 7X 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in Band A 1. 1 MHz 10 or 01 1475.9 - 1510.9 -52 dBm 1 MHz <td></td> <td></td> <td></td> <td></td> <td></td>					
UTRA FDD 2620 - 2680 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 7. since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD 925 - 960 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 8. since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD 925 - 960 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 8. since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD 880 - 915 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 8. since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD 1844.9 - 1879.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9. since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD 110 - 2170 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 6. since it is already covered by the requirement in subclause 6.6.4.5.3. For E- UTRA BS operating in band 1.2 rois 0.5. For E-UTRA BS operating in band 1.2 rois 1.5 already covered by the requirement in subclause 6.6.4.5.3.	6, 18, 19	830 - 845 MHz	-49 dBm	1 MHz	
UTRA FDD Band VII or E-UTRA Band 262 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 7. UTRA FDD Band VII or E-UTRA Band 925 - 960 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 7. since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band VII or E-UTRA Band -80 - 915 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 8, since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band XI or E-UTRA Band -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9, since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band XI or XXI 1749.9 - 1784.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9, since it is already covered by the requirement in subclause 6.4.4.5.3. UTRA FDD Band X or XXI 1710 - 1770 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in Band 4.10 or 66. E-UTRA BS UTRA FDD Band X or XXI 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 4.10 or 66. E-UTRA BS UTRA FDD Band XI or XXI 1475.9 - 1610.9 -52 dBm 1 MHz This requirement does not apply to E-U					
Band VII or component (so not apply to E-UTRA BS) FUTRA Band 2500 - 2570 MHz 49 dBm 1 MHz This requirement does not apply to E-UTRA BS) OutRA FDD 925 - 960 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS) Band VII or -52 dBm 1 MHz This requirement does not apply to E-UTRA BS) FUTRA Band 880 - 915 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS) FUTRA Band 1844.9 - 1879.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS Generating in band 3 or 9. 1749.9 - 1784.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS UTRA FDD 1740.9 - 1770 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS UTRA FDD 2110 - 2170 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS UTRA FDD 1476.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS UTRA FDD 1476.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS Band X tor XXI MHz					
E-UTRA Band 7 Z500 - 2570 MHz -49 dBm 1 MHz This requirement des not apply to E-UTRA BS operating in band 7. since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band VII or E-UTRA Band 880 - 915 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 8. since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band XI or E-UTRA Band 1844.9 - 1879.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3. since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band XI or XXI 1710 - 1770 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3. or 9. ince it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band XI or XXI 1710 - 1770 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 4.10 or 66 since it is already covered by the requirement in subclause 6.6.4.5.3. For E- UTRA BS UTRA FDD Band XI or XXI 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 4.1, applies to 725 MHz to 6.4.5.3. UTRA FDD Band XI or XXI 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 4.1, applies to 725 MHz to 6.4.5.3.7 or E-UTRA BS		2620 - 2690 MHz	-52 dBm	1 MHz	
7 operating in band 7, since it is already covered by the requirement in subclause 6.8.4.5.3. UTRA FDD Band VII or 20 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 8, ince it is already covered by the requirement in subclause 6.4.5.3. UTRA FDD Band IX or 20 1844.9 - 1879.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3, since it is already covered by the requirement in subclause 6.4.5.3. UTRA FDD Band IX or 20 1749.9 - 1784.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9. UTRA FDD Band X or 20 1710 - 1770 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 4, 10 or 66 UTRA FDD Band X or XXI 1710 - 1770 MHz -52 dBm 1 MHz This requirement os apply to E-UTRA BS operating in band 4, 10 or 66 UTRA FDD Band X or XXI 1475.9 - 1510.9 -52 dBm 1 MHz This requirement os not apply to E-UTRA BS operating in band 1, 10 or 66 UTRA FDD Band X I or XXI 1475.9 - 1427.9 - 1447.9 -49 dBm 1 MHz This requirement os not apply to E-UTRA BS operating in band 1, 12 or 32. UTRA FDD Band XII or 21 1475.9 - 1462.9 -49 dBm 1 MHz This requirement os and appl vo E-UTRA BS oper					
UTRA FDD 925 - 960 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS Band VII or 880 - 915 MHz -62 dBm 1 MHz This requirement does not apply to E-UTRA BS Band Xi or MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS Band Xi or MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS Band Xi or MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS PUTRA FDD 1844 9 - 1879.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS Band Xi or MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS Band Xi or MHz -63 dBm 1 MHz This requirement does not apply to E-UTRA BS Band Xi or 1710 - 1770 MHz -49 dBm 1 MHz This requirement in subclause 6.4.5.3. UTRA FDD 1475.9 - 1510.9 -52 dBm 1 MHz This requirement in subclause 6.4.5.3. UTRA FDD MHz -64 dBm 1 MHz This requirement in subclause 6.4.5.3. UTRA FDD MHz <td></td> <td>2500 - 2570 MHz</td> <td>-49 dBm</td> <td>1 MHz</td> <td></td>		2500 - 2570 MHz	-49 dBm	1 MHz	
UTRA FDD Band XII or 8 92:00 92:00 1 MHz This requirement does not apply to E-UTRA BS operating in band 8. 0 880 - 915 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 8. 0 1 MHz -1844 9 - 1879.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3. 0 1 MHz -1844 9 - 1879.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3. 0 1 749.9 - 1784.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS 0 1 710 - 1770 MHz -52 dBm 1 MHz This requirement in subclause 6.6.4.5.3. FOILTA BS 0 1 710 - 1770 MHz -49 dBm 1 MHz This requirement in subclause 6.4.5.3. FOILTA BS 0 1 475.9 - 1510.9 -52 dBm 1 MHz This requirement in subclause 6.4.5.3. FOILTA BS 0 MHz 1475.9 - 1510.9 -52 dBm 1 MHz This requirement in subclause 6.4.5.3. FOILTA BS 0 MHz 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS	7				
Band VIII or E-UTRA Band Comparing in band 8. Comparing in band 3 or 9. Comparing in ba					
E-UTRA Band 8 880 - 915 MHz elymetric -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 8, since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band IX or 8 1844.9 - 1879.9 MHz -69 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9. since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band X or 8-UTRA Band 10 2110 - 2170 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9. since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band X or 8-UTRA FDD 10 1710 - 1770 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 1.0 ro 66 UTRA FDD Band X Io rXXI E-UTRA Band 11 or 21 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 1.1 or 32. UTRA FDD Band X Io rXXI E-UTRA Band 11 or 21 1475.9 - 1510.9 -52 dBm 1 MHz This requirement in subclause 6.4.5.3. For E-UTRA BS operating in band 3.1, since it is already covered by the requirement in subclause 6.4.5.3. For E-UTRA BS operating in band 3.1, since it is already covered by the requirement in subclause 6.4.5.3. For E-UTRA BS operating in band 3.1, since it is already covered by the requirement in subclause 6.4.5.3. For E-UTRA BS operating in band 3.1, since it is already covered by the requirement does not apply to E-UTRA BS <td></td> <td>925 - 960 MHz</td> <td>-52 dBm</td> <td>1 MHz</td> <td></td>		925 - 960 MHz	-52 dBm	1 MHz	
8 operating in band 8, since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band X or E-UTRA Band 1749.9 - 1784.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9, since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band X or E-UTRA BAND 1104.2 This requirement does not apply to E-UTRA BS operating in band 3 or 9, since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band X or E-UTRA BAND 1101 - 2170 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in Band 4, 10 or 66, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 4, 10 or 66, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 4, 11 applies for 1756 MHz to 1770 MHz, while the rest is covered in sub-clause 6.6.4.5.3. For E-UTRA BS operating in Band 4, 11, 21 or 32. UTRA FDD Band XI or XXI MHZ -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 11, 21 or 32. 11 or 21 147.9 - 1462.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3.1, since it is already covered by the requirement in subclause 6.4.5.3. For E-UTRA BS operating in band 3.2, this requirement applies for carriers allocated within 1475.9MHz and 1455.9MHz. UTRA FDD Band XI or XXI FL MHZ -49 dBm 1 MHz This					
UTRA FDD Band IX or E-UTRA Band1844.9 - 1879.9 MHz52 dBm1 MHz1 MHzThis requirement does not apply to E-UTRA BS operating in band 3 or 9.91749.9 - 1784.9 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 3 or 9. since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band X or E-UTRA Band2110 - 2170 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 1, 0 or 66UTRA FDD Band X or XXI1710 - 1770 MHz-49 dBm1 MHzThis requirement in subclause 6.6.4.5.3. For E- UTRA BS operating in band 1 0 or 66, since it is already covered by the requirement in subclause 6.6.4.5.3. For E- UTRA BS operating in band 1, 1 apples for 1755 MHz to 1770 MHz, while the rest is covered in sub-clause 6.6.4.5.3.UTRA FDD Band XI or XXIMHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 1, 12 or 32.UTRA FDD MHz1427.9 - 1447.9-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 3, this requirement apples for carriers allocated within 1475.9MHz and 1495.9MHz.11 or 21MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 2, this requirement apples for carriers allocated within 1475.9MHz and 1495.9MHz.12MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 2, this requirement apples for carriers allocated within 1475.9MHz and 1495.9MHz.13729 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-		880 - 915 MHz	-49 dBm	1 MHz	
UTRA FDD Band X or E-UTRA Band 1844.9 - 1879.9 MHz 52 dBm MHz 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9. UTRA FDD Band X or E-UTRA Band 10 1749.9 - 1784.9 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9. since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band X or E-UTRA Band 10 2110 - 2170 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 4.10 or 66. Since sont apply to E-UTRA BS UTRA FDD Band X or XI 1710 - 1770 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 1.1 or 66. since it is already covered by the requirement in subclause 6.6.4.5.3. For E- UTRA BS operating in band 1.1 cor 62. Since it is already covered by the requirement in subclause 6.6.4.5.3. For E- UTRA BS UTRA FDD Band XI or XXI 1475.9 - 1510.9 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 21, kins requirement apples for carriers allocated within 1475.9MHz and 1495.9MHz. 11 or 21 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 21, kins requirement apples for carriers allocated within 1475.9MHz and 1495.9MHz. 1147.9 - 1462.9 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 21, kins requirement apples	8				
Band IX or E-UTRA Band MHz operating in band 3 or 9. 9 1749.9 - 1784.9 MHz -49 dBm 1 MHz operating in band 3 or 9. UTRA FDD Band X or E-UTRA Band 2110 - 2170 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 4. 10 or 66. 10 1710 - 1770 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 4. 10 or 66. 10 1710 - 1770 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 10 or 66. UTRA FDD Band X or XXI 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 11. 21 or 32. UTRA FDD Band XI or XXI 1477.9 - 1447.9 -49 dBm 1 MHz operating in band 3. this requirement apples for carriers allocated within 1475.9MHz and 1495.9MHz. 11 or 21 1447.9 - 1462.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3. this requirement apples for carriers allocated within 1475.9MHz and 1495.9MHz. 12 1447.9 - 1462.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3. this requirement apples for carriers allocated within 1475.9MHz and 1495.9MHz. 12			50 15		
E-UTRA Band -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 3 or 9, since it is already covered by the requirement does not apply to E-UTRA BS UTRA FDD Band X or 2110 - 2170 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS UTRA FDD Band X or 1710 - 1770 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS UTRA FDD Band X or 1710 - 1770 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS UTRA FDD Band X or XXI 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS UTRA FDD Band XI or XXI 1475.9 - 1447.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS UTRA FDD Band XI or XXI 147.9 - 1462.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS UTRA FDD Band XI or XXI 1447.9 - 1462.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS UTRA FDD Band XII or 1447.9 - 1462.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS UTRA FDD Band XII or 729 - 746 MHz -52 dBm 1 MHz This requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz. UTRA FDD Band XII			-52 dBm	1 MHz	
9 1749.9 - 1784.9 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 4, 10 or 66 UTRA FDD Band X or 2110 - 2170 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 4, 10 or 66 UTRA FDD Band X or 1710 - 1770 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 4, 10 or 66. UTRA FDD Band X or XXI 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 11, 21 or 32. UTRA FDD Band X or XXI 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 11, 21 or 32. UTRA FDD MHz 1477.9 - 1462.9 -49 dBm 1 MHz This requirement applies for 1756 MHz to 1770 MHz, while the rest is covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in bachage 6.6.4.5.3. For E-UTRA BS UTRA FDD Band XI or -149 dBm 1 MHz This requirement does not apply to E-UTRA BS UTRA FDD Band XI or -129 - 746 MHz -52 dBm 1 MHz This requirement applies for carriers allocated within 1475 MHz and 1495 MHz. UTRA FDD Band XI or 729 - 746 MHz -52 dBm 1 MHz<		MHZ			operating in band 3 or 9.
MHz operating in band 3 or 9, since it is already covered by the requirement in subclause 6.4.5.3. UTRA FDD Band X or E-UTRA Band 10 2110 - 2170 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 4, 10 or 66. E-UTRA Band 10 1710 - 1770 MHz -49 dBm 1 MHz This requirement in subclause 6.4.5.3. UTRA FDD Band XI or XXI 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 1, apples for 1725 MHz to 1770 MHz, while the rest is covered in sub-clause 6.6.4.5.3. E-UTRA Band 11 or 21 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 11, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 11, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in band 21, since it is already covered by the requirement in band 21, since it is already covered by the requirement in band 12. UTRA FDD Band XII or E-UTRA Band 12 729 - 746 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 12		1710 0 1701 0	40.15		
UTRA FDD Band X or E-UTRA Band2110 - 2170 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 4, 10 or 661010 - 1770 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 4, 10 or 66, since it is already covered by the requirement in subclause 6, 6, 4, 5, 3. For E- UTRA BS operating in band 10 or 66, since it is already covered by the requirement in subclause 6, 6, 4, 5, 3. For E- UTRA BS operating in band 11, 21 or 32.UTRA FDD Band XI or XX E-UTRA Band 11 or 211475, 9, -1510.9-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 11, 21 or 32.UTRA FDD MHz1427, 9, -1462.9-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6, 6, 4, 5, 3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6, 4, 5, 3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6, 4, 5, 3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6, 4, 5, 3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6, 4, 5, 3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6, 4, 5, 3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6, 4, 5, 3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6, 4, 5, 3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6, 4, 5, 3. For E-UTRA BS operating in band 12, si	9		-49 dBm	1 MHz	
UTRA FDD Band Xor2110 - 2170 MHz 2 - 52 dBm-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 4, 10 or 66101710 - 1770 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 10 or 66 since it is already covered by the requirement in subclause 6.6.4.5.3, For E- UTRA BS operating in band 4, it applies for 1755 MHz to 1770 MHz, while the rest is covered in sub-clause 6.6.4.5.3, For E- UTRA BS operating in band 11, 21 or 32.UTRA FDD Band XI or XXI E-UTRA Band 11 or 211475.9 - 1510.9 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 11, since it is already covered by the requirement in subclause 6.6.4.5.3, For E- utrA BS operating in band 11, since it is already covered by the requirement in subclause 6.6.4.5.3, For E-UTRA BS operating in band 11, since it is already covered by the requirement in subclause 6.6.4.5.3, For E-UTRA BS operating in band 11, since it is already covered by the requirement in subclause 6.6.4.5.3, For E-UTRA BS operating in band 11, since it is already covered by the requirement in subclause 6.6.4.5.3, For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3, For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3, For E-UTRA BS operating in band 14.75.9MHz and 1495.9MHz.UTRA FDD Band XI or E-UTRA Band 12729 - 746 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3, For E-UTRA BS operating in band 12, since it is already covered by the requirement does not apply to E-		MHz			
Band X or E-UTRA Band 10InterpretationInterpretat		0440 0470 MIL	50 15		
E-UTRA Band 1710 - 1770 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in Band 4. it applies for 1755 MHz to 1770 MHz, while the rest is covered in sub-clause 6.6.4.5.3. For E-UTRA BS operating in Band 4. it applies for 1755 MHz UTRA FDD Band XI or XXI 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in Band 11, since it is already covered by the requirement does not apply to E-UTRA BS operating in band 11, since it is already covered by the requirement does not apply to E-UTRA BS operating in band 11, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 11, since it is already covered by the requirement does not apply to E-UTRA BS operating in band 21, since it is already covered by the requirement does not apply to E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement does not apply to E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement does not apply to E-UTRA BS operating in band 21, since it is already covered by the requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement for subcla		2110 - 2170 MHz	-52 dBm	1 MHz	
10 operating in band 10 of 66, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 4, it applies for 1755 MHz to 1770 MHz, while the rest is covered in sub-clause 6.6.4.5.3. UTRA FDD Band XI or 21 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 11, 21 or 32. E-UTRA Band 11 or 21 1427.9 - 1447.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 11, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 11, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12. UTRA FDD Band XII or E-UTRA BA -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 12. UTRA FDD Band XII or E-UTRA FDD F-UTRA FDD F-UT					
UTRA FDD Band XI or XXI 1475.9 - 1510.9 MHz 52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 11, since it is already covered by the requirement is subclause 6.6.4.5.3. UTRA FDD Band XI or XXI 1475.9 - 1510.9 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 11, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12. UTRA FDD Band XII or E-UTRA Band 12 729 - 746 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. UTRA FDD Band XII or E-UTRA FDD Band XII or E-UTRA FDD Band XIV or E-UTRA FDD Band XIV or E-UTRA Band 13 746 - 756 MHz -52 dBm 1 MHz This requirement does not		1710 - 1770 MHz	-49 dBm	1 MHz	
UTRA FDD 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS UTRA FDD 1475.9 - 1510.9 -52 dBm 1 MHz This requirement does not apply to E-UTRA BS E-UTRA Band 1427.9 - 1447.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS 11 or 21 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 11, 21 or 32. 1447.9 - 1462.9 -49 dBm 1 MHz This requirement operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS Operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS UTRA FDD 729 - 746 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS Band XII or -729 - 746 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS II 699 - 716 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS II <	10				
UTRA FDD Band XI or XXI1475.9 - 1510.9 MHz-52 dBm1 MHz1 MHzThis requirement does not apply to E-UTRA BS operating in band 11, 21 or 32.E-UTRA Band 11 or 211427.9 - 1447.9 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 11, since it is already covered by the requirement in subclause 6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement does not apply to E-UTRA BS operating in band 12.UTRA FDD Band XII or729 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12.E-UTRA Band 12746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.4.5.3. For E-UTRA BS operating in band 13, since it is already covered by the requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.4.5.3. For E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.4.5.3.UTRA FDD Band XII or746 - 756 MHz-52 dBm1 MHzThis requirement does not					
UTRA FDD Band XI or XXI1475.9 - 1510.9 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 11, 21 or 32.I1 or 211427.9 - 1447.9 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 32, this requirement does not apply to E-UTRA BS operating in band 32, this requirement does not apply to E-UTRA BS operating in band 32, this requirement applies for carriers allocated with 175.5MHz and 1495.5MHz.UTRA FDD Band XII or E-UTRA Band 12-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 32, this requirement tapplies for carriers allocated with 1475.5MHz and 1495.5MHz.UTRA FDD Band XII or E-UTRA Band 12729 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12, this requirement for subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, this requirement does not apply to E-UTRA BS operating in band 12.UTRA FDD Band XII or E-UTRA Band 12746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XII or E-UTRA Band 13776 - 786 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in					
UTRA FDD Band XI or XXI1475.9 - 1510.9 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 11, z1 or 32.E-UTRA Band 11 or 211427.9 - 1447.9 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 11, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 11, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 11, since it is already covered by the requirement does not apply to E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XII or746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XII or776 - 786 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.UTRA FDD Band XIV or E-UTRA Band 14788 - 788 MHz-49 dBm1 MHzThis requirement does					
Band XI or XXIMHzoperating in band 11, 21 or 32.E-UTRA Band1427.9 - 1447.9 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 32, this requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz.1447.9 - 1462.9 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 32, this requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz.UTRA FDD Band XII or 12729 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 32, this requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz.UTRA FDD Band XII or 12729 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12.UTRA FDD Band XII or 12699 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 13.UTRA FDD Band XIII or E-UTRA Band 13776 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.UTRA FDD Band XIII or E-UTRA Band 14778 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.UTRA FDD Band XIV or E-UTRA Band 14734 - 746 MHz-52 dBm1		4.475.0 4540.0	50 15	4 1 4 1	
E-UTRA Band 11 or 211427.9 - 1447.9 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 32, this requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz.1447.9 - 1462.9 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 21, since it is already covered by the requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz.UTRA FDD Band XII or E-UTRA Band 12729 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12, this requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz.UTRA FDD Band XII or E-UTRA Band 12699 - 716 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 13, since it is already covered by the requirement obes not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XIII or746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XIV or<			-52 aBm	1 MHZ	
11 or 21 MHz operating in band 11, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 32, this requirement apples for carriers allocated within 1475.9MHz and 1495.9MHz. 1447.9 - 1462.9 -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 32, this requirement apples for carriers allocated within 1475.9MHz and 1495.9MHz. UTRA FDD Band XII or 729 - 746 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 32, this requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz. 12 699 - 716 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the soperating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 13. UTRA FDD Band XIII or 746 - 756 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 13. UTRA FDD Band XIIV or 788 - 788 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 14. UTRA FDD Band XIV or 758 - 768 MHz -52 dBm <			40 dDm		
Image: second			-49 0BM		
operating in band 32, this requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz.1447.9 - 1462.9 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 21, since it is already covered by the requirement does not apply to E-UTRA BS operating in band 32, this requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz.UTRA FDD Band XII or729 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 32, this requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz.UTRA FDD Band XII or699 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12.UTRA FDD Band XII or746 - 756 MHz-62 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 29, it applies 1 MHz below the Band 29 downlink operating in band 13.UTRA FDD Band XII or746 - 756 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.UTRA FDD Band XII or778 - 788 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.UTRA FDD Band XIV or758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.UTRA FDD Band XIV or734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.TO TA FDD Band XIV or734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.TO TO TO	110121				
Image: constraint of the second sec					
1447.9 - 1462.9 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 32, this requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz.UTRA FDD Band XII or E-UTRA Band 12729 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 32, this requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz.UTRA FDD Band XII or E-UTRA Band 12699 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12.UTRA FDD Band XII or E-UTRA Band 12746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)UTRA FDD Band XIII or E-UTRA Band 13746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.UTRA FDD Band XII or E-UTRA Band 14778 - 787 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.UTRA FDD Band XIV or E-UTRA Band 14758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.TOTA - 787 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.TA FDD Band XIV or E-UTRA Band 14778 - 766 MHz-52 dBm1 MHzTOTA - 788 MHz-49 dBm1 MHzThis requirement does not apply to E-UT					
MHzMHzoperating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 32, this requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz.UTRA FDD Band XII or E-UTRA Band 12729 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12.699 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12.12699 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12.UTRA FDD Band XIII or746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 29, it applies 1 MHz below the Band 29 downlink operating in band 13.UTRA FDD Band XIII or746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.E-UTRA Band 13777 - 787 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13. since it is already covered by the requirement does not apply to E-UTRA BS operating in band 14.UTRA FDD Band XIV or758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 14788 - 798 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.FUTRA Band 14734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.T04 - 716 MHz-49 dBm1 MHzThis requirement does not apply t		1//7 9 - 1/62 9	-49 dBm	1 MH7	
UTRA FDD Band XII or729 - 746 MHz-52 dBm1 MHzThis requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 32, this requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz.UTRA FDD Band XII or729 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12.E-UTRA Band 12699 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 13.UTRA FDD Band XII or746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.UTRA FDD Band XIV or E-UTRA Band 14777 - 787 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.UTRA FDD Band XIV or E-UTRA Band 14788 - 798 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.Trak Band 14734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.T04 - 716 MHz 704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS <td></td> <td></td> <td>-45 abiii</td> <td>1 1011 12</td> <td></td>			-45 abiii	1 1011 12	
UTRA FDD Band XII or729 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12.E-UTRA Band 12699 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS 					
UTRA FDD Band XII or729 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12.E-UTRA Band 12699 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 13.UTRA FDD Band XII or E-UTRA Band 13746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 13.UTRA FDD Band XIII or E-UTRA Band 13746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.UTRA FDD Band XII or E-UTRA Band 14758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.UTRA FDD Band XIV or E-UTRA Band 14758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.THA FDD Band XIV or E-UTRA Band 14734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.THA FDD Band XIV or E-UTRA Band 14734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.THA FDD Band XIV or E-UTRA Band 17704 - 716 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3.THA FDD Ban					
UTRA FDD Band XII or E-UTRA Band 12729 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12.699 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)UTRA FDD Band XIII or E-UTRA Band 13746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.UTRA FDD Band XIII or E-UTRA Band 13777 - 787 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.UTRA FDD Band XIV or E-UTRA Band 14758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.UTRA FDD Band XIV or E-UTRA Band 14788 - 798 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 17734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.Tot - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.Tot - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.Tot - 716 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.Tot - 716 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17. <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Band XII or E-UTRA Band 12699 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)UTRA FDD Band XIII or E-UTRA Band 13746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.UTRA FDD Band XIII or E-UTRA Band 13777 - 787 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XIV or E-UTRA Band 14758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.E-UTRA FDD Band XIV or E-UTRA Band 14788 - 798 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 17734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3.E-UTRA Band 17704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17, since it is already covered by the requirement		729 - 746 MHz	-52 dBm	1 MH7	
E-UTRA Band 12699 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)UTRA FDD Band XIII or E-UTRA Band 13746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.UTRA FDD Band XIII or E-UTRA Band 13777 - 787 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.UTRA FDD Band XIV or E-UTRA Band 14758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 14788 - 798 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 17734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.FUTRA Band 17704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.T04 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.T04 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.T04 - 716 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For			-52 übiii	1 1011 12	
12operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)UTRA FDD Band XIII or746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.E-UTRA Band 13777 - 787 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XIV or758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XIV or788 - 798 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 17734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3.E-UTRA Band 17704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 29, it applies 1 MHz below the Band 29 downlink operating band 29, it applies 1 MHz below the Band 29 downlink operating band 29, it applies 1 MHz below the Band 29 downlink operating band 29, it applies 1 MHz below the Band 29 downlink operating band 29, it applies 1 MHz below the Band 29 downlink operating band 29, it applies 1 MHz below the Band 29 downlink operating band 29, it applies 1 MHz below		600 - 716 MHz	-49 dBm	1 MHz	
UTRA FDD Band XII or746 - 756 MHz-52 dBm1 MHzThis requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)UTRA FDD Band XII or746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.E-UTRA Band 13777 - 787 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XIV or758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XIV or788 - 798 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.14784 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.17704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.17704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.17704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.17791 - 821 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)			-43 ubm	1 1011 12	
UTRA FDD Band XIII or746 - 756 MHz -52 dBm-52 dBm -52 dBm1 MHz 1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.E-UTRA Band 13777 - 787 MHz -49 dBm-49 dBm -49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XIV or758 - 768 MHz -52 dBm-52 dBm -52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XIV or788 - 798 MHz -49 dBm-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 14734 - 746 MHz -52 dBm-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 17704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.T04 - 716 MHz 0-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.704 - 716 MHz 0-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.704 - 716 MHz 0-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)791 - 821 MHz	12				
UTRA FDD Band XIII or746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.E-UTRA Band 13777 - 787 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XIV or758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XIV or758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 14788 - 798 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 17734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3.E-UTRA Band 17704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)791 - 821 MHz-52 dBm1 MHzThis req					
UTRA FDD Band XIII or746 - 756 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13.E-UTRA Band 13777 - 787 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XIV or758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 14788 - 798 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 17734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3.E-UTRA Band 17704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)791 - 821 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)					
Band XIII or E-UTRA Band 13777 - 787 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XIV or E-UTRA Band 14758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 14788 - 798 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 14734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3.E-UTRA Band 17734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.TO4 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.T04 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)T91 - 821 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS	UTRA EDD	746 - 756 MHz	-52 dBm	1 MHz	
E-UTRA Band 13777 - 787 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XIV or E-UTRA Band 14758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 14788 - 798 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 17734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3.E-UTRA Band 17704 - 716 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)791 - 821 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS		740 700 Will Z	02 0Dm	1 101112	
13operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.UTRA FDD Band XIV or758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 14788 - 798 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 14734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3.E-UTRA Band 17734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)791 - 821 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS		777 - 787 MHz	-49 dBm	1 MHz	
UTRA FDD Band XIV or758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 14788 - 798 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3.E-UTRA Band 17734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3.TOTRA Band 17704 - 716 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.TOT704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.TOT704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)T91 - 821 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS			40 abiii	1 101112	
UTRA FDD Band XIV or758 - 768 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14.E-UTRA Band 14788 - 798 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3.E-UTRA Band 17734 - 746 MHz-52 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3.Total Arrow 17704 - 716 MHz-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.Total Arrow 17-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.Total Arrow 17-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.Total Arrow 17-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.Total Arrow 17-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in band 17.Total Arrow 17-49 dBm1 MHzThis requirement does not apply to E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6)Total Arrow 17-52 dBm1 MHzThis requirement does not apply to E-UTRA BS	10				
Band XIV or operating in band 14. E-UTRA Band 788 - 798 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3. E-UTRA Band 734 - 746 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17. 17 704 - 716 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17. 704 - 716 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17. 704 - 716 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6) 791 - 821 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS		758 - 768 MHz	-52 dBm	1 MH7	
E-UTRA Band 788 - 798 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3. E-UTRA Band 734 - 746 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17. 17 704 - 716 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17. 704 - 716 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17. 704 - 716 MHz -49 dBm 1 MHz This requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6) 791 - 821 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS				1 IVII 14	
14 operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3. E-UTRA Band 734 - 746 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17. 17 704 - 716 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17. 704 - 716 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6) 791 - 821 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS		788 - 798 MHz	-49 dBm	1 MHz	
E-UTRA Band 734 - 746 MHz -52 dBm 1 MHz This requirement in subclause 6.6.4.5.3. 17 -704 - 716 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17. 704 - 716 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6) 791 - 821 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS					
E-UTRA Band 734 - 746 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17. 17 704 - 716 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17. 704 - 716 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6) 791 - 821 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS					
17 operating in band 17. 704 - 716 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6) 791 - 821 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS	E-UTRA Band	734 - 746 MHz	-52 dBm	1 MH7	
704 - 716 MHz -49 dBm 1 MHz This requirement does not apply to E-UTRA BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6) 791 - 821 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS				· ···· · ·	
operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6) 791 - 821 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS		704 - 716 MHz	-49 dBm	1 MHz	
requirement in subclause 6.6.4.5.3. For E-UTRA BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6) 791 - 821 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS					
operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 6) 791 - 821 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS					
29 downlink operating band (Note 6) 791 - 821 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS					
791 - 821 MHz -52 dBm 1 MHz This requirement does not apply to E-UTRA BS					29 downlink operating band (Note 6)
operating in band 20 or 28.		791 - 821 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS
					operating in band 20 or 28.

3GPP TS 36.141 version 13.12.0 Release 13

157

UTRA FDD	832 - 862 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS
Band XX or				operating in band 20, since it is already covered by the
E-UTRA Band				requirement in subclause 6.6.4.5.3.
20				
UTRA FDD	3510 – 3590 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS
Band XXII or				operating in band 22 or 42.
E-UTRA Band	3410 – 3490 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS
22				operating in band 22, since it is already covered by the
				requirement in subclause 6.6.4.5.3. This requirement
				does not apply to E-UTRA BS operating in Band 42
E-UTRA Band	2180 - 2200 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS
23				operating in band 23 or 66.
_	2000 - 2020 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS
				operating in band 23, since it is already covered by the
				requirement in subclause 6.6.4.5.3. This requirement
				does not apply to BS operating in Bands 2 or 25,
				where the limits are defined separately.
-	2000 – 2010 MHz	-30 dBm	1 MHz	This requirement only applies to E-UTRA BS operating
-	2010 – 2020 MHz	-49 dBm	1 MHz	in Band 2 or Band 25. This requirement applies
	2010 - 2020 10112	-49 ubm		starting 5 MHz above the Band 25 downlink operating
			4 1411-	band. (Note 4)
E-UTRA Band	1525 – 1559 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS
24				operating in band 24.
	1626.5 – 1660.5	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS
	MHz			operating in band 24, since it is already covered by the
				requirement in subclause 6.6.4.5.3.
UTRA FDD	1930 - 1995 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS
Band XXV or				operating in band 2 or 25
E-UTRA Band	1850 - 1915 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS
25				operating in band 25, since it is already covered by the
				requirement in subclause 6.6.4.5.3. For E-UTRA BS
				operating in Band 2, it applies for 1910 MHz to
				1915 MHz, while the rest is covered in sub-clause
				6.6.4.5.3.
UTRA FDD	859 – 894 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS
Band XXVI or				operating in band 5 or 26. This requirement applies to
E-UTRA Band				E-UTRA BS operating in Band 27 for the frequency
26				range 879-894 MHz.
20	814 – 849 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS
		40 0.Dill	1 101112	operating in band 26, since it is already covered by the
				requirement in subclause 6.6.4.5.3. For E-UTRA BS
				operating in Band 5, it applies for 814 MHz to
				824 MHz, while the rest is covered in sub-clause 6.6.4.
				5.3. For E-UTRA BS operating in Band 27, it applies
	050 000 MUL		4 1411-	3 MHz below the Band 27 downlink operating band.
E-UTRA Band	852 – 869 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS
27			,	operating in Band 5, 26 or 27.
	807 – 824 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS
				operating in Band 27, since it is already covered by
				the requirement in subclause 6.6.4.5.3. For E-UTRA
				BS operating in Band 26, it applies for 807 MHz to
				814 MHz, while the rest is covered in sub-clause
				6.6.4.5.3. This requirement also applies to E-UTRA BS
				6.6.4.5.3. This requirement also applies to E-UTRA BS operating in Band 28, starting 4 MHz above the Band
				operating in Band 28, starting 4 MHz above the Band
E-UTRA Band	758 - 803 MHz	-52 dBm	1 MHz	operating in Band 28, starting 4 MHz above the Band 28 downlink operating band (Note 5).
E-UTRA Band 28	758 - 803 MHz	-52 dBm	1 MHz	operating in Band 28, starting 4 MHz above the Band 28 downlink operating band (Note 5). This requirement does not apply to E-UTRA BS
				operating in Band 28, starting 4 MHz above the Band 28 downlink operating band (Note 5). This requirement does not apply to E-UTRA BS operating in band 20, 28, 44, 67 or 68.
	758 - 803 MHz 703 - 748 MHz	-52 dBm -49 dBm	1 MHz 1 MHz	operating in Band 28, starting 4 MHz above the Band 28 downlink operating band (Note 5). This requirement does not apply to E-UTRA BS operating in band 20, 28, 44, 67 or 68. This requirement does not apply to E-UTRA BS
				operating in Band 28, starting 4 MHz above the Band 28 downlink operating band (Note 5). This requirement does not apply to E-UTRA BS operating in band 20, 28, 44, 67 or 68. This requirement does not apply to E-UTRA BS operating in band 28, since it is already covered by the
				operating in Band 28, starting 4 MHz above the Band 28 downlink operating band (Note 5). This requirement does not apply to E-UTRA BS operating in band 20, 28, 44, 67 or 68. This requirement does not apply to E-UTRA BS operating in band 28, since it is already covered by the requirement in subclause 6.6.4.5.3. This requirement
				operating in Band 28, starting 4 MHz above the Band 28 downlink operating band (Note 5). This requirement does not apply to E-UTRA BS operating in band 20, 28, 44, 67 or 68. This requirement does not apply to E-UTRA BS operating in band 28, since it is already covered by the requirement in subclause 6.6.4.5.3. This requirement does not apply to E-UTRA BS operating in Band 44.
				operating in Band 28, starting 4 MHz above the Band 28 downlink operating band (Note 5). This requirement does not apply to E-UTRA BS operating in band 20, 28, 44, 67 or 68. This requirement does not apply to E-UTRA BS operating in band 28, since it is already covered by the requirement in subclause 6.6.4.5.3. This requirement does not apply to E-UTRA BS operating in Band 44. For E-UTRA BS operating in Band 67, it applies for
				 operating in Band 28, starting 4 MHz above the Band 28 downlink operating band (Note 5). This requirement does not apply to E-UTRA BS operating in band 20, 28, 44, 67 or 68. This requirement does not apply to E-UTRA BS operating in band 28, since it is already covered by the requirement in subclause 6.6.4.5.3. This requirement does not apply to E-UTRA BS operating in Band 44. For E-UTRA BS operating in Band 67, it applies for 703 MHz to 736 MHz. For E-UTRA BS operating in
28	703 - 748 MHz	-49 dBm	1 MHz	operating in Band 28, starting 4 MHz above the Band 28 downlink operating band (Note 5). This requirement does not apply to E-UTRA BS operating in band 20, 28, 44, 67 or 68. This requirement does not apply to E-UTRA BS operating in band 28, since it is already covered by the requirement in subclause 6.6.4.5.3. This requirement does not apply to E-UTRA BS operating in Band 44. For E-UTRA BS operating in Band 67, it applies for 703 MHz to 736 MHz. For E-UTRA BS operating in Band 68, it applies for 728MHz to 733MHz.
28 E-UTRA Band				 operating in Band 28, starting 4 MHz above the Band 28 downlink operating band (Note 5). This requirement does not apply to E-UTRA BS operating in band 20, 28, 44, 67 or 68. This requirement does not apply to E-UTRA BS operating in band 28, since it is already covered by the requirement in subclause 6.6.4.5.3. This requirement does not apply to E-UTRA BS operating in Band 44. For E-UTRA BS operating in Band 67, it applies for 703 MHz to 736 MHz. For E-UTRA BS operating in Band 68, it applies for 728MHz to 733MHz. This requirement does not apply to E-UTRA BS
28 E-UTRA Band 29	703 - 748 MHz 717 – 728 MHz	-49 dBm -52 dBm	1 MHz 1 MHz	 operating in Band 28, starting 4 MHz above the Band 28 downlink operating band (Note 5). This requirement does not apply to E-UTRA BS operating in band 20, 28, 44, 67 or 68. This requirement does not apply to E-UTRA BS operating in band 28, since it is already covered by the requirement in subclause 6.6.4.5.3. This requirement does not apply to E-UTRA BS operating in Band 44. For E-UTRA BS operating in Band 67, it applies for 703 MHz to 736 MHz. For E-UTRA BS operating in Band 68, it applies for 728MHz to 733MHz. This requirement does not apply to E-UTRA BS operating in Band 68, it applies for 29
28 E-UTRA Band	703 - 748 MHz	-49 dBm	1 MHz	 operating in Band 28, starting 4 MHz above the Band 28 downlink operating band (Note 5). This requirement does not apply to E-UTRA BS operating in band 20, 28, 44, 67 or 68. This requirement does not apply to E-UTRA BS operating in band 28, since it is already covered by the requirement in subclause 6.6.4.5.3. This requirement does not apply to E-UTRA BS operating in Band 44. For E-UTRA BS operating in Band 67, it applies for 703 MHz to 736 MHz. For E-UTRA BS operating in Band 68, it applies for 728MHz to 733MHz. This requirement does not apply to E-UTRA BS

	2305 – 2315 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 30, since it is already covered by the requirement in subclause 6.6.4.5.3. This requirement does not apply to E-UTRA BS operating in Band 40.
E-UTRA Band 31	462.5 -467.5 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS
51	452.5 -457.5 MHz	-49 dBm	1 MHz	operating in band 31. This requirement does not apply to E-UTRA BS operating in band 31, since it is already covered by the
UTRA FDD	1450 1400 MU-	-52 dBm	1 MHz	requirement in subclause 6.6.4.5.3.
band XXXII or E-UTRA band 32	1452 – 1496 MHz	-52 UDIII		This requirement does not apply to E-UTRA BS operating in band 11, 21 or 32.
UTRA TDD Band a) or E- UTRA Band 33	1900 – 1920 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in Band 33.
UTRA TDD Band a) or E- UTRA Band 34	2010 – 2025 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in Band 34.
UTRA TDD Band b) or E- UTRA Band 35	1850 – 1910 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in Band 35.
UTRA TDD Band b) or E- UTRA Band 36	1930 – 1990 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in Band 2 and 36.
UTRA TDD Band c) or E- UTRA Band 37	1910 – 1930 MHz	-52 dBm	1 MHz	This is not applicable to E-UTRA BS operating in Band 37. This unpaired band is defined in ITU-R M.1036, but is pending any future deployment.
UTRA TDD Band d) or E- UTRA Band 38	2570 – 2620 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in Band 38.
UTRA TDD Band f) or E- UTRA Band 39	1880 – 1920MHz	-52 dBm	1 MHz	This is not applicable to E-UTRA BS operating in Band 39.
UTRA TDD Band e) or E- UTRA Band 40	2300 – 2400MHz	-52 dBm	1 MHz	This is not applicable to E-UTRA BS operating in Band 30 or 40.
E-UTRA Band 41	2496 – 2690 MHz	-52 dBm	1 MHz	This is not applicable to E-UTRA BS operating in Band 41.
E-UTRA Band 42	3400 – 3600 MHz	-52 dBm	1 MHz	This is not applicable to E-UTRA BS operating in Band 22, 42 or 43.
E-UTRA Band 43	3600 – 3800 MHz	-52 dBm	1 MHz	This is not applicable to E-UTRA BS operating in Band42 or 43.
E-UTRA Band 44	703 - 803 MHz	-52 dBm	1 MHz	This is not applicable to E-UTRA BS operating in Band 28 or 44
E-UTRA Band 45	1447 – 1467 MHz	-52 dBm	1 MHz	This is not applicable to E-UTRA BS operating in Band 45
E-UTRA Band 46	5150 - 5925 MHz	-52 dBm	1 MHz	This is not applicable to E-UTRA BS operating in Band 46.
E-UTRA Band 65	2110 - 2200 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 1 or 65,
	1920 - 2010 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 65, since it is already covered by the requirement in sub-clause 6.6.4.5.3. For E-UTRA BS operating in Band 1, it applies for 1980 MHz to 2010 MHz, while the rest is covered in sub-clause 6.6.4.5.3.
E-UTRA Band 66	2110 - 2200 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 4, 10, 23 or 66.
	1710 - 1780 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 66, since it is already covered by the requirement in sub-clause 6.6.4.5.3. For E-UTRA BS operating in Band 4, it applies for 1755 MHz to 1780 MHz, while the rest is covered in sub-clause 6.6.4.5.3. For E-UTRA BS operating in Band 10, it applies for 1770 MHz to 1780 MHz, while the rest is covered in sub-clause 6.6.4.5.3.

E-UTRA Band 67	738 - 758 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in Band 28 or 67.					
E-UTRA Band 68	753 -783 MHz	-52 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 28, or 68.					
	698-728 MHz	-49 dBm	1 MHz	This requirement does not apply to E-UTRA BS operating in band 68, since it is already covered by the requirement in sub-clause 6.6.4.5.3. For E-UTRA BS operating in Band 28, it applies between 698 MHz and 703 MHz, while the rest is covered in sub-clause 6.6.4.5.3.					
an E- suppo	NOTE 4: This requirement does not apply to a Band 2 E-UTRA BS of an earlier release. In addition, it does not apply to an E-UTRA Band 2 BS from an earlier release manufactured before 31 December, 2012, which is upgraded to support Rel-10 features, where the upgrade does not affect existing RF parts of the radio unit related to this requirement.								

Additional co-existence requirements in Table 6.6.4.5.4-1-1a may apply for some regions.

Table 6.6.4.5.4-1a: BS Spurious emissions limits for E-UTRA BS for co-existence with systems operating in Band 46

System type for E-UTRA to co-exist with	Frequency range for co-existence requirement	Maximu m Level	Measurement Bandwidth	Note
E-UTRA Band 46a	5150 - 5250 MHz	-40 dBm	1 MHz	This is only applicable to E-UTRA BS operating in Band 46c or 46d.
E-UTRA Band 46b	5250 - 5350 MHz	-40 dBm	1 MHz	This is only applicable to E-UTRA BS operating in Band 46c or 46d.
E-UTRA Band 46c	5470 - 5725 MHz	-40 dBm	1 MHz	This is only applicable to E-UTRA BS operating in Band 46a or 46b.
E-UTRA Band 46d	5725 - 5925 MHz	-40 dBm	1 MHz	This is only applicable to E-UTRA BS operating in Band 46a or 46b.
NOTE 1: This red	quirement may apply	to E-UTRA	BS operating in o	certain regions.

- NOTE 1: As defined in the scope for spurious emissions in this clause, except for the cases where the noted requirements apply to a BS operating in Band 25, Band 27, Band 28 or Band 29, the co-existence requirements in Table 6.6.4.5.4-1 do not apply for the 10 MHz frequency range immediately outside the downlink operating band (see Table 5.5-1). Emission limits for this excluded frequency range may be covered by local or regional requirements.
- NOTE 2: Table 6.6.4.5.4-1 assumes that two operating bands, where the frequency ranges in Table 5.5-1 would be overlapping, are not deployed in the same geographical area. For such a case of operation with overlapping frequency arrangements in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications.
- NOTE 3: TDD base stations deployed in the same geographical area, that are synchronized and use the same or adjacent operating bands can transmit without additional co-existence requirements. For unsynchronized base stations (except in Band 46), special co-existence requirements may apply that are not covered by the 3GPP specifications.
- NOTE 5: For E-UTRA Band 28 BS, specific solutions may be required to fulfil the spurious emissions limits for E-UTRA BS for co-existence with E-UTRA Band 27 UL operating band.
- NOTE 6: For E-UTRA Band 29 BS, specific solutions may be required to fulfil the spurious emissions limits for E-UTRA BS for co-existence with UTRA Band XII or E-UTRA Band 12 UL operating band or E-UTRA Band 17 UL operating band.

The power of any spurious emission shall not exceed the limits of Table 6.6.4.5.4-1a for a Home BS where requirements for co-existence with a Home BS type listed in the first column apply.

Table 6.6.4.5.4-1a: Home BS Spurious emissions limits for co-existence with Home BS operating in
other frequency bands

Type of coexistence BS	Frequency range for co- location requirement	Maximum Level	Measurement Bandwidth	Note
UTRA FDD Band I or E- UTRA Band 1	1920 - 1980 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 1 or 65, since it is already covered by the requirement in subclause 6.6.4.5.3.
UTRA FDD Band II or E- UTRA Band 2	1850 - 1910 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 2 or 25, since it is already covered by the requirement in subclause 6.6.4.5.3.
UTRA FDD Band III or E- UTRA Band 3	1710 - 1785 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 3, since it is already covered by the requirement in subclause 6.6.4.5.3. For Home BS operating in band 9, it applies for 1710 MHz to 1749.9 MHz and 1784.9 MHz to 1785 MHz, while the rest is covered in sub-clause 6.6.4.5.3.
UTRA FDD Band IV or E- UTRA Band 4	1710 - 1755 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 4, 10 or 66, since it is already covered by the requirement in subclause 6.6.4.5.3.
UTRA FDD Band V or E- UTRA Band 5	824 - 849 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 5 or 26, since it is already covered by the requirement in subclause 6.6.4.5.3.
UTRA FDD Band VI, XIX or E-UTRA Band 6, 18, 19	815 - 830 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 18, since it is already covered by the requirement in subclause 6.6.4.5.3.
	830 - 845 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 6, 19, since it is already covered by the requirement in subclause 6.6.4.5.3.
UTRA FDD Band VII or E- UTRA Band 7	2500 - 2570 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 7, since it is already covered by the requirement in subclause 6.6.4.5.3.
UTRA FDD Band VIII or E-UTRA Band 8	880 - 915 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 8, since it is already covered by the requirement in subclause 6.6.4.5.3.
UTRA FDD Band IX or E- UTRA Band 9	1749.9 - 1784.9 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 3 or 9, since it is already covered by the requirement in subclause 6.6.4.5.3.
UTRA FDD Band X or E- UTRA Band 10	1710 - 1770 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 10 or 66, since it is already covered by the requirement in subclause 6.6.4.5.3. For Home BS operating in Band 4, it applies for 1755 MHz to 1770 MHz, while the rest is covered in sub-clause 6.6.4.5.3.
UTRA FDD Band XI, XXI or E-UTRA Band 11, 21	1427.9 - 1447.9 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 11, since it is already covered by the requirement in subclause 6.6.4.5.3. For Home BS operating in band 32, this requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz.

	1447.9 - 1462.9 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 21, since it is already covered by the requirement in subclause 6.6.4.5.3. For Home BS operating in band 32, this requirement applies for carriers allocated within 1475.9MHz and 1495.9MHz.
UTRA FDD Band XII or E-UTRA Band 12	699 - 716 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 12, since it is already covered by the requirement in subclause 6.6.4.5.3. For Home BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 5)
UTRA FDD Band XIII or E-UTRA Band 13	777 - 787 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 13, since it is already covered by the requirement in subclause 6.6.4.5.3.
UTRA FDD Band XIV or E-UTRA Band 14	788 - 798 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 14, since it is already covered by the requirement in subclause 6.6.4.5.3.
E-UTRA Band 17	704 - 716 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 17, since it is already covered by the requirement in subclause 6.6.4.5.3. For Home BS operating in Band 29, it applies 1 MHz below the Band 29 downlink operating band (Note 5)
UTRA FDD Band XX or E- UTRA Band 20	832 - 862 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 20, since it is already covered by the requirement in subclause 6.6.4.5.3.
UTRA FDD Band XXII or E-UTRA Band 22	3410 - 3490 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 22, since it is already covered by the requirement in sub-clause 6.6.5.3. This requirement does not apply to Home BS operating in Band 42
E-UTRA Band 23	2000 - 2020 MHz	TBD	TBD	This requirement does not apply to Home BS operating in band 23, since it is already covered by the requirement in sub-clause 6.6.4.5.3.
E-UTRA Band 24	1626.5 – 1660.5 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 24, since it is already covered by the requirement in sub-clause 6.6.4.5.3.
UTRA FDD Band XXV or E-UTRA Band 25	1850 - 1915 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 25, since it is already covered by the requirement in sub-clause 6.6.4.5.3.
UTRA FDD Band XXVI or E-UTRA Band 26	814 - 849 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 26, since it is already covered by the requirement in sub-clause 6.6.4.5.3. For Home BS operating in Band 5, it applies for 814 MHz to 824 MHz, while the rest is covered in sub-clause 6.6.4.5.3.

E-UTRA Band 27	807 - 824 MHz	-71 dBm	100 kHz	This requirement does not apply to
				Home BS operating in band 27, since it is already covered by the requirement in sub-clause 6.6.4.5.3. For Home BS operating in Band 26, it applies for 807 MHz to 814 MHz, while the rest is covered in sub-clause 6.6.4.5.3. This requirement also applies to E-UTRA BS operating in Band 28, starting 4 MHz above the Band 28 downlink operating band (Note 4).
E-UTRA Band 28	703 – 748 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 28, since it is already covered by the requirement in sub-clause 6.6.4.5.3. This requirement does not apply to Home BS operating in Band 44. For E- UTRA BS operating in Band 67, it applies for 703 MHz to 736 MHz. For E-UTRA BS operating in Band 68, it applies for 728MHz to 733MHz.
E-UTRA Band 30	2305 – 2315 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 30, since it is already covered by the requirement in sub-clause 6.6.4.5.3. This requirement does not apply to Home BS operating in Band 40.
UTRA TDD Band a) or E- UTRA Band 33	1900 - 1920 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in Band 33.
UTRA TDD Band a) or E- UTRA Band 34	2010 - 2025 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in Band 34.
UTRA TDD Band b) or E- UTRA Band 35	1850 - 1910 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in Band 35.
UTRA TDD Band b) or E- UTRA Band 36	1930 - 1990 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in Band 2 and 36.
UTRA TDD Band c) or E- UTRA Band 37	1910 - 1930 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in Band 37. This unpaired band is defined in ITU-R M.1036, but is pending any future deployment.
UTRA TDD Band d) or E- UTRA Band 38	2570 - 2620 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in Band 38.
UTRA TDD Band f) or E- UTRA Band 39	1880 - 1920MHz	-71 dBm	100 kHz	This is not applicable to Home BS operating in Band 39.
UTRA TDD Band e) or E- UTRA Band 40	2300 - 2400MHz	-71 dBm	100 kHz	This is not applicable to Home BS operating in Band 30 or 40.
E-UTRA Band 41	2496 – 2690 MHz	-71 dBm	100 kHz	This is not applicable to Home BS operating in Band 41.
E-UTRA Band 42	3400 - 3600 MHz	-71 dBm	100 kHz	This is not applicable to Home BS operating in Band 22, 42 or 43
E-UTRA Band 43	3600 - 3800 MHz	-71 dBm	100 kHz	This is not applicable to Home BS operating in Band 42 or 43
E-UTRA Band 44	703 - 803 MHz	-71 dBm	100 kHz	This is not applicable to Home BS operating in Band 28 or 44
E-UTRA Band 65	1920 - 2010 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 65, since it is already covered by the requirement in sub-clause 6.6.4.5.3. For Home BS operating in Band 1, it applies for 1980 MHz to 2010 MHz, while the rest is covered in sub-clause 6.6.4.5.3.

E-UTRA Band 66	1710 - 1780 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 66, since it is already covered by the requirement in sub-clause 6.6.4.5.3. For Home BS operating in Band 4, it applies for 1755 MHz to 1780 MHz, while the rest is covered in sub-clause 6.6.4.5.3. For Home BS operating in Band 10, it applies for 1770 MHz to 1780 MHz, while the rest is covered in sub-clause 6.6.4.5.3.
E-UTRA Band 68	698-728 MHz	-71 dBm	100 kHz	This requirement does not apply to Home BS operating in band 68, since it is already covered by the requirement in sub-clause 6.6.4.5.3. For Home BS operating in Band 28, it applies between 698 MHz and 703 MHz, while the rest is covered in sub-clause 6.6.4.5.3.

- NOTE 1: As defined in the scope for spurious emissions in this clause, except for the cases where the noted requirements apply to a BS operating in Band 27, Band 28 or Band 29, the coexistence requirements in Table 6.6.4.5.4-1a do not apply for the 10 MHz frequency range immediately outside the Home BS transmit frequency range of a downlink operating band (see Table 5.5-1). Emission limits for this excluded frequency range may be covered by local or regional requirements.
- NOTE 2: Table 6.6.4.5.4-1a assumes that two operating bands, where the frequency ranges in Table 5.5-1 would be overlapping, are not deployed in the same geographical area. For such a case of operation with overlapping frequency arrangements in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications.
- NOTE 3: TDD base stations deployed in the same geographical area, that are synchronized and use the same or adjacent operating bands can transmit without additional co-existence requirements. For unsynchronized base stations, special co-existence requirements may apply that are not covered by the 3GPP specifications.
- NOTE 4: For E-UTRA Band 28 BS, specific solutions may be required to fulfil the spurious emissions limits for E-UTRA BS for co-existence with E-UTRA Band 27 UL operating band. NOTE 5: For E-UTRA Band 29 BS, specific solutions may be required to fulfil the spurious emissions limits for E-UTRA BS for co-existence with UTRA Band XII or E-UTRA Band 12 UL operating band or E-UTRA Band 17 UL operating band.

The following requirement may be applied for the protection of PHS. This requirement is also applicable at specified frequencies falling between 10 MHz below the lowest BS transmitter frequency of the downlink operating band and 10 MHz above the highest BS transmitter frequency of the downlink operating band (see Table 5.5-1).

The power of any spurious emission shall not exceed:

Frequency range	Maximum Level	Measurement Bandwidth	Note
1884.5 - 1915.7 MHz	-41 dBm	300 kHz	Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz

The following requirement shall be applied to BS operating in Bands 13 and 14 to ensure that appropriate interference protection is provided to 700 MHz public safety operations. This requirement is also applicable at the frequency range from 10 MHz below the lowest frequency of the BS transmitter operating band up to 10 MHz above the highest frequency of the BS transmitter operating band. The power of any spurious emission shall not exceed:

Operating Band	Band	Maximum	Measurement	Note
		Level	Bandwidth	
13	763 - 775 MHz	-46 dBm	6.25 kHz	
13	793 - 805 MHz	-46 dBm	6.25 kHz	
14	769 - 775 MHz	-46 dBm	6.25 kHz	
14	799 - 805 MHz	-46 dBm	6.25 kHz	

Table 6.6.4.5.4-4: Void

The following requirement shall be applied to BS operating in Band 26 to ensure that appropriate interference protection is provided to 800 MHz public safety operations. This requirement is also applicable at the frequency range from 10 MHz below the lowest frequency of the BS downlink operating band up to 10 MHz above the highest frequency of the BS downlink operating band.

The power of any spurious emission shall not exceed:

```
Table 6.6.4.5.4-5: BS Spurious emissions limits for protection of 800 MHz public safety operations
```

Operating Ba	and	Frequency range	Maximum Level	Measurement Bandwidth	Note
26		851 - 859 MHz	-13 dBm	100 kHz	Applicable for offsets > 37.5kHz from the channel edge

The following requirement may apply to E-UTRA BS operating in Band 41 in certain regions. This requirement is also applicable at the frequency range from 10 MHz below the lowest frequency of the BS downlink operating band up to 10 MHz above the highest frequency of the BS downlink operating band.

The power of any spurious emission shall not exceed:

Table 6.6.4.5.4-6: Additional E-UTRA BS Spurious emissions limits for Band 41

Frequency range	Maximum Level	Measurement Bandwidth	Note
2505MHz – 2535MHz	-42dBm	1 MHz	
2535MHz – 2655MHz	-22dBm	1 MHz	Applicable at offsets ≥ 250% of channel bandwidth from carrier frequency
NOTE: This requirement applies for 10 or 20 MHz E-UTRA carriers allocated within 2545-2575MHz or 2595-2645MHz.			

The following requirement may apply to E-UTRA BS operating in Band 30 in certain regions. This requirement is also applicable at the frequency range from 10 MHz below the lowest frequency of the BS downlink operating band up to 10 MHz above the highest frequency of the BS downlink operating band.

The power of any spurious emission shall not exceed:

Table 6.6.4.5.4-7: Additional E-UTRA BS Spurious emissions limits for Band 30

Frequency range	Maximum Level	Measurement Bandwidth	Note
2200MHz – 2345MHz	-45dBm	1 MHz	
2362.5MHz – 2365MHz	-25dBm	1 MHz	
2365MHz – 2367.5MHz	-40dBm	1 MHz	
2367.5MHz – 2370MHz	-42dBm	1 MHz	
2370MHz – 2395MHz	-45dBm	1 MHz	

In addition for Band 46 operation, the BS may have to comply with the applicable spurious emission limits established regionally, when deployed in regions where those limits apply and under the conditions declared by the manufacturer.

The regional requirements may be in the form of conducted power, power spectral density, EIRP and other types of limits. In case of regulatory limits based on EIRP, assessment of the EIRP level is described in Annex H of TS 36.104 [2].

6.6.4.5.5 Co-location with other base stations

These requirements may be applied for the protection of other BS receivers when GSM900, DCS1800, PCS1900, GSM850, CDMA850, UTRA FDD, UTRA TDD and/or E-UTRA BS are co-located with an E-UTRA or NB-IoT BS.

The requirements assume a 30 dB coupling loss between transmitter and receiver and are based on co-location with base stations of the same class.

The power of any spurious emission shall not exceed the limits of Table 6.6.4.5.5-1 for a Wide Area BS where requirements for co-location with a BS type listed in the first column apply. For BS capable of multi-band operation, the exclusions and conditions in the Note column of Table 6.6.4.5.5-1 apply for each supported operating band. For BS

capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the exclusions and conditions in the Note column of Table 6.6.4.5.5-1 apply for the operating band supported at that antenna connector.

Table 6.6.4.5.5-1: BS Spurious emissions limits for Wide Area BS co-located with another BS

Type of co-located BS	Frequency range for co- location requirement	Maximum Level	Measurement Bandwidth	Note
Macro GSM900	876-915 MHz	-98 dBm	100 kHz	
Macro DCS1800	1710 - 1785 MHz	-98 dBm	100 kHz	
Macro PCS1900	1850 - 1910 MHz	-98 dBm	100 kHz	
Macro GSM850 or CDMA850	824 - 849 MHz	-98 dBm	100 kHz	
WA UTRA FDD Band I or E-UTRA Band 1	1920 - 1980 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band II or E-UTRA Band 2	1850 - 1910 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band III or E-UTRA Band 3	1710 - 1785 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band IV or E-UTRA Band 4	1710 - 1755 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band V or E-UTRA Band 5	824 - 849 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band VI, XIX or E-UTRA Band 6, 19	830 - 845 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band VII or E-UTRA Band 7	2500 - 2570 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band VIII or E-UTRA Band 8	880 - 915 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band IX or E-UTRA Band 9	1749.9 - 1784.9 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band X or E-UTRA Band 10	1710 - 1770 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band XI or E-UTRA Band 11	1427.9 –1447.9 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band XII or E-UTRA Band 12	699 - 716 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band XIII or E-UTRA Band 13	777 - 787 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band XIV or E-UTRA Band 14	788 - 798 MHz	-96 dBm	100 kHz	
WA E-UTRA Band 17	704 - 716 MHz	-96 dBm	100 kHz	
WA E-UTRA Band 18	815 - 830 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band XX E-UTRA Band 20	832 - 862 MHz	-96 dBm	100 kHz	
WA E-UTRA Band 24	1626.5 – 1660.5 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band XXI or E-UTRA Band 21	1447.9 – 1462.9 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band XXII or E-UTRA Band 22	3410 – 3490 MHz	-96 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 42
WA E-UTRA Band 23	2000 - 2020 MHz	-96 dBm	100 kHz	
WA UTRA FDD Band XXVI or E-UTRA Band 26	814 – 849 MHz	-96 dBm	100 kHz	
WA E-UTRA Band 27	807 - 824 MHz	-96 dBm	100 kHz	
WA E-UTRA Band 28	703 – 748 MHz	-96 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 44
WA E-UTRA Band 30	2305 – 2315 MHz	-96 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 40
WA E-UTRA Band 31	452.5 – 457.5 MHz	-96 dBm	100 kHz	

WA UTRA TDD Band a) or E-UTRA Band 33	1900 - 1920 MHz	-96 dBm	100 kHz	This is not applicable to E-
				UTRA BS operating
				in Band 33
WA UTRA TDD Band a)	2010 - 2025 MHz	-96 dBm	100 kHz	This is not
or E-UTRA Band 34				applicable to E-
				UTRA BS operating
				in Band 34
WA UTRA TDD Band b)	1850 – 1910 MHz	-96 dBm	100 kHz	This is not
or E-UTRA Band 35				applicable to E-
				UTRA BS operating
				in Band 35
WA UTRA TDD Band b)	1930 - 1990 MHz	-96 dBm	100 kHz	This is not
or E-UTRA Band 36				applicable to E-
				UTRA BS operating
				in Band 2 and 36
WA UTRA TDD Band c)	1910 - 1930 MHz	-96 dBm	100 kHz	This is not
or E-UTRA Band 37				applicable to E-
				UTRA BS operating
				in Band 37. This
				unpaired band is
				defined in ITU-R M.1036, but is
				pending any future
				deployment.
WA UTRA TDD Band d)	2570 – 2620 MHz	-96 dBm	100 kHz	This is not
or E-UTRA Band 38		oo abiii		applicable to E-
				UTRA BS operating
				in Band 38.
WA UTRA TDD Band f)	1880 – 1920MHz	-96 dBm	100 kHz	This is not
or E-UTRA Band 39				applicable to E-
				UTRA BS operating
				in Band 33 and 39
WA UTRA TDD Band e)	2300 – 2400MHz	-96 dBm	100 kHz	This is not
or E-UTRA Band 40				applicable to E-
				UTRA BS operating
WA E-UTRA Band 41	2496 – 2690 MHz	-96 dBm	100 kHz	in Band 30 or 40 This is not
WA E-UTRA Band 41	2496 - 2690 MHZ	-90 UDIII		applicable to E-
				UTRA BS operating
				in Band 41
WA E-UTRA Band 42	3400 – 3600 MHz	-96 dBm	100 kHz	This is not
	3400 - 3000 Miliz	-30 ubiii		applicable to E-
				UTRA BS operating
				in Band 22, 42 or 43
WA E-UTRA Band 43	3600 – 3800 MHz	-96 dBm	100 kHz	This is not
				applicable to E-
				UTRA BS operating
				in Band 42 or 43
WA E-UTRA Band 44	703 – 803 MHz	-96 dBm	100 kHz	This is not
				applicable to E-
				UTRA BS operating
			400.1	in Band 28 or 44
WA E-UTRA Band 45	1447 – 1467 MHz	-96 dBm	100 kHz	This is not
				applicable to E-
				UTRA BS operating
WA E-UTRA Band 65	1920 - 2010 MHz	-96 dBm	100 kHz	in Band 45
WA E-UTKA Bana 65	1920 - 2010 MHZ	-90 QRIII	TUU KHZ	
WA E-UTRA Band 66	1710 - 1780 MHz	-96 dBm	100 kHz	
WA E-UTRA Band 68	698 - 728 MHz	-96 dBm	100 kHz	

The power of any spurious emission shall not exceed the limits of Table 6.6.4.5.5-2 for a Local Area BS where requirements for co-location with a BS type listed in the first column apply. For BS capable of multi-band operation, the exclusions and conditions in the Note column of Table 6.6.4.5.5-2 apply for each supported operating band. For BS

capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the exclusions and conditions in the Note column of Table 6.6.4.5.5-2 apply for the operating band supported at that antenna connector.

Table 6.6.4.5.5-2: BS Spurious emissions limits for Local Area BS co-located with another BS

Type of co-located BS	Frequency range for co-	Maximum	Measurement	Note
	location requirement	Level	Bandwidth	
Pico GSM900	876-915 MHz	-70 dBm	100 kHz	
Pico DCS1800	1710 - 1785 MHz	-80 dBm	100 kHz	
Pico PCS1900	1850 - 1910 MHz	-80 dBm	100 kHz	
Pico GSM850	824 - 849 MHz	-70 dBm	100 kHz	
LA UTRA FDD Band I or E- UTRA Band 1	1920 - 1980 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band II or E-UTRA Band 2	1850 - 1910 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band III or E-UTRA Band 3	1710 - 1785 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band IV or E-UTRA Band 4	1710 - 1755 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band V or E-UTRA Band 5	824 - 849 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band VI, XIX or E-UTRA Band 6, 19	830 - 845 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band VII or E-UTRA Band 7	2500 - 2570 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band VIII or E-UTRA Band 8	880 - 915 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band IX or E-UTRA Band 9	1749.9 - 1784.9 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band X or E-UTRA Band 10	1710 - 1770 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band XI or E-UTRA Band 11	1427.9 - 1447.9 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band XII or E-UTRA Band 12	699 - 716 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band XIII or E-UTRA Band 13	777 - 787 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band XIV or E-UTRA Band 14	788 - 798 MHz	-88 dBm	100 kHz	
LA E-UTRA Band 17	704 - 716 MHz	-88 dBm	100 kHz	
LA E-UTRA Band 18	815 - 830 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band XX or E-UTRA Band 20	832 - 862 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band XXI or E-UTRA Band 21	1447.9 – 1462.9 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band XXII or E-UTRA Band 22	3410 – 3490 MHz	-88 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 42
LA E-UTRA Band 23	2000 - 2020 MHz	-88 dBm	100 kHz	
LA E-UTRA Band 24	1626.5 – 1660.5 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band XXV or E-UTRA Band 25	1850 – 1915 MHz	-88 dBm	100 kHz	
LA UTRA FDD Band XXVI or	814 – 849 MHz	-88 dBm	100 kHz	
E-UTRA Band 26				
LA E-UTRA Band 27	807 - 824 MHz	-88 dBm	100 kHz	
LA E-UTRA Band 28	703 – 748 MHz	-88 dBm	100 KHz	This is not applicable to E- UTRA BS operating in Band 44
LA E-UTRA Band 30	2305 – 2315 MHz	-88 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 40
LA E-UTRA Band 31	452.5 – 457.5 MHz	-88 dBm	100 kHz	
LA UTRA TDD Band a) or E-UTRA Band 33	1900 - 1920 MHz	-88 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 33

LA UTRA TDD Band a) or	2010 - 2025 MHz	-88 dBm	100 kHz	This is not
E-UTRA Band 34				applicable to E-
				UTRA BS operating in Band 34
LA UTRA TDD Band b) or	1850 – 1910 MHz	-88 dBm	100 kHz	This is not
E-UTRA Band 35	1830 - 1910 10112	-00 UBIT	TOO KI IZ	applicable to E-
E-0 IRA Dana 35				UTRA BS operating
				in Band 35
LA UTRA TDD Band b) or	1930 - 1990 MHz	-88 dBm	100 kHz	This is not
E-UTRA Band 36				applicable to E-
				UTRA BS operating
				in Band 2 and 36
LA UTRA TDD Band c) or	1910 - 1930 MHz	-88 dBm	100 kHz	This is not
E-UTRA Band 37				applicable to E-
				UTRA BS operating
				in Band 37. This unpaired band is
				defined in ITU-R
				M.1036, but is
				pending any future
				deployment.
LA UTRA TDD Band d) or	2570 – 2620 MHz	-88 dBm	100 kHz	This is not
E-UTRA Band 38				applicable to E-
				UTRA BS operating
	1000 10001	0.0 15	400.111	in Band 38.
LA UTRA TDD Band f) or	1880 – 1920MHz	-88 dBm	100 kHz	This is not
E-UTRA Band 39				applicable to E- UTRA BS operating
				in Band 33 and 39
LA UTRA TDD Band e) or	2300 – 2400MHz	-88 dBm	100 kHz	This is not
E-UTRA Band 40	2000 21001112	00 02		applicable to E-
				UTRA BS operating
				in Band 30 or 40
LA E-UTRA Band 41	2496 – 2690 MHz	-88 dBm	100 kHz	This is not
				applicable to E-
				UTRA BS operating
LA E-UTRA Band 42	3400 – 3600 MHz	-88 dBm	100 kHz	in Band 41 This is not
LA E-UTRA Banu 42	3400 - 3600 MHZ	-00 UDIII		applicable to E-
				UTRA BS operating
				in Band 22, 42 or 43
LA E-UTRA Band 43	3600 – 3800 MHz	-88 dBm	100 kHz	This is not
				applicable to E-
				UTRA BS operating
	700 000 1 11		40017	in Band 42 or 43
LA E-UTRA Band 44	703 – 803 MHz	-88 dBm	100 kHz	This is not
				applicable to E-
				UTRA BS operating in Band 28 or 44
LA E-UTRA Band 45	1447 – 1467 MHz	-88 dBm	100 kHz	This is not
		50 0.200		applicable to E-
				UTRA BS operating
				in Band 45
LA E-UTRA Band 65	1920 - 2010 MHz	-88 dBm	100 kHz	
	4740 4700 141	00.15	100	
LA E-UTRA Band 66	1710 - 1780 MHz	-88 dBm	100 kHz	
LA E-UTRA Band 68	698 - 728 MHz	-88 dBm	100 kHz	1

The power of any spurious emission shall not exceed the limits of Table 6.6.4.5.5-3 for a Medium Range BS where requirements for co-location with a BS type listed in the first column apply. For BS capable of multi-band operation, the exclusions and conditions in the Note column of Table 6.6.4.5.5-3 apply for each supported operating band. For BS

capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the exclusions and conditions in the Note column of Table 6.6.4.5.5-3 apply for the operating band supported at that antenna connector.

