ETSI TS 144 031 V4.14.0 (2007-06)

Technical Specification

Digital cellular telecommunications system (Phase 2+); Location Services (LCS); Mobile Station (MS) - Serving Mobile Location Centre (SMLC) Radio Resource LCS Protocol (RRLP) (3GPP TS 44.031 version 4.14.0 Release 4)

Reference RTS/TSGG-0244031v4e0

0/1000-0244031040

Keywords GSM

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

> © European Telecommunications Standards Institute 2007. All rights reserved.

DECTTM, **PLUGTESTS**TM and **UMTS**TM are Trade Marks of ETSI registered for the benefit of its Members. **TIPHON**TM and the **TIPHON logo** are Trade Marks currently being registered by ETSI for the benefit of its Members. **3GPP**TM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under <u>http://webapp.etsi.org/key/queryform.asp</u>.

Contents

Intell	ectual Property Rights	2
Forev	word	2
Forev	vord	5
1	Scope	6
1.1	References	6
1.2	Abbreviations	6
2	Functionality of Protocol	6
2.1	General	
2.1	Position Measurement Procedure	
2.2	Assistance Data Delivery Procedure	
2.3	(void)	
2.5	Error Handling Procedures	
2.5.1	General	
2.5.1a		
2.5.2	Unknown Reference Number	
2.5.3	Missing Information Element or Component Element	
2.5.4	Incorrect Data	
2.5.5	Repeated Component	
2.5.6	(void)	
2.5.7	Missing Component	
2.5.8	Unforeseen Component	
2.5.9	RRLP Procedure	
2	Manage Streetene	10
3	Message Structure	
3.1	General Format of RRLP Message	
3.2	Reference Number IE	
3.3	Component IE	12
4	Components	12
4.1	Measure Position Request	13
4.2	Measure Position Response	13
4.3	Assistance Data	
4.4	Assistance Data Acknowledgement	14
4.5	Protocol Error	14
5	Elements of Components	14
5.1	ASN.1 Description	
5.1		
Anne	ex A (informative): Description of Components	29
A.1	Introduction	29
A.2	Measure Position Request	29
A.2.1	General	
A.2.2		
A.2.2	6	
A.2.2		
A.2.2		
A.2.2	1	
A.2.2		
A.2.2.		
A.3	Measure Position Response	
A.3.1	General	
A.3.2		
A.3.2. A.3.2	1 I	
A.3.2. A.3.2.	5	
A.3.2. A.3.2.		
A.3.2.		43

A.3.2.4	Location Information Element	43
A.3.2.5	GPS Measurement Information Element	
A.3.2.6	Location Information Error Element	
A.3.2.6a	GPS Time Assistance Measurements	
A.4	Assistance Data	
A.4.1	General	
A.4.2	Elements	
A.4.2.1	E-OTD Reference BTS for Assistance Data Element	
A.4.2.2	E-OTD Measurement Assistance Data Element	
A.4.2.3	E-OTD Measurement Assistance Data for System Information List Element	
A.4.2.4	GPS Assistance Data Element	
A.4.2.4a	GPS Time Assistance Measurement Request Element	62
A.4.2.4b	GPS Reference Time Uncertainty Element	62
A.4.2.5	More Assistance Data To Be Sent Element	62
A.5	Assistance Data Acknowledgement	62
A.5.1	General	62
A.6	Protocol Error	63
A.6.1	General	63
Annex I	3 (informative): Change History	64
History.		

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document contains the definition of the Radio Resource LCS Protocol (RRLP) to be used between the Mobile Station (MS) and the Serving Mobile Location Centre (SMLC).

Clause 2 defines the functionality of the protocol. Clause 3 describes the message structure, and clause 4 the structure of components. Clause 5 contains the ASN.1 description of the components.

1.1 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TS 21.905: "Vocabulary for 3GPP Specifications".
- [2] 3GPP TS 43.059: "Functional Stage 2 Description of Location Services in GERAN".
- [3] 3GPP TS 29.002: "Mobile Application Part (MAP) specification".
- [4] ITU-T Recommendation X.691: "Specification of packet encoding rules for Abstract Syntax Notation One (ASN.1)".
- [5] ITU-T Recommendation X.680: "Specification of Abstract Syntax Notation One (ASN.1)".
- [6] 3GPP TS 23.032: "Universal Geographical Area Description (GAD)".
- [7] 3GPP TS 49.031: "Location Services (LCS); Base Station System Application Part LCS Extension (BSSAP-LE)".
- [8] ICD-GPS-200, Navstar GPS Space Segment/Navigation User Interfaces.
- [9] RTCM-SC104, RTCM Recommended Standards for Differential GNSS Service (v.2.2).
- [10] T1P1.5/98-440r0, Low-Complexity Assisted-GPS Positioning (Ericsson).
- [11] ICD-GPS-200, Navstar GPS Space Segment/Navigation User Interfaces.

1.2 Abbreviations

Abbreviations used in the present document are listed in 3GPP TS 21.905 or in 3GPP TS 43.059.

2 Functionality of Protocol

2.1 General

The present document defines one generic RRLP message that is used to transfer Location Services (LCS) related information between the Mobile Station (MS) and the Serving Mobile Location Centre (SMLC). Usage of the RRLP protocol on a general level is described in 3GPP TS 43.059 that includes Stage 2 description of LCS.

One message includes one of the following components:

- Measure Position Request;
- Measure Position Response;
- Assistance Data;
- Assistance Data Acknowledgement;
- Protocol Error.

Next subchapters describe the usage of these components.

Delivery of components may be supported in the RRLP level using pseudo-segmentation by sending several shorter messages instead of one long message. This may be used to avoid lower level segmentation of messages and/or to improve the reliability of assistance data delivery to the MS in the event that delivery is interrupted by an RR management event like handover. Any assistance data that is successfully delivered to an MS and acknowledged prior to the interruption of the positioning procedure by an event like handover, or by any other event that causes an MS to terminate the positioning procedure or delivery of assistance data (see sub-clause 8.6 of 3GPP TS 43.059), shall be retained by the MS and need not be resent by the SMLC when positioning or delivery of assistance data is again reattempted. If an SMLC uses pseudo-segmentation, the maximum RRLP PDU size sent by the SMLC shall be 242 octets. If pseudo-segmentation is not used, the lower layers take care of segmentation if the RRLP message is larger than the maximum message size at the lower layers.

2.2 Position Measurement Procedure

This procedure is the same that is described on a more general level in 3GPP TS 43.059 in the chapter "E-OTD and GPS Positioning Procedures". The purpose of this procedure is to enable the SMLC to request for position measurement data or location estimate from the MS, and the MS to respond to the request with measurements or location estimate.

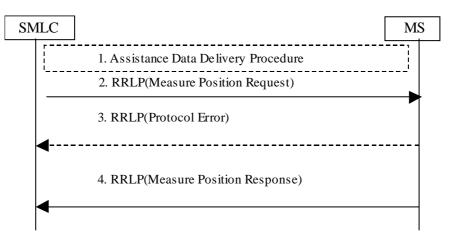


Figure 2.1: Position Measurement procedure

- 1. The Measure Position Request component may be preceded by an Assistance Data Delivery Procedure (see subclause 2.3) to deliver some or all of the entire set of assistance data that is needed by the subsequent positioning procedure (steps 2-4).
- The SMLC sends the Measure Position Request component in a RRLP message to the MS. The component includes QoS, other instructions, and possible assistance data to the MS. The RRLP message contains a reference number of the request.
- 3. The MS sends a RRLP message containing the Protocol Error component to the SMLC, if there is a problem that prevents the MS to receive a complete and understandable Measure Position Request component. The RRLP message contains the reference number included in the Measure Position Request received incomplete. The Protocol Error component includes a more specific reason. When the SMLC receives the Protocol Error component, it may try to resend the Measure Position Request (go back to the step 2), abort location, or start a new position measurement procedure (e.g. with updated assistance data).

4. The MS tries to perform the requested location measurements, and possibly calculates it own position. When the MS has location measurements, location estimate, or an error indication (measurements/location estimation not possible), it sends the results in the Measure Position Response component to the SMLC. The RRLP message contains the reference number of the request originally received in the step 2. If there is a problem that prevents the SMLC to receive a complete and understandable Measure Position Response component, the SMLC may decide to abort location, or start a new position measurement procedure instead.

2.3 Assistance Data Delivery Procedure

This procedure is the same that is described on a more general level in 3GPP TS 43.059 in the chapter "E-OTD and GPS Positioning Procedures". The purpose of this procedure is to enable the SMLC to send assistance data to the MS related to position measurement and/or location calculation. Notice that RRLP protocol is not used by the MS to request assistance data, only to deliver it to the MS. The entire set of assistance data (i.e. the total amount of assistance data that the SMLC has decided to send in the current procedure) may be delivered in one or several Assistance Data components. In this case steps 1 and 3 below may be repeated several times by the SMLC. If several components are sent, the SMLC shall await the acknowledgement of each component before the next Assistance Data component is sent. If Assistance Data Delivery is used as part of the Position Measurement Procedure, as described in sub-clause 2.2, then some assistance data may be delivered in the final RRLP Measure Position Request.

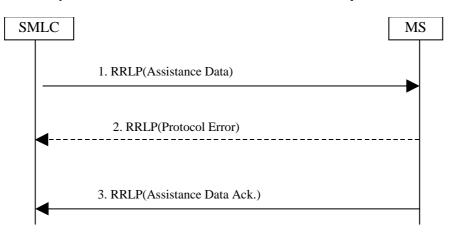


Figure 2.2: Assistance Data Delivery procedure

- The SMLC sends the Assistance Data component to the MS. The component includes assistance data for location measurement and/or location calculation. The RRLP message contains a reference number of the delivery. The More Assistance Data To Be Sent Element in the Assistance Data component is used by the SMLC to indicate to the MS if more Assistance Data components will be sent in the current Assistance Data Delivery procedure.
- 2. The MS sends a RRLP message containing the Protocol Error component to the SMLC, if there is a problem that prevents the MS to receive a complete and understandable Assistance Data component. The RRLP message contains the reference number included in the Assistance Data component received incomplete. The Protocol Error component includes a more specific reason. When the SMLC receives the Protocol Error component, it may try to resend the Assistance Data component (go back to the step 1), send a new measure Assistance Data set (e.g. with updated assistance data), or abort the delivery.
- 3. When the MS has received a complete Assistance Data component, it send the Assistance Data Acknowledgement component to the SMLC. The RRLP message contains the reference number of the Assistance Data originally received in step 1.

2.4 (void)

2.5 Error Handling Procedures

2.5.1 General

In this subchapter it is described how a receiving entity behaves in cases when it receives erroneous data or detects that certain data is missing.

2.5.1a Message Too Short

When MS receives a RRLP message, that is too short to contain all mandatory IEs, the MS sends a Protocol Error component with indication "Message Too Short". If the Reference Number can be found, it is included. If the Reference Number is not available, the Reference Number of the RRLP message carrying the Protocol Error component is set to '0'. The original sending entity that receives the Protocol Error, may then resend the original message, or abort the procedure.

2.5.2 Unknown Reference Number

A SMLC detects that it has received a RRLP message with an unknown Reference Number , when:

- a Measure Position Response, Assistance Data Acknowledgement, or Protocol Error component is received with a Reference Number that the SMLC has not sent in a Measure Position Request, or Assistance Data components during a pending Position Measurement or Assistance Data Delivery procedures.

The SMLC shall discard the message.

2.5.3 Missing Information Element or Component Element

When MS receives a RRLP message, that does not contain IEs or component elements expected to be present, the MS sends a Protocol Error component with indication "Missing Information Element or Component Element". If the Reference Number can be found, it is included. If the Reference Number is not available, the Reference Number of the RRLP message carrying the Protocol Error component is set to '0'. The SMLC that receives the Protocol Error, may then resend the original message, or abort the procedure.

2.5.4 Incorrect Data

When MS receives a RRLP message, that is contains IEs or elements of components that are syntactically incorrect, the MS sends a Protocol Error component with indication "Incorrect Data". If the Reference Number can be found, it is included. If the Reference Number is not available, the Reference Number of the RRLP message carrying the Protocol Error component is set to '0'. The SMLC that receives the Protocol Error, may then resend the original message, or abort the procedure.

2.5.5 Repeated Component

When after the reception of a Measure Position Request component, but before responding with a Measure Position Response or a Protocol Error component, the MS receives a new RRLP message with the Measure Position Request component, it acts as follows:

- if the old and new Measure Position Request components have the same Reference Number, the MS ignores the later component;
- if the the old and new Measure Position Request components have different Reference Numbers, the MS aborts activity for the former component, and starts to acts according to the later component, and sends a response to that.

When after the reception of an Assistance Data component, but before responding with an Assistance Data Acknowledgement or a protocol Error component, the MS receives a new RRLP message with the Assistance Data component, it acts as follows:

- if the old and new an Assistance Data components have the same Reference Number, the MS ignores the later component;
- if the old and new Measure Position Request components have different Reference Numbers, the MS ignores the former component, and sends an acknowledgement to the latter component.

When after the reception of an Measure Position Response component, the SMLC receives a new RRLP message with the Measure Position Response component, it acts as follows:

- if the old and new Measure Position Response components have the same Reference Number, the SMLC may ignore the later component;

2.5.6 (void)

2.5.7 Missing Component

When the SMLC sends a Measure Position Request component to the MS, it starts a timer. If the timer expires before the SMLC receives a Measure Position Response or Protocol Error component from the MS with the same Reference Number as in sent component, it may abort location attempt or send a new Measure Position Request.

When the SMLC sends a Assistance Data component to the MS, it starts a timer. If the timer expires before the SMLC receives a Assistance Data Acknowledgement or Protocol Error component from the MS with the same Reference Number as in the sent component, it may abort delivery attempt or send a new Assistance Data.

2.5.8 Unforeseen Component

When the MS receives a complete Assistance Data pseudo-segmentation sequence or an Assistance Data component that was sent without pseudo-segmentation, that it is not expecting, MS may discard it.

2.5.9 RRLP Procedure

The MS and SMLC shall only support one RRLP procedure at a time for either positioning or delivery of assistance data. The normal sequence of events for either procedure is defined in sub-clause 2.2 or sub-clause 2.3, respectively. If the MS is engaged in an RRLP procedure and receives a correctly encoded RRLP message from the SMLC that starts a new procedure, the MS shall abort the first procedure without sending a response and start the second.

3 Message Structure

3.1 General Format of RRLP Message

The general format of the RRLP message is given below, and based on:

- ITU-T Recommendation X.680 (Specification of Abstract Syntax Notation One (ASN.1);
- ITU-T Recommendation X.691 (Specification of packet encoding rules for Abstract Syntax Notation One);

and is consistent with these ITU-T recommendations. Also further definitions in the present document are based on ASN.1/94 defined in ITU-T X.680 recommendations (ASN.1 1994). BASIC-PER, unaligned variant is used. Both RRLP ASN.1 modules, RRLP-Messages and RRLP-Components, are based on recommendations presented above.

ASN.1 identifiers have the same name as the corresponding parameters (information elements of the RRLP message, components, elements of components, fields of component elements etc) in other parts of the present document, except for the differences required by the ASN.1 notation (blanks between words are removed, the first letter of the first word

is lower-case and the first letter of the following words are capitalized, e.g. "Reference Number" is mapped to "referenceNumber"). In addition some words may be abbreviated as follows:

msr	measure
req	request
rsp	response
nbr	number
ack	acknowledgement

Ellipsis Notation shall be used in the same way as described in 3GPP TS 29.002 and shall be supported on the radio interface by the MS and the network for all operations defined in the present document.

Table 3.1.a: RRLP Message Format

```
RRLP-Messages
-- { RRLP-messages }
DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
IMPORTS
    MsrPosition-Reg, MsrPosition-Rsp, AssistanceData,
    ProtocolError
FROM
    RRLP-Components
                        -- { RRLP-Components }
;
PDU ::= SEQUENCE {
   referenceNumber
                            INTEGER (0..7),
                            RRLP-Component
    component
}
RRLP-Component ::= CHOICE {
   msrPositionReg
                            MsrPosition-Reg.
    msrPositionRsp
                            MsrPosition-Rsp,
    assistanceData
                            AssistanceData,
    assistanceDataAck
                            NULL,
   protocolError
                            ProtocolError,
}
END
```

The message consists of two information elements, that are further described in the following subchapters.

3.2 Reference Number IE

This element is mandatory, and appears only once per RRLP message. It has the range from 0 to 7. Value 0 is reserved for indicating unknown Reference Number. Its ASN.1 definition is in sub-clause 3.1. This element contains the Reference Number that shall be used as follows:

- in the Position Measurement procedure the SMLC shall select any number within the range 1-7 that it is not already using with the particular MS. The Reference Number serves as an identification of the Measure Position request component that it sends to the MS. When the MS responds either with the Measure Position Response component, or the Protocol Error component, it shall use the same Reference Number value to identify to which Measure Position Request it is responding, if the Reference Number has been obtained. If the MS has not been able to decode the Reference Number (e.g. IE missing), it shall use '0' as the Reference number in the response. This mechanism helps for example in the cases where the SMLC sends a Measure Position Request to the MS, and before it receives the Response, it needs to send another Request (e.g. assistance data changes). Then the SMLC can identify to which Request the Response is related to;

- in the Assistance Data Delivery procedure the SMLC shall select any number within the range 1-7 that it is not already using with the MS. The Reference Number serves as an identification of the Assistance Data component that it sends to the MS. When the MS responds either with the Assistance Data Acknowledgement component or the Protocol Error component, it shall use the same Reference Number value to identify to which Assistance Data component it is responding, if the Reference Number has been obtained. If the MS has not been able to decode the Reference Number (e.g. IE missing), it shall use '0' as the Reference number in the response.
- the SMLC shall use the same Reference Number to resend any RRLP component for which a response was not received from the MS.
- the SMLC shall use a different Reference Number to that in any RRLP component for which a response was not received from the MS if the SMLC aborts an existing RRLP procedure and starts a new procedure.
- the SMLC may use the same Reference Number or different Reference Numbers for different RRLP components within the same pseudo-segmentation sequence.

3.3 Component IE

This element is mandatory, and appears only once per RRLP message. It contains the actual component to be transferred.

Different components are described further in Chapter 4. This IE contains only one component, i.e. it is not possible to include two or more components.

