ETSI GS CIM 047 vi.1.1 @oza11)

= _' >

GROUP SPECIFICATION

Context Information Management (CIM);
OpenAPI Specification for NGSI-LD API

Disclaimer

The present document has been produced and approved by the cross-cutting Context Information Management (CIM) ETSI
Industry Specification Group (ISG) and represents the views of those members who participated in this ISG.
It does not necessarily represent the views of the entire ETSI membership.

2 ETSI GS CIM 047 V1.1.1 (2024-11)

Reference
DGS/CIM-0047

Keywords
API, NGSI-LD

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B
Association & but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fithess
for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not
limited to, the warranties of merchantability, fithess for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2024.
All rights reserved.

ETSI

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

3 ETSI GS CIM 047 V1.1.1 (2024-11)

Contents
INtellectual Property RIGNES.... ..ot b e e e en e ns 5
0 L= V1V (o RS 5
MoOdal VErDS TEMINOIOQYccteieeiicieee ettt st e e s te s ae e aesbeeaeesbesreentesaeeasessesneensesreeneensessens 5
EXECULIVE SUMIMAIY ..ot cteete sttt sttt e st st e e s te e e s besae e teeaeeseesteaaeesbesaeentesseenseteesseseeabeeneenteseeensensesneansesnennns 5
1100 [Tox A o] o S 6
1 o0 0L SR 7
2 L= = 010 TS 7
21 NOFMBLIVE FEFEIEINCEScueitiiteite ittt ettt sttt h ettt ese e ke sh e eb e bt e bt e it e e e s bese e ke sbeeb e e e ens e beae e besaeebenneennennens 7
2.2 INFOrMELIVE FEFEIENCES.......eieieiete ettt ettt b e b bbbt e et se e e b e s bt eb e e e e s e eesn et e saeebenneeneennens 7
3 Definition of terms, symbols and abbreviations............ccooeeeiineere e s 8
31 LI 105U 8
3.2 SYIMDOIS. ...ttt bt b et a e bt e e st b e s e st e bt sE et bt £E e s e eh e SR e R e R e R e b e eR e e bt R et ebene e e b e nre e ere s 9
33 ADDIEVIBLIONS ...ttt ettt ettt et e et e st e et e e tesaeesaeesaeesaeeseeaseeaeeebeeabeenbeebeeteensesaeesaeesreenaeereenreans 9
4 OpenAPI Specification fFOr NGSI-LD APl ...ttt 10
4.1 (T go0 W 1T oo BTSSP TP UR USSP 10
4.2 Design, evaluation, and structure of OpenAPI SPeCITICaiONccoeviieriiirieeee e 10
4.2.0 L0 Y] (o ISP U U PRURTURURPRRIN 10
421 DESIGN SITBIEGYveuertereeieetere ettt sttt sttt b e et b e bt b e b e e bt s b e e bt e b e se e bt e b e s e e bt e b e e e e b e e e e Rt e b e e et b b e b b 10
4.2.2 EVAIUBLTON SEFAEEOYeveueeeeiteietesteriete ettt sttt sttt b et b e bt b e bt b e bt b et b e sb et b b et b b 11
4.2.3 Organization and description of the OpenAPI SPeCifiCationcoieeriieireere e 12
4230 FFOPBIVOIT ...ttt ettt et e et e e be e e be e be e beebeenbesseesaeesaeeaseenbeenteentesatesaeesreesanes 12
4231 The openapi and INFO SECLIONS.ciuirieiriiier bbbt b et 12
4232 The eXterNalDOCS SECHIONccueiiiieiecie ettt ettt s b et e et e e e e e aeesbe e beeabeeabesaeestaesbeeseenreenneanns 13
4.2.33 THE SEIVEIS SECLION ...ttt ettt h b ettt et b e bt e heea e e e e e e e b e bt sbeebeeaeeneennenres 13
4.2.34 LI L 7= 1 ST) o 13
4.2.35 The COMPONENLS SECLION.......eeiiiieitieseestee st esteete et e st et e e e e e tesseesaeesaeesaeesseenteesseeneesseessensseeseensenneesnes 14
4.2.35.0 FFOMBIWOI ...ttt b bttt s e e bbbt e he e e et se et et sbeebesaeene e e e e es 14
42351 The headers SUDSECIION.......c..oi i b et e b et ne e 14
42352 The ParameEters SUDSECTION.........ccuiiiiie ettt et e e e e s re et e eneeenaesraesseenrens 15
4.2.35.3 The requestBodieS SUDSECIONooeciiiieii bbb 15
42354 The SChEmMAS SUDSECHION........ociieiectecie ettt sttt este et e et e earesaeesbeenseeaeesteesreesreas 16
4.2.355 The reSPONSES SUDSECHION.......veueiteeeeeteste ettt sttt et e et b e et b et b et be e 17
4.3 OpPenAPI SPECITiCaiON FEPOSITOIYc.ceuiiteeeeertereeie ettt sttt b e b et b et et se et st b et b b 17
Annex A (informative): Recommended toolsfor the design and evaluation of OpenAPI
SPECIHTICALION ..ot e e 19
Nt 1 010 [ot o S 19
A.2 Toolsfor the design of OPenAPI SPECITICALIONccoiriiriiriirieieieee e 19
A.3 Toolsfor the evaluation of OpenAPl SPECITICAliONccevviieieieeee e 19
Annex B (informative): OpenAPI visualization and interaction tOOIS..........cccceviireninenencseee 20
2 0 R [g 0o [0 ot o o RS PSRSSRN 20
o 17 o = o U PSSRSO 20
R T <10 o o3 21
Annex C (informative): Guidelinesfor defining custom schemas compliant with the OpenAPI
SPECITICALION ...ttt 22
(@350 R 1 (oo L1 o 1 o o RSP 22

ETSI

4 ETSI GS CIM 047 V1.1.1 (2024-11)

C.2 Example of OpenAPl schemas for VENICUIAr USE CASE........cceccveiieeieecie ettt 22
Annex D (informative): Stub code generation and exampleS Of USE.........ccccverereeririenienenese e 28
D.1 INEFOOUCTION ...ttt bbb bbbt h e b et b e bt et nn e en s 28
D.2 Example of Python-based NGSI-LD CHEML........ccociiiieiiiieie ettt s 28
Annex E (informative): Bibliographnycc.coee e e 33
Annex F (informative): (01T lo =N aTES (0] YRS 34
[1S 0] Y PR SRSPRRT 35

ETSI

5 ETSI GS CIM 047 V1.1.1 (2024-11)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETS in respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the
ETSI Web server (https:/ipr.etsi.org/).

Pursuant to the ETSI Directivesincluding the ETSI IPR Policy, no investigation regarding the essentiality of IPRS,
including I PR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETS| Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM 2M ™ logo is atrademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM ® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword

This Group Specification (GS) has been produced by ETSI Industry Specification Group (1SG) cross-cutting Context
Information Management (CIM).

Modal verbs terminology

In the present document “shall”, "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" areto beinterpreted as described in clause 3.2 of the ETS| Drafting Rules (Verba forms for the expression of
provisions).

"must” and "must not" are NOT alowed in ETSI deliverables except when used in direct citation.

Executive summary

The present document formally describes the OpenAPI Specification for the NGSI-LD API specified by ETSI
GSCIM 009 [1], [2] and [3]. The OpenAPI Specification allows users to make use of the NGSI-LD APl ina
language-agnostic form. With a declarative resource specification followed by the OpenAPI Specification, NGSI-LD
API clients can understand and consume services without knowledge of the server-side implementation.

The present document outlines the design and eval uation strategies for the OpenAPI Specification implementation, as
well asits general structure and content. Practical examples are also included throughout the present document to help
readers understand the usability of the OpenAPI.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

6 ETSI GS CIM 047 V1.1.1 (2024-11)

Introduction

The present document defines the OpenAPI Specification for the standard NGSI-LD API for Context Information
Management. OpenAPI is apopular standard for building REST APIsindependently of the implementation language.
Having an OAS for the NGSI-LD API helps users by facilitating APl documentation and allowing them to implement

and use the NGSI-LD protocol in their own application.

To thisend, the present document aims to provide information to help better understand the implementation and
application details of the OpenAPI Specification for the NGSI-LD API. The implementation of the OpenAPI
Specification is based on the clauses defined for the NGSI-LD API considered in ETSI GS CIM 009 [1], [2] and [3].

ETSI

7 ETSI GS CIM 047 V1.1.1 (2024-11)

1 Scope

The purpose of the present document is the definition of the OpenAPI Specification for the standard NGSI-LD API for
Context Information Management. Documentation will be provided, along with examples that help developers and
users understand how the OpenAPI works and how to use it in a programming language-agnostic form.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are necessary for the application of the present document:

[1] ETSI GSCIM 009 (V1.6.1): "cross-cutting Context Information Management (CIM); NGSI-LD
API".
[2] ETSI GS CIM 009 (V1.7.1): "Context Information Management (CIM); NGSI-LD API".
[3] ETSI GS CIM 009 (V1.8.1): "Context Information Management (CIM); NGSI-LD API".
[4] OpenAPI Specification (v3.0.3).
[5] Swagger Documentation - OpenAP| Specification (v3.0.3).
(6] OpenAPI Specification (v3.1.0).
[7] NGSI-LD OAS release for NGSI-LD API version 1.6.1.
[8] NGSI-LD OASrelease for NGSI-LD API version 1.7.1.
9] NGSI-LD OASrelease for NGSI-LD API version 1.8.1.
[10] IETF RFC 7807: "Problem Details for HTTP APIs".
[11] UNECE/CEFACT Common Codes for specifying the unit of measurement.
2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are not necessary for the application of the present document, but they assist the
user with regard to a particular subject area:

[i.1] OpenAP! Initiative.

[i.2] OpenAPI Tooling.

