
 TR 101 295 V1.1.1 (1998-09)
Technical Report

Methods for Testing and Specification (MTS);
Rules for the transformation of ASN.1 definitions using

ITU-T Recommendations X.681, X.682 and X.683
to equivalent ITU-T Recommendation X.680 constructs

ETSI

TR 101 295 V1.1.1 (1998-09)2

Reference
DTR/MTS-00048 (bzo00ics.PDF)

Keywords
ASN.1, SDL, TTCN

ETSI

Postal address
F-06921 Sophia Antipolis Cedex - FRANCE

Office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Internet
secretariat@etsi.fr
http://www.etsi.fr

http://www.etsi.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 1998.
All rights reserved.

ETSI

TR 101 295 V1.1.1 (1998-09)3

Contents

Intellectual Property Rights.. 4

Foreword.. 4

Introduction.. 4

1 Scope... 5

2 References.. 5

3 Definitions and abbreviations... 6
3.2 Abbreviations ..6

4 Transformation of ASN.1 94 material to ASN.1 X.680.. 6
4.1 Introduction..6
4.2 Extensibility...6
4.2.1 Description...6
4.2.2 Transformation rules ..7
4.2.3 Transformation limitations ...8
4.3 Parameterization ..8
4.3.1 Description...8
4.3.2 Transformation rules ..9
4.3.3 Transformation limitations ...10
4.4 Information objects..10
4.4.1 Description...10
4.4.2 Transformation rules ..10
4.4.3 Transformation limitations ...16
4.5 User defined constraints...17
4.5.1 Description...17
4.5.2 Transformation rules ..17
4.5.3 Transformation limitations ...18

Annex A (informative): Additional rules relative to the use of ASN.1 94 in conjunction with
SDL.. 19

A.1 Identifiers...19

Annex B (informative): Additional rules relative to the use of ASN.1 94 in conjunction with
TTCN... 21

B.1 Automatic tagging...21
B.1.1 Description...21
B.1.2 Transformation rules ..21
B.1.3 Transformation limitations ...24

Annex C (informative): Additional feature support required to extend tools from ASN.1 90 to
ASN.1 X.680... 24

C.1 Alterations ...25
C.1.1 Removal of Macros..25
C.1.2 Removal of ANY and ANY DEFINED BY..25
C.1.3 Local identifiers ...25
C.1.4 Choice Value syntax...25
C.1.5 External..25
C.2 Additions ...27
C.2.1 Automatic tagging...27
C.2.2 Embedded PDV..28
C.2.3 String types...28
C.2.4 Exception specification ..28
C.2.5 New subtype operators...28

History... 29

ETSI

TR 101 295 V1.1.1 (1998-09)4

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in
SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect
of ETSI standards", which is available free of charge from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (http://www.etsi.fr/ipr or http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can
be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server) which
are, or may be, or may become, essential to the present document.

Foreword
This ETSI Technical Report (TR) has been prepared by ETSI Technical Committee Methods for Testing and
Specification (MTS).

Introduction
As telecommunications specifications become more complex, ETSI deliverables are increasingly making use of languages
such as ASN.1, SDL and, for testing specifications, TTCN. A growing number of ETSI deliverables and those from other
standardization bodies are already using the new features offered by ASN.1 94, such as extensibility, information object
classes and parameterization.

The current versions of the TTCN and SDL only support a part of the ASN.1 94 language, i.e. X.680 [1]. The remaining
part of ASN.1 94 (X.680 Amendment 1 [2], X.681 [3], X.681 Amendment 1 [4], X.682 [5] and X.683 [6]) including the
new features such as extensibility, information objects and parameterization, are not supported by SDL and TTCN.
Consequently, the use of ASN.1 94 definitions in a SDL or TTCN context requires some transformations of these ASN.1
definitions to remove the use of unsupported features and when possible to replace them by functionally equivalent
constructs. This Technical Report identifies and describes this set of transformations.

It should be noted that the transformation rules presented in the technical report are only intended to provide a short term
"pragmatic" solution until the associated languages and tools can be extended to support the full features of ASN.1 94.

The present document specifies a set of generic transformation rules which are applicable to all domains where the full
ASN.1 94 language must be converted to "pure" ASN.1 X.680 [1]. In addition there are two context specific appendices
which provide further transformation rules for SDL Z.105 [8] and TTCN Edition 2 as defined in TR 101 101 [10].

To transform an existing ASN.1 94 module for use within SDL, first apply the generic transformation rules defined in
clause 4 and then apply the SDL specific transformations defined in annex A.

