
 

 

 

 

 
ETSI ES 203 915-4-3 V1.2.1 (2007-01)

ETSI Standard 

Open Service Access (OSA);
Application Programming Interface (API);

Part 4: Call Control;
Sub-part 3: Multi-Party Call Control SCF

(Parlay 5)

 

� 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 2  

 

 

 

Reference 
RES/TISPAN-01029-04-03-OSA 

Keywords 
API, IDL, OSA, UML 

ETSI 

650 Route des Lucioles 
F-06921 Sophia Antipolis Cedex - FRANCE 

 
Tel.: +33 4 92 94 42 00   Fax: +33 4 93 65 47 16 

 
Siret N° 348 623 562 00017 - NAF 742 C 

Association à but non lucratif enregistrée à la 
Sous-Préfecture de Grasse (06) N° 7803/88 

 

Important notice 

Individual copies of the present document can be downloaded from: 
http://www.etsi.org 

The present document may be made available in more than one electronic version or in print. In any case of existing or 
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). 

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive 
within ETSI Secretariat. 

Users of the present document should be aware that the document may be subject to revision or change of status. 
Information on the current status of this and other ETSI documents is available at 

http://portal.etsi.org/tb/status/status.asp 

If you find errors in the present document, please send your comment to one of the following services: 
http://portal.etsi.org/chaircor/ETSI_support.asp 

Copyright Notification 

No part may be reproduced except as authorized by written permission. 
The copyright and the foregoing restriction extend to reproduction in all media. 

 
© European Telecommunications Standards Institute 2007. 

© The Parlay Group 2007. 
All rights reserved. 

 
DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members. 

TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. 

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp


 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 3  

Contents 

Intellectual Property Rights ................................................................................................................................7 

Foreword.............................................................................................................................................................7 

1 Scope ........................................................................................................................................................9 

2 References ................................................................................................................................................9 

3 Definitions and abbreviations...................................................................................................................9 
3.1 Definitions..........................................................................................................................................................9 
3.2 Abbreviations .....................................................................................................................................................9 

4 MultiParty Call Control Service Sequence Diagrams ............................................................................10 
4.1 Application initiated call setup.........................................................................................................................10 
4.2 Call Barring 2 ...................................................................................................................................................11 
4.3 Call forwarding on Busy Service .....................................................................................................................13 
4.4 Call Information Collect Service......................................................................................................................14 
4.5 Complex Card Service......................................................................................................................................17 
4.6 Hotline Service .................................................................................................................................................20 
4.7 Network Controlled Notifications ....................................................................................................................23 
4.8 Use of the Redirected event..............................................................................................................................24 

5 Class Diagrams.......................................................................................................................................24 

6 MultiParty Call Control Service Interface Classes.................................................................................26 
6.1 Interface Class IpMultiPartyCallControlManager............................................................................................26 
6.1.1 Method createCall() ....................................................................................................................................27 
6.1.2 Method createNotification()........................................................................................................................27 
6.1.3 Method destroyNotification() .....................................................................................................................29 
6.1.4 Method changeNotification()......................................................................................................................29 
6.1.5 Method <<deprecated>> getNotification() .................................................................................................29 
6.1.6 Method setCallLoadControl() .....................................................................................................................30 
6.1.7 Method enableNotifications() .....................................................................................................................30 
6.1.8 Method disableNotifications() ....................................................................................................................31 
6.1.9 Method getNextNotification() ....................................................................................................................32 
6.2 Interface Class IpAppMultiPartyCallControlManager.....................................................................................32 
6.2.1 Method reportNotification()........................................................................................................................33 
6.2.2 Method callAborted() .................................................................................................................................34 
6.2.3 Method managerInterrupted().....................................................................................................................34 
6.2.4 Method managerResumed()........................................................................................................................34 
6.2.5 Method callOverloadEncountered()............................................................................................................35 
6.2.6 Method callOverloadCeased() ....................................................................................................................35 
6.2.7 Method <<new>> abortMultipleCalls()......................................................................................................35 
6.3 Interface Class IpMultiPartyCall ......................................................................................................................35 
6.3.1 Method getCallLegs() .................................................................................................................................36 
6.3.2 Method createCallLeg() ..............................................................................................................................36 
6.3.3 Method createAndRouteCallLegReq() .......................................................................................................37 
6.3.4 Method release() .........................................................................................................................................38 
6.3.5 Method deassignCall() ................................................................................................................................38 
6.3.6 Method getInfoReq() ..................................................................................................................................38 
6.3.7 Method setChargePlan() .............................................................................................................................39 
6.3.8 Method setAdviceOfCharge().....................................................................................................................39 
6.3.9 Method superviseReq()...............................................................................................................................39 
6.4 Interface Class IpAppMultiPartyCall ...............................................................................................................40 
6.4.1 Method getInfoRes()...................................................................................................................................40 
6.4.2 Method getInfoErr()....................................................................................................................................40 
6.4.3 Method superviseRes() ...............................................................................................................................41 
6.4.4 Method superviseErr() ................................................................................................................................41 
6.4.5 Method callEnded() ....................................................................................................................................41 
6.4.6 Method createAndRouteCallLegErr().........................................................................................................42 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 4  

6.5 Interface Class IpCallLeg .................................................................................................................................42 
6.5.1 Method routeReq()......................................................................................................................................43 
6.5.2 Method eventReportReq() ..........................................................................................................................44 
6.5.3 Method release() .........................................................................................................................................44 
6.5.4 Method getInfoReq() ..................................................................................................................................45 
6.5.5 Method getCall().........................................................................................................................................45 
6.5.6 Method attachMediaReq() ..........................................................................................................................45 
6.5.7 Method detachMediaReq() .........................................................................................................................46 
6.5.8 Method getCurrentDestinationAddress() ....................................................................................................46 
6.5.9 Method continueProcessing() .....................................................................................................................46 
6.5.10 Method setChargePlan() .............................................................................................................................47 
6.5.11 Method setAdviceOfCharge().....................................................................................................................47 
6.5.12 Method superviseReq()...............................................................................................................................47 
6.5.13 Method deassign() ......................................................................................................................................48 
6.5.14 Method <<new>> getProperties()...............................................................................................................48 
6.5.15 Method <<new>> setProperties() ...............................................................................................................49 
6.6 Interface Class IpAppCallLeg ..........................................................................................................................49 
6.6.1 Method eventReportRes()...........................................................................................................................50 
6.6.2 Method eventReportErr()............................................................................................................................50 
6.6.3 Method attachMediaRes()...........................................................................................................................51 
6.6.4 Method attachMediaErr() ...........................................................................................................................51 
6.6.5 Method detachMediaRes()..........................................................................................................................51 
6.6.6 Method detachMediaErr()...........................................................................................................................51 
6.6.7 Method getInfoRes()...................................................................................................................................51 
6.6.8 Method getInfoErr()....................................................................................................................................52 
6.6.9 Method routeErr() .......................................................................................................................................52 
6.6.10 Method superviseRes() ...............................................................................................................................52 
6.6.11 Method superviseErr() ................................................................................................................................53 
6.6.12 Method callLegEnded() ..............................................................................................................................53 

7 MultiParty Call Control Service State Transition Diagrams ..................................................................53 
7.1 State Transition Diagrams for IpMultiPartyCallControlManager ....................................................................53 
7.1.1 Active State.................................................................................................................................................54 
7.1.2 Interrupted State..........................................................................................................................................54 
7.1.3 Overview of allowed methods ....................................................................................................................54 
7.2 State Transition Diagrams for IpMultiPartyCall ..............................................................................................54 
7.2.1 IDLE State ..................................................................................................................................................55 
7.2.2 ACTIVE State.............................................................................................................................................55 
7.2.3 RELEASED State .......................................................................................................................................55 
7.2.4 Overview of allowed methods ....................................................................................................................56 
7.3 State Transition Diagrams for IpCallLeg .........................................................................................................56 
7.3.1 Originating Call Leg ...................................................................................................................................57 
7.3.1.1 Initiating State .......................................................................................................................................57 
7.3.1.2 Analysing State .....................................................................................................................................59 
7.3.1.3 Active State ...........................................................................................................................................60 
7.3.1.4 Releasing State ......................................................................................................................................62 
7.3.1.5 Overview of allowed methods, Originating Call Leg STD...................................................................64 
7.3.2 Terminating Call Leg..................................................................................................................................65 
7.3.2.1 Idle (terminating) State .........................................................................................................................65 
7.3.2.2 Active (terminating) State .....................................................................................................................66 
7.3.2.3 Releasing (terminating) State ................................................................................................................69 
7.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD ....................................71 

8 Multi-Party Call Control Service Properties ..........................................................................................72 
8.1 List of Service Properties .................................................................................................................................72 
8.2 Service Property values for the CAMEL Service Environment .......................................................................74 

9 Multi-Party Call Control Data Definitions.............................................................................................75 
9.1 Event Notification Data Definitions .................................................................................................................75 
9.2 Multi-Party Call Control Data Definitions .......................................................................................................75 
9.2.1 IpCallLeg ....................................................................................................................................................75 
9.2.2 IpCallLegRef ..............................................................................................................................................75 
9.2.3 IpAppCallLeg .............................................................................................................................................75 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 5  

9.2.4 IpAppCallLegRef .......................................................................................................................................76 
9.2.5 IpMultiPartyCall .........................................................................................................................................76 
9.2.6 IpMultiPartyCallRef ...................................................................................................................................76 
9.2.7 IpAppMultiPartyCall ..................................................................................................................................76 
9.2.8 IpAppMultiPartyCallRef ............................................................................................................................76 
9.2.9 IpMultiPartyCallControlManager...............................................................................................................76 
9.2.10 IpMultiPartyCallControlManagerRef .........................................................................................................76 
9.2.11 IpAppMultiPartyCallControlManager ........................................................................................................76 
9.2.12 IpAppMultiPartyCallControlManagerRef ..................................................................................................76 
9.2.13 TpAppCallLegRefSet .................................................................................................................................76 
9.2.14 TpMultiPartyCallIdentifier .........................................................................................................................76 
9.2.15 TpAppMultiPartyCallBack .........................................................................................................................77 
9.2.16 TpAppMultiPartyCallBackRefType ...........................................................................................................77 
9.2.17 TpAppCallLegCallBack .............................................................................................................................77 
9.2.18 TpMultiPartyCallIdentifierSet ....................................................................................................................77 
9.2.19 TpCallAppInfo............................................................................................................................................78 
9.2.20 TpCallAppInfoType....................................................................................................................................78 
9.2.21 TpCallAppInfoSet.......................................................................................................................................78 
9.2.22 TpCallEventRequest ...................................................................................................................................78 
9.2.23 TpCallEventRequestSet ..............................................................................................................................79 
9.2.24 TpCallEventType........................................................................................................................................79 
9.2.25 TpAdditionalCallEventCriteria...................................................................................................................81 
9.2.26 TpCallEventInfo .........................................................................................................................................81 
9.2.27 TpCallAdditionalEventInfo ........................................................................................................................82 
9.2.28 TpCallNotificationRequest .........................................................................................................................82 
9.2.29 TpCallNotificationScope ............................................................................................................................82 
9.2.30 TpCallNotificationInfo ...............................................................................................................................82 
9.2.31 TpCallNotificationReportScope .................................................................................................................83 
9.2.32 TpNotificationRequested ............................................................................................................................83 
9.2.33 TpNotificationRequestedSet .......................................................................................................................83 
9.2.34 TpReleaseCause..........................................................................................................................................83 
9.2.35 TpReleaseCauseSet.....................................................................................................................................83 
9.2.36 TpCallLegIdentifier ....................................................................................................................................83 
9.2.37 TpCallLegIdentifierSet ...............................................................................................................................84 
9.2.38 TpCallLegAttachMechanism......................................................................................................................84 
9.2.39 TpCallLegConnectionProperties.................................................................................................................84 
9.2.40 TpCallLegInfoReport..................................................................................................................................84 
9.2.41 TpCallLegInfoType ....................................................................................................................................85 
9.2.42 TpCallLegSuperviseTreatment ...................................................................................................................85 
9.2.43 TpCallHighProbabilityCompletion.............................................................................................................85 
9.2.44 TpNotificationRequestedSetEntry ..............................................................................................................85 
9.2.45 TpCarrierSet ...............................................................................................................................................85 
9.2.46 TpCarrier ....................................................................................................................................................85 
9.2.47 TpCarrierID ................................................................................................................................................86 
9.2.48 TpCarrierSelectionField..............................................................................................................................86 
9.2.49 TpCallLegPropertyName............................................................................................................................86 
9.2.50 TpCallLegPropertyNameList......................................................................................................................86 
9.2.51 TpCallLegPropertyValue............................................................................................................................86 
9.2.52 TpCallLegProperty .....................................................................................................................................86 
9.2.53 TpCallLegPropertyList ...............................................................................................................................86 

Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF..........................87 

Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF ......................88 

Annex C (informative): Java API Description of the Call Control SCFs..........................................89 

Annex D (informative): Contents of 3GPP OSA Rel-6 Call Control .................................................90 

Annex E (informative): Description of Call Control Sub-part 3: Multi-party call control SCF 
for 3GPP2 cdma2000 networks ....................................................................91 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 6  

E.1 General Exceptions.................................................................................................................................91 

E.2 Specific Exceptions ................................................................................................................................91 
E.2.1 Clause 1: Scope ................................................................................................................................................91 
E.2.2 Clause 2: References ........................................................................................................................................91 
E.2.3 Clause 3: Definitions and abbreviations ...........................................................................................................91 
E.2.4 Clause 4: MultiParty Call Control Service Sequence Diagrams ......................................................................91 
E.2.5 Clause 5: Class Diagrams.................................................................................................................................91 
E.2.6 Clause 6: MultiParty Call Control Service Interface Classes ...........................................................................91 
E.2.7 Clause 7: MultiParty Call Control Service State Transition Diagrams ............................................................92 
E.2.8 Clause 8: Multi-Party Call Control Service Properties.....................................................................................92 
E.2.9 Clause 9: Multi-Party Call Control Data Definitions .......................................................................................92 
E.2.10 Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF.............................................92 
E.2.11 Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF.......................................92 
E.2.12 Annex C (informative): Java™ API Description of the Multi-Party Call Control SCF ...................................92 

Annex F (informative): Record of changes ..........................................................................................93 

F.1 Interfaces ................................................................................................................................................93 
F.1.1 New ..................................................................................................................................................................93 
F.1.2 Deprecated........................................................................................................................................................93 
F.1.3 Removed...........................................................................................................................................................93 

F.2 Methods..................................................................................................................................................94 
F.2.1 New ..................................................................................................................................................................94 
F.2.2 Deprecated........................................................................................................................................................94 
F.2.3 Modified ...........................................................................................................................................................94 
F.2.4 Removed...........................................................................................................................................................94 

F.3 Data Definitions .....................................................................................................................................95 
F.3.1 New ..................................................................................................................................................................95 
F.3.2 Modified ...........................................................................................................................................................95 
F.3.3 Removed...........................................................................................................................................................95 

F.4 Service Properties...................................................................................................................................95 
F.4.1 New ..................................................................................................................................................................95 
F.4.2 Deprecated........................................................................................................................................................96 
F.4.3 Modified ...........................................................................................................................................................96 
F.4.4 Removed...........................................................................................................................................................96 

F.5 Exceptions ..............................................................................................................................................96 
F.5.1 New ..................................................................................................................................................................96 
F.5.2 Modified ...........................................................................................................................................................96 
F.5.3 Removed...........................................................................................................................................................97 

F.6 Others .....................................................................................................................................................97 

History ..............................................................................................................................................................98 
 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 7  

Intellectual Property Rights 
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (http://webapp.etsi.org/IPR/home.asp). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Foreword 
This ETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and Internet 
converged Services and Protocols for Advanced Networking (TISPAN). 

The present document is part 4, sub-part 3 of a multi-part deliverable covering Open Service Access (OSA); 
Application Programming Interface (API), as identified below. The API specification (ES 203 915) is structured in the 
following parts: 

Part 1:  "Overview"; 

Part 2:  "Common Data Definitions"; 

Part 3: "Framework"; 

Part 4: "Call Control"; 

Sub-part 1: "Call Control Common Definitions"; 

Sub-part 2: "Generic Call Control SCF"; 

Sub-part 3: "Multi-Party Call Control SCF"; 

Sub-part 4: "Multi-Media Call Control SCF"; 

Sub-part 5: "Conference Call Control SCF"; 

Part 5: "User Interaction SCF"; 

Part 6: "Mobility SCF"; 

Part 7: "Terminal Capabilities SCF"; 

Part 8: "Data Session Control SCF"; 

Part 9: "Generic Messaging SCF"; 

Part 10: "Connectivity Manager SCF"; 

Part 11: "Account Management SCF"; 

Part 12: "Charging SCF"; 

Part 13: "Policy Management SCF"; 

Part 14: "Presence and Availability Management SCF"; 

Part 15: "Multi-Media Messaging SCF". 

http://webapp.etsi.org/IPR/home.asp


 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 8  

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP, 
in co-operation with a number of JAIN™ Community (http://www.java.sun.com/products/jain) member companies. 

The present document forms part of the Parlay 5.1 set of specifications. 

The present document is equivalent to 3GPP TS 29.198-4-3 V6.6.0 (Release 6). 

http://www.parlay.org/
http://www.java.sun.com/products/jain


 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 9  

1 Scope 
The present document is part 4, sub-part 3 of the Stage 3 specification for an Application Programming Interface (API) 
for Open Service Access (OSA). 

The OSA specifications define an architecture that enables application developers to make use of network functionality 
through an open standardised interface, i.e. the OSA APIs. 

The present document specifies the Multi-Party Call Control Service Capability Feature (SCF) aspects of the interface. 
All aspects of the Multi-Party Call Control SCF are defined here, these being: 

•  Sequence Diagrams. 

•  Class Diagrams. 

•  Interface specification plus detailed method descriptions. 

•  State Transition diagrams. 

•  Data Definitions. 

•  IDL Description of the interfaces. 

•  WSDL Description of the interfaces. 

•  Reference to the Java™ API description of the interfaces. 

The process by which this task is accomplished is through the use of object modelling techniques described by the 
Unified Modelling Language (UML). 

2 References 
The references listed in clause 2 of ES 203 915-1 contain provisions which, through reference in this text, constitute 
provisions of the present document. 

ETSI ES 203 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1: Overview 
(Parlay 5)". 

3 Definitions and abbreviations 

3.1 Definitions 
For the purposes of the present document, the terms and definitions given in ES 203 915-1 apply. 

3.2 Abbreviations 
For the purposes of the present document, the abbreviations given in ES 203 915-1 apply. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 10 

4 MultiParty Call Control Service Sequence Diagrams 

4.1 Application initiated call setup  
The following sequence diagram shows an application creating a call between party A and party B. Here, a call is 
created first. Then party A's call leg is created before events are requested on it for answer and then routed to the call. 
On answer from Party A, an announcement is played indicating that the call is being set up to party B. While the 
announcement is being played, party B's call leg is created and then events are requested on it for answer. On answer 
from Party B the announcement is cancelled and party B is routed to the call. 

The service may as a variation be extended to include 3 parties (or more). After the two party call is established, the 
application can create a new leg and request to route it to a new destination address in order to establish a 3 party call. 

The event that causes this to happen could for example be the report of answer event from B-party or controlled by the 
A-party by entering a service code (mid-call event). 

The procedure for call setup to party C is exactly the same as for the set up of the connection to party B (sequence 13 to 
17 in the sequence diagram).  