Table 6.6.4.5.5-3: BS Spurious emissions limits for Medium range BS co-located with another BS

Type of co-located BS	Frequency range for co-	Maximum	Measurement	Note
	location requirement	Level	Bandwidth	
Micro/MR GSM900	876-915 MHz	-91 dBm	100 kHz	
Micro/MR DCS1800 Micro/MR PCS1900	1710 - 1785 MHz	-91 dBm	100 kHz 100 kHz	
Micro/MR GSM850	1850 - 1910 MHz 824 - 849 MHz	-91 dBm -91 dBm	100 kHz	
MR UTRA FDD Band I or	1920 - 1980 MHz	-91 dBm	100 kHz	
E-UTRA Band 1	1920 - 1960 10112	-91 ubiii	TOO KI IZ	
MR UTRA FDD Band II or	1850 - 1910 MHz	-91 dBm	100 kHz	
E-UTRA Band 2 MR UTRA FDD Band III	1710 - 1785 MHz	-91 dBm	100 kHz	
or E-UTRA Band 3				
MR UTRA FDD Band IV or E-UTRA Band 4	1710 - 1755 MHz	-91 dBm	100 kHz	
MR UTRA FDD Band V or E-UTRA Band 5	824 - 849 MHz	-91 dBm	100 kHz	
MR UTRA FDD Band VI, XIX or E-UTRA Band 6, 19	830 - 850 MHz	-91 dBm	100 kHz	
MR UTRA FDD Band VII or E-UTRA Band 7	2500 - 2570 MHz	-91 dBm	100 KHz	
MR UTRA FDD Band VIII or E-UTRA Band 8	880 - 915 MHz	-91 dBm	100 KHz	
MR UTRA FDD Band IX or E-UTRA Band 9	1749.9 - 1784.9 MHz	-91 dBm	100 KHz	
MR UTRA FDD Band X or E-UTRA Band 10	1710 - 1770 MHz	-91 dBm	100 kHz	
MR UTRA FDD Band XI or E-UTRA Band 11	1427.9 - 1447.9 MHz	-91 dBm	100 kHz	
MR UTRA FDD Band XII or E-UTRA Band 12	699 - 716 MHz	-91 dBm	100 kHz	
MR UTRA FDD Band XIII or E-UTRA Band 13	777 - 787 MHz	-91 dBm	100 kHz	
MR UTRA FDD Band XIV or E-UTRA Band 14	788 - 798 MHz	-91 dBm	100 kHz	
MR E-UTRA Band 17	704 - 716 MHz	-91 dBm	100 kHz	
MR E-UTRA Band 18	815 - 830 MHz	-91 dBm	100 KHz	
MR UTRA FDD Band XX or E-UTRA Band 20	832 - 862 MHz	-91 dBm	100 KHz	
MR UTRA FDD Band XXI or E-UTRA Band 21	1447.9 - 1462.9 MHz	-91 dBm	100 KHz	
MR UTRA FDD Band XXII or E-UTRA Band 22	3410 <i>–</i> 3490 MHz	-91 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 42
MR E-UTRA Band 23	2000 - 2020 MHz	-91 dBm	100 kHz	
MR E-UTRA Band 24	1626.5 – 1660.5 MHz	-91 dBm	100 KHz	
MR UTRA FDD Band XXV or E-UTRA Band 25	1850 – 1915 MHz	-91 dBm	100 kHz	
MR UTRA FDD Band XXVI or E-UTRA Band 26	814 – 849 MHz	-91 dBm	100 kHz	
MR E-UTRA Band 27	807 - 824 MHz	-91 dBm	100 kHz	
MR E-UTRA Band 28	703 – 748 MHz	-91 dBm	100 KHz	This is not applicable to E- UTRA BS operating in Band 44
MR E-UTRA Band 30	2305 – 2315 MHz	-91 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 40
MR E-UTRA Band 31	452.5 – 457.5 MHz	-91 dBm	100 kHz	
MR E-UTRA Band 33	1900 - 1920 MHz	-91 dBm	100 kHz	This is not applicable to E- UTRA BS operating in Band 33

MR E-UTRA Band 34	2010 - 2025 MHz	-91 dBm	100 kHz	This is not
				applicable to E-
				UTRA BS operating in Band 34
MR E-UTRA Band 35	1850 – 1910 MHz	-91 dBm	100 kHz	This is not
MIX E-0 TXA Band 33	1850 - 1910 Miliz	-91 ubiii		applicable to E-
				UTRA BS operating
				in Band 35
MR E-UTRA Band 36	1930 - 1990 MHz	-91 dBm	100 kHz	This is not
				applicable to E-
				UTRA BS operating
				in Band 2 and 36
MR E-UTRA Band 37	1910 - 1930 MHz	-91 dBm	100 kHz	This is not
				applicable to E-
				UTRA BS operating
				in Band 37. This unpaired band is
				defined in ITU-R
				M.1036, but is
				pending any future
				deployment.
MR E-UTRA Band 38	2570 – 2620 MHz	-91 dBm	100 kHz	This is not
				applicable to E-
				UTRA BS operating
	(000 (000)	0.1 15	400.111	in Band 38.
MR E-UTRA Band 39	1880 – 1920MHz	-91 dBm	100 kHz	This is not
				applicable to E- UTRA BS operating
				in Band 33 and 39
MR E-UTRA Band 40	2300 – 2400MHz	-91 dBm	100 kHz	This is not
		01 02		applicable to E-
				UTRA BS operating
				in Band 30 or 40
MR E-UTRA Band 41	2496 – 2690 MHz	-91 dBm	100 kHz	This is not
				applicable to E-
				UTRA BS operating
MR E-UTRA Band 42	3400 – 3600 MHz	-91 dBm	100 kHz	in Band 41 This is not
MR E-UTRA Band 42	3400 – 3600 MHZ	-91 0611		applicable to E-
				UTRA BS operating
				in Band 22, 42 or 43
MR E-UTRA Band 43	3600 – 3800 MHz	-91 dBm	100 kHz	This is not
				applicable to E-
				UTRA BS operating
				in Band 42 or 43
MR E-UTRA Band 44	703 – 803 MHz	-91 dBm	100 kHz	This is not
				applicable to E-
				UTRA BS operating in Band 28 or 44
MR E-UTRA Band 45	1447 – 1467 MHz	-91 dBm	100 kHz	This is not
		C. GDin		applicable to E-
				UTRA BS operating
				in Band 45
MR E-UTRA Band 65	1920 - 2010 MHz	-91 dBm	100 kHz	
	4740 4700 1		400111	
MR E-UTRA Band 66	1710 - 1780 MHz	-91 dBm	100 kHz	
MR E-UTRA Band 68	698 - 728 MHz	-91 dBm	100 kHz	

NOTE 1: As defined in the scope for spurious emissions in this clause, the co-location requirements in Table 6.6.4.5.5-1 to Table 6.6.4.5.5-3 do not apply for the 10 MHz frequency range immediately outside the BS transmit frequency range of a downlink operating band (see Table 5.5-1). The current state-of-the-art technology does not allow a single generic solution for co-location with other system on adjacent frequencies for 30dB BS-BS minimum coupling loss. However, there are certain site-engineering solutions that can be used. These techniques are addressed in TR 25.942 [11].

- NOTE 2: Tables 6.6.4.5.5-1 to 6.6.4.5.5-3 assume that two operating bands, where the corresponding eNode B transmit and receive frequency ranges in Table 5.3-1 would be overlapping, are not deployed in the same geographical area. For such a case of operation with overlapping frequency arrangements in the same geographical area, special co-location requirements may apply that are not covered by the 3GPP specifications.
- NOTE 3: Co-located TDD base stations that are synchronized and using the same or adjacent operating band can transmit without special co-locations requirements. For unsynchronized base stations, special co-location requirements may apply that are not covered by the 3GPP specifications.

6.7 Transmitter intermodulation

6.7.1 Definition and applicability

The transmitter intermodulation requirement is a measure of the capability of the transmitter to inhibit the generation of signals in its non-linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna. The requirement applies during the transmitter ON period and the transmitter transient period.

For BS capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the singleband requirements apply regardless of the interfering signals position relative to the Inter RF Bandwidth gap.

The transmit intermodulation level is the power of the intermodulation products when an E-UTRA signal of channel bandwidth 5 MHz as an interfering signal is injected into an antenna connector at a power level of 30 dB lower than that of the rated total output power in the operating band.

The wanted signal is E-UTRA single carrier or multi-carrier, or multiple contiguously aggregated carriers, for both contiguous and non-contiguous spectrum operation.

The interfering signal centre frequency offset shall be as in Table 6.7.1-1.

Parameter	Value	
Interfering signal centre frequency offset from	± 2.5 MHz	
the lower/upper edge of the wanted signal or	± 7.5 MHz	
edge of sub-block inside a sub-block gap	± 12.5 MHz	
NOTE 1: Interfering signal positions that are partially or completely outside of the downlink operating band of the		
base station are excluded from the requirement, unless the interfering signal positions fall within the		
frequency range of adjacent downlink operating bands in the same geographical area.		
NOTE 2: In certain regions, NOTE 1 is not applied in Band 1, 3, 8, 9, 11, 18, 19, 21, 28, 32 operating within		
1475.9-1495.9MHz, 34.		

The wanted signal channel bandwidth $BW_{Channel}$ shall be the maximum channel bandwidth supported by the base station.

The requirements shall apply whatever the type of transmitter considered (single carrier, multi-carrier and/or CA) and for all transmission modes foreseen by the manufacturer's specification.

In case that none of the interfering signal positions according to the conditions of Table 6.7.1-1 is applicable, a wanted signal channel bandwidth $BW_{Channel}$ less than the maximum channel bandwidth supported by the base station shall be selected so that at least one applicable interfering signal position according to Table 6.7.1-1 is obtained.

6.7.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 6.7.1.

6.7.2A Additional requirement for Band 41

The additional requirement for Band 41 in certain regions is in TS 36.104 [2] subclause 6.7.2.

6.7.3 Test purpose

The test purpose is to verify the ability of the BS transmitter to restrict the generation of intermodulation products in its non-linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna to below specified levels.

6.7.4 Method of test

6.7.4.1 Initial conditions

Test environment: normal; see Annex D.2.

RF channels to be tested for single carrier: B, M and T; see subclause 4.7.

Base Station RF Bandwidth positions to be tested for multi-carrier and/or CA: B_{RFBW} , M_{RFBW} and T_{RFBW} ; see subclause 4.7.1.

Connect the signal analyzer to the base station antenna connector as shown in Annex I.1.2.

6.7.4.2 Procedures

1) For an E-UTRA BS declared to be capable of single carrier operation only, generate the wanted signal according to E-TM1.1 at manufacturer's declared rated output power.

For an E-UTRA BS declared to be capable of multi-carrier and/or CA operation, set the base station to transmit according to E-TM1.1 on all carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For an E-UTRA BS declared to be capable of NB-IoT in-band operation, start transmission according to E-TM1.1 with the NB-IoT PRB constructed according to N-TM at manufacturer's declared rated output power using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For an E-UTRA BS declared to be capable of NB-IoT guard-band operation, start transmission according to E-TM1.1 with the NB-IoT PRB constructed according to N-TM at manufacturer's declared rated output power using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For a NB-IoT BS declared to be capable of single carrier operation, start transmission according to N-TM at manufacturer's declared rated output power.

For a NB-IoT BS declared to be capable of multi-carrier operation, set the base station to transmit according to N-TM on all carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For an E-UTRA and NB-IoT standalone BS declared to be capable of multi-carrier operation, start transmission according to E-TM1.1 on all E-UTRA carriers and N-TM on all NB-IoT carriers configured using in the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

- 2) Generate the interfering signal according to E-TM1.1, with 5 MHz channel bandwidth and a centre frequency offset according to the conditions of Table 6.7.1-1 but exclude interfering frequencies that are outside of the allocated downlink operating band or interfering frequencies that are not completely within the sub-block gap or within the Inter RF Bandwidth gap.
- 3) Adjust ATT1 so that level of the E-UTRA interfering signal is as defined in subclause 6.7.5.
- 4) Perform the Out-of-band emission tests as specified in subclauses 6.6.2 and 6.6.3, for all third and fifth order intermodulation products which appear in the frequency ranges defined in subclauses 6.6.2 and 6.6.3. The width of the intermodulation products shall be taken into account.
- 5) Perform the Transmitter spurious emissions test as specified in subclause 6.6.4, for all third and fifth order intermodulation products which appear in the frequency ranges defined in subclause 6.6.4. The width of the intermodulation products shall be taken into account.
- 6) Verify that the emission level does not exceed the required level with the exception of interfering signal frequencies.

7) Repeat the test for the remaining interfering signal centre frequency offsets according to the conditions of Table 6.7.1-1.

In addition, for a multi-band capable BS, the following step shall apply:

- 8) For multi-band capable BS and single band tests, repeat the steps above per involved band where single band test configurations and test models shall apply with no carrier activated in the other band. For multi-band capable BS with separate antenna connector, the antenna connector not being under test shall be terminated.
- NOTE: The third order intermodulation products are centred at 2F1±F2 and 2F2±F1. The fifth order intermodulation products are centred at 3F1±2F2, 3F2±2F1, 4F1±F2, and 4F2±F1 where F1 represents the wanted signal centre frequency or centre frequency of each sub-block and F2 represents the interfering signal centre frequency. The width of intermodulation products are:

- $(n*BW_{F1} + m*5MHz)$ for the nF1±mF2 products

- $(n*5MHz + m*BW_{F1})$ for the nF2±mF1 products

where BW_{F1} represents the wanted signal RF bandwidth, or channel bandwidth in case of single carrier, or sub-block bandwidth.

6.7.5 Test Requirements

In the frequency range relevant for this test, the transmit intermodulation level shall not exceed the out-of-band emission requirements of subclauses 6.6.2 and 6.6.3 and transmitter spurious emissions requirements of subclause 6.6.4 in the presence of a E-UTRA interfering signal with a power level 30 dB below the rated total output power in the operating band.

The requirement is applicable outside the Base Station RF Bandwidth or Maximum Radio Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Maximum Radio Bandwidth edges.

For a BS operating in non-contiguous spectrum, the requirement is also applicable inside a sub-block gap for interfering signal offsets where the interfering signal falls completely within the sub-block gap. The interfering signal offset is defined relative to the sub-block edges.

For a BS capable of multi-band operation, the requirement applies relative to the Base Station RF Bandwidth edge of each supported operating band. In case the Inter RF Bandwidth gap is less than 15 MHz, the requirement in the gap applies only for interfering signal offsets where the interfering signal falls completely within the Inter RF Bandwidth gap.

The measurements for out-of-band emissions and spurious emission requirements due to intermodulation can be limited to the frequency ranges of all third and fifth order intermodulation products, considering the width of these products and excluding the bandwidths of the wanted and interfering signals.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in Annex G. The explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

6.7.6 Additional test requirements for Band 41

In the frequency range relevant for this test, the transmitter intermodulation level shall not exceed the maximum levels according to Table 6.6.2-2 with a square filter in the first adjacent channel, Table 6.6.3.5.3-7 and Table 6.6.4.5.4-6 in the presence of a wanted signal and an interfering signal according to Table 6.7.2-1 in TS 36.104 [2] for a BS operating in Band 41. The measurement may be limited to frequencies on which third and fifth order intermodulation products appear, considering the width of these products and excluding the bandwidths of the wanted and interfering signals.

7 Receiver characteristics

7.1 General

General test conditions for receiver tests are given in Clause 4, including interpretation of measurement results and configurations for testing. BS configurations for the tests are defined in Clause 4.5, while Annex H provides an informative description of E-UTRAN test cases.

Unless otherwise stated the requirements in clause 7 apply during the base station receive period.

The throughput requirements defined for the receiver characteristics in this clause do not assume HARQ transmissions.

When the BS is configured to receive multiple carriers, all the throughput requirements are applicable for each received carrier. For ACS, blocking and intermodulation characteristics, the negative offsets of the interfering signal apply relative to the lower Base Station RF Bandwidth edge and positive offsets of the interfering signal apply relative to the upper Base Station RF Bandwidth edge.

Unless otherwise stated, a BS declared to be capable of E-UTRA with NB-IoT in-band or guard band operations is only required to pass the receiver tests for E-UTRA with NB-IoT in-band or guard band; it is not required to perform the receiver tests again for E-UTRA only.

7.2 Reference sensitivity level

7.2.1 Definition and applicability

The reference sensitivity power level $P_{REFSENS}$ is the minimum mean power received at the antenna connector at which a throughput requirement shall be met for a specified reference measurement channel.

The test is set up according to Annex I.2.1 and performed without interfering signal power applied to the BS antenna connector. For duplex operation, the measurement configuration principle is indicated for one duplex branch in Annex I.2.1. The reference point for signal power is at the input of the receiver (antenna connector).

7.2.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 7.2.1.

7.2.3 Test purpose

To verify that at the BS Reference sensitivity level the throughput requirement shall be met for a specified reference measurement channel.

7.2.4 Method of testing

7.2.4.1 Initial conditions

Test environment: normal; see subclause D.2

RF channels to be tested for single carrier: B, M and T; see subclause 4.7.

The following additional tests shall be performed:

- a) On each of B, M and T, the test shall be performed under extreme power supply as defined in subclause D.5
- NOTE: Tests under extreme power supply also test extreme temperature.
- 1) Connect the test equipment as shown in Annex I.2.1.

7.2.4.2 Procedure

1) a) For FDD BS start BS transmission according to E-TM 1.1 at manufacturer's declared rated output power.

b) For NB-IoT BS start BS transmission according to N-TM at manufacturer's declared rated output power

- 2) Set the test signal mean power as specified in table 7.2-1 for E-UTRA Wide Area BS, in Table 7.2-2 for E-UTRA Local Area BS, in Table 7.2-3 for E-UTRA Home BS and in Table 7.2-4 for E-UTRA Medium Range BS and in Table 7.2-5 for NB-IoT Wide Area BS.
- 3) Measure the throughput according to Annex E.
- 4) Repeat the measurement for the other RX port(s).

In addition, for a multi-band capable BS, the following step shall apply:

5) For multi-band capable BS and single band tests, repeat the steps above per involved band where single carrier test models shall apply with no carrier activated in the other band. For multi-band capable BS with separate antenna connector, the antenna connector not being under test shall be terminated.

7.2.5 Test requirement

For each measured E-UTRA carrier, the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel as specified in Annex A.1 with parameters specified in Table 7.2-1 for Wide Area BS, in Table 7.2-2 for Local Area BS, in Table 7.2-3 for Home BS and in Table 7.2-4 for Medium Range BS.

E-UTRA channel bandwidth [MHz]		Reference measurement channel	Reference sensitivity power leve PREFSENS [dBm]	
			f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz
	1.4	FRC A1-1 in Annex A.1	-106.1	-105.8
	3	FRC A1-2 in Annex A.1	-102.3	-102.0
	3	FRC A1-6 in Annex A.1 for E-UTRA with NB- IoT in-band operation ^{Note 3}	-102.3 ^{Note 2}	N/A
	5	FRC A1-3 in Annex A.1	-100.8	-100.5
	5	FRC A1-7 in Annex A.1 for E-UTRA with NB- IoT in-band operation	-100.8 Note 2	N/A
	10	FRC A1-3 in Annex A.1 Note 1	-100.8	-100.5
	10	FRC A1-7 in Annex A.1 for E-UTRA with NB- IoT in-band operation Note 4	-100.8 Note 2	N/A
	15	FRC A1-3 in Annex A.1 Note 1	-100.8	-100.5
	15	FRC A1-7 in Annex A.1 for E-UTRA with NB- IoT in-band operation Note 4	-100.8 Note 2	N/A
	20	FRC A1-3 in Annex A.1 Note 1	-100.8	-100.5
	20	FRC A1-7 in Annex A.1 for E-UTRA with NB- IoT in-band operation Note 4	-100.8 Note 2	N/A
Note 1: Note 2: Note 3:	P _{REFSENS} is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of FRC A1-3 mapped to disjoint frequency ranges with a width of 25 resource blocks each The requirements apply to BS that supports E-UTRA with NB-IoT in-band operation. P _{REFSENS} is the power level of a single instance of the reference measurement channel. This requirement shall be met for a single instance of FRC A1-6 mapped to the 12 E-UTRA resource blocks adjacent to the NB-IoT PRB.			
Note 4:	NB-IoT PRB. P _{REFSENS} is the power level of a single instance of the reference measurement channel. This requirement shall be met for a single instance of FRC A1-7 mapped to the 24 E-UTRA resource blocks adjacent to the NB-IoT PRB (location of which is specified in sub-clause 4.7.3), and for each consecutive application of a single instance of FRC A1-3 mapped to disjoint frequency ranges with a width of 25 resource blocks each.			

Table 7.2.1-1: E-UTRA Wide Area BS reference sensitivity levels

E-UTRA channel bandwidth [MHz]	Reference measurement channel	Reference sensitivity power level, PREFSENS [dBm]		
		f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	
1.4	FRC A1-1 in Annex A.1	-98.1	-97.8	
3	FRC A1-2 in Annex A.1	-94.3	-94.0	
5	FRC A1-3 in Annex A.1	-92.8	-92.5	
10	FRC A1-3 in Annex A.1*	-92.8	-92.5	
15	FRC A1-3 in Annex A.1*	-92.8	-92.5	
20	FRC A1-3 in Annex A.1*	-92.8	-92.5	
Note*: PREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of FRC A1-3 mapped to disjoint frequency ranges with a width of 25 resource blocks each				

Table 7.2-2: E-UTRA Local Area BS reference sensitivity levels

E-UTRA channel bandwidth [MHz]		Reference measurement channel		ensitivity power level, REFSENS [dBm]
			f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz
	1.4	FRC A1-1 in Annex A.1	-98.1	-97.8
3		FRC A1-2 in Annex A.1	-94.3	-94.0
5		FRC A1-3 in Annex A.1	-92.8	-92.5
	10	FRC A1-3 in Annex A.1*	-92.8	-92.5
	15	FRC A1-3 in Annex A.1*	-92.8	-92.5
	20	FRC A1-3 in Annex A.1*	-92.8	-92.5
Note*:	PREFSENS is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of FRC A1-3 mapped to disjoint frequency ranges with a width of 25 resource blocks each			

Table 7.2-4: E-UTRA Medium Range BS reference sensitivity levels	5
--	---

	E-UTRA bandwidth [MHz]	Reference measurement channel		ensitivity power level, PREFSENS [dBm]
			f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz
	1.4	FRC A1-1 in Annex A.1	-101.1	-100.8
3		FRC A1-2 in Annex A.1	-97.3	-97.0
	5	FRC A1-3 in Annex A.1	-95.8	-95.5
	10	FRC A1-3 in Annex A.1*	-95.8	-95.5
	15	FRC A1-3 in Annex A.1*	-95.8	-95.5
20 FRC /		FRC A1-3 in Annex A.1*	-95.8	-95.5
Note*: P _{REFSENS} is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of FRC A1-3 mapped to disjoint frequency ranges with a width of 25 resource blocks each				

For NB-IoT standalone BS or E-UTRA BS with NB-IoT (in-band and/or guard band), NB-IoT throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.2-5 for Wide Area BS.

NB-IoT channel bandwidth [kHz]	NB-IoT Sub-carrier spacing [kHz]	Reference measurement channel	Reference sensitivity power level, PREFSENS [dBm] (f≤3.0 GHz))
200	15	FRC A14-1 in Annex A.14	-126.6
200	3.75	FRC A14-2 in Annex A.14	-132.6

Table 7.2-5: NB-IoT Wide Area BS reference sensitivity levels

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The relationship between Minimum Requirements and Test Requirements is defined in subclause 4.1 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

7.3 Dynamic range

7.3.1 Definition and applicability

The dynamic range is specified as a measure of the capability of the receiver to receive a wanted signal in the presence of an interfering signal inside the received channel bandwidth. In this condition a throughput requirement shall be met for a specified reference measurement channel. The interfering signal for the dynamic range requirement is an AWGN signal.

7.3.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 7.3.1.

7.3.3 Test purpose

To verify that at the BS receiver dynamic range, the relative throughput shall fulfil the specified limit.

7.3.4 Method of testing

7.3.4.1 Initial conditions

Test environment: normal; see subclause D.2

RF channels to be tested for single carrier: B, M and T; see subclause 4.7

1) Connect the test equipment as shown in Annex I.2.2.

7.3.4.2 Procedure

For E-UTRA and E-UTRA with NB-IoT in-band or guard band operation:

For each supported E-UTRA channel BW:

1) Adjust the signal generator for the wanted signal as specified in Table 7.3-1 for E-UTRA Wide Area BS, in Table 7.3-2 for E-UTRA Local Area BS, in Table 7.3-3 for E-UTRA Home BS and in table 7.3-4 for E-UTRA Medium Range BS.

For a BS declared to be capable of NB-IoT in-band or guard band operation for the tested E-UTRA channel BW, adjust the signal generator for the wanted signal in Table 7.3-6 for Wide Area BS.

- 2) Adjust the AWGN generator level as specified in Table 7.3-1 for E-UTRA Wide Area BS, in Table 7.3-2 for E-UTRA Local Area BS, in Table 7.3-3 for E-UTRA Home BS and in table 7.3-4 for E-UTRA Medium Range BS and in table 7.3-6 for NB-IoT Wide Area BS and set the frequency to the same frequency as the tested channel.
- 3) Measure the E-UTRA throughput according to Annex E and verify that it is within the specified level.

For a BS declared to be capable of NB-IoT in-band or guard band operation for the tested E-UTRA channel BW, measure the NB-IoT throughput according to Annex E and verify that it is within the specified level.

4) Repeat the measurement for the other RX port(s).

In addition, for a multi-band capable BS, the following step shall apply:

5) For multi-band capable BS and single band tests, repeat the steps above per involved band with no carrier activated in the other band. For multi-band capable BS with separate antenna connector, the antenna connector not being under test shall be terminated.

For NB-IoT standalone BS:

- 1) Adjust the signal generator for the wanted signal as specified in Table 7.3-5.
- 2) Adjust the AWGN generator level as specified in Table 7.3-5 and set the frequency to the same frequency as the tested channel.
- 3) Measure the NB-IoT throughput according to Annex E and verify that it is within the specified level.
- 4) Repeat the measurement for the other RX port(s).

7.3.5 Test Requirements

For each measured E-UTRA carrier, the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.3-1 for Wide Area BS, in Table7.3-2 for Local Area BS, in Table 7.3-3 for Home BS and in Table 7.3-4 for Medium Range BS.

E-UTRA channel bandwidth [MHz]	Reference measurement channel	Wanted signal mean power [dBm]	Interfering signal mean power [dBm] / BW _{Config}	Type of interfering signal
1.4	FRC A2-1 in Annex A.2	-76.0	-88.7	AWGN
3	FRC A2-2 in Annex A.2	-72.1	-84.7	AWGN
5	FRC A2-3 in Annex A.2	-69.9	-82.5	AWGN
10	FRC A2-3 in Annex A.2*	-69.9	-79.5	AWGN
15	FRC A2-3 in Annex A.2*	-69.9	-77.7	AWGN
20	FRC A2-3 in Annex A.2*	-69.9	-76.4	AWGN
Note*: The wanted signal mean power is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of FRC A2-3 mapped to disjoint frequency ranges with a width of 25 resource blocks each				

Table 7.3-1: Wide Area BS dynamic range for E-UTRA carrier

E-UTRA channel bandwidth [MHz]	Reference measurement channel	Wanted signal mean power [dBm]	Interfering signal mean power [dBm] / BWConfig	Type of interfering signal	
1.4	FRC A2-1 in Annex A.2	-68.0	-80.7	AWGN	
3	FRC A2-2 in Annex A.2	-64.1	-76.7	AWGN	
5	FRC A2-3 in Annex A.2	-61.9	-74.5	AWGN	
10	FRC A2-3 in Annex A.2*	-61.9	-71.5	AWGN	
15	FRC A2-3 in Annex A.2*	-61.9	-69.7	AWGN	
20	FRC A2-3 in Annex A.2*	-61.9	-68.4	AWGN	
th ea	Note*: The wanted signal mean power is the power level of a single instance of the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of FRC A2-3 mapped to disjoint frequency ranges with a width of 25 resource blocks each				

E-UTRA channel bandwidth [MHz]	Reference measurement channel	Wanted signal mean power [dBm]	Interfering signal mean power [dBm] / BW _{Config}	Type of interfering signal
1.4	FRC A2-1 in Annex A.2	-31.5	-44.2	AWGN
3	FRC A2-2 in Annex A.2	-27.6	-40.2	AWGN
5	FRC A2-3 in Annex A.2	-25.4	-38	AWGN
10	FRC A2-3 in Annex A.2*	-25.4	-35	AWGN
15	FRC A2-3 in Annex A.2*	-25.4	-33.2	AWGN
20	FRC A2-3 in Annex A.2*	-25.4	-31.9	AWGN
Note*: The wanted signal mean power is the power level of a single instance of				
the reference measurement channel. This requirement shall be met for				
each consecutive application of a single instance of FRC A2-3 mapped to disjoint frequency ranges with a width of 25 resource blocks each				

Table 7.3-3: Home BS dynamic range for E-UTRA carrier

Table 7.3-4: Medium Range BS dynamic range for E-UTRA carrier

E-UTRA channel bandwidth [MHz]	Reference measurement channel	Wanted signal mean power [dBm]	Interfering signal mean power [dBm] / BWConfig	Type of interfering signal	
1.4	FRC A2-1 in Annex A.2	-71.0	-83.7	AWGN	
3	FRC A2-2 in Annex A.2	-67.1	-79.7	AWGN	
5	FRC A2-3 in Annex A.2	-64.9	-77.5	AWGN	
10	FRC A2-3 in Annex A.2*	-64.9	-74.5	AWGN	
15	FRC A2-3 in Annex A.2*	-64.9	-72.7	AWGN	
20	FRC A2-3 in Annex A.2*	-64.9	-71.4	AWGN	
Note*: The wanted signal mean power is the power level of a single instance of					
	the reference measurement channel. This requirement shall be met for each consecutive application of a single instance of FRC A2-3 mapped to				
	disjoint frequency ranges with a width of 25 resource blocks each				

For NB-IoT standalone operation, the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.3.1-5 for Wide Area BS.

NB-IoT channel bandwidth [kHz]	Reference measurement channel	Wanted signal mean power [dBm]	Interfering signal mean power [dBm] / BW _{Channel}	Type of interfering signal
200	FRC A15-1 in Annex A.15	-99.4	-96	AWGN
200	FRC A15-2 in Annex A.15	-105.3	-96	AWGN

For NB-IoT in-band or guard band operation, the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.3.1-6 for Wide Area BS.

NB-IoT channel bandwidth [MHz]	Reference measurement channel	Wanted signal mean power [dBm]	Interfering signal mean power [dBm] / BW _{Channel}	Type of interfering signal
3Note 1	FRC A15-1 in Annex A.15	-99.4	-84.2	
3.000	FRC A15-2 in Annex A.15	-105.3	-04.2	AWGN
	FRC A15-1 in Annex A.15	-99.4	00.0	AWGN
5	FRC A15-2 in Annex A.15	-105.3	-82.0	AWGIN
40	FRC A15-1 in Annex A.15	-99.4	70.0	AWGN
10	FRC A15-2 in Annex A.15	-105.3	-79.0	
45	FRC A15-1 in Annex A.15	-99.4	77.0	AWGN
15	FRC A15-2 in Annex A.15	-105.3	-77.2	
20	FRC A15-1 in Annex A.15	-99.4	70.0	
	FRC A15-2 in Annex A.15	-105.3 -76.0		AWGN
Note 1: 3	MHz channel ban	dwidth is not applic	able to guard band	operation.

Table 7.3-6: Wide Area BS dynamic range for NB-IoT in-band or guard band operation

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The relationship between Minimum Requirements and Test Requirements is defined in subclause 4.1 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

7.4 In-channel selectivity

7.4.1 Definition and applicability

In-channel selectivity (ICS) is a measure of the receiver ability to receive a wanted signal at its assigned resource block locations in the presence of an interfering signal received at a larger power spectral density. In this condition a throughput requirement shall be met for a specified reference measurement channel. The interfering signal shall be an E-UTRA signal as specified in Annex C and shall be time aligned with the wanted signal.

7.4.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 7.4.1.

7.4.3 Test purpose

The purpose of this test is to verify the BS receiver ability to suppress the IQ leakage.

7.4.4 Method of testing

7.4.4.1 Initial conditions

Test environment: normal; see subclause D.2.

RF channels to be tested for single carrier: B, M and T; see subclause 4.7

1) Connect the test equipment as shown in Annex I.2.3.

7.4.4.2 Procedure

For each supported E-UTRA channel BW:

- Adjust the signal generator for the wanted E-UTRA signal as specified in Table 7.4-1 for Wide Area BS, in Table 7.4-2 for Local Area BS, in Table 7.4-3 for Home BS and in Table 7.4-4 for Medium Range BS on one side of the F_C.
- 2) Adjust the signal generator for the interfering signal as specified in Table 7.4-1 for Wide Area BS, in Table 7.4-2 for Local Area BS, in Table 7.4-3 for Home BS and in Table 7.4-4 for Medium Range BS at opposite side of the F_C and adjacent to the wanted signal.
- 3) Measure the throughput according to Annex E.
- 4) Repeat the measurement with the wanted signal on the other side of the F_C , and the interfering signal at opposite side of the F_C and adjacent to the wanted signal.
- 5) Repeat the measurement for the other RX port(s).

In addition, for a multi-band capable BS, the following step shall apply:

6) For multi-band capable BS and single band tests, repeat the steps above per involved band with no carrier activated in the other band. For multi-band capable BS with separate antenna connector, the antenna connector not being under test shall be terminated.

For each supported E-UTRA channel BW with NB-IoT in-band operation:

- Adjust the signal generator for the wanted NB-IoT signal as specified in Table 7.4-5 for Wide Area BS with 15 kHz channel spacing and in Table 7.4-6 for Wide Area BS with 3.75 kHz channel spacing on one side of the F_c.
- 2) Adjust the signal generator for the interfering signal as specified in Table 7.4-5 for Wide Area BS with 15 kHz channel spacing and in Table 7.4-6 for Wide Area BS with 3.75 kHz spacing at opposite side of the F_c.
- 3) Measure the throughput according to Annex E.
- 4) Repeat the measurement with the wanted signal on the other side of the F_C , and the interfering signal at opposite side of the F_C .
- 5) Repeat the measurement for the other RX port(s).

7.4.5 Test Requirements

For each measured E-UTRA carrier, the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.4-1 for Wide Area BS, in Table7.4-2 for Local Area BS, in Table 7.4-3 for Home BS and in Table 7.4-4 for Medium Range BS.

E-UTRA channel bandwidth (MHz)	Reference measurement channel	Wanted signal mean power [dBm]		Interfering signal mean power [dBm]	Type of interfering signal
		f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz		
1.4	A1-4 in Annex A.1	-105.5	-105.1	-87	1.4 MHz E-UTRA signal, 3 RBs
3	A1-5 in Annex A.1	-100.7	-100.3	-84	3 MHz E-UTRA signal, 6 RBs
5	A1-2 in Annex A.1	-98.6	-98.2	-81	5 MHz E-UTRA signal, 10 RBs
10	A1-3 in Annex A.1	-97.1	-96.7	-77	10 MHz E-UTRA signal, 25 RBs
15	A1-3 in Annex A.1*	-97.1	-96.7	-77	15 MHz E-UTRA signal, 25 RBs*
20	A1-3 in Annex A.1*	-97.1	-96.7	-77	20 MHz E-UTRA signal, 25 RBs*
Note*: W	anted and interfe	ring signal are place	ed adjacently around	d Fc	

Table 7.4-1: Wide Area BS in-channel selectivity for E-UTRA

E-UTRA channel bandwidth (MHz)	Reference measurement channel	Wanted signal mean power [dBm]		Interfering signal mean power [dBm]	Type of interfering signal
		f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz		
1.4	A1-4 in Annex A.1	-97.5	-97.1	-79	1.4 MHz E-UTRA signal, 3 RBs
3	A1-5 in Annex A.1	-92.7	-92.3	-76	3 MHz E-UTRA signal, 6 RBs
5	A1-2 in Annex A.1	-90.6	-90.2	-73	5 MHz E-UTRA signal, 10 RBs
10	A1-3 in Annex A.1	-89.1	-88.7	-69	10 MHz E-UTRA signal, 25 RBs
15	A1-3 in Annex A.1*	-89.1	-88.7	-69	15 MHz E-UTRA signal, 25 RBs*
20	A1-3 in Annex A.1*	-89.1	-88.7	-69	20 MHz E-UTRA signal, 25 RBs*
Note*: W	anted and interfe	ring signal are place	ed adjacently around	d Fc	

Table 7.4-2: Local Area BS in-channel selectivity for E-UTRA

Table 7.4-3 Home BS in-channel sele	ectivity for E-UTRA
-------------------------------------	---------------------

E-UTRA channel bandwidth (MHz)	Reference measurement channel	Wanted signal mean power [dBm]		Interfering signal mean power [dBm]	Type of interfering signal
		f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz		
1.4	A1-4 in Annex A.1	-97.5	-97.1	-79	1.4 MHz E-UTRA signal, 3 RBs
3	A1-5 in Annex A.1	-92.7	-92.3	-76	3 MHz E-UTRA signal, 6 RBs
5	A1-2 in Annex A.1	-90.6	-90.2	-73	5 MHz E-UTRA signal, 10 RBs
10	A1-3 in Annex A.1	-89.1	-88.7	-69	10 MHz E-UTRA signal, 25 RBs
15	A1-3 in Annex A.1*	-89.1	-88.7	-69	15 MHz E-UTRA signal, 25 RBs*
20	A1-3 in Annex A.1*	-89.1	-88.7	-69	20 MHz E-UTRA signal, 25 RBs*
Note*: Wanted and interfering signal are placed adjacently around Fc					

E-UTRA channel bandwidth (MHz)	Reference measurement channel	Wanted signal mean power [dBm]		Interfering signal mean power [dBm]	Type of interfering signal	
		f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz			
1.4	A1-4 in Annex A.1	-100.5	-100.1	-82	1.4 MHz E-UTRA signal, 3 RBs	
3	A1-5 in Annex A.1	-95.7	-95.3	-79	3 MHz E-UTRA signal, 6 RBs	
5	A1-2 in Annex A.1	-93.6	-93.2	-76	5 MHz E-UTRA signal, 10 RBs	
10	A1-3 in Annex A.1	-92.1	-91.7	-72	10 MHz E-UTRA signal, 25 RBs	
15	A1-3 in Annex A.1*	-92.1	-91.7	-72	15 MHz E-UTRA signal, 25 RBs*	
20	A1-3 in Annex A.1*	-92.1	-91.7	-72	20 MHz E-UTRA signal, 25 RBs*	
Note*: W	Note*: Wanted and interfering signal are placed adjacently around Fc					

Table 7.4-4 Medium Range BS in-channel selectivity for E-UTRA

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The relationship between Minimum Requirements and Test Requirements is defined in subclause 4.1 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

For NB-IoT in-band operation carrier, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel as specified in Annex A with parameters specified in Table 7.4-5 for Wide Area BS with 15 kHz channel spacing and in Table 7.4-6 for Wide Area BS with 3.75 kHz channel spacing.

Table 7.4-5 Wide Area BS in-channel selectivity for NB-IoT in-band operation with 15kHz channel spacing

E-UTRA channel bandwidth (MHz)	Reference measurement channel	Wanted signal mean power [dBm] (f≤3.0 GHz))	Interfering signal mean power [dBm]	Type of interfering signal				
3	FRC A14-1 in Annex A.14	-122.9	-84	3 MHz E-UTRA signal, 6 RBs ^{Note 2}				
5	FRC A14-1 in Annex A.14	-122.9	-81	5 MHz E-UTRA signal, 10 RBs ^{Note 1}				
10	FRC A14-1 in Annex A.14	-122.9	-77	10 MHz E-UTRA signal, 25 RBs ^{Note 1}				
15	FRC A14-1 in Annex A.14	-122.9	-77	15 MHz E-UTRA signal, 25 RBs ^{Note 1}				
20	FRC A14-1 in Annex A.14	-122.9	-77	20 MHz E-UTRA signal, 25 RBs ^{Note 1}				
	Both interfering signal and NB-IoT PRB are placed at the middle of the available PRB locations. The wanted NB-IoT tone is placed at the centre of this NB-IoT PRB.							

ETSI

E-UTRA channel bandwidth (MHz)	Reference measurement channel	Wanted signal mean power [dBm] (f≤3.0 GHz))	Interfering signal mean power [dBm]	Type of interfering signal	
3	FRC A14-2 in Annex A.14	-128.8	-84	3 MHz E-UTRA signal, 6 RBs ^{Note 2}	
5	FRC A14-2 in Annex A.14	-128.8	-81	5 MHz E-UTRA signal, 10 RBs ^{Note 1}	
10	FRC A14-2 in Annex A.14	-128.8	-77	10 MHz E-UTRA signal, 25 RBs ^{Note 1}	
15	FRC A14-2 in Annex A.14	-128.8	-77	15 MHz E-UTRA signal, 25 RBs ^{Note 1}	
20	FRC A14-2 in Annex A.14	-128.8	-77	20 MHz E-UTRA signal, 25 RBs ^{Note 1}	
B	Note 1: Interfering signal is placed in one side of the F _c , while the NB-IoT PRB is placed on the other side. Both interfering signal and NB-IoT PRB are placed at the middle of the available PRB locations. The wanted NB-IoT tone is placed at the centre of this NB-IoT PRB.				

of the remaining PRB locations. The wanted NB-IoT tone is placed at the centre of this NB-IoT PRB.

Table 7.4-6 Wide Area BS in-channel selectivity for NB-IoT in-band operation with 3.75kHz channel spacing

7.5 Adjacent Channel Selectivity (ACS) and narrow-band blocking

7.5.1 Definition and applicability

Adjacent channel selectivity (ACS) is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an adjacent channel signal with a specified centre frequency offset of the interfering signal to the band edge of a victim system.

The interfering signal shall be an E-UTRA signal as specified in Annex C.

Unless otherwise stated, a BS declared to be capable of E-UTRA with NB-IoT in-band and guard band operations is only required to pass the ACS and narrow-band blocking receiver tests for E-UTRA with guard band operation; it is not required to perform the ACS and narrow-band blocking receiver tests again for E-UTRA with in-band operation.

7.5.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 7.5.

7.5.3 Test purpose

The test purpose is to verify the ability of the BS receiver filter to suppress interfering signals in the channels adjacent to the wanted channel.

7.5.4 Method of test

7.5.4.1 Initial conditions

Test environment: normal; see subclause D.2.

RF channels to be tested for single carrier: B, M and T; see subclause 4.7.

Base Station RF Bandwidth edge position to be tested for multi-carrier and/or CA: M_{RFBW} in single-band operation, see subclause 4.7.1; B_{RFBW} -T'_{RFBW} and B'_{RFBW}-T_{RFBW} in multi-band operation, see subclause 4.7.1.

1) Set-up the measurement system as shown in Annex I.2.4.

7.5.4.2 Procedure for Adjacent Channel Selectivity

For E-UTRA and E-UTRA with NB-IoT in-band or guard band operation:

1) Generate the E-UTRA wanted signal using the applicable test configuration specified in subclause 4.10 and 4.11 and adjust the input level to the base station under test to the level specified in Table 7.5-3 for E-UTRA Wide Area BS, in Table 7.5-4 for E-UTRA Local Area BS, in Table 7.5-5 for E-UTRA Home BS and in Table 7.5-6 for E-UTRA Medium Range BS.

For a BS declared to be capable of NB-IoT in-band or guard band operation, generate the NB-IoT wanted signal using the applicable test configuration specified in subclause 4.10 and 4.11 and adjust the input level to the base station under test to the level specified in Table 7.5-3a for NB-IoT in-band operation Wide Area BS and Table 7.5-3b for NB-IoT in guard band operation Wide Area BS.

- 2) Set-up the interfering signal at the adjacent channel frequency and adjust the interfering signal level at the base station input to the level defined in Table 7.5-3 for E-UTRA Wide Area BS, in Table 7.5-4 for E-UTRA Local Area BS, in Table 7.5-5 for E-UTRA Home BS, in Table 7.5-6 for E-UTRA Medium Range BS. in Table 7.5-3a for NB-IoT in-band operation Wide Area BS and Table 7.5-3b for NB-IoT in guard band operation Wide Area BS
- 3) Measure the E-UTRA throughput according to Annex E, for multi-carrier and/or CA operation the throughput shall be measured for relevant carriers specified by the test configuration specified in subclause 4.10 and 4.11.

For a BS declared to be capable of NB-IoT in-band or guard band operation, measure the NB-IoT throughput according to Annex E, for multi-carrier the throughput shall be measured for relevant carriers specified by the test configuration specified in subclause 4.10 and 4.11.

4) Repeat the test for the port(s), which was (were) terminated.

In addition, for a multi-band capable BS with separate antenna connectors, the following steps shall apply:

5) For single band tests, repeat the steps above per involved band where single band test configurations shall apply with no carrier activated in the other band.

Interfering signal shall first be applied on the same port as the wanted signal. The test shall be repeated with the interfering signal applied on the other port (if any) mapped to the same receiver as the wanted signal. Any antenna connector with no signal applied in case of single-band or multi-band test shall be terminated.

6) Repeat step 5) with the wanted signal for the other band(s) applied on the respective port(s).

For NB-IoT standalone operation:

- 1) Generate the NB-IoT wanted signal using the applicable test configuration specified in subclause 4.10 and 4.11 and adjust the input level to the base station under test to the level specified in Table 7.5-3c for NB-IoT standalone Wide Area BS.
- 2) Set-up the interfering signal at the adjacent channel frequency and adjust the interfering signal level at the base station input to the level defined in Table 7.5-3c for NB-IoT standalone Wide Area BS.
- 3) Measure NB-IoT throughput according to Annex E.
- 4) Repeat the test for the port(s), which was (were) terminated.

7.5.4.3 Procedure for narrow-band blocking

For E-UTRA and E-UTRA with NB-IoT in-band or guard band BS:

1) For FDD BS declared to be capable of single carrier operation only, start BS transmission according to E-TM 1.1 at manufacturer's declared rated output power.

For a FDD BS declared to be capable of multi-carrier and/or CA operation, set the BS to transmit according to E-TM 1.1 on all carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For BS declared to be capable of NB-IoT in-band or guard band operation single carrier only, start BS transmission according to N-TM at manufacturer's declared rated output power.

For a BS declared to be capable of NB-IoT multi-carrier, set the BS to transmit according to N-TM on all carriers configured using the applicable test configuration and corresponding power setting specified in subclause 4.10 and 4.11. 2) Generate the E-UTRA wanted signal using the applicable test configuration specified in subclause 4.10 and 4.11 and adjust the input level to the base station under test to the level specified in Table 7.5-1.

For a BS declared to be capable of NB-IoT in-band or guard band operation, generate the NB-IoT wanted signal using the applicable test configuration specified in subclause 4.10 and 4.11 and adjust the input level to the base station under test to the level specified in Table 7.5-1a for NB-IoT in-band operation and Table 7.5-1b for NB-IoT guard band operation.

- 3) Adjust the interfering signal level at the base station input to the level defined in Table 7.5-1 for E-UTRA, in Table 7.5-1a for NB-IoT in-band operation and Table 7.5-1b for NB-IoT guard band operation. Set-up and sweep the interfering RB centre frequency offset to the channel edge of the wanted signal according to Table 7.5-2.
- 4) Measure the E-UTRA throughput according to Annex E, for multi-carrier and/or CA operation the throughput shall be measured for relevant carriers specified by the test configuration specified in subclause 4.10 and 4.11.

For a BS declared to be capable of NB-IoT in-band or guard band operation, measure the NB-IoT throughput according to Annex E, for multi-carrier the throughput shall be measured for relevant carriers specified by the test configuration specified in subclause 4.10 and 4.11.

5) Repeat the test for the port(s), which was (were) terminated.

In addition, for a multi-band capable BS with separate antenna connectors, the following steps shall apply:

- 6) For single band tests, repeat the steps above per involved band where single band test configurations and test models shall apply with no carrier activated in the other band.
- 7) Interfering signal shall first be applied on the same port as the wanted signal. The test shall be repeated with the interfering signal applied on the other port (if any) mapped to the same receiver as the wanted signal. Any antenna connector with no signal applied in case of single-band or multi-band test shall be terminated.
- 8) Repeat step 7) with the wanted signal for the other band(s) applied on the respective port(s).

For NB-IoT standalone BS:

 For BS declared to be capable of NB-IoT standalone single carrier only, start BS transmission according to N-TM at manufacturer's declared rated output power.

For a BS declared to be capable of NB-IoT multi-carrier, set the BS to transmit according to N-TM on all carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

- 2) Generate the NB-IoT wanted signal using the applicable test configuration specified in subclause 4.10 and 4.11 and adjust the input level to the base station under test to the level specified in Table 7.5-1c.
- 3) Adjust the interfering signal level at the base station input to the level defined in Table 7.5-1c. Set-up and sweep the interfering RB centre frequency offset to the channel edge of the wanted signal according to Table 7.5-2a.
- 4) Measure the NB-IoT throughput according to Annex E, for multi-carrier the throughput shall be measured for relevant carriers specified by the test configuration specified in subclause 4.10 and 4.11.
- 5) Repeat the test for the port(s), which was (were) terminated.

For E-UTRA and NB-IoT standalone BS:

- 1) Set the BS to transmit according to E-TM 1.1 on all E-UTRA carriers and according to N-TM on all NB-IoT carriers configured using the applicable test configuration and corresponding power setting specified in subclause 4.10 and 4.11.
- 2) Generate the E-UTRA wanted signal using the applicable test configuration specified in subclause 4.10 and 4.11 and adjust the input level to the base station under test to the level specified in Table 7.5-1.

Generate the NB-IoT wanted signal using the applicable test configuration specified in subclause 4.10 and 4.11 and adjust the input level to the base station under test to the level specified in Table 7.5-1c.

3) a) On the side where E-UTRA signal is positioned:

Adjust the interfering signal level at the base station input to the level defined in Table 7.5-1 for E-UTRA. Set-up and sweep the interfering RB centre frequency offset to the channel edge of the wanted signal according to Table 7.5-2.

b) On the side where NB-IoT signal is positioned:

Adjust the interfering signal level at the base station input to the level defined in Table 7.5-1c. Set-up and sweep the interfering RB centre frequency offset to the channel edge of the wanted signal according to Table 7.5-2a.

- 4) Measure the E-UTRA throughput and the NB-IoT throughput according to Annex E, for multi-carrier the throughput shall be measured for relevant carriers specified by the test configuration specified in subclause 4.10 and 4.11.
- 5) Repeat the test for the port(s), which was (were) terminated.

7.5.5 Test Requirements

For each measured E-UTRA carrier, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel.

For each measured NB-IoT carrier, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel.

For E-UTRA Wide Area BS, the wanted and the interfering signal coupled to the BS antenna input are specified in Table 7.5-1 and 7.5-2 for narrowband blocking and 7.5-3 for ACS. The reference measurement channel for the wanted signal is specified in Table 7.2-1 for each channel bandwidth and further specified in Annex A.

For E-UTRA Medium Range BS, the wanted and the interfering signal coupled to the BS antenna input are specified in Tables 7.5-1 and 7.5-2 for narrowband blocking and in Table 7.5-6 for ACS. The reference measurement channel for the wanted signal is specified in Table 7.2-4 for each channel bandwidth and further specified in Annex A.

For E-UTRA Local Area BS, the wanted and the interfering signal coupled to the BS antenna input are specified in Tables 7.5-1 and 7.5-2 for narrowband blocking and 7.5-4 for ACS. The reference measurement channel for the wanted signal is specified in Table 7.2-2 for each channel bandwidth and further specified in Annex A.

For E-UTRA Home BS, the wanted and the interfering signal coupled to the BS antenna input are specified in Table 7.5-1 and 7.5-2 for narrowband blocking and 7.5-5 for ACS. The reference measurement channel for the wanted signal is specified in Table 7.2-3 for each channel bandwidth and further specified in Annex A.

For E-UTRA Wide Area BS declared to be capable of NB-IoT in-band, the E-UTRA wanted, the NB-IoT wanted and the interfering signal coupled to the BS antenna input are specified in Table 7.5-1, 7.5-1a and 7.5-2 for narrowband blocking and 7.5-3 and 7.5-3a for ACS. The reference measurement channel for the E-UTRA wanted signal is specified in Table 7.2-1 for each channel bandwidth and further specified in Annex A. The reference measurement channel for the NB-IoT wanted signal is specified in Table 7.2-5 for each sub-carrier spacing and further specified in Annex A.

For E-UTRA Wide Area BS declared to be capable of NB-IoT guard band, the E-UTRA wanted, the NB-IoT wanted and the interfering signal coupled to the BS antenna input are specified in Table 7.5-1, 7.5-1b and 7.5-2 for narrowband blocking and 7.5-3 and 7.5-3b for ACS. The reference measurement channel for the E-UTRA wanted signal is specified in Table 7.2-1 for each channel bandwidth and further specified in Annex A. The reference measurement channel for the NB-IoT wanted signal is specified in Table 7.2-5 for each sub-carrier spacing and further specified in Annex A.

For NB-IoT standalone Wide Area BS, the NB-IoT wanted and the interfering signal coupled to the BS antenna input are specified in Table 7.5-1c and 7.5-2a for narrowband blocking and 7.5-3c for ACS. The reference measurement channel for the NB-IoT wanted signal is specified in Table 7.2-5 for each sub-carrier spacing and further specified in Annex A.

The ACS and narrowband blocking requirement is always applicable outside the Base Station RF Bandwidth or Maximum Radio Bandwidth. The interfering signal offset is defined relative to the Base station RF Bandwidth edges or Maximum Radio Bandwidth edges.

For a BS operating in non-contiguous spectrum within any operating band, the ACS requirement applies in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as the E-UTRA interfering signal in Tables 7.5-3, 7.5-4 and 7.5-6. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a BS capable of multi-band operation, the ACS requirement applies in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as the E-UTRA interfering signal in Tables 7.5-3, 7.5-4 and 7.5-6. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

For a BS operating in non-contiguous spectrum within any operating band, the narrowband blocking requirement applies in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as the channel bandwidth of the E-UTRA interfering signal in Table 7.5-2. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a BS capable of multi-band operation, the narrowband blocking requirement applies in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as the E-UTRA interfering signal in Table 7.5-2. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Type of interfering signal			
Wide Area BS	PREFSENS + 6dB*	-49	See Table 7.5-2			
Medium Range BS	PREFSENS + 6dB*	-44	See Table 7.5-2			
Local Area BS	P _{REFSENS} + 6dB*	-41	See Table 7.5-2			
Home BS	P _{REFSENS} + 14dB*	-33	See Table 7.5-2			

Table 7.5-1: Narrowband blocking requirement

Table 7.5-1a: Narrowband blocking requirement for NB-IoT in-band operation BS

	E-UTRA channel BW of the lowest/highest carrier received [MHz]	NB-IoT Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Type of interfering signal	
	3	PREFSENS + 11 dB Note 1	-49	See Table 7.5.2	
	5	PREFSENS + 8 dB Note 1	-49	See Table 7.5.2	
Wide Area BS	10	PREFSENS + 6 dB Note 1	-49	See Table 7.5.2	
	15	PREFSENS + 6 dB Note 1	-49	See Table 7.5.2	
	20	PREFSENS + 6 dB Note 1	-49	See Table 7.5.2	
Note 1: PREFSENS depends on the sub-carrier spacing as specified in TS 36.104 [2] subclause 7.2.1					

Table 7.5-1b: Narrowband blocking requirement for NB-IoT guard band operation BS

	E-UTRA channel BW of the lowest/highest carrier received [MHz]		Interfering signal mean power [dBm]	Type of interfering signal
	5	PREFSENS + 11 dB Note 2	-49	See Table 7.5.2
Wide Area BS	10	PREFSENS + 6 dB Note 2 -49 PREFSENS + 6 dB Note 2 -49		See Table 7.5.2
WIDE Alea DS	15			See Table 7.5.2
	20	PREFSENS + 6 dB Note 2 -49		See Table 7.5.2
Note 1: The mentioned desens values consider only one NB-IoT PRB in the guard band, which is placed adjacent to the E-UTRA PRB edge as close as possible (i.e., away from edge of channel bandwidth).				
Note 2: PRE 7.2.1	-	ne sub-carrier spacing as	specified in TS 36	5.104 [2] subclause

	NB-IoT channel bandwidth of the lowest/highest carrier received [kHz]	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Type of interfering signal
Wide Area BS	200	PREFSENS + 12 dB Note 1	-49	See Table 7.5.2a
Note 1: P _{REFS} 7.2.1.	ENS depends on the sub-ca	rrier spacing as specified	in TS 36.104 [2] s	subclause

Toble 7.5.4 or Nerrowhend blocking	n requirement for ND IsT standalans
Table 7.5-TC: Narrowband blocking	g requirement for NB-IoT standalone

Table 7.5-2: Interfering signal for Narrowband blocking requirement for E-UTRA BS

E-UTRA channel BW of the lowest/highest carrier received [MHz]	Interfering RB centre frequency offset to the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap [kHz]	Type of interfering signal	
1.4	±(252.5+m*180), m=0, 1, 2, 3, 4, 5	1.4 MHz E-UTRA signal, 1 RB*	
3	±(247.5+m*180), m=0, 1, 2, 3, 4, 7, 10, 13	3 MHz E-UTRA signal, 1 RB*	
5	±(342.5+m*180), m=0, 1, 2, 3, 4, 9, 14, 19, 24	5 MHz E-UTRA signal, 1 RB*	
10	±(347.5+m*180), m=0, 1, 2, 3, 4, 9, 14, 19, 24	5 MHz E-UTRA signal, 1 RB*	
15	±(352.5+m*180), m=0, 1, 2, 3, 4, 9, 14, 19, 24	5 MHz E-UTRA signal, 1 RB*	
20	±(342.5+m*180), m=0, 1, 2, 3, 4, 9, 14, 19, 24		
Note*: Interfering signal consisting of one resource block is positioned at the stated offset, the channel bandwidth of the interfering signal is located adjacently to the lower/upper Ba Station RF Bandwidth edge.			

Table 7.5-2a: Interfering signal for Narrowband blocking requirement for NB-IoT standalone operationBS

NB-IoT channel bandwidth of the lowest/highest carrier received [kHz]	Interfering RB centre frequency offset to the lower/upper Base Station RF Bandwdith edge or sub-block edge inside a sub- block gap [kHz]	Type of interfering signal	
200	±(240 +m*180), m=0, 1, 2, 3, 4, 9, 14	3 MHz E-UTRA signal, 1 RB Note 1	
Note 1: Interfering signal consisting of one resource block is positioned at the stated offset, the channel bandwidth of the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge.			

E-UTRA channel bandwidth of the lowest/highest carrier received [MHz]	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap [MHz]	Type of interfering signal
1.4	P _{REFSENS} + 11dB*	-52	±0.7025	1.4MHz E-UTRA signal
3	PREFSENS + 8dB*	-52	±1.5075	3MHz E-UTRA signal
5	P _{REFSENS} + 6dB*	-52	±2.5025	5MHz E-UTRA signal
10	PREFSENS + 6dB*	-52	±2.5075	5MHz E-UTRA signal
15	PREFSENS + 6dB*	-52	±2.5125	5MHz E-UTRA signal
20	PREFSENS + 6dB*	-52	±2.5025	5MHz E-UTRA signal
Note*: PREFSE	ins depends on the channel	bandwidth as specified	d in TS 36.104 [2] sub	oclause 7.2.1.

Table 7.5-3: Adjacent channel selectivity for E-UTRA Wide Area BS

Table 7.5-3a: Adjacent channel selectivity for NB-IoT in-band operation Wide Area BS

E-UTRA **NB-IoT** wanted Interfering Interfering signal centre Type of interfering channel signal mean power signal mean frequency offset from signal bandwidth of the [dBm] power the lower/upper Base lowesthighest [dBm] Station RF Bandwidth carrier received edge or sub-block edge inside a sub-block gap [MHz] [MHz] PREFSENS + 8dB Note 1 3 -52 ±1.5075 3MHz E-UTRA signal PREFSENS + 6dB Note 1 5 -52 ±2.5025 5MHz E-UTRA signal PREFSENS + 6dB Note 1 10 -52 ±2.5075 5MHz E-UTRA signal PREFSENS + 6dB Note 1 15 -52 ±2.5125 5MHz E-UTRA signal PREFSENS + 6dB Note 1 20 -52 5MHz E-UTRA signal ±2.5025

PREFSENS depends on the sub-carrier spacing as specified in TS 36.104 [2] subclause 7.2.1. Note 1:

Table 7.5-3b: Adjacent channel selectivity NB-IoT guard band operation Wide Area BS

E-UTRA channel bandwidth of the lowesthighest carrier received [MHz]	NB-loT wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap [MHz]	Type of interfering signal
5	PREFSENS + 10 dB Note 1	-52	±2.5025	5MHz E-UTRA signal
10	PREFSENS + 8 dB Note 1	-52	±2.5075	5MHz E-UTRA signal
15	PREFSENS + 6 dB Note 1	-52	±2.5125	5MHz E-UTRA signal
20	PREFSENS + 6 dB Note 1	-52	±2.5025	5MHz E-UTRA signal
Note 1: PREFSENS	depends on the sub-carri	er spacing as sp	pecified in TS 36.104 [2] subcla	ause 7.2.1.

Table 7.5-3c: Adjacent channel selectivity for NB-IoT standalone Wide Area BS

NB-IoT channel bandwidth of the lowest/highest carrier received [kHz]	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Interfering signal centre frequency offset to the lower/upper Base Station RF Bandwidth edge or sub- block edge inside a sub- block gap [kHz]	Type of interfering signal
200	PREFSENS + 19.5dB Note 1	-52	±100	180 kHz NB-IoT signal
Note 1: PREFSENS de	pends on the sub-ca	rrier spacing as	specified in TS 36.104 [2] subclau	use 7.2.1.

E-UTRA channel bandwidth of the lowest/highest carrier received [MHz]	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Interfering signal centre frequency offset from the lowerupper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap [MHz]	Type of interfering signal
1.4	PREFSENS + 11dB*	-44	±0.7025	1.4MHz E-UTRA signal
3	PREFSENS + 8dB*	-44	±1.5075	3MHz E-UTRA signal
5	PREFSENS + 6dB*	-44	±2.5025	5MHz E-UTRA signal
10	PREFSENS + 6dB*	-44	±2.5075	5MHz E-UTRA signal
15	15 PREFSENS + 6dB*		-44 ±2.5125 5MHz E	
20	PREFSENS + 6dB*	-44	±2.5025	5MHz E-UTRA signal

Table 7.5-4: Adjacent channel selectivity for E-UTRA Local Area BS

Table 7.5-5: Adjacent channel selectivity for E-UTRA Home BS

E-UTRA channel bandwidth [MHz]	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Interfering signal centre frequency offset from the channel edge of the wanted signal [MHz]	Type of interfering signal
1.4	P _{REFSENS} + 27dB*	-28	0.7025	1.4MHz E-UTRA signal
3	PREFSENS + 24dB*	-28	1.5075	3MHz E-UTRA signal
5	PREFSENS + 22dB*	-28	2.5025	5MHz E-UTRA signal
10	PREFSENS + 22dB*	-28	2.5075	5MHz E-UTRA signal
15	PREFSENS + 22dB*	-28	2.5125	5MHz E-UTRA signal
20	PREFSENS + 22dB*	-28	2.5025	5MHz E-UTRA signal
Note*: Pr	REFSENS depends on the chan	nel bandwidth as specifi	ed in TS 36.104 [2] sub	clause 7.2.1.

Table 7.5-6: Adjacent channel selectivity for E-UTRA Medium Range BS

E-UTRA channel bandwidth of the lowest/highest carrier received [MHz]	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap [MHz]	Type of interfering signal
1.4	P _{REFSENS} + 11dB*	-47	±0.7025	1.4MHz E-UTRA signal
3	PREFSENS + 8dB*	-47	±1.5075	3MHz E-UTRA signal
5	P _{REFSENS} + 6dB*	-47	±2.5025	5MHz E-UTRA signal
10	PREFSENS + 6dB*	-47	±2.5075	5MHz E-UTRA signal
15	PREFSENS + 6dB*	-47	±2.5125	5MHz E-UTRA signal
20	PREFSENS + 6dB*	-47	±2.5025	5MHz E-UTRA signal
Note*: PREFSE	ins depends on the channel	bandwidth as specified	d in TS 36.104 [2] subcl	ause 7.2.1.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The relationship between Minimum Requirements and Test Requirements is defined in subclause 4.1 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

7.6 Blocking

7.6.1 Definition and applicability

The blocking characteristics is a measure of the receiver ability to receive a wanted signal at its assigned channel in the presence of an unwanted interferer, which are either a 1.4MHz, 3MHz or 5MHz E-UTRA signal for in-band blocking or a CW signal for out-of-band blocking. The interfering E-UTRA signal shall be as specified in Annex C.

The blocking performance requirement applies as specified in the Tables 7.6-1, 7.6-1a, 7.6-1b, 7.6-1c, 7.6-1d, 7.6-1e, 7.6-2 and 7.6-2a in clause 7.6.5.

Unless otherwise stated, a BS declared to be capable of E-UTRA with NB-IoT in-band and guard band operations is only required to pass the blocking receiver tests for E-UTRA with guard band operation; it is not required to perform the blocking receiver tests again for E-UTRA with in-band operation.

7.6.2 Minimum Requirements

The minimum requirement is in TS 36.104 [2] subclause 7.6.1.

7.6.3 Test purpose

The test stresses the ability of the BS receiver to withstand high-level interference from unwanted signals at specified frequency offsets without undue degradation of its sensitivity.

7.6.4 Method of test

7.6.4.1 Initial conditions

Test environment: normal; see subclause D.2.

RF channels to be tested for single carrier: M see subclause 4.7. The BS shall be configured to operate as close to the centre of the operating band (see Table 5.5-1) as possible.

Base Station RF Bandwidth positions to be tested for multi-carrier and/or CA: M_{RFBW} in single-band operation, see subclause 4.7.1; B_{RFBW} _T'_{RFBW} and B'_{RFBW}_T_{RFBW} in multi-band operation, see subclause 4.7.1.

In addition, in multi-band operation:

- For B_{RFBW}_T'_{RFBW}, out-of-band blocking testing above the highest operating band may be omitted
- For B'_{RFBW}_T_{RFBW}, out-of-band blocking testing below the lowest operating band may be omitted

Channel bandwidths to be tested:

- a) In the interferer frequency range (F_{UL_low} -20) MHz to (F_{UL_high} +20) MHz the requirement shall be tested with the lowest and the highest bandwidth supported by the BS.
- b) In the interferer frequency ranges 1 MHz to $(F_{UL_low}-20)$ MHz and $(F_{UL_high}+20)$ MHz to 12750 MHz the requirement shall be tested only with the lowest bandwidth supported by the BS.
- 1) Connect the signal generator for the wanted signal and the signal generator for the interfering signal to the antenna connector of one Rx port as shown in Annex I.2.5.
- 2) Terminate any other Rx port(s) not under test.
- 3) Generate the wanted signal according to reference measurement channel in annex A.1 to the BS under test. The level of the wanted signal measured at the BS antenna connector shall be set to the level specified in subclause 7.6.5.

7.6.4.2 Procedure

For E-UTRA and E-UTRA with NB-IoT in-band or guard band BS:

1) For FDD BS declared to be capable of single carrier operation only, start BS transmission according to E-TM 1.1 at manufacturer's declared rated output power.

For a FDD BS declared to be capable of multi-carrier and/or CA operation, set the BS to transmit according to E-TM 1.1 on all carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11. For BS declared to be capable of NB-IoT in-band or guard band operation single carrier operation only, start BS transmission according to E-TM 1.1 and N-TM at manufacturer's declared rated output power.

For a BS declared to be capable of NB-IoT in-band or guard band operation multi-carrier, set the BS to transmit according to E-TM 1.1 on all E-UTRA carriers and to N-TM on all NB-IoT carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

The transmitter may be turned off for the out-of-band blocker tests when the frequency of the blocker is such that no IM2 or IM3 products fall inside the bandwidth of the wanted signal.

- 2) Adjust the signal generators to the type of interfering signals, levels and the frequency offsets as specified in Tables 7.6-1, 7.6-2 and 7.6-3 for E-UTRA Wide Area BS, in Tables 7.6-1a, 7.6-2 and 7.6-4 for E-UTRA Local Area BS, in Table 7.6-1b and 7.6-2 for E-UTRA Home BS, in Table 7.6-1c, 7.6.2 and 7.6-5 for E-UTRA Medium Range BS, in Tables 7.6-1e, 7.6-2b and 7.6-3 for NB-IoT in-band/guard band operation BS. The E-UTRA interfering signal shall be swept with a step size of 1 MHz starting from the minimum offset to the channel edges of the wanted signal as specified in Table 7.6-1 and 7.6-3 for E-UTRA Wide Area BS, in Table 7.6-1 and 7.6-4 for E-UTRA Local Area BS, in Table 7.6-1 and 7.6-3 for E-UTRA Wide Area BS, in Table 7.6-1 and 7.6-4 for E-UTRA Local Area BS, in Table 7.6-1b for E-UTRA Home BS, in Table 7.6-1c and 7.6-5 for E-UTRA Medium Range and in Table 7.6-1e and 7.6-3 for NB-IoT in-band/guard band operation BS.
- 3) Measure the E-UTRA throughput of the wanted signal at the BS receiver according to Annex E, for multi-carrier and/or CA operation the throughput shall be measured for relevant carriers specified by the test configuration specified in subclause 4.10 and 4.11.

For BS declared to be capable of NB-IoT in-band or guard band operation, measure the NB-IoT throughput of the wanted signal at the BS receiver according to Annex E, for multi-carrier the throughput shall be measured for relevant carriers specified by the test configuration specified in subclause 4.10 and 4.11.

4) Interchange the connections of the BS Rx ports and repeat the measurements according to steps (1) to (3).

In addition, for a multi-band capable BS with separate antenna connectors, the following steps shall apply:

5) For single band tests, repeat the steps above per involved band where single band test configurations and test models shall apply with no carrier activated in the other band.

Interfering signal shall first be applied on the same port as the wanted signal. The test shall be repeated with the interfering signal applied on the other port (if any) mapped to the same receiver as the wanted signal. Any antenna connector with no signal applied in case of single-band or multi-band test shall be terminated.

6) Repeat step 5) with the wanted signal for the other band(s) applied on the respective port(s).

For NB-IoT standalone BS:

1) For BS declared to be capable of NB-IoT standalone single carrier only, start BS transmission according to N-TM at manufacturer's declared rated output power.

For a BS declared to be capable of NB-IoT multi-carrier, set the BS to transmit according to N-TM on all carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

The transmitter may be turned off for the out-of-band blocker tests when the frequency of the blocker is such that no IM2 or IM3 products fall inside the bandwidth of the wanted signal.

2) Adjust the signal generators to the type of interfering signals, levels and the frequency offsets as specified in Tables 7.6-1d, 7.6-2a and 7.6-3. The E-UTRA interfering signal shall be swept with a step size of 1 MHz starting from the minimum offset to the channel edges of the wanted signal as specified in Table 7.6-2a. The CW interfering signal shall be swept with a step size of 1 MHz within the range specified in Table 7.6-1d and 7.6-3.

- 3) Measure the NB-IoT throughput of the wanted signal at the BS receiver according to Annex E, for multi-carrier the throughput shall be measured for relevant carriers specified by the test configuration specified in subclause 4.10 and 4.11.
- 4) Interchange the connections of the BS Rx ports and repeat the measurements according to steps (1) to (3).

For E-UTRA and NB-IoT standalone BS:

1) Set the BS to transmit according to E-TM 1.1 on all E-UTRA carriers and according to N-TM on all NB-IoT carriers configured using the applicable test configuration and corresponding power setting specified in subclause 4.10 and 4.11.

The transmitter may be turned off for the out-of-band blocker tests when the frequency of the blocker is such that no IM2 or IM3 products fall inside the bandwidth of the wanted signal.

2) a) On the side where E-UTRA signal is positioned:

Adjust the signal generators to the type of interfering signals, levels and the frequency offsets as specified in Tables 7.6-1, 7.6-2 and 7.6-3. The E-UTRA interfering signal shall be swept with a step size of 1 MHz starting from the minimum offset to the channel edges of the wanted signal as specified in Table 7.6-2. The CW interfering signal shall be swept with a step size of 1 MHz within the range specified in Table 7.6-1 and 7.6-3.

b) On the side where NB-IoT signal is positioned:

Adjust the signal generators to the type of interfering signals, levels and the frequency offsets as specified in Tables 7.6-1d, 7.6-2a and 7.6-3. The E-UTRA interfering signal shall be swept with a step size of 1 MHz starting from the minimum offset to the channel edges of the wanted signal as specified in Table 7.6-2a. The CW interfering signal shall be swept with a step size of 1 MHz within the range specified in Table 7.6-1d and 7.6-3

- 3) Measure the E-UTRA throughput of the E-UTRA wanted signal and the NB-IoT throughput of the NB-IoT wanted signal at the BS receiver according to Annex E, for multi-carrier operation the throughput shall be measured for relevant carriers specified by the test configuration specified in subclause 4.10 and 4.11.
- 4) Interchange the connections of the BS Rx ports and repeat the measurements according to steps (1) to (3).
- NOTE 1: For the Public Safety LTE BS in Korea from 718 to 728 MHz in band 28, adjust the input level to the base station under test to the level specified in Table G-2.2 for Wide Area BS, in Table G-2.3 for Local Area BS, in Table G-2.4 for Home BS and in Table G-2.5 for Medium Range BS in annex G.2 of [2].
- NOTE 2: For the Public Safety LTE BS in Korea from 718 to 728 MHz in band 28, adjust the interfering signal level to the base station under test to the level specified in Table G-2.2 for Wide Area BS, in Table G-2.3 for Local Area BS, in Table G-2.4 for Home BS and in Table G-2.5 for Medium Range BS in annex G.2 of [2].

7.6.5 Test Requirements

7.6.5.1 General requirement

For each measured E-UTRA carrier, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to BS antenna input using the parameters in Tables 7.6-1, 7.6-1a, 7.6-1b, 7.6-1c and 7.6-2. The reference measurement channel for the wanted signal is specified in Tables 7.2-1, 7.2-2, 7.2-3 and 7.2-4 for each channel bandwidth and further specified in Annex A.

For each measured NB-IoT carrier, the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to BS antenna input using the parameters in

Tables 7.6-1d, 7.6-1e, 7.6-2a and 7.6-2b. The reference measurement channel for the wanted signal is specified in Table 7.2-5 for each subcarrier spacing option and further specified in Annex A.

The blocking requirement is always applicable outside the Base Station RF Bandwidth or Maximum Radio Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Maximum Radio Bandwidth edges.