The transformations described in clause 4 of the present document are particularly relevant when there is a need to
simulate down to layer 1 or generate code, which is achieved with the help of SDL tools supporting Z.105 [8]. In
situations where the SDL model is used in isolation, i.e., the transfer syntax is implicit to the SDL tool, some of the
limitations for the transformation rules defined in clause 4 are removed. This relaxation of transformation rule limitations
is explicitly stated in the text

For transformation of existing ASN.1 94 modules for use with TTCN Edition 2, first apply the generic transformation
rules defined in clause 4 and then apply the set of TTCN specific transformation rules defined in annex B.

Also included in the present document is an appendix which defines the necessary feature extensions required to convert
an existing ASN.1 90 tool into an ASN.1 X.680 tool capable of using the ASN.1 94 material which has undergone the
transformation rules defined in the present document.

ETSI

TR 101 295 V1.1.1 (1998-09)5

1 Scope
The present document describes a set of transformation rules to convert an ASN.1 94 module which uses of the features
defined in X.680 [1], X.680 Amendment 1 [2], X.681 [3], X.681 Amendment 1 [4], X682 [5] and X.683 [6], into an
equivalent or partially equivalent module which uses only the ASN.1 language features defined in X.680 [1].

In addition to the generic transformation rules defined in main body of this report there are two language specific
appendices which provide additional transformation rules for SDL Z.105 [8] and TTCN Edition 2 as defined in ISO/IEC
9646-3 [10] respectively.

The present document complements rather than supplants ETR 60 [13] and Z.105 [8].

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

• A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same
number.

[1] ITU-T Recommendation X.680 (1994): "Information technology-Abstract Syntax Notation One
(ASN.1): Specification of basic notation".

[2] ITU-T Recommendation X.680 Amendment 1 (1994): "Information technology-Abstract Syntax
Notation One (ASN.1): Specification of basic notation: Rules of extensibility".

[3] ITU-T Recommendation X.681 (1994): "Information technology-Abstract Syntax Notation One
(ASN.1): Information object specification".

[4] ITU-T Recommendation X.681 Amendment 1 (1994): "Information technology-Abstract Syntax
Notation One (ASN.1): Rules of extensibility ".

[5] ITU-T Recommendation X.682 (1994): "Information technology-Abstract Syntax Notation One
(ASN.1): constraint specification".

[6] ITU-T Recommendation X.683 (1994): "Information technology-Abstract Syntax Notation One
(ASN.1): Parameterisation of ASN.1 specifications".

[7] ITU-T Recommendation Z.100 (1993): "CCITT Specification and Description Language (SDL)".

[8] ITU-T Recommendation Z.105 (1994): "SDL combined with ASN.1 (SDL/ASN.1)".

[9] CCITT Recommendation X.208 (1990) : "Specification of the Abstract Syntax Notation One
(ASN.1) ".

[10] TR 101 101 (1997) "Methods for Testing and Specification (MTS); TTCN interim version including
ASN.1 1994 support [ISO/IEC 9646-3] (Second Edition Mock-up for JTC1/SC21 Review)".

[11] ISO/IEC 10646-1 (1993): "Information technology, - Multiple-Octet Coded Character Set (UCS) -
Part 1: Architecture and Basic Multilingual Plane".

[12] ETS 300 414 (1995): "Methods for Testing and Specification (MTS); Use of SDL in European
Telecommunications Standards; Rules for testability and facilitating validation".

[13] ETR 60 (1995) "Signalling Protocols and Switching (SPS);Guidelines for using Abstract Syntax
Notation one (ASN.1) in telecommunication application protocols".

ETSI

TR 101 295 V1.1.1 (1998-09)6

3 Definitions and abbreviations
For the purposes of the present document, the following definitions apply:

ASN.1 94: ASN.1 as defined in the 1994 ITU-T Recommendations X.680 [1], X.680 Amendment 1 [2], X.681 [3], X.681
Amendment 1 [4], X.682 [5] and X.683 [6].

ASN.1 90: ASN.1 as defined in the 1990 ITU-T Recommendations X.208 [9]

ASN.1 X.680: ASN.1 core language as defined in the 1994 ITU-T Recommendations X.680 [1], but omitting all features
of ASN.1 94 defined in X.680 Amendment 1 [2], X.681 [3], X.681 Amendment 1 [4], X.682 [5] and X.683 [6].

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ASN.1 Abstract Syntax Notation 1
BER Basic Encoding Rules
PER Packed Encoding Rules
SDL Specification and Description Language
TTCN Tree and Tabular Combined Notation

4 Transformation of ASN.1 94 material to ASN.1 X.680

4.1 Introduction
This clause defines a set of generic transformation rules to convert ASN.1 94 modules to "pure" X.680 [1] constructs.
Each sub-clause addresses a particular ASN.1 94 feature which is not supported in X.680 [1]. For each feature the
transformation rules together with any limitations effecting the validity of the conversions are described. Each
transformation rule is illustrated with one or more examples. The examples use underlining to identify the elements that
must be changed.

