ETS| GS NFV-SOL 015 V1.2.1 (2020-12)

Network Functions Virtualisation (NFV);
Protocols and Data Models;
Specification of Patterns and Conventions
for RESTful NFV-MANO APIs

Disclaimer

The present document has been produced and approved by the Network Functions Virtualisation (NFV) ETSI Industry
Specification Group (ISG) and represents the views of those members who participated in this ISG.
It does not necessarily represent the views of the entire ETSI membership.

2 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Reference
RGS/NFV-SOL015ed121

Keywords
API, data, MANO, model, NFV, protocol

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 493 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying
and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020.
All rights reserved.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ |ogo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

ETSI

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Contents

INtellectual Property RIGNES.... ..ottt b e n e n e e 6
01 Yo (o PSS 6
Modal VErDS TEMINOIOQY.......ccveeiieiieeeeie ettt e e e s te e e e s besbe e tesbeeseebesneensessesaeenseseeeseesessens 6
1 o0 0L SR 7
2 L= £ 101 S 7
21 NOIMELIVE FEFEIBINCES ... ecneeeeeeeste ettt ettt st e et e e st e s teste s et eteeneeneeseeeeseesbeebeeneeseeneensenseseesbesaeesesneeneensens 7
22 INfOrMEEIVE FEFEIENCES. ...ttt ettt et ettt a et e st e e seeebe s st eae et enseneeseesbesaeeresneeneeneens 8
3 Definition of terms, symbols and abbreviations............c.covieeiiieeieie e e e 8
31 LIS 0PTSRS 8
3.2 Y 101 8
33 ADDIEVIBLIONS ...ttt etk bt bttt e b b eh e eb e e ae e s e e e e aR e bt sR e eb e e Rt e Rt e e e R et sheebeeneeneennen 8
4 (000177 110 13 9
41 (0= oo 01V 011 o] 1< P 9
4.2 ConVENIONS FOI URI PAMSeeueiieieeieete ettt bbb bbbt b et nb e b 10
43 Conventions for NAMES iN Aata SITUCTUIES.........c.eeriee et st e e te e stesneenee e eneas 11
4.4 Conventions for documenting the APl dafaMOTELcc.coiiiriinire e 11
44.1 (@ o SO RS 11
4.4.2 S BT U0 0= = L = T 12
4.4.3 T o= = Y o= 13
444 ENUMIBIGLIONS......eee ettt bttt h e e bt e bt ae e st e e e e se e eb e e hees e e e e ebenbesbeebe e e ennenreas 13
445 JSON representation Of the data MOUEL............coceiii e e nrees 14
5 2 1 T USSR 14
51 Pattern: Creating 8 reSOUMCE (POST)c.uiiieiriiieiereeeeteree ettt sttt b st b e bbb s b e s b e senne e eneens 14
511 (D= 'w] o] Lo o FHO SO P PSPPSR PSR 14
512 Resource definition(s) and HTTP MELNOUS...........cooiiiiiiiiieree e 15
513 RESOUICE rEPIESENTALION(S) ... vt vttt sttt sttt ettt sttt sttt b et b e bbbt e bt bt b e e b e se et eb e b et eb e b 15
514 I = o[SO TSTS 15
5.1.5 Response codes and error NANAIING..........oieiie i reeteeee e e 15
5.2 Pattern: Creating @reSOUNCE (PUT) ..ottt ee st e e st te e e a s e e e e e en e sreesteesseereeneennennnes 16
521 1S o1) P 16
5.2.2 Resource definition(s) and HTTP MEtNOMS...........ccveiieiieice e 16
523 RESOUICE rEPIESENTALION(S) ... vt vttt sttt sttt ettt sttt sttt b et b e bbbt e bt bt b e e b e se et eb e b et eb e b 17
524 HT TP HEAOEIS ...ttt ettt et e s he e s b e e ebe e e e e aeeeaeeebeeebeenbeeabesbeesbeesbeesbeebeenseenrennns 17
525 Response codes and error NANAIING.coceeiiriii bbb 17
53 Pattern: Reading A reS0UNCE (GET)......ciiieiriireeiesieseeiert ettt bbb et sb s s et n e bbb sne e ens 17
531 (D= 'wi] oo o FHO TSROSO P TSR PT SR PSR 17
532 Resource definition(s) and HTTP MELNOUS...........coiiiiiiiieeieee e 18
533 RS o lN e N = o= = g1 (0] 1) 18
534 I = o[SO TSTS 18
535 Response codes and error NANAIING..........oiveiee it ae e e e 18
54 Pattern: Querying aresource with filtering/SEleCtion (GET)cccueieeiieieeie e seesteeseee e see e s 18
54.1 1S o) P 18
5.4.2 Resource definition(s) and HTTP MEtNOUS...........ocviiieiieice e 19
54.3 RESOUNCE rEPIESENTALION(S) ... vt vereetertereete sttt sttt sttt bttt b et b e bbbt b e s bt b e bt b e b e se et s b e b et eb b 19
544 HT TP HEAOEIS ...ttt ettt et e s e s be e s b e e te e ae e aeeeaeeebe e beenbeeabesteesteesbaesteeseennesnrennns 19
545 Response codes and error NANAIING.cocoeiirieii bbb 19
55 Pattern: Updating areSoUrce (PATCH) ..o it 19
551 (D= 'w] o] Lo o FHO SO P PSPPSR PSR 19
55.2 Resource definition(s) and HTTP MEtNOMS...........ccviiieiieice e 20
55.3 RS o lN e N g o= = g1 (0] 1) P 20
55.4 I = o[SO TSTS 21
555 Response codes and error NANAIING..........oiveier it ae e e enes 21
5.6 Pattern: Updating @reSOUrCE (PUT)eiiieiieie sttt se e st a s e beenteeneesnaesseenseeseeneennennnes 21
5.6.1 1S o) P 21

ETSI

4 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

56.2 Resource definition(s) and HTTP MELNOUS...........ccoiiiiiiiieeieee e 22
56.3 RESOUICE rEPIESENTALION(S) ... vt vereetertereete sttt sttt sttt bttt b et b e bt b e s bbbt e bt b et bt b e se et e b e b et b b 22
5.64 I I 1S L= £ RRRN 22
5.6.5 Response codes and error NANAIING.coceeiiieii bbb 22
5.7 Pattern: Deleting areSoUrCe (DELETE)cui ittt ettt 22
57.1 1S o1) P 22
5.7.2 Resource definition(s) and HTTP MEtNOMS...........ccviiieiieice e 23
5.7.3 RS o lU el = o= = g1 (0] 1) 23
574 HT TP HEAOEIS ...ttt e bbbt se bt e bt b e nne 23
575 Response codes and error NANAIING..........oiveiie it ae e sneeenes 23
5.8 s S RIS S =50 1 o= SRS 24
581 (D= 'wi] o] [0 o FH TS U S POP TSP UT SR PSR 24
582 Resource definition(s) and HTTP MELNOUS...........ccoiiiiiiiieieree et 24
583 RESOUICE rEPIESENTALION(S) ... vt vereetertereete sttt sttt sttt bttt b et b e bt b e s bbbt e bt b et bt b e se et e b e b et b b 24
584 I I o 1= o = P RRRN 24
585 Response codes and error NANAIING.coceiiirier bbb 24
5.9 Pattern: SUBSCIIDE-NOLITYccieece e e et et e s e s re e s reesneesreeeeeneeenes 25
59.1 1S o) P 25
5.9.2 Resource definition(s) and HTTP MEtNOMS...........ccveiieiieece e st 27
5.9.3 RS o lN [N = o= = g1 (0] 1) 27
594 HT TP HEAOEIS ...ttt b et b et R et b et e bt e b nna 27
5.9.5 Response codes and error NANAIING..........oieiie i reeteeee e e 27
5.10 L 1= 1 I SRS 28
5.10.1 (B1= ol] o] o] o FET OSSO U TSSO P TSRV U TR 28
5.10.2 Resource definition(s) and HTTP MELNOUS...........ccoiiiiiiiiieree e 28
5.10.3 RESOUICE FEPIESENEALION(S) ... vt rveeeterte sttt sttt sttt sttt sttt se et b e et b e s et b bbb st e bese et eb e b et eb b 28
5.10.4 L I I o 1= o = P RRRN 29
5.10.5 Response codes and error NANAITING.coorveiiireee e 29
511 Pattern: Asynchronous invocation With MONITONc.cccuiiieiiereeeee et see s 29
511.1 1S o o) S 29
511.2 Resource definition(s) and HTTP MEtNOUS..........cccviiieiieicie e st 31
5113 RS o lU et N = o= = g1 (0] 1) S 31
5114 HT TP HEAOENS ...ttt bbb h bbbt e bt se bt e bt nn b e 32
5115 Response codes and error NANAITING.coorveiierei et 32
5.12 Pattern: Asynchronous resource creation WithOUE MONITOT.............cccviiiiririieeere s 32
5121 (B1= o] oo o FH OSSOSO PSRV U TR 32
5122 Resource definition(s) and HTTP MELNOUS...........ccoiiiiiiiieeieee et 32
5123 RESOUICE FEPIESENEALION(S) ...t rveeeterte sttt sttt sttt ettt et st s e et b et b et b e bbb e se et eb e e et nb b 33
5.12.4 I I 1= o = P RRSRN 33
5.12.5 Response codes and error NANAIING........ccvoii et ae st e et teeee e enes 33
5.13 Pattern: Range reqUESES (Partial GET)ccvecuriieeiesiesieeseeiteseeseeseesteete e sseesree e e e esesnsessaesreesneesseenseensenns 33
5.13.1 1S o o) 33
5.13.2 Resource definition(s) and HTTP MEtNOMS..........cccveiieiieice et 34
5.13.3 R o lU et N = o= = g1 (0] 1) 34
5134 HT TP HEAOENS ...ttt b et b st b et ne bt e bt e b e 34
5.135 Response codes and error NANAITING.coorveiiireee e 34
514 Pattern: Representation Of SIS TN JSONc.ciiiiiiriieeeese et 34
5141 (B 1= ol] oo o FHO OSSOSO U TSSO P TSRV U TR 34
5.14.2 REPIESENTALION @S BITAYveveueetertee ettt ettt sttt st b s bt a e bt e bt b s e e bt b e se e st ee e st e b e se et ebe s b et nbenbe e 35
5.14.3 REPIESENTALION @S MBI -...cveeeeeete stttk ettt ettt b et b e bt b e b e se e bt b e s e e bt b e se e bt e b st e b e se et ebe s b e e b e b 35
6 Specifying APl and GS versions in the OpenAPI fil€S ..o 36
6.1 LT 0T PSP O URUSROTRP 36
6.2 Visibility of the API version identifier fieldsin the OpenAPI SpeCifiCationscccecveeveceenieseeceeie e 36
6.3 Relation between the API version identifiers of an OpenAPI specifications and the base GS............cce........ 36
Annex A (normative): REST API template for interface Clauses.........cc.ccvvveveneneneneceeeceneei 38
Annex B (informative): Conventionsfor message flIOWS.........cov e 47
2 0 N 0o = o o AU SSRN 47
B.2 GraphiCal CONVENTIONS........coiiiiiiieieiee ettt b st b s e e e senneene e 47

ETSI

5 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Annex C (normative): Change requests classifiCationccccviiice e 51
(O35 A 1 011 oo [FTox i o] o OSSR 51
C.2 TheFeld"Other COMMENTS'cccoiiieee et e et te et e ste e e tesreeseesreeneestesseenseseseeeneeneensean 51
C.3 EXampleS Of BWEC CRENQES.......cciiiuiriiriirierieieie ettt sttt ss e s e s e e s e s nn e s 52
C.4 Examples of NBWC ChanQES........cccciiiuiiiiie ettt eieeste st te e seestesreeaestesaaestesteensesbesseensessesnnensesnennns 53
Annex D (informative): ChangE HISIONY ..ot eae s 55
[1S 0] Y PSSP 56

ETSI

6 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given asto the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which areindicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Group Specification (GS) has been produced by ETSI Industry Specification Group (1SG) Network Functions
Virtualisation (NFV).

Modal verbs terminology

In the present document "shall”, "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" areto be interpreted as described in clause 3.2 of the ETS| Drafting Rules (Verbal formsfor the expression of
provisions).

"must” and "must not" are NOT alowed in ETSI deliverables except when used in direct citation.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

7 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

1 Scope

The present document defines patterns and conventions for RESTful NFV-MANO API specifications, gives
recommendations on API versioning and provides an API specification template.

The present document defines provisions to be followed by the ETSI NFV Industry Specification Group (1SG) when
creating RESTful NFV-MANO API specifications. The provisions do not apply to implementations.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI GSNFV-SOL 013: "Network Functions Virtualisation (NFV) Release 2; Protocols and Data
Models; Specification of common aspects for RESTful NFV MANO APIs".

2] IETF RFC 5789: "PATCH Method for HTTP".
NOTE: Available from https://tools.ietf.org/html/rfc5789.

[3] IETF RFC 7396: "JSON Merge Patch".
NOTE: Available from https://tools.ietf.org/html/rfc7396.

[4] IETF RFC 7232: "Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests'.