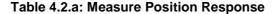
4 Components

This ASN.1 module contains the definitions of the components and datatypes defined in the components.

Table 4.a: RRLP Components Format

```
RRLP-Components
-- { RRLP-Components }
DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
TMPORTS
    Ext-GeographicalInformation
FROM
    MAP-LCS-DataTypes {
    ccitt identified-organization (4) etsi (0) mobileDomain (0)
    gsm-Network (1) modules (3) map-LCS-DataTypes (25) version5 (5)}
    ExtensionContainer
FROM MAP-ExtensionDataTypes {
    ccitt identified-organization (4) etsi (0) mobileDomain (0)
    gsm-Network (1) modules (3) map-ExtensionDataTypes (21) version4 (4)}
;
-- Add here other ASN.1 definitions presented below
-- in chapters 4 and 5.
END
```

4.1 Measure Position Request


This component is used by the SMLC to request location measurements or a location estimate from the MS. It includes QoS, other instructions, and possible assistance data to the MS. This component is defined as follows:

```
-- add this definition to RRLP-Components module
-- Measurement Position request component
MsrPosition-Req ::= SEQUENCE {
   positionInstruct
                            PositionInstruct,
                                                    OPTIONAL.
   referenceAssistData
                           ReferenceAssistData
   msrAssistData
                            MsrAssistData
                                                    OPTIONAL,
    systemInfoAssistData
                            SystemInfoAssistData
                                                    OPTIONAL,
    qps-AssistData
                            GPS-AssistData
                                                    OPTIONAL,
    extensionContainer
                           ExtensionContainer
                                                    OPTIONAL,
    -- Release 98 extension element
rel98-MsrPosition-Req-extension
                                        Rel98-MsrPosition-Req-Extension
                                                                                OPTIONAL
}
```

The elements of this component are defined in clause 5.

4.2 Measure Position Response

This component is used by the MS to respond to a Measure Position Request from the SMLC with location measurements, a location estimate, or an error indication. This component is defined as follows:


```
-- add this defintion to RRLP-Components module
-- Measurement Position response component
MsrPosition-Rsp ::= SEQUENCE {
                       MultipleSets
   multipleSets
                                                   OPTIONAL,
   referenceIdentity
                           ReferenceIdentity
                                                   OPTIONAL,
    otd-MeasureInfo
                           OTD-MeasureInfo
                                                   OPTIONAL,
    locationInfo
                           LocationInfo
                                                   OPTIONAL,
    gps-MeasureInfo
                           GPS-MeasureInfo
                                                   OPTIONAL,
    locationError
                           LocationError
                                                   OPTIONAL.
    extensionContainer
                           ExtensionContainer
                                                   OPTIONAL,
    -- Release extension here
    rel-98-MsrPosition-Rsp-Extension
                                           Rel-98-MsrPosition-Rsp-Extension
                                                                                   OPTIONAL
}
```

The elements of this component are defined in clause 5.

4.3 Assistance Data

This component is used by the SMLC to deliver assistance data for location measurement and/or location calculation. This component is defined as follows:

				Table 4.3.a: Assistance Data	
add	this	defintion	tο	RRLP-Components module	

add this definition to R	RLP-Components module		
Assistance Data compone	nt		
AssistanceData ::= SEQUENC	'E {		
referenceAssistData Re	ferenceAssistData	OPTIONAL,	
msrAssistData	MsrAssistData	OPTIONAL,	
systemInfoAssistData	SystemInfoAssistData	OPTIONAL,	
gps-AssistData	GPS-AssistData	OPTIONAL,	
moreAssDataToBeSent	MoreAssDataToBeSent	OPTIONAL,	If not present, interpret as only
			Assistance Data component used to
			deliver entire set of assistance
			data.

```
extensionContainer ExtensionContainer OPTIONAL,
...,
-- Release extension here
rel98-AssistanceData-Extension Rel98-AssistanceData-Extension OPTIONAL
}
```

The elements of this component are defined in clause 5.

4.4 Assistance Data Acknowledgement

This component does not have any information contents. It presence indicates that the MS has received the complete Assistance Data component.

4.5 Protocol Error

This component is used by the receiving entity (SMLC or MS) to indicate to the sending entity, that there is a problem that prevents the receiving entity to receive a complete and understandable component. This component is defined as follows:

Table 4.5.a: Protocol Error

```
-- add this defintion to RRLP-Components module

-- Protocol Error component

ProtocolError ::= SEQUENCE {

errorCause ErrorCodes,

extensionContainer ExtensionContainer OPTIONAL,

...

}
```

The elements of this component are defined in clause 5.

5 Elements of Components

5.1 ASN.1 Description

The following ASN.1 code defines the elements of components. See the Annex A for further description of the contents of components and their elements.

Table 5.1.a: ASN.1 Description

```
-- add these defintions to RRLP-Components module
-- Position instructions
PositionInstruct ::= SEQUENCE {
    -- Method type
                           MethodType,
   methodType
   positionMethod
                           PositionMethod,
   measureResponseTime
                           MeasureResponseTime,
    useMultipleSets
                           UseMultipleSets,
    environmentCharacter
                           EnvironmentCharacter
                                                   OPTIONAL
}
MethodType ::= CHOICE {
   msAssisted
                   AccuracyOpt,
                                   -- accuracy is optional
                   Accuracy,
    msBased
                                   -- accuracy is mandatory
   msBasedPref
                                   -- accuracy is mandatory
                   Accuracy,
    msAssistedPref Accuracy
                                   -- accuracy is mandatory
}
```

```
-- Accuracy of the location estimation
AccuracyOpt ::= SEQUENCE {
                                 OPTIONAL
    accuracy
                     Accuracy
}
-- The values of this field are defined in 3GPP TS 23.032 (Uncertainty code)
Accuracy ::= INTEGER (0..127)
-- Position Method
PositionMethod ::= ENUMERATED {
    eotd (0),
   gps (1),
   gpsOrEOTD (2)
}
-- Measurement request response time
MeasureResponseTime ::= INTEGER (0..7)
-- useMultiple Sets, FFS!
UseMultipleSets ::= ENUMERATED {
   multipleSets (0), -- multiple sets are allowed
oneSet (1) -- sending of multiple is not allowed
}
-- Environment characterization
EnvironmentCharacter ::= ENUMERATED {
   badArea (0), -- bad urban or suburban, heavy multipath and NLOS
notBadArea (1), -- light multipath and NLOS
mixedArea (2), -- not defined or mixed environment
   badArea (0),
    . . .
}
-- E-OTD reference BTS for Assitance data IE
ReferenceAssistData ::= SEQUENCE {
   bcchCarrier BCCHCarrier,
                                                              -- BCCH carrier
                                                             -- BSIC
                     BSIC,
    bsic
   timeSlotScheme TimeSlotScheme,
btsPosition BTSPosition OPTIONAL
                                                             -- Timeslot scheme
}
-- ellipsoid point and
-- ellipsoid point with altitude and uncertainty ellipsoid shapes are supported
BTSPosition ::= Ext-GeographicalInformation
-- RF channel number of BCCH
BCCHCarrier ::= INTEGER (0..1023)
 - Base station Identity Code
BSIC ::= INTEGER (0..63)
-- Timeslot scheme
TimeSlotScheme ::= ENUMERATED {
   equalLength (0),
    variousLength (1)
}
-- Time slot (modulo)
ModuloTimeSlot ::= INTEGER (0..3)
```

3GPP TS 44.031 version 4.14.0 Release 4

```
-- E-OTD measurement assistance data IE
-- The total number of neighbors in this element (MsrAssistData)
-- and in SystemInfoAssistData element (presented neighbors
-- can be at a maximum 15!)
MsrAssistData ::= SEQUENCE {
    msrAssistList SeqOfMsrAssistBTS
SeqOfMsrAssistBTS ::= SEQUENCE (SIZE(1..15)) OF MsrAssistBTS
MsrAssistBTS ::= SEQUENCE {
   bcchCarrier BCCHCarrier,
                                          -- BCCH carrier
   bsic
multiFrameOffset MultiFrameOffset
TimeSlotScheme,
                                           -- BSIC
                       MultiFrameOffset, -- multiframe offset
   timeSlotScheme
                                           -- Timeslot scheme
   roughRTD
                                           -- rough RTD value
   -- Location Calculation Assistance data is moved here
   calcAssistanceBTS CalcAssistanceBTS
                                          OPTIONAL
}
-- Multiframe offset
MultiFrameOffset ::= INTEGER (0..51)
-- The Multiframe Offset value 51 shall not be encoded by the transmitting entity and
-- shall be treated by the receiving entity as 0.
-- Rough RTD value between one base station and reference BTS
RoughRTD ::= INTEGER (0..1250)
-- The RoughRTD value 1250 shall not be encoded by the transmitting entity and shall
-- be treated by the receiving entity as 0.
-- E-OTD Measurement assistance data for system information List IE
-- The total number of base stations in this element (SystemInfoAssistData
-- presented neighbors) and in MsrAssistData element can be at a maximum 15.
SystemInfoAssistData ::= SEQUENCE {
    systemInfoAssistList
                          SeqOfSystemInfoAssistBTS
SeqOfSystemInfoAssistBTS::= SEQUENCE (SIZE(1..32)) OF SystemInfoAssistBTS
-- whether n.th is present or not ?
SystemInfoAssistBTS := CHOICE {
   notPresent NULL,
                   AssistBTSData
   present
}
-- Actual assistance data for system information base station
AssistBTSData ::= SEQUENCE {
                     BSIC,
                                           -- BSIC
   bsic
   multiFrameOffset
                       MultiFrameOffset, -- multiframe offset
                       TimeSlotScheme,
                                           -- Timeslot scheme
   timeSlotScheme
   roughRTD
                      RoughRTD,
                                           -- rough RTD value
    -- Location Calculation Assistance data
   calcAssistanceBTS CalcAssistanceBTS OPTIONAL
}
-- E-OTD Location calculation assistance data,
-- CalcAssistanceBTS element is optional not subfields
CalcAssistanceBTS ::= SEQUENCE {
   fineRTD
                      FineRTD,
                                       -- fine RTD value between base stations
                      ReferenceWGS84 -- reference coordinates
   referenceWGS84
}
```

```
-- Coordinates of neighbour BTS, WGS-84 ellipsoid
ReferenceWGS84 ::= SEOUENCE {
   relativeNorth RelDistance,
                                                 -- relative distance (south negative)
   relativeEast RelDistance,
                                                 -- relative distance (west negative)
     -- Relative Altitude is not always known
   relativeAlt
                  RelativeAlt OPTIONAL
                                                 -- relative altitude
}
 - Fine RTD value between this BTS and the reference BTS
FineRTD ::= INTEGER (0..255)
-- Relative north/east distance
RelDistance ::= INTEGER (-200000..200000)
-- Relative altitude
RelativeAlt ::= INTEGER (-4000..4000)
-- Measure position response IEs
-- Reference Identity
-- Multiple sets
MultipleSets ::= SEQUENCE {
    -- number of reference sets
                       INTEGER (2..3),
   nbrOfSets
   -- This field actually tells the number of reference BTSs
   nbrOfReferenceBTSs INTEGER (1..3),
   -- This field is conditional and included optionally only if
   -- nbrOfSets is 3 and number of reference BTSs is 2.
                            ReferenceRelation
   referenceRelation
                                                     OPTTONAL.
}
-- Relation between refence BTSs and sets
ReferenceRelation ::= ENUMERATED {
   secondBTSThirdSet (0), -- 1st BTS related to 1st and 2nd sets secondBTSSecondSet (1), -- 1st BTS related to 1st and 3rd sets
                            -- 1st BTS related to 1st set
   firstBTSFirstSet (2)
}
-- Reference BTS Identity, this element contains number of
-- BTSs told nbrOfReferenceBTSs field in Multiple sets element)
ReferenceIdentity ::= SEQUENCE {
     -- Reference BTS list
   refBTSList
                   SeqOfReferenceIdentityType
}
SeqOfReferenceIdentityType ::= SEQUENCE (SIZE(1..3)) OF ReferenceIdentityType
```

```
-- Cell identity
   ci CellID, -- BSIC and Carrier
ci CellID, -- Cell ID, LAC not needed
requestIndex RequestIndex, -- Index to Request?
ReferenceIdentityType ::= CHOICE {
                                        -- Index to Requested Neighbor List
   systemInfoIndex SystemInfoIndex, -- Index to System info list, this type of ref. identity
                                        -- shall not be used by the MS unless it has received
                                        -- the SystemInfoAssistData from the SMLC for this cell.
   ciAndLAC CellIDAndLAC
                                        -- CI and LAC
}
BSICAndCarrier ::= SEQUENCE {
    carrier BCCHCarrier,
   bsic
             BSIC
}
RequestIndex ::= INTEGER (1..16)
SystemInfoIndex ::= INTEGER (1..32)
CellIDAndLAC ::= SEQUENCE {
   referenceLAC LAC,
                    LAC, -- Location area code
CellID -- Cell identity
   referenceCI
}
CellID ::= INTEGER (0..65535)
LAC ::= INTEGER (0..65535)
-- OTD-MeasureInfo
OTD-MeasureInfo ::= SEQUENCE {
   -- Measurement info elements, OTD-MsrElement is repeated number of times
    -- told in nbrOfReferenceBTSs in MultipleSets, default value is 1
   otdMsrFirstSets
                      OTD-MsrElementFirst,
    -- if more than one sets are present this element is repeated
    -- NumberOfSets - 1 (-1 = first set)
                      SeqOfOTD-MsrElementRest OPTIONAL
   otdMsrRestSets
}
SeqOfOTD-MsrElementRest ::= SEQUENCE (SIZE(1..2)) OF OTD-MsrElementRest
-- OTD measurent information for 1 set
OTD-MsrElementFirst ::= SEQUENCE {
   refFrameNumber INTEGER (0..42431),
referenceTimeSlot ModuloTimeSlot,
   refFrameNumber
                                                                 -- Frame number modulo 42432
   referenceTimeSlot
toaMeasurementsOfRef
TOA-Measurement
StdResolution,
                            TOA-MeasurementsOfRef OPTIONAL,
                                                    OPTIONAL, -- TA correction
    taCorrection
                           INTEGER (0..960)
    -- measured neighbors in OTD measurements
   otd-FirstSetMsrs
                           SeqOfOTD-FirstSetMsrs OPTIONAL
SeqOfOTD-FirstSetMsrs ::= SEQUENCE (SIZE(1..10)) OF OTD-FirstSetMsrs
 - OTD measurent information 2 and 3 sets if exist
OTD-MsrElementRest ::= SEQUENCE {
   refFrameNumber INTEGER (0..42431),
referenceTimeSlot ModuloTimeSlot,
                                                                     -- Frame number modulo 42432
                            ModuloTimeSlot,
    toaMeasurementsOfRef TOA-MeasurementsOfRef
                                                        OPTIONAL,
    stdResolution
                           StdResolution,
    taCorrection
                            INTEGER (0..960)
                                                        OPTIONAL,
                                                                     -- TA correction
    -- measured neighbors in OTD measurements
   otd-MsrsOfOtherSets
                           SegOfOTD-MsrsOfOtherSets OPTIONAL
SeqOfOTD-MsrsOfOtherSets ::= SEQUENCE (SIZE(1..10)) OF OTD-MsrsOfOtherSets
```

