ETSI TR 102 026 vi.1.1 @ooz-01)

Technical Report

Telecommunications and Internet Protocol
Harmonization Over Networks (TIPHON);
Study of the use of TTCN-3 for SIP

and for OSP test specifications

D

2 ETSI TR 102 026 V1.1.1 (2002-01)

Reference
DTR/TIPHON-06019

Keywords
VolIP, interoperability, IP, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2002.
All rights reserved.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.fr

3 ETSI TR 102 026 V1.1.1 (2002-01)

Contents

Intellectual Property RIGNES.........oo et 5
0T oo O 5
1 o010 SRS 6
2 REFEIBINCES ...ttt sttt e et et et e e e bt e bt e bt s b e se e be st e st e st e benbenbeneenbentenees 6
3 F N o] =Y 1 0] 1S 6
4 270 (0 | (01 o S 7
5 Suitability Of TTCN-3 fOr SIPLESHINGveeeecieceeie et ae e e reenesne e 8
51 Architectural considerations fOr tESHING SIP.........couiiie e 8
52 Expressing SIP dynamic behaviour in TTCN-3oo e 9
5.3 Expressing SIP messageS in TTON-3... .ottt a et b bbb sne e ens 10
531 S 1S L= £SO 12
5311 L s 0= (= = o S PRRPRRSN 12
5312 RTAT A1 o (o= o L PSP PRURT RSO 13
5.3.1.3 UsiNg MOified tEMPIBLESccveeieeiece et sre e s re e saeeneeneeenseeneesnaesneesanas 13
5.3.2 TTCN-3 reQUIAT EXPIESSIONS.....cueeiteerieteestesseesteesteesseeseeseeseesseesseesseasseessesssesseesseesseesseessesnsesnseassessenssenssens 14
5321 S 0 L= 0 L TS 14
5.3.2.2 MOFE COMPIEX PALLEITIS. ... veeveeieeie et e sttt sttt et e s e et e b e e e e e stesseesseesseesaeeaseenseenseensennaessensseessens 14
53221 S S o] (=S Lo o S 15
53222 REFEIENCE EXPIESSION.....eitieetiitee ettt b et b et b bbbt b b s bt s e e s e bt s ese b et e se b e e eneens 15
53223 MBLCH EXPIESSION N LIMIES ...c.eceeetiieeieetert ettt b et b et sb e bbbt enis 15
5323 Using regular expressionS With SIPcooiii bbb 15
6 Suitability Of TTCN-3 fOr OSP tESHING.....cccteieeierieeiereeeee sttt eee e ste e see e e see e eeesseeneeneeseeenes 16
6.1 Architectural considerations for tESING OSPc.vcci i a e naenreesreas 16
6.1.1 Normal OSP MESSA0E EXCNANGEeeiueeieeieeeie et eeesee e e e te e e e e saeesteeaeesaesraesse e teenteenteenteensesnnennns 16
6.1.2 LI 0= o T USSR 17
6.2 Expressing OSP dynamic behaviour iN TTCN-3........cooiiiiiieie et se ettt e st e e ste e eeeaesnee e 17
6.3 Expressing OSP meSSageS iN TTON-3 ...ttt stee e e e s s e teentesseesseeste e teeseeneeensesnennnns 18
6.3.1 AULNOTTIZEHONREGUESE ...ttt ettt b et b bbb st b et s e bt b e bt e b e st sbenn e 18
6.3.1.1 DL o = == 1 o S 18
6.3.1.2 LI 1 TSP PPV USRI 18
6.3.1.3 TTONBEEMPIBLE ...ttt bbbt bt b e a b e et b et b e 19
6.3.2 e 01 (= 1174 1 o] OSSPSR 20
6.3.3 LT (o= o L3PPSO 20
7 Practical experience Of USING TTCN-3ottt st 21
8 F Y= T = o1 1V) (o SR 21
9 Maintenance of the TTCN-3 StaNard..........cooviieriiiee et nee e 21
O T I = 1 0] oo TSP P PP TSTURORURPPPRPRTIN 22
Annex A: Suggested Style QUIAEIINES.........ccuoeee e 23
0 A g1 0o [1 o TP 23
A.2 Theruleand itSTWO COTOHAINMES........oiiriieeeeeee ettt 23
A3 SOME GUIAEITNES ..ottt ettt ettt st et e s s e e saesteemeesbeeseentesneeneesbeemaeseeseeeneesesseensenneens 24
A31 1V KoTo (V1= ol o= 1= (o] o O RSRSN 24
A.32 (0010110101 01T UPTURR PR 27
A.3.3 IR/ L= =11 (o] USSR 28
A331 o o Y o] 28
A.3.3.2 R (o1 =0 1Y/ == S 29
A3321 ENUMEIBLIONS ...ttt e b ettt b et bbbt et e s e e b e se e eb e e st e s e e e e s e besbeebesaeennenen 29