NOTE: Available from https://tools.ietf.org/html/rfc7232.

[5] IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax”.

NOTE: Available from https://tools.ietf.org/html/rfc3986.

[6] IETF RFC 7233: "Hypertext Transfer Protocol (HTTP/1.1): Range Requests’.

NOTE: Available from https://tools.ietf.org/html/rfc7233.

[7] IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content”.
NOTE: Available from https.//tools.ietf.org/html/rfc7231.

ETSI

https://docbox.etsi.org/Reference
https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc7396
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7231

8 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI GS NFV 003: "Network Functions Virtualisation (NFV); Terminology for Main Conceptsin
NFV*".
[i.2] PlantUML website.

NOTE: Available from http://plantuml.com/.

[i.3] PlantUML tool download.

NOTE: Available from https://sourceforge.net/projects/plantuml/fil es/plantuml.jar/downl oad.

[i.4] PlantUML reference guide.

NOTE: Available from http://plantuml.com/PlantUML Language Reference Guide.pdf.

[i.5] ETSI NFV repository of OpenAPI™ files.

NOTE: Available from https://forge.etsi.org/rep/nfv/.

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the terms given in ETSI GS NFV 003 [i.1] apply.

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

API Application Programming Interface

BWC BackWard Compatible

CR Change Request

CRUD Create, Read, Update, Delete

CTC Change Type Code

ETag Entity Tag

ETS European Telecommunications Standards I nstitute
GS Group Specification

HATEOAS Hypermedia As The Engine Of Application State
HTTP HyperText Transfer Protocol

IETF Internet Engineering Task Force

IFA InterFaces and Architecture

ISG Industry Specification Group

JSON JavaScript Object Notation

ETSI

http://plantuml.com/
https://sourceforge.net/projects/plantuml/files/plantuml.jar/download
http://plantuml.com/PlantUML_Language_Reference_Guide.pdf
https://forge.etsi.org/rep/nfv/

9 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

LCM LifeCycle Management

MANO MANagement and Orchestration

NBWC Non-BackWard Compatible

NFV Network Functions Virtualisation

REST REpresentational State Transfer

RFC Request For Comments

RPC Remote Procedure Call

SOL SOL utions

TCP Transmission Control Protocol

URI Uniform Resource |dentifier

VNF Virtualised Network Function
4 Conventions

4.1 Case conventions

The following case conventions for names and strings are available for potential use in the RESTful NFV-MANO API
specifications.

1) ALLUPPER

All letters of astring shall be uppercase letters. Digits may be used except at the first position. Other characters shall not
be used.

EXAMPLES 1 and 2:

a MANAGEMENTINTERFACE

b) ETSINFVMANAGEMENT2
2) alllower

All letters of astring shall be lowercase |etters. Digits may be used except at the first position. Other characters shall not
be used.

EXAMPLES 3 and 4:
a) managementinterface
b) etsinfvmanagement2
3) UPPER_WITH_UNDERSCORE

All letters of astring shall be uppercase letters. Digits may be used except at the first position. Word boundaries shall be
represented by the underscore™ " character. Other characters shall not be used.

EXAMPLESS5 and 6:

a MANAGEMENT_INTERFACE

b) ETSI_NFV_MANAGEMENT 2
4) lower_with_underscore

All letters of astring shall be lowercase |etters. Digits may be used except at the first position. Word boundaries shall be
represented by the underscore™ " character. Other characters shall not be used.

EXAMPLES 7 and 8:
a) management_interface

b) ets_nfv_management 2

ETSI

10 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

5) UpperCamel

The string shall be formed by concatenating words as follows. Each word shall start with an uppercase letter (this
implies that the string starts with an uppercase letter). All other letters shall be lowercase letters. Digits may be used
except at the first position. Other characters shall not be used. Words that are abbreviations shall follow the same
scheme (i.e. first letter uppercase, al other letters lowercase).

EXAMPLES 9 and 10:

a Managementinterface

b) EtsNfvManagement2
6) lowerCamel

The string shall follow the provisions defined for UpperCamel with the following difference: Thefirst letter shall be
lowercase (i.e. the first word starts with alowercase |etter).

EXAMPLES 11 and 12:
a managementlnterface

b) etsiNfvManagement2

4.2 Conventions for URI parts

Based on IETF RFC 3986 [5], the parts of the URI syntax that are relevant in the context of the RESTful NFV-MANO
API specifications are as follows:

. Path, consisting of segments, separated by "/" (e.g. segment1/segment2/segment3)
. Query, consisting of pairs of parameter name and value (e.g. ?org=nfv& group=sol)
1) Path segment naming

a) The path segments of aresource URI which represent a constant string shall use the "lower_with_underscore"
convention.

EXAMPLE 1: vnf_instances

b) If aresource represents a collection of entities, the last path segment of that resource's URI shall be aword in
plural.

EXAMPLE 2: .../prefix/API/1_O/users

c) For resourcesthat are not task resources, the last path segment of the resource URI should be a (composite)
noun.

EXAMPLE 3. .../prefix/API/1_O/users

d) For resourcesthat are task resources, the last path segment of the resource URI should be averb, or start with a

verb.
EXAMPLES 4 and 5:
. ...Ivnf_instances/{ vnfInstancel d} /scale
L] ...Ivnf_instances/{ vnflnstancel d} /scale to_level

€) A variable name which represents a single path segment or a sequence of one or more path segments of a
resource URI shall use the "lowerCamel" convention and shall be surrounded by curly brackets. A variablein
the path part of aresource URI represents a single path segment unlessit is explicitly specified that it
represents zero, one or more path segments.

EXAMPLE6: {vnflnstanceld}

ETSI

11 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

f) Onceavariableisreplaced at runtime by an actual string, the string shall follow the rules for a single path
segment or one or more path segments defined in IETF RFC 3986 [5]. IETF RFC 3986 [5] disallows certain
characters from use in a path segment. Each actual RESTful NFV-MANO API specification shall definethis
restriction to be followed when generating values for variables that represent a single path segment or one or
more path segments, or propose a suitable encoding (such as percent-encoding according to IETF
RFC 3986 [5]), to escape such charactersif they can appear in input strings intended to be substituted for a
path segment variable.

2) Query naming
a) Parameter namesin queries shall use the "lower_with_underscore” convention.
EXAMPLE7: “2working_group=SOL

b) Variablesthat represent actual parameter valuesin queries shall use the "lowerCamel" convention and shall be
surrounded by curly brackets.

EXAMPLE 8: working_group={ chooseAWorkingGroup}

c) Onceavariableisreplaced at runtime by an actual string, the convention defined in 1.f. shall apply to that
string.

4.3 Conventions for names in data structures

The following syntax conventions shall be obeyed when defining the names for attributes and parametersin the
RESTful NFV-MANO API data structures.

a) Names of attributes/parameters shall be represented using the "lowerCamel" convention.
EXAMPLE 1. vnfName

b) Namesof arrays (i.e. those with cardinality 1..N or 0..N) shall be plural rather than singular.
EXAMPLES 2 and 3: users, extVirtualLinks

c) Identifiers of information elements defined in the corresponding "interface and information model" design
stage specification (typicaly, ETSI NFV-1FA specification) using the name syntax "xyzStructureld" shall be
represented using the name "id."

NOTE: Inthe aforementioned specifications, the identifiersin scope of this convention are attributes with names
using the syntax "xyzStructureld" which are embedded in an information element named " XyzStructure"
for the purpose of identifying and/or externally referencing an instance of that information element.

d) Each vaue of an enumeration types shall be represented using the "UPPER_WITH_UNDERSCORE"
convention.

EXAMPLE 4: NOT_INSTATIATED
€) Thenames of datatypes shall be represented using the "UpperCamel” convention.
EXAMPLES5and 6: ResourceHandle, Vnfinstance

4.4 Conventions for documenting the API data model

441 Overview

A RESTful NFV-MANO API specification shall follow the provisionsin this clause to document the API data model.
clause X.6 in Annex A provides arelated data model template.

The data model shall be defined using a tabular format as described in the following clauses. The name of the datatype
shall be documented appropriately in the heading of the clause and in the caption of the table, preferably as shownin
clause X.6.2 in Annex A.

ETSI

4.4.2

12 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Structured data types

Structured data types shall be documented in tabular format, asin table 4.4.2-1 (one table per named data type).

Table 4.4.2-1: Template for a table defining a named structured data type

Attribute name Data type Cardinality Description

The following provisions apply to the content of the table:

1)
2)

3)

4)

5)

"Attribute name" shall provide the name of the attribute in lowerCamel.
"Datatype" shall provide one of the following:

a) Thename of anamed data type (structured, smple or enum) that is defined elsewhere in the present
document where the data type is specified, or in areferenced document. In case of areferenced type from
another document, a reference to the defining document should be included in the "Description” column
unlessincluded in aglobal clause.

b) Anindication of the definition of an inlined nested structure. In case of inlining a structure, the "Data
type" column shall contain the string " Structure (inlined)", and all attributes of the inlined structure shall
be prefixed with one or more closing angular brackets ">", where the number of brackets represents the
level of nesting.

¢) Anindication of the definition of an inlined enumeration type. In case of inlining an enumeration type,
the "Datatype" column shall contain the string "Enum (inlined)”, and the "Description™ column shall
contain the allowed values and their meanings.

If the maximum cardinality is greater than one, "Datatype” may indicate the format of thelist of values. If itis
an array, the format of that list may be indicated by using the key word "array(<type>)". If it isamap, the
format shall be indicated by using the key word "map(<type>)". In both cases, <type> indicates the data type
of the individual list entries. In case neither "map" nor "array" is given and the maximum cardinality is greater
than one, "array" shall be assumed as default. The presence or absence of the indication of "array” shall be
consistent between all datatypesin the scope of an API.

"Cardinality”" defines the allowed number of occurrences, either as asingle value, or as two values indicating
lower bound and upper bound, separated by "..". A value shall be either a non-negative integer number or an
uppercase letter that serves as a placeholder for a variable number (e.g. N).

"Description” describes the meaning and use of the attribute and may contain normative statements. In case of
an inlined enumeration type, the "Description” column shall define the allowed values and (optionally) their
meanings, as follows: "Permitted values:" on one line, followed by one paragraph of the following format for
each value: "- <VAL>: <Meaning of the value>".

Typically, named data types are used for a structure that is intended to be re-used for referencing from many data types,
or when modularizing big data types into smaller ones, e.g. for exposure using sub-resources. Inline data types are used
if the same inlined data type only appearsin one or very few data types.

Table 4.4.2-2 provides an example.

ETSI

13 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Table 4.4.2-2: Example of a structured data type definition

Attribute name Data type Cardinality Description
type FooBarType 1 Indicates whether this is a foo, boo or hoo stream.
entryldx array(Unsignedint) 0..N The index of the entry in the signalling table for correlation
purposes, starting at 0.
fooBarType Enum (inlined) 1 Signals the type of the foo bar.

Permitted values:
- BIG_FOOBAR: Signals a big foobar.
- SMALL_FOOBAR: Signals a small foobar.

fooBarColor Enum (inlined) 1 Signals the colour of the foo bar.

Permitted values:
- RED_FOOBAR: Signals a red foobar.
- GREEN_FOOBAR: Signals a green foobar.

firstChoice MyChoiceOneType 0.1 First choice. See note.

secondChoice map(MyChoiceTwoType) 0..N Second choice. See note.

nestedStruct Structure (inlined) 0.1 A structure that is inlined, rather than referenced via an
external type.

>someld String 1 An identifier. The level of nesting is indicated by ">".

>myNestedStruct |array(Structure(inlined)) 0..N Another nested structure, one level deeper.

>>child String 1 Child node at nesting level 2, indicated by ">>".

NOTE: One of "firstChoice" or at least one of "secondChoice" but not both shall be present.

4.4.3 Simple data types

Simple data types shall be documented in tabular format, asin table 4.4.3-1 (one table row per simple data type).

Table 4.4.3-1: Simple data types

Type name Description

The following provisions shall be applied to the content of the table:
1) "Typename" providesthe name of the smple datatype.
2) "Description" describes the meaning and use of the data type and may contain normative statements.

Table 4.4.3-2 provides an example.

Table 4.4.3-2: Example of a simple data type definition

Type name Description
Dozenint An integral number with a minimum value of 1 and a maximum value of 12.

4.4.4 Enumerations

Enumerations specify a set of valid values.

Enumeration types shall be documented in tabular format, asin table 4.4.4-1 (one table row per enumeration value, one
table per enumeration type).

Table 4.4.4-1: Enumeration type

Enumeration value Description

ETSI

14 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

The following provisions shall be applied to the content of the table:

1) "Enumeration value" provides a mnemonic identifier of the enum value, optionally with an integer to which
the value is mapped.

2) "Description” describesthe meaning of the value and may contain normeative statements.

Table 4.4.4-2 provides an example.

Table 4.4.4-2: Example of an enumeration type

Enumeration value Description
ENABLED The service is enabled.
DISABLED The service is disabled.

4.4.5 JSON representation of the data model

This clause only appliesto the JSON representation of the top-level named data types that define the structure of a
resource representation or notification in the payload body of an HTTP request or response. In the template in Annex A,
such data types are defined in the clause "Resource and notification datatypes'.