3GPP TS 44.031 version 4.14.0 Release 4

```
-- Standard deviation of the TOA measurements from the reference BTS
TOA-MeasurementsOfRef ::= SEQUENCE {
                        RefQuality,
    refOuality
    numOfMeasurements NumOfMeasurements
}
RefQuality ::= INTEGER (0..31) -- St Dev of TOA of reference as defined in annex
NumOfMeasurements ::= INTEGER (0..7) -- No. of measurements for RefQuality as defined in annex
StdResolution ::= INTEGER (0..3)
                                         -- Values of resolution are defined in annex
OTD-FirstSetMsrs ::= OTD-MeasurementWithID
-- Neighbour info in OTD measurements 0-10 times in TD measurement info
OTD-MsrsOfOtherSets ::= CHOICE {
    identityNotPresent OTD-Measurement,
                       OTD-MeasurementWithID
    identityPresent
}
-- For this OTD measurement identity is same as the identity of BTS
-- in the first set with same sequence number
OTD-Measurement ::= SEQUENCE {
    nborTimeSlot ModuloTimeSlot,
    eotdQuality EOTDQual
                     EOTDQuality,
    otdValue
}
-- This measurement contains the BTS identity and measurement
OTD-MeasurementWithID ::=SEQUENCE {
    neighborIdentity NeighborIdentity,
nborTimeSlot ModuloTimeSlot,
    nborTimeSlot
    eotdQuality
                         EOTDQuality,
                        OTDValue
    otdValue
}
EOTDQuality ::= SEQUENCE {
   nbrofMeasurements INTEGER (0..7),
stdOfEOTD INTEGER (0..31)
}
NeighborIdentity ::= CHOICE {
    bsicAndCarrier BSICAndCarrier,
                                              -- BSIC and Carrier
                                               -- Cell ID, LAC not needed
    ci
                         CellID,
    multiFrameCarrier MultiFrameCarrier, -- MultiFrameOffest and BSIC
    requestIndex RequestIndex, -- Index to Requested Neighbor List
systemInfoIndex SystemInfoIndex, -- Index to System info list, this type of neighbour
                                               -- identity shall not be used by the MS unless it has
                                               -- received the SystemInfoAssistData from the SMLC for
                                               -- this cell.
                       CellIDAndLAC
    ciAndLAC
                                               -- CI and LAC
}
-- Multiframe and carrier
MultiFrameCarrier ::= SEQUENCE {
    bcchCarrier BCCHCarrier
    multiFrameOffset MultiFrameOffset
}
-- OTD measurement value for neighbour
OTDValue ::= INTEGER (0..39999)
```

```
-- Location information IE
LocationInfo ::= SEQUENCE {
               INTEGER (0..65535),
                                                   -- Reference Frame number
    refFrame
    -- If refFrame is within (42432..65535), it shall be ignored by the receiver
    -- in that case the MS should provide GPS TOW if available
    gpsTOW
                    INTEGER (0..14399999) OPTIONAL,
                                                           -- GPS TOW
                     FixType,
    fixType
    -- Note that applicable range for refFrame is 0 - 42431
    -- Possible shapes carried in posEstimate are
    -- ellipsoid point,
    -- ellipsoid point with uncertainty circle
    -- ellipsoid point with uncertainty ellipse
    -- ellipsoid point with altitude and uncertainty ellipsoid
    posEstimate Ext-GeographicalInformation
}
FixType ::= INTEGER {
    twoDFix (0),
    threeDFix (1)
\{ (0..1) \}
-- GPS-Measurement information
GPS-MeasureInfo ::= SEQUENCE {
    -- Measurement info elements
    -- user has to make sure that in this element is number of elements
    -- defined in reference BTS identity
    gpsMsrSetList SeqOfGPS-MsrSetElement
SeqOfGPS-MsrSetElement ::= SEQUENCE (SIZE(1..3)) OF GPS-MsrSetElement
-- OTD measurent information 1-3 times in message
GPS-MsrSetElement ::= SEQUENCE {
    refFrame INTEGER (0..65535) OPTIONAL,
                                                         -- Reference Frame number
    gpsTOW
                     GPSTOW24b,
                                                         -- GPS TOW
    -- Note that applicable range for refFrame is 0 - 42431
--N_SAT can be read from number of elements of gps-msrList
    gps-msrList
                   SeqOfGPS-MsrElement
}
-- 24 bit presentation for GPSTOW
GPSTOW24b ::= INTEGER (0..14399999)
-- measured elements in measurement parameters field
SeqOfGPS-MsrElement ::= SEQUENCE (SIZE(1.16) OF GPS-MsrElement
GPS-MsrElement ::= SEQUENCE {
   satelliteID SatelliteID,
cNo INTEGER (0...
                                                    -- Satellite identifier

        cNo
        INTEGER (0..63),

        doppler
        INTEGER (-32768..32767),

        wholeChips
        INTEGER (0..1022),

        fracChips
        INTEGER (0..1024),

                     INTEGER (0..63),
                     INTEGER (0..63),
INTEGER (-32768..32767),
                                                    -- carrier noise ratio
                                                    -- doppler, mulltiply by 0.2
                                                    -- whole value of the code phase measurement
                                                    -- fractional value of the code phase measurement
                                                    -- a value of 1024 shall not be encoded by the
                                                    -- sender
                                                    -- the receiver shall consider a value of 1024 to
                                                    -- be invalid data
                                                    -- multipath indicator
-- index
                   MpathIndic,
    mpathIndic
    pseuRangeRMSErr INTEGER (0..63)
}
-- Multipath indicator
MpathIndic ::= ENUMERATED {
    notMeasured (0),
    low (1).
    medium (2),
    high (3)
}
```

```
-- Location error IE
LocationError ::= SEQUENCE {
                               LocErrorReason,
   locErrorReason
   additionalAssistanceData AdditionalAssistanceData OPTIONAL,
}
LocErrorReason ::= ENUMERATED {
   unDefined (0),
   notEnoughBTSs (1),
   notEnoughSats (2),
   eotdLocCalAssDataMissing (3),
    eotdAssDataMissing (4),
   gpsLocCalAssDataMissing (5),
   gpsAssDataMissing (6),
   methodNotSupported (7),
   notProcessed (8),
   refBTSForGPSNotServingBTS (9),
   refBTSForEOTDNotServingBTS (10),
   . . .
}
-- exception handling:
-- an unrecognized value shall be treated the same as value 0
-- defines additional assistance data needed for any new location attempt
-- MS shall retain any assistance data already received
AdditionalAssistanceData ::= SEQUENCE {
   gpsAssistanceData GPSAssistanceData
extensionContainer ExtensionContainer
                                                   OPTIONAL.
                                                  OPTIONAL,
}
GPSAssistanceData ::= OCTET STRING (SIZE (1..maxGPSAssistanceData))
-- GPSAssistanceData has identical structure and encoding to octets 3 to n of the
-- GPS Assistance Data IE in 3GPP TS 49.031
maxGPSAssistanceData INTEGER := 40
 - Protocol Error Causes
ErrorCodes ::= ENUMERATED {
   unDefined (0),
missingComponet (1),
incorrectData (2),
missingIEorComponentElement (3),
messageTooShort (4),
unknowReferenceNumber (5),
. . .
}
-- exception handling:
-- an unrecognized value shall be treated the same as value 0
-- GPS assistance data IE
GPS-AssistData ::= SEQUENCE {
   controlHeader
                      ControlHeader
}
 - More Assistance Data To Be Sent IE
-- More Assistance Data Components On the Way indication for delivery of an entire set of assistance
-- data in multiple Assistance Data components.
MoreAssDataToBeSent ::= ENUMERATED {
   noMoreMessages (0), -- This is the only or last Assistance Data message used to deliver
                                -- the entire set of assistance data.
   moreMessagesOnTheWay (1)
                               -- The SMLC will send more Assistance Data messages to deliver the
                                -- the entire set of assistance data.
}
```

```
-- Control header of the GPS assistance data
ControlHeader ::= SEQUENCE {
    -- Field type Present information
    referenceTime ReferenceTime
refLocation RefLocation
                                                      OPTIONAL,
                                                     OPTIONAL,

    dgpsCorrections
    DGPsCorrections

    navigationModel
    NavigationModel

    ionosphericModel
    IonosphericModel

                                                      ,
OPTIONAL,
                                                      OPTIONAL,
                                                     OPTIONAL,
    utcModel
                             UTCModel
                                                      OPTIONAL,
   almanac
                             Almanac
                                                      OPTIONAL,
    acquisAssistAcquisAssistOPTIONAL,realTimeIntegritySeqOf-BadSatelliteSetOPTIONAL
                                                      OPTIONAL,
}
ReferenceTime ::= SEQUENCE {
    gpsTime
                             GPSTime,
    gsmTime
                             GSMTime
                                                      OPTIONAL,
    gpsTowAssist
                             GPSTOWAssist
                                                      OPTIONAL
}
-- GPS Time includes week number and time-of-week (TOW)
GPSTime ::= SEQUENCE {
    gpsTOW23b
                        GPSTOW23h
    gpsWeek
                         GPSWeek
}
-- GPSTOW, range 0-604799.92, resolution 0.08 sec, 23-bit presentation
GPSTOW23b ::= INTEGER (0..7559999)
-- GPS week number
GPSWeek ::= INTEGER (0..1023)
-- GPSTOWAssist consists of TLM message, Anti-spoof flag, Alert flag, and 2 reserved bits in TLM Word
-- for each visible satellite.
-- N_SAT can be read from number of elements in GPSTOWAssist
GPSTOWAssist ::= SEQUENCE (SIZE(1..12)) OF GPSTOWAssistElement
GPSTOWAssistElement ::= SEQUENCE {
    satelliteID SatelliteID,
tlmWord TLMWord,
    antiSpoof
                        AntiSpoofFlag,
    alert
                         AlertFlag,
    tlmRsvdBits
                        TLMReservedBits
}
-- TLM Word, 14 bits
TLMWord ::= INTEGER (0..16383)
-- Anti-Spoof flag
AntiSpoofFlag ::= INTEGER (0..1)
 - Alert flag
AlertFlag ::= INTEGER (0..1)
-- Reserved bits in TLM word, MSB occurs earlier in TLM Word transmitted by satellite
TLMReservedBits ::= INTEGER (0..3)
GSMTime ::= SEQUENCE {
    bcchCarrier BCCHCarrier,
                                      -- BCCH carrier
                                     -- BSIC
    bsic
                     BSIC,
    frameNumber
                   FrameNumber,
    timeSlot
                     TimeSlot,
    bitNumber
                   BitNumber
}
```

-- Frame number

```
FrameNumber ::= INTEGER (0..2097151)
-- Time slot number
TimeSlot ::= INTEGER (0...7)
-- Bit number
BitNumber ::= INTEGER (0..156)
 - Reference Location IE
RefLocation ::= SEQUENCE {
   threeDLocation
                          Ext-GeographicalInformation
}
-- DGPS Corrections IE
DGPSCorrections ::= SEQUENCE {
   gpsTOW INTEGER (0..604799), -- DGPS reference time
              INTEGER (0..7),
   status
   -- N_SAT can be read from number of elements of satList
              SeqOfSatElement
   satList
SeqOfSatElement ::= SEQUENCE (SIZE (1..16)) OF SatElement
-- number of correction for satellites
SatElement ::= SEQUENCE {
   satelliteID
                 SatelliteID,
--- Sequence number for ephemeris
  iode INTEGER (0..239),
   -- User Differential Range Error
                  INTEGER (0..3),
   udre
   -- Pseudo Range Correction, range is
   -- -655.34 - +655.34,
   pseudoRangeCor INTEGER (-2047..2047),
   -- Pseudo Range Rate Correction, range is
   -- -4.064 - +4.064,
   rangeRateCor INTEGER (-127..127),
-- Delta Pseudo Range Correction 2, range is
---127 - +127
   deltaPseudoRangeCor2 INTEGER (-127..127),
   -- Delta Pseudo Range Correction 2, range is
---0.224 - +0.224
   deltaRangeRateCor2
                          INTEGER (-7..7),
   -- Delta Pseudo Range Correction 3, range is
---127 - +127
  deltaPseudoRangeCor3
                        INTEGER (-127..127),
   -- Delta Pseudo Range Correction 3, range is
---0.224 - +0.224
   deltaRangeRateCor3
                         INTEGER (-7..7)
}
SatelliteID ::= INTEGER (0..63) -- identifies satellite
-- Navigation Model IE
NavigationModel ::= SEQUENCE {
   navModelList SeqOfNavModelElement
}
```

```
-- navigation model satellite list
SeqOfNavModelElement ::= SEOUENCE (SIZE(1..16)) OF NavModelElement
NavModelElement ::= SEQUENCE {
        satelliteID SatelliteID,
        satStatus
                                       SatStatus
                                                                      -- satellite status
}
  - the Status of the navigation model
SatStatus ::= CHOICE {
        -- New satellite, new Navigation Model
       newSatelliteAndModelUC UncompressedEphemeris,
          -- Existing satellite, Existing Navigation Model
       oldSatelliteAndModel
                                                       NULL.
        -- Existing satellite, new Navigation Model
       newNaviModelUC
                                                      UncompressedEphemeris,
        . . .
}
-- Uncompressed satellite emhemeris and clock corrections
UncompressedEphemeris ::= SEQUENCE {
       ephemCodeOnL2INTEGER (0..3),ephemURAINTEGER (0..15),ephemSVhealthINTEGER (0..63),ephemIODCINTEGER (0..1023),

        ephemSVhealth
        INTEGER (0..63),

        ephemIODC
        INTEGER (0..1023),

        ephemL2Pflag
        INTEGER (0..1),

        ephemSF1Rsvd
        EphemerisSubframelReserved,

        ephemTgd
        INTEGER (-128..127),

        ephemAF2
        INTEGER (-128..127),

        ephemAF2
        INTEGER (-2097152..2097151),

        ephemCrs
        INTEGER (-32768..32767),

        ephemMP0
        INTEGER (-32768..32767),

        ephemM0
        INTEGER (-32768..32767),

        ephemM0
        INTEGER (-32768..32767),

        ephemM0
        INTEGER (-32768..32767),

        ephemCuc
        INTEGER (-32768..32767),

        ephemM0
        INTEGER (-32768..32767),

        ephemE
        INTEGER (-32768..32767),

        ephemE
        INTEGER (-32768..32767),

        ephemAPowerHalf INTEGER (0..4294967295),
        ephemToe INTEGER (0..37799),
ephemFitFlag INTEGER (0..1),
       ephemAODA INTEGER (0..31),
ephemCic INTEGER (-32768..32767),
        ephemOmegaA0 INTEGER (-2147483648..2147483647),

        ephemCis
        INTEGER
        (-32768..32767),

        ephemI0
        INTEGER
        (-2147483648..2147483647),

        ephemCrc
        INTEGER
        (-32768..32767),

        ephemW
        INTEGER
        (-2147483648..2147483647),

        ephemOmegaADot INTEGER (-8388608..8388607),
        ephemIDot INTEGER (-8192..8191)
}
-- Reserved bits in subframe 1 of navigation message
EphemerisSubframelReserved ::= SEQUENCE {
       reserved1 INTEGER (0..8388607),
                                                                                       -- 23-bit field
       reserved2
                                      INTEGER (0..16777215), -- 24-bit field
                                       INTEGER (0..16777215), -- 24-bit field
INTEGER (0..65535) -- 16-bit field
                            INTEGER (0..107772)
INTEGER (0..65535)
        reserved3
       reserved4
}
```

```
-- Ionospheric Model IE
IonosphericModel ::= SEQUENCE {
                    odel ::= SEQUENCE {
    INTEGER (-128..127),
    INTEGER (-128..127)
      alfa0
      alfal
      alfa2
      alfa3
     beta0
beta1
      beta2
      beta3
}
-- Universal Time Coordinate Model
UTCModel ::= SEQUENCE {

      INTEGER (-8388608..8388607),

      utcA0
      INTEGER (-2147483648..2147483647),

      utcTot
      INTEGER (0..255),

      utcWNt
      INTEGER (0..255),

      utcDeltaTls
      INTEGER (-128..127),

      utcDN
      INTEGER (-129..107)

     utcDN INTEGER (-128..127),
utcDeltaTlsf INTEGER (-128..127)
}
-- Almanac, Long term model
-- NOTE: These are parameters are subset of the ephemeris
-- NOTE: But with reduced resolution and accuracy
Almanac ::= SEQUENCE {
      alamanacWNa
                                INTEGER (0..255),
                                                                 -- Once per message
      -- navigation model satellite list.
      -- The size of almanacList is actually Nums_Sats_Total field
      almanacList
                               SeqOfAlmanacElement
SeqOfAlmanacElement ::= SEQUENCE (SIZE(1..64)) OF AlmanacElement
-- Almanac info once per satellite
AlmanacElement ::= SEQUENCE {
     satelliteID SatelliteID,
     almanacEINTEGER (0..65535),almanacToaINTEGER (0..255),almanacKsiiINTEGER (-32768..32767),almanacOmegaDotINTEGER (-32768..32767),almanacSVhealthINTEGER (0..255),INTEGER (0..255),INTEGER (0..255),
      almanacAPowerHalf INTEGER (0..16777215),
      almanacOmegaO INTEGER (-8388608..8388607),
almanacW INTEGER (-8388608..8388607),

      almanacW
      INTEGER (-8388608..8388607),

      almanacM0
      INTEGER (-8388608..8388607),

      almanacAF0
      INTEGER (-1024..1023),

      almanacAF1
      INTEGER (-1024..1023)

}
 - Acquisition Assistance
AcquisAssist ::= SEQUENCE {
      -- Number of Satellites can be read from acquistList
      timeRelation
                                TimeRelation,
       -- Acquisition assistance list
      -- The size of Number of Satellites is actually Number of Satellites field
      acquisList
                                SeqOfAcquisElement
.
SeqOfAcquisElement ::= SEQUENCE (SIZE(1..16)) OF AcquisElement
```

```
-- the relationship between GPS time and air-interface timing
TimeRelation ::= SEQUENCE {
    _ _
              GPSTOW23b,
    gpsTOW
                               -- 23b presentation
   gsmTime GSMTime OPTIONAL
}
-- data occuring per number of satellites
AcquisElement ::= SEQUENCE {
    svid
                             SatelliteID,
    -- Doppler Oth order term,
    -- -5120.0 - 5117.5 Hz (= -2048 - 2047 with 2.5 Hz resolution)
                             INTEGER (-2048..2047),
   doppler0
   addionalDoppler AddionalDopplerFields OPTIONAL,
                            INTEGER (0..1022), -- Code Phase
INTEGER (0..19), -- Integer Code Phase
INTEGER (0..3), -- GPS bit number
INTEGER (0..15), -- Code Phase Search Window
   codePhase
   intCodePhase
   gpsBitNumber
   gpsBitNumber INTEGER (0..3),
codePhaseSearchWindow INTEGER (0..15),
                                                     OPTIONAL
                           AddionalAngleFields
   addionalAngle
}
AddionalDopplerFields ::= SEQUENCE {
    -- Doppler 1st order term, -1.0 - +0.5 \rm Hz/sec
    -- (= -42 + (0 to 63) with 1/42 Hz/sec. resolution)
   doppler1INTEGER (0..63),dopplerUncertaintyINTEGER (0..7)
}
AddionalAngleFields ::= SEQUENCE {
   -- azimuth angle, 0 - 348.75 deg (= 0 - 31 with 11.25 deg resolution)
   azimuth INTEGER (0..31),
-- elevation angle, 0 - 78.75 deg (= 0 - 7 with 11.25 deg resolution)
                            INTEGER (0..7)
   elevation
}
-- Real-Time Integrity
-- number of bad satellites can be read from this element
SeqOf-BadSatelliteSet ::= SEQUENCE (SIZE(1..16)) OF SatelliteID
-- Extension Elements
 - Release 98 Extensions here
Rel98-MsrPosition-Req-Extension ::= SEQUENCE {
   rel98-Ext-ExpOTD
                                Rel98-Ext-ExpOTD
                                                          OPTIONAL, -- ExpectedOTD extension
    . . . .
    gpsTimeAssistanceMeasurementRequest NULL OPTIONAL,
    qpsReferenceTimeUncertainty GPSReferenceTimeUncertainty OPTIONAL
        -- Further R98 extensions here
Rel98-AssistanceData-Extension ::= SEQUENCE {
                                Rel98-Ext-ExpOTD
  rel98-Ext-ExpOTD
                                                          OPTIONAL, -- ExpectedOTD extension
    . . .
   gpsTimeAssistanceMeasurementRequest NULL OPTIONAL,
  gpsReferenceTimeUncertainty GPSReferenceTimeUncertainty OPTIONAL
   -- Further R98 extensions here
}
-- Release 98 ExpOTD extension
Rel98-Ext-ExpOTD ::= SEQUENCE {
-- If MsrAssistBTS is included in message, msrAssistData-R98-ExpOTD shall be included.
   msrAssistData-R98-ExpOTD
                                         MsrAssistData-R98-ExpOTD
                                                                               OPTIONAL,
-- If SystemInfoAssistaData is included in message, systemInfoAssistData-R98-ExpOTD shall be
-- included.
    systemInfoAssistData-R98-ExpOTD SystemInfoAssistData-R98-ExpOTD OPTIONAL
}
```

