

ETSI GS CIM 047 V1.1.1 (2024-11)

Context Information Management (CIM);
OpenAPI Specification for NGSI-LD API

Disclaimer

The present document has been produced and approved by the cross-cutting Context Information Management (CIM) ETSI
Industry Specification Group (ISG) and represents the views of those members who participated in this ISG.

It does not necessarily represent the views of the entire ETSI membership.

GROUP SPECIFICATION

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)2

Reference
DGS/CIM-0047

Keywords
API, NGSI-LD

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2024.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)3

Contents

Intellectual Property Rights .. 5

Foreword ... 5

Modal verbs terminology .. 5

Executive summary .. 5

Introduction .. 6

1 Scope .. 7

2 References .. 7

2.1 Normative references ... 7

2.2 Informative references .. 7

3 Definition of terms, symbols and abbreviations ... 8

3.1 Terms .. 8

3.2 Symbols .. 9

3.3 Abbreviations ... 9

4 OpenAPI Specification for NGSI-LD API ... 10

4.1 Introduction .. 10

4.2 Design, evaluation, and structure of OpenAPI Specification ... 10

4.2.0 Foreword ... 10

4.2.1 Design strategy ... 10

4.2.2 Evaluation strategy ... 11

4.2.3 Organization and description of the OpenAPI Specification .. 12

4.2.3.0 Foreword ... 12

4.2.3.1 The openapi and info sections ... 12

4.2.3.2 The externalDocs section .. 13

4.2.3.3 The servers section .. 13

4.2.3.4 The paths section ... 13

4.2.3.5 The components section .. 14

4.2.3.5.0 Foreword ... 14

4.2.3.5.1 The headers subsection .. 14

4.2.3.5.2 The parameters subsection... 15

4.2.3.5.3 The requestBodies subsection ... 15

4.2.3.5.4 The schemas subsection... 16

4.2.3.5.5 The responses subsection... 17

4.3 OpenAPI Specification repository .. 17

Annex A (informative): Recommended tools for the design and evaluation of OpenAPI
Specification ... 19

A.1 Introduction .. 19

A.2 Tools for the design of OpenAPI Specification ... 19

A.3 Tools for the evaluation of OpenAPI Specification ... 19

Annex B (informative): OpenAPI visualization and interaction tools ... 20

B.1 Introduction .. 20

B.2 SwaggerUI .. 20

B.3 ReDoc ... 21

Annex C (informative): Guidelines for defining custom schemas compliant with the OpenAPI
Specification ... 22

C.1 Introduction .. 22

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)4

C.2 Example of OpenAPI schemas for vehicular use case ... 22

Annex D (informative): Stub code generation and examples of use .. 28

D.1 Introduction .. 28

D.2 Example of Python-based NGSI-LD client .. 28

Annex E (informative): Bibliography ... 33

Annex F (informative): Change history ... 34

History .. 35

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)5

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) cross-cutting Context
Information Management (CIM).

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Executive summary
The present document formally describes the OpenAPI Specification for the NGSI-LD API specified by ETSI
GS CIM 009 [1], [2] and [3]. The OpenAPI Specification allows users to make use of the NGSI-LD API in a
language-agnostic form. With a declarative resource specification followed by the OpenAPI Specification, NGSI-LD
API clients can understand and consume services without knowledge of the server-side implementation.

The present document outlines the design and evaluation strategies for the OpenAPI Specification implementation, as
well as its general structure and content. Practical examples are also included throughout the present document to help
readers understand the usability of the OpenAPI.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)6

Introduction
The present document defines the OpenAPI Specification for the standard NGSI-LD API for Context Information
Management. OpenAPI is a popular standard for building REST APIs independently of the implementation language.
Having an OAS for the NGSI-LD API helps users by facilitating API documentation and allowing them to implement
and use the NGSI-LD protocol in their own application.

To this end, the present document aims to provide information to help better understand the implementation and
application details of the OpenAPI Specification for the NGSI-LD API. The implementation of the OpenAPI
Specification is based on the clauses defined for the NGSI-LD API considered in ETSI GS CIM 009 [1], [2] and [3].

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)7

1 Scope
The purpose of the present document is the definition of the OpenAPI Specification for the standard NGSI-LD API for
Context Information Management. Documentation will be provided, along with examples that help developers and
users understand how the OpenAPI works and how to use it in a programming language-agnostic form.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are necessary for the application of the present document:

[1] ETSI GS CIM 009 (V1.6.1): "cross-cutting Context Information Management (CIM); NGSI-LD
API".

[2] ETSI GS CIM 009 (V1.7.1): "Context Information Management (CIM); NGSI-LD API".

[3] ETSI GS CIM 009 (V1.8.1): "Context Information Management (CIM); NGSI-LD API".

[4] OpenAPI Specification (v3.0.3).

[5] Swagger Documentation - OpenAPI Specification (v3.0.3).

[6] OpenAPI Specification (v3.1.0).

[7] NGSI-LD OAS release for NGSI-LD API version 1.6.1.

[8] NGSI-LD OAS release for NGSI-LD API version 1.7.1.

[9] NGSI-LD OAS release for NGSI-LD API version 1.8.1.

[10] IETF RFC 7807: "Problem Details for HTTP APIs".

[11] UNECE/CEFACT Common Codes for specifying the unit of measurement.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are not necessary for the application of the present document, but they assist the
user with regard to a particular subject area:

[i.1] OpenAPI Initiative.

[i.2] OpenAPI Tooling.

https://docbox.etsi.org/Reference/
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.06.01_60/gs_cim009v010601p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.07.01_60/gs_cim009v010701p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.08.01_60/gs_cim009v010801p.pdf
https://spec.openapis.org/oas/v3.0.3
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.3.md
https://spec.openapis.org/oas/v3.1.0
https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.6.1/openapi-3.1.0/ngsi-ld-api.yaml
https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/openapi-3.1.0/ngsi-ld-api.yaml
https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.8.1/openapi-3.1.0/ngsi-ld-api.yaml
https://www.rfc-editor.org/info/rfc7807
http://www.unece.org/fileadmin/DAM/cefact/recommendations/rec20/rec20_Rev9e_2014.xls
https://www.openapis.org/
https://tools.openapis.org/

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)8

[i.3] OpenAPI Documentation.

[i.4] OpenAPI Tooling Categories.

[i.5] OpenAPI descriptions for the NGSI-LD API defined by ETSI ISG CIM.

[i.6] OpenAPI Swagger Editor Extension in VS Code.

[i.7] Swagger Editor: API editor for designing APIs with the OpenAPI and AsyncAPI specifications.

[i.8] Swagger UI: Visualize OpenAPI Specification definitions in an interactive UI.

[i.9] ReDoc: Generate beautiful API documentation from OpenAPI.

[i.10] Scalar API Reference: Beautiful API references from OpenAPI/Swagger files.

[i.11] OpenDocumenter: Automatic documentation generator for OpenAPI v3 schemas.

[i.12] API Security Audit.

[i.13] Swagger 2.0 and OpenAPI 3.0 parser/validator.

[i.14] Express OpenAPI Validator: Auto-validates api requests, responses, and securities using
ExpressJS and an OpenAPI 3.x specification.

[i.15] Swagger UI - NGSI-LD OAS release for NGSI-LD API version 1.7.1.

[i.16] Redocly - NGSI-LD OAS release for NGSI-LD API version 1.7.1.

[i.17] OpenAPI Generator: Generate clients, servers, and documentation from OpenAPI 2.0/3.x
documents.