When the data model is represented as JSON, all top-level attributes of the applicable resource or notification data type
shall be mapped into the root level of the JSON object. Individual APIs may deviate from thisrule, for example when
re-using pre-existing data models. Such deviation shall be documented in the API specification.

The following example illustrates this convention. Assume the resource data type "Person” is defined asin table 4.4.5-1.
The JSON representation isillustrated in the example.

Table 4.4.5-1: Example: Definition of the "PersonData" data type

Attribute name Data type Cardinality Description
lastName String 1 The surname of the person
firstName String 1 The first name of the person.
address Structure (inlined) 0.1 The address of the person, if known.
>street String 1 The street
>number Integer 1 The number of the house or apartment
>city String 1 The city

EXAMPLE: JSON representation

"l ast Name": " Doe",
“firstNanme": "John",
"address": {

"street": "Route des Luciol es",
"nunber": 650,
"city": "Sophia Antipolis"
}
}
5 Patterns

5.1 Pattern: Creating a resource (POST)

5.1.1 Description

This clause describes the "resource creation by POST" pattern, where the APl consumer requests the API producer to
create a new resource under a parent resource, which meansthat the URI identifying the created resource is under
control of the API producer. This pattern shall be used for resource creation if the resource identifiers under the parent
resource are managed by the API producer (see clause 5.2 for an alternative).

ETSI

15 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

New resources are created on the origin server (APl producer) as children of a parent resource. In order to request
resource creation, the APl consumer sends a POST request to the parent resource and includes a representation of the
resource to be created. The API producer generates an identifier for the new resource that is unique for al child
resources in the scope of the parent resource, and concatenates this with the resource URI of the parent resource to form
the resource URI of the child resource. The API producer creates the new resource, and returnsin a'201 Created"
response a representation of the created resource along with a"Location” HT TP header that contains the resource URI
of thisresource.

Figure 5.1.1-1 illustrates creating a resource using POST.

AP| consumer APl producer

1. POST .. /parent_resource (FesourceCreationRequest) !

- API producer computes resource URI j

- API producer creates resource

i
=<

U
2. 201 Created (ResourceRepresentation) |

APl consumer APl producer

Figure 5.1.1-1: Resource creation flow by POST

5.1.2 Resource definition(s) and HTTP methods

The following resources are involved:
1) Parent resource: A container that can hold zero or more child resources.

2) Created resource: A child resource of a container resource that is created as part of the operation. The resource
URI of the child resource is a concatenation of the resource URI of the parent resource with a string that is
chosen by the API producer, and that is unique in the scope of the parent resource URI.

The HTTP method shall be POST.

5.1.3 Resource representation(s)

The entity body of the request shall contain arepresentation of the resource to be created. The entity body of the
response shall contain a representation of the created resource.

NOTE: Compared to the entity body passed in the request, the entity body in the response may be different, asthe

resource creation process may have modified the information that has been passed as input, or generated
additional attributes.

514 HTTP Headers

On success, the "Location” HTTP header shall be returned, and shall contain the URI of the newly created resource.

5.1.5 Response codes and error handling
On success, "201 Created" shall be returned. On failure, the appropriate error code shall be returned.

Resource creation can aso be asynchronous in which case "202 Accepted” shall be returned instead of "201 Created”.
See clauses 5.11 and 5.12 for more details about asynchronous operations.

ETSI

16 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

5.2 Pattern: Creating a resource (PUT)

5.2.1 Description

This clause describes the "resource creation by PUT" pattern, where the APl consumer requests the APl producer to
create a new resource by providing the resource URI under which it expects the resource to be created, which means
that the URI identifying the created resource is under control of the APl consumer.

NOTE: The parent resource in thismodeisimplicit, i.e. it can be derived from the resource URI of the resource to
be created by omitting the last path segment but is not provided explicitly in the request.

This pattern shall be used for resource creation if the resource identifiers under the parent resource are managed by the
API consumer (see clause 5.1 for an aternative where the resource URI space is managed by the API producer).
Typically, that alternative is safer asthe APl producer can prevent collisions. However, there are also valid use cases
for creation by PUT, for instance when an API consumer manages different versions of aresource which are kept inside
a"store" container, and the set of "store" containersis managed by the API producer i.e. "store" containers are created
by POST.

In order to request resource creation, the APl consumer sends a PUT request specifying the resource URI of the
resource to be created and includes a representation of the resource to be created. The origin server (API producer)
creates the new resource and returnsin a 201 Created" response a representation of the created resource along with a
"Location" HTTP header field that contains the resource URI of this resource.

Figure 5.2.1-1 illustrates creating aresource by PUT.

API consumer API| producer

1 1. PUT .../resource_to_be_created (ResourceRepresentation)

|
-
>

1

- APl producer checks resource URI 5
- APl producer creates resource

(...

'
2. 201 Created (ResourceRepresentation®) :

API consumer API producer

Figure 5.2.1-1: Resource creation by PUT

5.2.2 Resource definition(s) and HTTP methods

The following resourceis involved:

1) Created resource: A resource that is created as part of the operation. The resource URI of that resource is
passed by the API consumer in the PUT request.

The HTTP method shall be PUT.

ETSI

17 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

5.2.3 Resource representation(s)

The entity body of the request shall contain a representation of the resource to be created. The entity body of the
response shall contain a representation of the created resource.

NOTE: Compared to the entity body passed in the request (ResourceRepresentation in figure 5.2.1-1), the entity
body in the response (ResourceRepresentation” in figure 5.2.1-1) may be different, as the resource
creation process may have modified the information that has been passed as input.

524 HTTP Headers

On success, the "Location" HTTP header shall be returned, and shall contain the URI of the newly created resource.

525 Response codes and error handling

The API producer shall check whether the resource URI of the resource to be created does not conflict with the resource
URIs of existing resources (i.e. whether or not the resource requested to be created already exists).

In case the resource does not yet exist:

. Upon successful resource creation, "201 Created” shall be returned. Upon failure, the appropriate error code
shall be returned.

o Resource creation can a so be asynchronous in which case "202 Accepted” shall be returned instead of "201
Created". See clauses 5.11 and 5.12 for more details about asynchronous operations.

In case the resource aready exists:

. If the "Update by PUT" operation is not supported for the resource, the request shall be rejected with "403
Forbidden", and a " ProblemDetails" payload should be included to provide more information about the error.

. If the "Update by PUT" operation is supported for the resource, interpret the request as an update request, i.e.
the request shall be processed as defined in clause 5.6.

5.3 Pattern: Reading a resource (GET)

5.3.1 Description

This pattern obtains a representation of the resource, i.e. reads aresource, by using the HTTP GET method. For most
resources, the GET method should be supported. An exception is task resources (see clause 5.8); these cannot be read.

See clause 5.3 for the related "query” pattern which allows to obtain a representation of aresource that has child
resources and allows to influence the content of the representation using query parameters.

Figure 5.3.1-1 illustrates reading a resource.

AP| consumer AP praducer

: 1. GET ...fresource I

>
2. 200 Ok (ResourceRepresentation) !

AFl consumer ARl producer

Figure 5.3.1-1: Flow of reading aresource

ETSI

18 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

5.3.2 Resource definition(s) and HTTP methods

This pattern is applicable to any resource that can be read. The HTTP method shall be GET.

5.3.3 Resource representation(s)

The entity body of the request shall be empty; the entity body of the response shall contain a representation of the
resource that was read, if successful.

5.34 HTTP Headers

There are no specific provisions for HTTP headers for this pattern.

5.35 Response codes and error handling

On success, "200 OK" shall be returned. On failure, the appropriate error code shall be returned.

54 Pattern: Querying a resource with filtering/selection (GET)

54.1 Description

This pattern influences the response of the GET method by passing resource URI parameters in the query part of the
resource URI. Typically, this pattern is applied to container resources whose representation isalist of the child
resources.

Typically, query parameters are used for controlling the content of the returned resource representation, including:
. restricting a set of objects to a subset, based on filtering criteria;

. reducing the content of the result (such as suppressing optional attributes).

Figure 5.4.1-1 illustrates querying aresource. The query parameters are just examples based on a subset of the
parameters defined in ETSI GSNFV-SOL 013 [1].

REST client REST server

! 1. GET .../resource?filter=(eq,color red)&fields=id name !

:1 2. 200 OK (adapted ResourceRepresentation) |
REST client REST server

Figure 5.4.1-1: Flow of querying aresource

Two typical query mechanisms are attribute-based filtering and attribute selectors.

Attribute-based filtering allows to restrict the set of objects (i.e. the set of representations of child resources) in the
returned representation to a subset that matches a set of filtering criteria applied to the values of the attributes of the
objects. The mechanism is specified in clause 5.2 of ETSI GS NFV-SOL 013 [1].

Attribute selectors allow to restrict the set of attributes of the objects (i.e. the set of attributes in the representations of
child resources) in the returned representation to a subset of the attributes as defined in the selector criteria. The
mechanism is specified in clause 5.3 of ETSI GS NFV-SOL 013 [1].

ETSI

19 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

5.4.2 Resource definition(s) and HTTP methods

This pattern is applicable to the GET request of any resource that has child resources. The query parameters are passed
isURI query parameters. Passing the query parametersis optional. A default behaviour isdefined in ETSI

GS NFV-SOL 013 [1] for the case of the query parameters being absent.

5.4.3 Resource representation(s)

The entity body of the request shall be empty.

The entity body of the response shall be an array of representations of child resources, adapted to match the query
parameters passed in the request.

544 HTTP Headers

There are no specific provisions for HTTP headers for this pattern.

545 Response codes and error handling

On success, "200 OK" shall be returned. If the query parameters are invalid, the "400 Bad Request" shall be returned.
Otherwise, on failure, the appropriate error code shall be returned.

5.5 Pattern: Updating a resource (PATCH)

55.1 Description

The PATCH HTTP method (see IETF RFC 5789 [2]) is used to update a resource on top of the existing resource state
with the changes described by the APl consumer.

NOTE: Thereisan aternative to use PUT to update a resource which overwrites the resource completely with the
representation passed in the payload body of the PUT request. PUT is not used for the update of
structured datain RESTful NFV-MANO APIsbut is used to upload raw files.

PATCH does not carry arepresentation of the resource in the entity body, but a document that instructs the AP
producer how to modify the resource representation. In the RESTful NFV-MANO API specifications, JSON Merge
Patch (IETF RFC 7396 [3]) is used for that purpose, which defines fragments that are merged into the target JSON
document.

Figure 5.5.1-1 illustrates updating a resource by PATCH.

AP| cansumer AP| producer

Frepare a "Modifications” document that only includes
the changes to the resource representation

1. PATCH .. fresource (Modifications) >

2. 200 0K [ResourceRepresentation’) :

-

AP| consumer AP| producer

Figure 5.5.1-1: Basic resource update flow with PATCH

ETSI

20 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

The approach illustrated above can suffer from the "lost update”" phenomenon when concurrent changes are applied to
the same resource. HTTP (see IETF RFC 7232 [4]) supports conditional requests to detect such a situation and to give
the API consumer the opportunity to deal with it. For that purpose, each version of aresource gets assigned an "entity
tag" (ETag) that is modified by the API producer each time the resource is changed. Thisinformation is delivered to the
API consumer inthe "ETag" (entity tag) HTTP header in HTTP responses. If the API consumer wishes that the API
producer executes the PATCH only if the ETag has not changed since the time it has |ast read the resource (GET), the
API consumer adds to the PATCH request the HTTP header "1f-Match" with the ETag value obtained from the GET
request. The API producer executes the PATCH request only if the ETag in the "If-Match" HTTP header matches the
current ETag of the resource and responds with "412 Precondition Failed" otherwise. Thisisillustrated in

figure 5.5.1-2.

This API consumer AF| producer Other API cansumer

| 1. GET .../resource o

-

:_, 2, 200 OK (ResourceRepresentation) |

Prepare a "Maodifications” document that only includes T

the changes to the resource representation, possibly
considering resource state

3. PUT . fresource (ResourceRepresentation)

4.

200 OK (ResourceRepresentation)

b
v

5. PATCH .. /resource (Madifications)

o

B. 412 Precondition Failed

e
-
7.

GET . fresource

L.
>

. 200 OK (ResourceRepresentation)

8

Prepare "Modifications” document again, possibly
considering new resource state

1 9. PATCH .. /resource (Modifications)

-

_ 10. 200 OK (ResourceRepresentation’)

This API consumer AP| producer Other API cansumer

Figure 5.5.1-2: Resource update flow with PATCH, considering concurrent updates

5.5.2 Resource definition(s) and HTTP methods

This pattern is applicable to any resource that allows update by PATCH.

5.5.3 Resource representation(s)
The entity body of the PATCH request does not carry a representation of the resource, but a description of the changes.

Wherever applicable, it is recommended to use the JISON Merge Patch format defined by IETF RFC 7396 [3]. It needs
to be pointed out that IETF RFC 7396 [3] does not define selective update of arrays, which means that the complete
updated array always needs to be included.