To apply these transformation rules every instance of the specified features must be identified within the ASN.1 94
module and the corresponding transformation rules, associated with that feature, applied.

4.2 Extensibility

4.2.1 Description

Extensibility provides a mechanism for future compatibility by defining a syntax which will accept elements not defined in
that syntax. ASN.1 94 allows extensibility to be specified within a syntax definition. The extensibility can either be
specified explicitly using the extension marker "..." or globally across an ASN.1 module by addition of an optional field
in the module header.

The extension marker can be placed in the definition of ENUMERATED TYPE, SEQUENCE, SET and CHOICE. The
effect of the extension marker is to disable error generation when the received element does not match the specified syntax
of the associated type. If extensibility is activated by use of the optional module header field all definition involving the
relevant types will be extensible within that module.

No transformation rules can preserve the full semantics of extensibility. The specified transformation rules can only
generate a syntax that will provide backwards compatibility for the extension series up to and including the ASN.1 94
version being converted. All forwards compatibility is lost apart from that explicitly added in rule 3.

ETSI

TR 101 295 V1.1.1 (1998-09)7

4.2.2 Transformation rules

Rule 1: If present, remove extensibility field from ASN.1 module header.

Example: 1

Example-Module DEFINITIONS

AUTOMATIC TAGS EXTENSIBILITY IMPLIED

::=

BEGIN

ModuleBody

END

Transforms to:

Example-Module DEFINITIONS

AUTOMATIC TAGS

::=

BEGIN

ModuleBody

END

Rule 2: Remove all extension markers. Any types defined after the extension marker in SET or SEQUENCE definitions
should be made OPTIONAL

Example:2

MyType ::= SEQUENCE {

a INTEGER,

...,

b BOOLEAN

}

transforms to:

MyType ::= SEQUENCE {

a INTEGER,

b BOOLEAN OPTIONAL

}

Rule 3: Add known future components as optional (in SEQUENCE, SET and CHOICE).

ETSI

TR 101 295 V1.1.1 (1998-09)8

Add known future enumeration items (in ENUMERATED)

Example 3:

If it is already known that the next version of the protocol will add an OCTET STRING field to MyType, defined in
Example 2, update it as follows:

MyType ::= SEQUENCE {

a INTEGER,

b BOOLEAN OPTIONAL,

c OCTETSTRING OPTIONAL

}

4.2.3 Transformation limitations

The transformation rules do not retain any forward compatibility provided by the extension marker in the original ASN.1
94 module.

These transformations also require consideration of any associated transfer syntax. For some encoding rules, most notably
PER, the extension marker is visible in the transmitted bytes. In such a case these transformation rules cannot be validly
applied. The resultant ASN.1 X.680 [1] definitions would be incompatible with the original ASN.1 94 module. It should
be noted that this limitation is only applicable when firstly we are dealing with transmitted bytes (conformance testing,
code generation) and secondly when we are using an encoding rule where the extension marker is visible in the transfer
syntax.

NOTE: It follows that for any tool which cannot support extension markers the transfer syntax of certain ASN.1 94
systems might be impossible to reproduce.

The transformation rules provide no solution for extensibility markers used within information object set definitions.

4.3 Parameterization

4.3.1 Description

ASN.1 94 supports value parameterization for value notation and value parameterization in type notation for definition of
constraints.

ASN.1 94 also includes the concept of generic type parameterization. For example, consider the following definition:

MESSAGE { PDUType } ::= SEQUENCE
{

asp ASPType,
pdu PDUType

}

This defines the parameterized type MESSAGE{}. Within the body of the protocol this parameterized type can be used to
define further types. For example:

SetupMessage ::= MESSAGE { SetupPDU }

ETSI

TR 101 295 V1.1.1 (1998-09)9

4.3.2 Transformation rules

Rule 2: Expand out the parameterized types and values.

Example 4:

-- Parameterized value in value notation

genericGreeting{ IA5String : name} IA5String ::= {"Hello", name}

firstString IA5String ::= genericGreeting{ "World"}

-- Parameterized value in type notation

Message1{ INTEGER:maxSize, INTEGER:minSize} ::= SEQUENCE

{

asp INTEGER,

pdu OCTET STRING (SIZE (minSize..maxSize))

}

ExampleMsg ::= Message1{10, 40}

-- Parameterized type definition

Message2{ PDUType } ::= SEQUENCE

{

asp ASPType,

pdu PDUType

}

SetupMessage ::= Message2{ SetupPDU }

transforms to:

-- Transformed Parameterized value in value notation

firstString IA5String ::= "HelloWorld"

-- Transformed Parameterized value in type notation

ExampleMsg ::= SEQUENCE

{

ETSI

TR 101 295 V1.1.1 (1998-09)10

asp INTEGER,

pdu OCTET STRING (SIZE (10..40))

}

-- Transformed Parameterized type definition

SetupMessage ::= SEQUENCE

{

asp ASPType,

pdu SetupPDU

}

4.3.3 Transformation limitations

When information objects classes, objects and object sets are used in parameterization, the transformation rules for
information objects must be applied to these definitions before the parameterization is expanded out.