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

NGSI-LD Attribute: reference to both an NGSI-LD Property and to an NGSI-LD Relationship

NGSI-LD Context Broker: architectural component that implements all the NGSI-LD interfaces

NGSI-LD Entity: informational representative of something that is supposed to exist in the real world, physically or
conceptually

NGSI-LD Entity Type: categorization of an NGSI-LD Entity as belonging to a class of similar entities, or sharing a set
of characteristic properties

NGSI-LD GeoProperty: subclass of NGSI-LD Property which is a description instance which associates a main
characteristic, i.e. an NGSI-LD Value, to either an NGSI-LD Entity, an NGSI-LD Relationship or another NGSI-LD
Property, that uses the special hasValue property to define its target value and holds a geographic location in GeoJSON
format

NGSI-LD LanguageProperty: subclass of NGSI-LD Property which is a description instance which associates a set of
strings in different natural languages as a defined main characteristic, i.e. an NGSI-LD Map, to an NGSI-LD Entity, an
NGSI-LD Relationship or another NGSI-LD Property and that uses the special hasLanguageMap (a subproperty of
hasValue) property to define its target value

NGSI-LD ListProperty: description instance which associates an ordered array of main characteristics, i.e. NGSI-LD
Values, to either an NGSI-LD Entity, an NGSI-LD Relationship or another NGSI-LD Property and that uses the special
hasValueList property to define its target value

https://learn.openapis.org/
https://tools.openapis.org/categories/all.html
https://forge.etsi.org/rep/cim/ngsi-ld-openapi
https://42crunch.com/tutorial-openapi-swagger-extension-vs-code/
https://swagger.io/tools/swagger-editor/
https://swagger.io/tools/swagger-ui/
https://github.com/Redocly/redoc
https://github.com/scalar/scalar
https://github.com/ouropencode/opendocumenter
https://docs.42crunch.com/latest/content/concepts/api_contract_security_audit.htm
https://github.com/APIDevTools/swagger-parser
https://github.com/cdimascio/express-openapi-validator
https://github.com/cdimascio/express-openapi-validator
https://forge.etsi.org/swagger/ui/?url=https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/openapi-3.0.3/ngsi-ld-api.yaml
https://redocly.github.io/redoc/?url=https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/v1.7.1/openapi-3.1.0/ngsi-ld-api.yaml
https://openapi-generator.tech/
https://openapi-generator.tech/

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)9

NGSI-LD ListRelationship: description of an ordered array of directed links between a subject which is either an
NGSI-LD Entity, an NGSI-LD Property or another NGSI-LD Relationship on one hand, and a series of objects, which
are NGSI-LD Entities, on the other hand, and which uses the special hasObjectList property to define its target objects

NGSI-LD Map: JSON-LD language map in the form of key-value pairs holding the string representation of a main
characteristic in a series of natural languages

NGSI-LD Property: description instance which associates a main characteristic, i.e. an NGSI-LD Value, to either an
NGSI-LD Entity, an NGSI-LD Relationship or another NGSI-LD Property and that uses the special hasValue property
to define its target value

NGSI-LD Relationship: description of a directed link between a subject which is either an NGSI-LD Entity, an
NGSI-LD Property or another NGSI-LD Relationship on one hand, and an object, which is an NGSI-LD Entity, on the
other hand, and which uses the special hasObject property to define its target object

NGSI-LD Tenant: user or group of users that utilize a single instance of a system implementing the NGSI-LD API
(NGSI-LD Context Source or NGSI-LD Broker) in isolation from other users or groups of users of the same instance,
so that any information related to one Tenant (e.g. Entities, Subscriptions, Context Source Registrations) are only
visible to users of the same Tenant, but not to users of a different Tenant

NGSI-LD Value: JSON value (i.e. a string, a number, true or false, an object, an array), or JSON-LD typed value (i.e. a
string as the lexical form of the value together with a type, defined by an XSD base type or more generally an IRI), or
JSON-LD structured value (i.e. a set, a list, a language-tagged string)

NGSI-LD VocabProperty: subclass of NGSI-LD Property which is a description instance which associates a string
value which can be coerced to a URI as a defined main characteristic to an NGSI-LD Entity, an NGSI-LD Relationship
or another NGSI-LD Property and that uses the special hasVocab (a subproperty of hasValue) property to define its
target value

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IRI Internationalized Resource Identifier
JSON JavaScript Object Notation
JSON-LD JSON Linked Data
NGSI Next Generation Service Interfaces
NGSILD Next Generation Service Interfaces Linked Data (same as NGSI-LD)
NGSI-LD OAS OpenAPI Specification for NGSI-LD API
MIME Multi-purpose Internet Mail Extensions
OAS OpenAPI Specification
RFC Request For Comments
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
XSD XML Schema Definition

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)10

4 OpenAPI Specification for NGSI-LD API

4.1 Introduction
OpenAPI is the de-facto standard for building REST APIs in a programming language-agnostic way. OpenAPI
specifications can improve the documentation of the APIs, and they can also be used to generate stub code for clients
and servers in multiple programming languages. An OpenAPI Specification (OAS) for NGSI-LD API is useful for
developers to implement the NGSI-LD API in their applications.

4.2 Design, evaluation, and structure of OpenAPI Specification

4.2.0 Foreword

This clause describes the technical design and evaluation principles behind the NGSI-LD OpenAPI Specification,
hereinafter referred to as NGSI-LD OAS. In addition, this clause provides an overview of the main structure for the
definition of the NGSI-LD OAS.

4.2.1 Design strategy

Figure 4.2.1-1 depicts the design workflow followed to complete the NGSI-LD OAS implementation. The goal is to
design a new NGSI-LD OAS for each new version of the NGSI-LD API specification (i.e. each new release of the ETSI
GS CIM 009 [1], [2] and [3]).

Figure 4.2.1-1: Design workflow for the NGSI-LD OAS

The development of the NGSI-LD OAS is incremental, using a stable version of it as the basis for the next version. The
starting point is a first release of the NGSI-LD OAS implemented for version 1.6.1 of the NGSI-LD API [1], which is
used as the baseline for the following releases. Thus, when defining the NGSI-LD OAS for a new version of the
NGSI-LD API, the strategy is to complement the design of the NGSI-LD OAS definition for the previous version of the
NGSI-LD API with the advances included within the specification document of the new version for the NGSI-LD API.

In the process of defining the OAS, ensuring a clear structure is essential.". The organization and description of the
NGSI-LD OAS structure is detailed in clause 4.2.3. Open-source tools used to facilitate the design and development of
the NGSI-LD OAS are presented in clause A.2 of Annex A.

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)11

4.2.2 Evaluation strategy

Once the NGSI-LD OAS is defined, it is necessary to evaluate it to ensure that it works as expected. This evaluation
consists of the following stages:

• validating the structure of the OAS, mainly verifying the definition of schemas and operations;

• verifying the capabilities of the OAS to interact with servers that implement the NGSI-LD API;

• generating stub code usable in external applications.

For the validation of the schemas and operation specified within the NGSI-LD OAS, different type of OpenAPI tools
have been used as represented in Figure 4.2.2-1 [i.1] and [i.2]. Some of the open-source tools to facilitate the evaluation
of the NGSI-LD OAS are presented in clause A.3 of Annex A. Figure 4.2.2-1 also shows the type of tools used to
facilitate the edition and auditability of OAS implementation that are useful for the design strategy. For the creation of
the NGSI-LD OAS, the developer carries out the design and evaluation processes continuously, using the
aforementioned utilities.

To verify if the API operations defined within the NGSI-LD OAS work, there are tools to navigate the OAS operations
(i.e. the OpenAPI Visualization Tool in Figure 4.2.2-1) and test them directly against servers that implement the
NGSI-LD API such as NGSI-LD compliant Context Brokers (i.e. the OpenAPI Interaction Tool in Figure 4.2.2-1).
Thus, these visualization and interaction tools help to verify the documentation and execution of the different NGSI-LD
API operations defined in the NGSI-LD OAS itself, checking the meaning and functionality of each of the parameters
and options specified by each operation and determining whether they are well established within the NGSI-LD OAS or
whether the NGSI-LD Context Broker implementations support them accordingly. Annex B provides examples of such
open-source tools that can be used to visualize and interact with the API resources defined within an OAS.

As part of the evaluation strategy, testing NGSI-LD OAS stub code generated for clients against NGSI-LD Context
Brokers compliant with the respective version of the NGSI-LD API is another approach to evaluate the capabilities of
the NGSI-LD OAS. Annex D shows examples for generating stub code from NGSI-LD OAS for NGSI-LD clients in
different programming languages, as well as different examples of use. Moreover, Figure 4.2.2-1 depicts a complete
evaluation workflow for testing the NGSI-LD OAS using client-side libraries automatically generated from the
OpenAPI specification itself. The workflow considers that developers might define OpenAPI schemas compliant with
the NGSI-LD OAS for their specific purpose applications in order to define particular NGSI-LD information models in
a programming code-based form that could be used directly from the generated NGSI-LD clients. Annex C provides
more information and guidelines about how to define custom schemas compliant with the NGSI-LD OAS.