PartyB : 
IpCallLeg

 : 
IpMultiPartyCallControlManager

 : 
IpAppMultiPartyCall

 : 
IpMultiPartyCall

PartyA : 
IpCallLeg

 : (Logical 
View::IpAppLogic)

4: setCallback( )

1: new()

2: createCall( )

3: new()

7: ev entReportReq(  )

 : 
IpAppUICall

 : IpUICall

11: sendInf oReq(      )

15: ev entReportReq(  )

18: abortActionReq(  )

5: createCal lLeg(  )
6: new()

13: createCallLeg(  )

14: new()

AppPartyA : 
(IpAppMultiPartyCallLeg)

AppPartyB : 
(IpAppMultiPartyCallLeg)

9: ev entReportRes ()

17: ev entReportRes ()

8: routeR eq(     )

16: routeReq(     )

12: sendInf oRes(   )

 : 
IpUIManager

10: createUICall(  )

19: deassignCall( )

  

1: This message is used to create an object implementing the IpAppMultiPartyCall interface.  

2: This message requests the object implementing the IpMultiPartyCallControlManager interface to create an object 
implementing the IpMultiPartyCall interface.  

3: Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control 
values not exceeded) is met it is created.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 11 

4: Once the object implementing the IpMultiPartyCall interface is created it is used to pass the reference of the object 
implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the 
IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in the 
createCall.  

5: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer A.  

6: Assuming that the criteria for creating an object implementing the IpCallLeg interface is met, message 6 is used to 
create it.  

7: This message requests the call leg for customer A to inform the application when the call leg answers the call.  

8: The call is then routed to the originating call leg.  

9: Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call 
being answered back to its callback object. This message is then forwarded via another message (not shown) to the 
object implementing the IpAppLogic interface.  

10: A UICall object is created and associated with the just created call leg.  

11: This message is used to inform party A that the call is being routed to party B.  

12: An indication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded 
via another message (not shown) to the object implementing the IpAppLogic interface.  

13: This message instructs the object implementing the IpMultiPartyCall interface to create a call leg for customer B.  

14: Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is created.  

15: This message requests the call leg for customer B to inform the application when the call leg answers the call.  

16: The call is then routed to the call leg.  

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call 
being answered back to its callback object. This message is then forwarded via another message (not shown) to the 
object implementing the IpAppLogic interface.  

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to 
party A.  

19: The application deassigns the call. This will also deassign the associated user interaction.  

4.2 Call Barring 2  
The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received 
by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code. 
The code is rejected and the call is cleared.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 12 

 : (Logical 
V iew::IpAppL...

 : 
IpAppMultiPartyCal lCont rolManager

 : 
IpAppMultiPartyCall

 : 
I pMult iP artyCa ll

 : IpUICall : 
IpUIManager

 : IpMultiPartyCal lControlManager : 
IpAppUICall

8: sendInf oAndCollectReq(      )

9: sendInf oAndCollectRes(    )

11: sendInf oReq(      )

12: sendInf oRes(   )

15: release(  )

1: new()

3: reportNoti f ication(    )

4: 'f orward ev ent'

5:  new()

10: 'f orward ev ent'

13: 'f orward ev ent'

2: createNotif ication(  )

7: createUICall(  )

14: release( )

6: getCallLegs( )

  

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager 
interface.  

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts 
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for 
a password before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message 
(not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for 
creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other 
messages (not shown) are used to create the call and associated call leg object.  

3: This message is used to pass the new call event to the object implementing the 
IpAppMultiPartyCallControlManager interface.  

4: This message is used to forward message 3 to the IpAppLogic.  

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The 
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return 
parameter of the callEventNotify.  

6: The application requests a list of all the legs currently in the call.  

7: This message is used to create a UICall object that is associated with the incoming leg of the call.  

8: The call barring service dialogue is invoked.  

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.  

10: This message is used to forward the previous message to the IpAppLogic.  

11: Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the 
call cannot be completed.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 13 

12: This message passes the indication that the additional dialogue has been sent.  

13: This message is used to forward the previous message to the IpAppLogic.  

14: No more UI is required, so the UICall object is released.  

15: This message is used by the application to clear the call.  

4.3 Call forwarding on Busy Service  
The following sequence diagram shows an application establishing a call forwarding on busy. 

When a call is made from A to B but the B-party is detected to be busy, then the application is informed of this and sets 
up a connection towards a C party. The C party can for instance be a voicemail system.  

App CCM : 
IpAppMultiPartyCallControlManager

AppLogi c App Leg C : 
IpAppCallLeg

App Leg A : 
IpAppCallLeg

App Call : 
IpAppMultiPartyCall

CCM : 
IpMultiPartyCallControlManager

Cal l : 
IpM ulti PartyC al l

Leg A : 
IpCallLeg

Leg B : 
IpCallLeg

SCSLeg C : 
IpC al lLeg

1: "new"

12: "forward event"

15: "new"

14: "new"

13: "new"

2: createNotification(  )

5: "check if  appl icati on interested"

11: reportNotification(    )

6: "new"

16: createCallLeg(  )

7: "new"

8: "state transition to Active"

3: "arm trigger"

4: "trigger event: Busy"

25: "continue call processing"

9: "new"
10: "state transition to Releasing"

17: "new"

18: "state transition to Idle"

19: eventReportReq(  )

20: routeReq(     )

21: "state transition to Active"

22: "inform Call object"

26: "C-party answer"

27: eventReportRes(  )

28: "forward event"

23: conti nuePr ocess ing( )

24: "inform Call object"

  

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager 
interface.  

2: This message is sent by the application to enable notifications on new call events.  

4: When a new call, that matches the event criteria, arrives a message ("busy") is directed to the object implementing 
the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the 
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg objects.  

6: A new MultiPartyCall object is created to handle this particular call.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 14 

7: A new CallLeg object corresponding to Party A is created.  

8: The new Call Leg instance transits to state Active.  

11: This message is used to pass the new call event to the object implementing the 
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt".  

12: This message is used to forward the message to the IpAppLogic.  

13: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The 
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return 
parameter of the reportNotification.  

14: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.  

15: A new AppCallLeg C is created to receive callbacks for another leg.  

16: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the 
network.  

19: The application requests to be notified (monitor mode "INTERRUPT") when party C answers the call.  

20: The application requests to route the terminating leg to reach the associated party C.  

The application may request information about the original destination address be sent by setting up the field 
P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo in the request to route the call leg to the 
remote party C.  

23: The application requests to resume call processing for the terminating call leg to party B to terminate the leg. 
Alternative the application could request to deassign the leg to party B for example if it is not interested in possible 
requested call leg information (getInfoRes, superviseRes).  

When the terminating call leg is destroyed, the AppLeg B is notified (callLegEnded) and the event is forwarded to the 
application logic (not shown).  

25: As a result call processing is resumed in the network that will try to reach the associated party C.  

26: When the party C answers the call, the termination call leg is notified.  

27: Assuming the call is answered, the object implementing party C's IpCallLeg interface passes the result of the call 
being answered back to its callback object.  

28: This answer message is then forwarded to the object implementing the IpAppLogic interface.  

4.4 Call Information Collect Service  
The following sequence diagram shows an application monitoring a call between party A and a party B in order to 
collect call information at the end of the call for e.g. charging and/or statistic information collection purposes. The 
service may apply to ordinary two-party calls, but could also include a number translation of the dialled number and 
special charging (e.g. a premium rate service). 

Additional call leg related information is requested with the getInfoReq and superviseReq methods. 

The answer and call release events are in this service example requested to be reported in notify mode and additional 
call leg related information is requested with the getInfoReq and superviseReq methods in order to illustrate the 
information that can be collected and sent to the application at the end of the call.  

Furthermore the diagram shows the order in which information is sent to the application: network release event 
followed by possible requested call leg information, then the destruction of the call leg object (callLegEnded) and 
finally the destruction of the call object (callEnded).  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 15 

AppLogic App Leg B : 
IpAppCallLeg

App Leg A : 
IpAppCallLeg

App Call : 
IpAppMultiPartyCall

App CCM : 
IpAppMultiPartyCallControlManager

CCM : 
IpMultiPartyCallControlManager

Call : 
IpMultiPartyCall

Leg  A : 
IpCallLeg

Leg B : 
IpCallLeg

SCS

1: "new"

2: createNotification(  )
3: "arm trigger"

4: "trigger event: Analysed Information"

5: "check if application interested"

6: "new"
7: "new"

8: "state transition to Active"

9: reportN otific ation(    )
10: "forward event"

11: "new"

12: "new"

13: "new"

14: createCall Leg(  )
15: "new"

16: "state transition to Idle"

17: eventReportReq(  )

18: superviseReq(   )

19:  getInfoR eq (  )

20: setChargePlan(  )

21:  routeReq(     )

22: "state transition to Active"

23: "inform Call object"

24: eventReportReq(  )

25: getInfoReq (  )

26: continueProcessing( )

27: "inform Call object"

28: "continue cal l pr ocessing"

29: "B party answer"
30: eventReportRes(  )

31: "forward event"

32: "Disconnect from A-party"

33: "state transition to Releasing"

34: eventReportRes(  )
35: "forward event"

36: getInfoRes(  )

37: "forward event"

38: callLegEnded(  )

39: "forward event"
40: "inform Call object"

41: "Disconnect from B-party"

42: "state transition to Releasing"

43: eventReportRes(  )

45: getInfoRes(  )

47: superviseRes(   )

49: cal lLegEnded(  )

44: "forward event"

46: "forward event"

48: "forward event"

50: "forward event"

51: "inform Call object"

52: callEnded(  )
53: "forward event"

  

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager 
interface.  

2: This message is sent by the application to enable notifications on new call events.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 16 

4: When a new call, that matches the event criteria, arrives a message ("analysed information") is directed to the object 
implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the 
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object.  

6: A new MultiPartyCall object is created to handle this particular call.  

7: A new CallLeg object corresponding to Party A is created.  

8: The new Call Leg instance transits to state Active.  

9: This message is used to pass the new call event to the object implementing the 
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt".  

10: This message is used to forward message 9 to the IpAppLogic.  

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The 
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return 
parameter of the reportNotification.  

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.  

13: A new AppCallLeg is created to receive callbacks for another leg.  

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the 
network.  

15: A new CallLeg corresponding to party B is created.  

16: A transition to state Idle is made after the Call leg has been created.  

17: The application requests to be notified (monitor mode "NOTIFY") when party B answers the call and when the leg 
to B-party is released.  

18: The application requests to supervise the call leg to party B.  

19: The application requests information associated with the call leg to party B for example to calculate charging.  

20: The application requests a specific charge plan to be set for the call leg to party B.  

21: The application requests to route the terminating leg to reach the associated party B.  

22: The Call Leg instance transits to state Active.  

24: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.  

25: The application requests information associated with the call leg to party A for example to calculate charging.  

26: The application requests to resume call processing for the originating call leg. As a result call processing is resumed 
in the network that will try to reach the associated party B.  

29: When the B-party answers the call, the termination call leg is notified.  

30: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call 
being answered back to its callback object (monitor mode "NOTIFY").  

31: This answer message is then forwarded.  

32: When the A-party releases the call, the originating call leg is notified (monitor mode "NOTIFY") and makes a 
transition to "releasing state".  

34: The application IpAppLeg A is notified, as the release event has been requested to be reported in Notify mode.  

35: The event is forwarded to the application logic.  

36: The call leg information is reported.  

37: The event is forwarded to the application logic.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 17 

38: The origination call leg is destroyed, the AppLeg A is notified.  

39: The event is forwarded to the application logic.  

41: When the B-party releases the call or the call is released as a result of the release request from party A, i.e. an 
"originating release" indication, the terminating call leg is notified and makes a transition to "releasing state".  

43: If a network release event is received being a "terminating release" indication from called party B, the application 
IpAppLeg B is notified, as the release event from party B has been requested to be reported in NOTIFY mode. 

Note that no report is sent if the release is caused by propagation of network release event being an "originating release" 
indication coming from calling party A.  

44: The event is forwarded to the application logic.  

45: The call leg information is reported.  

46: The event is forwarded to the application logic.  

47: The supervised call leg information is reported.  

48: The event is forwarded to the application logic.  

49: The terminating call leg is destroyed, the AppLeg B is notified.  

50: The event is forwarded to the application logic.  

52: Assuming the IpCall object has been informed that the legs have been destroyed, the IpAppMultiPartyCall is 
notified that the call is ended.  

53: The event is forwarded to the application logic.  

4.5 Complex Card Service  
The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being 
received by the call control service. Before the call is made, the calling party is asked for an ID and PIN code. If the ID 
and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is 
then set on the controlling leg (the calling party's leg) such that if the calling party enters a '#5' an event will be sent to 
the application. The call is then routed to the destination party. Sometime during the call the calling party enters '#5' 
which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination 
party, to which it is then routed.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 18 

 : (Logical 
View::IpAppLogic)

 : 
IpAppMultiPartyCallControlManager

 : 
IpAppMultiPartyCall

 : 
IpMultiPartyCall

 : IpUICallPartyB' : 
IpCallLeg

AppParty B' : 
IpAppCallLeg

AppPartyB : 
IpAppCallLeg

 : 
IpUIManager

AppPartyA : 
IpAppCallLeg

PartyB : 
IpCallLeg

 : 
IpMultiPartyCallControlManager

PartyA : 
IpCallLeg

 : 
IpAppUICal l

27: createAndR outeCall( )

8: sendInf oAndCollectReq(      )

10: sendInf oAndCollectReq(      )

9: sendInf oAndCollectRes(    )

11: sendInf oAndCollectRes(    )

13: ev entRepo rtReq(  )

1: new()

3: reportNotif ication(    )

4: 'f orward ev ent'

5: new()

23: release(  )

21: ev entReportRes(  )

24: sendInf oAndCollectReq(      )

25: sendInf oAndCollectRes(    )

12: setCallbackWithSessionID(  )

2: createNotif ication(  )

7: createUICall(  )

6: getCallLegsf ()

15: createCallLeg(  )

17: routeReq(     )

16: ev entReportReq(  )

14: new()

20: attachMediaReq( )

18: ev entReportRes(  )
19: "f orward ev ent"

22: "f orward ev ent"

30: ev entReportRes(  )
31: "f orward ev ent"

32: callEnded(  )
33: "f orward ev ent"

34: userInteractionFaultDetected(  )
35: "f orward ev ent"

36: deassignCall( )

26: new ()

28: new ()

29: ev entReportRes(  )

  

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager 
interface.  

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts 
a call barring service, it is likely that all new call events destined for a particular address or address range result in the 
caller being prompted for a password before the call is allowed to progress. When a new call, that matches the event 
criteria set in message 2, arrives a message (not shown) is directed to the object implementing the 
IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall 
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and 
associated call leg object.  

3: This message is used to pass the new call event to the object implementing the 
IpAppMultiPartyCallControlManager interface.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 19 

4: This message is used to forward message 3 to the IpAppLogic.  

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The 
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return 
parameter of message 3.  

6: This message returns the call legs currently in the call. In principle a reference to the call leg of the calling party is 
already obtained by the application when it was notified of the new call event.  

7: This message is used to associate a user interaction object with the calling party.  

8: The initial card service dialogue is invoked using this message.  

9: The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this 
message and eventually forwarded via another message (not shown) to the IpAppLogic.  

10: Assuming the correct ID and PIN are entered, the final dialogue is invoked.  

11: The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via 
another message (not shown) to the IpAppLogic.  

12: This message is used to forward the address of the callback object.  

13: The trigger for follow-on calls is set (on service code).  

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg 
object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionIDs of the 
legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.  

15: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the 
network.  

16: The application requests to be notified when the leg is answered.  

17: The application routes the leg. As a result the network will try to reach the associated party.  

18: When the B-party answers the call, the application is notified.  

19: The event is forwarded to the application logic.  

20: Legs that are created and routed explicitly are by default in state detached. This means that the media is not 
connected to the other parties in the call. In order to allow inband communication between the new party and the other 
parties in the call the media have to be explicitly attached.  

21: At some time during the call the calling party enters '#5'. This causes this message to be sent to the object 
implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.  

22: The event is forwarded to the application.  

23: This message releases the called party.  

24: Another user interaction dialogue is invoked.  

25: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via 
another message (not shown) to the IpAppLogic.  

26: A new AppCallLeg is created to receive callbacks for another leg.  

27: The call is then forward routed to the new destination party.  

28: As a result a new Callleg object is created.  

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via 
another message (not shown) to the IpAppLogic.  

30: When the A-party terminates the application is informed.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 20 

31: The event is forwarded to the application logic.  

32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this 
message.  

33: The event is forwarded to the application logic.  

34: Since the user interaction object were not released at the moment that the call terminated, the application receives 
this message to indicate that the UI resources are released in the gateway and no further communication is possible.  

35: The event is forwarded to the application logic.  

36: The application deassigns the call object.  

4.6 Hotline Service  
The following sequence diagram shows an application establishing a call between party A and pre-arranged party B 
defined to constitute a hot-line address. The address of the destination party is provided by the application as the calling 
party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In this case a 
pre-defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined 
destination party.  

The call release is monitored to enable the sending of information to the application at call release, e.g. for charging 
purposes.  

Note that this service could be extended as follows:  

Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now 
prompted to enter the address of a new destination party, to which it is then routed.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 21 

AppLogic App Leg B : 
IpAppCallLeg

App Leg A : 
IpAppCallLeg

App Call : 
IpAppMultiPartyCall

App CCM : 
IpAppMultiPartyCallControlManager

CCM : 
IpMultiPartyCallControlManager

Call : 
IpMultiPartyCall

Leg A : 
IpCallLeg

Leg B : 
IpC allLeg

SCS

13: "new"

32: "forward event"

30: "forward event"

12: "new"

37: "forwar d event"

11: "new"

40: "forward event"

1: "new"

10: "forward event"

2: createNotification(   )

5: "check if application interested"

9: reportNotification(    )

6: "new"

14: createCallLeg(  )

39: callEnded(  )

7: "new"

8: "state transition to Initiating"

21: eventReportReq(  )

22: continueProcessing( )

23: "inform Call object"

35: "state transition to Releasing"

36: callLegEnded(  )

38: "inform Call object"

15: "new"

16: "state transition to Idle"

17: eventReportReq(  )

18: routeReq(     )

19: "state transition to Active"

20: "inform Call object"

28: "state transition to Releasing"

29: eventReportR es(  )

31: cal lLegEnded(  )

33: "inform Call object"

3: "arm tri gger"

4: "trigger event: Originating Call Attempt Authorised"

24: "continue call processing"

34: "Disconnect from A-party"

27: "Disconnect from B-party"

25: event "address_analysed"

26: "state transition to Active"

  

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager 
interface.  

2: This message is sent by the application to enable notifications on new call events.  

4: When a new call, that matches the event criteria, arrives a message ("originating call attempt authorised") is directed 
to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object 
implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg 
object.  

6: A new MultiPartyCall object is created to handle this particular call.  

7: A new CallLeg object corresponding to Party A is created.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 22 

8: The new Call Leg instance transits to state Initiating.  

9: This message is used to pass the new call event to the object implementing the 
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt".  

10: This message is used to forward message 9 to the IpAppLogic.  

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The 
reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return 
parameter of the reportNotification.  

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.  

13: A new AppCallLeg is created to receive callbacks for another leg.  

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the 
network.  

15: A new CallLeg corresponding to party B is created.  

16: A transition to state Idle is made after the Call leg has been created.  

17: The application requests to be notified (monitor mode "NOTIFY") when the leg to party B is released.  

18: The application requests to route the terminating leg to reach the associated party as specified by the application 
("hot-line number").  

