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1 Scope 
The present document analyses and studies potential ENI activities on 6G native AI capabilities. ENI has a strong focus 
on providing cognitive capabilities to improve the user experience of the operator. The present document covers the 
areas and needs for new technical projects using 6G native AI capabilities. This covers: definition of the use cases and 
requirements of Core Network (CN) Large Language Models (LLMs), definition of the CN-Agent to facilitate 
interaction between the CN and the CN LLMs, identification of the key functional modules and interfaces of the 
CN-Agent, and the key technologies required. Network slicing is used throughout the present document to explain the 
operation of this system. However, this is not a limiting case, and the system described in the present document is 
intended to serve a large variety of CN use cases. 

2 References 
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NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
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user with regard to a particular subject area. 
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3 Definition of terms, symbols and abbreviations 

3.1 Terms 
For the purposes of the present document, the following terms apply: 

AgentGPT: domain-specific model trained with domain-specific knowledge that matches the responsibilities of the AI 
Agent that it resides in 

AI Agent: autonomous system that can interact with its environment to collect data, learn from the past experiences and 
subsequently use these to improve its decision-making capability in order to perform specific tasks 

NOTE: As defined in clause 4.2.1 also [i.6], [i.7] and [i.8]. 

E2E Slice: logical network that provides a combination of specific network and network capabilities and network 
characteristics, supporting various service properties for network slice customers 

E2E Slice Instance: set of Network Function, and Application Function instances and the required computing and 
communication resources that form a deployed E2E Slice 

functional block: abstraction that defines a black box structural representation of the capabilities and functionality of a 
component or module, and its relationships with other functional blocks 

intent policy: type of policy that uses statements from a restricted natural language (e.g. an external DSL) to express 
the goals of the policy, but does not specify how to accomplish those goals 

NOTE: As defined in [i.29]. 

Large Language Model Meta AI (LLaMA): family of autoregressive large language models released by Meta AI 
starting in February 2023 

NOTE: As defined in https://github.com/meta-llama/llama. 

NetGPT: domain-specific model trained with data from core network domain 

policy: set of rules that is used to manage and control the changing and/or maintaining of the state of one or more 
managed objects 

NOTE: As defined in [i.29]. 

Quality of Experience (QoE): performance of users when using what is presented by a communication service or 
application user interface 

Quality of Service (QoS): collective effect of service performances which determine the degree of satisfaction of a user 
of a service 

NOTE: As defined in ETSI TR 121 905 [i.35]. 

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202401689
https://github.com/meta-llama/llama
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Service Level Agreement (SLA): contract between a service provider and a customer that defines the service(s) to be 
provided and the level of performance to be expected 

3.2 Symbols 
Void. 

3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

2B To Business 
2C To Consumer 
2H To Home 
ABI Agent Based Interface 
ADRF Analytics Data Repository Function 
AF Application Function 
AgentGPT Agent Generative Pre-trained Transformer 
AI Artificial Intelligence 
AI4N AI for Network 
AMF Access and Mobility Management Function 
API Application Programming Interface 
AR Augmented Reality 
BS Base Station 
CN Core Network 
CoT Chain of Thought 
CoT-SC Self Consistency with Chain of Thought 
DB Data Base 
E2E End-to-End 
eMBB enhanced Mobile BroadBand 
FB Functional Block 
GoT Graph of Thought 
GPT Generative Pre-trained Transformer 
HTTP HyperText Transfer Protocol 
ICT Information and Communication Technology 
IMU Inertial Measurement Unit 
IP Internet Protocol 
ISAC Integrated Sensing And Communication 
IT Information Technology 
KNN K-Nearest Neighbour 
KPI Key Performance Indicator 
KQI Key Quality Indicator 
LLM Large Language Model 
ML Machine Learning 
mMTC massive Machine Type Communications 
MSISDN Mobile Subscriber Integrated Services Digital Network Number 
N4AI Network for AI 
NetGPT Network Generative Pre-trained Transformer 
NF Network Function 
NFV Network Function Virtualisation 
NGMN Next Generation Mobile Networks 
NLP Natural Language Processing 
NRF Network Repository Function 
NWDAF NetWork Data Analytics Function 
O&M Operation and Maintenance 
OAM Operations, Administration and Maintenance 
PCF Policy Control Function 
QoE Quality of Experience 
QoS Quality of Service 
RAG Retrieval Augmented Generation 
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RAN Radio Access Network 
RCS Rich Communication Service 
ReAct Response and Action 
RPC Remote Procedure Call 
SBA Service Based Architecture 
SLA Service Level Agreement 
SMF Session Management Function 
SMS Short Message Service 
TCP Transmission Control Protocol 
ToT Tree of Thought 
UE User Equipment 
URLLC Ultra-Reliable Low-Latency Communication 
XR Extended Reality 

4 AI Agents Based Next Generation Network Slicing 

4.1 Revolution Trend 

4.1.1 New Usage Scenarios of Future Mobile Network 

The NGMN white paper [i.27] describes new use cases and services that need to be supported by 6G networks. These 
new use cases and services require 6G networks to provide ultra-high performance while connecting humans, machines 
and various other entities. This calls for a variety of new capabilities and requires 6G networks to have enhanced 
on-demand customization capabilities to adapt to the wide range of applications autonomously. These include 
immersive multimedia and multi-sensory interactions, highly intelligent industrial applications, integration of physical 
and virtual worlds through digital twins, and ubiquitous intelligence and computing. 

As described by Recommendation ITU-R M.2160-0 [i.28], it is expected to integrate sensing and intelligence 
capabilities, empowered with AI and machine learning, into networks to keep up with the steady progress and fast 
spread of such. As stated in the same document, [i.28] could serve as an AI-enabling infrastructure that can provide 
services for intelligent applications listed above. Therefore, 6G networks are expected to face great challenges in the 
future as intelligent applications will take numerous forms and may be triggered based on user intents. 

4.1.2 Potential Improvements of 5G Network Slicing 

4.1.2.1 Network Slicing and NFV 

5G systems are known for their heterogeneity in service categories, such as enhanced Mobile Broadband (eMBB), 
Ultra-Reliable Low-Latency Communication (URLLC), and massive Machine Type Communications (mMTC). Such a 
broad diversity in service requirements calls for customized solutions by 5G network operators for their customers, 
which has primarily been addressed via the network slicing concept. Together with Network Function 
Virtualisation (NFV), network slicing allows the 5G mobile network operators to build dedicated, virtualized and 
logical networks on a common physical infrastructure to meet the diverse communication requirements of their 
customers.  

In contrast to 5G networks, which are designed for providing only communication service to their users, 6G networks 
are envisioned to extend their services beyond connectivity. More specifically, 6G networks are expected to add AI, 
compute, and sensing to their services on top of connectivity, introducing new types of resources, new functionalities, 
and design considerations. This calls for a more flexible, autonomous, and generalizable network slicing framework for 
the configuration, deployment and management of such slices of new type. Since this comes with increased complexity 
rendering the conventional methods insufficient, the deep integration of AI/ML technology into the operation of 6G 
networks offers a promising solution. 
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4.1.2.2 Network Data Analytics Function (NWDAF) 

3GPP has introduced a new logical function entity in 5G, known as the Network Data Analytics Function (NWDAF), 
into the 5G network architecture [i.1]. The NWDAF can interact with other core network functions such as the 
Application Function (AF), Policy Control Function (PCF), Access and Mobility Management Function (AMF), and 
Session Management Function (SMF) to provide network data analytics services, network intelligence, and automation 
capabilities for 5G networks.  

These services include receiving network data analytics requests from other core Network Functions (NFs), collecting 
and analysing data using AI algorithms to generate network analytics results, and delivering these results to the 
requesting (i.e. consumer) NF. 

Each NF leverages the network analytics provided by the NWDAF to monitor the operational status of the 5G network 
and the User Equipment (UE), enabling closed-loop network control and optimization of communication services. For 
example, the NWDAF supports analytics and event exposure services related to network service experience, network 
performance, slice load, NF load, UE mobility, communication events, abnormal events, Quality of Service (QoS) 
sustainability, user data congestion, and more. 

3GPP has enhanced the 5G network data analytics framework over multiple releases by introducing the logical 
functional division of the NWDAF and defining their interactions. It also facilitates cooperation between multiple 
NWDAF instances for model training and sharing, while incorporating new functional entities to improve data 
collection efficiency and enhance real-time performance [i.2]. Several enhancements have been proposed for the 
NWDAF, particularly to support flexible deployments (centralized, distributed, etc.), enable collaboration between 
different NWDAF instances, decompose NWDAF functionality, and achieve tighter integration with the UE 
(e.g. analysis of session load and signal quality). Additionally, the NWDAF has been further integrated with edge 
devices to optimize network operations. 