Figure 4.2.2-1: Evaluation workflow for the NGSI-LD OAS

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)12

4.2.3 Organization and description of the OpenAPI Specification

4.2.3.0 Foreword

The NGSI-LD OAS structure has been defined following good practices guidelines for OpenAPI specifications [i.3]
particularized for versions 3.0.3 [4], [5] and 3.1.0 [6]. The OAS organization addresses, among other things, the
supported data model or schema, API operations, as well as its description and documentation. Furthermore, it is
important to include some API operation examples to help users understand how the API works. The following is a
summary of the main sections of the NGSI-LD OAS:

• openapi: It indicates the version of the OpenAPI specification used (e.g. version 3.0.3). Using this field tools
can check that the description correctly adheres to the specification.

• info: It provides general information about the NGSI-LD API, such as the title, version, description, license,
and contact information.

• externalDocs: This section indicates the description and URL of the ETSI GS CIM 009 [1] specification
document associated with the NGSI-LD API.

• servers: It provides the base URL where the NGSI-LD API is being served.

• paths: It describes all the endpoints of the NGSI-LD API, including their operations, different parameters, the
different client-side request bodies, and all possible server-side responses. Server and client code can be
generated from this description, along with its documentation.

• components: Often, multiple API operations have some common parameters or return the same response
structure. To avoid code duplication, the common definitions can be indicated in the global "components"
section and reference them. Then, the "components" section serves as a container for various reusable
definitions such as schemas (i.e. data models), parameters, responses, examples, and others. As the name of
the section suggests, it contains different components:

- headers: It provides common headers for all API operations.

- parameters: It provides common parameters for all API operations.

- requestBodies: It provides the body information to be included with create and update API operations
(i.e. POST, PUT, and PATCH HTTP operations). For example, when creating a resource using POST or
PUT, the request body usually contains the representation of the resource to be created.

- schemas: It allows the definition of the data model followed by the different data types considered
within the OAS.

- responses: It specifies common responses for all API operations. Each operation shall have at least one
response defined, usually a successful response.

Each of the main sections within the NGSI-LD OAS structure defined above will be detailed in the following clauses.

4.2.3.1 The openapi and info sections

The "openapi" section defines the version of the OpenAPI specification used. For this sample of the NGSI-LD OAS,
version 3.0.3 [4] and [5] has been selected. The most significant change between OpenAPI version 3.0.3 and the latest
available version, 3.1.0 [6], is that the latter allows defining JSON schemas for OpenAPI separately instead of defining
the schemas in the OpenAPI specification itself. For the distribution of NGSI-LD OAS releases for interaction,
development and stub code generation purposes, OpenAPI version 3.0.3 is used, since some of the tools used in the
design and evaluation phases of OpenAPI are not compatible with the latest version 3.1.0 [i.4]. Instead, for visualization
and documentation purposes with each NGSI-LD OAS release, OpenAPI version 3.1.0 is used. Within the "info"
section, the OpenAPI specification provides additional information. First, it defines the title of the OpenAPI
specification, the version of the NGSI-LD API that is covered (e.g. version 1.6.1), as well as a descriptive field. Apart
from that, it specifies as a contact the URL of the ETSI CIM committee and also a license in accordance with ETSI
legal matters. The following NGSI-LD OAS fragment shows the structure of these "openapi" and "info" sections for
OAS version 1.6.1.

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)13

openapi: 3.0.3
info:
 title: NGSI-LD OAS
 version: 1.6.1
 description: NGSI-LD OpenAPI Specification.
 contact:
 url: https://www.etsi.org/committee/cim
 license:
 name: BSD-3-Clause
 url: https://forge.etsi.org/legal-matters

4.2.3.2 The externalDocs section

The "externalDocs" section includes a description and accessible URL of the Group Specification document from ETSI
ISG CIM about the NGSI-LD API version covered by the NGSI-LD OAS. The following NGSI-LD OAS fragment
shows the structure of this "externalDoc" section for OAS version 1.6.1.

externalDocs:
 description: ETSI GS CIM 009 V1.6.1 cross-cutting Context Information Management (CIM); NGSI-LD API
 url: https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.06.01_60/gs_CIM009v010601p.pdf

4.2.3.3 The servers section

The "servers" section includes the URL and different variables (i.e. protocol, hostname, and port) to specify an endpoint
within the NGSI-LD OAS where the NGSI-LD API is served. The following NGSI-LD OAS fragment shows the
structure of this "servers" section.

servers:
 - url: '{protocol}://{hostname}:{port}/ngsi-ld/v1'
 variables:
 protocol:
 enum:
 - http
 - https
 default: https
 hostname:
 default: localhost
 port:
 default: '443'

4.2.3.4 The paths section

The "paths" section of the NGSI-OAS specifies each of the endpoints of the NGSI-LD API with their different type of
operations. Each operation defines requirements as established by the NGSI-LD API. For each operation, descriptive
information is initially included, adding its summarized functionality, an operation identifier, and a tag to classify the
type of operation (as stated by clause 4.3.5 of ETSI GS CIM 009 [3]). In addition, the operations define their own query
and request header parameters, request bodies including descriptions and particular content, and query responses
including descriptions, header, and particular content. In some situations, the operations define their own request body
content and their own response content, but other times they reference corresponding definitions within the
"requestBody" and "responses" subsections of the NGSI-LD OAS (for more information see clause 4.2.3.5). The
following NGSI-LD OAS fragment shows as an example the structure of the HTTP POST operation to create an
NGSI-LD Entity.

/entities:
 post:
 tags:
 - Context Information Provision
 summary: |
 Entity creation
 description: |
 5.6.1 Create Entity

 This operation allows creating a new NGSI-LD Entity.
 operationId: createEntity
 parameters:
 # Local Query param
 - $ref: '#/components/parameters/Query.local'
 # Request headers

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)14

 - $ref: '#/components/parameters/Headers.Link'
 - $ref: '#/components/parameters/Headers.ngsildTenant'
 requestBody:
 description: |
 Payload body in the request contains a JSON-LD object which represents the entity that is to be
 created.
 content:
 application/json:
 schema:
 allOf:
 - $ref: '#/components/schemas/Entity'
 - required:
 - id
 - type
 application/json+ld:
 schema:
 allOf:
 - $ref: '#/components/schemas/Entity'
 - type: object
 properties:
 '@context':
 $ref: '#/components/schemas/LdContext'
 - required:
 - id
 - type
 - '@context'
 responses:
 '201':
 description: |
 The HTTP response shall include a "Location" HTTP header that contains
 the resource URI of the created entity resource.
 headers:
 Location:
 $ref: '#/components/headers/Location'
 NGSILD-Tenant:
 $ref: '#/components/headers/NGSILD-Tenant'
 '207':
 headers:
 Location:
 $ref: '#/components/headers/Location'
 NGSILD-Tenant:
 $ref: '#/components/headers/NGSILD-Tenant'
 $ref: '#/components/responses/MultiStatus.BatchOperationResult'
 '400':
 $ref: '#/components/responses/BadRequest'
 '409':
 $ref: '#/components/responses/Conflict'
 '422':
 $ref: '#/components/responses/Unprocessable'

4.2.3.5 The components section

4.2.3.5.0 Foreword

The "components" section of the NGSI-LD OAS includes common definitions of different components considered
within the different operations. This "components" section includes those common headers, parameters, schemas,
request bodies, and responses that can be referenced by the operations defined within the NGSI-LD OAS.

4.2.3.5.1 The headers subsection

The "headers" subsection provides common headers defined for the responses considered within the operations of the
NGSI-LD OAS. Each header specifies a description and a particular schema with data type and format. The following
NGSI-LD OAS fragment shows as an example the structure of the NGSILD-Tenant response header, which specifies
that responses include a string to identify the tenant to which the NGSI-LD HTTP operation is targeted.