ETSI

https://docbox.etsi.org/Reference/
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.06.01_60/gs_cim009v010601p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.07.01_60/gs_cim009v010701p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.08.01_60/gs_cim009v010801p.pdf
https://spec.openapis.org/oas/v3.0.3
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.3.md
https://spec.openapis.org/oas/v3.1.0
https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.6.1/openapi-3.1.0/ngsi-ld-api.yaml
https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/openapi-3.1.0/ngsi-ld-api.yaml
https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.8.1/openapi-3.1.0/ngsi-ld-api.yaml
https://www.rfc-editor.org/info/rfc7807
http://www.unece.org/fileadmin/DAM/cefact/recommendations/rec20/rec20_Rev9e_2014.xls
https://www.openapis.org/
https://tools.openapis.org/

8 ETSI GS CIM 047 V1.1.1 (2024-11)

[i.3] OpenAPI Documentation.
[i.4] OpenAPI Tooling Categories.
[i.5] OpenAPI descriptions for the NGSI-LD API defined by ETSI ISG CIM.
[i.6] OpenAPI Swagger Editor Extensionin VS Code.
[i.7] Swagger Editor: API editor for designing APIs with the OpenAPI and AsyncAPI specifications.
[i.8] Swagger Ul: Visualize OpenAPI Specification definitions in an interactive Ul.
[i.9] ReDoc: Generate beautiful APl documentation from OpenAPI.
[i.10] Scalar API Reference: Beautiful API references from OpenAPI/Swagger files.
[i.11] OpenDocumenter: Automatic documentation generator for OpenAPI v3 schemas.
[i.12] API Security Audit.
[1.13] Swagger 2.0 and OpenAPI 3.0 parser/validator.
[i.14] Express OpenAPI Validator: Auto-validates api requests, responses, and securities using
ExpressJS and an OpenAPI 3.x specification.
[i.15] Swagger Ul - NGSI-LD OAS release for NGSI-LD API version 1.7.1.
[i.16] Redocly - NGSI-LD OASrelease for NGSI-LD APl version 1.7.1.
[i.17] OpenAPI Generator: Generate clients, servers, and documentation from OpenAPI 2.0/3.x
documents.
3 Definition of terms, symbols and abbreviations
3.1 Terms

For the purposes of the present document, the following terms apply:

NGSI-LD Attribute: reference to both an NGSI-LD Property and to an NGSI-LD Relationship
NGSI-LD Context Broker: architectural component that implements all the NGSI-LD interfaces

NGSI-LD Entity: informational representative of something that is supposed to exist in the real world, physically or
conceptually

NGSI-LD Entity Type: categorization of an NGSI-LD Entity as belonging to a class of similar entities, or sharing a set
of characteristic properties

NGSI-LD GeoProperty: subclass of NGSI-LD Property which is a description instance which associates a main
characteristic, i.e. an NGSI-L D Value, to either an NGSI-LD Entity, an NGSI-LD Relationship or another NGS|-LD
Property, that uses the special hasValue property to define itstarget value and holds a geographic location in GeoJSON
format

NGSI-LD LanguageProperty: subclass of NGSI-LD Property which is a description instance which associates a set of
stringsin different natural languages as a defined main characterigtic, i.e. an NGSI-LD Map, to an NGSI-LD Entity, an
NGSI-LD Relationship or another NGSI-LD Property and that uses the special hasLanguageMap (a subproperty of
hasValue) property to defineits target value

NGSI-LD ListProperty: description instance which associates an ordered array of main characteritics, i.e. NGSI-LD
Values, to either an NGSI-LD Entity, an NGSI-LD Relationship or another NGSI-LD Property and that uses the special
hasValuel.ist property to define its target value

ETSI

https://learn.openapis.org/
https://tools.openapis.org/categories/all.html
https://forge.etsi.org/rep/cim/ngsi-ld-openapi
https://42crunch.com/tutorial-openapi-swagger-extension-vs-code/
https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-ui/
https://github.com/Redocly/redoc
https://github.com/scalar/scalar
https://github.com/ouropencode/opendocumenter
https://docs.42crunch.com/latest/content/concepts/api_contract_security_audit.htm
https://github.com/APIDevTools/swagger-parser
https://github.com/cdimascio/express-openapi-validator
https://github.com/cdimascio/express-openapi-validator
https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/openapi-3.0.3/ngsi-ld-api.yaml
https://redocly.github.io/redoc/?url=https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/openapi-3.1.0/ngsi-ld-api.yaml
https://openapi-generator.tech/
https://openapi-generator.tech/

9 ETSI GS CIM 047 V1.1.1 (2024-11)

NGSI-LD ListRelationship: description of an ordered array of directed links between a subject which is either an
NGSI-LD Entity, an NGSI-LD Property or another NGSI-LD Relationship on one hand, and a series of objects, which
are NGSI-LD Entities, on the other hand, and which uses the special hasObjectList property to define its target objects

NGSI-LD Map: JSON-LD language map in the form of key-value pairs holding the string representation of amain
characteristic in a series of natural languages

NGSI-LD Property: description instance which associates a main characteristic, i.e. an NGSI-L D Value, to either an
NGSI-LD Entity, an NGSI-LD Relationship or another NGSI-LD Property and that uses the special hasValue property
to defineitstarget value

NGSI-L D Relationship: description of adirected link between a subject which is either an NGSI-LD Entity, an
NGSI-LD Property or another NGSI-LD Relationship on one hand, and an object, which isan NGSI-LD Entity, on the
other hand, and which uses the special hasObject property to define its target object

NGSI-LD Tenant: user or group of usersthat utilize a single instance of a system implementing the NGSI-LD API
(NGSI-LD Context Source or NGSI-LD Broker) inisolation from other users or groups of users of the same instance,
so that any information related to one Tenant (e.g. Entities, Subscriptions, Context Source Registrations) are only
visible to users of the same Tenant, but not to users of a different Tenant

NGSI-LD Value: JSON value (i.e. astring, a number, true or false, an object, an array), or JSON-LD typed value (i.e. a
string as the lexical form of the value together with a type, defined by an XSD base type or more generally an IRI), or
JSON-LD structured value (i.e. a set, alist, alanguage-tagged string)

NGSI-LD VocabProperty: subclass of NGSI-LD Property which is a description instance which associates a string
value which can be coerced to a URI as a defined main characteristic to an NGSI-LD Entity, an NGSI-LD Relationship

or another NGSI-LD Property and that uses the special hasVocab (a subproperty of hasValue) property to define its
target value

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

|IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force

IRI Internationalized Resource Identifier

JSON JavaScript Object Notation

JSON-LD JSON Linked Data

NGSI Next Generation Service Interfaces

NGSILD Next Generation Service Interfaces Linked Data (same as NGSI-LD)
NGSI-LD OAS OpenAPI Specification for NGSI-LD API
MIME Multi-purpose Internet Mail Extensions

OAS OpenAPI Specification

RFC Request For Comments

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

XSD XML Schema Definition

ETSI

10 ETSI GS CIM 047 V1.1.1 (2024-11)

4 OpenAPI Specification for NGSI-LD API

4.1 Introduction

OpenAPI isthe de-facto standard for building REST APIsin a programming language-agnostic way. OpenAPI
specifications can improve the documentation of the APIs, and they can also be used to generate stub code for clients
and servers in multiple programming languages. An OpenAPI Specification (OAS) for NGSI-LD API is useful for
developersto implement the NGSI-LD API in their applications.

4.2 Design, evaluation, and structure of OpenAPI Specification

4.2.0 Foreword

This clause describes the technical design and evaluation principles behind the NGSI-LD OpenAPI Specification,
hereinafter referred to as NGSI-LD OAS. In addition, this clause provides an overview of the main structure for the
definition of the NGSI-LD OAS.

4.2.1 Design strategy

Figure 4.2.1-1 depicts the design workflow followed to complete the NGSI-LD OAS implementation. The goal isto
design anew NGSI-LD OAS for each new version of the NGSI-LD API specification (i.e. each new release of the ETS
GSCIM 009[1], [2] and [3]).

NGSI-LD 4,—» NGSI-LD 4,—» NGSI-LD
OAS V1.6.1 OAS V1.7.1 OAS V1.8.1

A A A
ETSI GS CIM 009 V1.6.1 ETSI GS CIM 009 V1.7.1 ETSI GS CIM 009 V1.8.1
"Context Information "Context Information "Context Information
Management (CIM); Management (CIM); Management (CIM);
NGSI-LD API" NGSI-LD API" NGSI-LD API"

Figure 4.2.1-1: Design workflow for the NGSI-LD OAS

The development of the NGSI-LD OAS isincremental, using a stable version of it as the basis for the next version. The
starting point is afirst release of the NGSI-LD OAS implemented for version 1.6.1 of the NGSI-LD API [1], which is
used as the baseline for the following releases. Thus, when defining the NGSI-LD OAS for anew version of the
NGSI-LD API, the strategy is to complement the design of the NGSI-LD OAS definition for the previous version of the
NGSI-LD API with the advances included within the specification document of the new version for the NGSI-LD API.

In the process of defining the OAS, ensuring a clear structure is essential.”. The organization and description of the

NGSI-LD OAS structure is detailed in clause 4.2.3. Open-source tools used to facilitate the design and development of
the NGSI-LD OAS are presented in clause A.2 of Annex A.

ETSI

11 ETSI GS CIM 047 V1.1.1 (2024-11)

4.2.2 Evaluation strategy

Oncethe NGSI-LD OAS isdefined, it is necessary to evaluate it to ensure that it works as expected. This evaluation
consists of the following stages:

e validating the structure of the OAS, mainly verifying the definition of schemas and operations;
. verifying the capabilities of the OAS to interact with servers that implement the NGSI-LD API;
e generating stub code usable in external applications.

For the validation of the schemas and operation specified within the NGSI-LD OAS, different type of OpenAPI tools
have been used as represented in Figure 4.2.2-1 [i.1] and [i.2]. Some of the open-source toolsto facilitate the evaluation
of the NGSI-LD OAS are presented in clause A.3 of Annex A. Figure 4.2.2-1 also shows the type of tools used to
facilitate the edition and auditability of OAS implementation that are useful for the design strategy. For the creation of
the NGSI-LD OAS, the developer carries out the design and eval uation processes continuously, using the
aforementioned utilities.

