Final draft ETS| ES 201 873-1 V4.6.1 (2014-04)

ETSI Standard_

Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
Part 1: TTCN-3 Core Language

2 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Reference
RES/MTS-201873-1 T3ed461

Keywords
language, methodology, testing, TTCN-3

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the
print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2014.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP™and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Contents

INntellectual Property RIGNES.ottt senrenbe e 11
= 11 o PSSR 11
1 o0 o< PSPPSR 12
2 L= £ 01 SRS 12
21 NOFMEBLIVE FEFEIEINCES ...ttt ettt sttt b et e e s e e ke b e eb e e bt e a e e e e s et e se e eb e s bt eh e e ne e e e b sheebesneenee e enrenes 12
2.2 INfOrMELIVE FEFEIENCES. ...ttt bbbttt e et et b e bt e a e et e e e b sheebeeneene e e enee e 13
3 Definitions and @DBreVIaLiONS...........coveieirieieises et 13
31 D= T 0T (0] 1 PSSR 13
3.2 F Y o] o= V7= 0] 18
4 100 [Tox A o o SRS 19
41 The core language and pPresentation FOrMALSc.c e iiere e seesae e ea e saeenaesreenreas 19
4.2 Unanimity of the SPECITICALIONc.ieeiciecie e te s te e e sreesaeesne e reenseens 20
4.3 (00010100 7= 0o TR TSSO U U P USROS 21
5 BasiC 1angQUagE ElEMENTSoiiceie ettt st s b e e ebesae e e e be et e s restesae e renreennens 21
51 [AENtITIErS AN KEYWOITS ...ttt e bbbt b et b bbb eb e ens 22
52 SCOPE FUIES ...ttt bbbt b e bt b e b e e bt e b e e e bt e R e e eh e e E e e e bt e E e e e bt b e he e bt e e e nt e b e e e et eb e s e et eb e b e 22
521 SCOPE Of FOIMEl PAFBIMELES ...ttt ettt b bbb e bt b et b e b se et s b e e ebesbe e ebesbennenea 24
522 UNiQUENESS OF THBNTITIEIS ...ttt bbb ettt 24
5.3 Ordering Of [aNQUAGE ElEMIENLS.........ceiieiie ettt e e e e te e te s e e s e e sreesaeeaeenseenteeneeeneesneesrens 25
54 e 01 (= 74 (o] o IO PO PP USTORPP 25
54.1 FOrMEl PAIAIMIELENSecueeieesiee ettt ettt e st e st esbe e s teeaeeaeeeaeeeaeease e seenteentensaesteesseesseeseensenneennes 26
54.1.1 Formal parameters Of KinNG VAIUE..........ccviueieeieieeeceee ettt ena e snaesnaesreennees 26
54.1.2 Formal parameters of Kind teMPIELE.c.vccuvieieiecies e snees 29
54.1.3 Formal parameters Of Kind tIMEN...........ooeiiiieieeere et eb e 30
5414 Formal parameters Of KiNG POFT..........ooeeeiiieirieseeese et s eb e ebesresnene 31
542 ACTUBl PBIBIMELEIS ...ttt ettt bbbt h bbbt E e e h e s b e s st e b e b e st e b et e bt e b e b e st eb e b et e be b e e 32
55 CYClIC DEFINMITTIONS. ...ttt bbbt b e et b e et b e b et b e et b e et e st eb et et eb e e e 35
6 TYPES @MU VAIUBS ...ttt sttt e st e et e te s te et e s bess e e eesaeeneesteeneeseesreeseenteseeensensenneenes 35
6.1 BaSIC LYPES N0 VAIUES.........ooceieieeieee et ste ettt et e et e st et e e e stesstesaeesaeesaeeteenteessesseessaesseesseesseenseanennnes 36
6.1.0 SiMPIe basiC tyPES AN VBIUES.........cceeiieieeie ettt e et s ae e saeenaeeaeessaeetaasteesseenseeeenneennes 36
6.1.1 BasiC StriNg tYPES @NA VAIUES........coiuee ittt et e nte et e s e te e be e teeseenneeneennes 37
6.1.1.1 Accessing individual StrinNg EleMENES........ccveiieiiiece e ee s e e e e e sreenreenseens 39
6.1.2 SUBLYPING OF DASIC LYPES ...ttt bbbt b e et b et eb e b e e b e b nnene 39
6.1.2.1 LiStS Of TEIMPIALIESceeeeeeteeeeet ettt bbb b e bt b e bt sb e e ebesbeneebenbennenea 39
6.1.2.2 LiSES OF LYPIBS ..tttk b bbb bt h e bR b e Rt b bbbt n b 39
6.1.2.3 RENGES.....ce e e 40
6.1.24 SUNG 1ENGEN FESIITICIIONS ...ttt bbbt sa s 40
6.1.2.5 Pattern subtyping Of CharaCter SHNG tYPESc.eiirieiiirieerie et eb e 41
6.1.2.6 Mixing SUDBLYPING MECNANISIMS.......cciieeiieee ettt e s esreesaeeae e e eseesraesreessesneesneesseesenes 41
6.1.2.6.1 Mixing patterns, lIStS aNd FANJES........vccuieeeeeeseeseee e see st e se e e s e e e te e e etessaesraesreeseeaeeneennes 41
6.1.2.6.2 Using length restriction with Other CONSLraiNtS...........cceiieiiiieie s 42
6.2 SEUCLUNEd tYPES ANA VAIUES.......eeceieceie ittt et ettt e st et e e e e e seesseesaeesaeesseeseenseenteeneesneesneesrens 42
6.2.1 RECOIA tYPE @NU VBIUES........c.eeeeieiie ettt ettt e te s e s e sae e sae e teenaeeaaeeseessaeste e seeseenseeneenneennes 44
6.2.1.1 Referencing fields Of @reCOrd tYPRuiiie et esnaesreenrees 46
6.2.1.2 Optional ElEmMENESIN @IECONT......c.euiiiiieiertere ettt b et b e b e b e 46
6.2.1.3 Nested type definitions fOr fIeld LYPESc.eiiieiiie e 47
6.2.2 SELLYPE BNA VBIUES ...ttt b bbbt b e bt b e bt b e s b et bt sb e e eb e s b e e ebesbeneeneebeneenea 47
6.221 Referencing fields Of @SBt LYPE.....c.ciireiieree e eb e ene 47
6.2.2.2 OpPtioNal ElEMENES TN A SEL ...ttt b e bbb sa s 47
6.2.2.3 Nested type definition for field tYPES.......cv i 48
6.2.3 Records and SetS Of SINGIE LYPEScveiiie et re et et te s e s re e re e teeteennenneennes 48
6.2.3.1 NeSted tyPe AEfiNITIONS........ece et e e e reeaeeesaeesaesnaesreesneas 50
6.2.3.2 Referencing elements of record of and Set Of tYPESocveeieciecieece e 50

ETSI

4 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

6.2.4 Enumerated tYPe @nU VEIUEScoiuee ettt sttt e e ae e e saess e s te e te e teeseeneennnennes 51
6.2.5 L o] LT P ST TS PO PRTURTURURPRTRIN 52
6.25.1 Referencing fields Of @ UNION TYPEccueeiee ettt esnaesreenneas 52
6.2.5.2 (@] o 1Yo 1= o I 0o o TS 53
6.2.5.3 Nested type definition for field tYPES.......cv i 53
6.2.6 LI S=)Y 87 S S 53
6.2.7 N 1= Y TP UOP O 53
6.2.8 THE AEFAUIT EYPE ...t b et b bbbt b et b et e e bbbt e nnens 55
6.2.9 COMMUNI CALION POIT LYPES.....cveeeueetereeieete sttt sttt sttt sb et e et et se et ebese e et esa et ek e sb e e et e sbe e ebesbe e ebesbennenens 55
6.2.10 COMPONENT TYPIES ...ttt h e e s e e r e R e e ae e e e e e e R e s b sh e e be e e eb e e s e s e nresreeresneenne e enes 57
6.2.10.1 Component tYPE dEfiNITION..........oouiiiieee bbb 57
6.2.10.2 ReUSE Of COMPONENT LYPES ..o ceeeeieestie e e e e st e te et e e te e tess e ssaesaeesaeesseenaesanesneesseenseenseans 58
6.2.11 COMPONENE FEFEIEICES ... e eeeeceeeeteete et s sttt e et et e e e e tesseesaeesreesaeenaeenseeseeeseesseesseenseensenneennes 60
6.2.12 Addressing entitieS iNSIAE ThE SUTcceeiieiice ettt s sre e sreesae et e e nneenaesreesnaesnees 62
6.2.13 W04 o g To o RS 0T (0 =0 Y 0= 64
6.2.13.1 Length subtyping of record of Sand Set Of S..........oceeiiiiiiieece e 64
6.2.13.2 List subtyping of structured types and @nytyPe..........c.cveeieeieere et ene e 65
6.2.13.3 Subtyping of the iterated type of record of Sand SEt OfS.........ccovireiiiriire e 67
6.2.13.4 MixXing SUBLYPING MECNANISIMIS........ccuiitiietiitiiet sttt sttt b e b b e b b e b e e ebesrennenen 68
6.3 TYPE COMPEALIDITTITY ...ttt ettt b e e b bt b b se b e s b e eb e e b neene s 69
6.3.1 Compatibility Of NON-SIFUCLUIE TYPEScverieiieiirieieeie ettt st s b e e eb e seene 69
6.3.2 Compatibility Of SIFUCIUIEH tYPES......cue ettt b e e e b b e b b nnenea 70
6.3.2.1 Compatibility Of ENUMErELEH tYPEScveueieirieietere et 70
6.3.2.2 Compatibility of record and reCord Of tYPESueiviicie e seees 71
6.3.2.3 Compatibility Of Set @and SEt Of LYPES...cveeieeice e sraesraennees 72
6.3.24 Compatibility Of UNION TYPES.......ecveiieiie ettt te e st sae e te e ae e e sneesreenteenaeenaesneeneeas 72
6.3.2.5 Compatibility Of ANYLYPE LYPEScieeieee ettt e ae e e sreesteenneeneeeneesseesaenn 73
6.3.2.6 Compatibility DEtWEEN SUD-SIIUCLUIES.........ccuieiieeie ettt eenaesraennees 73
6.3.3 Compatibility Of COMPONENE LYPES. ... eeieeiieie ettt et ere et see s e e rae e e e sae e sae e e e sreeste e se e reeteeneesneennes 74
6.34 Type compatibility of COMMUNICaLioN OPEraliONScciirieiririeirii e 74
6.3.5 LY 0L 0177= = o o TSP RO STRPRRT 75
6.4 IR 0L,/ 01 0 TP O 75
7 0= 0] TSSO P SRRSO 75
7.1 (01 = (0] £ T TSR PPTRP 76
711 F N g0 T olo o< = (] =SSR 77
7.1.2 LIRS0 0= = () 78
7.1.3 e 0] 7= 0 0= = (o] = S 78
7.1.4 (0T Lo 0] 1= =1 0] £ 80
7.15 BiTWISE OPEIGIOIS ...ttt ettt bt b et b e bbb et b e b et b e b et bt et b e et b bbb 81
7.16 ShITE OPEIBLOIS...... ettt bbbttt b bt b e bt b e s b e b e b et b e s bt sb et eb e s b e e ebesb e e ebesbennenea 82
7.1.7 L0z (ST 00l = (0] £ TP PP TP 82
7.2 Field references and l1St BlEMENES.ttt e sae e ene e e e e es 83
8 1770 o 111 =SS 83
8.1 DEfiNitionN Of @IMOGAUIEouiiiiieiieee ettt b bbbt a et e et sheeb e s st ene e e enrees 83
8.2 K0T LB T X0 TR Y] LS o = 84
821 Kol LU LS o= = 1< (= S 85
8.2.2 L€ l0 0130 0 U=t 11T 0] = 86
823 IMPOrtiNg frOM MOTUIES ...ttt bt b et e et b e bbb 87
8231 General fOrmMat OF TMPONTc.eiuiieiiie et b et b et b e sn s 87
8232 IMPOrting SINGIE AEfiNITIONSccuiitiiiteree bbbttt b e e 93
8233 [MPOITING GrOUPS. ...ttt sttt sttt sttt se et a ettt e et besb et ebe s b e e eb e s b e e eb e e b e e eb e s b e neeb e s b et ebenbe e ebenbeneees 9
8234 Importing definitions of the SAME KINGcciiiiiiii e 95
8.2.35 Importing al definitions Of @MOAUIE...........c.coeeiee i 96
8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules...........ccccoevvvervennns 97
8.2.3.7 Importing of import statements from TTCN-3 MOAUIES.........ccoveii e 99
8.2.3.8 Compatihility of language SpecificationS iN IMPOITS........cciiierieii e 100
824 Definition of friend MOUIES............coiiieiire b sr b e 100
8.25 ViSiDility Of AEfiNITIONS.......cciiee e e et ete e e saeesneesneanseenseens 101
8.3 MOAUIE CONEFOI PAIT......c.eeeeeteieeieete ettt ettt et b et b e et et eb e s e et b e s e et eb e s e et ebesb e e ek e sbeneebenbenneneas 102
9 Port types, component types and test CONFIQUIaLIONScccevrireiirerese e 103

ETSI

5 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

9.1 (o001 01070 TTo= 1 o g I o0 €= 104
9.2 TESE SYSEM INEEITACE.eeeeeeeeeee ettt e bbbt eh et eb e ae e b e b sbesbeeaeese e e ennas 106
O T B = o =T o o) 1 = £ SR 108
11 DeClaring VAADIES.ocueieeeeee ettt bbb et b bt n e nr e e e 108
111 RV L0 = T o= S 109
11.2 TEMPIAIE VAITADIES ...t bbbt b e bbbt b e bbbt b b 110
12 DECIAITNG TIMIEIS ...ttt a bt a b e e e e e e e e he e bt e bbb e b e b e e et e st ebenb e renr e e e nn s 111
G T B Tc o 1 o 0= o (TS 112
14 Declaring ProCeAUIE SIGNAEUIES.coueruereeeeeueeiesseesesse st s s ssee s se st ssessesbesbess et e e e s e s e e eseanesrennennens 112
15 DECIariNg tEMPIELES.ceeeeeeieeiiet ettt e et s bt bbb e b e e e e e e e st e bt nb e ne e e nn e 113
15.1 Declaring MESSAgE tEMPIALESvecieeeeecie e e e e e et e s e e saeesaeeteenreenteeneesnaenneas 114
15.2 Declaring SIgNature tEMPIELEScve et e e e st e e tesne e saeesae e teenseenteeneesnaesnnas 116
15.3 (€1T0] o> =T o W LoTor= I (4]0 F= 1= 117
154 T TSR I 00T 0 = 1SS 118
155 MOTITIE TEMPIALES. ...ttt b et b bbb e bt bt e bt b e et s bt e eb et n b e e ens 119
15.6 Referencing elements of templates or template fIeldsS.c.ooireiiirinice s 122
156.1 Referencing individual String @EMENTS.........cooeriiiee e 122
15.6.2 Referencing r eCor d and SEt fIEldS. ..o e 122
15.6.3 Referencingr ecor d of and set Of €lementS........ccooeo e 123
1564 Referencing SIgNature ParaMELErS.........cci ittt sb et st n e sb e 126
15.7 Template MatChing MECHANISIMSocuiiiecieiee et e e e e e s saesreesreesseesaesneesaeesseenseesenns 126
1571 SPECITIC VAIUBS ...ttt et st sttt b e e st b e ne s e be st e st e be st e e s bente e nbe st e ens 127
15.7.2 Specia symbolsthat can be used instead Of VAIUES...........cceeiieiiee i 128
15.7.3 Specia symbolsthat can be used INSIAE VAIUES...........cooeiiieiiee et 129
15.74 Specia symbols which describe attributes of VAIUES..........c.ooveieeieee e 129
15.8 I 0] B S (== ok e S 130
159 = (e g T @ o1 = (o SO O SO SPE TP 132
15.10 WV BIUEOF OPEIGLIONcvetieetiiteeet ettt ettt b et b bbb e bt e bt e bt s b seebe s b et ebesbeneebesbeneenesbeneenea 132
1511 Concatenating templates of String and liSt tYPESc.ooviiririeireer e 133
16 FUuNctions, altSePS anNA LESICASESoivieie ettt ettt et aesteereeneenaeeneenes 134
16.1 FEUNCLIONS ...ttt bt e et bt et e bRt e he e e e e e b e eh e e b e s bt eh e e e e b e sbeebenbeeneenne e ennenes 134
16.1.1 120 T o R 0 0 S 137
16.1.2 Predefined FUNCLIONScoiie e bt s b e et b e b et bbbt ene e e e e 138
16.1.3 EXEEINEL TUNCLIONS.eeeieeee bbbttt ettt et e sb e b saeene e e et e 140
16.1.4 Invoking functions from SPECITIC PlACES........ccuviiiieece e e 140
16.2 AAIESEEDS. ..ttt b e b b E bR AR R oA £ R e SRR E Rt R e R e R e R e e Rt R e e ekt eR et ebeebe e enenrenrenea 141
16.2.1 INVOKING @IESEEIS. ...ttt ettt b bbbt bbbt b e b et b e bbb 143
16.3 LS = S = TSP UPP PR 144
A Y o o BRSSO 145
18 Overview of program statements and OPEratioNS...........cccviieeeiieieesie e e e ee e ens 145
RS T T S Tol o0 o = IS = (= 41 £ S 147
191 F S [10 1< 01 E SO O SO U O SOP TP PO PURPRTPRIN 148
19.2 THE IT-€1SE SEALEIMENL ...ttt sttt e a et e e e eeseestesaeeaeeneenteseeseeseesneeneeneenees 149
19.3 The SElECT CASE SEALEIMENL ..ottt see et s e se et e seeseesaesaeese e e enseseeseesaeeneeneenennees 149
194 QLI 0L 5 07 | S 151
195 THE WHIIE SEBLEIMENL.......ceeeeeeeieeet ettt sb et se bbbt it et b e e e e b e b sresbeeaeenee e enras 151
19.6 The DO-WHIl@ STALEIMENL ...ttt ettt b e bbbttt e b b sbesaeene e e ennas 152
19.7 THE LADE] STAIEIMENL ..ot bbbt e b et eb et e b et e sbesbesaeene e e eneas 152
19.8 TNE GOLO SEALEIMIENL ...ttt sttt ettt eb et et e e se ke a e eb e e heeae e s e se e b e s bt eb e e e e b e besbenbeeneeneennennes 153
19.9 The StOP EXECULTION SLALEIMIENL...........iieeeeesteeteeteee s e seeste et eeseeseesaeesse e seeseeseeesaessaesseeseensesnsesnnesneesseansennsenns 154
19.10 LT RS (U g R = =0 | RS 154
1911 THE LOG SEBLEMENTttt b ettt b e bbbt b e s bt b e s b et b e s e et b e e et e b e s b e e e b e b e 155
19.12 I 2 =2 NS = 1= 1= 0L RS 157
19.13 THe CONLINUE SEBEEIMENTeeueeeeiere sttt e e ae e e e e teseesbesaees e e e esesbeseesaesaeeseeneanteseeseesaesneeneenennss 157
19.14 SEAEEMENT DIOCK ...ttt ettt et et e aeese et e e neeneese e besaesaeeneeneeneeseens 158

ETSI

6 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

20 Statement and operations for aternative bENaVIOUS...........c.cccciieeeiii e 158
20.1 The SNaPSNOL MECHANISIM........eoiie ettt e esr e e s te e be e teensesnaesnnesneesseanseensenns 159
20.2 TRE AIT SEBLEIMENT ...ttt et bt ae b e e e b e b seeeb e s Rt eb e et et e beseesbeeneeneennentes 159
20.3 The REPEAL SLAIEMENT ...ttt b et b e et b e st he b e e e bt b e st e st eb e b et e b e s bt e be b e 163
204 The INtErTEAVE SLALEMENT ...ttt sttt e e e be st seesaeeaeene e e e teseeseesaeeneeneenennees 164
205 DEFAUIT HANAITNG ...ttt e b et b et b bbbt e eb b nenn e ens 166
20.5.1 The defallt MECHANISIM ..ottt st st ae e et e tesresaeeneeneeneeneas 166
20.5.2 THE ACHVELE OPEIALION.eceeitieeeieteree ettt bt b bbbt b e et b b et b s se bt st e e bt ne s enes 167
20.5.3 The DEACTIVALE OPEIBLIONcveiveieetireeiiete ettt ettt b e bbbt e e bt s b e bt b s e st bt e e b nn e ens 168
21 Configuration OPEIrAliONS..........cccueiieieeie s eieste st e e e e te e e s tesreetesbesreestesseesesteeasestesseessessesreensensens 169
21.1 (o la] 01 oo g @] o= = o] 1 170
21.1.1 The Connect and Map OPEIAliONSccueieeieeieereeeseesee s e s e e steeste e teeseessaesseesreesaeesseenseeneesseesseenseensenns 170
2112 The Disconnect and UNMBap OPEIaLiONSooveeruerieiertirieiniereeesie st ss e sse s saese s sneneenes 172
21.2 TESE CASE OPEIBLIONS. ...t ettt ettt ettt ettt ettt b e et s etk e s e e st e bt s b et e bt s e e st e b e s b et e b e e b e aeeb e b e st e b e s b e e be b 173
2121 TESE CASE SIOP OPEFBLION ...ttt ettt bbb et bbbt b bt e bt b e st b e s et b et e e bt e s ens 173
213 TSt COMPONENT OPEFALTONS........civeeeieetereeit ettt sttt sttt sttt s e b e bt et e st ae b e se e bt bese e st ebe s b e st ebesee e ebenbe e ees 174
21.31 THE CreEate OPEIAION. ... e.eeueiteeeteit ettt b et b e bt e a e bt s ae bt b et bt e e bt b e e e st e bt e e e bt se e e ens 174
21.3.2 The Start test COMPONENE OPEIBLIONeeeiirtireeierteri ettt e e b e s b s e b e eneens 175
21.3.3 The Stop test DENAVIOUr OPEFELIONcceceeiieciec e e s e e e saesreesreesneanseenneens 176
21.34 The Kill test COMPONENE OPEIELION.........cceiieiieieeseeseerte e et ese e st e e e eeessaesreesteesseesesneesreesseesseenseensenns 177
21.35 I Sl AV LAY 0] = = 1 o o S 178
21.3.6 I SN R0 T T ale e 0T = 1 o o S 179
21.3.7 I (=] B0 g =T o o < (o] o S 180
21.3.8 I SN S LN L= o o] o= = 1o o S 182
21.39 Summary of the use of any and all With COMPONENESooiiiiiiiiee e 183
22 COMMUNI CALION OPEFAETONS. ... cvetetiterseteseeseeseese st s sse st s e e s e s eseeseeaeesesb e e b e sr e s e s e s e s eseeseeseeneneeanennennas 183
22.1 The coOmMMUNICatioN MECNANISMSuiieiieeeieee ettt st se et e eeseesbesaesbeeseeneeneeseessesneeneeneenees 184
22.1.1 Principles of message-hased COMMUNICALION.cccueiiiieiie e eneens 184
22.1.2 Principles of procedure-based COMMUNICELIONcc.eeceiieiie e eesreenreeneens 184
22.1.3 Principles of unicast, multicast and broadcast COMMUNICALION.cccceveererierie e 185
22.1.4 General format of COMMUNICatioN OPEIALIONSccecveeeeriieieee e e s e ste e e sre e te e ereesraesreesneas 185
22.1.4.1 General format of the Sending OPEraliONScooiviieice i nreereens 186
22.1.4.2 General format of the reCeiVing OPEralioNS...........cveiieiiiiiiiiese et enaeereens 186
22.2 M essage-based COMMUNICBLION. ...ttt b bbbt b bt e e sb et nenn e enis 187
2221 THE SENA OPEIBLION ... ettt ettt b et b et b et b b a bt bbb eb e bt e e st e b et e e bt nn e e enis 188
2222 THE RECEIVE OPEIBLION ...ttt bt b et b et b e et b e et b e et bbbt e e ens 189
22.2.3 THE THIQUEN OPEIELION ...ttt b et b et b et b bt b b e e bt b et bbbt st e e b b e s ens 192
22.3 Procedure-based COMMIUNICBLION............coeiieerise ettt e et te e ese e e e eeseeseesaesneeseeeaneeses 194
2231 THE Call OPEFALTON ...ttt b e bbbt et b e bbb e st b b e bt sn e ens 194
22.3.2 I SY T o= o o < (o) o S 198
22.3.3 I ST R E o Y] 1= 1o o TS 200
22.34 I SY T i = oY 0] = 1 e o S 201
22.35 I ST R =TS ST 0] 0 = 1 o o S 203
22.3.6 B (SY O (e n e o = 1 oo S 204
224 ThEe CECK OPEIALTON ...ttt ettt b et b e et b e et b e s et b e b et b e b et et e st et ebe b 207
225 Controlling COMMUNICALTION POFTS.......eveueruirieiirtiieiertere ettt bbbttt b e st b e e e e st b bt s be b 209
2251 The Clear POIT OPEIEHIONc.eitireeeeetirtei ettt b et b e bbbt a e bt s e e bt s b e b e e eb e st e e ebeneennens 209
2252 The Start POt OPEIALHIONccueeeiiitiee ettt b bbbt b bbbt bbb e e b b s enes 209
2253 T StOP POt OPEIBLIONeeveeeiiitereet ettt ettt b et b e bt e b e e et b b e b e s e e bt b e e ebene e s ens 210
2254 The Halt POIT OPEIALTON.c.eiuieeeiieiiet ettt bbb bt bbb bbb bt n s ens 210
2255 The CheCKState POt OPEIELIONc.ecieeeeseeseeieeese st e s e sreesteeseeeee e e ssaesteesse e teessesneesseesseesseanseensennsenns 211
22.6 Use Of any and all With POIES........cooiie ettt e s te e saeeteenreenteeneesraesanes 213
PG T 1001 o] o= (0] 1S 213
231 LR (0 001= 7= T o S 213
23.2 The Start tiMer OPEIALION.coiiee ettt b e bbb se et b e b et b bt b e b 214
233 THe StOP tIMEN OPEIBEIONc.eitiiete ittt ettt et b et b e bbbt b e b e bt se et b e b et ebe s b et e b e b 214
234 The REAO tIMEr OPEIELIONeveeeteieeeete ettt sttt et b et b e bt b e bbbt be bt e b b et sb e b e 215
235 The RUNNING tIMEN OPEIALION.uiieiiitiieeeee ettt b bbbt e et b bbb 215
23.6 THe TIMEOUL OPEIGLIONcitiieiiite ettt bbbt b e bbbt eb et et be s b et b b 216
23.7 Summary of use of any and all WIth IMES.........ccooi i e 217

ETSI

7 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

P == Y= (o ol 0] = (0] 1RSSR 218
24.1 The VerdiCt MECNENISIM........ooii e bbb et eb et b et b sbeeaeenee e nnas 218
24.2 LI (SRS = Y= (o [ot l0] o< = 1 o o S 219
243 The GELVEITiCt OPEIELION........ccuieeieite ettt bbbt b et b e et b e bbb et b e se e st b e b et e be st e e ebe b 220
P2 S g 7= = 1 LT 220
P2 T Y/ o LN L= oo 1 o T 221
26.1 THE EXECULE SALEIMENL.ceeeeeieeite sttt et bbb et b e ae b e et e b e besbenbesaeenee e ennes 221
26.2 QLI (ST o 11 0] N o= 1 OSSN 223
S o= o1 Y Lo =] o U1 225
27.1 The AttriDULE MECHANISIM ...ttt e ee e e be e ebe e e eneeseeseesaeeneeneeneennes 225
2711 SCOPE OF BLLITDULES ...ttt bbb bbb bbbt b b 225
2712 OVErwriting rUlES fOr @LITDULES.........co.ciitiieeiiee ettt b e bbb e 226
27121 Additional overwriting rules for variant attribULES.............cceoeiiieriic e 227
27.1.3 Changing attributes of imported language €l EMENLS............cocveieriecce e 228
27.2 THE WL SEAEEIMENL ...ttt ettt et b e bbb e b et b e et eb e et et et e sbenbeeaeenee e enras 229
27.3 [T o] K= VA= 1] 0T SR 229
27.4 Lot o T = o TS 230
275 VAITANT BEITDULES ...ttt bbbt et b e e e eb bt s bt eb e e aees e e e et e s besbesbeeneeneeneetas 231
27.6 EXTENSION BIIITDULES ...ttt bbbt e et b e bt b e h e e b e e e e e b e ebeebeeaeese e e e e e 232
27.7 OPLiONE] BILFTOULES ...ttt bbbt bbb st b bbbt b b 233
Annex A (normative): BNF and static SEMantiCS.......cccevvieeiieii et 235
Nt N I O L = | 235
A.ll Conventions for the SYNtaxX dESCITPLIONceiirieiricri bbb 235
A.l2 Statement terminator SYMOISciiie bbb 235
A.13 0TS g1 = RS 235
Al4 (001010101 01U 235
A.l5 B IO R (0111 OSSR 236
A.151 Use of WhiteSpaces and NEWIINES..........cocv et re e naesaesaeesaeenreeneens 238
A.16 TTCN-3 syntax BNF ProQUCTIONScccuiiie ettt e e sae e sneesneesneenseenneens 239
A.1.6.0 TTCON-3 MOUUIE. ...ttt sttt st e bt e e b e s b e e e st b et e s e be st e s e e be s e ese s b e s eneebestenenseseeneens 239
A.l6.1 MOAUIE AEFINITIONS PAIT......eceeiieiee e e e e e e e e teestessaesreenseeneesnnesneesseenseensenns 239
A.1.6.1.0 (€= 0T - TSRS 239
A.16.11 TYPEAES AEfINITIONSottt bbb bt nn s 239
A.16.1.2 (00015 T e U= 10T (o 0 RS 241
A.16.1.3 TEMPIAE AEfiNITIONS.....c.eitieeeitee et b e b et e et b e eb e n e ens 241
A.l16.14 0 TaTex o) g e (= {1 o T o] = 243
A.16.15 SIGNALUNE AEFINITIONS ...ttt b et b et b e bbb se b b e seebeneeneas 244
A.16.1.6 TESICASE AEFINITIONS.ceiteieict et b et s e bbbt e et e s b et sbesbe e e enne e 244
A.1.6.1.7 F N NS (= oI U= 1T 0] PSSR 244
A.1.6.1.8 T 0Te] i 1= 1T o o PSS 244
A.1.6.1.9 L€ (0T8T o]0 L= T 1110 S PS 245
A.1.6.1.10 External function defiNitioNS............cooiiiiii e e 245
A.16.1.11 External constant definitionS............ooiiiiiiireeee e e e 245
A.16.1.12 Module parameter defiNItIONScccoieiiiiee bbb 245
A.1.6.1.13 Friend module defiNITIONScoii it sa e e et e 245
A.16.2 (O] 0110 I 7= 1 SO OO P SO S PSSP PSRRI 245
A.16.3 (o To o U= 1 0T (o 0 246
A.16.3.1 NV arTahl € INSEANLTBLION ...ttt ettt se et e seeae et et e seeseesaeeneeneeseennas 246
A.1.6.3.2 IS TS = gL o) o RSP RRSRS 246
A.164 (001 10 246
A.l164.1 COMPONENE OPEIBLIONSeuveeieeee e eee st es e e e e e e e s e s e sreesaeesaeesteesseeseessaesseesseesseesesseesneesseesseensennsenns 246
A.1.6.4.2 Lo 0] 1= =1 0] 247
A.1.6.4.3 I L 01= 0] 1= 10 PSSR 249
A.16.4.4 IES 0 =0T o 1= 1 o] o PSR 249
A.16.5 I3 oL PP ORI 249
A.16.6 Y LSS 249
A.16.7 01 (= 174 1 o] [T 250
A.16.8 = 00T 0SSR 251

ETSI

8 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

A.16.8.1 WVt SEBEEIMIENE ...t b et b e et nn e 251
A.1.6.8.2 BEhaVIOUP SEAEEIMENTS ...ttt re et et b ettt e e e sn b sae b e e e e e 251
A.1.6.8.3 BaSIC SEALEMENTS. ...ttt ettt sttt b et b bt bt b e et e bR b e bt he e h e e e e R b eaeene e ne e 252
A.16.9 MiSCEIlaNEOUS PrOTUCTIONS ..ottt b et e e e e et bbbt ene e e 254
Annex B (normative): MatChiNG VAIUEScoueeiee e 255
B.1 Template matChing MECNANISIMScoiiiieie et e e e e s reens 255
B.1.1 MatChing SPECIHTIC VBIUES........c.eeceeecieeeee ettt et e st ete et e s e e saeesaeeteenteenteeneennaesnnes 255
B.1.2 Matching mechanismsinStead Of VAIUESc.ooiiiiiieee s 255
B.1.21 TOMPIAIE TSE .ttt bt b e b e b b s h bt e h bbbt b e et bt e e bt e e 255
B.1.2.2 Complemented tEMPIALE TS ..o bbb e 256
B.1.2.3 AANY VBIUB. ...ttt b e b e h bt e st h e E e b e E e b E R R R £ bt e e ne bt b e e n e e enn 257
B.1.24 ANY VBIUE OF NONE......ctieiiiitiieeieettrt ettt ettt eb st s b s st b e e st e bt s e se e bt e e s e e bt s e e e eb e ne e b e e bt b eneeb et eneebesne e enis 257
B.1.25 RV U o TS 258
B.1.2.6 SUPEISEL ...ttt ettt sttt bbb e bR R R R R R R R R R R bR Rt e R R R R nn R nnan 259
B.1.2.7 SUDSEL ...ttt bR R R R R R e R R e Rt e Rt R Rt e R nnan 260
B.1.2.8 (@ T ale e o 10 Te g I = o 261
B.1.3 Matching MechaniSMSINSIAE VAIUESc.oiiiiieiiece ettt se e s aeete et e enaesnaesnaenneas 262
B.1.3.1 N V= 0= 0| S 262
B.1.3.1.1 Using single CharaCter WIilACAIS...........coueererieiiieieeie ettt bbb 262
B.1.3.2 Any number of elementS Or NO ElEMENT ..o 262
B.1.32.1 Using multiple charaCter WildCardS............cooieiiirieeiereeseee bbb 263
B.1.33 [00101 o] o SR 263
B.1.4 MaLChiNg BLLITDULES OF VBIUEScveuiitiieciiitiiet ettt 264
B.14.1 LeNGEN FESIITICIIONS ...ttt b e et b bbb 264
B.1.4.2 THE ITPIESENE INAICAIONeteiee ettt b e bt e et e et e b et b eb et e e e neennas 265
B.1.5 MatChing CharaCler PALLEIN..........eeieeceee ettt s e st et e e teetesaeesaeesaeeseenseenteeneennaesanns 266
B.1.5.1 S S 0] == o o USSR 268
B.1.5.2 REFEIENCE EXPIESSIONevieteeteeite e e eeeee st e et e st e e e e e estessaesaeesreesaeesseeaseesaeeseasseeseenseenseeneesnnesaeesseanseensenns 268
B.1.5.3 Ve o a0 =T o N T 0= PR 270
B.1.54 Match areferenCed ChAraCter SEL..........ccii ittt e e sr e b st ne e e 270
B.1.55 Type compatibility rUlES fOr PALLEINS.........ccuc i 271
Annex C (normative): Predefined TTCN-3fUNCLIONS.......cccocceiiieee e 272
C.0 Genera exception handling ProCEAUIEScciiieiiieee ettt st s reeae e re e 272
O30 R @0 V7= €= o] £ 8 1 U1 1 o LS 272
Cl1 Fg 10 e = (o o7 S 272
Cl2 INteger tO UNIVErSal ChaIACLESccuiiie ettt e e st e e sae e saeenaeenteenteenaeeneesnaesaeas 272
C.13 T 100 = (o 8 o] £ 4 o SR 272
Cl4 R 10 e = (= (8]0 1= (o S 273
C.15 T 100 = (o0 = 1 1o S 273
C.l6 T 100 =g (o0 (= K= 1 o S 273
C.l17 INEEGEN TO CNAISIIING. ...t eeeeete ettt bbbt b e bt b e b e b b se et e s b e e b e e b et ebesbeneeneebeneeneas 274
C.18 INEEGEN TO FIOBL ...ttt et b e et b e et b e e bt eb e s b e e bt b e e et e ebeseeneebeneeneas 274
C.19 (0T (o T 1= (< TSRS PRSTPRPTSURPS 274
(O3 e (O I @1 = = ot (= O (o I 01 = OSSPSR U RSO SU RO PRUPP 274
C.1A1 CharaCter t0 OCLEISIIINGeveueerereeuertereetestere ettt et st ettt st et b e bt ebe bt b e s b et b s e et e b e e e st ebese e st ebesb et eb e s b e e eb e b e s 274
C.112 UNIiversal CharaCler 10 INTEgENic i eeeetiesee e te st te e te e st e st e te et e et e ereeste e teesseesseeneesnensneesnnesseenseensenns 275
Ot = 1 (= T a0 N (o N1 1 = PSS 275
O I = 1 €= T a0 N (o 1= 1 1o PSS 275
O 0t LT =1 €= T a0y (o o (= (= 1 o SR 275
O30 e G =1 €= T oy (o e 7= = 1 o PSR 276
O It A o =TS (1T I (o111 = PSS 276
C.1A8 HEXSIING 1O DITSIIINGe vttt ettt ettt b e st b e bbbt b bbb 276
C.119 HEXSIING 10 OCLELSIITNG ...vc.eevetereeiestese ettt ettt sttt sttt ettt b et b e bbbt b e s bbb et s b e se et sb e b et e b et et e b b e 277
C.1.20 HEXSIING T CRAISIIING ..veueeteiteeetestee ettt sttt sttt b e bbbt b e s b e b b et e bt b et b e s e et eb e s b et eb e s b e e e b e b 277
C.1.21 OCHELSIITNG 1O IMEEOEN ...ttt reeieete sttt sttt sttt sttt b et eb e et b e s e et b s e e st e b e s e e bt e be s e eaeeb e s e et ebesb et eb e s be e e b e be e e 277
C.1.22 OCHEtSIIING tO DITSITNG. ..ottt b e et b et b e bbb b b 277
C.1.23 OCHELSIITNG TO NEXSIITNG ...veeeueiteieeieite sttt ettt et b et b e et b et b e et s et eb e s et e b be e b b 278
(O W27/ @ Tox (= = 1 gTo (o I 0= = ot = 8=] o PSS 278