Despite all of the aforementioned features, the existing capabilities of NWDAF primarily focus on analytics centred 
around better connectivity. As it has been explained in clause 4.1.2.1 on 6G network slicing, the considerations beyond 
connectivity service (e.g. compute, sensing, AI) are not fully incorporated into the NWDAF's services. For instance, 
idle resources within the network infrastructure will be important and needed to embrace the native integration of AI 
and deployment of foundation models towards an autonomous and optimized network operation. Therefore, 6G systems 
are to make better use of under-utilized resources in the network, contributing to sustainability targets and further 
expand the profitability of mobile networks for mobile network operators. 

4.1.2.3 AI Agents 

The current 5G core network deeply integrates telecommunications networks and IT technologies by cloud deployment, 
making the network architecture more agile and open. Therefore, network operations have become more efficient and 
automated. Looking towards the 6G era, in which the diversity of network services, resources and capabilities are 
envisioned to increase, standardized pre-defined processes based on scenario-specific expert knowledge are no longer 
sufficient for the efficient operation of the network. This is due to the significant increase in service and resource 
diversity required along with increased flexibility that is needed in service requirements and network functionalities. 
Together, these bring unprecedented challenges to the network architecture design, especially for the core networks.  

Agentic AI is a new class of artificial intelligence systems designed to act with autonomy, making decisions and taking 
actions without having been specified in advance or without direct human intervention. These systems are capable of 
processing vast amounts of data, reasoning (the process of reaching understanding), and adapting to real-time changes 
in their environment. Hence, AI agents-based systems are a promising solution towards a more generalized and 
extensible design of 6G systems. Key features of Agentic AI systems include autonomy in decision-making, 
goal-oriented behaviour, continuous learning and adaptation, proactive planning and execution, as well as advanced 
reasoning capabilities According to [i.26], systems integrating AI agents "are characterized by the ability to take actions 
which consistently contribute towards achieving goals over an extended period of time, without their behaviour having 
been entirely specified in advance". This will render the mobile network a fully autonomous networks, as specified in 
[i.33], where any scenario (although unknown from before) can be supported due to excellent adaptability and 
knowledge reasoning capabilities of Agentic AI. 

Developing and deploying an AI Agent is not a straightforward process, as such systems are complex by design 
requiring various functional modules and mechanisms to realize its value to the full extent. These typically include 
different decision-making models, vector databases, tool libraries, self-reflection and self-evolving mechanisms. As of 
today, AI agents have not been considered and deployed in 3GPP systems.  
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An example use case to be studied for the adoption of AI agents in 6G core is the optimal and flexible design of 
End-to-End (E2E) network slices. In such a setting, AI agents that are empowered with Large Language 
Models (LLMs) can be employed as an interface to support human operators in defining high-level intents and setting 
up optimization tasks as external input. 

4.2 AI-Core Concept: AI Agents-Based Next Generation Core 
Network 

4.2.1 AI Agent Introduction  

AI Agent is defined as an autonomous system that can interact with its environment to collect data, learn from the past 
experiences and subsequently use these to improve its decision making capability in order to perform specific tasks 
[i.6], [i.7] and [i.8].  

 

Figure 4.2.1-1: General Framework of an AI Agent 

Figure 4.2.1-1 depicts a general framework of an AI Agent that is made up of the following logical components: 

• Communication: The interface of an AI Agent to communicate with external components, supporting various 
networking standards and protocols, such as TCP/IP and HTTP. The communication block handles the 
input/output operations. 

• Memory: Collects and stores data for the AI Agent for task continuity and self-improvement, including 
short-term memory (external input, historical inference result, temporary information, etc.) and long-term 
memory (knowledge, profile, etc.). The memory sub-component plays a crucial role in accelerating and agent's 
learning and adaptation capabilities, thereby, contributing to reducing computational complexity and energy 
efficiency. Such mechanisms have been used in the existing literature, not necessarily to design and implement 
AI agents, for storing/caching reoccurring problems that have already been solved in the past, also referred as 
dynamic programming [i.31], [i.34].  

• AgentGPT: a domain-specific model with less parameters compared to the 'NetGPT' (see clause 4.4). The 
AgentGPT is trained with domain-specific knowledge (e.g. on a certain problem class) that matches the 
responsibilities of the AI Agent that it resides in.   

NOTE 1:  The name "AgentGPT" does not reflect any publicly available library or service and has solely been 
selected to emphasize the fact that it resides inside an AI Agent, also to easily distinguish from NetGPT. 

NOTE 2:  The name "AgentGPT" is also chosen because an AI Agent system does not mandate either the use of an 
LLM or an Agent to be embodied in an LLM. Since AgentGPT does both, the name has increased 
significance. 

• Tools: Functions and APIs that are used to obtain additional information or abilities that are not present in the 
AgentGPT. These can include search engines, databases, calculators, calendars, maps, APIs for specific 
services, and other task-specific utilities. 

• Control: The executive function of the agent that orchestrates the interaction between all components. It 
manages the flow of information, decides when to use AgentGPT or specific tools, coordinates memory access 
and updates, and implements the agent's overall strategy and decision-making.  
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Some open source frameworks (such as LangChain, LangGraph, CrewAI, Semantic Kernel, AutoGen) can be referred 
for the implementation of agent and multi-agent-based architectures [i.3], [i.8] and [i.24]. They can:  

• Accelerate development by providing in built components;  

• Provide consistent approaches to common challenges; 

• Support scalability by moving from simple agent to complex multi agent environments; 

• Access to a broad range of developers and researchers; 

• Foster innovation by handling the foundational aspect of AI agent development frameworks.  

All the frameworks above do have particular advantages and disadvantages. Significantly, none of them yet support 
specific use cases of telecommunication networks. Nevertheless, these frameworks can be seen as a baseline for 
agent-based core network developments. 

4.2.2 Definition of AI-Core 

The proposed AI-Core for the next generation core network consists of multiple agents. As shown in Figure 4.2.2-2, it 
utilizes multiple AI Agents to manage and control the network and to flexibly process the data for new services based 
on the dynamic requirements of various applications. Here, the multi-agent core assembles the network functions, 
application functions and resources autonomously to create the E2E slice. Moreover, it monitors its status in real time, 
dynamically updates the functions or resources of the slice when the network environment or demand changes, and 
deletes the slice instance when the service is terminated. 

 

Figure 4.2.2-2: High-level conceptual illustration of the AI-Core 

Different than the current 5G network slicing, the proposed network slicing using the AI-Core concept expands the 
scope of a network slice. Flexibly customizes network functions and application functions, as well as computing- and 
communication resources in an E2E fashion. This can provide abundant and diverse services for the slice tenant. In 
addition, the E2E customization greatly decreases the cost and complexity of slice customization for tenants. Moreover, 
AI-Core does not require customers (e.g. tenant/application/UE) to provide a large set of technical parameters that are 
used for the slice configuration. Instead, a high-level intent that is to be interpreted by the intelligent multi-agent 
component in the architecture above can be provided in natural language. This way, it is expected to have significant 
added value for the to consumer (2C)/to business (2B)/to home (2H) scenarios. The management and control by the 
multi-agent core for slice design and execution is highly intelligent and autonomous, which in return facilitates the 
cross-domain slice collaboration. Thus, the proposed AI-Core can also contribute to improving the network 
autonomicity, characterized by different levels as presented in [i.4].  

It is important to mention that although the present document focuses on redefining the concept of E2E network slicing, 
the multi-agent-based AI core can be extended to various other use cases and decision-making problems in the network 
including but not limited to improved coverage, network capacity and energy efficiency, targeting the sustainability and 
ubiquitous connectivity considerations recommended in [i.28]. 
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4.3 AI-Core Architecture and Interfaces 

4.3.1 Design principles 

The following design principles are used for the agent-based core architecture: 

• Multiple AI Agents constitute the foundation of the core network architecture and are not employed as a 
simple "integration" or an "add-on" feature. 

• The agent-based architecture serves as a reference for different network services (e.g. connectivity, compute 
for industrial applications or AI applications) with very limited to no modifications needed to tailor it for each 
individual service. Thus, it is inherently general and extensible. 

• Agent reference architecture will support multiple technical and business domains. 

• AI-Core complies with all relevant compliance, security and privacy obligations, including explainability as 
required by the AI Act [i.37]. 

• The resulting next generation core network offers significant benefits towards AI for Network (AI4N) and 
Network for AI (N4AI) services (internal and 3rd party). 