4.4 Information objects

4.4.1 Description

Information Objects are the macro replacement mechanism defined in ASN.1 94. In principle information objects are a
form of generic table which allows the association of specific sets of field values or types. The greatest single advantage
of Information objects is they are machine processable.

In ASN.1 94 some of the defined types within the language are defined in terms of information objects (these types and
classes are INSTANCE-OF, TYPE-IDENTIFIER and ABSTRACT-SYNTAX).

In principle the transformation rules must replace information extracted from information objects or class, i.e.
corresponding to notation ObjectClassFieldType, TypeFromObject, ValueSetFromObjects, ObjectClassFieldValue,
ValueFromObject by the information itself in the abstract syntax definitions.

4.4.2 Transformation rules

Rule 5: Replace use of "InstanceOfType" notation by the associated sequence.

Example 5:

ACCESS-CONTROL-CLASS ::= TYPE-IDENTIFIER

AccessControl ::= INSTANCE OF ACCESS-CONTROL-CLASS ({PossibleTypes})

transforms to:

AccessControl ::= [UNIVERSAL 8] IMPLICIT SEQUENCE

ETSI

TR 101 295 V1.1.1 (1998-09)11

 {

type-id ACCESS-COTROL-CLASS.&id ({PossibleTypes}),

value [0] ACCESS-CONTROL-CLASS ({PossibleTypes}{@.type-id})

 }

Rule 6: Remove any Component relation constraints in type declarations

Example 6:

Given the following Information object definition

MESSAGE ::= CLASS

{

&msgCode INTEGER UNIQUE,

&msgLength INTEGER,

&MsgDataType OPTIONAL

}

WITH SYNTAX

 {

CODE &msgCode,

LENGTH &msgLength,

[DATA TYPE &MsgDataType]

}

used to define the object set ConnectPhaseMsgs:

ConnectPhaseMsgs MESSAGE ::=

{

setup | setupAck | release | relAck

}

setup MESSAGE ::=

{

CODE 1

LENGTH 12

ETSI

TR 101 295 V1.1.1 (1998-09)12

DATA TYPE OCTET STRING

}

setupAck MESSAGE ::=

{

CODE 2

LENGTH 5

DATA TYPE INTEGER

}

release MESSAGE ::=

{

CODE 3

LENGTH 1

}

relAck MESSAGE ::=

{

CODE 4

LENGTH 1

}

The associated type definition:

ConnectPhasePDU ::= SEQUENCE

{

id MESSAGE.&msgCode

({ConnectPhaseMsgs}),

size MESSAGE.&msgLength

({ConnectPhaseMsgs } {@id}),

data MESSAGE.&MsgDataType

({ConnectPhaseMsgs } {@id}) OPTIONAL

}

transforms to:

ConnectPhasePDU ::= SEQUENCE

ETSI

TR 101 295 V1.1.1 (1998-09)13

{

id MESSAGE.&msgCode

({ConnectPhaseMsgs}),

size MESSAGE.&msgLength

({ConnectPhaseMsgs }),

data MESSAGE.&MsgDataType

({ConnectPhaseMsgs }) OPTIONAL

}

Rule 7: Replace references to object set value fields in type definitions by using generic type plus subtyping or by
defining a new type to represent the possible value set. The required generic type and possible value set must be extracted
from the information object set.

Example 7:

Given the information object set and associated ConnectPDU type definition from Example 6.

ConnectPhasePDU ::= SEQUENCE

{

id MESSAGE.&msgCode

({ConnectPhaseMsgs}),

size MESSAGE.&msgLength

({ConnectPhaseMsgs }),

data MESSAGE.&MsgDataType

({ConnectPhaseMsgs }) OPTIONAL

}

transforms to:

ConnectPhasePDU ::= SEQUENCE

{

id INTEGER

(1..4),

size INTEGER

(1 | 5 | 12),

data MESSAGE.&MsgDataType

({ConnectPhaseMsgs }) OPTIONAL

}

Or the cleaner solution declaring new types, transforms to:

ETSI

TR 101 295 V1.1.1 (1998-09)14

MsgCodes ::= INTEGER(1..4)

MsgSizes ::= INTEGER(1 | 5 | 12)

ConnectPhasePDU ::= SEQUENCE

{

id MsgCodes,

size MsgSizes,

data MESSAGE.&MsgDataType

({ConnectPhaseMsgs }) OPTIONAL

}

Rule 8: Replace references to information object type fields in type definitions by transforming into CHOICE construct.