For a BS operating in non-contiguous spectrum within any operating band, the blocking requirement applies in addition inside any sub-block gap, in case the sub-block gap size is at least as wide as twice the interfering signal minimum offset in Table 7.6-2. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap.

For a BS capable of multi-band operation, the requirement in the in-band blocking frequency ranges applies for each supported operating band. The requirement applies in addition inside any Inter RF Bandwidth gap, in case the Inter RF Bandwidth gap size is at least as wide as twice the interfering signal minimum offset in Table 7.6-2.

For a BS capable of multi-band operation, the requirement in the out-of-band blocking frequency ranges apply for each operating band, with the exception that the in-band blocking frequency ranges of all supported operating bands according to Tables 7.6-1, 7.6-1a and 7.6-1c shall be excluded from the out-of-band blocking requirement.

For the Public Safety LTE BS in Korea from 718 to 728 MHz in band 28, the wanted and the interfering signal coupled to the BS antenna input are specified in Tables G-2.2, G-2.3, G-2.4 and G-2.5 for the band blocking requirements in

annex G.2 of [2]. The reference measurement channel for the wanted signal is A.1-3 for 10 MHz channel bandwidth and further specified in Annex A.

Operating Band	Centre Freque Sigr	ency nal [M		Interfering Signal mean power [dBm]	Wanted Signal mean power [dBm] *	Interfering signal centre frequency minimum frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap [MHz]	Type of Interfering Signal
1-7, 9-11, 13, 14, 18,	(F _{UL_low} -20)	to	$(F_{UL_high} + 20)$	-43	P _{REFSENS} +6dB**	See table 7.6-2	See table 7.6-2
19, 21-23, 24, 27, 30, 33-45, 65, 66, 68	1 (F _{UL_high} +20)	to to	(F _{UL_low} -20) 12750	-15	PREFSENS +6dB		CW carrier
8, 26, 28	(F _{UL_low} -20)	to	$(F_{UL_high} + 10)$	-43	PREFSENS +6dB**	See table 7.6-2	See table 7.6-2
	1 (F∪L_high +10)	to to	(F _{∪L_low} -20) 12750	-15	PREFSENS +6dB		CW carrier
12	(F _{UL_low} -20)	to	$(F_{UL_high} + 13)$	-43	PREFSENS +6dB**	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +13)	to to	(F _{∪L_low} -20) 12750	-15	PREFSENS +6dB		CW carrier
17	(F _{UL_low} -20)	to	$(F_{UL_high} + 18)$	-43	PREFSENS +6dB**	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +18)	to to	(F _{∪L_low} -20) 12750	-15	PREFSENS +6dB	_	CW carrier
20	(F _{UL_low} -11)	to	(F _{UL_high} +20)	-43	PREFSENS +6dB**	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +20)	to to	(F _{∪L_low} -11) 12750	-15	PREFSENS +6dB	—	CW carrier
25	(F _{UL_low} -20)	to	$(F_{UL_high} + 15)$	-43	PREFSENS +6dB**	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +15)	to	(F _{UL_low} -20) 12750	-15	P _{REFSENS} +6dB	_	CW carrier
31	(F _{UL_low} -20)	to	(F _{UL_high} +5)	-43	PREFSENS +6dB**	See table 7.6-2	See table 7.6-2
	1 (F∪∟_high +5)	to to	(F _{UL_low} -20) 12750	-15	P _{REFSENS} +6dB	_	CW carrier
Note**: Fo	REFSENS depends or a BS capable equency range o	of mu f the (Itiband operatio	n, in case of inte where the wante		not in the in-band blo and not in an adjacer	

Table 7.6-1: Blocking performance requirement for Wide Area BS for E-UTRA

NOTE: Table 7.6-1 assumes that two operating bands, where the downlink operating band (see Table 5.5-1) of one band would be within the in-band blocking region of the other band, are not deployed in the same geographical area.

Operating Band	Sig		v of Interfering MHz]	Interfering Signal mean power [dBm]	Wanted Signal mean power [dBm] *	Interfering signal centre frequency minimum frequency offset from the lower(upper) edge or sub- block edge inside a sub- block gap [MHz]	Type of Interfering Signal
1-7, 9-11, 13-14,	(F _{UL_low} -20)	to	(F _{UL_high} +20)	-35	PREFSENS +6dB**	See table 7.6-2	See table 7.6-2
18,19,21- 23, 24, 27, 30, 33-45, 65, 66, 68	1 (F _{UL_high} +20)	to to	(F _{∪L_low} -20) 12750	-15	Prefsens +6dB	_	CW carrier
8, 26, 28	(F _{UL_low} -20)	to	$(F_{UL_high} + 10)$	-35	PREFSENS +6dB**	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +10)	to to	(F _{UL_low} -20) 12750	-15	P _{REFSENS} +6dB	_	CW carrier
12	(F _{UL_low} -20)	to	(F _{UL_high} +13)	-35	PREFSENS +6dB**	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +13)	to to	(F _{UL_low} -20) 12750	-15	PREFSENS +6dB		CW carrier
17	(F _{UL_low} -20)	to	$(F_{UL_high} + 18)$	-35	PREFSENS +6dB**	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +18)	to to	(F _{UL_low} -20) 12750	-15	PREFSENS +6dB		CW carrier
20	(F _{UL_low} -11)	to	$(F_{UL_high} + 20)$	-35	P _{REFSENS} +6dB**	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +20)	to to	(F _{UL_low} -11) 12750	-15	PREFSENS +6dB		CW carrier
25	(F _{UL_low} -20)	to	$(F_{UL_high} + 15)$	-35	P _{REFSENS} +6dB**	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +15)	to	(F _{UL_low} -20) 12750	-15	PREFSENS +6dB	—	CW carrier
31	(F _{UL_low} -20)	to	$(F_{UL_high} + 5)$	-35	P _{REFSENS} +6dB**	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +5)	to to	(F _{UL_low} -20) 12750	-15	PREFSENS +6dB	_	CW carrier
(F _{UL_high} +5) to 12750 Note*: P _{REFSENS} depends on the channel bandwidth as specified in TS 36.104 [2] subclause 7.2.1. Note*: For a BS capable of multiband operation, in case of interfering signal that is not in the in-band blocking frequency range of the operating band where the wanted signal is present, and not in an adjacent or overlapping band, the wanted signal mean power is equal to P _{REFSENS} + 1.4 dB.							

Table 7.6-1a: Blocking performance requirement for Local Area BS for E-UTRA

NOTE: Table 7.6-1a assumes that two operating bands, where the downlink operating band (see Table 5.5-1) of one band would be within the in-band blocking region of the other band, are not deployed in the same geographical area.

Operating Band	Sigr		of Interfering /IHz]	Interfering Signal mean power [dBm]	Wanted Signal mean power [dBm] *	Interfering signal centre frequency minimum frequency offset from the channel edge of the wanted signal [MHz]	Type of Interfering Signal
1-7, 9-11, 13, 14,	(F _{UL_low} -20)	to	(F _{UL_high} +20)	-27	PREFSENS +14dB	See table 7.6-2	See table 7.6-2
18,19, 21- 23, 24, 27, 30, 33-44, 65, 66, 68	1 (F _{UL_high} +20)	to to	(F _{∪L_low} -20) 12750	-15	P _{REFSENS} +14dB	_	CW carrier
8, 26, 28	(F _{UL_low} -20)	to	(F _{UL_high} +10)	-27	PREFSENS +14dB	See table 7.6-2	See table 7.6-2
	1 (F _{∪L_high} +10)	to to	(F _{UL_low} -20) 12750	-15	P _{REFSENS} +14dB		CW carrier
12	(F _{UL_low} -20)	to	$(F_{UL_high} + 13)$	-27	PREFSENS +14dB	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +13)	to to	(F _{UL_low} -20) 12750	-15	P _{REFSENS} +14dB		CW carrier
17	(F _{UL_low} -20)	to	$(F_{UL_high} + 18)$	-27	PREFSENS +14dB	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +18)	to to	(F _{UL_low} -20) 12750	-15	P _{REFSENS} +14dB		CW carrier
20	(F _{UL_low} -11)	to	(F _{UL_high} +20)	-27	PREFSENS +14dB	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +20)	to to	(F _{UL_low} -11) 12750	-15	PREFSENS +14dB	_	CW carrier
25	(F _{UL_low} -20)	to	(F _{UL_high} +15)	-27	PREFSENS +14dB	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +15)	to	(F _{UL_low} -20) 12750	-15	PREFSENS +14dB	_	CW carrier
Note*: PF	REFSENS depends	on th	ne channel band	width as specifie	d in TS 36.104 [2] s	ubclause 7.2.1.	

NOTE: Table 7.6-1b assumes that two operating bands, where the downlink operating band (see Table 5.5-1) of one band would be within the in-band blocking region of the other band, are not deployed in the same geographical area.

Operating Band	Sig	nal (N	-	Interfering Signal mean power [dBm]	Wanted Signal mean power [dBm] *	Interfering signal centre frequency minimum frequency offset to the lower (higher) edge or sub-block edge inside a sub- block gap [MHz]	Type of Interfering Signal
1-7, 9-11, 13, 14,	(F _{UL_low} -20)	to	$(F_{UL_high} + 20)$	-38	P _{REFSENS} +6dB**	See table 7.6-2	See table 7.6-2
18,19, 21- 23, 24, 27, 30, 33-45, 65, 66, 68	1 (F _{UL_high} +20)	to to	(F _{∪L_low} -20) 12750	-15	Prefsens +6dB		CW carrier
8, 26, 28	(F _{UL_low} -20)	to	$(F_{UL_high} + 10)$	-38	PREFSENS +6dB**	See table 7.6-2	See table 7.6-2
	1 (F _{∪L_high} +10)	to to	(F _{∪L_low} -20) 12750	-15	PREFSENS +6dB	—	CW carrier
12	(F _{UL_low} -20)	to	$(F_{UL_high} + 13)$	-38	P _{REFSENS} +6dB**	See table 7.6-2	See table 7.6-2
	1 (F∪L_high +13)	to to	(F _{∪L_low} -20) 12750	-15	PREFSENS +6dB	_	CW carrier
17	(F _{UL_low} -20)	to	$(F_{UL_high} + 18)$	-38	P _{REFSENS} +6dB**	See table 7.6-2	See table 7.6-2
	1 (F∪L_high +18)	to to	(F _{UL_low} -20) 12750	-15	PREFSENS +6dB		CW carrier
20	(F _{UL_low} -11)	to	$(F_{UL_high} + 20)$	-38	P _{REFSENS} +6dB**	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +20)	to to	(F _{UL_low} -11) 12750	-15	PREFSENS +6dB		CW carrier
25	(F _{UL_low} -20)	to	$(F_{UL_high} + 15)$	-38	PREFSENS +6dB**	See table 7.6-2	See table 7.6-2
	1 (F∪L_high +15)	to to	(F _{UL_low} -20) 12750	-15	PREFSENS +6dB	_	CW carrier
31	(F _{UL_low} -20)	to	$(F_{UL_high} + 5)$	-38	PREFSENS +6dB**	See table 7.6-2	See table 7.6-2
	1 (F _{UL_high} +5)	to to	(F _{UL_low} -20) 12750	-15	P _{REFSENS} +6dB	_	CW carrier
Note**: Fo	REFSENS depends or a BS capable equency range c	of mu of the	ultiband operatio	n, in case of inte where the wante		not in the in-band blo and not in an adjacen	

Table 7.6-1c: Blocking performance requirement for Medium Range BS for E-UTRA

NOTE: Table 7.6-1c assumes that two operating bands, where the downlink operating band (see Table 5.5-1) of one band would be within the in-band blocking region of the other band, are not deployed in the same geographical area.

Operating Band	Sig		of Interfering /Hz]	Interfering Signal mean power [dBm]	Wanted Signal mean power [dBm]	Interfering signal centre frequency minimum frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap [MHz]	Type of Interfering Signal
1-3, 5, 13,18,19,	(F _{UL_low} -20)	to	(F _{UL_high} +20)	-43	PREFSENS +6dB Note 1	See table 7.6.2a	See table 7.6. 2a
26, 66	1 (F _{UL_high} +20)	to to	(F _{UL_low} -20) 12750	-15 Note 2	PREFSENS +6dB Note 1	—	CW carrier
8, 26, 28	(F _{UL_low} -20)	to	$(F_{UL_high} + 10)$	-43	P _{REFSENS} +6dB Note 1	See table 7.6.2a	See table 7.6. 2a
	1 (F _{UL_high} +10)	to to	(F _{∪L_low} -20) 12750	-15 Note 2	PREFSENS +6dB Note 1	_	CW carrier
12	(F _{UL_low} -20)	to	$(F_{UL_high} + 13)$	-43	PREFSENS +6dB Note 1	See table 7.6. 2a	See table 7.6. 2a
	1 (F _{UL_high} +13)	to to	(F _{∪L_low} -20) 12750	-15 Note 2	PREFSENS +6dB Note 1		CW carrier
17	(F _{UL_low} -20)	to	$(F_{UL_high} + 18)$	-43	PREFSENS +6dB Note 1	See table 7.6. 2a	See table 7.6. 2a
	1 (F _{UL_high} +18)	to to	(F _{∪L_low} -20) 12750	-15 Note 2	PREFSENS +6dB Note 1		CW carrier
20	(F _{UL_low} -11)	to	(F _{UL_high} +20)	-43	PREFSENS +6dB Note 1	See table 7.6. 2a	See table 7.6. 2a
	1 (F _{UL_high} +20)	to to	(F _{UL_low} -11) 12750	-15 Note 2	PREFSENS +6dB Note 1		CW carrier
Note 2: U m th su	REFSENS is specifie p to 24 exception easured using a le blocking signa	ns are 1MH I is se J. In a	e allowed for spu Iz step size. For et to a level of -4 addition, each gro	rious response f these exceptions 0 dBm for 15 kH	s the above through z subcarrier spacing	wanted signal freque put requirement shall g and -46 dBm for 3.7 hree contiguous mea	be met when 5 kHz

NOTE: Table 7.6.1d assumes that two operating bands, where the downlink operating band (see Table 5.5-1) of one band would be within the in-band blocking region of the other band, are not deployed in the same geographical area.

Operating Band	Sig		of Interfering /IHz]	Interfering Signal mean power [dBm]	Wanted Signal mean power [dBm]	Interfering signal centre frequency minimum frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap [MHz]	Type of Interfering Signal
1-3, 5, 13,18,19,	(F _{UL_low} -20)	to	(F _{UL_high} +20)	-43	PREFSENS +6dB Note 1	See table 7.6.2b	See table 7.6.2b
26, 66	1 (F _{UL_high} +20)	to to	(F _{UL_low} -20) 12750	-15 Note 3	P _{REFSENS} +6dB Note 1		CW carrier
8, 26, 28	(F _{UL_low} -20)	to	$(F_{UL_high} + 10)$	-43	PREFSENS +6dB Note 1	See table 7.6.2b	See table 7.6.2b
	1 (F _{UL_high} +10)	to to	(F _{UL_low} -20) 12750	-15 Note 3	P _{REFSENS} +6dB Note 1		CW carrier
12	(F _{UL_low} -20)	to	$(F_{UL_high} + 13)$	-43	PREFSENS +6dB Note 1	See table 7.6.2b	See table 7.6.2b
	1 (F _{UL_high} +13)	to to	(F _{∪L_low} -20) 12750	-15 Note 3	PREFSENS +6dB Note 1		CW carrier
17	(F _{UL_low} -20)	to	$(F_{UL_high} + 18)$	-43	PREFSENS +6dB Note 1	See table 7.6.2b	See table 7.6.2b
	1 (F _{UL_high} +18)	to to	(F _{UL_low} -20) 12750	-15 Note 3	PREFSENS +6dB Note 1		CW carrier
20	(F _{UL_low} -11)	to	$(F_{UL_high} + 20)$	-43	P _{REFSENS} +6dB Note 1	See table 7.6.2b	See table 7.6.2b
	1 (F _{UL_high} +20)	to to	(F _{UL_low} -11) 12750	-15 Note 3	PREFSENS +6dB Note 1	—	CW carrier
	REFSENS depends	on th	ne channel band	width or supporte	ed subcarrier spacir	ng as specified in TS 3	36.104 [2]
fre		f the	operating band			s not in the in-band blo the wanted signal me	
Note 3: Fo fro sh fo	or NB-IoT, up to equency when m nall be met when	24 ex leasu the l arrier	cceptions are allo red using a 1MF blocking signal is spacing. In addi	Iz step size. For s set to a level of tion, each group	these exceptions the -40 dBm for 15 kHz	cies in each wanted s ne above throughput r z subcarrier spacing a not exceed three con	equirement and -46 dBm

Table 7.6.1e: Blocking performance requirement for Wide Area BS for E-UTRA with NB-IoT inband/guard band operation

NOTE: Table 7.6.1e assumes that two operating bands, where the downlink operating band (see Table 5.5-1) of one band would be within the in-band blocking region of the other band, are not deployed in the same geographical area.

E-UTRA channel BW of the lowest/highest carrier received [MHz]	Interfering signal centre frequency minimum offset to the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap [MHz]	Type of interfering signal
1.4	±2.1	1.4MHz E-UTRA signal
3	±4.5	3MHz E-UTRA signal
5	±7.5	5MHz E-UTRA signal
10	±7.5	5MHz E-UTRA signal
15	±7.5	5MHz E-UTRA signal
20	±7.5	5MHz E-UTRA signal

 Table 7.6-2: Interfering signals for blocking performance requirement

Table 7.6.2a: Interfering signals for blocking performance requirement for NB-IoT standalone operation

NB-IoT channel BW of the lowest/highest carrier received [MHz]	Interfering signal centre frequency minimum offset to the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap [MHz]	Type of interfering signal
0.2	±7.5	5MHz E-UTRA signal

Table 7.6-2b: Interfering signals for blocking performance requirement for E-UTRA with NB-IoT inband/guard band operation

E-UTRA channel BW of the lowest/highest carrier received [MHz]	Interfering signal centre frequency minimum offset to the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap [MHz]	Type of interfering signal				
3 Note 1	±4.5	3MHz E-UTRA signal				
5	±7.5	5MHz E-UTRA signal				
10	±7.5	5MHz E-UTRA signal				
15	±7.5	5MHz E-UTRA signal				
20	±7.5	5MHz E-UTRA signal				
Note 1: 3 MHz cha						

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The relationship between Minimum Requirements and Test Requirements is defined in subclause 4.1 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

7.6.5.2 Co-location with other base stations

This additional blocking requirement may be applied for the protection of E-UTRA or NB-IoT BS receivers when GSM, CMDA, UTRA or E-UTRA BS operating in a different frequency band are co-located with an E-UTRA or NB-IoT BS. The requirement is applicable to all channel bandwidths supported by the E-UTRA BS.

The requirements in this clause assume a 30 dB coupling loss between interfering transmitter and E-UTRA or NB-IoT BS receiver and are based on co-location with base stations of the same class.

For each measured E-UTRA carrier, the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to BS antenna input using the parameters in Table 7.6-3 for Wide Area BS, in Table 7.6-4 for Local Area BS and in Table 7.6-5 for Medium Range BS. The

reference measurement channel for the wanted signal is specified in Tables 7.2-1, 7.2-2 and 7.2-4 for each channel bandwidth and further specified in Annex A.

For each measured NB-IoT carrier, the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channel, with a wanted and an interfering signal coupled to BS antenna input using the parameters in Table 7.6-3 for Wide Area BS. The reference measurement channel for the wanted signal is specified in Tables 7.2-5 for each channel sub-carrier spacing option and further specified in Annex A.

Table 7.6-3: Blocking performance requirement for E-UTRA and NB-IoT Wide Area BS when co-located with BS in other frequency bands.

Co-located BS type	Centre	Interfering	Wanted Signal	Type of
	Frequency of Interfering Signal (MHz)	Signal mean power (dBm)	mean power (dBm)	Interfering Signal
Macro GSM850 or CDMA850	869 – 894	+16**	P _{REFSENS} + 6dB*	CW carrier
Macro GSM900	921 – 960	+16**	PREFSENS + 6dB*	CW carrier
Macro DCS1800	1805 – 1880	+16**	PREFSENS + 6dB*	CW carrier
Macro PCS1900	1930 – 1990	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band I or E-UTRA Band 1	2110 – 2170	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band II or E-UTRA Band 2	1930 – 1990	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band III or E-UTRA Band 3	1805 – 1880	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band IV or E-UTRA Band 4	2110 – 2155	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band V or E-UTRA Band 5	869 - 894	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band VI or E-UTRA Band 6	875 – 885	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band VII or E-UTRA Band 7	2620 – 2690	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band VIII or E-UTRA Band 8	925 – 960	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band IX or E-UTRA Band 9	1844.9 – 1879.9	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band X or E-UTRA Band 10	2110 – 2170	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band XI or E-UTRA Band 11	1475.9 –1495.9	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band XII or E-UTRA Band 12	729 - 746	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band XIIII or E-UTRA Band 13	746 - 756	+16**	P _{REFSENS} + 6dB*	CW carrier
WA UTRA FDD Band XIV or E-UTRA Band 14	758 - 768	+16**	PREFSENS + 6dB*	CW carrier
WA E-UTRA Band 17	734 - 746	+16**	PREFSENS + 6dB*	CW carrier
WA E-UTRA Band 18	860 - 875	+16**	P _{REFSENS} + 6dB*	CW carrier
WA UTRA FDD Band XIX or E-UTRA Band 19	875 - 890	+16**	P _{REFSENS} + 6dB*	CW carrier
WA UTRA FDD Band XX or E-UTRA Band 20	791 - 821	+16**	PREFSENS + 6dB*	CW carrier
WA E-UTRA Band 24	1525 – 1559	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band XXI or E-UTRA Band 21	1495.9 – 1510.9	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band XXII or E-UTRA Band 22	3510 – 3590	+16**	PREFSENS + 6dB*	CW carrier
WA E-UTRA Band 23	2180-2200	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA FDD Band XXV or E-UTRA Band 25	1930 – 1995	+16**	P _{REFSENS} + 6dB*	CW carrier
WA UTRA FDD Band XXVI or E-UTRA Band 26	859 – 894	+16**	PREFSENS + 6dB*	CW carrier
WA E-UTRA Band 27	852 - 869	+16**	PREFSENS + 6dB*	CW carrier
WA E-UTRA Band 28	758 - 803	+16**	PREFSENS + 6dB*	CW carrier
WA E-UTRA Band 29	717 – 728	+16**	P _{REFSENS} + 6dB*	CW carrier
WA E-UTRA Band 30	2350 - 2360	+16**	PREFSENS + 6dB*	CW carrier
WA E-UTRA Band 31	462.5 - 467.5	+16**	P _{REFSENS} + 6dB*	CW carrier
WA UTRA FDD Band XXXII or E-UTRA Band 32	1452-1496 (NOTE 3)	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA TDD Band a) or E-UTRA in Band 33	1900-1920	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA TDD Band a) or E-UTRA in Band 34	2010-2025	+16**	PREFSENS + 6dB*	CW carrier
WA UTRA TDD Band b) or E-UTRA in Band 35	1850-1910	+16**	PREFSENS + 6dB*	CW carrier

	A TDD Band b) or						
	n Band 36	1930-1990	+16**	PREFSENS + 6dB*	CW carrier		
WA UTRA E-UTRA E	A TDD Band c) or Band 37	1910-1930	+16**	Prefsens + 6dB*	CW carrier		
	A TDD Band d) or	2570-2620	+16**	PREFSENS + 6dB*	CW carrier		
WA UTRA E-UTRA I	A TDD Band f) or Band 39	1880-1920	+16**	P _{REFSENS} + 6dB*	CW carrier		
	A TDD Band e) or	2300-2400	+16**	PREFSENS + 6dB*	CW carrier		
	RA Band 41	2496-2690	+16**	PREFSENS + 6dB*	CW carrier		
WA E-UT	RA Band 42	3400 - 3600	+16**	P _{REFSENS} + 6dB*	CW carrier		
WA E-UT	RA Band 43	3600 - 3800	+16**	PREFSENS + 6dB*	CW carrier		
	RA Band 44	703-803	+16**	P _{REFSENS} + 6dB*	CW carrier		
	RA Band 45	1447-1467	+16**	PREFSENS + 6dB*	CW carrier		
	RA Band 65	2110 - 2200	+16**	P _{REFSENS} + 6dB*	CW carrier		
	RA Band 66	2110 – 2200	+16**	PREFSENS + 6dB*	CW carrier		
	RA Band 67	738-758	+16**	P _{REFSENS} + 6dB*	CW carrier		
WA E-UT	RA Band 68	753-783	+16**	PREFSENS + 6dB*	CW carrier		
Note*:			width and specif	ied in TS 36.104 [2] su	bclause		
	7.2.1.		•				
Note**:	For NB-IoT, up to	24 exceptions are all	owed for spuriou	us response frequencie	s in each		
	wanted signal freq	uency when measure	ed using a 1MHz	z step size. For these e	xceptions the		
	above throughput	requirement shall be	met when the b	locking signal is set to	a level of -40		
				'5 kHz subcarrier spaci			
	addition, each gro	up of exceptions sha	I not exceed three	ee contiguous measure	ements using		
	a 1MHz step size.						
NOTE 1:				nts do not apply when			
				c operating band or in t	he 10 MHz		
		le any of the support					
				apply when the interfe	ring signal		
		uency range 768-79					
NOTE 2:				o-site based on the req			
				t allow a single generic			
				A FDD on adjacent free			
				are certain site-enginee	ring solutions		
	that can be used. These techniques are addressed in TR 25.942 [11].						
NOTE 3:	For a BS operating in band 11 or 21, this requirement applies for interfering signal within						
	the frequency range 1475.9-1495.9 MHz.						
INUTE 4:	Co-located TDD base stations that are synchronized and using the same or adjacent operating band can receive without special co-location requirements. For unsynchronized						
				ply that are not covere			
	3GPP specification		iements may ap	piy that are not covere			
L	Joi i specification	13.					

 Table 7.6-4: Blocking performance requirement for Local Area BS when co-located with BS in other frequency bands.

Co-located BS type	Centre Frequency of Interfering Signal (MHz)	Interfering Signal mean power (dBm)	Wanted Signal mean power (dBm)	Type of Interfering Signal
Pico GSM850	869 - 894	-7	PREFSENS + 6dB*	CW carrier
Pico GSM900	921 – 960	-7	P _{REFSENS} + 6dB*	CW carrier
Pico DCS1800	1805 – 1880	-4	PREFSENS + 6dB*	CW carrier
Pico PCS1900	1930 - 1990	-4	P _{REFSENS} + 6dB*	CW carrier
LA UTRA FDD Band I or E-	1000 1000		T REFSENS T OUD	ow carrier
UTRA Band 1	2110 – 2170	-6	PREFSENS + 6dB*	CW carrier
LA UTRA FDD Band II or E-UTRA Band 2	1930 – 1990	-6	PREFSENS + 6dB*	CW carrier
LA UTRA FDD Band III or E-UTRA Band 3	1805 – 1880	-6	P _{REFSENS} + 6dB*	CW carrier
LA UTRA FDD Band IV or E-UTRA Band 4	2110 – 2155	-6	PREFSENS + 6dB*	CW carrier
LA UTRA FDD Band V or E-UTRA Band 5	869 - 894	-6	P _{REFSENS} + 6dB*	CW carrier
LA UTRA FDD Band VI or E-UTRA Band 6	875 – 885	-6	PREFSENS + 6dB*	CW carrier
LA UTRA FDD Band VII or E-UTRA Band 7	2620 – 2690	-6	P _{REFSENS} + 6dB*	CW carrier
LA UTRA FDD Band VIII or E-UTRA Band 8	925 – 960	-6	PREFSENS + 6dB*	CW carrier
LA UTRA FDD Band IX or E-UTRA Band 9	1844.9 – 1879.9	-6	PREFSENS + 6dB*	CW carrier
LA UTRA FDD Band X or E-UTRA Band 10	2110 – 2170	-6	PREFSENS + 6dB*	CW carrier
LA UTRA FDD Band XI or E-UTRA Band 11	1475.9 - 1495.9	-6	PREFSENS + 6dB*	CW carrier
LA UTRA FDD Band XII or E-UTRA Band 12	729 - 746	-6	P _{REFSENS} + 6dB*	CW carrier
LA UTRA FDD Band XIIII or E-UTRA Band 13	746 - 756	-6	PREFSENS + 6dB*	CW carrier
LA UTRA FDD Band XIV or E-UTRA Band 14	758 - 768	-6	P _{REFSENS} + 6dB*	CW carrier
LA E-UTRA Band 17	734 - 746	-6	PREFSENS + 6dB*	CW carrier
LA E-UTRA Band 18	860 - 875	-6	PREFSENS + 6dB*	CW carrier
LA UTRA FDD Band XIX				
or E-UTRA Band 19 LA UTRA FDD Band XX or	875 - 890	-6	PREFSENS + 6dB*	CW carrier
E-UTRA Band 20	791 - 821	-6	PREFSENS + 6dB*	CW carrier
LA UTRA FDD Band XXI or E-UTRA Band 21	1495.9 – 1510.9	-6	PREFSENS + 6dB*	CW carrier
LA UTRA FDD Band XXII or E-UTRA Band 22	3510 – 3590	-6	PREFSENS + 6dB*	CW carrier
LA E-UTRA Band 23	2180-2200	-6	PREFSENS + 6dB*	CW carrier
LA E-UTRA Band 24	1525 – 1559	-6	PREFSENS + 6dB*	CW carrier
LA UTRA FDD Band XXV or E-UTRA Band 25	1930 – 1995	-6	PREFSENS + 6dB*	CW carrier
LA UTRA FDD Band XXVI or E-UTRA Band 26	859 – 894	-6	P _{REFSENS} + 6dB*	CW carrier
LA E-UTRA Band 27	852 - 869	-6	PREFSENS + 6dB*	CW carrier
LA E-UTRA Band 28	758 - 803	-6	PREFSENS + 6dB*	CW carrier
LA E-UTRA Band 29	717 – 728	-6	PREFSENS + 6dB*	CW carrier
LA E-UTRA Band 30	2350 - 2360	-6	PREFSENS + 6dB*	CW carrier
LA E-UTRA Band 31	462.5 - 467.5	-6	PREFSENS + 6dB*	CW carrier
LA UTRA FDD Band XXXII	1452-1496			
or E-UTRA Band 32	(NOTE 3)	-6	P _{REFSENS} + 6dB*	CW carrier
LA UTRA TDD Band a) or E-UTRA Band 33	1900-1920	-6	PREFSENS + 6dB*	CW carrier
LA UTRA TDD Band a) or E-UTRA Band 34	2010-2025	-6	PREFSENS + 6dB*	CW carrier
LA UTRA TDD Band b) or E-UTRA Band 35	1850-1910	-6	PREFSENS + 6dB*	CW carrier
LA UTRA TDD Band b) or E-UTRA Band 36	1930-1990	-6	PREFSENS + 6dB*	CW carrier

	TOD D				1		
E-UTRA	TDD Band c) or	1910-1930	-6	PREFSENS + 6dB*	CW carrier		
	TDD in Band d)		-6	PREFSENS + 6dB*	CW carrier		
	A Band 38	2570-2620					
	TDD in Band f)						
	A Band 39	1880-1920	-6	PREFSENS + 6dB*	CW carrier		
LA UTRA TDD in Band e)		0000 0400	0		CW carrier		
or E-UTR	A Band 40	2300-2400	-6	P _{REFSENS} + 6dB*	Cw carrier		
LA E-UTF	RA Band 41	2496-2690	-6	PREFSENS + 6dB*	CW carrier		
LA E-UTF	RA Band 42	3400 - 3600	-6	PREFSENS + 6dB*	CW carrier		
LA E-UTF	RA Band 43	3600 - 3800	-6	PREFSENS + 6dB*	CW carrier		
LA E-UTF	RA Band 44	703-803	-6	PREFSENS + 6dB*	CW carrier		
LA E-UTF	RA Band 45	1447-1467	-6	PREFSENS + 6dB*	CW carrier		
LA E-UTF	RA Band 46	5150-5925	-6	PREFSENS + 6dB*	CW carrier		
LA E-UTF	RA Band 65	2110 - 2200	-6	PREFSENS + 6dB*	CW carrier		
LA E-UTF	RA Band 66	2110 - 2200	-6	PREFSENS + 6dB*	CW carrier		
LA E-UTF	RA Band 67	738-758	-6	P _{REFSENS} + 6dB*	CW carrier		
LA E-UTF	RA Band 68	753-783	-6	PREFSENS + 6dB*	CW carrier		
Note*: PREFSENS is related to the channel bandwidth and specified in TS 36.104 [2] subclause							
7.2.1.							
NOTE 1: Except for a BS operating in Band 13, these requirements do not apply when the							
	interfering signal falls within any of the supported uplink operating band or in the 10 MHz						
	immediately outside any of the supported uplink operating band.						
	For a BS operating in band 13 the requirements do not apply when the interfering signal						
	falls within the frequency range 768-797 MHz.						
NOTE 2:							
	above. The current state-of-the-art technology does not allow a single generic solution for						
	co-location of UTRA TDD or E-UTRA TDD with E-UTRA FDD on adjacent frequencies for 30dB BS-BS minimum coupling loss. However, there are certain site-engineering solutions that can be used. These techniques are addressed in TR 25.942 [11].						
NOTE 3:							
NOTE 4:	the frequency range 1475.9-1495.9 MHz.						
NOTE 4.	NOTE 4: Co-located TDD base stations that are synchronized and using the same or adjacent operating band can receive without special co-location requirements. For unsynchronized						
	base stations, special co-location requirements may apply that are not covered by the						
	3GPP specifications.						
L							

 Table 7.6-5: Blocking performance requirement for E-UTRA Medium Range BS when co-located with BS in other frequency bands.

Co-located BS type	Centre Frequency of Interfering Signal (MHz)	Interfering Signal mean power (dBm)	Wanted Signal mean power (dBm)	Type of Interfering Signal	
Micro/MR GSM850	869 - 894	+8	PREFSENS + 6dB*	CW carrier	
Micro/MR GSM900	921 – 960	+8	P _{REFSENS} + 6dB*	CW carrier	
Micro/MR DCS1800	1805 – 1880	+8	PREFSENS + 6dB*	CW carrier	
Micro/MR PCS1900	1930 - 1990	+8	P _{REFSENS} + 6dB*	CW carrier	
MR UTRA FDD Band I or	1000 1000	10	T REFSENS T OUD	ow carrier	
E-UTRA Band 1	2110 – 2170	+8	PREFSENS + 6dB*	CW carrier	
MR UTRA FDD Band II or E-UTRA Band 2	1930 – 1990	+8	PREFSENS + 6dB*	CW carrier	
MR UTRA FDD Band III or E-UTRA Band 3	1805 – 1880	+8	P _{REFSENS} + 6dB*	CW carrier	
MR UTRA FDD Band IV or E-UTRA Band 4	2110 – 2155	+8	PREFSENS + 6dB*	CW carrier	
MR UTRA FDD Band V or E-UTRA Band 5	869 - 894	+8	P _{REFSENS} + 6dB*	CW carrier	
MR UTRA FDD Band VI or E-UTRA Band 6	875 – 885	+8	PREFSENS + 6dB*	CW carrier	
MR UTRA FDD Band VII or E-UTRA Band 7	2620 – 2690	+8	P _{REFSENS} + 6dB*	CW carrier	
MR UTRA FDD Band VIII or E-UTRA Band 8	925 – 960	+8	PREFSENS + 6dB*	CW carrier	
MR UTRA FDD Band IX or E-UTRA Band 9	1844.9 – 1879.9	+8	PREFSENS + 6dB*	CW carrier	
MR UTRA FDD Band X or E-UTRA Band 10	2110 – 2170	+8	PREFSENS + 6dB*	CW carrier	
MR UTRA FDD Band XI or E-UTRA Band 11	1475.9 –1495.9	+8	PREFSENS + 6dB*	CW carrier	
MR UTRA FDD Band XII or E-UTRA Band 12	729 - 746	+8	P _{REFSENS} + 6dB*	CW carrier	
MR UTRA FDD Band XIIII or E-UTRA Band 13	746 - 756	+8	PREFSENS + 6dB*	CW carrier	
MR UTRA FDD Band XIV or E-UTRA Band 14	758 - 768	+8	P _{REFSENS} + 6dB*	CW carrier	
MR E-UTRA Band 17	734 - 746	+8	PREFSENS + 6dB*	CW carrier	
MR E-UTRA Band 18	860 - 875	+8	PREFSENS + 6dB*	CW carrier	
MR UTRA FDD Band XIX or E-UTRA Band 19	875 - 890	+8	PREFSENS + 6dB*	CW carrier	
MR UTRA FDD Band XX or E-UTRA Band 20	791 - 821	+8	PREFSENS + 6dB*	CW carrier	
MR UTRA FDD Band XXI or E-UTRA Band 21	1495.9 – 1510.9	+8	PREFSENS + 6dB*	CW carrier	
MR UTRA FDD Band XXII	3510 – 3590	+8	PREFSENS + 6dB*	CW carrier	
or E-UTRA Band 22 MR E-UTRA Band 23	2180 - 2200	10	Decosio L 6dD*	CW corrier	
		+8	PREFSENS + 6dB*	CW carrier	
MR E-UTRA Band 24 MR UTRA FDD Band XXV	1525 – 1559 1930 – 1995	+8 +8	PREFSENS + 6dB* PREFSENS + 6dB*	CW carrier CW carrier	
or E-UTRA Band 25 MR UTRA FDD Band XXVI	859 - 894	+8	P _{REFSENS} + 6dB*	CW carrier	
or E-UTRA Band 26 MR E-UTRA Band 27	852 - 869	+8	PREFSENS + 6dB*	CW carrier	
MR E-UTRA Band 28	758 – 803	+8	PREFSENS + 6dB*	CW carrier	
MR E-UTRA Band 29	717 – 728	+8	PREFSENS + 6dB*	CW carrier	
MR E-UTRA Band 30	2350 - 2360	+8	PREFSENS + 6dB*	CW carrier	
MR E-UTRA Band 31	462.5 - 467.5	+8	PREFSENS + 6dB*	CW carrier	
MR UTRA FDD Band XXXII or E-UTRA Band 32	1452-1496 (NOTE 3)	+8	P _{REFSENS} + 6dB*	CW carrier	
MR E-UTRA Band 33	1900-1920	+8	P _{REFSENS} + 6dB*	CW carrier	
MR E-UTRA Band 34	2010-2025	+8	PREFSENS + 6dB*	CW carrier	
MR E-UTRA Band 35		то	I KERSENS T UUD		
	1850-1910	+8	PREFSENS + 6dB*	CW carrier	
MR E-UTRA Band 36	1930-1990	+8	PREFSENS + 6dB*	CW carrier	
MR E-UTRA Band 37	1910-1930	+8	PREFSENS + 6dB*	CW carrier	
MR E-UTRA Band 38	2570-2620	+8	PREFSENS + 6dB*	CW carrier	

MR E-UT	RA Band 39	1880-1920	+8	PREFSENS + 6dB*	CW carrier	
MR E-UT	RA Band 40	2300-2400	+8	PREFSENS + 6dB*	CW carrier	
MR E-UT	RA Band 41	2496 - 2690	+8	PREFSENS + 6dB*	CW carrier	
MR E-UT	RA Band 42	3400-3600	+8	PREFSENS + 6dB*	CW carrier	
MR E-UT	RA Band 43	3600-3800	+8	PREFSENS + 6dB*	CW carrier	
MR E-UT	RA Band 44	703-803	+8	PREFSENS + 6dB*	CW carrier	
MR E-UT	RA Band 45	1447-1467	+8	P _{REFSENS} + 6dB*	CW carrier	
MR E-UT	RA Band 46	5150-5925	+8	P _{REFSENS} + 6dB*	CW carrier	
MR E-UT	RA Band 65	2110 – 2200	+8	P _{REFSENS} + 6dB*	CW carrier	
MR E-UT	RA Band 66	2110 – 2200	+8	PREFSENS + 6dB*	CW carrier	
MR E-UT	RA Band 67	738-758	+8	P _{REFSENS} + 6dB*	CW carrier	
MR E-UT	RA Band 68	753-783	+8	PREFSENS + 6dB*	CW carrier	
Note*:	PREFSENS is related	to the channel band	width and speci	fied in TS 36.104 [2] su	bclause	
	7.2.1.					
NOTE 1:				ents do not apply when t		
				k operating band or in th	ne 10 MHz	
		e any of the support				
				apply when the interfer	ring signal	
		uency range 768-79				
NOTE 2:	NOTE 2: Some combinations of bands may not be possible to co-site based on the requirements					
				t allow a single generic		
				A FDD on adjacent free		
	30dB BS-BS minimum coupling loss. However, there are certain site-engineering solutions					
	that can be used. These techniques are addressed in TR 25.942 [11].					
NOTE 3:						
	the frequency range 1475.9-1495.9 MHz.					
NOTE 4:	· · · · · · · · · · · · · · · · · · ·					
	operating band can receive without special co-location requirements. For unsynchronized					
	base stations, special co-location requirements may apply that are not covered by the					
	3GPP specifications.					

7.7 Receiver spurious emissions

7.7.1 Definition and applicability

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the BS receiver antenna connector. The requirements apply to all BS with separate RX and TX antenna ports. The test shall be performed when both TX and RX are on, with the TX port terminated.

For TDD BS with common RX and TX antenna port the requirement applies during the Transmitter OFF period. For FDD BS with common RX and TX antenna port the transmitter spurious emission as specified in clause 6.6.4 is valid.

For BS capable of multi-band operation where multiple bands are mapped on separate antenna connectors, the singleband requirements apply and the excluded frequency range is only applicable for the operating band supported on each antenna connector.

Unless otherwise stated, a BS declared to be capable of E-UTRA with NB-IoT in-band and guard band operations is only required to pass the receiver spurious emissions tests for E-UTRA with guard band operation; it is not required to perform the receiver spurious emissions tests again for E-UTRA with in-band operation.

7.7.2 Minimum Requirements

The minimum requirement is in TS 36.104 [2] subclause 7.7.1.

7.7.3 Test purpose

The test purpose is to verify the ability of the BS to limit the interference caused by receiver spurious emissions to other systems.

7.7.4 Method of test

7.7.4.1 Initial conditions

Test environment: normal; see subclause D.2.

RF channels to be tested for single carrier: M, see subclause 4.7.

Base Station RF Bandwidth edge positions to be tested for multi-carrier and/or CA: M_{RFBW} in single-band operation, see subclause 4.7.1; B_{RFBW} _T'_{RFBW} and B'_{RFBW}_T_{RFBW} in multi-band operation, see subclause 4.7.1.

- 1) Connect a measurement receiver to the BS antenna connector as shown in Annex I.2.6.
- 2) Enable the BS receiver.
- 3) Terminate the BS Tx antenna connector as shown in Annex I.2.6.

7.7.4.2 Procedure

1) For a E-UTRA FDD BS declared to be capable of single carrier operation only, start BS transmission according to E-TM 1.1 at manufacturer's declared rated output power.

For a E-UTRA FDD BS declared to be capable of multi-carrier and/or CA operation, set the BS to transmit according to E-TM 1.1 on all carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For E-UTRA BS declared to be capable of NB-IoT in-band or guard band operation single carrier operation only, start BS transmission according to E-TM 1.1. and N-TM at manufacturer's declared rated output power.

For a E-UTRA BS declared to be capable of NB-IoT in-band or guard band operation multi-carrier, set the BS to transmit according to E-TM 1.1 on all E-UTRA carriers and to N-TM on all NB-IoT carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11.

For a BS declared to be capable of NB-IoT standalone single carrier operation only, start BS transmission according to N-TM at manufacturer's declared rated output power.

For a BS declared to be capable of NB-IoT standalone multi-carrier operation, set the BS to transmit according to N-TM on all carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11

For a E-UTRA and NB-IoT standalone BS, set the BS to transmit according to E-TM 1.1 on all E-UTRA carriers and according to N-TM on all NB-IoT carriers configured using the applicable test configuration and corresponding power setting specified in sub-clause 4.10 and 4.11

- 2) Set measurement equipment parameters as specified in table 7.7-1.
- 3) Measure the spurious emissions over each frequency range described in subclause 7.7.5.
- 4) Repeat the test for the Rx port(s), which was (were) terminated.

In addition, for a multi-band capable BS, the following step shall apply:

5) For multi-band capable BS and single band tests, repeat the steps above per involved band where single band test configurations and test models shall apply with no carrier activated in the other band. For multi-band capable BS with separate antenna connector, the antenna connector not being under test in case of single-band or multi-band test shall be terminated.

7.7.5 Test requirements

The power of any spurious emission shall not exceed the levels in Table 7.7-1.

In addition to the requirements in Table 7.7-1, the power of any spurious emission shall not exceed the levels specified for Protection of the E-UTRA FDD BS receiver of own or different BS in Clause 6.6.4.5.3 and for Co-existence with other systems in the same geographical area in Clause 6.6.4.5.4. In addition, the co-existence requirements for co-located base stations specified in subclause 6.6.4.5.5 may also be applied.

Frequency range	Maximum level	Measurement Bandwidth	Note
30MHz - 1 GHz	-57 dBm	100 kHz	
1 GHz - 12.75 GHz	-47 dBm	1 MHz	
12.75 GHz - 5 th harmonic of the upper frequency edge of the UL operating band in GHz	-47 dBm	1 MHz	Applies only for Bands 22, 42 and 43.
2.5 * BW _{channel} a channel bandwic However, freque supported downl of the BS suppor requirement. For BS capable supported opera mapped on sepa	bove the last ca th according to ncies that are m ink operating ba red downlink op of multi-band op ting bands. For l irate antenna co ncy range is only	rrier frequency transm Table 5.6-1, may be ore than 10 MHz belo nd or more than 10 M erating band (see Ta eration, the excluded BS capable of multi-b nnectors, the single-b	he first carrier frequency and nitted by the BS, where BW _{Channel} is the excluded from the requirement. ow the lowest frequency of any of the BS /IHz above the highest frequency of any ble 5.5-1) shall not be excluded from the frequency range applies for all band operation where multiple bands are band requirements apply and the berating band supported on each

Table 7.7-1: General spurious emission test requirement

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The relationship between Minimum Requirements and Test Requirements is defined in subclause 4.1 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

7.8 Receiver intermodulation

7.8.1 Definition and applicability

Third and higher order mixing of the two interfering RF signals can produce an interfering signal in the band of the desired channel. Intermodulation response rejection is a measure of the capability of the receiver to receive a wanted signal on its assigned channel frequency in the presence of two interfering signals which have a specific frequency relationship to the wanted signal. Interfering signals shall be a CW signal and an E-UTRA signal as specified in Annex C.

Unless otherwise stated, a BS declared to be capable of E-UTRA with NB-IoT in-band and guard band operations is only required to pass the receiver intermodulation tests for E-UTRA with guard band operation; it is not required to perform the receiver intermodulation tests again for E-UTRA with in-band operation.

7.8.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 7.8.1.

7.8.3 Test purpose

The test purpose is to verify the ability of the BS receiver to inhibit the generation of intermodulation products in its non-linear elements caused by the presence of two high-level interfering signals at frequencies with a specific relationship to the frequency of the wanted signal.

7.8.4 Method of test

7.8.4.1 Initial conditions

Test environment: normal; see subclause D.2.

RF channels to be tested for single carrier: B, M and T; see subclause 4.7.

Base Station RF Bandwidth edge positions to be tested for multi-carrier and/or CA: B_{RFBW} and T_{RFBW} in single-band operation, see subclause 4.7.1; B_{RFBW} T'_{RFBW} and B'_{RFBW} T_{RFBW} in multi-band operation, see subclause 4.7.1.

1) Set-up the measurement system as shown in Annex I.2.7.

7.8.4.2 Procedures

For E-UTRA and E-UTRA with NB-IoT in-band or guard band operation:

1) Generate the E-UTRA wanted signal using the applicable test configuration specified in subclause 4.10 and 4.11 and adjust the signal level to the BS under test to the level specified in Table 7.8-1.

For BS declared to be capable of NB-IoT in-band or guard band operation, generate the NB-IoT wanted signal using the applicable test configuration specified in subclause 4.10 and 4.11 and adjust the signal level to the BS under test to the level specified in Table 7.8-1a or Table 7.8-1b.

- Adjust the signal generators to the type of interfering signals, levels and the frequency offsets as specified in Table 7.8-2 for intermodulation requirement and Table 7.8-3, Table 7.8-3a, Table 7.8-3b, Table 7.8-4, Table 7.8-5 and Table 7.8-6 for narrowband intermodulation requirement.
- 3) Adjust the signal generators to obtain the specified level of interfering signal at the BS input.
- 4) Measure the E-UTRA throughput according to Annex E, for multi-carrier and/or CA operation the throughput shall be measured for relevant carriers specified by the test configuration specified in subclause 4.10 and 4.11.

For BS declared to be capable of NB-IoT in-band or guard band operation, measure the NB-IoT throughput according to Annex E, for multi-carrier the throughput shall be measured for relevant carriers specified by the test configuration specified in subclause 4.10 and 4.11.

5) Repeat the test for the port(s) which was (were) terminated.

In addition, for a multi-band capable BS with separate antenna connectors, the following steps shall apply:

6) For single band tests, repeat the steps above per involved band where single band test configurations shall apply with no carrier activated in the other band.

Interfering signal shall first be applied on the same port as the wanted signal. The test shall be repeated with the interfering signal applied on the other port (if any) mapped to the same receiver as the wanted signal. Any antenna connector with no signal applied in case of single-band or multi-band test shall be terminated.

7) Repeat step 6) with the wanted signal for the other band(s) applied on the respective port(s).

For NB-IoT standalone operation:

- 1) Generate the NB-IoT wanted signal using the applicable test configuration specified in subclause 4.10 and 4.11 and adjust the signal level to the BS under test to the level specified in Table 7.8-1c.
- 2) Adjust the signal generators to the type of interfering signals, levels and the frequency offsets as specified in Table 7.8-2a for intermodulation requirement and Table 7.8-3c for narrowband intermodulation requirement.
- 3) Adjust the signal generators to obtain the specified level of interfering signal at the BS input.
- 4) Measure the NB-IoT throughput according to Annex E, for multi-carrier the throughput shall be measured for relevant carriers specified by the test configuration specified in subclause 4.10 and 4.11.
- 5) Repeat the test for the port(s) which was (were) terminated.

For E-UTRA and NB-IoT standalone BS:

1) Generate the E-UTRA wanted signal using the applicable test configuration specified in subclause 4.10 and 4.11 and adjust the signal level to the BS under test to the level specified in Table 7.8-1.

Generate the NB-IoT wanted signal using the applicable test configuration specified in subclause 4.10 and 4.11 and adjust the signal level to the BS under test to the level specified in Table 7.8-1c.

2) a) On the side where E-UTRA signal is positioned:

Adjust the signal generators to the type of interfering signals, levels and the frequency offsets as specified in Table 7.8-2 for intermodulation requirement and Table 7.8-3, Table 7.8-4, Table 7.8-5 and Table 7.8-6 for narrowband intermodulation requirement.

b) On the side where NB-IoT signal is positioned:

Adjust the signal generators to the type of interfering signals, levels and the frequency offsets as specified in Table 7.8-2a for intermodulation requirement and Table 7.8-3c for narrowband intermodulation requirement.

- 3) Adjust the signal generators to obtain the specified level of interfering signal at the BS input.
- 4) Measure the E-UTRA throughput according to Annex E, for multi-carrier and/or CA operation the throughput shall be measured for relevant carriers specified by the test configuration specified in subclause 4.10 and 4.11.

Measure the NB-IoT throughput according to Annex E, for multi-carrier the throughput shall be measured for relevant carriers specified by the test configuration specified in subclause 4.10 and 4.11.

5) Repeat the test for the port(s) which was (were) terminated.

7.8.5 Test requirements

For each measured E-UTRA carrier, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with a wanted signal at the assigned channel frequency and two interfering signals with the conditions specified in Table 7.8-1 and Table 7.8-2 for intermodulation performance and in Table 7.8-3, Table 7.8-4, Table 7.8-5 and Table 7.8-6 for narrowband intermodulation performance. The reference measurement channel for the wanted signal is specified in Table 7.2-1, Table7.2-2, Table 7.2-3 and Table 7.2-4 for each channel bandwidth and further specified in Annex A.

For each measured NB-IoT carrier, the throughput shall be \geq 95% of the maximum throughput of the reference measurement channel, with a wanted signal at the assigned channel frequency and two interfering signals with the conditions specified in Table 7.8-1a, 7.8-1b, Table 7.8-1c, Table 7.8-2 and Table 7.8-2a for intermodulation performance and in Table 7.8-3a, Table 7.8-3b and Table 7.8-3c for narrowband intermodulation performance. The reference measurement channel for the wanted signal is specified in Table 7.2-5 for each channel sub-carrier spacing option and further specified in Annex A.

The receiver intermodulation requirement is always applicable outside the Base Station RF Bandwidth or Maximum Radio Bandwidth. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges or Maximum Radio Bandwidth edges.

For a BS operating in non-contiguous spectrum within any operating band, the narrowband intermodulation requirement applies in addition inside any sub-block gap in case the sub-block gap is at least as wide as the channel bandwidth of the E-UTRA interfering signal in Table 7.8-3. The interfering signal offset is defined relative to the sub-block edges inside the sub-block gap. The requirement applies separately for both sub-blocks.

For a BS capable of multi-band operation, the intermodulation requirement applies in addition inside any Inter RF Bandwidth gap, in case the gap size is at least twice as wide as the E-UTRA interfering signal centre frequency offset from the Base Station RF Bandwidth edge.

For a BS capable of multi-band operation, the narrowband intermodulation requirement applies in addition inside any Inter RF Bandwidth gap in case the gap size is at least as wide as the E-UTRA interfering signal in Tables 7.8-3, 7.8-4 and 7.8-6. The interfering signal offset is defined relative to the Base Station RF Bandwidth edges inside the Inter RF Bandwidth gap.

BS type	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Type of interfering signal		
Wide Area BS	P _{REFSENS} + 6dB*	-52			
Medium Range BS	P _{REFSENS} + 6dB*	-47	See Table 7.8-2		
Local Area BS	P _{REFSENS} + 6dB*	-44	See Table 7.0-2		
Home BS	PREFSENS + 14dB*	-36			
	Note*: PREFSENS depends on the channel bandwidth as specified in TS 36.104 [2]				
subclause 7.2.1. For E-UTRA channel bandwidths 10, 15 and 20 MHz this					
requirement shall apply only for a FRC A1-3 mapped to the frequency range at the					
channel	edge adjacent to the ir	nterfering signals.			

Table 7.8-1: Intermodulation performance requirement for E-UTRA

Table 7.8-1a: Intermodulation performance requirement for E-UTRA with NE	B-IoT in-band operation BS
--	----------------------------

BS type	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Type of interfering signal		
Wide Area BS	PREFSENS + 6dB ^{Note 1}	-52	See Table 7.8-2		
Note 1: PREFSENS depends on the sub-carrier spacing as specified in TS 36.104 [2] subclause 7.2.1.					

Table 7.8-1b: Intermodulation performance requirement for E-UTRA with NB-IoT guard band operation BS

BS type	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Type of interfering signal		
Wide Area BS	PREFSENS + 6dB Note 1	-52	See Table 7.8-2		
Note 1: PREFSENS depends on the sub-carrier spacing as specified in TS 36.104 [2] subclause 7.2.1.					

Table 7.8-1c: Intermodulation performance requirement for NB-IoT standalone

BS type	NB-IoT channel bandwidth of the lowest/highest carrier received [kHz]	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Type of interfering signal		
Wide Area BS	200	PREFSENS + 6 dB Note	-52	See Table 7.8-2a		
Note 1: PREFSE	Note 1: PREFSENS depends on the sub-carrier spacing as specified in TS 36.104 [2] subclause 7.2.1.					

Table 7.8-2: Interfering signal for Intermodulation performance requirement for E-UTRA or E-UTRA with NB-IoT in-band/guard band operation BS

E-UTRA channel bandwidth of the lowest/highest carrier received [MHz]	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge [MHz]	Type of interfering signal			
3 Note 1	±4.5	CW			
5	±10.5	3MHz E-UTRA signal			
5	±7.5	CW			
5	±17.5	5MHz E-UTRA signal			
10	±7. 375	CW			
10	±17.5	5MHz E-UTRA signal			
15	±7.25	CW			
15	±17.5	5MHz E-UTRA signal			
20	±7.125	CW			
20	±17.5	5MHz E-UTRA signal			
Note 1: 3 MHz	channel bandwidth is not applicable to guard band				
operation.					

Table 7.8-2a: Interfering signal for Intermodulation performance requirement for NB-IoT standalone operation BS

Channel bandwidth of the lowest/highest carrier received [MHz]	Interfering signal centre frequency offset from the lower/upper Base Station RF Bandwidth edge [MHz]	Type of interfering signal
0.2	±7.575	CW
0.2	±17.5	5 MHz E-UTRA signal

E-UTRA channel bandwidth of the lowest/highest carrier received [MHz]		Interfering signal mean power [dBm]	Interfering RB centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap [kHz]	Type of interfering signal	
1.4	P _{REFSENS} + 6dB ¹	-52	±270	CW	
1.4	T REFSENS + OUD	-52	±790	1.4 MHz E-UTRA signal, 1 RB ²	
3	P _{REFSENS} + 6dB ¹	-52	±270	CW	
3	F REFSENS + OUD	-52	±780	3.0 MHz E-UTRA signal, 1 RB ²	
5	P _{REFSENS} + 6dB ¹	-52	±360	CW	
5	FREFSENS + OUD	-52	±1060	5 MHz E-UTRA signal, 1 RB ²	
10	P _{REFSENS} + 6dB ¹	-52	±325	CW	
10	(Note 3)	-52	±1240	5 MHz E-UTRA signal, 1 RB ²	
15	P _{REFSENS} + 6dB ¹	-52	±380	CW	
15	(Note 3)	-52	±1600	5MHz E-UTRA signal, 1 RB ²	
20	PREFSENS + 6dB ¹	-52	±345	CW	
20	(Note 3)	-52	±1780	5MHz E-UTRA signal, 1 RB ²	
Note 1: PREFSENS is related to the channel bandwidth as specified in TS 36.104 [2] subclause 7.2.1.					
the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge.					
	equirement shall appl ent to the interfering		C A1-3 mapped to the frequence	cy range at the channel edge	

Table 7.8-3: Narrowband intermodulation performance requirement for Wide Area BS for E-UTRA

Table 7.8-3a: Narrowband intermodulation performance requirement for Wide Area BS for E-UTRAwith NB-IoT in-band operation BS

E-UTRA channel bandwidth the lowest/high carrier received [MHz]	of nest	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Interfering RB centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap [kHz]	Type of interfering signal
			-52	±270	CW
3		PREFSENS + 6dB Note 1	-52	±780	3.0 MHz E-UTRA signal, 1 RB ^{Note 2}
			-52	±360 Note 4	CW
5		PREFSENS + 6dB Note 1	-52	±1060	5 MHz E-UTRA signal, 1 RB ^{Note 2}
		PREFSENS + 6dB Note 1	-52	±325 Note 4	CW
10	$P_{\text{REFSENS}} + 60B^{\text{Note 3}}$		-52	±1240	5 MHz E-UTRA signal, 1 RB ^{Note 2}
		PREFSENS + 6dB Note 1	-52	±380 Note 4	CW
15		(^{Note 3})	-52	±1600	5MHz E-UTRA signal, 1 RB ^{Note 2}
		PREFSENS + 6dB Note 1	-52	±345 Note 4	CW
20		(^{Note 3})	-52	±1780	5MHz E-UTRA signal, 1 RB ^{Note 2}
 Note 1: P_{REFSENS} depends on the sub-carrier spacing as specified in TS 36.104 [2] subclause 7.2.1. Note 2: Interfering signal consisting of one resource block positioned at the stated offset, the channel bandwidth of the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge. Note 3: This requirement shall apply only for a FRC A1-3 mapped to the frequency range at the channel edge adjacent to the interfering signals. Note 4: The frequency offset shall be adjusted to accommodate the IMD product to fall in the NB-IoT RB for NB-IoT in-band operation. Note 5: If a BS RF receiver fails the test of the requirement, the test shall be performed with the CW interfering signal frequency shifted away from the wanted signal by 180 kHz and the E-UTRA interfering signal frequency shifted away from the wanted signal by 360 kHz. If the BS RF receiver still fails the test after the frequency shift, then the BS RF receiver shall be deemed to fail the requirement. 					

E-UTRA channel bandwidth of the lowest/highest carrier received [MHz]	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Interfering RB centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap [kHz]	Type of interfering signal		
		-52	±360 Note 4	CW		
5	P _{REFSENS} + 6dB ^{Note 1}	-52	±1060	5 MHz E-UTRA signal, 1 RB ^{Note 2}		
	PREFSENS + 6dB Note 1	-52	±325 Note 4	CW		
10	(Note 3)	-52 ±1240		5 MHz E-UTRA signal, 1 RB ^{Note 2}		
	PREFSENS + 6dB Note 1	-52	±380 Note 4	CW		
15	(^{Note 3})	-52	±1600	5MHz E-UTRA signal, 1 RB ^{Note 2}		
	PREFSENS + 6dB Note 1	-52	±345 Note 4	CW		
20	(Note 3)	-52	±1780	5MHz E-UTRA signal, 1 RB ^{Note 2}		
 Note 1: PREFSENS depends on the sub-carrier spacing as specified in TS 36.104 [2] subclause 7.2.1. Note 2: Interfering signal consisting of one resource block positioned at the stated offset, the channel bandwidth of the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge. Note 3: This requirement shall apply only for a FRC A1-3 mapped to the frequency range at the channel edge adjacent to the interfering signals. Note 4: The frequency offset shall be adjusted to accommodate the IMD product to fall in the NB-IoT RB for NB-IoT guard band operation. Note 5: If a BS RF receiver fails the test of the requirement, the test shall be performed with the CW interfering signal frequency shifted away from the wanted signal by 180 kHz and the E-UTRA interfering signal frequency shifted away from the wanted signal by 360 kHz. If the BS RF receiver still fails the test after the frequency shift, then the BS RF receiver shall be deemed to fail the requirement. 						

Table 7.8-3b: Narrowband intermodulation performance requirement for Wide Area BS for E-UTRA with NB-IoT guard band operation BS

Table 7.8-3c: Narrowband intermodulation performance requirement for Wide Area BS for NB-IoT standalone

Channel bandwidth of the lowest/highest carrier received [MHz]	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Interfering RB centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block gap [kHz]	Type of interfering signal		
		-52	±340	CW		
0.2	P _{REFSENS} + [6dB] ^{Note 1}	-52	±880	5MHz E-UTRA signal, 1 RB ^{Note 2}		
Note 1: PREFSENS depends on the sub-carrier spacing as specified in TS 36.104 [2] subclause 7.2.1. Note 2: Interfering signal consisting of one resource block positioned at the stated offset, the channel bandwidth of the interfering signal is located adjacently to the lower/upper Base Station RF Bandwidth edge. Note 3: If a BS RF receiver fails the test of the requirement, the test shall be performed with the CW interfering signal frequency shifted away from the wanted signal by 180 kHz and the E-UTRA interfering signal frequency shifted away from the wanted signal by 360 kHz. If the BS RF receiver still fails the test after the frequency shift, then the BS RF receiver shall be deemed to fail the requirement.						

E-UTRA channel bandwidth of the lowest/highest carrier received [MHz]	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Interfering RB centre frequency offset from the lower/upper Base Station RF Bandwidth edge or sub-block edge inside a sub-block [kHz]	Type of interfering signal			
		-44	±270	CW			
1.4	P _{REFSENS} + 6dB*	-44	±790	1.4 MHz E-UTRA signal, 1 RB**			
		-44	±275	CW			
3	P _{REFSENS} + 6dB*	-44	±790	3.0 MHz E-UTRA signal, 1 RB**			
-		-44	±360	CW			
5	Prefsens + 6dB*	-44	±1060	5 MHz E-UTRA signal, 1 RB**			
40	Prefsens + 6dB*	-44 PREFSENS + 6dB*		CW			
10	(***)	-44	±1420	5 MHz E-UTRA signal, 1 RB**			
	Prefsens + 6dB*	-44	±380	CW			
15	(***)	-44	±1600	5MHz E-UTRA signal, 1 RB**			
20	PREFSENS + 6dB*	-44	±345	CW			
20	(***)	-44	±1780	5MHz E-UTRA signal, 1 RB**			
Note**: Interfe the int Note***: This re	INS is related to the channel ring signal consisting of one erfering signal is located ac equirement shall apply only ent to the interfering signals	e resource block position jacently to the lower/up for a FRC A1-3 mappe	oned at the stated offse oper Base Station RF B	t, the channel bandwidth of andwidth edge.			

Table 7.8-4: Narrowband intermodulation	performance rec	puirement for Loc	al Area BS for E-UTRA

E-UTRA channel bandwidth [MHz]	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Interfering RB centre frequency offset from the channel edge of the wanted signal [kHz]	Type of interfering signal
		-36	270	CW
1.4	P _{REFSENS} + 14dB*	-36	790	1.4 MHz E-UTRA signal, 1 RB**
		-36	270	CW
3	P _{REFSENS} + 14dB*	-36	780	3.0 MHz E-UTRA signal, 1 RB**
		-36	360	CW
5	5 PREFSENS + 14dB*	-36	1060	5 MHz E-UTRA signal, 1 RB**
	D 114dP*	-36	325	CW
10	P _{REFSENS} + 14dB* (***)	-36	1240	5 MHz E-UTRA signal, 1 RB**
	P _{REFSENS} + 14dB*	-36	380	CW
15	(***)	-36	1600	5MHz E-UTRA signal, 1 RB**
	PREFSENS + 14dB*	-36	345	CW
20	(***)	-36	1780	5MHz E-UTRA signal, 1 RB**
Note**:	P _{REFSENS} is related to the chan Interfering signal consisting of the interfering signal is located	one resource block posi	tioned at the stated offs	et, the channel bandwidth of
Note***:	This requirement shall apply o adjacent to the interfering sigr	nly for a FRC A1-3 map		

Table 7.8-6: Narrowband intermodulation performance requirement for Medium Range BS for E-UTRA

E-UTRA channel bandwidth of the lowest/highest carrier received [MHz]	Wanted signal mean power [dBm]	Interfering signal mean power [dBm]	Interfering RB centre frequency offset to the lower (higher) edge or sub-block edge inside a sub-block gap [kHz]	Type of interfering signal
		-47	±270	CW
1.4	Prefsens + 6dB*	-47	±790	1.4 MHz E-UTRA signal, 1 RB**
		-47	±270	CW
3	P _{REFSENS} + 6dB*	-47	±780	3.0 MHz E-UTRA signal, 1 RB**
		-47	±360	CW
5	Prefsens + 6dB*	-47	±1060	5 MHz E-UTRA signal, 1 RB**
	PREFSENS + 6dB*	-47	±325	CW
10	(***)	-47	±1240	5 MHz E-UTRA signal, 1 RB**
	PREFSENS + 6dB*	-47	±380	CW
15	(***)	-47	±1600	5MHz E-UTRA signal, 1 RB**
	P _{REFSENS} + 6dB*	-47	±345	CW
20	(***)	-47	±1780	5MHz E-UTRA signal, 1 RB**
Note**: Interfe the int Note***: This re	INS is related to the channel rring signal consisting of one erfering signal is located ad equirement shall apply only ent to the interfering signals	e resource block position jacently to the lower (h for a FRC A1-3 mappe	oned at the stated offse igher) edge.	t, the channel bandwidth of

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The relationship between Minimum Requirements and Test Requirements is defined in subclause 4.1 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8 Performance requirement

8.1 General

Performance requirements are specified for a number of test environments and multipath channel classes.

Unless stated otherwise, performance requirements apply for a single carrier only. Performance requirements for a BS supporting carrier aggregation are defined in terms of single carrier requirements. The requirements only apply to those measurement channels that are supported by the base station.

The performance requirements for High Speed Train conditions defined in Annex B.3 are optional.

The performance requirements for UL timing adjustment scenario 2 defined in Annex B.4 are optional.

For BS with receiver antenna diversity the required SNR shall be applied separately at each antenna port.

In tests performed with signal generators a synchronization signal may be provided, from the base station to the signal generator, to enable correct timing of the wanted signal.

For tests in clause 8 the transmitter may be off.

8.2 Performance requirements for PUSCH

8.2.1 Performance requirements of PUSCH in multipath fading propagation conditions transmission on single antenna port

8.2.1.1 Definition and applicability

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ re-transmissions.

A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting FDD multiple channel bandwidths but not supporting FDD UL carrier aggregation, only the tests for the lowest and the highest FDD channel bandwidths supported by the BS are applicable. For a BS supporting TDD multiple channel bandwidths but not supporting TDD UL carrier aggregation, only the tests for the lowest and the highest TDD channel bandwidths supported by the BS are applicable.For a BS supporting FDD UL carrier aggregation, only the FDD CC combination with largest aggregated bandwidth is used for the test. If there is more than one combination the FDD CC combination with the largest number of component carriers is used for the test. For this CC combination the tests using full PRB allocation FRC are conducted on per CC basis and measured by the required SNR levels corresponding to the bandwidths used on the different CCs.

For a BS supporting TDD UL carrier aggregation, only the TDD CC combination with largest aggregated bandwidth is used for the test. If there is more than one combination the TDD CC combination with the largest number of component carriers is used for the test. For this CC combination the tests using full PRB allocation FRC are conducted on per CC basis and measured by the required SNR levels corresponding to the bandwidths used on the different CCs.

For a BS supporting carrier aggregation the tests with single PRB FRC are conducted on any single component carrier only.

8.2.1.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.2.1.1.

8.2.1.3 Test Purpose

The test shall verify the receiver's ability to achieve throughput under multipath fading propagation conditions for a given SNR.

- 8.2.1.4 Method of test
- 8.2.1.4.1 Initial Conditions
- Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7.

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.

8.2.1.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth, defined in Table 8.2.1.4.2-1.

Channel bandwidth [MHz]	AWGN power level
1.4	-92.7dBm / 1.08MHz
3	-88.7dBm / 2.7MHz
5	-86.5dBm / 4.5MHz
10	-83.5dBm / 9MHz
15	-81.7dBm / 13.5MHz
20	-80.4dBm / 18MHz

Table 8.2.1.4.2-1: AWGN power level at the BS input

2) The characteristics of the wanted signal shall be configured according to the corresponding UL reference measurement channel defined in annex A and the test parameters in Table 8.2.1.4.2-2. For reference channels using 1 resource block the resource block in the middle of the channel bandwidth shall be used. In case the number of resource blocks in the channel bandwidth are even the one in the middle with lower number is to be used for testing.

Table 8.2.1.4.2-2: Test parameters for testing PUSCH

Parameter	Value
Maximum number of HARQ transmissions	4
RV sequence	0, 2, 3, 1, 0, 2, 3, 1
Uplink-downlink allocation for TDD	Configuration 1 (2:2)

- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in annex B.
- 4) Adjust the equipment so that required SNR specified in Table 8.2.1.5-1 to 8.2.1.5-6 is achieved at the BS input.
- 5) For each of the reference channels in Table 8.2.1.5-1 to 8.2.1.5-6 applicable for the base station, measure the throughput, according to annex E.

8.2.1.5 Test Requirement

The throughput measured according to subclause 8.2.1.4.2 shall not be below the limits for the SNR levels specified in Table 8.2.1.5-1 to 8.2.1.5-6.