To verify if the API operations defined within the NGSI-LD OAS work, there are tools to navigate the OAS operations
(i.e. the OpenAPI Visualization Tool in Figure 4.2.2-1) and test them directly against servers that implement the
NGSI-LD API such as NGSI-LD compliant Context Brokers (i.e. the OpenAPI Interaction Tool in Figure 4.2.2-1).
Thus, these visualization and interaction tools help to verify the documentation and execution of the different NGSI-LD
API operations defined in the NGSI-LD OAS itself, checking the meaning and functionality of each of the parameters
and options specified by each operation and determining whether they are well established within the NGSI-LD OAS or
whether the NGSI-LD Context Broker implementations support them accordingly. Annex B provides examples of such
open-source tools that can be used to visualize and interact with the API resources defined within an OAS.

As part of the evaluation strategy, testing NGSI-LD OAS stub code generated for clients against NGSI-LD Context
Brokers compliant with the respective version of the NGSI-LD API is another approach to evaluate the capabilities of
the NGSI-LD OAS. Annex D shows examples for generating stub code from NGSI-LD OAS for NGSI-LD clientsin
different programming languages, as well as different examples of use. Moreover, Figure 4.2.2-1 depicts a complete
evaluation workflow for testing the NGSI-LD OAS using client-side libraries automatically generated from the
OpenAPI specification itself. The workflow considers that developers might define OpenAPI schemas compliant with
the NGSI-LD OAS for their specific purpose applicationsin order to define particular NGSI-LD information modelsin
a programming code-based form that could be used directly from the generated NGSI-L D clients. Annex C provides
more information and guidelines about how to define custom schemas compliant with the NGSI-LD OAS.

)

OpenAPI OpenAPI OpenAPI NGSI-LD
Editor Addon Operation Validator Interaction Tool compliant
OpenAPI Context Brokers | |

Tools 7Y
OpenAPI OpenAPI OpenAPI |
Audit Addon Schema Validator Visualization Tool [

NGSI-LD
z - Information _ _ -
i Models » NGSI-LD Clients

-

NGSI-LD =

0AS /
r \ OpenAPI Code /

Generator

A

NGSI-LD
OAS
compliant
schemas

Figure 4.2.2-1: Evaluation workflow for the NGSI-LD OAS

ETSI

12 ETSI GS CIM 047 V1.1.1 (2024-11)

4.2.3 Organization and description of the OpenAPI Specification

4230 Foreword

The NGSI-LD OAS structure has been defined following good practices guidelines for OpenAPI specifications [i.3]
particularized for versions 3.0.3 [4], [5] and 3.1.0 [6]. The OAS organization addresses, among other things, the
supported data model or schema, API operations, as well as its description and documentation. Furthermore, it is
important to include some API operation examples to help users understand how the APl works. The following isa
summary of the main sections of the NGSI-LD OAS:

. openapi: It indicates the version of the OpenAPI specification used (e.g. version 3.0.3). Using thisfield tools
can check that the description correctly adheres to the specification.

e info: It provides general information about the NGSI-LD API, such asthetitle, version, description, license,
and contact information.

. externalDocs: This section indicates the description and URL of the ETSI GS CIM 009 [1] specification
document associated with the NGSI-LD API.

e servers: It provides the base URL where the NGSI-LD API isbeing served.

. paths: It describes all the endpoints of the NGSI-LD API, including their operations, different parameters, the
different client-side request bodies, and all possible server-side responses. Server and client code can be
generated from this description, along with its documentation.

. components: Often, multiple APl operations have some common parameters or return the same response
structure. To avoid code duplication, the common definitions can be indicated in the global "components’
section and reference them. Then, the "components' section serves as a container for various reusable
definitions such as schemas (i.e. data models), parameters, responses, examples, and others. As the name of
the section suggests, it contains different components:

- headers: It provides common headers for all APl operations.
- parameters:. It provides common parameters for all APl operations.

- requestBodies: It provides the body information to be included with create and update API operations
(i.e. POST, PUT, and PATCH HTTP operations). For example, when creating a resource using POST or
PUT, the request body usually contains the representation of the resource to be created.

- schemas: It allows the definition of the data model followed by the different data types considered
within the OAS.

- responses:. It specifies common responses for al APl operations. Each operation shall have at least one
response defined, usually a successful response.

Each of the main sections within the NGSI-LD OAS structure defined above will be detailed in the following clauses.

4.2.3.1 The openapi and info sections

The "openapi" section defines the version of the OpenAPI specification used. For this sample of the NGSI-LD OAS,
version 3.0.3 [4] and [5] has been selected. The most significant change between OpenAPI version 3.0.3 and the latest
available version, 3.1.0 [6], isthat the |atter allows defining JSON schemas for OpenAPI separately instead of defining
the schemas in the OpenAPI specification itself. For the distribution of NGSI-LD OAS releases for interaction,
development and stub code generation purposes, OpenAPI version 3.0.3 is used, since some of the tools used in the
design and evaluation phases of OpenAPI are not compatible with the latest version 3.1.0 [i.4]. Instead, for visualization
and documentation purposes with each NGSI-LD OAS release, OpenAPI version 3.1.0 is used. Within the "info"
section, the OpenAPI specification provides additional information. Firgt, it defines the title of the OpenAPI
specification, the version of the NGSI-LD API that is covered (e.g. version 1.6.1), aswell as a descriptive field. Apart
from that, it specifies as a contact the URL of the ETSI CIM committee and also alicense in accordance with ETSI
legal matters. The following NGSI-LD OAS fragment shows the structure of these "openapi” and "info" sections for
OASversion 1.6.1.

ETSI

13 ETSI GS CIM 047 V1.1.1 (2024-11)

openapi: 3.0.3
info
title: NGSI-LD OAS
version: 1.6.1
description: NGSI-LD OpenAPl Specification
contact:
url: https://ww.etsi.org/commttee/cim
l'i cense:
name: BSD-3-Cl ause
url: https://forge.etsi.org/legal-matters

4232 The externalDocs section

The "externalDocs' section includes a description and accessible URL of the Group Specification document from ETS
ISG CIM about the NGSI-LD API version covered by the NGSI-LD OAS. The following NGSI-LD OAS fragment
shows the structure of this"externalDoc" section for OAS version 1.6.1.

ext ernal Docs:
description: ETSI GS CIM 009 V1.6.1 cross-cutting Context |nfornmation Managenent (CIM; NGSI-LD API
url: https://ww. etsi.org/deliver/etsi_gs/ClMO001_099/009/01.06.01_60/gs_Cl MD09v010601p. pdf

4.2.3.3 The servers section

The "servers' section includes the URL and different variables (i.e. protocol, hostname, and port) to specify an endpoint
within the NGSI-LD OAS where the NGSI-LD API is served. The following NGSI-LD OAS fragment shows the
structure of this"servers' section.

servers:
- url: "{protocol}://{hostnane}: {port}/ngsi-Id/ vl
vari abl es:
prot ocol :
enum
- http
- https
default: https
host nane:
defaul t: | ocal host
port:
defaul t: '443'
4.2.3.4 The paths section

The "paths’ section of the NGSI-OAS specifies each of the endpoints of the NGSI-LD API with their different type of
operations. Each operation defines requirements as established by the NGSI-LD API. For each operation, descriptive
informationisinitially included, adding its summarized functionality, an operation identifier, and atag to classify the
type of operation (as stated by clause 4.3.5 of ETSI GS CIM 009 [3]). In addition, the operations define their own query
and request header parameters, request bodies including descriptions and particular content, and query responses
including descriptions, header, and particular content. In some situations, the operations define their own request body
content and their own response content, but other times they reference corresponding definitions within the
"requestBody" and "responses’ subsections of the NGSI-LD OAS (for more information see clause 4.2.3.5). The
following NGSI-LD OAS fragment shows as an example the structure of the HTTP POST operation to create an
NGSI-LD Entity.

/entities:
post :

tags:
- Context Information Provision

summary: |
Entity creation

description: |
5.6.1 Create Entity

This operation allows creating a new NGSI-LD Entity.
operationld: createEntity
par aneters:

Local Query param

- $ref: '#/ conponents/ paraneters/Query.|ocal’

Request headers

ETSI

14 ETSI GS CIM 047 V1.1.1 (2024-11)

- $ref: '#/ conponents/ paranet ers/ Headers. Li nk'
- $ref: '#/ conponent s/ paranet er s/ Headers. ngsi | dTenant'
request Body:
description: |
Payl oad body in the request contains a JSON-LD object which represents the entity that is to be
created.
content:
appl i cation/json:
schena:
all O :
- $ref: '#/ conponents/schemas/Entity’
- required:
id
- type
appl i cation/json+l d:
schena:
all O :
- $ref: '#/ conponents/schemas/Entity'
- type: object
properties:
' @ont ext' :
$ref: ' #/ conponent s/ schemas/ LdCont ext"'
- required:
id
- type
- ' @ont ext"’
responses:
1201 :
description: |
The HTTP response shall include a "Location" HITP header that contains
the resource URI of the created entity resource.
header s:
Locati on:
$ref: ' #/ conponent s/ headers/ Locati on’
NGS| LD- Tenant :
$ref: ' #/ conponent s/ header s/ NGSI LD- Tenant '
' 207" :
header s:
Locati on:
$ref: ' #/ conponent s/ headers/ Locati on'
NGSI LD- Tenant :
$ref: ' #/ conponent s/ header s/ NGSI LD- Tenant'
$ref: '#/ conponent s/ responses/ Ml ti Status. Bat chOperati onResul t*

'400":

$ref: '#/ conponents/responses/ BadRequest '
1409 :

$ref: '#/ conponent s/ responses/ Conflict'
1422

$ref: ' #/ conponent s/ responses/ Unprocessabl e

4.2.3.5 The components section

42.35.0 Foreword

The "components’ section of the NGSI-LD OAS includes common definitions of different components considered
within the different operations. This"components' section includes those common headers, parameters, schemas,
request bodies, and responses that can be referenced by the operations defined within the NGSI-LD OAS.

42.35.1 The headers subsection

The "headers" subsection provides common headers defined for the responses considered within the operations of the
NGSI-LD OAS. Each header specifies a description and a particular schema with data type and format. The following
NGSI-LD OAS fragment shows as an example the structure of the NGSI LD-Tenant response header, which specifies
that responses include a string to identify the tenant to which the NGSI-LD HT TP operation is targeted.