ETSI

9 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

C.1.25 Octetstring to charaCter String, VErSION [........oceiiiii et te e s seesae e e sneesneesneenseenseens 278
O G T O = (] 0 I (o N1 o = PSS 279
C.1.27 Character StriNg t0 NEXSIIING ...ciuveieeieccieie e eee et ste e e st e st e st e e e es e s neesseesseeseesnsesnensnnesneesseanseensenns 279
C.1.28 Character StriNg tO OCLELSIIINGecveeeesteestieieeiesteseesee st e steeaeeeeeseesseeste e seestesseesseesseessesnsesnensnnesneesseansennsenns 279
LR B2 B O = Tox (= = 10 J (01 o PSR 280
O O B = oW 0= = 0o (I 1= T S 280
C.1.31 Octetstring to UNIVErsal CharaCter SIFMQ.......ccoiieeirierieieieseee sttt sttt st 281
C.1.32 Universal character String t0 OCLELSIIINGcveverieerierieerte ettt st 281
C.2 LenGth/SIZE FUNCLIONS ...ttt ettt b et b et n e bbbt nenn e 282
c21 Length Of SEHNQGS QN0 HESESveieeeieesece e e s e s re e saeeaesaeesreeteenseenteeneesnaesnnas 282
C.22 Number of elementsin aStrUCIUIrEd VBIUB.............oiiiiiieeeee e e e 283
C.3 Presence checking fFUNCLIONScccui ittt s b et besre e e re e 284
C31 LI B =S 10 Tox o o ST 284
C32 LI ES 01 = o 0 T g SRS 285
C33 LI BV A= 1 T= {0 o o o SRS 286
c34 QLI C K =TT gTo 10T Tox o] o 1S 287
C.4 String/list haNdling fUNCLIONScc.oitiieeieieeeieeee et n e e 288
c41 QLI LSl R (=0 T oI 1 T 1 oo 288
c4.2 I SRS T oS o N 0 o o O 290
c43 I LSl R = = o U o e TS 291
(O3 ST 700 = o 110 1] LSS 292
C51 The enCOdING FUNCLION.........couiiiii bbb bbb et b e bbb 292
C5.2 The decOdiNg FUNCLION.........coii e bbbt b e bbbt b e bt 292
C53 The encoding to universal charstring FUNCLIONcooiiiiiieie e 292
C54 The decoding from universal charstring fUNCLION..............ooiiiiii e 293
C.6 ONEr FUNCLIONS.oeiieeeieieteetere sttt b e bt t e e et e st e be st et et et e senneebeneens 294
C6.1 The random NUMDbEr geNErator FUNCLIONcviiieiicieee et sre e saeeneesreesreenreenneens 294
C.6.2 The tESICASENAME FUNCLIONoiiieie it e b e e b et b et et b e b sb e s aeese e e e 294
C6.3 JLIL L= 001 Lo I 0 g o S 295
Annex D (normative): PreproCeSSING MACT OS........cccuiiiieeeiieieeeeste e sre e sae e ee st e sesressesresneennas 297
D.1 Preprocessingmacro . MODULE ..ottt sttt 297
D.2 Preprocessing MacrO _ FILE_ ..o 297
(DRCTIN = (= ol foTorc Tale g ='e o TN =1 o |0 S 297
D.4 Preprocessing macro LINE ottt st 297
D.5 Preprocessing Macro _ SCOPE__ ...t 298
Annex E (informative): Library of USEfUl TYPES ...cueceeiceece ettt 300
e T 0 g o S 300
I U = O I O Ve B Y o= S 300
E21 (0L S U IS 0T o Lo 7= T 1Y o= S 300
E.2.1.0 Signed and unsigned SINGIE DYLE INEEJEISccviii e sneas 300
E211 Signed and UNSIgNEd SNOI IMEEJEIS.......eeiveeieiie e see st et e e e e s esreesreesseeaeesaeesseseeenseeneenneesseesneas 300
E212 Signed and UNSIGNE [ONG INEEJETSoouirieiiiiiee ettt sttt sttt b e et b b 301
E213 Signed and UnSigNEd 10NGIONG INEEJEN'Sccuiiiiieirie ettt et st 301
E214 L S { o = £ 301
E.2.2 USEfUL CharaCter StHNG TYPES ..ottt b et b et b bbbt nn e ens 302
E220 UTF-8 character String "UFBSIITNG"coueoieiriiieerie bbb 302
E221 BMP character string "DMPSiNG”ooueiiieeeree bbb e 302
E.2.2.2 UTF-16 character String "UtFLBSLING"coveeieeieeie e s e eee ettt see e s sreesaeeneesaeesneenseeneens 302
E.2.23 ISO/IEC 10646 character string "iSO8859SIIING™cveeveieereeseeseertr e e e e se e e saeeee e e saeenreeneens 302
E.2.24 Status values fOr TTCN-3 ODJECES.......cieiee ettt naesraesneas 303
E.2.3 USEFUI SETUCIUNEA YPES... ..ottt st sttt et e e ae e st e te e e entesaeesaeesaeesaeenteenseensenneensaennens 303
E.2.3.0 Fixed-point deCIMal [HEEIalcooui ettt e e te e ae s e e saeesneenreenreens 303

ETSI

10 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

E.24 (01U = o0 Tl T o N Y 0= S 303
E24.1 Single Recommendation ITU-T T.50 CharaCter tyPe.........ovvereeieee ettt 303
E.24.2 SiNGIe UNIVErSal CRaraller LY PE ...ttt esre et e et e enteenaesneesneas 304
E.243 SINGIE DT LYP.. e bttt e et et bt ae bt bt h et b bt eheene e e rennen 304
E.24.4 I T T6 [L= 0= G 1] = SRS 304
E.245 SINGIE OCLEL TYPIE .. ettt eh ettt b e bbbt e st e s e e s e e b e s besheeb e s st eh e e e e b e nbesreebe e e ennennen 304
Annex F (informative): Operationson TTCN-3 active ObjECES......cecceieeiese e 305
e N I o 0 00 = KT S P 305
F.1.1 TESt COMPONENE FEFEIEINCES ...ttt ettt et b et et b e et b e bbbt b bt e b b 305
F.1.2 DyNamicC DENAVIOUN OF PTCS......oiuiiiiiieieteitere ettt et eb et b e e b e bbbt bt eb et neebenbeneeneas 306
F.1.3 Dynamic behaviour Of The IMTC... ..ottt et b e bbb e 308
e I 100 £ RS 309
e T o KT UPTR 309
F.3.1 CONfiQUIALION OPEIELIONS.......cueetitiaeetertieetert ettt b et eae st h bbb b st s bbbt b e s e st b e e e bt e b e e e st eb et e st e benbe e ees 309
F.3.2 POrt CONLIOHTNG OPEIEIIONS ...ttt ettt ettt sttt sttt se et b e et b e st b e se e st b e st b e sbe e ebesbeneenenbenneneas 310
F.3.3 COMMUNICALION OPEIALTONS.......eeiuieeereeeieie st ettt sieeeeeeseesteseestesaeeseeseeneeeeseestesaesseeseeneensensensesaesaesseensenseseens 311
Annex G (informative): Deprecated language fEAtUrES..........oovivieie e 312
G.1 Group style definition of MOdUIE PAraMELEN'S............cciriirierieieee e 312
G.2 RECUISIVE IMPONT .ttt ettt ettt b e ss bt e et e Rt eb e e bt s b e e R et e e e e eseebenb e enenr e nenne e 312
G.3 Usingal | inport type defiNitiONS.........c.ccieiiiiiieieiceee st ae b e e ne s re e 312
G.4 SIZeOf TOr 1ENGEN OF [ISES.. .ot n e 312
G.5 sizeoftype predefined fUNCLION ..ot 312
LT G 1= o I oo SRS 312
G.7 EXEEINGl CONSLANTSo.viuieueeiieiietieiesteste sttt ettt b e et e s et et sesbe e bt esb et et e s eseebesbesbeneessenseneas 313
G.8 Prefixing eNUMEraLeO VBIUBSc.oiuiiiieieeeiese sttt sttt nr e nn e 313
G.9 Record of/arrays not compatible to record; set of not compatible with Set..........ccccevieieiiiiciciees 313
Annex H (infor mative): Bibliography ... s 314
L 1S 0] Y 315

ETSI

11 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential |PRs, if any, ispublicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards', which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web

server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

Thisfinal draft ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and
Specification (MTS) , and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 1 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as
identified below:

Part 1: "TTCN-3 CorelLanguage";

Part2: "TTCN-3 Tabular presentation Format (TFT)";
Part 3: "TTCN-3 Graphical presentation Format (GFT)";
Part 4: "TTCN-3 Operational Semantics';

Part5: "TTCN-3 Runtime Interface (TRI)";

Part 6: "TTCN-3 Control Interface (TCI)";

Part 7 "Using ASN.1 with TTCN-3";

Part8: "ThelDL to TTCN-3 Mapping";

Part9: "Using XML with TTCN-3";

Part 10: "TTCN-3 Documentation Comment Specification”.

ETSI

http://webapp.etsi.org/IPR/home.asp

12 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

1 Scope

The present document defines the Core Language of TTCN-3. TTCN-3 can be used for the specification of all types of
reactive system tests over avariety of communication ports. Typical areas of application are protocol testing (including
mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA
based platforms, APIs, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of
testing including interoperability, robustness, regression, system and integration testing. The specification of test suites
for physical layer protocolsis outside the scope of the present document.

TTCN-3isintended to be used for the specification of test suites which are independent of test methods, layers and
protocols. Various presentation formats are defined for TTCN-3 such as atabular presentation format

(ES 201 873-2i.1]) and agraphical presentation format (ES 201 873-3 [i.2]). The specification of these formatsis
outside the scope of the present document.

While the design of TTCN-3 has taken the eventual implementation of TTCN-3 translators and compilersinto
consideration the means of realization of Executable Test Suites (ETS) from Abstract Test Suites (ATS) is outside the
scope of the present document.

2 References

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected |ocation might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.
[1] ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 4: TTCN-3 Operational Semantics'.
[2] ISO/IEC 10646: "Information technology -- Universal Coded Character Set (UCS)".
[3] Recommendation ITU-T X.292: "OSI conformance testing methodology and framework for
protocol Recommendations for ITU-T applications - The Tree and Tabular Combined Notation
(TTCN)".

NOTE: The corresponding ISO/IEC standard is | SO/IEC 9646-3: "Information technology -- Open Systems
Interconnection -- Conformance testing methodology and framework -- Part 3: The Tree and Tabular
Combined Notation (TTCN)".

[4] Recommendation ITU-T T.50: "International Reference Alphabet (IRA) (Formerly International
Alphabet No. 5 or IA5) - Information technology - 7-bit coded character set for information
interchange”.

NOTE: The corresponding I SO/IEC standard is 1SO/IEC 646: "Information technology -- 1SO 7-bit coded
character set for information interchange”.

[5] Recommendation ITU-T X.290: "OSI conformance testing methodol ogy and framework for
protocol Recommendations for ITU-T applications - General concepts'.

NOTE: The corresponding ISO/IEC standard is | SO/IEC 9646-1: "Information technology -- Open Systems
Interconnection -- Conformance testing methodology and framework; Part 1: General concepts”.

ETSI

http://docbox.etsi.org/Reference

(6]

2.2

13 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

IEEE™ 754 "|EEE Standard for Floating-Point Arithmetic”.

Informative references

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1]

[i.2]

[i.3]

[i.4]

[i.5]

[i.6]

[i.7]

[i.8]

[i.9]
[i.10]

[i.11]

[i.12]

[i.13]

[i.14]

ETSI ES 201 873-2: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 2: TTCN-3 Tabular presentation Format (TFT)".

ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".

ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 7: Using ASN.1 with TTCN-3".

ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 8: The IDL to TTCN-3 Mapping".

ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 9: Using XML schemawith TTCN-3".

ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification”.

Void.

Object Management Group (OMG) (2001): "The Common Object Request Broker: Architecture
and Specification - IDL Syntax and Semantics'. Version 2.6, FORMAL/01-12-01.

ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Configuration and Deployment Support”.

ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Advanced Parameterization”.

ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. Behaviour Types'.

ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; TTCN-3 Language Extensions. TTCN-3 Performance and Rea Time Testing".

3

3.1

Definitions and abbreviations

Definitions

For the purposes of the present document, the terms and definitions given in Recommendation ITU-T X.290 [5],
Recommendation I TU-T X.292 [3] and the following apply:

actual parameter: value, expression, template or name reference (identifier) to be passed as parameter to the invoked
entity (function, test case, atstep, etc.) as defined at the place of invoking

assignment notation: notation that can be used for record, set, record of and set of values, where the fields or the
elemens to which avalueis assigned are identified explicitly within apair of curly brackets ("{" and "}") by the field
names or the positions of the elements

ETSI

14 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

basic types: set of predefined TTCN-3 types described in clauses 6.1.0 and 6.1.1 of the present document
NOTE: Basictypes are referenced by their names.
communication port: abstract mechanism facilitating communication between test components

NOTE: A communication port is modelled as a FIFO queue in the receiving direction. Ports can be
message-based or procedure-based.

compatibletype: TTCN-3 isnot strongly typed but the language does require type compatibility
NOTE: Variables, constants, templates, etc. have compatible typesif conditionsin clause 6.3 are met.
completely initialized: values and templates of simple types are completely initialized if they are partially initialized

NOTE: Vauesand templates of structured types and arrays are completely initialized if all their fields and
elements are completely initialized. In case of record of, set of, and array values and templ ates, this means
at least the first n elements are initialized, where n is the minimal length imposed by the type length
restriction or array definition (thusin case of n equals 0, the value "{}" also completely initializes a
record of, a set of or an array).

component constant: constant defined in a component type
component port: port defined in a component type
component template: template defined in a component type
component timer: timer defined in a component type
component variable: variable defined in a component type

data types. common name for simple basic types, basic string types, structured types, the special data type anytype and
all user defined types based on them

NOTE: Seetable 3 of the present document.

defined types (defined TTCN-3 types): set of all predefined TTCN-3 types (basic types, al structured types, the type
anytype, the address, port and component types and the default type) and all user-defined types declared either in the
module or imported from other TTCN-3 modules

deterministic function: function that for the same input in the in and inout parameters always yields the same output
both for the return result as well as the inout and out parameters

NOTE 1: A non-deterministic function is one that is not deterministic.

NOTE 2: Ingenerdl, it cannot be decided if afunction is deterministic or not. However, afunction can be specified
to be deterministic, i.e. the function is supposed to be deterministic. In this case, aviolation of the
determinism can be detected and handled accordingly. The handling however is tool -specific.

dynamic parameterization: form of parameterization, in which actual parameters are dependent on runtime events

EXAMPLE: The value of the actual parameter is a value received during runtime or depends on a received
value by alogical relation.

exception: in cases of procedure-based communication, an exception (if defined) israised by an answering entity if it
cannot answer a remote procedure call with the normal expected response

formal parameter: typed name or typed template reference (identifier) not resolved at the time of the definition of an
entity (function, test case, atstep, etc.) but at the time of invoking it

NOTE: Actua values or templates (or their names) to be used at the place of formal parameters are passed from
the place of invoking the entity (see also the definition of actual parameter).

ETSI

15 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

fuzzy value or template: If avalue or template instance is declared to be fuzzy, the expression, initializing or partly
initializing it (including actual parameters passed to in formal parameters), is subject to lazy evaluation. During
execution, this expression is re-eval uated each time when the fuzzy object is referenced, except when at the left hand
side of an assignment or passing it to afuzzy or lazy formal parameters. The result of this (re)evaluation is used as the
actual value or template of the fuzzy instance. When new content is assigned to a fuzzy instance or to its subpart, the
right hand side of the assignment is subject to lazy evaluation again.

global visibility: Attribute of an entity (module parameter, constant, template, etc.) that itsidentifier can be referenced
anywhere within the module where it is defined including all functions, test cases and altsteps defined within the same
module and the control part of that module.

I mplementation Confor mance Statement (ICS): See Recommendation ITU-T X.290 [5].
Implementation eXtra Information for Testing (IXI1T): See Recommendation ITU-T X.290 [5].
Implementation Under Test (IUT): See Recommendation ITU-T X.290 [5].

in parameterization: kind of parameterization where the value of the actual parameter (the argument) is bound to the
formal parameter when the parameterized object isinvoked, but the value of the formal parameter is not passed back to
the actual parameter when the invoked object completes

NOTE 1. The arguments are evaluated before the parameterized object is entered.

NOTE 2: Only the values of the arguments are passed and changes to the arguments within the invoked object have
no effect on the arguments as seen by the invoking object.

index notation: notation that can be used both on the right hand side and the left hand side of assignments for record of
and set of values, where the element to which avalue is assigned isidentified explicitly by the position of that element
(inindex notation no pair of curly brackets ("{" and "}") is present)

inout parameterization: kind of parameterization where the actual parameter is bound to the formal parameter when
the parameterized object isinvoked

NOTE 1. Theinvoked object uses the actual parameter directly, so that all changes made on the formal parameter
become immediately effective on the actual parameter.

NOTE 2: Inout parameters can be used for functions, altsteps, and test cases only.

known types: set of all TTCN-3 predefined types, types defined in a TTCN-3 module and types imported into that
module from other TTCN-3 modules or from non-TTCN-3 modules

lazy evaluation: Lazy evaluation means that evaluation of an expression is delayed during execution until the value or
template instance, to which the result of the evaluation should have been assigned or passed to as actual parameter, is
first referenced at an other place than the left hand side of an assignment or an actual parameter passed to a fuzzy or
lazy formal parameter. During execution, this delayed evaluation is carried out at the first actual reference, even when
the result isto be used in an expression that is also subject to lazy evaluation. For the evaluation the actual values at the
time of the evaluation to be used (not the actual values at the time of the assignment or parameter passing). Thisimplies
that components of the expression may be uninitialized at the time, when execution reaches the assignment or parameter
passing, but may be initialized by the time of the evaluation that can lead to successful evaluation. If, by the time of the
evaluation, execution has |eft the scope unit, in which one or more components of the expression is defined, the actual
values of the component(s) at the time of |eaving the scope unit are to be stored for the purpose of the delayed
evaluation (but only for that, i.e. the values are not accessible for the user).

lazy value or template: A value or template instanceis called lazy, when the expression, initializing or partly
initializing it (including actual parameters passed to in formal parameters), is subject to lazy evaluation. When, during
execution, the delayed (lazy) evaluation is taking place, itsresult is stored in the lazy value or template and the lazy
instance is used further on like ordinary values and templates, until the next use of the lazy variable or parameter on the
left hand side of an assignment. When a new content is assigned to alazy instance or to its subpart, the right hand side
of the assignment is subject to lazy evaluation again. If, during execution, no expression referencing the lazy object is
evaluated, the lazy value or template instance is never evaluated.

ETSI

16 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

left hand side (of assignment): value or template variable identifier or afield name of a structured type value or
template variable (including array index if any), which stands |eft to an assignment symbol (:=)

NOTE: A constant, module parameter, timer, structured type field name or a template header (including template
type, name and formal parameter list) standing left of an assignment symbol (:=) in declarations and or a
modified template definitions are out of the scope of this definition as not being part of an assignment.

local visibility: attribute of an entity (constant, variable, etc.) that itsidentifier can be referenced only within the
function, test case or atstep whereit is defined

Main Test Component (M TC): See Recommendation ITU-T X.292[3].

out parameterization: kind of parameterization where the value of the actual parameter (the argument) is not bound to
the formal parameter when the parameterized object isinvoked, but the value of the formal parameter is passed back to
the actual parameter when the invoked object completes

NOTE 1: Out parameters can be used for functions, altsteps, and test cases only.
NOTE 2: Anout formal parameter is uninitialized (unbound) when the invoked object is entered.

NOTE 3: The valueis passed back to the actual parameter only if within the invoked object avalueis assigned to it.
If no value is assigned, the actual parameter remains unchanged when the invoked object compl etes.

Parallel Test Component (PTC): See Recommendation ITU-T X.292[3].

partially initialized: values are partially initialized if a concrete value has been assigned to it or to at |east one of its
fields or elements

NOTE 1. A template variableisinitialized if a matching mechanism has been assigned to it or to at least one of its
fields or elements, directly or indirectly via expansion (see clause 15.6). A templateisinitialized if a
matching mechanism has been assigned to it, directly or indirectly via expansion (see clause 15.6).

NOTE 2: TTCN-3 data objects (both value and template) are initialized if they or at least one of their fields or
elements have been used on the left hand side of an assignment (including initial value assignment at
declaration), except of uninitialized r ecor dsand set s, when the assignment does not change any of its
fields. Note that for example an empty pair of curly brackets used for arecord value may change the
optional fields of the value via the implicit omit mechanism (see clause 27.7).

port parameterization: ability to pass aport as an actual parameter into a parameterized object via a port parameter
NOTE: Thisactua port parameter is added to the specification of that object and may complete it.
gualified name: TTCN-3 elements can be identified unambiguously by qualified names

NOTE: For modules, the qualified name is the <module name>. For global definitions such as testcases,
functions, etc., the qualified name is <module name>.<definition name>. For control, the qualified name
is <module name>.control. For local definitions, such as variables, local templates, etc. within a global
definition, the qualified name is <module name>.<global definition name>.<local definition name>.

right hand side (of assignment): expression, template reference or signature parameter identifier which stands right to
an assignment symbol (:=)

NOTE: Expressions and template references standing right of an assignment symbol (:=) in constant, module
parameter, timer, template or modified template declarations are out of the scope of this definition as not
being part of an assignment.

root type: root types of types derived from TTCN-3 basic types are the respective basic types

NOTE 1: Theroot type of user defined record typesisr ecor d, the root type of user defined record of and array
typesisrecord of, theroot type of user defined set typesisset , the root type of user defined set of
typesisset of . Theroot type of user defined union typesisunion and the root type of anytypesis
anyt ype. Theroot types of specia configuration typesaredef aul t or conponent , respectively.
Port types do not have aroot type.

ETSI

17 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

NOTE 2: Asaddr ess ismore a predefined type name than a distinct type with its own properties, the root type of
an addr ess type and all of its derivatives are the same, as the root type was, if the type was defined
with aname different from addr ess.

static parameterization: form of parameterization, in which actual parameters are independent of runtime events,
i.e. known at compile time or in case of module parameters are known by the start of the test suite execution

NOTE 1: A static parameter isto be known from the test suite specification, (including imported definitions), or the
test system is aware of its value before execution time.

NOTE 2: All types are known at compiletime, i.e. are statically bound.
strong typing: strict enforcement of type compatibility by type name equivalence with no exceptions
System Under Test (SUT): See Recommendation ITU-T X.290 [5].

template: TTCN-3 data objects are values or templates by definition. A TTCN-3 template identifies a subset of the
values of its type (where the subset may contain a single instance of the type, several instances or all instances) or the
matching mechanism omi t . Templates are defined by global and local templates, template variable definitions, or
formal template parameters. Any of those are templates from the point of view of their usage, irrespective of their actual
content; for example, atemplate variable containing a specific value is atemplate.

template parameterization: ability to pass atemplate as an actual parameter into a parameterized object via atemplate
parameter

NOTE 1: Thisactua template parameter is added to the specification of that object and may complete it.
NOTE 2: Values passed to formal template parameters are considered to be in-line templates (see clause 15.4).

test behaviour: (or behaviour) test case or a function started on atest component when executing an execut e or a
st art component statement and all functions and altsteps called recursively

NOTE: During atest case execution each test component has its own behaviour and hence several test behaviours
may run concurrently in the test system (i.e. atest case can be seen as a collection of test behaviours).

test case: See Recommendation ITU-T X.290 [5].
test case error: See Recommendation ITU-T X.290 [5].

test suite: set of TTCN-3 modules that contains a completely defined set of test cases, optionally supplemented with
one or more TTCN-3 control parts

test system: See Recommendation ITU-T X.290 [5].

test system interface: test component that provides a mapping of the ports available in the (abstract) TTCN-3 test
system to those offered by the SUT

timer parameterization: ability to pass atimer as an actual parameter into a parameterized object via atimer
parameter

NOTE: Thisactual timer parameter is added to the specification of that object and may complete it.

type compatibility: language feature that allows to use values, expressions or templates of a given type as actual values
of another type

EXAMPLE: At assignments, as actual parameters at calling afunction, referencing atemplate, etc. or asa
return value of afunction.

type context: "In the context of atype" meansthat at least one object involved in the given TTCN-3 action (an
assignment, operation, parameter passing, etc.) identifies a concrete type unambiguously

NOTE: Either directly (e.g. an in-line template) or by means of atyped TTCN-3 object (e.g. via a constant,
variable, formal parameter, etc.).

ungualified name: unqualified name of a TTCN-3 element isits name without any qualification

ETSI

18 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

user-defined type: type that is defined by subtyping of abasic type or declaring a structured type
NOTE: User-defined types are referenced by their identifiers (names).
value: TTCN-3 data objects are values or templates by definition. A TTCN-3 valueis an instance of itstype

NOTE: Vauesare defined by module parameters, constants, value variables, or formal value parameters. Any of
those are val ue objects from the point of view of their usage.

value list notation: notation that can be used for record, set, record of and set of values, where the values of the
subsequent fields or elements are listed within apair of curly brackets ("{" and "}"), without an explicit identification of
the field name or element position

value notation: notation by which an identifier is associated with a given value or range of a particular type
NOTE: Vaues may be constants or variables.

value parameterization: ability to pass avalue as an actual parameter into a parameterized object viaavalue
parameter

NOTE: Thisactua value parameter is added to the specification of that object and may completeit.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AP Application Programming Interface
ASN Abstract Syntax Notation
ASP Abstract Service Primitive

NOTE: See Recommendation ITU-T X.290 [5].

ATS Abstract Test Suite

BER Basic Encoding Rules

BMP Basic Multilingual Plane

BNF Backus-Nauer Form

CORBA Common Object Request Broker Architecture
ETS Executable Test Suite

FIFO First In First Out

GFT Graphical presentation Format

ICS I mplementation Conformance Statement

IDL Interface Definition Language

IRV International Reference Version

IuT I mplementation Under Test

IXIT Implementation eXtra Information for Testing
LHS left hand side (of assignment)

MTC Main Test Component

PDU Protocol Data Unit

NOTE: See Recommendation ITU-T X.290[5].

PTC Parallel Test Component

RHS right hand side (of assignment)

SDL Specification and Description Language
SUT System Under Test

TCl TTCN-3 Control Interfaces

TFT Tabular presentation Format

TRI TTCN-3 Runtime Interfaces

TSI Test System Interface

TTCN-3 Testing and Test Control Notation version 3
ucCs Universal Character Set

UCs4 Universal Coded Character Set

UTF UCS Transformation Format

UTF-8 Unicode Transformation Format-8

ETSI

19 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

XML eXtensible Markup Language

4 Introduction

TTCN-3isaflexible and powerful language applicable to the specification of al types of reactive system tests over a
variety of communication interfaces. Typical areas of application are protocol testing (including mobile and Internet
protocols), service testing (including supplementary services), module testing, testing of CORBA based platforms, API
testing, etc. TTCN-3 is not restricted to conformance testing and can be used for many other kinds of testing including
interoperability, robustness, regression, system and integration testing.

TTCN-3 includes the following essential characteristics:
e theability to specify dynamic concurrent testing configurations;
. operations for procedure-based and message-based communication,;
o theability to specify encoding information and other attributes (including user extensibility);
. the ability to specify data and signature templates with powerful matching mechanisms;
. value parameterization;
e theassignment and handling of test verdicts;
. test suite parameterization and test case selection mechanisms;
. combined use of TTCN-3 with other languages;
o well-defined syntax, interchange format and static semantics;
. different presentation formats (e.g. tabular and graphical presentation formats);
. a precise execution algorithm (operational semantics).

NOTE: The present document uses the following pattern of concept description: concepts, principles and
mechanisms are explained in (introductory) text at the beginning of a clause. For every concept having
concrete syntax, the syntactical structure of that concept is presented afterwards. The syntactical structure
follows the conventions for the TTCN-3 syntax description in clause A.1.1 and uses rules of the TTCN-3
BNF given in clause A.1. A semantic description follows the syntactic structure. The restrictions on the
concept are listed subsequently. Finally, examples on the usage of the concept are given.

In case of a contradiction between the body of the present document (clauses 5 to 27) and annex A of the present
document, annex A has the priority.

4.1 The core language and presentation formats

The TTCN-3 specification is separated into several parts (seefigure 1).

Thefirst part, defined in the present document, is the core language.

The second part, defined in ES 201 873-2 [i.1], isthe tabular presentation format.

The third part, defined in ES 201 873-3[i.2], isthe graphical presentation format.

The fourth part, ES 201 873-4 [1], contains the operational semantics of the language.
Thefifth part, ES 201 873-5 [i.3], defines the TTCN-3 Runtime Interface (TRI).

The sixth part, ES 201 873-6 [i.4], defines the TTCN-3 Control Interfaces (TCI).

The seventh part, ES 201 873-7 [i.5], specifies the use of ASN.1 definitions with TTCN-3.
The eight part, ES 201 873-8[i.6], specifies the use of IDL definitions with TTCN-3.

ETSI

20 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

The ninth part, ES 201 873-9 [i.7] specifies the use of XML definitions with TTCN-3.
The tenth part, ES 201 873-10 [i.8] specifies documentation tags for TTCN-3.
The core language serves three purposes:
a) asageneralized text-based test language in its own right;
b) asastandardized interchange format of TTCN-3 test suites between TTCN-3 toals;
c) asthe semantic basis (and where relevant, the syntactical basis) for various presentation formats.

The core language may be used independently of the presentation formats. However, neither the tabular format nor the
graphical format can be used without the core language. Use and implementation of these presentation formats will be
done on the basis of the core language.

The tabular format and the graphical format are the first in an anticipated set of different presentation formats. These
other formats may be standardized presentation formats or they may be proprietary presentation formats defined by
TTCN-3 users themselves. These additional formats are not defined in the present document.

TTCN-3 may optionally be used with TTCN-3 packages, which define additional concepts for specific purposes.

TTCN-3 may optionally be used with other type-value notations in which case definitions in other languages may be
used as alternative data type and value syntax. Other parts of the TTCN-3 standard specify use of some other languages
with TTCN-3. The support of other languagesis not limited to those specified in the ES 201 873 series of documents
but to support languages for which combined use with TTCN-3 is defined, rules given in the present document apply.

Deployment Advanced_ Behavior L TTCN-3
and Parameteri- Types Packagﬁs K
Configuration zation
Support ™
TTCN-3 P o

ASN.1 Types .| core M T
& Values "| Language Tabular

format ¢ '
IDL Types R !

Graphical
XML Types > format N

- TTON-3 User

Other Types . Presentation | The shaded boxes are not
& Values,, v format p, « defined in this document

Figure 1. User's view of the core language, its packages and the various presentation formats

The core language is defined by a complete syntax (see annex A) and operational semantics (ES 201 873-4 [1]). It
contains minimal static semantics (provided in the body of the present document and in annex A) which do not restrict
the use of the language due to some underlying application domain or methodology.

4.2 Unanimity of the specification

The language is specified syntactically and semantically in terms of atextual description in the body of the present
document (clauses 5 to 27) and in aformalized way in annex A. In each case, when the textual description is not
exhaustive, the formal description completesit. If the textual and the formal specifications are contradictory, the | atter
shall take precedence.

ETSI

4.3 Conformance

21

Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

For an implementation claiming to conform to this version of the language, all features specified in the present

document shall be implemented consistently with the requirements given in the present document and in

ES 201 873-4[1].

5

Basic language elements

The top-level unit of TTCN-3 isamodule. A module cannot be structured into sub-modules. A module can import
definitions from other modules. Modules can have module parameters to allow test suite parameterization.

A module consists of a definitions part and a control part. The definitions part of a module defines test components,
communication ports, data types, constants, test data templates, functions, signatures for procedure calls at ports, test

cases, etc.

The control part of amodule calls the test cases and controls their execution. The control part may a so declare (local)
variables, etc. Program statements (such asi f -el se and do- whi | e) can be used to specify the selection and
execution order of individual test cases. The concept of global variables is not supported in TTCN-3.

TTCN-3 has a number of predefined basic data types as well as structured types such as records, sets, unions,

enumerated types and arrays.

A special kind of data structure called a template provides parameterization and matching mechanisms for specifying
test data to be sent or received over the test ports. The operations on these ports provide both message-based and
procedure-based communication capabilities. Procedure calls may be used for testing implementations which are not

message based.

Dynamic test behaviour is expressed as test cases. TTCN-3 program statements include powerful behaviour description
mechani sms such as aternative reception of communication and timer events, interleaving and default behaviour. Test
verdict assignment and logging mechanisms are also supported.

Finally, TTCN-3 language elements may be assigned attributes such as encoding information and display attributes. It is
also possible to specify (non-standardized) user-defined attributes.

The TTCN-3 language elements are summarized in table 1.

Table 1: Overview of TTCN-3 language elements

Language element Associated | Specified in | Specified in | Specified in | Specified in
keyword module module functions/ test
definitions control altsteps/ test| component
cases type
TTCN-3 module definition module
Import of definitions from other module [import Yes
Grouping of definitions group Yes
Data type definitions type Yes
Communication port definitions port Yes
Test component definitions component Yes
Signature definitions signature Yes
External function definitions external Yes
Constant definitions const Yes Yes Yes Yes
Data/signature template definitions template Yes Yes Yes Yes
Function definitions function Yes
Altstep definitions altstep Yes
Test case definitions testcase Yes
Value variable declarations var Yes Yes Yes
Template variable declarations var template Yes Yes Yes
Timer declarations timer Yes Yes Yes
NOTE: The notions "definition" and "declaration" of variables, constants, types and other language elements are
used interchangeably throughout the present document. The distinction between both notions is useful only
for implementation purposes, as it is the case in programming languages like C and C++. On the level of
TTCN-3, the notions have equal meaning.

ETSI

22 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

5.1 Identifiers and keywords

TTCN-3 identifiers are case sensitive. TTCN-3 keywords shall be written in all lowercase letters (see annex A).
TTCN-3 keywords shall neither be used as identifiers of TTCN-3 objects nor as identifiers of objects imported from
modules of other languages. The same rules apply to names of predefined TTCN-3 functions (see annex C).

Specia TTCN-3 modifiers are identifiers prefixed with the @-symbol (see annex A). They modify the default
semantics of the language element they are applied to in the specified way. If more than one modifier is applied to a
language el ement, they may be applied in any order.

NOTE: These modifiers are useful for refining or modifying existing language features, for examplein the
context of the optional extension packages of TTCN-3 since they cannot lead to backward incompabilities
with existing reserved keywords or identifiers.

5.2 Scope rules

TTCN-3 provides nine basic units of scope:
a module definitions part;
b) control part of amodule;
C) component types,
d) functions;
e atseps,
f) test cases;
g) statement blocks;
h)y templates;
i) user defined named types.
NOTE 1: Additional scoping rule for groupsisgiven in clause 8.2.2.
NOTE 2: Additional scoping rule for counters of f or loopsisgivenin clause 19.4.

NOTE 3: Statement blocks may include declarations. They may occur as stand-al one statement blocks, embedded
in another statement block or within compound statements, e.g. as body of awhile loop.

NOTE 4: Builtin TTCN-3 typeslikei nt eger, char st ri ng, anyt ype, etc. are not scope units, but all named
user defined types are scope units, independent of their kinds.

Each unit of scope consists of (optional) declarations. The scope units: control part of a module, functions, test cases,
altsteps and statement blocks may additionally specify some form of behaviour by using the TTCN-3 program
statements and operations (see clause 18).

Definitions made in the modul e definitions part but outside of other scope units are globally visible, i.e. may be used
elsewhere in the module, including all functions, test cases and altsteps defined within the module and the control part.
Identifiers imported from other modules are also globally visible throughout the importing module.

Definitions made in the module control part have local visibility, i.e. can be used within the control part only.

Definitions made in atest component type may be used in a component type extending this component type definition,
and in functions, test cases and altsteps referencing that component type or a compatible test component type (see
clause 6.3.3) by ar uns on clause.

Test cases, altsteps and functions are individual scope units without any hierarchical relation between them,

i.e. declarations made at the beginning of their body have local visibility and shall only be used in the given test case,
altstep or function (e.g. adeclaration made in atest caseis not visible in afunction called by the test case or in an
altstep used by the test case).

ETSI

23 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Stand-alone statement blocks and statements within compound statements, likee.g. i f - el se,whi | e, do-whi | e, or
al t statements may be used within the control part of a module, test cases, altsteps, functions, or may be embedded in
other statement blocks or compound statements, e.g. ani f - el se statement that is used within awhi | e loop.

Statement blocks and embedded statement blocks have a hierarchical relation both to the scope unit including the given
statement block and to any embedded statement block. Declarations made within a statement block have local visibility.

The hierarchy of scope unitsis shown in figure 2. Declarations of a scope unit at a higher hierarchical level arevisible
in all units at lower levels within the same branch of the hierarchy. Declarations of a scope unit in alower level of
hierarchy are not visible to those units at a higher hierarchical level.

module
definitions part

module

function without
runs on-clause

altstep without
runs on-clause

user defined
component type template
control part P YP P

named type

statement block statement block statement block

testcase with

runs on-clause
and optional

system-clause

function with
runs on-clause

altstep with
runs on-clause

nested
statement block

nested nested

statement block

statement block

statement block statement block statement block

nested nested nested

statement block statement block statement block

Figure 2: Hierarchy of scope units

EXAMPLE 1: Local scopes

modul e MyModul e

{ :
const integer M/Const := 0; // MyConst is visible to MyBehavi our A and MyBehavi ourB
functi on MyBehavi our A()
{ :
const integer A := 1; /1 The constant Ais only visible to MyBehavi our A
}
functi on MyBehavi our B()
{ :
const integer B := 1; /1 The constant Bis only visible to MyBehavi ourB
}
}

ETSI

24 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLE 2: Component type scopes

type conponent MyConponent Type {
const integer MyConst := 1;

}

type conponent M/Ext endedConponent Type extends MyConponent Type {
var integer MyVar:= 2 * MyConst; // using My/Const of MyConponent Type

5.2.1 Scope of formal parameters

The scope of formal parameters in a parameterized object (e.g. in afunction definition) shall be restricted to the
definition in which the parameters appear and to the lower levels of scope in the same scope hierarchy. That isthey
follow the scope rules for local definitions (see clause 5.2).

5.2.2 Uniqueness of identifiers

TTCN-3 requires uniqueness of identifiers, i.e. al identifiersin the same scope hierarchy shall be distinctive. This
means that a declaration in alower level of scope shall not re-use the same identifier as a declaration in a higher level of
scope in the same branch of the scope hierarchy.

The identifier of amodule (its module name) or of an imported module belongs to the scope unit of the module and
cannot be used as identifier for other definitions inside this module. Identifiers for fields of structured types, enumerated
values and groups do not have to be globally unique, however in the case of enumerated values the identifiers shall only
be reused for enumerated values within other enumerated types. The rules of identifier uniqueness shall also apply to
identifiers of formal parameters.

EXAMPLE 1: Nested scopes

modul e MyModul e

{ :
const integer A := 1;
functi on MyBehavi our A()
{ :
const integer A:=1; // |s NOT allowed: clash with global constant A
i£(.)
{ = _
const boolean A :=true; // |Is NOT allowed: clash with local constant A
}
}
}

EXAMPLE 2: Independent scopes

/1 The following IS allowed as the constants are not declared in the sane scope hierarchy
/1 (assuming there is no declaration of A in nodul e header)
functi on MyBehavi our A()

{ :const integer A := 1,

} :

functi on MyBehavi our B()
:const integer A :=1;

}

EXAMPLE 3: Module scopes

nodul e MyModul eB {
import from MyModul eA { ...}

function MyFunction() {
var integer MyModuleB:= 1; // |Is NOT allowed: class with nodul e nane

ETSI

}

type bool ean MyModul eA;

5.3

/1 1s NOT all owed:

25

Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

class with inported nodul e name

Ordering of language elements

Generally, the order in which declarations can be made is arbitrary. Inside a statement block, such as a function body or
abranch of ani f - el se statement, all declarations (if any), shall be made at the beginning of the statement block only.