NGSILD-Tenant:
 description: |
 6.3.14 Tenant specification. The tenant to which the NGSI-LD HTTP operation is targeted.
 schema:
 type: string

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)15

4.2.3.5.2 The parameters subsection

The "parameters" subsection provides common query, path, and header parameters considered within the operations of
the NGSI-LD OAS. Mainly, each parameter specifies a common name, a particular description, the schema with data
type and format, additional serialization rules by means of the "style" and "explode" keywords, and the "required" field
to mark a parameter as required or not. The "in" keyword is a placeholder to indicate the type of parameter to be defined
(i.e. query, path, or header parameter). The following NGSI-LD OAS fragment shows as an example the structure of
different query, path, and header parameters.

Query.local:
 name: local
 in: query
 description: |
 6.3.18 Limiting Distributed Operations. If local=true then no Context Source Registrations shall be
 considered as matching to avoid cascading distributed operations (see clause 4.3.6.4).
 style: form
 explode: true
 schema:
 type: boolean
 required: false

Path.entityId:
 name: entityId
 in: path
 description: Id (URI) of the entity to be retrieved.
 schema:
 $ref: '#/components/schemas/Path'
 required: true

Headers.Link:
 name: Link
 in: header
 description: |
 6.3.5 JSON-LD @context resolution

 In summary, from a developer's perspective, for POST, PATCH and PUT operations,
 if MIME type is "application/ld+json", then the associated @context shall be provided
 only as part of the request payload body. Likewise, if MIME type is "application/json",
 then the associated @context shall be provided only by using the JSON-LD Link header.
 No mixes are allowed, i.e. mixing options shall result in HTTP response errors.
 Implementations should provide descriptive error messages when these situations arise.

 In contrast, GET and DELETE operations always take their input @context from the JSON-LD Link Header.
 explode: true
 schema:
 type: string
 format: uri

4.2.3.5.3 The requestBodies subsection

The "requestBodies" subsection provides the structure of the common request bodies for operations, with their
corresponding information and resources to be used. Each request body allows to specify its schema structure
depending on the MIME type (i.e. "application/json", "application/ld+json", or "application/geo+json"). In some
situations, the request bodies define their own schema structure, but other times they combine it with references to
schema definitions within the general "schemas" subsection of the NGSI-LD OAS. The following NGSI-LD OAS
fragment shows as an example the structure of the Subscription request body. Depending on the MIME type, the
Subscription request body define the schema structure, combining references to schemas defined within the "schemas"
subsection, such as Subscription and LdContext, with additional controls of required parameters specified along the
referenced schemas. For more information about the definition of schemas see clause 4.2.3.5.4.

Subscription:
 content:
 application/json:
 schema:
 allOf:
 - $ref: '#/components/schemas/Subscription'
 - required:
 - type
 - notifications
 application/json+ld:
 schema:
 allOf:
 - $ref: '#/components/schemas/Subscription'
 - type: object

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)16

 properties:
 '@context':
 $ref: '#/components/schemas/LdContext'
 - required:
 - type
 - notifications
 - '@context'

4.2.3.5.4 The schemas subsection

The "schemas" subsection provides the common data models followed by the different data types considered within the
NGSI-LD OAS. Each schema defines the data model properties in terms of data type, data format, and description. The
properties can also specify additional controls such as default values, regular expressions, or maximum and minimum
values. In addition, properties can reference another schema already defined within the "schemas" subsection of the
NGSI-LD OAS to specify their own characteristics. The following NGSI-LD OAS fragment shows as an example the
structure of the Entity schema. It specifies the data model of an NGSI-LD Entity concept, including the different
properties with their own particularities. In this case, the Entity schema includes the "additionalProperties" field for
adding schemas defined for the different NGSI-LD Attributes (i.e. NGSI-LD Property and NGSI-LD Relationship
concepts) considered within a NGSI-LD Entity. The "oneOf" keyword is used to specify that each additional property
shall match exactly one of the defined subschemas.

Entity:
 description: |
 5.2.4 NGSI-LD Entity.
 type: object
 properties:
 id:
 description: |
 Entity id.
 type: string
 format: uri
 type:
 description: |
 Entity Type(s). Both short hand string(s) (type name) or URI(s) are allowed.
 oneOf:
 - type: string
 - type: array
 items:
 type: string
 scope:
 description: |
 Scope.
 oneOf:
 - type: string
 - type: array
 items:
 type: string
 location:
 description: |
 Default geospatial Property of an entity. See clause 4.7.
 $ref: '#/components/schemas/GeoProperty'
 observationSpace:
 $ref: '#/components/schemas/GeoProperty'
 operationSpace:
 $ref: '#/components/schemas/GeoProperty'
 # Clause 5.2.2 Common members. System-generated
 createdAt:
 allOf:
 - $ref: '#/components/schemas/CreatedAt'
 readOnly: true
 modifiedAt:
 allOf:
 - $ref: '#/components/schemas/ModifiedAt'
 readOnly: true
 deletedAt:
 allOf:
 - $ref: '#/components/schemas/DeletedAt'
 readOnly: true
 additionalProperties:
 oneOf:
 - $ref: '#/components/schemas/Property'
 - type: array
 items:
 $ref: '#/components/schemas/Property'
 - $ref: '#/components/schemas/Relationship'
 - type: array
 items:

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)17

 $ref: '#/components/schemas/Relationship'
 - $ref: '#/components/schemas/GeoProperty'
 - type: array
 items:
 $ref: '#/components/schemas/GeoProperty'
 - $ref: '#/components/schemas/LanguageProperty'
 - type: array
 items:
 $ref: '#/components/schemas/LanguageProperty'

4.2.3.5.5 The responses subsection

The "responses" subsection provides the definition of the structure of the common responses considered within the
NGSI-LD OAS. Each response allows to specify a description, the specific headers, as well as additional content with
its schema structure depending on the MIME type. For the declaration of headers, each response header references to
the related one already defined within the general "headers" subsection of the NGSI-LD OAS. In a similar way, the
schemas defined within the content of the responses refer to schemas already defined within the general "schemas"
subsection of the NGSI-LD OAS. The following NGSI-LD OAS fragment shows as an example the structure of the
BadRequest response. For each MIME type, the BadRequest response references a ProblemDetails schema that
provides additional error details as payload of the operation response in accordance with IETF RFC 7807 [10]. In
addition, this response includes a reference to the NGSILD-Tenant header to optionally specify in the response the
tenant to which the NGSI-LD HTTP operation was targeted, if it was previously specified in the regarding operation
request.

BadRequest:
 description: |
 It is used to indicate that the request or its content is incorrect,
 see clause 6.3.2. In the returned ProblemDetails structure, the "detail"
 attribute should convey more information about the error.
 headers:
 NGSILD-Tenant:
 $ref: '#/components/headers/NGSILD-Tenant'
 NGSILD-Warning:
 $ref: '#/components/headers/NGSILD-Warning'
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/ProblemDetails'

4.3 OpenAPI Specification repository
The NGSI-LD OAS defined by ETSI ISG CIM is available in a repository of the CIM GitLab organization within the
official ETSI Forge [i.5]. In this repository different artifacts for the definition of the NGSI-LD OAS can be found.

The main normative artifacts are the NGSI-LD OAS files in YAML format for each version of the NGSI-LD API [7],
[8] and [9].

Moreover, a folder containing the JSON-LD core @context defined by the NGSI-LD API, examples of compatible
NGSI-LD payloads for multiple types of NGSI-LD operations, as well as examples for defining the OpenAPI schemas
compliant with the NGSI-LD OAS can be found in the repository.

Different releases of the NGSI-LD OAS should be managed in the repository using git tags. Each tag identifies a stable
version of the NGSI-LD OAS. The name of the tag matches the version of the NGSI-LD API that the OAS is
implementing. Table 4.3-1 shows the correspondence between versions of the NGSI-LD API and releases of the
NGSI-LD OAS, including the reference to the access URL for the NGSI-LD OAS release available within each
repository tag. It should also be noted that different branches are used in the repository for the development phase of
each release of the NGSI-LD OAS. Whenever a new version of the NGSI-LD API is defined, a new branch will be
created to develop the corresponding OAS and therefore a new tag will be created when the specification is stable.
Additionally, the main branch of the repository will match the latest available version of the NGSI-LD OAS.