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
1	2	Normal	EPA 5Hz Low	A3-2	30%	-3.5
					70%	0.7
				A4-3	70%	11.2
				A5-2	70%	18.3
			EVA 5Hz Low	A3-1	30%	-2.1
					70%	2.4
				A4-1	30% 70%	5.0 11.9
				A5-1	70%	19.2
			EVA 70Hz	A3-2	30%	-3.3
			Low	710 2	70%	1.3
				A4-3	30%	4.6
				-	70%	12.5
			ETU 70Hz*	A3-1	30%	-1.8
			Low		70%	3.0
			ETU 300Hz*	A3-1	30%	-1.6
			Low		70%	3.5
		Extended	ETU 70Hz*	A4-2	30%	5.4
	Λ	Normal	Low EPA 5Hz Low	A3-2	70% 30%	14.1
4	4	Normai	EFA 5HZ LOW	A3-2	70%	-6.0 -2.5
				A4-3	70%	7.7
				A5-2	70%	15.0
			EVA 5Hz Low	A3-1	30%	-4.4
				-	70%	-0.7
				A4-1	30%	1.9
					70%	8.4
				A5-1	70%	16.0
			EVA 70Hz	A3-2	30%	-5.7
			Low		70%	-2.1
				A4-3	30% 70%	<u>1.4</u> 8.9
			ETU 70Hz*	A3-1	30%	-4.2
			Low	A3-1	70%	-4.2
			ETU 300Hz*	A3-1	30%	-4.0
			Low		70%	0.0
		Extended	ETU 70Hz*	A4-2	30%	2.2
			Low		70%	10.5
	8	Normal	EPA 5Hz Low	A3-2	30%	-8.8
					70%	-5.8
				A4-3	70%	4.6
				A5-2	70%	11.5
			EVA 5Hz Low	A3-1	30% 70%	-6.6 -3.2
				A4-1	30%	- <u>3.2</u> -1.1
				A <u>+</u> -1	70%	5.2
				A5-1	70%	12.3
			EVA 70Hz	A3-2	30%	-8.4
			Low		70%	-5.2
				A4-3	30%	-1.9
					70%	5.4
			ETU 70Hz*	A3-1	30%	-6.2
			Low	A.C. (70%	-3.0
			ETU 300Hz*	A3-1	30%	-6.1
		Extended	Low ETU 70Hz*	A4-2	70% 30%	-2.7 -0.5

Table 8.2.1.5-1: Test requirements for PUSCH, 1.4 MHz Channel Bandwidth

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
1	2	Normal	EPA 5Hz Low	A3-3	30%	-3.5
				-	70%	0.7
				A4-4	70%	11.5
				A5-3	70%	18.7
			EVA 5Hz Low	A3-1	30%	-2.2
				-	70%	2.4
				A4-1	30%	4.9
					70%	12.1
				A5-1	70%	19.4
			EVA 70Hz Low	A3-3	<u>30%</u> 70%	-3.4 1.2
			LOW	A4-4	30%	5.3
				77-7	70%	13.1
			ETU 70Hz*	A3-1	30%	-1.9
			Low		70%	3.0
			ETU 300Hz*	A3-1	30%	-1.6
			Low		70%	3.5
		Extended	ETU 70Hz*	A4-2	30%	5.3
			Low		70%	14.1
	4	Normal	EPA 5Hz Low	A3-3	30%	-6.2
						-2.8
				70% A4-4 70% A5-3 70% A5-1 30% 70% 70% A4-1 30%	8.3	
						15.0 -4.4
			EVA SHZ LOW			-4.4
						1.8
					70%	8.4
				A5-1	70%	16.0
			EVA 70Hz	A3-3	30%	-5.9
			Low		70%	-2.3
				A4-4	30%	2.2
					70%	9.3
			ETU 70Hz*	A3-1	30%	-4.2
			Low ETU 300Hz*	40.4	70%	-0.3
			Low	A3-1	<u>30%</u> 70%	-4.0 0.0
		Extended	ETU 70Hz*	A4-2	30%	2.1
		Extended	Low	<u>, , , , , , , , , , , , , , , , , , , </u>	70%	10.5
	8	Normal	EPA 5Hz Low	A3-3	30%	-9.0
					70%	-6.0
				A4-4	70%	4.7
				A5-3	70%	11.7
			EVA 5Hz Low	A3-1	30%	-6.5
					70%	-3.4
				A4-1	30%	-1.0
				A5-1	70% 70%	5.0 12.3
			EVA 70Hz	A3-3	30%	-8.7
			Low	A3-3	70%	-5.3
				A4-4	30%	-2.2
					70%	5.4
			ETU 70Hz*	A3-1	30%	-6.4
			Low		70%	-3.1
			ETU 300Hz*	A3-1	30%	-6.2
			Low		70%	-2.7
		Extended	ETU 70Hz*	A4-2	<u>30%</u> 70%	-0.6
			Low			7.1

 Table 8.2.1.5-2: Test requirements for PUSCH, 3 MHz Channel Bandwidth

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
1	2	Normal	EPA 5Hz Low	A3-4	30%	-4.1
					70%	-0.1
				A4-5	70%	11.0
				A5-4	70%	18.6
			EVA 5Hz Low	A3-1	30%	-2.1
					70%	2.4
				A4-1	30% 70%	4.9
				A5-1	70%	12.1 19.2
			EVA 70Hz	A3-4	30%	-3.9
			Low	7.0 1	70%	0.5
				A4-5	30%	4.9
				-	70%	12.9
			ETU 70Hz*	A3-1	30%	-1.9
			Low		70%	3.0
			ETU 300Hz*	A3-1	30%	-1.6
			Low		70%	3.5
		Extended	ETU 70Hz*	A4-2	30%	5.4
	4	Nerroal	Low	AD 4	70%	14.1
	4	Normal	EPA 5Hz Low	A3-4	30% 70%	-6.5 -3.2
				A4-5	70%	-3.2
				A5-4	70%	15.0
			EVA 5Hz Low		30%	-4.5
					70%	-0.8
				A4-1	30%	1.8
					70%	8.5
				A5-1	70%	16.1
			EVA 70Hz	A3-4	30%	-6.3
			Low		70%	-2.7
				A4-5	30%	1.8
			ETU 70Hz*	A3-1	70% 30%	8.9 -4.2
			Low	A3-1	70%	-4.2
			ETU 300Hz*	A3-1	30%	-0.3
			Low	7.0 1	70%	0.0
		Extended	ETU 70Hz*	A4-2	30%	2.2
			Low		70%	10.5
	8	Normal	EPA 5Hz Low	A3-4	30%	-9.5
					70%	-6.6
				A4-5	70%	4.6
				A5-4	70%	11.9
			EVA 5Hz Low	A3-1	30%	-6.5
				A4-1	70% 30%	-3.3
				A4-1	70%	<u>-1.3</u> 5.0
				A5-1	70%	12.3
			EVA 70Hz	A3-4	30%	-9.3
			Low		70%	-6.1
				A4-5	30%	-1.9
					70%	5.2
			ETU 70Hz*	A3-1	30%	-6.3
			Low		70%	-2.8
			ETU 300Hz*	A3-1	30%	-6.3
		Estas de d	Low	A 4 C	70%	-2.7
		Extended	ETU 70Hz*	A4-2	30%	-0.6
		BS and Home BS	Low		70%	7.0

 Table 8.2.1.5-3: Test requirements for PUSCH, 5 MHz Channel Bandwidth

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
1	2	Normal	EPA 5Hz Low	A3-5	30%	-3.6
					70%	0.2
				A4-6	70%	11.4
				A5-5	70%	18.9
			EVA 5Hz Low	A3-1	30%	-2.1
					70%	2.5
				A4-1	30%	4.9
					70%	12.0
				A5-1	70%	19.4
			EVA 70Hz	A3-5	30%	-3.5
			Low	A4-6	70% 30%	0.7 5.1
				A4-0	70%	13.2
			ETU 70Hz*	A3-1	30%	-1.9
			Low		70%	3.0
			ETU 300Hz*	A3-1	30%	-1.6
			Low		70%	3.5
		Extended	ETU 70Hz*	A4-2	30%	5.4
			Low		70%	14.2
	4	Normal	EPA 5Hz Low	A3-5	30%	-6.2
					70%	-2.9
				A4-6	70%	8.1
				A5-5	70%	15.3
			EVA 5Hz Low	A3-1	30%	-4.4
					70%	-0.6
				A4-1	30%	1.8
					70%	8.5
			EVA 70Hz	A5-1 A3-5	70% 30%	16.1 -6.1
			Low	A3-3	70%	-2.3
				A4-6	30%	1.3
					70%	8.6
			ETU 70Hz*	A3-1	30%	-4.2
			Low		70%	-0.3
			ETU 300Hz*	A3-1	30%	-4.0
			Low		70%	0.0
		Extended	ETU 70Hz*	A4-2	30%	2.3
			Low		70%	10.9
	8	Normal	EPA 5Hz Low	A3-5	30%	-9.2
				A4.6	70%	-6.1
				A4-6	<u>70%</u> 70%	4.8 12.1
			EVA 5Hz Low	A5-5 A3-1	<u> </u>	-6.3
				A3-1	70%	-0.3
				A4-1	30%	-3.2
					70%	5.1
				A5-1	70%	12.5
			EVA 70Hz	A3-5	30%	-9.1
			Low		70%	-5.6
				A4-6	30%	-2.0
					70%	5.3
			ETU 70Hz*	A3-1	30%	-6.2
			Low		70%	-3.0
			ETU 300Hz*	A3-1	30%	-6.2
		Freedom at 1	Low		70%	-2.7
		Extended	ETU 70Hz*	A4-2	30%	-0.5
	1	1	Low		70%	7.1

Table 8.2.1.5-4: Test requirements for PUSCH, 10 MHz Channel Bandwidth

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
1	2	Normal	EPA 5Hz Low	A3-6	30%	-3.9
					70%	-0.2
				A4-7	70%	11.9
				A5-6	70%	19.4
			EVA 5Hz Low	A3-1	30%	-2.2
					70%	2.4
				A4-1	30%	4.8
					70%	12.0
				A5-1	70%	19.3
			EVA 70Hz Low	A3-6	<u>30%</u> 70%	-3.9 0.3
			LOW	A4-7	30%	4.8
				A+-1	70%	13.5
			ETU 70Hz*	A3-1	30%	-1.9
			Low		70%	3.0
			ETU 300Hz*	A3-1	30%	-1.6
			Low		70%	3.5
		Extended	ETU 70Hz*	A4-2	30%	5.5
			Low		70%	14.2
	4	Normal	EPA 5Hz Low	A3-6	30%	-6.6
					70%	-3.2
				A4-7	70%	8.2
			EVA 5Hz Low	A5-6	70%	15.6
			EVA SHZ LOW	A3-1	<u>30%</u> 70%	-4.4 -0.6
				A4-1	30%	-0.6
				74-1	70%	8.5
				A5-1	70%	16.3
			EVA 70Hz	A3-6	30%	-6.4
			Low		70%	-2.7
				A4-7	30%	1.3
					70%	9.1
			ETU 70Hz*	A3-1	30%	-4.2
				10.4	70%	-0.4
			ETU 300Hz*	A3-1	30%	-4.0
		Extended	Low ETU 70Hz*	A4-2	<u> </u>	0.0
		Extended		777-2	70%	10.7
	8	Normal	EPA 5Hz Low	A3-6	30%	-9.8
	-				70%	-6.7
				A4-7	70%	5.0
				A5-6	70%	12.4
			EVA 5Hz Low	A3-1	30%	-6.5
					70%	-3.4
				A4-1	30%	-1.1
				A. E. 4	70%	5.0
				A5-1	70%	12.3
			EVA 70Hz Low	A3-6	<u> </u>	-9.5 -6.2
				A4-7	30%	-0.2
					70%	5.6
			ETU 70Hz*	A3-1	30%	-6.4
			Low	F F	70%	-3.0
			ETU 300Hz*	A3-1	30%	-6.3
			Low		70%	-2.7
		Extended	ETU 70Hz*	A4-2	30%	-0.5
			Low		70%	7.3

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
1	2	Normal	EPA 5Hz Low	A3-7	30%	-3.6
				_	70%	0.2
				A4-8	70%	12.1
				A5-7	70%	20.3
			EVA 5Hz Low	A3-1	30%	-2.1
					70%	2.4
				A4-1	30%	4.9
					70%	12.1
				A5-1	70%	19.3
			EVA 70Hz	A3-7	30%	-3.5
			Low		70%	0.8
				A4-8	30%	4.8
					70%	13.6
			ETU 70Hz*	A3-1	30%	-1.8
			Low		70%	3.0
			ETU 300Hz*	A3-1	30%	-1.5
			Low		70%	3.5
		Extended	ETU 70Hz*	A4-2	30%	5.3
			Low		70%	14.2
	4	Normal	EPA 5Hz Low	A3-7	30%	-6.2
					70%	-2.9
				A4-8	70%	8.1
				A5-7	70%	16.5
			EVA 5Hz Low	A3-1	30%	-4.5
					70%	-0.7
				A4-1	30%	1.8
					70%	8.5
				A5-1	70%	16.2
			EVA 70Hz	A3-7	30%	-6.1
			Low		70%	-2.3
				A4-8	30%	1.3
			ETU 70Hz*	A3-1	70% 30%	9.2
			Low	A3-1	70%	-3.8 -0.3
			ETU 300Hz*	A3-1	30%	-4.0
			Low	A3-1	70%	-4.0
		Extended	ETU 70Hz*	A4-2	30%	2.2
		Extended	Low	//+ 2	70%	10.6
	8	Normal	EPA 5Hz Low	A3-7	30%	-9.1
	, j				70%	-6.1
				A4-8	70%	4.9
				A5-7	70%	13.1
			EVA 5Hz Low	A3-1	30%	-6.4
					70%	-3.3
				A4-1	30%	-1.1
				l t	70%	5.2
				A5-1	70%	12.6
			EVA 70Hz	A3-7	30%	-9.1
			Low	F	70%	-5.5
				A4-8	30%	-1.6
					70%	5.5
			ETU 70Hz*	A3-1	30%	-6.3
			Low		70%	-2.9
			ETU 300Hz*	A3-1	30%	-6.2
			Low		70%	-2.7
		Extended	ETU 70Hz*	A4-2	30%	-0.6
		1	Low		70%	7.1

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.2.1A Performance requirements of PUSCH in multipath fading propagation conditions transmission on two antenna ports

8.2.1A.1 Definition and applicability

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ re-transmissions.

A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidths supported by the BS are applicable.

For the tests on two antenna ports the HARQ retransmissions for multiple codewords are independent.

8.2.1A.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.2.1.1.

8.2.1A.3 Test Purpose

The test shall verify the receiver's ability to achieve throughput of two layer spatial multiplexing transmission under multipath fading propagation conditions for a given SNR.

8.2.1A.4 Method of test

8.2.1A.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7.

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.6.

8.2.1A.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth, defined in Table 8.2.1A.4.2-1.

Channel bandwidth [MHz]	AWGN power level
1.4	-92.7dBm / 1.08MHz
3	-88.7dBm / 2.7MHz
5	-86.5dBm / 4.5MHz
10	-83.5dBm / 9MHz
15	-81.7dBm / 13.5MHz
20	-80.4dBm / 18MHz

Table 8.2.1A.4.2-1: AWGN power level at the BS input

2) The characteristics of the wanted signal shall be configured according to the corresponding UL reference measurement channel defined in annex A and the test parameters in Table 8.2.1A.4.2-2. For reference channels using 1 resource block the resource block in the middle of the channel bandwidth shall be used. In case the number of resource blocks in the channel bandwidth are even the one in the middle with lower number is to be used for testing.

Parameter	Value
Maximum number of HARQ transmissions	4
RV sequence	0, 2, 3, 1, 0, 2, 3, 1
Uplink-downlink allocation for TDD	Configuration 1 (2:2)

Table 8.2.1A.4.2-2 Test parameters for testing PUSCH

- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in annex B.
- 4) Adjust the equipment so that required SNR specified in Table 8.2.1A.5-1 to 8.2.1A.5-6 is achieved at the BS input.
- 5) For each of the reference channels in Table 8.2.1A.5-1 to 8.2.1A.5-6 applicable for the base station, measure the throughput, according to annex E.

8.2.1A.5 Test Requirement

The throughput measured according to subclause 8.2.1A.4.2 shall not be below the limits for the SNR levels specified in Table 8.2.1A.5-1 to 8.2.1A.5-6.

Table 8.2.1A.5-1 Test requirements for PUSCH, 1.4 MHz Channel Bandwidth

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
2	2	Normal	EPA 5Hz Low	A3-2	70%	[5.4]
				A4-3	70%	18.5
	4	Normal	EPA 5Hz Low	A3-2	70%	0.7
				A4-3	70%	12.7
	8	Normal	EPA 5Hz Low	A3-2	70%	-2.2
				A4-3	70%	8.3

Table 8.2.1A.5-2 Test requirements for PUSCH, 3 MHz Channel Bandwidth

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
2	2	Normal	EPA 5Hz Low	A3-3	70%	5.2
				A4-4	70%	18.4
	4	Normal	EPA 5Hz Low	A3-3	70%	1.1
				A4-4	70%	12.6
	8	Normal	EPA 5Hz Low	A3-3	70%	-2.3
				A4-4	70%	8.4

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
2	2	Normal	EPA 5Hz Low	A3-4	70%	4.5
				A4-5	70%	19.0
	4	Normal	EPA 5Hz Low	A3-4	70%	0.3
				A4-5	70%	12.7
	8	Normal	EPA 5Hz Low	A3-4	70%	-3.1
				A4-5	70%	8.4

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
2	2	Normal	EPA 5Hz Low	A3-5	70%	5.0
				A4-6	70%	19.4
	4	Normal	EPA 5Hz Low	A3-5	70%	1.0
				A4-6	70%	12.8
	8	Normal	EPA 5Hz Low	A3-5	70%	-2.5
				A4-6	70%	8.7

 Table 8.2.1A.5-4 Test requirements for PUSCH, 10 MHz Channel Bandwidth

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
2	2	Normal	EPA 5Hz Low	A3-6	70%	4.5
				A4-7	70%	20.2
	4	Normal	EPA 5Hz Low	A3-6	70%	0.6
				A4-7	70%	13.5
	8	Normal	EPA 5Hz Low	A3-6	70%	-3.0
				A4-7	70%	9.1

Table 8.2.1A.5-6 Test requirements for PUSCH, 20 MHz Channel Bandwidth

Number of TX antennas	Number of RX antennas	Cyclic prefix	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
2	2	Normal	EPA 5Hz Low	A3-7	70%	5.2
				A4-8	70%	20.5
	4	Normal	EPA 5Hz Low	A3-7	70%	1.3
				A4-8	70%	13.5
	8	Normal	EPA 5Hz Low	A3-7	70%	-2.6
				A4-8	70%	9.1

8.2.2 Performance requirements for UL timing adjustment

8.2.2.1 Definition and applicability

The performance requirement of PUSCH is determined by a minimum required throughput measured for the moving UE at given SNR. The required throughput is expressed as 70% of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ re-transmissions.

In the tests for UL timing adjustment, two signals are configured, one being transmitted by moving UE and the other being transmitted by stationary UE. The transmission of SRS from UE is optional. FRC parameters in Table A.7-1 and Table A.8-1 are applied for both UEs. The received power for both UEs is the same. The resource blocks allocated for both UEs are consecutive. In Scenario 2, Doppler shift is not taken into account.

A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidths supported by the BS are applicable.

This requirement shall not be applied to Local Area BS and Home BS.

8.2.2.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.2.2.1.

8.2.2.3 Test Purpose

The test shall verify the receiver's ability to achieve throughput measured for the moving UE at given SNR under moving propagation conditions.

8.2.2.4 Method of test

8.2.2.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7.

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.4.

8.2.2.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth, defined in Table 8.2.2.4.2-1.

Table 8.2.2.4.2-1: AWGN power level at the BS input

Channel bandwidth [MHz]	AWGN power level
1.4	-92.7 dBm / 1.08MHz
3	-88.7 dBm / 2.7MHz
5	-86.5 dBm / 4.5MHz
10	-83.5 dBm / 9MHz
15	-81.7 dBm / 13.5MHz
20	-80.4 dBm / 18MHz

2) The characteristics of the wanted signals (transmitted by moving UE) shall be configured according to the corresponding UL reference measurement channel defined in Annex A and the test parameters in Table 8.2.2.4.2-2.

 Table 8.2.2.4.2-2 Test parameters for testing UL timing adjustment

Parameter	Value
Maximum number of HARQ transmissions	4
RV sequence	0, 2, 3, 1, 0, 2, 3, 1
Uplink-downlink allocation for TDD	Configuration 1 (2:2)
Subframes in which PUSCH is transmitted	For FDD: subframe #0, #2, #4, #6, and #8 in radio frames For TDD: Subframe #2, #3, #7, #8 in each
	radio frame
Subframes in which sounding RS is transmitted (Note 1)	For FDD: subframe #1 in radio frames
	For TDD: UpPTS in each radio frame
Note 1: The transmission of SRS is optional.	

- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.
- 4) Adjust the equipment so that required SNR specified in Table 8.2.2.5-1 is achieved at the BS input.

5) For each of the reference channels in Table 8.2.2.5-1 applicable for the base station, measure the throughput, according to Annex E.

8.2.2.5 Test Requirement

The throughput measured for the moving UE according to subclause 8.2.2.4.2 shall not be below the limits for the SNR levels specified in Table 8.2.2.5-1.

Number of TX antennas	Number of RX antennas	Cyclic prefix	Channel Bandwidth [MHz]	Moving propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	SNR [dB]
	2 Normal	1.4	Scenario 1 Low	A7-1	13.7	
		Normal	1.4	Scenario 2 Low	A8-1	-1.6
			3 5	Scenario 1 Low	A7-2	14.0
				Scenario 2 Low	A8-2	-1.2
				Scenario 1 Low	A7-3	13.8
1				Scenario 2 Low	A8-3	-1.3
I			10	Scenario 1 Low	A7-4	14.4
				Scenario 2 Low	A8-4	-1.5
			15	Scenario 1 Low	A7-5	14.6
			15	Scenario 2 Low	A8-5	-1.5
			20	Scenario 1 Low	A7-6	14.5
			20	Scenario 2 Low	A8-6	-1.5

Table 8.2.2.5-1: Test requirements for UL timing adjustment

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test is defined in subclause 4.1 and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.2.3 Performance requirements for HARQ-ACK multiplexed on PUSCH

8.2.3.1 Definition and applicability

The performance requirement of HARQ-ACK multiplexed on PUSCH is determined by the two parameters: probability of false detection of the ACK and the probability of detection of ACK. The performance is measured by the required SNR at probability of detection equal to 0.99. The probability of false detection of the ACK shall be 0.01 or less at PUSCH power settings presented in table 8.2.3.5-1.

The probability of detection of ACK on PUSCH is defined as conditional probability of detection of the ACK when the ACK is transmitted on PUSCH allocated RE.

The probability of false detection of the ACK on PUSCH is defined as a conditional probability of erroneous detection of the ACK when data only is sent on PUSCH allocated RE, where HARQ-ACK can be allocated (i.e. by puncturing data). Pseudo-random data shall be used as an input for PUSCH coding and modulation purposes.

These tests shall be performed on one of RE's, where HARQ-ACK information was multiplexed on PUSCH.

In the test for HARQ-ACK multiplexed on PUSCH data is punctured by HARQ-ACK information in both slots within a subframe on symbols as specified in 36.212 [13] subclause 5.2.2.8. Amount of resources for HARQ-ACK information is calculated according to 36.212 [13] subclause 5.2.2.6. None of CQI, RI nor SRS is to be transmitted in these tests. Tests are performed for one bit HARQ-ACK information (O = 1).

This test is applied for QPSK 1/3 and 16QAM 3/4 modulation and coding schemes, with appropriate fixed reference channels for performance requirement applied as presented in table 8.2.3.5-1. Normal CP, 2 Rx antennas and ETU70 propagation conditions shall be used for this test.

A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidths supported by the BS are applicable.

8.2.3.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.2.4.1.

8.2.3.3 Test Purpose

The test shall verify the receiver's ability to detect HARQ-ACK information multiplexed on PUSCH under multipath fading propagation conditions for a given SNR.

8.2.3.4 Method of test

8.2.3.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7.

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.

8.2.3.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth, defined in Table 8.2.3.4.2-1.

Table 8.2.3.4.2-1: AWGN power level at the BS input

Channel bandwidth [MHz]	AWGN power level
1.4	-92.7 dBm / 1.08MHz
3	-88.7 dBm / 2.7MHz
5	-86.5 dBm / 4.5MHz
10	-83.5 dBm / 9MHz
15	-81.7 dBm / 13.5MHz
20	-80.4 dBm / 18MHz

- 2) The characteristics of the wanted signal shall be configured according to the corresponding UL reference measurement channel defined in Annex A and details presented in chapter 8.2.3.1. For reference channels using 1 resource block the RB in the middle of the channel bandwidth should be used. In case the number of resource blocks in the channel bandwidth are even the one in the middle with lower number is to be used for testing.
- 3) The multipath fading emulators shall be configured according to ETU70 channel model defined in Annex B.2.
- 4) Adjust the equipment so that required SNR specified in Table 8.2.3.5-1 is achieved at the BS input during the ACK transmissions.
- 5) The signal generator sends a test pattern on one of RE's where HARQ-ACK information can be multiplexed on PUSCH with the pattern outlined in figure 8.2.3.4.2-1. The following statistics are kept: the number of ACKs detected during data only transmissions and the number of missed ACKs during PUSCH with ACK transmission.

PUSCH	PUSCH	PUSCH	PUSCH	PUSCH	•••
(data only)	with ACK	(data only)	with ACK	(data only)	

Figure 8.2.3.4.2-1: Test signal pattern for HARQ-ACK multiplexed on PUSCH demodulation tests

8.2.3.5 Test Requirement

The fraction of falsely detected ACKs measured according to subclause 8.2.3.4.2 shall be less than 1% and the fraction of correctly detected ACKs shall be larger than 99% for the SNR listed in table 8.2.3.5-1.

Number of TX antennas	Number of RX antennas	Cyclic Prefix	Propagation conditions and correlation matrix (Annex B)	Channel Bandwidth [MHz]	FRC (Annex A)	$I_{\textit{offset}}^{\textit{HARQ-ACK}}$	SNR [dB]
1	2	Normal	EVA 5* Low	1.4	A.3-1	8	7.4
					A.4-3	5	14.2
				3	A.3-1	8	7.4
					A.4-4	5	13.7
				5	A.3-1	8	7.5
					A.4-5	5	13
				10	A.3-1	8	7.4
					A.4-6	5	13
				15	A.3-1	8	7.4
					A.4-7	5	12.6
				20	A.3-1	8	7.4
					A.4-8	5	12.5
			ETU70** Low	1.4	A.3-1	8	7.2
					A.4-3	5	14.4
				3	A.3-1	8	7.2
					A.4-4	5	13.5
				5	A.3-1	8	7.1
					A.4-5	5	13.1
				10	A.3-1	8	7.2
					A.4-6	5	12.9
				15	A.3-1	8	7.3
					A.4-7	5	12.7
				20	A.3-1	8	7.1
					A.4-8	5	12.6
			and Medium Range BS. S and Home BS.				

 Table 8.2.3.5-1: Test requirements for HARQ-ACK multiplexed on PUSCH

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.2.4 Performance requirements for High Speed Train conditions

8.2.4.1 Definition and applicability

The performance requirement of PUSCH for High Speed Train conditions is determined by a minimum throughput for a given SNR. The required throughput is expressed as 30% and 70% of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ retransmissions and are applied for normal CP.

A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidths supported by the BS are applicable.

The performance requirements for High Speed Train conditions are optional.

This requirement shall not be applied to Local Area BS and Home BS.

8.2.4.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.2.3.1

8.2.4.3 Test Purpose

The test shall verify the receiver's ability to achieve throughput under High Speed Train conditions for a given SNR.

8.2.4.4 Method of test

8.2.4.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7.

1) Connect the BS tester generating the wanted signal, channel simulators and AWGN generators to all BS antenna connectors (depending on HST scenario) via a combining network as shown in Annex I.3.2.

8.2.4.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth, defined in Table 8.2.4.4.2-1.

Channel bandwidth [MHz]	AWGN power level
1.4	-92.7 dBm / 1.08MHz
3	-88.7 dBm / 2.7MHz
5	-86.5 dBm / 4.5MHz
10	-83.5 dBm / 9MHz
15	-81.7 dBm / 13.5MHz
20	-80.4 dBm / 18MHz

Table 8.2.4.4.2-1: AWGN power level at the BS input

2) The characteristics of the wanted signal shall be configured according to the corresponding UL reference measurement channel defined in Annex A and the test parameters in Table 8.2.4.4.2-2.

Parameter	Value
Maximum number of HARQ transmissions	4
RV sequence	0, 2, 3, 1, 0, 2, 3, 1
Uplink-downlink allocation for TDD	Configuration 1 (2:2)
Subframes in which PUSCH is transmitted	For FDD: subframe #0 and #8 in radio frames for which SFN mod $4 = 0$ subframe #6 in radio frames for which SFN mod $4 = 1$ subframe #4 in radio frames for which SFN mod $4 = 2$ subframe #2 in radio frames for which SFN mod $4 = 3$ For TDD: Subframe #2 in each radio frames
Subframes in which PUCCH is transmitted (Note1, Note 2)	For FDD: subframe #5 in radio frames For TDD: Subframe #3 in each radio frame
NOTE 1: The configuration of PUCCH (format NOTE 2: The SNR values per antenna shall b	2) is optional. e set to -4.5 dB and -1.5 dB for Scenario 1 and 3, respectively.

Table 8.2.4.4.2-2: Test parameters for High Speed Train conditions

- 3) The channel simulators shall be configured according to the corresponding channel model defined in Annex B.3.
- 4) Adjust the equipment so that required SNR specified in Table 8.2.4.5-1 is achieved at the BS input.
- 5) For each of the reference channels in Table 8.2.4.5-1 applicable for the base station, measure the throughput, according to Annex E.

8.2.4.5 Test Requirement

The throughput measured according to subclause 8.2.4.4.2 shall not be below the limits for the SNR levels specified in Table 8.2.4.5-1.

Channel Bandwidth [MHz]	FRC (Annex A)	Number of TX antennas	Number of RX antennas	Propagation conditions and correlation matrix (Annex B)	Fraction of maximum throughput	SNR [dB]
			1	HST Scenario 3	30%	-1.2
1.4	A3-2				70%	2.2
	-		2	HST Scenario 1	30%	-3.6
				Low	70%	-0.3
			1	HST Scenario 3	30%	-1.8
3	A3-3	-3			70%	1.9
			2	HST Scenario 1	30%	-4.2
		-		Low	70%	-0.7
		_	1	HST Scenario 3	30%	-2.3
5	A3-4			HST Scenario 1	<u> </u>	1.6 -4.8
			2	Low	70%	-4.0
		1		LOW	30%	-2.4
			1	HST Scenario 3	70%	1.5
10	A3-5			HST Scenario 1	30%	-5.1
			2	Low	70%	-1.2
					30%	-2.4
45	40.0		1	1 HST Scenario 3	70%	1.5
15	A3-6		2	HST Scenario 1	30%	-4.9
			2	Low	70%	-1.1
		1	1	HST Scenario 3	30%	-2.4
20	A3-7		1		70%	1.5
20	A3-7		2	HST Scenario 1	30%	-5.0
			۷	Low	70%	-1.1

Table 8.2.4.5-1: Test requirements for High Speed Train conditions

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.2.5 Performance requirements for PUSCH with TTI bundling and enhanced HARQ pattern

8.2.5.1 Definition and applicability

The performance requirement of PUSCH configured with TTI bundling and enhanced HARQ pattern, as specified in 36.213 [16] clause 8 and 8.0, is determined by residual block error probability (BLER) after HARQ retransmission. The performance is measured by the required SNR at residual BLER of 2% for the FRCs listed in Annex A.11. The residual BLER is defined as follows:

$$BLER_{residual} = \frac{A}{B}$$

where:

- A is the number of incorrectly decoded transport blocks after HARQ retransmission.
- *B* is the number of transmitted transport blocks (retransmitted transport blocks are not counted repetitively).

The test is applicable for FDD. TTI bundling and enhanced HARQ pattern are enabled in the tests.

A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the highest channel bandwidth supported by the BS are applicable.

8.2.5.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.2.5.1.

8.2.5.3 Test Purpose

The test shall verify the receiver's ability to decode PUSCH configured with TTI bundling and enhanced HARQ pattern, under multipath fading propagation conditions for a given SNR.

8.2.5.4 Method of test

8.2.5.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7.

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.

8.2.5.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth, defined in Table 8.2.5.4.2-1.

Table 8.2.5.4.2-1: AWGN power level at the BS input

Channel bandwidth [MHz]	AWGN power level
1.4	-92.7dBm / 1.08MHz
3	-88.7dBm / 2.7MHz
5	-86.5dBm / 4.5MHz
10	-83.5dBm / 9MHz
15	-81.7dBm / 13.5MHz
20	-80.4dBm / 18MHz

2) The characteristics of the wanted signal shall be configured according to the corresponding UL reference measurement channel defined in annex A.11 and the test parameters in Table 8.2.5.4.2-2. The 3 contiguous resource blocks in the middle of the channel bandwidth shall be used for testing. In case the number of resource blocks in the channel bandwidth is even, the 3 contiguous resource blocks in the middle with lower numbers are to be used.

Table 8.2.5.4.2-2: Test parameters for PUSCH with TTI bundling and enhanced HARQ pattern

Parameter	Value
Number of TTIs for a TTI bundle	4
RV sequence for 4 TTIs within a TTI bundle	0, 2, 3, 1
HARQ round trip time	12 ms
Maximum number of HARQ transmissions for a TTI bundle	5

- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in annex B.
- 4) Adjust the equipment so that required SNR specified in Table 8.2.5.5-1 is achieved at the BS input during the PUSCH transmissions.
- 5) The signal generator sends a test pattern in which a new transmission is generated at every 20 ms as illustrated in figure 8.2.5.4.2-1. The residual BLER after HARQ retransmission is measured.

New transmission	New transmission	New transmission		
		•••		
!		!		
TTI #0	TTI #20	TTI #40		

Figure 8.2.5.4.2-1: Test signal pattern for PUSCH with TTI bundling and enhanced HARQ pattern (retransmissions of TTI bundles are not shown)

8.2.5.5 Test Requirement

The residual BLER measured according to subclause 8.2.5.4.2 shall be lower than 2% at the given SNR in Table 8.2.5.5-1.

Table 8.2.5.5-1: Test red	quirements for PUSCH with	TTI bundling	g and enhanced HARQ p	oattern
---------------------------	---------------------------	--------------	------------------------------	---------

Number	Number	Cyclic	Propagation	Channel Bandwidth / SNR [dB]					
of TX antennas	of RX antennas	Prefix	conditions and correlation matrix (Annex B)	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
1	2	Normal	EVA 5 Low	-4.1	-4.1	-4.1	-4.1	-4	-4
			ETU 300* Low	-7.3	-7.3	-7.4	-7.3	-7.4	-7.3
	4		EVA 5 Low	-7.8	-7.7	-7.7	-7.7	-7.8	-7.8
			ETU 300* Low	-9.7	-9.7	-9.7	-9.8	-9.7	-9.7
	8		EVA 5 Low	-10.8	-10.7	-10.8	-10.8	-10.7	-10.8
			ETU 300* Low	-11.9	-11.8	-11.9	-11.8	-11.8	-11.9
Note*: Not applicable for Local Area BS and Home BS.									

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.2.6 Enhanced performance requirements type A of PUSCH in multipath fading propagation conditions with synchronous interference

8.2.6.1 Definition and applicability

The enhanced performance requirement type A of PUSCH is determined by a minimum required throughput for a given SINR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ retransmissions.

The purpose is to verify the demodulation performance when the wanted PUSCH signal in the serving cell is interfered by PUSCH of one or two dominant interferer(s) applying the interference model defined in clause B.6.2.

The requirements apply to the BS supporting the enhanced performance requirements type A.

The requirements apply to the BS receiving the synchronous interference i.e. the interference is time-synchronous with the tested signal.

A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting FDD multiple channel bandwidths but not supporting FDD UL carrier aggregation, only the tests for the lowest and the highest FDD channel bandwidths supported by the BS are applicable. For a BS supporting TDD multiple channel bandwidths but not supporting TDD UL carrier aggregation, only the tests for the lowest and the highest TDD channel bandwidths supported by the BS are applicable.

For a BS supporting FDD UL carrier aggregation, only the FDD CC combination with largest aggregated bandwidth is used for the test. If there is more than one combination with the largest aggregated bandwidth, the FDD CC combination with the largest number of component carriers is used for the test. For this CC combination the tests using full PRB allocation FRC are conducted on per CC basis and measured by the required SINR levels corresponding to the bandwidths used on the different CCs.

For a BS supporting TDD UL carrier aggregation, only the TDD CC combination with largest aggregated bandwidth is used for the test. If there is more than one combination with the largest aggregated bandwidth, the TDD CC combination with the largest number of component carriers is used for the test. For this CC combination the tests using full PRB allocation FRC are conducted on per CC basis and measured by the required SINR levels corresponding to the bandwidths used on the different CCs.

8.2.6.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.2.6.1.

8.2.6.3 Test Purpose

The test shall verify the receiver's ability to achieve throughput on the wanted signal at the presence of one or two dominant interferer(s) as specified in section 8.2.6.4.2, under multipath fading propagation conditions for a given SINR.

8.2.6.4 Method of test

8.2.6.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7.

- 1) Connect the BS tester generating the wanted signal, interference signal(s), multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.7.
- 2) Interconnect attenuators for relative power setting purposes for all transmitting branches (wanted signal and all interferers, separately).

8.2.6.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth, defined in Table 8.2.6.4.2-1.

Channel bandwidth [MHz]	AWGN power level
1.4	-92.7dBm / 1.08MHz
3	-88.7dBm / 2.7MHz
5	-86.5dBm / 4.5MHz
10	-83.5dBm / 9MHz
15	-81.7dBm / 13.5MHz
20	-80.4dBm / 18MHz

Table 8.2.6.4.2-1: AWGN power level at the BS input

2) The characteristics of the wanted signal and the interferer(s) shall be configured according to the corresponding UL reference measurement channel defined in annex A and the test parameters in Table 8.2.6.4.2-2.

F	arameter		Unit	Tested signal	Interferer 2 (Note 1)			
	Maximum number of HARQ transmissions			4	N/A	N/A		
R	/ sequence			0, 2, 3, 1, 0, 2, 3, 1	N/A	N/A		
		et 1	dB	N/A	-1.11	-10.91		
DIP (Note 2		et 2	dB	N/A	-0.43	-13.78		
	Cell Id			0) 1 2			
Inter	Interference model			N/A	As specified in clause B.6.2	As specified in clause B.6.2		
C	/clic Prefix				Normal			
Uplink-down	ink allocation fo	or TDD		Conf	iguration 1 (2:2)			
Demodulatio	n reference sig	nal for		$\Delta_{\rm ss}$ =0, r	$\Delta_{\rm ss}$ =0, $n_{\rm DMRS}^{(1)}$ =0, $n_{\rm DMRS,0}^{(2)}$ =0			
	PUSCH			Group hopping and	sequence hopping	are disabled.		
Note 1: One explicit interferer, i.e., interferer 1, is modelled for tests with 2 RX antennas. Two explicit interferers are modelled for tests with 4 or 8 RX antennas.								
Note 2: The respective received energy of ea			y of each i	nterferer relative to N' is	defined by its ass	ociated DIP		
value as specified in clause B.6.1. DIP set 1 and set 2 are derived respectively in homogeneous a heterogeneous network scenarios.					mogeneous and			
Note 3: All ce	ells are time-syr	nchronous.						

Table 8.2.6.4.2-2: Test parameters for enhanced performance requirement type A

- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in annex B.
- 4) Adjust the equipment so that required SINR specified in Table 8.2.6.5-1 to 8.2.6.5-6 is achieved at the BS input.
- 5) For each of the reference channels in Table 8.2.6.5-1 to 8.2.6.5-6 applicable for the base station, measure the throughput, according to annex E.

8.2.6.5 Test Requirement

The throughput measured according to subclause 8.2.6.4.2 shall not be below the limits for the SINR levels specified in Table 8.2.6.5-1 to Table 8.2.6.5-6.

Number of TX	Number of RX	Propagation conditions and correlation matrix (Annex B) (Note 2)		DIP set	FRC (Annex A)	Fraction of maximum	SINR [dB]	
antennas (Note 1)	antennas (Note 1)	Tested signal	Interferer 1	Interferer 2			throughput	(Note 3)
1	2	EPA 5 Low	ETU 5 Low	N/A	Set 2	A12-1	70%	-4.2
		EVA 70 Low	ETU 70 Low	N/A	Set 1*	A12-1	70%	-1.4
	4	EPA 5 Low	ETU 5 Low	ETU 5 Low	Set 2	A13-1	70%	-3.5
		EVA 70 Low	ETU 70 Low	ETU 70 Low	Set 1*	A13-1	70%	0.5
	8	EPA 5 Low	ETU 5 Low	ETU 5 Low	Set 2	A4-3	70%	-4.1
		EVA 70 Low	ETU 70 Low	ETU 70 Low	Set 1*	A4-3	70%	0.6
Note*: Not applicable for Local Area BS and Home BS.								
Note 1: Antenna configuration applies for each of the tested signal, interferer 1 and interferer 2.								
Note 2: T								

Number of TX	Number of RX				DIP set	FRC (Annex A)	Fraction of maximum	SINR [dB]
antennas (Note 1)	antennas (Note 1)	Tested signal	Interferer 1	Interferer 2			throughput	(Note 3)
1	2	EPA 5 Low	ETU 5 Low	N/A	Set 2	A12-2	70%	-4.4
		EVA 70 Low	ETU 70 Low	N/A	Set 1*	A12-2	70%	-1.7
	4	EPA 5 Low	ETU 5 Low	ETU 5 Low	Set 2	A13-2	70%	-3.8
		EVA 70 Low	ETU 70 Low	ETU 70 Low	Set 1*	A13-2	70%	0.5
	8	EPA 5 Low	ETU 5 Low	ETU 5 Low	Set 2	A4-4	70%	-4.0
		EVA 70 Low	ETU 70 Low	ETU 70 Low	Set 1*	A4-4	70%	0.5
Note*: Not applicable for Local Area BS and Home BS.								
Note 1: Antenna configuration applies for each of the tested signal, interferer 1 and interferer 2.								

Note 2: The propagation conditions for the tested signal, interferer 1 and interferer 2 are statistically independent.

Table 8.2.6.5-3: Enhanced performance requirement type A for PUSCH, 5 MHz Channel Bandwidth

Number of TX	Number of RX	Propagation matri	DIP	FRC (Annex	Fraction of maximum	SINR [dB]		
antennas (Note 1)	antennas (Note 1)	Tested signal	Interferer 1	Interferer 2	set	(Annex A)	throughput	(Note 3)
1	2	EPA 5 Low	ETU 5 Low	N/A	Set 2	A12-3	70%	-4.5
		EVA 70 Low	ETU 70 Low	N/A	Set 1*	A12-3	70%	-1.9
	4	EPA 5 Low	ETU 5 Low	ETU 5 Low	Set 2	A13-3	70%	-3.5
		EVA 70 Low	ETU 70 Low	ETU 70 Low	Set 1*	A13-3	70%	0.7
	8	EPA 5 Low	ETU 5 Low	ETU 5 Low	Set 2	A4-5	70%	-4.1
		EVA 70 Low	ETU 70 Low	ETU 70 Low	Set 1*	A4-5	70%	0.1
Note*: Not a	Note*: Not applicable for Local Area BS and Home BS.							
Note 1: Antenna configuration applies for each of the tested signal, interferer 1 and interferer 2.								
Note 2: Th	ne propagatio	n conditions for	the tested signation	al, interferer 1ar	nd interfere	er 2 are stati	stically independ	dent.

Table 8.2.6.5-4: Enhanced performance requirement type A for PUSCH, 10 MHz Channel Bandwidth

Number of TX	Number of RX			nditions and correlation Annex B) (Note 2)		FRC (Annex A)	Fraction of maximum	SINR [dB]
antennas (Note 1)	antenna s (Note 1)	Tested signal	Interferer 1	Interferer 2			throughput	(Note 3)
1	2	EPA 5 Low	ETU 5 Low	N/A	Set 2	A12-4	70%	-4.8
		EVA 70 Low	ETU 70 Low	N/A	Set 1*	A12-4	70%	-2.1
	4	EPA 5 Low	ETU 5 Low	ETU 5 Low	Set 2	A13-4	70%	-3.6
		EVA 70 Low	ETU 70 Low	ETU 70 Low	Set 1*	A13-4	70%	0.5
	8	EPA 5 Low	ETU 5 Low	ETU 5 Low	Set 2	A4-6	70%	-3.9
		EVA 70 Low	ETU 70 Low	ETU 70 Low	Set 1*	A4-6	70%	0.4
Note*: Not a	pplicable for	Local Area BS a	and Home BS.					
Note 1: A	ntenna confi	guration applies	for each of the t	ested signal, inte	erferer 1 a	and interferer	2.	
Note 2: T	he propagati	on conditions for	the tested signation	al, interferer 1an	d interfer	er 2 are statis	tically independ	lent.

Number of TX	Number of RX	Propagation conditions and correlation matrix (Annex B) (Note 2)		DIP set	FRC (Annex A)	Fraction of maximum	SINR [dB]	
antennas (Note 1)	antennas (Note 1)	Tested signal	Interferer 1	Interferer 2			throughput	(Note 3)
1	2	EPA 5 Low	ETU 5 Low	N/A	Set 2	A12-5	70%	-4.9
		EVA 70 Low	ETU 70 Low	N/A	Set 1*	A12-5	70%	-2.1
	4	EPA 5 Low	ETU 5 Low	ETU 5 Low	Set 2	A13-5	70%	-3.4
		EVA 70 Low	ETU 70 Low	ETU 70 Low	Set 1*	A13-5	70%	0.6
	8	EPA 5 Low	ETU 5 Low	ETU 5 Low	Set 2	A4-7	70%	-3.9
		EVA 70 Low	ETU 70 Low	ETU 70 Low	Set 1*	A4-7	70%	0.3
Note*: Not applicable for Local Area BS and Home BS.								
Note 1: Antenna configuration applies for each of the tested signal, interferer 1 and interferer 2.								

Table 8.2.6.5-5 Enhanced performance requirement type A for PUSCH, 15 MHz Channel Bandwidth

Note 2: The propagation conditions for the tested signal, interferer 1 and interferer 2 are statistically independent.

Table 8.2.6.5-6 Enhanced performance requirement type A for PUSCH, 20 MHz Channel Bandwidth

Number of TX	Number of RX	Propagation conditions and correlation matrix (Annex B) (Note 2)			DIP set	FRC (Annex	Fraction of maximum	SINR [dB]
antennas (Note 1)	antennas (Note 1)	Tested signal	Interferer 1	Interferer 2		Â)	throughput	(Note 3)
1	2	EPA 5 Low	ETU 5 Low	N/A	Set 2	A12-6	70%	-5.1
		EVA 70 Low	ETU 70 Low	N/A	Set 1*	A12-6	70%	-2.4
	4	EPA 5 Low	ETU 5 Low	ETU 5 Low	Set 2	A13-6	70%	-3.9
		EVA 70 Low	ETU 70 Low	ETU 70 Low	Set 1*	A13-6	70%	0.2
	8	EPA 5 Low	ETU 5 Low	ETU 5 Low	Set 2	A4-8	70%	-4.0
		EVA 70 Low	ETU 70 Low	ETU 70 Low	Set 1*	A4-8	70%	0.5
Note*: Not applicable for Local Area BS and Home BS.								
Note 1: Antenna configuration applies for each of the tested signal, interferer 1 and interferer 2. Note 2: The propagation conditions for the tested signal, interferer 1 and interferer 2 are statistically independent.								

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.2.6A Enhanced performance requirements type A of PUSCH in multipath fading propagation conditions with asynchronous interference

8.2.6A.1 Definition and applicability

The enhanced performance requirement type A of PUSCH is determined by a minimum required throughput for a given SINR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ retransmissions.

The purpose is to verify the demodulation performance when the wanted PUSCH signal in the serving cell is interfered by PUSCH of two interferers from the same interfering cell, applying the interference model defined in clause B.6.3.

The requirements apply to the BS supporting the enhanced performance requirements type A.

The requirements apply to the BS receiving the asynchronous interference i.e. the interference is time-asynchronous with the tested signal.

A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting FDD multiple channel bandwidths but not supporting FDD UL carrier aggregation, only the tests for the lowest and the highest FDD channel bandwidths supported by the BS are applicable. For a BS supporting TDD multiple channel bandwidths but not supporting TDD UL carrier aggregation, only the tests for the lowest and the highest TDD channel bandwidths supported by the BS are applicable.

For a BS supporting FDD UL carrier aggregation, only the FDD CC combination with largest aggregated bandwidth is used for the test. If there is more than one combination with the largest aggregated bandwidth, the FDD CC combination with the largest number of component carriers is used for the test. For this CC combination the tests using full PRB allocation FRC are conducted on per CC basis and measured by the required SINR levels corresponding to the bandwidths used on the different CCs.

For a BS supporting TDD UL carrier aggregation, only the TDD CC combination with largest aggregated bandwidth is used for the test. If there is more than one combination with the largest aggregated bandwidth, the TDD CC combination with the largest number of component carriers is used for the test. For this CC combination the tests using full PRB allocation FRC are conducted on per CC basis and measured by the required SINR levels corresponding to the bandwidths used on the different CCs.

8.2.6A.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.2.6A.1.

8.2.6A.3 Test Purpose

The test shall verify the receiver's ability to achieve throughput on the wanted signal at the presence of two dominant interferers as specified in section 8.2.6A.4.2, under multipath fading propagation conditions for a given SINR.

8.2.6A.4 Method of test

8.2.6A.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7.

- Connect the BS tester generating the wanted signal, interference signals, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.7.
- 2) Interconnect attenuators for relative power setting purposes for all transmitting branches (wanted signal and all interferers, separately).

8.2.6A.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth, defined in Table 8.2.6A.4.2-1.

Channel bandwidth [MHz]	AWGN power level
1.4	-92.7dBm / 1.08MHz
3	-88.7dBm / 2.7MHz
5	-86.5dBm / 4.5MHz
10	-83.5dBm / 9MHz
15	-81.7dBm / 13.5MHz
20	-80.4dBm / 18MHz

Table 8.2.6A.4.2-1: AWGN power level at the BS input

2) The characteristics of the wanted signal and the interferers shall be configured according to the corresponding UL reference measurement channel defined in annex A and the test parameters in Table 8.2.6A.4.2-2.

Parameter	Unit	Tested signal	Interferer 1-1 (Note 1)	Interferer 1-2 (Note 1)		
Maximum number of HARQ transmissions		4	N/A	N/A		
RV sequence		0, 2, 3, 1, 0, 2, 3, 1	N/A	N/A		
DIP (Note 2)	dB	N/A	-0.43	-0.43		
Cell Id		0	1	1		
Interference model		N/A	As specified in clause B.6.3	As specified in clause B.6.3		
Cyclic Prefix			Normal			
Demodulation reference signal for PUSCH		$\Delta_{\rm ss}$ =0, $n_{\rm DMRS}^{(1)}$ =0, $n_{\rm DMRS,0}^{(2)}$ =0 Group hopping and sequence hopping are disabled.				
Note 1: Interferer 1-1 and interferer 1-2 are connected to the same cell and configured to transmit respectively in the even subframes and odd subframes.						
Note 2: The respective received energy of each interferer relative to N' is defined by its associated DIP value as specified in clause B.6.1.						
Note 3: The transmissions of both interferer 1-1 and interferer 1-2 are delayed with respect to the tested signal by 0.33 ms.						

Table 8.2.6A.4.2-2: Test parameters for enhanced performance requirement type A

- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in annex B.
- 4) Adjust the equipment so that required SINR specified in Table 8.2.6A.5-1 to 8.2.6A.5-6 is achieved at the BS input.
- 5) For each of the reference channels in Table 8.2.6A.5-1 to 8.2.6A.5-6 applicable for the base station, measure the throughput, according to annex E.

8.2.6A.5 Test Requirement

The throughput measured according to subclause 8.2.6A.4.2 shall not be below the limits for the SINR levels specified in Table 8.2.6A.5-1 to Table 8.2.6A.5-6.

Table 8.2.6A.5-1 Enhanced	performance requirement type	A for PUSCH, 1.4M	Hz Channel Bandwidth

Number of TX	Number of RX	Propagation conditions and correlation matrix (Annex B) (Note 2)			FRC (Annex A)	Fraction of maximum	SINR [dB]	
antennas (Note 1)	antennas (Note 1)	Tested signal	Interferer 1-1	Interferer 1-2		throughput		
1	2	EPA 5 Low	ETU 5 Low	ETU 5 Low	A12-1	70%	-1.7	
	4	EPA 5 Low	ETU 5 Low	ETU 5 Low	A13-1	70%	-0.8	
	8	EPA 5 Low	ETU 5 Low	ETU 5 Low	A4-3	70%	-1.6	
Note 1: Antenna configuration applies for each of the tested signal, interferer 1-1 and interferer 1-2.								

Table 8.2.6A.5-2 Enhanced performance requirement type A for PUSCH, 3 MHz Channel Bandwidth

Number of TX antennas (Note 1)	Number of RX antennas (Note 1)	Propagation conditions and correlation matrix (Annex B) (Note 2)			FRC (Annex A)	Fraction of maximum throughput	SINR [dB]	
		Tested signal	Interferer 1-1	Interferer 1-2				
1	2	EPA 5 Low	ETU 5 Low	ETU 5 Low	A12-2	70%	-1.9	
	4	EPA 5 Low	ETU 5 Low	ETU 5 Low	A13-2	70%	-1.0	
	8	EPA 5 Low	EPA 5 Low ETU 5 Low ETU 5 Low A4-4 70%					
Note 1: Antenna configuration applies for each of the tested signal, interferer 1-1 and interferer 1-2.								

Number of TX	Number of RX	Propagation conditions and correlation matrix (Annex B) (Note 2)			FRC (Annex A)	Fraction of maximum	SINR [dB]	
antennas (Note 1)	antennas (Note 1)	Tested signal	Interferer 1-1	Interferer 1-2		throughput		
1	2	EPA 5 Low	ETU 5 Low	ETU 5 Low	A12-3	70%	-2.0	
	4	EPA 5 Low	ETU 5 Low	ETU 5 Low	A13-3	70%	-0.7	
	8	EPA 5 Low	ETU 5 Low	ETU 5 Low	A4-5	70%	-1.5	
Note 1:Antenna configuration applies for each of the tested signal, interferer 1-1 and interferer 1-2.Note 2:The propagation conditions for the tested signal, interferer 1-1 and interferer 1-2 are statistically								
in	dependent.							

Table 8.2.6A.5-3 Enhanced performance requirement type A for PUSCH, 5 MHz Channel Bandwidth

Table 8.2.6A.5-4 Enhanced performance requirement type A for PUSCH, 10 MHz Channel Bandwidth

Number of TX	Number of RX	Propagation conditions and correlation matrix (Annex B) (Note 2)			FRC (Annex A)	Fraction of maximum	SINR [dB]		
antennas (Note 1)	antennas (Note 1)	Tested signal	Interferer 1-1	Interferer 1-2		throughput			
1	2	EPA 5 Low	ETU 5 Low	ETU 5 Low	A12-4	70%	-2.2		
	4	EPA 5 Low	ETU 5 Low	ETU 5 Low	A13-4	70%	-0.7		
	8	EPA 5 Low	ETU 5 Low	ETU 5 Low	A4-6	70%	-1.3		
	Note 1: Antenna configuration applies for each of the tested signal, interferer 1-1 and interferer 1-2.								
Note 2:	The propagation conditions for the tested signal, interferer 1-1 and interferer 1-2 are statistically								
i	ndependent.		-						

Table 8.2.6A.5-5 Enhanced performance requirement type A for PUSCH, 15 MHz Channel Bandwidth

Number of TX	Number of RX	Propagation conditions and correlation matrix (Annex B) (Note 2)			FRC (Annex A)	Fraction of maximum	SINR [dB]		
antennas (Note 1)	antennas (Note 1)	Tested signal	Interferer 1-1	Interferer 1-2		throughput			
1	2	EPA 5 Low	ETU 5 Low	ETU 5 Low	A12-5	70%	-2.1		
	4	EPA 5 Low	ETU 5 Low	ETU 5 Low	A13-5	70%	-0.5		
	8	EPA 5 Low	ETU 5 Low	ETU 5 Low	A4-7	70%	-0.8		
Note 1: A	Note 1: Antenna configuration applies for each of the tested signal, interferer 1-1 and interferer 1-2.								

Table 8.2.6A.5-6 Enhanced performance requirement type A for PUSCH, 20 MHz Channel Bandwidth

Number of TX	Number of RX	Propagation conditions and correlation matrix (Annex B) (Note 2)			FRC (Annex A)	Fraction of maximum	SINR [dB]	
antennas (Note 1)	antennas (Note 1)	Tested signal	Interferer 1-1	Interferer 1-2		throughput		
1	2	EPA 5 Low	ETU 5 Low	ETU 5 Low	A12-6	70%	-2.3	
	4	EPA 5 Low	ETU 5 Low	ETU 5 Low	A13-6	70%	-0.5	
	8	EPA 5 Low	ETU 5 Low	ETU 5 Low	A4-8	70%	-0.7	
Note 1: Antenna configuration applies for each of the tested signal, interferer 1-1 and interferer 1-2.								
	The propagation ndependent.	n conditions for	the tested signal	l, interferer 1-1 and	d interferer 1-2	are statistically		

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.2.7 Performance requirements of PUSCH in multipath fading propagation conditions transmission on single antenna port for coverage enhancment

8.2.7.1 Definition and applicability

The performance requirement of PUSCH is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ re-transmissions.

The tests for CEModeA defined in Section 8.2.7 are applicable only to the base stations supporting coverage enhancement configured with CEModeA. The tests for CEModeB defined in Section 8.2.7 are applicable only to the base stations supporting coverage enhancement configured with CEModeB.

A test for a specific channel bandwidth is only applicable if the BS supports it. For a BS supporting FDD multiple channel bandwidths, only the tests for the lowest and the highest FDD channel bandwidths supported by the BS are applicable. For a BS supporting TDD multiple channel bandwidths, only the tests for the lowest and the highest TDD channel bandwidths supported by the BS are applicable.

8.2.7.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.2.7.

8.2.7.3 Test Purpose

The test shall verify the receiver's ability to achieve throughput under multipath fading propagation conditions for a given SNR.

8.2.7.4 Method of test

8.2.7.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7.

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.

8.2.7.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth, defined in Table 8.2.7.4.2-1.

Channel bandwidth [MHz]	AWGN power level
1.4	-92.7dBm / 1.08MHz
3	-88.7dBm / 2.7MHz
5	-86.5dBm / 4.5MHz
10	-83.5dBm / 9MHz
15	-81.7dBm / 13.5MHz
20	-80.4dBm / 18MHz

Table 8.2.7.4.2-1: AWGN power level at the BS input

2) The characteristics of the wanted signal shall be configured according to the corresponding UL reference measurement channel defined in annex A and the test parameters in Table 8.2.7.4.2-2. The index of the narrowband is set to 0. For reference channels using resource blocks less than 6, the resource blocks shall be allocated from the lowest number within the indicated narrowband.

Parameter	unit	CEMode A	CEMode B			
Maximum number of HARQ transmissions		4	2			
RV sequences		0, 2, 3, 1, 0, 2, 3, 1	FDD: 0, 0, 0, 0, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1 TDD: 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1			
Number of PUSCH repetitions		8	256			
Frequency hopping		ON	ON			
Frequency hopping interval	subframes	4: FDD 5: TDD	4: FDD 5: TDD			
Frequency hopping offset		$N_{\scriptscriptstyle NB}^{\scriptscriptstyle UL}-1$ (Note 2)	$N_{\scriptscriptstyle NB}^{\scriptscriptstyle UL}{-}1$ (Note 2)			
Note 1: Guard period shall be created according to TS36.211, 5.2.5 [12]						
Note 2: N_{NB}^{UL} is the total number of uplink narrowbands specified in TS36.211, 5.2.4 [12]						

Table 8.2.7.4.2-2: Test parameters for testing PUSCH

- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in annex B.
- 4) Adjust the equipment so that required SNR specified in Table 8.2.7.5-1 to 8.2.7.5-2 is achieved at the BS input.
- 5) For each of the reference channels in Table 8.2.7.5-1 to 8.2.7.5-2 applicable for the base station, measure the throughput, according to annex E.

8.2.7.5 Test Requirement

The throughput measured according to subclause 8.2.7.4.2 shall not be below the limits for the SNR levels specified in Table 8.2.7.5-1 for CEMode A tests and not be below the limits for the SNR levels specified in Table 8.2.7.5-2 for CEMode B tests.

Number of TX antennas	Number of RX antennas	Channel Bandwidth (MHz)	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
1	2	3	EPA 5Hz Low	A3-2	70%	-5.6
1	2	5	EPA 5Hz Low	A3-2	70%	-6.0
1	2	10	EPA 5Hz Low	A3-2	70%	-6.3
1	2	15	EPA 5Hz Low	A3-2	70%	-6.3
1	2	20	EPA 5Hz Low	A3-2	70%	-6.4

Table 8.2.7.5-1 Minimum requirements for PUSCH for CEMode A

Number of TX antennas	Number of RX antennas	Channel Bandwidth (MHz)	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Fraction of maximum throughput	SNR [dB]
1	2	3	ETU 1Hz Low	A3-1	70%	-14.4
1	2	5	ETU 1Hz Low	A3-1	70%	-14.6
1	2	10	ETU 1Hz Low	A3-1	70%	-14.7
1	2	15	ETU 1Hz Low	A3-1	70%	-14.5
1	2	20	ETU 1Hz Low	A3-1	70%	-14.6

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.3 Performance requirements for PUCCH

8.3.1 ACK missed detection for single user PUCCH format 1a transmission on single antenna port

8.3.1.1 Definition and applicability

The performance requirement of single user PUCCH for ACK missed detection is determined by the two parameters: probability of false detection of the ACK and the probability of detection of ACK. The performance is measured by the required SNR at probability of detection equal to 0.99. The probability of false detection of the ACK shall be 0.01 or less.

The probability of false detection of the ACK is defined as a conditional probability of erroneous detection of the ACK when input is only noise.

The probability of detection of ACK is defined as conditional probability of detection of the ACK when the signal is present.

The test is applicable to all BS. A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidth supported by the BS are applicable.

ACK/NACK repetitions are disabled for PUCCH transmission.

8.3.1.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.3.1.1 and 8.3.2.1.

8.3.1.3 Test purpose

The test shall verify the receiver's ability to detect ACK under multipath fading propagation conditions for a given SNR.

8.3.1.4 Method of test

8.3.1.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.

8.3.1.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth defined in Table 8.3.1.4.2-1.

Table 8.3.1.4.2-1: AWGN power level at the BS input

Channel bandwidth [MHz]	AWGN power level
1.4	-89.7 dBm / 1.08MHz
3	-85.7 dBm / 2.7MHz
5	-83.5 dBm / 4.5MHz
10	-80.5 dBm / 9MHz
15	-78.7 dBm / 13.5MHz
20	-77.4 dBm / 18MHz

- 2) The characteristics of the wanted signal shall be configured according to TS 36.211 [12].
- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.

- 4) Adjust the equipment so that the SNR specified in Table 8.3.1.5-1 is achieved at the BS input during the ACK transmissions.
- 5) The signal generator sends a test pattern with the pattern outlined in figure 8.3.1.4.2-1. The following statistics are kept: the number of ACKs detected in the idle periods and the number of missed ACKs.

r	
<u>۲</u>	

ACK

ACK

...

Figure 8.3.1.4.2-1: Test signal pattern for single user PUCCH format 1a demodulation tests

8.3.1.5 Test Requirement

The fraction of falsely detected ACKs shall be less than 1% and the fraction of correctly detected ACKs shall be larger than 99% for the SNR listed in Table 8.3.1.5-1.

Number	Number	Cyclic	Propagation		Channel	Bandwi	dth / SNR	[dB]	
of TX	of RX	Prefix	conditions	1.4	3 MHz	5	10	15	20
antennas	antennas		and	MHz		MHz	MHz	MHz	MHz
			correlation matrix						
			(Annex B)						
1	2	Normal	EPA 5 Low	-1.9	-3.3	-4.2	-4.8	-4.7	-4.5
			EVA 5 Low	-3.9	-4.5	-4.5	-4.4	-4.5	-4.5
			EVA 70 Low	-4.3	-4.6	-4.6	-4.5	-4.6	-4.5
			ETU 300* Low	-4.4	-4.5	-4.3	-4.4	-4.6	-4.6
		Extended	ETU 70* Low	-3.6	-3.7	-3.5	-3.7	-3.6	-3.7
	4	Normal	EPA 5 Low	-7.3	-7.8	-8.1	-8.3	-8.3	-8.4
			EVA 5 Low	-8.2	-8.5	-8.5	-8.2	-8.3	-8.3
			EVA 70 Low	-8.3	-8.4	-8.4	-8.2	-8.4	-8.2
			ETU 300* Low	-8.1	-8.3	-8.1	-8.1	-8.3	-8.2
		Extended	ETU 70* Low	-7.3	-7.5	-7.3	-7.5	-7.4	-7.4
	8	Normal	EPA 5 Low	-10.6	-10.9	-11.6	-11.7	-11.7	-11.7
			EVA 5 Low	-11.4	-11.4	-11.5	-11.5	-11.7	-11.6
			EVA 70 Low	-11.4	-11.5	-11.6	-11.5	-11.7	-11.5
			ETU 300* Low	-11	-11	-11	-11.2	-11	-11.2
		Extended	ETU 70* Low	-9.9	-10.1	-10	-10.1	-10	-10
Note*:	Not applicabl	e for Local A	rea BS and Home BS.						

Table 8.3.1.5-1: Required SNR for single user PUCCH format 1a demodulation tests

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.3.2 CQI performance requirements for PUCCH format 2 transmission on single antenna port

8.3.2.1 Definition and applicability

The performance requirement of PUCCH format 2 for CQI is determined by the block error probability (BLER) of CQI. The performance is measured by the required SNR at BLER of 1%.

The CQI block error probability is defined as the conditional probability of incorrectly decoding the CQI information when the CQI information is sent. All CQI information shall be decoded (no exclusion due to DTX).

The test is applicable to all BS. A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidths supported by the BS are applicable.

8.3.2.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.3.3.1.

8.3.2.3 Test purpose

The test shall verify the receiver's ability to detect CQI under multipath fading propagation conditions for a given SNR.

8.3.2.4 Method of test

8.3.2.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.

8.3.2.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth defined in Table 8.3.2.4.2-1.

Channel bandwidth [MHz]	AWGN power level
1.4	-89.7 dBm / 1.08MHz
3	-85.7 dBm / 2.7MHz
5	-83.5 dBm / 4.5MHz
10	-80.5 dBm / 9MHz
15	-78.7 dBm / 13.5MHz
20	-77.4 dBm / 18MHz

Table 8.3.2.4.2-1: AWGN power level at the BS input

- 2) The characteristics of the wanted signal shall be configured according to TS 36.211. The CQI information bit payload per sub-frame is equal to 4 bits.
- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.
- 4) Adjust the equipment so that the SNR specified in Table 8.3.2.5-1 is achieved at the BS input during the CQI transmissions.
- 5) The signal generator sends a test pattern with the pattern outlined in figure 8.3.2.4.2-1. The following statistics are kept: the number of incorrectly decoded CQI.

CQI

COI

....

Figure 8.3.2.4.2-1: Test signal pattern for PUCCH format 2 demodulation tests

8.3.2.5 Test Requirement

The fraction of incorrectly decoded CQIs shall be less than 1% for the SNR listed in Table 8.3.2.5-1.

Table 8.3.2.5-1: Required SNR for PUCCH format 2 demodulation tests

Number	Number									
of TX antennas	of RX antennas	Prefix	conditions and correlation matrix (Annex B)	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
1	2	Normal	EVA 5* Low	-3.1	-3.5	-3.8	-3.4	-3.6	-3.6	
			ETU 70** Low	-3.3	-3.8	-3.6	-3.8	-3.8	-3.8	
Note*: Not applicable for Wide Area BS and Medium Range BS.										
Note**:	Not applicable	e for Local Ar	ea BS and Home	BS.						

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.3.3 ACK missed detection for multi user PUCCH format 1a

8.3.3.1 Definition and applicability

The performance requirement of multi user PUCCH for ACK missed detection is determined by the two parameters: probability of false detection of the ACK and the probability of detection of ACK on the wanted signal. The performance is measured by the required SNR at probability of detection equal to 0.99. The probability of false detection of the ACK shall be 0.01 or less. These probabilities are measured on the wanted signal at presence of three interfering signals as specified in section 8.3.3.4.2.

The probability of false detection of the ACK is defined as a conditional probability of erroneous detection of the ACK when input is only noise and the interfering signals are present.

The probability of detection of ACK is defined as conditional probability of detection of the ACK when the signal is present.

The test is applicable to all BS. A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidths supported by the BS are applicable.

Multi user PUCCH test is performed only for 2 Rx antennas, Normal CP and for ETU70 propagation conditions.

ACK/NACK repetitions are disabled for PUCCH transmission.

8.3.3.2 Minimum Requirement

The minimum requirements are in TS 36.104 [2] subclause 8.3.1.1 and 8.3.4.1.

8.3.3.3 Test purpose

The test shall verify the receiver's ability to detect ACK on the wanted signal at presence of three interfering signals as specified in section 8.3.3.4.2, under multipath fading propagation conditions for a given SNR.

8.3.3.4 Method of test

8.3.3.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7.

- Connect the BS tester generating the wanted and all interfering signals, multipath fading simulators and AWGN generators to both BS antenna connectors for 2Rx diversity reception via a combining network as shown in Annex I.3.3.
- 2) Interconnect attenuators for relative power setting purposes for all transmitting branches (wanted signal and all interferers, separately).

8.3.3.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth defined in Table 8.3.3.4.2-1.

Channel bandwidth [MHz]	AWGN power level
1.4	-89.7 dBm / 1.08MHz
3	-85.7 dBm / 2.7MHz
5	-83.5 dBm / 4.5MHz
10	-80.5 dBm / 9MHz
15	-78.7 dBm / 13.5MHz
20	-77.4 dBm / 18MHz

 Table 8.3.3.4.2-1: AWGN power level at the BS input

2) In multi user PUCCH test, four signals are configured: one wanted signal and three interferers, which are transmitted via separate fading paths using relative power settings presented in Annex A.9.

All signals are transmitted on the same PUCCH resources, with different PUCCH channel indices, as presented in Annex A.9.

The characteristics of the all signals (i.e. wanted and all interferers) shall be configured according to 36.211 [12].

- 3) The multipath fading emulators shall be configured according to ETU70 propagation conditions defined in Annex B.
- 4) Adjust the equipment so that the SNR specified in Table 8.3.3.5-1 is achieved at the BS input during the ACK transmissions on the wanted signal.
- 5) The signal generator sends a test pattern with the pattern outlined in figure 8.3.3.4.2-1. This statement is valid for the wanted PUCCH signal. All interferers are present for all subframes. The following statistics are kept: the number of ACKs detected in the idle periods and the number of missed ACKs on the wanted PUCCH signal.

ACK ACK •••

Figure 8.3.3.4.2-1: Test signal pattern for multi user PUCCH demodulation tests

8.3.3.5 Test Requirement

The fraction of falsely detected ACKs on the wanted signal shall be less than 1% and the fraction of correctly detected ACKs shall be larger than 99% for the SNR listed in Table 8.3.3.5-1.

Number	Number	Cyclic	Propagation		Channe	el Bandv	vidth / S	NR [dB]	
of TX antennas	of RX antennas	Prefix	conditions and correlation matrix (Annex B)	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
1	2	Normal	ETU 70* Low	-3.5	-3.8	-3.8	-4.0	-4.0	-3.8
Note*: Not a	Note*: Not applicable for Local Area BS and Home BS.								

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.3.4 ACK missed detection for PUCCH format 1b with Channel Selection

8.3.4.1 Definition and applicability

The performance requirement of PUCCH format 1b with Channel Selection for ACK missed detection is determined by the two parameters: probability of false detection of the ACK and the probability of detection of ACK. The performance is measured by the required SNR at probability of detection equal to 0.99. The probability of false detection of the ACK shall be 0.01 or less.

The probability of false detection of the ACK is defined as a conditional probability of erroneous detection of the ACK at particular channel when input is only noise.

The probability of detection of ACK is defined as conditional probability of detection of the ACK when the ACK was sent at particular channel.

The test is applicable to all BS. A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidth supported by the BS are applicable.

The number of encoded ACK/NACK bits per sub-frame is equal to 4 bits (AAAA),

ACK/NACK repetitions are disabled for PUCCH transmission.

8.3.4.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.3.1.1 and 8.3.5.1.

8.3.4.3 Test purpose

The test shall verify the receiver's ability to detect ACK bits under multipath fading propagation conditions for a given SNR.

8.3.4.4 Method of test

8.3.4.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.

8.3.4.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth defined in Table 8.3.4.4.2-1.

Table 8.3.4.4.2-1: AWGN power level at the BS input

Channel bandwidth [MHz]	AWGN power level
10	-80.5 dBm / 9MHz
15	-78.7 dBm / 13.5MHz
20	-77.4 dBm / 18MHz

- 2) The characteristics of the wanted signal shall be configured according to TS 36.211 [12].
- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.
- 4) Adjust the equipment so that the SNR specified in Table 8.3.4.5-1 is achieved at the BS input during the AAAA codeword transmissions.
- 5) The signal generator sends AAAA codeword in regular time periods. The following statistics are kept: the number of ACK bits falsely detected in the idle periods and the number of missed ACK bits. Each falsely detected ACK bit in the idle periods is accounted as one error for the statistics of false ACK detection, and each missed ACK bit is accounted as one error for the statistics of missed ACK detection.

8.3.4.5 Test Requirement

The fraction of falsely detected ACK bits shall be less than 1% and the fraction of correctly detected ACK bits shall be larger than 99% for the SNR listed in Table 8.3.4.5-1.