EXAMPLE:

/1 This is a legal mxing of TTCN-3 decl arations

Var MyVar Type MyVar2 : =
const integer MyConst:=
if (MyVar2+MyConst > 10)

3,
1;

var integer MyVarl:= 1;

MyVar1: = MyVarl + 10;

Declarations in the module definitions part and in a component type definition may be made in any order. However
inside the module control part, test case definitions, functions, altsteps, and statement blocks, al required declarations
shall be given beforehand. This meansin particular, local variables, local timers, and local constants shall never be used
before they are declared. The only exceptionsto thisrule are labels. Forward references to alabel may be used in got o
statements before the label occurs (see clause 19.8).

5.4

Parameterization

TTCN-3 alows to parameterize modules, templates, functions, altsteps and testcases. Values, templates, timers, and
ports may be used as actual parameters. A summary of which language elements can be parameterized and what can be
passed to them as parametersis givenin table 2.

NOTE: Type parameterization for TTCN-3 is defined in the optional package [i.12].
Table 2: Overview of parameterizable TTCN-3 objects
Keyword Allowed kind of Allowed form of Allowed types in formal parameter lists
Parameterization Parameterization
module Value parameterization Static at start of runtime |all basic types, all user-defined types and addr ess
type.
template Value and template Dynamic at runtime |all basic types, all user-defined types, addr ess type
parameterization and t enpl at e.
function Value, template, port and Dynamic at runtime |all basic types, all user-defined types, addr ess
timer parameterization type, conponent type, port type, def aul t,
tenplateandti ner.
altstep Value, template, port and Dynamic at runtime |all basic types, all user-defined types, addr ess
timer parameterization type, conponent type, port type, def aul t,
tenplateandti ner.
testcase Value, template, port and Dynamic at runtime |all basic types and of all user-defined types,
timer parameterization address type and tenpl at e.
NOTE: Signatures are not shown in the table, because a signature declares parameters only. The templates for the

sighatures can be parameterized, however.

ETSI

26 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

54.1 Formal parameters

TTCN-3 modules, structured types, templates, functions, altsteps, and testcases may be defined incompletely, i.e. some
entities (variables, templates, ports, timers, etc.) used by the above objects may not be resolved in the definition of the
object. These objects are called parameterized objects. Formal entities replacing the unresolved entitiesin the
parameterized object's definition are called formal parameters.

Formal parameters of parameterized templates, functions, altsteps, and testcases are defined in formal parameter lists.
Formal parameters of modules are defined in module parameter definitions (see clause 8.2.1).

Formal parametersshall bei n, i nout or out parameters (see definitionsin clause 3.1). If not stated otherwise, a
formal parameter isani n parameter. For all these three sorts of parameter passing, the formal parameters can both be
read and set (i.e. get new values being assigned) within the parameterized object. Formal parameters can be used
directly as actual parameters for other parameterized objects, e.g. as actual parametersin function invocations or as
actual parametersin template instances.

Formal i n parameters may have default values. This default value is used when no actual parameter is provided.

NOTE 1. Although out parameters can be read within the parameterized object, they do not inherit the value of
their actual parameter; i.e. they should be set before they are read.

Formal value or template parameters may be declared lazy using the @lazy modifier. The behaviour of lazy parameters
isdefined in clause 3.1, definition of lazy values or templates. See examplesin clause 5.4.1.1.

Formal value or template parameters may be declared fuzzy using the @fuzzy modifier. The behaviour of lazy
parametersis defined in clause 3.1, definition of fuzzy values or templates. See examplesin clause 5.4.1.1.

NOTE 2: The actual values of component variables used in the delayed evaluation of alazy or fuzzy parameter may
differ from their values at the time, when the parameterized function or alstep was called.

Assigning default values for lazy and fuzzy formal parameters does not change the parameters semantics: when the
default values are used as actual values for the parameters, they shall be evaluated the same way (i.e. delayed) asif an
actual parameter was provided.

Lazy and fuzzy properties are valid only in the scope, where the parameters' names are visible. For example, if afuzzy
parameter is passed to aformal parameter declared without a modifier, it losts its fuzzy feature inside the called
function. Similarly, if it is passed to alazy formal parameter, it becomes lazy within the called function.

541.1 Formal parameters of kind value

Values of all basic types, all user-defined types, address type, component type, and default can be passed as value
parameters.

Syntactical Structure

[(in] inout | out)] [@azy | @uzzy] Type ValueParldentifier [":=" (Expression -ty]

ETSI

27 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Semantic Description

Value formal parameters can be used within the parameterized object the same way as values, for examplein
expressions.

Value formal parameters may bein, inout or out parameters. The default for value formal parametersisi n
parameterization which may optionally be denoted by the keyword i n. Using of inout or out kind of parameterization
shall be specified by the keywordsi nout or out respectively.

In parameters may have a default value, which is given by an expression assigned to the parameter. Formal parameters
of modified templates may inherit the default values from the corresponding parameters of their parent templates; this
shall explicitly be denoted by using a dash (don't change) symbol at the place of the modified template parameters
default value.

TTCN-3 supports val ue parameterization according to the following rules:

. the language element nodul e allows static value parameterization to support test suite parameters, i.e. this
parameterization may or may not be resolvable at compile-time but shall be resolved by the commencement of
runtime (i.e. static at runtime). This means that, at runtime, module parameter values are globally visible but
not changeable (see more detailsin clause 8.2);

. the language elementst enpl at e, t est case, al t st ep andf unct i on support dynamic value
parameterization (i.e. this parameterization shall be resolved at runtime).

NOTE: Component and default references are also handled as val ue parameters. In the case of component
references, the corresponding component type is the type of the formal parameter. In the case of default
referencesthe TTCN-3 type def aul t isthe type of the forma parameter.

Restrictions

a) Language elements which cannot be parameterized are: const ,var, tinmer,control, record of,
set of, enunerated, port, conponent and subtypedefinitions, group andi nport.

b) Formal value parameters of templates, and of altsteps activated as defaults (see clause 20.5.2) shall always be
i n parameters.

¢) Restrictions on module parameters are given in clause 8.2.
d) Default values can be provided for i n parameters only.

e) Theexpression of the formal parameters default value has to be compatible with the type of the parameter.
The expression shall not refer to elements of the component type of the optional r uns on clause. The
expression shall not refer to other parameters of the same parameter list. The expression shall not contain the
invocation of functionswithar uns on clause.

f) Default values of component type formal parameters shall be one of the special valuesnul |, nmtc, self,
orsystem

g) Default values of default type forma parameters shall be the special valuenul | .

h) The dash (don't change) symbol shall be used with formal parameters of modified templates only (see also
clause 15.5).

i) For formal value parameters of templates the restrictions specified in clause 15 shall apply.
i) Only in parameters can be declared lazy or fuzzy.

k) When parameters are referenced (e.g. in assignments, expressions, template bodies, etc.), the rules for
variables shall apply.

ETSI

28 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Examples

EXAMPLE 1: In, out and inout formal parameters

function MyFunctionl(in bool ean MyReferenceParaneter){ ...};
/'l MyReferenceParaneter is an in value paraneter. The paraneter can be read. It can al so be set
/1 within the function, however, the assignnent is local to the function only

function MyFunction2(inout bool ean MyReferenceParaneter){ ...};
/'l MyReferenceParaneter is an inout value paraneter. The paraneter can be read and set
/1 within the function - the assignnent is not |ocal

function MyFunction3(out tenplate bool ean M/ReferenceParaneter){ ...};
/'l MyReferenceParaneter is an out value paraneter. The paraneter can be set within the function,
/1 the assignnent is not local. It can also be read, but only after it has been set.

EXAMPLE 2: Reading and setting parameters

type record MyMessage {
integer f1,
integer f2

}

function f_MyMessage (integer p_int) return MyMessage {
var integer f1, f2;
fl:=f_milt2 (p_int);
/] paraneter p_int is passed on; as the paraneter of the called function f_mult2 is
/1 defined as an inout paraneter, it passes back the changed value for p_int,
f2 := p_int;
return {f1, f2};

}
function f_mult2 (inout integer p_integer) return integer {
p_integer := 2 * p_integer;
/1 the value of the formal paranmeter is changed; this new val ue is passed back when
/1l f_mult2 conpl etes
return p_integer-1
}

testcase tc_01 () runs on MIC _PT {

P1.send (f_M/Message(5))
/1l the value sent is { f1:=9, f2 :=10}

}
EXAMPLE 3: Function with default value for parameter
function f_conp (in integer p_intl, in integer p_int2 := 3) return integer {
var integer v := p_intl + p_int2;
return v;
}

function f () {
var integer w,

V\.I.Z= f_conp(1); /'l sanme as calling f_conp(1,3);
=f_comp(l,2); // value 2 is taken for parameter p_int2 and not its default value 3

}
EXAMPLE 4: Direct passing of formal parametersto functions

function f_MFunc2(in bitstring p_refParl, inout integer p_refPar2) return integer {

function f_MyFuncl(inout bitstring p_refParl, out integer p_refPar2) return integer {
.ret urn f_MyFunc2(p_refParl, p_refPar2);

/1l p_refParl and p_refPar2 can be passed directly to a function invocation

ETSI

29 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLES: Lazy and fuzzy parameters
type conponent MyConp { var integer v_int }

function f_MyLazyFuzzy(in @azy integer p_lazy, in @uzzy integer p_fuzzy) runs on MyConp {
//When called from MyCal I'i ng:

v_int :=1;

log(p_lazy); //will log 2 as function double with actual parameter v_int equals 1 is called
/lhere; 2 is stored in p_lazy (also, function double stores 2 in v_int)

log(p_lazy); //will log 2 again as p_lazy is not re-eval uated

log(p_fuzzy);//will log 4 as function double with actual paraneter v_int equals 2 is called
/1 here (also, function double stores 4 in v_int)

log(p_fuzzy) //will log 8 as function double is re-evaluated with actual paraneter 4

}

function double (in integer p_in) runs on MyConp return integer{
p_in :=2* p_in;
v_int :=p_in;
return p_in

}
testcase tc_MCalling() runs on MyConp {

v_int := 0; B
f _MyLazyFuzzy (doubl e(v_int), double(v_int))
}

5.4.1.2 Formal parameters of kind template
Template kind parameters are used to pass templates into parameterizable objects.

Syntactical Structure

[in] inout | out] tenplate [Restriction] Type Val ueParldentifier
":=" (Tenplatelnstance | "-")]

Semantic Description
Templates parameters can be defined for templates, functions, altsteps, and test cases.

To enable a parameterized object to accept templates or matching symbols as actual parameters, the extra keyword

t enpl at e shall be added before the type field of the corresponding formal parameter. This makes the parameter a
template parameter and in effect extends the allowed actual parameters for the associated type to include the appropriate
set of matching attributes (see annex B) as well asthe normal set of values.

Formal template parameters can be used within the parameterized object the same way as templates and template
variables.

Formal template parameters may bein, inout or out parameters. The default for formal template parametersisi n
parameterization.

In parameters may have a default template, which is given by atemplate instance assigned to the parameter. Formal
template parameters of modified templates may inherit their default templates from the corresponding parameters of
their parent templates; this shall explicitly be denoted by using a dash (don't change) symbol at the place of the
modified template parameter's default template.

Formal template parameters can be restricted to accept actual parameters containing a restricted set of matching
mechanisms only. Such limitations can be expressed by the restrictions omit, present, and value. The restriction
template (omit) can be replaced by the shorthand notation omit. The meaning of the restrictionsis explained in
clause 15.8.

Restrictions
a Onlyfunction,testcase,altstepandtenpl at e definitions may have formal template parameters.

b) Formal template parametersof t enpl at es, of f unct i ons started as test component behaviour
(seeclause 21.3.2) and of al t st epsactivated as defaults (see clause 20.5.2) shall always bei n parameters.

c¢) Default templates can be provided for in parameters only.

ETSI

30 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

d) The default template instance has to be compatible with the type of the parameter. The template instance shall
not refer to elements of the component type in aruns on clause. The template instance shall not refer to other
parameters in the same parameter list. The template instance shall not contain the invocation of functions with
arunson clause.

e) Default templates of component type formal parameters shall be built from the special valuesnul |, nt c,
sel f,orsystem

f) Restrictions specified in clause 15 shall apply.

g) Thedash (don't change) symbol shall be used with formal parameters of modified templates only (see also
clause 15.5).

h) Only intemplate parameters can be declared lazy or fuzzy.

i) When template parameters are referenced (e.g. in assignments, expressions, template bodies, etc.), the rules for
template variables shall apply.

Examples

EXAMPLE 1. Template with template parameter

/1 The tenplate
tenpl ate MyMessageType MyTenpl ate (tenplate integer MyFormal Param: =

{ fieldl := MyFor mal Par am
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows

pcol. recei ve(M/Tenpl ate(?));

/Il O as foll ows

pcol.recei ve(M/Tenpl ate(onit)); // provided that fieldl is declared in MyMessageType as opti onal

EXAMPLE 2: Function with template parameter

function MyBehavi our (tenpl ate MyMsgType MyFor mal Par anet er)
runs on MyConponent Type
{ .

pé:ol. recei ve(MyFor mal Par anet er) ;
} :
EXAMPLE 3: Template with restricted parameter

/1 The tenplate
tenpl ate MyMessageType MyTenpl atel (tenplate (omit) integer MyFormal Param: =

{ fieldl : = MyFor nal Param
field2 := pattern "abc*xyz",
field3 := true

}

/1l could be used as follows

pcol. send(M/ Tenpl atel(onit));

/1 but not as follows

pcol.recei ve(M/Tenpl atel(?)); // AnyValue is not within the restriction

/1 the same tenplate can be witten shorter as
tenpl ate MyMessageType MyTenpl ate2 (omit integer MyFormal Param: =

{ fieldl : = MyFor nal Param
field2 := pattern "abc*xyz",
field3 := true
}
5.4.1.3 Formal parameters of kind timer

Functions and altsteps can be parameterized with timers.

Syntactical Structure

[inout] timer TinmerParldentifier

ETSI

31 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Semantic Description

Timers passed into a parameterized object are known inside the behaviour definition of that object. Timer parameters
can be used within the parameterized object like any other timer, i.e. they need not to be declared inside the
parameterized object.

Timer parameters shall preserve their current state, i.e. only the timer is made known within the parameterized object.
For example, also a started timer continuesto run, i.e. it is not stopped implicitly. Thereby, possible timeout events can
be handled inside the function or altstep to which the timer is passed.

Formal timer parameters are identified by the keyword t i nmer .
Restrictions
a) Formal timer parameters shall be inout parameters, which can optionally be indicated by the keyword inout.

b) Only functi on - with the exception of functions started as test component behaviour (see clause 21.3.2) -
and al t st ep definitions may have formal timer parameters.

Examples
/1 Function definition with a timer in the formal paranmeter |ist
function MyBehavi our (timer MyTimer)
{ :
M/Ti ner.start;

}

/1 could be used as follows
functi on MyBehavi our2 ()

{ :
tinmer t;
MyBehavi our (t);

5414 Formal parameters of kind port
Functions and altsteps can be parameterized with ports.

Syntactical Structure
[inout] PortTypeldentifier PortParldentifier
Semantic Description

Ports passed into a parameterized object are known inside the behaviour definition of that object. Port parameters can be
used within the parameterized object like any other port, i.e. they need not to be made visible by ar uns on clause.

Ports passed in as parameters shall preserve their current state, only the port is made known within the parameterized
object's body. For example, a started port continues to send/receive messages, i.e. it is not stopped implicitly; thereby,
possible port events can be handled inside the function or altstep to which the port is passed to.

Restrictions
a) Formal port parameters shall be inout parameters, which can optionally be indicated by the keyword inout.

b) Onlyfuncti on - with the exception of functions started as test component behaviour (see clause 21.3.2) -
and al t st ep definitions may have formal port parameters.

Examples

/Il Atstep definition with a port in the formal paranmeter |ist
al tstep MyBehavi our (MyPort Type MyPort)

t] M/Port.receive { setverdict(fail); stop; }

ETSI

32 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

5.4.2 Actual parameters

Values, templates, timers and/or ports can be passed into parameterized TTCN-3 objects as actua parameters. Actual
parameters can be provided both as alist in the same order as the formal parameters as well asin an assignment
notation explicitly using the associated formal parameter names.

Syntactical Structure

(Expression | /1 for val ue paraneter
Tenpl at el nst ance | /1 for tenplate paraneter
Ti mer Ref | /1 for timer paraneter
Por t | // for port paraneter
-t /1 to skip a parameter with default
Parameterld ":=" (Expression | Tenplatelnstance | TimerRef | Port))

Semantic Description

Actual parameters that are passed by valueto i n formal value parameters shall be variables, literal values, module
parameters, constants, variables, value returning (external) functions, formal value parameters (of in, inout or out
parameterization) of the current scope or expressions composed of the above.

Actual parametersthat are passed toi nout or out formal value parameters shall be variables or formal value
parameters (of in, inout or out parameterization).

Actual parametersthat are passed to i n formal template parameters shall be literal values, module parameters,
constants, variables, value or template returning (external) functions, formal value parameters (of in, inout or out
parameterization) of the current scope or expressions composed of the above, as well as templates, template variables or
formal template parameters (of in, inout or out parameterization) of the current scope.

Actual parametersthat are passed toi nhout or out formal template parameters shall be variables, template variables,
formal value or template parameters (of in, inout or out parameterization) of the current scope.

Actual parameters that are passed to formal timer parameters shall be component timers, local timers or formal timer
parameters of the current scope.

Actual parametersthat are passed to formal port parameters shall be component ports or formal port parameters of the
current scope.

When aformal parameter has been defined with a default value or template, respectively, then it is not necessary to
provide an actual parameter. The actual parameters are evaluated in the order of their appearance. If for some formal
parameters, no actual parameter has been provided, their default values are taken and evaluated in the order of the
formal parameter list.

The empty brackets for instances of parameterized templates that have only parameters with default values are optional
when no actual parameters are provided, i.e. al formal parameters use their default values.

Restrictions

a) Whenusing list notation, the order of elementsin the actual parameter list shall be the same as their order in
the corresponding formal parameter list. For each formal parameter without a default there shall be an actual
parameter. The actual parameter of aformal parameter with default value can be skipped by using dash "-" as
actual parameter. An actual parameter can also be skipped by just leaving it out if no other actual parameter
follows in the actual parameter list - either because the parameter is last or because all following formal
parameters have default values and are left out.

b) Either list notation or assignment notation shall be used in a single parameter list. They shall not be mixed.

¢) When using assignment notation, each formal parameter shall be assigned an actual parameter at most once.
For each formal parameter without default value, there shall be an actual parameter. In order to use the default
value of aformal parameter, no assignment for this specific parameter shall be provided.

d) Thetype of each actual parameter shall be compatible with the type of each corresponding formal parameter.

€) Actua parameters passed to restricted formal template parameters shall obey the restrictions given in
clause 15.8.

ETSI

33 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

f) All parameterized entities specified as an actual parameter shall have their own parameters resolved in the
top-level actual parameter list.

g) |If theformal parameter list of TTCN-3 objectsf uncti on,t est case,signature, altstepor
ext ernal functi on isempty, then the empty parentheses shall be included both in the declaration and in
the invocation of that object. In all other cases the empty parentheses shall be omitted.

h) Restrictions on the use of signature parameters are given in clauses 15.2 and 22.3.
i) Restrictions on parameters passed to altsteps are given in clauses 16.2.1 and 20.5.2.

i) Unless specified differently in the relevant clause(s), actual parameters passedtoi n ori nout formal
parameters shall be at least partially initialized (for an exemption see e.g. clause 16.1.2 of the present
document).

k) Functions, called by actual parameters passed to fuzzy or lazy formal parameters of the calling function, shall
not have inout or out formal parameters. The called functions may use other functions with inout or out
parametersinternally.

[) Actua parameters passed to out and inout parameters shall not be referencesto lazy or fuzzy variables.
Examples

EXAMPLE 1: Formal and actual parameter lists have to match

/1 A function definition with a formal paraneter |ist
function MyFunction(integer Formal Parl, bool ean Formal Par2, bitstring Formal Par3) { ...}

/1 A function call with an actual paraneter |ist
MyFunction(123, true,'1100' B);

/1 A function call with assignnent notation for actual paraneters
MyFunction(Fornal Par1l := 123, Fornul Par3 := '1100'B, Fornul Par2 := true);

EXAMPLE 20 In parameters

function MyFunction(in tenplate MyTenpl at eType MyVal ueParaneter){ ...};
/'l MyVal ueParaneter is in paraneter, the in keyword is optional

/1 A function call with an actual paraneter
MyFunct i on(Myd obal Tenpl ate) ;

EXAMPLE 3: Inout and out parameters

function MyFunction(inout bool ean MyReferenceParaneter){ ...};
/'l MyReferenceParaneter is an inout paraneter

/1 A function call with an actual paraneter

MyFunct i on(MyBool eanVari abl e) ;
/Il The actual paraneter can be read and set within the function

function MyFunction(out tenplate bool ean MyReferenceParaneter){ ...};
/'l MyReferenceParaneter is an out paraneter
/1 A function call with an actual paraneter

MyFunct i on(MyBool eanVari abl e) ;
/'l The actual paraneter is initially unbound, but can be set and read within the function.

EXAMPLE 4: Empty parameter lists

/1 A function definition with an enpty paraneter list shall be witten as
function MyFunction(){ ...}

/1 and shall be called as
MyFunction();
/Il Arecord definition with an enpty paraneter list shall be witten as

type record M/Record { ...}

/1 and shall be used as
tenpl ate M/Record Mytenplate := { ...}

ETSI

34 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLES: Nested parameter lists

/] G ven the nessage definition
type record MyMessageType

{
i nt eger fieldl,
charstring field2,
bool ean field3
}

/1 A message tenplate might be
tenpl ate MyMessageType MyTenpl ate(i nteger MyVal ue) : =

fieldl := MyVal ue,
field2 := pattern "abc*xyz",
field3 := true

}

/'l A test case paraneterized with a tenplate night be
testcase TCOOl(tenpl ate MyMessageType RxMsg) runs on PTCl system TSl {

M/PCO. recei ve(RxMsQ) ;
}

/1 When the test case is called in the control part and the paraneterized tenplate is
/1 passed as an actual paraneter, the tenplate's actual paraneters shall be provided
control

:execut e(TC001(MyTenpl ate(7)));
o
EXAMPLE 6: A typica use case for lazy parameterization
modul epar bool ean | ogMessage : = true;

function | ogMsg(@azy charstring conpl ex) {
if (1 ogMessage) {
| og(conpl ex) ;
}
}

function conput eConpl exMessage() return charstring {
/1 sonme conplicated conputation
}

| ogMsg(conmput eConpl exMessage()); // conputeConpl exMessage() is only invoked if
/'l 1ogMessage is fal se

EXAMPLE 7: Actual parameters passed to lazy and fuzzy formal parameters
type record MyMessage { integer id, float nunber }
type port MyPortType nessage { inout MyMessage }

type conponent MYMIC {
var integer v_id;
port MyPortType P;

testcase TC shooti ngMessages () runs on MYMIC {
connect (sel f: P, sel f: P);
sendLazy({v_id, rnd()}); //note that at this point v_id is unintialized yet
sendFuzzy({v_id, rnd()})

}

function sendLazy(@azy MyMessage pdu) runs on MyYMIC {
for (v_id :=1; v_id<9; v_id:=v_id+1){
P.send(pdu); // the actual paranmeter passed to the formal paranmeter pdu is evaluated only in
/1 the first loop;let say rnd() returns 0.924946; the nmessage { 1, 0.924946 } is
/1l sent out 8 tinmnes

setverdi ct (pass, "nmessages has been sent out")

}

function sendFuzzy(@uzzy MyMessage pdu) runs on MyMIC {
for (v_id :=1; v_id<9; v_id:=v_id+1){

ETSI

35 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

P.send(pdu); // the actual paraneter passed to the fornal paraneter pdu is evaluated in each
/1 loop; let say rnd() returns 0.924946, 0.680497, 0.630836, 0.648681, 0.428501,
/1 0.262539, 0.646990, 0.265262 in subsuent calls; the nmessages 1, 0.924946 },
/1 {{ 2, 0.680497 }, { 3, 0.630836 }, { 4, 0.648681 }, { 5, 0.428501 },
/1 { 6, 0.262539 }, { 7, 0.646990 } and { 8, 0.265262 } are sent out in sequence

setverdi ct (pass, "nmessages has been sent out")

}
5.5 Cyclic Definitions

Direct and indirect cyclic definitions are not allowed with the exception of the following cases:
a) for recursive type definitions (see clause 6.2);
b) function and atstep definitions (i.e. recursive function or altstep calls);
¢) cyclicimport definitions, if the imported definitions only form allowed cyclic definitions.

NOTE 1: Indirect cyclic definitions may be aresult of imports of definitions that are needed for the usage of a
definition but do not need to be known in the importing module (see clause 8.2.3.1).

NOTE 2: For the detection of cycles only the main identifiers of the definition are used. For example, field
identifiers are not used.

Examples
EXAMPLE 1: Module with cyclic constant definition that is not allowed
nodul e MyModul e {
éype record ARecordType { integer a, integer b };
I/ The following two lines include a cycle that is not allowed

const ARecordType cConst :={ 1, dConst.b}; // cConst refers to dConst
const ARecordType dConst :={ 1 , cConst.b}; // dConst refers to cConst

}
EXAMPLE 2: Modules with cyclic import that is allowed

nmodul e MyModul eA {
i mport from MyModul eB { type Myl nteger }
type record of Myl nteger Myl ntegerlList;

}

nodul e MyModul eB {
type integer Myl nteger;
import from MyModul eA { type Myl ntegerlList }

6 Types and values

TTCN-3 supports a number of predefined basic types. These basic types include ones normally associated with a
programming language, such asi nt eger, bool ean and string types, as well as some TTCN-3 specific ones such as
ver di ctt ype. Structured types such asr ecor d types, set typesand uni on types can be constructed from these
basic types. enuner at ed types are specific structured types being constructed of enumerated values.

The specia datatype anyt ype is defined as the union of all known data types and the address type within a module.

Specia types associated with test configurations such asaddr ess, port and conmponent may be used to define the
architecture of the test system (see clause 21).

The special typedef aul t may be used for the default handling (see clause 20.5).

The TTCN-3 types are summarized in table 3.

ETSI

36 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Table 3: Overview of TTCN-3 types

Class of type Keyword Subtype
Simple basic types integer range, list
float range, list
boolean list
verdicttype list
Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring range, list, length, pattern
universal charstring range, list, length, pattern
Structured types record list (see note)
record of list (see note), length
set list (see note)
set of list (see note), length
enumerated list (see note)
union list (see note)
Special data type anytype list
Special configuration types address
port
component
Special default type default
NOTE: List subtyping of these types is possible when defining a new constrained type
from an already existing parent type but not directly at the declaration of the first
parent type.

NOTE: Behaviour typesfor TTCN-3 are defined in the optional package [i.13].

6.1 Basic types and values

6.1.0 Simple basic types and values
TTCN-3 supports the following basic types:

a) i nteger: atypewith distinguished values which are the positive and negative whole numbers, including
zero.

Values of integer type shall be denoted by one or more digits; the first digit shall not be zero unless the
valueis 0; the value zero shall be represented by a single zero.

b) fl oat: atype to describe floating-point numbers and special float values.

In general, floating point numbers can be defined as.<mantissa> x <base> <&xponent>

where <mantissa> is apositive or negative integer, <base> a positive integer (in most cases 2, 10 or 16)
and <exponent> a positive or negative integer.

In TTCN-3, the floating-point number value notation is restricted to a base with the value of 10. Floating
point values can be expressed by using two forms of value notations:

L] the decimal notation with a dot in a sequence of numbers like, 1.23 (which represents 123x102),
2.783 (i.e. 2783 x 10°3) or -123.456789 (which represents -123 456 789 x 10°6); or

" by two numbers separated by E where the first number specifies the mantissa and the second
specifies the exponent, for example 12.3E4 (which represents 123 x 103) or -12.3E-4 (which
represents -123 x 1079).

NOTE 1: In contrast to the genera definition of float values, the mantissa of in theT TCN-3 value notation, beside
integers, alows decimal numbers as well.

ETSI

37 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)
The special values of the float type consist of i nf i ni ty (positiveinfinity), - i nfi ni ty (negativeinfinity) and the
valuenot _a_nunber . For the ordering of specia values see clauses 7.1.1 and 7.1.3.
NOTE 2: - not _a_nunber (i.e. minusnot a number) is not to be used.
c) bool ean: atype consisting of two distinguished values.
Vaues of boolean type shall be denoted by t r ue and f al se.

d) verdicttype: atypefor use with test verdicts consisting of 5 distinguished values. Values of
ver di ct t ype shal be denoted by pass,fail,i nconc,none anderror.

6.1.1 Basic string types and values
TTCN-3 supports the following basic string types.

NOTE 1: The general term string or string typein TTCN-3 referstobi t stri ng, hexstri ng,octetstring,
charstring anduni versal charstring.

a) bitstring: atypewhose distinguished values are the ordered sequences of zero, one, or more bits.

Values of typebi t st ri ng shal be denoted by an arbitrary number (possibly zero) of the bit digits:
01, preceded by asingle quote (') and followed by the pair of characters 'B.

EXAMPLE 1: 'o01101' B.

b) hexstri ng: atype whose distinguished values are the ordered sequences of zero, one, or more hexadecimal
digits, each corresponding to an ordered sequence of four bits.

Values of type hexst ri ng shal be denoted by an arbitrary number (possibly zero) of the hexadecimal
digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by asingle quote (') and followed by the pair of characters 'H; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE 2: ' AB0O1D H
"ab01d' H
' AbO1D H

c) octetstring: atypewhose distinguished values are the ordered sequences of zero or a positive even
number of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight bits).

Values of typeoct et st ri ng shall be denoted by an arbitrary, but even, number (possibly zero) of the
hexadecimal digits (uppercase and lowercase letters can equally be used as hex digits):

0123456789abcdefABCDEF

preceded by asingle quote (') and followed by the pair of characters' O; each hexadecimal digit is used to
denote the value of a semi-octet using a hexadecimal representation.

EXAMPLE3: ' FF96' O
"ff96' O
' Ff96' O

d) charstring: aretypeswhose distinguished values are zero, one, or more characters of the version of
Recommendation ITU-T T.50 [4] complying with the International Reference Version (IRV) as specified in
clause 8.2 of Recommendation ITU-T T.50 [4].

ETSI

38 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

NOTE 2: ThelRV version of Recommendation ITU-T T.50 [4] is equivalent to the IRV version of the International
Reference Alphabet (former International Alphabet No.5 - |A5), described in
Recommendation ITU-T T.50 [4].

Values of char st ri ng type shall be denoted by an arbitrary number (possibly zero) of non-control
characters from the relevant character set, preceded and followed by double quote (). Graphical characters
include the range from SP(32) to TILDE (126). Values of char st ri ng type can aso be calculated using the
predefined conversion function int2char with the positive integer value of their encoding as argument (see
clause C.1).

NOTE 3: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (*) the character is
represented by a pair of double quotes on the same line with no intervening space characters.

EXAMPLE 4: The charstring "ab"cd" iswritten in TTCN-3 code as in the following constant declaration. Each of
the 3 quote characters that are part of the string is preceded by an extra quote character and the

whole character string is delimited by quote characters, e.g.
var charstring vl _char:= """ab""cd""";

€) The character string type preceded by the keyword uni ver sal denotes types whose distinguished values are
zero, one, or more characters from | SO/IEC 10646 [2].

uni ver sal char stri ng valuescan aso be denoted by an arbitrary number (possibly zero) of characters from the
relevant character set, preceded and followed by double quote (), calculated using a predefined conversion function
(see clause C.1.2) with the positive integer value of their encoding as argument or by a"quadruple”.

NOTE 4: The predefined conversion function is able to return single-character-length values only.

In cases where it is necessary to define strings that include the character double quote (*) the character is
represented by a pair of double quotes on the same line with no intervening space characters.

The "quadruple” is only capable to denote a single character and denotes the character by the decimal
values of its group, plane, row and cell according to 1SO/IEC 10646 [2], preceded by the keyword char
included into a pair of brackets and separated by commas (e.g. char (0, O, 1, 113) denotes the
Hungarian character "i"). In cases where it is necessary to denote the character double quote (") ina
string assigned according to the first method (within double quotes), the character is represented by a
pair of double quotes on the same line with no intervening space characters. The two methods may be
mixed within a single notation for a string value by using the concatenation operator.

EXAMPLES5: Theassignment : "the Braille character” & char (0, 0, 40, 48) & "looks like this' represents the
literal string: the Braille character & looks like this.

NOTE 5: Control characters can be denoted by using the predefined conversion function or the quadruple form.

By default, uni ver sal char st ri ng shall conform to the UCS-4 coded representation form
specified in clause 14.2 of 1SO/IEC 10646 [2].

NOTE 6: UCS-4 isan encoding format, which represents any UCS character on afixed, 32 bits-length field.

This default encoding can be overridden using the defined variant attributes (see clause 27.5). The
following useful character string types utf8string, bmpstring, utf16string and iso8859string using these
attributes are defined in annex E.

ETSI

39 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

6.1.1.1 Accessing individual string elements

Individual elementsin a string type may be accessed using an array-like syntax. Only single elements of the string may
be accessed.

Units of length of different string type elements are indicated in table 4.

Indexing shall begin with the value zero (0). The index shall be between zero and the length of the string minus one for
retrieving an element from a string. For assigning an element to the end of a string, the length of the string should be
used asindex.

EXAMPLE 1: Accessing an existing element

/1 Gven

MyBitString := "'11110111" B;
/1 Then doi ng
M/BitString[4] :='1'B;

// Results in the bitstring '11111111'B

EXAMPLE 2: Specific cases

var bitstring MyBitStringA MBitStringB, MBitStringC

M/BitStringA := '010'B;
M/BitStringA[1] := '11'B; //causes an error as only individual elenents can be accessed
MyBitStringB :="'1'B;

T

MyBitStringB[4] :='1"B; //causes an error as the index is larger than the length of the |hs
M/BitStringC :=''B
MyBit StringC 0] :
MyBit StringC 1] :

"1'B; /1 value of MyBitStringCis '"1'B
"0'B; // value of MyBitStringCis '10'B

6.1.2 Subtyping of basic types

User-defined types shall be denoted by the keyword t ype. With user-defined typesit is possible to create subtypes
(such aslists, ranges and length restrictions) on basic types, structured types and anytype according to table 3.

6.1.2.1 Lists of templates

TTCN-3 permits the specification of alist of distinguished templates aslisted in table 3. The templatesin the list shall
be instances of the type being constrained and the set of values matching at least one of these templates shall be a subset
of the values defined by the type being constrained. The subtype defined by thislist restricts the allowed val ues of the
subtype to those values matching at least one of the templatesin the list. The templatesin the list shall only (directly or
indirectly) reference other templates or constant expressions. Constant expressions used (directly or indirectly) in the
template expressions shall meet with the restrictionsin clause 10 for constant expressions used in type definitions.

EXAMPLE:

type bitstring MListOFBitStrings ('01'B, '10'B, '11' B);
type float pi (3.1415926);
type charstring MyStringList ("abcd", "rgy", "xyz");
type universal charstring Special Letters
(char(0, 0, 1, 111), char(O0, 0, 1, 112), char(0, O, 1, 113));

6.1.2.2 Lists of types

TTCN-3 permits the specification of alist of subtypes aslisted in table 3 for value lists. The typesin the list shall be
subtypes of the root type. The subtype defined by thislist restricts the allowed values of the subtype to the union of the
values of the referenced subtypes.

EXAMPLE:
type bitstring BitStringsl ('0'B, '1'B);

type bitstring BitStrings2 ('00'B, '01'B, '10'B, '10' B);
type bitstring BitStrings_1_2 (Bitstringsl, Bitstrings2);

ETSI

40 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

6.1.2.3 Ranges

TTCN-3 permits the specification of range constraints for the typesi nt eger, charstring, uni versal
charstringandfl oat (or derivations of thesetypes). Fori nt eger andf | oat, the subtype defined by the
range restricts the allowed values of the subtype to the valuesin the range including or excluding the lower boundary
and/or the upper boundary. The upper boundary shall be greater than or equal to the lower boundary.

In order to specify an infinite integer range, the keyword -i nfi ni ty ori nfi ni ty canbe used instead of avalue
indicating that there is no lower or upper boundary; - i nfi ni ty shall not be used as the upper boundandi nfinity
shall not be used as the lower bound for integer ranges.

Alsoforfl oat,-infinityorinfinity canbeusedastheboundsinrange restrictions. Using the special value
-i nfinity asthelower bound shall indicate that the allowed numerical values are not restricted downward and the
special value- i nfi ni ty isalsoincluded. If both the lower and upper bounds denote - i nf i ni t y, no numerical
values are included, only the specia value-i nfi ni ty. Using the special valuei nfi ni ty asthe upper bound shall
indicate that the allowed numerical values are not restricted upward and the special valuei nf i ni ty isaso included.
If both the lower and upper bounds denotei nf i ni t y, no numerical values are included, only the special value
infinity.Ifexclusvebounds(!i nfinityor!-infinity) isusedinstead, only the respective numerical float
values are included in therange. In case of f | oat , the specia valuenot _a_nunber isnot allowed in arange
constraint.

Inthecase of char stri ng anduni versal charstring types, the range restricts the allowed values for each
separate character in the strings. The boundaries shall evaluate to valid character positions according to the coded
character set table(s) of the type (e.g. the given position shall not be empty). Empty positions between the lower and the
upper boundaries are not considered to be valid values of the specified range.

Constants used in the constant expressions defining the values shall meet with the restrictionsin clause 10.

EXAMPLE 1:
type integer Myl ntegerRange (0 .. 255); /'l range fromO..255

/1 (with inclusive boundari es)
type integer MylntegerRange (-infinity .. -1); /1 all negative integer nunbers
type integer Myl ntegerRange (0 .. !256); /1 the sanme range as above (with left

/1 inclusive and right exclusive boundary)
type integer Myl ntegerRange (!-1 .. 255); /1 the same range as above(with |eft

/1 exclusive and right inclusive boundary)
type integer MylntegerRange (!-1 .. !256); /1 the sane range as above

/1 (with exclusive boundaries)
type float piRange (3.14 .. 3142E-3);
type float LessThanPi (-infinity .. 3142E-3);
type float Nunbers (-infinity .. infinity); /lincludes all float val ues but not_a_nunber
type float Wong (-infinity .. not_a_nunber); // causes an error as not_a_nunber is not
/1 allowed in range subtyping

EXAMPLE 2:

type charstring MyCharString ("a" .. "z");

/1 Defines a string type of any length with each character within the specified range
type universal charstring MyUCharStringl ("a" .. !"z");

/Il Defines a string type of any length with each character within the range froma to y
/1 (character codes from97 to 121), I|ike "abxy";

/1 strings containing any other character (including control characters), Ilike

/1 "abc2" are disall owed.

type universal charstring MyUCharString2 (char(0, O, 1, 111) .. char(0, 0, 1, 113));

/1 Defines a string type of any length with each character within the range specified using
/1 the quadruple notation

6.1.2.4 String length restrictions

TTCN-3 permits the specification of length restrictions on string types. The length boundaries are based on different
units depending on the string type with which they are used. In al cases, these boundaries shall be inclusive boundaries
only and evaluate to hon-negative i nt eger values (or derivedi nt eger values).