Each release of NGSI-LD OAS provides an option for use in visualization tools based on OpenAPI version 3.1.0 and
another option for testing and development purposes based on OpenAPI version 3.0.3. This is because most testing and
development tools for OpenAPI specifications, such as interaction and stub code generation tools, are not yet supported
in the latest version 3.1.0.

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)18

Table 4.3-1: NGSI-LD OAS releases

NGSI-LD API version NGSI-LD OAS release
NGSI-LD API v1.6.1 [1] NGSI-LD OAS v1.6.1 [7]
NGSI-LD API v1.7.1 [2] NGSI-LD OAS v1.7.1 [8]
NGSI-LD API v1.8.1 [3] NGSI-LD OAS v1.8.1 [9]

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)19

Annex A (informative):
Recommended tools for the design and evaluation of
OpenAPI Specification

A.1 Introduction
This annex is informative and is intended to present some open-source tools suggested by the OpenAPI Initiative [i.1],
[i.2], that are useful to facilitate the design and evaluation of the NGSI-LD OAS.

A.2 Tools for the design of OpenAPI Specification
To facilitate the design and development of OpenAPI specifications, the OpenAPI Swagger Editor [i.7] extension in
Visual Studio Code [i.6] is recommended. This extension is based on the official Swagger Editor tool, which is an open-
source API editor to design, describe, and document APIs with the OpenAPI specifications [i.7]. The features of this
extension include SwaggerUI [i.8] and ReDoc [i.9] preview, schema enforcement, code navigation, definition links,
static security analysis, and more. SwaggerUI allows users to visualize and interact with the API's resources without
having any of the implementation logic in place. ReDoc is a utility to easily generate and preview OpenAPI
documentation. Annex B shows how SwaggerUI and ReDoc can be used to navigate the NGSI-LD OAS. In addition,
for generating the documentation of the OpenAPI, there are alternative solutions such as Scalar [i.10] and
OpenDocumenter [i.11].

A.3 Tools for the evaluation of OpenAPI Specification
For the evaluation of OpenAPI specifications, different utilities are recommended by the OpenAPI Initiative [i.1]. The
OpenAPI Swagger Editor [i.7] Extension, which is aforementioned in clause A.2, integrates an API Contract Security
Audit [i.12] tool to identify and fix issues, as well as to check the quality of the OAS. In addition, for extra validation of
the schemas and operations within the OpenAPI, there are different tools such as Swagger 2.0 and OpenAPI 3.0
parser/validator [i.13], and Express OpenAPI Validator [i.14].

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)20

Annex B (informative):
OpenAPI visualization and interaction tools

B.1 Introduction
This annex is informative and is intended to show how the SwaggerUI [i.8] and ReDoc [i.9] tools can be used to
navigate the NGSI-LD OAS for interaction and visualization purposes.

B.2 SwaggerUI
SwaggerUI [i.8] allows users to visualize and interact with the API's resources without having any of the
implementation logic in place. It is automatically generated from an OAS, with a visual documentation making it easy
for backend implementation and client-side consumption. Figure B.2-1 represents, as an example, a simple snapshot of
the GUI offered by SwaggerUI for the release 1.7.1 of NGSI-LD OAS [i.15]. SwaggerUI currently only supports
OpenAPI version 3.0.3, but it may be the most convenient solution to learn about the main options of the different
operations defined within the NGSI-LD OAS and to be able to interact directly with the API of an NGSI-LD server.

Figure B.2-1: SwaggerUI [i.8] for the NGSI-LD OAS

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)21

B.3 ReDoc
ReDoc [i.9] is an alternative open-source tool for generating documentation from OpenAPI specifications.
Basically, ReDoc API offers a GUI with a navigation menu to facilitate both the documentation and examples of
requests and responses for operations considered within an OAS. Figure B.3-1 represents, as an example, a simple
snapshot of the GUI offered by ReDoc for the release 1.7.1 of NGSI-LD OAS [i.16]. ReDoc supports OpenAPI
version 3.1.0 and is the most convenient and recommended tool for viewing the NGSI-LD OAS documentation in a
more readable way.

Figure B.3-1: ReDoc [i.9] for the NGSI-LD OAS

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)22

Annex C (informative):
Guidelines for defining custom schemas compliant with the
OpenAPI Specification

C.1 Introduction
This annex is informative and is intended to show how to define custom OpenAPI schemas that are compatible with the
NGSI-LD OAS. It allows developers to define specific-purpose applications where they model their own OpenAPI
schemas, so they are compatible with the NGSI-LD meta-model defined within the NGSI-LD OAS. In this way, if the
user has an NGSI-LD API client in a particular programming language, the defined custom schemas facilitate the
availability of the resulting NGSI-LD information models as programming code to be used within the NGSI-LD API
client and instantiate it accordingly in a corresponding Context Broker. The schemas represented in this annex are
exemplified for a vehicular use case.

C.2 Example of OpenAPI schemas for vehicular use case
The following examples show customizable OpenAPI schemas compliant with the NGSI-LD OAS metamodel schemas
for a use case to model information about vehicles by following the sample information model proposed in ETSI
GS CIM 009 [3].

Figure C.2-1 depicts the high-level representation using a UML diagram of the proposed NGSI-LD information model
for the vehicular use case according to the OpenAPI schemas specified below. The "*" character represents required
NGSI-LD Properties of the NGSI-LD Entities. There are different types of NGSI-LD Relationships that have one-to-
one cardinality (0..1), since they represent relationships with only one possible instance of the target NGSI-LD Entity.
Meanwhile, there are NGSI-LD Relationships that have one-to-many cardinality (0..N), as they represent relationships
with one or more possible instances of the target NGSI-LD Entity. All these NGSI-LD information model conventions
are included in the OpenAPI schemas as mentioned above.

Figure C.2-1: UML diagram about a high-level representation of
an NGSI-LD information model for vehicular use case

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)23

The first example shows custom OpenAPI schemas defined within a YAML file for an NGSI-LD Entity named Vehicle
and its different attributes (i.e. BrandName, Street, IsParked, Category, TyreTreadDepths, Passengers, and Route)
which are compliant with the different related schemas defined within the NGSI-LD OAS. Each custom schema
references the NGSI-LD OAS base schema (i.e. Entity, Property, Relationship, ListProperty, ListRelationship,
LanguageProperty, VocabProperty, and GeoProperty) and incorporates new properties in addition to descriptive
information. The Vehicle schema adds that the Entity type field has to be Vehicle and that it has to include different
properties that reference the schemas also defined, indicating which fields are required for the construction of the
NGSI-LD Entity of type Vehicle.

Between the schemas of the attributes for Vehicle there is IsParked derived for an NGSI-LD Relationship to point out
the object of an NGSI-LD Entity of type OffStreetParking in order to indicate the parking where is the vehicle. This
IsParked schema also references another schema named ProvidedBy to specify an additional attribute which is an
NGSI-LD Relationship to point out the object of an NGSI-LD Entity of type Person in order to indicate the person who
provides the parking spot. Additional schemas such as Passengers and Route exist to define custom NGSI-LD
Relationships to indicate the list of persons who are passengers of the vehicle and the list of cities which are covered on
the vehicle's route. This type of schemas dedicated to NGSI-LD Relationships add as a required property an object field
typically considered in an NGSI-LD Relationship that has to be of type string in order to indicate unique Entity
identifiers of the target NGSI-LD Entities.