19: The Call Leg instance transits to state Active.  

21: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.  

22: The application requests to resume call processing for the originating call leg. As a result call processing is resumed 
in the network that will try to reach the associated party as specified by the application (E.164 number provided by 
application).  

25: The originating call leg is notified that the number (provided by application) has been analysed by the network and 
the originating call leg STD makes a transition to "active" state. The application is not notified as it has not requested 
this event to be reported.  

27: When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY") and makes a 
transition to "Releasing state".  

29: The application is notified, as the release event has been requested to be reported in Notify mode.  

30: The event is forwarded to the application logic.  

31: The terminating call leg is destroyed, the AppLeg B is notified.  

32: This answer message is then forwarded.  

34: When the call release ("terminating release" indication) is propagated in the network toward the party A, the 
originating call leg is notified and makes a transition to "releasing state". This release event (being propagated from 
party B) is not reported to the application.  

36: When the originating call leg is destroyed, the AppLeg A is notified.  

37: The event is forwarded to the application logic.  

39: When all legs have been destroyed, the IpAppMultiPartyCall is notified that the call is ended.  

40: The event is forwarded to the application logic.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 23 

4.7 Network Controlled Notifications  
The following sequence diagram shows how an application can receive notifications that have not been created by the 
application, but are provisioned from within the network.  

AppLogic  : 
IpAppMultiPartyCallControlManager

 : 
IpMultiPartyCallControlManager

1: new()

2: enableNotifications( )

3: reportNotification(    )

4: 'forward event'

5: reportNotification(  ...

6: 'forward event'

7: disableNotifications( )

  

1: The application is started. The application creates a new IpAppMultiPartyCallControlManager to handle callbacks.  

2: The enableNotifications method is invoked on the IpMultiPartyCallControlManager interface to indicate that the 
application is ready to receive notifications that are created in the network. For illustrative purposes we assume 
notifications of type "B" are created in the network.  

3: When a network created trigger occurs the application is notified on the callback interface.  

4: The event is forwarded to the application.  

5: When a network created trigger occurs the application is notified on the callback interface.  

6: The event is forwarded to the application.  

7: When the application does not want to receive notifications created in the network anymore, it invokes 
disableNotifications on the IpMultiPartyCallConrolManager interface. From now on the gateway will not send any 
notifications to the application that are created in the network.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 24 

4.8 Use of the Redirected event  

 

1: The application has already created the call and a call leg. It places an event report request for the ANSWER and 
REDIRECTED events in NOTIFY mode.  

2: The application routes the call leg.  

3: The call is redirected within the network and the application is informed. The new destination address is passed 
within the event. The event is not disarmed, so subsequent redirections will also be reported. Also, the same call leg is 
used so the application does not have to create a new one.  

4: The call is answered at its new destination.  

5 Class Diagrams 
The multiparty call control service consists of two packages, one for the interfaces on the application side and one for 
interfaces on the service side. 

The class diagrams in the following figures show the interfaces that make up the multi party call control application 
package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call 
control application package and their relations to the interfaces of the multi-party call control service package.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 25 

IpAppMultiPartyCallControlManager

reportNotification()
callAborted()
managerInterrupted()
managerResumed()
callOverloadEncountered()
callOverloadCeased()
<<new>> abortMultipleCalls()

(from mpccs)

<<Interface>>

IpAppMultiPartyCall

getInfoRes()
getInfoErr()
supervi seRes()
supervi seErr()
call Ended ()
createAnd RouteCal lLe gErr()

(from mpccs)

<<Interface>>

IpMultiPartyCallControlManager

createCall()
createNotification()
destroyNotification()
changeNotification()
<<deprecated>> getNotification()
setCallLoadControl()
enableNotifications()
disableNotifications()
getNextNotification()

(from mpccs)

<<Interface>>
Ip Multi PartyCall

getCallL egs()
createCallLeg()
createAndRouteCallLegReq()
release()
deassignCall()
getIn foReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()

(from mpccs)

<<Interface>>

IpCallLeg

routeReq()
eventReportReq()
release()
getInfoReq()
getCall()
attachMediaReq()
detachMediaReq()
getCurrentDestinationAddress()
continueProcessing()
setChargePlan()
setAdviceOfCharge()
superviseReq()
deassign()
<<new>> getProperties()
<<new>> setProperties()

(from mpccs)

<<Interface>>

1 0..n

<<uses>>

1 0..n

IpAppCallLeg

eventReportRes()
eventReportErr()
a ttachMediaRes()
a ttachMediaErr()
detachMedi aRes()
detachMedi aErr()
getInfo Res()
getInfo Err()
routeErr()
supe rvi seRes()
supe rvi seE rr()
call LegEnded()

(from mpccs)

<<Interface>>

1 0..n

<<uses>>

1 0..n

<<uses>>

IpInterface
(from csapi)

<<Interface>>

1 0..n

  

Figure 1: Application Interfaces  

This class diagram shows the interfaces of the multi-party call control service package.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 26 

IpMultiPartyCallControlManager

createCall()
createNotification()
destroyNotification()
changeNotification()
<<deprecated>> getNotification()
setCallLoadControl()
enableNotifications()
disableNotifications()
getNextNotification()

(from mpccs)

<<Interface>>

IpService

setCallback()
setCallbackWithSessionID()

(from csapi)

<<Interface>>

IpMultiPartyCall

getCallLegs()
createCallLeg()
createAndRouteCallLegReq()
release()
deassignCall()
getInfoReq()
setChargePlan()
setAdviceOfCharge()
superviseReq()

(from mpccs)

<<Interface>>

1 0..n

IpCallLeg

routeReq()
eventReportReq()
release()
getInfoReq()
getCall()
attachMediaReq()
detachMediaReq()
getCurrentDestinationAddress()
continueProcessing()
setChargePlan()
setAdviceOfCharge()
superviseReq()
deassign()
<<new>> getProperties()
<<new>> setProperties()

(f ro m m pccs)

<<Interface>>

1 0..n

  

Figure 2: Service Interfaces  

6 MultiParty Call Control Service Interface Classes 
The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg 
management. It also allows for multi-party calls to be established, i.e. up to a service specific number of legs can be 
connected simultaneously to the same call. 

The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall, 
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do 
not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, 
than one that uses synchronous message calls. To handle responses and reports, the developer must implement 
IpAppMultiPartyCallControlManager, IpAppMultiPartyCall and IpAppCallLeg to provide the callback mechanism.  

6.1 Interface Class IpMultiPartyCallControlManager  
Inherits from: IpService; 

This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control 
manager interface provides the management functions to the multi-party call control service. The application 
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable 
call-related event notifications. The action table associated with the STD shows in what state the 
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the 
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.     
This interface shall be implemented by a Multi Party Call Control SCF. As a minimum requirement either the 
createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be 
implemented, or the enableNotifications() and disableNotifications() methods shall be implemented.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 27 

<<Interface>> 

IpMultiPartyCallControlManager 

 

 

 

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier 

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest : 
in TpCallNotificationRequest) : TpAssignmentID 

destroyNotification (assignmentID : in TpAssignmentID) : void 

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) : 
void 

<<deprecated>> getNotification () : TpNotificationRequestedSet 

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in 
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID 

enableNotifications (appCallControlManager : in IpAppMultiPartyCallControlManagerRef) : TpAssignmentID 

disableNotifications () : void 

getNextNotification (reset : in TpBoolean) : TpNotificationRequestedSetEntry 

 

 

6.1.1 Method createCall() 

This method is used to create a new call object. An IpAppMultiPartyCallControlManager should already have been 
passed to the IpMultiPartyCallControlManager, otherwise the call control will not be able to report a callAborted() to 
the application. The application shall invoke setCallback() prior to createCall() if it wishes to ensure this. 

Returns callReference: Specifies the interface reference and sessionID of the call created.  

Parameters  

appCall : in IpAppMultiPartyCallRef 

Specifies the application interface for callbacks from the call created. 

Returns 

TpMultiPartyCallIdentifier 

Raises 

TpCommonExceptions, P_INVALID_INTERFACE_TYPE 

6.1.2 Method createNotification() 

This method is used to enable call notifications so that events can be sent to the application. This is the first step an 
application has to do to get initial notifications of calls happening in the network. When such an event happens, the 
application will be informed by reportNotification(). In case the application is interested in other events during the 
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the 
eventReportReq() method on the call leg object. The application will get access to the call object when it receives the 
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application). 

The createNotification method is purely intended for applications to indicate their interest to be notified when certain 
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application 
can indicate it wishes to be informed when a call is made to any number starting with 800.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 28 

If some application already requested notifications with criteria that overlap the specified criteria or the specified 
criteria overlap with criteria already present in the network (when provisioned from within the network), the request is 
refused with P_INVALID_CRITERIA. The criteria are said to overlap when it leads to more than one application 
controlling the call or session at the same point in time during call or session processing. 

If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of 
the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed 
over. Only one application can place an interrupt request if the criteria overlaps. 

If a notification is requested by an application with an event type that is mutually exclusive compared to existing 
requested event types, then there is no need to check against the rest of the criteria for overlap. An example could be 
one application that trigger on "user busy" together with another application that trigger on "answer" - both requests 
should be allowed as only one can occur on the same call or session.  

The overlap criteria have been defined to prevent multiple points of control, leading to possible interaction problems in 
networks that have no multi service support. Notice that dynamic aspects cannot be taken into account in the overlap 
criteria check. Therefore where dynamic event arming from an application causes a persistent control relationship it can 
prevent other applications to be invoked in the case single point of application control applies in the network.  

However, the criteria check for overlap may as a network option be overruled by Multi Service networks allowing more 
services or applications to gain control of the same call or session at the same point in time. Refer to Call Control 
Common Definitions subpart of this specification for further details on application control over a call or session.  

Setting the callback reference: 

The callback reference can be registered either in a) createNotication() or b) explicitly with a setCallBack() method e.g. 
depending on how the application provides its callback reference. 

Case a: 

From an efficiency point of view the createNotification() with explicit registration may be the preferred method. 

Case b: 

The createNotification() with no callback reference ("Null" value) is used where (e.g. due to distributed application 
logic) the callback reference is provided previously in a setCallback(). If no callback reference has been provided 
previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised.  

In case the createNotification() contains no callback, at the moment the application needs to be informed the gateway 
will use as callback the callback that has been registered by setCallback(). 

Setting additional callback: 

If the same application invokes this method multiple times with exactly the same criteria but with different callback 
references, then these shall be treated as additional callback references. Each such notification request shall share the 
same assignmentID. The gateway shall use the most recent callback interface provided by the application using this 
method. In the event that a callback reference fails or is no longer available, the next most recent callback reference 
available shall be used.  

Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly-enabled event 
notification.  

Parameters  

appCallControlManager : in IpAppMultiPartyCallControlManagerRef 

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If 
set to NULL, the application interface defaults to the interface specified previously via the setCallback() method. 

notificationRequest : in TpCallNotificationRequest 

Specifies the event specific criteria used by the application to define the event required. Only events that meet these 
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer", 
"busy". Individual addresses or address ranges may be specified for destination and/or origination.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 29 

Returns 

TpAssignmentID 

Raises 

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE, 
P_INVALID_EVENT_TYPE 

6.1.3 Method destroyNotification() 

This method is used by the application to disable call notifications. This method only applies to notifications created 
with createNotification().  

Parameters  

assignmentID : in TpAssignmentID 

Specifies the assignment ID given by the multi party call control manager interface when the previous 
createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the 
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment 
ID both of them will be disabled. 

Raises 

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID 

6.1.4 Method changeNotification() 

This method is used by the application to change the event criteria introduced with createNotification. Any stored 
criteria associated with the specified assignmentID will be replaced with the specified criteria.  

Parameters  

assignmentID : in TpAssignmentID 

Specifies the ID assigned by the multi party call control manager interface for the event notification. If two callbacks 
have been registered under this assignment ID both of them will be changed. 

notificationRequest : in TpCallNotificationRequest 

Specifies the new set of event specific criteria used by the application to define the event required. Only events that 
meet these criteria are reported. 

Raises 

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA, 
P_INVALID_EVENT_TYPE 

6.1.5 Method <<deprecated>> getNotification() 

This method is deprecated and replaced by getNextNotification(). It will be removed in a later release. 

This method is used by the application to query the event criteria set with createNotification or changeNotification. 

Returns notificationsRequested: Specifies the notifications that have been requested by the application. An empty set is 
returned when no notifications exist.  

Parameters  
No Parameters were identified for this method. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 30 

Returns 

TpNotificationRequestedSet 

Raises 

TpCommonExceptions 

6.1.6 Method setCallLoadControl() 

This method imposes or removes load control on calls made to a particular address range within the call control service. 
The address matching mechanism is similar as defined for TpCallEventCriteria. 

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be 
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.  

Parameters  

duration : in TpDuration 

Specifies the duration for which the load control should be set. 

A duration of 0 indicates that the load control should be removed. 

A duration of -1 indicates an infinite duration (i.e. until disabled by the application). 

A duration of -2 indicates the network default duration. 

mechanism : in TpCallLoadControlMechanism 

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters, 
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero. 

treatment : in TpCallTreatment 

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control 
duration is set to zero. 

addressRange : in TpAddressRange 

Specifies the address or address range to which the overload control should be applied or removed. 

Returns 

TpAssignmentID 

Raises 

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN 

6.1.7 Method enableNotifications() 

This method is used to indicate that the application is able to receive notifications which are provisioned from within 
the network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network management 
system). If notifications provisioned for this application are created or changed, the application is unaware of this until 
the notification is reported. 

Setting the callback reference: 

The callback reference can be registered either in a) enableNotications() or b) explicitly with a setCallback() method 
e.g. depending on how the application provides its callback reference. 

Case a: 

For an efficiency point of view the createNotification() with explicit registration may be the preferred method. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 31 

Case b: 

The enableNotifications() with no callback reference ("Null" value) is used where (e.g. due to distributed application 
logic) the callback reference is provided previously in a setCallback(). If no callback reference has been provided 
previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised. 

In case the enableNotification() contains no callback, at the moment the application needs to be informed the gateway 
will use as callback the callback that has been registered by setCallback(). 

Setting additional Call back: 

If the same application invokes this method multiple times with different IpAppMultiPartyCallControlManager 
references, then these shall be treated as additional callback references. Each such notification request shall share the 
same assignmentID. The gateway shall use the most recent callback interface provided by the application using this 
method. In the event that a callback reference fails or is no longer available, the next most recent callback reference 
available shall be used. 

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on 
the same interface as long as the criteria in the network and provided by createNotification() do not overlap. However, it 
is NOT recommended to use both mechanisms on the same service manager. 

The methods changeNotification(), getNotification(), and destroyNotification() do not apply to notifications provisioned 
in the network and enabled using enableNotifications(). These only apply to notifications created using 
createNotification(). 

Returns assignmentID: Specifies the ID assigned by the manager interface for this operation. This ID is contained in 
any reportNotification() that relates to notifications provisioned from within the networkRepeated calls to 
enableNotifications() return the same assignment ID.  

Parameters  

appCallControlManager : in IpAppMultiPartyCallControlManagerRef 

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If 
set to NULL, the application interface defaults to the interface specified previously via the setCallback() method. 

Returns 

TpAssignmentID 

Raises 

TpCommonExceptions 

6.1.8 Method disableNotifications() 

This method is used to indicate that the application is not able to receive notifications for which the provisioning has 
been done from within the network. (i.e. these notifications that are NOT set using createNotification() but via, for 
instance, a network management system). After this method is called, no such notifications are reported anymore.  

Parameters  
No Parameters were identified for this method. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 32 

Raises 

TpCommonExceptions 

6.1.9 Method getNextNotification() 

This method is used by the application to query the event criteria set with createNotification or changeNotification. 
Since a lot of data can potentially be returned (which might cause problem in the middleware), this method must be 
used in an iterative way. Each method invocation may return part of the total set of notifications if the set is too large to 
return it at once. The reset parameter permits the application to indicate whether an invocation to getNextNotification is 
requesting more notifications from the total set of notifications or is requesting that the total set of notifications shall be 
returned from the beginning. 

Returns notificationRequestedSetEntry: The set of notifications and an indication whether all off the notifications have 
been obtained or if more notifications are available that have not yet been obtained by the application. If no 
notifications exist, an empty set is returned and the final indication shall be set to TRUE. 

Note that the (maximum) number of items provided to the application is determined by the gateway.  

Parameters  

reset : in TpBoolean 

TRUE: indicates that the application is intended to obtain the set of notifications starting at the beginning. 

FALSE: indicates that the application requests the next set of notifications that have not (yet) been obtained since the 
last call to this method with this parameter set to TRUE. 

The first time this method is invoked, reset shall be set to TRUE. Following the receipt of a final indication in 
TpNotificationRequestedSetEntry, for the next call to this method reset shall be set to TRUE. P_TASK_REFUSED may 
be thrown if these conditions are not met. 

Returns 

TpNotificationRequestedSetEntry 

Raises 

TpCommonExceptions 

6.2 Interface Class IpAppMultiPartyCallControlManager  
Inherits from: IpInterface;  

The Multi-Party call control manager application interface provides the application call control management functions 
to the Multi-Party call control service.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 33 

<<Interface>> 

IpAppMultiPartyCallControlManager 

 

 

 

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in 
TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) : 
TpAppMultiPartyCallBack 

callAborted (callReference : in TpSessionID) : void 

managerInterrupted () : void 

managerResumed () : void 

callOverloadEncountered (assignmentID : in TpAssignmentID) : void 

callOverloadCeased (assignmentID : in TpAssignmentID) : void 

<<new>> abortMultipleCalls (callReferenceSet : in TpSessionIDSet) : void 

 

 

6.2.1 Method reportNotification() 

This method notifies the application of the arrival of a call-related event. 

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has 
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period 
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and 
callEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY. 

Setting the callback reference: 

A reference to the application interface has to be passed back to the call interface to which the notification relates. 

However, the setting of a call back reference is only applicable if the notification is in INTERRUPT mode. 

When reportNotification() is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the 
application writer should ensure that no continue processing e.g. createAndRouteCallLegReq() is performed until the 
callback interface for the new call and/or new call leg has been passed to the gateway, either through an explicit 
setCallbackWithSessionID() invocation, or via the return of the reportNotification() method. 

The call back reference can be registered either in a) reportNotification() or b) explicitly with a 
setCallbackWithSessionID() method depending on how the application provides its callback reference. 

Case a: 

From an efficiency point of view the reportNotification() with explicit pass of registration may be the preferred method.  

Case b: 

The reportNotification() with no callback reference ("Null" value) is used where (e.g. due to distributed application 
logic) the callback reference is provided previously in a setCallbackWithSessionID(). If no callback reference has been 
provided previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised, and no further 
application invocations related to the call shall be permitted. 

In case reportNotification() contains no callback, at the moment the application needs to be informed the gateway will 
use as callback the callback that has been registered previously by setCallbackWithSessionID(). 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 34 

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the 
new call and/or new call leg. If the application has previously explicitly passed a reference to the callback interface 
using a setCallbackWithSessionID() invocation, this parameter may be set to P_APP_CALLBACK_UNDEFINED, or 
if supplied must be the same as that provided during the setCallbackWithSessionID().  

This parameter will be set to P_APP_CALLBACK_UNDEFINED if the notification is in NOTIFY mode and in 
case b).  