However, in the RESTful NFV-MANO API specifications, many array entries are objects that contain an identifier
attribute. In order to allow providing only deltas when modifying arrays of that type, the following custom PATCH
payload format that allowsto add and to update array entriesis defined for use in the RESTful NFV-MANO APIs. The
payload can be used instead of or in combination with JSON Merge Patch.

ETSI

21 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Assumptions:

1) roldLigt" isthe array to be modified (part of the resource representation) and "newList" isthe array in the
"Modifications’ document (the payload body of the PATCH request) that contains the changes.

2) "oldEntry" isan entry in "oldList" and "newEntry" isan entry in "newList".

3) A "newEntry" hasa"corresponding entry" if there exists an "oldEntry" that has the same content of an
identifier attribute (typically named "id") asthe "newEntry"; a"newEntry" has no corresponding entry if no
such "oldEntry" exists.

4) Inany array of "oldEntry” and "newEntry" structures, the content of the identifier attribute is unique (i.e. there
are no two entries with the same content of the identifier attribute).

5) "DeleteldLigt" isaparameter that can be supplied as part of the PATCH payload alongside "newL.ist",
containing values of the identifier attribute that represent entries of "oldList" to be removed from the list as
part of the update.

Provisions:

1) For each "newEntry" in "newList" that has no corresponding entry in "oldList", the "oldList" array shall be
modified by adding that "newEntry".

2) For each"newEntry" in "newList" that has a corresponding "oldEntry" in "oldList", the value of "oldEntry"
shall be updated with the value of "newEntry" either by replacement or according to the rules of JSON Merge
PATCH (see IETF RFC 7396 [3]).

3) Foreachentry in "deleteldList", delete the entry in "oldList" that has the same content of the identifier
attribute asthe entry in "deleteldList".

The entity body of the PATCH response may either be empty, may carry arepresentation of the updated resource, or
may represent the performed modifications.

554 HTTP Headers

In the request, the " Content-type" HT TP header needs to be set to the content type registered for the format used to
describe the changes, according to IETF RFC 7396 [3].

If conflicts and data inconsistencies are foreseen when multiple APl consumers update the same resource, each API
consumer should passin the "If-Match" HTTP header of the PATCH request the value of the "ETag" HT TP header
received in the response to the GET request.

555 Response codes and error handling

On success, either "200 OK" or "204 No Content" shall be returned. If the ETag value in the "If-Match” HT TP header
of the PATCH request does not match the current ETag value of the resource, "412 Precondition Failed" shall be
returned. Otherwise, on failure, the appropriate error code shall be returned.

Resource update can aso be asynchronous in which case "202 Accepted” shall be returned instead of "200 OK". See
clause 5.11 for more details about asynchronous operations.

When using the custom PATCH payload format defined in clause 5.5.3, it isan error that shall be rejected by "422
Unprocessable Entity" if avalue of the identifier attribute in "deletedldList" appearsalso in "newList".

5.6 Pattern: Updating a resource (PUT)

5.6.1 Description
The PUT HTTP method is used to update a resource with "replace” or "overwrite" semantics. That is, the new state of

the resource is determined by the representation in the payload body of PUT; previous resource state is discarded by the
API producer when executing the PUT request.

ETSI

22 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

In the RESTful NFV-MANO APIs, PUT istypicaly used to upload bulk content; resources that have a structured
representation (JSON) are updated with PATCH.

Figure 5.6.1-1 illustrates a typical flow.

AP| cansumer AP| producer

1. PUT . /resource (ResourceRepresentation)

1
>i
alt f |
:{ 2. 200 OK (ResourceRepresentation’) |
!r{ 3. 204 No Content {)
AFl consumer AFl producer

Figure 5.6.1-1: Basic resource update flow with PUT

5.6.2 Resource definition(s) and HTTP methods

This pattern is applicable to any resource that allows update by PUT.

5.6.3 Resource representation(s)
This pattern has no specific provisions for resource representations, other than the following note.

NOTE: Compared to the payload body passed in the request, the payload body in the response can be different, as
the resource update process can have modified the information that has been passed as input.

5.6.4 HTTP headers

In the request, the "Content-type" HTTP header needs to be set to the content type of the payload provided in the
request body.

5.6.5 Response codes and error handling

On success, either "200 OK" or "204 No Content" shall be returned. The "204 No Content" is recommended to be used
in case of large resource representations.

Otherwise, on failure, the appropriate error code shall be returned.

Resource update can a so be asynchronous in which case "202 Accepted” shall be returned instead of "200 OK". See
clause 5.11 for more details about asynchronous operations.

5.7 Pattern: Deleting a resource (DELETE)

5.7.1 Description

The Delete pattern del etes a resource by invoking the HTTP DELETE method on that resource. After successful
completion, the API consumer shall not assume that the resource is available any longer.

The response of the DELETE request istypically empty.

When a deleted resource is accessed subsequently by any HTTP method, typically the API producer responds with "404
Resource Not Found".

ETSI

23 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Figure 5.7.1-1 illustrates deleting a resource.

AP| cansumer AP| producer

| 1. DELETE .. .fresource }:

:.-(2. 204 Mo content |

Trying to access
deleted resource

' 3. GET ...fresource

| >
:r{ 4. 404 Resource not found
AFl consumer APl producer

Figure 5.7.1-1: Resource deletion flow

5.7.2 Resource definition(s) and HTTP methods

This pattern is applicable to any resource that can be deleted. The HTTP method shall be DELETE.

5.7.3 Resource representation(s)
The entity body of the request shall be empty.

The entity body of the response istypically empty. Alternatively, the response can include the final representation of the
resource prior to deletion.

5.7.4 HTTP Headers

No specific provisions for HTTP headers for this pattern.

5.7.5 Response codes and error handling
On success, the following applies for the response codes:
. In the typical case of returning an empty response body, 204 No Content" shall be returned.

e Alternatively, if returning in the response body the final representation of the resource prior to deletion, "200
OK" shall be returned.

On failure, the appropriate error code shall be returned.

If adeleted resource is accessed subsequently by any HTTP method, the API producer shall respond with "404
Resource Not Found".

Resource deletion can also be asynchronous in which case "202 Accepted” shall be returned instead of 204 No
Content". See clause 5.11 for more details about asynchronous operations.

ETSI

24 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

5.8 Pattern: Task resources

5.8.1 Description

In REST interfaces, the goal isto use only four operations on resources. Create, Read, Update, Delete (the so-called
CRUD principle). However, in a number of cases, actual operations needed in a system design are difficult to model as
CRUD operations, be it because they involve multiple resources, or that they are processes that modify a resource and
that take a number of input parameters that do not appear in the resource representation. Such operations are modelled
as "task resources".

A task resource is achild resource of aprimary resource which isintended as an endpoint for the purpose of invoking a
non-CRUD operation. That non-CRUD operation executes a procedure that modifies the state of that actual resourcein
a specific way or performs a computation and returns the result. Task resources are an escape means that allows to
incorporate aspects of a service-oriented architecture or RPC endpoints into a RESTful interface.

The only HTTP method that is supported for atask resource is POST, with an entity body that provides input
parameters to the process which istriggered by the request. Different responses to a POST request to atask resource are
possible, such as"202 Accepted" (for asynchronous invocation), "200 OK" (to provide aresult of a computation based
on the state of the resource and additional parameters), "204 No Content" (to signal success but not return aresult), or
"303 See Other" (to indicate that a different resource was modified). The actual code used depends greatly on the actual
system design.

5.8.2 Resource definition(s) and HTTP methods

A task resource that models an operation on a particular primary resource is often defined as a child resource of that
primary resource. The name of the resource should be a verb that indicates which operation is executed when sending a
POST request to the resource.

EXAMPLE: ...Icall_sessions/{ sessionld} /call_participants/{ participantl d} /transfer.
The HTTP method shall be POST.

5.8.3 Resource representation(s)

The entity body of the POST request does not carry aresource representation but contains input parametersto the
process that is triggered by the POST request.

584 HTTP Headers

In case the task resource represents an operation that is asynchronous, the provisionsin clause 5.11 apply.

In case the operation modifies a primary resource and the response contains the "303 See Other" response code, the
"Location" HTTP header points to the primary resource.

5.8.5 Response codes and error handling

The response code returned depends greatly on the actual operation that is represented as a task resource, and may
include the following:

. For long-running operations, "202 Accepted" isreturned. See clause 5.11 for more details about asynchronous
operations.

o If the operation modifies another resource, "303 See Other" is returned.
. If the operation returns a computation result, "200 OK" is returned.
o If the operation returns no result, "204 No Content" is returned.

On failure, the appropriate error code is returned.

ETSI

25 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

5.9 Pattern: Subscribe-Notify

59.1 Description

A common task in distributed systemsisto keep all involved components informed of changes that appear in a
particular component at a particular time. A common approach to spread information about a change isto distribute
notifications about the change to those components that have indicated interest earlier on. Such pattern is known as
Subscribe/Notify. In REST which is request-response by design, meaning that every request isinitiated by the AP
consumer, specific mechanisms need to be put into place to support the delivery of notificationsinitiated by the API
producer. The basic principle is that the APl consumer exposes a (lightweight) HTTP server towards the API producer.
The (lightweight) HTTP server only needs to support a small subset of the HTTP functiondity - namely the POST and
GET methods, the "204 No Content" success response code plus the relevant error response codes, and, if applicable,
authentication/authorization. The APl consumer exposes the (lightweight) HTTP server in away that it is reachable via
TCP by the API producer.

To manage subscriptions, the APl producer needs to expose a container resource under which the APl consumer can
request the creation/deletion of individual subscription resources. Those resources typically define criteria of the
subscription. Subscription resources can also be read using GET. Termination of a subscription is doneby aDELETE
request.

To receive notifications, the APl consumer exposes one or more notification endpoints (callback URIs) on which it can
receive POST and GET requests. When creating a subscription, the APl consumer informs the API producer about the

notification endpoint (callback URI) to which the API producer will later deliver notifications related to that particular

subscription.

To deliver notifications, the API producer includes the actual notification payload in the entity body of a POST request
and sends that reguest to the notification endpoint(s) (callback URI(s)) it knows from the subscription(s). The API
consumer acknowledges the receipt of the notification with 204 No Content".

Figure 5.9.1-1 illustrates the management of subscriptions. Figure 5.9.1-2 illustrates the delivery of a notification.

ETSI

26 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

AP| cansumer AP| producer

! 1. POST . .fsubscriptions (XyzSubscriptionRequest) }E

testing the notification endpoint /
:{ 2. GET <<Callback URI>>

| 3. 204 Mo Content >

< 4. 201 Created (XyzSubscription)

nEt) [reading subscription information] |
| 5. GET .../subscriptions/ [

:.-(B. 200 Ok (XyzSubscription[]) [

! 7. GET .../subscriptions/{subscriptionld} [

:_(8. 200 OK (XyzSubscription) !

APl consumer does not
need subscription anymaore

9. DELETE .../subscriptions{subscriptionld} >

< 10. 204 Mo Content

ARl consumer APl producer

Figure 5.9.1-1: Management of subscriptions

AP| consumer AP| producer

Frecondition: APl consumer has subscribed previously B]

| Ewvent occurs
| that matches subscription

< 1. POST <<Callback URl=> {XyzMNoatification)

! 2. 204 Mo Content >

AP| consumer AP| producer

Figure 5.9.1-2: Delivery of notifications

ETSI

27 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

5.9.2 Resource definition(s) and HTTP methods

The following resources are involved:

1) Subscriptionsresource: A resource that can hold zero or more subscription resources as child resources.

2) Individual subscription resource: A resource that represents a subscription.

3) A natification endpoint (callback URI) that is exposed by the REST API consumer to receive the notifications.
The HTTP method to create a new individual subscription resource inside the subscriptions resource shall be POST.
The HTTP method to terminate a subscription by removing an individual subscription resource shall be DELETE.

The HTTP method to read the subscriptions resource and to read individual subscription resources shall be GET.
The HTTP method used by the API producer to deliver notifications shall be POST.
The HTTP method used by the API producer to test the notification endpoint shall be GET.

5.9.3 Resource representation(s)
The following provisions are applicable to the representation of an individual subscription resource:

. It shall contain the URI of a notification endpoint (callback URI) that the APl consumer exposes to receive
notifications. That URI shall be provided by the APl consumer on subscription.

. It should contain criteria that allow the API producer to determine the events about which the APl consumer
wishes to be notified. APIs may deviate from this recommendation for instance when there are just one or two
event types, or when it is essential that the API consumer isinformed about all events.

The following provisions are applicable to the representation of a notification:

. It shall contain areference to the related subscription, using the"_links" attribute (see pattern for links,
clause 5.10).

° It shall contain information about the event.

594 HTTP Headers

No specific provisions are applicable here.

5.95 Response codes and error handling
On successful subscription creation, "201 Created" shall be returned.
On successful subscription deletion, "204 No Content" shall be returned.

On successfully reading an "individual subscription™” resource or querying the "subscriptions' resource, “200 OK" shall
be returned.

On successful notification delivery or notification endpoint test, "204 No Content" shall be returned by the API
consumer.

On failure, the resource shall not be created and the appropriate error code shall be returned. For the error condition that
the test of the notification endpoint has failed, 422 Unprocessable Entity" shall be returned.