ETSI

41 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLE:

type bitstring M/Byte | ength(8); /1 Exactly length 8

type bitstring M/Byte length(8 .. 8); /1 Exactly length 8

type bitstring MyN bbl eToByte | ength(4 .. 8); /1 Mnimmlength 4, naxi numlength 8

Table 4 specifies the units of length for different string types.

Table 4: Units of length used in field length specifications

Type Units of Length
bitstring bits
hexstring hexadecimal digits
octetstring octets
character strings characters

For the upper bound the keyword i nfi ni ty may also be used to indicate that thereis no upper limit for the length.
The upper boundary shall be greater than or equal to the lower boundary.

6.1.2.5 Pattern subtyping of character string types

TTCN-3 alows using character patterns specified in clause B.1.5 to constrain permitted values of char st ri ng and
uni ver sal char stri ng types. Thetype constraint shall usethe pat t er n keyword followed by a character
pattern. All values denoted by the pattern shall be a subset of the type being sub typed. Constants used in the constant
expressions defining the values shall meet with the restrictionsin clause 10.

NOTE: Pattern subtyping can be seen as a specia form of list constraint, where members of the list are not
defined by listing specific character strings but via a mechanism generating elements of the list.

EXAMPLE:

type charstring MyString (pattern "abc*xyz");
I/ all permitted values of MyString have prefix abc and postfix xyz

type universal charstring MUString (pattern "*\r\n")
/1 all permitted values of M/UString are terminated by CR/ LF

type charstring MyString2 (pattern "abc?\q{0,0, 1, 113}");
/] causes an error because the character denoted by the quadruple {0,0,1,113} is not a
Il legal character of the TTCN-3 charstring type

type MyString MyString3 (pattern "d*xyz");

/] causes an error because the type MyString does not contain a value starting with the
/'l character d

6.1.2.6 Mixing subtyping mechanisms

6.1.2.6.1 Mixing patterns, lists and ranges

Withini nt eger andf | oat (or derivations of these types) subtype definitionsit is allowed to mix lists and ranges. It
is possible to mix both template list and type list subtyping with each other and with range subtyping. Overlapping of
different constraintsis not an error.

EXAMPLE 1:

type integer MylntegerRange (1, 2, 3, 10 .. !20, 99, 100);
type float |essThanPi AndNaN (-infinity .. 3142E-3, not_a_nunber);

Withinchar stri ng and uni versal charstring subtypedefinitionsit isnot allowed to mix pattern, template
list, type list, or range constraints.

ETSI

42 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLE 2:

type charstring MyCharStrO ("gr", "xyz");
/1 contains character strings gr and xyz;

type charstring M/CharStrl ("a".."z");
/1 contains character strings of arbitrary length containing characters a to z.

type charstring M/CharStr2 (pattern "[a-z]#(3,9)");
/1 contains character strings of length from3 to 9 characters containing characters a to z

6.1.2.6.2 Using length restriction with other constraints

Withinbi t stri ng, hexstring, octetstring subtype definitionslists and length restriction may be mixed in
the same subtype definition.

Withinchar stri ng and uni versal charstri ng subtypedefinitionsit isallowed to add alength restriction
to constraints containing list, range or pattern subtyping in the same subtype definition.

When mixed with other constraints the length restriction shall be the last element of the subtype definition. The length
restriction takes effect jointly with other subtyping mechanisms (i.e. the value set of the type consists of the common
subset of the value setsidentified by the list, range or pattern subtyping and the length restriction).

EXAMPLE:

type charstring M/CharStr5 ("gr", "xyz") length (1..9);
/1 contains the character strings gr and xyz;

type charstring M/CharStr6 ("a".."z") length (3..9);
/1 contains character strings of length from3 to 9 characters and containi ng characters
/Il atoz

type charstring M/CharStr7 (pattern "[a-z]#(3,9)") length (1..9);
/1 contains character strings of length from3 to 9 characters containing characters a to z

type charstring M/CharStr8 (pattern "[a-z]#(3,9)") length (1..8);
/'l contains character strings of length from3 to 8 characters containing characters a to z

type charstring MyCharStr9 (pattern "[a-z]#(1,8)") length (1..9);
// contains any character strings of length from1 to 8 characters containing characters
/1 atoz

type charstring MyCharStr10 ("gr", "xyz") length (4);
/]l causes an error as it contains no value
6.2 Structured types and values

Thet ype keyword is also used to specify structured types such asr ecor d types, r ecor d of types, set types, set
of types, enurrer at ed typesand uni on types.

Values of these types may be given using an explicit assignment notation or a short-hand value list notation.

EXAMPLE 1:

const MyRecordType MyRecordVal ue: = / l assi gnnent notation
fieldl :="11001' B,
field2 := true,
field3 := "A string"

}

/1 O

const MyRecordType MyRecordVal ue: = {'11001'B, true, "A string"} //value list notation

The assignment notation can be used for record, record of,set,set of anduni on value notations and for
arrays. The value list notation can be used for r ecord, record of,set andset of vaue notationsand for
arrays. The indexed notation can be used for r ecor d of and set of value notations and for arrays. See more details
in the subsequent clauses.

ETSI

43 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLE 2:
var MyRecordType MyVari abl e: = // assi gnnent notation
{
fieldl :="11001' B,
/] field2 inplicitly unspecified
field3 := "A string"
}
/1 O
var MyRecordType MyVari abl e: = // assi gnnent notation
fieldl :="11001' B,
field2 := -, // field2 explicitly unspecified
field3 := "A string"
}
/1 O
var MyRecordType MyVariable:= {'11001'B, -, "A string"} //value list notation

It isnot alowed to mix the two value notations in the same (immediate) context.

EXAMPLE 3:

/1 This is disallowed
const MyRecordType MyRecordVal ue: = { M/l ntegerValue, field2 := true, "A string"}

Where applicable TTCN-3 type definitions may be recursive. The user, however, shall ensure that all type recursionis
resolvable and that no infinite recursion occurs.

In case of record and set types, to avoid infinite recursion, fields referencing to its own type, shall be optional.

EXAMPLE 4:

/1 Valid recursive record type definition
type record MyRecordl

Fi el dTypel fieldi,
M/Recordl field2 optional,
Fi el dType3 field3

}

/1 Invalid recursive record type definition causing an error
type record MyRecord2

Fi el dTypel fieldi,
MyRecor d2 field2,
Fi el dType3 field3

}

In case of union types, to avoid infinite recursion, at least one of the alternatives shall not reference its own type.

EXAMPLE 5:

/1 Valid recursive union type definition
type union MyUni onl
{

MyUni onl choi cel,
charstring choice2

}

/1 Invalid recursive union type definition causing an error
type uni on MyUni on2
{

MyUni on2 choi cel,
MyUni on2 choi ce2

ETSI

44 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

6.2.1 Record type and values

TTCN-3 supports ordered structured types known asr ecor d. The elements of ar ecor d type may be any of the basic
types or user-defined data types (such as other records, sets or arrays). The values of ar ecor d shall be compatible
with the types of ther ecor d fields. The element identifiers are local to ther ecor d and shall be unique within the

r ecor d (but do not have to be globally unique).

EXAMPLE 1:

type record MyRecordType
{

i nt eger fieldl,
MyQt her Recor dType field2 optional,
charstring field3

}

type record MyQt her Recor dType
bitstring fieldl,
bool ean field2
}
Records may be defined with no fields, i.e. as empty records.

EXAMPLE 2:

type record MyEnptyRecord {}

A record vaueisassigned on an individual element basis. The order of field values in the value list notation shall be
the same as the order of fields in the related type definition.

EXAMPLE 3:
var integer MylntegerValue := 1;
const MyQt her Recor dType MyQt her Recor dVal ue: =

fieldl :
field2 :

'11001" B,
true

var MyRecordType MyRecordVal ue : =

fieldl := Myl ntegerVal ue,
field2 : = M/O her Recor dVal ue,
field3 := "A string"

The same val ue specified with avalue list.

EXAMPLE 4:

M/Recor dVval ue: = { Myl nt eger Val ue, {'11001'B, true}, "A string"};

When the assignment notation is used for r ecor d-s, fields wished to be changed shall be identified explicitly and a
value, the not used symbol "-" or the om t keyword can be associated with them. The omi t keyword shall only be
used for optional fields. Itsresult isthat the given field is not present in the given value.

NOTE: Pleases note the difference between omitted and uninitialized fields. Omitted optional fields are not
present in the record or set value intentionally, i.e. the field isinitialized and it does not prevent the whole
record or set from being completely initialized.

When the assignment notation is used in a scope, wherethe opt i onal attribute isimplicitly or explicitly set to
"explicit omt",fields, not explicitly referred to in the notation, shall remain unchanged. In particular, when
specifying partial values (i.e. setting the value of only a subset of the fields) using the assignment notation, for example,
a initialization, only the fields or elements to be assigned val ues shall be specified. Fields or elements not mentioned
areimplicitly left uninitialized. It is also possible to leave fields explicitly unspecified using the not used symbol "-".
When re-assigning a previoudly initialized value, using the not used symbol or just skipping afield or element in an

assignment notation, will cause that field or element to remain unchanged.

ETSI

45 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLE 5:
var MyRecordType MyVariable :=
{
fieldl := "'111' B,
field2 := fal se,
field3 := -
}
MyVariable := { '10111'B, -, - };

/] after this, MyVariable contains:
/1 { '10111'B, false /* unchanged */, <undefined> /* unchanged */ }

MyVari abl e :

field2 := true

/1 after this, MyVariabl e contains:
/1 { '10111'B /* unchanged */, true, <undefined> /* unchanged */ }

MyVari able : =

{
fieldl := -,
field2 := fal se,
field3d := -

/1 after this, MyVariable contains:
/1 { '10111'B /* unchanged */, false, <undefined> /* unchanged */}

When the assignment notation is used in a scope, wherethe opt i onal attributeissetto"inplicit omt",
optiona fields, not directly referred to in the notation, shall implicitly be set to omit, while mandatory fields shall
remain unchanged (see also clause 27.7).

When using the value list notation, all fields in the structure shall be specified either with a value, the not used symbol
"-" ortheomi t keyword. Theom t keyword shall only be used for optional fields. Its result isthat the given field is
not present in the given value. The first component of thelist (avalue, a"-" or om t) is associated with the first field,
the second list component is associated with the second field, etc. No empty assignment is allowed (i.e. two commas,
the second immediately following the first or only with white space between them). Fields or elementsto be | eft
unchanged shall be explicitly skipped in the list by using the not-used-symbol "-".

When the value list notation is used in a scope, wherethe opt i onal attribute isimplicitly or explicitly set to
"explicit omt,aready initiadized fields or elements left without an associated component in a value list notation
(i.e. a the end of avalue) are becoming uninitialized. In this way, a value with initialized fields or elements can be
made empty by using an empty pair of curly brackets ("{}").

When using value list notation in a scope wherethe opt i onal attributeissetto”i nplicit omt", optiona fields
wished to be omitted by the implicit mechanism, but followed by fields to which avalue or template is assigned
explicitly, shall be skipped by using the not used symbol "-". When all remaining fields at the end of the type definition
are optional and they are wished to be omitted by the implicit mechanism, either the not used symbol "-" can be used for
some or al of them or they can simply be left out from the notation.

EXAMPLE 6:

type record R {
integer f1,
integer f2 optional,
i nteger f3,
integer f4 optional,
integer f5 optional

}

var Rx :={ 1, -, 2} with { optional "inplicit omt" }

/1 after the assignnment x contains { 1, omt, 2, omt, omt }

var Rx2 :={ 1, 2} with { optional "inplicit omt" }

/1 after the assignnent x2 contains { 1, 2, <undefined> onit, onit }

ETSI

46 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

6.2.1.1 Referencing fields of a record type

Elements of ar ecor d shal be referenced by the dot notation Typel dOr Expr essi on. El enent | d, where
Typel dOr Expr essi on resolvesto the name of a structured type or an expression of a structured type such as
variable, formal parameter, module parameter, constant, template, or function invocation. El enent | d shall resolve to
the name of afield in the structured type. Fields of record type definitions shall not reference themselves.

EXAMPLE 1:

MyVarl : = MyRecordl. nyEl enent 1;
/1 If arecord is nested within another type then the reference nay look like this
MyVar 2 : = MyRecordl. nyEl enent 1. nyEl enent 2;

EXAMPLE 2:

type record MyType

{
integer fieldl,

M/Type.field2 field2 optional, // this circular reference is NOT ALLOANED
bool ean fiel d3

}

If afieldinarecord type or asubtype of arecord typeis referenced by the dot notation, the resulting type is the set of
values allowed for that field imposed by the constraints of the field declaration itself (i.e. any constraints applied to the
record type itself are ignored).

EXAMPLE 3:
type record MyType2
{
integer fieldl (1 .. 10),
charstring field2 optional
}
type MyType2 MyType3d ({1, onit}, {2, "foo"}, {3, "bar"}) ;
type MyType3.fieldl MyType4; /'l MyTyped is the integer type constrained to
/1 the values 1..10
type MyType3.field2 MyType5; /'l MyType5 is the charstring type
type MyType2.fieldl MyTypes6; /'l MyType6 is the integer type constrained to
/1 the values 1..10
type MyType2.field2 MType7; /'l MyType7 is the charstring type
6.2.1.2 Optional elements in a record

Optiona elementsinar ecor d shall be specified using the opt i onal keyword.
EXAMPLE 1:

type record MyMessageType

Fi el dTypel field1,
Fi el dType2 field2 optional,

Fiel dTypeN fiel dN
}

Optional fields shall be omitted using the omit symbol.
EXAMPLE 2:
MyRecor dVal ue: = { Myl nt eger Val ue, omt , "A string"};
/'l Note that this is not the sane as witing,

/'l MyRecordVal ue: = { Myl ntegerValue, -, "A string"};
/1 which would nean the value of field2 is unchanged

ETSI

a7 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

6.2.1.3 Nested type definitions for field types

TTCN-3 supports the definition of types for record fields nested within the r ecor d definition. Both the definition of
new structured types (r ecor d, set , enurrer at ed, set of ,record of ,and uni on) and the specification of
subtype constraints are possible.

EXAMPLE:

Il record type with nested structured type definitions
type record MyNest edRecordType

{

record

{

i nt eger nestedFi el d1,
float nestedFiel d2
} outerFieldi,
enuner at ed {
nest edEnum,
nest edEnung
} outerField2,
record of bool ean outerField3

}

/1 record type with nested subtype definitions
type record MyRecor dTypeW t hSubt ypedFi el ds

i nt eger fieldl (1 .. 100),
charstring field2 length (2 .. 255)

6.2.2 Set type and values

TTCN-3 supports unordered structured types known as set . Set types and values are similar to records except that the
ordering of the set fieldsis not significant.

EXAMPLE:

type set M/Set Type

{
i nt eger fieldl,
charstring field2

}

Thefield identifiers are local to the set and shall be unique within the set (but do not have to be globally unique).
NOTE: Whenthevauelist notation is used for values of set types, the values are assigned to the fieldsin the
sequentia order of the fieldsin the type definition.

6.2.2.1 Referencing fields of a set type

Elements of aset shall be referenced by the dot notation (see clause 6.2.1.1). Elements of set type definitions shall not
reference themselves. For referencing field types of set types, the samerules apply asin clause 6.2.1.1 for fields of
record types.

EXAMPLE:
MyVar3 : = MySet 1. nyEl enent 1;
/1 1f a set is nested in another type then the reference may | ook like this
MyVar4 : = MyRecordl. nyEl enent 1. nyEl enent 2;

/'l Note, that the set type, of which the field with the identifier 'nyEl enent2' is referenced,
/l is enbedded in a record type

6.2.2.2 Optional elements in a set

Optional elementsinaset shall be specified using the opt i onal keyword.

ETSI

48 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

6.2.2.3 Nested type definition for field types

TTCN-3 supports the definition of types for set fields nested within the set definition, similar to the mechanism for
record types described in clause 6.2.1.3.

6.2.3 Records and sets of single types

TTCN-3 supports the specification of records and sets whose elements are all of the same type. These are denoted using
the keyword of . These records and sets do not have element identifiers and can be considered similar to an ordered
array and an unordered collection respectively.

NOTE 1: Subtyping of record of and set of types seein clause 6.2.13.
EXAMPLE 1:

type set of boolean MySetOf Type; // is an unlinmited set of bool ean val ues

When the assignment notation isused for r ecord of -s, set of -sand arrays, el ements wished to be changed are
identified explicitly and either a value or the not used symbol "-" can be assigned to them. Other fields, not referred to
in the notation, shall remain unchanged. In particular, when specifying partial values (i.e. setting the value of only a
subset of the fields) using the assignment notation, for example, at initialization, only the elements to be assigned values
shall be specified: elements not mentioned are implicitly left uninitialized. It is also possible to leave fields explicitly
unspecified using the not used symbol "-". When re-assigning a previously initialized value, using the not used symbol
or just skipping afield or element in an assignment notation, will cause that field or element to remain unchanged.

EXAMPLE 2:

var MyRecordOf Type MyVariable := {
[0] :='111'B,
.= "101' B,

—_
=
—

1o

MyVariable := { '10111'B, -, - };
// after this, MyVariable contains:
/1 { '10111'B, '101'B /* unchanged */, <undefined> /* unchanged */ }

M/Vari able : =

{
[1] :='010'B,

/] after this, MyVariabl e contains:
/1 { '10111' B/ * unchanged */, '010'B, <undefined>/* unchanged */ }

MyVari able : =
{
[0] :
[1] :
[2] :

/] after this, MyVariabl e contains:
/1 { '10111' B/ * unchanged */, '001' B, <undefined> /* unchanged */}

' 001' B,

When using the value list notation, all elementsin the structure shall be specified either with a value or the not used
symbol "-". The first member of the list is assigned to the first element, the second list member is assigned to the second
element, etc. No empty assignment is allowed (e.g. two commas, the second immediately following the first or only
with white space between them). Elements to be left out of the assignment shall be explicitly skipped in the list by use
of the not-used-symbol "-". Already initialized elements left without a corresponding list member in avalue list notation
(i.e. a the end of alist) are becoming uninitialized. In this way, a value with initialized elements can be made empty by
using the empty value list notation ("{}").

ETSI

49 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Indexed value notations can be used on both the right-hand side and left-hand side of assignments. For multi-
dimensional arrays or nested record of or set of types, an array or record of integer can be used as a short-hand notation
for anested index notation. The index notation, when used on the right hand side, refers to the value of the identified
element of ar ecord of oraset of orarray. Whenitis used at the left hand side, only the value of the identified
single element is changed, values assigned to other elements already remain unchanged. The index of the first element
shall be zero and the index value shall not exceed the limitation placed by length subtyping. If the value of the element
indicated by the index at the right-hand of an assignment is undefined (uninitialized), this shall cause a semantic or
runtime error. If an indexing operator at the left-hand side of an assignment refers to a non-existent element, the value at
the right-hand side is assigned to the element and all elements with an index smaller than the actual index and without
assigned value are created with an undefined value. Undefined elements are permitted only in transient states (while the
value remainsinvisible). Sendingar ecor d of orset of valuewith undefined elements shall cause a testcase error.

NOTE 2: When using on the right hand side of an assignment for r ecor d of - s, set of - sor arrays, the
assignment notation and the indexed notation have similar effect, with the exception that the assignment
notation is able to address multiple elements in one notation, while the index notation is able to address a
single element only.

EXAMPLE 3:

/1 Gven

type record of integer MyRecorddf;

var integer MyVar;

/1 Using the value list notation

var M/Recordd MyRecordOfvar :={ 0, 1, 2, 3, 4 };

/1 The sane record of, defined with the assignnent notation
var MyRecordO MyRecor dOf Var Assi gnnent @ = {
(0]
[1]
[2]
[3]
[4]

I TN T T
~AONPRO

}s

/1 Using an i ndexed notation
MyVar := MyRecordOf Var[0]; // the first elenent of the "record of" value (integer 0)
/1 is assigned to MyVar

/'l I ndexed values are pernmitted on the left-hand side of assignments as well:
M/RecordCOf Var[1] := MyVar; // M/Var is assigned to the second el enent
/1 value of MyRecordOVar is { 0, 0, 2, 3, 4}

/1 The assi gnnent

MWRecordOfVar :={ 0, 1, -, 2 };

/1 will change the value of MyRecordOfVar to{ 0, 1, 2 <unchanged>, 2};

/1 Note, that the 3" el ement woul d be undefined if had no previous assigned val ue.

/1 The assi gnnment

M/RecordOf Var[6] : = 6;

/1 will change the value of MyRecordOf Var to

11 {0, 1, 2, 2, <uninitialized> <uninitialized> 6 };

/1 Note the 5'" and 6'" el enents (with indexes 4 and 5) had no assigned val ue before this
/1 last assignnent and are therefore undefined.

M/RecordCf Var[4] := 4; M/RecordOVar[5] := 5;
/1 will conplete M/fRecordOfVar to the fully defined value { 0, 1, 2, 2, 4, 5, 6 };

//Pl's. Note the difference between the to i ndex assignnent notations the followi ng exanple:
var MyRecorddf ix :={ 0,1,2 }

ix 1= { [3] :=2*ix[2]+1 }

/1 the value of ix is: {0, 1, 2, 5}

/] The sane result can be achi eved by using an index notation on the |eft hand side of
//the assignment:

var M/Recorddf ix :={ 0,1,2 }

ix[3] := 2*ix[2]+1

/1 the value of ixis: {0, 1, 2, 5}

NOTE 3: Theindex notation makesit possible e.g. to copy r ecor d of values element by element in afor loop.
For example, the function below reverses the elements of ar ecor d of vaue:

function reverse(in M/Recorddf src) return MyRecordOf

{

ETSI

50 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

var MyRecordOf dest;

var integer i, srcLength := |l engthof (src);

for(i :=0; i < srcLength; i =i + 1) {
dest[srcLength - 1 - i] :=src[i];

}

return dest;

}

Embedded r ecord of andset of typeswill result in a data structure similar to multidimensional arrays
(seeclause 6.2.7).

EXAMPLE 4:

/1 Gven
type record of integer MyBasi cRecordOf Type;
type record of MyBasicRecordOf Type My2DRecordOf Type;

/1 Then, the variable nyRecordOfArray will have sinmilar attributes to a two-dinensional array:
var My2DRecor dOF Type nyRecor dOf Array;

/1 and reference to a particular elenent would | ook like this

/1 (value of the second el enent of the third ' MyBasi cRecordOf Type' construct)

myRecordOf Array [2][1] := 1;

1w th

var integer i[2] :={ 1, 2 };

myRecordOf Array [i] := 2;

/1 is the same as assigning el ement nmyRecordOf Array[i[O0]][i[1]]

6.2.3.1 Nested type definitions

TTCN-3 supports the definition of the aggregated type nested withther ecor d of orset of definition. Both the
definition of new structured types (r ecor d, set , enuner at ed, set of andr ecor d of) and the specification of
subtype constraints are possible.

EXAMPLE:

type record of enunerated { red, green, blue } ColorlList;
type record length (10) of record length (10) of integer Matrix;
type set of record { charstring id, charstring val } GenericParaneters;

6.2.3.2 Referencing elements of record of and set of types

It isalso alowed to reference the inner type of r ecor d of andset of typesby using the index notation but with a
dash. The notation Typel d[-], where Typel d resolvesto the name of ar ecord of orset of type, references
theinner type of Typel d. If the type definition restricts the element type of the record of or set of type, referencing
the inner type of that type yields a type which contains all values from the constrained type.

EXAMPLE:

/1 Provided the definitions bel ow
type record of integer MyRecordOfInt;
type record of record {

integer f1,

set { integer sl1, boolean s2 } f2
} MyRecor dOf Recor d;
type record of record of integer MyRecordOf RecordOf I nt;
type record of record {

integer f1,

record of boolean f2
} MyRecor dOf Recor d2;

/1 Referencing the inner integer type
type MyRecordOFInt[-] Ml nteger;
const MyRecordOfInt[-] c_Mylnteger:= 5;

/'l Referencing the nested record type
type MyRecordOf Record[-] Myl nnerRecord;
const MyRecordOf Record[-] c¢c_MyRecord :={ f1 =5; f2 :={ s1 :=0; s2 :=true }}

/'l Referencing the set type nested in the inner record

type MyRecordOf Record[-].f2 MyNestedSet;
const MyRecordOf Record[-].f2 c_MSet :={ sl :=0; s2 :=true}

ETSI

51 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

/1 Referencing the innernost bool ean
type MyRecordOf Record[-].f2.s2 MyBool ean;
const MyRecordOf Record[-].f2.s2 c_MyBool := fal se;

/1 Referencing the inner record of
type MyRecordOf RecordOf I nt[-] Myl nnerRecordOf I nt;
const MyRecordOf RecordOfInt[-] c_MylnnerRecordOfint :={ 0, 1, 2, 3 };

/1 Referencing the integer type within the inner record of
type MyRecordOf RecordOf Int[-]1[-]1 Ml nteger2;
const MyRecordOf RecordOfInt[-][-] c_Mylnteger2 := 1;

/'l Referencing the boolean type within the nested record
type MyRecordOf Record2[-].f2[-] Ml nnernost Bool ean;
const MyRecordOf Record2[-].f2[-] c_MI nnernostBool ean := true ;

type record length (5) of record of integer ConstrainedRecordOdInt (1 .. 10);
type Constrai nedRecordOInt[-] Constrainedlnt;

/1 defines the type record of integer, where the integer values are restricted
/1l to the range 1 .. 10 but the record of has no length restriction

6.2.4 Enumerated type and values

TTCN-3 supportsenuner at ed types. Enumerated types are used to model types that take only a distinct named set of
values. Such distinct values are called enumerated values. Each enumerated value shall have an identifier. Operations
on enumerated types shall only use these identifiers and are restricted to assignment, equivalence and ordering
operators. The identifiers of enumerated values shall be unique within the enumerated type (but do not have to be
globally unique) and are consequently visible in the context of the given type only. The identifiers of enumerated values
shall only be reused within other structured type definitions and shall not be used for identifiers of local or global
visibility at the same or alower level of the same branch of the scope hierarchy (see scope hierarchy in clause 5.2).

EXAMPLE 1: Declaration of enumerated types and values

type enunerated M/First EnunType {
Monday, Tuesday, Wednesday, Thursday, Friday
H

type integer Mnday;
/1 This definition does not clash with the previous one
/1 as Monday in MyFirst EnunType is of |ocal scope

type enunerated MySecondEnuniType {
Saturday, Sunday, Monday
h

/1 This definition is legal as it reuses the Monday identifier within
/1 a different enunerated type

type record MyRecordType {
i nt eger Monday

/} This definition is legal as it reuses the Monday identifier within
/1 a distinct structured type as identifier of a given field of this type

type record MyNewRecordType {
My/Fi rst Enunifype firstField,
i nt eger secondFi el d

}s

var MyNewRecor dType newRecordVal ue : = { Mnday, 0 }
/1 MyFirstEnunType is inplicitly referenced via the firstField el enent of MyNewRecordType

Each enumerated value may optionally have a user-assigned integer value, which is defined after the name of the
enumerated value in parenthesis. Each user-assigned integer number shall be distinct within asingle enuner at ed
type. For each enumerated value without an assigned integer value, the system successively associates an integer
number in the textual order of the enumerated val ues, starting at the left-hand side, beginning with zero, by step 1 and
skipping any number occupied by any of the enumerated values with a manually assigned value. These values are only
used by the system to alow the use of relational operators. The user shall not directly use associated integer values but
can access them and convert integer values into enumerated values by using the predefined functions enun®i nt and

i nt 2enum (seeclauses 16.1.2, C.1.29 and C.1.4).

ETSI

52 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

NOTE 1. Theinteger value also may be used by the system to encode/decode enumerated values. This, however is
outside the scope of the present document (with the exception that TTCN-3 allows the association of
encoding attributesto TTCN-3 items).

For any instantiation or value reference of an enuner at ed type, the given type shall be implicitly or explicitly
referenced.

NOTE 2: If the enumerated type is an element of a user defined structured type, the enumerated type isimplicitly
referenced viathe given element (i.e. by the identifier of the element or the position of the valuein a
value list notation) at value assignment, instantiation, etc.

EXAMPLE 2: Using enumerated types (see also example 4 of clause 8.2.3.1)

/1 Valid instantiations of MyFirstEnunType and MySecondEnunType woul d be
var MyFirst EnunType Today := Tuesday;
var MySecondEnunilype Tonorrow : = Mnday;

/1 The followi ng statenents however cause an error as the two variables are instances
/1 of different enuneration types

Today := Tonorrow,

Today == Tonorrow,

/1 The follow ng operation is correct

if (Today == Monday) {...}

/1 the type of variable Today identifies the type context of MFirstEnunlype for the
/1 equality operator

/1 But the foll ow ng causes an error

if (Tuesday == Wednesday) {...}

/1 there is no TTCN-3 type(d) object to establish the type context for the equality operator
/] Please note that the values Tuesday and Wednesday are defined within the type

/'l MyFirstEnunType only, but this is not sufficient to establish the type context

When a TTCN-3 module parameter, formal parameter, constant, variable, non-parameterized template or parameterized
template with al formal parameters having default values of an imported enumerated type is defined, the name of that
definition shall not be the same as any of the enumerated values of that type.

6.2.5 Unions

TTCN-3 supportsthe uni on type. The uni on typeisacollection of alternatives, each one identified by an identifier.
Only one of the specified alternatives will ever be present in an actual union value. Union types are useful to model data
which can take one of a finite number of known types.

EXAMPLE:
type uni on MyUni onType
{

i nt eger nunber,
charstring string

}s

/1 A valid instantiation of MyUnionType would be
var MyUni onType age, oneYeard der;
var integer agel nMont hs;

age. nunber := 34; /1 value notation by referencing the field. Note, that this
/'l notation nmakes the given field to be the chosen one
oneYear A der : = {nunber := age. nunber +1};

agel nMont hs : = age. nunber * 12;

The assignment notation shall be used for uni on-s, and the notation shall assign avalue to one field only. Thisfield
becomes the chosen field. Neither the not used symbol "-" nor omi t isalowed in union value notations.

The value list notation shall not be used for setting values of uni on types.

6.25.1 Referencing fields of a union type

Alternatives of auni on type shall be referenced by the dot notation (see clause 6.2.1.1). The same rules for the
referenced field type asin clause 6.2.1.1 apply. Alternatives of union type definitions shall not reference themselves.

ETSI

53 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLE:

MyVar5 : = MyUni onl. nyChoi cel;

/1 If a union type is nested in another type then the reference nay look like this

MyVar6 : = MyRecordl. nyEl enent 1. nyChoi ce2;

/1 Note, that the union type, of which the field with the identifier 'nyChoice2' is referenced,
/] is enbedded in a record type

6.2.5.2 Option and union

Optiona fields are not allowed for the uni on type, which means that the opt i onal keyword shall not be used with
uni on types.

6.2.5.3 Nested type definition for field types

TTCN-3 supports the definition of types for union aternatives nested within the union definition, similar to the
mechanism for record types described in clause 6.2.1.3.

6.2.6 The anytype

The special type anyt ype isdefined as a shorthand for the union of all known data types and the address typein a
TTCN-3 module. The definition of the term known typesis given in clause 3.1, i.e. the anytype shall comprise all the
known data types but not the port, component, and default types. The address type shall be included if it has been
explicitly defined within that module.

The fieldnames of the anyt ype shall be uniquely identified by the corresponding type names.

NOTE 1. Asaresult of this requirement imported types with clashing names (either with an identifier of a
definition in the importing module or with an identifier imported from a third module) cannot be reached
viathe anytype of the importing module.

EXAMPLE:

/1 A valid usage of anytype woul d be
var anytype MyVar One, M Var Two;
var integer MyVar Three;

MyVar One. i nteger : = 34,
MyVar Two : = {integer := My/VarOne.integer + 1};

MyVar Three : = MyVarOne. i nteger * 12;

Theanyt ype isdefined locally for each module and (like the other predefined types) cannot be directly imported by
another module. However, a user defined type of the type anyt ype can be imported by another module. The effect of
thisisthat all types of that module are imported.

NOTE 2: The user-defined type of anyt ype "contains' al typesimported into the module where it is declared.
Importing such a user-defined type into a module may cause side effects and hence due caution should be
given to such cases.

6.2.7 Arrays

Arrays can be used in TTCN-3 as a shorthand notation to specify record of types. They may be specified also at the
point of avariable declaration. Arrays may be declared as single or multi-dimensional. Array dimensions shall be
specified using constant expressions, which shall evaluate to apositivei nt eger vaues. Constants used in the
constant expressions shall meet with the restrictionsin clause 10.

EXAMPLE 1:

type integer MyArrayTypel[3]; /1 Atype with 3 integer elenents
type record length (3) of integer M/Record Typel; // The corresponding record of

var M/ArrayTypel al:= { 7, 8, 9 };
var MyRecordOf Typel rl:= al; /'l MyArrayTypel and MyRecordOf Typel are conpati bl e

var integer nyArrayl[3]:=r1,; /1 Instantiates an integer array of 3 elenents

ETSI

54 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

/1 with the index 0 to 2
/1 being conpatible to MArrayTypel and MyRecor dOf Typel

var integer nyArray2[2][3]; // Instantiates a two-dinensional integer array of 2 x 3 elenents
/1 with indexes from(0,0) to (1,2)

Array elements are accessed by means of the index notation ([]), which shall specify avalid index within the array's
range. Individual elements of multi-dimensional arrays can be accessed by repeated use of the index notation.
Accessing elements outside the array's range will cause a compile-time or test case error.

EXAMPLE 2:

M/Arrayl[1] := 5;

MWArray2[1]1[2] := 12;

MWArrayl[4] = 12; /1 ERROR index shall be between 0 and 2
M/Array2[3][2] := 15; // ERROR first index shall be 0 or 1

Array dimensions may al so be specified using ranges (with inclusive boundaries only). In such cases, the lower and
upper values of the range define the lower and upper index values. Such an array is corresponding to arecord of with a
fixed length restriction computed as the difference between upper and lower index bound plus 1 and indexing starting
from the lower bound of the array definition.

EXAMPLE 3:

type integer MyArrayType2[2 .. 5]; // Atype with 4 integer elenents, indices starting with 2
type record length (4) of integer MyRecordOf Type2; // The correspondi ng record of

var integer MJArray3[1 .. 5]; /1 Instantiates an integer array of 5 elenents
/1l with the index 1 to 5

M/Array3[1] := 10; // Lowest index
M/Array3[5] := 50; // Highest index
var integer M/Array4[1 .. 5][2 .. 3]; [// Instantiates a two-dinensional integer array of

/1 5 x 2 elements with indexes from(1,2) to (5,3)

NOTE: Itisnot possible to define an array type with a variable amount of elements. Neither isit possible to
define an unlimited array with alower bound on the array index.

The values of array elements shall be compatible with the corresponding variable or type declaration. Vaues may be
assigned individually by avalue list notation or indexed notation or more than one or all at once by avalue list notation
or index assignment notation. When the value list notation is used, the first value of the list is assigned to the first
element of the array (the element with index O or the lower bound if an index range has been given), the second value to
the next element, etc. Elements to be left out from the assignment shall be explicitly skipped in the list by using dash.

Indexed value notation can be used on both the right-hand side and left-hand side of assignments. The index of the first
element shall be zero or the lower bound if an index range has been given. The index shall not exceed the limitations
given by either the length or the upper bound of the index. If the value of the element indicated by the index at the
right-hand of an assignment is undefined, this shall cause an error. Sending an array value with undefined elements
shall cause an error. All elementsin an array value that are not set explicitly, are undefined.

For assigning values to multi-dimensional arrays, each dimension that is assigned shall resolve to a set of values
enclosed in curly braces. When specifying values for multi-dimensional arrays, the leftmost dimension corresponds to
the outermost structure of the value, and the rightmost dimension to the innermost structure. The use of array dices of
multi-dimensional arrays, i.e. when the number of indexes of the array value is less than the number of dimensionsin
the corresponding array definition, is allowed. Indexes of array slices shall correspond to the dimensions of the array
definition from left to right (i.e. the first index of the slice corresponds to the first dimension of the definition). Slice
indexes shall conform to the related array definition dimensions.

EXAMPLE 4:
M/Arrayl1[0]: = 10;
M/Arrayl[1] : = 20;
M/Arrayl[3]:= 30;

/1 or using an value |ist
M/Arrayl: = {10, 20, -, 30};

WArrayd: = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}};
/1 the array value is conpletely defined

ETSI

55 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

var integer M/Array5[2][3][4] :=

{
{1, 2, 3, 4}, /] assigns a value to M/Array5 slice [0][0]
{5, 6, 7, 8, // assigns a value to M/Array5 slice [0][1]
{9, 10, 11, 12} // assigns a value to M/Array5 slice [0][2]

}, I/ end assignnents to M/Array5 slice [0]

{

{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}
} /1 assigns a value to M/Array5 slice [1]
h

M/Array4[2] := {20, 20};
Il yields {{1, 2}, {3, 4}, {20, 20}, {7, 8}, {9, 10}};

MArrays5[1] :={ {0, 0, 0, 0}, {0, 0, 0, 0}, {0, O, O, O}};
/1 yields {{{1, 2, 3, 4}, {5 6, 7, 8}, {9, 10, 11, 12}},
/1 {{o, 0, 0, 0}, {0, 0, 0, O}, {0, O, O, 0}}}:

MWArray5[0][2] := {3, 3, 3, 3};
/1l yields {{{1, 2, 3, 4}, {5 6, 7, 8},
/1 {{o, o, o, 0}, {0, O, O, 0O},

~~——
o w
ow
o w
[@XN]
— =
—
— -

var integer M/Arraylnvalid[2][2];
M/Arraylnvalid :={ 1, 2, 3, 4}

/1l causes an error as the dinension of the value notation

/1 does not correspond to the dinensions of the definition
M/Arraylnvalid[2] :={ 1, 2}

/1l causes an error as the index of the slice should be 0 or 1

6.2.8 The default type

TTCN-3 alows the activation of altsteps (see clause 16.2) as defaults to capture recurring behaviour. Default references
are unique references to activated defaults. Such a unique default reference is generated by atest component when an
altstep is activated as a default, i.e. adefault referenceisthe result of anact i vat e operation (see clause 20.5.2).

Default references have the special and predefined type def aul t . Variables of type def aul t can be used to handle
activated defaultsin test components. The specia valuenul | represents an unspecific default reference, e.g. can be
used for theinitialization of variables of default type.

Default referencesare used in deact i vat e operations (see clause 20.5.3) in order to identify the default to be
deactivated.

Default references have meaning only within the test component instances they are activated, i.e. a default reference
assigned to a default variable in test component instance "al" of type"A" has no meaning in test component instance
"a2" of type"A".

The actual data representation of the def aul t type shall be resolved externally by the test system. This allows abstract
test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does not
restrict the implementation of atest system with respect to the handling and identification of defaults.

6.2.9 Communication port types
Ports facilitate communication between test components and between test components and the test system interface.

TTCN-3 supports message-based and procedure-based ports. Each port shall be defined as being message-based or
procedure-based. Message-based ports shall be identified by the keyword nessage and procedure-based ports shall be
identified by the keyword pr ocedur e within the associated port type definition.