NGSI LD- Tenant :
description: |
6. 3. 14 Tenant specification. The tenant to which the NGSI-LD HTTP operation is targeted.
schena:
type: string

ETSI

15 ETSI GS CIM 047 V1.1.1 (2024-11)

4.2.35.2 The parameters subsection

The "parameters” subsection provides common query, path, and header parameters considered within the operations of
the NGSI-LD OAS. Mainly, each parameter specifies acommon name, a particular description, the schema with data
type and format, additional serialization rules by means of the "style" and "explode" keywords, and the "required” field
to mark a parameter as required or not. The "in" keyword is a placeholder to indicate the type of parameter to be defined
(i.e. query, path, or header parameter). The following NGSI-LD OAS fragment shows as an example the structure of
different query, path, and header parameters.

Query. |l ocal:

nane: | ocal

in: query

description: |
6.3.18 Linmiting Distributed Operations. |f local =true then no Context Source Registrations shall be
considered as matching to avoid cascadi ng distributed operations (see clause 4.3.6.4).

style: form

expl ode: true

schena:
type: bool ean

required: false

Path.entityld:
nanme: entityld
in: path
description: Id (UR') of the entity to be retrieved.
schena:
$ref: ' #/ conponent s/ schenas/ Pat h'
required: true

Header s. Li nk:
nane: Link
in: header
description: |
6.3.5 JSON-LD @ontext resol ution

I'n summary, froma devel oper's perspective, for POST, PATCH and PUT operati ons,

if MME type is "application/ld+json", then the associ ated @ontext shall be provided
only as part of the request payload body. Likewise, if MME type is "application/json",
then the associated @ontext shall be provided only by using the JSON LD Link header.
No mi xes are allowed, i.e. mxing options shall result in HTTP response errors.

I mpl ement ati ons shoul d provide descriptive error nmessages when these situations arise.

In contrast, CET and DELETE operations always take their input @ontext fromthe JSON-LD Li nk Header.
expl ode: true

schema:
type: string
format: wuri
42353 The requestBodies subsection

The "requestBodies" subsection provides the structure of the common request bodies for operations, with their
corresponding information and resources to be used. Each request body allows to specify its schema structure
depending on the MIME type (i.e. "application/json”, "application/|d+json”, or "application/geo+json™). In some
situations, the request bodies define their own schema structure, but other times they combine it with references to
schema definitions within the general "schemas' subsection of the NGSI-LD OAS. The following NGSI-LD OAS
fragment shows as an exampl e the structure of the Subscription request body. Depending on the MIME type, the
Subscription request body define the schema structure, combining references to schemas defined within the "schemas'
subsection, such as Subscription and LdContext, with additional controls of required parameters specified along the
referenced schemas. For more information about the definition of schemas see clause 4.2.3.5.4.

Subscri ption:
content:
appl i cation/json:
schena:
all O :
- $ref: '#/ conponents/schemas/ Subscri ption'
- required:
- type
- notifications
appl i cation/json+l d:
schena:
all O :
- $ref: '#/ conponents/schemas/ Subscri ption'
- type: object

ETSI

16 ETSI GS CIM 047 V1.1.1 (2024-11)

properties:
' @ontext':
$ref: ' #/ conponent s/ schemas/ LdCont ext '
- required:
- type
- notifications
- '@ontext'

42354 The schemas subsection

The "schemas" subsection provides the common data model s followed by the different data types considered within the
NGSI-LD OAS. Each schema defines the data model propertiesin terms of datatype, data format, and description. The
properties can also specify additional controls such as default values, regular expressions, or maximum and minimum
values. In addition, properties can reference another schema already defined within the "schemas® subsection of the
NGSI-LD OAS to specify their own characteristics. The following NGSI-LD OAS fragment shows as an example the
structure of the Entity schema. It specifies the data model of an NGSI-LD Entity concept, including the different
properties with their own particularities. In this case, the Entity schemaincludes the "additional Properties’ field for
adding schemas defined for the different NGSI-LD Attributes (i.e. NGSI-LD Property and NGSI-LD Relationship
concepts) considered within aNGSI-LD Entity. The "oneOf" keyword is used to specify that each additional property
shall match exactly one of the defined subschemas.

Entity:
description: |
5.2.4 NGSI-LD Entity.
type: object
properties:
id:
description: |
Entity id.
type: string
format: wuri
type:
description: |
Entity Type(s). Both short hand string(s) (type nane) or URI (s) are allowed.
oneCf :
- type: string
- type: array
itens:
type: string
scope:
description: |
Scope.
oneCf :
- type: string
- type: array
itens:
type: string
| ocati on:
description: |
Defaul t geospatial Property of an entity. See clause 4.7.
$ref: ' #/ conponents/schenas/ GeoProperty’
observat i onSpace:
$ref: ' #/ conponents/schenas/ GeoProperty’
oper at i onSpace:
$ref: ' #/ conponent s/ schenas/ GeoProperty’
O ause 5.2.2 Conmon nenbers. System generated
creat edAt:
al | O :
- $ref: '#/ conponents/schenas/ Creat edAt’
readOnly: true
nodi fi edAt :
all O :
- $ref: '#/ conponents/schenas/ ModifiedAt'
readOnly: true
del et edAt :
al | O :
- $ref: '#/ conponents/schenas/ Del et edAt’
readOnly: true
addi ti onal Properties:

oneCf :
- $ref: '#/ conponents/schemas/ Property"
- type: array
itens:

$ref: ' #/ conponents/schenas/ Property’
- $ref: '#/ conponents/schemas/ Rel ationshi p'
- type: array
itens:

ETSI

17 ETSI GS CIM 047 V1.1.1 (2024-11)

$ref: '#/ conponents/schenas/ Rel ati onshi p'
- $ref: '#/ conponent s/ schemas/ GeoProperty’
- type: array
itens:
$ref: ' #/ conponent s/ schenas/ GeoProperty’
- $ref: '#/ conponents/schemas/ LanguageProperty’
- type: array
itens:
$ref: '#/ conponents/schenas/ LanguageProperty"

4.2.355 The responses subsection

The "responses’ subsection provides the definition of the structure of the common responses considered within the
NGSI-LD OAS. Each response allows to specify a description, the specific headers, as well as additional content with
its schema structure depending on the MIME type. For the declaration of headers, each response header referencesto
the related one already defined within the general "headers" subsection of the NGSI-LD OAS. In asimilar way, the
schemas defined within the content of the responses refer to schemas aready defined within the general "schemas®
subsection of the NGSI-LD OAS. The following NGSI-LD OAS fragment shows as an example the structure of the
BadRequest response. For each MIME type, the BadRequest response references a ProblemDetails schema that
provides additional error details as payload of the operation response in accordance with IETF RFC 7807 [10]. In
addition, this response includes a reference to the NGS LD-Tenant header to optionally specify in the response the
tenant to which the NGSI-LD HTTP operation was targeted, if it was previously specified in the regarding operation
request.

BadRequest :
description: |
It is used to indicate that the request or its content is incorrect,
see clause 6.3.2. In the returned Probl enDetails structure, the "detail"
attribute should convey nore informati on about the error.
headers:
NGSI LD- Tenant :
$ref: '#/ conponent s/ headers/ NGSI LD Tenant '
NGSI LD- Vr ni ng:
$ref: ' #/ conponent s/ header s/ NGSI LD- Wr ni ng'
content:
appl i cation/json:
schena:
$ref: '#/ conponent s/ schenas/ Probl enDet ai | s’

4.3 OpenAPI Specification repository

The NGSI-LD OAS defined by ETSI ISG CIM isavailable in arepository of the CIM GitLab organization within the
official ETSI Forge [i.5]. In thisrepository different artifacts for the definition of the NGSI-LD OAS can be found.

The main normative artifacts are the NGSI-LD OAS filesin YAML format for each version of the NGSI-LD API [7],
[8] and [9].

Moreover, afolder containing the JISON-LD core @context defined by the NGSI-LD API, examples of compatible
NGSI-LD payloads for multiple types of NGSI-LD operations, as well as examples for defining the OpenAPI schemas
compliant with the NGSI-LD OAS can be found in the repository.

Different releases of the NGSI-LD OAS should be managed in the repository using git tags. Each tag identifies a stable
version of the NGSI-LD OAS. The name of the tag matches the version of the NGSI-LD API that the OASis
implementing. Table 4.3-1 shows the correspondence between versions of the NGSI-LD API and releases of the
NGSI-LD OAS, including the reference to the access URL for the NGSI-LD OAS release available within each
repository tag. It should also be noted that different branches are used in the repository for the development phase of
each release of the NGSI-LD OAS. Whenever anew version of the NGSI-LD API is defined, a new branch will be
created to devel op the corresponding OAS and therefore a new tag will be created when the specification is stable.
Additionally, the main branch of the repository will match the latest available version of the NGSI-LD OAS.

Each release of NGSI-LD OAS provides an option for use in visualization tools based on OpenAPI version 3.1.0 and
another option for testing and development purposes based on OpenAPI version 3.0.3. Thisis because most testing and
development tools for OpenAPI specifications, such as interaction and stub code generation tools, are not yet supported
in the latest version 3.1.0.

ETSI

18 ETSI GS CIM 047 V1.1.1 (2024-11)

Table 4.3-1: NGSI-LD OAS releases
NGSI-LD OAS release

NGSI-LD API version

NGSI-LD OAS v1.6.1 [7]

NGSI-LD API v1.6.1 [1]

NGSI-LD OAS v1.7.1 [8]

NGSI-LD OAS v1.8.1 [9]

NGSI-LD API v1.7.1 [2]
NGSI-LD APl v1.8.1 [3]

ETSI

19 ETSI GS CIM 047 V1.1.1 (2024-11)

Annex A (informative):
Recommended tools for the design and evaluation of
OpenAPI Specification

A.l Introduction

Thisannex isinformative and is intended to present some open-source tools suggested by the OpenAPI Initiative [i.1],
[i.2], that are useful to facilitate the design and evaluation of the NGSI-LD OAS.