-- MsrAssistData R98 extension MsrAssistData-R98-ExpOTD ::= SEQUENCE { msrAssistList-R98-ExpOTD SeqOfMsrAssistBTS-R98-ExpOTD } -- Indexes in SeqOfMsrAssistBTS-R98-ExpOTD refer to SeqOfMsrAssistBTS -- If the index exceeds the SeqOfMsrAssistBTS range or if there is other -- inconsistencies between the BTS indices, the MS shall apply protocol -- error cause incorrectData SeqOfMsrAssistBTS-R98-ExpOTD ::= SEQUENCE (SIZE(1..15)) OF MsrAssistBTS-R98-ExpOTD -- This element completes MsrAssistBTS IE MsrAssistBTS-R98-ExpOTD ::= SEQUENCE { expectedOTD ExpectedOTD, expOTDUncertainty ExpOTDUncertainty } -- SystemInfoAssistData R98 extension SystemInfoAssistData-R98-ExpOTD ::= SEQUENCE { systemInfoAssistListR98-ExpOTD SeqOfSystemInfoAssistBTS-R98-ExpOTD } -- SeqOfSystemInfoAssistBTS-R98-ExpOTD index refer to SeqOfSystemInfoAssistBTS -- If the index exceeds the SegOfSystemInfoAssistBTS range or if there is other -- inconsistencies between the BTS indices, the MS shall apply protocol -- error cause incorrectData SeqOfSystemInfoAssistBTS-R98-ExpOTD ::= SEQUENCE (SIZE(1..32)) OF SystemInfoAssistBTS-R98-ExpOTD -- whether n.th is present or not ? SystemInfoAssistBTS-R98-ExpOTD ::= CHOICE { notPresent NULL, present AssistBTSData-R98-ExpOTD } -- This element completes AssistBTSData IE AssistBTSData-R98-ExpOTD ::= SEQUENCE { expectedOTD ExpectedOTD. expOTDuncertainty ExpOTDUncertainty -- Uncertainty of expected OTD } -- Expected OTD value between nbor base station and reference BTS -- at MS's current estimated location. ExpectedOTD ::= INTEGER (0..1250) -- The ExpectedOTD value 1250 shall not be encoded by the transmitting entity and -- shall be treated by the receiving entity as 0. -- Uncertainty of Exptected OTD in bits ExpOTDUncertainty ::= INTEGER(0...7) -- Release 98 extensions GPSReferenceTimeUncertainty ::= INTEGER (0 .. 127) -- Coding according to Annex GPSTimeAssistanceMeasurements ::= SEQUENCE { referenceFrameMSB INTEGER (0 .. 63) OPTIONAL, -- MSB of frame number gpsTowSubmsINTEGER (0 .. 9999)OPTIONAL, -- in units of 100ns, for MS based AGPSdeltaTowINTEGER (0 .. 127)OPTIONAL, -- for MS assisted AGPS GPSReferenceTimeUncertainty OPTIONAL gpsReferenceTimeUncertainty } Rel-98-MsrPosition-Rsp-Extension ::= SEQUENCE { -- First extension to Release 98 rl-98-Ext-MeasureInfo SEOUENCE { otd-MeasureInfo-R98-Ext OTD-MeasureInfo-R98-Ext OPTIONAL timeAssistanceMeasurements GPSTimeAssistanceMeasurements OPTIONAL -- Further R98 extensions here

3GPP TS 44.031 version 4.14.0 Release 4

```
-- This is an addition to OTD-MeasureInfo element defined in original message,
-- If OTD-MeasureInfo is absent, or if one or more OTD-MsrElementRest are present
-- OTD-MeasureInfo-R98-Ext shall be absent.
-- OTD-MeasureInfo-R98-Ext ::= SEQUENCE {
    -- Measurement info elements
    otdMsrFirstSets-R98-Ext OTD-MsrElementFirst-R98-Ext
}
-- OTD measurement information Ext for the first set only
OTD-MsrElementFirst-R98-Ext ::= SEQUENCE {
    -- additional measured neighbors in OTD measurements
    otd-FirstSetMsrs-R98-Ext SeqUENCE {
    -- additional measured neighbors in OTD measurements
    otd-FirstSetMsrs-R98-Ext ::= SEQUENCE (SIZE(1..5)) OF OTD-FirstSetMsrs
```

Annex A (informative): Description of Components

A.1 Introduction

This annex describes the contents of components.

A.2 Measure Position Request

A.2.1 General

The Measure Position Request is a RRLP component from the SMLC to the MS. This component is common to both E-OTD and GPS location methods. As a response to this component, the MS performs E-OTD or GPS measurements and possibly calculates its own position, if the MS and/or the network support these options. It contains the following elements.

Element	Type/Reference	Presence
Positioning Instructions	Positioning Instructions	М
	2.2.1	
E-OTD Reference BTS for	E-OTD Reference BTS	0
Assistance Data	for Assistance Data 2.2.2	
E-OTD Measurement Assistance	E-OTD Measurement	0
Data	Assistance Data 2.2.3	
E-OTD Measurement Assistance	E-OTD Measurement	0
Data for System Information List	Assistance Data for	
	System Information List	
	2.2.4	
GPS Assistance Data	GPS Assistance Data	0
	4.2.4	
GPS Time Assistance Measurement	GPS Time Assistance	0
Request	Measurement Request	
	2.2.4a	
GPS Reference Time Uncertainty	GPS Reference Time	0
	Uncertainty 2.2.4b	

Table A.1: Measure Position Request component content

A.2.2 Elements

A.2.2.1 Positioning Instructions Element

The purpose of Positioning Instructions element is to express the allowed/required location method(s), and to provide information required QoS. This element is mandatory in the Measure Position Request message, and contains the following fields:

Method Type

This field indicates whether MS based or assisted version is allowed/requested. If the Methods field includes more than one method, the Method Type applies to all of them. This field is mandatory, and has the following values:

'0': MS assisted

- '1': MS based
- '2': MS based is preferred, but MS assisted is allowed

'3': MS assisted is preferred, but MS based is allowed

Positioning Methods

This field indicates which location method or methods should be used. This field is mandatory.

'0': E-OTD

'1': GPS

'2': E-OTD or GPS (i.e. both can be reported)

Response Time

This field indicates the desired response time. However, when performing measurements, the desired response time may be exceeded. This field is mandatory.

The response time is 2^{N} seconds, where N is the value in this field. Thus the desired maximum response time can be 1, 2, 4, 8, 16, 32, 64, or 128 seconds.

Range: 0-7

Accuracy

This field indicates the required accuracy of the location estimate. This is field is mandatory when Method Type is '1', '2', or '3' and optional when Method Type is '0'.

This field is 7 bit Uncertainty Code as defined in 3GPP TS 23.032.

Multiple Sets

This field indicates whether MS is requested to send multiple *E-OTD/GPS Measurement Information Sets*. The maximum number of measurement sets is three. This is field is mandatory. MS is expected to include the current measurement set. Additionally MS may include historical measurement sets, or measure new additional sets if the response time allows that:

'0': multiple IEs can be send

'1': sending of multiple sets is not allowed

Environment Characterization

Environment Characterization field provides the MS with information about expected multipath and NLOS in the current area. This field is optional.

- '0': possibly heavy multipath and NLOS conditions (e.g. bad urban or urban)
- '1': no or light multipath and usually LOS conditions (e.g. suburban or rural)
- '2': not defined or mixed environment
- '3': reserved for future use

A.2.2.2 E-OTD Reference BTS for Assistance Data Element

The RTD and 51 multiframe offset values in the E-OTD Measurement Assistance Data element and the E-OTD Measurement Assistance Data for System Information List element are calculated relative to the BTS indicated in this element. Also the E-OTD Measurement Assistance data for System Information List element, if present, refers to the System Information Neighbor List of this reference BTS.

Inclusion of this parameter is mandatory for E-OTD since it is not possible to reliably default to the current serving BTS for the target MS, as there is a small chance that the SMLC does not know this. If the E-OTD Measurement Assistance data for System Information List element is present, the current serving cell must be the same as reference BTS identified in this element.

BCCH Carrier

This field indicates the absolute RF channel number of BCCH of the reference BTS. This field is mandatory.

Range: 0 – 1023

BSIC

This field indicates the BSIC (Base Station Identity Code) of the reference BTS. This field is mandatory.

Range: 0 - 63

Time Slot Scheme

The Time Slot Scheme field indicates the type of transmission scheme the reference BTS is using. If the MS measures BTSs signals from time slots other than 0 or 4, and it is informed about the burst length schemes used by BTSs, then it can compensate for the possible error. (This is necessary if the MS averages bursts from different time slots, and the BTS uses varying lengths of bursts.) This field is mandatory.

0' =all time slots are 156.25 bits long

'1' = time slots 0 and 4 are 157 bits long and other time slots are 156 bits long

BTS Position

This field contains the BTS position in the format defined in 3GPP TS 23.032. This field is optional, but should be present for MS based E-OTD positioning. The allowed shapes are:

- ellipsoid point;
- ellipsoid point with altitude and uncertainty ellipsoid.

A.2.2.3 E-OTD Measurement Assistance Data Element

This element identifies BTSs that are used for E-OTD measurements. This element helps the MS to make measurements from neighbor BTS (even below decoding level). This element is optional in the Measure Position Request component. The presence of this element means that the MS should try to measure the E-OTD values between the reference BTS and the BTSs identified in this element.

This element is used to deliver E-OTD measurement assistance data for those BTSs, that are not included in the System Information Neighbor List of the reference BTS, if necessary.

The RTD and 51 multiframe offset values are calculated relative to the BTS indicated in the E-OTD Reference BTS for Assistance Data element. This element contains the following fields.

Number of BTSs

This field indicates how many BTSs are included in this IE. This field is mandatory. The maximum number of BTSs in this message for whom the assistance data can be given is 16 (reference BTS and 15 neigbour BTSs). Thus the sum of **Number of BTSs** field in this IE and total amount of **E-OTD Neighbor present** bits with value '1' in **E-OTD Measurement Assistance Data for System Information List IE** can be at a maximum 15.

Range: 1 to 15.

The following fields are repeated for the number of BTSs included in the Number of BTSs field.

BCCH Carrier

This field indicates the absolute RF channel number of BCCH of the particular BTS. This field is mandatory.

Range: 0 – 1023

BSIC

This field indicates the BSIC (Base Station Identity Code) of the particular BTS. This field is mandatory.

Range: 0 - 63

Multiframe Offset

This field indicates the frame difference between the start of the 51 multiframes frames being transmitted from this BTS and the reference BTS. The multiframe offset is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of the 51 multiframe in the BTS in question, and T_{Ref} is the time of the start of the 51 multiframe in the reference BTS. This field is mandatory. Multiframe Offset may be used to calculate the Expected Multiframe Offset (the Multiframe Offset value that MS is expected to measure between this BTS and reference BTS in its current estimated location).

Expected Multiframe Offset = (Multiframe Offset + Adjustment) modulo 51

Adjustment = 1 if Rough RTD – Expected OTD \geq 850

Adjustment = -1 if Rough RTD – Expected OTD = < -850

Adjustment = 0 if -400 =< Rough RTD - Expected OTD =< 400

If the Rough RTD – Expected OTD is not within any of the ranges above, an error has occurred and the Expected OTD should be ignored and no Expected Multiframe Offset can be calculated.

Range: 0 - 51

Usable range of Multiframe Offset value is 0 - 50. The Multiframe Offset value 51 shall not be encoded by the transmitting entity and shall be treated by the receiving entity as 0.

Time Slot Scheme

The Time Slot Scheme field indicates the type of transmission scheme the particular BTS is using. If the MS measures BTSs signals from time slots other than 0 or 4, and it is informed about the burst length schemes used by BTSs, then it can compensate for the possible error. (This is necessary if the MS averages bursts from different time slots, and the BTS uses varying lengths of bursts.) This field is mandatory.

0' =all time slots are 156.25 bits long

'1' = time slots 0 and 4 are 157 bits long and other time slots are 156 bits long

Rough RTD

This field indicates the rough RTD value between this BTS and reference BTS. The used resolution is 1 bits. This RTD value is the RTD value of TS0s (i.e. the difference in starting of TS0), not only the RTD between starts of bursts. The RTD is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of TS0 in the BTS in question, and T_{Ref} is the time of the start of the TS0 in the reference BTS. This field is mandatory.

Range: 0 - 1250

Usable range of Rough RTD value is 0 - 1249. The Rough RTD value 1250 shall not be encoded by the transmitting entity and shall be treated by the receiving entity as 0.

Accurate RTD values are needed for MS based E-OTD, i.e. when the MS calculates its own position.

Expected OTD

This field indicates the OTD value that MS is expected to measure between this BTS and reference BTS in its current estimated location. SMLC can estimate MS's location roughly e.g. based on serving BTS coordinates, TA, and possibly some other information. The used resolution is 1 bits. This OTD value is the OTD value of TSOs (i.e. the difference in starting of TSO), not only the OTD between starts of bursts. The OTD is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of TSO in the BTS in question, and T_{Ref} is the time of the start of the TSO in the reference BTS. This is element is Release 98 extension and it is an optional element included in Release98-Ext IE. SMLC shall send this element to MS supporting MS Assisted or MS Based E-OTD.

Range: 0 - 1250

Usable range of Expected OTD value is 0 - 1249. The Expected OTD value 1250 shall not be encoded by the transmitting entity and shall be treated by the receiving entity as 0.

Uncertainty Of Expected OTD

This field indicates the uncertainty in Expected OTD value. The uncertainty is related to SMLC"s estimation of MS"s location. The uncertainty defines following search window for MS, that it can use to speed up the OTD measurements:

Expected OTD - Uncertainty < measured OTD < Expected OTD + Uncertainty.

This is element is Release 98 extension and it is an optional element included in Release 98-Ext IE. SMLC shall send this element to MS supporting MS Assisted or MS Based E-OTD.

Range is 0 - 7 with following encoding:

'0'	$0 < $ uncertainty ≤ 2 bit
'1'	$2 < $ uncertainty ≤ 4 bit
'2'	4 < uncertainty <= 8 bit
'3'	8 < uncertainty <= 12 bit
'4'	12 < uncertainty <= 16 bit
'5'	16 < uncertainty <= 22 bit
'6'	22 < uncertainty <= 30 bit
'7'	uncertainty > 30 bit.

NOTE: If uncertainty in MS's location is x bits, uncertainty in Expected OTD is 2*x (in the worst case). When the uncertainty is given with value "7" no upper bound exist for the uncertainty.

The following fields tell the coordinates of neighbor BTSs that are used for E-OTD measurements, and also fine RTD values. This information allows the MS to calculate its own location. These fields (Fine RTD, Relative north, Relative east and Relative altitude) are optional. All of Fine RTD, Relative north, and Relative east fields must be present, if some of them is included.

Fine RTD

This field indicates the fine RTD value between this BTS and reference BTS. It provides the 1/256 bit duration resolution to the value expressed in the corresponding Rough RTD field. This RTD value is the RTD value of TS0s (i.e. the difference in starting of TS0), not only the RTD between starts of bursts. The RTD is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of TS0 in the BTS in question, and T_{Ref} is the time of the start of the TS0 in the reference BTS. This field is optional.

Range: 0 - 255

Relative North

This field indicates the distance of the neighbor BTS from the reference BTS in north- (negative values mean south) direction. This field is optional. The units are 0.03 seconds. The used reference ellipsoid is WGS 84 ellipsoid.

Range: -200000...200000

Relative East

This field indicates the distance of the neighbor BTS from the reference BTS in east (negative values mean west) direction. This field is optional. The units are 0.03 seconds. The used reference ellipsoid is WGS 84 ellipsoid.

Range: -200000 ... 200000

Relative Altitude

This field indicates the altitude of the neighbor BTS relative to the reference BTS in meters. This field is optional.

Range: -4000 .. 4000 meters

A.2.2.4a GPS Time Assistance Measurement Request Element

This component does not have any information contents. If this component is present, the MS is requested to return GPS time assistance measurements.

A.2.2.4b GPS Reference Time Uncertainty Element

This element provides the accuracy of the relation GPS and GSM time in the Reference Time field in GPS Assistance Data IE. If GPS TOW is the given GPS time, then the true GPS time, corresponding to the provided GSM time as observed at the MS location, lies in the interval (GPS TOW - GPS Reference Time Uncertainty, GPS TOW + GPS Reference Time Uncertainty). An entity that supports this element shall always include it when appropriate. This means that when the element is expected but is not received, lack of support at the sender can be assumed and some implementation dependent default interpretation can then be applied.

The uncertainty r, expressed in microseconds, is mapped to a number K, with the following formula:

$$r = C^*(((1+x)^K)-1)$$

with C = 0.0022 and x = 0.18. With $0 \le K \le 127$, a suitably useful range between 0 and 3 second is achieved for the uncertainty, while still being able to code down to values as small as 0.3 nanoseconds. To encode any higher value of uncertainty than that corresponding in the above formula to K=127, the same value, K=127, shall also be used. The uncertainty is then coded on 7 bits, as the binary encoding of K.

Table A.1a: Example values for the GPS Reference Time Uncertainty Parameter Format

Value of K	Value of uncertainty
0	0 nanoseconds
1	0.396 nanoseconds
2	0.863 nanoseconds
-	-
50	8.64 microseconds
-	-
127	\geq 2.96 seconds

A.2.2.4 E-OTD Measurement Assistance Data for System Information List Element

This element identifies those BTSs in the System Information Neighbor List that are used for E-OTD measurements. The System Information Neighbor Lists, to which this assistance data is given, are System Information Neighbor Lists that are send in the dedicated mode. This element helps the MS to make measurements from those neighbor BTS (even below decoding level). This element is optional in the Measure Position Request component. The presence of this element means that the MS should use the BTSs identified here to the E-OTD measurements.

The RTD and 51 multiframe offset values are calculated relative to the reference BTS. This element contains the following fields.

Number of Neighbors

This field indicates how many neighbors are included in this IE.

Range: 1-32

The following fields are repeated for the number indicated in the Number of Neighbors field.

E-OTD Neighbor present

This field indicates whether the information concerning a certain BTS in the Neighbor List is present. Altogether no more than 15 BTS can have the indication "Neighbor is included". The maximum number of BTSs in this message for whom the assistance data can be given is 16 (reference BTS and 15 neigbour BTSs). Thus the sum of total amount of **E-OTD Neighbor present** bits with value '1' in this IE and **Number of BTSs** field in **E-OTD Measurement Assistance Data IE** can be at a maximum 15.