Example 8:

Given the ConnectPDU type definition from the end of EXAMPLE 7.

ConnectPhasePDU ::= SEQUENCE

{

id MsgCodes,

size MsgSizes,

data MESSAGE.&MsgDataType

({ConnectPhaseMsgs }) OPTIONAL

}

transforms to:

ConnectPhasePDU ::= SEQUENCE

{

id INTEGER

(1..4),

size INTEGER

(1 | 5 | 12),

data CHOICE { setupBody OCTET STRING, setupAckBody INTEGER} OPTIONAL

}

Or the cleaner solution declaring a new type:

MsgBody ::= CHOICE

{

ETSI

TR 101 295 V1.1.1 (1998-09)15

 setupBody OCTET STRING,

 setupAckBody INTEGER

}

ConnectPhasePDU ::= SEQUENCE

{

id MsgCodes,

size MsgSizes,

data MsgBody OPTIONAL

}

Rule 9: Remove or change to ASN.1 comments all definition of classes, information objects and object sets.

Example 9:

Considering Example 6 all the following definitions should be deleted or converted into comments:

MESSAGE ::= CLASS

{

&msgCode INTEGER UNIQUE,

&msgLength INTEGER,

&MsgDataType OPTIONAL

}

WITH SYNTAX

 {

CODE &msgCode,

LENGTH &msgLength,

[DATA TYPE &MsgDataType]

}

setup MESSAGE ::=

{

CODE 1

LENGTH 12

DATA TYPE OCTET STRING

}

ETSI

TR 101 295 V1.1.1 (1998-09)16

setupAck MESSAGE ::=

{

CODE 2

LENGTH 5

DATA TYPE INTEGER

}

release MESSAGE ::=

{

CODE 3

LENGTH 1

}

relAck MESSAGE ::=

{

CODE 4

LENGTH 1

}

ConnectPhaseMsgs MESSAGE ::=

{

setup | setupAck | release | relAck

}

4.4.3 Transformation limitations

The validity of transformation rule 7 which involves converting a reference to an information object set into a type
containing a CHOICE is dependant on the transfer syntax. If the required encoding rules make the CHOICE visible in the
transfer syntax (PER for example) this transformation is invalid (changes the bits transmitted on the line).

For SDL applications where the transfer syntax is not an issue and for all application areas using a transfer syntax where
the CHOICE is not visible (BER for example) transformation rule 7 is still valid.

The second limitation is these transformation rules provide no mechanism for handling situations where it is impossible to
construct an associated CHOICE type. For example if we have the type definition:

ConnectPhasePDU ::= SEQUENCE

{

id MESSAGE.&msgCode

ETSI

TR 101 295 V1.1.1 (1998-09)17

({ConnectPhaseMsgs}),

size MESSAGE.&msgLength

({ConnectPhaseMsgs } {@id}),

data MESSAGE.&MsgDataType OPTIONAL

}

The data field is unconstrained, it can be of any type. In this situation it is impossible to implement transformation rule 7
and convert this field to an associated CHOICE type.

The transformation rules presented in this clause cannot reproduce the full semantics of the information objects they
replace. The transformation rules cannot preserve component relation constraints. These constraints provide the ability to
constrain a type or value with reference to a different field within an information object set.

For example if we consider EXAMPLE 6 in the ConnectPhasePDU type the size field has the component relational
constraint {@id}. This means the size field is constrained to the possible values defined in the object set
ConnectPhaseMsgs which have the correct id field value.

4.5 User defined constraints

4.5.1 Description

This feature is used to express constraints which are too complex to represent using the normal ASN.1 constraints
mechanisms. The ASN.1 94 language does not fully specify how to process these constraints and in effect this feature just
provides a special form of ASN.1 comment in which the required constraint mechanism is described in text. User defined
constraints need to be removed or converted into an ASN.1 comment.

4.5.2 Transformation rules

Rule 10: Remove user defined constraints or convert to ASN.1 comment.

Example 10:

ENCRYPTED {ToBeEnciphered} ::= BIT STRING

(CONSTRAINED BY

{-- must be the result of the encipher of some BER-encoded value of -- ToBeEnciphered}

! Error : securityViolation)

transforms to:

ENCRYPTED ::= BIT STRING

or

ENCRYPTED {ToBeEnciphered} ::= BIT STRING

-- (CONSTRAINED BY --

-- { must be the result of the encipher of some BER-encoded value of ToBeEnciphered} --

-- ! Error : securityViolation) --

ETSI

TR 101 295 V1.1.1 (1998-09)18

4.5.3 Transformation limitations

Since user defined constraints can be regarded as a special form of ASN.1 comment this transformation is completely
transparent.