ETSI

28 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

5.10 Pattern: Links

5.10.1 Description

It is commonly seen as good adherence to RESTful principles that resources link to other resources, allowing the AP
consumer to traverse the resource space. Such principle is also known as "hypermedia controls' or HATEOAS
(Hypermedia As The Engine Of Application State). This clause describes a pattern for hyperlinks.

Hyperlinks to other resources should be embedded into the representation of resources where applicable. For each
hyperlink, the target URI of the link and information about the meaning of the link shall be provided. Knowing the
meaning of the link (typically conveyed by the name of the object that definesthe link, or by an attribute such as"rel")
allowsthe API consumer to automatically traverse the links to access resources related to the actual resource, in order to
perform operations on them.

5.10.2 Resource definition(s) and HTTP methods

Links can be applicable to any resource and any HT TP method.

5.10.3 Resource representation(s)

Links are communicated in the resource representation. Links that occur at the same level in the representation shall be
bundled in a JSON object, named "_links" which should occur as the first object at a particular level.

Links shall be embedded in that JSON object as contained objects. The name of each contained object defines the
semantics of the particular link. The content of each link object shall be an object named "href" of type string, which
defines the target URI the link pointsto. Thelink to the actual resource shall be named "self" and shall be present in
every resource representation if links are used in that API.

Asan example, the"_links' portion of aresource representation is shown that represents paged information.
Figure 5.10.3-1 illustrates the JSON schema and figure 5.10.3-2 illustrates the JISON object.

“properties": {
"_links": {
"required": ["self"],
"type": "object",

"description": "Link relations",
"properties": {
"self": {
"$ref": "#/definitions/Link"
b,
"prev': {
"$ref": "#/definitions/Link"
b,
"next": {
"$ref": "#/definitions/Link"
}
}
}
"aefi nitions": {
"Link" : {
"type": "object",
“properties": {
"href": {"type": "string"}
"required: ["href"]
}

Figure 5.10.3-1: JSON schema fragment for an example "_links" element

ETSI

29 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

" _links": {
"self": { "href": "http://api.exanple.com ny_api/vl/ pages/ 127" },
"next": { "href": "http://api.exanple.com ny_api/vl/ pages/ 128" },
"prev': { "href": "http://api.exanple.com ny_api/vl/ pages/ 126" }

Figure 5.10.3-2: JSON fragment for an example "_links" element

5.10.4 HTTP Headers

There are no specific provisions with respect to HTTP headers for this pattern.

5.10.5 Response codes and error handling

There are no specific provisions with respect to response codes and error handling for this pattern.

5.11 Pattern: Asynchronous invocation with monitor

5.11.1 Description

Certain operations, which are invoked viaa RESTful interface, trigger processing tasks in the underlying system that
may take a long time, from minutes over hours to even days. In this case, it isinappropriate for the APl consumer to
keep the HTTP connection open to wait for the result of the response - the connection will time out before aresult is
delivered. For these cases, asynchronous operations are used. The ideais that the operation immediately returns the
provisional response "202 Accepted” to indicate that the request was understood, can be correctly marshalled in, and
processing has started. The APl consumer can check the status of the operation by polling; additionally or alternatively,
the subscribe-notify mechanism (see clause 5.9) can be used to provide the result once available. The progress of the
operation is reflected by a monitor resource.

Figure 5.11.1-1 illustrates asynchronous operations with polling. After receiving an HTTP request that isto be
processed asynchronoudly, the API producer responds with "202 Accepted” and includesin a specific "Location” HTTP
header a data structure that points to a monitor resource which represents the progress of the processing operation. The
API consumer can then poll the monitor resource by using GET requests, each returning a data structure with
information about the operation, including the (application-specific) processing status such as "processing", "success'
and "failure". In the example, the initial statusis set to "processing”. Eventually, when the processing is finished, the
status is set to "success' (for successful completion of the operation) or "failure" (for completion with errors).
Typically, the representation of a monitor resource will include additional information, such as information about the
error cause if the operation was not successful.

ETSI

30 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

AP| cansumer AP| producer

1. POSTIPUT/PATCH/DELETE ... /primary_resource >

2. 202 Accepted [

A

Long-running aperation started B]

3. GET <<URI of Monitor==

>
4, 200 Ok [Statusinfo;status=processing)

o

5. GET <<URI of Monitor==

Y

B. 200 Ok (Statuslinfo;status=processing)

KT

Long-running aperation finished b]

7. GET <<URI of Monitor==

.

8. 200 OK [StatusInfo;status=success)

[A

AF| consumer AP| producer

Figure 5.11.1-1: Asynchronous operation flow - with polling

Figure 5.11.1-2 illustrates asynchronous operations with subscribe/notify. Before an APl consumer issues any request
that might be processed asynchronously, it subscribes for monitor change notifications. Later, after receivingan HTTP
request that isto be processed asynchronously, the API producer responds with *202 Accepted” and includesin the
"Location" HTTP header a data structure that points to a monitor resource which represents the progress of the
processing operation. The APl consumer can now wait for receiving a notification about the operation finishing, which
will change the status of the monitor. Once the operation is finished, the API producer will send to the API consumer a
notification with a structure in the entity body that typically includes the status of the operation (e.g. "success' or
"failure"), alink to the actual monitor affected, alink to the resource that is modified by the asynchronous operation and
application-specific further information. The APl consumer can then read the monitor resource to obtain additional
information.

ETSI

31 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

AP| cansumer AP| producer

! 1. POST . fsubscriptions (ChangeSubscriptionRequest) -

:.4(2. 201 Created {ChangeSuhscription) [

'3, POST/PUT/PATCH/DELETE .../primary_resource }:

4. 202 Accepted !

< .
E Long-running operation started b]
E Long-running operation finished D]
:L-(5. POST «=Callback URl== (ChangeMaotification) :
E B. 204 Mo Content }E

ARl consumer APl producer

Figure 5.11.1-2: Asynchronous operation flow - with subscribe/notify

5.11.2 Resource definition(s) and HTTP methods

The following resources are involved:
1) Primary resource: The resource that is about to be created/modified/del eted by the long-running operation.
2) Monitor resource: The resource that provides information about the long-running operation.
The HTTP method applied to the primary resource can be any of POST/PUT/PATCH/DELETE.
The HTTP method applicable to read the monitor resource shall be GET.
If monitor change notifications and subscriptions to these are supported, the resources and methods described in
clause 5.9 for the RESTful subscribe/notify pattern are applicable here too.
5.11.3 Resource representation(s)
The 202 response shall have an empty body.
The representation of the monitor resource shall contain at least the following information:
. Resource URI of the primary resource.
. Status of the operation (e.g. "processing”, "success', "failure").
. Additional information about the result or the error(s) occurred, if applicable.
. Information about the operation (e.g. type, parameters, HTTP method used).

If subscribe/notify is supported, the monitor change notification shall include the status of the operation and the
resource URI of the monitor, and shall include the resource URI of the affected primary resource.

ETSI

32 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

5.11.4 HTTP Headers

The link to the monitor shall be provided in the "Location" HTTP header.

5.11.5 Response codes and error handling

On success, "202 Accepted" shall be returned as the response to the request that triggers the long-running operation. On
failure, the appropriate error code shall be returned.

The GET request to the monitor resource shall use "200 OK" as the response code if the monitor could be read
successfully, or the appropriate error code otherwise.

If subscribe/notify is supported, the provisionsin clause 5.9.5 apply in addition.

5.12 Pattern: Asynchronous resource creation without monitor

5.12.1 Description

If only resource creation is asynchronous, there is a simplified pattern available that neither requires a monitor nor a
subscription. The progress of the operation is tracked by the response code of a GET request to the resource that is
being created. The POST request to create the resource returns 202 Accepted” and includes the URI of the resourceto
be created in the "Location" HTTP header, and the same response code is returned by the GET method on the
to-be-created resource as long as the resource creation is ongoing. Once the resource has been created, the GET method
returns"200 OK".

Figure 5.12.1-1 illustrates this pattern.

AP| consumer AP| praducer

! 1. POST .. ./parent_resource [

2,202 Accepted [

: Long-running operation started b]

3. GET =<URI of resource to be created=>

LN
4, 202 Accepted

Lang-running operation finished B]

"5 GET <<URl of resource to be created=>

C

'l{ 6. 200 OK [ResourceRepresentation)

AP| cansumer AP| producer

Figure 5.12.1-1: Asynchronous resource creation flow without monitor

5.12.2 Resource definition(s) and HTTP methods

The following resources are involved:

1) Parent resource: The resource under which anew child resource will be created by the long-running operation.

ETSI

33 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

The HTTP method applied to the parent resource shall be POST.
The HTTP method applicable to read the created resource shall be GET.

5.12.3 Resource representation(s)

The provisions for the resource representation of the POST request to create a resource and the GET response to read a
resource apply. The body of the 202 response shall be empty.

5.12.4 HTTP Headers

The URI of the resource to be created shall be provided in the "Location™ HTTP header in the 202 response to the POST
request.

5.12.5 Response codes and error handling

On success, "202 Accepted” shall be returned in the response to the POST request that triggers the long-running
resource creation operation.

The response to the GET request to the resource that is being created shall use the "202 Accepted” response code as
long as resource creation is ongoing.

The response to the GET request to the resource that has been successfully created shall use the "200 OK" response
code.

On failure, the appropriate error code shall be returned by the POST as well asthe GET request.

5.13 Pattern: Range requests (partial GET)

5.13.1 Description

This pattern obtains a partial representation of the resource when reading a resource using the HTTP GET method. This
pattern is an extension of the simple pattern to read aresource as defined in clause 5.3. It provides advantages when
reading resources with large representations over slow or unreliable network connections.

Using range requests, a resource can be read in pieces, or an interrupted download can be resumed by obtaining the
missing part of the resource representation. Range requests are specified as an optional HTTP featurein IETF

RFC 7233 [6]. This clause can only provide general coverage of the pattern; [6] is the authoritative source of
information.

Figure 5.13.1-1 illustrates obtaining a partial representation of aresource. The requested rangeis signalled in a header
of the GET request. The response contains a header that signals the included byte range(s), and a partial resource
representation.

AP| cansumer API producer

! 1. GET .../resource (with Range header) !

>i
:r{ 2. 206 Partial Content (partial resource representation) !
API| consumer AP| producer

Figure 5.13.1-1: Flow of obtaining a partial representation of a resource

ETSI

34 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

5.13.2 Resource definition(s) and HTTP methods

This pattern is applicable to resources that can be read and that have large, typically binary, representations. TheHTTP
method shall be GET.

5.13.3 Resource representation(s)

The entity body of the request shall be empty.

The entity body of the response shall contain the part of the representation of the resource that was read, controlled by
the header information passed in the request. If aresource does not support range requests, the full representation of the
resource shall be returned instead.

5.13.4 HTTP Headers

The "Range" request header shall be used to signal the requested byte range, as defined in IETF RFC 7233 [6].
The "Content-Range" response header shall be used to signd the byte range of the representation enclosed in the
payload and the complete length of the representation as defined in IETF RFC 7233 [6].

5.13.5 Response codes and error handling

On success, "206 Partial Content" shall be returned.

If range requests are not supported by aresource, "200 OK" shall be returned together with afull representation of the
resource.

If the information passed in the "Range" header isinvalid or does not overlap with the range that can be provided as
resource representation, the "416 Range Not Satisfiable" error response shall be returned as defined by IETF
RFC 7233 [6].

On other errors, the appropriate error code shall be returned.

5.14 Pattern: Representation of lists in JSON

5.14.1

Lists of objectsin JSON can be represented in two ways: arrays and maps. For the purpose of illustration in this clause,
an example of a structured typeisintroduced in table 5.14.1-1.

Description

Table 5.14.1-1: Structured example data type "Person”

Attribute name Data type Cardinality Description
name String 1 Name of the person
age Number 1 Age of the person

Further, in table 5.14.1-2, an "id" attribute is introduced that identifies the person, i.e. its vaue is unique among al

instances of the data type.

Table 5.14.1-2: Structured example data type "PersonWithld"

Attribute name Data type Cardinality Description
id String 1 Identifier of the person
name String 1 Name of the person
age Number 1 Age of the person

ETSI

35 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

5.14.2 Representation as array

A JSON array represents alist of objects as an ordered sequence of JSON objects. The order is significant; each object
in the array can be addressed by its position, i.e. itsindex.

When modifying an array with PATCH (see clause 5.5), modifications can be represented by passing the whole
modified array using the JISON Merge Patch (IETF RFC 7396 [3]) format, or using an NFV -specific deltaformat (see
clause 5.5.3).

Figure 5.14.2-1 provides an example of alist of objects of type "PersonWithld" represented as JSON array. In this
example, the "id" attribute identifies the entries as "identifying property". If one needs to refer to this property, one

refersto "the 'id' attribute of the (entry in the) 'persons array/list/attribute™.

NOTE: Not al arrays have an identifying property.

"persons": [
{"id": "123", "name": "Alice", "age": 30},
{"id": "abc". "name": "Bob", "age": 40}

Figure 5.14.2-1: Example of an array of JSON objects of type "PersonWithid"

In the data model notation (see Annex A), an array of elements of a particular type is denoted by the type name,
followed by a cardinality with the upper bound larger than 1 (e.g. 0..N or 1..N). Optionally, the data type may be
prefixed with the word "array" and put in parentheses.