- '0' Neighbor not included
- '1' Neighbor is included

The following fields (BSIC, Multiframe Offset, Time Slot Sscheme and Rough RTD) are included if E-OTD neighbor present field is set to '1'.

BSIC

This field indicates the BSIC (Base Station Identity Code) of the particular BTS. This field is mandatory.

Range: 0 - 63

Multiframe Offset

This field indicates the frame difference between the start of the 51 multiframes frames being transmitted from this BTS and the reference BTS. The multiframe offset is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of the 51 multiframe in the BTS in question, and T_{Ref} is the time of the start of the 51 multiframe in the reference BTS. This field is mandatory. Multiframe Offset may be used to calculate the Expected Multiframe Offset (the Multiframe Offset value that MS is expected to measure between this BTS and reference BTS in its current estimated location).

Expected Multiframe Offset = (Multiframe Offset + Adjustment) modulo 51

Adjustment = 1 if Rough RTD – Expected OTD >= 850

Adjustment = -1 if Rough RTD - Expected OTD =< -850

Adjustment = 0 if -400 =< Rough RTD - Expected OTD =< 400

If the Rough RTD – Expected OTD is not within any of the ranges above, an error has occurred and the Expected OTD should be ignored and no Expected Multiframe Offset can be calculated.

Range: 0 - 51

Usable range of Expected OTD value is 0 - 1249. The Expected OTD value 1250 shall not be encoded by the transmitting entity and shall be treated by the receiving entity as 0.

Time Slot Scheme

The Time Slot Scheme field indicates the type of transmission scheme the particular BTS is using. If the MS measures BTSs signals from time slots other than 0 or 4, and it is informed about the burst length schemes used by BTSs, then it can compensate for the possible error. (This is necessary if the MS averages bursts from different time slots, and the BTS uses varying lengths of bursts.) This field is mandatory.

0' =all time slots are 156.25 bits long

'1' = time slots 0 and 4 are 157 bits long and other time slots are 156 bits long

Rough RTD

This field indicates the RTD value between this BTS and the reference BTS. The used resolution is 1 bit. This RTD value is the RTD value of TS0s (i.e. the difference in starting of TS0), not only the RTD between starts of bursts. The RTD is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of TS0 in the BTS in question, and T_{Ref} is the time of the start of the TS0 in the reference BTS. This field is mandatory.

Range: 0 - 1250

Usable range of Rough RTD value is 0 - 1249. The RoughRTD value 1250 shall not be encoded by the transmitting entity and shall be treated by the receiving entity as 0.

Expected OTD

This field indicates the OTD value that MS is expected to measure between this BTS and reference BTS in its current estimated location. SMLC can estimate MS's location roughly e.g. based on serving BTS coordinates, TA, and possibly some other information. The used resolution is 1 bits. This OTD value is the OTD value of TS0s (i.e. the difference in starting of TS0), not only the OTD between starts of bursts. The OTD is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of TS0 in the BTS in question, and T_{Ref} is the time of the start of the TS0 in the reference BTS. This is element is Release 98 extension and it is an optional element included in Release98-Ext IE. SMLC shall send this element to MS supporting MS Assisted or MS Based E-OTD.

Range: 0 - 1250

Usable range of Expected OTD value is 0 - 1249. The Expected OTD value 1250 shall not be encoded by the transmitting entity and shall be treated by the receiving entity as 0.

Uncertainty Of Expected OTD

This field indicates the uncertainty in Expected OTD value. The uncertainty is related to SMLC"s estimation of MS"s location. The uncertainty defines following search window for MS, that it can use to speed up the OTD measurements:

Expected OTD - Uncertainty < measured OTD < Expected OTD + Uncertainty.

This is element is Release 98 extension and it is an optional element included in Release 98-Ext IE. SMLC shall send this element to MS supporting MS Assisted or MS Based E-OTD.

Range is 0 - 7 with following encoding:

'0'	$0 < $ uncertainty ≤ 2 bit
'1'	$2 < $ uncertainty ≤ 4 bit
'2'	4 < uncertainty <= 8 bit
'3'	8 < uncertainty <= 12 bit
'4'	12 < uncertainty <= 16 bit
'5'	16 < uncertainty <= 22 bit
'6'	22 < uncertainty <= 30 bit
'7'	uncertainty > 30 bit.

NOTE: If uncertainty in MS's location is x bits, uncertainty in Expected OTD is 2*x (in the worst case). When the uncertainty is given with value "7" no upper bound exist for the uncertainty.

The following fields tell the coordinates of neighbor BTSs that are used for E-OTD measurements, and also fine RTD values. This information allows the MS to calculate its own location. These fields (Fine RTD, Relative north, Relative east and Relative altitude) are optional. All of Fine RTD, Relative north, and Relative east fields must be present, if some of them is included.

Fine RTD

This field indicates the fine RTD value between this BTS and reference BTS. It provides the 1/256 bit duration resolution to the value expressed in the corresponding Rough RTD field. This RTD value is the RTD value of TS0s (i.e. the difference in starting of TS0), not only the RTD between starts of bursts. The RTD is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of TS0 in the BTS in question, and T_{Ref} is the time of the start of the TS0 in the reference BTS. This field is optional.

Range: 0 - 255

Relative North

This field indicates the distance of the neighbor BTS from the reference BTS in north- (negative values mean south) direction. This field is optional. The units are 0.03 seconds. The used reference ellipsoid is WGS 84 ellipsoid.

Range: -200000...200000

Relative East

This field indicates the distance of the neighbor BTS from the reference BTS in east (negative values mean west) direction. This field is optional. The units are 0.03 seconds. The used reference ellipsoid is WGS 84 ellipsoid.

Range: -200000 ... 200000

Relative Altitude

This field indicates the altitude of the neighbor BTS relative to the reference BTS in meters. This field is optional.

Range: -4000 .. 4000 meters

A.3 Measure Position Response

A.3.1 General

The Measure Position Response is a RRLP component from the MS to the network. It is the response to the Measure Position Request. It contains the following elements. One of the three elements containing measurement data or

location estimate (*E-OTD Measurement Information*, *Location Information* or *GPS Measurement Information*) or *Location Information Error element* must be included.

Element	Type/Reference	Presence
Multiple Sets	Multiple Sets 3.2.1	0
Reference BTS Identity	Reference BTS Identity 3.2.2	0
E-OTD Measurement Information	E-OTD Measurement Information 3.2.3	0
Location Information	Location Information 3.2.4	0
GPS Measurement Information	GPS Measurement Information 3.2.5	0
Location Information Error	Location Information Error 3.2.6	С
GPS Time Assistance Measurements	GPS Time Assistance Measurements 3.2.6a	0

Table A.2: Measure Position Response component content	Table	A.2: N	leasure	Position	Response	com	ponent content
--	-------	--------	---------	----------	----------	-----	----------------

A.3.2 Elements

A.3.2.1 Multiple Sets Element

This element indicates how many E-OTD Measurement Information sets or GPS Measurement Information sets, and Reference BTS Identities are included to this element. This element is optional. If this element is absent, a single measurement set is included.

Number of E-OTD/GPS Measurement Information Sets

This field indicates the number of *Number of E-OTD/GPS Measurement Information* sets included to this component. This field is mandatory. If both types of measurement elements are present, then there are the equal number of them, and each pair has the same reference BTS.

Range: 2 - 3

Number of Reference BTS

This field indicates the number of reference BTSs used in this component. This field is mandatory.

Range: 1-3

Reference BTS relation to Measurement Elements

This field indicates how the reference BTSs listed in this element relate to measurement sets later in this component. This field is conditional and included only if Number of E-OTD/GPS Measurement Information Sets is '3' and Number of Reference BTSs is '2'.

- '0' = First reference BTS is related to first and second E-OTD/GPS Measurement Information Sets, and second reference BTS is related to third E-OTD/GPS Measurement Information Sets.
- '1' = First reference BTS is related to first and third E-OTD/GPS Measurement Information Sets, and second reference BTS is related to second E-OTD/GPS Measurement Information Sets.
- '2' = First reference BTS is related to first E-OTD/GPS Measurement Information Sets, and second reference BTS is related to second and third E-OTD/GPS Measurement Information Sets.

If this field is not included, the relation between reference BTS and Number of E-OTD/GPS Measurement Information Sets is as follows:

- if there are three sets and three reference BTSs -> First reference BTS relates to first set, second reference BTS relates to second set, and third reference BTS relates to third set;

- if there are two sets and two reference BTS -> First reference BTS relates to first set, and second reference BTS relates to second set;
- if there is only one reference BTS and 1-3 sets -> this reference BTS relates to all sets.

A.3.2.2 Reference BTS Identity Element

This element identifies the reference BTS(s). This element is conditional to the number of reference BTSs. It is mandatory, if there is more than one reference BTS, and optional otherwise. If this element is not included, the Reference BTS, used in other elements, is the current serving BTS of MS. If this element is included, the BTSs defined here are used as Reference BTSs in all other elements.

The following fields are repeated for the number of reference BTSs included in the Number of Reference BTS field.

CellIdType

This field indicates is the identity method of the Reference BTS. This field is mandatory within this element.

- '0' = Cell identity is told using BSIC and BCCH carrier.
- '1' = Cell identity is told using CI, and the LAC is the same as the current serving BTS.
- '2' = Cell identity is told using an index referring to the BTS listed in the Measure Position Request component (the indicated reference BTS is 1)
- '3' = Cell identity is told using an index referring to the BTS listed in the BCCH allocation list (System Information Neighbor Lists) of the serving BTS. This type of reference identity shall not be used by the MS unless it has received the 'E-OTD Measurement Assistance Data for System Information List Element' from the SMLC for this cell.
- '4' = Cell identity is told using CI, and the LAC.

Reference LAC

This field indicates the Location Area Code of the reference BTS. The purpose of the Location Area Code is to identify a location area. This field is conditional, and included, if CellIDType field is '4'.

Range: 0 - 65535

Reference CI

This field indicates the Cell Identity value of the reference BTS. The purpose of the Cell Identity value is to identify a cell within a location area. This field is conditional, and included, if CellIDType field is '1' or '4'.

Range: 0 – 65535

Reference BCCH Carrier

This field indicates the absolute RF channel number of the BCCH of the reference base station. BCCH carrier field is conditional and is included only if CellIdType is set '0'.

Range: 0 - 1023

Reference BSIC

This field indicates the BSIC (Base Station Identity Code of the base station).

BSIC field is conditional and is included only if CellIdType is set '0' or '3'.

Range: 0 - 63

Request Index

This field indicates an index identifying the reference BTS by referring to the BTSs listed in the Measure Position Request component (the indicated reference BTS in the Measure Position Request component has the index value 1, and possible next BTS '2', and so on)

This field is conditional and included only if CellIdType is set to '2'.

Range: 1-16

System Info Index

This field indicates an index identifying the reference BTS by referring to the BCCH allocation list (System Information Neighbor List) of the serving BTS.

This field is conditional and included only if CellIdType is set to '3'.

Range: 1-32

A.3.2.3 E-OTD Measurement Information Element

The purpose of the E-OTD Measurement Information element is to provide OTD measurements of signals sent from the reference and neighbor based stations. The length of this element depends on the number of neighbor cells for which OTD measurements have been collected. This element is optional in the Measure Position Response component. It is included in the Measure Position Response component, if the network has requested the mobile to perform the MS assisted E-OTD method. BTSs which cannot be measured or whose measurements are excessively inaccurate need not be reported. The MS may include measurements for other BTSs not given in the assistance data by the SMLC.

The E-OTD and 51 multiframe offset values are reported relative to the reference BTS as defined in the previous subclauses.

The following fields are repeated for each measurement set.

Reference Frame Number

This field indicates the frame number of the last measured burst from the reference BTS modulo 42432. This information can be used as a time stamp for the measurements. This field is mandatory.

Range: 0 - 42431

Reference Time Slot

Reference Time Slot indicates the time slot modulo 4 relative to which the MS reports the reference BTS measurements. This field is mandatory.

Range: 0 to 3

NOTE: If MS does not know timeslot scheme, the MS reports the used timeslot. MS can only report results based on one time slot (N) or two time slots (N and N+4). If the MS knows the timeslot scheme, it can make measurements from several timeslots and reports that the used timeslot is zero (and makes correction).

Reference Quality

Reference Quality field includes the standard deviation of the TOA measurements from the reference BTS with respect to T_{Ref} (where T_{Ref} is the time of arrival of signal from the reference BTS used to calculate the OTD values). This field is optional. The Reference Quality field can be used to evaluate the reliability of E-OTD measurements in the SMLC and in weighting of the E-OTD values in the location calculation.

Following linear 5 bit encoding is used

'00000' '00001'	0 - (R*1-1) R*1 - (R*2-1)	meters meters
'00010'		meters
 '11111'	R*31 meters or	more

where R is the resolution defined by Std Resolution field. For example, if R=20 meters, corresponding values are 0-19 meters, 20-39 meters, 40-59 meters, ..., 620+ meters.

Number of Measurements

Number of Measurements for the Reference Quality field is used together with Reference Quality to define quality of the reference base site TOA. The field indicates how many measurements have been used in the MS to define the standard deviation of the measurements. Following 3 bit encoding is used

'000':	2-4
'001':	5-9
'010':	10-14
'011':	15-24
'100':	25-34
'101':	35-44
'110':	45-54
'111':	55 or more

This field is optional.

Std Resolution

Std Resolution field includes the resolution used in Reference Quality field and Std of EOTD Measurements field. Encoding on 2 bits as follows

'00'	10 meters
'01'	20 meters
'10'	30 meters
'11'	Reserved.

This field is mandatory.

TA Correction

This field indicates the estimate of the time difference between the moment that the MS uses to adjust its internal timing for reception and transmission (e.g. corresponding to maximum energy) and the estimate of the reception of the first arriving component from the serving BTS. This value can be used as a correction by the SMLC to the Timing Advance (TA) value when the distance between the MS and the serving BTS is estimated based on TA.

The value TACor in this field corresponds to the TA Correction in bit periods as follows:

TA Correction in bit periods = TACor/64 - 8.

TA Correction has the resolution of 1/64 bit period, and the range $-8 \dots +7$ bit periods. Negative TA Correction in bits indicates that the first signal component from the serving BTS is estimated to arrive before the moment used for communication. This field is optional.

Range: 0-960

Number of Measured Neighbors

This field indicates the number of different neighbor BTSs. This field is mandatory.

Range: 0 - 10

NOTE: If the MS can not measure any neighbor BTSs, then this value is set to '0'.

The following fields are repeated for the number of BTSs included in the Number of Measured Neighbors field.

Neighbor Identity Present

The presence of this field is conditional, it shall not be present in the first set. It is mandatory for the other sets. This field indicates whether the identity information (i.e. CellIDType and possibly Neighbor CI / Neighbor BCCH Carrier / Neighbor BSIC / Neighbor Multiframe Offset / Request Index / System Info Index fields) concerning a certain BTS is present or whether the BTS identity is given as reference to the first measurement set.

- '0' Identity information not included, and identity of this BTS is same as the identity of BTS in first set with same sequence number
- '1' Identity information is included

CellIdType

This field indicates is the identity method of the cell. This field is conditional, and included if Neighbor Identity Present is '1'. If CellIdType field is not present, the following fields can not be present either: Neighbor CI, Neighbor BCCH Carrier, Neighbor BSIC, Neighbor Multiframe Offset, Request Index, System Info Index.

- '0' = Cell identity is told using BSIC and BCCH carrier.
- '1' = Cell identity is told using CI, and the LAC is the same as the current serving BTS.
- '2' = Cell identity is told using 51 Multiframe offset and BCCH carrier.
- '3' = Cell identity is told using an index referring to the BTS listed in the Measure Position Request component (the indicated reference BTS is 1).
- '4' = Cell identity is told using an index referring to the BTS listed in the BCCH allocation list (System Information Neighbor Lists) of the serving BTS. This type of neighbor identity shall not be used by the MS unless it has received the 'E-OTD Measurement Assistance Data for System Information List Element' from the SMLC for this cell.
- 5' = Cell identity is told using CI and the LAC.

NOTE: The MS can decide which of these methods to use. The CellIdType '3' and '4' are preferred.

Neighbor LAC

This field indicates the Location Area Code of the neighbor BTS. The purpose of the Location Area Code is to identify a location area. This field is conditional, and included, if CellIDType field is '5'.

Range: 0 - 65535

Neighbor CI

This field indicates the Cell Identity of the particular neighbor cell. The purpose of the Cell Identity value is to identify a cell within a location area.

Neighbor CI field is conditional and is included only if CellIdType is set '1' or '5' and the CI value of the given cell is available.

Range: 0 - 65535

Neighbor BCCH Carrier

This field indicates the absolute RF channel number of the BCCH of the neighbor base station. BCCH carrier field is conditional and is included only if CellIdType is set '0' or '2'.

Range: 0 - 1023

Neighbor BSIC

This field indicates the BSIC (Base Station Identity Code of the base station).

BSIC field is conditional and is included only if CellIdType is set '0' or '4'.

Range: 0 - 63

Neighbor Multiframe Offset

This field indicates the frame difference between the start of the 51 multiframes frames arriving from this BTS and the reference BTS. The multiframe offset is defined as T_{BTS} - T_{Ref} , where T_{BTS} is the time of the start of the 51 multiframe in the BTS in question, and T_{Ref} is the time of the start of the 51 multiframe in the reference BTS. This field is conditional and included only if CellIdType is set to '2'.

Range: 0 - 51

Request Index

This field indicates an index identifying the reference BTS by referring to the BTSs listed in the Measure Position Request component (the indicated reference BTS in the Measure Position Request component has the index value 1, and possible next BTS '2', and so on).

This field is conditional and included only if CellIdType is set to '3'.

Range: 1-16

System Info Index

This field indicates an index identifying the reference BTS by referring to the BCCH allocation list (System Information Neighbor List) of the serving BTS.

This field is conditional and included only if CellIdType is set to '4'.

Range: 1-32

Neighbor Time Slot

Neighbor Time Slot indicates the time slot modulo 4 relative to which the MS reports the neighbor BTS measurements. This field is mandatory.

Range: 0 to 3

NOTE: If the MS does not know the timeslot scheme, the MS reports the used timeslot. MS can only report a result based on one time slot (N) or two time slots (N and N+4). If the MS knows the timeslot scheme, the MS can make measurements from several timeslots and reports that the used timeslot is zero (and makes correction).