4.3.2 AI-Core Reference Architecture 

 

Figure 4.3.2-1: Reference Architecture of AI-Core 

Figure 4.3.2-1 shows the AI-Core reference architecture. It consists of multiple agents that are optimised for different 
tasks, multiple common components that are shared by these Agents and an Agent Based Interface (ABI). The 
functionalities of Agents, common components and the ABI are explained in the following, while other reference 
interfaces are further described in clause 4.3.3. 

• Planning Agent receives an input policy, information, and knowledge (e.g. a customized slice request from an 
application, which can be an imperative, declarative, or intent-based policy [i.29], [i.36]). It is the 
responsibility of the planning agent to convert or decompose the input (if necessary) into multiple executable 
policies or requests. Specifically, the planning agent outputs the decomposed task list, where each item 
includes a task description, task dependency indicators, QoS requirement, and more. This can be mapped to a 
combination of multiple functional blocks of an ENI system (e.g. a combination of the data ingestion and data 
normalization FBs, as specified in [i.29]). 
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• Assemble Agent is responsible for receiving the output (i.e. a decomposed task list) from the planning agent, 
identifying the appropriate network- and/or application functions for each sub-task, and subsequently 
determining the function topology based on the task dependency relationship. The assemble agent outputs two 
parts of function list, where the first part is a function list for configuring UE(s) and/or RAN(s), and the second 
part is intended for the deployment of other services beyond connectivity (e.g. computing services) that are 
necessary for the requested E2E slice. Each entry in the list includes a function ID, function input(s), a type 
(configure or deploy), and a function dependency indicator.  

NOTE 1: The output of the assemble agent does not specify the exact configuration of the access and core 
network configuration of the E2E slice components, which is the task of the connection and 
execution agents. 

• Connection Agent is responsible for receiving the output part 1 (i.e. the function list) from Assemble Agent, 
determining which UE(s) and/or RAN(s) to be utilized in the requested E2E slice and determining their 
configuration parameters and resources, managing and controlling the connection topology of E2E slices, 
supporting the access management and slice selection for UEs. It outputs the instructions for the actor to 
configure UE(s) and/or RAN(s) and to connect the RAN with function instances.  

• Execution Agent is responsible for receiving the output part 2 (i.e. deployment) from the assemble agent, 
managing and controlling the lifecycle of CN slices, including deploying the network and/or application 
function instances and chaining the function instances, monitoring the operational status of network slices, 
updating and recycling the network slices dynamically. It outputs instructions for the actor to deploy, update, 
and recycle function instances and chaining function instances. The key difference between the connection and 
execution agents is, while the connection agent configures, deploys and monitors the entities within an E2E 
slice that is related to providing the requested connectivity service, the execution agent handles the deployment 
of network and application functions that extend the scope of an E2E slice beyond connectivity 
(e.g. deployment of certain services on hosting resources as requested by the customer).  

• Actor is responsible for translating the management and control instructions for E2E slices received from 
agents to the control signalling for UE(s), RAN(s), slices and hosting resources. It also translates the 
information from UE(s), RAN(s), slices and hosting resources to instructions and information for agents. 

• Toolbox maintains the information or profile of available network functions and application functions 
(functions, models, agents, APIs, etc.) required for E2E slices, the function information or profile includes the 
function name, description, type, required parameters, optional parameters, output examples, usage method, 
etc. It can receive query or subscribe request for functions from other components and output the response or 
notify about the required function information or profile. 

• Public Memory is responsible for collecting, vectorizing and storing the network data and knowledge that 
NetGPT does not have, as well as building the index for these data or knowledge. It can receive data query 
requests from other components, and output the requested data to the consumer. Thus, public memory supports 
other components (e.g. agents) by allowing them to retrieve data, information, and knowledge. Thus, public 
memory is an essential functional block within the multi-agent core for offering a common short- and 
long-term storage service for the entire multi-agent system. Moreover, it is important to mention that the 
public memory should support different communication paradigms, such as client-server, publish-subscribe, as 
well as different data modalities for data ingestion and retrieval, such as natural language, or binary. 

• NetGPT is a domain-specific model, which can be based on an LLM, trained particularly with 
telecommunications and networking domain knowledge. It is responsible for assisting other AI agents for their 
operation and tasks. NetGPT is a larger model when compared to the AgentGPTs (within AI Agents). This 
means, while each AgentGPT is trained for one or a combination of sub-tasks within the overall agent-based 
core network, NetGPT is expected to have a higher inference accuracy for broader tasks, which are not 
necessarily within the domain knowledge of each AI agent.  

NOTE 2: Although different implementations are possible, AgentGPTs and NetGPTs are different models, 
meaning that they are not part of a single model. More details on the training and implementation 
of NetGPT can be found in clause 4.4.  

• Sandbox is an isolated environment where code can be executed, tested, or run without affecting the rest of 
the system. The Sandbox is used to verify the feasibility and performance of network slices generated by AI 
agents. 
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• Agent Based Interface (ABI) is a functional block that is responsible for facilitating communication between 
various other entities. By leveraging advanced AI models and functionality (such as NLP, and intent-based 
approaches), the ABI supports imperative, declarative, and intent-based interactions. This enables it to 
understand the purpose of incoming messages and direct them to the appropriate agents or shared components. 
The ABI can also modify the message content before forwarding, for instance, in response to an incoming 
intent message via the defined reference points, i.e. Ixxx-abi. 

 The ABI can operate as a Semantic Bus (see [i.29]). It also has proxy capabilities and can be implemented in 
various ways. Some of those can consider an internal model, either an LLM or a simpler, fit-for-purpose 
model, assisting this validation. It can also make use of past actions given similar requests cached in its 
internal memory (if it exists) or the public memory component of the AI core. Although the exact internal 
architecture of the ABI is left for future studies, it is important to note that it would be beneficial for the ABI 
to support also functionalities of a classical service bus, if requested. 

In addition to the descriptions above provided for each component of the AI core architecture, clause 6 elaborates 
further on their role and showcases an example procedure for the E2E slice configuration. Clause 6 also includes an 
example flow diagram for better understanding of the interaction between agents and shared components.  

Why is AI-Core a multi-agent system? 

As shown in Figure 4.3.2-1, the AI-Core architecture contains multiple agents to manage and control E2E slices, instead 
of a single one. The reason behind the multi-agent architecture is that the E2E slice design and execution control are 
usually complex, and using a single agent leads to high implementation complexity and poor performance. For example, 
during the slice design process, the Agent needs to determine the working procedure and the required functions, the 
configuration parameters for functions and the required resources, according to the high-level service requirement 
description provided by customers. It also needs to assemble and chain the functions, compute the optimal data routing 
path. During the slice execution process, the Agent needs to monitor the execution status of the slice. When the network 
environment changes, it is required to adjust the functions or topology of the slice and schedule the resources 
dynamically. If a single agent is adopted to complete all the things, the functionalities of this Agent will be quite 
complex, which will lead to high implementation cost. Especially, the AgentGPT of the single agent will be powerful 
enough to solve a diverse set of problems, which implies that the number of parameters of the AgentGPT will be 
sufficiently large. The large-scale model will incur high training cost and large inference time. Besides, many academic 
researchers have demonstrated that the performance of a single agent is worse than the cooperation of multiple agents 
[i.9], [i.10], [i.11], [i.12], [i.13]. 

As a result, multiple agents are used, and each of them plays a different role and has customised small-scale models to 
solve specific problems. The collaboration of multiple agents and the introduction of closed-loop optimization 
mechanism among agents can improve the effectiveness and efficiency of slice management and control. As described 
and demonstrated in [i.30], a particular complex task can be successfully broken into simpler sub-tasks and solved 
through a multi-agent conversation, which improves the modularity and extensibility of the entire system. This also 
goes hand-in-hand with the "single responsibility principle" recommended in [i.29].  