ETSI

TR 101 295 V1.1.1 (1998-09)19

Annex A (informative):
Additional rules relative to the use of ASN.1 94 in conjunction
with SDL

A.1 Identifiers
Case sensitivity is not supported by Z.100 [7] and Z.105 [8]. This restriction implies that introducing two types with the
same name (apart from case sensitivity) is an error. However, it is allowed to have the same name if they are of different
entity classes. Entity classes are for example, type names, value names and identifiers.

Rule A11: Rename the ASN.1 entities so that two entities of the same class shall not be identical when put in lower case.

Example A1:

TypeA ::= OCTET STRING (3)

Typea ::= SEQUENCE {a INTEGER, b BOOLEAN }

can be replaced by:

AType ::= OCTET STRING (3)

Typea ::= SEQUENCE {a INTEGER, b BOOLEAN }

The use of the same identifier for multiple named numbers or multiple named bits of different types in the same scope
shall be avoided. The motivation is that named numbers and named bits are mapped onto SDL literals and SDL integer
synonyms respectively. Using the same identifier twice would result in illegal SDL (redefinition of the same synonym or
same literal). Double use of the same identifier in different enumerated types, or in an enumerated type and in a named
integer or named bit is allowed, because the identifiers in enumerated types are not mapped on integer synonyms.

Rule A12: Rename the numbers of bits so that the identifiers for named numbers or named bits of different types in the
same scope shall not be identical.

Example A2:

Int1 ::= INTEGER { a (0) }

Int2 ::= INTEGER { a (1) }

transforms to:

Int1 ::= INTEGER { a1 (0) }

Int2 ::= INTEGER { a2 (1) }

The OBJECT IDENTIFIER component values that are assigned by ITU-T, ISO, or both, are not defined in the package
called Predefined.

ETSI

TR 101 295 V1.1.1 (1998-09)20

Rule A13: Define and import an SDL package containing the definitions of components of the OBJECT IDENTIFIERS
used in the ASN.1

Example A3:

In order to use :

{ccitt recommendation q 1228 }

the component values CCITT, recommendation, and q have to be defined in a user defined package.

ETSI

TR 101 295 V1.1.1 (1998-09)21

Annex B (informative):
Additional rules relative to the use of ASN.1 94 in conjunction
with TTCN

B.1 Automatic tagging

B.1.1 Description

ASN.1 94 introduces the feature of AUTOMATIC tagging. This provides a new tagging mode in addition to the existing
IMPLICIT and EXPLICIT. When AUTOMATIC tagging is selected the system will automatically insert any necessary tags
within the associated module without the need for user intervention (N.B. the user still has the choice to override the
AUTOMATIC mechanism for specific constructs by explicitly defining tags).

AUTOMATIC tags is selected from the ASN.1 module header. Since TTCN only allows ASN.1 type definitions not
module definitions there is no current mechanism for selecting the tagging regime within TTCN (it is by default
EXPLICIT).

B.1.2 Transformation rules

These transformation rules need only be applied if the source ASN.1 94 module has the tagging type set to AUTOMATIC
in the module header.

Rule B11: Expand out COMPONENTS OF for all SEQUENCE constructs which contain no tagged type.

Example B1:

TypeA ::= SEQUENCE

{

alpha INTEGER,

beta BOOLEAN

}

-- SEQUENCE construct with tagged type

TypeB ::= SEQUENCE

{

cappaINTEGER,

delta [1]BOOLEAN,

COMPONENTS OF TypeA

}

-- SEQUENCE construct without tagged type

TypeC ::= SEQUENCE

{

ETSI

TR 101 295 V1.1.1 (1998-09)22

cappaINTEGER,

delta BOOLEAN,

COMPONENTS OF TypeA

}

transforms to :

-- SEQUENCE construct with tagged type (no change)

TypeB ::= SEQUENCE

{

cappaINTEGER,

delta [1]BOOLEAN,

COMPONENTS OF TypeA

}

-- SEQUENCE construct without tagged type COMPONENTS OF expanded out

TypeC ::= SEQUENCE

{

cappaINTEGER,

delta BOOLEAN,

alpha INTEGER,

beta BOOLEAN

}

Rule B12: Manually add tag type for all SEQUENCE constructs which contain no tagged type (or contain tagged type due
to transformation rule B11).

Example B2:

-- SEQUENCE construct without tagged type

TypeC ::= SEQUENCE

{

cappaINTEGER,

delta BOOLEAN,

ETSI

TR 101 295 V1.1.1 (1998-09)23

alpha INTEGER,

beta BOOLEAN

}

transforms to :

TypeC ::= SEQUENCE

{

cappa [0] IMPLICIT INTEGER,

delta [1] IMPLICIT BOOLEAN,

alpha [2] IMPLICIT INTEGER,

beta [3] IMPLICIT BOOLEAN

}

Rule B13: Manually add tag type for all SET constructs which contain no existing tagged type.