Number of EOTD Measurements

Number of Measurements field is used together with Std of EOTD Measurements field to define quality of a reported EOTD measurement. The field indicates how many EOTD measurements have been used in the MS to define the standard deviation of these measurements. Following 3 bit encoding is used.

'000':	2-4
'001':	5-9
'010':	10-14
'011':	15-24
'100':	25-34
'101':	35-44
'110':	45-54
'111':	55 or more

This field is mandatory.

Std of EOTD Measurements

Std of EOTD Measurements field includes standard deviation of EOTD measurements. This field is mandatory. It can be used to evaluate the reliability of EOTD measurements in the SMLC and in weighting of the OTD values in location calculation.

Following linear 5 bit encoding is used

'00000'	$0 - (R^{*1-1})$ meters
'00001'	$R^{*1} - (R^{*2-1})$ meters
'00010'	$R^{*2} - (R^{*3-1})$ meters
 '11111'	R*31 meters or more

where R is the resolution defined by Std Resolution field. For example, if R=20 meters, corresponding values are 0 - 19 meters, 20 - 39 meters, 40 - 59 meters, ..., 620+ meters.

OTD

This field indicates the measured OTD value between the receptions of signals from the reference and the neighbor BTS. The OTD is defined as T_{Nbor} - T_{Ref} (modulo burst length) where T_{Nbor} is the time of arrival of signal from the neighbor BTS, and T_{Ref} is the time of arrival of signal from the reference BTS. The reporting resolution of the OTD value is 1/256 bit. This field is mandatory.

Range: 0 – 39999

A.3.2.3a E-OTD Measurement Extended Information Element

The purpose of the E-OTD Measurement Ext Information element is to provide OTD measurements of signals sent from the reference and neighbour base stations. The length of this element depends on the number of neighbour cells for which OTD measurements have been collected. This element is optional in the Measure Position Response component. It is included in the Measure Position Response component, if E-OTD measurements didn"t fit in the E-OTD Measurement Information Element.

The E-OTD and 51 multiframe offset values are reported relative to the reference BTS as defined in the previous subclauses.

The following fields are valid only for the first set of measurements

Number of Measured Neighbors

This field indicates the number of different neighbor BTSs. This field is mandatory.

Range: 0 - 5

NOTE: If the MS can not measure any neighbor BTSs, then this value is set to '0'.

The following fields are repeated for the number of BTSs included in the Number of Measured Neighbors field. They are defined in the previous sub-clause :

CellIdType, Neighbor LAC, Neighbor CI, Neighbor BCCH Carrier, Neighbor BSIC, Neighbor Multiframe Offset, Request Index, System Info Index, Neighbor Time Slot, Number of EOTD Measurements, Std of EOTD Measurements, OTD

A.3.2.4 Location Information Element

The purpose of Location Information element is to provide the location estimate from the MS to the network, if the MS is capable of determining its own position. Optionally, the element may contain the velocity parameters computed by the MS.

This element is optional. This element contains the following fields.

Reference Frame

This field specifies the reference BTS Reference Frame number during which the location estimate was measured. The time of the Reference Frame boundary is as observed by the MS, ie without Timing Advance compensation. This field is mandatory. However, if the Reference Frame number is within (42432..65535), the value of this field shall be ignored and in that case the MS should provide GPS TOW if available.

Table A.3: Reference Frame field contents

Parameter	# of Bits	Resolution	Range	Units
Reference Frame	16		0 - 65535	frames

Note that expected values for Reference Frame are in range 0 - 42431.

GPS TOW

This field specifies the GPS TOW for which the location estimate is valid, rounded down to the nearest millisecond unit. This field is optional but shall be included if GPS Time Assistance Measurements are included. If GPS Time Assistance Measurements are included in the RRLP Measure Position Response, the MS shall align GPS System time

(as defined by the GPS TOW and the GPS TOW Subms fields) with the reported GSM frame boundary observed by the MS at that time.

Table A.4: GPS TOW field contents

Parameter	# of Bits	Resolution	Range	Units
GPS TOW	24	1 ms	0 – 14399999	ms

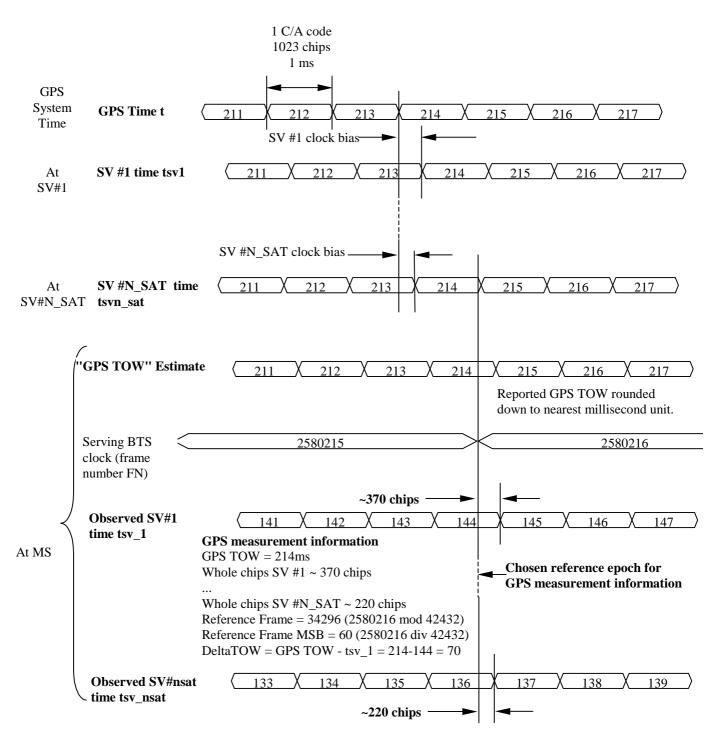
The 24 bits of GPS TOW are the least significant bits. The most significant bits shall be derived by the Serving Mobile Location Center to unambiguously derive the GPS TOW.

Fix Type

This field contains an indication as to the type of measurements performed by the MS: 2D or 3D. This field is mandatory.

'0' = 2D fix

'1' = 3D fix


Position Estimate

This field contains the calculated position estimate in the format defined in 3GPP TS 23.032. The allowed shapes are:

- ellipsoid Point;
- ellipsoid point with uncertainty circle;
- ellipsoid point with uncertainty ellipse;
- ellipsoid point with altitude and uncertainty ellipsoid.

A.3.2.5 GPS Measurement Information Element

The purpose of the GPS Measurement Information element is to provide GPS measurement information from the MS to the SMLC. This information includes the measurements of code phase and Doppler, which enables the network-based GPS method where position is computed in the SMLC. The proposed contents are shown in table A.5, and the individual fields are described subsequently. See also Figure A.1 for an illustration of the relation between some of the fields.

Figure A.1. Exemplary definitions of GPS measurement information fields.

This element is included in the Measure Position Response component if the network has requested the mobile to perform mobile-assisted location measurements using a GPS location method.

Following fields are repeated a number of times told in Number of E-OTD/GPS Measurement *Sets* field if Multiple Sets element is included. If Multiple Sets element is not included, the default value for sets is one (i.e. the following fields are present only once).

Element fields	Presence	Occurrences
Reference Frame	0	1
GPS TOW	М	1
# of Satellites (N_SAT)	М	1
Measurement Parameters	М	N_SAT

 Table A.5: GPS Measurement Information element content

The following paragraphs describe the content of each information field of this element.

Reference Frame

This field is optional.

Parameter	# of Bits	Resolution	Range	Units
Reference Frame	16		0 - 65535	frames

Note that expected values for Reference Frame are in range 0 - 42431. If Reference Frame and GPS Time Assistance Measurements both are included in the RRLP Measure Position Response, the code phase measurements shall be aligned with the reported GSM frame boundary observed by the MS at that time, as indicated in Figure A.1. The time of the Reference Frame boundary is as observed by the MS, ie without Timing Advance compensation.

GPS TOW

This field specifies the GPS TOW for which the location estimate is valid, rounded down to the nearest millisecond unit. This field is mandatory.

Table A.7: GPS TOW field contents

Parameter	# of Bits	Resolution	Range	Units
GPS TOW	24	1 ms	0 – 14399999	ms

The 24 bits of GPS TOW are the least significant bits. The most significant bits shall be derived by the Serving Mobile Location Center to unambiguously derive the GPS TOW.

of Satellites (N_SAT)

Number of Measurements

This field specifies the number of measurements for which measurements satellites are provided in the component. This value represents the number of satellites that were measured by the MS. This value of N_SAT determines the length of the payload portion of the component. Typical range for N_SAT is four to a maximum of 12. This field is mandatory and occurs once per set.

Table A.7a: # of Satellites field contents
--

Parameter	# of Bits	Resolution	Range	Units
N_SAT	4		1 – 16	

Measurement Parameters

This field contains information about the measurements of code phase and Doppler, which enables the network-based method where position is computed in the SMLC. This field is mandatory and occurs N_SAT times per message.

Parameter	# of Bits	Resolution	Range	Units
Satellite ID	6		0 - 63	
C/N _o	6	1	0-63	dB-Hz
Doppler	16	0.2	±6553.6	Hz
Whole Chips	10	1	0 – 1022	chips
Fractional Chips	10	2 ⁻¹⁰	$0 - (1 - 2^{-10})$	chips
Multipath Indicator	2	see Table A.9	TBD	
Pseudorange RMS	6	3 bit mantissa	0.5 – 112	m
Error		3 bit exp		

Table A.8: Measurement Parameters field contents

Satellite ID

This field identifies the particular satellite for which the measurement data is valid. This values 0 - 63 represent satellite PRNs 1 - 64, respectively.

C/N₀

This field contains the estimate of the carrier-to-noise ratio of the received signal from the particular satellite used in the measurement. It is given in whole dBs and has a range of 0 to 63. Typical levels observed by MS-based GPS units will be in the range of 20 dB to 50 dB.

Doppler

This field contains the Doppler measured by the MS for the particular satellite signal. This information can be used to compute the 3-D velocity of the MS. The Doppler range is sufficient to cover the potential range of values measured by the MS.

Whole Chips

This field contains the whole value of the code-phase measurement made by the MS for the particular satellite signal at the time of measurement, in units of 1 GPS chip in the range from 0 to 1022 chips, where increasing binary values of the field signify increasing measured pseudoranges. The code phase measurement is divided into two fields, 'Whole Chips' and 'Fractional Chips'..

Fractional Chips

This field contains the fractional value of the code-phase measurement made by the MS for the particular satellite signal at the time of measurement. The resolution of the fractional portion is approximately 0,3 m.

Multipath Indicator

This field contains the Multipath Indicator value. This parameter is specified according to the representation described in table A.9.

Value	Multipath Indication
00	Not measured
01	Low, MP error < 5m
10	Medium, 5m < MP error < 43m
11	High, MP error > 43m

Table A.9: Multipath Indicator values and associated indications

Range: 0 - 3

Pseudorange RMS Error

This field contains a Pseudorange RMS Error value.

Range: 0,5 m to 112 m

NOTE: This parameter is specified according to a floating-point representation as described in Table A.10.

Index	Mantissa	Exponent	Floating-Point value, x _i	Pseudorange value, P
0	000	000	0.5	P < 0.5
1	001	000	0.5625	0.5 <= P < 0.5625
I	x	У	0.5 * (1 + x/8) * 2 ^y	x _{i-1} <= P < x _i
62	110	111	112	104 <= P < 112
63	111	111		112 <= P

Table A.10: Pseudorange RMS Error representation

A.3.2.6 Location Information Error Element

The purpose of Location Information Error element is to provide the indication of error and the reason for it, when the MS can not perform the required location or the network can not determine the position estimate. The element may also indicate what further assistance data may be needed by the target MS to produce a successful location estimate or location measurements. This element is optional. This element has the following fields.

Error Reason

This field indicates the reason for error. This field is mandatory.

'0':	Undefined error.
'1':	There were not enough BTSs to be received when performing mobile based E-OTD.
'2':	There were not enough GPS satellites to be received, when performing GPS location.
'3':	E-OTD location calculation assistance data missing.
'4':	E-OTD assistance data missing.
'5':	GPS location calculation assistance data missing.
'6':	GPS assistance data missing.
'7':	Requested method not supported.
'8':	Location request not processed.
'9':	Reference BTS for GPS is not the serving BTS.
'10':	Reference BTS for E-OTD is not the serving BTS.

Additional Assistance Data

This field is optional. Its presence indicates that the target MS will retain assistance data already sent by the SMLC. The SMLC may send further assistance data for any new location attempt but need not resend previous assistance data. The field may contain the following:

GPS Assistance Data: Necessary additional GPS assistance data (structure and encoding as for the GPS Assistance Data IE in 3GPP TS 49.031 excluding the IEI and length octets)

A.3.2.6a GPS Time Assistance Measurements

This IE contains measurements that are used to define an accurate relation between GSM and GPS time or to provide additional GPS TOW information for MS Assisted A-GPS. The contents are shown in Table A.10a, and the individual fields are described subsequently.

Element fields	Presence
Reference Frame MSB	0
GPS TOW Subms	0
Delta TOW	0
GPS Reference Time Uncertainty	0

Reference Frame MSB

This field shall be included when GPS-GSM time association is provided for either MS Based A-GPS or MS Assisted A-GPS. It indicates the Most Significant Bits (MSBs) of the frame number of the reference BTS corresponding to the GPS measurement or location estimate. Starting from the complete GSM frame number denoted FN, the MS calculates Reference Frame MSB as

Reference Frame MSB = floor(FN/42432)

The complete GSM frame number FN can then be reconstructed in the SMLC by combining the fields Reference Frame with Reference Frame MSB in the following way

FN = Reference Frame MSB*42432+Reference Frame

Range: 0-63

GPS TOW Subms

This field is only applicable for MS-Based A-GPS. This field indicates in units of 100ns the submillisecond part of the GPS time of measurement. This field together with the GPS TOW field in the Location Information Element provides a more accurate time stamp of the location estimate for MS based AGPS Expressed in units of microseconds. The precise GPS time of measurements in milliseconds is thus equal to

GPS TOW + 0.0001*GPS TOW Subms

The estimation of precise GPS time of measurement using AGPS is vulnerable to millisecond ambiguities. Therefore the MS shall only report this field when it is confident that any millisecond ambiguities have been avoided.

Range: 0-9999

Delta TOW

This field is only applicable for MS-Assisted A-GPS. This field specifies the difference in milliseconds between the GPS TOW reported in the GPS Measurement Information Element and the millisecond part of the SV time tsv_1 of the first SV in the list reported from the MS. Figure A.1 shows an example of Delta TOW calculation. The Delta TOW is defined as Delta TOW = GPS TOW - fix(tsv_1)

where fix() denotes rounding to the nearest integer towards zero. The estimation of tsv_1 which forms the basis for the calculation of Delta TOW is vulnerable to millisecond ambiguities. Therefore the MS shall only report this field when it is confident that the correct millisecond event has been recovered.

Range: 0-127

GPS Reference Time Uncertainty

This element is optional. It provides the accuracy of the relation GPS and GSM time in the Location Information or GPS Measurement Information Element when GPS-GSM time association is provided. For MS Assisted A-GPS when GPS-GSM time association is not provided, even if GPS Time Assistance Measurement Request is not included in the Measure Position Request, this element can be included to provide the accuracy of the reported GPS TOW. The interval, range and treatment is as described in sub-clause 2.2.4b.

A.4 Assistance Data

A.4.1 General

The Assistance Data is a RRLP component from the network to the MS. It is used by the network to provide assistance data to enable MS-based E-OTD or MS-based Assisted GPS capabilities in the MS. It contains the following elements.

Element	Type/Reference	Presence
E-OTD Reference BTS for Assistance Data	E-OTD Reference BTS for Assistance Data 2.2.3	С
E-OTD Measurement Assistance Data	E-OTD Measurement Assistance Data 2.2.4	С
E-OTD Measurement Assistance Data for System Information List	E-OTD Measurement Assistance Data for System Information List 2.2.5	С
GPS Assistance Data	GPS Assistance Data 4.2.4	С
GPS Time Assistance Measurement Request	GPS Time Assistance Measurement Request 4.2.4a	0
GPS Reference Time Uncertainty	GPS Reference Time Uncertainty 4.2.4b	0

Table A.11: Assistance Data component content

A.4.2 Elements

A.4.2.1 E-OTD Reference BTS for Assistance Data Element

This element is conditional. It is as described in 2.2.3. If the network can provide assistance data, and data for E-OTD has been requested, this element is included.

A.4.2.2 E-OTD Measurement Assistance Data Element

This element is conditional. It is as described in 2.2.4. If the network can provide assistance data, and data for E-OTD has been requested, this element is included.

A.4.2.3 E-OTD Measurement Assistance Data for System Information List Element

This element is conditional. It is as described in 2.2.5. If the network can provide assistance data, and data for E-OTD has been requested, this element is included.

A.4.2.4 GPS Assistance Data Element

The GPS Assistance Data element contains a single GPS assistance message that supports both MS-assisted and MSbased GPS methods. This element can contain one or more of the fields listed in table A.12 below, which support both MS-assisted and MS-based GPS methods. As table A.12 shows, all fields are optional.

Note that certain types of GPS Assistance data may be derived, wholly or partially, from other types of GPS Assistance data.

In addition, an Integrity Monitor (IM) shall detect unhealthy (e.g., failed/failing) satellites and also shall inform users of measurement quality in DGPS modes when satellites are healthy. Excessively large pseudo range errors, as evidenced by the magnitude of the corresponding DGPS correction, shall be used to detect failed satellites. Unhealthy satellites should be detected within 10 seconds of the occurrence of the satellite failure. When unhealthy (e.g., failed/failing) satellites are detected, the assistance and/or DGPS correction data shall not be supplied for these satellites. When the error in the IM computed position is excessive for solutions based upon healthy satellites only, DGPS users shall be informed of measurement quality through the supplied UDRE values. After the Bad Satellite Present flag has been set, if the satellites return to healthy condition for some period of time, the flag shall be reset.

Parameter	Presence	Repetition
Reference Time	0	Yes
Reference Location	0	No
DGPS Corrections	0	Yes
Navigation Model	0	Yes
Ionospheric Model	0	No
UTC Model	0	No
Almanac	0	Yes
Acquisition Assistance	0	Yes
Real-Time Integrity	0	Yes

When RRLP pseudo-segmentation is used, Table A.12 indicates which parameters may be repeated in more than one RRLP segment in order to provide data for multiple satellites. When any such parameter appears in more than one segment, the following rules shall apply.