Components shared by multiple agents 

Although each agent has its own functional components, (e.g. PlanningGPT has its own internal tools and memory to 
enable it to work intelligently and autonomously), the common components, including NetGPT, Toolbox, Public 
Memory, Actor and Sandbox, which can be shared by all the agents, are still needed. The Toolbox maintains all the 
network functions and application functions required for slices, and will be accessed by the Assemble Agent, 
Connection Agent, and Execution Agent when they select functions, configure functions of UEs and RANs, and deploy 
function instances, respectively. The tools in each agent are used to obtain extra information that the agent requires to 
complete its task. For example, if the input to the agent includes a location name, it can invoke the function in Tools to 
obtain the geographic coordination of the location. The Public Memory stores the data collected from the network, such 
as the capability and location of UEs and base stations, and the execution status of slices. These data can be shared by 
the agents and used to improve the performance of the agents. While the memory in each agent stores the context and 
temporary inference result of the AgentGPT during its working process, these data are private and used only by that 
Agent. NetGPT is a relatively large-scale model while the AgentGPT in each agent is a relatively smaller model in size. 
NetGPT can be used to assist the AgentGPT of each agent in inferencing. The output of an agent is usually the 
instruction in the form of natural language, which cannot be understood by traditional network entities. Thus, the Actor 
is required to translate the instructions from the agents to the signalling messages for the network entities (e.g. in RAN) 
or vice versa. Moreover, the accuracy of slices created by the agents is not deterministic (e.g. due to hallucinations). 
Thus, employing the Sandbox to verify their feasibility can further improve the performance of generated slices. 
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Agent Based Interface Design 

For the design of the ABI, Table 4.3.2-1 overviews some of the most popular frameworks used in LLM-based 
multi-agent system development and the communication interfaces and protocols they employ. These constitute 
examples and a starting point for the design and implementation of the multi-agent core network architecture, depicted 
in Figure 4.3.2-1. One can see from Table 4.3.2-1 that the communication interfaces and protocols that are currently 
utilized for agent-to-agent communication, e.g. HTTP APIs, WebSocket, Remote Procedure Call (RPC), are compliant 
with the service-based interface, which is widely accepted and adopted by the 3GPP specifications, particularly for core 
network architecture [i.3]. 

Table 4.3.2-1: Popular frameworks for multi-agent system development 

Framework Description Communication Interfaces 
LangChain A framework for building applications with LLMs that 

supports chaining prompts, memory, and interaction 
with external APIs. 

API calls, Python function calls, 
message passing 

AutoGen A framework for automatic generation of agent 
behaviours and interactions, focusing on multi-agent 
conversation. 

REST APIs, WebSocket, RPC 

CrewAI A platform for creating collaborative AI agents that work 
together to solve tasks and provide information. 

WebSocket, HTTP REST APIs, 
message queues 

MetaGPT A framework that leverages multiple GPT-based agents 
to collaborate on tasks, enhancing interaction and 
adaptability. 

HTTP REST APIs, WebSocket, 
gRPC 

AutoGPT An autonomous agent framework that allows agents to 
perform tasks with minimal human intervention, using 
LLMs. 

HTTP REST APIs, WebSocket, 
gRPC 

Langraph A framework designed for building multi-agent 
applications, focusing on collaborative interactions 
among agents. 

HTTP REST APIs, WebSocket, 
message queues 

 

4.3.3 Reference Points 

In this clause, the interfaces of the reference architecture shown in Figure 4.3.2-1 are described: 

• Ipla-abi: Agent-based interface of the Planning Agent, which is used to invoke Planning Agent to do task 
planning. 

• Iass-abi: Agent-based interface of the Assemble Agent, which is used to invoke Assemble Agent to make 
function selection. 

• Icon-abi: Agent-based interface of the Connection Agent, which is used to invoke Connection Agent to configure 
UEs and/or RANs, and build connections. 

• Iexe-abi: Agent-based interface of the Execution Agent, which is used to invoke Execution Agent to deploy 
function instances on hosting resources and management the hosting resources. 

• Inet-abi: Agent-based interface of the NetGPT, which is used to invoke NetGPT to do reasoning (the process of 
reaching understanding). 

• Iact-abi: Agent-based interface of the Actor, which is used to invoke Actor to translate control signalling or 
instructions. 

• Itoo-abi: Agent-based interface of the Toolbox, which is used to query the information of network functions and 
application functions in Toolbox. 

• Ipub-abi: Agent-based interface of the Public Memory, which is used to request Public Memory for storing data 
or obtaining data from Public Memory. 

• Isan-abi: Agent-based interface of the Sandbox, which is used to request Sandbox to make verification. 

• Eact-ue: the interface between Actor and UE that is used for configuring UE slices, including configuring 
functions and resources, etc. 
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• Eact-ran: the interface between Actor and RAN used for configuring RAN slices, including configuring 
functions and resources, etc. 

• Eact-sli: the interface between Actor and slices used for lifecycle management of function instances in slices.  

• Eact-hos: the interface between Actor and hosting resources used for scheduling network resources to run 
function instances. 

• Eue-pub: the interface between Public Memory and UE used for collecting the capability, location, and 
operational status of UE. 

• Eran-pub: the interface between Public Memory and RAN used for collecting the capability, location, and 
operational status of RAN. 

• Esli-pub: the interface between Public Memory and slices used for collecting the operational status of slice 
instances. 

• Ehos-pub: the interface between Public Memory and hosting resources used for collecting real-time data, 
e.g. load conditions. 

• Eext-pla: the interface between Planning Agent and external entity used by the third party or UE application to 
request the AI-Core to create a customized network slice. 

4.4 NetGPT: Collaborative Inference with AgentGPT 

4.4.1 NetGPT Training 

NetGPT is a domain-specific model, which can be based on LLM, designed specifically for the core network domain. In 
general, NetGPT can either be developed by training from scratch using mobile network data such as 3GPP 
specifications, signalling data, and Operations and Maintenance (O&M) data or by fine-tuning an existing LLM, such as 
Falcon and LLaMA with core network-specific data. Both approaches are valid and come with their own advantages 
and disadvantages. While a general-purpose LLM may not have been trained with domain-specific information on 
controlling a mobile network, it can offer advanced reasoning capabilities that can be leveraged. Both approaches are 
valid and come with their own pros and cons. While a general-purpose LLM may not have much pre-existing 
knowledge relevant to controlling mobile networks, it can offer advanced reasoning capabilities that can be leveraged. 

The main differences between the NetGPT and the AgentGPT are: 1) NetGPT is a larger model when compared to an 
AgentGPT, 2) NetGPT covers a wider knowledge than the AgentGPT(s). This means that any AgentGPT can consult 
the NetGPT as necessary. NetGPT can help the AgentGPTs in their training and inference (i.e. collaborative inference). 

NOTE: Similar to AgentGPT, the name NetGPT has also been selected to emphasise that this is a network-wide 
(i.e. shared) component of the AI Core. It does not correspond to any specific library or tool that is 
publicly available. 

In the following sections, key details on how such models can be trained, what types of data can be utilized, expected 
model sizes, and the fine-tuning process are discussed. 

1) Data used for training: 

 Static data refers to information that remains unchanged within the system. Some prominent examples are 
3GPP specifications, API definitions, historical data on user movement that have been recorded, static 
information on the locations of base stations, data centres and edge compute centres, and slice information. 
These data typically remain constant and serve as important resources for building knowledge. Having been 
trained with such data, NetGPT can understand the basic architectures of core networks, different Network 
Functions (NFs), APIs, the Service-Based Architecture (SBA) bus, how services are instantiated, locations of 
different data centres, and conventional methods that can be used to retrieve location information such as IP 
addresses and hostnames. As a result, the static data enables the NetGPT to gain the necessary capabilities for 
supporting an efficient configuration and operation of the multi-agent AI core. 



 

ETSI 

ETSI GR ENI 051 V4.1.1 (2025-02)18 

 Dynamic data, on the other hand, includes information that is subject to frequent changes. This includes but is 
not limited to current number of users, Quality of Service (QoS) analytics and network performance, load on 
hosting resources, cell-level KPIs, and UE movement and measurement reports. Integrating dynamic data is 
generally more challenging and requires a well-designed and functional Retrieval-Augmented 
Generation (RAG) mechanism. It is recommended to apply multiple mechanisms to augment the capabilities 
of the LLM. For example, if a well-trained and finetuned LLM is the base layer, then RAG could be a middle 
layer to supply current information without changing the model, and the top layer could consist of in-context 
learning to provide immediate adaptation using a given context. The extent to which the dynamic data can be 
incorporated into training, in-context learning (using prompts), or via RAG for real-time knowledge updates is 
still an open challenge. The difficulty in integrating dynamic data leads to varying NetGPT slice lifecycle 
control lengths, which can range from minutes to days depending on the specific use case and service 
requirements. 

2) Data collection and cleaning: 

 One of the advantages of using a transformer-based model like NetGPT is its ability to identify various 
dependencies and relationships between data from different network entities, even if the data is not processed 
(which qualifies it as "information" according to [i.32]). For NetGPT to gain a deeper understanding of the 
network, it may need access to raw data, for instance, retrieved using Operations, Administration, and 
Maintenance (OAM) systems. However, data cleaning and filtering are still very important for improving 
learning efficiency and inference accuracy. Typically, this process comprises the following steps: 

- Remove user-specific and encrypted data: In many sectors, the available data are sensitive and will 
follow strict regulations. Therefore, before the training or fine-tuning process can begin, appropriate 
information privacy concerns are strictly followed to avoid sensitive information being included in the 
training process. 