Ports are bidirectional. The directions are specified by the keywordsi n (for the in direction), out (for the out
direction) and i nout (for both directions). Directions shall be seen from the point of view of the test component
owning the port with the exception of the test system interface, where i n identifies the direction of message sending or
procedure call and out identifies the direction of message receive, get reply or catch exception from the point of view
of the test component connected to the test system interface port.

Each port type definition shall have one or more lists indicating the allowed collection of (message) types or procedure
signatures together with the allowed communication direction.

ETSI

56 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

For configuration purposes the port type may have one map param and one unmap param declaration indicating the
allowed additional parameters for the respective operation. These formal parameters shall be value parameters.

Whenever a signature (see also clause 14) is defined in the out direction of a procedure-based port, the types of all its

i nout and out parameters, its return type and its exception types are automatically part of thei n direction of this
port. Whenever asignatureis defined inthei n direction for a procedure-based port, the types of all itsi nout and out
parameters, its return type and its exception types are automatically part of the out direction of this port.

Ports used for the communication with the SUT may need to address specific entities within the SUT. In addition,
several address schemes may be supported by one SUT at different ports. To support such addressing schemes, TTCN-3
allowsto bind an addr ess typeto aport. Values of thistype may be used for addressing purposes in communication
operations (see clause 22.1) and be stored in variables. The handling of address types bound to different ports by means
of the dot notation is explained in clause 6.2.12.

Syntactical Structure
M essage-based port:
type port PortTypeldentifier nmessage "{"
{ (address Type ";") |
(map param " (" { Formal ValuePar [","] }+ ")") |
(unmap param " (" { Formal ValuePar [","] }+ ")") |
((in] out | inout) { MessageType [","]
Procedure-based port:
type port PortTypeldentifier procedure "{"
{ (address Type ";") |
(map param " (" { Formal Val uePar [","]

}
(unmap param " (" { Formal Val uePar [","]
((in | out | inout) { Signature [","]

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) At most one address type should be bound to a port type.
b) At most one map parameter list should be defined for a port type.
c) At most one unmap parameter list should be defined for a port type.

d) Formal parameters of map param and unmap param declarations shall be value parameters and not be of
port, component, timer or default type or of structured types having fields of port, component, timer or
default type.

Examples

EXAMPLE 1. Message-based port

/'l Message-based port which allows types MsgTypel and MsgType2 to be received at, MsgType3 to be
/'l sent via and any integer value to be send and received over the port

type port MyMessagePort TypeOne nmessage

{

in MsgTypel, MsgType2;
out MsgTypes3;
i nout i nt eger

}

EXAMPLE 2: Procedure-based port

/'l Procedure-based port which allows the renote call of the procedures Procl, Proc2 and Proc3.
/1 Note that Procl, Proc2 and Proc3 are defined as signatures

type port MyProcedurePort Type procedure
{

out Procl, Proc2, Proc3

ETSI

57 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLE 3: Message-based port with address type definition
type port MyMessagePort TypeTwo nessage

addr ess integer; /] if addressing is used on ports of type M/MessagePort TypeTwo
/1 the addresses have to be of type integer
i nout MsgTypel, MsgType2;
}

NOTE: Theterm message is used to mean both messages as defined by templates and actual values resulting
from expressions. Thus, the list restricting what may be used on a message-based port issimply alist of
type names.

EXAMPLE 4: Usage of param in port declaration

/1 Message based port which allows MsgType4 to be send and received over the port
/1 and MsgType5 and MsgType6 as configuration paraneter type

type port MyMessagePort Type nessage

{

i nout MsgType4,
map param (in MsgType5 pl, out MsgType6 p2);

/1 Procedure based port which allows the renote call of the procedure Procl
/1 and MsgType5 as configuration paraneter type

type port MyProcedurePort Type procedure

{

out Procil;
unmap param (MsgType5 pl);

6.2.10 Component types

6.2.10.1 Component type definition

The component type defines which ports are associated with a component (see figure 3). The port namesin a
component type definition are local to that component type, i.e. another component type may have ports with the same
names. Port names in the same component type definition shall all have unique names.

PCO2 PCO3
MyMTC MyPTC p—
/I of MyMTCType m— Il of MyPTCType —
PCO4
PCO1 PCO1

Figure 3: Typical components

It isalso possible to declare constants, variables, templates and timers local to a particular component type. These
declarations are visible to all testcases, functions and altsteps that run on an instance of the given component type. This
shall be explicitly stated using ther uns on keyword (see clause 16) in the testcase, function or altstep header.
Component type definitions are associated with the component instance and follow the scope rules defined in clause
5.2. Each new instance of a component type will thus have its own set of constants, variables, templates and timers as
specified in the component type definition (including any initial values, if stated). Constants used in the constant
expressions of type declarations for variables, constants or ports shall meet with the restrictionsin clause 10, however
constants used in the constant expressions of initial values for variables, constants, templates or timers do not have to
obey these restrictions.

Syntactical Structure

type conponent Conponent Typel dentifier "{"
{ (Portlnstance
| Varlnstance
| Tinerlnstance
| Const Def
| Tenpl ateDef) }

ETSI

58 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Semantic Description

Component type definitions specify the creation, declaration and initialization of ports and component constants,
variables, templates and timers during the creation of an instance of a component type. These instances can be used as
the main test component, as the test system interface or as a parallel test component. Every instance of a component
type has its own fresh copy of the port, constant, variable, template and timer instances defined in the component type
definition.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.
Examples

EXAMPLE 1: Component type with port instances only

type conponent M/PTCType
{

port MyMessagePort Type PCOL, PCO4,
port MyProcedurePort Type PCQO2;
port M/AI | MesssagesPort Type PCO3

}

EXAMPLE 2: Component type with variable, timer and port instance
type conponent MyMICType
{

var integer MyLocal |l nteger;
timer MyLocal Ti ner;
port MyMessagePort Type PCOL

}
EXAMPLE 3: Component type with port instance arrays

type conponent MyConpType
{

port MyMessagel nterfaceType PCJO 3]

port M/Procedurel nterfaceType PCOn 3][3]

/1 Defines a conmponent type which has an array of 3 nessage ports and a two-di nensi onal
/1 array of 9 procedure ports.

6.2.10.2 Reuse of component types
It is possible to define component types as the extension of other component types, using the ext ends keyword.

Syntactical Structure

type conponent Conponent Typel dentifier extends Conponent Typel dentifier "{"
{ (Portlnstance
| Varlnstance
| Tinerlnstance
| Const Def
| Tenpl ateDef) }

"y
Semantic Description

In such a definition, the new type definition isreferred to as the extended type, and the type definition following the
ext ends keyword isreferred to as the parent type. The effect of this definition isthat the extended type will implicitly
aso contain all definitions from the parent type. It is called the effective type definition.

It isallowed to have one component type extending several parent typesin one definition, which have to be specified as
acomma-separated list of typesin the definition. Any of the parent types may aso be defined by means of extension.
The effective component type definition of the extended type is obtained as the collection of al constant, variable,
template, timer and port definitions contributed by the parent types (determined recursively if a parent typeisalso
defined by means of an extension) and the definitions declared in the extended type directly. The effective component
type definition shall be name clash free.

ETSI

59 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

NOTE 1: Itisnot considered to be a different declaration and hence causes no error if a specific definitionis

contributed to the extended type by different parent types (via different extension paths).

The semantics of component types with extensions are defined by simply replacing each component type definition by

its effecti

ve component type definition as a pre-processing step prior to using it.

NOTE 2: For component type compatibility, this means that a component reference ¢ of type CT1, which extends

CT2, iscompatible with CT2, and test cases, functions and altsteps specifying CT2 in their r uns on
clauses can be executed on ¢ (see clause 6.3.3).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a)

b)

c)

When defining component types by extension, there shall be no name clash between the definitions being
taken from the parent type and the definitions being added in the extended type, i.e. there shall not be a port,
variable, constant or timer identifier that is declared both in the parent type (directly or by means of extension)
and the extended type. It is not considered to be a name clash if a specific definition is contributed to the
extended type via different extension paths.

When defining component types by extending more than one parent type, there shall be no name clash
between the definitions of the different parent types, i.e. there shall not be a port, variable, constant or timer
identifier that is declared in any two of the parent types (directly or by means of extension). It is not
considered to be a name clash if a specific definition is contributed to the extended type via different extension
paths.

It isalowed to extend component types that are defined by means of extension, aslong as no cyclic chain of
definition is created.

Examples

EXAMPLE 1: A component type extension and its effective type definition

type conponent MyMICType

}

var integer MyLocal | nteger;
timer MyLocal Ti ner;
port MyMessagePort Type PCOL

type conponent MyExt endedMICType ext ends MyMICType

var float MyLocal Fl oat;
timer MyQx herLocal Ti ner;
port MyMessagePort Type PCQO2;

/1 effectively, the above definition is equivalent to this one:
type conponent MyExt endedMICType
{

}

/* the definitions from MyMICType */
var integer MyLocal I nteger;

timer MyLocal Ti ner;

port MyMessagePort Type PCOL

/* the additional definitions */
var float MyLocal Fl oat;

timer MyQ her Local Ti ner;

port MyMessagePort Type PCQO2;

EXAMPLE 2: A component type extension chain and forbidden cyclic extensions

type
type
type
type

conponent MICTypeA extends MICTypeB { /* ...*/ }
conmponent MICTypeB extends MICTypeC { /* ..*/ };
conmponent MICTypeC extends MICTypeA { /* ..*/ }; [/ ERROR - cyclic extension
conponent MICTypeD extends MICTypeD { /* ..*/ } /1 ERROR - cyclic extension

ETSI

60 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLE 3: Component type extensions with name clashes
type conponent M/Ext endedMICType extends MyMICType

var integer MyLocal Integer; // ERROR - already defined in M/fMICType (see above)
var float MyLocal Tiner; /1l ERROR - tiner with that nane exists in M/MICType
port MyQt her MessagePort Type PCOL; // ERROR - port with that name exists in MyMICType

}

type conponent MyBaseConponent { tiner MyLocal Tiner };
type conponent Ml nteri mConponent extends MyBaseComponent { timer MyQtherTinmer };
type conponent M/Ext endedConponent extends Myl nteri mConponent

timer MyLocal Tiner; // ERROR - already defined in Myl nterinConponent via extension
}

EXAMPLE 4: Component type extension from several parent types

type conponent MyConpB { tiner T };
type conponent MyConpC { var integer T };
type conponent MyConpD ext ends MyConpB, MyConpC {}
/1 ERROR - nane clash between MyConpB and MyConpC

/1 MyConpB is defined above

type conponent MyConpE extends MyConpB {
var integer MyVarl := 10;

}

type conponent MyConpF extends MyConpB {
var float MyvVar2 := 1.0;
}

type conponent MyConpG extends MyCompB, MyConpE, MyConpF {
/1 No name cl ash.
/1 Al three parent types of MyConpG have a tinmer T, either directly or via extension of
/1 MyConpB; as all these stem (directly or via extension) fromtiner T declared in My/ConpB,
/1 which make this formof collision |egal.
/* additional definitions here */

6.2.11 Component references

Component references are unique references to the test components created during the execution of atest case.

Syntactical Structure

system| ntc | self | VariableRef | Functionlnstance
Semantic Description

A unique component reference is generated by the test system at the time when a component is created. It is the result of
acr eat e operation (see clause 21.2.1). In addition, component references are returned by the predefined operations
syst em(returns the component reference of the test system interface, which is automatically created when testcase
execution is started), nt ¢ (returns the component reference of the MTC, which is automatically created when testcase
execution started) and sel f (returns the component reference of the component in which sel f iscalled).

Component references are used in the configuration operations such asconnect , map and st art (see clause 21) to
set-up test configurationsand inthef r omt 0 and sender parts of communication operations of ports connected to
test components other than the test system interface for addressing purposes (see clause 22 and figure 6).

In addition, the specia value nul | isavailable to indicate an undefined component reference, e.g. for the initialization
of variables to handle component references.

The actual data representation of component references shall be resolved externally by the test system. This allows
abstract test cases to be specified independently of any real TTCN-3 runtime environment, in other words TTCN-3 does
not restrict the implementation of atest system with respect to the handling and identification of test components.

A component reference includes component type information. This means, for example, that avariable for handling
component references shall use the corresponding component type name in its declaration.

ETSI

61 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

The configuration operations (see clause 21) do not work directly on arrays of components. Instead a specific element
of the array shall be provided as the parameter to these operations. For components, the effect of an array is achieved by
using an array of component references and assigning the relevant array element to the result of the cr eat e operation.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Theonly operations allowed on component references are assignment, equality and non-equality.

b) Thevariable associated with VariableRef (being a component type variable, a component type parameter, etc.)
or the return type associated with Functionlnstance shall be of component type.

Examples

EXAMPLE 1: Component references with component type variables

/1 A conponent type definition

type conponent MyConpType {
port PortTypeOne PCOL;
port Port TypeTwo PCO2

}

/'l Declaring one variable for the handling of references to conponents of type My/ConpType
/1 and creating a conponent of this type

var MyConpType MyConplnst := MyConpType. create;
EXAMPLE 2: Usage of component references in configuration operations

/1 referring to the conponent created above

connect (sel f: MyPCOL, MyConpl nst: PCOL) ;

map(MyConpl nst : PCO2, system Ext PCOL) ;

MyConpl nst . start (MyBehavior(self)); // self is passed as a paraneter to MyBehavi or

EXAMPLE 3: Usage of component referencesin from- and to- clauses
M/PCQOL. recei ve from MyConpl nst ;
IVQ/PC@. recei ve(integer:?) -> sender MyConpl nst;
l\/:yPCOl. recei ve(MyTenpl ate) from MyConpl nst;
IVQ/PC&. send(integer:5) to MyConplnst;
EXAMPLE 4: Usage of component referencesin one-to-many connections

/'l The foll owi ng exanpl e expl ains the case of a one-to-nany connection at a Port PCOL

/1 where values of type ML can be received fromseveral conponents of the different types
/1 ConmpTypel, ConpType2 and ConpType3 and where the sender has to be retrieved.

/1 In this case the followi ng schene nay be used:

var ML MyMessage, MyResult;
var MyConpTypel Mylnstl := null;
var MyConpType2 Mylnst2 := null;
var MyConpType3 Mylnst3 := null

ait {
[T PCOL.receive(M:?) fromMInstl -> value MyMessage sender Mylnstl {}
[] PCOL.receive(M:?) fromMlnst2 -> val ue MyMessage sender Mylnst2 {}
[] PCOL.receive(M:?) fromMlInst3 -> val ue MyMessage sender Mylnst3 {}

}
WResult .= MyMessageHandl i ng(MyMessage) ; /1 some result is retrieved froma function
if (MyInstl I'= null) {PCOL.send(M/Result) to Mylnst1};
if (MiInst2 !'=null) {PCOL send(M/Result) to Myl nst2};
I'= null) {PCOL. send(M/Result) to Ml nst3};

if (MlInst3!

EXAMPLES: Usage of self

var MyConponent Type MyAddress;
M/Address : = self; // Store the current conponent reference

ETSI

62 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLE 6: Usage of component arrays

/1 This exanpl e shows how to nodel the effect of creating, connecting and running arrays of
/1 conmponents using a |loop and by storing the created conponent reference in an array of
/1 conponent references.

testcase MyTest Case() runs on MyMcType system MyTest System nterface
{

vér integer i;

var MyPTCTypel MPtc[11];

for (i:= 0: i<=10; i:=i+1)

{
MyPtc[i] := MYPTCTypel. create;
connect (sel f: Pt cCoordi nati on, MyPtc[i]: M cCoordi nation);
MyPtc[i].start(M/PtcBehaviour());

6.2.12 Addressing entities inside the SUT

An SUT may consist of several entities which can be addressed individually. The global addr ess data type may be used
if only one datatype is needed. If several datatypes at different ports are needed for addressing SUT entities, the type
used for addressing via a port instance shall be declared in the corresponding port type definition.

Syntactical Structure

Tenpl at el nst ance
Semantic Description

The actual data representation of the global addr ess type isresolved either by an explicit global address type
definition within the test suite, address type definitions within port definitions, or externally by the test system (i.e. the
addr ess typeisleft as an open type within the TTCN-3 specification). This allows abstract test cases to be specified
independently of any real address mechanism specific to the SUT.

If an addr ess typeisbound to a port type definition, addressing of SUT instances (i.e. t o- and f r omdirectivesin
communication operations) viainstances of that port type shall be restricted to values of the bound addr ess type.

If several address types exist within atest suite, ambiguities shall be resolved by means of the dot notation. For
example, atype reference within a variable definition used to store an SUT address may be prefixed by a port type
identifier or amodule identifier. If both a globa address type definition and port definitions with an address type
definition exist in a module, the global address type shall only affect ports without an explicit address type definition.
The consistent use of explicit address type definitions within port definitions is recommended over the use of global
address type definitions.

Explicit SUT addresses for a globally defined address type shall only be generated inside a TTCN-3 module if the type
is defined inside the module itself. If the type is not defined inside the module, explicit SUT addresses for a global
address type shall only be passed in as parameters or be received in message fields or as parameters of remote
procedure calls.

In addition, the specia value nul | isavailable for theaddr ess type to indicate an undefined address, e.g. for the
initialization of variables of the address type.

If a port type definition includes the declaration of atype that shall be used for addressing SUT entities, only values of
that type shall beusedint o, f r omand sender parts of receive and send operations of port instances of that type
mapped to the test system interface.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Templatelnstance shall be of type addr ess or of the type of the address declaration in a port type definition.
If Templatelnstance is of type addr ess, it and can be an address type value, an address type variable, etc.

ETSI

63 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

b) For addressing purposes, the addr ess datatype shall only be used inthet o, f r omand sender parts of
receive and send operations of ports mapped to the test system interface.

Examples

EXAMPLE 1: Global addresstype

/] Associates the type integer to the open type address
type integer address;

/) new address variable initialized with null
var address MySUTentity := null;

/) recei ving an address value and assigning it to variable MySUTentity
PCO. recei ve(address: ?) -> value MySUTentity;

/) usage of the received address for sending tenplate M/Result
PCO send(M/Result) to MySUTentity;

/'l usage of the received address for receiving a confirnation tenplate
PCO. recei ve(M/Confirmation) from MySUTentity;

EXAMPLE 2: Port type-specific address type

type record MyAddressType { /'l user-defined type
integer fieldi;
bool ean fiel d2;

type port MyPort Type nessage {
address MyAddr essType; /1 address decl aration
i nout i nt eger;

}

type conponent MyConponent Type

{

port MyPort Type PCG,

}
function nyFunction () runs on MyConponent Type {
var MyAddressType SUT_Address := { 5, true}; /] address value for addressing via ports
/1 of MyPort Type
iDCO. send(integer: 5) to SUT_Address; /1 use of address value in to
iDCO. receive(integer: ?) from SUT_Address; /'l use of address value in from
}

EXAMPLE 3: Elaborated address example
type AddressTypel address; /'l address type definition on nodule |evel

type port MyPort Typel nessage {
i nout MsgTypel;
}

/] address types bound to port types
type port MyPortType2 nessage {
addr ess AddressType2; /1 val ues of type AddressType2 can be
/] used to address SUT entities.
i nout MsgType2;

}
type port MyMessagePort3 nessage {
address AddressType3; /'l values of type AddressType3 can be
/1 used to address SUT entities.
i nout MsgTypes3;
}
/1 component type definition
type conmponent MyConponent Type

port MyPort Typel PCOL;
port MyPort Type2 PCQO2;
port MyPort Type3 PCO3

/1 The followi ng behaviour is considered to be executed on an instance of M/Conponent Type.
I/l Furthernore, it is considered that the ports PCOl, PCO2 and PCO3 are napped ports, i.e.
/1 used for the comunication with the SUT.

ETSI

64 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

/'l new address variable initialized with null

var address MySUTentityl := null; /1 type of MySUTentityl is AddressTypel
var MyPort Type2. address MySUTentity2 := null; /1 type of MySUTentity2 is AddressType2
var MyPort Type3. address MySUTentity3 := null; /1 type of MySUTentity3 is AddressType3

/1 receiving an address val ues and assigning themto variables
PCOL. recei ve(MsgTypel: ?) from address:? -> sender MySUTentityl;
/1 Address type of nodul e scope,
/'l no prefix needed
PCX2. recei ve(MsgType2: ?) from MyPort Type2. address: ? -> sender MySUTentity2;
/1 Resolution of address type
/'l by nmeans of a prefix
PC33. recei ve(MsgType3: ?) from MyPort Type3. address: ? -> sender MySUTentitys3;

/) usage of the received address val ues for addressing purposes
PCOL. send(M/Resul t) to MySUTentityl;

PCCR. r ecei ve(M/Confirnmation) from MySUTentity2;

PC(B. send(MyRequest) to MySUTentitys3;

6.2.13 Subtyping of structured types

TTCN-3 alows subtyping of structured types as givenin table 3.

6.2.13.1 Length subtyping of record ofs and set ofs
TTCN-3 permits constraining the number of elementsininstancesof r ecord of andset of types.

Thel engt h keyword followed by avalue or arange (with inclusive boundaries only) within brackets and used
betweenther ecord orset andtheof keywords, restrictsthe allowed lengths of the givenr ecor d of or set

of type. The value or the bounds within the brackets shall be non-negative integer values, except whenthei nfinity
keyword is used at the place of the upper bound, in which case the maximum number of the elementsis not constrained.

Record of and set of type definitions may be used to definenew r ecord of orset of subtypes. Inthiscasethe
rules of the previous paragraph apply, except that the | engt h keyword and the value or range defining the allowed
number of iterations (within brackets) shall be placed following the identifier of the new type.

Constants used in the constant expressions of length subtyping shall meet with the restrictionsin clause 10.

EXAMPLE 1: Length restrictions of record of and set of types

type record | ength(10) of integer MyRecordOf TypelO;
/1 is a record of exactly 10 integers

type record | ength(0..10) of integer MyRecordOf TypeO_10;
/1 is a record of a maxinum of 10 integers

type record |l ength(10..infinity) of integer M/RecordO TypelOup;
/1 record of at least 10 integers

type record length(O..infinity) of integer MyRecordO TypeOup;
// an unrestricted record of integer type

EXAMPLE 2: Length subtyping of referenced record of types

type record of charstring StringArray;
// is an unlimted record of, each elenent shall be a charstring

type StringArray StringArray34 length(4 .. 5);

/1 is arecord of 4 or 5 elenents, each elenent is a charstring
/1 it is equivalent to

/1 type record length(4 .. 5) of charstring StringArray34a;

type StringArray34 StringArray34again length(4 .. 5);
/'l the same as StringArray34

type StringArray34 StringArray6 | ength(6);
/] causes an error as record ofs with 6 elenments are not |egal values of StringArray34

ETSI

65 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLE 3: Length subtyping of referenced set of types

type record MyCapsul e {
set of integer nySet Of | nt
}

type MyCapsul e.nySet Of I nt MySet Of I nt Sub | engt h(5..10);
/1 unordered list of 5 to 10 integers

6.2.13.2 List subtyping of structured types and anytype

List subtyping is possible when defining a new type based on an existing parent type, but not directly at the declaration
of the first parent type (see table 3).

Subtypes defined by alist subtyping restrict the allowed values of the subtype to the values matched by at least one of
the constraintsin the list. In case of list subtyping of r ecor d, set ,record of,set of,uni onandanytype
types, the list may contain both subtypes and possibly partial templates of the parent types. Subtype references shall be
resolved in arecursive way: the collection of templates denoted by the subtype(s) referenced in the list become
members of the new subtype definition with an expanded list containing only possibly partial templates. When
congtraining r ecord of ,set of,uni on andanyt ype types, all templates of the expanded list (i.e. after
resolving the subtype references) shall be valid (i.e. complete) templates of the first parent type. When constraining
record andset types, templates of the expanded list defined using the value list notation shall be valid (i.e.
complete) templates, while templates of the expanded list defined using the field assignment notation may be partial
(i.e. incomplete). In the latter case, the fields that are not explicitly present shall be considered as containing AnyValue
for mandatory fields and AnyValueOrNone for optional fields.

NOTE: Usersshould assign new valuesto single fields of values/templates based on types using list subtyping
cautioudly: it may happen that the new field value would be valid with other combination(s) of the rest of
the fields but causes an erroneous record/set value, when combining with the actual values of the other
fields. See example below.

In case of enuner at ed types, the template list subtyping shall contain only values of the parent type.

EXAMPLE 1. List subtyping of record types

type record M/Record {
i nt eger f1 optional,
charstring f2,
charstring f3

}

type MyRecord MyRecordSubl (
{ fl1:=omt, f2 := "user", f3 := "password" },
{ fl1:=1, f2 :="User", f3 := "Password" }

) /1 a valid subtype of MyRecord containing 2 val ues

type MyRecord MyRecordSub2 (
MyRecor dSub1,
{ f1:=2, f2 := "unane", f3 := "pswd" },
{ f1:=3, f2 := "Uname", f3 := "Pswd" }
) /1 a valid subtype of MyRecord, containing 4 values; notice that val ues of
/1 MyRecordSubl are identified by referenci ng MyRecordSubl

{ f1:=1, f2 := "user", f3 := "password" },
{ f1:=1, f2 :="User", f3 := "Password" }

) // invalid type as { f1 :=1, f2 := "user", f3 := "password" } is not a |legal value of
/'l MyRecordSubl (notice field f1)

type MyRecordSubl MyRecordSub3 (

type MyRecord MyRecordSub4 (

{ f2 := "user", f3 := "password" },
{ f2 := "User", f3 := "Password" }
) // any valid value of MyRecord, where the conbination of f2 and f3 is
/1 f2 := "user" AND f3 := "password" or f2 := "User" AND f3 := "Password"

Il i.e. field f1 is considered as if it was present and contai ned AnyVal ueO None

type MyRecord MyRecordSub5 (
{ f2 := "user", f3 := pattern "password| Password" },
{ f1:=(1.. 10), f2 := "User" }

) // a valid subtype of MyRecord containing all values which natch one of the given
/1 tenpl ates

ETSI

66 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

/1 { f1:=* f2 :="user", f3 := pattern "password| Password" } or
/1 {f1:=(1.. 10), f2 := "User", f3 :=7?}

type record R { integer k, integer i, integer j }

type RR2 ({ ki=1, i :=2}, { ki=2, i :=3})

function inc(inout integer p) {
p:=p+ 1

function f() {
var R x :={ 1, 2, 5}
x.k :=2; /] error, as the value {2,2,5} is not allowed
inc(x.i); // error, as the value {1,3,5} is not allowed
/1 (previous erroneous assignnent is ignored here)
inc(x.j); // allowed

EXAMPLE 2: List subtyping of record of types
type record of charstring StringArray;

type StringArray StringArraylListl (
{ "aa" },
{ "bbb", "cc" },
{ "ddd". "ee", "ff" }

); /1 valid subtype of StringArray

type StringArraylListl StringArraylList2 (
{ "aa" },
{ "bbb", "cc" }

); /1 valid subtype of StringArraylListl

type StringArrayListl StringArrayList3 (
StringArrayli st 2,
{ "ddd", "ee", "ff" }

); // valid, but equivalent to StringArraylListl

type StringArrayListl StringArraylList4 (
StringArraylLi st 2,
{ "ddd", "ee", "fff" }

); I/ enpty type as { "ddd", "ee", "fff" } is not a value of StringArrayListl
/1 (notice the extra character f in the third el enent)

EXAMPLE 3: List subtyping of union types

type uni on MyUnion {
i nt eger cl,
charstring c2,
charstring c3

b

type MyUni on MyUni onSubl (
{ cl:=01},
{cl:=1}

); // a valid subtype of MyUnion containing two val ues

type MyUni on MyUni onSub2 (

MyUni onSub1,
{ c2 :="mne" },
{ ¢3 :="yours" }

); // a valid subtype of MyUnion containing four values; notice that val ues of
/1 MyUnionSubl are identified by referencing M/Uni onSubl

type MyUni onSubl MyUni onSub3 (

{ cl1:=01},
{cl:=2}
); // causes an error as { cl := 2} is not a value of MyUnionSubl

EXAMPLE 4: List subtyping of enumerated types
type enunerated MyEnum { first, second, third, fourth, fifth };

type MyEnum EnuntBubl (first, second, third);
/1 a valid subtype of MyEnum

type EnunBubl EnuntBub2 (first, second);
/1 a valid subtype of EnunfBubl

ETSI

67 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

type EnunBubl EnuntBub3 (first, second, fourth);
/] causes an error as fourth is not a value of EnunBSubl

type MyEnum EnunSub4 (Enuntubl, fourth);

/] causes an error as type references are not allowed in the tenplate |ist
/1 of enunerated types

EXAMPLES: List subtyping of anytype

type anytype MyAnySubl (
5

{ integer := ,

{ boolean := false },

{ bitstring := '0011'B },
{ charstring := "mne" },

{ MYEnum := first }
); /1 a valid subtype of anytype, consisting of 5 values

type M/AnySubl MyAnySub2 (
{ integer := 5},
{ boolean := fal se },
{ bitstring := '0011'B }
); // a valid subtype of MyAnySubl, consisting of 3 val ues

type anytype MyAnySub3 (
MyAny Sub2,
{ octetstring := '"FF O}

); /1l a valid subtype of anytype, consisting of 4 values, 3 of which are defined
/Il by referring to MyAnySub2

type MyAnySubl MyAnySub4 (
{ integer :=5 1},
{ boolean := fal se },
{ MyYEnum : = second }
); I/ causes an error as { MyEnum:= second } is not a value of MyAnySubl

type MyAnySubl MyAnySub5 (

MyAny Sub3,
{ MJEnum := first }
); /1 causes an error as { octetstring :="'"FF O} (defined via referencing M/AnySub3) is

/1 not a value of MyAnySubl

type record R { integer k, integer i, integer j }
type RR2 ({ ki=1, i :=2}, { ki=2, i :=3})

function g() {
var R x :={ 1, 2}
x.k :=2; /] error

}

6.2.13.3 Subtyping of the iterated type of record ofs and set ofs

A typerestriction following the identifier of anewly definedr ecord of orset of type(i.e. when the keywords
record and of orset andof areused inthe definition) shall constrain the innermost type. The newly defined
iterated type shall be a subset of the innermost type. If the innermost type is a basic type, the subtyping rulesin

clause 6.1.2 shall apply. If the innermost type is referencing a structured type or anyt ype, therulesin clauses 6.2.13.1
and 6.2.13.2 shall apply.

EXAMPLE 1: Subtyping of basic innermost types of record ofs and set ofs

type record of charstring String23Array length(2 .. 3);
/1 is an unlimted record of, each elenent shall be a charstring of 2 or 3 characters

type record | ength(0..10) of charstring Stringl2Arrayl10 | ength(12);
/1 is arecord of a maxinumof 10 strings each with exactly 12 characters

type record of record of charstring Stringl2Array2D | engt h(12);
/1 is a two-dinensional unlinted array of strings each with exactly 12 characters

type set length(5) of set length(6) of charstring Stringl2Array2D56 | ength(12);
/1 is an unordered two-dinensional array of the size 5*6 strings, each with
/] exactly 12 characters

const String23Array c_str23arr_a := { "aa", "bbb", "cc", "ddd", "ee", "ff" };

ETSI

68 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

// valid, all charstrings are 2 or 3 characters |ong

const String23Array c_str23arr_b := { "a", "bbbb", "cc", "ddd", "ee", "ff" };
// causes an error as "a" and "bbbb" are not 2 or 3 characters Iong

const Stringl2Array2D56 c_strl2arr2D56_a : = {
{ "aa", "aaa", "bb", "bbb", "cc", "ccc" },
{ "dd", "ddd", "ee", "eee", "ff", "fff" },
{ "gg", "ggg", "hh", "hhh", "ii", "iii" },
M ", "kk", "kkk",otEEt,otEEEt oy,
{"m, "mm{, "nn", "nnn", "oo0", "oo00" }
}; /1 valid, a 5*6 matrix of charstrings being 2 or 3 characters |ong
const Stringl2Array2D56 c_strl12arr2D56_b := {
"a", "aaa", "bb", "bbbb", "cc", "ccc" },
{ "dd", "ddd", "ee", "eee", "ff", "fff" },
{ "gg", "ggg", "hh", "hhh", "ii", "iii" },
M ", "kk", "kkkt,otEEt,otEEEt oy,
{"m, "mm{, "nn", "nnn", "oo", "ooo", "pp" }

}; /1 causes an error as "a" and "bbbb" are not 2 or 3 characters |ong and
/1 the 5th inner record of has 7 elenents

EXAMPLE 2: Length subtyping of structured innermost types of record ofs

type record of String23Array String23Array45 length(4 .. 5);

// is a two-dinensional array, the first dinension is unlimted,

/1 the second dinmension is restricted to 4 or 5 elenents and each el ement

I/l is a charstring of 2 or 3 characters. It is equivalent to:

/1 type record of record length(4 .. 5) of charstring String23Array45 length(2 .. 3);

const String23Array45 c_str23arr45_a : = {
{ "aa", "bbb", "cc", "ddd" },
{ "ee", "fff", "gg", "hhh", "ii" }
}; /1 valid, 4 or 5 elenents in the inner record of, all containing 2 or 3 characters

const String23Array45 c_str23arr45 b :={
{ "aa" , "bbb", "cc" }
}; //lcauses an error as there are only 3 elenents in the inner record of

const String23Array45 c_str23arr45 c : = {
{ "aa", "bbbb", "cc", "dd" }
}; //causes an error as "bbbb" contains 4 characters

type record length(0 .. 1) of String23Array String23Array0145 length(4 .. 5);

/1 is a two-dinensional array, the first dimension is limted to O or 1 el ements,
/1 the second dinmension is restricted to 4 or 5 elenents, each elenent is a

/1 charstring of 2 or 3 characters.

const String23Array0145 c_str23arr0145_a : = {
{ "aa", "bbb", "cc", "ddd" },
}; /1 avalid 1*4 array of charstrings, each of 2 or 3 characters

const String23Array0145 c_str23arr0145_a : = {
{ "aa", "bbb", "cc", "ddd" },
{ "ee", "fff". "gg". "hhh", "ii" }
}; /1 causes an error as there are two elenents in the outer record of

const String23Array0145 c_str23arr0145_b : = {
{ "aa" , "bbb", "cc" }
}; I/ causes an error as there are only 3 elenents in the inner record of
const String23Array0145 c_str23arr0145 c : = {
{ "aa", "bbbb", "cc", "dd" }
}; /1 causes an error as "bbbb" contains 4 characters
type record of String23Array45 String23Array6 | ength(6);

Il enpty type as String23Array45 is restricted to 4 or 5 el enents,
/1 thus length restriction 6 is outside the allowed range

6.2.13.4 Mixing subtyping mechanisms

In the case of structured types and the special type anyt ype, it isforbidden to mix different subtyping mechanisms
(e.g. list and length) in the same definition.

ETSI

69 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

6.3 Type compatibility
Generally, TTCN-3 requires type compatibility of values at assignments, instantiations and comparison.

For the purpose of this clause the actual value to be assigned, passed as parameter, etc., is called value "b". The type of
value"b" iscalled type "B". The type of the formal parameter, which isto obtain the actual value of value "b" is called
type"A".

NOTE: Asaddr ess ismore apredefined type name than a distinct type with its own properties, the same type
compatibility rules apply to an addr ess type and to its derivatives as the rules were if the type was
defined with a name different from addr ess.

6.3.1 Compatibility of non-structured types

For variables, constants, templates, etc. of simple basic types and basic string types the value "b" is compatible to type
"A" if type "B" resolves to the same root type astype "A" (e.g. i nt eger) and it does not violate subtyping

(e.g. ranges, length restrictions) of type "A". Compatibility between charstring and universal charstring is defined
below.

EXAMPLE 1. Compatibility of integers

/1 Gven
type integer Mylnteger(1l .. 10);

var integer Xx;
var Myl nteger vy,

/1 Then
y :=5; /] is a valid assignnment
X 1=y

Il is :51 val i d assignnent, because y has the sane root type as x and no subtyping is violated

X

20; // is a valid assignnent
y 1= X
/1 is NOT a valid assignnent, because the value of x is out of the range of Ml nteger

x :=5; /] is a valid assignnent
y =X
/1 is a valid assignnent, because the value of x is now within the range of Ml nteger

EXAMPLE 2: Compatibility of floats

/1 Gven
type float PositiveFloats(0.0 .. infinity);

var PositiveFl oats x;
var float vy;

/1 Then

y :=5.0; // is a valid assignnment

X 1=y,

/1 is a valid assignnent, because y has the sane root type as x and no subtyping is violated

y -20.0; // is a valid assignnent
X 1= Y;
/'l causes an error, because the value of y is out of the range of PositiveFloats

y not _a_nunber; // is a valid assignment
X =Y,
/] causes an error, because the value not_a nunber is out of the range of PositiveFloats

EXAMPLE 3: Compatibility of charstrings

/1 G ven

type charstring MyChar length (1);

type charstring MySingleChar length (1);
var MyChar nyCharacter;

var charstring nyCharString;

var MySingl eChar nySingleCharString := "B";

/] Then

ETSI

70 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

nyChar String := nySingl eChar String;

/lis a valid assignnent as charstring restricted to length 1 is conpatible with charstring.
nmyCharacter := nySingl eCharString;

/lis a valid assignnent as two single-character-length charstrings are conpati bl e.

/1 G ven
nyChar String := "abcd";

/] Then
nyCharacter := nyCharString[1];
/lis valid as the r.h.s. notation addresses a single elenent fromthe string

/1 dven
var charstring nyCharacterArray [5] := {"A", "B", "C', "D', "E"}

/] Then
myChar String : = nmyCharacterArray[1];
/lis valid and assigns the value "B" to nyCharString;

For variables, constants, templates, etc. of char st ri ng type, value'b' is compatible with auni ver sal
char st ri ng type'A’ unlessit violates any type constraint specification (range, list or length) of type"A".

For variables, constants, templates, etc. of uni ver sal char st ri ng type, vaue'b' is compatible with a

char st ri ng type'A'if al characters used in value 'b' have their corresponding characters (i.e. the same control or
graphical character using the same character code) in the type char st ri ng and it does not violate any type constraint
specification (range, list or length) of type"A".

EXAMPLE 3: Compatibility of character and universal character strings

/1 G ven
type charstring MyChar length (1);

var MyChar nyCharacter;
var charstring nyCharString;
var universal charstring nyUnivCharString;

/1 Gven
nyChar String : = "abcd";

/1 Then

myUni vChar String : = nyCharString

/lis valid as charstring and universal charstring are conpati bl e
myCharacter := myUnivCharString [1];

/1l is valid as the r.h.s. notation addresses a single elenent of the string,
/1 containing a character conpatible with charstring

/1 Gven
myUni vChar String := "bet" & char (0, 0, 1, 113);

/1 Then
myChar String : = nyUni vChar Stri ng;
/1 is invalid as myUnivCharString contains a character not in | SO 646.

/1 Gven
var charstring nyCharacterArray [5] := {"A", "B", "C', "D', "E"}

/'l Then
nmyChar String := nyCharacterArray[1];
/1 is valid and assigns the value "B" to nyCharString;

6.3.2 Compatibility of structured types

This clause defines compatibility rules for structured types. In subsequent clauses, "value "b"" is called the value to be
assigned, e.g. when passed as parameter, to an object of type "A".