Number of TX	Number of RX	Cyclic Prefix	Propagation conditions and	Channel Bandwidth / SNR [dB]						
antennas antennas		FICIA	correlation matrix (Annex B)	1.4MHz	3MHz	5MHz	10 MHz	15MHz	20MHz	
1	2	Normal	EPA 5 Low	-	-	-	-3.9	-4.0	-4.0	
			EVA70 Low	-	-	-	-3.7	-3.9	-3.9	
	4	Normal	EPA 5 Low	-	-	-	-7.8	-7.9	-8.0	
			EVA70 Low	-	-	-	-7.7	-7.9	-7.9	
	8	Normal	EPA 5 Low	-	-	-	-11.1	-11.2	-11.2	
			EVA70 Low	-	-	-	-10.9	-11.1	-11.0	

Table 8.3.4.5-1: Required SNR for PUCCH format 1b with Channel Selection demodulation tests

8.3.5 ACK missed detection for PUCCH format 3

8.3.5.1 Definition and applicability

The performance requirement of PUCCH format 3 for ACK missed detection is determined by the two parameters: probability of false detection of the ACK and the probability of detection of ACK. The performance is measured by the required SNR at probability of detection equal to 0.99. The probability of false detection of the ACK shall be 0.01 or less.

The probability of false detection of the ACK is defined as a conditional probability of erroneous detection of the ACK at particular bit position when input is only noise.

The probability of detection of ACK is defined as conditional probability of detection of the ACK when the ACK was sent at particular bit position. Each missed ACK bit is counted as one error.

The test is applicable to all BS. A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidth supported by the BS are applicable.

The number of encoded ACK/NACK bits per sub-frame is defined for two cases as presented below:

- 4AN bits: applicable for FDD and TDD
- 16AN bits : applicable for TDD

ACK/NACK repetitions are disabled for PUCCH transmission. Random codeword selection is assumed.

8.3.5.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.3.1.1 and 8.3.6.1.

8.3.5.3 Test purpose

The test shall verify the receiver's ability to detect ACK bits in codeword's from applicable codebook being randomly selected, under multipath fading propagation conditions for a given SNR.

8.3.5.4 Method of test

8.3.5.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

-2.9

-6.7

-6.6

-10.5

-10.3

_

-

-3.0

-6.8

-6.7

-10.3

-10.4

-3.1

-6.9

-6.7

-10.5

-10.4

8.3.5.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth defined in Table 8.3.5.4.2-1.

Table 8.3.5.4.2-1: AWGN power level at the BS input

Channel bandwidth [MHz]	AWGN power level
10	-80.5 dBm / 9MHz
15	-78.7 dBm / 13.5MHz
20	-77.4 dBm / 18MHz

- 2) The characteristics of the wanted signal shall be configured according to TS 36.211 [12].
- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.
- 4) Adjust the equipment so that the SNR specified in Table 8.3.5.5-1 or 8.3.5.5-2 is achieved at the BS input during the codeword's transmissions.
- 5) The signal generator sends random codewords from applicable codebook, in regular time periods. The following statistics are kept: the number of ACK bits falsely detected in the idle periods and the number of missed ACK bits. Each falsely detected ACK bit in the idle periods is accounted as one error for the statistics of false ACK detection, and each missed ACK bit is accounted as one error for the statistics of missed ACK detection.

8.3.5.5 Test Requirement

4

8

Normal

Normal

The fraction of falsely detected ACK bits shall be less than 1% and the fraction of correctly detected ACK bits shall be larger than 99% for the SNR listed in Tables 8.3.5.5-1 and 8.3.5.5-2.

Number of TX	Number of RX	Cyclic Prefix	Propagation conditions and		Cha	annel Banc	lwidth / SN	R [dB]	
antennas	antennas	FIGHA	correlation matrix (Annex B)	1.4MHz	3MHz	5MHz	10 MHz	15MHz	20MHz
1	2	Normal	EPA 5 Low	-	-	-	-3.1	-3.2	-3.2

EVA70 Low

EPA 5 Low

EVA70 Low

EPA 5 Low

EVA70 Low

Table 8.3.5.5-1: Required SNR for PUCCH format 3 demodulation tests, 4AN bits

Table 8.3.5.5-2: Required SNR for PUCCH format 3 demodulation tests, 16AN bits

Number	Number of	Cyclic	Propagation		Cha	annel Bano	dwidth / SN	R [dB]	
of TX antenna s	RX antennas	Prefix	conditions and correlation matrix (Annex B)	1.4MHz	3MHz	5MHz	10 MHz	15MHz	20MHz
1	2	Normal	EPA 5 Low	-	-	-	-0.7	-0.6	-0.6
			EVA70 Low	-	-	-	-0.2	-0.3	-0.3
	4	Normal	EPA 5 Low	-	-	-	-4.7	-4.7	-4.8
			EVA70 Low	-	-	-	-4.4	-4.5	-4.5
	8	Normal	EPA 5 Low	-	-	-	-8.2	-8.2	-8.3
			EVA70 Low	-	-	-	-8.1	-8.2	-8.1

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.3.6 NACK to ACK detection for PUCCH format 3

8.3.6.1 Definition and applicability

The performance requirement of PUCCH format 3 for NACK to ACK detection is determined by the two parameters: probability of false detection of the ACK and the NACK to ACK detection probability. The performance is measured by the required SNR at probability of the NACK to ACK detection equal to 0.001 or less. The probability of false detection of the ACK shall be 0.01 or less.

The probability of false detection of the ACK is defined as a conditional probability of erroneous detection of the ACK at particular bit position when input is only noise. Each false bit detection is counted as one error.

The NACK to ACK detection probability is the probability of detecting an ACK bit when an NACK bit was sent on particular bit position. Each NACK bit erroneously detected as ACK bit is counted as one error. Erroneously detected NACK bits in the definition do not contain the NACK bits which are mapped from DTX, i.e. NACK bits received when DTX is sent should not be considered.

The test is applicable to all BS. A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidth supported by the BS are applicable.

The number of encoded ACK/NACK bits per sub-frame is defined as presented below, with random codeword selection assumed:

- 16AN bits: applicable for TDD

ACK/NACK repetitions are disabled for PUCCH transmission. Random codeword selection is assumed.

8.3.6.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.3.1.1 and 8.3.6.1.

8.3.6.3 Test purpose

The test shall verify the receiver's ability not to falsely detect NACK bits, transmitted in codeword randomly selected from applicable codebook, as ACK bits under multipath fading propagation conditions for a given SNR.

8.3.6.4 Method of test

8.3.6.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.

8.3.6.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth defined in Table 8.3.6.4.2-1.

Table 8.3.6.4.2-1: AWGN power level at the BS input

Channel bandwidth [MHz]	AWGN power level
10	-80.5 dBm / 9MHz
15	-78.7 dBm / 13.5MHz
20	-77.4 dBm / 18MHz

- 2) The characteristics of the wanted signal shall be configured according to TS 36.211 [12].
- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.

- 4) Adjust the equipment so that the SNR specified in Table 8.3.6.5-1 is achieved at the BS input during the codeword's transmissions.
- 5) The signal generator sends random codeword from applicable codebook, in regular time periods. The following statistics are kept: the number of ACK bits detected in the idle periods and the number of NACK bits detected as ACK.

8.3.6.5 Test Requirement

The fraction of falsely detected ACK bits shall be less than 1% and the fraction of NACK bits falsely detected as ACK shall be less than 0,1% for the SNR listed in Tables 8.3.6.5-1.

Number of TX	Number of RX	Cyclic Prefix	Propagation conditions and		Cha	nnel Ban	dwidth / Sl	NR [dB]	
antennas	antennas	Frenx	correlation matrix (Annex B)	1.4MHz	3MHz	5MHz	10 MHz	15MHz	20MHz
1	2	Normal	EPA 5 Low	-	-	-	2.0	2.2	2.1
			EVA70 Low	-	-	-	2.7	2.5	2.5
	4	Normal	EPA 5 Low	-	-	-	-2.5	-2.7	-2.9
			EVA70 Low	-	-	-	-2.3	-2.5	-2.6
	8	Normal	EPA 5 Low	-	-	-	-6.7	-6.7	-6.7
			EVA70 Low	-	-	-	-6.4	-6.5	-6.6

Table 8.3.6.5-1: Required SNR for PUCCH format 3 demodulation tests, 16AN bits

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.3.7 ACK missed detection for PUCCH format 1a transmission on two antenna ports

8.3.7.1 Definition and applicability

The performance requirement of PUCCH for ACK missed detection is determined by the two parameters: probability of false detection of the ACK and the probability of detection of ACK. The performance is measured by the required SNR at probability of detection equal to 0.99. The probability of false detection of the ACK shall be 0.01 or less.

The probability of false detection of the ACK is defined as a conditional probability of erroneous detection of the ACK when input is only noise.

The probability of detection of ACK is defined as conditional probability of detection of the ACK when the signal is present.

The test is applicable to all BS. A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidth supported by the BS are applicable.

ACK/NACK repetitions are disabled for PUCCH transmission.

8.3.7.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.3.1.1 and 8.3.2.1.

8.3.7.3 Test purpose

The test shall verify the receiver's ability to detect ACK under multipath fading propagation conditions for a given SNR.

8.3.7.4 Method of test

8.3.7.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.5.

8.3.7.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth defined in Table 8.3.7.4.2-1.

Channel bandwidth [MHz]	AWGN power level
1.4	-89.7 dBm / 1.08MHz
3	-85.7 dBm / 2.7MHz
5	-83.5 dBm / 4.5MHz
10	-80.5 dBm / 9MHz
15	-78.7 dBm / 13.5MHz
20	-77.4 dBm / 18MHz

Table 8.3.7.4.2-1: AWGN power level at the BS input

- Signals transmitted on two antenna ports are on the same PUCCH resource block with different channel indices as presented in Annex A.10. The characteristics of the wanted signal shall be configured according to TS 36.211 [12].
- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.
- 4) Adjust the equipment so that the SNR specified in Table 8.3.7.5-1 is achieved at the BS input during the ACK transmissions.
- 5) The signal generator sends a test pattern with the pattern outlined in figure 8.3.7.4.2-1. The following statistics are kept: the number of ACKs detected in the idle periods and the number of missed ACKs.

ACK

ACK

• • •

Figure 8.3.7.4.2-1: Test signal pattern for PUCCH format 1a demodulation tests

8.3.7.5 Test Requirement

The fraction of falsely detected ACKs shall be less than 1% and the fraction of correctly detected ACKs shall be larger than 99% for the SNR listed in Table 8.3.7.5-1.

Table 8.3.7.5-1: Required SNR for single user PUCCH format 1a demodulation tests

Number	Number	Cyclic	Propagation Channel Bandwidth / SNR [dB]						
of TX antennas	of RX antennas	Prefix	conditions and correlation matrix (Annex B)	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
2	2	Normal	EPA 5 Low	-3.8	-4.1	-5.6	-5.7	-5.7	-5.9
			EVA 70 Low	-5.0	-5.1	-5.6	-5.1	-5.6	-5.6
	4	Normal	EPA 5 Low	-7.7	-7.7	-8.5	-8.7	-8.7	-8.7
			EVA 70 Low	-8.2	-8.4	-8.5	-8.5	-8.6	-8.7
	8	Normal	EPA 5 Low	-10.6	-10.7	-11.1	-11.2	-11.1	-11.2
			EVA 70 Low	-10.9	-11.0	-11.0	-11.0	-11.0	-11.0

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.3.8 CQI performance requirements for PUCCH format 2 transmission on two antenna ports

8.3.8.1 Definition and applicability

The performance requirement of PUCCH format 2 for CQI is determined by the block error probability (BLER) of CQI. The performance is measured by the required SNR at BLER of 1%.

The CQI block error probability is defined as the conditional probability of incorrectly decoding the CQI information when the CQI information is sent. All CQI information shall be decoded (no exclusion due to DTX).

The test is applicable to all BS. A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidths supported by the BS are applicable.

8.3.8.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.3.2.1.

8.3.8.3 Test purpose

The test shall verify the receiver's ability to detect CQI under multipath fading propagation conditions for a given SNR.

8.3.8.4 Method of test

8.3.8.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.5.

8.3.8.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth defined in Table 8.3.8.4.2-1.

Channel bandwidth [MHz]	AWGN power level
1.4	-89.7 dBm / 1.08MHz
3	-85.7 dBm / 2.7MHz
5	-83.5 dBm / 4.5MHz
10	-80.5 dBm / 9MHz
15	-78.7 dBm / 13.5MHz
20	-77.4 dBm / 18MHz

Table 8.3.8.4.2-1: AWGN power level at the BS input

- 2) Signals transmitted on two antenna ports are on the same PUCCH resource block with different channel indices as presented in Annex A.10. The characteristics of the wanted signal shall be configured according to TS 36.211. The CQI information bit payload per sub-frame is equal to 4 bits.
- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.
- 4) Adjust the equipment so that the SNR specified in Table 8.3.8.5-1 is achieved at the BS input during the CQI transmissions.

5) The signal generator sends a test pattern with the pattern outlined in figure 8.3.8.4.2-1. The following statistics are kept: the number of incorrectly decoded CQI.

CQI CQI •	••
-----------	----

Figure 8.3.8.4.2-1: Test signal pattern for PUCCH format 2 demodulation tests

8.3.8.5 Test Requirement

The fraction of incorrectly decoded CQIs shall be less than 1% for the SNR listed in Table 8.3.8.5-1.

Table 8.3.8.5-1: Required SNR for PUCCH format 2 demodulation tests

Number	Number	Cyclic	Propagation		Chan	nel Bandw	idth / SNR	[dB]	
of TX antennas	of RX antennas	Prefix	conditions and correlation matrix (Annex B)	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
2	2	Normal	EVA 5 Low	-4.9	-4.8	-5.1	-5.0	-5.1	-5.1

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.3.9 CQI performance requirements for PUCCH format 2 with DTX detection

8.3.9.1 Definition and applicability

The requirements in this subclause apply to a BS supporting PUCCH format 2 with DTX. It is optional for a BS to support PUCCH format 2 with DTX.

A BS may meet the PUCCH format 2 requirements specified in Section 8.3.9 instead of requirements specified in Section 8.3.2 and Section 8.3.8 for single antenna port and two antenna ports, respectively.

The performance requirement of PUCCH format 2 for CQI is determined by the block error probability (BLER) of CQI. The CQI block error probability (BLER) is defined as the sum of the:

- conditional probability of incorrectly decoding the CQI information when the CQI information is sent and
- conditional probability of detecting UE transmission as DTX, when the CQI information is sent.

The CQI false alarm probability is defined as the conditional probability of false detecting the CQI information transmitted from UE when no CQI information is sent.

The performance is measured by the required SNR at CQI BLER of 1% and CQI false alarm rate of 10%.

A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidths supported by the BS are applicable.

8.3.9.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.3.8.1.

8.3.9.3 Test purpose

The test shall verify the receiver's ability to detect CQI under multipath fading propagation conditions for a given SNR.

8.3.9.4 Method of test

8.3.9.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7

 Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2 for single transmit antenna port, and in Annex I.3.5 for two antenna ports.

8.3.9.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth defined in Table 8.3.9.4.2-1.

Table 8.3.9.4.2-1: AWGN power level at the BS input

Channel bandwidth [MHz]	AWGN power level
1.4	-89.7 dBm / 1.08MHz
3	-85.7 dBm / 2.7MHz
5	-83.5 dBm / 4.5MHz
10	-80.5 dBm / 9MHz
15	-78.7 dBm / 13.5MHz
20	-77.4 dBm / 18MHz

- For two antenna ports, transmitted signals are on the same PUCCH resource block with different channel indices as presented in Annex A.10. The characteristics of the wanted signal shall be configured according to TS 36.211. The CQI information bit payload per sub-frame is equal to 4 bits.
- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.
- 4) Adjust the equipment so that the SNR specified in Table 8.3.9.5-1 is achieved at the BS input during the CQI transmissions.
- 5) The signal generator sends a test pattern with the pattern outlined in figure 8.3.9.4.2-1. The following statistics are kept: the number of incorrectly decoded CQI, and the number of incorrectly detected DTX.

CQI

	CQI	•	,
--	-----	---	---

- -

Figure 8.3.9.4.2-1: Test signal pattern for PUCCH format 2 demodulation tests

COI

8.3.9.5 Test Requirement

The CQI false alarm probability and the CQI block error probability shall not exceed 10% and 1%, respectively, at the SNR given in table 8.3.9.5-1.

Number	Number	Cyclic	Propagation	Channel Bandwidth / SNR [dB]						
of TX antennas	of RX antennas	Prefix	conditions and correlation matrix (Annex B)	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
1	2	Normal	EVA 5* Low	-3.1	-3.4	-3.8	-3.4	-3.6	-3.6	
			ETU 70** Low	-3.1	-3.4	-3.1	-3.5	-3.3	-3.5	
2	2	Normal	EVA 5 Low	-4.5	-4.4	-4.7	-4.6	-4.5	-4.7	
			BS and Medium F BS and Home B							

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.3.10 ACK missed detection for PUCCH format 1a transmission on single antenna port for coverage enhancement

8.3.10.1 Definition and applicability

The performance requirement of PUCCH for ACK missed detection is determined by the two parameters: probability of false detection of the ACK and the probability of detection of ACK. The performance is measured by the required SNR at probability of detection equal to 0.99. The probability of false detection of the ACK shall be 0.01 or less.

The probability of false detection of the ACK is defined as a conditional probability of erroneous detection of the ACK for the configured PUCCH transmission repetitions when input is only noise.

The probability of detection of ACK is defined as conditional probability of detection of the ACK for the configured PUCCH transmission repetitions when the signal is present.

The test is applicable only to base stations supporting coverage enhancement. A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidth supported by the BS are applicable.

8.3.10.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.3.9.1 and 8.3.9.2.

8.3.10.3 Test purpose

The test shall verify the receiver's ability to detect ACK under multipath fading propagation conditions for a given SNR.

8.3.10.4 Method of test

8.3.10.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.

8.3.10.4.2 Procedure

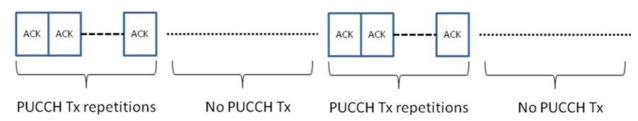

1) Adjust the AWGN generator, according to the channel bandwidth defined in Table 8.3.10.4.2-1.

Table 8.3.10.4.2-1: AWGN power level at the BS input

Channel bandwidth [MHz]	AWGN power level
1.4	-89.7 dBm / 1.08MHz
3	-85.7 dBm / 2.7MHz
5	-83.5 dBm / 4.5MHz
10	-80.5 dBm / 9MHz
15	-78.7 dBm / 13.5MHz
20	-77.4 dBm / 18MHz

- 2) The characteristics of the wanted signal shall be configured according to TS 36.211 [12].
- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.

- 4) Adjust the equipment so that the SNR specified in Table 8.3.10.5-1 is achieved at the BS input during the ACK transmissions.
- 5) The signal generator sends a test pattern with the pattern outlined in figure 8.3.10.4.2-1. The following statistics are kept: the number of ACKs detected in the idle periods and the number of missed ACKs.

Figure 8.3.10.4.2-1: Test signal pattern for PUCCH format 1a demodulation tests

8.3.10.5 Test Requirement

The fraction of falsely detected ACKs shall be less than 1% and the fraction of correctly detected ACKs shall be larger than 99% for the SNR listed in Table 8.3.10.5-1.

Number	Number	Cyclic	Propagation	Repetitions	Channel Bandwidth / SNR [dB]				
of TX antennas	of RX antennas	Prefix	conditions and correlation matrix (Annex B)		3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
1	2	normal	EPA5 Low	4	-4.6	-4.9	-4.9	-5.0	-4.9
				8	-8.6	-10.4	-10.3	-10.5	-10.7
				32	-13.1	-14.2	-14.5	-14.5	-14.5
Note 1: Frequency Hopping Intervals: 4 (FDD); 10 (TDD)									
Note 2: G	Guard period s	shall be cre	eated according to TS	36.211, 5.2.5 [1	2]				

Table 8.3.10.5-1: Required SNR for PUCCH format 1a demodulation tests

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.3.11 CQI performance requirements for PUCCH format 2 transmission on single antenna port for coverage enhancement

8.3.11.1 Definition and applicability

The performance requirement of PUCCH format 2 for CQI is determined by the block error probability (BLER) of CQI. The performance is measured by the required SNR at BLER of 1%.

The CQI block error probability is defined as the conditional probability of incorrectly decoding the CQI information for the configured PUCCH transmission repetitions when the CQI information is sent. All CQI information shall be decoded (no exclusion due to DTX).

The test is applicable to all BS. A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidths supported by the BS are applicable.

8.3.11.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.3.9.3.

8.3.11.3 Test purpose

The test shall verify the receiver's ability to detect CQI under multipath fading propagation conditions for a given SNR.

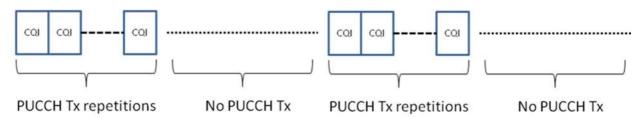
8.3.11.4 Method of test

8.3.11.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.


8.3.11.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth defined in Table 8.3.11.4.2-1.

Channel bandwidth [MHz]	AWGN power level
1.4	-89.7 dBm / 1.08MHz
3	-85.7 dBm / 2.7MHz
5	-83.5 dBm / 4.5MHz
10	-80.5 dBm / 9MHz
15	-78.7 dBm / 13.5MHz
20	-77.4 dBm / 18MHz

Table 8.3.11.4.2-1: AWGN power level at the BS input

- 2) The characteristics of the wanted signal shall be configured according to TS 36.211. The CQI information bit payload per sub-frame is equal to 4 bits.
- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.
- 4) Adjust the equipment so that the SNR specified in Table 8.3.11.5-1 is achieved at the BS input during the CQI transmissions.
- 5) The signal generator sends a test pattern with the pattern outlined in figure 8.3.11.4.2-1. The following statistics are kept: the number of incorrectly decoded CQI.

8.3.11.5 Test Requirement

The fraction of incorrectly decoded CQIs shall be less than 1% for the SNR listed in Table 8.3.11.5-1.

Number of TX antennas	Number of RX antennas	Cyclic Prefix	Propagation conditions and	Repetitions	Ch	annel Ba	andwidth	n / SNR [dB]
			correlation matrix (Annex B)		3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
1	2	normal	EVA5 Low	4	-3.5	-4.4	-4.5	-4.3	-4.1
				8	-9.2	-9.7	-9.4	-9.5	-9.4
				32	-13.1	-13.5	-13.2	-13.4	-13.3
		•	als: 4 (FDD); 10 ted according to		5 [12]				

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.3.12 ACK missed detection for PUCCH format 4

8.3.12.1 Definition and applicability

The performance requirement of PUCCH format 4 for ACK missed detection is determined by the two parameters: probability of false detection of the ACK and the probability of detection of ACK. The performance is measured by the required SNR at probability of detection equal to 0.99. The probability of false detection of the ACK shall be 0.01 or less.

The probability of false detection of the ACK is defined as a conditional probability of erroneous detection of the ACK at particular bit position when input is only noise.

The probability of detection of ACK is defined as conditional probability of detection of the ACK when the ACK was sent at particular bit position. Each missed ACK bit is counted as one error.

The test is applicable to all BS. A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidth supported by the BS are applicable.

The number of encoded ACK/NACK bits per sub-frame is defined for two cases as presented below:

- 24AN bits with 1PRB allocated: applicable for FDD and TDD
- 64AN bits with 2PRB allocated: applicable for FDD and TDD

In this test PUCCH is transmitted only on PCell.

ACK/NACK repetitions are disabled for PUCCH transmission. DAI based codebook size determination is disabled. Random codeword selection is assumed.

8.3.12.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.3.1.1 and 8.3.9.1.

8.3.12.3 Test purpose

The test shall verify the receiver's ability to detect ACK bits in codeword's from applicable codebook being randomly selected, under multipath fading propagation conditions for a given SNR.

8.3.12.4 Method of test

8.3.12.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.

8.3.12.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth defined in Table 8.3.12.4.2-1.

Table 8.3.12.4.2-1: AWGN power level at the BS input

Channel bandwidth [MHz]	AWGN power level
10	-80.5 dBm / 9MHz
15	-78.7 dBm / 13.5MHz
20	-77.4 dBm / 18MHz

- 2) The characteristics of the wanted signal shall be configured according to TS 36.211 [12].
- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.
- 4) Adjust the equipment so that the SNR specified in Table 8.3.12.5-1 or 8.3.12.5-2 is achieved at the BS input during the codeword's transmissions.
- 5) The signal generator sends random codewords from applicable codebook, in regular time periods. The following statistics are kept: the number of ACK bits falsely detected in the idle periods and the number of missed ACK bits. Each falsely detected ACK bit in the idle periods is accounted as one error for the statistics of false ACK detection, and each missed ACK bit is accounted as one error for the statistics of missed ACK detection.

8.3.12.5 Test Requirement

The fraction of falsely detected ACK bits shall be less than 1% and the fraction of correctly detected ACK bits shall be larger than 99% for the SNR listed in Tables 8.3.12.5-1 and 8.3.12.5-2.

Table 8.3.12.5-1: Required SNR for PUCCH format 4 demodulation tests, 24AN bits with 1 PRB allocated

Number	Number	Cyclic	Propagation	Channel Bandwidth / SNR [dB]							
of TX antennas		Prefix conditions and correlation matrix (Annex B)	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
	2	2 Normal	EPA 5 Low	-	-	-	1.8	1.7	1.6		
	2		EVA 70 Low	-	-	-	2.0	1.8	1.8		
1	4	4 Normal	EPA 5 Low	-	-	-	-2.4	-2.2	-2.3		
	4		EVA 70 Low	-	-	-	2.0	-2.4	-2.4		
	8	Normal	EPA 5 Low	-	-	-	-5.5	-5.5	-5.5		
	0	noimai	EVA 70 Low	-	-	-	-5.4	-5.4	-5.5		

Table 8.3.12.5-2: Required SNR for PUCCH format 4 demodulation tests, 64AN bits with 2 PRB allocated

Number	Number	Cyclic	Propagation		Channel Bandwidth / SNR [dB]							
of TX antennas	of RX antennas	Prefix	conditions and correlation matrix (Annex B)	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
	2	2 Normal	EPA 5 Low	-	-	-	2.3	2.1	2.1			
			EVA 70 Low	-	-	-	2.7	2.6	2.5			
1	4	Normal	EPA 5 Low	-	-	-	-2.4	-2.3	-2.3			
	4	Normal	EVA 70 Low	-	-	-	-1.9	-2.1	-2.1			
	8	Normal	EPA 5 Low	-	-	-	-5.7	-5.7	-5.8			
	0		EVA 70 Low	-	-	-	-5.4	-5.6	-5.6			

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.3.13 ACK missed detection for PUCCH format 5

8.3.13.1 Definition and applicability

The performance requirement of PUCCH format 5 for ACK missed detection is determined by the two parameters: probability of false detection of the ACK and the probability of detection of ACK. The performance is measured by the required SNR at probability of detection equal to 0.99. The probability of false detection of the ACK shall be 0.01 or less.

The probability of false detection of the ACK is defined as a conditional probability of erroneous detection of the ACK at particular bit position when input is only noise.

The probability of detection of ACK is defined as conditional probability of detection of the ACK when the ACK was sent at particular bit position. Each missed ACK bit is counted as one error.

The test is applicable if BS supports PUCCH format 5. A test for a specific channel bandwidth is only applicable if the BS supports it.

For a BS supporting multiple channel bandwidths only the tests for the lowest and the highest channel bandwidth supported by the BS are applicable.

The number of encoded ACK/NACK bits per sub-frame is equal to 24 bits.

ACK/NACK repetitions are disabled for PUCCH transmission. DAI based codebook size determination is disabled. Random codeword selection is assumed.

In this test PUCCH is transmitted only on PCell.

8.3.13.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.3.1.1 and 8.3.12.1.

8.3.13.3 Test purpose

The test shall verify the receiver's ability to detect ACK bits in codeword's from applicable codebook being randomly selected, under multipath fading propagation conditions for a given SNR.

8.3.13.4 Method of test

8.3.13.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.

8.3.13.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth defined in Table 8.3.13.4.2-1.

Channel bandwidth [MHz]	AWGN power level
10	-80.5 dBm / 9MHz
15	-78.7 dBm / 13.5MHz
20	-77.4 dBm / 18MHz

- 2) The characteristics of the wanted signal shall be configured according to TS 36.211 [12].
- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.
- 4) Adjust the equipment so that the SNR specified in Table 8.3.13.5-1 is achieved at the BS input during the codeword's transmissions.
- 5) The signal generator sends random codewords from applicable codebook, in regular time periods. The following statistics are kept: the number of ACK bits falsely detected in the idle periods and the number of missed ACK bits. Each falsely detected ACK bit in the idle periods is accounted as one error for the statistics of false ACK detection, and each missed ACK bit is accounted as one error for the statistics of missed ACK detection.

8.3.13.5 Test Requirement

The fraction of falsely detected ACK bits shall be less than 1% and the fraction of correctly detected ACK bits shall be larger than 99% for the SNR listed in Tables 8.3.13.5-1.

Number	Number	Cyclic	Propagation	Channel Bandwidth / SNR [dB]					
of TX antennas	of RX antennas	Prefix	conditions and correlation matrix (Annex B)	1.4MHz	3MHz	5MHz	10 MHz	15MHz	20MHz
1	2	Normal	EPA 5 Low	-	-	-	2.2	1.9	1.9
			EVA70 Low	-	-	-	2.2	2.1	2.1
	4	Normal	EPA 5 Low	-	-	-	-2.3	-2.2	-2.2
			EVA70 Low	-	-	-	-1.9	-2.2	-2.1
	8	Normal	EPA 5 Low	-	-	-	-5.4	-5.3	-5.4
			EVA70 Low	-	-	-	-5.2	-5.3	-5.4

Table 8.3.13.5-1: Required SNR for PUCCH format 5 demodulation tests

8.4 Performance requirements for PRACH

8.4.1 PRACH false alarm probability and missed detection

8.4.1.1 Definition and applicability

The performance requirement of PRACH for preamble detection is determined by the two parameters: total probability of false detection of the preamble (Pfa) and the probability of detection of preamble (Pd). The performance is measured by the required SNR at probability of detection, Pd of 99%. Pfa shall be 0.1% or less.

Pfa is defined as a conditional total probability of erroneous detection of the preamble (i.e. erroneous detection from any detector) when input is only noise.

Pd is defined as conditional probability of detection of the preamble when the signal is present. The erroneous detection consists of several error cases – detecting different preamble than the one that was sent, not detecting a preamble at all or correct preamble detection but with the wrong timing estimation. For AWGN, a timing estimation error occurs if the estimation error of the timing of the strongest path is larger than 1.04us. For ETU70, and EPA1 a timing estimation error occurs if the estimation error of the timing of the strongest path is larger than 2.08us. The strongest path for the timing estimation error refers to the strongest path (i.e. average of the delay of all paths having the same highest gain = 310ns for ETU) in the power delay profile.

The test preambles for normal mode are listed in table A.6-1 and the test preambles for high speed mode are listed in A.6-2. The test preambles for supporting coverage enhancement are listed in table A.6-3.

The normal mode test (Table 8.4.1.5-1) is applicable to all BS. The high speed mode test (Table 8.4.1.5-2) is applicable to high speed BS. The coverage enhancement tests (Table 8.4.1.5-3 and Table 8.4.1.5-4) are applicable to the base stations supporting coverage enhancement.

8.4.1.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.4.1.1 and 8.4.2.1.

8.4.1.3 Test purpose

The test shall verify the receiver's ability to detect PRACH preamble under multipath fading propagation conditions for a given SNR.

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.4.1.4 Method of test

8.4.1.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7

 Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.1 or Annex I.3.2 as applicable.

8.4.1.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth.

Channel bandwidth [MHz]	AWGN power level
1.4	-89.7 dBm / 1.08MHz
3	-85.7 dBm / 2.7MHz
5	-83.5 dBm / 4.5MHz
10	-80.5 dBm / 9MHz
15	-78.7 dBm / 13.5MHz
20	-77.4 dBm / 18MHz

Table 8.4.1.4.2-1: AWGN power level at the BS input

- 2) The characteristics of the wanted signal shall be configured according to the corresponding UL reference measurement channel defined in Annex A.
- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.
- 4) Adjust the frequency offset of the test signal according to Table 8.4.1.5-1 or 8.4.1.5-2 or 8.4.1.5-3 or 8.4.1.5-4.
- 5) Adjust the equipment so that the SNR specified in Table 8.4.1.5-1 or 8.4.1.5-2 or 8.4.1.5-3 or 8.4.1.5-4 is achieved at the BS input during the PRACH preambles.
- 6) The test signal generator sends a preamble and the receiver tries to detect the preamble. This pattern is repeated as illustrated in figure 8.4.1.4.2-1. The preambles are sent with certain timing offsets as described below. The following statistics are kept: the number of preambles detected in the idle period and the number of missed preambles.

Preamble	Pream	
----------	-------	--

The timing offset base value is set to 50% of Ncs. This offset is increased within the loop, by adding in each step a value of 0.1us, until the end of the tested range, which is 0.9us. Then the loop is being reset and the timing offset is set again to 50% of Ncs. The timing offset scheme is presented in Figure 8.4.1.4.2-2.

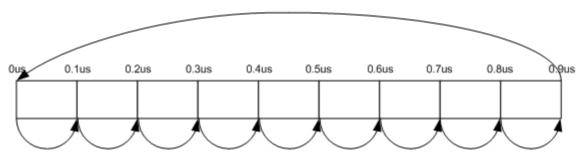


Figure 8.4.1.4.2-2: Timing offset scheme

8.4.1.5 Test Requirement

Pfa shall not exceed 0.1%. Pd shall not be below 99% for the SNRs in Tables 8.4.1.5-1 to 8.4.1.5-4.

Number of Number Propagation Frequency SNR [dB] **TX** antennas of RX conditions and offset Burst Burst Burst Burst Burst antennas correlation format format format format format matrix (Annex B) 4 0 1 2 3 1 2 AWGN 0 -13.9 -13.9 -16.1 -16.2 -6.9 ETU 70 Low* 270 Hz -7.4 -7.2 -9.4 -9.5 0.5 -16.6 4 AWGN 0 -16.4 -18.7 -18.5 -9.5 -4.5 ETU 70 Low* 270 Hz -11.1 -13.3 -11.5 -13.5 -11.5 8 AWGN -19.5 -19.1 -21.2 0 -21 ETU 70 Low* 270 Hz -15.7 -15.3 -17.2 -16.9 -8.0 Note*: Not applicable for Local Area BS and Home BS.

Table 8.4.1.5-1: PRACH missed detection test requirements for Normal Mode

The requirements in Table 8.4.1.5-2 shall not be applied to Local Area BS and Home BS.

Number of	Number of	Propagation	Frequency		SNR	[dB]	
TX antennas	RX antennas	conditions and correlation matrix (Annex B)	offset	Burst format 0	Burst format 1	Burst format 2	Burst format 3
1	2	AWGN	0	-13.8	-13.9	-16.0	-16.3
		ETU 70 Low	270 Hz	-6.8	-6.7	-8.7	-8.9
		AWGN	625 Hz	-12.1	-12.0	-14.1	-14.1
		AWGN	1340 Hz	-13.1	-13.2	-15.2	-15.4
	4	AWGN	0	-16.6	-16.3	-18.6	-18.5
		ETU 70 Low	270 Hz	-11.2	-10.8	-13.1	-13.1
		AWGN	625 Hz	-14.6	-14.3	-16.5	-16.5
		AWGN	1340 Hz	-15.6	-15.2	-17.5	-17.5
	8	AWGN	0	-19.0	-18.8	-20.6	-20.7
		ETU 70 Low	270 Hz	-15.0	-14.5	-16.4	-16.4
		AWGN	625 Hz	-17.4	-17.1	-19.0	-19.1
		AWGN	1340 Hz	-18.4	-18.1	-20.2	-20.2

Table 8.4.1.5-3: PRACH missed detection requirements for coverage enhancement (PRACH frequency hopping OFF)

Number	Number	Propagation	Frequency					
of TX antennas	of RX antennas	conditions and correlation matrix (Annex B)	offset	Number of Repetitions	Burst format 0	Burst format 1	Burst format 2	Burst format 3
1	2	AWGN	0	4	-	-	-21.0	-20.8
				8	-21.4	-21.0	-	-
				16	-	-	-24.8	-24.7
				32	-25.3	-25.0	-	-
		EPA1 Low	270 Hz	4	-	-	-11.5	-11.1
				8	-12.4	-11.7	-	-
				16	-	-	-16.6	-16.6
				32	-18.4	-18.0	-	-
Note 1: Under fading channels, the PRACH detection performance may be significantly different with different PRACH Configuration Indexes. The requirements in this table are defined based on the simulation results with PRACH Configuration Indexes (3, 19, 35, 51) for Format 0, Format 1, Format 2, and Format 3 respectively.								

Number	Number of	Propagation	Frequency	Number of	SNR [dB]			
of TX antennas	matrix (Annex B) 0 1 2 3							
1	2	EPA1 Low	270 Hz	4	-	-	-14.9	-14.7
				8	-15.6	-15.2	-	-
				16	-	-	-19.5	-19.6
	32 -20.7 -20.5							
	PRACH Configuration Indexes. The requirements in this table are defined based on the simulation results with PRACH Configuration Indexes (3, 19, 35, 51) for Format 0, Format 1, Format 2, and Format 3 respectively.							
respectively. Note 2: The requirements in this table are defined under the assumption that UE RF tuning during PRACH frequency hopping has no impact on the symbols in PRACH subframes and thus all symbols in PRACH subframes are available for the transmission of PRACH preambles.								
Note 3:	·							
	FreqOffset-r13) is 0 and frequency hopping offset is $N_{\text{RB}}^{\text{UL}}$ -6, where $N_{\text{RB}}^{\text{UL}}$ is defined in TS36.211 [12].							
Note 4:								

Table 8.4.1.5-4: PRACH missed detection requirements for coverage enhancement (PRACH frequency hopping ON)

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.5 Performance requirements for Narrowband IoT

8.5.1 Performance requirements for NPUSCH format 1

8.5.1.1 Definition and applicability

The performance requirement of NPUSCH format 1 is determined by a minimum required throughput for a given SNR. The required throughput is expressed as a fraction of maximum throughput for the FRCs listed in Annex A. The performance requirements assume HARQ re-transmissions.

The tests for 3.75KHz subcarrier spacing are applicable to the base stations supporting 3.75 kHz subcarrier spacing requirements. The tests for single-subcarrier/multi-subcarrier of 15KHz subcarrier spacing are applicable to the base stations supporting the number of subcarriers of 15 kHz subcarrier spacing requirements.

8.5.1.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.5.1.

8.5.1.3 Test Purpose

The test shall verify the receiver's ability to achieve the throughput under multipath fading propagation conditions for a given SNR.

8.5.1.4 Method of test

8.5.1.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7.

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.

8.5.1.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth, defined in Table 8.5.1.4.2-1.

Table 8.5.1.4.2-1: AWGN power level at the BS input

Channel bandwidth [KHz]	AWGN power level
200	-100.5dBm /180KHz

2) The characteristics of the wanted signal shall be configured according to the corresponding UL reference measurement channel defined in annex A and the test parameters in Table 8.5.1.4.2-2.

Table 8.5.1.4.2-2: Test parameters for testing NPUSCH format	Table 8.5.1.4.2-2: Test	parameters for testing	q NPUSCH format 1
--	-------------------------	------------------------	-------------------

Parameter	unit	Value
Maximum number of HARQ		4
transmissions		4
RV sequences		RV0, RV2

- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in annex B.
- 4) Adjust the equipment so that required SNR specified in tables 8.5.1.5-1 to 8.5.1.5-3 is achieved at the BS input.
- 5) The signal generator sends a test pattern with the pattern outlined in Figure 8.5.1.4.2-1. For each of the reference channels in Table 8.5.1.5-1 to 8.5.1.5-3 applicable for the base station, measure the throughput, according to annex E.

NPUSCH format 1 repetitions.	No transmission	NPUSCH format 1 repetitions	No transmission.

Figure 8.5.1.4.2-1: Test signal pattern for NPUSCH format 1 demodulation tests

8.5.1.5 Test Requirement

The throughput measured according to subclause 8.5.1.4.2 shall not be below the limits for the SNR levels specified in Table 8.5.1.5-1 for 3.75KHz subcarrier spacing tests, not be below the limits for the SNR levels specified in Table 8.5.1.5-2 for 15KHz subcarrier spacing with single subcarrier tests and not be below the limits for the SNR levels specified in Table 8.5.1.5-3 for 15KHz subcarrier spacing with the supported number of subcarrier tests.

Table 8.5.1.5-1 Required SNR for NPUSCH format 1 test, 200KHz Channel Bandwidth, 3.75KHz subcarrier spacing, 1Tx

Number of TX antennas	Number of RX antennas	Subcarrier spacing	Number of allocated subcarriers	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Repetition number	Fraction of maximum throughput	SNR [dB]
						1	70%	-1.3
1	2 3.75KHz 1 ETU 1Hz Low	1	ETU 1Hz	A16-1	16	70%	-8.6	
I			64	70%	- 11.6			

1

15KHz

70%

70%

-8.2

-12

	Subcarrier Spacing, Single Subcarrier, Trx								
Number of TX antennas	Number of RX antennas	Subcarrier spacing	Number of allocated subcarriers	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Repetition number	Fraction of maximum throughput	SNR [dB]	
						1	70%	-1.5	

ETU 1Hz

Low

A16-2

16

64

Table 8.5.1.5-2 Required SNR for NPUSCH format 1 test, 200KHz Channel Bandwidth, 15KHz subcarrier spacing, single subcarrier, 1Tx

Table 8.5.1.5-3 Required SNR for NPUSCH format 1 test, 200KHz Channel Bandwidth, 15KHz subcarrier spacing, multiple subcarriers, 1Tx

1

Number of TX antennas	Number of RX antennas	Subcarrier spacing	Number of allocated subcarriers	Propagation conditions and correlation matrix (Annex B)	FRC (Annex A)	Repetition number	Fraction of maximum throughput	SNR [dB]
		15KHz	3			2	70%	-2.4
				ETU 1Hz Low	A16-3	16	70%	-7.5
					A10-3	64	70%	- 10.8
1	2		6	ETU 1Hz Low	A16-4	2	70%	0
1	2					16	70%	-6.2
						64	70%	-9.9
			12	ETU 1Hz	A16-5	2	70%	-0.1
						16	70%	-5.8
		Low		LOW		64	70%	-9.5

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.5.2 ACK missed detection for NPUSCH format 2

8.5.2.1 Definition and applicability

The performance requirement of NPUSCH format 2 for ACK missed detection is determined by the two parameters: probability of false detection of the ACK and the probability of detection of ACK. The performance is measured by the required SNR at probability of detection equal to 0.99. The probability of false detection of the ACK shall be 0.01 or less.

The probability of false detection of the ACK is defined as a conditional probability of erroneous detection of the ACK when input is only noise.

The probability of detection of ACK is defined as conditional probability of detection of the ACK when the ACK was sent per NPUSCH format 2 transmission when the signal is present.

The tests for 3.75KHz subcarrier spacing are applicable to the base stations supporting 3.75 KHz subcarrier spacing requirements. The tests for 15KHz subcarrier spacing are applicable to the base stations supporting 15KHz subcarrier spacing requirements.

8.5.2.2 Minimum Requirement

The minimum requirement is in TS 36.104 [2] subclause 8.5.2.1 and 8.5.2.2.

8.5.2.3 Test purpose

The test shall verify the receiver's ability to detect ACK under multipath fading propagation conditions for a given SNR.

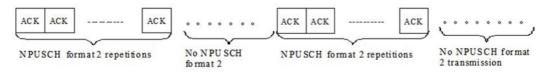
8.5.2.4 Method of test

8.5.2.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.


8.5.2.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth defined in Table 8.5.2.4.2-1.

Table 8.5.2.4.2-1: AWGN power level at the BS input

Channel bandwidth [KHz]	AWGN power level
200	-100.5dBm /180KHz

- 2) The characteristics of the wanted signal shall be configured according to TS 36.211 [12].
- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.
- 4) Adjust the equipment so that the SNR specified in tables 8.5.2.5-1 to 8.5.2.5-2 is achieved at the BS input during the ACK transmissions.
- 5) The signal generator sends a test pattern with the pattern outlined in figure 8.5.2.4.2-1. The following statistics are kept: the number of ACKs falsely detected in the idle periods and the number of missed ACKs. Each falsely detected ACK transmission in the idle periods is accounted as one error for the statistics of false ACK detection, and each missed ACK transmission per NPUSCH format 2 transmisson is accounted as one error for the statistics of missed ACK detection.

Figure 8.5.2.4.2-1: Test signal pattern for NPUSCH format 2 demodulation tests

8.5.2.5 Test Requirement

The fraction of falsely detected ACKs shall be less than 1% and the fraction of correctly detected ACKs shall be larger than 99% for the SNR listed in Table 8.5.2.5-1 and Table 8.5.2.5-2.

Table 8.5.2.5-1 Required SNR for NPUSCH format 2 test, 200KHz Channel Bandwidth, 3.75KHz subcarrier spacing, 1Tx

Number of TX antennas	Number of RX antennas	Propagation conditions and correlation matrix (Annex B)	Number of allocated subcarriers	Subcarri er spacing	Repetition number	SNR [dB]
					1	7.6
1	2	EPA 5 Low	1	3.75KHz	16	-4.7
					64	-10.3

Number of TX antennas	Number of RX antennas	Propagation conditions and correlation matrix (Annex B)	Number of allocated subcarriers	Subcarrier spacing	Repetition number	SNR [dB]
					1	6.9
1	2	EPA 5 Low	1	15KHz	16	-3.3
					64	-8.9

Table 8.5.2.5-2 Required SNR for NPUSCH format 2 test, 200KHz Channel Bandwidth, 15KHz subcarrier spacing, 1Tx

NOTE: If the above Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for this test is non-zero. The Test Tolerance for this test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex G.

8.5.3 Performance requirements for NPRACH

8.5.3.1 Definition and applicability

The performance requirement of NPRACH for preamble detection is determined by two parameters: the total probability of false detection of the preamble (Pfa) and the probability of detection of the preamble (Pd). The performance is measured by the required SNR at probability of Pd shall not be smaller than 99% and probability of Pfa shall not be larger than 0.1%.

Pfa is defined as a conditional total probability of erroneous detection of the preamble (i.e. erroneous detection from any detector) when input is only noise.

Pd is defined as conditional probability of detection of the preamble when the signal is present. The erroneous detection consists of several error cases – detecting different preamble than the one that was sent, not detecting a preamble at all or correct preamble detection but with the wrong timing estimation. A timing estimation error occurs if the estimation error of the timing of the strongest path is larger than [3.646]us. The strongest path for the timing estimation error refers to the strongest path in the power delay profile.

The parameters of NPRACH test preambles are listed in Table 8.5.3.1-1.

Table 8.5.3.1-1 NPRACH Test Parameters

Parameter	Value	Value
Narrowband physical layer cell identity	0	0
nprach-Periodicity (ms)	80	320
nprach-SubcarrierOffset	0	0
nprach-NumSubcarriers	12	12
numRepetitionsPerPreambleAttempt	8	32

8.5.3.2 Minimum Requirement

The minimum requirement is in TS 36104 [2] subclause 8.5.3.1.1 and 8.5.3.2.1.

8.5.3.3 Test purpose

The test shall verify the receiver's ability to detect NPRACH preamble under multipath fading propagation conditions for a given SNR.

8.5.3.4 Method of test

8.5.3.4.1 Initial Conditions

Test environment: Normal, see subclause D.2.

RF channels to be tested: M; see subclause 4.7.

1) Connect the BS tester generating the wanted signal, multipath fading simulators and AWGN generators to all BS antenna connectors for diversity reception via a combining network as shown in Annex I.3.2.

8.5.3.4.2 Procedure

1) Adjust the AWGN generator, according to the channel bandwidth.

Table 8.5.3.4.2-1: AWGN power level at the BS input

Channel bandwidth [KHz]	AWGN power level
200	-100.5dBm /180KHz

- 2) The characteristics of the wanted signal shall be configured according to the corresponding UL reference measurement channel defined in Annex A.
- 3) The multipath fading emulators shall be configured according to the corresponding channel model defined in Annex B.
- 4) Adjust the frequency offset of the test signal according to Table 8.5.3.5-1.
- 5) Adjust the equipment so that the SNR specified in Table 8.5.3.5-1 is achieved at the BS input during the NPRACH preambles.
- 6) The test signal generator sends a preamble with repetitions and the receiver tries to detect the preamble. This pattern is repeated as illustrated in figure 8.5.3.4.2-1. The preambles are sent with a fixed timing offset of $0.5T_{CP}$ during the test, where T_{CP} is NPRACH cyclic prefix of length as defined in TS36.211 [12]. The following statistics are kept: the number of preambles detected in the idle period and the number of missed preambles.

Preamble	Preamble	•••

Figure 8.5.3.4.2-1: NPRACH preamble test pattern

8.5.3.5 Test Requirement

Pfa shall not exceed 0.1% and Pmd shall not exceed 1% for the SNRs in Table 8.5.3.5-1.

Number of	Number of	Repetition	Propagation	Frequency	SNR[dB]
TX antennas	RX antennas	number conditions and correlation matrix (Annex B)		offset	Preamble format 0	Preamble format 1
1	2	8	AWGN	0	-1.8	-1.8
			EPA1 Low	200 Hz	6.7	6.7
		32	AWGN	0	-6.5	-6.5
			EPA1 Low	200 Hz	1.1	1.1

9 Channel access procedures

9.1 Downlink channel access procedure

9.1.1 Definition and applicability

Channel access procedure for downlink operation in Band 46 for PDSCH transmission is described in TS 36.213, Clause 15.

9.1.2 Minimum requirement

The minimum requirement is in TS 36.104 [2] subclause 9.1.

9.1.3 Test purpose

The test purpose is to verify the accuracy of the energy detection threshold, maximum channel occupancy time (MCOT) and minimum idle time under normal conditions for all band 46 transmitters in the BS.

9.1.4 Method of test

9.1.4.1 Initial conditions

Test environment: normal; see Annex D.2.

RF channels to be tested for single carrier: B, M and T; see subclause 4.7.

Connect the signal analyzer to the base station antenna connector as shown in Annex I.

9.1.4.2 Procedure

MCOT and minimum idle time

- Set the base station to transmit a signal according to E-TM 1.1 at manufacturer's declared rated output power with 20 MHz channel bandwidth. Channel Access Priority Class 3 parameters are selected to be tested based on Table 15.1.1-1 in TS 36.213.
- 2) Measure the transmitter ON period during the continuous transmission (after the first channel access).
- 3) Measure the transmitter OFF period between two consecutive transmitter ON periods.
- 4) Verify minimum idle time as follows:

The transmitter OFF period between two consecutive transmitter ON periods shall not be less than 25 µs.

- 5) Verify maximum channel occupancy time (MCOT) as follows:
 - a) The duration of each transmitter ON period continuous transmission shall not exceed the maximum channel occupancy time (MCOT) requirement specified in clause 9.1.5.

Energy detection accuracy

- 6) Generate the interfering signal of AWGN with 20 MHz channel bandwidth at the same centre frequency as the tested channel. The interfering signal shall be at a level of (-72dBm+ 4dB)/20MHz. The base station shall stop transmission on the current operating channel and will not resume normal transmissions as long as the interference signal is present.
- 7) The step 6) is repeated multiple times considering the following sub-steps:
 - Interferer ON: if the interfering signal is present, the interfering signal should be present for 10ms.
 - Interferer OFF: if the interfering signal is removed, the interfering signal should be absent for 10ms.
 - The total number of interferer ON duration is assumed to be N and the total number of interferer OFF duration is assumed to be M. The value N, M and the sequence of interferer ON/OFF pattern shall be generated randomly for the test.
- 8) In the test, a counter is maintained with initial value set to 0 when the test starts.
- 9) For every 10ms Interferer ON period, the counter is increased by 1 if there is either an ON/OFF transition or no transmission by the DUT. To pass the test, the counter shall not be less than N*0.9.

9.1.5 Test Requirements

In normal conditions, the measurement result shall meet channel access related test requirements for PDSCH as listed in Table 9.1.5-1.

Table 9.1.5-1: Channel access test requi	irements for PDSCH

Parameter	Unit	Value
LBT measurement bandwidth	MHz	20
Maximum energy detection threshold	dBm/20MHz	-72 + 4dB
Maximum channel occupancy time	ms	8

The Base Station shall be able to assess whether the medium is busy or idle with at least 90% probability, using a channel access procedure with the parameters in Table 9.1.5-1.

Annex A (normative): Reference Measurement channels

A.0 General

The parameters for the reference measurement channels are specified in clause A.1 for E-UTRA reference sensitivity and in-channel selectivity and in clause A.2 for dynamic range.

A schematic overview of the encoding process for the E-UTRA reference measurement channels is provided in Figure A0-1.

E-UTRA receiver requirements in the present document are defined with a throughput stated relative to the Maximum throughput of the FRC. The Maximum throughput for an FRC equals the Payload size * the Number of uplink subframes per second. For FDD, 1000 uplink sub-frames per second are used.

The parameters for the reference measurement channels are specified in clause A.14 for NB-IoT reference sensitivity and in-channel selectivity and in clause A.15 for dynamic range.

A schematic overview of the encoding process for the NB-IoT reference measurement channels is provided in Figure A0-2.

NB-IoT receiver requirements in the present document are defined with a throughput stated relative to the Maximum throughput of the FRC. The Maximum throughput for an FRC equals the Payload size/ (Number of Resource Unit * time to send one Resource Unit).

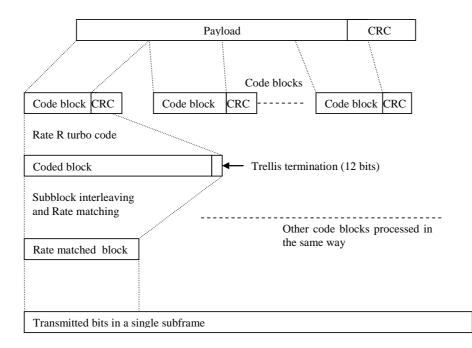


Figure A0-1: Schematic overview of the encoding process

termination (bits)

Total number of bits per sub-frame

Total symbols per sub-frame

Payload		CRC		
Code block			CRC	
Rate R turbo code				
Coded block				Trellis termination (12 bits)
Subblock interleaving and Rate matching			*****	
Rate matched block				
Resource Unit Reso	ource Unit	1 sub-ca	arrier	

Figure A0-2. Schematic overview of the encoding process for NB-IoT

A.1 Fixed Reference Channels for reference sensitivity and in--channel selectivity (QPSK, R=1/3)

The parameters for the reference measurement channels are specified in Table A.1-1 for reference sensitivity and in-channel selectivity

Reference channel	A1-1	A1-2	A1-3	A1-4	A1-5	A1-6	A1-7
Allocated resource blocks	6	15	25	3	9	12	24
DFT-OFDM Symbols per subframe	12	12	12	12	12	12	12
Modulation	QPSK						
Code rate	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Payload size (bits)	600	1544	2216	256	936	1224	2088
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	0	0	0	0	0	0	0
Number of code blocks - C	1	1	1	1	1	1	1
Coded block size including 12bits trellis	1884	4716	6732	852	2892	3756	6348

4320

2160

7200

3600

864

432

2592

1296

3456

1728

6912

3456

Table A.1-1: FRC parameters for reference sensitivity and in-channel selectivity

A.2	Fixed Reference Channels for dynamic range
	(16QAM, R=2/3)

1728

864

The parameters for the reference measurement channels are specified in Table A.2-1 for dynamic range.

Reference channel	A2-1	A2-2	A2-3
Allocated resource blocks	6	15	25
DFT-OFDM Symbols per subframe	12	12	12
Modulation	16QAM	16QAM	16QAM
Code rate	2/3	2/3	2/3
Payload size (bits)	2344	5992	9912
Transport block CRC (bits)	24	24	24
Code block CRC size (bits)	0	0	24
Number of code blocks – C	1	1	2
Coded block size including 12bits trellis termination (bits)	7116	18060	14988
Total number of bits per sub-frame	3456	8640	14400
Total symbols per sub-frame	864	2160	3600

Table A.2-1: FRC parameters for dynamic range

A.3 Fixed Reference Channels for performance requirements (QPSK 1/3)

Reference channel	A3-1	A3-2	A3-3	A3-4	A3-5	A3-6	A3-7
Allocated resource blocks	1	6	15	25	50	75	100
DFT-OFDM Symbols per subframe	12	12	12	12	12	12	12
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Code rate	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Payload size (bits)	104	600	1544	2216	5160	6712	10296
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	0	0	0	0	0	24	24
Number of code blocks - C	1	1	1	1	1	2	2
Coded block size including 12bits trellis	396	1884	4716	6732	15564	10188	15564
termination (bits)							
Total number of bits per sub-frame	288	1728	4320	7200	14400	21600	28800
Total symbols per sub-frame	144	864	2160	3600	7200	10800	14400

Table A.3-1: FRC parameters for performance requirements (QPSK 1/3)

A.4 Fixed Reference Channels for performance requirements (16QAM 3/4)

Table A.4-1: FRC parameters for performance requirements (16QAM 3/4)

Reference channel	A4-1	A4-2	A4-3	A4-4	A4-5	A4-6	A4-7	A4-8
Allocated resource blocks	1	1	6	15	25	50	75	100
DFT-OFDM Symbols per subframe	12	10	12	12	12	12	12	12
Modulation	16QAM							
Code rate	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Payload size (bits)	408	376	2600	6456	10680	21384	32856	43816
Transport block CRC (bits)	24	24	24	24	24	24	24	24
Code block CRC size (bits)	0	0	0	24	24	24	24	24
Number of code blocks - C	1	1	1	2	2	4	6	8
Coded block size including 12bits trellis termination (bits)	1308	1212	7884	9804	16140	16140	16524	16524
Total number of bits per sub-frame	576	480	3456	8640	14400	28800	43200	57600
Total symbols per sub-frame	144	120	864	2160	3600	7200	10800	14400

A.5 Fixed Reference Channels for performance requirements (64QAM 5/6)

Table A.5-1: FRC parameters for performance requirements (64QAM 5/6)

Reference channel	A5-1	A5-2	A5-3	A5-4	A5-5	A5-6	A5-7
Allocated resource blocks	1	6	15	25	50	75	100
DFT-OFDM Symbols per subframe	12	12	12	12	12	12	12
Modulation	64QAM						
Code rate	5/6	5/6	5/6	5/6	5/6	5/6	5/6
Payload size (bits)	712	4392	11064	18336	36696	55056	75376
Transport block CRC (bits)	24	24	24	24	24	24	24
Code block CRC size (bits)	0	0	24	24	24	24	24
Number of code blocks - C	1	1	2	3	6	9	13
Coded block size including 12bits trellis termination (bits)	2220	13260	16716	18444	18444	18444	17484
Total number of bits per sub-frame	864	5184	12960	21600	43200	64800	86400
Total symbols per sub-frame	144	864	2160	3600	7200	10800	14400

A.6 PRACH Test preambles

Table A.6-1: Test preambles for Normal Mode

Burst format	Ncs	Logical sequence index	v
0	13	22	32
1	167	22	2
2	167	22	0
3	0	22	0
4	10	0	0

Table A.6-2: Test preambles for High speed Mode

Burst format	Ncs	Logical sequence index	v
0	15	384	0
1	202	384	0
2	202	384	0
3	237	384	0

Table A.6-3 Test preambles for coverage enhancement

Burst format	Ncs	Logical sequence index	V
0	13	22	32
1	167	22	2
2	167	22	0
3	0	22	0

A.7 Fixed Reference Channels for UL timing adjustment (Scenario 1)

Reference channel	A7-1	A7-2	A7-3	A7-4	A7-5	A7-6
Allocated resource blocks	3	6	12	25	25	25
DFT-OFDM Symbols per subframe	12	12	12	12	12	12
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Code rate	3/4	3/4	3/4	3/4	3/4	3/4
Payload size (bits)	1288	2600	5160	10680	10680	10680
Transport block CRC (bits)	24	24	24	24	24	24
Code block CRC size (bits)	0	0	0	24	24	24
Number of code blocks - C	1	1	1	2	2	2
Coded block size including 12bits trellis termination (bits)	3948	7884	15564	16140	16140	16140
Total number of bits per sub-frame	1728	3456	6912	14400	14400	14400
Total symbols per sub-frame	432	864	1728	3600	3600	3600
SRS bandwidth configuration (See TS 36.211, 5.5.3) (Note 1)	7	5	3	2	5	2
SRS-Bandwidth b (See TS 36.211, 5.5.3) (Note 1, 2)	0	0	0	0	0	1
Note 1. The transmission of SRS is optional Note 2. PUSCH resource blocks shall be included in SRS resource blocks						

Table A.7-1: FRC parameters for UL timing adjustment (Scenario 1)

A.8 Fixed Reference Channels for UL timing adjustment (Scenario 2)

Table A.8-1: FRC parameters for UL timing adjustment (Scenario 2)

Reference channel	A8-1	A8-2	A8-3	A8-4	A8-5	A8-6	
Allocated resource blocks	3	6	12	25	25	25	
DFT-OFDM Symbols per subframe	12	12	12	12	12	12	
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	
Code rate	1/3	1/3	1/3	1/3	1/3	1/3	
Payload size (bits)	256	600	1224	2216	2216	2216	
Transport block CRC (bits)	24	24	24	24	24	24	
Code block CRC size (bits)	0	0	0	0	0	0	
Number of code blocks - C	1	1	1	1	1	1	
Coded block size including 12bits trellis termination (bits)	852	1884	3756	6732	6732	6732	
Total number of bits per sub-frame	864	1728	3456	7200	7200	7200	
Total symbols per sub-frame	432	864	1728	3600	3600	3600	
SRS bandwidth configuration (See TS 36.211, 5.5.3) (Note 1)	7	5	3	2	5	2	
SRS-Bandwidth b (See TS 36.211, 5.5.3) (Note 1, 2)	0	0	0	0	0	1	
Note 1. The transmission of SRS is optional							
Note 2. PUSCH resource blocks shall be included in SRS reso	urce bloc	ks					

A.9 Multi user PUCCH test

Table A.9-1: Test parameters for multi user PUCCH case

	Resource index for PUCCH formats 1/1a/1b $n_{ m PUCCH}^{(1)}$	Relative power [dB]	Relative timing [ns]				
Tested signal	2	-	-				
Interferer 1	1	0					
Interferer 2	7	-3	0				
Interferer 3	14	3					
NOTE1: The following parameters shall be used $N_{\rm ID}^{\rm cell} = 150$, $N_{\rm cs}^{(1)} = 0$ and $\Delta_{\rm shift}^{\rm PUCCH} = 2$.							
	NOTE2: All above listed signals are transmitted on the same PUCCH resource block, with different PUCCH resource indices as presented above.						

A.10 PUCCH transmission on two antenna ports test

Table A.10-1: Test parameters for PUCCH transmission on two antenna ports case

PUCCH form	nat	Resource indices for two antenna ports			
Format 1a	l	$n_{\text{PUCCH}}^{(1,p=p_0)} = 1$, $n_{\text{PUCCH}}^{(1,p=p_1)} = 2$			
Format 2		$n_{\text{PUCCH}}^{(2,p=p_0)} = 1, n_{\text{PUCCH}}^{(2,p=p_1)} = 2$			
NOTE1: The following	NOTE1: The following parameters shall be used $N_{\rm ID}^{\rm cell} = 150$, $N_{\rm cs}^{(1)} = 0$. For PUCCH format 1a, $\Delta_{\rm shift}^{\rm PUCCH} = 2$ is				
assumed. NOTE2: The signals transmitted on two antenna ports are in the same PUCCH resource block with different resource indices as presented above.					

A.11 Fixed Reference Channel for PUSCH with TTI bundling and enhanced HARQ pattern

Table A.11-1: FRC parameters for PUSCH with TTI bundling and enhanced HARQ pattern

Reference channel	A11-1		
Allocated resource blocks			
DFT-OFDM Symbols per subframe	12		
Modulation	QPSK		
Code rate	11/27*		
Payload size (bits)	328		
Transport block CRC (bits)	24		
Code block CRC size (bits)	0		
Number of code blocks - C	1		
Coded block size including 12bits trellis termination (bits)	1068		
Total number of bits per sub-frame	864		
Total symbols per sub-frame	432		
Note *: code rate per TTI			

A.12 Fixed Reference Channels for performance requirements (QPSK 0.36)

Reference channel	A12-1	A12-2	A12-3	A12-4	A12-5	A12-6
Allocated resource blocks	6	15	25	50	75	100
DFT-OFDM Symbols per subframe	12	12	12	12	12	12
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Code rate	0.36	0.36	0.36	0.36	0.36	0.36
MCS index	6	6	6	6	6	6
Payload size (bits)	600	1544	2600	5160	7736	10296
Transport block CRC (bits)	24	24	24	24	24	24
Code block CRC size (bits)	0	0	0	0	24	24
Number of code blocks - C	1	1	1	1	2	2
Coded block size including 12bits	1884	4716	7884	15564	11724	15564
trellis termination (bits)						
Total number of bits per sub-frame	1728	4320	7200	14400	21600	28800
Total symbols per sub-frame	864	2160	3600	7200	10800	14400
NOTE 1: FRC A12-1, A12-2, A12-4, A	A12-6 are ic	lentical to F	RC A3-2, A	3-3, A3-5, A	43-7, respe	ctively.

Table A.12-1 FRC parameters for performance requirements (QPSK 0.36)

A.13 Fixed Reference Channels for performance requirements (16QAM 1/2)

Table A.13-1: FRC parameters for performance requirements (16QAM 1/2)

Reference channel	A13-1	A13-2	A13-3	A13-4	A13-5	A13-6
Allocated resource blocks	6	15	25	50	75	100
DFT-OFDM Symbols per subframe	12	12	12	12	12	12
Modulation	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Code rate	0.51	0.50	0.50	0.49	0.50	0.49
MCS index	15	15	15	15	15	15
Payload size (bits)	1736	4264	7224	14112	21384	28336
Transport block CRC (bits)	24	24	24	24	24	24
Code block CRC size (bits)	0	0	24	24	24	24
Number of code blocks - C	1	1	2	3	4	5
Coded block size including 12bits	5292	12876	10956	14220	16140	17100
trellis termination (bits)						
Total number of bits per sub-frame	3456	8640	14400	28800	43200	57600
Total symbols per sub-frame	864	2160	3600	7200	10800	14400

A.14 Fixed Reference Channels for NB-IOT reference sensitivity ($\pi/2$ BPSK, R=1/3)

The parameters for the reference measurement channels are specified in Table A.14-1 for reference sensitivity.

Reference channel	A14-1	A14-2			
Sub-carrier spacing (kHz)	15	3.75			
Number of tone	1	1			
Diversity	No	No			
Modulation	π/2 BPSK	π/2 BPSK			
Frequency offset	0	0			
Channel estimation length (ms) ^{Note1}	4	16			
Number of NPUSCH repetition	1	1			
IMCS / TBS	0/0	0 / 0			
Payload size (bits)	32	32			
Allocated resource unit	2	2			
Code rate (target)	1/3	1/3			
Code rate (effective)	0.29	0.29			
Transport block CRC (bits)	24	24			
Code block CRC size (bits)	0	0			
Number of code blocks - C	1	1			
Total number of bits per resource unit	96	96			
Total symbols per resource unit	96	96			
Tx time (ms)	16	64			
Note 1: Channel estimation lengths are included in the table for information only.					

Table A.14-1 FRC parameters for reference sensitivity and in-channel selectivity

A.14.1 Void

A.15 Fixed Reference Channels for NB-IoT dynamic range $(\pi/4 \text{ QPSK}, \text{ R}=2/3)$

The parameters for the reference measurement channels are specified in Table A.15-1 for NB-IoT dynamic range.

Reference channel	A15-1	A15-2	
Sub carrier spacing (kHz)	15	3.75	
Number of tone	1	1	
Modulation	π/4 QPSK	π/4 QPSK	
Diversity	No	No	
Frequency offset	0	0	
IMCS / ITBS	7 / 7	7/7	
Payload size (bits)	104	104	
Allocated resource units	1	1	
Transport block CRC (bits)	24	24	
Coding rate (target)	2/3	2/3	
Coding Rate	0.67	0.67	
Code block CRC size (bits)	0	0	
Number of code blocks – C	1	1	
Total symbols per resource unit	96	96	
Total number of bits per resource unit	192	192	
Tx time (ms)	8	32	
Frequency offset	0	0	
Channel estimation length (ms) Note1	4	16	
Note 1: Channel estimation lengths are included in the table for information only.			

Table A.15-1 FRC parameters for NB-IoT dynamic range

A.16 Fixed Reference Channels for NB-IoT NPUSCH format 1

A.16.1 One PRB

Reference channel	A16-1	A16-2	A16-3	A16-4	A16-5
Subcarrier spacing (kHz)	3.75	15	15	15	15
Number of allocated subcarriers	1	1	3	6	12
Diversity	No	No	No	No	No
Modulation	BPSK	BPSK	QPSK	QPSK	QPSK
Itbs / Iru	0 / 1	0 / 1	3/0	7 / 0	9/0
Payload size (bits)	32	32	40	104	136
Allocated resource unit	2	2	1	1	1
Code rate (target)	1/3	1/3	1/3	1/3	2/3
Code rate (effective)	0.29	0.29	0.22	0.44	0.56
Transport block CRC (bits)	24	24	24	24	24
Code block CRC size (bits)	0	0	0	0	0
Number of code blocks - C	1	1	1	1	1
Total number of bits per resource unit	96	96	288	288	288
Total symbols per resource unit	96	96	144	144	144
Channel estimation length (ms) Note 1	16	4	4	4	2 (when repetition = 2) 4 (when repetition > 2
Note 1: Channel estimation lengths are included in the table for information only.					

Annex B (normative): Propagation conditions

B.1 Static propagation condition

The propagation for the static performance measurement is an Additive White Gaussian Noise (AWGN) environment. No fading or multi-paths exist for this propagation model.

B.2 Multi-path fading propagation conditions

Tables B.2-1 - B.2-3 show multi-path delay profiles that are used for the performance measurements in multi-path fading environment. All taps have classical Doppler spectrum, defined as:

(CLASS)

$$S(f) \propto 1/(1 - (f/f_D)^2)^{0.5}$$

for $f \in -f_D, f_D$.

Table B.2-1: Extended Pedestrian A model (EPA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.0
70	-2.0
90	-3.0
110	-8.0
190	-17.2
410	-20.8

Table B.2-2: Extended Vehicular A model (EVA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.5
150	-1.4
310	-3.6
370	-0.6
710	-9.1
1090	-7.0
1730	-12.0
2510	-16.9

Table B.2-3 Extended Typical Urban model (ETU)

Excess tap delay [ns]	Relative power [dB]
0	-1.0
50	-1.0
120	-1.0
200	0.0
230	0.0
500	0.0
1600	-3.0
2300	-5.0
5000	-7.0

A multipath fading propagation condition is defined by a combination of a multi-path delay profile and a maximum Doppler frequency f_D which is either 5, 70 or 300 Hz. In addition, 200 Hz Doppler frequency is specified for UL timing adjustment performance requirement.

B.3 High speed train condition

High speed train conditions are as follows:

Scenario 1: Open space

Scenario 3: Tunnel for multi-antennas

The high speed train conditions for the test of the baseband performance are two non-fading propagation channels in both scenarios. For BS with Rx diversity defined in scenario 1, the Doppler shift variation is the same between antennas.

Doppler shift for both scenarios is given by:

$$f_s(t) = f_d \cos \theta(t) \tag{B.3.1}$$

where $f_s(t)$ is the Doppler shift and f_d is the maximum Doppler frequency. The cosine of angle $\theta(t)$ is given by:

$$\cos\theta(t) = \frac{D_s/2 - vt}{\sqrt{D_{\min}^2 + (D_s/2 - vt)^2}}, \ 0 \le t \le D_s/v$$
(B.3.2)

$$\cos\theta(t) = \frac{-1.5D_s + vt}{\sqrt{D_{\min}^2 + (-1.5D_s + vt)^2}}, \ D_s/v < t \le 2D_s/v$$
(B.3.3)

$$\cos\theta(t) = \cos\theta(t \mod (2D_s/v)), \ t > 2D_s/v \tag{B.3.4}$$

where $D_s/2$ is the initial distance of the train from BS, and D_{\min} is BS-Railway track distance, both in meters; v is the velocity of the train in m/s, t is time in seconds.

Doppler shift and cosine angle is given by equations B.3.1 and B.3.2-B.3.4 respectively, where the required input parameters listed in Table B.3-1 and the resulting Doppler shift is shown in Figure B.3-1 and B.3-2 are applied for all frequency bands.

Parameter	Value		
	Scenario 1	Scenario 3	
D_s	1000 m	300 m	
D_{\min}	50 m	2 m	
v	350 km/h	300 km/h	
f_d	1340 Hz	1150 Hz	

Table B.3-1: Parameters for high speed train conditions

NOTE 1: Parameters for HST conditions in table B.3-1 including f_d and Doppler shift trajectories presented on figures B.3-1 and B.3-2 were derived from Band 1 and are applied for performance verification in all frequency bands.