- 1. There shall be no repetition of data for the same satellite.
- 2. Optional and conditional elements in the parameter not associated with a particular satellite shall each appear in at most one RRLP segment.
- 3. Any mandatory element not associated with a particular satellite shall assume consistent values in the case of an element related to current GPS time and the same value otherwise.
- 4. The maximum number of satellites defined in sub-clause 5.1 for which data can be included for any parameter in one RRLP segment shall apply also when counted over all RRLP segments.

Reference Time

These fields specify the relationship between GPS time and air-interface timing of the BTS transmission in the reference cell. These fields occur once per message; some are mandatory and some are conditional, as shown in table A.14. Note that Reference Time may also be present within the Acquisition Assistance parameter. In such a case, the SMLC shall ensure consistency.

Parameter	# Bits	Scale	Range	Units	Incl.
		Factor			
GSM Time Present	1		Boolean		Μ
GPS Week	10	1	0 – 1023	weeks	Μ
GPS TOW	23	0.08	0-604799.92	sec	Μ
BCCH Carrier	10	1	0 – 1023		С
BSIC	6	1	0 - 63		С
FNm	21	1	$0 - (2^{21} - 1)$	frames	0
TN	3	1	0 – 7	timeslots	0
BN	8	1	0 – 156	bits	0
GPS TOW Assist	24*N_SAT				0

Table A.14: Reference Time (Fields occurring once per message)

GSM Time Present

This field indicates whether or not GSM air-interface timing information for the reference cell is present in this message. The MS shall interpret a value of "1" to mean that GSM timing information is present, and "0" to mean that only the GPS Week, GPS TOW and optionally GPS TOW Assist fields are provided. This field is mandatory.

GPS Week

This field specifies the GPS week number of the assistance being provided. GPS Week eliminates one-week ambiguities from the time of the GPS assistance. This field is mandatory.

GPS TOW

The GPS TOW (time-of-week) is a mandatory field and is specified with 80 msec resolution. When GSM Time Present is "1", GPS TOW and BCCH/BSIC/FNm/TN/BN IEs provide a valid relationship between GPS and GSM time, as seen at the approximate location of the MS, ie the propagation delay from BTS to MS shall be compensated for by the SMLC. Depending on implementation, the relation between GPS and GSM time may have varying accuracy. Therefore, the uncertainty of the timing relation may be provided in the optional field GPS Reference Time Uncertainty. If the propagation delay from BTS to MS is not accurately known, the SMLC shall use the best available approximation of the propagation delay and take the corresponding delay uncertainty into account in the calculation of the field GPS Reference Time Uncertainty. When GSM Time Present is "0", GPS TOW is an estimate of current GPS time of week at time of reception of the RRLP segment containing this data by the MS. The SMLC should achieve an accuracy of +/- 3 seconds for this estimate including allowing for the transmission delay between SMLC and MS of the RRLP segment containing GPS TOW. Note that the MS should further compensate GPS TOW for the time between the reception of the segment containing GPS TOW and the time when the GPS TOW field is used.

BCCH Carrier/BSIC/FNm/TN/BN

These fields specify the state of the GSM frame number, timeslot number, and bit number, respectively, of the reference BTS with the specified BCCH carrier and BSIC at the time that correspond to GPS TOW. The SMLC shall use the current serving BTS as the reference BTS. The frame number field is given modulo 2^{21} , i.e., the MSB of the GSM frame number is truncated. The MS shall interpret FNm as the most recent of the two possible frame numbers that FNm could represent. These fields are conditionally present when GSM Time Present is "1". The target MS has the option of rejecting a GPS position request or GPS assistance data if the reference BTS is not the serving BTS.

GPS TOW Assist

This field contains several fields in the Telemetry (TLM) Word and Handover Word (HOW) that are currently being broadcast by the respective GPS satellites. Combining this information with GPS TOW enables the MS to know the entire 1.2-second (60-bit) pattern of TLM and HOW that is transmitted at the start of each six-second subframe by the particular GPS satellite. This field contains information for each of N_SAT satellites, and optional. The individual fields for each satellite in the message are shown in table A.15a.

Parameter	# Bits	Scale Factor	Range	Units	Incl.
SatID	6		0 - 63		Μ
TLM Message	14		0 – 16383	Bit field	Μ
Anti-Spoof	1	1	0 –1	Bit field	Μ
Alert	1	1	0 – 1	Bit field	Μ
TLM Reserved	2		0-3	Bit field	М

Table A.15a: GPS TOW Assist (Fields occurring N_SAT times per message)

SatID

This field identifies the satellite for which the corrections are applicable. The values ranging from 0 to 63 represent satellite PRNs ranging from 1 to 64, respectively.

TLM Message

This field contains a 14-bit value representing the Telemetry Message (TLM) being broadcast by the GPS satellite identified by the particular SatID, with the MSB occurring first in the satellite transmission.

Anti-Spoof/Alert

These fields contain the Anti-Spoof and Alert flags that are being broadcast by the GPS satellite identified by SatID.

TLM Reserved

These fields contain the two reserved bits in the TLM Word being broadcast by the GPS satellite identified by SatID, with the MSB occurring first in the satellite transmission.

Reference Location

The Reference Location field contains a 3-D location (with uncertainty), specified as per 3GPP TS 23.032. The purpose of this field is to provide the MS with a priori knowledge of its location in order to improve GPS receiver performance. The allowed shape is 3-D location with uncertainty (ellipsoid point with altitude and uncertainty ellipsoid).

DGPS Corrections

These fields specify the DGPS corrections to be used by the MS. All fields are mandatory when DGPS Corrections are present in the GPS Assistance Data.

Parameter	# Bits	Scale Factor	Range	Units	Incl.
	The followir	ng fields occur ond	e per message		
GPS TOW	20	1	0 - 604799	sec	Μ
Status/Health	3	1	0-7		Μ
N_SAT	4	1	1-16		Μ
The fol	lowing fields	s occur once per s	atellite (N_SAT ti	mes)	
SatID	6		0 – 63		Μ
IODE	8		0 – 255		М
UDRE	2		0 – 3		М
PRC	12	0.32	±655.34	meters	Μ
RRC	8	0.032	±4.064	meters/sec	М
Delta PRC2	8				Μ
Delta RRC2	4				Μ
Delta PRC3	8				Μ
Delta RRC3	4				Μ

Table A.15: DGPS Corrections

GPS TOW

This field indicates the baseline time for which the corrections are valid.

Status/Health

This field indicates the status of the differential corrections contained in the broadcast message. The values of this field and their respective meanings are shown below in table A.16.

Code	Indication
000	UDRE Scale Factor = 1.0
001	UDRE Scale Factor = 0.75
010	UDRE Scale Factor = 0.5
011	UDRE Scale Factor = 0.3
100	UDRE Scale Factor = 0.2
101	UDRE Scale Factor = 0.1
110	Reference Station Transmission Not
	Monitored
111	Data is invalid - disregard

Table A.16: Values of Status/Health IE

The first six values in this field indicate valid differential corrections. When using the values described below, the "UDRE Scale Factor" value is applied to the UDRE values contained in the message. The purpose is to indicate an estimate in the amount of error in the corrections.

The value "110" indicates that the source of the differential corrections (e.g., reference station or external DGPS network) is currently not being monitored. The value "111" indicates that the corrections provided by the source are invalid, as judged by the source. In the later case, the message shall contain no corrections for individual satellites. Any MS that receives DGPS Corrections in a GPS Assistance Data IE shall contain the appropriate logic to properly interpret this condition and look for the next IE.

N_SAT

This field indicates the number of satellites for which differential corrections are available. Corrections for up to 16 satellites.

SatID

This field identifies the satellite for which the corrections are applicable. The values ranging from 0 to 63 represent satellite PRNs ranging from 1 to 64, respectively.

IODE

This IE is the sequence number for the ephemeris for the particular satellite. The MS can use this IE to determine if new ephemeris is used for calculating the corrections that are provided in the broadcast message. This eight-bit IE identifies a particular set of ephemeris data for a GPS satellite and may occupy the numerical range of [0, 255]. The transmitted IODE value will be different from any value transmitted by the GPS satellite during the preceding six hours. For more information about this field can be found from RTCM-SC104.

User Differential Range Error (UDRE)

This field provides an estimate of the uncertainty $(1-\sigma)$ in the corrections for the particular satellite. The value in this field shall be multiplied by the UDRE Scale Factor in the common Corrections Status/Health field to determine the final UDRE estimate for the particular satellite. The meanings of the values for this field are described in table A.18.

Value	Indication
00	UDRE ≤ 1.0 m
01	1.0 m < UDRE ≤ 4.0 m
10	4.0 m < UDRE ≤ 8.0 m
11	8.0 m < UDRE

Table A.18: Values of UDRE IE

Each UDRE value shall be adjusted based on the operation of an Integrity Monitor (IM) function which exists at the network (SMLC, GPS server, or reference GPS receiver itself). Positioning errors derived at the IM which are excessive relative to DGPS expected accuracy levels shall be used to scale the UDRE values to produce consistency.

Pseudo-Range Correction (PRC)

This field indicates the correction to the pseudorange for the particular satellite at the GPS Reference Time, t_0 . The value of this field is given in meters (m) and the resolution 1, as shown in table A.15. The method of calculating this field is described in T1P1.5/98-440r0.

If the SMLC has received a request for GPS assistance data from an MS which included a request for the navigation models and DGPS (i.e., bit D and E are set to one in "Requested GPS Assistance Data, see 3GPP TS 49.031), the SMLC shall determine, for each satellite, if the navigation model stored by the MS is still suitable for use with DGPS corrections (also see navigation model update conditions right before Table A.19) and if so and if DGPS corrections are supported the SMLC should send DGPS corrections without including the navigation model.

The IODE value sent for a satellite shall always be the IODE value that corresponds to the navigation model for which the pseudo-range corrections are applicable.

The pseudo-range correction shall correspond to the available navigation model (the one already stored in and identified by the MS or the one included in the same procedure as the pseudo-range correction). The MS shall only use the PRC value when the IODE value received matches its available navigation model.

Pseudo-Range Rate Correction (RRC)

This field indicates the rate-of-change of the pseudorange correction for the particular satellite, using the satellite ephemeris identified by the IODE IE. The value of this field is given in meters per second (m/sec) and the resolution is 0.032, as shown in table A.15 above. For some time $t_1 > t_0$, the corrections for IODE are estimated by

$$PRC(t_{1, IODE}) = PRC(t_{0, IODE}) + RRC(t_{0, IODE}) \cdot (t_1 - t_0),$$

and the MS uses this to correct the pseudorange it measures at t_1 , PR_m(t_1 , IODE), by

$$PR(t_{1, IODE}) = PR_{m}(t_{1, IODE}) + PRC(t_{1, IODE}).$$

The SMLC shall always send the RRC value that corresponds to the PRC value that it sends (see above for details). The MS shall only use the RRC value when the IODE value received matches its available navigation model.

Delta Pseudo-Range Correction 2 (Delta PRC2)

This IE is not used. The sender shall set it to zero and the receiver shall ignore it.

Delta Pseudo-Range Rate Correction 2 (Delta RRC2)

This IE is not used. The sender shall set it to zero and the receiver shall ignore it.

Delta Pseudo-Range Correction 3 (Delta PRC3)

This IE is not used. The sender shall set it to zero and the receiver shall ignore it.

Delta Pseudo-Range Rate Correction 3 (Delta RRC3)

This IE is not used. The sender shall set it to zero and the receiver shall ignore it.

Navigation Model

This set of fields contains information required to manage the transfer of precise navigation data to the GPS-capable MS. In response to a request from an MS for GPS assistance data, the SMLC shall determine whether to send the navigation model for a particular satellite to an MS based upon several factors like the T-Toe limit specified by the MS and any request from the MS for DGPS (also see above). This information includes control bit fields as well as satellite ephemeris and clock corrections. This field is present when Navigation Model Present bit in Field Types Present is "1". The individual fields are given in Table A.19 below, and the conditions for their presence is discussed below.

Table A.19: Navigation Model (per-satellite fields - ⁽¹⁾ = Positive range only)

Parameter	# Bits	Scale	Units	Incl.		
		Factor		_		
Navigation Model Flow Control (once per message)						
Num_Sats_Total	4 ⁽¹⁾	1		М		
	ormat Identi	fication (on	ce per satellite)			
SatID	6 ⁽¹⁾			Μ		
Satellite Status	2		Boolean	М		
Satellite Navigation	Model and As	sociated B	its (once per satellite)			
C/A or P on L2	2		Boolean	С		
URA Index	4		Boolean	С		
SV Health	6		Boolean	С		
IODC	10 ⁽¹⁾			С		
L2 P Data Flag	1		Boolean	С		
SF 1 Reserved	87			С		
T _{GD}	8	2 ⁻³¹	sec	С		
t _{oc}	16 ⁽¹⁾	2 ⁴	sec	С		
af ₂	8	2 ⁻⁵⁵ 2 ⁻⁴³ 2 ⁻³¹ 2 ⁻⁵ 2 ⁻⁴³	sec/sec ²	С		
af ₁	16	2 ⁻⁴³	sec/sec	С		
af ₀	22	2 ⁻³¹	sec	С		
C _{rs}	16	2 ⁻⁵	meters	С		
Δn	16	2 ⁻⁴³	semi-circles/sec	С		
Mo	32	2 ⁻³¹	semi-circles	С		
C _{uc}	16	2 ⁻²⁹	meters	С		
е	32 ⁽¹⁾	2 ⁻³³		С		
C _{us}	16	2 ⁻²⁹	radians	С		
(A) ^{1/2}	32 ⁽¹⁾	2 ⁻¹⁹	meters ^{1/2}	С		
t _{oe}	16 ⁽¹⁾	2 ⁴	sec	С		
Fit Interval Flag	1		Boolean	С		
AODO	5	900	sec	С		
C _{ic}	16	2 ⁻²⁹	radians	С		
OMEGA ₀	32	2 ⁻³¹	semi-circles	С		
C _{is}	16	2 ⁻²⁹	radians	C		
io	32	2 ⁻³¹ 2 ⁻⁵ 2 ⁻³¹	semi-circles	С		
Crc	16	2-5	radians	С		
ω	32	2 ⁻³¹	semi-circles	С		
OMEGAdot	24	2 ⁻⁴³	semi-circles/sec	С		
Idot	14	2- ⁴³	semi-circles/sec	С		

Num_Sats_Total

This field specifies the number of satellites that are included in the provided Navigation Model. A range of 1-16 is available. This field is mandatory when the Navigation Model field is included in the message.

SatID

This field identifies the satellite for which the assistance is applicable. This value is the same as the PRN number provided in the navigation message transmitted by the particular satellite. The range is 0 to 63, with 0-31 indicating GPS satellites 1-32, respectively, and 32-63 indicating satellites in future augmentation systems (e.g., WAAS or EGNOS). This field is mandatory for each included satellite.

Satellite Status

This field is a two-bit value that indicates the status of the Navigation Model for the particular satellite specified by SatID. This field is mandatory for each included satellite. The MS shall interpret the combinations of the two bits as follows:

MSB	LSB	Interpretation		
0	0	New satellite, new Navigation Model		
0	1	Existing satellite, same Navigation Model		
1	0	Existing satellite, new Navigation Model		
1	1	Reserved		

Table A.20:	Satellite	Status	(per-satellite	field)
-------------	-----------	--------	----------------	--------

This Satellite Navigation Model and associated bit fields include the parameters that accurately model the orbit and clock state of the particular satellite. For the particular satellite, these fields are conditional based on the value of Satellite Status for that satellite. The fields are absent when Satellite Status is "01", and present for all other values. The format for the ephemeris, clock corrections, and associate bits are specified in ICD-GPS-200.

Ionospheric Model

The Ionospheric Model contains fields needed to model the propagation delays of the GPS signals through the ionosphere. The information elements in this field are shown in table A.21. Proper use of these fields allows a single-frequency GPS receiver to remove approximately 50 % of the ionospheric delay from the range measurements. The Ionospheric Model is valid for the entire constellation and changes slowly relative to the Navigation Model. All of the fields must be included when Ionospheric Model is present.

Parameter	# Bits	Scale Factor	Units	Incl.
α ₀	8	2^{-30}	seconds	С
α ₁	8	2 ⁻²⁷	sec/semi-circle	С
α2	8	2 ⁻²⁴	sec/(semi-circle) ²	С
α ₃	8	2 ⁻²⁴	sec/(semi-circle) ³	С
β ₀	8	2 ¹¹	seconds	С
β1	8	2 ¹⁴	sec/semi-circle	С
β2	8	2 ¹⁶	sec/(semi-circle) ²	С
β ₃	8	2 ¹⁶	sec/(semi-circle) ³	С

Table A.21: Ionospheric Model (occurs once per message, when present)

UTC Model

The UTC Model field contains a set of parameters needed to relate GPS time to Universal Time Coordinate (UTC). All of the fields in the UTC Model are mandatory when the field is present.

Parameter	# Bits	Scale Factor	Units	Incl.
A ₁	24	2 ⁻⁵⁰	sec/sec	С
A ₀	32	2 ⁻³⁰	seconds	С
$t_{ot}^{(1)}$	8	2 ¹²	seconds	С
WN _t ⁽¹⁾	8	1	weeks	С
Δt_{LS}	8	1	seconds	С
WN _{LSF} ⁽¹⁾	8	1	weeks	С
DN	8	1	days	С
Δt_{LSF}	8	1	seconds	С

Table A.22: UTC Model (occurs once per message, when present per-satellite fields - $^{(1)}$ = Positive range only)

Almanac

These fields specify the coarse, long-term model of the satellite positions and clocks. These fields are given in table A.23 below. With one exception (δ i), these parameters are a subset of the ephemeris and clock correction parameters in the Navigation Model, although with reduced resolution and accuracy. The almanac model is useful for receiver tasks that require coarse accuracy, such as determining satellite visibility. The model is valid for up to one year, typically. Since it is a long-term model, the field should be provided for all satellites in the GPS constellation. All fields in the Almanac are mandatory when the Almanac is present. The fields t_{oa} and WN_a specify the GPS time-of-week and week number, respectively, that are the reference points for the Almanac parameters.