Example B3:

-- SET construct without tagged type

TypeD ::= SET

{

cappaINTEGER,

delta BOOLEAN,

alpha INTEGER,

beta BOOLEAN

}

transforms to :

TypeD ::= SET

{

cappa [0] IMPLICIT INTEGER,

delta [1] IMPLICIT BOOLEAN,

ETSI

TR 101 295 V1.1.1 (1998-09)24

alpha [2] IMPLICIT INTEGER,

beta [3] IMPLICIT BOOLEAN

}

Rule B14: Manually add tag types for all CHOICE constructs which contain no existing tagged type.

EXAMPLE B4:

-- CHOICE construct without tagged type

TypeE ::= CHOICE

{

cappaINTEGER,

delta BOOLEAN

}

transforms to :

TypeE ::= CHOICE

{

cappa [0] IMPLICIT INTEGER,

delta [1] IMPLICIT BOOLEAN

}

B.1.3 Transformation limitations

If the type within the respective construct is a CHOICE type, open type or a DummyReference, AUTOMATIC tagging
inserts an EXPLICIT tag type for this element.

Annex C (informative):
Additional feature support required to extend tools from
ASN.1 90 to ASN.1 X.680
This annex lists the differences between ASN.1 90 and ASN.1 X.680. This list can be used as a check list for upgrading
ASN.1 based tools. This appendix is composed of two subclauses: a first one list the features which have been removed
or changed. A second one gives the features which have been incorporated in addition.

ETSI

TR 101 295 V1.1.1 (1998-09)25

C.1 Alterations

C.1.1 Removal of Macros

In ASN.1 90 the macro capability allowed the user to extend the notation by providing macros. This capability had the
disadvantage that it was not machine processable (redefinition of grammar on the fly) and thus was not fully supported by
tools.

This capability has been removed in X.680 [1] and replaced by the information objects and the parameterization
capability defined respectively in X.681[3] and X.683 [6].

C.1.2 Removal of ANY and ANY DEFINED BY

The normal use of the any type defined in ASN.1 90 was to leave a "hole" in a specification which would be filled in by
some other specification. In X.680 [1] the any type has been superseded by the ability to specify information object
classes and then to refer to the fields of information object classes from within type definitions (X.681 [3]). Though
described in X.680 [1], the notations AnyType and AnyValue should not be supported by tools.

C.1.3 Local identifiers

Contrary to ASN.1 90, in X.680 [1] identifiers are mandatory in NamedTypes and NamedValues.

The NamedType notation which was defined in ASN.1 90 as

NamedType ::= identifier Type | Type | SelectionType

has been changed to

NamedType ::= identifier Type | SelectionType

In a same way the Named value notation has been changed from

NamedValue ::= identifier Value | Value

to

NamedValue ::= identifier Value

C.1.4 Choice Value syntax

In order to remove some ambiguities, the ChoiceValue now contains a colon. The ChoiceValue notation which was
defined in ASN.1 90 as

ChoiceValue ::= NamedValue

has been changed to

ChoiceValue ::= identifier ":" Value

C.1.5 External

The associated type for the EXTERNAL type has been changed from:

EXTERNAL = [UNIVERSAL 8] IMPLICIT SEQUENCE

{ direct-reference OBJECT IDENTIFIER OPTIONAL,

indirect-reference INTEGER OPTIONAL,

data-value-descriptor ObjectDescriptor OPTIONAL,

encoding CHOICE

ETSI

TR 101 295 V1.1.1 (1998-09)26

{single-ASN1-type [0]ANY,

octet-aligned [1] IMPLICIT OCTET STRING,

arbitrary [2]IMPLICIT BIT STRING } }

to:

SEQUENCE {

identification CHOICE {

syntaxes SEQUENCE {

abstract OBJECT IDENTIFIER,

transfer OBJECT IDENTIFIER }

-- Abstract and transfer syntax object identifiers --,

syntax OBJECT IDENTIFIER

-- A single object identifier for identification of the class and encoding --,

presentation-context-id INTEGER

-- (Applicable only to OSI environments)

-- The negotiated presentation context identifies the class of the value and its encoding --,

context-negotiation SEQUENCE {

presentation-context-id INTEGER

transfer-syntax OBJECT IDENTIFIER }

-- (Applicable only to OSI environments)

-- Context-negotiation in progress for a context to identify the class of the value

-- and its encoding --,

transfer-syntax OBJECT IDENTIFIER

-- The class of the value (for example, specification that it is the value of an ASN.1 type)

-- is fixed by the application designer (and hence known to both sender and receiver). This