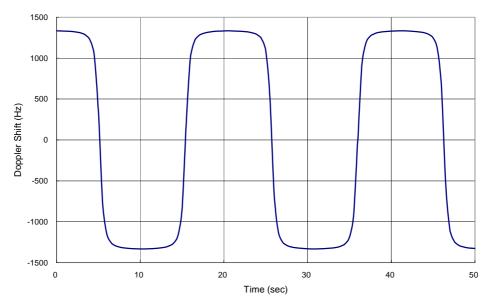


Figure B.3-1: Doppler shift trajectory for scenario 1

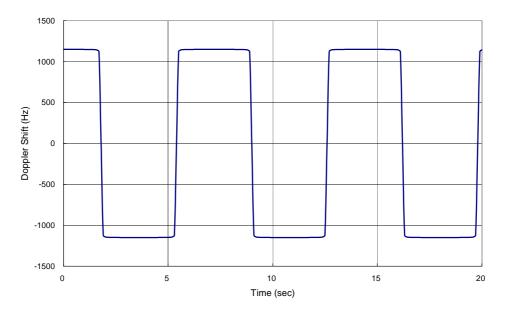


Figure B.3-2: Doppler shift trajectory for scenario 3

B.4 Moving propagation conditions

Figure B.4-1 illustrates the moving propagation conditions for the test of the UL timing adjustment performance. The time difference between the reference timing and the first tap is according Equation (B.4-1). The timing difference between moving UE and stationary UE is equal to $\Delta \tau - (T_A - 31) \times 16T_s$. The relative timing among all taps is fixed. The parameters for the moving propagation conditions are shown in Table B.4-1.

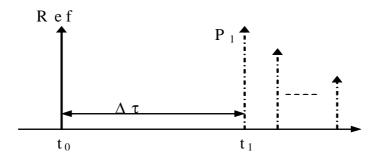


Figure B.4-1: Moving propagation conditions

$$\Delta \tau = \frac{A}{2} \cdot \sin(\Delta \omega \cdot t) \tag{B.4-1}$$

Table B.4-1: Parameters for UL timing adjustment
--

Parameter	Scenario 1	Scenario 2
Channel model	Stationary UE: AWGN	AWGN
	Moving UE: ETU200	
UE speed	120 km/h	350 km/h
CP length	Normal	Normal
А	10 µs	10 μs
Δω	0.04 s ⁻¹	0.13 s ⁻¹

- NOTE 1: Multipath fading propagation conditions for Scenario 1 were derived for Band 1 with additional rounding applied to the Doppler frequency calculated for the specified UE speed.
- NOTE 2: In Scenario 2, the UE speed is only used to calculate $\Delta \omega$ and the Doppler shift is not applied to the channel.

B.5 Multi-Antenna channel models

The MIMO channel correlation matrices defined in B.5 apply for the antenna configuration using uniform linear arrays at both UE and eNodeB.

B.5.1 Definition of MIMO Correlation Matrices

Table B.5.1-1 defines the correlation matrix for the eNodeB:

Table B.5.1-1: eNodeB c	orrelation matrix
-------------------------	-------------------

	One antenna	Two antennas	Four antennas
eNode B Correlation	$R_{eNB} = 1$	$R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$	$R_{eNB} = \begin{pmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{*} & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{pmatrix}$

Table B.5.1-2 defines the correlation matrix for the UE:

Table B.5.1-2: UE	correlation matrix	
One antenna	Two antennas	F

	One antenna	Two antennas	Four antennas
UE Correlation	<i>R_{UE}</i> = 1	$R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$	$R_{UE} = \begin{pmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{\frac{4}{9}} & \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{*} & \beta^{\frac{4}{9}} & \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & 1 \end{pmatrix}$

Table B.5.1-3 defines the channel spatial correlation matrix R_{spat} . The parameters α and β in Table B.5.1-3 defines the spatial correlation between the antennas at the eNodeB and UE.

1x2 case	$R_{spat} = R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$
2x2 case	$R_{spat} = R_{UE} \otimes R_{eNB} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \alpha \\ \alpha^* & 1 \end{bmatrix} = \begin{bmatrix} 1 & \alpha & \beta & \beta\alpha \\ \alpha^* & 1 & \beta\alpha^* & \beta \\ \beta^* & \beta^*\alpha & 1 & \alpha \\ \beta^*\alpha^* & \beta^* & \alpha^* & 1 \end{bmatrix}$
2x4 case	$R_{spat} = R_{UE} \otimes R_{eNB} = \begin{bmatrix} 1 & \beta \\ \beta^{*} & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \alpha^{1/9} & \alpha^{4/9} & \alpha \\ \alpha^{1/9} & 1 & \alpha^{1/9} & \alpha^{4/9} \\ \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{*} & \alpha^{4/9} & \alpha^{1/9} & 1 \end{bmatrix}$ $R_{spat} = R_{UE} \otimes R_{eNB} = \begin{pmatrix} 1 & \beta^{1/9} & \beta^{4/9} & \beta \\ \beta^{1/9*} & 1 & \beta^{1/9} & \beta^{4/9} \\ \beta^{4/9*} & \beta^{1/9*} & 1 & \beta^{1/9} \\ \beta^{4/9*} & \beta^{1/9*} & 1 & \beta^{1/9} \\ \beta^{4/9*} & \beta^{4/9*} & \beta^{1/9*} & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \alpha^{1/9} & \alpha^{4/9} & \alpha \\ \alpha^{1/9} & 1 & \alpha^{1/9} & \alpha^{4/9} \\ \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{4/9} & \alpha^{1/9} & 1 \end{bmatrix}$
4x4 case	$R_{spat} = R_{UE} \otimes R_{eNB} = \begin{pmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9^*}} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9^*}} & \beta^{\frac{1}{9^*}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{\frac{4}{9^*}} & \beta^{\frac{4}{9^*}} & \beta^{\frac{1}{9^*}} & 1 \end{pmatrix} \otimes \begin{bmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9^*}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9^*}} & \alpha^{\frac{1}{9^*}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{\frac{4}{9^*}} & \alpha^{\frac{4}{9^*}} & \alpha^{\frac{1}{9^*}} & 1 \end{bmatrix}$

Table B.5.1-3: R_{spat} correlation matrices

For cases with more antennas at either eNodeB or UE or both, the channel spatial correlation matrix can still be expressed as the Kronecker product of R_{UE} and R_{eNB} according to $R_{spat} = R_{UE} \otimes R_{eNB}$.

B.5.2 MIMO Correlation Matrices at High, Medium and Low Level

The α and β for different correlation types are given in Table B.5.2-1.

Table B.5.2-1: Correlation for High Medium and Low Level

Low co	relation	Medium C	orrelation	High Co	rrelation
α	β	α	β	α	β
0	0	0.9	0.3	0.9	0.9

The correlation matrices for high, medium and low correlation are defined in Table B.5.2-2, B.5.2-3 and B.5.2-4 as below.

The values in Table B.5.2-2 have been adjusted for the 2x4 and 4x4 high correlation cases to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spatial} + aI_n]/(1+a)$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 2x4 high correlation case, a=0.00010. For the 4x4 high correlation case, a=0.00012.

The same method is used to adjust the 4x4 medium correlation matrix in Table B.5.2-3 to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision with a =0.00012.

1x2 case	$R_{high} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$
2x2 case	$R_{high} = \begin{pmatrix} 1 & 0.9 & 0.9 & 0.81 \\ 0.9 & 1 & 0.81 & 0.9 \\ 0.9 & 0.81 & 1 & 0.9 \\ 0.81 & 0.9 & 0.9 & 1 \end{pmatrix}$
2x4 case	$R_{high} = \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
4x4 case	$R_{high} = \begin{bmatrix} 1.0000 \ 0.9882 \ 0.9541 \ 0.8999 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.8894 \ 0.9541 \ 0.9430 \ 0.9105 \ 0.8587 \ 0.8999 \ 0.8894 \ 0.8587 \ 0.8099 \ 0.9882 \ 1.0000 \ 0.9882 \ 0.9541 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9105 \ 0.8894 \ 0.8587 \ 0.8999 \ 0.8894 \ 0.8587 \ 0.8999 \ 0.8894 \ 0.8587 \ 0.8999 \ 0.8894 \ 0.8587 \ 0.8999 \ 0.9541 \ 0.9882 \ 1.0000 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9105 \ 0.9430 \ 0.9541 \ 0.9430$

Table B.5.2-2: MIMO correlation matrices for high correlation

1x2 case									N/A								
2x2 case				R	n edium	$= \begin{bmatrix} 0\\0 \end{bmatrix}$.0000 .9000 .3000 .2700) 1.) 0.	9000 0000 2700 3000	0.1 1.0	3000 2700 2000 9000	0.3 0.9	700 000 000 000				
2x4 case	R _{mediu}	m =	0.9 0.9 0.3 0.2 0.2	884 543 000 000 965	0.9884 1.00 0.98 0.95 0.29 0.30 0.29 0.28	00 84 43 65 00 65	.9543 0.988 1.000 0.988 0.286 0.296 0.300 0.296	34 0 00 0 34 1 53 0 55 0 00 0	9000).954:).9884 1.0000).2700).286:).286:).296:).3000	3 0 4 0 0 0 0 1 3 0 5 0	000 .2965 .2863 .2700 .0000 .9884 .9543 .9000	0.2 0.2 0.9 1.0 0.9	65 3000 2965 2863 9884 9000 9884 9543	0.2 0.9 0.9 1.0	965 000 965 543	0.2700 0.28 0.29 0.30 0.90 0.95 0.98 1.00	63 65 00 00 43 84
4x4 case	R _{medium} =	1.0000 0 0.9882 0.9541 0.8999 0.8747 0.8645 0.8347 0.7872 0.5855 0.5787 0.5588 0.5270 0.3000 0.2965 0.2862 0.2700	1.0000 0.9882 0.9541 0.8645 0.8747 0.8645 0.8347 0.5787 0.5787 0.5588 0.2965 0.3000 0.2965	9541 0 0.9882 1.0000 0.9882 0.8347 0.8645 0.8747 0.8645 0.5588 0.5787 0.5855 0.5787 0.2862 0.2965 0.3000 0.2965	0.9882 1.0000 0.7872 0.8347 0.8645 0.8747 0.5270 0.5588 0.5787 0.5885 0.2700 0.2862 0.2965	0.8645 0.8347 0.7872 1.0000 0.9882 0.9541 0.8999 0.8747 0.8645 0.8347 0.7872 0.5855 0.5787 0.5588	0.8747 0.8645 0.8347 0.9882 1.0000 0.9882 0.9541 0.8645 0.8747 0.8645 0.8347 0.5787 0.5855 0.5787	0.8645 0.8747 0.8645 0.9541	0.8347 0.8645 0.8747 0.8999 0.9541 0.9882 1.0000 0.7872 0.8347 0.8645 0.8747 0.5270 0.5588 0.5787	0.5787 0.5588 0.5270 0.8747 0.8645 0.8347 0.7872	0.5855 0.5787 0.5588 0.8645 0.8747 0.8645 0.8347 0.9882 1.0000 0.9882 0.9541 0.8645 0.8747 0.8645	0.5787 0.5855 0.5787 0.8347 0.8645 0.8747 0.8645 0.9541 0.9882 1.0000 0.9882 0.8347	0.5588 0.5787 0.5855 0.7872 0.8347 0.8645 0.8747 0.8999 0.9541 0.9882 1.0000 0.7872 0.8347 0.8645	0.2965 0.2862 0.2700 0.5855 0.5787 0.5588 0.5270 0.8747 0.8645 0.8347 0.7872 1.0000 0.9882 0.9541		0.2965 0.3000 0.2965 0.5588 0.5787 0.5855 0.5787 0.8347 0.8645 0.8747 0.8645 0.9541 0.9882 1.0000	0.2965 0.3000 0.5270 0.5588 0.5787 0.5855

Table B.5.2-3: MIMO correlation ma	atrices for medium correlation
------------------------------------	--------------------------------

Table B.5.2-4: MIMO correlation matrices for low correlation

1x2 case	$R_{low} = \mathbf{I}_2$
1x4 case	$R_{low} = \mathbf{I}_4$
2x2 case	$R_{low} = \mathbf{I}_4$
2x4 case	$R_{low} = \mathbf{I}_8$
4x4 case	$R_{low} = \mathbf{I}_{16}$

In Table B.5.2-4, \mathbf{I}_d is a $d \times d$ identity matrix.

NOTE: For completeness, the 1x2 cases were defined for high, medium and low correlation but for Rel-8 onwards for 1Tx, performance requirements exist only for low correlation.

B.5A Multi-Antenna channel models using cross polarized antennas

The MIMO channel correlation matrices defined in B.5A apply to two cases as presented below:

- One TX antenna and multiple RX antennas case, with cross polarized antennas used at eNodeB;
- Multiple TX antennas and multiple RX antennas case, with cross polarized antennas used at both UE and eNodeB.

The cross-polarized antenna elements with +/-45 degrees polarization slant angles are deployed at eNB. For one TX antenna case, antenna element with +90 degree polarization slant angle is deployed at UE. For multiple TX antennas case, cross-polarized antenna elements with +90/0 degrees polarization slant angles are deployed at UE.

For the cross-polarized antennas, the N antennas are labelled such that antennas for one polarization are listed from 1 to N/2 and antennas for the other polarization are listed from N/2+1 to N, where N is the number of TX or RX antennas.

B.5A.1 Definition of MIMO Correlation Matrices using cross polarized antennas

For the channel spatial correlation matrix, the following is used:

$$R_{Spat} = P_{UL} \left(R_{UE} \otimes \Gamma_{UL} \otimes R_{eNB} \right) P_{UL}^{\prime}$$

Where

- R_{UE} is the spatial correlation matrix at the UE with same polarization,
- R_{eNB} is the spatial correlation matrix at the eNB with same polarization,
- Γ_{UL} is a polarization correlation matrix,
- P_{UL} is a permutation matrix, and
- $(\bullet)^T$ denotes transpose.

Table B.5A.1-1 defines the polarization correlation matrix.

Table B.5A.1-1: Polarization correlation matrix

	One TX antenna	Multiple TX antennas
Polarization correlation matrix	$\Gamma_{UL} = \begin{bmatrix} 1 & -\gamma \\ -\gamma & 1 \end{bmatrix}$	$\Gamma_{UL} = \begin{bmatrix} 1 & -\gamma & 0 & 0 \\ -\gamma & 1 & 0 & 0 \\ 0 & 0 & 1 & \gamma \\ 0 & 0 & \gamma & 1 \end{bmatrix}$

The matrix P_{UL} is defined as

$$\mathbf{P}_{UL}(a,b) = \begin{cases} 1 & \text{for } a = (j-1)Nr + i \text{ and } b = 2(j-1)Nr + i, & i = 1, \dots, Nr, j = 1, \dots, \lceil Nt / 2 \rceil \\ 1 & \text{for } a = (j-1)Nr + i \text{ and } b = 2(j-Nt / 2)Nr - Nr + i, & i = 1, \dots, Nr, j = \lceil Nt / 2 \rceil + 1, \dots, Nt \\ 0 & \text{otherwise} \end{cases}$$

where Nt and Nr is the number of TX and RX antennas respectively, and $\left[\bullet\right]$ is the ceiling operator.

The matrix P_{UL} is used to map the spatial correlation coefficients in accordance with the antenna element labelling system described in B.5A.

B.5A.2 Spatial Correlation Matrices at UE and eNB sides

B.5A.2.1 Spatial Correlation Matrices at UE side

For 1-antenna transmitter, $R_{UE} = 1$.

For 2-antenna transmitter using one pair of cross-polarized antenna elements, $R_{UE} = 1$.

For 4-antenna transmitter using two pairs of cross-polarized antenna elements, $R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$.

B.5A.2.2 Spatial Correlation Matrices at eNB side

For 2-antenna receiver using one pair of cross-polarized antenna elements, $R_{eNB} = 1$.

For 4-antenna receiver using two pairs of cross-polarized antenna elements, $R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$.

For 8-antenna receiver using four pairs of cross-polarized antenna elements, $R_{eNB} = \begin{pmatrix} 1 & \alpha^{1/9} & \alpha^{4/9} & \alpha \\ \alpha^{1/9*} & 1 & \alpha^{1/9} & \alpha^{4/9} \\ \alpha^{4/9*} & \alpha^{1/9*} & 1 & \alpha^{1/9} \\ \alpha^* & \alpha^{4/9*} & \alpha^{1/9*} & 1 \end{pmatrix}.$

B.5A.3 MIMO Correlation Matrices using cross polarized antennas

The values for parameters α , β and γ for low spatial correlation are given in Table B.5A.3-1.

Table B.5A.3-1: Values for parameters α , β and γ

		Low spatial correlation	
	0	0	0
Note 1:	Value of α applies when n	nore than one pair of cross-polarized ar	ntenna elements at eNB side.
Note 2:	Value of β applies when n	nore than one pair of cross-polarized ar	tenna elements at UE side.

The correlation matrices for low spatial correlation are defined in Table B.5A.3-2 as below.

Table B.5A.3-2: MIMO correlation matrices for low spatial correlation

1x8 case	$R_{low} = \mathbf{I}_8$
2x8 case	$R_{low} = \mathbf{I}_{16}$

In Table B.5A.3-2, \mathbf{I}_d is a $d \times d$ identity matrix.

B.6 Interference model for enhanced performance requirements type A

This clause provides a description for the modelling of interfering UE transmissions for enhanced performance requirements type A including: definition of dominant interferer proportion, interference model for synchronous scenario and interference model for asynchronous scenario.

B.6.1 Dominant interferer proportion

Each interferer involved in enhanced performance requirements type A is characterized by its associated dominant interferer proportion (DIP) value:

$$DIP_{i} = \frac{\hat{I}_{or(i)}}{N'} (i = 1, ..., M)$$

where $\hat{I}_{or(i)}$ is the received energy from the *i*-th strongest interferer involved in the requirement scenario and

 $N = \sum_{j=1}^{m} \hat{I}_{or(j)} + N$ where N is the energy of the white noise source consistent with the definition provided in

subclause 8.1 of TS 36.104 [2] and M is the total number of simultaneously transmitted interferers involved in a given requirement scenario.

B.6.2 Interference model for synchronous scenario

This subclause provides interference modelling for each explicitly modelled interferer in the requirement scenario where the interferer(s) are time-synchronous with the tested signal.

In each subframe, each interferer shall transmit 16QAM randomly modulated data over the entire PUSCH region and the full transmission bandwidth. Demodulation reference signal, configured according to Table 8.2.6.4.2-2, is transmitted associated with the transmission of PUSCH.

B.6.3 Interference model for asynchronous scenario

This subclause provides interference modelling for each explicitly modelled interferer in the requirement scenario where the interferer(s) are time-asynchronous with the tested signal.

Two interfering UEs from the same interfering cell, named interferer 1-1 and interferer 1-2, are modelled. Interferer 1-1 and interferer 1-2 shall transmit 16QAM randomly modulated data over the entire PUSCH region and the full transmission bandwidth, respectively in the even subframes and odd subframes, as illustrated in Figure B.6.3-1. Demodulation reference signal, configured according to Table 8.2.6A.4.2-2, is transmitted associated with the transmission of PUSCH. The transmissions of both interferer 1-1 and interferer 1-2 are delayed with respect to the tested signal by 0.33 ms.

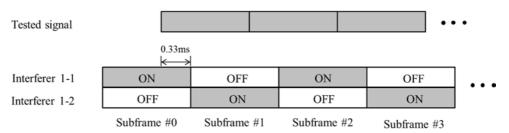


Figure B.6.3-1: Configuration of asynchronous interferers

Annex C (normative): Characteristics of the interfering signals

<Text will be added.>

The interfering signal shall be a PUSCH containing data and reference symbols. Normal cyclic prefix is used. The data content shall be uncorrelated to the wanted signal and modulated according to clause 5 of TS36.211. Mapping of PUSCH modulation to receiver requirement are specified in Table C.1.

Receiver requirement	Modulation
In-channel selectivity	16QAM
Adjacent channel selectivity	QPSK
and narrow-band blocking	
Blocking	QPSK
Receiver intermodulation	QPSK

Table C.1: Modulation of the interfering signal

Annex D (normative): Environmental requirements for the BS equipment

D.1 General

For each test in the present document, the environmental conditions under which the BS is to be tested are defined.

D.2 Normal test environment

When a normal test environment is specified for a test, the test should be performed within the minimum and maximum limits of the conditions stated in Table D.1.

Condition	Minimum	Maximum	
Barometric pressure	86 kPa	106 kPa	
Temperature	15°C	30°C	
Relative Humidity	20 %	85 %	
Power supply	Nominal, as declared by the manufacturer		
Vibration	Negligible		

The ranges of barometric pressure, temperature and humidity represent the maximum variation expected in the uncontrolled environment of a test laboratory. If it is not possible to maintain these parameters within the specified limits, the actual values shall be recorded in the test report.

NOTE: This may, for instance, be the case for measurements of radiated emissions performed on an open field test site.

D.3 Extreme test environment

The manufacturer shall declare one of the following:

- 1) the equipment class for the equipment under test, as defined in the IEC 60 721-3-3 [6];
- 2) the equipment class for the equipment under test, as defined in the IEC 60 721-3-4 [7];
- 3) the equipment that does not comply to the mentioned classes, the relevant classes from IEC 60 721 documentation for Temperature, Humidity and Vibration shall be declared.
- Reduced functionality for conditions that fall outside of the standard operational conditions is not tested NOTE: in the present document. These may be stated and tested separately.

D.3.1 Extreme temperature

When an extreme temperature test environment is specified for a test, the test shall be performed at the standard minimum and maximum operating temperatures defined by the manufacturer's declaration for the equipment under test.

Minimum temperature:

The test shall be performed with the environment test equipment and methods including the required environmental phenomena into the equipment, conforming to the test procedure of IEC 60 068-2-1 [8].

Maximum temperature:

The test shall be performed with the environmental test equipment and methods including the required environmental phenomena into the equipment, conforming to the test procedure of IEC 60 068-2-2 [9].

It is recommended that the equipment is made fully operational prior to the equipment being taken to its NOTE: lower operating temperature.

D.4 Vibration

When vibration conditions are specified for a test, the test shall be performed while the equipment is subjected to a vibration sequence as defined by the manufacturer's declaration for the equipment under test. This shall use the environmental test equipment and methods of inducing the required environmental phenomena in to the equipment, conforming to the test procedure of IEC 60 068-2-6 [10]. Other environmental conditions shall be within the ranges specified in clause D.2.

NOTE: The higher levels of vibration may induce undue physical stress in to equipment after a prolonged series of tests. The testing body should only vibrate the equipment during the RF measurement process.

D.5 Power supply

When extreme power supply conditions are specified for a test, the test shall be performed at the standard upper and lower limits of operating voltage defined by manufacturer's declaration for the equipment under test.

Upper voltage limit:

The equipment shall be supplied with a voltage equal to the upper limit declared by the manufacturer (as measured at the input terminals to the equipment). The tests shall be carried out at the steady state minimum and maximum temperature limits declared by the manufacturer for the equipment, to the methods described in IEC 60 068-2-1 [8] Test Ab/Ad and IEC 60 068-2-2 [9] Test Bb/Bd: Dry Heat.

Lower voltage limit:

The equipment shall be supplied with a voltage equal to the lower limit declared by the manufacturer (as measured at the input terminals to the equipment). The tests shall be carried out at the steady state minimum and maximum temperature limits declared by the manufacturer for the equipment, to the methods described in IEC 60 068-2-1 [8] Test Ab/Ad and IEC 60 068-2-2 [9] Test Bb/Bd: Dry Heat.

D.6 Measurement of test environments

The measurement accuracy of the BS test environments defined in Annex D, Test environments shall be.

Pressure:	±5 kPa.
Temperature:	±2 degrees.
Relative Humidity:	±5 %.
DC Voltage:	±1,0 %.
AC Voltage:	±1,5 %.
Vibration:	10 %.
Vibration frequency:	0,1 Hz.

The above values shall apply unless the test environment is otherwise controlled and the specification for the control of the test environment specifies the uncertainty for the parameter.

Annex E (normative): General rules for statistical testing

<Text will be added.>

Annex F (normative): Global In-Channel TX-Test

F.1 General

The global in-channel Tx test enables the measurement of all relevant parameters that describe the in-channel quality of the output signal of the TX under test in a single measurement process.

The parameters describing the in-channel quality of a transmitter, however, are not necessarily independent. The algorithm chosen for description inside this annex places particular emphasis on the exclusion of all interdependencies among the parameters.

F.2.1 Basic principle

The process is based on the comparison of the actual **output signal of the TX under test**, received by an ideal receiver, with a **reference signal**, that is generated by the measuring equipment and represents an ideal error free received signal. All signals are represented as equivalent (generally complex) baseband signals.

The description below uses numbers and illustrations as examples. These numbers are taken from frame structure 1 with normal CP length and a transmission bandwidth configuration of $N_{\text{RB}} = 100$. The application of the text below, however, is not restricted to this parameterset.

F.2.2 Output signal of the TX under test

The output signal of the TX under test is acquired by the measuring equipment and stored for further processing. It is sampled at a sampling rate of 30.72 Msps and it is named z(v). In the time domain it comprises at least 1 frame:: z(v). It is modelled as a signal with the following parameters: demodulated data content, carrier frequency, amplitude and phase for each subcarrier.

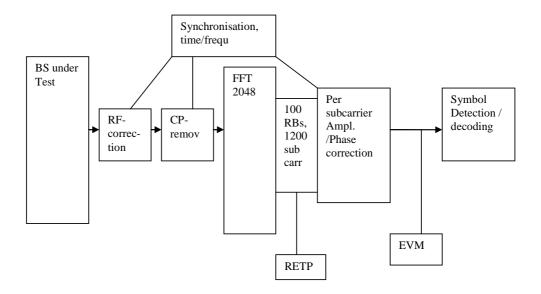
F.2.3 Reference signal

Two types of reference signal are defined:

The reference signal $i_1(v)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: demodulated data content, nominal carrier frequency, nominal amplitude and phase for each subcarrier. It is represented as a sequence of samples at a sampling rate of 30.72 Msps in the time domain. The structure of the signal is described in the testmodells.

The reference signal $i_2(v)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: restricted data content: nominal Reference Symbols and the Primary Synchronisation Channel, (all other modulation symbols are set to 0 V), nominal carrier frequency, nominal amplitude and phase for each applicable subcarrier, nominal timing. It is represented as a sequence of samples at a sampling rate of 30.72 Msps in the time domain.

F.2.4 Measurement results


The measurement results, achieved by the global in channel TX test are the following:

- Carrier Frequency error
- EVM (Error Vector Magnitude)
- Resource Element TX power
 - RS TX power (RSTP)
 - OFDM Symbol TX power (OSTP)

Other side results are: residual amplitude- and phase response of the TX chain after equalisation.

F.2.5 Measurement points

Resource element TX power is measured after the FFT as described below. EVM is calculated after the Equalizer (Ampl./ Phase correction). The result of the frequency synchronisation is the frequency offset. It is performed in the pre- and/or post-FFT domain. The FFT window of 2048 samples out of 2194 samples (data +CP) in the time domain is selected in the box CP removal.

Figure E.2.5-1: Measurement points

F.3.1 Pre FFT minimization process

Sample Timing, Carrier Frequency in z(v) are varied in order to minimise the difference between z(v) and $i_1(v)$, after the amplitude ratio of z(v) and $i_1(v)$ has been scaled. Best fit (minimum difference) is achieved when the RMS difference value between z(v) and i(v) is an absolute minimum.

The carrier frequency variation is the measurement result: Carrier Frequency Error.

From the acquired samples one carrier frequency error can be derived.

- Note 1. The minimisation process, to derive the RF error can be supported by Post FFT operations. However the minimisation process defined in the pre FFT domain comprises all acquired samples (i.e. it does not exclude the samples inbetween the FFT widths and it does not exclude the bandwidth outside the transmission bandwidth configuration.
- Note 2. The algorithm would allow to derive Carrier Frequency error and Sample Frequency error of the TX under test separately. However there are no requirements for Sample Frequency error. Hence the algorithm models the RF and the sample frequency commonly (not independently). It returns one error and does not distinuish between both.

After this process the samples z(v) are called $z^0(v)$.

F.3.2 Timing of the FFT window

The FFT window length is 2048 samples per OFDM symbol. 140 FFTs (286720 samples) cover less than the acquired number of samples (307200 samples in 10 subframes) The position in time for FFT must be determined.

In an ideal signal, the FFT may start at any instant within the cyclic prefix without causing an error. The TX filter, however, reduces the window. The EVM requirements shall be met within a window W<CP. There are three different instants for FFT:

Centre of the reduced window, called $\Delta \tilde{c}$, $\Delta C - W/2$ and $\Delta C + W/2$,

The BS shall transmit a signal according to the Test models, intended for EVM. The primary synchronisation signal and the reference signal shall be used to find the centre of the FFT window.

The timing of the measured signal is determined in the pre FFT domain as follows, using $z^{0}(v)$ and $i_{2}(v)$:

- 1. The measured signal is delay spread by the TX filter. Hence the distinct boarders between the OFDM symbols and between Data and CP are also spread and the timing is not obvious.
- 2. In the Reference Signal $i_2(v)$ the timing is known.
- 3. Correlation between (1.) and (2.) will result in a correlation peak. The meaning of the correlation peak is approx. the "impulse response" of the TX filter. The meaning of "impulse response" assumes that the autocorrelation of the reference signal $i_2(v)$ is a Dirac peak and that the correlation between the reference signal $i_2(v)$ and the data in the measured signal is 0. The correlation peak, (the highest, or in case of more than one highest, the earliest) indicates the timing in the measured signal.

The number of samples, used for FFT is reduced compared to $z^{0}(v)$. This subset of samples is called z'(v).

From the acquired samples one timing can be derived.

The timing of the centre $\Delta \tilde{c}$ with respect to the different CP length in a slot is as follows: (Frame structure 1, normal CP length)

 $\Delta \tilde{c}$ is on T_f=72 within the CP of length 144 (in OFDM symbol 1 to 6)

 $\Delta \tilde{c}$ is on T_f=88 (=160-72) within the CP of length 160 (in OFDM symbol 0)

F.3.3 Resource Element TX power

Perform FFT (z'(v)) with the FFT window timing $\Delta \tilde{c}$

The result is called Z'(t,f). The RE TX power is then defined as:

$$RETP = |Z'(t, f)|^2 15 KHz$$

From this the Reference Signal Transmit power (RSTP) is derives as follows:

$$RSTP = \frac{1}{n} \sum_{\substack{RS \ RE \ locations \\ within \ subframe}} RETP ,$$

It is an average power and accumulates the powers of the reference symbols within a sub frame divided by n, the number of reference symbols within a sub frame.

From RETP the OFDM Symbol TX power (OSTP) is derived as follows:

$$OSTP = \sum_{\substack{all \ N_{RB}^{DL} N_{sc}^{RB} \ RE \ locations \\ of \ 4th \ symbol \ within \ subframe}} \sum_{k=1}^{RETP} RETP$$

It accumulates all sub carrier powers of the 4th OFDM symbol. The 4th (out of 14 OFDM symbols within a subframe (in case of frame type 1, normal CP length)) contains exclusively PDSCH.

From the acquired samples 10 values for each RSTP and OSTP can be derived.

F.3.4 Post FFT equalisation

Perform 140 FFTs on z'(v), one for each OFDM symbol comprising the full frame with the FFT window timing $\Delta \tilde{c}$. (in case of frame type 1, normal CP length) The result is an array of samples, 140 in the time axis t times 2048 in the frequency axis f.

The equalizer coefficients $\tilde{a}(f)$ and $\tilde{\varphi}(f)$ are determined as follows:

1. Calculate the complex ratios (amplitude and phase) of the post-FFT acquired signal Z'(t, f) and the post-FFT Ideal signal $I_2(t, f)$, for each reference symbol, over 10 subframes. This process creates a set of complex ratios:

$$a(t, f).e^{j\varphi(t, f)} = \frac{Z'(t, f)}{I_2(t, f)}$$

2. Perform time averaging at each reference signal subcarrier of the complex ratios, the time-averaging length is 10 subframes. Prior to the averaging of the phases $\varphi(t_i, f)$ an unwrap operation must be performed according to the following definition: The unwrap operation corrects the radian phase angles of $\varphi(t_i, f)$ by adding multiples of 2*PI when absolute phase jumps between consecutive time instances t_i are greater then or equal to the jump tolerance of PI radians. This process creates an average amplitude and phase for each reference signal subcarrier (i.e. every third subcarrier with the exception of the reference subcarrier spacing across the DC subcarrier).

$$a(f) = \frac{\sum_{i=1}^{N} a(t_i, f)}{N}$$
$$\varphi(f) = \frac{\sum_{i=1}^{N} \varphi(t_i, f)}{N}$$

Where N is the number of reference symbol time-domain locations t_i from Z'(f,t) for each reference signal subcarrier f.

- 3. The equalizer coefficients for amplitude and phase $\hat{a}(f)$ and $\hat{\varphi}(f)$ at the reference signal subcarriers are obtained by computing the moving average in the frequency domain of the time-averaged reference signal subcarriers, i.e. every third subcarrier. The moving average window size is 19. For reference subcarriers at or near the edge of the channel the window size is reduced accordingly as per figure F. 3.4.
- 4. Perform linear interpolation from the equalizer coefficients $\hat{a}(f)$ and $\hat{\varphi}(f)$ to compute coefficients $\tilde{a}(f)$, $\tilde{\varphi}(f)$ for each subcarrier.

The equalized samples are called $Z'_{eq}(f,t)$.

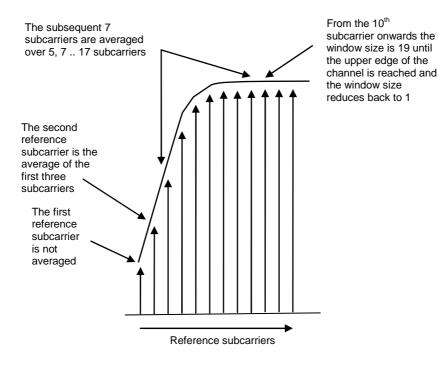


Figure F.3.4-1: Reference subcarrier smoothing in the frequency domain

F.4.1 EVM

For EVM create two sets of $Z'_{eq}(f,t)$, according to the timing " $\Delta C - W/2$ and $\Delta C + W/2$ ", using the equalizer coefficients from F.3.4.

The equivalent ideal samples are calculated form $i_1(v)$ (clause F.2.3) and are called I(f,t).

The EVM is the difference between the ideal waveform and the measured and equalized waveform.

$$EVM = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F(t)} |Z_{eq}'(f,t) - I(f,t)|^2}{\sum_{t \in T} \sum_{f \in F(t)} |I(f,t)|^2}}$$

where

T is the set of symbols with the considered modulation scheme being active within the subframe,

F(t) is the set of subcarriers within the $N_{\rm SC}^{\rm RB}$ resource blocks with the considered modulation scheme being active in symbol *t*,

I(t, f) is the ideal signal reconstructed by the measurement equipment in accordance with relevant Test models,

 $Z'_{eq}(t, f)$ is the equalized signal under test.

- Note1: Although the basic unit of measurement is one subframe, the equalizer is calculated over the entire 10 subframes measurement period to reduce the impact of noise in the reference symbols.
- Note 2: Applicability of EVM calculation:

One EVM value is associated to 12 subcarriers times 1 subframe = pair of 2 RBs = 168 resource elements.

But only a reduced number of REs in this pair of 2 RBs contribute to EVM. Those are the PDSCH REs, containing the considered modulation scheme. Only those pairs of 2 RBs are evaluated with respect to EVM, which contain the maximum number of PDSCH REs. (EVM-relevant location in the time/frequency grid) The others are not evaluated.

In specific:

- For bandwidth 1.4 MHz:
 - Only the pairs of 2 RBs containing 138 PDSCH REs are used for EVM. Only those 138 REs contribute to EVM
 - All pairs of 2 RBs, which contain less than 138 PDSCH REs, are not evaluated with respect to EVM.
- For all other Bandwidths:
 - Only the pairs of 2 RBs containing 150 PDSCH REs are used for EVM. Only those 150 REs contribute to EVM
 - All pairs of 2 RBs, which contain less than 150 PDSCH REs, are not evaluated with respect to EVM.

This restriction serves to avoid weighted averaging in F.4.2.

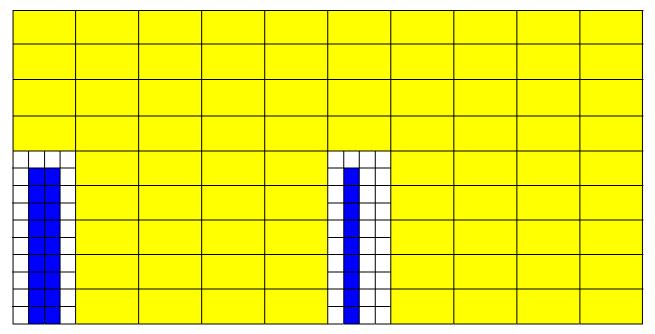
F.4.2 Averaged EVM

EVM is averaged over all allocated EVM relevant locations in the frequency domain, and 10 consecutive downlink subframes (10 ms):

(The locations in the time-frequency grid are occupied irregularly, see Fig F.4.2-1)

EVM is derived by: square the EVM results in F.4.1, sum the squares over all EVM relevant locations in the time/frequency grid, divide the sum by the number of EVM relevant locations, square-root the quotient.

The EVM requirements should be tested against the maximum of the average EVM at the window W extremities of the EVM measurements:


Thus $\overline{\text{EVM}}_{l}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_{l}$ in the expressions above and $\overline{\text{EVM}}_{h}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_{h}$. (1 and h, low and high. Where l is the timing $\Delta C - W/2$ and and high is the timing $\Delta C + W/2$)

Thus we get:

$$EVM_{final} = \max(EVM_1, EVM_h)$$

For TDD special fields (DwPTS and GP) are not included in the averaging.

15 RBs

10 subframes \rightarrow

Yellow: 136 EVM-relevant locations in the time/frequency grid

Blue: non PDSCH REs

White: RBs with non-maximum number of PDSCH REs

Figure F.4.2-1: Applicability of EVM calculation Example: E-TM1.x, E-TM3.x, 3MHz

F.4.2.1 Averaged EVM (TDD)

For TDD the averaging in the time domain can be calculated from subframes of different frames and should have a minimum of 10 subframes averaging length. TDD special fields (DwPTS and GP) are not included in the averaging.

EVM frame is derived by: Square the EVM results in a frame. Relevant for EVM are subframes in a frame, which are active in the DL, *Ndl*. Within these subframes, those RBs are relevant, that carry the maximum number of PDSCH REs (same as FDD). Sum the squares, divide the sum by the number of EVM relevant locations, square-root the quotient. (RMS)

The EVM_{frame} is calculated, using the maximum of $\overline{EVM}_{\text{frame}}$ at the window W extremities. Thus $\overline{EVM}_{\text{frame,l}}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_l$ and $\overline{EVM}_{\text{frame,h}}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_h$. (1 and h, low and high. Where 1 is the timing $\Delta C - W/2$ and and high is the timing $\Delta C + W/2$)

$$EVM_{frame} = \max(\overline{EVM}_{frame,l}, \overline{EVM}_{frame,h})$$

In order to unite at least 10 subframes, consider the minimum integer number of radio frames, containing at least 10 EVM relevant subframes. Unite by RMS.

$$\overline{EVM} = \sqrt{\frac{1}{N_{frame}}} \sum_{k=1}^{N_{frame}} EVM_{frame,k}^2 , N_{frame} = \left[\frac{10}{N_{dl}}\right]$$

The result, EVM, is compared against the limit.

Annex G (informative): Test Tolerances and Derivation of Test Requirements

The Test Requirements in this specification have been calculated by relaxing the Minimum Requirements of the core specification using the Test Tolerances defined here. When the Test Tolerance is zero, the Test Requirement will be the same as the Minimum Requirement. When the Test Tolerance is non-zero, the Test Requirements will differ from the Minimum Requirements, and the formula used for this relaxation is given in the following tables.

The Test Tolerances are derived from Test System uncertainties, regulatory requirements and criticality to system performance. As a result, the Test Tolerances may sometimes be set to zero.

The test tolerances should not be modified for any reason e.g. to take account of commonly known test system errors (such as mismatch, cable loss, etc.).

Note that a formula for applying Test Tolerances is provided for all tests, even those with a test tolerance of zero. This is necessary in the case where the Test System uncertainty is greater than that allowed in clause 4.1.2. In this event, the excess error shall be subtracted from the defined test tolerance in order to generate the correct tightened Test Requirements as defined in this Annex.

[FFS: For example, a Test System having 0.9 dB uncertainty for test 6.2 Base Station maximum output power (which is 0.2 dB above the limit specified in clause 4.1.2) would subtract 0.2 dB from the Test Tolerance of 0.7 dB defined in this Annex. This new test tolerance of 0.5 dB would then be applied to the Minimum Requirement using the formula defined in Table G.2-1 to give a new range of ± 2.5 dB of the manufacturer's rated output power.

Using this same approach for the case where a test had a test tolerance of 0 dB, an excess error of 0.2 dB would result in a modified test tolerance of -0.2 dB.]

Unless otherwise stated, the Test Tolerances in this annex apply to the Test System for testing BS that supports E-UTRA or E-UTRA with NB-IoT in-band/guard band operation or NB-IoT standalone operation.

G.1 Measurement of transmitter

Table G.1-1: Derivation of Test Requirements (Transmitter tests)

Test	Minimum	Test	Test Requirement in TS 36.141
	Requirement in TS 36.104	Tolerance (TT)	
6.2 Base station maximum output power	In normal conditions: within ±2 dB of manufacturer's rated output power In extreme conditions: within ±2.5 dB of manufacturer's rated output power	Normal and extreme conditions: 0.7 dB, f ≤ 3.0GHz 1.0 dB, 3.0GHz < f ≤ 4.2GHz	Formula: Upper limit + TT, Lower limit - TT In normal conditions: within +2.7 dB and -2.7 dB of the manufacturer's rated output power, $f \le 3.0$ GHz within +3.0 dB and -3.0 dB of the manufacturer's rated output power, 3.0 GHz < $f \le 4.2$ GHz In extreme conditions: within +3.2 dB and -3.2 dB of the manufacturer's rated output power, $f \le 3.0$ GHz within +3.5 dB and -3.5 dB of the manufacturer's rated output power, 3.0 GHz < $f \le 4.2$ GHz
	Standalone NB- IoT In normal conditions: within ±2 dB of manufacturer's rated output power	1.0 dB	In normal conditions: within +3.0 dB and -3.0 dB of the manufacturer's rated output power
	In extreme conditions: within ±2.5 dB of manufacturer's rated output power	1.0 dB	In extreme conditions: within +3.5 dB and -3.5 dB of the manufacturer's rated output power
6.3.2 Total power dynamic range	Total power dynamic range (dB): 1.4 MHz E- UTRA: 7.7 3 MHz E-UTRA: 11.7 5 MHz E-UTRA: 13.9 10 MHz E-UTRA: 16.9 15 MHz E-UTRA: 18.7 20 MHz E-UTRA: 20	0.4 dB	Formula: Total power dynamic range – TT (dB) 1.4 MHz E-UTRA: 7.3 3 MHz E-UTRA: 11.3 5 MHz E-UTRA: 13.5 10 MHz E-UTRA: 13.5 15 MHz E-UTRA: 16.5 20 MHz E-UTRA: 19.6
6.3.3 NB-IoT RB power dynamic range for in-band or guard band operation	6 dB	0.4 dB	Formula: Minimum Requirement + TT
6.4.1 Transmitter OFF power	-85dBm/MHz.	2 dB, f ≤ 3.0GHz 2.5 dB, 3.0GHz < f ≤ 4.2GHz	Formula: Minimum Requirement + TT
6.4.2 Transmitter transient period	Transmitter transient period : off to on: 17 us on to off: 17 us	N/A	Minimum Requirement

6.5.1 Frequency	Frequency error	12 Hz	Formula: Frequency Error limit + TT
error	limit ±0.05 ppm	12112	
			0.05 ppm + 12 Hz
6.5.2 EVM	EVM limit: QPSK: 17.5 %	1 %	Formula:
	16QAM: 12.5 %		EVM limit + TT
	64QAM: 8 % 256QAM: 3.5%		QPSK: 18.5 % 16QAM: 13.5 % 64QAM: 9 %
			256QAM: 4.5%
6.5.3 Time alignment	Time alignment	25 ns	Formula:
error	error within 65 ns		Time alignment error limit + TT
			90 ns
6.5.4 DL RS power	DL RS power shall be within ±2.1 dB	0.8 dB, f ≤ 3.0GHz 1.1 dB, 3.0GHz < f ≤ 4.2GHz	Formula: Upper limit + TT Lower limit - TT DL RS power shall be within ± 2.9 dB, f ≤ 3.0 GHz DL RS power shall be within ± 3.2 dB, 3.0 GHz < f ≤ 4.2 GHz
6.6.1 Occupied bandwidth	1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz Standalone NB- IoT: 200 kHz	0 kHz	Formula: Minimum Requirement + TT
6.6.2 Adjacent Channel Leakage power Ratio (ACLR)	Paired spectrum ACLR: 45 dB for E- UTRA 45 dB for UTRA Standalone NB- IoT: 40 dB (ACLR1) 50 dB (ACLR2) Unpaired spectrum ACLR: 45 dB for E- UTRA 45 dB for 1.28 Mcps UTRA 45 dB for 7.82 Mcps UTRA	0.8 dB 0.8 dB	Formula: ACLR Minimum Requirement - TT Absolute limit +TT Paired spectrum ACLR: 44.2 dB 44.2 dB Standalone NB-IoT: 39.2 dB (ACLR1) 49.2 dB (ACLR2) Unpaired spectrum ACLR: 44.2 dB 44.2 dB 44.2 dB 44.2 dB 44.2 dB CACLR: 44.2 dB CACLR in Band 46: 34.2 dB or 39.2 dB Absolute limit -13dBm / MHz

3GPP TS 36.141 version 13.12.0 Release 13

			· - · · · · · · · · · · · · · · · · · ·
6.6.3 Operating	For Wide Area		Formula:
band unwanted	<u>BS:</u>		
emissions	Cotogon		Minimum Dequirement LTT
	<u>Category A,</u> bands < 1GHz		Minimum Requirement + TT
	For 1.4MHz BW:		
	Offsets < 2.8 MHz		
	-1dBm to -		
	11dBm / 100kHz	1.5dB	
	Offsets ≥ 2.8MHz	1.500	
	-13dBm / 100kHz	0dB	
	For 3MHz BW:	OUD	
	Offsets < 3MHz		
	-4.5dBm to -		
	14.5dBm /		
	100kHz	1.5dB	
	Offsets ≥ 3MHz	noub	
	-13dBm / 100kHz	0dB	
	For 5, 10, 15,	0.02	
	20MHz BW:		
	Offsets < 10MHz		
	-7dBm to -		
	14dBm / 100kHz	1.5dB	
	Offsets ≥ 10MHz		
	-13dBm / 100kHz	0dB	
	Category A,		
	bands > 1GHz	1.5dB, f ≤	
	For 1.4MHz BW:	3.0GHz	
	Offsets < 2.8MHz	1.8dB,	
	-1dBm to -	3.0GHz < f	
	11dBm / 100kHz	≤ 4.2GHz	
	Offsets ≥ 2.8MHz		
	-13dBm / 1MHz	0dB	
	For 3MHz BW:	1.5dB, f ≤	
	Offsets < 6MHz	3.0GHz	
	-5dBm to -	1.8dB,	
	15dBm / 100kHz	3.0GHz < f	
	04	≤ 4.2GHz	
	Offsets ≥ 6MHz	0 ID	
	-13dBm / 1MHz	0dB	
	For 5, 10, 15,	1.5dB, f ≤	
	20MHz BW:	3.0GHz	
	Offsets < 10MHz -7dBm to -	1.8dB, 3.0GHz < f	
	14dBm / 100kHz	3.0GHZ < 1 ≤ 4.2GHz	
	Offsets ≥ 10MHz	- <u>-</u> 4.20⊓2	
	-13dBm / 1MHz	0dB	
		500	
	Category B,		
	bands < 1GHz		
	For 1.4MHz BW:		
	Offsets < 2.8MHz	1.5dB	
	-1dBm to -		
	11dBm / 100kHz		
	Offsets ≥ 2.8MHz	0dB	
	-16dBm / 100kHz		
	For 3MHz BW:	1.5dB	
	Offsets < 6MHz		
	-5dBm to -		
	15dBm / 100kHz		
	Offsets ≥ 6MHz	0dB	
	-16dBm / 100kHz		
	For 5, 10, 15,		
	20MHz BW:	=	
	Offsets < 10MHz	1.5dB	
	-7dBm to -		
	14dBm / 100kHz		

Offsets ≥ 1		
-16dBm / 1	00kHz	
<u>Category B</u> <u>bands > 10</u> For 1.4MH: Offsets < 2 -1dBm to - 11dBm / 10	<u>GHz</u> 3.0GHz z BW: 1.8dB, .8MHz 3.0GHz < f ≤ 4.2GHz	
Offsets ≥ 2 -15dBm / 1 For 3MHz I Offsets < 6 -5dBm to - 15dBm / 10	MHz 1.5dB, f ≤ BW: 3.0GHz MHz 1.8dB, 3.0GHz < f	
Offsets ≥ 6 -15dBm / 1 For 5, 10, 1 20MHz BW Offsets < 1 -7dBm to - 14dBm / 10 Offsets ≥ 1 -15dBm / 1 For Home	MHz 1.5dB, f ≤ 15, 3.0GHz /: 1.8dB, 0MHz 3.0GHz < f	
<u>Category A</u> <u>B:</u> For 1.4MH: Offsets < 2 -30dBm to 36dBm / 10 Offsets ≥ 2	3.0GHz z BW: 1.8dB, .8MHz 3.0GHz < f - ≤ 4.2GHz D0kHz	
-50 dBm to 32dBm / 11 For 3MHz I Offsets < 6 -34dBm to 40dBm / 10	o- 0dB MHz 1.5dB, f ≤ BW: 3.0GHz MHz 1.8dB, - 3.0GHz < f	
Offsets ≥ 6 -50dBm to 32dBm / 11 For 5, 10, 1 20MHz BW Offsets < 1 -36dBm to 42dBm / 10 Offsets ≥ 1 -50dBm to 32dBm / 11	- 0dB MHz 1.5dB, f ≤ 15, 3.0GHz /: 1.8dB, 0MHz 3.0GHz < f - ≤ 4.2GHz 0MHz - 0dB	
Standalone IoT Offset < 0.0 MHz 2 dBm/30k 5 dBm/30	3.0GHz 1.8dB, 3.0GHz < f ≤ 4.2GHz (Hz to	
0.05 MHz ≤ Offset -14 dBm/30 to 2 dBm/30	3.0GHz 0kHz 1.8dB, 3.0GHz < f	
	0dB	

Additional Reats. bands - 10Hz Aldibonal Reats. bands - 10Hz Aldibonal Reats. bands - 10Hz Aldibonal Reats. bands 1213.14 Al BWS: Additional Reats bands 1213.14 Al BWS: Additional Spure Formula: Additional Spure Formula: Additional Spure Formula: Additional Spure Bandwidth from 6.25 KHz to Minimum Requirement + TT Al BM Formula: Bandwidth from 6.25 KHz to Minimum Requirement + TT Bandwidth 100 KHz	r			1
Additional Regts bands > 1GHz All BWs: Additional Regts bands > 1GHz Additional Regts bands 213.14 Additional Regts bands 213.14 All BWs: Additional Regts bands 213.14 Additional Regts bands 213.14 All BWs: Additional Regts bands 213.14 Additional Regts bands		Additional Regts,		
Additional Regts bands 1:213.14 All BWS: Additional Regts bands 2:213.14 All BWS: Bands 2:213.14 All BWS: Bands 2:213.14 All BWS: Bands 2:0 Additional Regts bands 2:0 All BWS: Bands 2:0 All BWS: Bands 2:0 All BWS: Collar Collar Co				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Uab	
All EWs: bands 12.13.14 All EWs: Additional Regts bands 20 Additional Regts Additional Regts Additional Regts Additional Regts Additional Regts Hall States Additional Regts Hall States Additional Regts Hall States Additional Regts Hall States Additional Regts Additional Regts Additional Regts Additional Regts Additional Regts Additional Regts Additional Regts Additional Regts States Additional Regts Additional Regts Addi				
			OdB	
bands 12:13:14 Additional Regis bands 20 All BWs: Additional Regis bands 20 All BWs: All BWs: Mandatory OdB Segret 2 Subject 2 Segret 2 Subject 2 Segret 2 Subject 2 Segret			UUD	
All EWs: Additional Rects bands 20 All EWs:0dB6.6.4.5.1 Transmiter spurious emissions, Mandatory RequirementsCategory A Staff 210dB6.6.4.5.2 Transmiter spurious emissions, MandatoryOdBFormula: Minimum Requirement + TT6.6.4.5.2 Transmiter spurious emissions, Mandatory0dBFormula: Minimum Requirement + TT6.6.4.5.3 Transmiter spurious emissions, Co-location0dBFormula: Minimum Requirement + TT6.6.4.5.4 Staff and the spurious emissions, Co-location0dBFormula: Minimum Requirement + TT6.6.4.5.5 Transmiter spurious emissions, Co-location0dBFormula: Minimum Requirement + TT6.6.4.5.5 Transmiter spurious emissions, Co-location0dBFormula: Minimum Requirement + TT6.6.4.5.5 Transmiter spurious emissions, Co-locationLevels from - 61dBm to - 41dBm0dBFormula: Minimum Requirement + TT				
Additional Regis bands 20 All BWs: OdB Formula: 6.6.4.5.1 Transmitter spurious emissions, Mandatory 6.6.4.5.1 States of a 100 MHz: -13dBm / 1kHz 0dB Formula: Minimum Requirement + TT 8.H±z: -13dBm / 100 H±z: -13dBm / 100 H±z: -13dBm / 100 H±z: -13dBm / 100 H±z: -13dBm / 100 H±z: -13dBm / 100 H±z: -13dBm / 10Hz 0dB Formula: Minimum Requirement + TT 6.6.4.5.2 Transmitter spurious emissions, Mandatory Requirements Category B 9 H±z ≤ f < 10 -13dBm / 10 H±z -36dBm / 100 H±z: -36dBm /			0dB	
bands 20 All BWs: odds 6.6.4.5.1 Transmiter spurious emissions, Mandatory Category_A 138Bm / 10kHz 0dB Formula: 8.6.4.5.2 ransmiter spurious emissions, Mandatory 138Bm / 10kHz 0dB Formula: 6.6.4.5.2 ransmiter spurious emissions, Mandatory 0.00B Formula: Minimum Requirement + TT 6.6.4.5.2 ransmiter spurious emissions, Mandatory 0.01B Formula: Minimum Requirement + TT 6.6.4.5.2 ransmiter spurious emissions, Mandatory 0.04B Formula: Minimum Requirement + TT 6.6.4.5.2 ransmiter spurious emissions, Formula: 0.04B Formula: Minimum Requirement + TT 6.6.4.5.3 ransmiter spurious emissions, requirements 0.04B Formula: Minimum Requirement + TT 6.6.4.5.3 ransmiter spurious emissions, requirements 96dBm / 100kHz 0dB Formula: 6.6.4.5.4 receiver Levels from - 6.40Bm to - 410Bm to - 410Bm to - 410Bm to - 410Bm to - 410Bm to - 410Bm to - 525 kHz to requirements 0dB Formula: 6.6.4.5.5 receiver Levels from - 6.40Bm to - 410Bm to - 586dBm to - 586dBm 0dB Formula: 6.6.4.5.5 receiver Levels from - 6.64Bm 0dB Formula: 6.			OUD	
All BWs:OdB6.6.4.5.1Category AOdBTransmitter spurious emissions, Mandatory9.H± $\leq 1 < 150$ 150.KH $\simeq f < 1 CHzMinimum Requirement + TTMandatoryRequirements150.KH\simeq f < 1CHz- 13dBm / 104.HzMinimum Requirement + TT6.6.4.5.2Transmitterspurious emissions,Mandatory0dBFormula:Minimum Requirement + TT6.6.4.5.2Transmitterspurious emissions,MandatoryCategory B9.KH\simeq f < 10.KH\simeq f < 1- 36dBm / 104.Hz0dB6.6.4.5.3Category B9.KH\simeq f < 10.KH\simeq f < 1- 36dBm / 100.KH\simeq f < 10.KH\simeq f < 1- 36dBm / 100.KH\simeq f < 1NH\simeq requirements0dB6.6.4.5.3Transmitterspurious emissions,Additional spuriousrequirements98dBm / 100.Hz- 40dBm0dB6.6.4.5.4Levels from -14.Bm0dBFormula:Minimum Requirement + TT6.6.4.5.4Evels from -41dBm0dBFormula:Minimum Requirement + TT6.6.4.5.5Evels from -41dBm0dBFormula:Minimum Requirement + TT6.6.4.5.5Evels from -41dBm0dBFormula:Minimum Requirement + TT6.6.4.5.4Evels from -41dBm0dBFormula:Minimum Requirement + TT6.6.4.5.5Evels from -41dBm0dBFormula:Minimum Requirement + TT6.6.4.5.5Evels from -41dBm0dBFormula:Minimum Requirement + TT6.6.4.5.6Evels from -40dBm0dBFormula:Minimum Requirement + TT6.6.4.5.7Evels from -40dBm0dB$				
	6.6.4.5.1		0dB	Formula:
Requirements 150 kHz ≤ f < 30 MHz: -13dBm / 10 kHz -13dBm / 10 kHz -13dBm / 10 kHz 30 MHz ≤ f < 1 CHz: -13dBm / 10 kHz -13dBm / 10 kHz 6.6.4.5.2 Transmitter spurious emissions, Mandatory Category B 9 kHz ≤ f < 150 kHz: -36dBm / 1 kHz 0dB 6.6.4.5.3 Transmitter spurious emissions, Protection of BS receiver Category B 9 kHz ≤ f < 30 kHz: -36dBm / 10 kHz 0dB 6.6.4.5.3 Transmitter spurious emissions, Protection of BS receiver IS0 kHz ≤ f < 30 kHz MHz: -36dBm / 10 kHz OdB 6.6.4.5.4 Transmitter spurious emissions, Protection of BS receiver -96dBm / 10 kHz OdB Formula: Minimum Requirement + TT 6.6.4.5.5 Transmitter spurious emissions, Protection of BS requirements Levels from - 41dBm OdB Formula: Minimum Requirement + TT 6.6.4.5.5 Transmitter spurious emissions, Co-location Levels from - 8andwidths from bandwidth 100 kHz OdB Formula: Minimum Requirement + TT 8andwidth 100 kHz Levels from - 96dBm OdB Formula: Minimum Requirement + TT	spurious emissions,	kHz:		
$ \begin{array}{ c c c c c } \hline 150 kHz \leq 1 < 30 \\ \hline MHz; \\ -13 dBm / 10 KHz \\ 30 MHz \leq 1 < 1 \\ GHz; \\ -13 dBm / 10 KHz \\ 1 GHz \leq 1 < 1 \\ 1.75 GHz; \\ -13 dBm / 1 MHz \\ \hline I GHz \leq 1 < 1 \\ 1.75 GHz; \\ -13 dBm / 1 MHz \\ \hline Get S = 1 \\ Spurious emissions, \\ Mandatory \\ Requirements \\ \hline So KHz \leq 1 < 30 \\ MHz; \\ -36 dBm / 10 KHz \\ \hline So KHz \leq 1 < 30 \\ MHz; \\ -36 dBm / 10 KHz \\ \hline So KHz \leq 1 < 30 \\ MHz; \\ -36 dBm / 10 KHz \\ \hline GHz; \\ -36 dBm / 10 KHz \\ \hline GHz; \\ -36 dBm / 100 \\ KHz \\ \hline Hz \\ \hline Ghz = 1 \\ -36 dBm / 100 \\ KHz \\ \hline Hz \\ \hline Ghz; \\ -36 dBm / 100 \\ KHz \\ \hline Ghz; \\ -36$	Mandatory	-13dBm / 1kHz		
	Requirements	$150 \text{ kHz} < 1 \times 20$		
-13dBm / 10 kHz 30 MHz ≤ f < 1 GHz: -13dBm / 100 kHz 1 GHz ≤ 1 < 12.75 GHz: -13dBm / 1 MHz 6.6.4.5.2 Transmitter spurious emissions, Requirements 2.6.4.5.2 Transmitter spurious emissions, Requirements 2.6.4.5.2 Transmitter spurious emissions, Postection of BS receiver 6.6.4.5.3 Transmitter spurious emissions, Protection of BS receiver 6.6.4.5.4.5.4 Transmitter spurious emissions, Protection of BS receiver 6.6.4.5.5 Transmitter spurious emissions, Protection of BS receiver 6.6.4.5.5 Transmitter spurious emissions, Protection of BS receiver 6.6.4.5.5 Transmitter spurious emissions, Protection of BS receiver 6.6.4.5.5 Transmitter spurious emissions, Co-location 6.6.4.5.5 Transmitter spurious emissions, Co-location 6.6.4.5.5 Transmitter spurious emissions, Co-location Bandwidth 100 kHz Levels from - 96dBm Bandwidth 100 kHz				
6.6.4.5.2 Transmitter spurious emissions, Mandatory Category B 12.75 GHz: -3ddBm / 1 MHz 0dB Formula: Minimum Requirement + TT 6.6.4.5.2 Transmitter spurious emissions, Mandatory Category B 9 kH2 ≤ f < 150 kHz: -36dBm / 10 kHz -36dBm / 100 kHz 0dB Formula: Minimum Requirement + TT 6.6.4.5.3 Transmitter spurious emissions, requirement setsions ensisting -96dBm / 100 kHz 0dB Formula: Minimum Requirement + TT 6.6.4.5.4 Transmitter spurious emissions erequirements -96dBm / 100 kHz 0dB Formula: Minimum Requirement + TT 6.6.4.5.5 Transmitter spurious emissions, Co-location Levels from - 61dBm to - 1MHz 0dB Formula: Minimum Requirement + TT 6.6.4.5.5 Transmitter spurious emissions, Co-location Levels from - 61dBm to - 41dBm 0dB Formula: Minimum Requirement + TT 6.6.4.5.5 Transmitter spurious emissions, Co-location CodBm Formula: Minimum Requirement + TT 6.6.4.5.6 Transmitter spurious emissions, Co-location CodB Formula: Minimum Requirement + TT 6.6.4.5.5 Transmitter spurious emissions, Co-location Levels from - 96dBm OdB Formula: Minimum Requirement + TT				
-i3dBm / 100 hHz -i3dBm / 100 1GHz ≤ f <		30 MHz ≤ f < 1		
12.75 GHz: -13dBm / 1 MHz 0dB 6.6.4.5.2 Transmitter spurious emissions, Mandatory Requirements Category B 9 kHz 51 < 150 kHz: -36dBm / 1 kHz 0dB 7.6.4.5.2 Transmitter spurious emissions, Protection of BS receiver Sol KHz 51 < 10 GHz: -36dBm / 100 kHz 0dB 6.6.4.5.3		kHz		
12.75 GHz: -13dBm / 1 MHz 0dB 6.6.4.5.2 Transmitter spurious emissions, Mandatory Requirements Category B 9 kHz 51 < 150 kHz: -36dBm / 1 kHz 0dB 7.6.4.5.2 Transmitter spurious emissions, Protection of BS receiver Sol KHz 51 < 10 GHz: -36dBm / 100 kHz 0dB 6.6.4.5.3		1 GHz < f <		
6.6.4.5.2 Transmitter spurious emissions, Mandatory Requirements Category B 9 kHz ≤ f < 150 kHz ≤ f < 150 MHz; -36dBm / 1 kHz OdB Formula: Minimum Requirement + TT 8.6.4.5.3 Transmitter spurious emissions, Protection of BS receiver 0 MHz ≤ f < 1 (Hz) ≤ f < 1 (Hz) ≤ f < 1 -36dBm / 100 kHz AdB Formula: Minimum Requirement + TT 6.6.4.5.3 Transmitter spurious emissions, Protection of BS receiver -96dBm / 100 kHz OdB Formula: Minimum Requirement + TT 6.6.4.5.4 Transmitter spurious emissions requirements -96dBm / 100 kHz OdB Formula: Minimum Requirement + TT 6.6.4.5.5 Transmitter spurious emissions, Co-location Levels from - 6.25 kHz to 1MHz OdB Formula: Minimum Requirement + TT 6.6.4.5.5 Transmitter spurious emissions, Co-location Levels from - 98dBm to - 98dBm t		-		
6.6.4.5.2 Transmitter spurious emissions, Requirements Category B 9 kHz ≤ f < 150 MHz; -36dBm / 10 kHz OdB Formula: Minimum Requirement + TT 150 kHz ≤ f < 30 MHz: -36dBm / 10 kHz 150 kHz ≤ f < 30 MHz; -36dBm / 10 kHz Minimum Requirement + TT 30 MHz ≤ f < 1 GHz: -36dBm / 100 kHz 0dB Formula: Minimum Requirement + TT 6.6.4.5.3 Transmitter spurious emissions, Protection of BS -96dBm / 100 kHz 0dB Formula: Minimum Requirement + TT 6.6.4.5.4 Transmitter spurious emissions requirements -96dBm / 100 kHz 0dB Formula: Minimum Requirement + TT 6.6.4.5.5 Transmitter spurious emissions requirements Levels from - 1dBm 0dB Formula: Minimum Requirement + TT 6.6.4.5.5 Transmitter spurious emissions, Co-location Levels from - 96dBm 0dB Formula: Minimum Requirement + TT 6.6.4.5.5 Transmitter spurious emissions, Co-location Bandwidth 100 kHz 0dB Formula: Minimum Requirement + TT 8adWidth 100 kHz Bandwidth 100 kHz See TS 36.104 See TS 36.104 Formula: Minimum Requirement + TT				
spurious emissions, Mandatory Requirements 9 kHz ≤ f < 150 kHz: -36dBm / 1 kHz -36dBm / 10 kHz -36dBm / 10 kHz -36dBm / 10 kHz -36dBm / 10 kHz -36dBm / 100 kHz -36dBm / 100 -36dBm / 100 -				
spurious emissions, Mandatory Requirements 9 kHz ≤ f < 150 kHz: -36dBm / 1 kHz -36dBm / 10 kHz -36dBm / 10 kHz -36dBm / 10 kHz -36dBm / 10 kHz -36dBm / 100 kHz -36dBm / 100 -36dBm / 100 -	66452 Transmitter	Cotogory P	OdB	Formula:
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$			UUB	
Requirements -36dBm / 1 kHz 150 kHz ≤ f < 30 MHz: -36dBm / 10 kHz -36dBm / 10 kHz 30 MHz ≤ f < 1 GHz: -36dBm / 100 kHz -36dBm / 10 kHz 1 GHz ≤ f < 12.75 GHz: -36dBm / 1 MHz -36dBm / 100 kHz 6.6.4.5.3 Transmitter spurious emissions, Protection of BS -96dBm / 100 kHz 0dB 6.6.4.5.4 Transmitter spurious emissions, Additional spurious emissions requirements Levels from - 61dBm to - 10Hz 0dB 6.6.4.5.5 Transmitter spurious emissions, Additional spurious emissions requirements Levels from - 61dBm to - 10Hz 0dB 6.6.4.5.5 Transmitter spurious emissions, Portous emissions, Protection of BS Levels from - 61dBm to - 10Hz 0dB 6.6.4.5.5 Transmitter spurious emissions, Portous				
150 kHz ≤ f < 30 MHz: -36dBm / 10 kHz				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	rtoquironionio			
-36dBm / 10 kHz -36dBm / 10 kHz 30 MHz ≤ f < 1				
$ \begin{array}{c c c c c c c c c } & 30 \ \text{MHz} \leq f < 1 \\ GHz \\ \neg 36 dBm / 100 \\ \text{KHz} \\ & 1 \ \text{GFz} \leq f < 1 \\ 12.75 \ \text{GHz} \\ \neg 36 dBm / 1 \ \text{MHz} \\ \hline 12.75 \ \text{GHz} \\ \neg 36 dBm / 1 \ \text{MHz} \\ \hline 12.75 \ \text{GHz} \\ \neg 36 dBm / 1 \ \text{MHz} \\ \hline 12.75 \ \text{GHz} \\ \neg 36 dBm / 1 \ \text{MHz} \\ \hline 12.75 \ \text{GHz} \\ \hline 12.65 \ \text{KHz} \\ \hline 100 \\ \text{Minimum Requirement} + \text{TT} \\ \hline 110 \\ \hline 100 \\ \text{Minimum Requirement} + \text{TT} \\ \hline 110 \\ \hline 100 \\ \hline $				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-36dBm / 10 kHz		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		30 MHz < f < 1		
$ \begin{array}{c c c c c c c c } \mbox{KHz} & \mbox{KHz} & \mbox{KHz} & \mbox{I} & \mbox{Generating} \\ \mbox{I} & \mbox{I} & \mbox{I} & \mbox{I} & \mbox{I} \\ \mbox{I} & \mbox{I} & \mbox{I} & \mbox{I} & \mbox{I} \\ \mbox{I} & \mbox{I} & \mbox{I} & \mbox{I} & \mbox{I} & \mbox{I} & \mbox{I} \\ \mbox{I} & \mbox{I} \\ \mbox{I} & \mbox$				
1 GHz ≤ f < 12.75 GHz: -36dBm / 1 MHz0dBFormula: Minimum Requirement + TT6.6.4.5.3 Transmitter spurious emissions, Protection of BS receiver-96dBm / 100 kHz0dBFormula: Minimum Requirement + TT6.6.4.5.4 Transmitter spurious emissions Additional spurious emissions requirementsLevels from - 61dBm to - 41dBm0dBFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 61dBm to - 41dBm0dBFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 96dBm0dBFormula: Minimum Requirement + TT		-36dBm / 100		
12.75 GHz: -36dBm / 1 MHz12.75 GHz: -36dBm / 1 MHz6.6.4.5.3 Transmitter spurious emissions, Protection of BS receiver-96dBm / 100 kHz0dBFormula: Minimum Requirement + TT6.6.4.5.4 Transmitter Spurious emissions, Additional spurious emissions requirementsLevels from - 61dBm to - 41dBm0dBFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Additional spurious emissions requirementsLevels from - 6.25 kHz to 1MHz0dBFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 96dBm0dBFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 96dBm0dBFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 96dBm0dBFormula: Minimum Requirement + TT		kHz		
12.75 GHz: -36dBm / 1 MHz12.75 GHz: -36dBm / 1 MHz6.6.4.5.3 Transmitter spurious emissions, Protection of BS receiver-96dBm / 100 kHz0dBFormula: Minimum Requirement + TT6.6.4.5.4 Transmitter Spurious emissions, Additional spurious emissions requirementsLevels from - 61dBm to - 41dBm0dBFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Additional spurious emissions requirementsLevels from - 6.25 kHz to 1MHz0dBFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 96dBm0dBFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 96dBm0dBFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 96dBm0dBFormula: Minimum Requirement + TT				
-36dBm / 1 MHz6.6.4.5.3 Transmitter spurious emissions, Protection of BS receiver-96dBm / 100 kHz0dBFormula: Minimum Requirement + TT6.6.4.5.4 Transmitter spurious emissions, Additional spurious emissions requirementsLevels from - 61dBm to - 41dBm0dBFormula: Minimum Requirement + TT8 andwidths from 6.25 kHz to 1MHzBandwidths from 6.25 kHz to 1MHzOdBFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 96dBm0dBFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 96dBm0dBFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 96dBm0dBFormula: Minimum Requirement + TT961000 MHzSee TS 36.104 HzSee TS 36.104See TS 36.104Minimum Requirement + TT				
6.6.4.5.3 -96dBm / 100 0dB Formula: Minimum Requirement + TT Minimum Requirement + TT Protection of BS -evels from - 0dB receiver 6.6.4.5.4 Levels from - 0dB Transmitter 61dBm to - 41dBm spurious emissions, 41dBm Minimum Requirement + TT Bandwidths from 6.25 kHz to Minimum Requirement + TT See TS 36.104 [2] for details OdB Formula: 6.6.4.5.5 Levels from - 0dB Formula: Minimum Requirement + TT Minimum Requirement + TT Minimum Requirement + TT 6.6.4.5.5 Levels from - 98dBm to - 98dBm to - 98dBm to - 98dBm to - 96dBm Bandwidth 100 KHz See TS 36.104 See TS 36.104 Minimum Requirement + TT				
Transmitter spurious emissions, Protection of BS receiverkHzMinimum Requirement + TT6.6.4.5.4 Transmitter spurious emissions, Additional spurious emissions requirementsLevels from - 61dBm to - 41dBm0dBFormula: Minimum Requirement + TT8andwidths from 6.25 kHz to 1MHzBandwidths from 6.25 kHz to 1MHzSee TS 36.104 [2] for detailsFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 96dBm0dBFormula: Minimum Requirement + TT8 See TS 36.104 (2) for detailsOdBFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationBandwidth 100 kHzFormula: Minimum Requirement + TT	66453		0dB	Formula
spurious emissions, Protection of BS receiverLevels from - 61dBm to - 41dBmOdBFormula: Minimum Requirement + TT6.6.4.5.4 spurious emissions, Additional spurious emissions requirementsLevels from - 61dBm to - 41dBmOdBFormula: Minimum Requirement + TT8andwidths from 6.25 kHz to 1MHzSee TS 36.104 [2] for detailsSee TS 36.104 [2] for detailsFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 98dBm to - 98dBm Bandwidth 100 kHzOdBFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter Spurious emissions, Co-locationSee TS 36.104Formula: Minimum Requirement + TT				
Protection of BS receiverLevels from - 61dBm to - 41dBmOdBFormula: Minimum Requirement + TTSpurious emissions, Additional spurious emissions requirementsLevels from - 61dBm to - 41dBmOdBFormula: Minimum Requirement + TTBandwidths from 6.25 kHz to 1MHzSee TS 36.104 [2] for detailsFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 98dBm to - 98dBmOdBFormula: Minimum Requirement + TT6.6.4.5.5 See TS 36.104 (2] for detailsSee TS 36.104 (2] for detailsSee TS 36.104 (2] for detailsFormula: Minimum Requirement + TT				
receiverImage: constraint of the spurious emissions, Additional spurious emissions requirementsLevels from - 61dBm to - 41dBmOdBFormula: Minimum Requirement + TTBandwidths from emissions requirementsBandwidths from 6.25 kHz to 1MHzBandwidths from 6.25 kHz to 1MHzFormula: Minimum Requirement + TTSee TS 36.104 [2] for detailsSee TS 36.104 [2] for detailsFormula: Minimum Requirement + TT6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 96dBmOdBFormula: Minimum Requirement + TTSee TS 36.104 [2] for detailsSee TS 36.104 [2] for detailsSee TS 36.104Minimum Requirement + TT				
Transmitter spurious emissions, Additional spurious emissions requirements61dBm to - 41dBmMinimum Requirement + TTBandwidths from 6.25 kHz to 1MHzBandwidths from 6.25 kHz to 1MHzSee TS 36.104 [2] for detailsSee TS 36.104 [2] for details6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 96dBmOdBFormula: Minimum Requirement + TT98 Bandwidth 100 kHzBandwidth 100 kHzSee TS 36.104See TS 36.104	receiver			
spurious emissions, Additional spurious emissions requirements41dBmBandwidths from 6.25 kHz to 1MHzBandwidths from 6.25 kHz to 1MHzSee TS 36.104 [2] for detailsSee TS 36.104 [2] for details6.6.4.5.5 Transmitter spurious emissions, Co-locationLevels from - 98dBm to - 96dBmOdBBandwidth 100 kHzBandwidth 100 kHzFormula: Minimum Requirement + TTSee TS 36.104See TS 36.104			0dB	
Additional spurious emissions requirements Bandwidths from 6.25 kHz to 1MHz Bandwidths from 6.25 kHz to 1MHz See TS 36.104 [2] for details See TS 36.104 [2] for details Formula: Minimum Requirement + TT 6.6.4.5.5 Transmitter spurious emissions, Co-location DdB Formula: Minimum Requirement + TT Bandwidth 100 kHz Bandwidth 100 kHz See TS 36.104		••••		Minimum Requirement + TT
emissions requirements 6.25 kHz to 1MHz See TS 36.104 [2] for details 6.6.4.5.5 Transmitter spurious emissions, Co-location Bandwidth 100 kHz See TS 36.104 See TS 36.104 Bandwidth 100 kHz See TS 36.104		41dBm		
emissions requirements 6.25 kHz to 1MHz See TS 36.104 [2] for details See TS 36.104 [2] for details 6.6.4.5.5 Transmitter spurious emissions, Co-location Levels from - 98dBm to - 96dBm OdB Bandwidth 100 kHz Bandwidth 100 kHz Minimum Requirement + TT		Bandwidths from		
1MHz 1MHz See TS 36.104 [2] for details 6.6.4.5.5 Levels from - 0dB Transmitter 98dBm to - 98dBm to - 96dBm Spurious emissions, Co-location 96dBm Bandwidth 100 KHz See TS 36.104 See TS 36.104				
[2] for details Image: Constraint of the system of the	requirements			
[2] for details Image: Constraint of the system of the		See TS 26 404		
6.6.4.5.5 Transmitter spurious emissions, Co-location Bandwidth 100 kHz See TS 36.104 Levels from - 0dB Formula: Minimum Requirement + TT Minimum Requirement + TT				
Transmitter 98dBm to - spurious emissions, 96dBm Co-location Bandwidth 100 kHz See TS 36.104	66455		0dB	Formula:
spurious emissions, Co-location Bandwidth 100 kHz See TS 36.104				
Co-location Bandwidth 100 kHz See TS 36.104				
kHz See TS 36.104				
See TS 36.104				
		КПZ		
[2] for details				
		[2] for details		