Parameters  

callReference : in TpMultiPartyCallIdentifier 

Specifies the reference to the call interface to which the notification relates. If the notification is being given in 
NOTIFY mode, this parameter shall be ignored by the application client implementation, and consequently the 
implementation of the SCS entity invoking reportNotification may populate this parameter as it chooses. 

callLegReferenceSet : in TpCallLegIdentifierSet 

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call 
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the 
notificationInfo can be found on whose behalf the notification was sent. 

However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client 
implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this 
parameter as it chooses.  

notificationInfo : in TpCallNotificationInfo 

Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification). 

assignmentID : in TpAssignmentID 

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment 
id to associate events with event specific criteria and to act accordingly. 

Returns 

TpAppMultiPartyCallBack 

6.2.2 Method callAborted() 

This method indicates to the application that the call object has aborted or terminated abnormally. No further 
communication will be possible between the call and application.  

Parameters  

callReference : in TpSessionID 

Specifies the sessionID of call that has aborted or terminated abnormally. 

6.2.3 Method managerInterrupted() 

This method indicates to the application that event notifications and method invocations have been temporarily 
interrupted (for example, due to network resources unavailable). 

Note that more permanent failures are reported via the Framework (integrity management).  

Parameters  
No Parameters were identified for this method. 

6.2.4 Method managerResumed() 

This method indicates to the application that event notifications are possible and method invocations are enabled.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 35 

Parameters  
No Parameters were identified for this method. 

6.2.5 Method callOverloadEncountered() 

This method indicates that the network has detected overload and may have automatically imposed load control on calls 
requested to a particular address range or calls made to a particular destination within the call control service.  

Parameters  

assignmentID : in TpAssignmentID 

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for 
within which the overload has been encountered. 

6.2.6 Method callOverloadCeased() 

This method indicates that the network has detected that the overload has ceased and has automatically removed any 
load controls on calls requested to a particular address range or calls made to a particular destination within the call 
control service.  

Parameters  

assignmentID : in TpAssignmentID 

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for 
within which the overload has been ceased. 

6.2.7 Method <<new>> abortMultipleCalls() 

The service may invoke this method on the IpAppCallControlManager interface to indicate that a number of ongoing 
call sessions have aborted or terminated abnormally. No further communication will be possible between the 
application and the calls. This may be used for example in the event of service failure and recovery in order to instruct 
the application that a number of call sessions have failed. The service shall provide a set of call sessionIDs indicating to 
the application the call sessions that have aborted. In the case that the service invokes this method and provides an 
empty set of sessionIDs, this shall be used to indicate that all call sessions previously active on the 
IpCallControlManager interface have been aborted.  

Parameters  

callReferenceSet : in TpSessionIDSet 

Specifies the set of sessionIDs of calls that have aborted or terminated abnormally. The empty set shall be used to 
indicate that all calls have aborted. 

6.3 Interface Class IpMultiPartyCall  
Inherits from: IpService  

The Multi-Party Call provides the possibility to control the call routing, to request information from the call, control the 
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs 
explicitly. An application may create more then one call leg.                 
This interface shall be implemented by a Multi Party Call Control SCF. The release() and deassignCall() methods, and 
either the createCallLeg() or the createAndRouteCallLegReq(), shall be implemented as a minimum requirement.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 36 

<<Interface>> 

IpMultiPartyCall 

 

 

 

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet 

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier 

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet, 
targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet, 
appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier 

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void 

deassignCall (callSessionID : in TpSessionID) : void 

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void 

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void 

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) : 
void 

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in 
TpCallSuperviseTreatment) : void 

 

 

6.3.1 Method getCallLegs() 

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the 
order of creation. 

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionIDs and the 
interface references.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

Returns 

TpCallLegIdentifierSet 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

6.3.2 Method createCallLeg() 

This method requests the creation of a new call leg object. 

Returns callLeg: Specifies the interface and sessionID of the call leg created.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 37 

appCallLeg : in IpAppCallLegRef 

Specifies the application interface for callbacks from the call leg created. 

Returns 

TpCallLegIdentifier 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE 

6.3.3 Method createAndRouteCallLegReq() 

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination 
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMediaReq() operation is 
needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide 
through the appLegInterface parameter.  

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to 
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, 
otherwise the network or gateway provided numbers will be used. 

If the application wishes that the call leg should be represented in the network as being a redirection it should include a 
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo. 

If this method is invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this 
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception. 

Note that for application initiated calls in some networks the result of the first createAndRouteCallLegReq() has to be 
received before the next createAndRouteCallLegReq() can be invoked. The Service Property 
P_PARALLEL_INITIAL_ROUTING_REQUESTS (see clause 8.1 of the present document) indicates how a specific 
implementation handles the initial createAndRouteCallLegReq(). This method shall throw P_TASK_REFUSED if an 
application is not allowed to use parallel routing requests. 

Returns callLegReference: Specifies the reference to the CallLeg interface that was created.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

eventsRequested : in TpCallEventRequestSet 

Specifies the event specific criteria used by the application to define the events required. Only events that meet these 
criteria are reported. Examples of events are "address analysed", "answer" and "release".  

targetAddress : in TpAddress 

Specifies the destination party to which the call should be routed. 

originatingAddress : in TpAddress 

Specifies the address of the originating (calling) party. 

appInfo : in TpCallAppInfoSet 

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service 
identities and interaction indicators).     

appLegInterface : in IpAppCallLegRef 

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested 
events will be reported by the eventReportRes() operation on this interface. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 38 

Returns 

TpCallLegIdentifier 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE, 
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, 
P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA 

6.3.4 Method release() 

This method requests the release of the call object and associated objects. The call will also be terminated in the 
network. If the application requested reports to be sent at the end of the call (e.g. by means of getInfoReq) these reports 
will still be sent to the application.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

cause : in TpReleaseCause 

Specifies the cause of the release. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE 

6.3.5 Method deassignCall() 

This method requests that the relationship between the application and the call and associated objects be de-assigned. It 
leaves the call in progress, however, it purges the specified call object so that the application has no further control of 
call processing. If a call is de-assigned that has call information reports, call leg event reports or call Leg information 
reports requested, then these reports will be disabled and any related information discarded. 

When this method is invoked, all outstanding supervision requests will be cancelled.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

6.3.6 Method getInfoReq() 

This asynchronous method requests information associated with the call to be provided at the appropriate time (for 
example, to calculate charging). This method must be invoked before the call is routed to a target address. 

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after 
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party 
is still available the application can still initiate a follow-on call using routeReq.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 39 

callInfoRequested : in TpCallInfoType 

Specifies the call information that is requested. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

6.3.7 Method setChargePlan() 

Set an operator specific charge plan for the call.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

callChargePlan : in TpCallChargePlan 

Specifies the charge plan to use. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

6.3.8 Method setAdviceOfCharge() 

This method allows for Advice of Charge (AoC) information to be sent to terminals that are capable of receiving this 
information.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call.  

aOCInfo : in TpAoCInfo 

Specifies two sets of Advice of Charge parameter. 

tariffSwitch : in TpDuration 

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY, 
P_INVALID_AMOUNT 

6.3.9 Method superviseReq() 

The application calls this method to supervise a call. The application can set a granted connection time for this call. If 
an application calls this operation before it routes a call or a user interaction operation the time measurement will start 
as soon as the call is answered by the B-party or the user interaction system.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 40 

time : in TpDuration 

Specifies the granted time in milliseconds for the connection. Measurement will start as soon as the call is connected in 
the network, e.g. answered by the B-party or the user-interaction system. 

treatment : in TpCallSuperviseTreatment 

Specifies how the network should react after the granted connection time expired. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

6.4 Interface Class IpAppMultiPartyCall  
Inherits from: IpInterface;  

The Multi-Party call application interface is implemented by the client application developer and is used to handle call 
request responses and state reports.  

<<Interface>> 

IpAppMultiPartyCall 

 

 

 

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void 

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) 
: void 

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void 

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier, 
errorIndication : in TpCallError) : void 

 

 

6.4.1 Method getInfoRes() 

This asynchronous method reports time information of the finished call or call attempt as well as release cause 
depending on which information has been requested by getInfoReq. This information may be used e.g. for charging 
purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has 
been disconnected or a routing failure has been encountered.     

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

callInfoReport : in TpCallInfoReport 

Specifies the call information requested. 

6.4.2 Method getInfoErr() 

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 41 

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

6.4.3 Method superviseRes() 

This asynchronous method reports a call supervision event to the application when it has indicated its interest in this 
kind of event. 

It is also called when the connection is terminated before the supervision event occurs.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

report : in TpCallSuperviseReport 

Specifies the situation which triggered the sending of the call supervision response. 

usedTime : in TpDuration 

Specifies the used time for the call supervision (in milliseconds). 

6.4.4 Method superviseErr() 

This asynchronous method reports a call supervision error to the application.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

6.4.5 Method callEnded() 

This method indicates to the application that the call has terminated in the network.  

Note that the event that caused the call to end might have been received separately if the application was monitoring for 
it.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call sessionID. 

report : in TpCallEndedReport 

Specifies the reason the call is terminated. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 42 

6.4.6 Method createAndRouteCallLegErr() 

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the 
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the 
parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and 
correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and 
not by this operation.  

Parameters  

callSessionID : in TpSessionID 

Specifies the call session ID of the call. 

callLegReference : in TpCallLegIdentifier 

Specifies the reference to the CallLeg interface that was created. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

6.5 Interface Class IpCallLeg  
Inherits from: IpService;  

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states 
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an 
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg 
specific event request and can obtain call leg specific report and events.            
This interface shall be implemented by a Multi Party Call Control SCF. The routeReq(), eventReportReq(), release(), 
continueProcessing() and deassign() methods shall be implemented as a minimum requirement.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 43 

<<Interface>> 

IpCallLeg 

 

 

 

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in 
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) : 
void 

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void 

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void 

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void 

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier 

attachMediaReq (callLegSessionID : in TpSessionID) : void 

detachMediaReq (callLegSessionID : in TpSessionID) : void 

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress 

continueProcessing (callLegSessionID : in TpSessionID) : void 

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void 

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) 
: void 

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in 
TpCallLegSuperviseTreatment) : void 

deassign (callLegSessionID : in TpSessionID) : void 

<<new>> getProperties (callLegSessionID : in TpSessionID, propertyNames : in 
TpCallLegPropertyNameList) : TpCallLegPropertyList 

<<new>> setProperties (callLegSessionID : in TpSessionID, properties : in TpCallLegPropertyList) : void 

 

 

6.5.1 Method routeReq() 

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress. 

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached 
to the call based on the attach Mechanism values specified in the connectionProperties parameter. 

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to 
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses from the route is 
used, otherwise network or gateway provided addresses will be used. 

If the application wishes that the call leg should be represented in the network as being a redirection it should include a 
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo. 

This operation continues processing of the call leg. 

Note that for application initiated calls in some networks the result of the first routeReq() has to be received before the 
next routeReq() can be invoked. The Service Property P_PARALLEL_INITIAL_ROUTING_REQUESTS  
(see clause 8.1 of the present document) indicates how a specific implementation handles the initial routeReq().This 
method shall throw P_TASK_REFUSED if an application is not allowed to use parallel routing requests.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 44 

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

targetAddress : in TpAddress 

Specifies the destination party to which the call leg should be routed. 

originatingAddress : in TpAddress 

Specifies the address of the originating (calling) party. 

appInfo : in TpCallAppInfoSet 

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service 
identities and interaction indicators). 

connectionProperties : in TpCallLegConnectionProperties 

Specifies the properties of the connection. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE, 
P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN 

6.5.2 Method eventReportReq() 

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to 
observe.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

eventsRequested : in TpCallEventRequestSet 

Specifies the event specific criteria used by the application to define the events required. Only events that meet these 
criteria are reported. Examples of events are "address analysed", "answer" and "release". 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE, 
P_INVALID_CRITERIA 

6.5.3 Method release() 

This method requests the release of the call leg. If successful, the associated address (party) will be released from the 
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the 
network. The application will be informed of this with callEnded(). 

This operation continues processing of the call leg.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

cause : in TpReleaseCause 

Specifies the cause of the release. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 45 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE 

6.5.4 Method getInfoReq() 

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for 
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern 
are deleted.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

callLegInfoRequested : in TpCallLegInfoType 

Specifies the call leg information that is requested. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

6.5.5 Method getCall() 

This method requests the call associated with this call leg. 

Returns callReference: Specifies the interface and sessionID of the call associated with this call leg.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

Returns 

TpMultiPartyCallIdentifier 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

6.5.6 Method attachMediaReq() 

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer 
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this 
method to complete successfully. 

In case this method is invoked while there is still a request to detach the Media pending, the exception 
"P_TASK_REFUSED" will be raised.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the sessionID of the call leg to attach to the call. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 46 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE 

6.5.7 Method detachMediaReq() 

This method will detach the call leg from its call, i.e. this will prevent transmission on any associated bearer 
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this 
method to complete successfully. 

In case this method is invoked while there is still a request to attach the Media pending, the exception 
"P_TASK_REFUSED" will be raised.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the sessionID of the call leg to detach from the call. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE 

6.5.8 Method getCurrentDestinationAddress() 

Queries the current address of the destination the leg has been directed to. 

Returns the address of the destination point towards which the call leg has been routed. 

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call session ID of the call leg. 

Returns 

TpAddress 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

6.5.9 Method continueProcessing() 

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was 
interrupted due to detection of a notification or event the application subscribed its interest in. 

In case the operation is invoked and call leg processing is not interrupted the exception 
P_INVALID_NETWORK_STATE will be raised.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 47 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE 

6.5.10 Method setChargePlan() 

Set an operator specific charge plan for the call leg.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call party. 

callChargePlan : in TpCallChargePlan 

Specifies the charge plan to use. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

6.5.11 Method setAdviceOfCharge() 

This method allows for Advice of Charge (AoC) information to be sent to terminals that are capable of receiving this 
information.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call party. 

aOCInfo : in TpAoCInfo 

Specifies two sets of Advice of Charge parameter. 

tariffSwitch : in TpDuration 

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY, 
P_INVALID_AMOUNT 

6.5.12 Method superviseReq() 

The application calls this method to supervise a call leg. The application can set a granted connection time for this call. 
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will 
start as soon as the call is answered by the B-party or the user interaction system.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call party. 

time : in TpDuration 

Specifies the granted time in milliseconds for the connection. Measurement will start as soon as the callLeg is 
connected in the network. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 48 

treatment : in TpCallLegSuperviseTreatment 

Specifies how the network should react after the granted connection time expired. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

6.5.13 Method deassign() 

This method requests that the relationship between the application and the call leg and associated objects be 
de-assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has 
no further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports 
requested, then these reports will be disabled and any related information discarded. 

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This 
operation continues processing of the call leg. 

When this method is invoked, all outstanding supervision requests will be cancelled.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID 

6.5.14 Method <<new>> getProperties() 

This synchronous method requests to receive the values of indicated property names if they are available. Examples are 
a P_CALL_LEG_PROPERTY_ICON (references an image suitable as an iconic representation of the caller or callee), 
P_CALL_LEG_PROPERTY_INFO (e.g. a web page), or P_CALL_LEG_PROPERTY_CARD (a business card). The 
caller's properties are available on the call leg object representing the originating address and the callee's properties are 
available on the call leg object representing callee. If some property value is not available, the property name and value 
will not be part of the returned list with properties. Note that parts of the caller and callee's public identity are also made 
available through TpAddress. 

The Service Property P_CALL_LEG_PROPERTIES (see clause 8.1) indicates the properties that are supported.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

propertyNames : in TpCallLegPropertyNameList 

Specifies the property names of the call leg to be made available. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 49 

Returns 

TpCallLegPropertyList 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE, 
P_INFORMATION_NOT_AVAILABLE, P_UNAUTHORISED_PARAMETER_VALUE 

6.5.15 Method <<new>> setProperties() 

This synchronous method requests to set the values of indicated property names and their values if they are supported. 
Examples are a P_CALL_LEG_PROPERTY_ICON (references an image suitable as an iconic representation of the 
caller or callee), P_CALL_LEG_PROPERTY_INFO (e.g. a web page), or P_ CALL_LEG_PROPERTY_CARD (a 
business card). The caller's properties are available on the call leg object representing the originating address and the 
callee's properties are available on the call leg object representing callee. If some property name is not applicable, it and 
its value will be ignored. Note that parts of the caller and callee's public identity are also made available through 
TpAddress. 

The Service Property P_CALL_LEG_PROPERTIES (see clause 8.1) indicates the properties that are supported.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

properties : in TpCallLegPropertyList 

Specifies the properties of the call leg to be set. 

Raises 

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE, 
P_INFORMATION_NOT_AVAILABLE, P_UNAUTHORISED_PARAMETER_VALUE 

6.6 Interface Class IpAppCallLeg  
Inherits from: IpInterface;  

The application call leg interface is implemented by the client application developer and is used to handle responses and 
errors associated with requests on the call leg in order to be able to receive leg specific information and events.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 50 

<<Interface>> 

IpAppCallLeg 

 

 

 

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : void 

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

attachMediaRes (callLegSessionID : in TpSessionID) : void 

attachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

detachMediaRes (callLegSessionID : in TpSessionID) : void 

detachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : void 

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in 
TpDuration) : void 

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void 

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void 

 

 

6.6.1 Method eventReportRes() 

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call 
event, the party has requested to disconnect, etc.). 

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these 
so-called disarming rules are captured in the data definition of the event type. 

If this method is invoked for a report with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the 
application has control of the call leg. If the application does nothing with the call leg within a specified time period 
(the duration which forms a part of the service level agreement), then the connection in the network shall be released 
and callLegEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg on which the event was detected. 

eventInfo : in TpCallEventInfo 

Specifies data associated with this event. 

6.6.2 Method eventReportErr() 

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason 
(for example, the parameters were incorrect, the request was refused, etc.).  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 51 

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

6.6.3 Method attachMediaRes() 

This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer 
connections to this leg is now available.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg to which the information relates. 

6.6.4 Method attachMediaErr() 

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

6.6.5 Method detachMediaRes() 

This asynchronous method reports the detachment of a call leg from a call has succeeded. The media channels or bearer 
connections to this leg is no longer available.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg to which the information relates. 

6.6.6 Method detachMediaErr() 

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

6.6.7 Method getInfoRes() 

This asynchronous method reports all the necessary information requested by the application, for example to calculate 
charging.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 52 

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg to which the information relates. 

callLegInfoReport : in TpCallLegInfoReport 

Specifies the call leg information requested. 

6.6.8 Method getInfoErr() 

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

6.6.9 Method routeErr() 

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the 
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the 
parameters were incorrect, the request was refused, etc.).  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

6.6.10 Method superviseRes() 

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in this 
kind of event. 

It is also called when the connection to a party is terminated before the supervision event occurs.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

report : in TpCallSuperviseReport 

Specifies the situation which triggered the sending of the call leg supervision response. 

usedTime : in TpDuration 

Specifies the used time for the call leg supervision (in milliseconds). 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 53 

6.6.11 Method superviseErr() 

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

errorIndication : in TpCallError 

Specifies the error which led to the original request failing. 

6.6.12 Method callLegEnded() 

This method indicates to the application that the leg has terminated in the network. The application has received all 
requested results (e.g. getInfoRes) related to the call leg. The call leg will be destroyed after returning from this method.  

Parameters  

callLegSessionID : in TpSessionID 

Specifies the call leg session ID of the call leg. 

cause : in TpReleaseCause 

Specifies the reason the connection is terminated. 