Additionally, there are custom schemas for other Vehicle attributes such as BrandName, Street, Category, and
TyreTreadDepths, which reference schemas for NGSI-LD Property, NGSI-LD LanguageProperty, NGSI-LD
VocabProperty, and NGSI-LD ListProperty relatively. Each of these custom schemas adds as required property the data
type and its reserved name depending on the NGSI-LD OAS base schema it references.

openapi: 3.0.3
info:
 title: Example schemas for vehicle information
 version: 0.0.1
 description: |
 Example schemas compliant with the NGSI-LD OAS metamodel according to ETSI GS CIM 009.
paths: {}
components:
 schemas:
 Vehicle:
 description: |
 NGSI-LD Entity Type that represents a vehicle.
 allOf:
 - $ref: https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml#/components/schemas/Entity'
 - type: object
 properties:
 type:
 description: NGSI-LD Entity identifier. It has to be Vehicle.
 type: string
 enum:
 - Vehicle
 default: Vehicle
 brandName:
 $ref: '#/components/schemas/BrandName'
 street:
 $ref: '#/components/schemas/Street'
 isParked:
 $ref: '#/components/schemas/IsParked'
 category:
 $ref: '#/components/schemas/Category'
 tyreTreadDepths:
 $ref: '#/components/schemas/TyreTreadDepths'
 passengers:
 $ref: '#/components/schemas/Passengers'
 route:
 $ref: '#/components/schemas/Route'
 - required:
 - type
 - brandName
 BrandName:
 description: |
 NGSI-LD Property Type. The vehicle brand name.
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml#/components/schemas/Property'
 - type: object
 properties:
 value:
 type: string
 required:
 - value
 additionalProperties: false
 Street:
 description: |
 NGSI-LD LanguageProperty Type. The vehicle street.
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml
 #/components/schemas/LanguageProperty'
 - type: object
 properties:
 languageMap:

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)24

 type: object
 required:
 - languageMap
 additionalProperties: false
 IsParked:
 additionalProperties: false
 description: |
 NGSI-LD Relationship type to identify the parking where is the vehicle (i.e. the identifier of an NGSI-LD Entity
 of type OffStreetParking).
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml
 #/components/schemas/Relationship'
 - type: object
 properties:
 object:
 type: string
 format: uri
 objectType:
 type: string
 format: uri
 providedBy:
 $ref: '#/components/schemas/ProvidedBy'
 required:
 - object
 Category:
 description: |
 NGSI-LD VocabProperty Type. The vehicle category.
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml
 #/components/schemas/VocabProperty'
 - type: object
 properties:
 vocab:
 type: string
 required:
 - vocab
 additionalProperties: false
 TyreTreadDepths:
 description: |
 NGSI-LD ListProperty Type. The vehicle tyre tread depths.
 allOf:
 - $ref: ''https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml
 #/components/schemas/ListProperty'
 - type: object
 properties:
 valueList:
 items:
 type: string
 required:
 - valueList
 additionalProperties: false
 Passengers:
 description: |
 NGSI-LD Relationship type to identify the passengers of the vehicle (i.e. the identifier of an NGSI-LD Entity of
 type Person).
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml
 #/components/schemas/Relationship'
 - type: object
 properties:
 object:
 type: array
 items:
 type: string
 format: uri
 objectType:
 type: string
 format: uri
 required:
 - object
 additionalProperties: false
 Route:
 description: |
 NGSI-LD ListRelationship type to identify the route of the vehicle (i.e. the list of identifiers of NGSI-LD
 Entities of type City).
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml
 #/components/schemas/ListRelationship'
 - type: object
 properties:
 objectList:
 type: array
 items:
 type: object
 format: uri
 objectType:
 type: string
 format: uri
 required:
 - objectList
 additionalProperties: false
 ...

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)25

Similarly, a second example shows in another fragment of the previous YAML file other custom OpenAPI schemas for
an NGSI-LD Entity named OffStreetParking and its attributes (i.e. AvailableSpotNumber, TotalSpotNumber, and
OperatedBy) which are compliant with the Entity, Property, and Relationship related schemas defined within the
NGSI-LD OAS. Again, each custom schema references the NGSI-LD OAS base schema and incorporates additional
information. The OffStreetParking schema adds that the Entity type has to be OffStreetParking and includes different
properties that reference the related schemas of its attributes, indicating which fields are required. The
AvailableSpotNumber and TotalSpotNumber schemas represent NGSI-LD Properties of the NGSI-LD Entity of type
OffStreetParking, adding that the value property has to be of type number, and the AvailableSpotNumber schema
additionally includes a reference to the Reliability schema to add an additional NGSI-LD Property of type number as
well. In addition, the OperatedBy schema represents an NGSI-LD Relationship of the NGSI-LD Entity of type
OffStreetParking to point out the object of an NGSI-LD Entity of type Company to indicate the parking company.

components:
 schemas:
 ...
 OffStreetParking:
 description: |
 NGSI-LD Entity Type that represents a parking.
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml
 #/components/schemas/Entity'
 - type: object
 properties:
 type:
 description: NGSI-LD Entity identifier. It has to be OffStreetParking.
 type: string
 enum:
 - OffStreetParking
 default: OffStreetParking
 name:
 $ref: '#/components/schemas/Name'
 availableSpotNumber:
 $ref: '#/components/schemas/AvailableSpotNumber'
 totalSpotNumber:
 $ref: '#/components/schemas/TotalSpotNumber'
 operatedBy:
 $ref: '#/components/schemas/OperatedBy'
 - required:
 - type
 - name
 AvailableSpotNumber:
 description: |
 NGSI-LD Property Type. The available spot number within a parking.
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml#/components/schemas/Property'
 - type: object
 properties:
 value:
 type: number
 reliability:
 $ref: '#/components/schemas/Reliability'
 providedBy:
 $ref: '#/components/schemas/ProvidedBy'
 required:
 - value
 additionalProperties: false
 Reliability:
 description: |
 NGSI-LD Property Type. The reliability of the available spot number within a parking.
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml#/components/schemas/Property'
 - type: object
 properties:
 value:
 type: number
 required:
 - value
 additionalProperties: false
 TotalSpotNumber:
 description: |
 NGSI-LD Property Type. The total spot number within a parking.
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml#/components/schemas Property'
 - type: object
 properties:
 value:
 type: number
 required:
 - value
 additionalProperties: false
 OperatedBy:
 description: |
 NGSI-LD Relationship type to identify the company that operates the parking (i.e. the identifier of an NGSI-LD
 Entity of type Company).
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml
 #/components/schemas/Relationship'
 - type: object
 properties:
 object:

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)26

 type: string
 required:
 - object
 additionalProperties: false
 ...

Similarly, a third example shows in another fragment of the YAML file other custom OpenAPI schemas for NGSI-LD
Entities named Person, City, Camera, and Company. These NGSI-LD Entities only incorporate references to a schema
Name which defines an NGSI-LD Property to provide a name for them.

components:
 schemas:
 ...
 Person:
 description: |
 NGSI-LD Entity Type that represents a person.
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml#/components/schemas/Entity'
 - type: object
 properties:
 type:
 description: NGSI-LD Entity identifier. It has to be Person.
 type: string
 enum:
 - Person
 default: Person
 name:
 $ref: '#/components/schemas/Name'
 - required:
 - type
 - name
 City:
 description: |
 NGSI-LD Entity Type that represents a city.
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml#/components/schemas/Entity'
 - type: object
 properties:
 type:
 description: NGSI-LD Entity identifier. It has to be City.
 type: string
 enum:
 - City
 default: City
 name:
 $ref: '#/components/schemas/Name'
 - required:
 - type
 - name
 Camera:
 description: |
 NGSI-LD Entity Type that represents a camera.
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml#/components/schemas/Entity'
 - type: object
 properties:
 type:
 description: NGSI-LD Entity identifier. It has to be Camera.
 type: string
 enum:
 - Camera
 default: Camera
 name:
 $ref: '#/components/schemas/Name'
 - required:
 - type
 - name
 Company:
 description: |
 NGSI-LD Entity Type that represents a company.
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml#/components/schemas/Entity'
 - type: object
 properties:
 type:
 description: NGSI-LD Entity identifier. It has to be Company.
 type: string
 enum:
 - Company
 default: Company
 name:
 $ref: '#/components/schemas/Name'
 - required:
 - type
 - name
 ...