Wanted signal level - interferer	0dB	Formula: Ratio + TT
level = 30dB		Wanted signal level - interferer level = 30 + 0dB
	level - interferer	level - interferer

G.2 Measurement of receiver

Table G.2-1: Derivation of Test Requirements (Receiver tests)

Test	Minimum Requirement in TS 36.104	Test Tolerance (TT)	Test Requirement in TS 36.141
------	-------------------------------------	---------------------------	-------------------------------

		.2GHz -100.8 dBm for 5 MHz I $0 dB$ -100.8 dBm for 10 MHz -100.8 dBm for 15 MHz -100.8 dBm for 20 MHz -100.8 dBm for 20 MHz -100.8 dBm for 20 MHz -100.8 dBm for 15 MHz -100.6 dBm for 15 KHz -126.6 dBm for 15 kHz spacing -132.6 dBm for 3.75 kH spacing 3.0GHz < f ≤ 4.2GHz For E-UTRA: -105.8 dBm for 1.4 MHz -102.0 dBm for 3 MHz I -100.5 dBm for 5 MHz -100.5 dBm for 10 MHz -100.5 dBm for 20 MHz -100.5 dBm for 20 MHz -100.5 dBm for 20 MHz -100.5 dBm for 20 MHz -100.5 dBm for 20 MHz -100.5 dBm for 20 MHz	2 BW 2 BW sub-carrier Iz sub-carrier Z BW BW BW 2 BW 2 BW
for the Ref 7.3 Dynamic range Wanted sig Area BS: For E-UTR -76.3 dBm -72.4 dBm -70.2 dBm -70.2 dBm -70.2 dBm -70.2 dBm -70.2 dBm carrier spa -105.6 dBr carrier spa -105.6 dBr carrier spa -105.6 dBm -27.9 dBm -25.7 dBm -25.7 dBm -25.7 dBm	n for 1.4 MHz BW n for 3 MHz BW n for 5 MHz BW n for 10 MHz BW n for 15 MHz BW n for 20 MHz BW T: n for 15 kHz sub- acing m for 3.75 kHz sub-	Formula: Wanted signa For E-UTRA: -76.0 dBm for 1.4 MHz -72.1 dBm for 3 MHz B -69.9 dBm for 5 MHz B -69.9 dBm for 10 MHz I -69.9 dBm for 15 MHz I -69.9 dBm for 20 MHz I For NB-IoT: -99.4 dBm for 15 kHz s spacing -105.3 dBm for 3.75 kH spacing Interferer signal power T-put limit unchanged	BW W BW BW BW ub-carrier Iz sub-carrier

7.4 In-channel selectivity	Wanted signal power: For E-UTRA: -106.9 dBm for 1.4 MHz BW -102.1 dBm for 3 MHz BW -100.0 dBm for 5 MHz BW -98.5 dBm for 10 MHz BW -98.5 dBm for 15 MHz BW For in-band NB-IoT: -124.3 dBm for 15 kHz sub- carrier spacing -130.2 dBm for 3.75 kHz sub- carrier spacing	f ≤ 3.0GHz 1.4 dB 3.0GHz < f ≤ 4.2GHz 1.8 dB	Formula: Wanted signal power + TT f \leq 3.0GHz For E-UTRA: -105.5 dBm for 1.4 MHz BW -100.7 dBm for 3 MHz BW -98.6 dBm for 5 MHz BW -97.1 dBm for 10 MHz BW -97.1 dBm for 15 MHz BW -97.1 dBm for 20 MHz BW For in-band NB-IoT: -122.9 dBm for 15 kHz sub-carrier spacing -128.8 dBm for 3.75 kHz sub-carrier spacing 3.0GHz < f \leq 4.2GHz For E-UTRA: -105.1 dBm for 1.4 MHz BW -100.3 dBm for 3 MHz BW -98.2 dBm for 5 MHz BW -96.7 dBm for 10 MHz BW -96.7 dBm for 15 MHz BW -96.7 dBm for 20 MHz BW -96.7 dBm for 20 MHz BW
	T-put limit = 95% of maximum for the Ref Meas channel		

			
		0 dB	Formula: Wanted signal power + TT
7.5 Adjacent Channel Selectivity (ACS) and narrow-band blocking	Narrowband blocking:Wanted signal powerFor E-UTRA, all BWs: (PREFSENS+ 6 dB)For in-band NB-IoT, 1.4 MHzand 3 MHz BW:(PREFSENS + 11dB)For in-band NB-IoT, 5 MHz BW:(PREFSENS + 8dB)For in-band NB-IoT, 5 MHz BW:(PREFSENS + 8dB)For in-band NB-IoT, 10MHz,15MHz and 20MHz BW:(PREFSENS + 6dB)For guard-band NB-IoT, 5 MHzBW:(PREFSENS + 11dB)For guard-band NB-IoT, 10MHz,15MHz and 20MHz BW:(PREFSENS + 6dB)For standalone NB-IoT:(PREFSENS + 12dB)Interferer signal power, all BWs:-49dBmAdjacent channel selectivity:Wanted signal powerFor E-UTRA, 1.4 MHz BW:(PREFSENS + 11dB)	0 dB	Formula: Wanted signal power + TT <u>Narrowband blocking:</u> For E-UTRA, all BWs: (PREFSENS + 6 dB) For in-band NB-IoT, 1.4 MHz and 3 MHz BW: (PREFSENS + 11dB) For in-band NB-IoT, 5 MHz BW: (PREFSENS + 8dB) For in-band NB-IoT, 10MHz, 15MHz and 20MHz BW: (PREFSENS + 6dB) For guard-band NB-IoT, 5 MHz BW: (PREFSENS + 11dB) For guard-band NB-IoT, 10MHz, 15MHz and 20MHz BW: (PREFSENS + 6dB) For standalone NB-IoT: (PREFSENS + 12dB) Interferer signal power unchanged <u>Adjacent channel selectivity:</u> Wanted signal power
	Wanted signal power For E-UTRA, 1.4 MHz BW:		
	(P _{REFSENS} + 19.5dB) Interferer signal power, all BWs: -52 dBm T-put limit = 95% of maximum for the Ref Meas channel		Interferer signal power unchanged T-put limit unchanged

7.6.5.1 Blocking (General requirements)	In-band blocking Wanted signal power, all BWs: (PREFSENS + 6 dB)Interferer signal power, all BWs: -43dBmOut of band blocking Wanted signal power, all BWs: (PREFSENS + 6 dB)Interferer signal power, all BWs: -15dBm CWT-put limit = 95% of maximum for the Ref Meas channel	0 dB	Formula: Wanted signal power + TT, all BWs: (P _{REFSENS} + 6 dB) Interferer signal power unchanged T-put limit unchanged
7.6.5.2 Blocking (Co- location with other base stations)	Co-located blocking Wanted signal power, all BWs: (P _{REFSENS} + 6 dB) Interferer signal power, all BWs: +16dBm T-put limit = 95% of maximum for the Ref Meas channel	0 dB	Formula: Wanted signal power + TT, all BWs: (PREFSENS + 6 dB) Interferer signal power unchanged T-put limit unchanged
7.7 Receiver spurious emissions	-57dBm / 100 kHz -47dBm / 1 MHz	0dB	Formula: Minimum Requirement + TT Emission requirements unchanged
7.8 Receiver intermodulation	Wanted signal power, all BWs: (P _{REFSENS} + 6dB) CW Interferer power, all BWs: -52 dBm Modulated_Interferer power:, all BWs: -52 dBm T-put limit = 95% of maximum for the Ref Meas channel	0 dB	Formula: Wanted signal power + TT, all BWs: (P _{REFSENS} + 6dB) CW Interferer signal power unchanged Modulated Interferer signal power unchanged T-put limit unchanged

G.3 Measurement of Performance Requirements

Table G.3-1: Derivation of Test Requirements (Performance tests)

Test	Minimum Requirement in TS 36.104	Test Tolerance (TT)	Test Requirement in TS 36.141
8.2.1 Performance requirements of PUSCH in multipath fading propagation conditions transmission on single antenna port	SNRs as specified	0.6dB	Formula: SNR + TT T-put limit unchanged
8.2.1A Performance requirements of PUSCH in multipath fading propagation conditions transmission on two antenna ports	SNRs as specified	0.8dB	Formula: SNR + TT T-put limit unchanged
8.2.2 Performance requirements for UL timing adjustment	SNRs as specified	0.6dB for fading cases 0.3dB for AWGN cases	Formula: SNR + TT T-put limit unchanged
8.2.3 Performance requirements for HARQ- ACK multiplexed on PUSCH	SNRs as specified	0.6dB	Formula: SNR + TT False ACK limit unchanged Correct ACK limit unchanged
8.2.4 Performance requirements for High Speed Train conditions	SNRs as specified	0.3dB	Formula: SNR + TT T-put limit unchanged
8.2.5 Performance requirements for PUSCH with TTI bundling and enhanced HARQ pattern	SNRs as specified	0.6dB	Formula: SNR + TT Residual BLER limit unchanged
8.2.6 Enhanced performance requirements type A of PUSCH in multipath fading propagation conditions with synchronous interference	SINRs as specified	0.6dB	Formula: SINR + TT T-put limit unchanged
8.2.6A Enhanced performance requirements type A of PUSCH in multipath fading propagation conditions with asynchronous interference	SINRs as specified	0.6dB	Formula: SINR + TT T-put limit unchanged
8.2.7 Performance requirements of PUSCH in multipath fading propagation conditions transmission on single antenna port for supporting Cat-M1 UEs	SINRs as specified	0.6dB	Formula: SINR + TT T-put limit unchanged
8.3.1 ACK missed detection for single user PUCCH format 1a transmission on single antenna port	SNRs as specified	0.6dB	Formula: SNR + TT False ACK limit unchanged Correct ACK limit unchanged
8.3.2 CQI missed detection for PUCCH format 2 transmission on single antenna port	SNRs as specified	0.6dB	Formula: SNR + TT False CQI limit unchanged Correct CQI limit unchanged
8.3.3 ACK missed detection for multi user PUCCH format 1a	SNRs as specified	0.6dB	Formula: SNR + TT False ACK limit unchanged Correct ACK limit unchanged
8.3.4 ACK missed detection for PUCCH format 1b with Channel Selection	SNRs as specified	0.6 dB	Formula: SNR + TT False ACK limit unchanged Correct ACK limit unchanged

8.3.5 ACK missed detection	SNDo on operified	0.6 dB	Formula: SNR + TT
for PUCCH format 3	SNRs as specified	0.6 08	
IOI POCCH IOIMal 3			False ACK limit unchanged Correct ACK limit unchanged
	OND:		
8.3.6 NACK to ACK	SNRs as specified	0.6 dB	Formula: SNR + TT
detection for PUCCH			False ACK limit unchanged
format 3			Correct NACK limit unchanged
8.3.7 ACK missed	SNRs as specified	0.8dB	Formula: SNR + TT
detection for PUCCH			False ACK limit unchanged
format 1a transmission on			Correct ACK limit unchanged
two antenna ports			
8.3.8 CQI performance	SNRs as specified	0.8dB	Formula: SNR + TT
requirements for PUCCH			False ACK limit unchanged
format 2 transmission on			Correct ACK limit unchanged
two antenna ports			
8.3.9 CQI missed	SNRs as specified	0.6 dB for	Formula: SNR + TT
detection for PUCCH		one antenna	False CQI limit unchanged
format 2 with DTX detection		port	Correct CQI limit unchanged
		•	C C
		0.8 dB for	
		two antenna	
		ports	
8.3.10 ACK missed	SNRs as specified	0.6 dB	Formula: SNR + TT
detection for PUCCH			False ACK limit unchanged
format 1a transmission on			Correct ACK limit unchanged
single antenna port for			
supporting Cat-M1 UEs			
8.3.11 CQI performance	SNRs as specified	0.6 dB	Formula: SNR + TT
requirements for PUCCH		0.0 45	False CQI limit unchanged
format 2 transmission on			Correct CQI limit unchanged
single antenna port for			Corrot Car mine anonangoa
supporting Cat-M1 UEs			
8.3.12 ACK missed	SNRs as specified	0.6 dB	Formula: SNR + TT
detection for PUCCH		0.0 0.0	False ACK limit unchanged
format 4			Correct ACK limit unchanged
8.4.1 PRACH false alarm	SNRs as specified	0.6dB for	Formula: SNR + TT
probability and missed		fading cases	PRACH False detection limit
detection		0.3dB for	unchanged
		AWGN	PRACH detection limit unchanged
		cases	
8.5.1 Performance	SINDs as appoified		Formula: SINR + TT
	SINRs as specified	0.6dB	
requirements for NPUSCH			T-put limit unchanged
format 1		0.640	
8.5.2 ACK missed	SINRs as specified	0.6dB	Formula: SNR + TT
detection for NPUSCH			False ACK limit unchanged
format 2			Correct ACK limit unchanged
8.5.3 Performance	SNRs as specified	0.6dB for	Formula: SNR + TT
requirements for NPRACH		fading cases	NPRACH False detection limit
		0.3dB for	unchanged
		AWGN	NPRACH detection limit unchanged
		cases	

Annex H (Informative): E-UTRAN Measurement Test Cases

<Text will be added.>

Annex I (Informative): Measurement system set-up

Example of measurement system set-ups are attached below as an informative annex.

I.1 Transmitter

I.1.1 Base station output power, output power dynamics, transmitted signal quality, Frequency error, EVM, DL RS power, Unwanted emissions

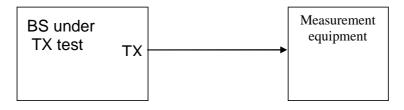


Figure I.1-1: Measuring system Set-up for base station output power, output power dynamics, transmitted signal quality, Frequency error, EVM, DL RS power, Unwanted emissions

I.1.2 Transmitter intermodulation

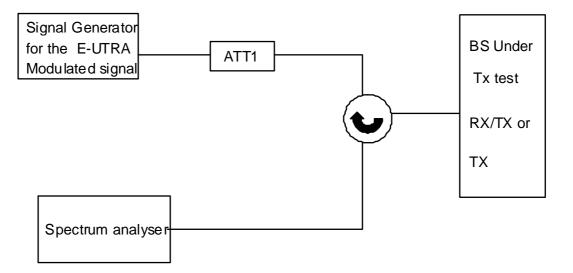


Figure I.1-2: Measuring system Set-up for Transmitter intermodulation

I.1.3 Time alignment error

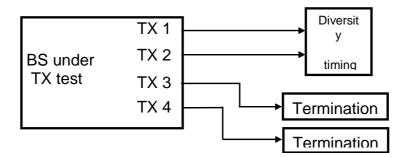


Figure I.1-3: Measuring system Set-up for Test of Time alignment error

I.1.4 Home BS output power for adjacent channel protection

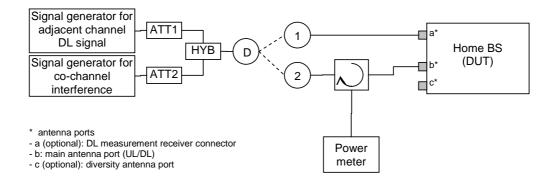


Figure I.1-4: Measuring system set-up for Home BS output power for adjacent channel protection

I.1.5 Home BS output power for co-channel E-UTRA protection

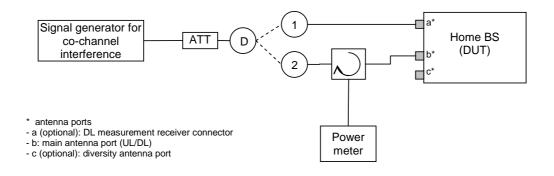


Figure I.1-5: (Option 1) Measuring system set-up for Home BS output power for co-channel E-UTRA protection

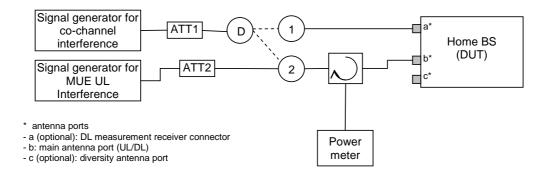
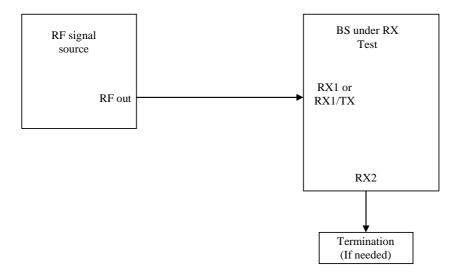



Figure I.1-6: (Option 2) Measuring system set-up for Home BS output power for co-channel E-UTRA protection

I.2 Receiver

NOTE: No HARQ feedback is done for any receiver test in Annex I.2.

I.2.1 Reference sensitivity level

I.2.2 Dynamic range

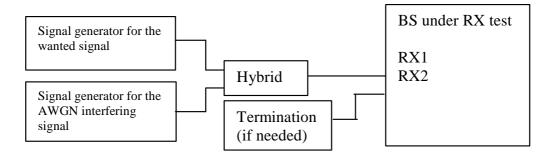


Figure I.2-2: Measuring system Set-up for Dynamic range

I.2.3 In-channel selectivity

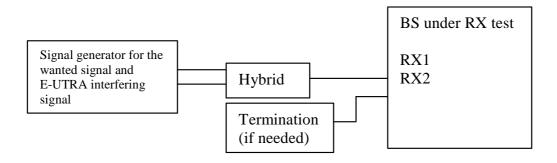


Figure I.2-3: Measuring system Set-up for In-channel selectivity

I.2.4 Adjacent Channel Selectivity (ACS) and narrowband blocking

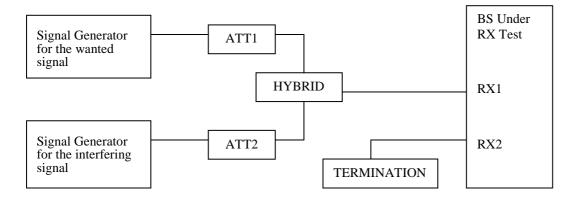


Figure I.2-4: Measuring system Set-up for Adjacent channel selectivity and narrowband blocking

I.2.5 Blocking characteristics

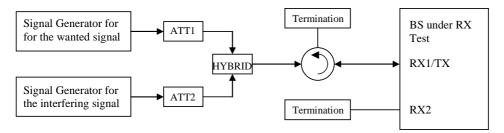
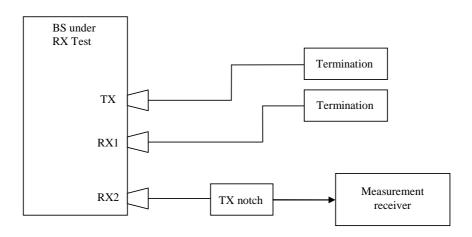



Figure I.2-5: Measuring system Set-up for Blocking characteristics

I.2.6 Receiver spurious emission

Figure I.2-6: Measuring system Set-up for Receiver spurious emission

I.2.7 Intermodulation characteristics

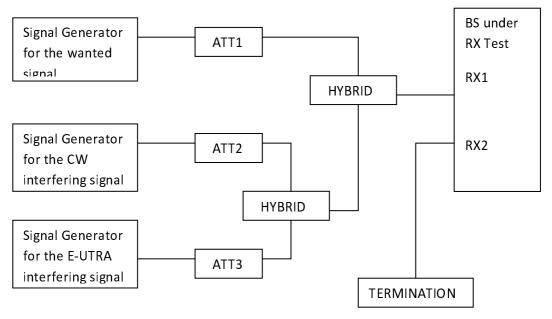


Figure I.2-7: Measuring system Set-up for intermodulation characteristics

- I.3 Performance requirement
- I.3.1 Performance requirements for PRACH in static conditions

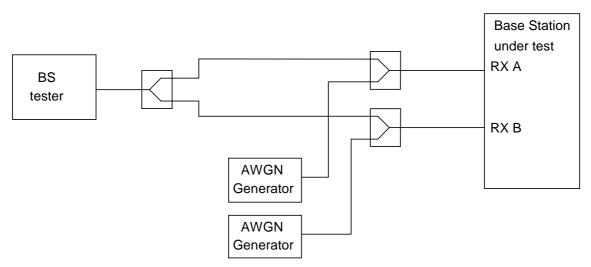
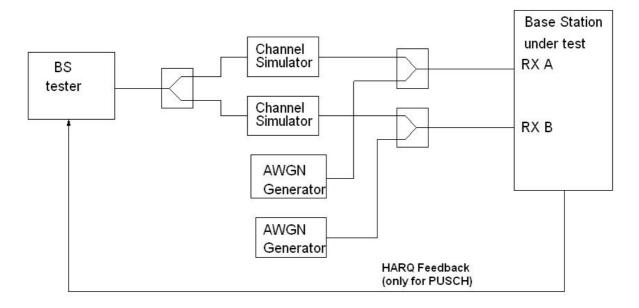



Figure I.3-1: Functional set-up for performance requirements for PRACH in static conditions for BS with Rx diversity (2 Rx case shown)

I.3.2 Performance requirements for PUSCH, PRACH, single user PUCCH in multipath fading conditions and for High Speed Train conditions

Figure I.3-2: Functional set-up for performance requirements for PUSCH, PRACH, single user PUCCH in multipath fading conditions and for High Speed Train conditions for BS with Rx diversity (2 Rx case shown)

- NOTE 1: For HST tests which are specified in static conditions, the Channel Simulators are assumed to simulate the Doppler shift.
- NOTE 2: The HARQ Feedback could be done as an RF feedback or as a digital feedback. The HARQ Feedback should be error free.

I.3.3 Performance requirements for multi user PUCCH in multipath fading conditions

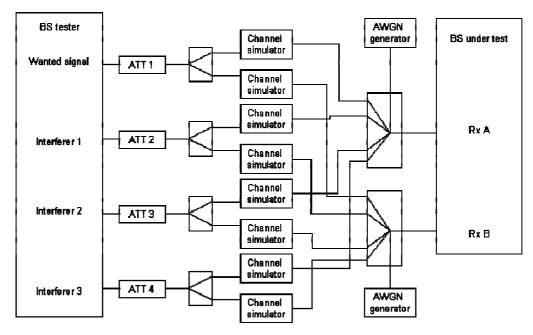
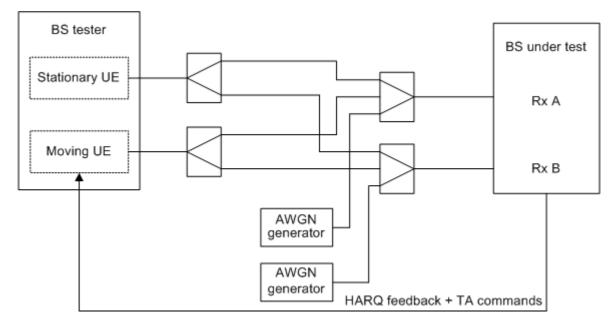



Figure I.3-3: Functional set-up for performance requirements for multi user PUCCH in multipath fading conditions

I.3.4 Performance requirement for UL timing adjustment

Figure I.3-4: Functional set-up for performance requirement for UL timing adjustment (Scenario 2 case shown)

- NOTE 1: In case of UL timing adjustment Scenario 1, channel simulators needs to be used for fading and Doppler shift emulation.
- NOTE 2: The HARQ feedback and TA commands could be done as an RF feedback or as a digital feedback. The HARQ feedback and TA commands should be error free.

I.3.5 Performance requirements for PUCCH transmission on two antenna ports in multipath fading conditions

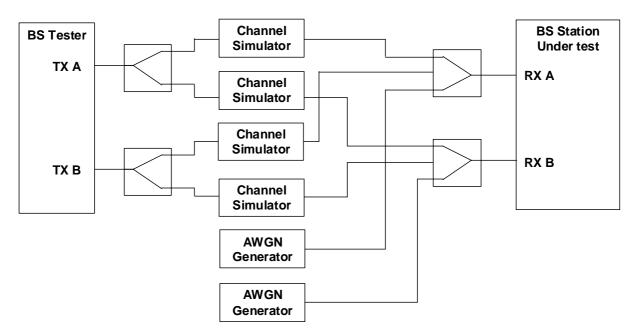
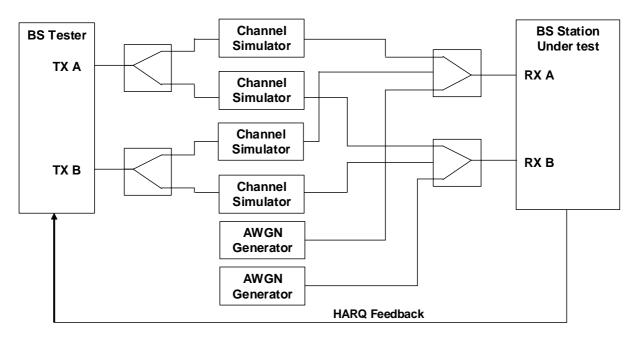
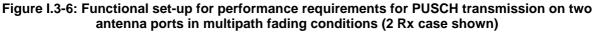




Figure I.3-5: Functional set-up for performance requirements for PUCCH transmission on two antenna ports in multipath fading conditions (2 Rx case shown)

I.3.6 Performance requirements for PUSCH transmission on two antenna ports in multipath fading conditions

I.3.7 Enhanced performance requirements type A of PUSCH in multipath fading propagation conditions with synchronous or asynchronous interference

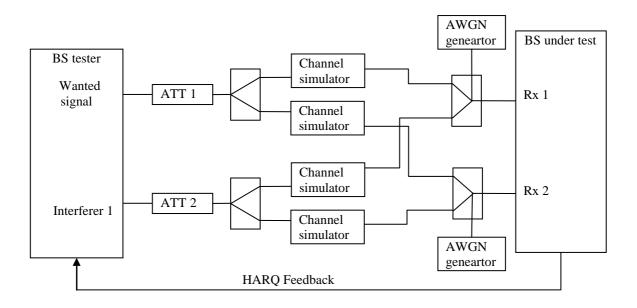


Figure I.3-7a: Functional set-up for enhanced performance requirements type A of 2Rx PUSCH in multipath fading conditions with synchronous interference (1 interferer and 2 Rx case shown)

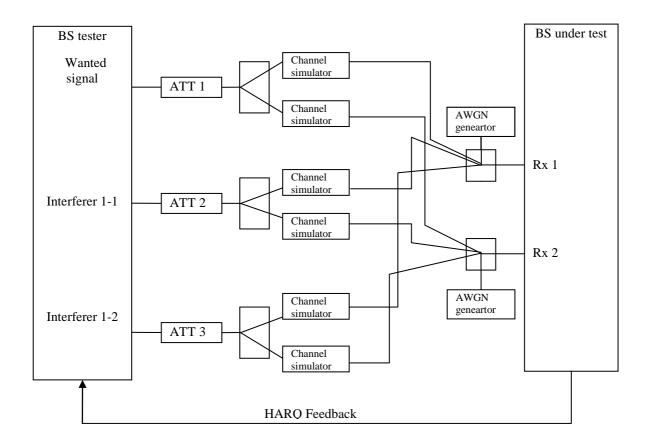


Figure I.3-7b: Functional set-up for enhanced performance requirements type A of PUSCH with 2Rx in multipath fading conditions with asynchronous interference (2 interferers and 2 Rx case shown)

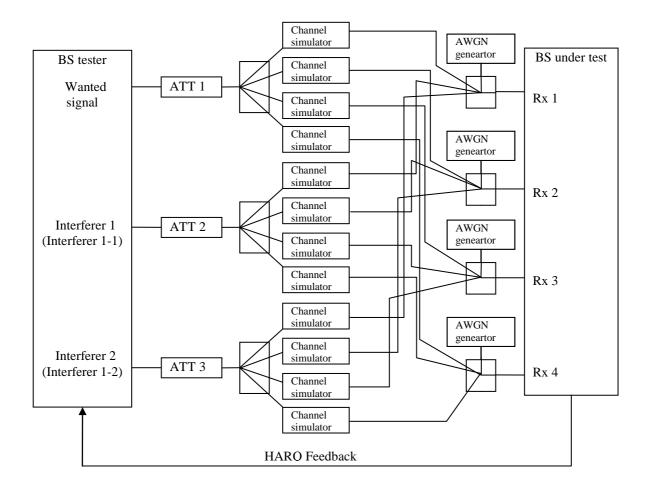
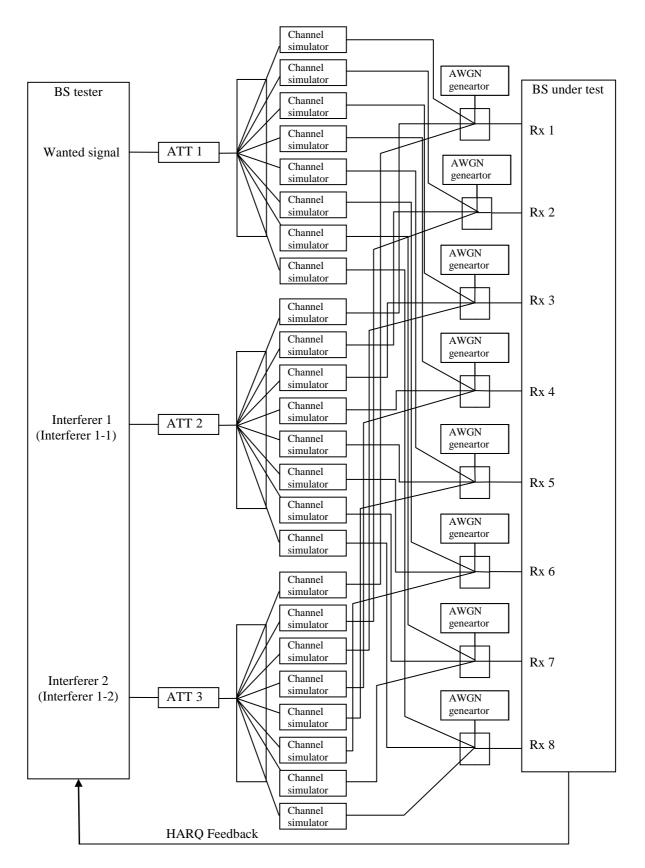



Figure I.3-7c: Functional set-up for enhanced performance requirements type A of 4Rx PUSCH in multipath fading conditions with synchronous or asynchronous interference (2 interferers and 4 Rx case shown)

Figure I.3-7d: Functional set-up for enhanced performance requirements type A of 8Rx PUSCH in multipath fading conditions with synchronous or asynchronous interference (2 interferers and 8 Rx case shown)

I.4 Channel access procedures

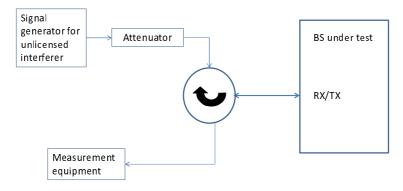


Figure I.4: Measuring system Set-up for Channel access procedures

Annex J (Informative): Unwanted emission requirements for multi-carrier BS

J.1 General

In section 6.6, unwanted emission requirements for single carrier or multi-carrier BS are specified. This multi-carrier BS corresponds to a multi-carrier BS for E-UTRA, or a BS supporting intra-band contiguous CA. The following two pragmatic scenarios are considered in this annex:

- multi-carrier BS of different E-UTRA channel bandwidths, covering all scenarios except the channel bandwidth of the outermost carrier less than 5 MHz
- multi-carrier BS of E-UTRA and UTRA, covering all scenarios except the channel bandwidth of the outermost carrier less than 5 MHz.

All scenarios for channel bandwidths of the outermost carrier less than 5 MHz are for further study. Only multi-carrier BS with contiguous carriers are considered. The guidelines below assumes that the power spectral density of the multiple carriers is the same. All other combinations of multiple carriers are ffs.

Note 1: Further information and analysis for these scenarios can be found in TR 36.942 [14].

J.2 Multi-carrier BS of different E-UTRA channel bandwidths

For a multi-carrier E-UTRA BS transmitting a group of carriers of different channel bandwidths, the channel bandwidth of the outermost carriers (\geq 5 MHz) should be considered for ACLR and Operating band unwanted emission requirements. That is, the corresponding requirements for the channel bandwidth of each of the outermost carriers should be applied at the respective side of the group of transmitted carriers.

J.3 Multi-carrier BS of E-UTRA and UTRA

For a multi-carrier BS transmitting a group of carriers of E-UTRA and UTRA, the RAT being used on the outermost carriers ($\geq 5 MHz$) should be considered for ACLR and Operating band unwanted emission requirements. That is, the corresponding requirements for the RAT being used on each of the outermost carriers should be applied at the respective side of the group of transmitted carriers.

Annex K (informative): Change history

	Change history							
Date	Meeting	TDoc	CR	Rev	Cat	Subject/Comment	New version	
2007-08	RAN4#44	R4-071503				TS skeleton created from 3GPP TS template.	0.0.1	
2008-02	RAN4#46	R4-080004				Text proposals for section 2 to 4 (R4-072237) and	0.1.0	
						Annex A (R4-072048), which were agreed at RAN4#45, are incorporated.		
2008-02	RAN4#46	R4-080446				Section for In-channel selectivity (new 7.4) is	0.1.1	
2000 02		114 000440				inserted and following sections are re-numbered.	0.1.1	
						Editorial corrections are made in section 1, 3.2, 4,3,		
	DANIA	D 4 000500				Table 4.3-1, 4.5.2.1, 4.6, 4.6.3, 4.6.4, 4.6.5 and A.2.		
2008-02	RAN4#46	R4-080508				Text proposals in R4-080447, R4-080058, R4- 080453, R4-080047, R4-080048, R4-080049, R4-	0.2.0	
						080050, R4-080051, R4-080444, R4-080501, R4-		
						080044, R4-080045 and R4-080046 are		
						incorporated with modifications agreed in the first		
						round discussion in RAN4#46 meeting. Overlapped parts in R4-080058 and R4-080044 for Annx A, R4-		
						080444 and R4-080501 for section 8 are merged by		
						the editor.		
2008-03	-	R4-080659				Editorial correction on section 8 is made: Text	0.2.1	
	bis					proposals for section 8 in R4-080444 are removed and the text proposal in R4-080501 is applied. Some		
						editorial corrections are applied.		
2008-04	RAN4#46	R4-080828				Text proposals agreed in R4-080583,R4-080617,R4-	0.3.0	
	bis					080663,R4-080664,R4-080606,R4-080584,,R4-		
						080660,R4-080792,R4-080586,R4-080587,R4-		
						080564,R4-080566 and R4-0806007 are incorporated with some editorial modifications.		
2008-05	RAN4#47	R4-080844				Text proposals agreed in R4-080803,R4-0799,R4-	0.4.0	
						0800,R4-080801 and R4-080826 are incorporated		
	B	D 4 00 4 4 00				with editorial modifications.		
2008-05	RAN4#47	R4-081198				Text proposals agreed in R4-081055, R4-081007, R4-081070, R4-081170, R4-080924, R4-080888,	0.5.0	
						R4-081176, R4-080853, R4-080854, R4-080855,		
						R4-081056, R4-080889 and R4-081178 are		
	D 4 4 4 4 4					incorporated.		
2008-05	RAN#40 RAN#40	RP-080381 RP-080456				Presented for information as V1.0.0. Editorial corrections on the formats in order to	1.0.0	
2000-03	117111#40	111-000430				comply with the drafting rule of 3GPP.	1.0.1	
2008-06	RAN4#47	R4-081255				Correction in section 6.5.1.5, which was incorrectly	1.0.2	
	bis					proposed in R4-081226, is made. Editorial		
2008-06	DAN/4#47	R4-081256				corrections on 6.5.3.4.1 and 8.4.1.4.2 are made. Text proposals agreed in R4-081184 and R4-	1.1.0	
2000-00	bis	114-001230				081187 are incorporated.	1.1.0	
2008-06	RAN4#47	R4-081329				Editorial corrections in Table 8.4.1.5-2.	1.1.1	
	bis	D / 00 / 000					1.0.0	
2008-08	RAN4#48	R4-081832				Text proposals agreed in the following documents are incorporated:	1.2.0	
						R4-081377, R4-081547, R4-081282, R4-081284, R4-		
						081652, R4-081502, R4-081283, R4-081650, R4-		
						081268, R4-081269, R4-081270, R4-081653, R4-		
						081272, R4-081645, R4-081481, R4-081281, R4- 081322.		
2008-08	RAN4#48	R4-082185				Text proposals agreed in the following documents	1.3.0	
						are incorporated:		
						R4-081832, R4-082087, R4-082093, R4-081847,		
						R4-081965, R4-081967, R4-081944, R4-081709 , 4-082109, R4-081711, R4-081712, R4-082090, R4-		
						081714, R4-081715, R4-081834, R4-082135, R4-		
						082173, R4-082160, R4-082171		
2008-09	RAN#41	RP-080715				Typo in Table 8.4.1.5-1 (section 8.4.1.5), which was	2.0.0	
						brought in at V1.1.0 when implementing R4-081187 is corrected.		
2008-09	RAN#41	RP-080715	<u> </u>	1	<u> </u>	Presented for approval as V2.0.0	8.0.0	
2008-12	RAN #42	RP-080915	10	1	1	Correction to the figure with the Transmision	8.1.0	
						Bandwidth configuration		
2008-12	RAN #42	RP-080916	14			Modification to EARFCN	8.1.0	
2008-12	RAN #42		3			Introduction of Band 17	8.1.0	
2008-12 2008-12	RAN #42 RAN #42	RP-080920 RP-080921	27 28			Update of total dynamic range limits Update of TDD-FDD coexistance requirements	8.1.0 8.1.0	
2008-12	RAN #42 RAN #42	RP-080921 RP-080922	30	1	<u> </u>	PRACH demodulation requirements update	8.1.0	
2008-12	RAN #42	RP-090923	4	1	1	General corrections in section 7-Annexes	8.1.0	
2008-12	RAN #42	RP-080923	12	1		General corrections in sections 4-6	8.1.0	

2009-05 2009-05 2009-05 2009-05	RAN #44 RAN #44 RAN #44	RP-090545 RP-090545 RP-090545	58 63r2 59		CR 36.141 ACS frequency offset. (Technically Endorsed CR in R4-50bis - R4-091330) Test Tolerances for Performance test cases UL timing adjustment measurement system set-up.	8.3.0 8.3.0 8.3.0
2009-05	RAN #44				Endorsed CR in R4-50bis - R4-091330)	
		RP-090545	58		CR 36.141 ACS frequency offset. (Technically	8.3.0
2009-05				ł		
	RAN #44	RP-090545	70		tests Test system uncertainty for Receiver dynamic range	8.3.0
2009-05	RAN #44	RP-090545	64r1		Addition of missing Test Tolerances for transmitter	8.3.0
2009-05	RAN #44	RP-090545	68		Correction to DL RS power	8.3.0
2009-05	RAN #44	RP-090545	67		Adding test model for transmit ON/OFF test	8.3.0
2009-05	RAN #44	RP-090545	66		Test system uncertainty for Transmitter intermodulation	8.3.0
					Endorsed CR in R4-50bis - R4-091461)	
2009-05	RAN #44	RP-090545	62		(Technically Endorsed CR in R4-50bis - R4-091445) Correction of test models for E-UTRAN. (Technically	8.3.0
2009-05	RAN #44	RP-090544	61		Clarification of requirements for multicarrier BS.	8.3.0
2009-03	RAN #43	RP-090181	44		AWGN level for UL demodulation performance tests	8.2.0
2000-00	10.01 #40		⁻ '		demodulation test cases.	5.2.0
2009-03 2009-03	RAN #43 RAN #43	RP-090181 RP-090181	38 41		Correction of clause 8. Modifications on parameter settings for some	8.2.0 8.2.0
2009-03	RAN #43	RP-090180	56		eNB ACS frequency offset	8.2.0
2009-03	RAN #43	RP-090180	42	1	Correction to BS reciever test requirements	8.2.0
2003-03	11711 #43	111-030179	51		UTRA bands < 1GHz) for Category A	
2009-03 2009-03	RAN #43 RAN #43	RP-090179 RP-090179	49 51		Unsynchronized TDD coexistence requirements Correction to unwanted emission limit for 3MHz(E-	8.2.0 8.2.0
2009-03	RAN #43	RP-090179	45		Correction to transmitter intermodulation test	8.2.0
2009-03			40		Clarification of PHS band including the future plan	8.2.0
2009-03	RAN #43	RP-090179	37		Correction and update of clause 6.	8.2.0
2009-03	RAN #43	RP-090179	35	L	Correction of E-UTRAN TDD eNodeB test models	8.2.0
2009-03	RAN #43	RP-090179	34	<u> </u>	Corrections related to E-UTRA test models	8.2.0
2009-03	RAN #43 RAN #43	RP-090178 RP-090178	36 39		Correction of clause 4. Correction and update of Annex G.	8.2.0
2009-03	RAN #43	RP-090178	36		requirement results Correction of clause 4.	8.2.0
2009-03	RAN #43	RP-090177	53		HARQ-ACK multiplexed on PUSCH performance	8.2.0
				ļ	margins	
2009-03	11711 #43		-10		finalization for simulations with implementation	0.2.0
2009-03	RAN #43	RP-090177	48		PUCCH ACK/NACK Repetition configuration PUSCH ACK/NAK simulation assumptions	8.2.0
2009-03	RAN #43	RP-090177	43		Clarification of the BS performance test w.r.t	8.2.0
2009-03	RAN #43	RP-090175	55	1	Regional requirement on maximum rated power for Band 34	8.2.0
2009-03	RAN #43	RP-090173	54		Clarification of EARFCN for 36.141	8.2.0
2008-12	RAN #42	RP-080927	7	1	Correction of Doppler shift trajectories equations for HST conditions	8.1.0
			-		(36.141, rel-8)	
2008-12	RAN #42	RP-080927	15	1	Train conditions Clarification of eNB HST propagation conditions	8.1.0
2008-12	RAN #42	RP-080927	9		multiplexed on PUSCH eNB performance test requirements for High Speed	8.1.0
2008-12	RAN #42	RP-080926	31		eNB performance requirements for HARQ ACK	8.1.0
2008-12	RAN #42	RP-080926	13	1	eNB performance test requirements for Multi User PUCCH	8.1.0
2008-12	RAN #42	RP-080926	2	1	eNB performance test requirement for PUCCH format 2	8.1.0
					adjustment	
2008-12	RAN #42	RP-080926	1	1	test eNB performance test requirement for UL timing	8.1.0
2008-12	RAN #42	RP-080924	25		EVM averaging for TDD in the global in channel TX	8.1.0
2008-12	RAN #42 RAN #42	RP-080924 RP-080924	17 26		Correction to E-UTRA test models	8.1.0
2008-12 2008-12	RAN #42 RAN #42	RP-080924 RP-080924	32 17		E-UTRA TDD test models Correction to transmitter intermodulation test	8.1.0 8.1.0
2008-12	RAN #42	RP-080924	11		Clarificatiopn on emission requirements	8.1.0
2008-12	RAN #42	RP-080924	8		Addition of BS transmit ON/OFF power tests	8.1.0
				ļ	power dynamic range	
2008-12	RAN #42	RP-080924	5		Correction of EVM test condition related to total	8.1.0
2008-12	RAN #42	RP-080923	23		Correction to Annex G	8.1.0
2008-12	RAN #42 RAN #42	RP-080923 RP-080923	22	1	Correction to clause 8	8.1.0
2008-12 2008-12	RAN #42 RAN #42	RP-080923 RP-080923	21 22	2	Correction to clause 6 Correction to clause 7	8.1.0 8.1.0
2008-12	RAN #42	RP-080923	20	1	Corrections to clause 4 and 5	8.1.0
			-		abbreviations	
	RAN #42	RP-080923	19	1	Corrections to references, definitions symbols and	8.1.0

2009-05	RAN #44	RP-090545	60		UL timing adjustment performance requirement clarifications. (Technically Endorsed CR in R4-50bis - R4-091438)	8.3.0
2009-05	RAN #44	RP-090559	57		Introduction of Extended LTE800 requirements. (Technically Endorsed CR in R4-50bis - R4-091064)	9.0.0
2009-09	RAN #45	RP-090833	070		Clarification of the multi user PUCCH performance determintion (R43-51Cat F Endorsed CR in: R4-	9.1.0
2009-09	RAN #45	RP-090833	072		092227) Clarification of the UL timing adjustment	9.1.0
	D M H H H		074		performance determination (R43-51Cat F Endorsed CR in: R4-092229)	
2009-09		RP-090833	076		Receiver intermodulation clarification	9.1.0
2009-09		RP-090833	078		Corrections to E-UTRA Rx requirements	9.1.0
2009-09		RP-090826	079		Correction of spurious emission requirements for LTE800	9.1.0
2009-09		RP-090833	081		Clarifications on testing UL timing adjustment requirements	9.1.0
2009-09		RP-090833	083		Correction on reference of extreme power supply	9.1.0
2009-09	RAN #45	RP-090833	092		LTE operating band unwanted emissions revision	9.1.0
2009-12	RP-46	RP-091286	095		Introduction of Extended LTE1500 requirements for TS36.141 (Technically endorsed at RAN 4 52bis in R4-093637)	9.2.0
2009-12	RP-46	RP-091267	098		Clarification of the test method for blocking (Technically endorsed at RAN 4 52bis in R4-093769)	9.2.0
2009-12	111-40	11-031207	000	┼─┤──	Adding missing EARFCN for band 33 and 34	0.2.0
2009-12	RP-46	RP-091267	100		(Technically endorsed at RAN 4 52bis in R4-093770) Incorrect FRC A3-2 Coded block size (Technically	9.2.0
2009-12	RP-46	RP-091267	102		endorsed at RAN 4 52bis in R4-093771) LTE operating band unwanted emissions correction	9.2.0
	RP-46	RP-091266	104		(Technically endorsed at RAN 4 52bis in R4-093802)	9.2.0
2009-12	RP-46	RP-091267	106		HARQ feedback clarification addition (Annex B) (Technically endorsed at RAN 4 52bis in R4-093997)	9.2.0
2009-12		11 031201	100		Clarification on Spurious emissions limits for BS co- existed with another BS (Technically endorsed at	5.2.0
2000 12	RP-46	RP-091266	108		RAN 4 52bis in R4-094012) Corrections to ICS requirement (Technically	9.2.0
2009-12	RP-46		109		endorsed at RAN 4 52bis in R4-093640)	9.2.0
2009-12	RP-46	RP-091270	111	1	Clarification on PRACH False alarm probability	9.2.0
2009-12	RP-46	RP-091295	112	1	E-UTRA BS classification	9.2.0
2009-12	RP-46		113	1	Home eNode B maximum output power	9.2.0
2009-12	RP-46	RP-091295	114	1	Home eNode B in-channel selectivity requirement	9.2.0
2009-12	RP-46	RP-091295	115	1	Home eNode B receiver intermodulation requirement	9.2.0
2009-12	RP-46	RP-091269	117	1	UL Timing Adjustment test clarifications	9.2.0
2009-12	RP-46	RP-091266	119		Multi-path fading propagation conditions reference correction	9.2.0
2009-12	RP-46	RP-091265	121		Corrections on frequency range of unwanted emissions requirements	9.2.0
2009-12	RP-46	RP-091265	121	1	Correction to the transmitter intermodulation	9.2.0
2009-12	RP-46		122		Testing in case of Rx diversity, Tx diversity and MIMO	
2009-12	RP-46	RP-091276 RP-091295	130	1	Home eNode B ACLR requirement	9.2.0 9.2.0
2009-12					Home eNode B ACS and narrow band blocking	
2000 40	RP-46		131	1	requirement	9.2.0
2009-12 2009-12	RP-46	RP-091295 RP-091294	132	1	Home eNode B Blocking requirement	9.2.0
2009-12	RP-46		133	1	Home eNode B dynamic range requirement Home eNode B frequency error requirement	9.2.0 9.2.0
		DD 001004				
2000 12	RP-46	RP-091294				020
2009-12 2009-12	RP-46	RP-091294	135	2	Home eNode B performance requirement Home eNode B operating band unwanted emissions	9.2.0 9.2.0
	RP-46 RP-46	RP-091294 RP-091294	135 136	2	Home eNode B performance requirement Home eNode B operating band unwanted emissions requirement Home eNode B reference sensitivity level	9.2.0
2009-12 2009-12	RP-46 RP-46 RP-46	RP-091294 RP-091294 RP-091294	135 136 137	2 1 1	Home eNode B performance requirement Home eNode B operating band unwanted emissions requirement Home eNode B reference sensitivity level requirement	9.2.0 9.2.0
2009-12 2009-12 2009-12	RP-46 RP-46 RP-46 RP-46	RP-091294 RP-091294 RP-091294 RP-091294	135 136	2 1 1 2	Home eNode B performance requirement Home eNode B operating band unwanted emissions requirement Home eNode B reference sensitivity level requirement Home eNode B spurious emission requirement	9.2.0 9.2.0 9.2.0
2009-12 2009-12	RP-46 RP-46 RP-46 RP-46 RP-46	RP-091294 RP-091294 RP-091294 RP-091294 RP-091284	135 136 137 138 140	2 1 1	Home eNode B performance requirement Home eNode B operating band unwanted emissions requirement Home eNode B reference sensitivity level requirement Home eNode B spurious emission requirement Inclusion of Band 20 BS Test parameters Applicability of uncertainty for transmitter transient	9.2.0 9.2.0 9.2.0 9.2.0
2009-12 2009-12 2009-12 2009-12	RP-46 RP-46 RP-46 RP-46	RP-091294 RP-091294 RP-091294 RP-091294	135 136 137 138	2 1 1 2 2	Home eNode B performance requirement Home eNode B operating band unwanted emissions requirement Home eNode B reference sensitivity level requirement Home eNode B spurious emission requirement Inclusion of Band 20 BS Test parameters Applicability of uncertainty for transmitter transient period Correction of the frequency range for	9.2.0 9.2.0 9.2.0
2009-12 2009-12 2009-12 2009-12 2009-12	RP-46 RP-46 RP-46 RP-46 RP-46 RP-46	RP-091294 RP-091294 RP-091294 RP-091294 RP-091284 RP-091267 RP-100252	135 136 137 138 140 144	2 1 1 2 2	Home eNode B performance requirement Home eNode B operating band unwanted emissions requirement Home eNode B reference sensitivity level requirement Home eNode B spurious emission requirement Inclusion of Band 20 BS Test parameters Applicability of uncertainty for transmitter transient period Correction of the frequency range for unwanted emmissions limits (cat-B/option 2/BW 3MHz)	9.2.0 9.2.0 9.2.0 9.2.0 9.2.0
2009-12 2009-12 2009-12 2009-12 2009-12 2010-03 2010-03	RP-46 RP-46 RP-46 RP-46 RP-46 RP-46 RP-47 RP-47	RP-091294 RP-091294 RP-091294 RP-091294 RP-091284 RP-091267 RP-100252 RP-100252	135 136 137 138 140 144 174 171	2 1 1 2 2	Home eNode B performance requirement Home eNode B operating band unwanted emissions requirement Home eNode B reference sensitivity level requirement Home eNode B spurious emission requirement Inclusion of Band 20 BS Test parameters Applicability of uncertainty for transmitter transient period Correction of the frequency range for unwanted emmissions limits (cat-B/option 2/BW 3MHz) Correction of Band 4 and 10 co-existence requirement	9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.3.0 9.3.0
2009-12 2009-12 2009-12 2009-12 2009-12 2009-12 2010-03	RP-46 RP-46 RP-46 RP-46 RP-46 RP-46 RP-47	RP-091294 RP-091294 RP-091294 RP-091294 RP-091284 RP-091267 RP-100252 RP-100252 RP-100252	135 136 137 138 140 144 174	2 1 1 2 2	Home eNode B performance requirement Home eNode B operating band unwanted emissions requirement Home eNode B reference sensitivity level requirement Home eNode B spurious emission requirement Inclusion of Band 20 BS Test parameters Applicability of uncertainty for transmitter transient period Correction of the frequency range for unwanted emmissions limits (cat-B/option 2/BW 3MHz) Correction of Band 4 and 10 co-existence	9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.3.0

				r r		
2010-03	RP-47	RP-100275			Receiver intermodulation for Local Area BS	9.3.0
2010-03	RP-47	RP-100275	152		Performance requirement for Local Area BS	9.3.0
2010-03	RP-47		153		E-UTRA BS classification	9.3.0
2010-03	RP-47	RP-100275	154		Maximum output power for Pico NodeB	9.3.0
2010-03	RP-47	RP-100275	155		Frequency error requirement for Pico NodeB	9.3.0
2010-03	RP-47	RP-100275	156		Reference sensitivity level requirement for Pico	9.3.0
					NodeB	
2010-03	RP-47	RP-100275	158		ACLR requirement for Pico NodeB	9.3.0
2010-03	RP-47	RP-100275	159		Operating band unwanted emissions requirement for	9.3.0
2010 00					Pico NodeB	0.010
2010-03	RP-47	RP-100275	147	1	Spurious emissions requirement for Local Area BS	9.3.0
2010-03	RP-47	RP-100275	157	2	Blocking requirement for Pico NodeB	9.3.0
				2	8 1	
2010-03	RP-47	RP-100263	172		Correction of DTT protection requirement	9.3.0
2010-03	RP-47	RP-100266	161		Operating band unwanted emissions requirement for	9.3.0
					Home eNodeB	
2010-03	RP-47	RP-100266	160	1	Dynamic range requirement for Home eNodeB	9.3.0
2010-03	RP-47	RP-100266	162		Corrections of additional spurious emissions and	9.3.0
					blocking requirements for HeNB	
2010-03	RP-47	RP-100266	166		Home BS Output Power Conformance Testing for	9.3.0
					Adjacent Channel Protection	
2010-03	RP-47	RP-100274	175		Requirements for HARQ-ACK multiplexed on	9.3.0
					PUSCH for E-UTRA LA and Home BS	
2010-03	RP-47	RP-100274	176		CQI missed detection requirements for PUCCH	9.3.0
2010 00	111 47	100214	170		format 2 for E-UTRA LA and Home BS	0.0.0
2010.02	RP-47	RP-100274	165	1	Corrections to the receiver intermodulation	9.3.0
2010-03	RP-47	RP-100274	100		requirements	9.3.0
0010.00	DD 40	DD 400004	400			0.4.0
2010-06	RP-48	RP-100621	180		Clarification on narrowband blocking requirements	9.4.0
2010-06	RP-48	RP-100621			Spurious emissions limits and blocking requirements	9.4.0
			178		for coexistence with CDMA850	
2010-06	RP-48	RP-100621			Correction to the FRC for PUSCH 1.4M	9.4.0
			183	1	requirements	
2010-06	RP-48	RP-100625			Clarification of applicability of requirements for multi-	9.4.0
			191	1	carrier BS	
2010-06	RP-48	RP-100631			Co-existence with services in adjacent frequency	9.4.0
			186		bands	
2010-09	RP-49	RP-100916	193		Clarifications on Base Station transmit and receive	9.5.0
2010 00					configurations	0.010
2010-09	RP-49	RP-100920	196		UL Timing Adjustment: Stationary UE propagation	9.5.0
2010 00	111 40	100020	100		channel clarification	0.0.0
2010-09	RP-49	RP-100917	198	1		9.5.0
2010-09	IXF -49	KF-100917	190	· ·	base station in R9	9.5.0
2010.00	RP-49	DD 400040	007			050
2010-09	RP-49	RP-100916	207		Adding operating unwanted emissions test to tests	9.5.0
0040.00	DD 10	DD 400000	10.1		applicable to Ancillary RF Amplifiers	40.0.0
2010-09	RP-49	RP-100928	194		CR LTE_TDD_2600_US spectrum band definition	10.0.0
					additions to TS 36.141	
2010-12	RP-50	RP-101327				10.1.0
2010-12	RP-50	RP-101328	217		PUCCH format 2 performance requirements	10.1.0
					definition clarification	
2010-12	RP-50	RP-101328	236		Correction on multi user PUCCH test	10.1.0
2010-12	RP-50	RP-101342	213		Equaliser coefficient derivation for Global In-Channel	10.1.0
					TX-Test	
2010-12	RP-50	RP-101342	221		Correction of applicability of requirements	10.1.0
2010-12	RP-50		211	3	CR UMTS/LTE-3500 TDD spectrum band definition	10.1.0
_0.0 12				l ĭ ∣	additions for BS to TS 36.141	
2010-12	RP-50	RP-101362	209	3	Introduction of L-band in TS36.141	10.1.0
2010-12	RP-50 RP-51			-		10.1.0
			241		Receiver spurious emissions reference correction	
2011-04	RP-51		247	2	Power off test tolerance	10.2.0
2011-04	RP-51	RP-110352	248	1	TS 36.141 subclause 6.5.4: DL RS Power	10.2.0
2011-04	RP-51	RP-110352	251	1	Correction of the test port description for TS 36.141	10.2.0
					Rel-10	
2011-04	RP-51	RP-110357	253	2	Band 42 and 43 co-existence for UMTS/LTE 3500	10.2.0
					(TDD) for TS 36.141	
2011-04	RP-51	RP-110344	255	-	Operating band unwanted emissions for Band 1, 33	10.2.0
		1	-		and 34 (TS 36.141)	-
2011-06	RP-52	RP-110794	261	1 1	Modifications to Band 3 to allow LTE Band 3	10.3.0
					operation in Japan (Rel-10 TS36.141 CR)	
2011-06	RP-52	RP-110807	262		Carrier Aggregation for LTE in TS 36.141 / general	10.3.0
2011-00	111-52	11110007	202		requirements	10.0.0
2011.00	RP-52	DD 110007	264	<u>├ </u>	Carrier Aggregation for LTE in TS 36.141 / receiver	10.2.0
2011-06	RF-92	RP-110807	264			10.3.0
2044.00		DD 440000	260	├── ├───	requirements	10.2.0
2011-06	RP-52	RP-110802	266		Co-existence/co-location between Band 42 and 43 in	10.3.0
1	1	1	1		TS 36.141	1

and WA Bs in 36.141 2011-06 RP-52 RP-110804 258 1 Expanded 1900 MHz addition to 36.141 2011-06 RP-52 RP-110807 263 1 Carrier Aggregation for LTE in TS 36.141 / transmitter requirements 2011-06 RP-52 RP-110813 265 1 Add 2GHz S-Band (Band 23) in 36.141 2011-06 RP-52 RP-110795 273 1 Fixing the misalignment of Band 24 GPS Coexistence specifications between 36.104 a 36.141 2011-09 RP-53 RP-111255 290 Band 3/III operation in Japan 2011-09 RP-53 RP-111255 292 1 Band 42 and 43 for LTE 3500 (TDD) correction TS 36.141 2011-09 RP-53 RP-111265 292 1 Band 42 and 43 for LTE/UMTS 3500 (FDD) 36.141 2011-09 RP-53 RP-111260 277 1 Test tolerance for UL-MIMO performance test 2011-09 2011-09 RP-53 RP-111260 278 2 Performance requirements for UL-MIMO 2011-09 2011-09 RP-53 RP-111262 285 1 CR Et S3.141 2011	10.4.0 IHz to 10.4.0 on to 10.4.0 t cases 10.4.0 t cases 10.4.0 tin CA 10.4.0 st in CA 10.4.0 10.4.0 10.4.0 st in CA 10.4.0 10.4.0 10.4.0 10.4.0 10.4.0 5.141 10.4.0
2011-06 RP-52 RP-110807 263 1 Carrier Aggregation for LTE in TS 36.141 / transmitter requirements 2011-06 RP-52 RP-110813 265 1 Add 2GHz S-Band (Band 23) in 36.141 2011-06 RP-52 RP-110795 273 1 Fixing the misalignment of Band 24 GPS Coexistence specifications between 36.104 a 36.141 2011-09 RP-53 RP-111255 287 Uncertainties and Test Tolerances for 3000M 4200MHz 2011-09 RP-53 RP-111255 292 1 Band 42 and 43 for LTE 3500 (TDD) correctio TS 36.141 2011-09 RP-53 RP-111255 293 1 Add Band 22/XXII for LTE/UMTS 3500 (FDD) 36.141 2011-09 RP-53 RP-111260 277 1 Test tolerance for UL-MIMO performance test 2011-09 RP-53 RP-111260 277 1 Test tolerance for UL-MIMO performance test 2011-09 RP-53 RP-111260 277 1 Test tolerance for UL-MIMO performance test 2011-09 RP-53 RP-111260 278 2 Performance requirements of Opera Band Unwanted Emissions	10.3.0 10.3.0 10.3.0 10.3.0 10.3.0 10.4.0 Hz to 10.4.0 phi to TS 10.4.0 t cases 10.4.0 t to TS 10.4.0 t cases 10.4.0 ting 10.4.0 10.4.0 10.4.0 st in CA 10.4.0 10.4.0 10.4.0 5.141 10.4.0
2011-06 RP-52 RP-110813 265 1 Add 2GHz S-Band (Band 23) in 36.141 2011-06 RP-52 RP-110795 273 1 Fixing the misalignment of Band 24 GPS Coexistence specifications between 36.104 a 36.141 2011-09 RP-53 RP-111252 290 Band 3/III operation in Japan 2011-09 RP-53 RP-111255 287 Uncertainties and Test Tolerances for 3000M 4200MHz 2011-09 RP-53 RP-111255 292 1 Band 42 and 43 for LTE 3500 (TDD) correctio TS 36.141 2011-09 RP-53 RP-111265 293 1 Add Band 22/XXII for LTE/UMTS 3500 (FDD) 36.141 2011-09 RP-53 RP-111260 277 1 Test tolerance for UL-MIMO performance test 2011-09 2011-09 RP-53 RP-111260 278 2 Performance requirements for UL-MIMO 2011-09 2011-09 RP-53 RP-111262 282 Specifying acceptable uncertainty of OBW test 2011-09 RP-53 2011-09 RP-53 RP-111262 286 2 Correction for TS 36.141 2011-09 RP-53 RP-111262 <td>10.3.0 10.4.0 Hz to 10.4.0 on to 10.4.0 t cases 10.4.0 t cases 10.4.0 st in CA 10.4.0 10.4.0 10.4.0 10.4.0 10.4.0 st in CA 10.4.0 10.4.0 10.4.0 10.4.0 10.4.0 \$10.4.0 10.4.0 \$10.4.0 10.4.0 \$10.4.0 10.4.0 \$10.4.0 10.4.0 \$10.4.1 10.4.0 \$10.4.1 10.4.0 \$10.4.1 10.4.0 \$10.4.1 10.4.0</td>	10.3.0 10.4.0 Hz to 10.4.0 on to 10.4.0 t cases 10.4.0 t cases 10.4.0 st in CA 10.4.0 10.4.0 10.4.0 10.4.0 10.4.0 st in CA 10.4.0 10.4.0 10.4.0 10.4.0 10.4.0 \$10.4.0 10.4.0 \$10.4.0 10.4.0 \$10.4.0 10.4.0 \$10.4.0 10.4.0 \$10.4.1 10.4.0 \$10.4.1 10.4.0 \$10.4.1 10.4.0 \$10.4.1 10.4.0
Coexistence specifications between 36.104 a 36.1412011-09RP-53RP-111252290Band 3/II operation in Japan2011-09RP-53RP-111255287Uncertainties and Test Tolerances for 3000M 4200MHz2011-09RP-53RP-1112552921Band 42 and 43 for LTE 3500 (TDD) correction TS 36.1412011-09RP-53RP-1112552931Add Band 22/XXII for LTE/UMTS 3500 (FDD) 36.1412011-09RP-53RP-1112602771Test tolerance for UL-MIMO performance test 2011-092011-09RP-53RP-1112602771Test tolerance for UL-MIMO performance test2011-09RP-53RP-111262282Specifying acceptable uncertainty of OBW test2011-09RP-53RP-1112622862Correction for TS 36.1412011-09RP-53RP-1112622862Correction for TS 36.1412011-09RP-53RP-1112622863TS36.141 CR: on PUSCH tests2011-09RP-53RP-1112662683TS36.1412011-09RP-53RP-111266283CA PUCCH performance requirements for 362011-12RP-54RP-111684295TS36.1412011-12RP-54RP-111734297Clarification of general blocking requirements existence in TS 36.1412011-12RP-54RP-111693298Potection for 36.141	10.4.0 Hz to 10.4.0 on to 10.4.0 on to 10.4.0 t cases 10.4.0 t cases 10.4.0 st in CA 10.4.0 ting 10.4.0 10.4.0 10.4.0 st in CA 10.4.0 10.4.0 10.4.0 st in CA 10.4.0 10.4.0 10.4.0 5.141 10.4.0
2011-09 RP-53 RP-111255 287 Uncertainties and Test Tolerances for 3000M 4200MHz 2011-09 RP-53 RP-111255 292 1 Band 42 and 43 for LTE 3500 (TDD) correction TS 36.141 2011-09 RP-53 RP-111255 293 1 Add Band 22/XXII for LTE/UMTS 3500 (FDD) 36.141 2011-09 RP-53 RP-111260 277 1 Test tolerance for UL-MIMO performance test 2011-09 2011-09 RP-53 RP-111260 278 2 Performance requirements for UL-MIMO 2011-09 2011-09 RP-53 RP-111262 282 Specifying acceptable uncertainty of OBW test 2011-09 2011-09 RP-53 RP-111262 285 1 CR to TS 36.141 2011-09 RP-53 RP-111262 286 2 Correction for TS 36.141 2011-09 RP-53 RP-111262 286 2 Correction for TS 36.141 2011-09 RP-53 RP-111262 286 2 Corrections of CA uplink performance test cast TS36.141 2011-09 RP-53 RP-111266 283 CA PUCCH performance requir	IHz to 10.4.0 on to 10.4.0 on to 10.4.0 t cases 10.4.0 t t cases 10.4.0 t n CA 10.4.0 st in CA 10.4.0 ting 10.4.0 10.4.0 10.4.0 10.4.0 10.4.0 10.4.1 10.4.0 6.141 10.4.0 5.141 10.4.0
Autom Autom <th< td=""><td>on to 10.4.0) to TS 10.4.0 t cases 10.4.0 tin CA 10.4.0 st in CA 10.4.0 10.4.0 10.4.0 6.141 10.4.0 5.141 10.4.0</td></th<>	on to 10.4.0) to TS 10.4.0 t cases 10.4.0 tin CA 10.4.0 st in CA 10.4.0 10.4.0 10.4.0 6.141 10.4.0 5.141 10.4.0
TS 36.141 2011-09 RP-53 RP-111255 293 1 Add Band 22/XXII for LTE/UMTS 3500 (FDD) 36.141 2011-09 RP-53 RP-111260 277 1 Test tolerance for UL-MIMO performance test 2011-09 RP-53 RP-111260 278 2 Performance requirements for UL-MIMO 2011-09 RP-53 RP-111262 282 Specifying acceptable uncertainty of OBW test 2011-09 RP-53 RP-111262 285 1 CR to TS 36.141 Test requirements of Opera Band Unwanted Emissions 2011-09 RP-53 RP-111262 286 2 Correction for TS 36.141 2011-09 RP-53 RP-111262 286 2 Correction for TS 36.141 2011-09 RP-53 RP-111262 291 Co-existence and co-location corrections in 3 2011-09 RP-53 RP-111262 291 Co-existence and co-location corrections in 3 2011-09 RP-53 RP-111262 283 CA PUCCH performance requirements for 36 2011-12 RP-54 RP-11168 295 TS36.141) to TS 10.4.0 t cases 10.4.0 10.4.0 st in CA 10.4.0 ting 10.4.0 10.4.0 6.141 10.4.0 10.4.0 5.141 10.4.0
36.141 2011-09 RP-53 RP-111260 277 1 Test tolerance for UL-MIMO performance test 2011-09 RP-53 RP-111260 278 2 Performance requirements for UL-MIMO 2011-09 RP-53 RP-111262 282 Specifying acceptable uncertainty of OBW test 2011-09 RP-53 RP-111262 285 1 CR to TS 36.141 Test requirements of Opera Band Unwanted Emissions 2011-09 RP-53 RP-111262 286 2 Correction for TS 36.141 2011-09 RP-53 RP-111262 286 2 Correction for TS 36.141 2011-09 RP-53 RP-111262 291 Co-existence and co-location corrections in 3 2011-09 RP-53 RP-111262 291 Co-existence and co-location corrections in 3 2011-09 RP-53 RP-111266 283 CA PUCCH performance requirements for 36 2011-12 RP-54 RP-111684 295 Corrections of CA uplink performance test car 2011-12 RP-54 RP-111691 296 Clarification of general blocking requirements	t cases 10.4.0 10.4.0 st in CA 10.4.0 ting 10.4.0 10.4.0 6.141 10.4.0 10.4.0 5.141 10.4.0
2011-09 RP-53 RP-111260 278 2 Performance requirements for UL-MIMO 2011-09 RP-53 RP-111262 282 Specifying acceptable uncertainty of OBW test 2011-09 RP-53 RP-111262 285 1 CR to TS 36.141 Test requirements of Opera Band Unwanted Emissions 2011-09 RP-53 RP-111262 286 2 Correction for TS 36.141 2011-09 RP-53 RP-111262 286 2 Correction for TS 36.141 2011-09 RP-53 RP-111262 291 Co-existence and co-location corrections in 3 2011-09 RP-53 RP-111266 268 3 TS36.141 CR: on PUSCH tests 2011-09 RP-53 RP-111266 283 CA PUCCH performance requirements for 36 2011-12 RP-54 RP-111684 295 TS36.141 2011-12 RP-54 RP-111691 296 Corrections of CA uplink performance requirements with to tolerance updates for 36.141 2011-12 RP-54 RP-111734 297 Clarification of general blocking requirements existence in TS 36.141	10.4.0 st in CA 10.4.0 ting 10.4.0 6.141 10.4.0 10.4.1 10.4.0 6.141 10.4.0 5.141 10.4.0
2011-09RP-53RP-111262282Specifying acceptable uncertainty of OBW test2011-09RP-53RP-1112622851CR to TS 36.141 Test requirements of Opera Band Unwanted Emissions2011-09RP-53RP-1112622862Correction for TS 36.1412011-09RP-53RP-111262291Co-existence and co-location corrections in 32011-09RP-53RP-1112662683TS36.141 CR: on PUSCH tests2011-09RP-53RP-111266283CA PUCCH performance requirements for 362011-12RP-54Corrections of CA uplink performance test car TS36.1412011-12RP-54CA PUCCH performance requirements with to tolerance updates for 36.1412011-12RP-54Clarification of general blocking requirements2011-12RP-54RP-1117342972011-12RP-54RP-111693298	st in CA 10.4.0 ting 10.4.0 6.141 10.4.0 10.4.0 5.141 10.4.0 5.141 10.4.0
2011-09RP-53RP-1112622851CR to TS 36.141 Test requirements of Opera Band Unwanted Emissions2011-09RP-53RP-1112622862Correction for TS 36.1412011-09RP-53RP-111262291Co-existence and co-location corrections in 32011-09RP-53RP-1112662683TS36.141 CR: on PUSCH tests2011-09RP-53RP-111266283CA PUCCH performance requirements for 362011-09RP-53RP-111684295TS36.1412011-12RP-54Corrections of CA uplink performance test car TS36.1412011-12RP-54CA PUCCH performance requirements with tr tolerance updates for 36.1412011-12RP-54Clarification of general blocking requirements2011-12RP-54RP-1117342972011-12RP-54RP-111693298	ting 10.4.0 10.4.0 6.141 10.4.0 10.4.0 5.141 10.4.0
2011-09 RP-53 RP-111262 286 2 Correction for TS 36.141 2011-09 RP-53 RP-111262 291 Co-existence and co-location corrections in 3 2011-09 RP-53 RP-111266 268 3 TS36.141 CR: on PUSCH tests 2011-09 RP-53 RP-111266 283 CA PUCCH performance requirements for 36 2011-12 RP-54 Corrections of CA uplink performance test carrections of CA uplink performance test carrections TS36.141 2011-12 RP-54 Corrections of CA uplink performance requirements with test tolerance updates for 36.141 2011-12 RP-54 CA PUCCH performance requirements with test tolerance updates for 36.141 2011-12 RP-54 Clarification of general blocking requirements existence in TS 36.141 2011-12 RP-54 Home BS Output Power for co-channel E-UT protection for 36.141	6.141 10.4.0 10.4.0 6.141 10.4.0
2011-09RP-53RP-111262291Co-existence and co-location corrections in 32011-09RP-53RP-1112662683TS36.141 CR: on PUSCH tests2011-09RP-53RP-111266283CA PUCCH performance requirements for 362011-12RP-54Corrections of CA uplink performance test car2011-12RP-54CA PUCCH performance requirements with te2011-12RP-54CA PUCCH performance requirements with te2011-12RP-54CA PUCCH performance requirements with te2011-12RP-54CA PUCCH performance requirements with te2011-12RP-54Clarification of general blocking requirements2011-12RP-54RP-1117342011-12RP-54Home BS Output Power for co-channel E-UTprotection for 36.141Protection for 36.141	6.141 10.4.0 10.4.0 6.141 10.4.0
2011-09RP-53RP-1112662683TS36.141 CR: on PUSCH tests2011-09RP-53RP-111266283CA PUCCH performance requirements for 362011-12RP-54RP-111684295Corrections of CA uplink performance test car2011-12RP-54RP-111691296CA PUCCH performance requirements with tr2011-12RP-54RP-111691296Carrections of 36.1412011-12RP-54RP-111734297Clarification of general blocking requirements2011-12RP-54RP-111693298Home BS Output Power for co-channel E-UT	10.4.0 6.141 10.4.0
2011-09RP-53RP-111266283CA PUCCH performance requirements for 362011-12RP-54RP-111684295Corrections of CA uplink performance test car TS36.1412011-12RP-54RP-111691296CA PUCCH performance requirements with to tolerance updates for 36.1412011-12RP-54RP-111691296Clarification of general blocking requirements existence in TS 36.1412011-12RP-54RP-111734297Clarification of general blocking requirements existence in TS 36.1412011-12RP-54RP-111693298Home BS Output Power for co-channel E-UT protection for 36.141	6.141 10.4.0
2011-12 RP-54 Corrections of CA uplink performance test car TS36.141 2011-12 RP-54 CA PUCCH performance requirements with two tolerance updates for 36.141 2011-12 RP-54 Clarification of general blocking requirements existence in TS 36.141 2011-12 RP-54 RP-111734 2011-12 RP-54 RP-111693 2011-12 RP-54 P-111693 2011-12 RP-54 P-111693 2011-12 RP-54 RP-111693 2011-12 RP-54 RP-111693	
RP-111691296tolerance updates for 36.1412011-12RP-54Clarification of general blocking requirements existence in TS 36.1412011-12RP-54Home BS Output Power for co-channel E-UT protection for 36.141	10.5.0
RP-111734 297 existence in TS 36.141 2011-12 RP-54 Home BS Output Power for co-channel E-UT protection for 36.141	10.5.0
RP-111693 298 protection for 36.141	10.5.0
	10.5.0
2011-12 RP-54 RP-111693 300 Update on Home BS Output Power for co-cha E-UTRA protection for 36.141	10.5.0
2011-12 RP-54 RP-111735 301 Corrections to 3500 MHz	10.5.0
2011-12 RP-54 RP-111686 302 1 TS36.141 CR: on Multi-Antenna channel mod 2011-12 RP-54 Test procedure clarification for ACK false determined for a CK fal	ection
RP-111690 303 of multi-user PUCCH format 1a 2011-12 RP-54 RP-111687 304 3 TX ON or OFF CR 36.141	10.5.0
2011-12 RP-54 RP-111733 305 Correction of frequency range for spurious en requirements	
2012-03 RP-55 RP-120303 309 1 Clarification on test procedure for BS In-chan selectivity test	
2012-03 RP-55 RP-120304 311 1 Definition of synchronized operation	10.6.0
2012-03 RP-55 RP-120295 312 1 Finalizing Home BS Output Power parameter co-channel E-UTRA protection in 36.141	
2012-03 RP-55 RP-120298 314 1 Addition of Band 23 HeNB specifications in 30	
2012-03 RP-55 RP-120310 306 TS36.141 change for B41 CA	11.0.0
2012-03 RP-55 RP-120305 316 Introduction of Band 26/XXVI to TS 36.141 2012-06 RP-56 319 2 Introduction of intra-band non-contiguous ope	11.0.0 eration
RP-120788 in TS 36.141 2012-06 RP-56 320 Introduction of CA band combination Band1 +	<u>11.1.0</u> ⊦ 11.1.0
RP-120773 Band19 to TS 36.104 2012-06 RP-56 RP-120770 323 Editorial corrections in Home BS output power	er tests 11.1.0
2012-06 RP-56 RP-120780 325 1 Editorial corrections in TS 36.141	11.1.0
2012-06 RP-56 330 Introduction of time alignment error test requi for intra-band non-contiguous carrier aggrega	ation
2012-06 RP-56 RP-120793 331 Introduction of APAC700(FDD) into TS 36.14	
2012-06 RP-56 335 Editorial correction of the TDD eNB test mode configuration in TS 36.141	
2012-06 RP-56 RP-120793 336 Introduction of Band 44	11.1.0
2012-06 RP-56 RP-120782 337 Time alignment error headline	11.1.0
2012-06 RP-56 RP-120783 338 1 Time alignment procedure in TS 36.141 2012-06 RP-56 341 Introduction of CA band combination Band4 + PR 120773 341 Introduction of CA band combination Band4 +	+ <u>11.1.0</u> + 11.1.0
RP-120773 Band13 to TS 36.141 2012-06 RP-56 342 RP-120773 Introduction of CA band combination Band4 +	+ 11.1.0
RP-120773 Band17 to TS 36.141 2012-06 RP-56 RP-120792 343 3 Introduction of E850_LB (Band 27) to TS 36.141	141 11.1.0
2012-06 RP-56 RP-120792 343 3 Introduction of E850_LB (Band 27) to 15 36. 2012-06 RP-56 348 Correction of PHS protection requirements fo 36.141 36.141	
2012-09 RP-57 RP-121305 Clarification of inter-band CA test configuration	on 11.2.0