7 MultiParty Call Control Service State Transition 
Diagrams 

7.1 State Transition Diagrams for 
IpMultiPartyCallControlManager  

ActiveInterrupted

'new'

 ^managerResumed

IpAccess.terminateServiceAgreement

 ^managerInterrupted

IpAccess.terminateServiceAgreement

  

Figure 3: Application view and the Multi-Party Call Control Manager  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 54 

7.1.1 Active State 

In this state a relation between the Application and the Service has been established. The state allows the application to 
indicate that it is interested in call related events. In case such an event occurs, the Manager will create a Call object 
with the appropriate number of Call Leg objects and inform the application. The application can also indicate it is no 
longer interested in certain call related events by calling destroyNotification(). 

7.1.2 Interrupted State 

When the Manager is in the Interrupted state it is temporarily unavailable for use. Events requested cannot be forwarded 
to the application and methods in the API cannot successfully be executed. A number of reasons can cause this: for 
instance the application receives more notifications from the network than defined in the Service Agreement. Another 
example is that the Service has detected it receives no notifications from the network due to e.g. a link failure.  

7.1.3 Overview of allowed methods 

Call Control Manager State Methods applicable 
Active createCall, 

createNotification, 
destroyNotification, 
changeNotification, 
getNotification, 
getNextNotification, 
setCallLoadControl, 
enableNotifications, 
disableNotifications 

Interrupted getNotification, 
getNextNotification, 
enableNotifications, 
disableNotifications 

 

7.2 State Transition Diagrams for IpMultiPartyCall  
The state transition diagram shows the application view on the MultiParty Call object. 

When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a 
notification with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, an activity timer is started. The 
activity timer is stopped when the application invokes a method on the IpMultiPartyCall. The action upon expiry of this 
activity timer is to invoke callEnded() on the IpAppMultiPartyCall with a release cause of P_TIMER_EXPIRY. In the 
case when no IpAppMultiPartyCall is available on which to invoke callEnded(), callAborted() shall be invoked on the 
IpAppMultiPartyCallControlManager as this is an abnormal termination.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 55 

IDLE

ACTIVE

RELEASED

IpMul tiPartyCallManage r.createCall

[ incoming call ] 
^IpAppMultiPartyCallControlManager.reportNotification

release

'last leg released'

 ^callEnded

deassignCall

A t imer mecha nisem pre ve nts tha t the ob je ct 
kee ps o ccup yin g resources.  In case the ti mer 
expires,  callEn de d() is in vo ke d on  th e 
IpAppM ul tiPartyCal l with a  rele ase cause  o f 
P_ TIMER_EXPIRY.  In the  case when no  
IpAppM ul tiPartyCal l i s a va ila bl e on which to invoke 
cal lEnd ed (),  ca llAb orted () shall be  invoke d on  th e 
IpAppM ul tiPartyCal lCon tro lManage r a s this is an 
abno rmal te rminati on .

createCallLeg

createAndRouteCallLeg

de assig n

  

Figure 4: Application view on the MultiParty Call object  

7.2.1 IDLE State 

In this state the Call object has no Call Leg object associated to it. 

The application can request for charging related information reports, call supervision, set the charge plan and set Advice 
Of Charge indicators. When the first Call Leg object is requested to be created a state transition is made to the Active 
state. 

7.2.2 ACTIVE State 

In this state the Call object has one or more Call Leg objects associated to it. The application is allowed to create 
additional Call Leg objects. 

Furthermore, the application can request for call supervision. The Application can request charging related information 
reports, set the charge plan and set Advice Of Charge indicators in this state prior to call establishment. 

7.2.3 RELEASED State 

In this state the last Call leg object has released or the call itself was released. While the call is in this state, the 
requested call information will be collected and returned through getInfoRes() and / or superviseRes(). As soon as all 
information is returned, the application will be informed that the call has ended and Call object transition to the end 
state. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 56 

7.2.4 Overview of allowed methods 

Methods applicable Call Control Call 
State 

Call Control Manager 
State 

getCallLegs, 
 

Idle, Active, Released - 

createCallLeg, 
createAndRouteCallLegReq, 
setAdviceOfCharge, 
superviseReq,  

Idle, Active Active 

release Active Active 
deassignCall Idle, Active - 
setChargePlan, getInfoReq Idle, Active Active 

 

7.3 State Transition Diagrams for IpCallLeg  
The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams, one for the originating call leg 
and one for the terminating call leg.  

Call Leg State Model General Objectives: 

1) Events in backwards direction (upstream), coming from terminating leg, are not directly visible in originating 
leg model. See note 1. 

2) Events in forwards direction (downstream), coming from originating leg, are not directly visible in terminating 
leg model. See note 1. 

3) States are as seen from the application: if there is no change in the method an application is permitted to apply 
on the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or alerting events on 
terminating leg do not change state. See note 2. 

4) Call processing is suspended if for a leg a network event is met, which was requested to be monitored in the 
P_CALL_MONITOR_MODE_INTERRUPT. The application shall send a request to continue processing 
(using an appropriate method like continueProcessing, deassign, release or routeReq) for each leg and event 
reported in monitor mode 'interrupt'.  
If the event leads to a state transition, the call processing is suspended when entering the state. 

5) In case on a leg more than one network event (for example a mid-call event 'service_code' and a disconnection 
event) is to be reported to the application at quasi the same time, then the events are to be reported one by one 
to the application in the order received from the network. When for a leg an event is reported in interrupt 
mode, a next pending event is not to be reported to the application until a request to resume call processing for 
the current reported event has been received on the leg.  

NOTE 1: Although events coming from a specific party will always be tied to the callLeg related to that party, these 
events might lead to state transitions of other callLegs. Examples of such events are terminating release, 
where also the originating leg might transit to the releasing state and originating_release where the 
terminating leg might transit to the releasing state. 

NOTE 2: Even though in the Originating Call Leg STD there is no change in the methods the application is 
permitted to apply to the IpCallLeg object for the states Analysing and Active, separate states are 
maintained. The states may therefore, from an application viewpoint, appear as just one state that may 
have substates like Analysing and Active. The digit collection task in state Analysing state may be viewed 
as a specialised task that may not at all be applicable in some networks and therefore is described here as 
being a state on its own.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 57 

7.3.1 Originating Call Leg 

Initiating

Analysing

Active

Releasing

do/ send reports if requested, or error reports if required

Originating Call Leg.

Tr ansitions/events not shown:
All states:
continueProcessing , g etLastRedirectedAddress, getCall: no state change
All states except Releasing :
eventR eportReq, setAdviceOfChar ge, getInfoReq , supervi seReq , 
setChar gePlan

All States

detachMedia

'Address_Collected'

 IpAppMultiPartyCallControlManager.
reportNotification(originating service code)

'release'

attachMedia

attachM edia

detachMedia

'originating call attempt authorized'

detachMedia

IpAppMultiPartyCallControlManager.
reportN otification( originatingCallAttempt )

IpAppMultiPartyCallControlManager.
reportNotification( originatingCallAttemptAuthorized )

IpAppMultiPartyCallControlManager.
reportNotification( address_collected )

'Address Collected'

attachMedia

'originating service_code'

'Address Analysed'

IpAppMultiPartyCallControlManager.
reportNotification( address_analysed )

'network release'

'network release'

IpAppMultiPartyCallControlManager.
reportNotification( originating 

release )

'networkRelease'

'timer expiry'

deasign

 ÎpAppCallLeg.callLegEnded

  

Figure 5: Originating Leg  

7.3.1.1 Initiating State 

Entry events: 

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an 
'Originating_Call_Attempt' initial notification criterion. 

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an 
'Originating_Call_Attempt_Authorised' initial notification criterion. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 58 

Functions:  

In this state the network checks the authority/ability of the party to place the connection to the remote (destination) 
party with the given properties, e.g. based on the originating party's identity and service profile. 

The setup of the connection for the party has been initiated and the application activity timer is being provided. 

The figure below shows the order in which network events may be detected in the Initiating state and depending on the 
monitor mode be reported to the application. 

oCA oCAA  AC 

See note 1 

oREL See 
note 2 

Initiating 
State 

 

NOTE 1: Event oCA only applicable as an initial notification. 
NOTE 2: The release event (oREL) can occur in any state resulting in a transition to Releasing state. 
 
Abbreviations used for the events: 
oCA: originating Call Attempt; 
oCAA: originating Call Attempt Authorized;  
AC: Address Collected; 
oREL: originating RELease. 
 

Figure 6: Application view on event reporting order in Initiating State  

In this state the following functions are applicable: 

- The detection of a 'Originating_Call_Attempt' initial notification criterion. 

- The detection of an 'Originating_Call_Attempt_Authorised' initial notification criterion as a result that the call 
attempt authorisation is successful. 

- The report of the 'Originating_Call_Attempt_Authorised' event indication whereby the following functions are 
performed: 

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event 
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is reported and call leg 
processing is suspended. 

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event 
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing 
continues. 

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event 
P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed. 

- The receipt of destination address information, i.e. initial information package/dialling string as received from 
calling party. 

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 59 

Exit events: 

- Availability of destination address information, i.e. the initial information package/dialling string received 
from the calling party. 

- Application activity timer expiry indicating that no requests from the application have been received during a 
certain period while processing is suspended for the leg. 

- Receipt of a deassign() method. 

- Receipt of a release() method. 

- Detection of an 'originating release' indication as a result of a premature disconnect from the calling party. 

7.3.1.2 Analysing State 

Entry events: 

- Availability of an 'Address_Collected' event indication as a result of the receipt of the (complete) initial 
information package/dialling string from the calling party. 

- Availability of an 'Address_Collected' event indication as a result of additional digits received from the calling 
party as requested by the application (with eventReportReq). 

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an 'Address_Collected' 
initial notification criterion. 

Functions:  

In this state the destination address provided by the calling party is collected and analysed.  

The received information (dialled address string from the calling party) is being collected and examined in accordance 
to the dialling plan in order to determine end of address information (digit) collection. Additional address digits can be 
collected. Upon completion of address collection the address is analysed. 

The address analysis is being made according to the dialling plan in force to determine the routing address of the call 
leg connection and the connection type (e.g. local, transit, gateway). 

The request (with eventReportReq method) to collect a variable number of more address digits and report them to the 
application (within eventReportRes method) is handled within this state. The collection of more digits as requested and 
the reporting of received digits to the application (when the digit collect criteria is met) is done in this state. This action 
can be repeated, e.g. the application may request first for 3 digits to be collected and when reported request further 
digits. 

The figure below shows the order in which network events may be detected in the Analysing state and depending on the 
monitor mode be reported to the application. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 60 

 

oCAA AC AA 

oREL 
note Analysing 

State 

 

NOTE: The release event (oREL) can occur in any state resulting in a transition to Releasing state. 
 
Abbreviations used for the events: 
oCAA: originating Call Attempt Authorized;  
AC: Address Collected;  
AA: Address Analysed; 
oREL: originating RELease. 
 

Figure 7: Application view on event reporting order in Analysing State  

 

In this state the following functions are applicable: 

- The detection of an 'Address_Collected' initial notification criterion. 

- On receipt of the 'Address_Collected' indication the following functions are performed: 

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event 
P_CALL_EVENT_ADDRESS_COLLECTED then the event is reported and call leg processing is 
suspended. 

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event 
P_CALL_EVENT_ADDRESS_COLLECTED then the event is notified and call leg processing 
continues. 

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event 
P_CALL_EVENT_ADDRESS_COLLECTED then no monitoring is performed. 

- Receipt of an eventReportReq() method defining the criteria for the events the call leg object is to observe. 

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq() 
method. 

Exit events: 

- Detection of an 'Address_Analysed' indication as a result of the availability of the routing address and nature 
of address. 

- Receipt of a deassign() method. 

- Receipt of a release() method. 

- Application activity timer expiry indicating that no requests from the application have been received during a 
certain period while processing is suspended for the leg. 

- Detection of a 'originating release' indication as a result of a premature disconnect from the calling party. 

7.3.1.3 Active State 

Entry events: 

- Receipt of an 'Address_Analysed' indication as a result of the availability of the routing address and nature of 
address. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 61 

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an 'Address_Analysed' 
initial indication criterion. 

Functions:  

In this state the call leg connection to the calling party exists and originating mid call events can be received. 

The figure below shows the order in which network events may be detected in the Active state and depending on the 
monitor mode be reported to the application. 

Active 
State 

AA 

oSC 

 oREL 

See note 1 
See 
note 2 

AC 

 

NOTE 1: Only the detected service code or the range to which the service code belongs is disarmed as the service 
code is reported to the application. 

NOTE 2: The release event (oREL) can occur in any state resulting in a transition to Releasing state. 
 
Abbreviations used for the events: 
AC: Address Collected;  
AA: Address Analysed;  
oSC: originating Service Code;  
oREL: originating RELease. 
 

Figure 8: Application view on event reporting order Active State  

In this state the following functions are applicable: 

- The detection of an Address_Analysed initial indication criterion. 

- On receipt of the 'Address_Analysed' indication the following functions are performed: 

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event 
P_CALL_EVENT_ADDRESS_ANALYSED then the event is reported and call leg processing is 
suspended. 

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event 
P_CALL_EVENT_ADDRESS_ANALYSED then the event is notified and call leg processing 
continues. 

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event 
P_CALL_EVENT_ADDRESS_ANALYSED then no monitoring is performed.  

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.  

- When entering this state the routing information is interpreted, the authority of the calling party to establish 
this connection is verified. Note that no call leg connection is set up to the remote party at this point when the 
application is still in control. The application explicitly has to create and route the terminating leg, optionally 
using the address information from the Address_Analysed event. Only in case the call is deassigned (the 
application relinquishes control) in this state, the network will setup the connection to terminating leg 
automatically based on the received information.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 62 

- In this state a connection to the calling party is established. 

- On receipt of the 'originating_service code' indication the following functions are performed: 

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event 
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then the event is reported and call leg processing 
is suspended. 

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event 
P_CALL_EVENT_ORIGINATING_SERVICE_CODED then the event is notified and call leg 
processing continues. 

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event 
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed. 

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method. 

Exit events: 

- Detection of an 'originating release' indication as a result of a disconnect from the calling. 

- Detection of a propagated disconnect from the called party. 

- Receipt of a deassign() method. 

- Receipt of a release() method from the application. 

- Application activity timer expiry indicating that no requests from the application have been received during a 
certain period while call processing is suspended. 

7.3.1.4 Releasing State 

Entry events: 

- Detection of an 'Originating_Release' indication as a result of the network release initiated by calling party. 

- Propagated release from called party. 

- Release of the entire call (e.g. after invoking IpCall.release()). 

- Reception of the release() method from the application. 

- A transition due to fault detection to this state is made when the Call leg object is in a state and no requests 
from the application have been received during a certain time period (timer expiry). 

Functions:  

In this state the connection to the call party is released as requested by the network or by the application and the reports 
are processed and sent to the application if requested. 

When the Releasing state is entered the order of actions to be performed is as follows: 

i) The network release event handling is performed. 

ii) The possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and 
send to the application. 

iii) The callLegEnded() method is sent to the application to inform that the call leg object is destroyed. 

In this state the following functions are applicable: 

- The detection of an 'originating_release' initial indication criterion. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 63 

- On receipt of the 'originating_release' indication the following functions are performed: 

- The network release event handling is performed as follows: 

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event 
P_CALL_EVENT_RELEASE then the event is reported and call leg processing is suspended. 

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event 
P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues. 

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event 
P_CALL_EVENT_RELEASE then no monitoring is performed. 

Note that this handling is not performed for propagated releases from the called party. 

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method. 

- The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to 
the application with respectively the getInfoRes() and/or superviseRes() methods.  

- The callLegEnded() method is sent to the application after all information has been sent. In case that the 
application has not requested additional call leg related information the call leg object is destroyed immediately 
and additionally the application will also be informed that the connection has ended. 

- In case of abnormal termination due to a fault and the application requested for call leg related information 
previously, the application will be informed that this information is not available and additionally the 
application is informed that the call leg object is destroyed (callLegEnded) and the leg is released in the 
network.  

NOTE: The call in the network may continue or be released, depending e.g. on the call state. 

- In case the release() method is received in Releasing state it will be discarded. The request from the 
application to release the leg is ignored in this case because release of the leg is already ongoing.  

Exit events: 

- In case that the application has not requested additional call leg related information the call leg object is 
destroyed immediately and additionally the application is informed that the call leg connection has ended, by 
sending the callLegEnded() method. 

- After the sending of the last call leg information to the application the Call Leg object is destroyed and 
additionally the application is informed that the call leg connection has ended, by sending the callLegEnded() 
method. 

- Application activity timer expiry indicating that no requests from the application have been received during a 
certain period while processing is suspended for the leg (re-enter releasing state). 

- Receipt of a deassign() method. The leg will be released and call leg object destroyed, but no reports will be 
sent to the application anymore. Also no CallLegEnded will be invoked. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 64 

7.3.1.5 Overview of allowed methods, Originating Call Leg STD 

State Methods allowed 
Initiating getProperties 

setProperties 
attachMediaReq (as a request), 
detachMediaReq, (as a request) 
getCall,  
continueProcessing, 
release (call leg), 
deassign 
eventReportReq,  
getInfoReq,  
setChargePlan,  
setAdviceOfCharge, 
superviseReq 
 

Analysing getProperties 
setProperties 
attachMediaReq (as a request), 
detachMediaReq, (as a request) 
getCall,  
continueProcessing, 
release (call leg), 
deassign 
eventReportReq,  
getInfoReq,  
setChargePlan,  
setAdviceOfCharge, 
superviseReq 
 

Active getProperties 
setProperties 
attachMediaReq, 
detachMediaReq, 
getCall,  
continueProcessing, 
release  
deassign 
eventReportReq,  
getInfoReq,  
setChargePlan,  
setAdviceOfCharge, 
superviseReq 
 

Releasing getCall,  
continueProcessing, 
release  
deassign  
 

 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 65 

7.3.2 Terminating Call Leg 

Idle 
(terminating)

Active 
(terminating)

Releasing (terminating)

do/ send reports if requested, or error reports i f require...

All States 
(terminating)

Terminating Call Leg.

'terminating call attempt authorized', 
'alerting', 'answer', 'terminat ing service 
code', 'redirected', 'queued'

detachMedia

Transitions/events not shown:
All states:
continueProcessing, getLastRedirectedAddress, getCall, sending getInfoRes, 
superviseRes: no state change, 
All states except Releasing:
eventReportReq, setAdviceOfCharge, getInfoReq, superviseReq, setChargePlan.

When the application is notified in reportNotfication of an call related network event 
associated with the Terminating Call Leg STD, then the Originating Call Leg STD is 
created and is initialized to be in the Active state.

attachMedia

routeReq

'network release'

release

'timer expiry'

deasign

 ÎpAppCallLeg.callLegEnded

IpMultiPartyCall.createCallLeg

IpAppMultiPartyCallControlManager.
reportNot ification( terminating 

release)

IpAppMultiPartyCallControlManager.r
eportNotification( "terminating call 
attempt", "terminating call attempt 
authorised", "alerting", "answer", 

"terminating service code", 
"redirected", "queued" )

IpMultiPartyCall.createAndRouteCallLegReq

  

Figure 9: Terminating Leg  

7.3.2.1 Idle (terminating) State 

Entry events: 

- Receipt of a createCallLeg() method to start an application initiated call leg connection. 

Functions:  

In this state the call leg object is created and the interface connection is idled. 

The application activity timer is being provided.  

In this state the following functions are applicable: 

- Invoking routeReq will result in a request to actually route the call leg object and resumption of call 
processing. 

Exit events: 

- Receipt of a routeReq() method from the application. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 66 

- Application activity timer expiry indicating that no requests from the application have been received during a 
certain period to continue processing. 