A.2 Tools for the design of OpenAPI Specification

To facilitate the design and development of OpenAPI specifications, the OpenAPI Swagger Editor [i.7] extension in
Visual Studio Code [i.6] is recommended. This extension is based on the official Swagger Editor tool, which is an open-
source API editor to design, describe, and document APIs with the OpenAPI specifications[i.7]. The features of this
extension include SwaggerUl [i.8] and ReDoc [i.9] preview, schema enforcement, code navigation, definition links,
static security analysis, and more. SwaggerUI allows users to visualize and interact with the API's resources without
having any of the implementation logic in place. ReDoc is a utility to easily generate and preview OpenAPI
documentation. Annex B shows how SwaggerUIl and ReDoc can be used to navigate the NGSI-LD OAS. In addition,
for generating the documentation of the OpenAPI, there are alternative solutions such as Scalar [i.10] and
OpenDocumenter [i.11].

A.3 Tools for the evaluation of OpenAPI Specification

For the evaluation of OpenAPI specifications, different utilities are recommended by the OpenAPI Initiative [i.1]. The
OpenAPI Swagger Editor [i.7] Extension, which is aforementioned in clause A.2, integrates an APl Contract Security
Audit [i.12] tool to identify and fix issues, as well asto check the quality of the OAS. In addition, for extra validation of
the schemas and operations within the OpenAPI, there are different tools such as Swagger 2.0 and OpenAPI 3.0
parser/validator [i.13], and Express OpenAPI Validator [i.14].

ETSI

20 ETSI GS CIM 047 V1.1.1 (2024-11)

Annex B (informative):
OpenAPI visualization and interaction tools

B.1 Introduction

Thisannex isinformative and is intended to show how the SwaggerUI [i.8] and ReDoc [i.9] tools can be used to
navigate the NGSI-LD OAS for interaction and visualization purposes.

B.2 SwaggerUl

SwaggerUl [i.8] allows usersto visualize and interact with the API's resources without having any of the
implementation logic in place. It is automatically generated from an OAS, with avisual documentation making it easy
for backend implementation and client-side consumption. Figure B.2-1 represents, as an example, a simple snapshot of
the GUI offered by SwaggerUl for the release 1.7.1 of NGSI-LD OASJi.15]. SwaggerUI currently only supports
OpenAPI version 3.0.3, but it may be the most convenient solution to learn about the main options of the different
operations defined within the NGSI-LD OAS and to be able to interact directly with the API of an NGSI-LD server.

NGSI-LD OAS ®

OpenAPI Specification for NGSI-LD API.

Server

[{protocol}:#{hostname}:{port}/ngsi-ld/v1

Computed URL: https://localhost:443/ngsi-1d/v1

Server variables

protocol https v

hostname localhost

port 443

Context Information Provision Vi

/entities Entity creation

/entities/{entityId} Entity deletion byid
/entities/{entityId} Entitymergebyid
/entities/{entityId} Entityreplacement by id
/entities/{entityId}/attrs Append Attributes to Entity

/entities/{entityId}/attrs Update Attributes of an Entity

Figure B.2-1: SwaggerUI [i.8] for the NGSI-LD OAS

ETSI

21 ETSI GS CIM 047 V1.1.1 (2024-11)

B.3 ReDoc

ReDoc [i.9] is an aternative open-source tool for generating documentation from OpenAPI specifications.
Basicaly, ReDoc API offers a GUI with a navigation menu to facilitate both the documentation and examples of
regquests and responses for operations considered within an OAS. Figure B.3-1 represents, as an example, asimple
snapshot of the GUI offered by ReDoc for the release 1.7.1 of NGSI-LD OAS[i.16]. ReDoc supports OpenAPI
version 3.1.0 and is the most convenient and recommended tool for viewing the NGSI-LD OAS documentation in a
more readable way.

@ Redoc Upload a file | https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/c TRYIT Ecors
Q search

t Information v

Entity creation POST| /entities

& entity creation
= ¢ 1
5.6.1 Create Entity Roquert eamples
& Entity deletion by id This operation allows creating a new NGSI-LD Entity.
Payload
G Entity merge by id

Content type

y id 1 local an
6.3.18 Limiting Distributed Operations. If local=true then no Context Source Registrations shall be
considered as matching to avoid cascading distributed operations (see clause 4.3.6.4)

s of ar

X Partial Attribute Update 6.3.5 JSON-LD @context resolution

In summary, from a developer's perspective, for POST, PATCH and PUT operations, if MIME type is
json’, then the @context shall be provided only as part of the request payload
body. Likewise, if MIME type is "application/json, then the associated @context shall be provided only by
&I Attribute replace using the JSON-LD Link header. No mixes are allowed, i.e. mixing options shall result in HTTP response
errors. should provide ptive error when these situations arise

B Attribute delete

3B Batch Entity Creatior

In contrast, GET and DELETE operations always take their input @context from the JSON-LD Link Header.

B Batch En

Update (Up:

{ NGSILD-Tenant string

6.3.14 Tenant specification. The tenant to which the NGSI-LD HTTP operation is targeted.

 ros] Entity Update applicationfjson

=B Batch Entity Delete Payload body in the request contains a JSON-LD object which represents the entity that is to be created.
id tring <uri>

=D satch Entity o Entity id.

- "coordinates": [

N type >

Entity Type(s). Both short hand string(s) (type name) or URI(s) are allowed

Figure B.3-1: ReDoc [i.9] for the NGSI-LD OAS

ETSI

22 ETSI GS CIM 047 V1.1.1 (2024-11)

Annex C (informative):
Guidelines for defining custom schemas compliant with the
OpenAPI Specification

C.1 Introduction

This annex isinformative and is intended to show how to define custom OpenAPI schemas that are compatible with the
NGSI-LD OAS. It alows devel opers to define specific-purpose applications where they model their own OpenAPI
schemas, so they are compatible with the NGSI-LD meta-model defined within the NGSI-LD OAS. In thisway, if the
user hasan NGSI-LD API client in aparticular programming language, the defined custom schemas facilitate the
availability of the resulting NGSI-LD information models as programming code to be used within the NGSI-LD API
client and instantiate it accordingly in a corresponding Context Broker. The schemas represented in this annex are
exemplified for a vehicular use case.

C.2 Example of OpenAPI schemas for vehicular use case

The following examples show customizable OpenAPI schemas compliant with the NGSI-LD OAS metamodel schemas
for a use case to model information about vehicles by following the sample information model proposed in ETS
GS CIM 009 [3].

Figure C.2-1 depicts the high-level representation using a UML diagram of the proposed NGSI-LD information model
for the vehicular use case according to the OpenAPI schemas specified below. The"*" character represents required
NGSI-LD Properties of the NGSI-LD Entities. There are different types of NGSI-LD Relationships that have one-to-
one cardinality (0..1), since they represent relationships with only one possible instance of the target NGSI-LD Entity.
Meanwhile, there are NGSI-LD Relationships that have one-to-many cardinality (0..N), as they represent relationships
with one or more possible instances of the target NGSI-LD Entity. All these NGSI-LD information model conventions
are included in the OpenAPI schemas as mentioned above.

<<entity>>

Camera (0..1)
providedBy

* name: string (Property)

<<entity>> <<entity>>
Company OffStreetParking
* name: string (Property) * name: string (Property)
o availableSpotNumber: number (Property)
1\ (0..1) o reliability: number (Property)
operatedBy o totalSpotNumber: number (Property)
o location: Point (GeoProperty)
<<entity>>
Vehicle) P<0-~k1>d
isParkede——
* brandName: string (Property) roslci'a:e)dB
o street: Dict (LanguageProperty) (0..N) P Y
o category: string (VocabProperty) passengers
o tyreTreadDepths: string[] (ListProperty) \L
<<entity>>
Legend for UML diagram: Person
NGSI-LD Entity NGSI-LD Relationship * name: string (Property)
_—
* Mandatory Property
o Optional Property 0..1: One-to-One Cardinality
0..N: One-to-Many Cardinality <<entity>>
City
route ——>
(0..N) * name: string (Property)

Figure C.2-1: UML diagram about a high-level representation of
an NGSI-LD information model for vehicular use case

ETSI

23 ETSI GS CIM 047 V1.1.1 (2024-11)

The first example shows custom OpenAPI schemas defined within aY AML file for an NGSI-LD Entity named Vehicle
and its different attributes (i.e. BrandName, Street, IsParked, Category, TyreTreadDepths, Passengers, and Route)
which are compliant with the different related schemas defined within the NGSI-LD OAS. Each custom schema
references the NGSI-LD OAS base schema (i.e. Entity, Property, Relationship, ListProperty, ListRelationship,
LanguageProperty, VocabProperty, and GeoProperty) and incorporates new propertiesin addition to descriptive
information. The Vehicle schema adds that the Entity type field hasto be Vehicle and that it has to include different
properties that reference the schemas also defined, indicating which fields are required for the construction of the
NGSI-LD Entity of type Vehicle.

Between the schemas of the attributes for VVehicle there is |sParked derived for an NGSI-LD Relationship to point out
the object of an NGSI-LD Entity of type OffStreetParking in order to indicate the parking where is the vehicle. This
IsParked schema also references another schema named ProvidedBY to specify an additional attribute which isan
NGSI-LD Relationship to point out the object of an NGSI-LD Entity of type Person in order to indicate the person who
provides the parking spot. Additional schemas such as Passengers and Route exist to define custom NGSI-LD
Relationships to indicate the list of persons who are passengers of the vehicle and the list of cities which are covered on
the vehicle'sroute. Thistype of schemas dedicated to NGSI-LD Relationships add as a required property an object field
typically considered in an NGSI-LD Relationship that hasto be of type string in order to indicate unique Entity
identifiers of the target NGSI-LD Entities.