ETSI

4 ETSI TR 102 026 V1.1.1 (2002-01)

A.3.32.2 RS o0 0 Y= - P OUROt 29
A.3.323 Variabl@ AefiNITIONS. ...t e s e e b e e sae e e be e e saeeeebee e saeeesabeesnreesaras 29
A.3.4 FUNCHION AEFINITIONS. ...ttt et s e st e e s be e e be e e s aee e bee e sbeeeaseesabeesabeesabeesnbeesnseesnreean 30
A.35 BT LTRSS o = o S 31
A.3.6 R <1 16 SR 31
A.36.1 SIMPIE SEALEIMIENES ... oottt e e et e e e e s seesaeesaeesaeeeeaaseeseeeseeseenteesseenseansesneesnnenseansennsenns 31
A.3.6.2 COMPOUNG SEBLEMENTS. ...ttt ettt sttt b ettt et eb e s et bt sb e e ebesb e se e bt ebese e st ebese et e sb e e ebesbe e ebenbeneenen 31
A.3.7 NBIMING CONVENTIONS.euiitieeiertirs ettt sb et b e se b b s b e e s b e s e s b e e e st e b e b e st s b e e e e bt e b e s e st eb et e st ebenre e e 32
A.3.8 BEAULITIErS QN0 FOIMBILEISeevee ettt ettt ettt e e e et e e te e st e eabe e sbeeesseesabeeeaseesabesenbeesnseesnbessseesnresan 33
A.3.9 Presentation fonts and ShEet OFTENTALIONccviiiieicee et ettt et ere e st eeate s steeenbeesreesareean 33
20 T O I AN (= g g F= (= = 010 [o) g o TR 34
A.3.11 Calsand referencesto Other MOAUIES............oouiiiiiiciee et re e s re s s te e e re e s beeearee s 35
N Nt I~ o= = Y SR 35
A.3.13 PICS AN PIXIT PAIraMELErS.....cccceeieeiieeeeeeietiesteeseeseeteeteseeseesaeesseesseanseasseassassansseesseessesnsessessnsesseesseensennsenns 37
Annex B: BibBliOGrapRY ... 38
[TS 0] YRS 39

ETSI

5 ETSI TR 102 026 V1.1.1 (2002-01)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Report (TR) has been produced by ETSI Project Telecommunications and Internet Protocol
Harmonization Over Networks (TIPHON).

ETSI

http://webapp.etsi.org/IPR/home.asp

6 ETSI TR 102 026 V1.1.1 (2002-01)

1

Scope

The present document provides an analysis on the suitability of using TTCN-3 as defined in ES 210 873-1 [1] to specify
the test specifications for TIPHON protocols, in particular the TIPHON profile of SIP (Session Initiation Protocol) and
the TIPHON OSP (Open Settlement Protocol). This study is restricted to the use of the TTCN-3 Core Language.

2

References

For the purposes of this Technical Report (TR) the following references apply:

[1]

[2]

(3]

[4]

ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Tree and Tabular
Combined Notation version 3; Part 1: TTCN-3 Core Language”.