Table 5.14.2-1 illustrates the two ways to define an array.

Table 5.14.2-1: Denoting an array in the API data model

Attribute name Data type Cardinality Description
firstArray PersonWithid 1..N List of persons, implicitly defined as array by
the multiplicity in the cardinality (optional
"array" keyword omitted).
secondArray array(PersonWithld) 0..N List of persons, explicitly defined as array by
the keyword "array".

5.14.3 Representation as map

A JSON map represents a list of objects as an associative set of key-value pairs (where each value is a JSON object and
the key is the identifying property). The order of the entriesin the map is not significant; each object in the map can be
addressed by its unique key. Representation as map requires that the objectsin the list have an identifying property, i.e.
an attribute with unique values, such as an identifier. That attribute is used as key in the map.

When modifying a map with PATCH (see clause 5.5), modifications can be represented naturally by passing only the
changes using the JSON Merge Patch (IETF RFC 7396 [3]) format for the delta document. There is no need for specific
signalling.

Figure 5.14.3-1 provides an example of alist of objects of type "Person” represented as a JSON map, using the same
dataasin figure5.14.2-1. The"id" attribute is not needed here; its value is used as the name of the key. If one needsto
refer to the value of the identifying property, one refersto "the key of the ‘persons map".

NOTE: All maps have an identifying property.

"persons": {
"123": {"name": "Alice", "age": 30},
"abc": {"name": "Bob", "age": 40}

Figure 5.14.3-1: Example of a map of JSON objects of type "Person"

ETSI

36 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

In the data model notation (see Annex A), amap of elements of a particular type is denoted by the keyword "map,
followed by the type name in parentheses, followed by a cardinality with the upper bound larger than 1 (e.g. 0..N or
1..N). Table5.14.3-1 illustrates how to define a map.

Table 5.14.3-1: Denoting a map in the APl data model

Attribute name Data type Cardinality Description
firstMap map(Person) 1..N Map of persons

6 Specifying APl and GS versions in the OpenAPI files

6.1 General

The concepts and mechanisms applicable to versioning of the RESTful ETSI NFV-MANO APIs are specified in
clause 9 of ETSI GSNFV-SOL 013[1]. ETSI ISG NFV publishes OpenAPI files[i.5] related to the APIs. This clause
defines how to document in the OpenAPI files the relationship to the corresponding GS version and the applicable API
version.

6.2 Visibility of the API version identifier fields in the OpenAPI
specifications

The full API version identifier (as defined in clause 9 of ETSI GS NFV-SOL 013 [1]) shall be visible in the OpenAPI
specifications, in the "version” subfield of the "info" field, asillustrated in the example below. The "impl" parameter
shall be used to signal the version of the OpenAPI representation of the API, using the following structure:

etsi.org:ETSI_NFV_OpenAPI:<impl_version>, where <impl_version> is a number.

In case of the OpenAPI files provided by ETSI, the "vendor" field in the "impl" version parameter shall be set to
"etsi.org" and the "product” field in that parameter shall be set to "ETSI_NFV_OpenAPI".

EXAMPLE:

swagger: "2.0"
i nfo:
version: "1.2.1-inpl:etsi.org: ETSI _NFV_OpenAP| : 1"
title: SOLO03 — VNF LCMinterface
l'i cense:
name: "ETS|I Forge copyright notice"
url: https://forge.etsi.org/etsi-forge-copyright-notice.txt

6.3 Relation between the API version identifiers of an OpenAPI
specifications and the base GS

There is no one-to-one mapping between an API version identifier and the version identifier of its published base GS.
A GS specifies multiple APIs, which may have different versions.

A change in the 3" field of a published GS version identifier (i.e. an editorial change) does not lead to achangein the
version identifiers of the APIs specified in the GS.

Only the version identification of published OpenAPI representations based on published GS documentsis within the
scope of the present document. Non-published previews of OpenAPI representations during development shall be
clearly identifiable and distinguishable from published OpenAPI representations.

A changein the 1% or 2" fields of the published GS version identifier (i.e. atechnical change) islikely to lead to at least
achange in the minor version number of one of the APIs specified in the GS, which is documented in the definition of
the applicable API version in the GS.

ETSI

37 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

For example, if published version 2.4.1 of a base GS containsversion 1.1.1 of API A, B and C, published version 3.1.1
of thisbase GS can contain version 1.2.1 of APl A, version 2.1.1 of API B and version 1.1.1 of API C (if no changes

were madeto API C).

Each OpenAPI specification shall providein an "externalDoc" field the reference of the published base GS, including
the version identifier, asillustrated below.

EXAMPLE:
swagger: "2.0"
i nfo:

version: "1.2.1-inpl:etsi.org: ETSI _NFV_OpenAP| : 1"
title: SOLO0O3 - VNF LCMinterface
description: The VNF LCM APl provide access to VNF |ifecycle managenent services
l'i cense:
name: "ETS|I Forge copyright notice"
url: https://forge.etsi.org/etsi-forge-copyright-notice.txt
ext er nal Docs:
description: ETSI GS NFV-SOL 003 version 2.3.1, 2.4.1
url : http://ww. etsi.org/deliver/etsi_gs/NFV-SOL/001_099/ 003/ 02. 04. 01_60/ gs_nf v-sol 003v020401p. pdf

Multiple published versions of the same GS can contain the same API (e.g. SOL 003 VNF LCM API) without any
modification. In this case, al published GS versions supporting the same API should be listed in the "description”
subfield under "externalDocs’, and the "url" subfield should refer to the latest version of the published base GS.

ETSI

38 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Annex A (normative):
REST API template for interface clauses

X<Long APl name> interface

<Template note: One main clause per interface (e.g. VNF Lifecycle Management interface)>

X.1 Description

<Template note: Provides a description of the interface>

X.2 API version

For the <Long API name> interface as specified in the present document, the MAJOR version field shall be <major>,
the MINOR version field shall be <minor> and the PATCH version field shall be <patch> (see clause 9.1 of ETSI
GSNFV-SOL 013 [<ref>] for adefinition of the version fields). Consequently, the { apiMajorVersion} URI variable
shall be set to "v<major>".

X.3 Resource structure and methods

All resource URIs of this API shall use the base URI specification defined in clause 4.1 of ETSI

GSNFV-SOL 013 [<ref>]. The string "< putApiNameHere>" shall be used to represent { apiName}. The
{apiMgorVersion} shall be set to "v1" for the present document. All resource URIsin the clauses below are defined
relative to the above base URI.

<Template note: the content formats to be supported are defined globally. If for a particular API there is
deviation from the global definition this needs to be defined here>

Figure X.3-1 shows the overall resource URI structure defined for the <long API name> API. Table X.3-1 liststhe
individual resources defined, and the applicable HTTP methods.

<Template note: a node with a box represents a path segment that has at least one supported HTTP method
associated. A solid box indicates a resource strictly following the REST paradigms (subset of CRUD). A
dashed box indicates a task resource. A node without a box represents a path segment that has no
supported HTTP method associated, i.e. that merely serves for structuring the resource tree. All node names
are examples only>

ETSI

39 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

L— /const_segment_without_methods

|—[/const_segment4]

—[/const_segment5]

L[/{variable2} |

Figure X.3-1: Resource URI structure of the <long API name> interface

<Template note: A PPT template for the graph above is available in the following zip file:
gs_nfv-sol015v010201p0.zip and attached to the present document>

<Template note: Overview table of resources and operations>
Table X.3-1 lists the individual resources defined, and the applicable HTTP methods.

<Template note: In the text below, parts that are not applicable (e.qg. if there are no "C" or "O" resources) can
be removed>

The <API producer> shall support responding to requests for all HTTP methods on the resourcesin table X.3-1 that are
marked as"M" (mandatory) in the "Cat" column and may support responding to requests for those marked as"O"
(optional). Conditions for support of responding to requests for those resources and methods marked as " C"
(conditional) in the "Cat" column by the <API producer> are defined by notesin table X.3-1.

The <API producer> shall also support the "API versions' resources as specified in clause 9.3.3 of ETSI
GSNFV-SOL 013 [<ref>].

ETSI

40

ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Table X.3-1: Resources and methods overview of the <long API name> interface

Resource name Resource URI HTTP Cat Meaning
METHOD
<Resource Meaning> <relative URI below root> POST M/C/O _|<short description>
GET M/C/O _|<short description>
PUT M/C/O |<short description>
PATCH M/C/O |<short description>
DELETE M/C/O _|<short description>
Subscriptions <relative URI below root> |POST M/C/O _|<short description>
[...] M/C/O |<short description>
Notification endpoint (provided by API POST * <short description>. (*)
consumer) See note.
GET * <short description>. (*)
See note.

NOTE:

The <API producer> shall support invoking the HTTP methods defined for the "Notification endpoint”
resource exposed by the <API consumer>. If the <AP| consumer> supports invoking the POST
method on the "Subscriptions" resource towards the <API producer>, it shall also support responding
to the HTTP requests defined for the "Notification endpoint” resource.

<Template note: In the table above, only include sub-rows for those HTTP methods that are applicable to the
resource. Only include rows defining the "Notification endpoint” and "Subscriptions" resources and the
related notes if subscribe-notify is supported in that API>

<Template note: Start of example>

Table X.3-2: Resources and methods overview of the Foo bar interface

Resource name Resource URI HTTP Cat Meaning
METHOD
Foo instances /foo_instances GET M Query multiple Foo instances.
POST M Create a Foo instance resource.
Individual Foo instance |/foo_instances/{instanceld} |GET M Query single Foo instance.
PATCH 0 Modify Foo instance information.
DELETE M Delete Foo instance resource.
Enlarge Foo task /foo_instances/{instanceld} |[POST C Enlarge a Foo instance. See note 1.
/enlarge
Subscriptions /subscriptions POST M Create a new subscription.
Notification endpoint (provided by API POST *) Notify about foo change events. (*) See
consumer) note 2.
GET *) Test the notification endpoint. (*) See
note 2.

NOTE 2:

NOTE 1: Support of this task resource by the Foo Manager depends on the capability level of the Foo manager. Foo
Managers of capability level "super power" shall support this task resource; all others need not support this
task resource.

The Foo Manager shall support invoking the HTTP methods defined for the "Notification endpoint” resource
exposed by the Foo Orchestration Primary. If the Foo Orchestration Primary supports invoking the POST
method on the "Subscription” resource towards the Foo Manager, it shall also support responding to the
HTTP requests defined for the "Notification endpoint" resource.

<Template note: End of Example>

X.4

Sequence diagrams

<Template note: this clause typically contains informative content, such as the message flows themselves.
Normative keywords may be used in this clause, such as for pre/post-conditions>

<Template note: This clause will be included if needed to illustrate non-trivial message flows>

ETSI

41 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

X.4.1 <Procedure 1>

<Template note: Add introductory text>

Thisclause ...

<Template note: Add flow diagram. Do not forget caption. Conventions and examples are documented in
annex B. It is recommended to use the PlantUML tool, see annex X, to create the diagram>

<placeholder for graphics, centred>

Figure X.4.1-1: Flow of <Procedure 1>

<Template note: Add precondition if applicable>

Precondition: Text text text

<Template note: Add description of the steps>

<Template note: Conventions and example for the description of a flow documented in clause 5>

<Procedure 1>, asillustrated in figure X.4.1-1, consists of the following steps:

<Template note: Add error handling if applicable>

Error handling: Text text text

X.4.2 <Procedure 2>

<Template note: same as clause X.4.1>

X.5 Resources
<Template note: this clause is normative>

X.5.1 Introduction

This clause defines the resources and methods of the <long APl name> API.
<Template note: Repeat the following as often as needed, per resource>

X.5.2 Resource: API versions

The"API versions' resources as defined in clause 9.3.3 of ETSI GSNFV-SOL 013 [<ref>] are part of the <long API
name> interface.

X.5.3 Resource: <ResourceName>

X.5.3.1 Description
This resource represents <something>. The API consumer can use this resource to <do something>.
<Template note: or similar text as applicable>

<Template note: Start of example

This resource represents VNF instances. The APl consumer can use this resource to create individual VNF instance
resources, and to query VNF instances.

ETSI

42 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

<Template note: End of example

X.5.3.2 Resource definition
Theresource URI is:
{apiRoot}/<putApiNameHere>/{apiMajorVersion}/<foo_bar>

This resource shall support the resource URI variables defined in table X.5.3.2-1.

<Template note: For API resources>

Table X.5.3.2-1: Resource URI variables for this resource

Name Definition
apiRoot See clause 4.1 of ETSI GS NFV-SOL 013 [<ref>].
apiMajorVersion See clause X.2.
<name> <definition>

<Template note: Alternative to be used for the notification endpoint that typically has no standardized
resource URI variables>

Table X.5.3.2-1: Resource URI variables for this resource

Name Definition
none supported

X.5.3.3 Resource Methods

X.53.3.1 POST
<Template note: Alternative 2>

The POST method ... <Meaning(s) of the operation in API space. Add specific normative statements about what the
API producer block is expected to do when receiving this request. Also pay attention to normatively define post-
conditions, such as the fact that a new resource shall exist (after a request that creates a resource)>

<Template note: Alternative 2>

This method is not supported. When this method is requested, the <API producer> shall return a"405 Method Not
Allowed" response as defined in clause 6.4 of ETSI GS NFV-SOL 013 [<ref>].