Additionally, there are custom schemas for other Vehicle attributes such as BrandName, Street, Category, and
TyreTreadDepths, which reference schemas for NGSI-LD Property, NGSI-LD LanguageProperty, NGSI-LD
VocabProperty, and NGSI-LD ListProperty relatively. Each of these custom schemas adds as required property the data
type and its reserved name depending on the NGSI-LD OAS base schemaiit references.

openapi: 3.0.3
i nfo:
title: Exanple schenmas for vehicle infornmation
version: 0.0.1
description: |
Exanpl e schenas conpliant with the NGSI-LD OAS netanodel according to ETSI GS Cl M 009.
paths: {}
conponents:
schemas:
Vehi cl e:
description: |
NGSI -LD Entity Type that represents a vehicle.
al | OF:
- $ref: https://forge.etsi.org/rep/cinngsi-I|d-openapi/-/raw master/ngsi-|d-api.yan #/ conponent s/ schemas/ Entity’
- type: object
properties:
type:
description: NGSI-LD Entity identifier. It has to be Vehicle.
type: string
enum
- Vehicle
defaul t: Vehicle
br andNane:
$ref: '#/ conmponents/schemas/ BrandNane'
street:
$ref: '#/ conmponents/schenas/ Street’
i sPar ked:
$ref: '#/ conponents/schenas/ | sPar ked'
category:
$ref: '#/ conmponents/schenas/ Cat egory’
tyreTreadDept hs:
$ref: '#/ conmponents/schenas/ Tyr eTr eadDept hs'
passengers:
$ref: '#/ conponent s/ schemas/ Passengers'

route:
$ref: '#/ conponents/schemas/ Rout e’
- required:
- type
- brandNane

Br andNane:
description: |
NGSI - LD Property Type. The vehicle brand nane.
al | OF:
- $ref: '"https://forge.etsi.org/rep/cimngsi-I|d-openapi/-/raw naster/ngsi-|d-api.yan #/ conponents/schenmas/ Property"
- type: object
properties:
val ue:
type: string
required:
- val ue
addi ti onal Properties: false
Street:
description: |
NGSI - LD LanguageProperty Type. The vehicle street.
al |l Of :
- $ref: '"https://forge.etsi.org/rep/cimngsi-I|d-openapi/-/raw naster/ngsi-|d-api.yam
#/ conponent s/ schemas/ LanguagePr operty'
- type: object
properties:
| anguageMap:

ETSI

24 ETSI GS CIM 047 V1.1.1 (2024-11)

type: object
required:
- | anguageMap
addi ti onal Properties: fal se
| sPar ked:
addi ti onal Properties: fal se
description: |
NGSI - LD Rel ationship type to identify the parking where is the vehicle (i.e. the identifier of an NGSI-LD Entity
of type O f StreetParking).
al | OF:
- $ref: '"https://forge.etsi.org/rep/cimngsi-I|d-openapi/-/raw naster/ngsi-|d-api.yam
#/ conponent s/ schemas/ Rel ati onshi p'
- type: object

properties:
obj ect :
type: string
format: wuri

obj ect Type:
type: string
format: wuri
provi dedBy:
$ref: ' #/ conponents/schemas/ Provi dedBy*
required:
- object
Cat egory:
description: |
NGSI - LD VocabProperty Type. The vehicle category.
all O :
- $ref: '"https://forge.etsi.org/rep/cimngsi-I|d-openapi/-/raw naster/ngsi-|d-api.yam
#/ conponent s/ schemas/ VocabPr operty*
- type: object
properties:
vocab:
type: string
required:
- vocab
addi ti onal Properties: fal se
TyreTr eadDept hs:
description: |
NGSI - LD Li st Property Type. The vehicle tyre tread depths.
al | Of:
- $ref: ""https://forge.etsi.org/rep/cinngsi-I|d-openapi/-/raw naster/ngsi-|d-api.yan
#/ conponent s/ schemas/ Li st Property’
- type: object

properties:
val ueLi st :
itens:
type: string
required:
- val uelLi st

addi ti onal Properties: fal se
Passengers:
descri ption:
NGSI - LD Rel ationship type to identify the passengers of the vehicle (i.e. the identifier of an NGSI-LD Entity of
type Person).
all O :
- $ref: '"https://forge.etsi.org/rep/cimngsi-I|d-openapi/-/raw naster/ngsi-|d-api.yam
#/ conponent s/ schemas/ Rel ati onshi p'
- type: object
properties:
obj ect :
type: array
itens:
type: string
format: uri
obj ect Type:
type: string
format: wuri
required:
- object
addi ti onal Properties: fal se
Rout e:
description: |
NGSI - LD Li stRel ati onship type to identify the route of the vehicle (i.e. the list of identifiers of NGSI-LD
Entities of type City).
al | OF :
- $ref: "https://forge.etsi.org/rep/cinm ngsi-I|d-openapi/-/raw master/ngsi-|d-api.yan
#/ conponent s/ schemas/ Li st Rel ati onshi p'
- type: object
properties:
obj ect Li st :
type: array
itens:
type: object
format: uri
obj ect Type:
type: string

format: wuri
required:
- objectlList

addi ti onal Properties: fal se

ETSI

25 ETSI GS CIM 047 V1.1.1 (2024-11)

Similarly, a second example showsin another fragment of the previous Y AML file other custom OpenAPI schemas for
an NGSI-LD Entity named OffStreetParking and its attributes (i.e. AvailableSpotNumber, Total SootNumber, and
OperatedBy) which are compliant with the Entity, Property, and Relationship related schemas defined within the
NGSI-LD OAS. Again, each custom schema references the NGSI-LD OAS base schema and incorporates additional
information. The OffStreetParking schema adds that the Entity type has to be OffSreetParking and includes different
properties that reference the related schemas of its attributes, indicating which fields are required. The
AvailableSpotNumber and Total SpotNumber schemas represent NGSI-LD Properties of the NGSI-LD Entity of type
OffStreetParking, adding that the value property hasto be of type number, and the AvailableSpotNumber schema
additionally includes a reference to the Reliability schemato add an additional NGSI-LD Property of type number as
well. In addition, the OperatedBy schema represents an NGSI-LD Relationship of the NGSI-LD Entity of type
OffStreetParking to point out the object of an NGSI-LD Entity of type Company to indicate the parking company.

conponent s:

schemas:

O f Street Par ki ng:
descri ption:
NGSI -LD Entity Type that represents a parking.
all O :
- $ref: "https://forge.etsi.org/rep/cim ngsi-I|d-openapi/-/raw master/ngsi-|d-api.yan
#/ conponent s/ schemas/ Entity"
- type: object
properties:
type:
description: NGSI-LD Entity identifier. It has to be O f Street Parking.
type: string
enum
- O fStreetParking
defaul t: Off Street Parki ng
nane:
$ref: '#/ conponents/schenas/ Nane'
avai | abl eSpot Nunber :
$ref: ' #/ conponents/schemas/ Avai | abl eSpot Nunber '
t ot al Spot Nunber :
$ref: '#/ conmponents/schenas/ Tot al Spot Nunber'
oper at edBy:
$ref: ' #/ component s/ schemas/ Oper at edBy*
- required:
- type
- name
Avai | abl eSpot Nunber :
description: |
NGSI - LD Property Type. The avail abl e spot nunber wi thin a parking.
all O :
- $ref: "https://forge.etsi.org/rep/cinm ngsi-I|d-openapi/-/raw master/ngsi-|d-api.yan # conponents/schemas/ Property'
- type: object
properties:

val ue:
type: nunber
reliability:
$ref: '#/ conmponents/schenas/Reliability'
provi dedBy:
$ref: '#/ conponents/schenas/ Provi dedBy'
required:
- val ue
addi ti onal Properties: fal se
Reliability:

description: |
NGSI - LD Property Type. The reliability of the avail abl e spot number within a parking.
all O :
- $ref: '"https://forge.etsi.org/rep/cimngsi-I|d-openapi/-/raw naster/ngsi-|d-api.yan #/ conponents/schemas/ Property"
- type: object
properties:
val ue:
type: nunber
required:
- val ue
addi ti onal Properties: fal se
Tot al Spot Nunber :
descri ption:
NGSI - LD Property Type. The total spot nunmber within a parking.
all O :
- $ref: "https://forge.etsi.org/rep/cimngsi-I|d-openapi/-/raw master/ngsi-|d-api.yan # conponents/schemas Property'
- type: object
properties:
val ue:
type: nunber
required:
- val ue
addi ti onal Properties: fal se
Oper at edBy:
descri ption:
NGSI - LD Rel ationship type to identify the conpany that operates the parking (i.e. the identifier of an NGSI-LD
Entity of type Conpany).
all O :
- $ref: '"https://forge.etsi.org/rep/cimngsi-I|d-openapi/-/raw naster/ngsi-I|d-api.yam
#/ conponent s/ schemas/ Rel ati onshi p’
- type: object
properties:
obj ect:

ETSI

26 ETSI GS CIM 047 V1.1.1 (2024-11)

type: string
required:
- object
addi ti onal Properties: fal se

Similarly, athird example shows in another fragment of the Y AML file other custom OpenAPI schemas for NGSI-LD
Entities named Person, City, Camera, and Company. These NGSI-LD Entities only incorporate references to a schema
Name which defines an NGSI-LD Property to provide a name for them.

conponents:
schemas:

Per son:
descri ption:
NGSI -LD Entity Type that represents a person.
al | Of:
- $ref: '"https://forge.etsi.org/rep/cimngsi-I|d-openapi/-/raw nmaster/ngsi-|d-api.yan #/ conponents/schemas/Entity’
- type: object
properties:
type:
description: NGSI-LD Entity identifier. It has to be Person.
type: string
enum
- Person
defaul t: Person
namne:
$ref: '#/ conmponents/schenas/ Nane'
- required:
- type
- nane
CGty:
descri ption:
NGSI -LD Entity Type that represents a city.
all O :
- $ref: '"https://forge.etsi.org/rep/cimngsi-I|d-openapi/-/raw nmaster/ngsi-|d-api.yan #/ conponents/schemas/Entity’
- type: object
properties:
type:
description: NGSI-LD Entity identifier. It has to be City.
type: string
enum
- Gty
default: City
namne:
$ref: '#/ conponents/schenas/ Name'
- required:
- type
- nanme
Caner a:
descri ption:
NGSI -LD Entity Type that represents a canera.
all O :
- $ref: "https://forge.etsi.org/rep/cimngsi-|d-openapi/-/raw master/ngsi-|d-api.yanl # conponents/schemas/Entity"
- type: object
properties:
type:
description: NGSI-LD Entity identifier. It has to be Canera.
type: string
enum
- Canera
defaul t: Canera
nane:
$ref: '#/ conponents/schenas/ Name'
- required:
- type
- nanme
Conpany:
descri ption:
NGSI -LD Entity Type that represents a conpany.
al | Of:
- $ref: "https://forge.etsi.org/rep/cimngsi-I|d-openapi/-/raw master/ngsi-|d-api.yanl # conponents/schemas/ Entity"
- type: object
properties:
type:
description: NGSI-LD Entity identifier. It has to be Conpany.
type: string
enum
- Conpany
defaul t: Conpany
nane:
$ref: '#/ conponents/schenas/ Nane'
- required:
- type
- nane