- Receipt of a deassign() method. 

- Receipt of a release() method. 

- Propagation of network release event as a result of a disconnect from the calling party. 

- Application activity timer expiry indicating that no requests from the application have been received during a 
certain period while processing is suspended for the leg. 

7.3.2.2 Active (terminating) State 

Entry events: 

- Receipt of a routeReq will result in actually routing the call leg object.  

- Receipt of a createAndRouteCallLegReq() method to start an application initiated call leg connection. 

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for the following trigger 
criteria: 'Terminating_Call_Attempt', 'Terminating_Call_Attempt_Authorised', 'Alerting', 'Answer', 
'Terminating service code', 'Redirected' and 'Queued'. 

Functions:  

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified 
for the call leg connection. In this state a connection to the call party is established whereby events from the network 
may indicate to the application when the party is alerted (acknowledge connection setup) and when the party answer 
(confirmation of connection setup). 

Furthermore, in this state terminating service code events can be received. 

The figure below shows the order in which network events may be detected in the Active state and depending on the 
monitor mode be reported to the application. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 67 

 

tCAA 

RD 

tCA 

tSC 

AL ANS 

note 2 

   Q 

tREL 

note 3 

note 1 

Active 
State 

 

NOTE 1: Event tCA applicable as initial notification. 
NOTE 2: Only the detected service code or the range to which the service code belongs is disarmed as the service 

code is reported to the application. 
NOTE 3: The release event (tREL) can occur in any state resulting in a transition to Releasing state. 
 
Abbreviations used for the events: 
tCA: terminating Call Attempt; 
tCAA: terminating Call Attempt Authorized;  
AL: Alerting;  
ANS: Answer;  
tREL: terminating RELease;  
Q: Queued;  
RD: ReDirected;  
tSC: terminating Service Code. 
 

Figure 10: Application view on event reporting order in Active State  

In this state the following functions are applicable: 

- The detection and report of the 'Terminating_Call_Attempt_Authorised' event indication whereby the 
following functions are performed: 

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event 
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is reported and 
call leg processing is suspended. 

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event 
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is notified and 
call leg processing continues. 

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event 
P_CALL_EVENT_CALL_TERMINATING_ATTEMPT_AUTHORISED then no monitoring is 
performed. 

- Detection of a 'Queued' indication as a result of the terminating call being queued. 

- On receipt of the 'Queued' indication the following functions are performed: 

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event 
P_CALL_EVENT_QUEUED then the event is reported and call leg processing is suspended. 

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event 
P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues. 

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event 
P_CALL_EVENT_QUEUED then no monitoring is performed. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 68 

- On receipt of the 'Alerting' indication the following functions are performed: 

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event 
P_CALL_EVENT_ALERTING then the event is reported and call leg processing is suspended. 

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event 
P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues. 

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event 
P_CALL_EVENT_ALERTING then no monitoring is performed. 

- Detection of an 'Answer' indication as a result of the remote party being connected (answered). 

- On receipt of the 'Answer' indication the following functions are performed: 

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event 
P_CALL_EVENT_ANSWER then the event is reported and call leg processing is suspended. 

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event 
P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues. 

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event 
P_CALL_EVENT_ANSWER then no monitoring is performed. 

- The detection of a 'service_code' trigger criterion suspends call leg processing. 

- On receipt of the 'service code' indication the following functions are performed: 

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event 
P_CALL_EVENT_TERMINATING_SERVICE_CODE then the event is reported and call leg 
processing is suspended. 

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event 
P_CALL_EVENT_TERMINATING_SERVICE_CODE then this is not a valid event (that event is not 
notified) and call leg processing continues. 

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event 
P_CALL_EVENT_TERMINATING_SERVICE_CODE then no monitoring is performed. 

- On receipt of the 'redirected' indication the following functions are performed: 

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event 
P_CALL_EVENT_REDIRECTED then the event is reported and call leg processing is suspended. 

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event 
P_CALL_EVENT_REDIRECTED then the event is notified and call leg processing continues. 

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event 
P_CALL_EVENT_REDIRECTED then no monitoring is performed. 

- Resumption of call leg processing occurs on receipt of a continueProcessing() method. 

Exit events: 

-  Detection of a network release event being a 'terminating release' indication as a result of the following events: 

i) Unable to select a route or indication from the remote party of the call leg connection cannot be 
presented (this is the network determined busy condition). 

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied 
(e.g. business group restriction mismatch). 

iii) Detection of a route busy condition received from the remote call leg connection portion. 

iv) Detection of a no-answer condition received from the remote call leg connection portion. 

v) Detection that the remote party was not reachable. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 69 

- Propagation of network release event as a result of the following events: 

-  Detection of a premature disconnect from the calling party. 

- Receipt of a deassign() method. 

- Receipt of a release() method from the application. 

- Propagation of network release event as a result of a disconnect from the calling party . 

- Detection of a network release event being a 'terminating release' indication as a result of a disconnect from 
the called party. 

- Application activity timer expiry indicating that no requests from the application have been received during a 
certain period while processing is suspended for the leg. 

7.3.2.3 Releasing (terminating) State 

Entry events: 

- Propagation of network release disconnect from the calling party. 

- Detection of a network release event being a 'terminating release' indication as a result of the network release 
initiated by called party. 

- Release of the entire call (e.g. after invoking IpCall.release()). 

- Sending of the release() method by the application. 

- A transition due to fault detection to this state is made when the Call leg object awaits a request from the 
application and this is not received within a certain time period. 

-  Detection of a network event being a 'terminating release' indication as a result of the following events: 

i) Unable to select a route or indication from the remote party of the call leg connection cannot be 
presented (this is the network determined busy condition). 

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied 
(e.g. business group restriction mismatch). 

iii) Detection of a route busy condition received from the remote call leg connection portion. 

iv) Detection of a no-answer condition received from the remote call leg connection portion. 

v) Detection that the remote party was not reachable. 

-  Propagation of network release event as a result of the following events: 

- Detection of a premature disconnect from the calling party. 

Functions:  

In this state the connection to the call party is released as requested by the network or by the application 
and the reports are processed and sent to the application if requested . 

When the Releasing state is entered the order of actions to be performed is as follows: 

i) The release event handling is performed. 

ii) The possible call leg information requested with getInfoReq() and/ or superviseReq() is collected and send to 
the application. 

iii) The callLegEnded() method is sent to the application to inform that the call leg object is destroyed. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 70 

Where the entry to this state is caused by the application, for example because the application has requested the leg to 
be released or deassigned or a fault (e.g. timer expiry, no response from application) has been detected, then i) is not 
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested 
reports.  

In this state the following functions are applicable: 

- The detection of a 'Terminating Release' trigger criterion. 

- On receipt of the network release event being a 'Terminating Release' indication the following functions are 
performed: 

- The network release event handling is performed as follows: 

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event 
P_CALL_EVENT_TERMINATING_RELEASE then the event is reported and call leg processing 
is suspended. 

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event 
P_CALL_EVENT_TERMINATING_RELEASE then the event is notified and call leg processing 
continues. 

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event 
P_CALL_EVENT_TERMINATING_RELEASE then no monitoring is performed. 

Note that this handling is not performed for propagated releases from the calling party. 

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method. 

- The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent 
to the application with respectively the getInfoRes() and/or superviseRes() methods.  

- The callLegEnded() method is sent to the application after all information has been sent. In case that the 
application has not requested additional call leg related information the call leg object is destroyed 
immediately and additionally the application will also be informed that the connection has ended. 

- In case of abnormal termination due to a fault and the application requested for call leg related information 
previously, the application will be informed that this information is not available and additionally the 
application is informed that the call leg object is destroyed (callLegEnded) and the leg is released in the 
network.  

NOTE: The call in the network may continue or be released, depending e.g. on the call state. 

- In case the release() method is received in Releasing state it will be discarded. The request from the 
application to release the leg is ignored in this case because release of the leg is already ongoing.  

Exit events: 

- In case that the application has not requested additional call leg related information the call leg object is 
destroyed immediately and additionally the application is informed that the call leg connection has ended, by 
sending the callLegEnded() method. 

- After the sending of the last call leg information to the application the Call Leg object is destroyed and 
additionally the application is informed that the call leg connection has ended, by sending the callLegEnded() 
method. 

- Application activity timer expiry indicating that no requests from the application have been received during a 
certain period while processing is suspended for the leg (re-enter releasing state). 

- Receipt of a deassign() method. The leg will be released and call leg object destroyed, but no reports will be 
sent to the application anymore. Also no CallLegEnded will be invoked. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 71 

7.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD 

State Methods allowed 
Idle routeReq, 

getCall ,  
getCurrentDestinationAddress,  
release, 
deassign 
eventReportReq,  
getInfoReq,  
setChargePlan,  
setAdviceOfCharge, 
superviseReq 
 

Active getProperties 
setProperties 
attachMediaReq 
detachMediaReq 
getCall ,  
getCurrentDestinationAddress,  
continueProcessing, 
release, 
deassign 
eventReportReq,  
getInfoReq,  
setChargePlan,  
setAdviceOfCharge, 
superviseReq 
 

Releasing getCall ,  
getCurrentDestinationAddress,  
continueProcessing, 
release, 
deassign 

 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 72 

8 Multi-Party Call Control Service Properties 

8.1 List of Service Properties 
The following table lists properties relevant for the MPCC API. 

Property Type Description / Interpretation 
P_TRIGGERING_EVENT_TYPES INTEGER_SET Indicates the static event types supported by the 

SCS. Static events are the events by which 
applications are initiated. 

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by 
the SCS. Dynamic events are the events the 
application can request for during the context of a 
call. 

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plans (defined in 
TpAddressPlan.) e.g. {P_ADDRESS_PLAN_E164, 
P_ADDRESS_PLAN_IP}). Note that more than 
one address plan may be supported. 

P_UI_CALL_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed 
on call level and a reference to a Call object can be 
used in the IpUIManager.createUICall() operation. 
Value = FALSE: No User interaction on call level is 
supported. 

P_UI_AT_ALL_STAGES BOOLEAN_SET Value = TRUE: User Interaction can be performed 
at any stage during a call. 
Value = FALSE: User Interaction can be performed 
in case there is only one party in the call. 

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service. 
Values are defined by data-type TpMediaType : 
P_AUDIO, P_VIDEO, P_DATA. 

P_MAX_CALLLEGS_PER_CALL INTEGER_SET Indicates the maximum number of legs in a call for 
which a connection to a call party exists in the 
network. The enforcement of this property is done 
only when a leg is created or routed by the 
application. 

P_UI_CALLLEG_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed 
on leg level and a reference to a CallLeg object 
can be used in the IpUIManager.createUICall() 
operation. 
Value = FALSE : No user interaction on leg level is 
supported. 

P_CALLLEG_PROPERTIES STRING_SET Indicates which of the user identity fields are 
available, valid values are given by 
TpCallLegPropertiesName. 

P_PARALLEL_INITIAL_ROUTING_REQUESTS BOOLEAN_SET Indicates whether for application initiated calls it is 
possible to issue multiple routing request methods 
in parallel or that the application has to wait for the 
result of the first request before another one can 
be invoked. 
Value = TRUE: Multiple routing requests can be 
invoked in parallel. 
Value = FALSE: Result of first request has to be 
received before another request can be issued. 

 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 73 

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are 
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the 
SCS. 

Property Type Description 
P_NOTIFICATION_ADDRESS_RANGES XML_ADDRESS_RANGE_SET Indicates for which numbers notifications 

may be set. More than one range may be 
present. For terminating notifications they 
apply to the terminating number, for 
originating notifications they apply only to 
the originating number. 

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed 
to monitor in interrupt and/or notify mode. 
Set is: 
P_INTERRUPT 
P_NOTIFY 

P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbers the application is 
allowed to change or fill for legs in an 
incoming call. Allowed value set: 
{P_ORIGINAL_CALLED_PARTY_NUMBE
R, 
P_REDIRECTING_NUMBER, 
P_TARGET_NUMBER, 
P_CALLING_PARTY_NUMBER}. 

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the 
setCallChargePlan indicator. Allowed 
values: 
{P_TRANSPARANT_CHARGING, 
P_CHARGE_PLAN} 

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP Indicates the mapping of chargeplans (we 
assume they can be indicated with integers) 
to a logical network chargeplan indicator. 
When the chargeplan supports indicates 
P_CHARGE_PLAN then only chargeplans 
in this mapping are allowed. 

P_HIGH_PROBABILITY_OF_COMPLETI
ON 

BOOLEAN_SET Value = TRUE : high probability of call 
completion field can be set. 
Value = FALSE : high probability of call 
completion field can not be set. FALSE is 
the default value. 

 

The following table explains how the P_TRIGGERING_ADDRESSES property that is inherited via the Generic Call 
Control properties should be interpreted with respect to which of the notifications apply to originating numbers and 
which of the notifications apply to terminating numbers. 

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT Originating 
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED Originating 
P_CALL_EVENT_ADDRESS_COLLECTED Originating 
P_CALL_EVENT_ADDRESS_ANALYSED Originating 
P_CALL_EVENT_ORIGINATING_SERVICE_CODE Originating 
P_CALL_EVENT_ORIGINATING_RELEASE Originating 
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT Terminating 
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED Terminating 
P_CALL_EVENT_ALERTING Terminating 
P_CALL_EVENT_ANSWER Terminating 
P_CALL_EVENT_TERMINATING_RELEASE Terminating 
P_CALL_EVENT_REDIRECTED Terminating 
P_CALL_EVENT_TERMINATING_SERVICE_CODE Terminating 
P_CALL_EVENT_QUEUED N/A 

 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 74 

8.2 Service Property values for the CAMEL Service 
Environment 

Implementations of the MultiParty Call Control API relying on the CSE of CAMEL phase 4 shall have the Service 
Properties outlined above set to the indicated values: 

P_OPERATION_SET = { 
"IpMultiPartyCallControlManager.createCall", 
"IpMultiPartyCallControlManager.createNotification", 
"IpMultiPartyCallControlManager.destroyNotification", 
"IpMultiPartyCallControlManager.changeNotification", 
"IpMultiPartyCallControlManager.getNotification", 
"IpMultiPartyCallControlManager.getNextNotification", 
"IpMultiPartyCallControlManager.enableNotifications", 
"IpMultiPartyCallControlManager.disableNotifications", 
"IpMultiPartyCallControlManager.setCallLoadControl" 
"IpMultiPartyCall.getCallLegs", 
"IpMultiPartyCall.createCallLeg", 
"IpMultiPartyCall.createAndRouteCallLegReq", 
"IpMultiPartyCall.release", 
"IpMultiPartyCall.deassignCall", 
"IpMultiPartyCall.getInfoReq", 
"IpMultiPartyCall.setChargePlan", 
"IpMultiPartyCall.setAdviceOfCharge", 
"IpMultiPartyCall.superviseReq", 
"IpCallLeg.routeReq", 
"IpCallLeg.eventReportReq", 
"IpCallLeg.release", 
"IpCallLeg.getInfoReq", 
"IpCallLeg.getCall", 
"IpCallLeg.continueProcessing" 
} 

 
P_TRIGGERING_EVENT_TYPES = { 
P_CALL_EVENT_ADDRESS_COLLECTED, 
P_CALL_EVENT_ADDRESS_ANALYSED, 
P_CALL_EVENT_ORIGINATING_RELEASE, 
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED, 
P_CALL_EVENT_TERMINATING_RELEASE 
} 

 
NOTE: P_CALL_EVENT_ORIGINATING_RELEASE only for the routing failure case, TpReleaseCause = 

P_ROUTING_FAILURE. 

 
P_DYNAMIC_EVENT_TYPES = { 
P_CALL_EVENT_ALERTING, 
P_CALL_EVENT_ANSWER, 
P_CALL_EVENT_ORIGINATING_RELEASE, 
P_CALL_EVENT_ORIGINATING_SERVICE_CODE, 
P_CALL_EVENT_TERMINATING_RELEASE, 
P_CALL_EVENT_TERMINATING_SERVICE_CODE 
} 

 
P_ADDRESS_PLAN = { 
P_ADDRESS_PLAN_E164 
} 

 
P_UI_CALL_BASED = { 
TRUE 
} 
 
P_UI_AT_ALL_STAGES = { 
FALSE 
} 

 
P_MEDIA_TYPE = { 
P_AUDIO 
} 

 
P_MAX_CALLLEGS_PER_CALL = { 
1, 
2, 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 75 

3, 
4, 
5, 
6 
} 

 
P_UI_CALLLEG_BASED = { 
TRUE 
} 

 
P_MEDIA_ATTACH_EXPLICIT = { 
FALSE 
} 
 
 

9 Multi-Party Call Control Data Definitions 
This clause provides the MPCC data definitions necessary to support the API specification. 

The general format of a data definition specification is described below: 

•  Data Type 

This shows the name of the data type. 

•  Description 

This describes the data type. 

•  Tabular Specification 

This specifies the data types and values of the data type. 

•  Example 

If relevant, an example is shown to illustrate the data type. 

All data types referenced in the present document but not defined in this clause are defined either in the common call 
control data definitions in ES 203 915-4-1 or in the common data definitions which may be found in ES 203 915-2. 

9.1 Event Notification Data Definitions 
No specific event notification data defined. 

9.2 Multi-Party Call Control Data Definitions 

9.2.1 IpCallLeg 

Defines the address of an IpCallLeg Interface. 

9.2.2 IpCallLegRef 

Defines a Reference to type IpCallLeg. 

9.2.3 IpAppCallLeg 

Defines the address of an IpAppCallLeg Interface.  



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 76 

9.2.4 IpAppCallLegRef 

Defines a Reference to type IpAppCallLeg. 

9.2.5 IpMultiPartyCall 

Defines the address of an IpMultiPartyCall Interface. 

9.2.6 IpMultiPartyCallRef 

Defines a Reference to type IpMultiPartyCall. 

9.2.7 IpAppMultiPartyCall 

Defines the address of an IpAppMultiPartyCall Interface. 

9.2.8 IpAppMultiPartyCallRef 

Defines a Reference to type IpAppMultiPartyCall. 

9.2.9 IpMultiPartyCallControlManager 

Defines the address of an IpMultiPartyCallControlManager Interface. 

9.2.10 IpMultiPartyCallControlManagerRef 

Defines a Reference to type IpMultiPartyCallControlManager. 

9.2.11 IpAppMultiPartyCallControlManager 

Defines the address of an IpAppMultiPartyCallControlManager Interface. 

9.2.12 IpAppMultiPartyCallControlManagerRef 

Defines a Reference to type IpAppMultiPartyCallControlManager. 

9.2.13 TpAppCallLegRefSet 

Defines a Numbered Set of Data Elements of IpAppCallLegRef. 

9.2.14 TpMultiPartyCallIdentifier 

Defines the Sequence of Data Elements that unambiguously specify the Call object. 

Sequence Element Name Sequence Element Type Sequence Element Description 
CallReference IpMultiPartyCallRef This element specifies the interface reference for the 

Multi-party call object. 
CallSessionID TpSessionID This element specifies the call session ID. 

 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 77 

9.2.15 TpAppMultiPartyCallBack 

Defines the Tagged Choice of Data Elements that references the application callback interfaces. 

 Tag Element Type  
 TpAppMultiPartyCallBackRefType  

 

Tag Element Value Choice Element Type Choice Element Name 
P_APP_CALLBACK_UNDEFINED NULL Undefined 
P_APP_MULTIPARTY_CALL_CALLBACK IpAppMultiPartyCallRef AppMultiPartyCall 
P_APP_CALL_LEG_CALLBACK IpAppCallLegRef AppCallLeg 
P_APP_CALL_AND_CALL_LEG_CALLBACK TpAppCallLegCallBack AppMultiPartyCallAndCallLeg 

 

9.2.16 TpAppMultiPartyCallBackRefType 

Defines the type application call back interface.  