- Remove dynamic information: For example, IP addresses, especially private ones from internal 
networks.  

- Enhance data with metadata: Add different types of underlying information. For example, the model 
needs to distinguish between a request header, request body, and request results. Providing the raw data 
without this differentiation may confuse the model during training. Including metadata alongside the data 
will help the NetGPT better understand the roles of different network nodes elements in request/response 
interactions. 

3) Fine-tuning:  

 Fine-tuning a pre-trained model improves the inference accuracy for specific tasks. In addition, it can facilitate 
the adaptation of a model to dynamic settings. For the fine-tuning process, it is crucial to establish 
well-defined reward functions. These can be based on QoS, service experience, task completion rate, system 
failure rate, and so on. It is also important to identify possible new metrics for the multi-agent AI core to 
evaluate the performance of the NetGPT at assisting other agents and entities in their operation to capture the 
usefulness of the instructions generated by the NetGPT. Various methods can be used for the fine-tuning 
including supervised fine-tuning based on task-specific labelled dataset, reinforcement learning based on the 
collected network data as well as human feedback. 

4.4.2 Collaborative Inference between AgentGPT and NetGPT 

Although the AgentGPT (PlanningGPT, AssembleGPT, ConnectionGPT, ExecutionGPT) in each agent is good for 
solving problems of specific scenarios with local knowledge, it maybe not be able to reach the desired confidence level 
under some circumstances. This could be resolved by the collaborative inference with the larger model NetGPT through 
an efficient algorithm. 

Speculative Decoding is a widely used technique to speed up inference for LLMs without sacrificing quality [i.19], 
[i.20], [i.21] and [i.22]. When performing inference, a smaller draft model is used to generate speculative tokens. The 
target LLM then verifies the output of the draft model and only outputs tokens that match its output. By leveraging 
faster inference of smaller draft models, speculative decoding turns autoregressive decoding on the target LLM into a 
more hardware-friendly batched operation, thereby increasing throughput while preserving accuracy. 

Speculative decoding can be adopted to enable collaborative inference between AgentGPT and NetGPT, where 
AgentGPT acts as a smaller draft model while NetGPT act as a verifier for the AgentGPT. 
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4.5 Toolbox: Network and Application Function Collection 
Toolbox is an extensible collection of network functions, application functions (including functions, models, APIs) and 
information. Developers can register their developed functions and models to Toolbox for use by agent. It greatly 
enriches the variety of customized slices. The functions in Toolbox can be non-standardized. Toolbox can be an 
independent new function, an enhancement to the 5G Network Repository Function (NRF), or it can be open source. 

4.6 Actor: Communication Bridge between Agents and 
Traditional Network Entities 

As mentioned above, Agents are responsible for generating intelligent decisions and instructions related to network 
slices. The Actor serves as the communication bridge between agents and traditional network entities. Agents may use 
natural language while traditional network entities use symbolic language (e.g. binary or special purpose text as used in 
command line interface systems). The Actor translates the instructions of agents to the standard control signalling that 
can be understood by network entities, including UEs, RANs, traditional network functions, some common components 
(such as Toolbox, Public Memory) and underlying hosting devices. In addition, the Actor can translate the signalling 
from network entities and hosts to instructions that can be understood by agents. 

4.7 AI-Core Data Management via Public Memory  
As mentioned earlier, the Public Memory collects, vectorizes and stores various network data and knowledge. It has 
long-term memory and short-term memory. The data sources include the UEs, RANs, E2E slice instances, and hosting 
resources. The capability, location, status, and availability information from UEs and RANs are collected through Eue-pub 
and Eran-pub interfaces, respectively. They can be stored in the long-term memory and used for future queries by the 
agents. The operational status and the function output results of E2E slice instances are collected via the Esli-pub 
interface. The utilization of hosting resource is collected through the Ehos-pub interface. These data are stored in the 
short-term memory, and they can be accessed and used during the execution process of the E2E slices. Furthermore, 
Public Memory can vectorize the collected data and build a vector database to store the vector data to facilitate fast data 
retrieval and efficient similarity search. 

The collected data of Public Memory can be used to improve the capability of NetGPT and AgentGPTs. There are 
multiple ways to make use of the short- and long-term memory service offered by the Public Memory. An example is to 
provide assistance information for NetGPT and AgentGPTs upon request for Retrieval Augmented Generation (RAG) 
functionality. Another alternative is training scenario-specific reward models based on the collected data and update the 
generation policy of NetGPT and AgentGPT in each agent, e.g. through reinforcement learning. 

4.8 Slice Performance Improvement Mechanism 

4.8.1 General Slice Performance Improvement Mechanism 

Several ways are recommended in the following clauses to improve the performance of generated slices, including 
prompting, multi-layer closed-loop optimization mechanism, verification through sandbox, and human-in-the-loop. 

4.8.2 Prompt Design 

In order to let NetGPT or AgentGPT (e.g. PlanningGPT, AssembleGPT.) generate a more accurate inference result, 
prompt engineering is usually needed to guide the model to solve complex reasoning problems. Currently, the main 
prompting techniques include Chain-of-Thought (CoT) [i.14], Self Consistency with CoT (CoT-SC) [i.15], Tree of 
Thought (ToT) [i.16], Graph of Thought (GoT) [i.17], and Response & Act (ReAct) [i.18], etc. They are suitable for 
different wireless scenarios: 

a) CoT: This is useful for solving complex problems that require a step-by-step reasoning process. It can be used 
for solving problems such as optimizing network configurations or predicting network behaviour. CoT helps in 
breaking down big problems into smaller and manageable steps to reach a final solution.  
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b) CoT-SC: This enhances the robustness of CoT by generating multiple reasoning paths and selecting the most 
consistent answer. It is particularly helpful in situations where the network data may lead to ambiguous or 
uncertain conclusions such as in anomaly detection. Examples include multi-step arithmetic reasoning in 
network planning, complex resource allocation across multiple network slices, predictive maintenance based 
on multiple factors, traffic prediction and load balancing, and QoS optimization considering multiple 
parameters.  

c) ToT: This extends CoT into a tree structure, allowing for exploring multiple reasoning paths. In addition to 
being able to solve more complex examples than CoT and CoT-SC would struggle with, ToT could be used to 
explore multiple design options simultaneously, evaluating different network topologies and configurations in 
network planning and optimisation, providing multi-objective QoS optimisation where the objectives conflict 
with each other, or finding optimal routes for data packets in a dynamic environment. 

d) GoT: This is built on ToT by considering interconnected reasoning paths, which may share nodes or 
interdependencies. GoT can be helpful in determining interdependencies between network components. 
Exemplary tasks include complex network troubleshooting, cross-layer optimisation, network security 
analysis, traffic engineering, and load balancing. 

e) ReAct: ReAct agents combine reasoning and action in a continuous loop, are particularly well-suited for 
certain wireless network tasks that require dynamic decision-making and interaction with the environment. 
Examples include real-time network monitoring and troubleshooting, adaptive resource allocation, and 
dynamic network slicing management in highly changing environments. They are best suited for automated 
systems that need to react quickly with respect to changes in network conditions. 

For more detailed information of these techniques, one can refer to [i.5]. 

The few-shot prompting technique is particularly useful in scenarios where extensive training data is unavailable and/or 
a specific output structure or format is required. Considering the diverse requirements of various slice services, one can 
design different examples for different service requirements. Few-shot prompting provides examples to guide the 
model's performance, which can be integrated into the more complex reasoning frameworks described above in this 
clause. A few-shot example library is maintained, which contains various examples corresponding to different types of 
service requirements. These examples can be handwritten or generated by models. Once the agent receives a request, it 
first uses the clustering algorithm such as K-Nearest Neighbor (KNN) to match multiple examples that are similar to the 
request from the few-shot example library, and then includes these examples in the prompt template to invoke the 
AgentGPT or NetGPT. 

4.8.3 Multi-layer Closed-loop Optimization 

AI-Core is a multi-agent system where multiple agents cooperate to generate E2E slices.  

 

Figure 4.8.3-1 
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The three-layer closed-loop optimization mechanism among agents is utilized to enhance their performances, which are 
as follows:  

• Outer-Loop: After the Assemble Agent receives the decomposed task list from the Planning Agent, it will 
select proper application and network functions to execute these tasks. If no function can be found for a certain 
task, the Assemble Agent will ask the Planning Agent to re-plan the tasks. The communication between the 
Planning Agent and Assemble Agent continues until all the decomposed tasks are assigned an appropriate 
function(s) or the number of communication rounds reaches the maximum preset value. If the number of 
communication rounds expires, the Planning Agent responds to the tenant that the network cannot meet this 
requirement. 