<Template note: End of alternatives>
<Template note: Start Example>
The POST method creates afoo bar object and the associated resource.

Asthe result of successfully executing this method, anew "FooBar" resource shall exist as defined in clause x.y.z, and
the value of the "foo" attribute in the representation of that resource shall be "bar". A natification of type
FooBarCreationNotification shall be triggered as part of successfully executing this method as defined in clause x.y.z.a

<Template note: End Example>

This method shall follow the provisions specified in the tables X.5.3.3.1-1 and X.5.3.3.1-2 for URI query parameters,
request and response data structures, and response codes.

ETSI

43

ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Table X.5.3.3.1-1: URI query parameters supported by the <POST> method on this resource

Name Cardinality Remarks
<name> 0.1orlor
or 0..N or <leave |<only if applicable>
none supported empty>

Table X.5.3.3.1-2: Details of the <POST> request/response on this resource

Data type Cardinality Description
<type> or n/a 1<(i.e. <Description of the case in which this data type is sent. Shall be
object)> or present if multiple alternatives exist and may be omitted in case of a
Request 0.N/1.N/ single alternative>
body m..n <i.e.
array> or
<leave
empty>
Data type Cardinality Response Description
Codes
<type> or n/a 1 <(i.e. <list applicable < Normative statement defining the case in
object)> or codes with name |which this response is returned (success or error)
0.N/1.N/ from IETF - Suggestion for success: Shall be
m..n <i.e. RFC 7231 [<ref>] returned when (success condition)
array> or etc.> - Suggestion for error: Shall be returned
<leave upon the following error: (error
empty> condition)
>
Response <Normative statement about the response body>
body
<if specific headers are applicable> The HTTP
response shall/should/may <choose one> include
a <name> HTTP header that...
<endif>
<Further text if applicable>
(.)
ProblemDetails See AXX/5xX In addition to the response codes defined above,
clause 6.4 of any common error response code as defined in
[<ref>]. clause 6.4 of ETSI GS NFV-SOL 013 [<ref>] may

be returned.

<Template note: Start of example>

Table X.5.3.3.1-3: URI query parameters supported by the POST method on this resource

Name

Cardinality

Remarks

foo bar

0.1

The foo bar

ETSI

Table X.5.3.3.1-4:

44

ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Details of the POST request/response on this resource

Request Data type

Cardinality

Description

body FooBarCreateRequest

1

Foo bar instance creation parameters

Data type

Cardinality

Response
Codes

Description

FooBarInstance

1

201 Created

Shall be returned when the foo bar instance was
created successfully.

The response body shall contain a representation of
the created foo bar instance resource.

The HTTP response shall include a "Location" HTTP
header that contains the URI of the newly-created
resource.

ProblemDetails

Response
body

400 Bad
Request

Shall be returned upon the following error: Incorrect
parameters were passed to the request.

In the returned ProblemDetails structure, the "detail"
attribute should convey more information about the
error.

ProblemDetails

404
Not Found

Shall be returned upon the following error: The
resource URI was incorrect.

In the returned ProblemDetails structure, the "detail"
attribute should convey more information about the
error.

ProblemDetails

See
clause 6.4
of [<ref>].

AXX/5XX

In addition to the response codes defined above, any
common error response code as defined in

clause 6.4 of ETSI GS NFV-SOL 013 [<ref>] may be
returned.

<Template note: End of Example>

<Template note: Main place to define error handling is the table above. If necessary, describe ADDITIONAL

error handling in text below>

Error handling: text text text

X.5.3.3.2 GET

<same structure as for POST>

X.5.3.3.3 PUT

<same structure as for POST>

X.5.3.34 PATCH

<same structure as for POST>

X.5.3.35 DELETE

<same structure as for POST>

X.6 Data model

<Template note: this clause is normative>

ETSI

45 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

X.6.1 Introduction
<Template note: To be written according to the individual specification>

X.6.2 Resource and notification data types

X.6.2.1 Introduction

This clause defines data structures to be used in resource representations and notifications.

X.6.2.2 Type: <TypeNamel>

Thistyperepresentsa<...>. It shall comply with the provisions defined in table X.6.2.2-1.

<Template note: Data type names in UpperCamel>

<Template note: Provisions how to document a structured data type and an example are provided in
clause 5.4.2 of ETSI GS NFV-SOL 015>

Table X.6.2.2-1: Definition of the <TypeNamel1> data type

Attribute name Data type Cardinality Description

X.6.3 Referenced structured data types

X.6.3.1 Introduction

This clause defines data structures that can be referenced from data structures defined in the previous clauses, but can
neither be resource representations nor bound to any subscribe/notify mechanism.

X.6.3.2 Type: <TypeName2>
<Template note: Same structure as in clause X.6.2.2>

X.6.4 Referenced simple data types and enumerations

X.6.4.1 Introduction

This clause defines simple data types that can be referenced from data structures defined in the previous clauses.
<Template note: This covers simple types, including enumerations>

X.6.4.2 Simple data types
The simple data types defined in table X.6.4.2-1 shall be supported.

Table X.6.4.2-1: Simple data types

Type name Description

ETSI

46

X.6.4.3 Enumeration: <TypeName3>

ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

The enumeration < TypeName3> represents <something>. It shall comply with the provisions defined in

table X.6.4.3-1.

Table X.6.4.3-1: Enumeration <TypeName3>

Enumeration value

Description

ETSI

a7 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Annex B (informative):
Conventions for message flows

B.1 Tool support

The PlantUML tool [i.2] is used to obtain a unique appearance of all flow diagramsin the RESTful NFV-MANO API
specifications. The tool can be obtained from [i.3] and documentation is available from [i.4].

The appearance of the diagramsis controlled by the "skin.inc" file which isincluded in every PlantUML sourcefile, as
follows:

e Savethetext below in atext file named "skin.inc" and put it into the same directory as the PlantUML source
file.

ski npar am nonochr onme true
ski npar am sequenceAct or Backgr oundCol or #FFFFFF
ski npar am sequenceParti ci pant Backgr oundCol or #FFFFFF
ski npar am not eBackgr oundCol or #FFFFFF
aut onunber "#' .'"
. Use these instructions at the beginning of the PlantUML source file to include the file.
@tartun
l'i ncl ude skin.inc

. When making a contribution, ensure to include the PlantUML source filein aZIP archive with the
contribution.

B.2 Graphical conventions

1) AnHTTPrequest isrepresented by a solid arrow (->) with the method name, followed by the URI, followed
by an indication of the type of the entity body, if applicable.

EXAMPLE: consumer -> producer: POST ../contai ner_resources (FooBarType)

2) AnHTTPresponseisrepresented by a solid arrow (->) with the response code, followed by the meaning of the
response code, followed by an indication of the type of the entity body, if applicable.

EXAMPLE: producer -> consuner: 201 Created (FooBar Type)

3) Ifitisnecessary to call out aparticular attribute in the entity body for later reference, use the syntax
<type>;<attribute>=<value>.

EXAMPLE: producer -> consuner: 201 Created (FooBarType:id=123)

4) A condition, postcondition, or precondition, if needed, is expressed as a note over consumer and producer.

EXAMPLE: note over consumer, producer
Precondi ti on: Everything was prepared
end note

5) A processing step, if thereisno need to number it, or acomment, is expressed as a note over consumer or
producer.

EXAMPLE: note over producer
Updat e i nternal database
end note

ETSI

48 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

6) A processing step, if thereisthe need to automatically number it for reference from the text, is expressed as a
"signal to self" at producer or consumer side, with a dashed sim-headed arrow.

EXAMPLE: producer -->> producer: Update internal database

7) HTTP requests and responses are numbered, usually with an increment of one. The necessary definitions for
automatic numbering are included in skin.inc (see clause B.1).

8) A message or message exchange of which the details are defined el sewhere is represented with a dashed slim-
headed arrow and set initalics.

EXAMPLE: producer -->> consuner: <i>Send XyzNotification</i>

9) A message or sequence of messages that is optional to execute, and the associated notes, are enclosed into an

"opt" section.
EXAMPLE:
opt
consumer -> producer: GET ../[nice_to_have
producer -> consuner: 200 OK (N ceToHaveType)
end

10) Alternatives are represented using an "alt" section.

EXAMPLE:
alt query nultiple instances

consumer -> producer: GET .../instances?filter=abc
producer -> consuner: 200 OK (InstanceType[])

el se read informati on about individual instance
consuner -> producer: GET .../instances/{instancel d}
producer -> consuner: 200 OK (I nstanceType)

end

11) For better structuring, long message sequences may be separated into sections using "==" separators.

EXAMPLE:
== |nitialization ==

12) Further, for better structuring, multiple messages may be grouped together in a named group to show that they
belong together and serve an overarching purpose.

EXAMPLE:
group Creation and instantiation

consuner -> producer: POST ../[instances (InstanceType)

producer -> consuner: 201 Created (InstanceType)

consuner -> producer: POST ./[instances/{instanceld} (InstantiateRequest)
producer -> consuner: 202 Accepted ()

end
An overall example that illustrates the provisions above is given in the figures B.2-1 and B.2-2.

EXAMPLE: This exampleillustrates a VNF instantiation. The example might differ from the actual technical
content that has been, is or will eventually be agreed for inclusion into a GS.

@tartum

l'include skin.inc

partici pant "NFVO' as cli
partici pant "VNFM' as srv

== Create and instantiate VNF ==

ETSI

ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Figure B.2-1: PlantUML source to illustrate the conventions defined above

50 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Create and instantiate VNF

Frecondition: WMF instance does not exist B]
E 1. POST __Anf_instances (Wnflnstance) }E
E{ 2. 201 Created (Wnflnstance:links. self=. fnf_instances/123) E
Condition: WMF instance in NOT_INSTANTIATED state B]

VNF instantiation sefuence / !

'3, POST _fwnf_instances/123/instantiate (Instantiate’VnfRequest) !

4,202 Accepted ()

5. Send VnfLemOperationOccurrenceNotification(star)

opt _/ I

Client polls the WNF lifecycle
operation occurrence resource

' B. GET .._fnf_Ic_ops/abcxyz456

L

7. 200 OK (LeOpOec: status=processing)

o
-

lB. Instantiation finished

[
[

9. Send VnflemOperationCccurrenceNotification(result) !

:

opt__/ |

110, GET ...Anf_Ic_opsfabcxyz456 N

:_, 11. 200 OK (LeDpOcc:status=success) |

— I

FPaostcondition: WNF instance in INSTANTIATED state b]

I I

; Query / read VNF instance information :

alt) [query information about multiple VHNF instances] :

1 12. GET .. Anf_instances o

| 13.200 OK (Vnfinstance[]) |

[read ilnfurmatiun about individual VHF instance] :

'14. GET .. unf_instances/{vnilnstanceld} -

1 15,200 Ok (vnilnstance) |
NFEWO WINF M

Figure B.2-2: Flow diagram resulting from the PlantUML source in figure B.2-1

ETSI

51 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Annex C (normative):
Change requests classification

C.1 Introduction

This annex provides guidelines on how to fill the "Other comments® field of the Change Request (CR) template when
submitting a CR on RESTful NFV-MANO API specifications. It also provides some examples of BackWard
Compatible (BWC) and Non-BackWard Compatible (NBWC) changes to be specified in the CR template.

C.2 The Field "Other comments"

The field "Other comments' of the CR template shall contain at least the following two sub-fields:
. Change type.
. Change type code(s) (CTC).

The value of "Change type" and " Change type code(s)" sub-fields shall be set according to the following rules when
submitting a CR:

1) "Changetype" identifies whether the changes proposed in the CR are BackWard Compatible (BWC), Non-
BackWard Compatible (NBWC) or whether backward compatibility is Not Applicable (N/A) to these changes.
If at least one of the proposed changesin the CR is NBWC, then "Change type" shall be set to NBWC.

2) Vadlidvauesfor the sub-field "Change type code(s)" are defined in the following clauses and are qualifiers of
the sub-field "Change type". When "Change type" is set to BWC then the "Change type codes' are defined in
clause C.3. In case "Change type" is set to NBWC then the "Change type codes' are defined in clause C.4.

3) When "Changetype" is set to Not Applicable (N/A) then the "Change type code(s)" sub-field shall not be
filled.

This approach isillustrated in figure C.2-1.