6.3.2.1 Compatibility of enumerated types

Enumerated types are only compatible to synonym types (see clause 6.4) and not compatible with other basic or
structured types.

ETSI

71 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

6.3.2.2 Compatibility of record and record of types

r ecor d types are compatible if the number, and optional aspect of the fieldsin the textual order of definition are
identical, the types of each field are compatible and the value of each existing field of the value "b" is compatible with
the type of its corresponding field in type "A". The value of each field in the value "b" is assigned to the corresponding
field in the value of type "A".

EXAMPLE 1:
/1 Gven
type record AType {
i nt eger a(0..10) optional ,
i nt eger b(0..10) optional,
bool ean c
}
type record BType {
i nt eger a optional ,
i nt eger b(0..10) optional ,
bool ean c
}
type record CType { /1 type with different field nanmes
i nt eger d optional ,
i nt eger e optional ,
bool ean f
}
type record DType { /1l type with field c optional
i nt eger a optional,
i nt eger b optional,
bool ean c opti onal
}
type record EType { /Il type with an extra field d
i nt eger a optional,
i nt eger b optional,
bool ean c,
fl oat d optional
}

var AType MyVarA :
var BType MyVarB :
var CType MyVarC :
var DType MyVarD :
var EType MyVarE :

{ -, 1, true};

{ omt, 2, true};

{ 3, omit, true};

{ 4, 4, true};

{ 5 5, true, omt};

/1 Then

MyVar A : = MyVar B; /1 is a valid assignnent,
/'l new value of M/\VarAis (a :=omtted, b:= 2, c:= true)

MyVar C : = MyVar B; /1 is a valid assignnment
/'l new value of My\WVarCis (d :=omtted, e:= 2, f:=true)

MyVar A : = MyVar D; /1 is NOT a valid assignment because the optionality of fields does not
/1 match

MyVar A : = MyVarE; /1 is NOT a valid assignnent because the nunber of fields does not natch
MVarC := { d:= 20 };// actual value of MyVarCis { d:=20, e:=2,f:=true }
MyVar A : = MyVar C /1 is NOT a valid assignment because field 'd of MyVarC violates subtyping

/1 of field "a of AType

recor d of typesand arrays are compatible if their element types are compatible and value "b" does not violate any
length subtyping of ther ecor d of type"A" or dimensions of the array type. Vaues of elements of the value "b" shall
be assigned sequentially to the instance of type"A", including undefined elements.

Two array types are compatible if their correspondingr ecor d of typesare compatible.

EXAMPLE 2:

/1 Gven

type record HType {
i nteger a,
integer b optional,
integer c

ETSI

72 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

}

type record of integer |Type

var HType MyVarH := { 1, onit, 2};
var | Type MyVarl;

var integer MArrayVar[2];

/1 Then

M/ArrayVar := MyVarH;
/1 is NOT a valid assignment as type of MyArrayVar and HType are inconpatible

MyVarl := MyVarH,
/1 is NOT a valid assignnent as the types are inconpatible

MyVarl = { 3, 4 };
MyVarH : = MyVarl ;
/1 is NOT a valid assignment as the nmandatory field 'c' of Htype receives no val ue

6.3.2.3 Compatibility of set and set of types

set typesareonly compatible with other set typesand set of typesare only compatible with other set of types.
For set typesthe same compatibility rules shall apply asto r ecor d typesand for set of typesthe same
compatibility rules shall apply astor ecor d of types.

NOTE 1. Thisimpliesthat though the order of elements at sending and receipt is unknown, when determining type
compatibility for set types, the textual order of the fieldsin the type definition is decisive.

NOTE 2: Inset valuesthe order of fields may be arbitrary, however this does not affect type compatibility asfield
names unambiguoudly identify, which fields of therelated set type correspond to which set value
fields.

EXAMPLE:

/1 Gven

type set FType {
integer a optional,
integer b optional,
bool ean ¢

}

type set Glype {
integer d optional,
integer e optional ,
bool ean f

}

var FType MyVarF :
var GIype MyVarG :

={ a:
:{f

1, c:=true };
true, d:=7};

/1 Then
MyVarF : = MyVar G /1 is a valid assignnent as types FType and GIype are conpatible

MyVar F : = MyVar A; /1 is NOT a valid assignment as M/VarA is a record type

6.3.2.4 Compatibility of union types

union types are only compatible with other union types. A union value "a" of union type"A" is compatible with union
type "B" if the dternative selected in "a" has a corresponding alternative with identical namein "B" and the value of the
selected alternative in "a' is compatible to the type of the corresponding alternativein "B".

EXAMPLE:

type union Ul {integer i};
type union U2 {integer i, boolean b};

var Ul ul := {i := 1};
var U2 u2 := ul; /1l correct
ul: = u2; /] correct as the alternative i is selected in u2 and is conpatible

/Il toi in Ul

ETSI

73 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)
u2: = {b := true};
ul: = u2; /1 incorrect as ul has no alternative b
var anytype x := ul; /1 incorrect as the anytype is not a union type.

6.3.2.5 Compatibility of anytype types

anytype types are only compatible with other anytype types. An anytype value "a"' of anytype type"A" is compatible
with anytype type "B" if the alternative selected in "a" has a corresponding alternative with identical namein "B" and
the value of the selected alternative in "a' is compatible to the type of the corresponding alternativein "B". Identical
aternative names in this case mean the name of a TTCN-3 basic type or the name of the same user defined type
definition (considering also the module in which the type is defined).

EXAMPLE:

nmodul e A {
type integer |
type float F;
type anytype Atype //anytype conposed of TTCN-3 built-in basic types,

(0..2);

I, and F

modul e B {
type integer | (0..2);
type anytype Atype

nodul e C {
import fromA all;
import fromB all;
type union U {

integer | (0..2)
control {
var A Atype aa;
var A Atype aal :={ | :=1}
var A Atype aaF :={ F:= 1.0}
var B.Atype ba :={ integer :=11}
var B.Atype bal :={ 1| :=11}
var Uu:={ 1 :=1}
aa : = ba; Il correct, the value of aal becones { integer := 1}
aa : = bal; /'l incorrect, type B.l is not present in the anytype A Atype
aa = u; /'l incorrect, type of u is not anytype but a user defined union type
ba :={ float := 1.0 }; // correct, assigning a literal value
ba := aal; /'l incorrect, type A/l is not present in the anytype B. Atype
ba : = aaF; /1 incorrect, type A.F is not present in the anytype B. Atype
}
}
6.3.2.6 Compatibility between sub-structures

Therules defined in this clause for structured types compatibility are also valid for the sub-structure of such types.
EXAMPLE:

/1 Gven

type record JType {
HType H
integer b optional,
integer c

}
var JType MyVarJ

/1 If considering the declarations above, then

MyVarJ.H : = MyVar H;

I/l is a valid assignnent as the type of field H of JType and HType are conpati bl e
MyVarl = MyVarJ. H
/1 is a valid assignnent as | Type and the type of field H of JType are conpati bl e

ETSI

74 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

6.3.3 Compatibility of component types
Type compatibility of component types has to be considered in different conditions:

1) Compatibility of a component reference value with a component type (e.g. when passing a component
reference as an actual parameter to afunction or an altstep or when assigning a component reference value to a
variable of different component type): a component reference "b" of component type "B" is compatible with
component type "A" if all definitions of "A" have identical definitionsin"B".

2) Runson compatibility: afunction or atstep referring to component type "A" in its runs on clause may be
called or started on a component instance of type 'B' if all the definitions of "A" have identical definitionsin
"B".

3) Mtc compatibility: afunction or altstep referring to component type " A" in its mtc clause may be called or
started in any context that has a mtc clause of type "B" or atestcase with aruns on clause of type "B" if all the
port definitions of "A" have identical definitionsin "B". If the type of the mtc is unknown in the calling
function, this can lead to runtime errors if the component type "A" is not mtc-compatible with the type of the
running mtc.

4) System compatibility: afunction or altstep referring to component type "A" in its system clause may be called
or started in any context that has a system clause of type "B" or atest case with aruns on clause of type "B"
and no system clauseif all the port definitions of "A" have identical definitionsin"B". If the type of the
systemis unknown in the calling function, this can lead to runtime errorsif the component type "A" is not
system-compatible with the type of the system the current test case was started on.

Identity of definitionsin"A" with definitions of "B" is determined based on the following rules:
a) For port instances, both the type and the identifier shall be identical.

b) For timer instances, identifiers shall be identical and either both shall have identical initial durations or both
shall have no initial duration.

¢) For variable instances and constant definitions, the identifiers, the types and initialization values shall be
identical (in case of variablesthis meansthat either the values are missing in both definitions or are the same).

d) For local template definitions, the identifiers, the types, the formal parameter lists and the assigned template or
template field values shall be identical.

6.3.4 Type compatibility of communication operations

The communication operations (see clause 22) send, recei ve,trigger,call,getcal |l ,reply,getreply
andr ai se are exceptions to the weaker rule of type compatibility and require strong typing. The types of values or
templates directly used as parameters to these operations shall aso be explicitly defined in the associated port type
definition. Strong typing also appliesto storing the received value, address or component reference during ar ecei ve
ortrigger operation.

EXAMPLE:
type record MyRec {...} /] user defined type
type M/Rec MyRecAli as; /1 a type alias

type port MyPort nessage { inout M/Rec, MyRecAlias; } /'l port that can transport both types
type conponent MyConponent { port MyPort P; }

tenplate M/RecAlias t_MRecAlias:= {...} // a tenplate of the alias type

var MyConponent nyConpl : = MyConponent.create, nyConp2 := MyConponent.create;
connect (nyConpl: P, myConmp2: P) /1 two connected PTCs via ports that can
/1 transport the user-defined and the alias type

/1 in nyConpl:
P.send (t_My/RecAli as); /'l sending of tenplate of alias type

/1 in nyConp2:

P.receive (M/Rec: ?);

/1 shall not match as the transmitted tenplate is of the alias type and
/'l not of the user-defined type

ETSI

75 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

/1 in nyConp2:

var MyRec Xx;

P.receive (M/RecAlias:?) -> value x;

/1 shall cause an error since also storing the value requires strong typing

6.3.5 Type conversion

If it is necessary to convert values of one type to values of another type, because their types have different root types,
then either one of the predefined conversion functions defined in clause 16.1.2 or a user defined function shall be used.

EXAMPLE:

I/l To convert an integer value to a hexstring value use the predefined function int2hex
M/Hstring : = int2hex(123, 4);

6.4 Type synonym

A type can be defined as a synonym to another type. Type synonyms can be defined for all kinds of types. Synonym
types are compatible.

EXAMPLE:

type My Typel MyType2; // MyType2 is synonymto M/Typel

7 Expressions

TTCN-3 alows the specification of expressions. TTCN-3 expressions may be template references, val ue references or
literals (i.e. no operation isinvolved), and may be composed of the operators defined in clause 7.1.

Syntactical Structure

Si ngl eExpression |

"{" { (FieldReference ":=" (Expression | "-")) [","] } "}" | [/ conpound expression

“{" [{ (Expression | "-") [","T } 1 "}" /1 conpound expression
Semantic Description

Expressions may be built from other (simple) expressions. Functions used in expressions shall have areturn clause. The
operands of the operators used in an expression shall be values and their root types shall be the types specified for the
appropriate operator in the subsequent clauses.

Compound expressions are used for expressions of array, record, record of and set of types.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Atthepoint, when an expression is evaluated, the evaluated values of the operands used in expressions shall
be completely initialized except where explicitly stated otherwise in the specific clause of the operator.

b) Theroot types of the operands shall be the types specified for the appropriate operand.

This means aso that all fields and elements of structured types referenced in an expression shall contain completely
initialized values, while other fields and elements, not used in the expression, may be uninitialized or containomi t .

Examples
(x +y - increment(z))*3 /'l single expression
{ aa=1, b:=true} /1 conpound expression, field expression |ist
{ 1, true} /1 conpound expression, value |ist

ETSI

76 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

7.1 Operators

TTCN-3 supports a number of predefined operators that may be used in the terms of TTCN-3 expressions. The
predefined operators fall into seven categories:

a) arithmetic operators;
b) list operator;
c) relational operators;
d) logical operators;
€) bitwise operators;
f) shift operators;
g) rotate operators.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) When an expression is evaluated, the evaluated val ues used as the operands of operators shall be completely
initialized, except for those operands for which it isexplicitly allowed to be partialy initialized (see
clause 11.1).

These operators are listed in table 5.

Table 5: List of TTCN-3 operators

Category Operator Symbol or Keyword
Arithmetic operators addition +
subtraction -
multiplication *
division /
modulo mod
remainder rem
String operators concatenation &
Relational operators equal ==
less than <
greater than >
not equal 1=
greater than or equal >=
less than or equal <=
Logical operators logical not not
logical and and
logical or or
logical xor xor
Bitwise operators bitwise not not4b
bitwise and and4b
bitwise or ordb
bitwise xor xordb
Shift operators shift left <<
shift right >>
Rotate operators rotate left <@
rotate right @>

ETSI

77 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

The precedence of these operatorsis shown in table 6. Within any row in this table, the listed operators have equal
precedence. If more than one operator of equal precedence appears in an expression, the operations are evaluated from
left to right. Parentheses may be used to group operands in expressions, in which case a parenthesized expression has
the highest precedence for evaluation.

Table 6: Precedence of Operators

Priority Operator type Operator
highest (...)
Unary +, -
Binary * [, mod, rem
Binary + - &
Unary not4b
Binary and4b
Binary xor4b
Binary ordb
Binary <<, >> <@, @>
Binary <, >, <=, >=
Binary == 1=
Unary not
Binary and
Binary xor
Lowest Binary or

7.1.1 Arithmetic operators

The arithmetic operators represent the operations of addition, subtraction, multiplication, division, modulo and
remainder. Operands of these operators shall be of i nt eger values (including derivations of i nt eger) or
floating-point numbers (including derivations of f | oat , containing numeric values only), except for nrod andr em
which shall be used withi nt eger (including derivations of i nt eger) typesonly.

NOTE: Thespecia float valuesi nfinity,-infinityandnot_a_nunber arenot to be used with
arithmetic operators.

Withi nt eger types, the result type of arithmetic operationsisi nt eger . With float types, the result type of
arithmetic operationsisf | oat .

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa. The result of using the

plus operator is the value of the operand, i.e. a positive value if the operand value was positive and a negative value if
the operand value was negative.

The result of performing the division operation (/) on two:

a) integer vauesgivesthewholei nt eger part of the value resulting from dividing the first i nt eger by
the second (i.e. fractions are discarded);

b) numericf| oat valuesgivesthef | oat valueresulting from dividing the first f | oat by the second
(i.e. fractions are not discarded).

The operatorsr emand nod compute on operands of typei nt eger and have aresult of typei nt eger . The
operationsx remy andx nod y compute the rest that remains from an integer division of x by y. Therefore, they
are only defined for non-zero operandsy . For positive x and y, both x r emy and x nod y have the same result but for
negative arguments they differ.

Formally, nod and r emare defined as follows:

X remy =x -y * (xly)

x mod y = x rem|y| when x >= 0
=0 when Xx <0 and xrem]|y|l =0
= |yl +x rem]y| when x <0 and x rem|y| <O

ETSI

78 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Table 7 illustrates the difference between the mod and rem operator:

Table 7: Effect of mod and rem operator

X -3 -2 -1 0 1 2 3
X mod 3 0 1 2 0 1 2 0
x rem 3 0 -2 -1 0 1 2 0

7.1.2 List operator

The predefined list operator (&) performs concatenation of values of string types, r ecord of ,set of,orarray of
the same root types. The operation is a simple concatenation from left to right. No form of arithmetic addition is
implied. The result type is the root type of the operands.

NOTE 1: Incase of thelist types, both the outer type (i.e.r ecord of ,set of orarray) andtheiterated inner
type need to have the same root type in arecursive manner.

NOTE 2: Itisalso possible to concatenate two or more value list notation expressions if the result isto be used as a
record of orarray of the sameroot type as the concatenated expressions.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Whenthelist concatenation operator is used for record of-s, set of-s and arrays, its operands shall be at least
partially initialized.

EXAMPLE:

'1111'B & '0000'B & '1111'B gives '111100001111'B
{1,2} & {3,4} & {5,6} gives the followi ng record of integer {1,2,3,4,5, 6}

7.1.3 Relational operators

The predefined relational operators are equality (==), less than (<), greater than (>), non-equality to (! =), greater than
or equal to (>=) and less than or equal to (<=). Theresult type of all these operationsisbool ean.

Therelational operators less than (<), greater than (>), greater than or equal to (>=), and less than or equal to (<=) shall
have only operands of type i nt eger (including derivationsof i nt eger), f | oat (including derivationsof f | oat),
or instances of the same enuner at ed type. It is not allowed to compare instances of different root types.

Operands of equality (==) and non-equality (!=) shall be completely initialized values or field references of type
compatible root types and the values or field references being compared shall obey the following rules. Thisimplies that
instances of types not mentioned below shall not be operands of equality and non-equality.

NOTE: Asaddress ismore apredefined type name than a distinct type with its own properties, the same rules
apply to an addr ess type and to its derivatives as the rules were if the type was defined with a name
different from addr ess.

3 Two field references are equal if the referenced fields are both opt i onal fieldsand both fields are set to
om t orif both referenced fields (regardlessif they are optional or not) are initialized with values and these
values are equal. A field reference is equal to avalue if the referenced field isinitialized with a value and both
values are equal.

3 Two integer values are equal if and only if they contain the same value. Otherwise, normal mathematical
ordering is applied.

ETSI

79 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Two floating-point numbers are equal if and only if they contain the same value. The values minus zero and
plus zero are two distinct values (e.g. they are encoded differently in some standardized languages) and minus
zero isless than plus zero, which represents zero. Otherwise, normal mathematical ordering is applied. The
specia values-i nfinity, infinityandnot_a numnber areequa tothemselves only. The special
value-i nfinity islessthan any other float value. The special valuei nf i ni ty isgreater than any
numerical float valuesand - i nfi ni ty. The special valuenot _a_nunber isgreater than any other float
value (including i nfi ni ty).

Two charstring or two universal charstring values are equal if and only if they have equal lengths and the
characters at al positions are the same.

For values of bitstring, hexstring or octetstring types, the same equality rule applies as for charstring values
with the exception, that fractions which shall equal at all positions are bits, hexadecimal digits or pairs of
hexadecimal digits accordingly.

Two record values, or set values are equal respectively if and only if they are mutually compatible with the
type of the other operand (see clause 6.3), the actual values of all present fields are equal to their
corresponding fields and all fields corresponding to omitted fields are also omitted in the peer value.

Two record of values, set of values or array values, respectively, are equal if and only if they are mutually
compatible with the type of the other operand (see clause 6.3), they both have the same length, and and each
element of one valueis equal to the corresponding element of the other value. Record of values and array
values may also be compared, in which case the corresponding record of type of the array is being considered.

Values of the same union type, and values of different union typesin which at least one of the alternativesis
compatible with the other type (see clause 6.3.2.4) can be compared (independent if a compatible aternative is
the selected one or not). Two values of union types are equal if and only if in both values the name of the
selected alternative isidentical, they are compatible with the type of the other value, and the actual values of
the chosen fields are equal.

Values of the same or any two anytype types can be compared. For anytype values the same rule apply asto
union values, with the addition that names of types defined with the same name in different modules do not
denote the same name of the selected aternatives.

Two default or two component values are equal if and only if they contain the same value (i.e. they designate
the same default or test component, independent of the actual state of the denoted object).

It isalso possible to use compound expressions (field assignment or value list notation) directly as operands of
comparison operations of structured types. If thereis a compound expression on both sides of the comparison
operator, they shall both be value list notation expressions where the elements shall be of the same root type
and they shall be compared like record of values with elements of that root type. If only one operand of the
comparison operation is a compound expression it shall be compatible with the root type of the other operand
and they shall be compared like values of that root type.

EXAMPLE:

/1 Gven

type set S1 {
integer al optional,
integer a2 optional,
integer a3 optional
H

type set S2 {
integer bl optional,
integer b2 optional,
integer b3 optional
b

type set S3 {
integer c1 optional,
integer c2 optional,
h

type set of integer SI;

type

uni on Ul {

i nteger di,

ETSI

i nt eger

}s

uni on u2
i nt eger
i nt eger

}s

uni on U3
i nt eger
i nt eger
bool ean

}s

type

type

/1 And
const S1 sl1 :=
S2
S2
S3
Sl
Sl
Ul
u2
U3

s2a :
s2b :
s3
V_Si:
Si
ul
u2
u3;

const
const
const
var

const
const
const
const

/1
sl

Then
== s2a;
/'l returns true

sl == s2b;

returns false,

{ al

bl :=
b2 :
cl :
0,
0,
di:
el:
dl:

A A A e
no N

because neither al nor a2 are equal

ooo-

=0, a2
/1 Notice that the order of defining values of the fields does not
= omt };
= omt };

0,
0,
0,

N
e
- —~

= omt,

b3 := 2, b2
b3 :=2, b1l
c2 :=2};

a3 . =

80

2}

/1 (the correspondi ng el enent

sl == s3;
/1

sl == v_si;

/] causes test case error as v_si

/1 (2nd el ement
== si;
/1

sl

returns fal se,

returns false,

is not omtted)

is left uninitialized)

/1 but the counterpart of a3 is undefined

s3 == si;
/1 returns true

ul == uz;

Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

mat t er

to their counterparts

because the effective value structures of sl and s3 are not conpatible

is not conpletely initialized

as the counterpart of the onmtted a2 is 2,

/] causes error as Ul and U2 have no common subset of alternatives

ul == u3;
Il returns true,
/1 the actual
omt, 2}
/'l returns
s2a == { bl :=
/'l returns
{ s1, s2b}
/'l returns
{ s1, s2b, s2a } ==
/1

{o,
true

true

sl. s2a. bl;
returns true,
== s2a. b2;
returns true,
== s2a. b2;
returns fal se,
== omt;
error, omt
== 3;

sl.

sl.

sl.

sl. a2

{ s2a,
fal se because s2b

/1 f

7.1.4

al se, omt vs.

as alternatives with the sane nanes are chosen and

sl };

{ s1};

0, b2:= omt,

b3

returns fal se because of different

=2}

l=s1

I ength

values in the selected alternatives are equal
== sl,

both fields are initialized with values and the val ues are equal

both fields are omt

val ue vs.

val ue

om t

Logical operators

is neither a value nor a field reference

The predefined bool ean operators perform the operations of negation, logical and, logical or and logical xor . Their
operands shall be of root type bool ean. The result type of logical operationsisbool ean.

Thelogical not isthe unary operator that returnsthe valuet r ue if its operand was of valuef al se and returnsthe
valuef al se if the operand was of vauet r ue.

Thelogical and returnsthe valuet r ue if both its operands are t r ue; otherwiseit returnsthe valuef al se.

ETSI

81 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Thelogica or returnsthevaluet r ue if at least one of itsoperandsist r ue; it returnsthe valuef al se only if both
operandsaref al se.

Thelogical xor returnsthevaluet r ue if one of itsoperandsist r ue; it returnsthe value f al se if both operands are
f al se orif both operandsaret r ue.

Short circuit evaluation for boolean expressionsis used, i.e. the evaluation of operands of logical operators is stopped
once the overall result is known: in the case of the and operator, if the left argument evaluatesto f al se, then theright
argument is not evaluated and the whole expression evaluatesto f al se. In the case of the or operator, if the left
argument evaluatestot r ue, then the right argument is not evaluated and the whole expression evaluatestot r ue.

7.1.5 Bitwise operators

The predefined bitwise operators perform the operations of bitwise not , bitwise and, bitwise or and bitwise xor .
These operators are known as not 4b, and4b, or 4b and xor 4b respectively.

NOTE: Toberead as"not for bit", "and for bit", etc.

Their operands shall be of root type bi t string, hexstringoroctetstring.Inthecaseof and4b, or4b and
xor 4b the operands shall be of the same root types.The result type of the bitwise operators shall be the root type of the
operands.

The bitwise not 4b unary operator inverts the individual bit values of its operand. For each bit in the operand a1 bit is
settoOand aObitissetto 1. That is:
not4b '1'B gives '0'B
not4b '0'B gives '1'B
EXAMPLE 1:

not4b '1010'B gives '0101'B
not4b '1A5'H gives 'E5A'H
not4b ' 01A5' O gives ' FE5A' O

The bitwise and4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueisalif both bits are set to 1, otherwise the value for the resulting bit is0. That is:

"1'B and4b "1'B gives '1'B
'"1'B and4b '0'B gives '0'B
'0'B and4b '1'B gives '0'B
'0'B and4b '0'B gives '0'B
EXAMPLE 2:

'1001' B and4b '0101'B gives '0001'B
"B'Hand4b '5'H gives '1'H
"FB'O and4b '15'O gives '11'0O

The bitwise or 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bits are set to 0, otherwise the value for the resulting bitis 1. That is:

'"1'Bordb "1'Bgives '1'B
'"1'Bordb '0'Bgives '1'B
'0'Bor4b "1'Bgives '1'B
'0'Bor4b '0'B gives '0'B
EXAMPLE 3

'1001' B or4b '0101'B gives '1101'B
"9'Hor4b '5Hgives 'DH
"A9'Oordb '"F5'O gives 'FD O

The bitwise xor 4b operator accepts two operands of equal length. For each corresponding bit position, the resulting
valueis 0 if both bits are set to 0 or if both bits are set to 1, otherwise the value for the resulting bitis 1. That is:

1'B xor4b '1'B gives '0'B
'0'B xord4b '0'B gives '0'B
'0'"B xor4b "1'B gives '1'B

1'B xor4b '0'B gives '1'B

ETSI

82 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLE 4:

'1001' B xor4b '0101'B gives '1100'B
"9"H xor4b '5'H gives 'CH

'39'0O xor4b '15' O gives '2C O

7.1.6 Shift operators

The predefined shift operators perform the shift left (<<) and shift right (>>) operations. Their left-hand operand shall
be of root type bi t string, hexstringoroctetstring. Ther right-hand operand shall be a non-negative
i nt eger . Theresult type of these operators shall be the same as the root type of the left operand.

The shift operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thenthe shift unit applied is1 bit;
b) hexstri ng then the shift unit applied is 1 hexadecimal digit;
Cc) oct et stri ng thenthe shift unit applied is 1 octet.

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of shift units to the left
as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For each
shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O determined according to the type of the left-hand operand) is
inserted from the right-hand side of the left operand.

EXAMPLE 1:
'111001'B << 2 gives '100100'B

'12345'H << 2 gives '34500'H
'1122334455' O << (1+1) gives '3344550000'O

The shift right (>>) operator accepts two operands. It shifts the left-hand operand by the number of shift unitsto the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits or octets) are discarded. For
each shift unit shifted to the right, a zero ('0'B, '0'H, or '00'O determined according to the type of the |eft-hand operand)
isinserted from the left-hand side of the left operand.

EXAMPLE 2:

'111001'B >> 2 gives '001110'B
'12345'H >> 2 gives '00123' H
'1122334455' O >> (1+1) gives '0000112233' O

7.1.7 Rotate operators

The predefined rotate operators perform the rotate left (<@ and rotate right (@) operators. Their left-hand operand
shall be of root typebi t stri ng, hexstring,octetstring,charstring,universal charstring,
record of,orset of.Ther right-hand operand shall be anon-negativei nt eger . The result type of these
operators shall be the same as the root type of the left-hand operand.

NOTE: Please note that the root types of arraysisr ecor d of , therefore arrays are allowed as | eft-hand
operands of rotate operators.

The rotate operators behave differently based upon the type of their left-hand operand. If the type of the left-hand
operand is:

a) bitstring thentherotate unit appliedis 1 bit;
b) hexst ri ng thentherotate unit applied is 1 hexadecimal digit;
C) oct et string thentherotate unit applied is 1 octet;

d) charstringoruniversal charstring thenthe rotate unit applied is one character;

ETSI

83 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

e) record of, set of, or array thentherotate unit applied is one element.

The rotate left (<@ operator accepts two operands. It rotates the left-hand operand by the number of shift unitsto the
left as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
are re-inserted into the left-hand operand from its right-hand side.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) When therotate operator isused forr ecor d of -s,set of -sand arrays, its left hand operand shall be at least
partially initialized.

NOTE: Please note that for the right hand operand restriction a) in clause 7 further on applies.

EXAMPLE 1.

'101001'B <@2 gives '100110'B

'12345'H <@2 gives '34512'H

'1122334455' O <@ (1+2) gives '4455112233' 0
"abcdefg" <@3 gives "defgabc"

Therotateright (@) operator accepts two operands. It rotates the left-hand operand by the number of shift unitsto the
right as specified by the right-hand operand. Excess shift units (bits, hexadecimal digits, octets, characters, or elements)
arere-inserted into the left-hand operand from its left-hand side.

EXAMPLE 2:

'100001'B @ 2 gives '011000'B

'12345'H @ 2 gives '45123'H

'1122334455' O @ (1+2) gives '3344551122'0
"abcdefg" @ 3 gives "efgabcd"

7.2 Field references and list elements

Within expressions, fields of record and set types are referenced with the dot notation " . f i el d" . Elements of record
of, set of, array and string types are referenced with the index notation " [i ndex] " . Dot and brackets have the same
binding power. Field references and list elements are evaluated from left to right.

8 Modules

The principal building blocks of TTCN-3 are modules. A module may define afully executable test suite or just a
library. A module may refer to the TTCN-3 language version and to package versions being used. A module consists of
a (optional) definitions part, and a (optional) module control part.

NOTE: Thetermtest suiteis synonymous with a complete TTCN-3 module containing test cases and a control
part.

The transfer syntax of TTCN-3 modules shall be UTF-8, i.e. each character of the module shall be individually encoded
and decoded according to the UCS Transformation Format 8 (UTF-8) as defined in annex R of ISO/IEC 10646 [2] and
no characters not corresponding to any character of the module shall be present.

8.1 Definition of a module

A module is defined with the keyword module.

NOTE 1: Thetreatment of TTCN-3 modulesin files, repositories and alike is outside the scope of the present
document.

Syntactical Structure

nodul e Modul el dentifier [|anguage FreeText { "," FreeText }] "{"
[Modul eDefinitionsPart]

ETSI

84 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

[Modul eControl Part]
"y

Semantic Description

A TTCN-3 module groups a set of (typically cohesive) TTCN-3 definitions. TTCN-3 modules have an explicit import
interface to use definitions from other TTCN-3 or non-TTCN-3 modules. It is possible to hide definitionsin a TTCN-3
module (see clause 8.2.5). TTCN-3 modules can be compiled/interpreted separately. They are reusable and
parameterizable.

Module names are of the form of a TTCN-3 identifier.
NOTE 2: The moduleidentifier istheinformal text name of the module.

In addition, a module specification can carry an optional attribute identified by thel anguage keyword that identifies
the edition of the TTCN-3 language, in which the module is specified. The following language strings are to be used:

"TTCN- 3: 2001" - to be used with modules complying with version 1.1.2 of the present document (see annex H).
"TTCN- 3: 2003" - to be used with modules complying with version 2.2.1 of the present document (see annex H).
"TTCN- 3: 2005" - to be used with modules complying with version 3.1.1 of the present document (see annex H).
"TTCN- 3: 2007" - to be used with modules complying with version 3.2.1 of the present document (see annex H).
"TTCN- 3: 2008" - to be used with modules complying with version 3.3.2 of the present document (see annex H).
"TTCN- 3: 2008 Amendment 1" - to be used with modules complying with version 3.4.1 of the present document
(see annex H).

"TTCN- 3: 2009" - to be used with modules complying with version 4.1.1 of the present document (see annex H).
"TTCN- 3: 2010" - to be used with modules complying with version 4.2.1 of the present document (see annex H).
"TTCN- 3: 2011" - to be used with modules complying with version 4.3.1 of the present document (see annex H).
"TTCN- 3: 2012" - to be used with modules complying with version 4.4.1 of the present document (see annex H).
"TTCN- 3: 2013" - to be used with modules complying with version 4.5.1 of the present document (see annex H).
"TTCN- 3: 2014" - to be used with modules complying with the present document.

Furthermore, the optiona attribute identified by the | anguage keyword may identify package versions being used by
this module. The package tags are defined in ES 202 781 [i.11], ES 202 782 [i.14], ES 202 784 [i.12], and
ES 202 785 [i.13]. The language identifier and the package identifier are to be written as a comma-separated list.

Restrictions
In addition to the general static rulesof TTCN 3 given in clause 5, the following restrictions apply:

a) At most one language string per module shall be given to define the core language version in which the
module is defined.

b) Per extension package, at most one extension package string of that extension package shall be used by a
module.

Examples

modul e MyTest Suite | anguage "TTCN 3: 2003"
{ .1

8.2 Module definitions part

The module definitions part specifies the top-level definitions of the module and may import visible identifiers from
other modules. Visibility rules are given in clause 8.2.5. Scope rules for declarations made in the module definitions
part and imported declarations are given in clause 5.3. Those language elements which may be defined ina TTCN-3
module are listed in table 1. Every definition can be associated with attributes using the with statement defined in
clause 27. Visible module definitions may be imported by other modules.

Syntactical Structure

[Visibility] (
TypeDef |
Const Def |
Tenpl at eDef |

ETSI

85 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Modul ePar Def |
Functi onDef |
Si gnat ur eDef |
Test caseDef |
Al t st epDef |
| npor t Def |
G oupDef |
Ext Functi onDef |
Fri endDef

) [WthStatenent]

[]
1+
Semantic Description
Definitions in the modul e definitions part may be made in any order.

Such definitions, i.e. top-level definitions outside of other scope units, are globally visible within the module. They may
be used elsewhere in the module. Thisincludes identifiersimported from other modules.

Declarations of dynamic language elements such as variables or timers shall only be made in the control part, test cases,
functions, altsteps or component types.

TTCN-3 does not support the declaration of variablesin the module definitions part, i.e. global variables cannot be
defined in TTCN-3. However, variables defined in atest component type may be used by all test cases, functions, etc.
running on components of that component type and variables defined in the control part provide the ability to keep their
values independently of test case execution.

Restrictions
No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

nodul e MyModul e
{ /1 This nodul e contains definitions only

éonst i nteger MyConstant := 1;
type record MyMessageType { ...}

functi on TestStep(){ ...}

8.2.1 Module parameters

Module parameters define a set of values that are supplied by the test environment at runtime. Module parameters do
not change their value during test execution. They can be used on right hand side of assignments, in expressions, in
actual parameters, and in template definitions, but not within type definitions.

Syntactical Structure
Single type, single module parameter form:
[Visibility] nodul epar Mdul ePar Type Mdul eParldentifier [":=" Constant Expression] ";"

Single type, multiple module parameter form:

[Visibility] nodul epar Mdul ePar Type
{ Modul eParldentifier [":=" ConstantExpression] "," }
Modul ePar I dentifier [":=" Constant Expression] ";"

Semantic Description

Module parameters behave as global constants at runtime. For module parameterization, TTCN-3 only supports value
parameterization which has to be resolved static at start of runtime.

Module parameters alow to customize a TTCN-3 test suite for a specific IUT, test setup or test campaign. Module
parameters are declared by specifying the type and listing their identifiers following the keyword nmodul epar .

ETSI

86 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

It isallowed to specify default values for module parameters. This shall be done by an assignment in the module
parameter list. A default value can merely be assigned at the place of the declaration of the module parameter.

If the test system does not provide an actual runtime value for a module parameter, the default value shall be used
during test execution, otherwise the actual value provided by the test system. Actua runtime values shall be literals
only.

If functions are used for the initialization of module parameters, it is strongly advised to adhere to the rules defined in
clause 16.1.4. Not following these rules may cause non-deterministic test executions.

Visible module parameters can be imported.

Optional fields of record and set module parameters or module parameter fields can beinitialized explicitly or
implicitly. For implicit initialization of the optional fields of a module parameter or a module parameter field, an

opti onal attributewiththevalue"i nplicit omt" (seeclause 27.7) shal be associated with it either directly or
viathe attribute distribution (scoping) mechanism (see clause 27.1.1).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) During test execution these values shall be treated as constants.
b) Module parameters shall not be of port type, default type or component type.

¢) A module parameter shall only be of type addressif the address type is explicitly defined within the associated
module.

d) Module parameters shall be declared within the module definition part only.

€) Morethan one occurrence of module parameters declaration is allowed but each parameter shall be declared
only once (i.e. redefinition of the module parameter is not allowed).

f) The constant expression for the default value of a module parameter shall respect the limitations given in
clause 16.1.4.

g) Module parameters shall not be used in type or array definitions.

Examples

nodul e MyTest Sui t eWt hParaneters
{

/1 single type, single nodule paraneter, which is per default public
nmodul epar bool ean TS Par0 : = true;

/1 single type, nultiple nodule paraneters with an explicit public visibility
public nodul epar integer TS Parl, TS Par2 := 1 + char2int("a");

8.2.2 Groups of definitions

In the modul e definitions part, definitions can be collected in named groups. Grouping is done to aid readability and to
add logical structure to the module if required. If necessary, the dot notation shall be used to identify sub-groups within
the group hierarchy uniquely, e.g. for the import of a specific sub-group.

Syntactical Structure
[public] group Goupldentifier "{"

{ Modul eDefinition [";"] }
"y

ETSI

87 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Semantic Description

A group of definitions can be specified wherever a single definition is allowed. Groups may be nested, i.e. groups may
contain other groups. This alows the test suite specifier to structure, among other things, collections of test data or
functions describing test behaviour.

Groups and nested groups have no scoping. Please note however, attributes given to a group by an associated with
statement apply to al elements of a group (see clause 27). Import statements may import groups so that al visible
elements of a group are imported (see clause 8.2.3.3).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Group identifiers across the whole module need not necessarily be unique. However, top-level group
identifiersand all group identifiers of subgroups of a single group shall be unique.

b) Only publ i c visihility can be defined for groups as they are always public.

Examples
nmodul e MyModul e {
)/ A collection of definitions
group MG oup {
const integer MyConst:= 1;
type record MyMessageType { ...};
group MyG oupl { /1 Sub-group with definitions

type record Anot her MessageType { ...};
const bool ean MyBool ean : = fal se

}

/1 A group of altsteps
group MyStepLibrary {
group MG oupl { /1 Sub-group with the sane nane as the sub-group with definitions
altstep MyStepll() { ...}
altstep MyStepl12() { ...}

aitstep M/Stepln() { ...}

}

group MyG oup2 {
altstep MyStep21() { ...}
altstep MyStep22() { ...}

éltstep MyStep2n() { ...}

}

/1 An inport statement that inports M/yGoupl within MyStepLibrary
import from MyModul e {
group MyStepLibrary. MyG oupl

8.2.3 Importing from modules

It is possible to re-use visible definitions specified in different modules using the i nport statement. Every definition
in a TTCN-3 module has an associated visibility, which is by default publ i ¢ (see clause 8.2.5).

NOTE: Groupsarepubl i ¢ only. Importing a group means that only the visible elements of the group are being
imported.