2012-09	RP-57	RP-121328	351		Introduction of CA band combination Band2 + Band17 to TS 36.141	11.2.0
2012-09	RP-57	RP-121321	352		Correction to intra-band non-contiguous carrier aggregation bands acronym	11.2.0
2012-09	RP-57	RP-121336	353		Introduction of CA band combination Band1 + Band21 to TS 36.141	11.2.0
2012-09	RP-57	RP-121327	354		Introduction of CA_B7_B20 in 36.141	11.2.0
2012-09	RP-57	RP-121301	357		Introduction of Japanese regulatory requirements for LTE band 8 in 36.141 R11	11.2.0
2012-09	RP-57	RP-121334	359	1	Add requirements for inter-band CA of B_1-18 in TS36.141	11.2.0
2012-09	RP-57	RP-121339	360	1	TS 36.141 CR for CA_7	11.2.0
2012-09	RP-57	RP-121308	361	2	Reusing band 41 requirements for the Japan 2.5G TDD band	11.2.0
2012-09	RP-57	RP-121330	362	1	to TS 36.141	11.2.0
2012-09	RP-57	RP-121322	363	1	Intra-band non-contiguous CA BS receiver requirement	11.2.0
2012-09	RP-57	RP-121300	369		Modifications of frequency ranges on spurious emission requirements for Band 6, 18, 19	11.2.0
2012-09	RP-57	RP-121332	370		Introduction of CA band combination Band3 + Band20 to TS 36.141	11.2.0
2012-09	RP-57	RP-121332	372		Introduction of CA band combination Band8 + Band20 to TS 36.104	11.2.0
2012-09	RP-57	RP-121324	373		Introduction of CA_B3_B7 in 36.141	11.2.0
2012-12	RP-58	RP-121885	374		to TS 36.141	
2012-12	RP-58	RP-121891	375		to TS 36.141	
2012-12	RP-58	RP-121897	376		Introduction of CA band combination Band5 + Band17 to TS 36.141	11.3.0
2012-12	RP-58	RP-121855	381		Modification of ouput power requirement for LA E- UTRA BS	11.3.0
2012-12	RP-58	RP-121911	384	1	Modification on E-UTRA BS transmitter requriements	11.3.0
2012-12	RP-58	RP-121867	385		Clean up of specification R11	11.3.0
2012-12	RP-58	RP-121867	388		Cleanup of 36.141 performance	11.3.0
2012-12	RP-58	RP-121900	389		Implementing NC CA in all LTE Power Classes	11.3.0
2012-12	RP-58	RP-121895	390		Introduction of CA_B5_B12 in 36.141	11.3.0
2012-12						
-	RP-58	RP-121911	391		Correcting missing figure and subclause numbering in TS 36.141	11.3.0
2012-12	RP-58	RP-121900	393		Correction to intra-band non-contiguous carrier aggregation bands acronym	11.3.0
2012-12	RP-58	RP-121853	395		CR to add the rated ouput power for 8 Tx antennas	11.3.0
2012-12	RP-58	RP-121867	398		Correction to test requirements of operating band unwanted emissions	11.3.0
2012-12	RP-58	RP-121900	400		Further corrections for NC CA in LTE LA BS	11.3.0
2012-12	RP-58	RP-121907	401	1	CR for TS 36.141 transmitter characteristics (Clause 6) due to introduction of Medium Range BS	11.3.0
2012-12	RP-58	RP-121888	402		Introduction of inter-band CA_4-12 into TS 36.141	11.3.0
2012-12	RP-58	RP-121883	403		Introduction of inter-band CA_11-18 into TS 36.141	11.3.0
2012-12	RP-58	RP-121907	404		Introduction of new BS classes to E-UTRA test	11.3.0
0040.10	DD 55		405		specification (performance part)	44.0.0
2012-12	RP-58	RP-121907	405	1	E-UTRA MR BS receiver requirement	11.3.0
2012-12	RP-58	RP-121907	407		Introduction of medium range BS class to TS 36.141 (clause 1-5)	11.3.0
2012-12	RP-58	RP-121911	408		Allowing two antenna ports configuration in TAE test procedure for MIMO and Tx diversity	11.3.0
2012-12	RP-58	RP-121911	410	1	Replace TBD with final requirements for PUCCH format 2 with DTX detection	11.3.0
2012-12	RP-58	RP-121863	412		Removal of brackets around medium	11.3.0
2012-12	RP-58	RP-121911	413		correlation in table B.5.2-1 Clarification of Doppler shift for moving	11.3.0
2012-12	RP-58	RP-121867	415		propagation conditions test Clarification of BS RF channels to be tested for	11.3.0
			<u> </u>	<u> </u>	ACLR	

2012-12	RP-58	RP-121911	416	1	Correction of BS test configuration table	11.3.0
2012-12	RP-58	RP-121893	417		Introduction of inter-band CA_4-7 into TS 36.141	11.3.0
2012-12	RP-58	RP-121902	418		Introduction of Band 29	11.3.0
2012-12	RP-59	RP-130306	0334	1	TS 36.141 CR for CA_38	11.4.0
2013-03	RP-59	RP-130366	0388	2	Cleanup of 36.141 performance.	11.4.0
2013-03	RP-59	RP-130266	421	2	Correction of BS performance conformance tests	11.4.0
2013-03	RP-59	RP-130274	424	1	Correction of UEM requirements in TS 36.141	11.4.0
2013-03	RP-59	RP-130274	425		Correction to MSR BS classes conformance test	11.4.0
2013-03	RP-59	RP-130274	426		requirements Correction to LTE BS classes performance	11.4.0
2013-03	RP-59	RP-130284	428	1	requirements Alignment of terminology for intra-band non-	11.4.0
				· ·	contiguous CA requirement	
2013-03	RP-59	RP-130268	430		Correction to test requirements for PUSCH with 20 MHz channel bandwidth	11.4.0
2013-03	RP-59	RP-130287	431		Band 41 requirements for operation in Japan	11.4.0
2013-03	RP-59	RP-130284	432	1	Further corrections for non-contiguous spectrum operation in TS36.141	11.4.0
2013-06	RP-60	RP-130769	433		Add the receiver requirements test procedure for	11.5.0
2013-06	RP-60	RP-130770	434		Medium Range BS in TS36.141 Clarifications on transmitter spurious emission test in	11.5.0
2013-06	RP-60	RP-130770	435		TS36.141 Further correct some mistakes for non-contiguous	11.5.0
					spectrum operation in TS36.141	
2013-06	RP-60	RP-130766	441		CR on TAE for inter-band CA	11.5.0
2013-06	RP-60	RP-130767	442	1	Editorial correction of inter band CA table to TS 36.141	11.5.0
2013-06	RP-60	RP-130770	443		Addidtion of Bands for intra-band non-contiguous CA for 36.141	11.5.0
2013-06	RP-60	RP-130770	444		Clarification on non-contiguous spectrum operation test configuration	11.5.0
2013-06	RP-60	RP-130769	446		Modification on co-location spurious emission	11.5.0
2013-06	RP-60	RP-130769	447	1	requirement for Medium Range BS Modification on co-location blocking requirement for	11.5.0
					E-UTRA Medium Range BS	
2013-06	RP-60	RP-130765	454		CR for UL-MIMO conformance test	11.5.0
2013-06	RP-60	RP-130772	419	1	Introduction of CA 1+8 into TS36.141(Rel-12)	12.0.0
2013-06	RP-60	RP-130782	427	1	Introduction of LTE Advanced inter-band Carrier Aggregation of Band 3 and Band 28 to TS 36.141	12.0.0
2013-06	RP-60	RP-130786	436		Introduction of LTE Advanced inter-band Carrier Aggregation of Band 23 and Band 29 to TS 36.141	12.0.0
2013-06	RP-60	RP-130780	437		Introduction of LTE Advanced inter-band carrier aggregation of Band 3 and Band 26 into TS36.141	12.0.0
2013-06	RP-60	RP-130778	438		(Rel-12) Introduction of CA band combination Band3 +	12.0.0
2013-06	RP-60	RP-130784	439		Band19 to TS 36.141 Introduction of CA band combination Band19 +	12.0.0
2013-06	RP-60	RP-130789	445		Band21 to TS 36.141 CR for 36.141 : Adding B25 non-contiguous	12.0.0
					intraband CA	
2013-06	RP-60	RP-130774	448		Introduction of inter-band CA combination for Band 2 and Band 4	12.0.0
2013-06	RP-60	RP-130788	449		Introduction of intra-band non-contiguous CA combination for Band 4	12.0.0
2013-06	RP-60	RP-130792	450	1	Introduction of US WCS Band (Band 30) to TS	12.0.0
2013-06	RP-60	RP-130790	451	┼──┼───	36.141 Introduction of LTE 450 in Brazil into TS 36.141	12.0.0
2013-06	RP-60	RP-130790 RP-130776	451	1	Introduction of LTE 450 in Blazil Into 15 36, 141	12.0.0
				'	Aggregation of Band 2 and Band 13 to TS36.141	
09-2013	RP-61	RP-131301	455	<u> </u>	36.141 CR for LTE_CA_C_B3	12.1.0
	RP-61	RP-131296	458		Add requirements for inter-band CA_1-26 into TS36.141	12.1.0
09-2013		DD 404000	461		Introduction of inter-band CA Band 2+5	12.1.0
09-2013	RP-61	RP-131299		1 1	Add the Receiver Blocking test procedure for Home	12.1.0
09-2013 09-2013 09-2013	RP-61 RP-61	RP-131299 RP-131280	465			
09-2013 09-2013	RP-61	RP-131280			BS to TS36.141	1220
09-2013 09-2013 12-2013	RP-61 RP-62	RP-131280 RP-131960	466		BS to TS36.141 Introduction of intra-band contiguous CA for Band 27	12.2.0
09-2013 09-2013	RP-61	RP-131280			BS to TS36.141 Introduction of intra-band contiguous CA for Band 27 Introduction of LTE-Advanced intra-band non- contiguous Carrier Aggregation in Band 23 to TS	12.2.0 12.2.0
09-2013 09-2013 12-2013	RP-61 RP-62	RP-131280 RP-131960	466		BS to TS36.141 Introduction of intra-band contiguous CA for Band 27 Introduction of LTE-Advanced intra-band non-	

12:2013 RP-62 RP-131966 473 Introduction of CA band combination Band12 + 12:20 12:2013 RP-62 RP-131964 475 2 CR 36.141: 17x SRx PUSCH conformance testing requirements 12:2013 RP-62 RP-131965 476 1 CR 36.141: 27x SRx PUSCH conformance testing requirements 12:2013 RP-62 RP-131965 481 2 CR 36.141: 17x SRx PUSCH conformance testing requirements 12:20 12:2013 RP-62 RP-131965 481 3 CR 36.141: 17x SRx PRACH conformance testing requirements for 12:2.0 12:2013 RP-62 RP-131964 483 1 CR for conformance test of PUSCH test requirement 12:2.0 12:2013 RP-62 RP-131964 485 1 Introduction of UL SRx channel correlation matcines 12:2.0 12:2013 RP-62 RP-131964 485 1 Introduction of UL SRx channel correlation configuous 12:2.0 12:2013 RP-62 RP-131964 485 1 Introduction of CL SRx channel correlation configuous 12:2.0 12:2013 RP-62 RP-131965 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
Image: Product of the standard sta	12-2013	RP-62	RP-131955	473			12.2.0
12:2013 RP-62 RP-131945 476 1 CR 5s.141: 2Tx 8Rx PUCCH format 1a 12.20 12:2013 RP-62 RP-131945 477 2 CR on 1x8 PUCCH flomat 1a 12.20 12:2013 RP-62 RP-131965 480 2 Introduction 02 x8 PUSCH flow test requirements for 12.20 12:2013 RP-62 RP-131965 481 3 CR 8.6141: 1Tx 8Rx PRACH conformance testing 12.2.0 12:2013 RP-62 RP-131965 482 CR 8.6141: 1Tx 8Rx PRACH conformance testing 12.2.0 12:2013 RP-62 RP-131966 483 1 CR 16 for conformance test of PUCCH format 1a with 12.2.0 12:2013 RP-62 RP-131968 486 Conformance test of PUCCH format 1a with 12.2.0 12:2013 RP-62 RP-131968 486 Conformance test of PUCCH format 1a with 12.2.0 12:2013 RP-62 RP-131968 489 Introduction of LIE Advance normalization matces 12.2.0 12:2013 RP-62 RP-131951 500 Introduction of CA band combination Bard5 + B3 to 13 12:2013 RP-62 RP-131951 5	12-2013	RP-62	RP-131945	475	2		12.2.0
12:2013 RP-62 RP-131945 477 2 CR on 1x8 PUCCH Hb. f3 conformance test 12:2.0 12:2013 RP-62 RP-131945 480 2 Introduction 0 2x8 PUSCH test requirements for requirements 12:2.0 12:2013 RP-62 RP-131945 483 1 CR 86.41: 1Tx 8Rx PRACH conformance testing requirements 12:2.0 12:2013 RP-62 RP-131945 483 1 CR for conformance test of PUCCH format 1a with 12:2.0 12:2013 RP-62 RP-131985 485 Introduction of UL 8Rx channel correlation for the UL-MIMC channel model 12:2.01 12:2013 RP-62 RP-131985 485 Correction to PUSCH test requirement 12:2.0 12:2013 RP-62 RP-131985 486 Introduction of CA band combination Band 5 + 12:2.0 12:2013 RP-62 RP-131984 498 Introduction of CA band combination Band 5 + 12:2.0 12:2013 RP-62 RP-131984 502 Introduction of CA band combination Band 5 + 12:2.0 12:2013 RP-62 RP-131984 502 Introduction of CA band combination B + B7 to TS 12:2.0	12-2013	RP-62	RP-131945	476	1	CR 36.141: 2Tx 8Rx PUCCH format 1a	12.2.0
12:2013 RP-62 RP-131945 480 2 Introduction of 2x8 PUSCH test requirements for 12:2.0 12:2013 RP-62 RP-131945 481 3 CR 36.141: TL 8Rx PRACH conformance testing 12:2.0 12:2013 RP-62 RP-131926 482 Editorial correction for the UL-MIMO channel model 12:2.0 12:2013 RP-62 RP-131945 483 1 CR for conformance test of PUCCH format 1a with 12:2.0 12:2013 RP-62 RP-131945 485 Introduction of UL SR whenced intra-band contiguous 12:2.0 12:2013 RP-62 RP-131980 487 Correction to PUSCH test requirement 12:2.0 12:2013 RP-62 RP-131981 488 Introduction of CA band combination Band 5 + 12:2.0 12:2013 RP-62 RP-131983 500 Introduction of CA band combination Band 5 + 16:105 12:2.0 12:2013 RP-62 RP-131984 498 Introduction of CA band combination Band 5 + 12:2.0 12:2013 RP-62 RP-131986 500 Introduction of CA band combination Band 5 + 12:2.0 12:2013 RP-62 RP-131986	12-2013	RP-62	RP-131945	477	2		1220
12:2013 RP-62 RP-131945 481 3 CR 36.141: TX 8Rx PRACH conformance testing 12:20 12:2013 RP-62 RP-131945 483 1 CR for conformance test of PUCCH format 1a with 12:20 12:2013 RP-62 RP-131945 485 1 CR for conformance test of PUCCH format 1a with 12:20 12:2013 RP-62 RP-131950 487 Correction to PUSCH test requirement 12:20 12:2013 RP-62 RP-131950 487 Correction to PUSCH test requirement 12:20 12:2013 RP-62 RP-131951 488 Introduction of LTE.Advanced intra-band contiguous CA in 12:20 12:2013 RP-62 RP-131953 500 Introduction of CA band combination Band5 + 12:20 12:2013 RP-62 RP-131951 502 Introduction of CA band combination B5 + B7 to TS 12:20 12:2013 RP-62 RP-131961 505 Introduction of CA Cat and combination B5 + B7 to TS 12:20 12:2013 RP-62 RP-131966 505 Introduction of CA Cat and combination B3 and						Introduction of 2x8 PUSCH test requirements for	
12:2013 RP-62 RP-131926 482 Editorial correction for the UL-MINO channel model 12:20 12:2013 RP-62 RP-131936 483 1 CR for conformance test of PUCCH formal 1a with 12:20 12:2013 RP-62 RP-131936 485 Introduction of ULSRx channel correlation matrices 12:20 12:2013 RP-62 RP-131936 486 Introduction of ULSRx channel correlation matrices 12:20 12:2013 RP-62 RP-131962 489 Introduction of Intra-band combination Band 5 + 12:2.0 12:2013 RP-62 RP-131964 489 Introduction of CA band combination Band 5 + 12:2.0 12:2013 RP-62 RP-131984 498 Introduction of CA band combination B5 + B7 to TS 12:2.0 12:2013 RP-62 RP-131984 505 Introduction of CA band combination B7 + B28 to TS 12:2.0 12:2013 RP-62 RP-131984 505 Introduction of CACLE in T536.141 12:2.0 12:2013 RP-62 RP-131985 506 Introduction of CALE in T536.141 12:2.0 12:2013	12-2013	RP-62	RP-131945	481	3	CR 36.141: 1Tx 8Rx PRACH conformance testing	12.2.0
12:2013 RP-62 RP-131945 483 1 CR for conformance test of PUCCH format 1a with 11:XRX 12:20 12:2013 RP-62 RP-131945 485 Introduction of ULS RX channel correlation matrices 12:20 12:2013 RP-62 RP-131956 486 Correction to PUSCH test requirement 12:20 12:2013 RP-62 RP-131962 489 Introduction of LTE-Advanced Intra-band conciguous CA in band 3 to TS 36:141 12:20 12:2013 RP-62 RP-131945 486 Introduction of CA band combination Band 5 + Band25 to TS 36:141 12:20 12:2013 RP-62 RP-131945 498 Introduction of CA band combination B7 + B28 to TS 12:20 12:2013 RP-62 RP-131945 498 Introduction of CA band combination B7 + B28 to TS 12:20 12:2013 RP-62 RP-131945 500 Introduction of CA band combination B3 + B7 to TS 12:20 2:2013 RP-62 RP-131945 500 Introduction of CA band combination B3 + B3 12:20 2:2013 RP-62 RP-131945 509 Band 41 deployment in Japan	12-2013	RP-62	RP-131926	482			12.2.0
12:2013 RP-62 RP-131939 487 Correction to PUSCH test requirement 12:20 12:2013 RP-62 RP-131956 488 Introduction of LTE-Kdwanced intra-band contiguous CA in band S1 to TS 36:141 12:20 12:2013 RP-62 RP-131961 489 Introduction of CA band combination Band S + 12:2.0 12:2013 RP-62 RP-131991 498 Introduction of CA band combination Band S + 12:2.0 12:2013 RP-62 RP-131936 500 Introduction of CA band combination BT + B28 to TS 12:2.0 12:2013 RP-62 RP-131936 500 Introduction of CA band combination BT + B28 to TS 12:2.0 12:2013 RP-62 RP-131986 500 Introduction of CA band combination BT + B28 to TS 12:2.0 12:2013 RP-62 RP-131986 506 Introduction of CA band combination Band 3:12:2.0 12:2013 RP-62 RP-131986 508 Introduction of CACLR in TS36:141 12:2.0 12:2013 RP-62 RP-131986 508 Introduction of CACLR in TS36:141 12:2.0 12:2013 RP-62 RP-140388 510 In	12-2013	RP-62	RP-131945	483	1	CR for conformance test of PUCCH format 1a with	12.2.0
12:2013 RP-62 RP-131958 488 Introduction of LTE-Advanced intra-band combination 12.2.0 12:2013 RP-62 RP-131962 489 Introduction of Intra-band non-contiguous CA in band 5 + band 5	12-2013	RP-62	RP-131945	485		Introduction of UL 8Rx channel correlation matrices	12.2.0
Carrier Agregation in Band 23 to TS 86.11 Carrier Agregation in Band 23 to TS 86.11 12-2013 RP-62 RP-131962 499 Introduction of Intra-band non-contiguous CA in 12.2.0 band 3 to TS 86.141 12-2013 RP-62 RP-131961 496 Introduction of CA band combination Band 5 + 12.2.0 Band25 to TS 86.141 12-2013 RP-62 RP-131940 498 Introduction of CA band combination B7 + B28 to TS 12.2.0 36.141 12-2013 RP-62 RP-131935 500 S6.141 Introduction of CA band combination B7 + B28 to TS 12.2.0 36.141 12-2013 RP-62 RP-131930 502 Consideration on CA OBW requirement 12.2.0 12-2013 RP-62 RP-131967 509 Band 41 deployment in Japan 12.2.0 12-2013 RP-62 RP-140386 510 Introduction of CA band combination Band 3 and 12.3.0 12.3.0 03-2014 RP-63 RP-140372 518 Introduction of CA band combination Band 3 and 12.3.0 12.3.0 03-2014 RP-63 RP-140372 518 Introduction of CA band combination Band 39+Band 12.3.0 03-2014 RP-63 RP-140372 <t< td=""><td>12-2013</td><td></td><td>RP-131939</td><td>487</td><td></td><td></td><td>12.2.0</td></t<>	12-2013		RP-131939	487			12.2.0
band 3 to TS 36.141 band 3 to TS 36.141 12:2013 RP-62 RP-131961 495 Introduction of CA band combination Band 5 + 12.2.0 12:2013 RP-62 RP-131949 498 Introduction of CA band combination B7 + B28 to TS 12.2.0 12:2013 RP-62 RP-131931 500 Introduction of CA band combination B7 + B28 to TS 12.2.0 12:2013 RP-62 RP-131931 502 Consideration on CA OBW requirement 12.2.0 12:2013 RP-62 RP-131967 509 Entroduction of CACLR in TS36.141 12.2.0 12:2013 RP-62 RP-131967 509 Band 41 deployment in Japan 12.3.0 03:2014 RP-63 RP-140385 510 Introduction of CA band combination Band 3 and Band 27 to TS 36.141 12.3.0 03:2014 RP-63 RP-140372 518 Introduction of CA band combination Band 3 and Clauses 1 - 5) 12.3.0 03:2014 RP-63 RP-140372 518 Introduction of CA band combination Band 39+Band 12.3.0 03:2014 RP-63 RP-140375 523 Correction of abbreviat	12-2013		RP-131958			Carrier Aggregation in Band 23 to TS 36.141	_
Band 25 to TS 36.141 12-2013 RP-62 RP-131949 498 Introduction of CA band combination B5 + B7 to TS 12-2013 RP-62 RP-131953 500 Introduction of CA band combination B7 + B28 to TS 12.2.0 12-2013 RP-62 RP-131931 502 Consideration on CA OBW requirement 12.2.0 12-2013 RP-62 RP-131964 505 Introduction of CACLR in TS36.141 12.2.0 12-2013 RP-62 RP-131964 509 Band 21 to TS 36.141 12.2.0 12-2013 RP-62 RP-131967 509 Band 21 to TS 36.141 12.2.0 12-2013 RP-63 RP-140386 510 Introduction of CACLR in TS36.141 12.3.0 03-2014 RP-63 RP-140386 513 1 Corrections in TS 36.141 12.3.0 03-2014 RP-63 RP-140372 518 Introduction of CA band combination Band 3 and peration with conformance test improvement for multi-carrier testing (36.141, section 6 and 7) 12.3.0 03-2014 RP-63 RP-140375 523 Correction on abreviations for negative						band 3 to TS 36.141	
36.141 36.141 12-2013 RP-62 RP-131953 500 Introduction of CA band combination B7 + B28 to TS 12.20 12-2013 RP-62 RP-131964 502 Consideration on CA OBW requirement 12.2.0 12-2013 RP-62 RP-131964 505 Introduction of Intra-band non-contiguous CA in band 7 to TS 36.141 12.2.0 12-2013 RP-62 RP-131967 509 Band 41 deployment in Japan 12.2.0 03-2014 RP-63 RP-140386 506 1 TS36.141 12.2.0 03-2014 RP-63 RP-140386 510 Introduction of CA band combination Band 3 and band 27 to TS 36.141 12.3.0 03-2014 RP-63 RP-140372 518 Introduction of test requirements for multi-band St testing to TS 36.141 12.3.0 03-2014 RP-63 RP-140375 523 Correction of abbreviations for negative acknowledgement for multi-carrier testing (36.141, section 6 and 7) 12.3.0 03-2014 RP-64 RP-140375 523 Correction of abbreviations for multi-band soft each action for abbreviations for negative acknowledgement for multi-carriet testing to TS 36.141						Band25 to TS 36.141	_
Image: Problem 1 Sec: Problem 2 Sec:						36.141	_
12-2013 RP-62 RP-131964 505 Introduction of Intra-band non-contiguous CA in part 7 to 75 46.141 12.2.0 12-2013 RP-62 RP-131930 508 Clarification for CACLR in TS36.141 12.2.0 12-2013 RP-62 RP-140386 506 1 TS36.141 12.2.0 03-2014 RP-63 RP-140386 510 Introduction of CA band combination Band 3 and Band 27 to 75 36.141 12.3.0 03-2014 RP-63 RP-140389 513 1 Corrections in TS 36.141 12.3.0 03-2014 RP-63 RP-140372 518 Introduction of multi-band BS testing to TS 36.141 12.3.0 03-2014 RP-63 RP-140372 520 Introduction of trequirements for multi-band portation with conformance test improvement for multi-carrier testing (36.141, section 6 and 7) 12.3.0 03-2014 RP-63 RP-140375 523 Corrections on a 36.141 12.4.0 06-2014 RP-64 RP-140913 527 Multi-band corrections in 36.141 had 39+Band 12.3.0 06-2014 RP-64 RP-140913 536 C						36.141	
band 7 to TS 36.141 12.20 12-2013 RP-62 RP-131930 508 Clarification for CACLR in TS36.141 12.20 03-2014 RP-63 RP-140388 506 1 TS38.141 change for B39 CA 12.30 03-2014 RP-63 RP-140388 510 Introduction of CA band combination Band 3 and 12.30 03-2014 RP-63 RP-140372 518 Introduction of rulti-band Stesting to TS 36.141 12.30 03-2014 RP-63 RP-140372 520 Introduction of test requirements for multi-band stesting to TS 36.141 12.30 03-2014 RP-63 RP-140375 523 Correction of abbreviations for negative 12.30 12.30 03-2014 RP-63 RP-140375 523 Corrections in 36.141 section 6 and 7) 03-2014 RP-64 RP-140913 527 Multi-band corrections in 36.141 charch 2.40 06-2014 RP-64 RP-140913 567 Carrections of multi-band BS testing to TS 36.141 12.40 06-2014 RP-64		-					
12:2013 RP-62 RP-131967 509 Band 41 deployment in Japan 12:2.0 03:2014 RP-63 RP-140386 500 1 TS36.141 change for B39 CA 12:3.0 03:2014 RP-63 RP-140386 510 Introduction of CA band combination Band 3 and Band 27 to TS 36.141 12:3.0 03:2014 RP-63 RP-140372 518 Introduction of multi-band BS testing to TS 36.141 12:3.0 03:2014 RP-63 RP-140372 520 Introduction of test requirements for multi-band operation with conformance test improvement for multi-carrier testing (36.141, section 6 and 7) 12:3.0 03:2014 RP-63 RP-140375 523 Correction of abbreviations for negative acknowledgement 12:3.0 03:2014 RP-64 RP-140387 523 Corrections of multi-band BS testing to TS 36.141 12:3.0 06:2014 RP-64 RP-140913 527 Multi-band corrections in 36.141 chapter 7 12:4.0 06:2014 RP-64 RP-140913 525 Multi-band corrections in 36.141 chapter 6 12:4.0 06:2014 RP-64 RP-140913 598						band 7 to TS 36.141	_
G3-2014 RP-63 RP-140388 506 1 TS36.141 change for B30 CA 12.3.0 03-2014 RP-63 RP-140386 510 Introduction of CA band combination Band 3 and Band 27 to TS 36.141 12.3.0 03-2014 RP-63 RP-140389 513 1 Corrections in TS 36.141 12.3.0 03-2014 RP-63 RP-140372 518 Introduction of multi-band BS testing to TS 36.141 12.3.0 03-2014 RP-63 RP-140372 520 Introduction of thest requirements for multi-band operation with conformance test improvement for multi-carrier testing (36.141, section 6 and 7) 12.3.0 03-2014 RP-63 RP-140375 523 Corrections of motions for negative action 6 and 7) 12.3.0 03-2014 RP-63 RP-140376 527 Multi-band corrections of multi-band BS testing to TS 36.141 12.4.0 06-2014 RP-64 RP-140913 527 Multi-band corrections of multi-band BS testing to TS 36.141 12.4.0 06-2014 RP-64 RP-140913 527 Multi-band corrections of multi-band BS testing to TS 36.141 12.4.0 06-2014 RP-6					_		
03-2014 RP-63 RP-140386 510 Introduction of CA band combination Band 3 and Band 27 to TS 36.141 12.3.0 03-2014 RP-63 RP-140372 518 Introduction of multi-band BS testing to TS 36.141 12.3.0 03-2014 RP-63 RP-140372 518 Introduction of multi-band BS testing to TS 36.141 12.3.0 03-2014 RP-63 RP-140372 520 Introduction of test requirements for multi-band operation with conformance test improvement for multi-carrier testing (36.141, section 6 and 7) 12.3.0 03-2014 RP-63 RP-140375 523 Correction of abbreviations for negative acknowledgement 12.3.0 03-2014 RP-64 RP-140375 523 Corrections of multi-band corrections in 36.141 chapter 7 12.4.0 06-2014 RP-64 RP-140913 527 Multi-band corrections in 36.141 chapter 6 12.4.0 06-2014 RP-64 RP-140913 525 Multi-band corrections in 36.141 chapter 6 12.4.0 06-2014 RP-64 RP-140913 567 Clarification on definitions and ACLR requirement in 12.4.0 TS36.141 06-2014 RP-64							
Band 27 to TS 36.141 Band 27 to TS 36.141 03-2014 RP-63 RP-140372 518 Corrections in TS 36.141 12.3.0 03-2014 RP-63 RP-140372 520 Introduction of multi-band BS testing to TS 36.141 12.3.0 03-2014 RP-63 RP-140372 520 Introduction of test requirements for multi-band operation with conformance test improvement for multi-carrier testing (36.141, section 6 and 7) 12.3.0 03-2014 RP-63 RP-140375 523 Correction of abbreviations for negative acknowledgement 12.3.0 03-2014 RP-63 RP-140387 490 1 Introduction of CA band combination Band 39+Band 12.3.0 03-2014 RP-64 RP-140913 527 Multi-band corrections in 36.141 chapter 7 12.4.0 06-2014 RP-64 RP-140913 525 Multi-band corrections in 36.141 chapter 6 12.4.0 06-2014 RP-64 RP-140913 598 Correction on munufacturer's declaration in 12.4.0 06-2014 RP-64 RP-140913 567 Clarification on definitions and ACLR requirement in 12.4.0					1		
03-2014 RP-63 RP-140372 518 Introduction of multi-band BS testing to TS 36.141 12.3.0 03-2014 RP-63 RP-140372 520 Introduction of test requirements for multi-band operation with conformance test improvement for multi-carrier testing (36.141, section 6 and 7) 12.3.0 03-2014 RP-63 RP-140375 523 Correction of abbreviations for negative acknowledgement 12.3.0 03-2014 RP-63 RP-140375 523 Correction of Abbreviations for negative acknowledgement 12.3.0 03-2014 RP-63 RP-140913 527 Multi-band corrections in 36.141 chapter 7 12.4.0 06-2014 RP-64 RP-140913 536 Corrections on multi-band BS testing to TS 36.141 12.4.0 06-2014 RP-64 RP-140913 598 Corrections on multi-band S141 chapter 6 12.4.0 06-2014 RP-64 RP-140913 598 Correction on definitions and ACLR requirement in 12.4.0 06-2014 RP-64 RP-140913 567 Introduction of Carl and combination Band 12.4.0 06-2014 RP-64 RP-140913 567 Intr						Band 27 to TS 36.141	
Clauses 1 - 5) Clauses 1 - 5) 03-2014 RP-63 RP-140372 520 Introduction of test requirements for multi-band operation with conformance test improvement for multi-carrier testing (36.141, section 6 and 7) 03-2014 RP-63 RP-140375 523 Correction of abbreviations for negative acknowledgement 12.3.0 03-2014 RP-63 RP-140375 523 Correction of abbreviations for negative acknowledgement 12.3.0 03-2014 RP-63 RP-140913 527 Multi-band corrections in 36.141 chapter 7 12.4.0 06-2014 RP-64 RP-140913 525 Multi-band corrections in 36.141 chapter 6 12.4.0 06-2014 RP-64 RP-140913 525 Multi-band corrections in 36.141 chapter 6 12.4.0 06-2014 RP-64 RP-140913 567 Clarification on definitions and ACLR requirement in 12.4.0 12.4.0 06-2014 RP-64 RP-140914 538 Band 29 correction 12.4.0 06-2014 RP-64 RP-140926 573 1 Introduction of operating band 32 and CA band 12.4.0 06-2014 RP-64 <					1		
operation with conformance test improvement for multi-carrier testing (36.141, section 6 and 7) 12.3.0 03-2014 RP-63 RP-140375 523 Correction of abbreviations for negative acknowledgement 12.3.0 03-2014 RP-63 RP-140387 490 1 Introduction of CA band combination Band 39+Band 41 into BS specification 12.3.0 06-2014 RP-64 RP-140913 527 Multi-band corrections in 36.141 chapter 7 12.4.0 06-2014 RP-64 RP-140913 525 Multi-band corrections in 36.141 chapter 6 12.4.0 06-2014 RP-64 RP-140913 525 Multi-band corrections in 36.141 chapter 6 12.4.0 06-2014 RP-64 RP-140913 588 Correction on munufacturer's declaration in TS36.141 12.4.0 06-2014 RP-64 RP-140913 567 Clarification on definitions and ACLR requirement in TS36.141 12.4.0 06-2014 RP-64 RP-140930 571 Introduction of LTE-Advanced CA of Band 8 and 20.432 int TS36.141 12.4.0 06-2014 RP-64 RP-140933 569 Introduction of CA band combination Band 4 and 24.0						(Clauses 1 - 5)	
Construction RP-64 RP-140387 490 1 Introduction of CA band combination Band 39+Band 41 into BS specification 12.3.0 06-2014 RP-64 RP-140913 527 Multi-band corrections in 36.141 chapter 7 12.4.0 06-2014 RP-64 RP-140913 536 Corrections of multi-band BS testing to TS 36.141 12.4.0 06-2014 RP-64 RP-140913 525 Multi-band corrections in 36.141 chapter 6 12.4.0 06-2014 RP-64 RP-140913 598 Correction on munufacturer's declaration in TS36.141 12.4.0 06-2014 RP-64 RP-140913 567 Clarification on definitions and ACLR requirement in TS36.141 12.4.0 06-2014 RP-64 RP-140914 538 Band 20 correction 12.4.0 06-2014 RP-64 RP-140914 538 Band 20 correction 12.4.0 06-2014 RP-64 RP-140930 571 Introduction of LTE-Advanced CA of Band 8 and 20+32 in TS36.141 12.4.0 06-2014 RP-64 RP-140931 564 Introduction of CA band combination Band 4 and Band 20 in TS 36.141	03-2014			520		operation with conformance test improvement for multi-carrier testing (36.141, section 6 and 7)	
Mathematical and the system At into BS specification 06-2014 RP-64 RP-140913 527 Multi-band corrections in 36.141 chapter 7 12.4.0 06-2014 RP-64 RP-140913 536 Corrections of multi-band BS testing to TS 36.141 12.4.0 06-2014 RP-64 RP-140913 525 Multi-band corrections in 36.141 chapter 6 12.4.0 06-2014 RP-64 RP-140913 525 Multi-band corrections in 36.141 chapter 6 12.4.0 06-2014 RP-64 RP-140913 567 Clarification on definitions and ACLR requirement in TS36.141 12.4.0 06-2014 RP-64 RP-140914 538 Band 29 correction 12.4.0 06-2014 RP-64 RP-140926 573 1 Introduction of operating band 32 and CA band 21.4.0 06-2014 RP-64 RP-140930 571 Introduction of CA 1+11 to 36.141 (Rel-12) 12.4.0 06-2014 RP-64 RP-140931 564 Introduction of CA 1+11 to 36.141 12.4.0 06-2014 RP-64 RP-140933 569 Introduction of Intra-band non-c						acknowledgement	
06-2014 RP-64 RP-140913 536 Corrections of multi-band BS testing to TS 36.141 12.4.0 06-2014 RP-64 RP-140913 525 Multi-band corrections in 36.141 chapter 6 12.4.0 06-2014 RP-64 RP-140913 598 Correction on munufacturer's declaration in TS36.141 12.4.0 06-2014 RP-64 RP-140913 567 Clarification on definitions and ACLR requirement in TS36.141 12.4.0 06-2014 RP-64 RP-140914 538 Band 29 correction 12.4.0 06-2014 RP-64 RP-140913 567 Clarification on definitions and ACLR requirement in TS36.141 12.4.0 06-2014 RP-64 RP-140930 571 Introduction of operating band 32 and CA band 20+32 in TS36.141 12.4.0 06-2014 RP-64 RP-140931 564 Introduction of CA 1+11 to 36.141 (Rel-12) 12.4.0 06-2014 RP-64 RP-140938 569 Introduction of CA band combination Band 4 and Band 27 to TS 36.141 12.4.0 06-2014 RP-64 RP-140940 588 Introduction of CA band combination Band 1 and Band 20 to T	03-2014				1	41 into BS specification	
Image: Construction of the construction of							
06-2014 RP-64 RP-140913 598 Correction on munufacturer's declaration in TS36.141 12.4.0 06-2014 RP-64 RP-140913 567 Clarification on definitions and ACLR requirement in TS36.141 12.4.0 06-2014 RP-64 RP-140914 538 Band 29 correction 12.4.0 06-2014 RP-64 RP-140926 573 1 Introduction of operating band 32 and CA band 20+32 in TS36.141 12.4.0 06-2014 RP-64 RP-140930 571 Introduction of LTE-Advanced CA of Band 8 and Band 40 into TS 36.141 12.4.0 06-2014 RP-64 RP-140931 564 Introduction of CA 1+11 to 36.141 (Rel-12) 12.4.0 06-2014 RP-64 RP-140933 569 Introduction of CA band combination Band 4 and Band 27 to TS 36.141 12.4.0 06-2014 RP-64 RP-140938 546 Introduction of LTE_CA_NC_B42 into 36.141 12.4.0 06-2014 RP-64 RP-140940 588 Introduction of CA band combination Band 1 and Band 20 to TS 36.141 12.4.0 06-2014 RP-64 RP-140942 531 Introduction of						(Clauses 1 - 5)	
Image: Construct of the system of t					1		
Image: Construction of the construction of						TS36.141	
06-2014 RP-64 RP-140926 573 1 Introduction of operating band 32 and CA band 20+32 in TS36.141 12.4.0 06-2014 RP-64 RP-140930 571 Introduction of LTE-Advanced CA of Band 8 and Band 40 into TS 36.141 12.4.0 06-2014 RP-64 RP-140931 564 Introduction of CA 1+11 to 36.141 (Rel-12) 12.4.0 06-2014 RP-64 RP-140933 569 Introduction of CA 1+11 to 36.141 (Rel-12) 12.4.0 06-2014 RP-64 RP-140933 569 Introduction of CA band combination Band 4 and Band 27 to TS 36.141 12.4.0 06-2014 RP-64 RP-140938 546 Introduction of Intra-band non-contiguous Carrier Aggregation in Band 2 to TS 36.141 12.4.0 06-2014 RP-64 RP-140940 588 Introduction of CA band combination Band 1 and Band 20 to TS 36.141 12.4.0 06-2014 RP-64 RP-140942 531 Introduction of CA band combination Band 1 and Band 20 to TS 36.141 12.4.0 06-2014 RP-64 RP-140944 541 Introduction of intra-band non-contiguous Carrier Aggregation in Band 41 for 3DL to TS 36.141 12.4.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>TS36.141</td><td></td></t<>						TS36.141	
20+32 in TS36.141 20+32 in TS36.141 06-2014 RP-64 RP-140930 571 Introduction of LTE-Advanced CA of Band 8 and Band 40 into TS 36.141 12.4.0 06-2014 RP-64 RP-140931 564 Introduction of CA 1+11 to 36.141 (Rel-12) 12.4.0 06-2014 RP-64 RP-140933 569 Introduction of CA band combination Band 4 and Band 27 to TS 36.141 12.4.0 06-2014 RP-64 RP-140938 546 Introduction of intra-band non-contiguous Carrier Aggregation in Band 2 to TS 36.141 12.4.0 06-2014 RP-64 RP-140940 588 Introduction of LTE_CA_NC_B42 into 36.141 12.4.0 06-2014 RP-64 RP-140942 531 Introduction of CA band combination Band 1 and Band 20 to TS 36.141 12.4.0 06-2014 RP-64 RP-140942 531 Introduction of CA band combination Band 1 and Band 20 to TS 36.141 12.4.0 06-2014 RP-64 RP-140942 595 Introduction of intra-band non-contiguous Carrier Aggregation in Band 41 for 3DL to TS 36.141 12.4.0 06-2014 RP-64 RP-140944 541 Introduction of intra-band non-contiguous Carrier Agg					<u> </u>		
D6-2014 RP-64 RP-140931 564 Introduction of CA 1+11 to 36.141 (Rel-12) 12.4.0 06-2014 RP-64 RP-140933 569 Introduction of CA band combination Band 4 and Band 27 to TS 36.141 12.4.0 06-2014 RP-64 RP-140938 569 Introduction of CA band combination Band 4 and Band 27 to TS 36.141 12.4.0 06-2014 RP-64 RP-140938 546 Introduction of intra-band non-contiguous Carrier Aggregation in Band 2 to TS 36.141 12.4.0 06-2014 RP-64 RP-140940 588 Introduction of LTE_CA_NC_B42 into 36.141 12.4.0 06-2014 RP-64 RP-140942 531 Introduction of CA band combination Band 1 and Band 20 to TS 36.141 12.4.0 06-2014 RP-64 RP-140942 595 Introduction of CA band combination Band 1 and Band 20 to TS 36.141 12.4.0 06-2014 RP-64 RP-140944 541 Introduction of intra-band non-contiguous Carrier Aggregation in Band 41 for 3DL to TS 36.141 12.4.0 06-2014 RP-64 RP-140946 596 Introduction of intra-band CA_Band 42C to TS 36.141 12.4.0 06-2014 RP-64<					1	20+32 in TS36.141	
06-2014 RP-64 RP-140933 569 Introduction of CA band combination Band 4 and Band 27 to TS 36.141 12.4.0 06-2014 RP-64 RP-140938 546 Introduction of intra-band non-contiguous Carrier Aggregation in Band 2 to TS 36.141 12.4.0 06-2014 RP-64 RP-140940 588 Introduction of LTE_CA_NC_B42 into 36.141 12.4.0 06-2014 RP-64 RP-140940 588 Introduction of CA band combination Band 1 and Band 20 to TS 36.141 12.4.0 06-2014 RP-64 RP-140942 531 Introduction of CA band combination Band 1 and Band 20 to TS 36.141 12.4.0 06-2014 RP-64 RP-140942 595 Introduction of CA band combination Band 1 and Band 20 to TS 36.141 12.4.0 06-2014 RP-64 RP-140944 541 Introduction of intra-band non-contiguous Carrier Aggregation in Band 41 for 3DL to TS 36.141 12.4.0 06-2014 RP-64 RP-140946 596 Introduction of intra-band CA_Band 42C to TS 36.141 12.4.0 06-2014 RP-64 RP-141538 596 Introduction of intra-band CA_Band 42C to TS 12.4.0						Band 40 into TS 36.141	
Band 27 to TS 36.14106-2014RP-64RP-140938546Introduction of intra-band non-contiguous Carrier Aggregation in Band 2 to TS 36.14112.4.006-2014RP-64RP-140940588Introduction of LTE_CA_NC_B42 into 36.14112.4.006-2014RP-64RP-140942531Introduction of CA band combination Band 1 and Band 20 to TS 36.14112.4.006-2014RP-64RP-140942595Introduction of CA band combination Band 1 and Band 20 to TS 36.14112.4.006-2014RP-64RP-140942595Introduction of CA band combination Band 1 and Band 20 to TS 36.14112.4.006-2014RP-64RP-140944541Introduction of intra-band non-contiguous Carrier Aggregation in Band 41 for 3DL to TS 36.14112.4.006-2014RP-64RP-140946596Introduction of intra-band CA_Band 42C to TS 36.14112.4.009-2014RP-65RP-1415385961Introduction of intra-band CA_Band 42C to TS 36.14112.4.0							
Aggregation in Band 2 to TS 36.141 06-2014 RP-64 RP-140940 588 Introduction of LTE_CA_NC_B42 into 36.141 12.4.0 06-2014 RP-64 RP-140942 531 Introduction of CA band combination Band 1 and Band 20 to TS 36.141 12.4.0 06-2014 RP-64 RP-140942 595 Introduction of CA band combination Band 1 and Band 20 to TS 36.141 12.4.0 06-2014 RP-64 RP-140942 595 Introduction of CA band combination Band 1 and Band 20 to TS 36.141 12.4.0 06-2014 RP-64 RP-140944 541 Introduction of intra-band non-contiguous Carrier Aggregation in Band 41 for 3DL to TS 36.141 12.4.0 06-2014 RP-64 RP-140946 596 Introduction of intra-band CA_Band 42C to TS 36.141 12.4.0 09-2014 RP-65 RP-141538 596 1 Introduction of intra-band CA_Band 42C to TS 12.5.0		_				Band 27 to TS 36.141	
06-2014RP-64RP-140942531Introduction of CA band combination Band 1 and Band 20 to TS 36.14112.4.006-2014RP-64RP-140942595Introduction of CA band combination Band 1 and Band 20 to TS 36.14112.4.006-2014RP-64RP-140944541Introduction of intra-band non-contiguous Carrier Aggregation in Band 41 for 3DL to TS 36.14112.4.006-2014RP-64RP-140946596Introduction of intra-band CA_Band 42C to TS 36.14112.4.009-2014RP-65RP-1415385961Introduction of intra-band CA_Band 42C to TS 36.14112.4.0						Aggregation in Band 2 to TS 36.141	
Of-2014RP-64RP-140942595Introduction of CA band combination Band 1 and Band 20 to TS 36.14112.4.006-2014RP-64RP-140944541Introduction of intra-band non-contiguous Carrier Aggregation in Band 41 for 3DL to TS 36.14112.4.006-2014RP-64RP-140946596Introduction of intra-band CA_Band 42C to TS 36.14112.4.009-2014RP-65RP-1415385961Introduction of intra-band CA_Band 42C to TS 12.5.012.5.0							
Image: Construction of the con						Band 20 to TS 36.141	
Aggregation in Band 41 for 3DL to TS 36.141 06-2014 RP-64 RP-140946 596 Introduction of intra-band CA_Band 42C to TS 36.141 09-2014 RP-65 RP-141538 596 1 Introduction of intra-band CA_Band 42C to TS 12.5.0						Band 20 to TS 36.141	
O9-2014 RP-65 RP-141538 596 1 Introduction of intra-band CA_Band 42C to TS 12.5.0						Aggregation in Band 41 for 3DL to TS 36.141	
						36.141	
	09-2014	RP-65	RP-141538	596	1		12.5.0

				1		
09-2014	RP-65	RP-141556	621		Introduction of 3 Band Carrier Aggregation (3DL/1UL) of Band 1, Band 3 and Band 8 to TS 36.141	12.5.0
09-2014	RP-65	RP-141532	623		Clarification of high speed train conditions in 36.141	12.5.0
09-2014	RP-65	RP-141551	624		Introduction of CA 8+11 to 36.141 (Rel-12)	12.5.0
09-2014	RP-65	RP-141548	626		Introduction of CA band combination Band1 + Band3 to TS 36.141	
09-2014	RP-65	RP-141202	627	1	Introduction of CA band combination Band1 + Band3 + Band19 to TS 36.104	12.5.0
09-2014	RP-65	RP-141557	628		Introduction of CA band combination Band19 + Band42 + Band42 to TS 36.141	12.5.0
09-2014	RP-65	RP-141559	629		Introduction of CA band combination Band1 + Band42 + Band42 to TS 36.141	12.5.0
09-2014	RP-65	RP-141525	633		CR for clarification on Transmitter off power	12.5.0
09-2014	RP-65	RP-141447	635	1	Introduction of CA band combination B1+B7 and B1+B5+B 7 to TS 36.141	12.5.0
09-2014	RP-65	RP-141707	636	1	Introduction of 3 Band Carrier Aggregation of Band 1,Band 3 and Band 5 to TS 36.141	12.5.0
09-2014	RP-65	RP-141109	638	1	Introduction of inter-band CA 18-28 into TS36.141	12.5.0
09-2014	RP-65	RP-141558	644		Introduction of CA band combination Band 1, Band 3 and Band 20 to TS 36.141	12.5.0
09-2014	RP-65	RP-141528	654		Correction on UEM related to multi-band operation in TS36.141	12.5.0
09-2014	RP-65	RP-141528	656		Correction of applicability of test configuration table for a BS capable of multi-carrier and/or CA operation in both contiguous and non-contiguous spectrum in single band	12.5.0
09-2014	RP-65	RP-141554	657	1	Introduction of CA combinations	12.5.0
09-2014	RP-65	RP-141533	658		Update of definitions to support supplemental DL in TS36.141	12.5.0
09-2014	RP-65	RP-141464	661		Introduction of CA band combination Band 1, Band 7 and Band 20 to TS 36.141	12.5.0
12-2014	RP-66	RP-142175	665	2	CR on reference channel and test tolerance for coverage enhancement performance test	12.6.0
12-2014	RP-66	RP-142146	678		Multi-band test configurations corrections	12.6.0
12-2014	RP-66	RP-142182	682		Introduction of inter-band CA_1-28 into TS36.141	12.6.0
12-2014	RP-66	RP-142149	687		Correction on transmitter intermodulation requirement	12.6.0
12-2014	RP-66	RP-142189	693		CR for TR 36.141: LTE_CA_B5_B13	12.6.0
12-2014	RP-66	RP-142175	683	1	Test requirements for PUSCH with TTI bundling and	
12-2014	RP-66	RP-142177	689	1	enhanced HARQ pattern Scope for BS performance test requirements for	12.6.0
					TDD-FDD CA	10.0.0
12-2014	RP-66	RP-142179	675	1	Introduction of 256QAM	12.6.0
12-2014	RP-66	RP-142190	676	2	Introduction of 3DL CA combinations	12.6.0
03-2015	RP-67	RP-150382	696		Co-location between Band 42 and Band 43 in TS 36.141	12.7.0
03-2015	RP-67	RP-150391	698		Introduction of CA_3A-42A and CA_3A-42C into 36.141	12.7.0
03-2015	RP-67	RP-150388	707		MB and TDD+FDD	12.7.0
07-2015	RP-68	RP-150955	721		Clarification of parameter P for emission requirements	12.8.0
07-2015	RP-68	RP-150955	734		Some corrections related to single carrier requirements	12.8.0
07-2015	RP-68	RP-150968	701	4	Introduction of 2DL CA combinations	13.0.0
07-2015	RP-68	RP-150972		4	Introduction of 3DL CA combinations	13.0.0
07-2015	RP-68	RP-150974	729	1	Introduction of 4DL CA combinations	13.0.0
07-2015	RP-68	RP-150670	744		Introduction of CA_3A-40A to TS 36.141	13.0.0
09-2015	RP-69	RP-151476	747		BS Spec improvements: TS 36.141 Corrections	13.1.0
09-2015	RP-69	RP-151506	761		CR on conformance test for support of 256QAM in wide area BS	13.1.0
09-2015	RP-69	RP-151476	764		Multi-band high PSD test configuration clarification	13.1.0
09-2015	RP-69	RP-151499	766		Introduction of 3DL CA combinations	13.1.0
09-2015	RP-69	RP-151501	767		Introduction of 4DL CA combinations	13.1.0
09-2015	RP-69	RP-151203	768		Introduction of CA_7A-40A and CA_7A-40C to TS 36.141	13.1.0
09-2015	RP-70	RP-152168	772		Introduction of intra-band CA_8B to TS 36.141	13.2.0
09-2015	RP-70	RP-152171	782		Introduction of Band 65 to TS 36.141	13.2.0
09-2015	RP-70	RP-152157	783	1	Introduction of Band 67 and CA_20-67 to 36.141	13.2.0
09-2015	RP-70	RP-152167	789	1	Introduction of intra-band CA_5B to TS 36.141	13.2.0
09-2015	RP-70	RP-152169	790		Introduction of intra-band NC CA_5A-5A to TS 36.141	13.2.0
09-2015	RP-70	RP-152173	792	1	Introduction of 1447-1467MHz Band into 36.141	13.2.0
00 2010	11-10	111-152175	132	1		10.2.0

09-2015	RP-70	RP-152132	795			Correction on UEM requirement for Multi-band base station	13.2.0
09-2015	RP-70	RP-152132	798			BS Spec improvements: TS 36.141 Corrections	13.2.0
09-2015	RP-70	RP-152132	806			Corrections on definition of f_offsetmax for BS operating in multiple bands or non-contiguous spectrum	13.2.0
09-2015	RP-70	RP-152156	811			Introduction of 2DL CA combinations	13.2.0
09-2015	RP-70	RP-152161	812			Introduction of 3DL CA combinations	13.2.0
09-2015	RP-70	RP-152162	813			Introduction of 4DL CA combinations	13.2.0
09-2015	RP-70	RP-152132	816			Clarification on the transmitter intermodulation requirement in TS 36.141	13.2.0
09-2015	RP-70	RP-152172	818			Introduction of Band 66 to 36.141	13.2.0
03/2016	RP-71	RP-160480	0829		В	Introduction of 3DL CA combinations	13.3.0
03/2016	RP-71	RP-160481	0830		В	Introduction of 4DL CA combinations	13.3.0
03/2016	RP-71	RP-160482	0828		В	Introduction of 5DL CA combinations	13.3.0
03/2016	RP-71	RP-160483	0819	2	В	Introduction of Band 68 into 36.141	13.3.0
03/2016	RP-71	RP-160488	0825		А	Band 20 and Band 28 BS co-existence	13.3.0
03/2016	RP-71	RP-160489	0821		A	Corrections to BS spurious emissions requirements for band 22 and 42 in TS36.141 (Rel-13)	13.3.0
06/2016	RP-72	RP-161131	833	2	В	CR on BS-IRC conformance test	13.4.0
06/2016	RP-72	RP-161131	836		В	CR on definition for BS IRC performance requirements in 36.141	13.4.0
06/2016	RP-72	RP-161134	838		В	Introduction of Band 46 in TS 36.141 Rel-13	13.4.0
06/2016	RP-72	RP-161141	846	-	F	Corrections to sub-clause number of BS spurious emissions limits in TS36.141 (Rel-13)	13.4.0
06/2016	RP-72	RP-161129	847	1	В	CR: Conformance test for eCA new PUCCH format 4 (Rel-13)	13.4.0
06/2016	RP-72	RP-161131	848	-	В	Connection diagrams for BS MMSE-IRC receiver	13.4.0
06/2016	RP-72	RP-161131	849	-	В	36.141 CR for interference model for synchronous and asynchronous scnearios	13.4.0
06/2016	RP-72	RP-161129	850	1	В	CR for PUCCH format 5 performance requirements for 36.141	13.4.0
06/2016	RP-72	RP-161142	851	1	F	Correction related to band 65	13.4.0
06/2016	RP-72	RP-161140	858	1	F	Corrections on definition of multi-band definition and blocking	13.4.0
06/2016	RP-72	RP-161131	859	1	В	36.141 CR for BS MMSE-IRC receiver - Demodulation conformance tests in asynchronous interference scenario.	13.4.0
06/2016	RP-72	RP-161128	861	1	В	CR: Cat-M1 PRACH Performance Requirements for 36.141	13.4.0
06/2016	RP-72	RP-161128	862	1	В	CR: Cat-M1 PUCCH Performance Requirements for 36.141	13.4.0
06/2016	RP-72	RP-161128	863	1	В	CR: Cat-M1 PUSCH Performance Requirements for 36.141	13.4.0
06/2016	RP-72	RP-161131	864	-	В	36.141 CR: Introduction of new FRC tables for MMSE-IRC	13.4.0
06/2016	RP-72	RP-161134			В	Introduction of LBT performance test for LAA	13.4.0
09/2016	RP-73	RP-161782	874	<u> </u>	F	CR for eMTC PUCCH conformance test (Rel-13)	13.5.0
09/2016	RP-73	RP-161786	872	1	F F	36.141 CR on bracket removal for BS IRC receiver	13.5.0
09/2016	RP-73	RP-161782	883	1		CR: Add Test tolerances for eMTC BS demodulation performance requirements	13.5.0
09/2016	RP-73 RP-73	RP-161614	892	1	F	LAA BS unwanted emission mask requirements in 36.141	13.5.0
09/2016	RP-73	RP-161780 RP-161780	878 880	1	B	CR: NPUSCH format 1 and FRC demodulation conformance test (Rel-13) CR: NPUSCH format 2 demodulation conformance	13.5.0 13.5.0
09/2016	RP-73	RP-161780	885	3	B	test (Rel-13) CR: Add Test tolerances for NB-IoT BS	13.5.0
09/2016	RP-73	RP-161780 RP-161783	901	3 1	P F	demodulation performance requirements Correction CACLR for Band 46	13.5.0
09/2016	RP-73 RP-73	RP-161783 RP-161635	901 890	1	В	Introduction of Korea regulatory requirements for	13.5.0
09/2016	RP-73	RP-161635 RP-161638	890	2	F	PS-LTE BS, band 28, 36.141 Correction on LBT test procedure	13.5.0
12/2016	RP-73 RP-74	RP-161638 RP-162384	894 0909		F	CR for Rel-13 eMTC PRACH conformance test	13.5.0
12/2016	RP-74 RP-74	RP-162364 RP-162379	0909	-	F	CR: Correction of Fixed Reference Channels for NPUSCH format 1 (Rel-13,36.141)	13.6.0
12/2016	RP-74	RP-162380	0923	1	В	Introduction of NB-IoT into 36.141	13.6.0
12/2016	RP-74 RP-74	RP-162360 RP-162456	0923	2	F	CR: Updates to NPUSCH format 1 demodulation	13.6.0
12/2016	RP-74	RP-162456	0925	2	F	CR: Updates to NPUSCH format 1 demodulation CR: Updates to NPUSCH format 2 demodulation	13.6.0
12/2016	RP-74	RP-162456 RP-162383	0927	1	F	CR on cleaning up Rel-13 eMTC PUSCH	13.6.0
12/2010	111-14	111-102303	0329		ľ	conformance test	15.0.0

03/2017	RP-75	RP-170593	0945	-	F	CR to 36.141 for correction of test requirements for BS MMSE-IRC receiver	13.7.0
03/2017	RP-75	RP-170573	0947	-	В	CR to 36.141: Addition of 1.4 and 3 MHz channel bandwidths for Band 65	13.7.0
03/2017	RP-75	RP-170591	0955	-	F	CR for TS 36.141 (Rel-13) to add regional requirement on LAA Occupied bandwidth	13.7.0
03/2017	RP-75	RP-170600	0964	-	F	requirement Corrections on NB-IoT narrowband intermodulation performance requirement	13.7.0
03/2017	RP-75	RP-170601	0949	1	F	CR:Cleanup for the NB-IoT NPUSCH conformance test(R13)	13.7.0
03/2017	RP-75	RP-170600	0966	1	F	Corrections on NB-IoT Test Configuration and Test Model	13.7.0
03/2017	RP-75	RP-170600	0958	1	F	Correction on FRC for NB-IoT in TS 36.141	13.7.0
03/2017	RP-75	RP-170596	0953	1	F	CR for PRACH conformance test (Rel-13)	13.7.0
03/2017	RP-75	RP-170595	0961	1	F	Correction CR on PUSCH and PUCCH supporting Cat-M1 considering guard period in 36.141	13.7.0
03/2017	RP-75	RP-170600	0971	5	F	CR: NPRACH performance requirements (Rel-13, TS36.141)	13.7.0
06/2017	RP-76	RP-171309	1004		F	CR on 1-PRB FRC in eMTC PUSCH conformance R13	13.8.0
06/2017	RP-76	RP-171302	1007		F	Updates to NPUSCH format 1 conformance test(R13)	13.8.0
06/2017	RP-76	RP-171310	1009	1	F	clean up eMTC PUCCH conformance test (Rel-13)	13.8.0
06/2017	RP-76	RP-171294	1022	1	A	Correction of maximum test system uncertainty for out of band blocking	13.8.0
06/2017	RP-76	RP-171310	1025	1	F	Clarification of PRB allocation for PUSCH test for eMTC (Rel-13)	13.8.0
06/2017	RP-76	RP-171302	1029	1	F	NB-IoT Cell-ID value in Test Model N-TM and some editorials	13.8.0
06/2017	RP-76	RP-171302	1031	1	F	Wrong tolerance for NPUSCH format 1	13.8.0
06/2017	RP-76	RP-171300	1041		F	Narrowband blocking requirement for NB-IoT guard band operation (TS 36.141)	13.8.0
06/2017	RP-76	RP-171303	1043	1	F	Intermodulation performance requirement for NB-IoT operation (TS 36.141)	13.8.0
06/2017	RP-76	RP-171303	1045	1	F	Clarification on small BW support for in-band and guard band operation (36.141)	13.8.0
06/2017	RP-76	RP-171300	1050		F	Note on BS in-channel selectivity for NB-IoT	13.8.0
09/2017	RP-77	RP-171972	1055	1	F	NB-IoT PRB position in Refsens for >5 MHz E-UTRA in-band operation (TS 36.141)	
09/2017	RP-77	RP-171970	1060		F	CR on eMTC BS PRACH conformance tests R13	13.9.0
09/2017	RP-77	RP-171973	1071	1	F	CR to 36.141: Correction of typo error in FFT sample	
2017-12	RAN#78	RP-172609	1084	1	F	Correction on NB-IoT RB power dynamic range for in-band band operation	13.10.0
2017-12	RAN#78	RP-172613	1091		F	CR to 36.141: BS Spurious emissions limits for protection of the BS receiver for B28 in Europe	13.10.0
2017-12	RAN#78	RP-172611	1105		F	CR on corrections of table references and notes (36.141)	13.10.0
2017-12	RAN#78	RP-172611	1108	1	F	Removal of BS repetition sensitivity	13.10.0
2018-03	RAN#79	RP-180293	1121	1	F	CR on clarifications of NB-IoT RB power dynamic range for in-band or guard band operation (TS 36.141)	13.11.0
2018-03	RAN#79	RP-180293	1124		F	CR on corrections of table for NB-IoT stand-alone test configurations	13.11.0
2018-06	RAN#80	RP-181112	1131	1	F	Clarifcation on Base Station RF Bandwidth for stand- alone NB-IoT operation (36.141)	13.12.0
2018-06	RAN#80	RP-181112	1134	1	F	Correction on Cell ID for in-band/guard-band NB-IoT operation	13.12.0

	Document history							
V13.2.0	January 2016	Publication						
V13.3.0	May 2016	Publication						
V13.4.0	August 2016	Publication						
V13.5.0	October 2016	Publication						
V13.6.0	January 2017	Publication						
V13.7.0	April 2017	Publication						
V13.9.0	October 2017	Publication						
V13.10.0	January 2018	Publication						
V13.11.0	April 2018	Publication						
V13.12.0	July 2018	Publication						

History