• Intermediate-Loop: After the Connection Agent and Execution Agent receive the configuration or 
deployment function list from the Assemble Agent, the Connection Agent will decide the proper UE(s) and 
RAN(s) to configure the function and the Execution Agent will deploy the function instances on the proper 
hosts. If the Connection Agent or Execution Agent find insufficient resource to configure or deploy the 
function(s), it will request the Assemble Agent to re-select function(s) that consumes fewer resources. The 
communication between the Assemble Agent and Connection Agent or Execution Agent continues until all the 
functions are successfully configured or deployed or the number of communication rounds exceeds the 
maximum value. If the number of communication rounds expires, the Connection Agent responds to the tenant 
that the network cannot meet this requirement. 

• Inner-Loop: During the running process of the slices, if the network environment is changed (e.g. the UE is 
powered off or the BS becomes busy or the hosts are highly loaded), the Connection Agent will autonomously 
replace the UE or update the slice topology and the Execution Agent will dynamically reschedule the hosting 
resources to adapt to the change of network environment. 

4.8.4 Sandbox 

In agent-based systems, the inference accuracy and the success rate in task completion heavily depend on the training 
process and the ability of agents to understand the task and to break it down into a set of correct sub-tasks. An 
additional method to improve the inference accuracy is sandboxing, which allows the agents to evaluate the inference 
accuracy in an isolated and controlled environment [i.23], [i.24] and [i.25]. 

In our reference architecture, the sandbox component has the ability to run a system-level evaluation first to check the 
feasibility and validity of the input request and agent output coming from the ABI. For the specific use case of E2E 
slice management, this is enabled via:  

i)  the access of the sandbox to up-to-date information about the underlying network, such as network functions, 
existing slice configurations and active network nodes;  

ii)  background knowledge about slicing functionality which includes but is not limited to the composition of 
necessary sub-tasks in E2E slice lifecycle management, the network nodes and functions that are involved. 

Subsequently, the sandbox component evaluates the performance of the incoming request (e.g. comprised of sub-tasks) 
through scenario emulation in order to assess its performance, which quantifies the inference accuracy prior to 
deployment. This may occur at the sub-task level or at the intent-level depending on the exact request. If the evaluation 
result is found to be inadequate (e.g. infeasible, invalid, not satisfying the requirement) the result is returned to the 
requesting agent via the agent-based interface. This way, the sandbox component serves as a valuable tool for 
preventing the propagation of inference errors from one agent to another, thus facilitating the closed-loop network 
optimization and automation. 

4.8.5 Human-in-the-loop 

Although the goal of using AI agent-based systems for network slicing is to fully automate the slice lifecycle 
management, human involvement remains crucial, particularly during the design and initial deployment phases. The AI 
agent requires time to learn and adapt to the specific requirements, and during this period, human operators assist in 
guiding the AI to make informed decisions. Human operators will also be required in following stages, since networks 
have dynamic requirements and an infinite number of possible configurations that have complex interdependencies. In 
addition, there are unforeseen scenarios, and the network is subject to unforeseen business policy changes. These and 
other factors demand continuing human expertise. 
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"Human-in-the-loop" refers to the close integration of human expertise into a task, such as slice lifecycle control and 
management. Human oversight is critical to ensuring successful end-to-end service delivery. In practice, human in the 
loop support can assist at several stages: 

• During the design phase: Human operators define the key requirements and templates that the slice will fulfil. 
For example, human operators establish the Key Performance Indicators (KPIs), Key Quality 
Indicators (KQIs), and Service Level Agreements (SLAs) that the provisioned slice will meet. This enables the 
AI agent to better understand and address the necessary aspects of the design. 

• During provisioning: Once the AI agent provisions the slice, it can validate the slice against these SLAs, KQIs, 
and KPIs, with the operator providing rapid feedback on the slice's performance. 

• During runtime for anomaly detection: The AI agent continuously monitors the slice's runtime characteristics. 
If anomalies are detected, the AI alerts the human operator, who can then make decisions based on their 
expertise, even guiding the AI on the quality of its decisions. 

• During slice decommissioning: The AI agent manages the decommissioning process and provides key 
performance metrics to the human operator, which can help improve the overall system design and 
performance. 

To enable effective human interaction within the end-to-end slicing loop, specific APIs and interaction points will be 
defined. This is essential for setting clear boundaries between tasks assigned to human operators and those delegated to 
AI agents. These APIs can help the industry develop interoperable systems that enable integration between AI agents 
and human operators, as well as more effective distribution of responsibilities. Key interaction points between human 
operators and AI agents include: 

• Input to the AI agent: human operators interact with AI agents through management consoles or APIs to define 
network intents, SLAs, policies, and security parameters. 

• AI Processing: based on the inputs and predefined policies, AI agents autonomously manage network 
optimization, fault detection, resource allocation, and slice orchestration. 

• Monitoring: AI agents provide continuous feedback to operators through real-time dashboards and monitoring 
APIs, ensuring transparency in decision-making. 

• Human Intervention: when needed, operators can intervene via APIs to override decisions, adjust parameters, 
or offer feedback for AI model refinement. 

5 Application Scenarios 

5.1 Introduction to Application Scenarios 
This clause gives a brief overview of some exemplary use cases and applications that are envisioned to undergo 
significant improvements through advances in machine learning and Agentic AI systems research. A detailed analysis 
and study on the selected use cases (and others) is left for future studies and work items. 

5.2 Robots 
The utilization of AI combined with agent-based network services is opening new frontiers in robotics. As both the 
network and robots become more intelligent and autonomous, new example use cases in the field of cloud robotics are 
envisioned to appear, transforming various vertical sectors from industrial automation, healthcare, agriculture and 
mining, in which networked robots perform various tasks in a more intelligent, collaborative and responsive manner. 
With an unmatched capability of real-time problem solving, AI-empowered robots will tackle complex and novel 
problems in dynamic environments, such as adaptive motion planning, task offloading, collaborative task execution 
(i.e. collaborative robots). This will not only call for improved connectivity services, but an increased demand for E2E 
computing, sensing and storage services offered by the proposed AI-agent-based core network. 
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5.3 Sensing  
Integrated Sensing and Communication (ISAC) is a key scenario of next-generation networks that enables new 
applications and services by leveraging network sensing capabilities. Typical use cases include network-assisted 
navigation, activity detection (e.g. vehicle and pedestrian), movement tracking (e.g. posture and gesture recognition, fall 
detection), environmental monitoring (e.g. rain and pollution detection), and providing sensing data for applications 
such as AI, extended Reality (XR), and digital twin technologies. 

In addition to the need for advanced communication capabilities, ISAC requires support for high-precision positioning 
and sensing. A fast compute layer that supports rapid range/velocity/angle estimation, object and presence detection, 
localization, imaging, and mapping is essential. Furthermore, each use case has different KPI requirements, such as 
velocity/position estimation accuracy, reconstruction/imaging accuracy, missed detection probability/false alarm 
probability, and resolution (distance, angle, velocity). Such a complex KPI-to-feature mapping requires an advanced 
core, such as the AI-Core presented in the present document. 

Beyond KPIs, the actual data collection procedures and exposure functionalities depend on the scenario. To address 
this, the AI-Core is capable of providing a flexible sensing service to adapt to new and unforeseen usage scenarios with 
varying requirements. Leveraging an AI-core network can provide the necessary flexibility, ensuring the network can 
adjust to evolving demands with a wide range of sensing capabilities. 

5.4 Smart City 
Due to the rapid growth of population and the increase in the number of vehicles on the road, most cities are faced with 
the problem of traffic congestion. AI-Core can be used to effectively help build and manage sustainable transportation 
systems, such as real-time access to vehicle information, intelligent decision making for planning, scheduling, and 
management. 

An example use case that takes advantage of the AI-Core is the following. During peak commuting hours, smart city 
operators need to know the real-time information of the vehicle flow in various spots (e.g. scenic and other points of 
interest) to conduct intelligent traffic dispatch, alleviate traffic congestion, and improve the travel convenience of 
mobile users. In this case, the smart city operators may require the mobile network to provide customized network 
slices to monitor the vehicle flow during the peak time. After the peak commuting hours, the monitoring service can be 
terminated automatically, required to be terminated by the operators, or even repurposed. Further, the dedicated network 
slice for monitoring service is deleted or repurposed accordingly. Thus, the creating and reclaiming of these customized 
network slices for services are on-demand. AI-Core is a good way to provide customized network slice since the agent 
has strong capabilities of intention understanding, thought generation and tool usage. 