8.2.3.1 General format of import
An import statement can be used anywhere in the module definitions part.

Syntactical Structure

ETSI

88 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

[Visibility] inport from Mduleld

(all [except "{" ExceptSpec "}"])
I("{" lInportSpec "}")
[";")]
Semantic Description

TTCN-3 supports the import of the following definitions: module parameters, user defined types, signatures, constants,
data templates, signature templates, functions, external functions, altsteps and test cases. Each definition has aname
(defines the identifier of the definition, e.g. a function name), a specification (e.g. atype specification or a signature of a
function) and in the case of functions, altsteps and test cases an associated behaviour description. In addition, import
statements of one module can be explicitly imported by another module (see clause 8.2.3.7). Only definitions or import
statements visible from the importing module can be imported (see clause 8.2.5).

In contrast to module definitions, which are by default public, import statements are by default private.

EXAMPLE la
Name Specification Behaviour description
function M/Function |[(inout MyTypel MyPar) return MyType2 {
runs on MyConpType const MyType3 MyConst := ..;
: [/ further behaviour
}
Specification Name Specification
type record M/Recor dType [{
fieldl MyType4,
field2 integer
}
Specification Name Specification
tenplate |MyTypeb M/Tenpl ate |: = {
fieldl := 1,
field2 := MConst, // MConst is a nodul e constant
field3 := Mdul ePar // Modul ePar is nodul e paraneter
}

Behaviour descriptions have no effect on the import mechanism, because their internals are considered to beinvisible to
the importer when the corresponding functions, altsteps or test cases are imported. Thus, they are not considered in the
following descriptions.

The specification part of an importable definition contains local definitions (e.g. field names of structured type
definitions or values of enumerated types) and referenced definitions (e.g. references to type definitions, templates,
constants or module parameters). For the examples above, this means:

Name Local definitions Referenced definitions
function |MyFunction MyPar MyTypel, MyType2, MyCompType
type MyRecordType [fieldl, field2 MyType4, integer
tenplate |MyTemplate MyType5, fieldl, field2, field3, MyConst, ModulePar

NOTE 1: Theloca definitions column refersto identifiers only that are newly defined in the importable definition.
Values assigned to individua fields of importable definitions, e.g. in template definitions, may also be
considered as local definitions, but they are not important for the explanation of the import mechanism.

NOTE 2: Thereferenced definitions fieldl, field2 and field3 of template MyTemplate are the field names of
MyType5, i.e. they are referenced via MyTypeb.

Referenced definitions are also importable definitions, i.e. the source of areferenced definition can again be structured
into a name and a specification part and the specification part also contains local and referenced definitions. In other
words, an importable definition may be built up recursively from other importable definitions.

ETSI

89 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

The TTCN-3 import mechanism is related to the local and referenced definitions used in the specification part of the
importable definitions. Table 8 specifies the possible local and referenced definitions of importable definitions.

Table 8: Possible local and referenced definitions of importable definitions

Importable Definition Possible Local Definitions Possible Referenced Definitions
Module parameter Module parameter type
User-defined type (for all)
e enumerated type Concrete values
e structured type Field names, nested type Field types
definitions
e port type Message types, signatures
e component type Constant names, variable names, |Constant types, variable types, port types
timer names and port names
Signature Parameter names Parameter types, return type, types of exceptions
Constant Constant type
Data Template Parameter names Template type, parameter types, constants, module
parameters, functions
Signature template Signature definition, constants, module parameters
functions
Function Parameter names Parameter types, return type, component type
(runs on clause)
External function Parameter names Parameter types, return type
Altstep Parameter names Parameter types, component type (r uns
on clause)
Test case Parameter names Parameter types, component types (r uns on- and
syst emclause)

NOTE 1: For the import of import statements see clause 8.2.3.7.
NOTE 2: For the import of groups see clause 8.2.3.3.

The TTCN-3 import mechanism distinguishes between the identifier of a referenced definition and the information
necessary for the usage of a referenced definition within the imported definition. For the usage, the identifier of a
referenced definition is not required and therefore not imported automatically.

EXAMPLE 1b: Differentiation between information necessary for the usage and the identifier.

nmodul e A {
type record M/Recl {
i nt eger fieldl,
charstring field2
}
}
nodul e B {

import fromA all;

type record MyRec2 {
M/Recl nyFieldi,
/1 "nyFieldl" is the local definition, "M/Recl" is a referenced definition;
/1 the nanme "MyRecl" shall be inported in this case as is directly referenced
bool ean nyFi el d2

}

}

modul e C {
import fromB all;
const MyRec2 t_MyRec2 : = {
myFieldl := { fieldl :=5, field2 :="A" },
/'l to define nyFieldl of M/Rec2 the nanme "MyRecl" is not needed, the
/1 informati on necessary for the usage is its type information,
/1 i.e. names and types of its fields fieldl and field2
/1 which is enbeddded in the inported definition of M/Rec2
nmyField2 := true
}
}

If an imported definition has attributes (defined by means of awi t h statement) then the attributes shall also be
imported. The mechanism to change attributes of imported definitionsis explained in clause 27.1.3.

NOTE 3: If the module has global attributes they are associated to definitions without these attributes.

ETSI

90 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Theuseof i nport on single definitions, groups of definitions, definitions of the same kind, etc. may lead to situations
where the same definition is referred to more than once. Such cases shall be resolved by the system and definitions shall
be imported only once.

NOTE 4: The mechanisms to resolve such ambiguities, e.g. overwriting and sending warnings to the user, are
outside the scope of the present document and should be provided by TTCN-3 tools.

All'i mport statements and definitions within import statements are considered to be treated independently one after
the other in the order of their appearance.

All TTCN-3 modules shall have their own name space in which all definitions shall be uniquely identified. Name
clashes may occur due to import, e.g. import from different modules. Name clashes shall be resolved using qualified
name(s) for the imported definition(s), i.e. prefixing the imported definition (which causes the name clash) by the
identifier of the module in which it has been defined; the prefix and the identifier shall be separated by adot (".").

Thereis one exception to this rule: when in the context of an enumerated type (see clause 6.2.4), an enumerated value
is clashing with the name of a definition in the importing module, the enumerated value shall take precedence and the
definition in the importing module shall be referenced by using its qualified name (see example 4 below in this clause).

In cases where there are no ambiguities the prefixing need not (but may) be present when the imported definitions are
used. When the definition is referenced in the same module where it is defined, the module identifier of the module (the
current module) also may be used for prefixing the identifier of the definition.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Animport statement shall only be used in the module definitions part and not be used within a control part,
function definition, and alike.

b) Only top-level visible definitions of a module may be imported. Definitions which are top-level but invisible
to the importing module or which occur at alower scope (e.g. local constants defined in afunction) shall not
be imported.

c) A definition isimported together with its name and all local definitions.

NOTE5: A local definition, e.g. afield name of a user-defined record type or an enumerated value, has only
meaning in the context of the definitionsin which it is defined, e.g. afield name of arecord type can only
be used to access afield of the record type and not outside this context.

In particular, importing an enumerated type does not impose the restriction given in clause 6.2.4 on global
names defined in the importing module.

d) A definitionisimported together with al information of referenced definitions that are necessary for the usage
of the imported definition, independent of the visibility of the referenced definitions (see clause 8.2.5).

NOTE 6: If module C imports a definition from module B that uses atype reference defined in module A, the
corresponding information necessary for the usage of that type is automatically imported into module C
(see example 5 below in this clause). Identifiers of referenced definitions are not automatically imported.

In particular, if module C imports global value or template definitions (e.g. constants, module parameters,
templates) or loca definitions (e.g. formal parameters of templates, functions, etc., or constants and
variables of component types) of an enumerated type from module B, the enumerated values of this type
(i.e. theidentifiers) areimplicitly and automatically imported to module C. That is, the enumerated values
are known when an enumerated value or template is used in module C (e.g. when an actual parameter is
passed or avalueis assigned to a component variable). Note that thisimplicit importing does not impose
the restriction given in clause 6.2.4 on global names defined in module C.

e) If thereferenced definitions are wished to be used in the importing module, they shall be explicitly imported
either directly fromits source module or indirectly by importing the import statements of a module importing
it (seeclause 8.2.3.7).

f) Whenimporting a function, altstep or test case the corresponding behaviour specifications and all definitions
used inside the behaviour specifications remain invisible for the importing module.

ETSI

9)

h)

91 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

The language specification (see clause 8.1) of the import statement shall not override the language
specification of the importing module.

The language specification of the import statement shall be identical to the language specification of the source
module from which definitions are imported (see clause 8.2.3.8) provided a language specification is defined

in the source module. If not, the language specification in the import statement is taken as the language
specification of the source module. If the source module uses however language concepts not being part of that
language specification, this causes an error for the import statement.

Examples

EXAMPLE 1. Selected import examples

modul e MyModul eA

{

}

)/ Scope of the inported definitions is global to MyMdul eA

inmport from MyModuleB all; // inport of all definitions from MyMdul eB
import from MyModul eC { /1 inmport of selected definitions from M/Mdul eC
type M Typel, MyType2; [/ inport of types MyTypel and MyType2
tenplate all [/ inport of all tenplates
}

functi on MyBehavi our ()

/1 inport cannot be used here

}
;:ontrol

/1 inmport cannot be used here
) :

EXAMPLE 2: Use of imported definitions and visibility of definitions referenced by them

nmodul e Modul eONE {

nodul epar integer MddParl := .;

type record RecordType_T1 {
integer Fieldl_T1,

}

type record RecordType_T2 {
Recor dType_T1 Field1_T2,

}
const integer MyConst := ..

tenpl ate RecordType_T2 Tenpl ate_T2 (RecordType_T1 TenpPar_T2):= { // paranmeterized tenplate
Fieldl T2 := .,

}

} /1 end nodul e Modul eONE

nodul e Modul eTVWD {

i mport from Modul eONE {
tenpl ate Tenplate T2

/1l Only the nanes Tenplate_T2 and TenpPar_T2 will be visible in Mdul eTWD. Please note, that
/1 the identifier TenpPar_T2 can only be used when nodifying Tenplate_T2. Al infornation

/'l necessary for the usage of Tenplate T2, e.g. for type checking purposes, are inported

/1 for the referenced definitions RecordType_T1, Fieldl_T2, etc., but their identifiers are
/1 not visible in Mdul eTWO

/1 This neans, e.g. it is not possible to use the constant MyConst or to declare a

/1 variable of type RecordType T1 or RecordType_T2 in Mdul eTWD wi thout explicitly inporting
/'l these types.

ETSI

92 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

i mport from Modul eONE {
nodul epar ModPar 2
}

/1 The nodul e paraneter MdPar2 of Mdul eONE is inported from Mdul eONE and
/'l can be used |like an integer constant

} /1 end nodul e Modul eTWO

nodul e Mbdul eTHREE {
import from Modul eONE all; // inports all definitions from Mdul eONE
type port MyPortType nessage {
i nout RecordType_T2 /'l Reference to a type defined in Mbdul eONE
}

type conponent MyConpType {
var integer MyConponentVar := NModPar2;
/'l Reference to a nodul e paraneter of Mdul eONE

}
function MyFunction () return integer {

return MyConst /'l Reference to a nodul e constant of Mdul eONE
}

testcase MyTest Case (out RecordType_T2 MyPar) runs on MyConpType {
M/Port .send(Tenplate_T2); // Sending a tenplate defined i n Modul eONE

}
} // end Modul eTHREE

nodul e Modul eFOUR {
i mport from Modul eTHREE {
testcase MyTest Case
}

/1 Only the nane MyTestCase will be visible and usable in Mdul eFOUR

/1 Type information for RecordType_T2 is inported via Mdul eTHREE from Modul eONE and
Il Type information for MyCompType is inported from Mbdul eTHREE. All definitions

/'l used in the behaviour part of MyTestCase renmin hidden for the user of Mdul eFOUR

} /1 end Modul eFOUR

EXAMPLE 3: Handling of name clashes
nodul e MyModul eA {
type bitstring MTypeA

i mport from SoneMdul eC {

type M/ TypeA, /1 Where MyTypeA is of type character string
M/ TypeB /1 Where MyTypeB is of type character string
}
cbntrol {
vér SomeMbdul eC. My TypeA MyVarl : = "Test String"; // Prefix shall be used
var MyTypeA MyVar2 : = '10110011' B; /1 This is the original MTypeA
vér M/ TypeB MyVar3 := "Test String"; /1 Prefix need not be used ...
var SoneMdul eC. MyTypeB MyVar3 : = "Test String"; // ..but it can be if wi shed
}

ETSI

93 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

NOTE 7: Definitions with the same name defined in different modules are always assumed to be different, even if
the actual definitionsin the different modules are identical. For example, importing atype that is aready
defined locally, even with the same name, would lead to two different types being available in the
module.

EXAMPLE 4: Name clash between enumerated values and global definitions

nodul e A {
type enunerated MyEnuniType {enumX, enun¥, enun¥}
type enunerated MyEnuniType2 {enun¥X, enun¥, enuny}

nodul e B {
import fromA all;
const MyEnunilype enun¥ := enunX; // this is not allowed as enunerated val ues restrict
/1 gl obal nanes (see clause 6.2.4)
const MyEnunilype2 enunX := enunX;// this is |ikew se not allowed
const integer enunZ := 0;

modul epar MyEnuniType px_M/Mdul ePar1 : = enun¥

/1 the default value of the nodule paraneter will be the value enun¥, as the type of

/'l px_MyModul ePar1 creates the context of MyEnunType and in this context enunerated val ues
/'l take precedence over global definition names; note that for the same context reason there
/1 in no name clash between the enunerated val ues defined in M/EnunType and i n MyEnuniType2

nmodul epar MyEnuniType px_M/Modul ePar2 : = B. enun¥
/'l the default value of the npbdul e paraneter will be the value enunX, as the prefix
/1 identifies the constant definition enunY unanbi guously, which has the val ue enunX

nmodul epar i nteger px_I|ntegerPar := enuni;
/'l the default value of the nodule paraneter will be O as this assignnent is not in the
/1 context of an enunerated type, hence no nanme clash occurs

nodul epar MyEnuniType px_M/Mdul ePar3 : = B. enunX
/] causes an error as px_M/Mdul ePar3 and the constant enunX has different types

}
EXAMPLES5: Importing local definitions transitively

nmodul e A {
type enunerated MyEnum Type { enun¥X, enun¥, enuni}
type record M/Rec { integer a, integer b}
type conponent MyConp { var MJRec v_Rec :={ a:=51} }

nodul e B {
import fromA all;
modul epar MyEnum Type px_M/Modul ePar : = enun;
type conponent MyConpUser extends MyConp {}

modul e C {
import fromB all;
testcase TC() runs on MyConpUser {
if (px_MyModul ePar == enun¥) {
/1 the enunerated value enun¥ is knowin C w thout explicitly inmporting it fromA
set verdi ct (pass)

}

if (v_Rec.a == 5) {
V_Rec.b := v_Rec. a;
// Both the variable name v_Rec and the record field names are known in C w thout
/] explicitly inporting themfromA
setverdi ct (pass)

}

}
}

8.2.3.2 Importing single definitions

Single visible definitions can be imported by referring to the definition kind and the definition name(s). The import of
single definitions can be used in combination with imports of groups (see clause 8.2.3.3), with imports of definitions of
the same kind (see clause 8.2.3.4), and with imports of import statements (see clause 8.2.3.7).

ETSI

94 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Syntactical Structure

[Visibility] inport from Mduleld "{"
{
(

(type { TypeDefldentifier ["1 31) I
(tenplate { Tenplateldentifier [""11)1
(const { Constldentifier [" 1%1) 1
(testcase { Testcaseldentifier [""131) 1
(altstep { Altstepldentifier [""11) |
(function { Functionldentifier [" 11)I
(signature { Signatureldentifier ["," 11}) |
(nmodul epar { Modul ePar | dentifier [""11)

Semantic Description

See clause 8.2.3. Import of an invisible definition shall cause an error.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) The definition to be imported shall be defined in the module from which it isto be imported and shall be visible
to the importing module.

b) Seetherestrictions givenin clause 8.2.3.

Examples

i mport from MyModul eA {
type MyTypel /1 inports one type definition from M/Mddul eA only

i mport from MyModul eB {

type My Type2, Mtype3, MType4; /] inports three types,
tenpl ate MyTenpl at el; Il inports one tenplate, and
const MyConstl1l, MyConst2 /] inmports two constants
}
8.2.3.3 Importing groups

Groups of definitions may be imported. The import of groups can be used in combination with imports of single
definitions (see clause 8.2.3.2), with imports of definitions of the same kind (see clause 8.2.3.4), and with imports of
import statements (see clause 8.2.3.7).

It isallowed to import sub-groups (i.e. a group which is defined within another group) directly, i.e. without the groups
in which the sub-group is embedded. If the name of a sub-group that should be imported is identical to the name of
another sub-group in the same module (see clause 8.2.2), the dot notation shall be used to identify the sub-group to be
imported uniquely.

If some visible definitions of a group are wished not to be imported, their kinds and identifiers shall be listed in the
exception list within a pair of curly brackets following the except keyword. Theal | keyword isalso allowed to be
used in the exception list; this will exclude all definitions of the same kind from the import statement.

Syntactical Structure
[Visibility] inport from Mduleld "{"
{

(group { Qualifiedldentifier [except "{" ExceptSpec "}" 1 [“," 1 })
["1

B

ETSI

95 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Semantic Description

The effect of importing agroup isidentical to ani nmport statement that listsall visible definitions (including
sub-groups) of this group except of those that are listed in the except specification. See also clause 8.2.3. Import
statements contained in the group or in its subgroups are not part of thislist, only definitions are.

It isimportant to point out, that the except statement does not exclude the definitions listed from being imported in
general; all statements importing definitions of the same kind can be seen as a shorthand notation for an equivalent list
of identifiers of single definitions. The except statement excludes definitions from this single list only.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a Thegroup to beimported shall be defined in the module from which it isto be imported.
b) Seetherestrictions givenin clause 8.2.3.

Examples
import from MyModul e { group MyGroup } // includes all visible definitions from MG oup

import from MyMudul e {
group MyGoup except {
type M Type3, MyType5; [/ excludes the two types fromthe inport statenent,
tenplate all /1 excludes all tenplates defined in M/G oup
/1 fromthe inport statenent
/1 but inports all other visible definitions of M/G oup

}

import from MyModul e {

group MyG oup
except { type MyType3 };// inports all visible types of M/Group except MyType3

type MyType3 /] inports MyType3 explicitly

8.2.3.4 Importing definitions of the same kind

Theal | keyword may be used to import all visible definitions of the same kind of amodule. Theal | keyword used
with theconst ant keyword identifies all visible constants declared in the definitions part of the module the import

statement refersto. Similarly theal | keyword used with the f unct i on keyword identifies al visible functions and
all visible external functions defined in the module the import statement denotes.

If some visible declarations of akind are wished to be excluded from the given import statement, their identifiers shall
be listed following theexcept keyword.

The import of visible definitions of the same kind can be used in combination with imports of single visible definitions
(see clause 8.2.3.2), with imports of groups (see clause 8.2.3.3), and with imports of import statements (see
clause 8.2.3.7).

Syntactical Structure

[Visibility] inport from Mduleld "{"
{
(

(type all [except { TypeDefldentifier [""" 111
(tenplate all [except { Tenplateldentifier [""1%ry1) 1
(const all [except { Constldentifier [""1%Yy1) 1
(testcase all [except { Testcaseldentifier [""1%ry1) 1
(altstep all [except { Altstepldentifier [""" 131) 1
(function all [except { Functionldentifier [""" 13r1) 1
(signature all [except { Signatureldentifier ["," 1} 1) |
(nodul epar all [except { Mdul eParldentifier ["," 1 } 1)

ETSI

96 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Semantic Description

The effect of importing definitions of the ssme kind isidentical to ani npor t statement that lists all visible definitions
of that kind except of those that are listed in the except specification. See also clause 8.2.3.

NOTE: If thelist of al visible definitions of that kind except of those that are listed in the except specification
is empty, the import statement has no effect. This case does not lead to an error.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Seetherestrictionsgivenin clause 8.2.3.

Examples
import from MyMddul e {
type all; /1 inmports all types of MyMdul e
tenpl ate all /1 inmports all tenplates of MyMdul e

}

import from MyModul e {
type all except MyType3, MType5; /1 inports all types except MyType3 and MyTypeb
tenplate all /1 inports all tenplates defined in Mynodul e

8.2.35 Importing all definitions of a module
All visible definitions of a module definitions part may be imported using theal | keyword next to the module name.

If some visible definitions are wished not to be imported, their kinds and identifiers shall be listed in the exception list
within apair of curly brackets following the except keyword. Theal | keyword is also alowed to be used in the
exception list; thiswill exclude all visible declarations of the same kind from the import statement.

NOTE 1: If thelist of al visible definitions of a module except of those that are listed intheexcept specification
is empty, the import statement has no effect. This case does not lead to an error.

NOTE 2: Importing al definitions of a module imports only definitions declared directly in that module, but does
not import the import statements of that module (see also clause 8.2.3.7).

Syntactical Structure

[Visibility] inport from Mduleld

al |
[
{
except "{"
(group { Qualifiedldentifier """ 131 al)|
(type { TypeDefldentifier """ 131 atl)|
(tenplate { Tenplateldentifier [", 1%}] al)|
(const { Constldentifier [", 1%}] al)|
(testcase { Testcaseldentifier """ 131 al)|
(altstep { Altstepldentifier """ 1%} al)|
(function { Functionldentifier [", 1%} al)|
(signature { Signatureldentifier [", 1%}] al)|
(modul epar { Modul eParldentifier ["" 1%} al)
"y
["]
}

]
[

Semantic Description

The effect of importing all visible definitions of amodule isidentical to ani nmpor t statement that lists all importable
definitions of that module except of those that are listed in the except specification. See also clause 8.2.3.

ETSI

97 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) If dl visible definitions of a module are imported by using the all keyword, no other form of import (import of
single definitions, import of the same kind, etc.) shall be used for the same import statement.

b) Inthe set of except statements for an all import, only one except statement per kind of definition (i.e. for a
group, type, etc.) isallowed.

Examples
import from MyModul e al | ; /1 includes all definitions from M/Mddul e

inmport from MyMddul e all except {
type MyType3, MType5; // excludes these two types fromthe inport statenent and
tenplate all /1 excludes all tenplates declared in M/Mdul e,
/1 fromthe inport statenent
/1 but inports all other definitions of MyMdule

8.2.3.6 Import definitions from other TTCN-3 editions and from non-TTCN-3 modules

In cases when visible definitions are imported from modules from other TTCN-3 editions or from other sources than
TTCN-3 modules, the language specification (see clause 8.1) shall be used to denote the language (may be together
with aversion number) of the source (e.g. module, package, library or even file) from which definitions are imported. It
consists of thel anguage keyword and a subsequent textual declaration of the denoted language.

The use of the language specification is optional when importing from a TTCN-3 module of the same edition as the
importing module. The TTCN-3 language identifiers defined in clause 8.1 are to be used. Package identifiers from

ES 202 781 [i.11], ES 202 782 [i.14], ES 202 784 [i.12] and ES 202 785 [i.13] can be used in addition. Identifiers for
other languages are defined in the language mapping parts of TTCN-3, i.e. in ES 201 873-7 [i.5], ES 201 873-8[i.6] and
ES 201 873-9]i.7].

When an incompatibility is discovered between the language and/or package identification (including implicit
identification by omitting the |anguage specification) and the syntax of the module from which definitions are imported,
tools shall provide reasonable effort to resolve the conflict.

Syntactical Structure

[Visibility] inport from Mddul eldentifier [LanguageSpec] ...[";" 1]
Semantic Description

TTCN-3 supports the referencing of elements defined in other TTCN-3 editions (versioned elements) or other languages
(foreign elements) from within TTCN-3 modules. Such elements can be used in a TTCN-3 module of a given edition
only if they have a TTCN-3 view in that TTCN-3 edition. The term TTCN-3 view can be best explained by considering
the case when the definition of a TTCN-3 element is based on another TTCN-3 element, the information content of the
referenced element shall be available and is used for the new definition. For example, when a template is defined based
on astructured type, the identifiers and types of fields of the base type shall be accessible and are used for the template
definition. In asimilar way, when abase type is a versioned or foreign element it shall provide the same information
content as would be required from a TTCN-3 type declaration. The versioned or foreign element, naturally, may contain
more information than required by TTCN-3. The TTCN-3 view of aversioned or foreign element means that part of the
information carried by that element, which is necessary to useit in TTCN-3. Obviously, the TTCN-3 view of a
versioned or foreign element may be the full set or a subset of the information content of that element but never a
superset. There may be versioned or foreign element without a TTCN-3 view (zero TTCN-3 view), i.e. for some reason
no TTCN-3 definition in the given edition could be based on them.

To make declarations of versioned or foreign element visible in TTCN-3 modules, their names shall be imported just
like definitionsin other TTCN-3 modules of the given edition. When imported, only the TTCN-3 view of the versioned
or foreign element will be seen from the importing TTCN-3 module. There are two main differences between importing
TTCN-3 elements of the same editions and versioned or foreign elements:

e toimport fromaTTCN-3 module of another edition of from a non-TTCN-3 module the import statement shall
contain an appropriate language identifier string;

ETSI

98 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

. only versioned or foreign elements with a TTCN-3 view of a given edition are importable into a TTCN-3
module of that edition.

Importing can be done automatically using the al directive, in which case al importable objects shall automatically be
selected by the testing tool, or done manually by listing names of elements to be imported. Naturally, in the second case
only importable elements are allowed in the list.

When importing definitions from a non-TTCN-3 language, two principle approaches exist:

. With an implicit language mapping, non-TTCN-3 definitions are mapped internally in the TTCN-3 tool to the
respective TTCN-3 definitions as defined by the language mapping; the importing module works with the
internal representations of the imported definitions.

e With an explicit language mapping, non-TTCN-3 definitions are mapped directly to separate TTCN-3
definitions; the importing module imports the generated TTCN-3 and works with the mapped TTCN-3
definitions.

These lead to three options when using non-TTCN-3 language modulesin a TTCN-3 specification:

. The import statement imports the non-TTCN-3 module; the tool uses the internal representation of the implicit
mapping of the non-TTCN-3 modul€'s definitions according to the language mapping specification of that
language.

e Theimport statement imports the non-TTCN-3 module; the tool imports from a TTCN-3 module whichisan
explicit mapping of the non-TTCN-3 modul€e's definitions according to the language mapping specification of
that language.

e Theimport statement imports the explicit TTCN-3 representation of the non-TTCN-3 module; the tool imports
the TTCN-3 module which is an explicit mapping of the non-TTCN-3 module according to the language
mapping specification of that language.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Thelanguage specification may only be omitted if the referenced module contains TTCN-3 notation and the
TTCN-3 version is known.

b) Definitionsimported from non-TTCN-3 language sources have by default public visibility provided that no
other rules are defined in the respective language mapping (see ES 201 873-7 [i.5], ES 201 873-8 [i.6] or
ES 201 873-9 [i.7], respectively).

Examples

nmodul e MyNewivbdul e {
import from MyA dMvbdul e | anguage "TTCN 3: 2003" {
type My/Type

}

nodul e MyNewest Modul e {
i mport from MyNewMbdul e | anguage "TTCN 3: 2010" { inport all };
/'l the Il anguage specifications shall be identical, see clause 8.2.3.8

}

NOTE: Theimport mechanism is designed to allow the re-use of definitions from other TTCN-3 editions or from
other non-TTCN-3 language sources. The rules for importing definitions from specifications written in
other languages, e.g. SDL packages, may follow the TTCN-3 rules or may have to be defined separately.

ETSI

99 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

8.2.3.7 Importing of import statements from TTCN-3 modules
Visibleimport statements of TTCN-3 modules can be imported by other TTCN-3 modules.

Syntactical Structure

[Visibility] inport from Mddul eldentifier [LanguageSpec]
(" import all [;] UYL

Semantic Description

TTCN-3 supports importing of visible import statements from other TTCN-3 modules. This means that import
statements of the module, from which the import statements are imported, are re-imported to the importing module. For
example, if module B imports the import statements of module A, everything that isimported by A using import
statements visible for module B, is aso imported by B. If another module C imports all import statements from B, then
Cimportsall what A isimporting - provided that the import statements are visible to modules B and C.

It is not possible to import individual import statements of another module.

The import of import statements can be used in combination with imports of single definitions (see clause 8.2.3.2), with
imports of groups (see clause 8.2.3.3), and with imports of definitions of the same kind (see clause 8.2.3.4).

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Therestrictionsgivenin clause 8.2.3.1 apply.
b) Therestrictionsgiven in clause 8.2.3.6 apply.

¢) Importing of import statementsis only possible from other TTCN-3 modules, i.e. the language specification
(see clause 8.1) shall denote a TTCN-3 edition only, not a non-TTCN-3 language.

Examples

EXAMPLE: Importing of visible import statements

nmodul e A {
type integer T1;
type integer T2;
tenplate T1 t1 :
template T2 t2 :

* .0

modul e B {
public inmport fromA { type T1 }
type charstring T2;
tenplate T1 t1 :=(1, 2, 3);

}

nodul e C {
public inport fromB { inport all } // inports the inport statenments only
public inmport fromB { type T2 } /1 inmports the type B. T2

import fromA { tenplate all }

}
nodul e D {
private inmport fromC { inport all } // inports the inport statenments only

nmodul e E {
import fromD{ inport all }

/1 yields the follow ng
/1 modul e A knows

Il AT1 (defi ned)
Il A T2 (defined)
I Atl (defined)
Il At2 (defined)
/1

ETSI

100 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

/1 nmodul e B knows

I ATL (i mport ed)

/1 B.T2 (defined)

/1l B.tl (defined)

/1

/1 nodul e C knows

/1 ATL (inmported fromB inporting it fromA)
/1l B.T2 (i mported)

I Atl (i mported)

I At2 (i mport ed)

/1

/1 nmodul e D knows

Il ATL (imported fromC inporting it fromB inporting it fromA)
/1 B. T2 (inmported fromC inporting it from B)

/Il A't2 and A.t2 are not inported as their inports are private to C

/1 modul e E "knows" not hi ng
/1 as the inports of D are private and not visible to E

8.2.3.8 Compatibility of language specifications in imports

When importing into a TTCN-3 module, the language specification (see clause 8.1) of the importing module, the
language specification of the import statement and the language specification of the source module, where the imported
definitions are defined, have to be compatible according to the following rules.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A TTCN-3 module of any TTCN-3 edition can import from a non-TTCN-3 language source provided that a
TTCN-3 view for the non-TTCN-3 language exists (see clause 8.2.3.6).

b) Definitions or import statements are imported according to the language specification in which the definition
or the import statement is defined. If no language specification is given in this module, the language
specification of the import statement with which those definitions or import statements are to be imported, is
used instead. If the module, within which the definitions or the import statements are defined, and the import
statement for these definitions or import statements provide both a language specification, then they shall be
identical. If none of the two has alanguage specification, the language specification has to be known from
other sources, which istool specific.

¢) The TTCN-3 language specification in an import statement shall be lower or equal to the TTCN-3 language
specification of the importing module, i.e. a TTCN-3 module can only import from earlier or same editions of
TTCN-3 but not from later editions.
8.2.4 Definition of friend modules

Modules can define other modules to be friends.

Syntactical Structure

[private] friend nodul e Modul eldentifier { "," Mdul eldentifier } ;"
Semantic Description

Friendship to modulesis defined by the exporting modul e (the modul e that declares the definitions) not by the
importing module (the module that uses the module definitions of another module). Friendship can be cyclic.

If amoduleisfriend to a module from which it imports top-level definitions, al top-level definitions with public and
friend visibility are visible to the friend module. For non-friend modules, public top-level definitions are visible only.

Missing friend modules shall not cause an error.

NOTE: Friend modules can be checked by tools, however at most warning are to be issued if afriend module is
missing.

ETSI

101 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Restrictions
In addition to the general static rules of TTCN 3 given in clause 5, the following restrictions apply:
a) Only private visibility can be defined for friend definitions as they are always private.

Examples

nodul e MyModul eA {
friend nodul e MyModul eB, MyModul eC;

}
/1 MyModul eB and MyModul eC are friends of MyMdul eA

modul e MyModul eB {
friend nodul e MyModul eA;

}
/1l MyModul eA is friend of MyMdul eB

nmodul e MyModul eC {
}

8.2.5 Visibility of definitions

Top-level module definitions and import statements have a visibility, which can be explicitly set. They are by default
publ i ¢ except for imported and friend definitions. Import definitions are by default pri vat e. Friend definitions are
pri vat e only. Group definitionsare publ i ¢ only.

Syntactical Structure
[public | friend | private]
Semantic Description
The visibility controls whether atop-level definition or an import statement isimportable by another module.
Three visibilities are distinguished:
e Atop-level definition or an import statement with publ i ¢ visibility isimportable by any other module.

e A top-level definition or an import statement with f r i end visibility isimportable by friend modules only
(seeclause 8.2.4).

e Atop-level definition or an import statement with pri vat e visibility cannot be imported at all.

NOTE: Asspecifiedin restriction €) of clause 8.2.3.1, this means that importabl e definitions are imported
together with all information of referenced definitions that are necessary for the usage of the importable
definition, even if the referenced definition is private. Only the identifier of the referenced definitionis
not visible in the importing TTCN-3 module.

The visibility of groupsisawayspubl i c. Thevisibility of imported definitionsis by default pri vat e. All other
module definitions are by default publ i c.

The visibility of atop-level definition or an import statement defines their importability by another module. If the
top-level definition or the import statement is part of a group, this has no effect on the importability of the module
definition. The importability of atop-level definition by another module is summarized in table 9, the importability of
import statementsin table 10.

ETSI

102

Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Table 9: Visibility and import of module definitions

Visibility of Module definition | Module definition | Module definition | Module definition
module definition importable importable importable via importable via
directly by a directly by a [group import by afgroup import by a
non-friend friend module non-friend friend module
module module
public yes yes yes yes
friend no yes no yes
private no no no no
Table 10: Visibility and import of import statements
Visibility of Import imported | Import imported
import by a non-friend by a friend
module module
public yes yes
friend no yes
private no no
Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 givenin clause 5.

Examples

nmodul e MyModul eA {
friend nodul e MyModul eC,
private type integer M/ nteger;
/'l MyInteger is not visible to other nodul es
friend type charstring MyString;
/'l MyString is visible to friend nodul es
public type bool ean MyBool ean;
/1 MyBool ean is visible to all nodul es

}

nodul e MyModul eB {
import from MyModul eA al | ;
/1 MyString and Myl nteger are not visible and are not inported
/'l MyBool ean is inported

}

nodul e MyModul eC {
import from MyModul eA al | ;
/'l Mylnteger is not visible and is not inported
/1 MyString and MyBool ean are inported

8.3

The module control part may contain local definitions (i.e. constants or templates), local instances (i.e. variables or
timers) and describe the selection, parameterization and execution order (possibly repetitive) of the actual test cases. A
test case shall be defined in the modul e definitions part or imported from another module, and called in the control part.

Module control part

The control part of amodule calls the test cases with actual parameters and controls their execution. Program statements
can be used to specify the selection and execution order of the test cases. Definitions made in the module control part
have local visibility, i.e. can be used within the control part only.

Thisisexplained in more detail in clause 26.

ETSI

103 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLE:

modul e MyTest Suite
{ /1 This nodul e contains definitions ...

.const i nteger MyConstant := 1;
type record MyMessageType { ...}
tenpl ate MyMessageType MyMessage := { ...}

function MyFunctionl() { ...}
function MyFunction2() { ...}

festcase M/Test casel() runs on MyMICType { ...}
testcase MyTestcase2() runs on MyMICType { ...}

/1 ...and a control part so it is executable
control

{

var bool ean MyVariable; // local control variable

éxecute(MyTest Casel()); // sequential execution of test cases
execute(MyTest Case2());

9 Port types, component types and test configurations

TTCN-3 alows the (dynamic) specification of concurrent test configurations (or configuration for short). A
configuration consists of a set of inter-connected test components with well-defined communication ports and an
explicit test system interface which defines the borders of the test system (see figure 4).

NOTE: Additional configuration and deployment support for TTCN-3 is defined in the optional package [i.11].

TTCN Test system

<+“——>
MTC PTC,

‘l_, PTC, —T

+ Abstract Test SystemInterface v ¢

_/
Real Test System Interface

SUT

Figure 4: Conceptual view of atypical TTCN-3 test configuration

Within every configuration there shall be one (and only one) Main Test Component (MTC). Test components that are
not MTCs are called parallel test components or PTCs. The MTC shall be created by the system automatically at the
start of each test case execution. The behaviour defined in the body of the test case shall execute on this component.
During execution of atest case, other components can be created dynamically by the explicit use of thecr eat e
operation.

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e. there is no explicit
hierarchical relationship among them and the termination of a single PTC terminates neither other components nor the
MTC. When the MTC terminates, the test system has to stop all PTCs not terminated by the moment when the test case
execution is ended.

Communication between test components and between the components and the test system interface is achieved via
communication ports (see clause 9.1).

ETSI

104 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Test component types and port types, denoted by the keywords conmponent and por t , shall be defined in the module
definitions part. The actual configuration of components and the connections between them is achieved by performing
creat e and connect operations within the test case behaviour. The component ports are connected to the ports of
the test system interface by means of the map operation (see clause 21.1.1).

9.1 Communication ports

Test components are connected via their ports, i.e. connections among components and between a component and the
test system interface are port-oriented. Each port is modelled as an infinite FIFO queue which stores the incoming
messages or procedure calls until they are processed by the component owning that port (see figure 5).

NOTE: While TTCN-3 portsareinfinitein principlein area test system they may overflow. Thisisto be treated
as atest case error (see clause 24.1).

MTC [[m‘— PTC

—

Figure 5: The TTCN-3 communication port model

TTCN-3 connections are port-to-port and port-to-test system interface connections (see figure 6). There are no
restrictions on the number of connections a component may maintain. One-to-many connections are also allowed
(e.g. figure 6 (g) or (h)).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Thefollowing connections are not allowed (see figure 7):

- A port owned by a component A shall not be connected with two or more ports owned by the same
component (figure 7 (a) and (€)).

- A port owned by a component A shall not be connected with two or more ports owned by a component B
(seefigure 7(c)).

- A port owned by a component A can only have a one-to-one connection with the test system interface.
This means, connections as shown in figure 7 (b) and (d) are not allowed.

- Connections within the test system interface are not allowed (see figure 7 (f)).

- A port that is connected shall not be mapped and a port that is mapped shall not be connected (see
figure 7 (Q)).

b) Since TTCN-3 alows dynamic configurations and addresses, the restrictions on connections cannot always be
checked at compile-time. The checks shall be made at runtime and shall lead to atest case error when failing.

ETSI

test component

A

test component

B

@

test component

A

[
[

test component

B

(©)

test component

A

(e)

test component

A

test component

] s

test component

C

(@)

105

Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

test system
Y test component

-0

test system interface

(b)

sl e test component

A

%

—1]
1
test system interface (J\

(d)

test component

A

®

test system test component test component

A B

N A

test system interface \/

p—

(h)

Figure 6: Allowed connections

ETSI

test component

A

(a

test component

gl

(c)

test component

] B

test component

A

i

(e)

9.2 Test system

106

Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

test system

test component

test system interface

(b)

test system
Y test component

A
—]

mN

test system interface

O
od

(d)

test system

—~

test system interface

o5

®

test system

test component

A

test component

B

test system interface

@)

o

Figure 7: NOT allowed connections

interface

TTCN-3is used to test implementations. The object being tested is known as the Implementation Under Test or IUT.