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)27

Finally, a last example shows in another fragment of the same YAML file other custom OpenAPI schemas for an
NGSI-LD Property named Name and an NGSI-LD Relationship named ProvidedBy which are used by other customize
schemas aforementioned above.

components:
 schemas:
 ...
 Name:
 description: |
 NGSI-LD Property Type. The natural name of an entity.
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml#/components/schemas/Property'
 - type: object
 properties:
 value:
 type: string
 required:
 - value
 additionalProperties: false
 ProvidedBy:
 additionalProperties: false
 description: |
 NGSI-LD Relationship type to identify the entity that provides something (i.e. the identifier of an NGSI-LD Entity
 of particular type).
 allOf:
 - $ref: 'https://forge.etsi.org/rep/cim/ngsi-ld-openapi/-/raw/master/ngsi-ld-api.yaml
 #/components/schemas/Relationship'
 - type: object
 properties:
 object:
 type: string
 format: uri
 required:
 - object
 ...

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)28

Annex D (informative):
Stub code generation and examples of use

D.1 Introduction
This annex is informative and is intended to show the utility of the NGSI-LD OAS to generate stub code for different
programming languages. Examples are provided for generating and using the code for NGSI-LD API clients.

D.2 Example of Python-based NGSI-LD client
This clause shows how to use a Python-based NGSI-LD API client-side library generated from NGSI-LD OAS by using
the OpenAPI Generator [i.17] tool from OpenAPI Initiative. [i.1]

Figure D.2-1 depicts in a diagram the instantiation of a resulting NGSI-LD information model for the vehicular use case
by following the sample information model proposed in ETSI GS CIM 009 [3]. For each NGSI-LD Entity Type
represented, there is an identifier specified in the form of a URN. The NGSI-LD unit codes for representing values of
temperature in degrees Celsius and percent of humidity are extracted from UNECE/CEFACT Common Codes [11] for
specifying the unit of measurement as specified by ETSI GS CIM 009 [3].

Figure D.2-1: Diagram about the instantiation representation of
a sample NGSI-LD information model for vehicular use case

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)29

Below is one example of Python code snippet that use a generated Python-based NGSI-LD API client library for
creating samples of NGSI-LD Entities of type Vehicle, OffStreetParking, City, Person, Company, and Camera using
custom OpenAPI schemas previously defined and considered in Annex C. In a similar way than in the IoT use case,
using these custom schemas, the OpenAPI Generator [i.17] tool generates programming code in form of Python classes
that could be used with the NGSI-LD API client in order to build Python objects and instantiate the resulting NGSI-LD
information models. In the following two examples, it is considered that both an implementation of the NGSI-LD
context broker and a service that stores the NGSI-LD @context vocabulary in a catalog are available and accessible
locally.

import yaml
import os
import ngsi_ld_client

Importing Python library modules to use the OpenAPI schemas defined for the vehicular use case:
from ngsi_ld_models.models.vehicle import Vehicle
from ngsi_ld_models.models.off_street_parking import OffStreetParking
from ngsi_ld_models.models.available_spot_number import AvailableSpotNumber
from ngsi_ld_models.models.person import Person
from ngsi_ld_models.models.camera import Camera
from ngsi_ld_models.models.company import Company
from ngsi_ld_models.models.city import City
from ngsi_ld_models.models.is_parked import IsParked
from ngsi_ld_models.models.passengers import Passengers
from ngsi_ld_models.models.route import Route
from ngsi_ld_models.models.provided_by import ProvidedBy
from ngsi_ld_models.models.operated_by import OperatedBy

Importing Python library modules to use the self-defined OpenAPI schemas within the NGSI-LD OAS:
from ngsi_ld_client.models.entity import Entity
from ngsi_ld_models.models.geo_property import GeoProperty
from ngsi_ld_models.models.geometry_point import GeometryPoint
from ngsi_ld_models.models.geometry import Geometry
from ngsi_ld_client.models.query_entity200_response_inner import QueryEntity200ResponseInner

Importing Python library modules to use the NGSI-LD API client:
from ngsi_ld_client.api_client import ApiClient as NGSILDClient
from ngsi_ld_client.configuration import Configuration as NGSILDConfiguration
from ngsi_ld_client.exceptions import ApiException

import time
import numpy as np

NGSI-LD Context Broker
BROKER_URI = os.getenv("BROKER_URI", "http://localhost:9090/ngsi-ld/v1")

Context catalog service
CONTEXT_CATALOG_URI = os.getenv("CONTEXT_CATALOG_URI", "http://context-catalog:8080/context.jsonld")

Init NGSI-LD Client
configuration = NGSILDConfiguration(host=BROKER_URI)
configuration.debug = True
ngsi_ld = NGSILDClient(configuration=configuration)

ngsi_ld.set_default_header(
 header_name="Link",
 header_value='<{0}>; '
 'rel="http://www.w3.org/ns/json-ld#context"; '
 'type="application/ld+json"'.format(CONTEXT_CATALOG_URI)
)

ngsi_ld.set_default_header(
 header_name="Accept",
 header_value="application/json"
)

Declaring API for Context Information Provision operations:
api_instance = ngsi_ld_client.ContextInformationProvisionApi(ngsi_ld)

parking_company = Company(
 id="urn:ngsi-ld:Company:BigParkingCorp",
 type="Company",
 name={"type":"Property", "value": "BigParkingCorp"}
)

entity_input = parking_company.to_dict()

query_entity_input = QueryEntity200ResponseInner.from_dict(entity_input)

try:
 # Create NGSI-LD entity of type Company: POST /entities
 api_instance.create_entity(query_entity200_response_inner=query_entity_input)

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)30

except Exception as e:
 print("Exception when calling ContextInformationProvisionApi->create_entity: %s\n" % e)

parking_camera = Camera(
 id="urn:ngsi-ld:Camera:C1",
 type="Camera",
 name={"type":"Property", "value": "C1"}
)

entity_input = parking_camera.to_dict()

query_entity_input = QueryEntity200ResponseInner.from_dict(entity_input)

try:
 # Create NGSI-LD entity of type Camera: POST /entities
 api_instance.create_entity(query_entity200_response_inner=query_entity_input)
except Exception as e:
 print("Exception when calling ContextInformationProvisionApi->create_entity: %s\n" % e)

availableSpotNumber=AvailableSpotNumber(
 observed_at=observed_at,
 value=121,
 reliability={"type":"Property", "value":0.7},
 providedBy=ProvidedBy.from_dict({"type": "Relationship", "object": "urn:ngsi-ld:Camera:C1"})
)

parking_location = GeometryPoint(
 type="Point",
 coordinates=[-8.5, 41.2]
)

parking_location=Geometry.from_dict(parking_location.to_dict())

geoproperty_location = GeoProperty(
 type="GeoProperty",
 value=parking_location
)

parking=OffStreetParking(
 id="urn:ngsi-ld:OffStreetParking:Downtown1",
 type="OffStreetParking",
 location=GeoProperty.from_dict({"type":"GeoProperty", "value":parking_location.to_dict()}),
 name={"type":"Property", "value":"Top Parking"},
 operatedBy=OperatedBy.from_dict({"type":"Relationship", "object": "urn:ngsi-
 ld:Company:BigParkingCorp"}),
 availableSpotNumber=availableSpotNumber,
 totalSpotNumber={"type":"Property", "value": 200}
)

entity_input = parking.to_dict()

query_entity_input = QueryEntity200ResponseInner.from_dict(entity_input)

try:
 # Create NGSI-LD entity of type OffStreetParking: POST /entities
 api_instance.create_entity(query_entity200_response_inner=query_entity_input)
except Exception as e:
 print("Exception when calling ContextInformationProvisionApi->create_entity: %s\n" % e)

person_bob=Person(
 id="urn:ngsi-ld:Person:Bob",
 type="Person",
 name={"type":"Property", "value": "Bob"}
)

entity_input = person_bob.to_dict()

query_entity_input = QueryEntity200ResponseInner.from_dict(entity_input)

try:
 # Create NGSI-LD entity of type Person: POST /entities
 api_instance.create_entity(query_entity200_response_inner=query_entity_input)
except Exception as e:
 print("Exception when calling ContextInformationProvisionApi->create_entity: %s\n" % e)

person_alice=Person(
 id="urn:ngsi-ld:Person:Bob",
 type="Person",
 name={"type":"Property", "value": "Alice"}
)

entity_input = person_alice.to_dict()