ETSI

27 ETSI GS CIM 047 V1.1.1 (2024-11)

Finally, alast example shows in another fragment of the same Y AML file other custom OpenAPI schemas for an
NGSI-LD Property named Name and an NGSI-LD Relationship named ProvidedBy which are used by other customize

schemas aforementioned above.

conponent s:
schemas:
Nane:
description: |
NGSI - LD Property Type. The natural nane of an entity.
all O :
- $ref: '"https://forge.etsi.org/rep/cimngsi-I|d-openapi/-/raw naster/ngsi-|d-api.yan #/ conponents/schemas/ Property"
- type: object
properties:
val ue:
type: string
required:
- val ue
addi ti onal Properties: fal se
Provi dedBy:
addi ti onal Properties: fal se

description: |
NGSI - LD Rel ationship type to identify the entity that provides something (i.e. the identifier of an NGSI-LD Entity

of particular type).
al | Of:
- $ref: "https://forge.etsi.org/rep/cinm ngsi-I|d-openapi/-/raw master/ngsi-|d-api.yan
#/ conponent s/ schemas/ Rel ati onshi p’
- type: object
properties:
obj ect :
type: string
format: wuri
required:
- object

ETSI

28 ETSI GS CIM 047 V1.1.1 (2024-11)

Annex D (informative):
Stub code generation and examples of use

D.1 Introduction

Thisannex isinformative and is intended to show the utility of the NGSI-LD OAS to generate stub code for different
programming languages. Examples are provided for generating and using the code for NGSI-LD API clients.

D.2 Example of Python-based NGSI-LD client

This clause shows how to use a Python-based NGSI-LD API client-side library generated from NGSI-LD OAS by using
the OpenAPI Generator [i.17] tool from OpenAPI Initiative. [i.1]

Figure D.2-1 depictsin a diagram the instantiation of aresulting NGSI-LD information model for the vehicular use case
by following the sample information model proposed in ETSI GS CIM 009 [3]. For each NGSI-LD Entity Type
represented, there is an identifier specified in the form of a URN. The NGSI-LD unit codes for representing values of
temperature in degrees Celsius and percent of humidity are extracted from UNECE/CEFACT Common Codes[11] for
specifying the unit of measurement as specified by ETSI GS CIM 009 [3].

urn:ngsi-ld:Camera:C1

providedBy
name = "C1"
urn:ngsi-ld:Company :BigParkingCorp urn:ngsi-ld: OffStreetParking:Downtown1
name = "BigParkingCorp" name = "Top Parking"
availableSpotNumber = "121"
/]\ reliability = 0.7
operatedBy totalSpotNumber = 200
location = [-8.5, 41.2]
urn:ngsi-ld:Vehicle:A4567
isParkedo—L
brandName = "Mercedes" 4 rovidedB
street = {"fr": "Grand Place", "nl": "Grote Markt"} P! 4
category = "non-commercial" passengers |
tyreTreadDepths = ["300", "300", "120", "6"] (unitCode = "MMT") l/ \L \L
urn:ngsi-Id:Person:Alice urn:ngsi-Id:Person:Bob
name = "Alice" name = "Bob"

urn:ngsi-Id:City:Antwerp
route

name = "Antwerp"

urn:ngsi-Id:City:Rotterdam

name = "Rotterdam"

urn:ngsi-ld:City:Amsterdam

name = "Amsterdam"

Figure D.2-1: Diagram about the instantiation representation of
a sample NGSI-LD information model for vehicular use case

ETSI

29 ETSI GS CIM 047 V1.1.1 (2024-11)

Below is one example of Python code snippet that use a generated Python-based NGSI-LD API client library for
creating samples of NGSI-LD Entities of type Vehicle, OffreetParking, City, Person, Company, and Camera using
custom OpenAPI schemas previously defined and considered in Annex C. In asimilar way thaninthe loT use case,
using these custom schemas, the OpenAPI Generator [i.17] tool generates programming code in form of Python classes
that could be used with the NGSI-LD API client in order to build Python objects and instantiate the resulting NGSI-LD
information models. In the following two examples, it is considered that both an implementation of the NGSI-LD
context broker and a service that storesthe NGSI-LD @context vocabulary in a catalog are available and accessible
locally.

i nport yani
i mport os
i nport ngsi_ld_client

Inporting Python library nodules to use the OpenAPl schemas defined for the vehicul ar use case:
from ngsi _| d_nodel s. nodel s. vehi cl e i nport Vehicle
from ngsi _I d_npdel s. nodel s. of f _street _parking i nport O f StreetParking

from ngsi _| d_nodel s. nodel s. avai | abl e_spot _nunber inport Avai |l abl eSpot Nunber
from ngsi _I d_npdel s. nodel s. person i nport Person

from ngsi _| d_nodel s. nodel s. canera i nport Canera

from ngsi _| d_nodel s. nodel s. conpany i nport Conpany

from ngsi _I d_nodel s. nodel s.city inport Gty

from ngsi _|I d_nodel s. nodel s. i s_parked inport |sParked

from ngsi _|I d_npdel s. nodel s. passengers i nport Passengers

fromngsi _| d_nodel s. nodel s.route inport Route

from ngsi _| d_nodel s. nodel s. provi ded_by inport Provi dedBy

from ngsi _I d_nodel s. nodel s. oper at ed_by i nport Operat edBy

Inmporting Python library nodul es to use the sel f-defined OpenAPl schemas within the NGSI-LD QAS:
fromngsi_ld_client.nodels.entity inport Entity

from ngsi _| d_nodel s. nodel s. geo_property inmport CGeoProperty

from ngsi _I d_npdel s. nodel s. geonetry_poi nt inport GeonetryPoi nt

from ngsi _| d_nodel s. nodel s. geonetry inport Ceonetry
fromngsi_Id_client.nodels.query_entity200_response_i nner inport QueryEntity200Responsel nner

Inporting Python library nodul es to use the NGSI-LD APl client:

fromngsi_Id_ client.api_client inport Api Cient as NGSILDJ i ent
fromngsi_ld_client.configuration inport Configuration as NGSI LDConfiguration
fromngsi_Id_client.exceptions inport Api Exception

import tinme
i mport nunpy as np

NGSI - LD Cont ext Broker
BROKER URI = os. getenv("BROKER URI ", "http://I|ocal host: 9090/ ngsi -1d/v1")

Cont ext catal og service
CONTEXT_CATALOG URI = os. get env(" CONTEXT_CATALOG URI ", "http://context-catal og: 8080/ cont ext.j sonl d")

Init NGSI-LD Cient

configuration = NGSI LDConfi gurati on(host =BROKER_URI)
configuration.debug = True

ngsi _|d = NGSI LDA i ent (confi gurati on=confi guration)

ngsi _| d. set _def aul t _header (
header _nane="Li nk",

header _val ue=" <{ 0} >;

‘rel ="http://ww.w3. or g/ ns/json-| d#cont ext";

"type="application/ld+j son"" . fornmat(CONTEXT_CATALOG URI)

)

ngsi _| d. set _def aul t _header (
header _name="Accept",
header _val ue="appl ication/json"

)

Declaring APl for Context Infornation Provision operations:
api _instance = ngsi_ld_client.Contextl|nformationProvisi onApi (ngsi_Id)

par ki ng_conpany = Conpany(

i d="urn: ngsi -1 d: Conpany: Bi gPar ki ngCor p",

type=" Conpany"”,

name={"type":"Property", "value": "Bi gParkingCorp"}
)

entity_input = parking_conpany.to_dict()
query_entity_input = QueryEntity200Responsel nner.fromdict(entity_input)
try:

.# Create NGSI-LD entity of type Conpany: POST /entities
api _instance. create_entity(query_entity200_response_i nner=query_entity_i nput)

ETSI

30 ETSI GS CIM 047 V1.1.1 (2024-11)

except Exception as e:
print("Exception when calling ContextlnformationProvisionApi->create_entity: %\n" %e)

par ki ng_canera = Caner a(
id="urn:ngsi-Id:Canera: C1",
type="Canera",
name={"type":"Property", "value": "Cl"}

)
entity_input = parking_canera.to_dict()
query_entity_input = QueryEntity200Responsel nner.fromdict(entity_input)

try:
Create NGSI-LD entity of type Canera: POST /entities
api _instance. create_entity(query_entity200_response_i nner=query_entity_i nput)
except Exception as e:
print("Exception when calling ContextlnformationProvisionApi->create_entity: %\n" %e)

avai | abl eSpot Nunber =Avai | abl eSpot Nunber (

observed_at =observed_at,

val ue=121,

reliability={"type":"Property", "value":0.7},

provi dedBy=Provi dedBy. from di ct ({"type": "Rel ationship", "object": "urn:ngsi-Ild:Canera: Cl"})
)

parking_l ocati on = CGeonetryPoi nt (
type="Point",
coordi nates=[-8.5, 41.2]

)

par ki ng_l ocati on=CGeonetry. from di ct (parking_|l ocation.to_dict())

geoproperty_|l ocati on = GeoProperty(
type="CeoProperty",
val ue=par ki ng_I ocati on