I SO/IEC 9646-3: "Information technology - Open Systems Interconnection - Conformance testing
methodology and framework - Part 3: The Tree and Tabular Combined Notation (TTCN)
Edition 2".

ETSI TS 101 321: "Telecommunications and I nternet Protocol Harmonization Over Networks
(TIPHON); Open Settlement Protocol (OSP) for Inter-Domain pricing, authorization, and usage
exchange".

ITU-T Recommendation Z.140: "The tree and tabular combined notation version 3 (TTCN-3):
Core language”.

3

Abbreviations

For the purposes of the present document, the following abbreviations apply:

ASN.1
ATS
DTD
UT
MTC
oSP
(P)ICS
PIXIT
PDU
S
suT
TCP
TTCN-2
TTCN-3
UDP
XML
PCO
DE

Abstract Syntax Notation One

Abstract Test Suite

Document Type Definition

Implementation Under Test

Master Test Component

Open Settlement Protocol

(Protocol) Implementation Conformance Statement
(Protocol) Implementation eXtra Information for Testing
Protocol Data Unit

Session Initiation Protocol

System Under Test

Transfert Control Protocol

Tree and Tabular Combined Notation version 2
Testing and Test Control Notation version 3

User Datagram Protocol

eXtensible Markup Language

Point of Control and Observation

Development Environment

ETSI

7 ETSI TR 102 026 V1.1.1 (2002-01)

4 Background

The detailed code for nearly al ETSI (conformance) Abstract Test Suites (ATS) iswrittenin TTCN. There are two
versions of TTCN, version 2 (TTCN-2) as defined in I SO/IEC-9646-3 [2] and the recently published ETSI version 3
ES201873-1[1].

NOTE: Version1of TTCN isnot now used by ETSI.

Version 2 is oriented towards conformance testing and has been widely applied in testing telecommunications protocols
and services for over 10 years. TTCN-3 isa modernization of TTCN-2. It has been devel oped to apply to awide range
of testing applications (i.e. it is not limited to conformance testing) and the syntax of the language has been brought into
line with that of other modern programming languages.

Whileit is not anticipated that TTCN-2 will immediately replace TTCN-3 (from ETSI's point of view the transition to
TTCN-3 is expected to occur over several years) there are good reasons to consider using TTCN-3 for "new" protocols
such as SIP or OSP.

EP TIPHON is writing test specifications for H.225, H.245, H.248, SIP and OSP. The tests for the first three protocols
are being written in TTCN-2. Thisis mainly due to timing (the work was started several months prior to the publication
of TTCN-3) and the fact that they are "traditional" protocols (for example H.225 is very close to Q.931). It is aso more
likely that, in the short-term, the actual test systems for these protocols will be based on TTCN-2.

However, the nature of SIP and OSP (e.g., text-based, datacom-oriented) makes them an ideal candidate for TTCN-3.
The present document makes an initial analysis on the suitability of using TTCN-3 to for SIP and OSP test
specifications.

ETSI

8 ETSI TR 102 026 V1.1.1 (2002-01)

5 Suitability of TTCN-3 for SIP testing

In order to understand the suitability of TTCN-3 for testing SIP it is necessary to consider three main aspects:
e thebasic testing architecture, i.e. the location of the test interfaces,
¢ the expression of dynamic behaviour (i.e. SIP message exchanges);
¢ therepresentation of data (i.e. SIP messages).

These aspects are described in clauses 5.1, 5.2 and 5.3 respectively.

5.1 Architectural considerations for testing SIP

Two conceptual SIP test systems areillustrated in figure 1. The TTCN-3 parts of the test system are represented by the
white boxes, which in the present document we refer to asthe "TTCN-3 Tester". The light grey box represents
sub-structured parts of the test system. The dark grey boxes indicate the underlying transport layer, either UDP or TCP.