5.5 Smart Network 
With the continuous advancement of communication technology, wireless core networks are becoming increasingly 
large and complex, encompassing a vast array of devices, protocols, and service domains. This complexity renders 
traditional manual operations inefficient and prone to errors. Network faults often occur suddenly, and traditional 
manual response methods struggle to react swiftly. Intelligent agents, through real-time monitoring and immediate 
analysis, can rapidly detect and address faults, minimizing business downtime. In addition, intelligent agents can be 
trained on historical fault tickets based on business logic, identify and classify faults, and through intent recognition, 
search the knowledge base for maintenance manuals, safety regulations, etc., ultimately recommending fault resolutions 
and safety tips. This empowers frontline production maintenance, providing solution references for fault handling by 
frontline personnel, thereby enhancing maintenance efficiency and quality. 

1) Automated slice design: Intelligent agents can automatically complete the design and configuration of network 
slices based on business requirements and network conditions. This includes resource allocation, QoS settings, 
and SLA guarantees. 

2) Real-time monitoring and dynamic adjustment: Intelligent agents possess perception and prediction 
capabilities, allowing them to monitor the status of network slices in real-time and dynamically adjust slice 
configurations based on actual traffic and user demands, ensuring continuous service optimization. 

3) Scene self-learning ability: Through scene self-learning, intelligent agents can continuously optimize network 
slice management strategies, improving network resource utilization and service flexibility. 
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5.6 B2B Voice and Data Services 
With the improvement of LLM and Agent technology, it is possible to use personal assistants to improve the call 
experience. With these assistants, the following can be imagined: 

1) When users A and B are in a call, user A interacts with the assistant using a natural language interface, and the 
assistant helps in complete tasks according to the user's call intention, for example, User A's schedule and 
location, and then booking a dinner reservation for users A and B. 

2) Users A and B discuss the sales plan for about half an hour. During the discussion, three outstanding action 
points are generated and need to be tracked and handled later. The assistant is activated before the end of the 
call, to create summary minutes, and sends the minutes to A and B in Short Message Service (SMS) or Rich 
Communication Service (RCS) messages. 

3) When user A is on the plane and cannot answer a call, the personal assistant of user A senses the status of 
user A, actively answers the call of express delivery, and informs the courier to put the express delivery on the 
small round table at the door according to the preferences of user A. 

4) Call assistant identifies that the calling number is a real estate sale call. It answers the call, attempts to 
understand the call intention, forms a summary, and sends SMS or RCS message to notify the subscriber. 

In addition to above call scenarios, a personal agent can be also used improve user experiences with new technology 
such as immersive Augmented Reality (AR) glasses with intelligent capabilities. When a user wears lightweight AR 
glasses with a Mobile Subscriber Integrated Services Digital Network Number (MSISDN), information such as images 
and videos is transmitted to the personal agent on the network side along with voice, and the multi-modal information 
understanding can help the user experience brought by the new technology. The scenario is as follows: A blank 
subscriber has a conversation based on AR glasses and asks an assistant to assist in arriving at the station from home. In 
this process, the network personal assistant identifies the surrounding environment, observes whether there are passing 
cars, reminds the user to cross the road in time, determines the direction of progress according to the visual information 
and Inertial Measurement Unit (IMU) information, and feeds back the route and obstacles to the user in real time. 

6 AI-Core E2E Procedure 

6.1 E2E Slicing Lifecycle 
The tenant sends the customized slice request to the Planning Agent which is required to decompose the request into a 
set of simple and executable tasks. After receiving the request, the Planning Agent-Control first invokes PlanningGPT 
to understand and translate the intent of the tenant, then it queries the Memory in the agent for any historical task 
planning record corresponding to the request. If there is a historical record in Memory, it can be used directly; 
otherwise, the Planning Agent-Control invokes the PlanningGPT to output the task list about how to satisfy the request 
or it generates a prompt and sends it to the NetGPT to assist the PlanningGPT in reasoning to understand and 
implement the task list. Each task information includes the task description, QoS requirement, indicators of dependency 
on other tasks, and may include other details. Finally, the Planning Agent outputs the decomposed task list. The 
decomposed tasks can be checked by human experts before they are sent to Assemble Agent. 

The Assemble Agent is required to select and assemble proper network functions and application functions to form an 
E2E slice according to the received task list. To achieve this goal, Assemble Agent-Control first queries the local 
Memory for the historical function record for each task. If there exists a function record for a certain task, it does not 
need to reselect a set of functions. For the tasks that do not have a matching function record in the Memory, the 
Assemble Agent-Control obtains the information about the available network and application functions from the 
Toolbox. Then the Assemble Agent-Control invokes the AssembleGPT to infer the proper set of functions for each task 
or it requests NetGPT to collaboratively inference with AssembleGPT. The output result of the Assemble Agent 
contains two parts. The first part is the function list for configuring UEs and/or RANs, and the second part is the 
function list required for deployment. Each function information of the list includes the function ID, type, function 
input(s), function dependency indicators, and other required information. The Assemble Agent sends the first and the 
second part of output to the Connection Agent and Execution Agent respectively, after they are verified to be reasonable 
by Sandbox. 
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After receiving the function list for configuration, the Connection Agent will determine which UEs and/or RANs to 
configure those functions, and decide the required parameters (e.g. input parameters, algorithm configuration 
parameters, session-related parameters) and resources for them. Connection Agent-Control can query the detailed 
description, required parameters, optional parameters, and output example from Toolbox according to the received 
function IDs. Then, it obtains the capability, location, status, availability information of UEs and RANs from Public 
Memory, and it invokes the ConnectionGPT to infer the proper devices and configuration parameters. Then, the 
Connection Agent outputs the configuration instruction to the Actor. The Actor translates the configuration instruction 
to the control signalling for UEs and RANs. 

The Execution Agent is responsible for instantiating the functions to be deployed on the hosts, chaining these function 
instances, and configuring the required parameters and the resources. Similarly, the Execution Agent-Control could 
query the detailed description, required parameters, optional parameters, function code, and output example from the 
Toolbox according to the received function IDs. It obtains the status (e.g. load, distribution, etc.) of each hosting 
resource from Public Memory, then it uses ExecutionGPT to determine the parameters, resources and routing path of 
functions. Finally, the Execution Agent outputs the deployment instruction to the Actor. The Actor translates the 
deployment instruction to the control signalling for hosts. 

During the execution process of the slice, the UEs, RANs, and hosting resources report the execution data and status to 
the Public Memory. The Connection Agent and Execution Agent can continuously monitor the operational status of the 
slice, the network environment, and the status of hosting resource by querying the Public Memory. If the network 
environment or the status of the hosting resource is changed, the Connection Agent and the Execution Agent will adjust 
the connection topology and the hosting resources dynamically. 

After the service provided by the slice terminates, the slice instances need to be deleted to release the resources (or 
alternatively, repurposed to serve different users). 

6.2 E2E Flow Diagram 
The inputs and outputs of each agent and common component are listed in the following Table 6.2-1.  

Table 6.2-1: Overview of Agents and Common Components 

Agent & Common 
Component 

Functions / Goals Input Output Impact 

Planning Agent Understand the 
customer's requirement 
for customized slice, and 
decompose the 
requirement into multiple 
executable tasks 

Customized slice 
request, which is in 
the form of a high-
level intent policy 
(e.g. provide a 
customized slice for 
monitoring the 
number of vehicles 
and people at 
Shanghai Century 
Park No.1 gate from 
8:00 to 17:00.) 

Decomposed task list, 
the information of each 
task includes task 
description, task 
dependency indicators, 
QoS requirement, etc. 

New NF 

Assemble Agent Select proper network 
entities and/or application 
function(s) for each task 
and determine the 
function topology based 
on task dependency 
relationships 

Output from Planning 
Agent 

Part 1: Function list for 
configuring UEs and/or 
RANs, each including 
function ID, input 
parameters, type 
(configure), function 
dependency indicator, 
etc. 
Part 2: Function list for 
deployment, each 
including function ID, 
input parameters, type 
(deploy), function 
dependency indicator, 
etc. 

New NF 
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Agent & Common 
Component 

Functions / Goals Input Output Impact 

Connection Agent Determine which UE(s) 
and/or RAN(s) to use the 
E2E slice and their 
configuration parameters 
and resources, manage 
and control the 
connection topology of 
E2E slices, support the 
access management and 
slice selection for UEs, 
etc. 