The IUT may offer direct interfaces for testing or it may be part of system in which case the tested object isknown asa
System Under Test or SUT. Inthe minimal casethe IUT and the SUT are equivalent. In the present document the term
SUT isused in agenera way to mean either SUT or [UT.

In areal test environment test cases need to communicate with the SUT. However, the specification of the real physical
connection is outside the scope of TTCN-3. Instead, awell defined (but abstract) test system interface shall be
associated with each test case. A test system interface definition isidentical to acomponent definition, i.e. it isalist of
all possible communication ports through which the test case is connected to the SUT.

The test system interface statically defines the number and type of the port connectionsto the SUT during atest run.
However, the connections between the test system interface and the TTCN-3 test components are dynamic in nature and
may be modified during atest run by using map and unmap operations (see clause 21.1).

ETSI

107 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

A component type definition is used to define the test system interface because, conceptually, component type
definitions and test system interface definitions have the same form (both are collections of ports defining possible
connection points). When used as test system interfaces, components cannot make use of any constants, variables and
timers declared in the component type.

Syntactical Structure
The same as a component type definition (see clauses 6.2.10 and 6.2.10.1).
Semantic Description

Generally, a component type reference defining the test system interface shall be associated with every test case using
more than one test component. The ports of the test system interface shall automatically be instantiated by the system
together with the MTC when the test case execution starts.

The operation returning the component reference of the test system interfaceissyst em This shall be used to address
the ports of the test system.

In the case where the MTC is the only component that is instantiated during test execution, atest system interface need
not be associated to the test case. In this case, the component type definition associated with the MTC implicitly defines
the corresponding test system interface.

Variables, timers and constants declared in component types, which are used as test system interfaces will have no
effect.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) The same asfor component type definitions (see clauses 6.2.10 and 6.2.10.1).

Examples

EXAMPLE 1. Explicit definition of atest system interface
type conponent MyMICType
{

var integer MyLocal | nteger;
timer MyLocal Tiner;
port MyMessagePort Type PCOL

}

type conponent MyTest System nterface

port MyMessagePort Type PCOL, PCQO2;
port M/ProcedurePort Type PCC3

/'l MyTestSystem nterface is the test systeminterface
testcase MyTestcasel () runs on M/MICType system MyTest System nterface {
/'l establishing the port connections
map(ntc: PCOL, system PCQ2);
/1 the testcase behaviour
...

}
EXAMPLE 2 Implicit definition of atest system interface

/'l MyMICType is the test systeminterface
testcase MyTestcase2 () runs on MyMICType {
/'l map statenents are not needed
/'l the testcase behavi our
...

ETSI

108 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

10 Declaring constants

TTCN-3 constants are runtime constants. After value assignment, they do not change their value during test execution.
They can be used on the right hand side of assignments, in expressions, in actual parameters, and in template
definitions. Constants used within type definitions have to have values known at compile-time.

Syntactical Structure

const Type { Constldentifier [ArrayDef] ":=" ConstantExpression [","] } [";"]
Semantic Description

A constant assigns a name to a fixed value. A valueis assigned only once to a constant, at the place of its declaration.
The constant does not change its value during test execution. The constant is defined only once, but can be referenced
multipletimesin a TTCN-3 module.

If functions are used for the initialization of constants, it is strongly advised to adhere to the rules defined in
clause 16.1.4. Not following these rules may cause non-deterministic test executions.

Optiona fields of record and set constants or constant fields can be initialized explicitly or implicitly. For implicit
initialization of the optional fields of a constant or a constant field, an opt i onal attribute withthevalue™i npli cit
om t" (seeclause 27.7) shall be associated with it either directly or viathe attribute distribution (scoping) mechanism
(seeclause 27.1.1).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Constants shall not be of port type.

NOTE: Theonly value that can be assigned to global constants or component constants of default or component
typesisthe specia valuenul | .

b) Constant expressionsinitializing constants, which are used in type and array definitions, shall only contain
literals, predefined functions except of r nd (see clause 16.1.2), operators specified in clause 7.1, and other
constants obeying the limitations of this clause.

Examples

1:

const integer MyConst1l : ;
true, MyConst3 : = fal se;

const bool ean MyConst2 :

11 Declaring variables

TTCN-3 variables are statically typed variables. Variables are either value variables to store values or template
variables to store templates.

Variables can be of simple basic types, basic string types, structured types, special datatypes (including subtypes
derived from these types) as well as address, component or default types.

Variables can be declared and used in the module control part, test cases, functions and altsteps. Additionally, variables
can be declared in component type definitions. These variables can be used in test cases, altsteps and functions which
are running on a given component type.

Variables can be declared lazy using the @lazy modifier.
Alternatively, variables can be declared fuzzy using the @fuzzy modifier.

Lazy and fuzzy features are valid only in the scope, where the variables names are visible. For example, if afuzzy
variableis passed to aformal parameter declared without a modifier, it losesits fuzzy feature inside the called function.
Similarly, if it is passed to alazy formal parameter, it becomes lazy within the called function.

ETSI

109 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Whenever alazy or fuzzy variable is assigned, the TE isrequired to save the lexical environment (the set of directly or
indirectly referenced values and templates) valid at the time of the assignment, so that it is possible to resolve the
expression at the time of evaluation of the lazy or fuzzy value or template. If the assignment was made on alower scope
than the evaluation, saving the lexical environment extends lifetime of the referenced variables defined on that lower
scope.

Example
var @uzzy integer v_fuzzy := 1;
var integer v_var;
var boolean v_condition := true;

if (v_condition) {

var bool ean v_local := 0;

v_fuzzy := v_local;

v_local := 10;
/1 although v_local is no longer valid at this point, v_fuzzy still evaluates to 10 because
/1 the lexical environment is available to the fuzzy vari abl e:
v_var := v_fuzzy;

11.1 Value variables

A TTCN-3 vaue variable stores values. It is declared by the var keyword followed by atype identifier and a variable
identifier. Aninitial value can be assigned at variable declaration.

It may be used at the right hand side as well as at the left hand side of assignments, in expressions, following the
r et ur n keyword in bodies of functions with areturn clause in their headers and may be passed to both value and
template-type formal parameters.

Syntactical Structure

var [@azy | @uzzy] Type Varldentifier [ArrayDef] [":=" Expression]
{[","] Varldentifier [ArrayDef] [":=" Expression] } [";" 1]

Semantic Description

A value variable associates a name with the location of avalue. A value variable may change its value during test
execution severa times. A value can be assigned several timesto avalue variable. The value variable can be referenced
multiple timesin a TTCN-3 module.

Restrictions

In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Expression shall be of type Type.
b) Vauevariablesshall store values only.

¢) Vauevariables shall not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

d) Useof uninitialized value variables at other places than the left hand side of assignments, in return statements,
or as actual parameters passed to formal parameters shall cause an error.

€) Theinitialization or assignment of afuzzy or lazy variable shall not contain function calls of functions with
inout or out parameters. The called functions may use other functions with inout or out parameters internally.

f) If lazy or fuzzy value variables are used in deterministic contexts (i.e. during the evaluation of a snapshot or
initialization of global non-fuzzy templates), the same restrictions apply to al functions used in the value
assigned to the variable as for functions described in clause 16.1.4.

g) Theexpression assigned to alazy or fuzzy variable might contain adirect or indirect reference to this variable.
Evaluation of such an expression shall cause adynamic error.

ETSI

110 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Examples

var integer MyVarO;

var integer MyVarl := 1,

var boolean MyVar2 := true, My/Var3 : = fal se;

var @azy integer MyLazyVarl := MyVar 1+1;

MyVarl : = 2;

MyVar2 := MyLazyVarl; // MLazyVarl evaluates to 2 + 1

MyLazyVarl := MyLazyVarl + 1,

MyVar2 := MyLazyVarl; // causes an error as MyLazyVarl references itself

11.2 Template variables

A TTCN-3 template variable stores templates. They are declared by thevar t enpl at e keyword followed by atype
identifier and avariable identifier. Aninitial content can be assigned at declaration. In addition to values, template
variables may also store matching mechanisms (see clause 15.7).

Template variables may be used on the right hand side as well as on the left hand side of assignments, following the
r et ur n keyword in bodies of functions defining atemplate-type return value in their headers and may be passed as
actual parametersto template-type formal parameters. It is also allowed to assign atemplate instance to atemplate
variable or atemplate variable field.

Syntactical Structure

var tenplate [@azy | @uzzy] [restriction] Type Varldentifier [ArrayDef] ":=" Tenpl at eBody
{[","] Varldentifier [ArrayDef] ":=" TenplateBody } [";"]

Semantic Description

A template variable associates a name with the location of atemplate or avalue (as every value is also atemplate).
A template variable may change its template during test execution several times. A template or value can be assigned
several times to atemplate variable. The template variable can be referenced multiple timesin a TTCN-3 module.

The content of atemplate variable can be restricted to the matching mechanisms specific value and omit in the same
way as formal template parameters, see clause 5.4.1.2. The restriction template (omit) can be replaced by the shorthand
notation omit.

NOTE 1: String and list type templates can be concatenated, see clause 15.11.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Template variables shal not be declared or used in a module definitions part (i.e. global variables are not
supported in TTCN-3).

b) When used on the right hand side of assignments template variables shall not be operands of TTCN-3
operators (see clause 7.1) and the variable on the left hand side shall be a template variable too.

¢) When accessing element of template variables either on the left hand side or on the right hand side of
assignments, the rules given in clause 15.6 shall apply.

NOTE 2: Whileitis not allowed to directly apply TTCN-3 operations to template variables, it is alowed to use the
dot notation and the index notation to inspect and modify template variable fields.

d) Useof uninitialized template variables at other places than the left hand side of assignments, in return
statements, or as actual parameters passed to formal parameters shall cause an error.

e Void

f) If thetemplate variable is restricted, then the template used to initialize it shall contain only the matching
mechanisms as described in clause 15.8.

g) Templatevariables, similarly to global and local templates, shall be fully specified in order to be used in
sending and receiving operations.

h) Restrictions on templatesin clause 15 shall apply.

ETSI

111 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

i) Theinitiaization or assignment of afuzzy or lazy variable shall not contain function calls of functions with
inout or out parameters. The called functions may use other functions with inout or out parameters internally.

k) If lazy or fuzzy template variables are used in deterministic contexts (i.e. during the eval uation of a snapshot or
initialization of globa non-fuzzy templates), the same restrictions apply to all functions used in the template
body assigned to the variable as for functions described in clause 16.1.4.

Examples

var tenplate integer MVarTenpl := ?;
var tenplate M/Record MyVarTenp2 := { fieldl := true, field2 := * },
MyVar Tenp3 := { fieldl :=?, field2 := MyVarTenpl };
var tenplate @uzzy float FuzzTenpl := rnd(); // evaluated on every usage
var tenplate @uzzy M/Record FuzzTenp2 := { rnd() < 0.5, float2int(rnd()) }
var tenplate @azy float LazyTenpl := FuzzTenpl; // eval uates FuzzTenpl
var tenplate @azy MyRecord LazyTenp2 : =
{ LazyTenpl < 0.5, float2int(FuzzTenpl) } // evaluates LazyTenpl and FuzzTenpl
LazyTenp2.fieldl := true; // evaluates LazyTenp2 and overwites fieldl with true

12 Declaring timers

TTCN-3 provides atimer mechanism. Timers can be declared and used in the module control part, test cases, functions
and altsteps. Additionally, timers can be declared in component type definitions. These timers can be used in test cases,
functions and altsteps which are running on the given component type.

A timer declaration may have an optional default duration value assigned to it. The timer shall be started with this value
if no other value is specified. The timer value shall be anon-negative f | oat value (i.e. greater than or equal to 0.0)
where the base unit is seconds.

In addition to single timer instances, timer arrays can also be declared. Default duration(s) of the elements of atimer
array shall be assigned using avalue array. Default duration(s) assignment shall use the array value notation as specified
in clause 6.2.7. If the default duration assignment is wished to be skipped for some element(s) of the timer array, it shall
explicitly be declared by using the not used symbol (*-").

Syntactical Structure
timer { Tineridentifier [ArrayDef] ":=" Timervalue ["," 1 } [;"]
Semantic Description

Timers are local to components. A component can start and stop atimer, check if atimer is running, read the elapsed
time of arunning timer and process timeout events after timer expiration. The timer value is interpreted with a base unit
of seconds.

NOTE 1: Timers declared and started in scope units such as functions cease to exist when the scope unit is left.
They do not contribute to the test behaviour once the scope unit is left.

NOTE 2: Itisnot possible to define atimer array as type.
Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Incaseof asingletimer, the default duration value shall resolve to a non-negative numerical float value
(i.e. the value shall be greater or equal 0.0, infinity and not_a _number are disallowed).

b) Incaseof atimer array, it shall resolve to an array of float values obeying to restriction a) above of the same
size asthe size of the timer array.

Examples

EXAMPLE 1: Singletimer

timer MTinerl := 5E3;
/1 declaration of the tiner MyTinerl with the default value of 5ns

timer MyTinmer2; // declaration of MyTiner2 without a default tiner value i.e. a value has

ETSI

112 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

/1 to be assigned when the tiner is started

EXAMPLE 2: Timer array

timer t_Mytinerl[5] :={ 1.0, 2.0, 3.0, 4.0, 5.0}
/1 all elenents of the tiner array get a default duration.

timer t_Mtinmer2[5] :={ 1.0, -, 3.0, 4.0, 5.0}
/1 the second tinmer (t_Mtiner2[1]) is left without a default duration.

13 Declaring messages

One of the key elements of TTCN-3 is the ability to send and receive simple or complex messages over message-based
ports defined by the test configuration (see clauses 9 and 21). These messages may be those explicitly concerned with
testing the SUT or with the internal co-ordination and control messages specific to the relevant test configuration.

Messages are instances of types declared in the infout/inout clauses of message port type definition.

Any type can be declared as type of a message in a message port type definition, i.e. values of any basic or structured
type (see clauses 6.1 and 6.2) can be sent or received. Received messages can also be declared as a combination of
value and matching mechanisms (see clause 15.5). Instances of messages can be declared by global, local or in-line
templates (see clause 15) or being constructed and passed via variables or template variables (see clause 11) and
parameters or template parameters (see clause 5.4).

Syntactical Structure

See syntactical structure of types (see clause 6).

Semantic Description

See semantic description of types (see clause 6).

Restrictions

No specific restrictions in addition to the general static rules of TTCN-3 given in clause 5.

Examples

/1 a structured, ordered nessage with two fields
type record ARecord { integer i, float f }

14 Declaring procedure signatures

Procedure signatures (or signatures for short) are needed for procedure-based communication. Procedure-based
communication may be used for the communication within the test system, i.e. among test components, or for the
communication between the test system and the SUT. In the latter case, a procedure may either be invoked in the SUT
(i.e. thetest system performsthe call) or in the test system (i.e. the SUT performsthe call).

Syntactical Structure
signature Signatureldentifier
"("{ [in] inout | out] Type ValueParldentifier [","] } ")"
[(return Type) | noblock]
[exception "(" ExceptionTypelList ")"]
Semantic Description

For al used procedures, i.e. procedures used for the communication among test components, procedures called from the
SUT and procedures called from the test system, a procedure si gnat ur e shall be defined in the TTCN-3 module.

ETSI

113 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)
TTCN-3 supports blocking and non-blocking procedure-based communication. By default, signature definitions without
the nobl ock keyword are assumed to be used for blocking procedure-based communication.

Signature definitions may have parameters. Parameters shall be of datatype only, i.e. of abasic type, a structured type
thereof or a subtype thereof. Withinasi gnat ur e definition the parameter list may include parameter identifiers,
parameter types and their direction, i.e.i n, out , ori nout . Thedirectioni nout and out indicate that these
parameters are used to retrieve information from the remote procedure.

NOTE 1. Thedirection of the parametersis as seen by the called party rather than the calling party.

A remote procedure may return a value after its termination. The type of the return value shall be specified by means of
ar et ur n clausein the corresponding signature definition.

Exceptions that may be raised by remote procedures are represented in TTCN-3 as values of a specific type. Therefore
templates and matching mechanisms can be used to specify or check return val ues of remote procedures.

NOTE 2: The conversion of exceptions generated by or sent to the SUT into the corresponding TTCN-3 type or
SUT representation is tool and system specific and therefore beyond the scope of the present document.

The exceptions are defined in the form of an exception list included inthe si gnat ur e definition. Thislist defines all
the possible different types associated with the set of possible exceptions (the meaning of exceptions themselves will
usualy only be distinguished by specific values of these types).

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) Signature definitions for non-blocking communication shall use the nobl ock keyword, shall only havei n
parameters and shall have no return value but may raise exceptions.

b) Signature parameters shall not be of port, component, timer or default type or of structured types having fields
of port, component, timer or default type.

Examples
si gnature MyRenoteProcOne (); /'l MyRenoteProcOne will be used for bl ocking
/] procedure-based comunication. It has neither
/] paraneters nor a return val ue.
si gnature MyRenoteProcTwo () nobl ock; /1 MyRenoteProcTwo will be used for non bl ocking

/] procedure-based comunication. It has neither
/] paraneters nor a return val ue.

signature MyRenoteProcThree (in integer Parl, out float Par2, inout integer Par3);

/! MyRenoteProcThree will be used for bl ocking procedure-based conmunication. The procedure
/'l has three paraneters: Parl an in paraneter of type integer, Par2 an out paraneter of

/1 type float and Par3 an inout paraneter of type integer.

si gnature MyRenoteProcFour (in integer Parl) return integer;

/'l MyRenot eProcFour will be used for bl ocking procedure-based conmuni cation. The procedure
/1 has the in parameter Parl of type integer and returns a value of type integer after its
/] termnation

si gnature MyRenoteProcFive (inout float Parl) return integer

exception (ExceptionTypel, ExceptionType2);
/'l MyRenoteProcFive will be used for bl ocking procedure-based communication. It returns a
/1 float value in the inout paraneter Parl and an integer value, or may raise exceptions of
/1 type ExceptionTypel or ExceptionType2

signature MyRenoteProcSix (in integer Parl) nobl ock

exception (integer, float);
/1 MyRenoteProcSix will be used for non-bl ocking procedure-based comruni cation. |In case of
/1 an unsuccessful termnation, M/RenoteProcSix raises exceptions of type integer or float.

15 Declaring templates

Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the
templ ate specification. Templates can be defined globally or localy.

ETSI

114 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Templates provide the following possibilities:
a) they areaway to organize and to re-use test data, including a simple form of inheritance;
b) they can be parameterized;
c) they allow matching mechanisms;
d) they can be used with either message-based or procedure-based communications.

Within atemplate values, ranges and matching attributes can be specified and then used in both message-based and
procedure-based communications. Templates may be specified for any TTCN-3 type or procedure signature. The
type-based templates are used for message-based communications and the signature templates are used in
procedure-based communications.

A template can be declared fuzzy using the @fuzzy modifier.

NOTE 1. Using afuzzy template from a non-fuzzy template causes evaluation of the fuzzy template. Thus, for
unparameterized non-fuzzy templates, the result of the used fuzzy templates will stay the same for every
usage.

A modified template declaration (see clause 15.5) specifies only the fields to be changed from the base template, i.e. it
isapartia specification.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:
a) Templatesshal not be of def aul t or port type.

b) Templates shall not be of a structured type that contains fields of def aul t or port type on any level of
nesting.

NOTE 2: Theanyt ype type does not include the def aul t type nor port types (see clause 6.2.6), so that
restriction b) does not apply to anytype templates.

¢) Thebody of afuzzy template shall not contain function calls of functions with inout or out parameters. The
called functions may use other functions with inout or out parameters internally.

d) Fuzzy features are valid only in the scope, where the templates names are visible. For example, if afuzzy
template is passed to aformal template parameter declared without a modifier, it losesits fuzzy feature inside
the called function.

Examples

type record MyRecord {
defaul t def

}

type uni on MyUnion {
i nt eger choi cel,
MyRecord choi ce2

}

tenpl ate MyUnion t_integerChosen := { choicel := 5}
/1 shall cause an error as the type MyUnion contains MyRecord, which includes
I/l a field of default type.

external function garble(charstring str) return str;

tenplate @uzzy charstring t_fuzzy := garble("foobar"); // every usage of t_fuzzy re-eval uates
/1 the function call

15.1 Declaring message templates

I nstances of messages with actual values may be specified using templates. A template can be thought of as being a set
of instructions to build a message for sending or to match a received message.

Syntactical Structure

See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).

ETSI

115 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Semantic Description

A template used in asend operation defines a complete set of field values comprising the message to be transmitted
over aport.

NOTE: For sending templates, omitting an optional field is considered to be a value notation rather than a
matching mechanism.

A templateused inar ecei ve, t ri gger or check operation defines a data template against which an incoming
message is to be matched. Matching mechanisms, as defined in clauses 15.7 and 15.8 and in annex B, may be used in
receive templates. No binding of the incoming values to the template shall occur.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Atthetimeof asend operation, the used template shall be completely initialized and all fields shall resolveto
actual values or to omit and no other matching mechanisms shall be used in the template fields, neither directly
nor indirectly.

At thetimeof ar ecei vi ng operation, the matching template shall be completely initialized.

b) Optional fields of record and set templates or template fields can be initialized explicitly or implicitly. For
implicit initialization of the optional fields of atemplate or atemplate field, an opt i onal attribute with the
value"inplicit omt" (seeclause27.7) shall be associated with it either directly or viathe attribute
distribution (scoping) mechanism (see clause 27.1.1).

Examples

EXAMPLE 1: Template for sending messages

/1 G ven the nessage definition
type record MyMessageType

{
i nt eger fieldl optional,
charstring field2,
bool ean field3

}

/1 a nessage tenplate could be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := omt,
field2 := "M string",
field3 := true

}

/1 and a correspondi ng send operation could be
M/PCO. send(MyTenpl at e) ;

EXAMPLE 2: Template for receiving messages

/1 G ven the nessage definition
type record MyMessageType
{

i nt eger fieldl optional,
charstring field2,
bool ean field3

}

/1 a nessage tenplate mght be
tenpl ate MyMessageType MyTenpl ate: =

fieldl := ?,
field2 := pattern "abc*xyz",
field3 := true

}

/1 and a corresponding receive operation could be
M/PCO. recei ve(M/Tenpl ate) ;

ETSI

116 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLE 3: Template for receiving messages

/] When used in a receiving operation this tenplate will natch any integer val ue
tenpl ate integer Mtenplate := ?;

/1 This tenplate will nmatch only the integer values 1, 2 or 3
tenpl ate integer Mtenplate := (1, 2, 3);

15.2 Declaring signature templates

Instances of procedure parameter lists with actual values may be specified using templates. Templates may be defined
for any procedure by referencing the associated signature definition.

Syntactical Structure
See syntactical structure of global and local templates (see clause 15.3) and of in-line templates (see clause 15.4).
Semantic Description

A signature template defines the values and matching mechanisms of the procedure parameters only, but not the return
value. The values or matching mechanisms for a return have to be defined within the reply (see clause 22.3.3) or
getreply operation (see clause 22.3.4).

A templateusedinacal | orrepl y operation defines a complete set of field valuesfor al i n and i nout
parameters. At thetime of the cal | operation, al i n andi nout parametersin the template shall resolve to actual
values, no matching mechanisms shall be used in these fields, either directly or indirectly. Any template specification
for out parametersissimply ignored, thereforeit is allowed to specify matching mechanisms for these fields, or to
omit them (see annex B).

A template used in aget cal | operation defines a data template against which the incoming parameter fields are
matched. Matching mechanisms, as defined in annex B, may be used in any templates used by this operation. No
binding of incoming values to the template shall occur. Any out parameters shall be ignored in the matching process.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Atthetimeofacal | ,reply andrai se operation, the used template shall be completely initialized and all
i n/i nout parametersinacal | , al out /i nout parametersinar epl y or r ai se operation shall resolve
to specific values or to omit and no other matching mechanisms shall be used for these parameters, neither
directly nor indirectly.

b) The NotUsedSymbol shall only be used in signature templates for parameters which are not relevant and in
modified template declarations and modified in-line templates to indicate no change for the specified field or
element.

Atthetimeof aget cal | , get r epl y and cat ch operation, the matching template shall be completely initialized.

c) Optiona fields of record and set parameters or parameter fields can be initialized explicitly or implicitly. For
implicit initialization of a parameter or a parameter field, an opt i onal attribute with the value" i npl i ci t
onmit" (seeclause 27.7) shall be associated with it either directly or viathe attribute distribution (scoping)
mechanism (see clause 27.1.1).

Examples

EXAMPLE 1. Templates for invoking and accepting procedures

/1 signature definition for a renpte procedure
signature RenoteProc(in integer Parl, out integer Par2, inout integer Par3) return integer;

/1 exanple tenplates associated to defined procedure signature
tenpl ate RenoteProc Tenpl atel: =

Parl1 :
Par2 :
Par 3 :

1,
2,
3

ETSI

117 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

tenpl ate RenoteProc Tenpl at e2:

{
Parl := 1,
Par2 := ?,
Par3 := 3
}
tenpl ate RenoteProc Tenpl ate3: =
{
Parl := 1,
Par2 := ?,
Par3 := ?
}

tenpl at e Renot eProc Tenpl at e4: =7?;
EXAMPLE 2: In-line templates for invoking procedures
/1l Gven exanple 1 in this clause

/1 Valid invocation since all in and inout paraneters have a distinct val ue
M/PCO. cal | (Renot eProc: Tenpl at el) ;

/1 Valid invocation since all in and inout paraneters have a distinct val ue
M/PCO. cal | (Renot eProc: Tenpl at e2) ;

/1 Invalid invocation causing an error
/1 since the inout paranmeter Par3 has a matching attribute not a val ue
M/PCO. cal | (Renot eProc: Tenpl at e3) ;

/1 Tenpl ates never return values. In the case of Par2 and Par3 the values returned by the
/1 call operation shall be retrieved using an assignnent clause at the end of the call statenent

EXAMPLE 3: In-line templates for accepting procedure invocations
/1l Gven exanple 1 in this clause

// Valid getcall, it will match if Parl == 1 and Par3 == 3
M/PCO. get cal | (Renot eProc: Tenpl atel);

// Valid getcall, it will natch if Parl == 1 and Par3 == 3
M/PCO. get cal | (Renot eProc: Tenpl at e2) ;

/1 Valid getcall, it will match on Parl == 1 and Any val ue of Par3
M/PCO. get cal | (Renot eProc: Tenpl at e3) ;

EXAMPLE 4: In-line templates for accepting procedure replies
/1l Gven exanple 1 in this clause

/1 Valid getreply, in parameters will be ignored, matches if return value is 4
M/PCO. get r epl y(Renot eProc: Tenpl at e2 val ue 4);

/1 Valid getreply, accepting any reply for RenoteProc
M/PCO. get r epl y(Renot eProc: ?);

// Valid getreply, also accepting any reply for RenoteProc
M/PCO. get cal | (Renot eProc: Tenpl at e4 val ue ?);

15.3 Global and local templates

TTCN-3 alows defining global templates and local templates.

Syntactical Structure

tenplate [restriction] [@uzzy] Type Tenplateldentifier ["(" Tenpl ateFornal ParList ")"]
[nodifies TenplateRef] ":=" Tenpl at eBody

NOTE: The optional restriction part is covered by clause 15.8.

ETSI

118 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

Semantic Description

Globa templates shall be defined in the module definitions part. Local templates shall be defined in module control,
testcases, functions, atsteps or statement blocks. Both global and local templates shall adhere to the scoping rules
specified in clause 5.

Both global and local templates can be parameterized. The actual parameters of atemplate can include values and
templates. The rules for formal and actual parameter lists shall be followed as defined in clause 5.2.

Both global and local templates are initialized at the place of their declaration. This means, all template fields which are
not affected by parameterization shall receive avalue or matching mechanism. Template fields affected by
parameterization areinitialized at the time of template use.

If functions are used for the initialization of module parameters, it is strongly advised to adhere to the rules defined in
clause 16.1.4. Not following these rules may cause non-deterministic test executions.

At the time of their use (e.g. in communication operationssend, r ecei ve,cal | ,getcal I, etc.), itisalowed to
change template fields by in-line modified templates, to pass in values via value parameters as well asto passin
templates viatemplate parameters. The effects of these changes on the values of the template fields do not persist in the
template subsequent to the corresponding communication event.

Restrictions
In addition to restrictions in clause 15, the following restrictions apply:

a) Thedot notation such as MyTemplatel d.Fieldld shall not be used to set or retrieve values in templatesin
communication events. The "->" symbol shall be used for this purpose (see clause 23).

b) Restrictions on referencing elements of templates or template fields are described in clause 15.6.

c) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

/1 The tenplate
tenpl ate MyMessageType MyTenpl ate (integer MyFormal Param: =

fieldl : = MyFor nal Param
field2 := pattern "abc*xyz",
field3 := true

}

/1 could be used as follows
pcol. send(MyTenpl at e(123));

15.4 In-line Templates

Templates can be specified directly at the place they are used. Such templates are called in-line templates.

Syntactical Structure

[Type ":" 1 [nodifies Tenpl ateRef Wt hParList ":="] Tenpl at eBody

NOTE 1. Anin-linetemplate is an argument of a communication operation or an actual parameter of atestcase,
function or atstep call, i.e. it isaways placed within parenthesis and potentially separated with a comma.

Semantic Description
In-line templates can be defined directly at the place of its use.

In-line templates do not have names, therefore they cannot be referenced or reused. The lifetime of in-line templatesis
the TTCN-3 statement (an assignment, a testcase/function/alstep invocation, a return from a function, a communication
operation), where they are defined.

Restrictions

ETSI

119 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

In addition to restrictions in clause 15, the following restrictions apply:

a) Templates may be specified for any TTCN-3 type defined in table 3 and for any procedure signature except for
port anddef aul t types.

b) Thetypefield may only be omitted when the type isimplicitly unambiguous.

NOTE 2: For litera in-line templates, the following types may be omitted: i nt eger, f | oat , bool ean,
bitstring,hexstring,octetstring.

NOTE 3: Types of constants, parameters and variables of the actual scope are always unambiguous and can hence
always be omitted.

¢) In-linetemplates containing instead of values or inside values matching mechanisms (see clause 15.7) can only
be defined in arguments of receiving communication operations (i.e. r ecei ve, tri gger, check,
getcal | ,getrepl y and cat ch), inarguments of thenat ch and sel ect case operations, in actual
template parameters, at the right hand side of assignments (when there is atemplate variable at the |eft hand
side of the assignment) and in return statements of template returning functions. In-line templates not
contai ning matching mechanisms can be defined wherever values are allowed.

d) When used in communication operations, the type of the in-line template shall bein the port list over which
the template is sent or received. In the case where there is an ambiguity between the listed type and the type of
the value provided (e.g. through subtyping) then the type name of the in-line template shall be included in the
communication operation.

€) Thereexist anumber of restrictions on the functions used in expressions when specifying templates or
template fields; these are specified in clause 16.1.4.

Examples

M/PCO. recei ve(charstring: "abcxyz");

15.5 Modified templates

Normally, atemplate specifies a set of base or default values or matching symbols for each and every field defined in
the appropriate type or signature definition. In cases where small changes are needed to specify a new template, it is
possible to specify a modified template. A modified template specifies modifications to particular fields of the original
template, either directly or indirectly. Aswell as creating explicitly named modified templates, TTCN-3 alows the
definition of in-line modified templates.

Syntactical Structure

Global or local modified template:

tenplate [restriction] [@uzzy] Type Tenplateldentifier ["(" Tenpl ateFornal ParList ")"]
nodi fi es Tenpl ateRef ":=" Tenpl at eBody

NOTE 1: The optional restriction part is covered by clause 15.8.

In-line modified template:

[Type ":"] nodifies Tenpl ateRef WthParList ":=" Tenpl at eBody
Semantic Description

The nodi f i es keyword denotes the parent template from which the new, or modified template shall be derived. This
parent template may be either an original template or a modified template.

The modifications occur in alinked fashion eventually tracing back to the original template. If atemplate field and its
corresponding value or matching symbol is specified in the modified template, then the specified value or matching
symbol replaces the one specified in the parent template. If atemplate field and its corresponding value or matching
symbol is not specified in the modified template, then the value or matching symbol in the parent template shall be
used. When the field to be modified is nested within atemplate field which is a structured field itself, no other field of
the structured field is changed apart from the explicitly denoted one(s).

ETSI

120 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

When individual values of a modified template or a modified template field of r ecor d of type wished to be changed,

and only in these cases, the value assignment notation may also be used, where the left hand side of the assignment is
the index of the element to be altered.

Formal value or template parameters of modified templates inherit the default value or respectively template of the
corresponding parameter of their parent templates only, if thisis denoted by the dash (don't change) symbol at the place
of the parameters' default value or respectively template.

Modified templates may also be restricted. Template restrictions are specified in clause 15.8.
A modified template may also be declared fuzzy using the @fuzzy modifier.

NOTE 2: If afuzzy modified template modifies a non-fuzzy unparameterized template, the inherited fields before
modification will be the same for every evauation of the fuzzy template.

Restrictions
In addition to the general static rules of TTCN-3 given in clause 5, the following restrictions apply:

a) A modified template shall not refer to itself, either directly or indirectly, i.e. recursive derivation is not
allowed.

b) If abasetemplate has aformal parameter list, the following rules apply to all modified templates derived from
that base template, whether or not they are derived in one or several modification steps:

1) thederived template shall not omit parameters defined at any of the modification steps between the base
template and the actual modified template;

2) aderived template can have additional (appended) parametersif wished;

3) if thedash (don't change) symbol is used at the place of a default value or default template, the
corresponding parameter of the parent template shall have a valid default value or default template, either
assigned directly or inherited. If not, this shall cause an error.

¢) Resdtrictions on referencing elements of templates or template fields are described in clause 15.6: for modified
templates the rules for the left hand side of assignments apply.

d) Limitations on template restrictions described in clause 15.8 shall apply.
Examples

EXAMPLE 1:

/1 Gven
type record MyRecordType

integer fieldl optional,
charstring field2,
bool ean fiel d3

}
tenpl ate MyRecordType MyTenpl atel : =

fieldl := 123,
field2 := "A string",
field3 := true

/1 then witing
tenpl ate M/RecordType MyTenpl ate2 nodifies MyTenpl atel : =

fieldl :
field2 :

omt, /1 fieldl is optional but present in MyTenplatel
"A nodified string"

/1 field3 is unchanged

/1 is the same as witing
tenpl ate MyRecordType MyTenpl ate2 : =

fieldl := onmit,
field2 := "A nodified string",
field3 := true

ETSI

121 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

EXAMPLE 2. Modified record of template

tenpl ate MyRecordOf Type MyBaseTenplate :={ 0, 1, 2, 3, 4, 5 6, 7, 8, 9 };
tenpl ate MyRecordOf Type MyModi f Tenpl ate nodi fi es MyBaseTenplate := { [2] := 3, [3] := 2 };
/'l MyModi f Tenpl ate shall match the sequence of values { O, 1, 3, 2, 4, 5, 6, 7, 8 9}

EXAMPLE 3: Modified in-line template

/1 Gven
tenpl ate MyMessageType Setup : =
{ fieldl : = ,
field2 := "abc",
field3 := true
}

/1 Could be used to define an in-line nodified tenplate of Setup
pcol.send (nodifies Setup := {fieldl:= 76});

EXAMPLE 4: Modified parameterized template

/1 Gven

tenpl ate MyRecordType MyTenpl at el(i nteger MyPar): =
fieldl : = MPar,
field2 := "A string",
field3 := true

}

/1 then a nodification could be
tenpl ate MyRecordType MyTenpl ate2(i nteger MyPar) nodifies MyTenpl atel : =

{ /1 fieldl is paranmeterized in Tenplatel and renai ns al so paraneterized in Tenpl at e2
field2 := "A nodified string"

}

EXAMPLES: Default values of modified parameterized templates
/1 Gven

tenpl ate M/RecordType MyTenpl atell (integer p_int : =5):={
/1 p_int has the default value 5

fieldl := p_int,
field2 := "A string",
field3 := true

}

/1 then possible tenplate nodifications are

tenpl ate MyRecordType MyTenpl atel2(integer p_int) nodifies MyTenpl atell : = {
/1 p_int had a default value in MyTenpl atell but has none in this tenplate
field2 := "B string"

}

tenpl ate MyRecordType MyTenpl atel3(integer p_int := 0) nodifies MTenplatel2 : = {
/1 p_int has the default value 0
/1 no change is made to the tenplate's content, but only to the default value of p_int

}

tenpl ate MyRecordType MyTenpl atel4(integer p_int := -) nodifies MyTenplatel3d : = {
/1 p_int inherits the default value O fromits parent MyTenpl atel3
field2 := "C string"

}

tenpl ate MyRecordType MyTenpl atel5(integer p_int := -) nodifies MTenplateld : = {

/1 p_int inherits the default value 0 from MyTenpl atel3 via M/Tenpl at el4
field2 := "D string"

}

tenpl ate MyRecordType MyTenpl at el6(i nteger p_int) nodifies MyTenpl atel5 : = {
/1 p_int has no default val ue

}

tenpl ate MyRecordType MyTenpl atel7(integer p_int := -) nodifies MyTenplatel6 := {
/'l causes an error as p_int has no default value in the parent tenplate M/Tenpl atel6
field2 := "E string"

}

ETSI

122 Final draft ETSI ES 201 873-1 V4.6.1 (2014-04)

15.6 Referencing elements of templates or template fields

This clause defines rules and restrictions when referencing elements of templates or template fields.

15.6.1 Referencing individual string elements

Itisnot alowed to reference individual string elementsinside templates or template fields. Instead, the subst r
function (see clause C.4.2) shall be used.

EXAMPLE:

var tenplate charstring t_Charl := "MCHAR';
var tenplate charstring t_Char?2;

t_Char2 :=t_Charl[1];
/1 shall cause an error as referencing individual string elenents is not allowed

15.6.2 Referencing record and set fields

Both templates and template variables alow referencing sub-fields inside a template definition using the dot notation.
However, the referenced field may be a subfield of a structured field to which a matching mechanism is assigned. This
clause provides rules for such cases.

a Omit, AnyVaueOrNone, template lists and complemented lists: referencing a subfield within a structured field
to which Omit, AnyVaueOrNone, atemplate list or acomplemented list is assigned, at the right hand side of
an assignment, shall cause an error.

When referencing a subfield within a structured field to which AnyVaueOrNone or omit is assigned, at the
left hand side of an assignment, the structured field isimplicitly set to be present, it is expanded recursively up
to and including the depth of the referenced subfield. During this expansion an AnyValue shall be assigned to
mandatory subfields and AnyV alueOrNone shall be assigned to optional subfields. After this expansion the
value or matching mechanism at the right hand side of the assignment shall be assigned to the referenced
subfield.

When referencing a subfield within a structured field to which template lists or complemented template lists
are assigned, at the left hand side of an assignment, shall cause an error.

EXAMPLE 1:

type record Rl {
integer f1 optional,
R2 f2 optional
}
type record R2 {
i nteger g1,
R2 g2 optional
}

;/ar template RL t _Rl := {
fli:=5,
f2 := omt

}
var tenplate R2 t_R2 :=t_Rl.f2.9g2;
/] causes an error as onit is assigned to t_R1.f2
f2 :=*;
= t_R1.f2.g2;
/] causes an error as * is assigned to t_R1.f2

SEE

t_
t_

t Rl := ({fl:=omt