Name Value Description 
P_APP_CALLBACK_UNDEFINED 0 Application Call back interface undefined 
P_APP_MULTIPARTY_CALL_CALLBACK 1 Application Multi-Party Call interface 

referenced 
P_APP_CALL_LEG_CALLBACK 2 Application CallLeg interface referenced 
P_APP_CALL_AND_CALL_LEG_CALLBACK 3 Application Multi-Party Call and CallLeg 

interface referenced 
 

9.2.17 TpAppCallLegCallBack 

Defines the Sequence of Data Elements that references a call and a call leg application interface.  

Sequence Element Name Sequence Element Type Description 
AppMultiPartyCall IpAppMultiPartyCallRef  

AppCallLegSet TpAppCallLegRefSet Specifies the set of all call leg call 
back references. First in the set is 
the reference to the call back of the 
originating callLeg. In case there is 
a call back to a destination call leg 
this will be second in the set. 

 

9.2.18 TpMultiPartyCallIdentifierSet 

Defines a Numbered Set of Data Elements of TpMultiPartyCallIdentifier. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 78 

9.2.19 TpCallAppInfo 

Defines the Tagged Choice of Data Elements that specify application-related call information. 

 Tag Element Type  
 TpCallAppInfoType  

 

Tag Element Value Choice Element Type Choice Element Name 
P_CALL_APP_ALERTING_MECHANISM TpCallAlertingMechanism CallAppAlertingMechanism 
P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType 
P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService 
P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService 
P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory 
P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress 
P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo 
P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress 
P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS TpAddress CallAppOriginalDestinationAddress 
P_CALL_APP_REDIRECTING_ADDRESS TpAddress CallAppRedirectingAddress 
P_CALL_APP_HIGH_PROBABILITY_COMPLETION TpCallHighProbabilityCompletion CallHighProbabilityCompletion 
P_CALL_APP_CARRIER TpCarrierSet CallAppCarrier 

 

9.2.20 TpCallAppInfoType 

Defines the type of call application-related specific information. 

Name Value Description 
P_CALL_APP_UNDEFINED 0 Undefined 
P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use 
P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN) 
P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony) 
P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64 kbit/s 

unrestricted data). 
P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party 
P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties 
P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information 
P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address 
P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS 9 Contains the original address specified by the 

originating user when launching the call. 
P_CALL_APP_REDIRECTING_ADDRESS 10 Contains the address of the user from which the call is 

diverting. 
P_CALL_APP_HIGH_PROBABILITY_COMPLETION 11 Indicates high probability of completion and its priority 
P_CALL_APP_CARRIER 12 Indicates the set of Carrier identifications to be used 

to route the call. 
 

9.2.21 TpCallAppInfoSet 

Defines a Numbered Set of Data Elements of TpCallAppInfo. 

9.2.22 TpCallEventRequest 

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.  

Sequence Element Name Sequence Element Type 
CallEventType TpCallEventType 

AdditionalCallEventCriteria TpAdditionalCallEventCriteria 
CallMonitorMode TpCallMonitorMode 

 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 79 

9.2.23 TpCallEventRequestSet 

Defines a Numbered Set of Data Elements of TpCallEventRequest. 

9.2.24 TpCallEventType 

Defines a specific call event report type. 

Name Value Description 
P_CALL_EVENT_UNDEFINED 0 Undefined 
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT 1 An originating call attempt takes place 

(e.g. Off-hook event). 
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED 2 An originating call attempt is authorised 
P_CALL_EVENT_ADDRESS_COLLECTED 3 The destination address has been 

collected. 
P_CALL_EVENT_ADDRESS_ANALYSED 4 The destination address has been 

analysed. 
P_CALL_EVENT_ORIGINATING_SERVICE_CODE 5 Mid-call originating service code 

received. 
P_CALL_EVENT_ORIGINATING_RELEASE 6 A originating call/call leg is released 
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT 7 A terminating call attempt takes place 
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED 8 A terminating call is authorized 
P_CALL_EVENT_ALERTING 9 Call is alerting at the call party. 
P_CALL_EVENT_ANSWER 10 Call answered at address. 
P_CALL_EVENT_TERMINATING_RELEASE 11 A terminating call leg has been 

released or the call could not be routed. 
P_CALL_EVENT_REDIRECTED 12 Call redirected to new address: an 

indication from the network that the call 
has been redirected to a new address 
(no events disarmed as a result of this). 

P_CALL_EVENT_TERMINATING_SERVICE_CODE 13 Mid call terminating service code 
received. 

P_CALL_EVENT_QUEUED 14 The Call Event has been queued. (no 
events are disarmed as a result of this) 

 

EVENT HANDLING RULES: 

The following general event handling rules apply to dynamically armed events: 

When requesting events for one leg: 

•  When the monitor mode is set to P_CALL_MONITOR_MODE_DO_NOT_MONITOR all events armed for 
that event type are disarmed. The additionalEventCriteria are not taken into account. 

•  When requesting two events for the same event type with different criteria and/or different monitor mode the 
last used criteria and monitor mode apply. 

•  Events that are not applicable to a leg are refused with exception P_INVALID_EVENT_TYPE. The same 
exception is used when criteria are used that are not applicable to the leg, 
e.g. requesting P_CALL_EVENT_TERMINATING_SERVICE_CODE on an originating leg is refused with 
exception P_INVALID_CRITERIA. 
When P_CALL_EVENT_ORIGINATING_RELEASE is requested with P_BUSY in the criteria the request is 
refused with the same exception. 

When receiving events: 

•  If an armed event is met, then it is disarmed, unless explicit stated that it will not to be disarmed. 

•  If an event is met that causes the release of the related leg, then all events related to that leg are disarmed. 

•  When an event is met on a call leg irrespective of the event monitor mode, then only events belonging to that 
call leg may become disarmed (see table below). 

•  If a call is released, then all events related to that call are disarmed. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 80 

NOTE 1: Event disarmed means monitor mode is set to DO_NOT_MONITOR. and  
event armed means monitor mode is set to INTERRUPT or NOTIFY. 

The table below defines the disarming rules for dynamic events. In case such an event occurs on a call leg the table 
shows which events are disarmed (are not monitored anymore) on that call leg and should be re-armed by 
eventReportReq() in case the application is still interested in these events. 

Event Occurred Events Disarmed 
P_CALL_EVENT_UNDEFINED Not Applicable 
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT Not applicable, can only be armed as trigger 
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_ 
AUTHORISED 

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_ 
AUTHORISED 

P_CALL_EVENT_ADDRESS_COLLECTED P_CALL_EVENT_ADDRESS_COLLECTED 
P_CALL_EVENT_ADDRESS_ANALYSED P_CALL_EVENT_ADDRESS_COLLECTED 

P_CALL_EVENT_ADDRESS_ANALYSED 
P_CALL_EVENT_ALERTING P_CALL_EVENT_ALERTING 

P_CALL_EVENT__TERMINATING_RELEASE with 
criteria: 
P_USER_NOT_AVAILABLE 
P_BUSY 
P_NOT_REACHABLE 
P_ROUTING_FAILURE 
P_CALL_RESTRICTED 
P_UNAVAILABLE_RESOURCES 

P_CALL_EVENT_ANSWER P_CALL_EVENT_ALERTING 
P_CALL_EVENT_ANSWER 
P_CALL_EVENT_TERMINATING_RELEASE with criteria: 
P_USER_NOT_AVAILABLE 
P_BUSY 
P_NOT_REACHABLE 
P_ROUTING_FAILURE 
P_CALL_RESTRICTED 
P_UNAVAILABLE_RESOURCES 
P_NO_ANSWER 

P_CALL_EVENT_ORIGINATING_RELEASE All pending network events for the call leg are disarmed 
P_CALL_EVENT_TERMINATING_RELEASE All pending network events for the call leg are disarmed 
P_CALL_EVENT_ORIGINATING_SERVICE_CODE P_CALL_EVENT_ORIGINATING_SERVICE_CODE *) 

see note 
P_CALL_EVENT_TERMINATING_SERVICE_CODE P_CALL_EVENT_TERMINATING_SERVICE_CODE *) 

see note 
NOTE: Only the detected service code or the range to which the service code belongs is disarmed. 
 

NOTE 2: ON MAPPING EVENTYPES TO IN TRIGGER DETECTION POINTS (TDPs): 

 When the event types as defined above are used for requesting the initial notification (with 
createNotification), not all events have a one to one correspondence with a Trigger Detection Point 
(TDP). For instance, when the underlying network is ITU-T CS2 based, one cannot distinguish in 
createNotification whether the P_CALL_EVENT_ORIGINATING_RELEASE is intended to be on the 
Originating side (O_BCSM) or the Terminating side (T_BCSM) of the call. Likewise, the 
P_CALL_EVENT_ANSWER, P_CALL_EVENT_ALERTING and the 
P_CALL_EVENT_TERMINATING_RELEASE. 
 
The basic assumption is that the operator is responsible for provisioning of triggers in the network as in 
this domain full awareness exists of all other services and applications. Therefore, createNotification does 
not automatically lead to immediate provisioning of these triggers. And thus in createNotification it is not 
necessary to indicate whether the initial notification should be on the originating or terminating side of 
the call. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 81 

9.2.25 TpAdditionalCallEventCriteria 

Defines the Tagged Choice of Data Elements that specify specific criteria.  

 Tag Element Type  
 TpCallEventType  

 

Tag Element Value Choice Element Type Choice Element Name 
P_CALL_EVENT_UNDEFINED NULL Undefined 
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT NULL Undefined 
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_
AUTHORISED 

NULL Undefined 

P_CALL_EVENT_ADDRESS_COLLECTED TpInt32 MinAddressLength 
P_CALL_EVENT_ADDRESS_ANALYSED NULL Undefined 
P_CALL_EVENT_ORIGINATING_SERVICE_CODE TpCallServiceCodeSet OriginatingServiceCode 
P_CALL_EVENT_ORIGINATING_RELEASE TpReleaseCauseSet OriginatingReleaseCauseSet 
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT NULL Undefined 
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_
AUTHORISED 

NULL Undefined 

P_CALL_EVENT_ALERTING NULL Undefined 
P_CALL_EVENT_ANSWER NULL Undefined 
P_CALL_EVENT_TERMINATING_RELEASE TpReleaseCauseSet TerminatingReleaseCauseSet 
P_CALL_EVENT_REDIRECTED NULL Undefined 
P_CALL_EVENT_TERMINATING_SERVICE_CODE TpCallServiceCodeSet TerminatingServiceCode 
P_CALL_EVENT_QUEUED NULL Undefined 

 

9.2.26 TpCallEventInfo 

Defines the Sequence of Data Elements that specify the event report specific information.  

Sequence Element Name Sequence Element Type 
CallEventType TpCallEventType 

AdditionalCallEventInfo TpCallAdditionalEventInfo 
CallMonitorMode TpCallMonitorMode 
CallEventTime TpDateAndTime 

 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 82 

9.2.27 TpCallAdditionalEventInfo 

Defines the Tagged Choice of Data Elements that specify additional call event information for certain types 
of events.  

 Tag Element Type  
 TpCallEventType  

 

Tag Element Value Choice Element Type Choice Element Name 
P_CALL_EVENT_UNDEFINED NULL Undefined 
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT NULL Undefined 
P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_ 
AUTHORISED 

NULL Undefined 

P_CALL_EVENT_ADDRESS_COLLECTED TpAddress CollectedAddress 
P_CALL_EVENT_ADDRESS_ANALYSED TpAddress CalledAddress 
P_CALL_EVENT_ORIGINATING_SERVICE_CODE TpCallServiceCode OriginatingServiceCode 
P_CALL_EVENT_ORIGINATING_RELEASE TpReleaseCause OriginatingReleaseCause 
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT NULL Undefined 
P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_ 
AUTHORISED 

NULL Undefined 

P_CALL_EVENT_ALERTING NULL Undefined 
P_CALL_EVENT_ANSWER NULL Undefined 
P_CALL_EVENT_TERMINATING_RELEASE TpReleaseCause TerminatingReleaseCause 
P_CALL_EVENT_REDIRECTED TpAddress ForwardAddress 
P_CALL_EVENT_TERMINATING_SERVICE_CODE TpCallServiceCode TerminatingServiceCode 
P_CALL_EVENT_QUEUED NULL Undefined 

 

9.2.28 TpCallNotificationRequest 

Defines the Sequence of Data Elements that specify the criteria for an event notification. 

Sequence Element Name Sequence Element Type Description 
CallNotificationScope TpCallNotificationScope Defines the scope of the notification 

request. 
CallEventsRequested TpCallEventRequestSet Defines the events which are requested 

 

9.2.29 TpCallNotificationScope  

Defines the sequence of Data elements that specify the scope of a notification request.  

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the 
criteria. 

Sequence Element Name Sequence Element Type Description 
DestinationAddress TpAddressRange Defines the destination address or address 

range for which the notification is requested. 
OriginatingAddress TpAddressRange Defines the origination address or address range 

for which the notification is requested. 
 

9.2.30 TpCallNotificationInfo 

Defines the Sequence of Data Elements that specify the information returned to the application in a Call 
notification report. 

Sequence Element Name Sequence Element Type Description 
CallNotificationReportScope TpCallNotificationReportScope Defines the scope of the notification report. 

CallAppInfo TpCallAppInfoSet Contains additional call info. 
CallEventInfo TpCallEventInfo Contains the event which is reported. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 83 

9.2.31 TpCallNotificationReportScope 

Defines the Sequence of Data Elements that specify the scope for which a notification report was sent. 

Sequence Element Name Sequence Element Type Description 
DestinationAddress TpAddress Contains the destination address of the call. 
OriginatingAddress TpAddress Contains the origination address of the call. 

 

9.2.32 TpNotificationRequested  

Defines the Sequence of Data Elements that specify the criteria relating to event requests. 

Sequence Element Name Sequence Element Type 
AppCallNotificationRequest TpCallNotificationRequest 

AssignmentID TpInt32 
 

9.2.33 TpNotificationRequestedSet  

Defines a numbered Set of Data Elements of TpNotificationRequested. 

9.2.34 TpReleaseCause 

Defines the reason for a release. 

Name Value Description 
P_UNDEFINED 0 The reason of release is not known, because no info was received 

from the network. 
P_USER_NOT_AVAILABLE 1 The user is not available in the network. This means that the 

number is not allocated or that the user is not registered. 
P_BUSY 2 The user is busy. 
P_NO_ANSWER 3 No answer was received. 
P_NOT_REACHABLE 4 The user terminal is not reachable. 
P_ROUTING_FAILURE 5 A routing failure occurred. For example an invalid address was 

received. 
P_PREMATURE_DISCONNECT 6 The user disconnected the call / call leg during the setup phase. 
P_DISCONNECTED 7 A disconnect was received. 
P_CALL_RESTRICTED 8 The call was subject of restrictions. 
P_UNAVAILABLE_RESOURCE 9 The request could not be carried out as no resources were 

available. 
P_GENERAL_FAILURE 10 A general network failure occurred. 
P_TIMER_EXPIRY 11 The call / call leg was released because an activity timer expired. 
P_UNSUPPORTED_MEDIA 12 The call / call leg was released either because the message body 

of the request is in a format not supported or because the media is 
not supported. 

 

9.2.35 TpReleaseCauseSet 

Defines a Numbered Set of Data Elements of TpReleaseCause. 

9.2.36 TpCallLegIdentifier 

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object. 

Sequence Element Name Sequence Element Type Sequence Element Description 
CallLegReference IpCallLegRef This element specifies the interface reference for the 

callLeg object. 
CallLegSessionID TpSessionID This element specifies the callLeg session ID. 

 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 84 

9.2.37 TpCallLegIdentifierSet 

Defines a Numbered Set of Data Elements of TpCallLegIdentifier. 

9.2.38 TpCallLegAttachMechanism 

Defines how a CallLeg should be attached to the call. 

Name Value Description 
P_CALLLEG_ATTACH_IMPLICITLY 0 CallLeg should be attached implicitly to the call. 
P_CALLLEG_ATTACH_EXPLICITLY 1 CallLeg should be attached explicitly to the call by using the 

attachMediaReq() operation. This allows e.g. the application to do first 
user interaction to the party before he/she is placed in the call. 

 

9.2.39 TpCallLegConnectionProperties 

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object. 

Sequence Element Name Sequence Element Type Sequence Element Description 
AttachMechanism TpCallLegAttachMechanism Defines how a CallLeg should be attached to the call. 

 

9.2.40 TpCallLegInfoReport 

Defines the Sequence of Data Elements that specify the call leg information requested.  

Sequence Element Name Sequence Element Type Description 
CallLegInfoType TpCallLegInfoType The type of call leg information. 
CallLegStartTime TpDateAndTime The time and date when the call leg was started 

(i.e. the leg was routed).  
CallLegConnectedToResourceTime TpDateAndTime The date and time when the call leg was connected to 

the resource. If no resource was connected the time is 
set to an empty string. 
Either this element is valid or the 
CallLegConnectedToAddressTime is valid, depending 
on whether the report is sent as a result of user 
interaction. 

CallLegConnectedToAddressTime TpDateAndTime The date and time when the call leg was connected to 
the destination (i.e. when the destination answered 
the call). If the destination did not answer, the time is 
set to an empty string. 
Either this element is valid or the 
CallConnectedToResourceTime is valid, depending 
on whether the report is sent as a result of user 
interaction. 

CallLegEndTime TpDateAndTime The date and time when the call leg was released.  
ConnectedAddress TpAddress The address of the party associated with the leg. If 

during the call the connected address was received 
from the party then this is returned, otherwise the 
destination address (for legs connected to a 
destination) or the originating address (for legs 
connected to the origination) is returned.  

CallLegReleaseCause TpReleaseCause The cause of the termination. May be present with 
P_CALL_LEG_INFO_RELEASE_CAUSE was 
specified. 

CallAppInfo TpCallAppInfoSet Additional information for the leg. May be present with 
P_CALL_LEG_INFO_APPINFO was specified. 

 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 85 

9.2.41 TpCallLegInfoType 

Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function. 

Name Value Description 
P_CALL_LEG_INFO_UNDEFINED 00h Undefined 
P_CALL_LEG_INFO_TIMES 01h Relevant call times 
P_CALL_LEG_INFO_RELEASE_CAUSE 02h Call leg release cause 
P_CALL_LEG_INFO_ADDRESS 04h Call leg connected address 
P_CALL_LEG_INFO_APPINFO 08h Call leg application related information 

 

9.2.42 TpCallLegSuperviseTreatment 

Defines the treatment of the call leg by the call control service when the call leg supervision timer expires. The values 
may be combined by a logical 'OR' function. 

Name Value Description 
P_CALL_LEG_SUPERVISE_RELEASE 01h Release the call leg when the call leg supervision 

timer expires 
P_CALL_LEG_SUPERVISE_RESPOND 02h Notify the application when the call leg supervision 

timer expires 
P_CALL_LEG_SUPERVISE_APPLY_TONE 04h Send a warning tone on the call leg when the call 

leg supervision timer expires. If call leg release is 
requested, then the call leg will be released 
following the tone after an administered time period  

 

9.2.43 TpCallHighProbabilityCompletion 

This data type is identical to a TpInt32, and defines the probability of completion under network congestion. A value of 
0 indicates no special treatment (default). The other values of this data type are region specific. For example, a priority 
value between 1, 2, 3, ..., n indicates special treatment, where 1 is the highest priority and n the lowest priority other 
than no special treatment. 