Output Part 1 from 
Assemble Agent 

Instruction for Actor to 
configure UE(s) and/or 
RAN(s) and build 
connection between 
RAN and deployed 
functions 

New NF 

Execution Agent Lifecycle management of 
CN slices, including 
deploying the network 
and/or application 
functions and chaining 
functions, monitoring the 
operational status of 
network slices, updating 
and recycling the slice 
instances dynamically 

Output Part 2 from 
Assemble Agent 

Instruction for Actor to 
deploy/update/recycle 
functions and chaining 
those functions 

New NF 

Actor Translate the instructions 
from agents to the control 
signalling to UEs, RANs, 
slices and hosting 
resources; and translate 
the signalling from UEs, 
RANs, slices and hosting 
resources to instruction 
for agents 

Instructions from 
agents for creating, 
deploying, updating, 
or recycling a slice 
instance; or control 
signalling from UEs, 
RANs, slices, and 
hosting resources 

Control signalling for 
UE(s), RAN(s), slices, 
hosting resource; or 
instruction for Agents 

New NF,  
3GPP interfaces 
between Actor 
and 
UEs/RANs/slices,  
open source 
interface 
between Actor 
and hosting 
resources 

Toolbox Maintain the information 
or profile of available 
network functions and 
application functions 
(functions, models, 
agents, APIs, etc.) 
required for E2E slices, 
including function name, 
description, type, 
required parameters, 
optional parameters, 
output example, usage 
method (e.g. http), etc. 

Query or subscribe 
request for network 
and application 
functions 

Responses or notifies 
about the required 
function information or 
profile 

New NF or 
enhanced NRF 
or open source 

FPublic Memory Collect, vectorize and 
store the data or 
knowledge from network, 
build the index for these 
data or knowledge 

Data storage request 
or data query 
request 

Storage or query 
response about the 
required data 

New NF or 
enhanced 
NWDAF 

NetGPT Generate the reasoning 
result for slices according 
to the input prompt, 
including task planning or 
function matching result, 
etc.  

Prompt for 
generating required 
result, including goal 
description, input 
information, 
examples of output 

Reasoning result  Open source 
publication 

Sandbox Verify the feasibility and 
performance of network 
slices generated by 
Agents 

Information of 
generated E2E 
slices, including 
functions, resources, 
inputs, slice topology 

Potential results of 
network slices and a 
large amount of data 
related to the potential 
results 

Open source 

 

As shown in Figure 6.2-1, after the Planning Agent receives the customized service request, the overall E2E procedure 
can be divided into three main phases: the slice design phase, the slice deployment and execution phase, and the slice 
recycling phase.  
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NOTE 1:  The procedure below and the corresponding details in the subsequent figures are only for explanation and 
presentation purposes. They are intended to provide a better understanding of the AI-Core architecture 
presented in clause 4.  

 

Figure 6.2-1: An overall E2E procedure 

Figure 6.2-2 depicts the slice design procedure, the key points of which can be summarized as follows: 

1) Upon the reception of a custom E2E slice creation request, the planning agent can perform a collaborative 
inference with the help of the NetGPT.  

NOTE 2: This is an optional step, thus, indicated by a dashed arrow. 

2) The Planning Agent decomposes the slice creation request into multiple tasks and forwards these to the 
Assemble Agent.  

NOTE 3: The messages go through the ABI operating as a semantic bus as explained in clause 4. 

3) Assemble Agent requests the list of available functions with descriptions, and parameter information from the 
Toolbox shared component. 

4) The Assemble Agent composes the (candidate) functions of the requested E2E slice based on the received 
functions and descriptions. The selected functions are verified through sandboxing and accepted after 
validation. 

 

Figure 6.2-2: Slice design procedure 
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The procedure describing the deployment of slice execution functions is depicted in Figure 6.2-3: 

5) After the validation of the determined slice functions and parameters (in step 4 as above), the ABI extracts the 
execution functions from the slice function list and provides it to the Execution Agent. The Execution Agent 
requests relevant information about the hosting resources, which have already been made available to the 
Public Memory. This happens in parallel in regular intervals and is not explicitly illustrated in Figure 6.2-3 for 
presentation purposes. 

6) The deployment of the slice execution functions on the hosting resources is initiated in the sixth step, through 
message 6a. Here, one can see the role of the Actor clearly, which is translating the commands received from 
the agents (e.g. Execution Agent) to lower-level signalling messages (based on pre-determined APIs) that can 
be understood by the receiving entity. Once the sixth step is completed, the execution functions are already 
up-and-running on the hosting resources. 

 

Figure 6.2-3: Deployment of the slice execution functions 

The (high-level) procedure for the deployment of connection functions (following the deployment of execution 
functions on the hosting resources) is presented in Figure 6.2-4 below: 

7) The ABI extracts the connection functions from the slice function list (determined by the Assemble Agent 
initially) to the Connection Agent. The connection agent decides which information is needed before the 
deployment of the functions, hence, requests the information about the RAN nodes involved from the Public 
Memory. 

8) After the collection of UE and BS information from the Public Memory, the connection agent initiates the 
deployment of the connection functions through a command to the Actor. The Actor converts the message 
(e.g. from natural language) to RAN signalling towards BS and UEs.  

NOTE 4: The functions to be deployed and run on the BS and UEs are assumed to be available in the RAN, 
therefore, the Toolbox is not involved here. 

9) Once the connections functions are running, the ABI informs the Assemble and Planning agents about the 
successful deployment of the customized E2E slice. 
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Figure 6.2-4: Procedure for the deployment of connection functions 

The reconfiguration of the slice functions is presented in Figure 6.2-5: 

1) After the slice deployment, the status is continuously monitored by data collection happening between the 
RAN, hosting resources, and the Public Memory. 

2) If an unexpected status change is detected, the execution or connection agents (or both) are informed, 
respectively, depending on the actual event. 

3) If the event requires the reconfiguration of the connection functions deployed (e.g. in a UE), the signalling is 
triggered via the Actor. 

4) If the event relates to the execution functions (e.g. mobility management) deployed in hosting resources, then 
the execution function reconfigures these via the Actor.  

 

Figure 6.2-5: Slice function reconfiguration procedure 
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Lastly, the recycling of the E2E slice is shown in Figure 6.2-6: 

1) The recycling procedure is initiated with the Actor receiving signalling messages that indicate request to free 
the network and computation resources. 

2) Subsequently, the Connection Agent is involved to recycle the RAN connection functions involving e.g. UEs 
and BSs. 

3) Next, the recycling procedure is continued with the goal to free the execution resources deployed on the 
hosting resources. This is performed through the interaction of Actor and the respective pool of computation 
resources. 

 

Figure 6.2-6 

7 Conclusion and Recommendations 

7.1 Conclusions 
The next-generation network slicing requires a flexible assembly of a set of capabilities and multi-dimensional 
resources and autonomous adaptation to the changing network environment and customer demands. To support 
advanced network slicing, a new AI Agent based Core network (AI-Core) is proposed. It can create network slices 
based on the customer's high-level requirement, autonomously and intelligently control network slices to adapt to the 
dynamic wireless network environment, and learn from the network feedback to optimize itself and the slices it creates 
over time. Increased network autonomy is expected to be achieved through the help of AI-Core. 

7.2 Recommendations 
The following items are for further study: 

1) Examine how best to implement a RAG system (as specified in clauses 4.2.1, 4.3.1 and others). The main 
issues are: (1) should it be defined internal to AgentGPT or not, and (2) does NetGPT have its own dedicated 
RAG system. 

2) How does the Planning Agent perform its task defined in clause 4.3.2? Specifically, can it reuse technologies 
from [i.5], [i.29], and [i.36] ? 

3) Examine Memory and its relationship to different memory functional blocks as defined in [i.29]. 
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4) Examine if and how a foundation model should be created and trained that is further used to produce a set of 
fine-tuned models for domain-specific tasks. A promising approach would be to create a slicing-specific 
Foundation Model from the original Foundation Model for classic use cases such as eMBB and uRLLC, while 
other use cases (e.g. Smart City and eHealth) could be created directly from the original Foundation Model. 

5) Examine if an AI Agent acting as an orchestrator is needed to improve performance. 

6) Examine how best to support imperative, declarative, and intent-based interactions. 

7) Examine if there should be a feedback loop from the Sandbox tests to a collective memory. 

8) Review communication interfaces and recommend a set for the ABI. 

9) Examine and document a recommended approach for implementing NetGPT. In particular, choose from the 
two approaches in clause 4.4 (training from scratch vs. finetuning), as well as other approaches not mentioned 
in the present document if applicable. 

10) Examine which mechanisms can be used to augment the capabilities of NetGPT and each of the AgentGPT 
entities. It is recommended to refer to [i.5] and its references for this task. 

11) Examine if it is desirable for the AI-Core to interact with an ENI System. The simplest interaction is to 
through APIs using the API Broker of the ENI System. However, other interactions are possible. 

NOTE: This is probably best done as a separate document. 
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