CHANGE REQUEST

Version CR rev -
CR Title:
Source:
Work ltem Ref: Date:
Category: Release:

Use one of the following categories:

F (correction)

A (corresponds to a correction in an earlier release)
B (addition of feature)

C (functional modification of feature)

D (editorial modification)

Reason for change:

ETSI

52 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Summary of change:

Clauses affected:

Other deliverables
affected:

Other comments: Change type (BWC, NBWC or N/A):

Change type code(s):

Figure C.2-1: Other comments field with Change Type and Change Type Code(s)

C.3 Examples of BWC Changes

Examples of BWC changesinclude:
. Adding anew resource
. Adding anew URI
. Supporting a new HTTP method for an existing resource
e Adding new optional URI query parameters
e Adding new optional attributes to a resource representation in arequest
. Adding new attributes to a resource representation in aresponse or to a notification message
e Adding anew notification message
. Responding with a new status code of an error class

. Changing the name of a named type or changing from an inlined structure to a named data type, or from a
named data type to an inlined structure

. Certain cardinality changes (see note 1 in table C.3-1)
. Error corrections

Table C.3-1 defines the list of change type codes for BWC changes on the API.

ETSI

53

ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Table C.3-1: Change type codes for BWC changes

BWC Change Type

Change Type Code

Adding a new resource

BWC_ADD_RESOURCE

Adding a new URI

BWC_ADD_URI

Supporting a new HTTP method for an existing resource

BWC_ADD_METHOD

Adding new optional URI query parameters

BWC_ADD_OPT_QUERY_ PARAMS

Adding new optional attributes to a resource representation in
a request

BWC_ADD_OPT_ATTR_REQST

Adding new attributes to a resource representation in a
response or to a notification message

BWC_ADD_ATTR_RESP_OR_NOTIF

Adding a new notification message

BWC_ADD_NOTIFICATION

Responding with a new status code of an error class

BWC_NEW_STATUS CODE

Renaming a named data type, or changing from a named data

BWC_RENAME_DATATYPE

API producer and API consumer implementations.

type to an inlined structure or vice versa See note 4.

Certain BWC cardinality changes BWC_CARD_CHGS
See note 1.

Error correction BWC_ERROR_CORR
See note 2.

Other BWC_OTHER
See note 3.

NOTE 1: Whether attribute cardinality changes are backward compatible depends on the type of change. An
example of a backward-compatible cardinality change include making an attribute in a response
required (e.g. changing cardinality from 0..1 to 1).

NOTE 2: A change that corrects an error that would lead the API producer to always send an error response
if a certain valid condition is met is considered a backward compatible change, irrespective of the
type of change.

NOTE 3: A BWC change type code equal to "OTHER_BWC" is defined to represent any BWC change
besides those explicitly defined in this table.

NOTE 4: Note that these changes do not show up in the message exchanges, so there is no need to change

C4

. Removing aresource/URI
. Removing support for an HTTP method
. Changing aresource URI

. Adding new mandatory URI query parameters

Examples of NBWC changes to the payload body include:

. Renaming an attribute in a resource representation

Examples of NBWC Changes

Examples of NBWC changes to the resources structure include:

e Adding new mandatory attributes to a resource representation in a request

. Changing the data type of an attribute

. Certain cardinality changes (see note 2 in table C.4-1)

ETSI

Table C.4-1 defines the list of change type codes for NBWC changes on the API.

54

ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Table C.4-1: Change type codes for NBWC changes

NBWC Category

NBWC Change Type

Change Type Code

Resource Structure
Changes

Removing a resource

NBWCR_REMOVE_RESOURCE

Removing a URI

NBWCR_REMOVE_URI

Removing support for an HTTP method

NBWCR_REMOVE_METHOD

Changing a resource URI

NBWCR_CHG_URI

Adding new mandatory URI query
parameters

NBWCR_ADD_MAND_QUERY_PARAMS

Other NBWC changes to the resources
structure

NBWCR_OTHER
See note 1.

Payload Body Changes

Renaming an attribute in a resource
representation

NBWCP_RENAME_ATTR

Adding new mandatory attributes to a
resource representation in a request

NBWCP_ADD_MAND_ATTR_REQST

Changing the data type of an attribute

NBWCP_CHG_DATA TYPE

See note 4.

Certain NBWC cardinality changes NBWCP_CARD_CHGS
See note 2.

Other NBWC changes to the payload NBWCP_OTHER

body See note 3.

NOTE 1:

A NBWC change type code equal to "NBWCR_OTHER" is defined to represent any NBWC change to the

NOTE 2:

resources structure besides those explicitly defined in this table.

Whether attribute cardinality changes are backward compatible depends on the type of change. Examples of
non-backward compatible cardinality changes include decreasing the upper bound of a cardinality range for
attributes sent by the API consumer and changing the meaning of the default behaviour associated to the
absence of an attribute of cardinality O..N.

NOTE 3:

payload body besides those explicitly defined in this table.

NOTE 4:

A NBWC change type code equal to "NBWCP_OTHER" is defined to represent any NBWC change to the

This change type relates to changes that modify the content of the attribute (e.g. change of primitive type) in

the protocol messages. It does not relate to changes subsumed under change type
"BWC_RENAME_DATATYPE".

ETSI

55 ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

Annex D (informative):
Change History

Date Version Information about changes
Initial skeleton based on
March 2019 0.1.0 - NFVSOL(19)000158r1
- NFVSOL(19)000159r1

Contributions incorporated
- NFVSOL(19)000313r3_SOL015_patterns
- NFVSOL(19)000314r2_SOL015_conventions_for_names
- NFVSOL(19)000315r2_SOL015_conventions_for_flows
June 2019 0.2.0 - NFVSOL(19)000316r3_SOL015 Annex_A_template
- NFVSOL(19)000317r1_SOL015 Annex_B_CRs_classification

Editorials
- Use "NFV-MANQ" across the board
Contributions incorporated
- NFVSOL(19)000329r3_SOL015_versioning
- NFVSOL(19)000412r1_SOLO015_ clause_6
- NFVSOL(19)000470_SOL015 fixing_change_code

August 2019 0.3.0

Editorials

- Use "NFV-MANO" across the board

- ___Some placeholders in the template renamed to improve consistency
Contributions incorporated

- NFVSOL(19)000478_SOL015_Updating_PATCH_pattern

- NFVSOL(19)000479_SOL015 Updating_simple_monitor_pattern

- NFVSOL(19)000480_SOL015 add_more_PlantUML_primitives.docx

- NFVSOL(19)000536r1_SOL015_use_of PUT

- NFVSOL(19)000537_SOL015_use_of partial_GET

- NFVSOL(19)000544_SOL015_small_fix

October 2019 0.4.0
Editorials
- Making line styles of task resources in the resource tree consistent across GSs
- Making line style of responses consistent with our graphical conventions
- Using "(API)consumer" and "(API)producer" consistently (instead of client and
server)
- Collected abbreviations
- Fixed clause 3 to align with latest template
Contributions included
- NFVSOL(19)000538_SOL015_Fixing_Query via_GET
- NFVSOL(19)000665_SOL015 add_none_supported
- NFVSOL(19)000683_SOL015ed271_smart_mirror_of_679_adding_error_respo
nse_for_fa
- NFVSOL(19)000666_SOL015_ clarify_callbackURI__client_side_URI__notificati
November 2019 | 0.5.0 on_en
- NFVSOL(19)000656_SOL015_Creation_by PUT.docx
- NFVSOL(19)000620r1_SOL015 resolve_ENs

Editorials
- Fixed the document structure after including 538.
- Removed remaining rapporteur's note.
January 2020 1.1.1 [Publication by ETSI
Contributions included
May 2020 1.1.2 - NFVSOL(20)000207_SOL015ed211_adding_maps
- NFVSOL(20)000319r2_SOL015ed211 BWC NBWC type code small fixes
Contributions included
- NFVSOL(20)000609_SOL015ed121_Remove_optionality_of_notification_endp
oint_test
- NFVSOL(20)000608r1_SOL015ed121_Conventions_for_documenting_the_dat
a_model

July 2020 1.1.3

Editorials:
- Changed name of attachment to indicate the correct version number.

ETSI

56

ETSI GS NFV-SOL 015 V1.2.1 (2020-12)

History

Document history
V111 January 2020 Publication
V121 December 2020 | Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Conventions
	4.1 Case conventions
	4.2 Conventions for URI parts
	4.3 Conventions for names in data structures
	4.4 Conventions for documenting the API data model
	4.4.1 Overview
	4.4.2 Structured data types
	4.4.3 Simple data types
	4.4.4 Enumerations
	4.4.5 JSON representation of the data model

	5 Patterns
	5.1 Pattern: Creating a resource (POST)
	5.1.1 Description
	5.1.2 Resource definition(s) and HTTP methods
	5.1.3 Resource representation(s)
	5.1.4 HTTP Headers
	5.1.5 Response codes and error handling

	5.2 Pattern: Creating a resource (PUT)
	5.2.1 Description
	5.2.2 Resource definition(s) and HTTP methods
	5.2.3 Resource representation(s)
	5.2.4 HTTP Headers
	5.2.5 Response codes and error handling

	5.3 Pattern: Reading a resource (GET)
	5.3.1 Description
	5.3.2 Resource definition(s) and HTTP methods
	5.3.3 Resource representation(s)
	5.3.4 HTTP Headers
	5.3.5 Response codes and error handling

	5.4 Pattern: Querying a resource with filtering/selection (GET)
	5.4.1 Description
	5.4.2 Resource definition(s) and HTTP methods
	5.4.3 Resource representation(s)
	5.4.4 HTTP Headers
	5.4.5 Response codes and error handling

	5.5 Pattern: Updating a resource (PATCH)
	5.5.1 Description
	5.5.2 Resource definition(s) and HTTP methods
	5.5.3 Resource representation(s)
	5.5.4 HTTP Headers
	5.5.5 Response codes and error handling

	5.6 Pattern: Updating a resource (PUT)
	5.6.1 Description
	5.6.2 Resource definition(s) and HTTP methods
	5.6.3 Resource representation(s)
	5.6.4 HTTP headers
	5.6.5 Response codes and error handling

	5.7 Pattern: Deleting a resource (DELETE)
	5.7.1 Description
	5.7.2 Resource definition(s) and HTTP methods
	5.7.3 Resource representation(s)
	5.7.4 HTTP Headers
	5.7.5 Response codes and error handling

	5.8 Pattern: Task resources
	5.8.1 Description
	5.8.2 Resource definition(s) and HTTP methods
	5.8.3 Resource representation(s)
	5.8.4 HTTP Headers
	5.8.5 Response codes and error handling

	5.9 Pattern: Subscribe-Notify
	5.9.1 Description
	5.9.2 Resource definition(s) and HTTP methods
	5.9.3 Resource representation(s)
	5.9.4 HTTP Headers
	5.9.5 Response codes and error handling

	5.10 Pattern: Links
	5.10.1 Description
	5.10.2 Resource definition(s) and HTTP methods
	5.10.3 Resource representation(s)
	5.10.4 HTTP Headers
	5.10.5 Response codes and error handling

	5.11 Pattern: Asynchronous invocation with monitor
	5.11.1 Description
	5.11.2 Resource definition(s) and HTTP methods
	5.11.3 Resource representation(s)
	5.11.4 HTTP Headers
	5.11.5 Response codes and error handling

	5.12 Pattern: Asynchronous resource creation without monitor
	5.12.1 Description
	5.12.2 Resource definition(s) and HTTP methods
	5.12.3 Resource representation(s)
	5.12.4 HTTP Headers
	5.12.5 Response codes and error handling

	5.13 Pattern: Range requests (partial GET)
	5.13.1 Description
	5.13.2 Resource definition(s) and HTTP methods
	5.13.3 Resource representation(s)
	5.13.4 HTTP Headers
	5.13.5 Response codes and error handling

	5.14 Pattern: Representation of lists in JSON
	5.14.1 Description
	5.14.2 Representation as array
	5.14.3 Representation as map

	6 Specifying API and GS versions in the OpenAPI files
	6.1 General
	6.2 Visibility of the API version identifier fields in the OpenAPI specifications
	6.3 Relation between the API version identifiers of an OpenAPI specifications and the base GS

	Annex A (normative): REST API template for interface clauses
	X <Long API name> interface
	X.1 Description
	X.2 API version
	X.3 Resource structure and methods
	X.4 Sequence diagrams
	X.4.1 <Procedure 1>
	X.4.2 <Procedure 2>

	X.5 Resources
	X.5.1 Introduction
	X.5.2 Resource: API versions
	X.5.3 Resource: <ResourceName>
	X.5.3.1 Description
	X.5.3.2 Resource definition
	X.5.3.3 Resource Methods
	X.5.3.3.1 POST
	X.5.3.3.2 GET
	X.5.3.3.3 PUT
	X.5.3.3.4 PATCH
	X.5.3.3.5 DELETE

	X.6 Data model
	X.6.1 Introduction
	X.6.2 Resource and notification data types
	X.6.2.1 Introduction
	X.6.2.2 Type: <TypeName1>

	X.6.3 Referenced structured data types
	X.6.3.1 Introduction
	X.6.3.2 Type: <TypeName2>

	X.6.4 Referenced simple data types and enumerations
	X.6.4.1 Introduction
	X.6.4.2 Simple data types
	X.6.4.3 Enumeration: <TypeName3>

	Annex B (informative): Conventions for message flows
	B.1 Tool support
	B.2 Graphical conventions

	Annex C (normative): Change requests classification
	C.1 Introduction
	C.2 The Field "Other comments"
	C.3 Examples of BWC Changes
	C.4 Examples of NBWC Changes

	Annex D (informative): Change History
	History