9.2.44 TpNotificationRequestedSetEntry 

Defines the Sequence of Data Elements that specify a set of requested notifications and an indication whether more 
notifications can be requested. 

Sequence Element Name Sequence Element Type Description 
NotificationRequestSet TpNotificationRequestedSet Numbered set of requested notifications. 

Final TpBoolean Indication whether the set of notifications is the 
final set (TRUE) or if there are more 
notifications available (FALSE). 

 

9.2.45 TpCarrierSet 

Defines a Numbered Set of Data Elements of TpCarrier. In case the set is empty, the SCF will assume 
default processing.  

9.2.46 TpCarrier 

Defines the Sequence of Data Elements that indicates carrier information. It consists of the carrier selection 
field followed by the Carrier ID information to be used for routing a call to a carrier. 

Sequence Element Name Sequence Element Type 
CarrierID TpCarrierID 

CarrierSelectionField TpCarrierSelectionField 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 86 

9.2.47 TpCarrierID 

This data type is identical to a TpOctetSet. For encoding of the field, depending on the network, either ITU-T 
Recommendation Q.763 or ANSI ISUP T1.113 applies. 

9.2.48 TpCarrierSelectionField 

Defines the type of Carrier Selection Field-related specific information. This parameter indicates how the selected 
carrier is provided (e.g. pre-subscribed). 

Name Value Description 
P_CIC_UNDEFINED 0 No indication. 
P_CIC_NO_INPUT 1 The carrier identification code (CIC) is pre subscribed (not 

provided by the calling party). 
P_CIC_INPUT 2 The carrier identification code (CIC) is pre subscribed and 

provided by the calling party. 
P_CIC_UNDETERMINED 3 The selected carrier identification code (CIC) is pre 

subscribed, but no indication is present of whether it is 
provided by the calling party (undetermined). 

P_CIC_NOT_PRESCRIBED 4 The selected carrier identification code (CIC) is provided by 
calling party (not pre subscribed). 

 

9.2.49 TpCallLegPropertyName 

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the call leg 
properties that are to be supported by the Multi Party Call Control API. Other Network operator specific properties may 
also be used, but should be preceded by the string "SP_". The following values are defined. 

Character String Value Description 
P_CALL_LEG_PROPERTY_INFO The info property name is associated with a URL value that describes the 

caller or callee in general, for example, through a web page. 
P_CALL_LEG_PROPERTY_ICON The icon parameter property name is associated with a URL value that points 

to data suitable as an iconic representation of the caller or callee. 
P_CALL_LEG_PROPERTY_CARD The card property name is associated with a business card, for example, in 

vCard or LDIF formats. 
 

9.2.50 TpCallLegPropertyNameList 

This data type defines a Numbered List of Data Elements of type TpCallLegPropertyName. 

9.2.51 TpCallLegPropertyValue 

This data type is identical to TpString. It is the value associated with a property. 

9.2.52 TpCallLegProperty 

This data type is a Sequence of Data Elements which describes a property. It is a structured data type 
consisting of the following {name,value} pair. 

Sequence Element Name Sequence Element Type 
CallLegPropertyName TpCallLegPropertyName 
CallLegPropertyValue TpCallLegPropertyValue 

 

9.2.53 TpCallLegPropertyList 

This data type defines a Numbered List of Data Elements of type TpCallLegProperty. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 87 

Annex A (normative): 
OMG IDL Description of Multi-Party Call Control SCF 
The OMG IDL representation of this interface specification is contained in the text files mpcc_data.idl and 
mpcc_interfaces.idl contained in archive es_2039150403IDL.ZIP. 

This archive can be found in es_2039150403v010201p0.zip which accompanies the present document. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 88 

Annex B (informative): 
W3C WSDL Description of Multi-Party Call Control SCF 
The W3C WSDL representation of this interface specification is contained in archive es_2039150403WSDL.ZIP. 

This archive can be found in es_2039150403v010201p0.zip which accompanies the present document. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 89 

Annex C (informative): 
Java API Description of the Call Control SCFs 
The Java API realisation of this interface specification is produced in accordance with the Java Realisation rules defined 
in ES 203 915-1. These rules aim to deliver for Java, a developer API, provided as a realisation, supporting a Java API 
that represents the UML specifications. The rules support the production of both J2SE and J2EE versions of the API 
from the common UML specifications. 

The J2SE representation of this interface specification is provided as Java Code, contained in archive 
20391504-3J2SE.ZIP. 

The J2EE representation of this interface specification is provided as Java Code, contained in archive 
20391504-3J2EE.ZIP. 

Both these archives can be found in es_2039150403v010201p0.zip which accompanies the present document. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 90 

Annex D (informative): 
Contents of 3GPP OSA Rel-6 Call Control 
All items in Multi-Party Call Control are relevant for TS 129 198-4-3 V6 (Release 6). 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 91 

Annex E (informative): 
Description of Call Control Sub-part 3: Multi-party call 
control SCF for 3GPP2 cdma2000 networks 
This annex is intended to define the OSA API Stage 3 interface definitions and it provides the complete OSA 
specifications. It is an extension of OSA API specifications capabilities to enable operation in cdma2000 systems 
environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in [52], [53] and 
[54]. These requirements are expressed as additions to and/or exclusions from the 3GPP Release 6 specification. The 
information given here is to be used by developers in 3GPP2 cdma2000 network architecture to interpret the 3GPP 
OSA specifications.  

E.1 General Exceptions 
The terms 3GPP and UMTS are not applicable for the cdma2000 family of standards. Nevertheless these terms are used 
(ETSI TR 121 905) mostly in the broader sense of "3G Wireless System". If not stated otherwise there are no additions 
or exclusions required.  

CAMEL and CAP mappings are not applicable for cdma2000 systems. 

E.2 Specific Exceptions 

E.2.1 Clause 1: Scope 
There are no additions or exclusions.  

E.2.2 Clause 2: References 
Normative references on ETSI TS 123 078 and on ETSI TS 129 078 are not applicable for cdma2000 systems.  

E.2.3 Clause 3: Definitions and abbreviations 
There are no additions or exclusions.  

E.2.4 Clause 4: MultiParty Call Control Service Sequence 
Diagrams 

There are no additions or exclusions. 

E.2.5 Clause 5: Class Diagrams 
There are no additions or exclusions. 

E.2.6 Clause 6: MultiParty Call Control Service Interface Classes  
There are no additions or exclusions. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 92 

E.2.7 Clause 7: MultiParty Call Control Service State Transition 
Diagrams 

There are no additions or exclusions. 

E.2.8 Clause 8: Multi-Party Call Control Service Properties 
There are no additions or exclusions. Nevertheless, for cdma2000 systems the CAMEL data types and service 
properties are not applicable. 

E.2.9 Clause 9: Multi-Party Call Control Data Definitions 
There are no additions or exclusions. 

E.2.10 Annex A (normative): OMG IDL Description of Multi-Party 
Call Control SCF 

There are no additions or exclusions. 

E.2.11 Annex B (informative): W3C WSDL Description of 
Multi-Party Call Control SCF 

There are no additions or exclusions. 

E.2.12 Annex C (informative): Java™ API Description of the 
Multi-Party Call Control SCF 

There are no additions or exclusions. 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 93 

Annex F (informative): 
Record of changes  
The following is a list of the changes made to the present document for each release. The list contains the names of all 
changed, deprecated, added or removed items in the specifications and not the actual changes. Any type of change 
information that is important to the reader is put in the final clause of this annex.  

Changes are specified as changes to the prior major release, but every minor release will have its own part of the table 
allowing the reader to know when the actual change was made. 

F.1 Interfaces 

F.1.1 New 
Identifier Comments 

Interfaces added in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
  

Interfaces added in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 

F.1.2 Deprecated 
Identifier Comments 

Interfaces deprecated in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
  

Interfaces deprecated in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 

F.1.3 Removed 
Identifier Comments 

Interfaces removed in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
  

Interfaces removed in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 94 

F.2 Methods 

F.2.1 New 
Identifier Comments 

Methods added in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
IpCallLeg.getProperties  
IpCallLeg.setProperties  
IpAppMultiPartyCallControlManager.abortMultipleCalls  

Methods added in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 

F.2.2 Deprecated 
Identifier Comments 

Methods deprecated in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
  

Methods deprecated in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 

F.2.3 Modified 
Identifier Comments 

Methods modified in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
  

Methods modified in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 

F.2.4 Removed 
Identifier Comments 

Methods removed in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
  

Methods removed in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 95 

F.3 Data Definitions 

F.3.1 New 
Identifier Comments 

Data Definitions added in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
TpCallLegPropertyName  
TpCallLegPropertyNameList  
TpCallLegPropertyValue  
TpCallLegProperty  
TpCallLegPropertyList  

Data Definitions added in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 

F.3.2 Modified 
Identifier Comments 

Data Definitions modified in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
  

Data Definitions modified in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
TpCallHighProbabilityCompletion Value of 0 fixed to indicate no special treatment. 
  
 

F.3.3 Removed 
Identifier Comments 

Data Definitions removed in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
  

Data Definitions removed in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 

F.4 Service Properties 

F.4.1 New 
Identifier Comments 

Service Properties added in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
P_CALLLEG_PROPERTIES  
P_NOTIFICATION_ADDRESS_RANGES Replaces P_TRIGGERING_ADDRESSES 

Service Properties added in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 96 

F.4.2 Deprecated 
Identifier Comments 

Service Properties deprecated in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
  

Service Properties deprecated in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 

F.4.3 Modified 
Identifier Comments 

Service Properties modified in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
  

Service Properties modified in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 

F.4.4 Removed 
Identifier Comments 

Service Properties removed in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
P_TRIGGERING_ADDRESSES Replaced with P_NOTIFICATION_ADDRESS_RANGES 

Service Properties removed in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 

F.5 Exceptions 

F.5.1 New 
Identifier Comments 

Exceptions added in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
  

Exceptions added in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 

F.5.2 Modified 
Identifier Comments 

Exceptions modified in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
  

Exceptions modified in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 97 

F.5.3 Removed 
Identifier Comments 

Exceptions removed in ES 203 915-4-3 version 1.1.1 (Parlay 5.0) 
  

Exceptions removed in ES 203 915-4-3 version 1.2.1 (Parlay 5.1) 
  
 

F.6 Others 
ES 203 915-4-3 (V1.1.1): Java code annex added. 

ES 203 915-4-3 (V1.2.1): WSDL Code reworked and replaced in annex B. 

 



 

ETSI 

ETSI ES 203 915-4-3 V1.2.1 (2007-01) 98 

History 

Document history 

V1.1.1 April 2005 Publication 

V1.2.1 October 2006 Membership Approval Procedure MV 20061222: 2006-10-24 to 2006-12-22 

V1.2.1 January 2007 Publication 

   

   

 

 


	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 MultiParty Call Control Service Sequence Diagrams
	4.1 Application initiated call setup
	4.2 Call Barring 2
	4.3 Call forwarding on Busy Service
	4.4 Call Information Collect Service
	4.5 Complex Card Service
	4.6 Hotline Service
	4.7 Network Controlled Notifications
	4.8 Use of the Redirected event

	5 Class Diagrams
	6 MultiParty Call Control Service Interface Classes
	6.1 Interface Class IpMultiPartyCallControlManager
	6.1.1 Method createCall()
	6.1.2 Method createNotification()
	6.1.3 Method destroyNotification()
	6.1.4 Method changeNotification()
	6.1.5 Method <<deprecated>> getNotification()
	6.1.6 Method setCallLoadControl()
	6.1.7 Method enableNotifications()
	6.1.8 Method disableNotifications()
	6.1.9 Method getNextNotification()

	6.2 Interface Class IpAppMultiPartyCallControlManager
	6.2.1 Method reportNotification()
	6.2.2 Method callAborted()
	6.2.3 Method managerInterrupted()
	6.2.4 Method managerResumed()
	6.2.5 Method callOverloadEncountered()
	6.2.6 Method callOverloadCeased()
	6.2.7 Method <<new>> abortMultipleCalls()

	6.3 Interface Class IpMultiPartyCall
	6.3.1 Method getCallLegs()
	6.3.2 Method createCallLeg()
	6.3.3 Method createAndRouteCallLegReq()
	6.3.4 Method release()
	6.3.5 Method deassignCall()
	6.3.6 Method getInfoReq()
	6.3.7 Method setChargePlan()
	6.3.8 Method setAdviceOfCharge()
	6.3.9 Method superviseReq()

	6.4 Interface Class IpAppMultiPartyCall
	6.4.1 Method getInfoRes()
	6.4.2 Method getInfoErr()
	6.4.3 Method superviseRes()
	6.4.4 Method superviseErr()
	6.4.5 Method callEnded()
	6.4.6 Method createAndRouteCallLegErr()

	6.5 Interface Class IpCallLeg
	6.5.1 Method routeReq()
	6.5.2 Method eventReportReq()
	6.5.3 Method release()
	6.5.4 Method getInfoReq()
	6.5.5 Method getCall()
	6.5.6 Method attachMediaReq()
	6.5.7 Method detachMediaReq()
	6.5.8 Method getCurrentDestinationAddress()
	6.5.9 Method continueProcessing()
	6.5.10 Method setChargePlan()
	6.5.11 Method setAdviceOfCharge()
	6.5.12 Method superviseReq()
	6.5.13 Method deassign()
	6.5.14 Method <<new>> getProperties()
	6.5.15 Method <<new>> setProperties()

	6.6 Interface Class IpAppCallLeg
	6.6.1 Method eventReportRes()
	6.6.2 Method eventReportErr()
	6.6.3 Method attachMediaRes()
	6.6.4 Method attachMediaErr()
	6.6.5 Method detachMediaRes()
	6.6.6 Method detachMediaErr()
	6.6.7 Method getInfoRes()
	6.6.8 Method getInfoErr()
	6.6.9 Method routeErr()
	6.6.10 Method superviseRes()
	6.6.11 Method superviseErr()
	6.6.12 Method callLegEnded()


	7 MultiParty Call Control Service State Transition Diagrams
	7.1 State Transition Diagrams for IpMultiPartyCallControlManager
	7.1.1 Active State
	7.1.2 Interrupted State
	7.1.3 Overview of allowed methods

	7.2 State Transition Diagrams for IpMultiPartyCall
	7.2.1 IDLE State
	7.2.2 ACTIVE State
	7.2.3 RELEASED State
	7.2.4 Overview of allowed methods

	7.3 State Transition Diagrams for IpCallLeg
	7.3.1 Originating Call Leg
	7.3.1.1 Initiating State
	7.3.1.2 Analysing State
	7.3.1.3 Active State
	7.3.1.4 Releasing State
	7.3.1.5 Overview of allowed methods, Originating Call Leg STD

	7.3.2 Terminating Call Leg
	7.3.2.1 Idle (terminating) State
	7.3.2.2 Active (terminating) State
	7.3.2.3 Releasing (terminating) State
	7.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD



	8 Multi-Party Call Control Service Properties
	8.1 List of Service Properties
	8.2 Service Property values for the CAMEL Service Environment

	9 Multi-Party Call Control Data Definitions
	9.1 Event Notification Data Definitions
	9.2 Multi-Party Call Control Data Definitions
	9.2.1 IpCallLeg
	9.2.2 IpCallLegRef
	9.2.3 IpAppCallLeg
	9.2.4 IpAppCallLegRef
	9.2.5 IpMultiPartyCall
	9.2.6 IpMultiPartyCallRef
	9.2.7 IpAppMultiPartyCall
	9.2.8 IpAppMultiPartyCallRef
	9.2.9 IpMultiPartyCallControlManager
	9.2.10 IpMultiPartyCallControlManagerRef
	9.2.11 IpAppMultiPartyCallControlManager
	9.2.12 IpAppMultiPartyCallControlManagerRef
	9.2.13 TpAppCallLegRefSet
	9.2.14 TpMultiPartyCallIdentifier
	9.2.15 TpAppMultiPartyCallBack
	9.2.16 TpAppMultiPartyCallBackRefType
	9.2.17 TpAppCallLegCallBack
	9.2.18 TpMultiPartyCallIdentifierSet
	9.2.19 TpCallAppInfo
	9.2.20 TpCallAppInfoType
	9.2.21 TpCallAppInfoSet
	9.2.22 TpCallEventRequest
	9.2.23 TpCallEventRequestSet
	9.2.24 TpCallEventType
	9.2.25 TpAdditionalCallEventCriteria
	9.2.26 TpCallEventInfo
	9.2.27 TpCallAdditionalEventInfo
	9.2.28 TpCallNotificationRequest
	9.2.29 TpCallNotificationScope
	9.2.30 TpCallNotificationInfo
	9.2.31 TpCallNotificationReportScope
	9.2.32 TpNotificationRequested
	9.2.33 TpNotificationRequestedSet
	9.2.34 TpReleaseCause
	9.2.35 TpReleaseCauseSet
	9.2.36 TpCallLegIdentifier
	9.2.37 TpCallLegIdentifierSet
	9.2.38 TpCallLegAttachMechanism
	9.2.39 TpCallLegConnectionProperties
	9.2.40 TpCallLegInfoReport
	9.2.41 TpCallLegInfoType
	9.2.42 TpCallLegSuperviseTreatment
	9.2.43 TpCallHighProbabilityCompletion
	9.2.44 TpNotificationRequestedSetEntry
	9.2.45 TpCarrierSet
	9.2.46 TpCarrier
	9.2.47 TpCarrierID
	9.2.48 TpCarrierSelectionField
	9.2.49 TpCallLegPropertyName
	9.2.50 TpCallLegPropertyNameList
	9.2.51 TpCallLegPropertyValue
	9.2.52 TpCallLegProperty
	9.2.53 TpCallLegPropertyList


	Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF
	Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF
	Annex C (informative): Java API Description of the Call Control SCFs
	Annex D (informative): Contents of 3GPP OSA Rel-6 Call Control
	Annex E (informative): Description of Call Control Sub-part 3: Multi-party call control SCF for 3GPP2 cdma2000 networks
	E.1 General Exceptions
	E.2 Specific Exceptions
	E.2.1 Clause 1: Scope
	E.2.2 Clause 2: References
	E.2.3 Clause 3: Definitions and abbreviations
	E.2.4 Clause 4: MultiParty Call Control Service Sequence Diagrams
	E.2.5 Clause 5: Class Diagrams
	E.2.6 Clause 6: MultiParty Call Control Service Interface Classes
	E.2.7 Clause 7: MultiParty Call Control Service State Transition Diagrams
	E.2.8 Clause 8: Multi-Party Call Control Service Properties
	E.2.9 Clause 9: Multi-Party Call Control Data Definitions
	E.2.10 Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF
	E.2.11 Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF
	E.2.12 Annex C (informative): JavaŽ API Description of the Multi-Party Call Control SCF


	Annex F (informative): Record of changes
	F.1 Interfaces
	F.1.1 New
	F.1.2 Deprecated
	F.1.3 Removed

	F.2 Methods
	F.2.1 New
	F.2.2 Deprecated
	F.2.3 Modified
	F.2.4 Removed

	F.3 Data Definitions
	F.3.1 New
	F.3.2 Modified
	F.3.3 Removed

	F.4 Service Properties
	F.4.1 New
	F.4.2 Deprecated
	F.4.3 Modified
	F.4.4 Removed

	F.5 Exceptions
	F.5.1 New
	F.5.2 Modified
	F.5.3 Removed

	F.6 Others

	History