The Almanac also is useful as an acquisition aid for network-based GPS methods. Given a recent Almanac (< 3-4 weeks old), the MS only needs Reference Time and Reference Location information to quickly acquire the signals and return measurements to the network.

The Almanac also contains information about the health of that satellite as described in ICD-GPS-200. If this Alamanc has been captured from the satellite signal, the SV Health field represents the predicted satellite health at the time the GPS control segment uploaded the Almanac to the satellite. According to ICD-GPS-200, this health information may differ from the SV Health field in the Navigation Model (table A.19) due to different upload times.

The parameters Num_Sats_Total and SatID shall be interpreted in the same manner as described under table A19.

Parameter	# Bits	Scale Factor	Units	Incl.
-	The following f	fields occur once p	er message	
Num_Sats_Total	6 ⁽¹⁾	1		Μ
WNa	8 ⁽¹⁾	1	weeks	Μ
	The following	fields occur once	per satellite	
SatID	6 ⁽¹⁾			Μ
e ⁽¹⁾	16	2 ⁻²¹	dimensionless	Μ
t _{oa} ⁽¹⁾	8	2 ¹²	sec	Μ
δί	16	2 ⁻¹⁹	semi-circles	Μ
OMEGADOT	16	2 ⁻³⁸	semi-circles/sec	Μ
SV Health	8		Boolean	Μ
A ^{1/2(1)}	24	2 ⁻¹¹	meters ^{1/2}	Μ
OMEGA ₀	24	2 ⁻²³	semi-circles	Μ
ω	24	2 ⁻²³	semi-circles	Μ
Mo	24	2 ⁻²³	semi-circles	Μ
af ₀	11	2 ⁻²⁰	seconds	Μ
af ₁	11	2 ⁻³⁸	sec/sec	Μ

Table A.23: Almanac (per-satellite fields - ⁽¹⁾ = Positive range only)

Acquisition Assistance

The Acquisition Assistance field of the GPS Assistance Data Information Element contains parameters that enable fast acquisition of the GPS signals in network-based GPS positioning. Essentially, these parameters describe the range and derivatives from respective satellites to the Reference Location at the Reference Time. Table A.24 illustrates the assistance data occurring once per message and table A.25 illustrates the assistance data occurring per number of satellites for which acquisition assistance is being provided. Figure A.2 illustrates the relation between some of the fields.

This field is optional. The field would probably appear when the Method Type field of the Positioning Instructions IE is set to 0 (MS-Assisted) and the Positioning Methods field of the Position Instructions IE is set to 1 (GPS).

Parameter		Range	Bits	Resolution	Incl.	Notes
Number of Satellites		0 – 15	4		М	
Reference Time	GPS TOW	0-604799.92sec	23	0.08 sec	Μ	
	BCCH Carrier	0 - 1023	10		O ¹	
	BSIC	0 - 63	6		O ¹	
	Frame #	0 – 2097151	21		O ¹	
	Timeslots #	0-7	3		0 ¹	
	Bit #	0 – 156	8		0 ¹	

Table A.24: GPS Acquisition Assist - Parameters appearing once per message

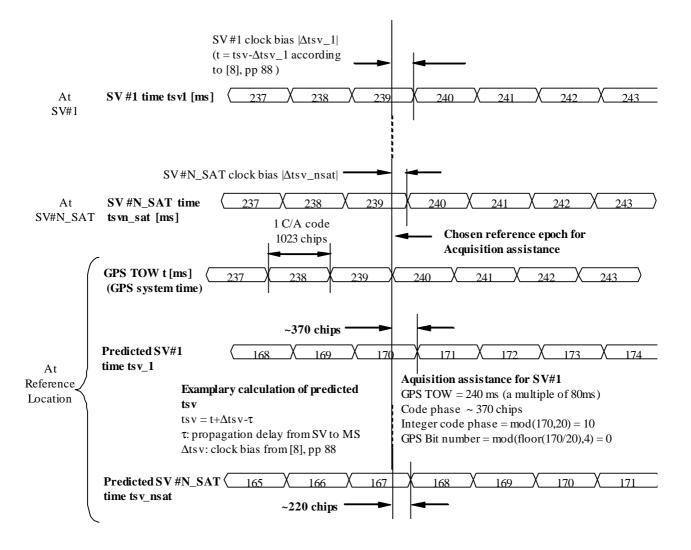

NOTE 1: All of these field shall be present together, or none of them shall be present.

Table A.25: GPS Acquisition Assist - Parameters appearing [number of satellites] times per message

Parameter	Range	Bits	Resolution	Incl.	Notes
SVID/PRNID	1 - 64(0 - 63)	6		М	
Doppler (0 th order term)	-5,120 Hz to 5,117.5 Hz	12	2.5 Hz	М	
Doppler (1 st order term)	-1.0 – 0.5 Hz/sec.	6	1/42 Hz/sec.	O ¹	
Doppler Uncertainty	12.5 Hz – 200 Hz	3		O ¹	
	$[2^{-n}(200) \text{ Hz}, n = 0 - 4]$				
Code Phase	0 – 1022 chips	10	1 chip	М	
Integer Code Phase	0-19	5	1 C/A period	М	
GPS Bit number	0-3	2		М	
Code Phase Search Window	1 – 192 chips	4		М	
Azimuth	0 – 348.75 deg	5	11.25 deg	0 ²	
Elevation	0 – 78.75 deg	3	11.25 deg	0 ²	

NOTE 1: Both of these fields shall be present together, or none of them shall be present.

NOTE 2: Both of these fields shall be present together, or none of them shall be present.

Figure A.2. Exemplary calculations of Acquisition Assistance fields.

This field indicates whether or not angle information is present in this message. The MS shall interpret a value of "1" to mean that angle (Azimuth and Elevation) information is present, and "0" to mean that it is not provided. This field is mandatory.

Number of Satellites

This field contains the number of satellites identified in this information element. This field is mandatory.

Range: 0 - 15

Reference Time

The Reference Time field of the GPS Acquisition Assistance Data IE specifies the relationship between GPS time and air-interface timing of the BTS transmission in the reference cell.

GPS TOW subfield specifies the GPS TOW for which the location estimate is valid. When the parameters BCCH Carrier/BSIC/Frame #/Timeslots #/Bit # are present, together with GPSTOW they provide a valid relationship between GPS and GSM time, as seen at the approximate location of the MS, ie the propagation delay from BTS to MS shall be compensated for by the SMLC. Depending on implementation, the relation between GPS and GSM time may have varying accuracy. The uncertainty of the timing relation may be provided in the optional field GPS Reference Time Uncertainty. If the propagation delay from BTS to MS is not accurately known, the SMLC shall use the best available approximation of the propagation delay and take the corresponding delay uncertainty into account in the calculation of the field GPS Reference Time Uncertainty. GPS TOW is mandatory when the GPS Acquisition Assistance Data

Information Element is included. When the GSM time parameters are not present the GPS TOW is an estimate of current GPS time of week at time of reception of the RRLP segment containing the GPS TOW by the MS. The SMLC should achieve an accuracy of +/- 3 seconds for this estimate including allowing for the transmission delay between SMLC and MS of the RRLP segment containing GPS TOW. Note that the MS should further compensate GPS TOW for the time between the reception of the segment containing GPS TOW and the time when the GPS TOW field is used.

Range: 0 - 604799.92 sec

The **BCCH Carrier** # and **BSIC** subfields specify the reference cell for which GSM timing is provided. These subfields are optional when the GPS Acquisition Assistance Data Information Element is included. If included, the SMLC shall set the reference cell to the current serving cell. A target MS has the option of rejecting a GPS position request or GPS assistance data if the reference cell is not the serving cell.

The **Frame** # subfield specifies the GSM frame number of the BTS transmissions for the reference cell that occur at the given GPS TOW. This subfield is optional when the GPS Acquisition Assistance Data Information Element is included.

Range: 0 - 2097151

The **Timeslots** # subfield specifies the GSM timeslot of the BTS transmissions for the reference cell that occur at the given GPS TOW. This subfield is optional when the GPS Acquisition Assistance Data Information Element is included.

Range: 0 - 7

The **Bit** # subfield specifies the GSM and bit number of the BTS transmissions for the reference cell that occur at the given GPS TOW. This subfield is optional when the GPS Acquisition Assistance Data Information Element is included.

Range: 0 - 156

SVID/PRNID

This field identifies the particular satellite for which the measurement data is supplied. This value is the same as the PRN number provided in the navigation message transmitted by the particular satellite.

The range is 0 to 63, where SVID = PRNID - 1

Doppler (0th order term)

This field contains the Doppler (0th order term) value. A positive value defines the increase in satellite signal frequency due to velocity towards the MS. A negative value defines the decrease in satellite signal frequency due to velocity away from the MS. This field is mandatory.

Range: 5,120 Hz to 5,117.5 Hz

Doppler (1st order term)

This field contains the Doppler (1st order term) value. A positive value defines the rate of increase in satellite signal frequency due to acceleration towards the MS. A negative value defines the rate of decrease in satellite signal frequency due to acceleration away from the MS. This field is optional.

Range: -1,0 Hz to 0,5 Hz / s

Doppler Uncertainty

This field contains the Doppler uncertainty value. It is defined such that the Doppler experienced by a stationary MS is in the range 'Doppler – Doppler Uncertainty' to 'Doppler + Doppler Uncertainty'. This field is optional.

Range: 12,5 Hz to 200 Hz

Code Phase

This field contains code phase, in units of 1 GPS chip, in the range from 0 to 1022 GPS chips, where increasing binary values of the field signify increasing predicted pseudoranges, as seen by a receiver at the Reference Location at the time GPS TOW. The Reference Location would typically be an apriori estimate of the MS location. This field is mandatory.

Range. 0-1022 chips

Integer Code Phase

This field contains integer code phase, i.e. the number of the code periods that have elapsed since the latest GPS bit boundary, in units of C/A code period, as seen by a receiver at the Reference Location at the time GPS TOW. This field is mandatory.

Range: 0-19

GPS Bit Number

This field contains GPS bit number (expressed modulo 4) currently being transmitted at the time GPS TOW, as seen by a receiver at the Reference Location. This field is mandatory.

Range: 0-3

Code Phase Search Window

This field contains the code phase search window. The code phase search window accounts for the uncertainty in the estimated MS location but not any uncertainty in GPS TOW. It is defined such that the expected code phase is in the range 'Code Phase – Code Phase Search Window' to 'Code Phase + Code Phase Search Window'. This field is mandatory.

Range: 0-15 (i.e. 1-192 chips according to following table)

CODE_PHASE_WIN	Code Phase Search Window (GPS chips)
'0000'	1023
'0001'	1
'0010'	2
'0011'	3
'0100'	4
'0101'	6
'0110'	8
'0111'	12
'1000'	16
'1001'	24
'1010'	32
'1011'	48
'1100'	64
'1101'	96
'1110'	128
'1111'	192

Table A.26: Code Phase Search Window Parameter Format

Azimuth

This field contains the azimuth angle. An angle of x degrees means the satellite azimuth a is in the range ($x \le a < x+11.25$) degrees. This field is optional.

Range: 0 – 348.75 degrees.

Elevation

This field contains the elevation angle. An angle of y degrees means the satellite elevation e is in the range ($y \le e < y+11.25$) degrees except for y = 78.75 where the range is extended to include 90 degrees. This field is optional.

Range: 0 - 78.75 degrees

Real-Time Integrity

The Real-Time Integrity field of the GPS Assistance Data Information Element contains parameters that describe the real-time status of the GPS constellation. Primarily intended for non-differential applications, the real-time integrity of the satellite constellation is of importance as there is no differential correction data by which the mobile can determine the soundness of each satellite signal. The Real-Time GPS Satellite Integrity data communicates the health of the constellation to the mobile in real-time. The format is shown in tables A.27 to A.29.

Table A.27: Real-Time Integrity (Fields occurring once per message)

Parameter	# Bits	Scale Factor	Range	Units	Incl.
Bad Satellite Present	1	1	Boolean		М

Table A.28: Real-Time Integrity - Parameters appearing when Bad Satellite Present is set

Parameter	# Bits	Scale Factor	Range	Units	Incl.
NBS	4	1	1 - 16		С

Table A.29: Real-Time Integrity - Parameters appearing NBS times

Parameter	# Bits	Scale Factor	Range	Units	Incl.
Bad_SVID	6	1	1 – 64 (0-63)		С

Bad Satellite Present

This single bit parameter indicates that (0) all GPS satellites in the constellation are OK to use at this time, or (1) that there is at least one satellite that should be ignored by the MS-based GPS application.

NBS (Number of Bad Satellites)

This four bit field is dependent on Bad Satellite Present being set to one. In this case, the NBS field indicates the number of satellite ID's that follow that the user should not use at this time in a fix. This field is conditional.

Bad_SVID

This six bit field appears NBS times, and indicates the SVID of satellites that should not be used for fix by the user at this time. This field is conditional.

A.4.2.4a GPS Time Assistance Measurement Request Element

This element is optional and controls if the MS should return GPS time assistance measurements or not to the SMLC. The inclusion of this parameter implies use of measure Position Request. The description is found in sub-chapter 2.2.4a.

A.4.2.4b GPS Reference Time Uncertainty Element

This element is optional and provides the accuracy of the relation GPS and GSM time in the Acquisition Assistance in GPS Assistance Data Element. The interval, range and treatment is as described in sub-clause 2.2.4b.

A.4.2.5 More Assistance Data To Be Sent Element

This element is set by the SMLC to indicate to the MS if more Assistance Data components will be sent in the current procedure in order to deliver the entire set of assistance data.

A.5 Assistance Data Acknowledgement

A.5.1 General

The MS sends the Assistance Data Acknowledgement component to the SMLC to indicate that it has received the whole Assistance Data component.

A.6 Protocol Error

A.6.1 General

This component is used by the receiving entity (SMLC or MS) to indicate to the sending entity, that there is a problem that prevents the receiving entity to receive a complete and understandable component.

This component has the following values:

'0':	Undefined
'1':	Missing Component
'2':	Incorrect Data
'3':	Missing Information Element or Component Element
'4':	Message Too Short

'5': Unknown Reference Number

Annex B (informative): Change History

Meeting / Date	Documetn	CR	Rev	Subject/Comment	New Version
GP-04	GP-010849	A027	1	Rel-4 version based on R99 version 8.4.0.	44.031v4.
				CR to modify references for LCS in Release 4 for 3GPP TS 04.31 (Rel-4)	0.0
GP-05	GP-011433	001	3	Addition of two fields for E-OTD method & corrections	4.1.0
GP-05	GP-011429	004	3	Corrections to number of neighbour cells allowed in RRLP specification NOTE: new sub-clause inserted as A.3.2.3a instead of A.3.2.4.	4.1.0
GP-06	GP-011517	010		Correction of faulty ephemeris definitions (Rel-4)	4.2.0
GP-06	GP-011934	009	2	Correction of various A-GPS faults (Rel-4)	4.2.0
GP-07	GP-012308	027		'Expected' Multiframe Offset	4.3.0
GP-07	GP-012030	017		Correction to Toc and Toe ephemeris parameters	4.3.0
GP-07	GP-012028	015		Addition of extension field to assistance data component and some ASN.1 corrections.	4.3.0
GP-07	GP-012846	029	2	Correction of Reference Frame in Location Information Element	4.3.0
GP-07	GP-011982	013	2	Corrections to Rough RTD, Multiframe Offset and Expected OTD ranges.	4.3.0
GP-07	GP-012219	025		RRLP – Remove references to NSS based SMLC	4.3.0
GP-07	GP-012026	011		RRLP - Correction of Error Handling Procedures	4.3.0
GP-07	-	-		Missing Table Headings added	-
GP-08	GP-020489	046	1	Correction to OTD Measurement Response	4.4.0
GP-09	GP-020546	056		Usage of "SystemInfoIndex" by the MS in E-OTD measurement reporting	4.5.0
GP-09	GP-020676	051		Removing condition to Control Header parameter	4.5.0
GP-09	GP-020708	050	3	Clarification and Correction of DGPS Data Fields	4.5.0
GP-09	GP-021265	054	2	Correction of syntax faults in the ASN.1	4.5.0
GP-10	GP-021350	061		ASN.1 Faults in GPS Assistance Data	4.6.0
GP-10	GP-021354	063		ASN.1 Faults in GPS Measurement Parameters	4.6.0
GP-10	GP-022108	054	6	Correction of syntax faults in the ASN.1	4.6.0
GP-16	GP-032270	073	3	Correction of RRLP Pseudo-Segmentation Description	4.7.0
GP-18	GP-040422	081	1	Definition of code and Doppler search windows for MS assisted A-GPS	4.8.0
GP-19	GP-040840	084	2	Definition of code and Doppler search windows for MS assisted A-GPS	4.9.0
GP-20	GP-041292	099	3	Correction of inconsistencies between RRLP and MAP specification	4.10.0
GP-20	GP-041295	104		Correction of A-GPS Doppler0, Doppler1, Azimuth, Elevation	4.10.0
GP-20	GP-041671	113		Clarification of GPSTOW in Reference Time	4.10.0
GP-21	GP-042124	115	1	Define rules for pseudo-segmentation of A-GPS Assistance Data	4.11.0
GP-22	GP-042576	118	3	Correction of relation between GSM Reference Frame and GPS TOW to achieve high-accuracy timing assistance for AGPS (Rel-4)	4.12.0
GP-22	GP-042319	125	1	Correction of allowed RRLP GPS reference location shapes for compatibility and consistent operation	4.12.0
GP-23	GP-050303	129	1	Correction of the ASN.1 code	4.13.0
GP-34	GP-070841	0165		Correction to GPS Time Assistance Measurements IE	4.14.0

History

Document history				
V4.0.0	May 2001	Publication		
V4.1.0	July 2001	Publication		
V4.2.0	September 2001	Publication		
V4.3.0	December 2001	Publication		
V4.4.0	February 2002	Publication		
V4.5.0	April 2002	Publication		
V4.6.0	July 2002	Publication		
V4.7.0	September 2003	Publication		
V4.8.0	February 2004	Publication		
V4.9.0	May 2004	Publication		
V4.10.0	July 2004	Publication		
V4.11.0	September 2004	Publication		
V4.12.0	November 2004	Publication		
V4.13.0	January 2005	Publication		
V4.14.0	June 2007	Publication		