)

par ki ng=0f f St r eet Par ki ng(
i d="urn:ngsi-|d:OfStreet Parki ng: Downt ownl",
type="Of Street Par ki ng",
| ocati on=CeoProperty.fromdict({"type":"CeoProperty", "value":parking_|location.to_dict()}),
name={"type":"Property", "value":"Top Parking"},
oper at edBy=0Oper at edBy. from di ct ({"type": "Rel ati onshi p", "object": "urn:ngsi-
| d: Conpany: Bi gPar ki ngCorp"}),
avai | abl eSpot Nunber =avai | abl eSpot Nunber ,
t ot al Spot Nunber ={"type": "Property", "value": 200}
)

entity_input = parking.to_dict()
query_entity_input = QueryEntity200Responsel nner.fromdict(entity_input)

try:
Create NGSI-LD entity of type O fStreetParking: POST /entities
api _instance.create_entity(query_entity200_response_i nner=query_entity_i nput)
except Exception as e:
print("Exception when calling ContextlnformationProvisionApi->create_entity: %\n" %e)

per son_bob=Per son(
i d="urn: ngsi -1 d: Person: Bob",
type="Person",
name={"type":"Property", "value": "Bob"}

)
entity_i nput = person_bob.to_dict()
query_entity_input = QueryEntity200Responsel nner.fromdict(entity_input)

try:
Create NGSI-LD entity of type Person: POST /entities
api _instance. create_entity(query_entity200_response_i nner=query_entity_i nput)
except Exception as e:
print("Excepti on when calling ContextlnfornmationProvisionApi->create_entity: %\n" %e)

person_al i ce=Per son(
i d="urn: ngsi-1d: Person: Bob",
type="Person",
name={"type":"Property", "value": "Aice"}

)

entity_input = person_alice.to_dict()

ETSI

31 ETSI GS CIM 047 V1.1.1 (2024-11)

query_entity_input = QueryEntity200Responsel nner.fromdict(entity_input)

try:
COreate NGSI-LD entity of type Person: POST /entities
api _instance. create_entity(query_entity200_response_i nner=query_entity_i nput)
except Exception as e:
print("Exception when calling ContextlnformationProvisionApi->create_entity: %\n" %e)

city_antwerp=City(
id="urn:ngsi-Id:Cty:Antwerp",
type="QGty",
name={"type":"Property", "value": "Antwerp"}

)
entity_input = city_antwerp.to_dict()
query_entity_input = QueryEntity200Responsel nner.fromdict(entity_input)

try:
Create NGSI-LD entity of type City: POST /entities
api _instance. create_entity(query_entity200_response_i nner=query_entity_i nput)
except Exception as e:
print("Exception when calling ContextlnformationProvisionApi->create_entity: %\n" %e)

city_rotterdanrGity(
id="urn:ngsi-ld:Cty:Rotterdant,
type="Gty",
name={"type":"Property", "value": "Rotterdani}
)

entity_input = city_rotterdamto_dict()
query_entity_input = QueryEntity200Responsel nner.fromdict(entity_input)

try:
Create NGSI-LD entity of type City: POST /entities
api _instance. create_entity(query_entity200_response_i nner=query_entity_i nput)
except Exception as e:
print("Exception when calling ContextlnformationProvisionApi->create_entity: %\n" %e)

city_ansterdam=City(
id="urn:ngsi-Id:Cty:Ansterdant,
type="Qdty",
name={"type":"Property", "value": "Ansterdani}
)

entity_input = city_amsterdamto_dict ()
query_entity_input = QueryEntity200Responsel nner.fromdict(entity_input)

try:
Create NGSI-LD entity of type City: POST /entities
api _instance.create_entity(query_entity200_response_i nner=query_entity_i nput)
except Exception as e:
print("Excepti on when calling ContextlnfornmationProvisionApi->create_entity: %\n" %e)

i sParked = | sParked(

type="Rel ati onshi p",

obj ect ="urn: ngsi -1 d: O f St reet Par ki ng: Downt ownl",

obj ect Type="O f Str eet Par ki ng",

provi dedBy=Provi dedBy. from di ct ({"type": "Rel ationship", "object": "urn:ngsi-Id:Person: Bob"}),
)

passengers = Passenger s(
type="Rel ati onshi p",
obj ect =["urn: ngsi -1d: Person: Alice", "urn:ngsi-|d:Person: Bob"],
obj ect Type="Per son",

)

route = Rout e(
type="Li st Rel ati onshi p",
objectList=[{"object": "urn:ngsi-ld:City: Antwerp"}, {"object": "urn:ngsi-ld:Cty:Rotterdani},
{"object": "urn:ngsi-ld:City: Ansterdani'}],
obj ect Type="Ci ty"
)

vehi cl e = Vehicl e(
i d="urn: ngsi -1 d: Vehicl e: Ad567",
type="Vehicl e",
brandNanme={"type": "Property", "value":"Mercedes"},
street={"type":"LanguageProperty", "languageMap": {"fr": "Grand Place", "nl": "Gote Markt"}},
i sPar ked=i sPar ked,

ETSI

32 ETSI GS CIM 047 V1.1.1 (2024-11)

category={"type":"VocabProperty", "vocab": "non-conmercial"},

tyreTreadDept hs={"type": "Li st Property", "valueList": ["300", "300", "120", "6"], "unitCode": "MV},
passenger s=passengers,

rout e=rout e

)
entity_input = vehicle.to_dict()
query_entity_input = QueryEntity200Responsel nner.fromdict(entity_input)

try:
Create NGSI-LD entity of type Vehicle: POST /entities
api _instance. create_entity(query_entity200_response_i nner=query_entity_i nput)
except Exception as e:
print("Exception when calling ContextlnformationProvisionApi->create_entity: %\n" %e)

Below is another example of Python code snippet that use a generated Python-based NGSI-LD API client library for
querying NGSI-LD Entities of type Vehicle and OffStreetParking.

i nport os
import ngsi_ld_client

fromngsi_Id_client.api_client inport Apidient as NGSILDC i ent
fromngsi_Id_client.configuration inport Configuration as NGSI LDConfiguration
fromngsi_Id_client.exceptions inport Api Exception

NGSI - LD Cont ext Broker
BROKER URI = os. getenv("BROKER URI ", "http://I|ocal host: 9090/ ngsi -1d/v1")
Cont ext Catal og
CONTEXT_CATALOG_URI = os. get env(" CONTEXT_CATALOG URI ",
"http://context-catal og: 8080/ cont ext.j sonl d")
Init NGSI-LD Cient
configuration = NGSI LDConfi gurati on(host =BROKER_URI)
configuration.debug = True
ngsi _|d = NGSI LDA i ent (confi gurati on=confi guration)
ngsi _| d. set _def aul t _header (
header _nane="Li nk",
header _val ue=' <{ 0} >;
‘rel ="http://ww.w3. org/ ns/json-1|d#context";
'type="application/ld+ son"".fornat(CONTEXT_CATALOG URI)

)

ngsi _| d. set _def aul t _header (
header _nane="Accept",
header _val ue="appl i cation/json"

)

api _instance = ngsi _|ld_client.Contextlnformati onConsunpti onApi (ngsi _|d)

try:
Query NGSI-LD entities of type Vehicule: CET /entities
api _response = api _i nstance. query_entity(type=' Vehicle")
iot_device_entities = api _response
for iot_device_entity in iot_device_entities:
print(iot_device_entity.to_dict())
except Exception as e:
print("Exception when calling ContextlnformationConsunptionApi->query_entity: %\n" %e)

try:
Query NGSI-LD entities of type O fStreetParking: GET /entities
api _response = api _instance. query_entity(type="OfStreetParking')
iot_device_entities = api _response
for iot_device_entity in iot_device_entities:
print(iot_device_entity.to_dict())
except Exception as e:
print("Excepti on when cal ling ContextlnfornmationConsunptionApi->query_entity: %\n" %e)

ETSI

33 ETSI GS CIM 047 V1.1.1 (2024-11)

Annex E (informative):

Bibliography
. ETSI GS CIM 008 (V1.2.1): "Context Information Management (CIM); NGSI-LD Primer".
. ETSI GS CIM 006: "Context I nformation Management (CIM); Information Model (MODO)".

. Generic documentation tools, examples, @context files, APl specification playground for the NGSI-LD API
defined by ETSI ISG CIM.

ETSI

https://forge.etsi.org/rep/cim/NGSI-LD
https://forge.etsi.org/rep/cim/NGSI-LD

34

ETSI GS CIM 047 V1.1.1 (2024-11)

Annex F (informative):
Change history

Date Version Information about changes

February, 27" 2024 V0.0.1 [Early Draft

May 2024 VV0.0.9 [First Stable Draft approved by ISG CIM

May 2024 V0.0.10 |Review of Stable Draft

September 2024 V0.1.0 [First Final Draft
Final Draft approved by ISG CIM

October 2024 V0.1.1 [Technical Officer review before EditHelp publication pre-processing after TB
approval

ETSI

35

ETSI GS CIM 047 V1.1.1 (2024-11)

History

Document history

V111

November 2024

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 OpenAPI Specification for NGSI-LD API
	4.1 Introduction
	4.2 Design, evaluation, and structure of OpenAPI Specification
	4.2.0 Foreword
	4.2.1 Design strategy
	4.2.2 Evaluation strategy
	4.2.3 Organization and description of the OpenAPI Specification
	4.2.3.0 Foreword
	4.2.3.1 The openapi and info sections
	4.2.3.2 The externalDocs section
	4.2.3.3 The servers section
	4.2.3.4 The paths section
	4.2.3.5 The components section
	4.2.3.5.0 Foreword
	4.2.3.5.1 The headers subsection
	4.2.3.5.2 The parameters subsection
	4.2.3.5.3 The requestBodies subsection
	4.2.3.5.4 The schemas subsection
	4.2.3.5.5 The responses subsection

	4.3 OpenAPI Specification repository

	Annex A (informative): Recommended tools for the design and evaluation of OpenAPI Specification
	A.1 Introduction
	A.2 Tools for the design of OpenAPI Specification
	A.3 Tools for the evaluation of OpenAPI Specification

	Annex B (informative): OpenAPI visualization and interaction tools
	B.1 Introduction
	B.2 SwaggerUI
	B.3 ReDoc

	Annex C (informative): Guidelines for defining custom schemas compliant with the OpenAPI Specification
	C.1 Introduction
	C.2 Example of OpenAPI schemas for vehicular use case

	Annex D (informative): Stub code generation and examples of use
	D.1 Introduction
	D.2 Example of Python-based NGSI-LD client

	Annex E (informative): Bibliography
	Annex F (informative): Change history
	History