-- case is provided primarily to support selective-field-encryption (or other encoding

-- transformations) of an ASN.1 type --,

fixed NULL

-- The data value is the value of a fixed ASN.1 type (and hence known to both sender

-- and receiver) -- },

data-value-descriptor ObjectDescriptor OPTIONAL

-- This provides human-readable identification of the class of the value --,

data-value CHOICE {

notation ABSTRACT-SYNTAX.&Type

ETSI

TR 101 295 V1.1.1 (1998-09)27

-- This type notation is defined in X.681[3] and has a value

-- notation which is any ASN.1 type definition, followed by a colon and the value notation

-- for that type. This choice alternative is provided to enable the specification using

-- human-friendly notation of the data values that are values of an ASN.1 type. --,

encoded BIT STRING

-- This choice alternative is provided to enable the specification of data values that are
not

-- values of a single ASN.1 type. -- } }

(WITH COMPONENTS {

... ,

identification (WITH COMPONENTS {

... ,

syntaxes ABSENT,

transfer-syntax ABSENT,

fixed ABSENT }) })

C.2 Additions

C.2.1 Automatic tagging

The AUTOMATIC TAGS keyword has been added to the TagDefault notation. It allows the definition of a module
without insertion of tags in the module body.

TagDefault ::=

EXPLICIT TAGS |

IMPLICIT TAGS |

empty

has been replaced by:

TagDefault ::=

EXPLICIT TAGS |

IMPLICIT TAGS |

AUTOMATIC TAGS |

empty

ETSI

TR 101 295 V1.1.1 (1998-09)28

C.2.2 Embedded PDV

The EmbeddedPDVType, a superset of EXTERNAL with more efficient encoding, has been added to the BuiltinType
notation. Similarly the EmbeddePDVValue has been added to the BuiltinValue notation.

The BuiltinType notation is now:

BuiltinType ::=

...

EmbeddedPDVType |

...

EmbeddedPDVType ::= EMBEDDED PDV

The BuiltinValue notation is now:

BuiltinValue ::=

...

EmbeddedPDVValue |

...

EmbeddedPDVValue ::= SequenceValue

C.2.3 String types

Three new string types has been added: UniversalString, BMPString and CHARACTER STRING. The first two type are
intended to carry characters defined in ISO 10646-1 [11]. CHARACTER STRING is an unrestricted string type intended
to model any string which cannot be represented with any of the other existing ASN.1 string types.

C.2.4 Exception specification

The exception specification indicates special handling in the event of an exceptional condition. Subtype has been replaced
by Constrainedtype itself defined as:

ConstrainedType ::= Type Constraint |

TypeWithConsraint

Constraint ::= "(" ConstraintSpec ExceptionSpec ")"

ExceptionSpec ::= "!" ExceptionIdentification | empty

ExceptionIdentification ::= SignedNumber |

DefinedValue |

Type ":" Value

C.2.5 New subtype operators

The ASN.1 90 SubType notation has been replaced by the ConstrainedType notation enhancing the possibilities of
subtyping with new operators: UNION, INTERSECTION, EXCLUSION.

ETSI

TR 101 295 V1.1.1 (1998-09)29

History

Document history

V1.1.1 September 1998 Publication

ISBN 2-7437-2379-3
Dépôt légal : Septembre 1998

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.2 Abbreviations

	4 Transformation of ASN.1 94 material to ASN.1 X.680
	4.1 Introduction
	4.2 Extensibility
	4.2.1 Description
	4.2.2 Transformation rules
	4.2.3 Transformation limitations

	4.3 Parameterization
	4.3.1 Description
	4.3.2 Transformation rules
	4.3.3 Transformation limitations

	4.4 Information objects
	4.4.1 Description
	4.4.2 Transformation rules
	4.4.3 Transformation limitations

	4.5 User defined constraints
	4.5.1 Description
	4.5.2 Transformation rules
	4.5.3 Transformation limitations

	Annex A (informative): Additional rules relative to the use of ASN.1 94 in conjunction with SDL
	A.1 Identifiers
	Annex B (informative): Additional rules relative to the use of ASN.1 94 in conjunction with TTCN
	B.1 Automatic tagging
	B.1.1 Description
	B.1.2 Transformation rules
	B.1.3 Transformation limitations

	Annex C (informative): Additional feature support required to extend tools from ASN.1 90 to ASN.1 X.680
	C.1 Alterations
	C.1.1 Removal of Macros
	C.1.2 Removal of ANY and ANY DEFINED BY
	C.1.3 Local identifiers
	C.1.4 Choice Value syntax
	C.1.5 External

	C.2 Additions
	C.2.1 Automatic tagging
	C.2.2 Embedded PDV
	C.2.3 String types
	C.2.4 Exception specification
	C.2.5 New subtype operators

	History