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)31

query_entity_input = QueryEntity200ResponseInner.from_dict(entity_input)

try:
 # Create NGSI-LD entity of type Person: POST /entities
 api_instance.create_entity(query_entity200_response_inner=query_entity_input)
except Exception as e:
 print("Exception when calling ContextInformationProvisionApi->create_entity: %s\n" % e)

city_antwerp=City(
 id="urn:ngsi-ld:City:Antwerp",
 type="City",
 name={"type":"Property", "value": "Antwerp"}
)

entity_input = city_antwerp.to_dict()

query_entity_input = QueryEntity200ResponseInner.from_dict(entity_input)

try:
 # Create NGSI-LD entity of type City: POST /entities
 api_instance.create_entity(query_entity200_response_inner=query_entity_input)
except Exception as e:
 print("Exception when calling ContextInformationProvisionApi->create_entity: %s\n" % e)

city_rotterdam=City(
 id="urn:ngsi-ld:City:Rotterdam",
 type="City",
 name={"type":"Property", "value": "Rotterdam"}
)

entity_input = city_rotterdam.to_dict()

query_entity_input = QueryEntity200ResponseInner.from_dict(entity_input)

try:
 # Create NGSI-LD entity of type City: POST /entities
 api_instance.create_entity(query_entity200_response_inner=query_entity_input)
except Exception as e:
 print("Exception when calling ContextInformationProvisionApi->create_entity: %s\n" % e)

city_amsterdam=City(
 id="urn:ngsi-ld:City:Amsterdam",
 type="City",
 name={"type":"Property", "value": "Amsterdam"}
)

entity_input = city_amsterdam.to_dict()

query_entity_input = QueryEntity200ResponseInner.from_dict(entity_input)

try:
 # Create NGSI-LD entity of type City: POST /entities
 api_instance.create_entity(query_entity200_response_inner=query_entity_input)
except Exception as e:
 print("Exception when calling ContextInformationProvisionApi->create_entity: %s\n" % e)

isParked = IsParked(
 type="Relationship",
 object="urn:ngsi-ld:OffStreetParking:Downtown1",
 objectType="OffStreetParking",
 providedBy=ProvidedBy.from_dict({"type": "Relationship", "object": "urn:ngsi-ld:Person:Bob"}),
)

passengers = Passengers(
 type="Relationship",
 object=["urn:ngsi-ld:Person:Alice", "urn:ngsi-ld:Person:Bob"],
 objectType="Person",
)

route = Route(
 type="ListRelationship",
 objectList=[{"object": "urn:ngsi-ld:City:Antwerp"}, {"object": "urn:ngsi-ld:City:Rotterdam"},
 {"object": "urn:ngsi-ld:City:Amsterdam"}],
 objectType="City"
)

vehicle = Vehicle(
 id="urn:ngsi-ld:Vehicle:A4567",
 type="Vehicle",
 brandName={"type":"Property", "value":"Mercedes"},
 street={"type":"LanguageProperty", "languageMap": {"fr": "Grand Place", "nl": "Grote Markt"}},
 isParked=isParked,

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)32

 category={"type":"VocabProperty", "vocab": "non-commercial"},
 tyreTreadDepths={"type":"ListProperty", "valueList": ["300", "300", "120", "6"], "unitCode": "MMT"},
 passengers=passengers,
 route=route
)

entity_input = vehicle.to_dict()

query_entity_input = QueryEntity200ResponseInner.from_dict(entity_input)

try:
 # Create NGSI-LD entity of type Vehicle: POST /entities
 api_instance.create_entity(query_entity200_response_inner=query_entity_input)
except Exception as e:
 print("Exception when calling ContextInformationProvisionApi->create_entity: %s\n" % e)

Below is another example of Python code snippet that use a generated Python-based NGSI-LD API client library for
querying NGSI-LD Entities of type Vehicle and OffStreetParking.

import os
import ngsi_ld_client

from ngsi_ld_client.api_client import ApiClient as NGSILDClient
from ngsi_ld_client.configuration import Configuration as NGSILDConfiguration
from ngsi_ld_client.exceptions import ApiException

NGSI-LD Context Broker
BROKER_URI = os.getenv("BROKER_URI", "http://localhost:9090/ngsi-ld/v1")
Context Catalog
CONTEXT_CATALOG_URI = os.getenv("CONTEXT_CATALOG_URI",
 "http://context-catalog:8080/context.jsonld")
Init NGSI-LD Client
configuration = NGSILDConfiguration(host=BROKER_URI)
configuration.debug = True
ngsi_ld = NGSILDClient(configuration=configuration)
ngsi_ld.set_default_header(
 header_name="Link",
 header_value='<{0}>; '
 'rel="http://www.w3.org/ns/json-ld#context"; '
 'type="application/ld+json"'.format(CONTEXT_CATALOG_URI)
)

ngsi_ld.set_default_header(
 header_name="Accept",
 header_value="application/json"
)

api_instance = ngsi_ld_client.ContextInformationConsumptionApi(ngsi_ld)

try:
 # Query NGSI-LD entities of type Vehicule: GET /entities
 api_response = api_instance.query_entity(type='Vehicle')
 iot_device_entities = api_response
 for iot_device_entity in iot_device_entities:
 print(iot_device_entity.to_dict())
except Exception as e:
 print("Exception when calling ContextInformationConsumptionApi->query_entity: %s\n" % e)

try:
 # Query NGSI-LD entities of type OffStreetParking: GET /entities
 api_response = api_instance.query_entity(type='OffStreetParking')
 iot_device_entities = api_response
 for iot_device_entity in iot_device_entities:
 print(iot_device_entity.to_dict())
except Exception as e:
 print("Exception when calling ContextInformationConsumptionApi->query_entity: %s\n" % e)

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)33

Annex E (informative):
Bibliography

• ETSI GS CIM 008 (V1.2.1): "Context Information Management (CIM); NGSI-LD Primer".

• ETSI GS CIM 006: "Context Information Management (CIM); Information Model (MOD0)".

• Generic documentation tools, examples, @context files, API specification playground for the NGSI-LD API
defined by ETSI ISG CIM.

https://forge.etsi.org/rep/cim/NGSI-LD
https://forge.etsi.org/rep/cim/NGSI-LD

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)34

Annex F (informative):
Change history

Date Version Information about changes
February, 27th 2024 V0.0.1 Early Draft
May 2024 V0.0.9 First Stable Draft approved by ISG CIM
May 2024 V0.0.10 Review of Stable Draft
September 2024 V0.1.0 First Final Draft

October 2024 V0.1.1
Final Draft approved by ISG CIM
Technical Officer review before EditHelp publication pre-processing after TB
approval

ETSI

ETSI GS CIM 047 V1.1.1 (2024-11)35

History

Document history

V1.1.1 November 2024 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 OpenAPI Specification for NGSI-LD API
	4.1 Introduction
	4.2 Design, evaluation, and structure of OpenAPI Specification
	4.2.0 Foreword
	4.2.1 Design strategy
	4.2.2 Evaluation strategy
	4.2.3 Organization and description of the OpenAPI Specification
	4.2.3.0 Foreword
	4.2.3.1 The openapi and info sections
	4.2.3.2 The externalDocs section
	4.2.3.3 The servers section
	4.2.3.4 The paths section
	4.2.3.5 The components section
	4.2.3.5.0 Foreword
	4.2.3.5.1 The headers subsection
	4.2.3.5.2 The parameters subsection
	4.2.3.5.3 The requestBodies subsection
	4.2.3.5.4 The schemas subsection
	4.2.3.5.5 The responses subsection

	4.3 OpenAPI Specification repository

	Annex A (informative): Recommended tools for the design and evaluation of OpenAPI Specification
	A.1 Introduction
	A.2 Tools for the design of OpenAPI Specification
	A.3 Tools for the evaluation of OpenAPI Specification

	Annex B (informative): OpenAPI visualization and interaction tools
	B.1 Introduction
	B.2 SwaggerUI
	B.3 ReDoc

	Annex C (informative): Guidelines for defining custom schemas compliant with the OpenAPI Specification
	C.1 Introduction
	C.2 Example of OpenAPI schemas for vehicular use case

	Annex D (informative): Stub code generation and examples of use
	D.1 Introduction
	D.2 Example of Python-based NGSI-LD client

	Annex E (informative): Bibliography
	Annex F (informative): Change history
	History