Option 1 Option 2
High level
(intelligent)
_ processing of the SIP
All processing of
PCO
SIP messages Initial low-level
. i f the SIP
inTTCN -3 n'z?scseasgséggdgne ien test
system
55 e
UDP/TCP UDP/TCP

Figure 1. Basic test system architecture

TTCN-3 behaviour is executed over test ports, sometimes called PCOs (Points of Control and Observation). For SIP
testing there are basically two options for the placement of the PCO.

e directly over UDP (or TCP);
¢ higher than UDP (or TCP), i.e. "embedded” in the test system.

In the first option of figure 1 all processing of the SIP messagesis expressed in TTCN-3. For received messages this
means that the PCO delivers a SIP message to the TTCN-3 tester as a single text string. The TTCN-3 code must then
(somehow) parse thistext string and break it down into data structures on which the TTCN-3 matching mechanisms etc.
can operate. For send messages the reverse occursi.e. TTCN-3 data structures representing the SIP message are
encoded as a single text string.

Itiscertainly possible to use TTCN-3 this way but this would probably be inefficient. It would also overload the
TTCN-3 test cases (not to mention the test suite writers) with detail not explicitly relevant to the test purposes.

In the second option, the test system receives a SIP message over the UDP (or TCP) port and does the initial parsing
before passing the structure to the TTCN-3 Tester viathe PCO. In its simplest form this parser need only recognize the
basic "outline" of the message with no detailed knowledge of individual headers. This structure would be mapped to the
corresponding TTCN-3 template on a best possible fit basis. The TTCN-3 Tester then operates directly on this data
structure rather than the incoming text string (by pattern matching).

ETSI

9 ETSI TR 102 026 V1.1.1 (2002-01)

If the tester isto deliver more complex TTCN-3 structures then the underlying parser will need to be correspondingly
complex. Asthiswill effect how a TTCN-3 test caseis expressed (i.e. place restrictions on how TTCN-3 isused) itis
important that this functionality is defined by EP TIPHON at an early stage.

In conventional protocol testing (especially when using, say, ASN.1) this sub-layer (shaded light grey in figure 1) is
often referred to as an encoder-decoder. Here, the incoming datais a bit stream which is decoded by the test system and
passed to the TTCN-3 tester in structured form.

Discussions with several tool implementer's indicate that option 2 should be the favoured approach. The present
document therefore recommends that EP TIPHON follow option 2 when writing TTCN-3 test cases for SIP.

5.2 Expressing SIP dynamic behaviour in TTCN-3

SIP has very simple dynamic behaviour. The TTCN-3 communication and timer mechanisms etc. are entirely adequate
to specify the exchange of SIP messages. The present document recommends that TIPHON SI P tests are expressed
using asynchronous communication.

NOTE: Generadly, SIP testing would be based on asynchronous message exchanges, however TTCN-3 does have
synchronous communication if it is desired to express the test that way.

A typical piece of SIP behaviour could be:

testcase SIP_RG RT_V_001() runs on SipConponent system Siplnterfaces
/1 Selection: To be defined
/] Status: Mandatory
/l SUT: A UA a proxy, or a redirect server.
/1 Precondition: None
/] Ref: 2.2 [1], 7.1 [1], 10.14 [1]
/] Purpose: Ensure that the IUT, in order to be registered, sends a REGQ STER request
/l t toits proxy (Home server, outbound proxy) with the action field set to "proxy"
/1 in the Contact header field, without user nane in the Request-URI,
/'l with a Via header field and with a SIP URL as request-URI.
{
var REG Request V_REGQ STER Request;
var Contact Address_Li st V_ContactList;
var GenericParam Li st V_GenericParanli st;
var integer i,j, nbelenent, nbparam
var bool ean hasBeenFound: =f al se;

sut.action ("Please REA STER");
TWait.start (PX_TWAIT);
al t

{
[1 SIPl.receive (REG STER Request_r_2) fromrcv_|abel -> value V_REG STER Request

{
TWai t. stop;
/] Catch and prepare informations to answer
iutContact :=
get Cont act Addr (V_REG STER _Request . reqHeader . cont act . cont act Body. cont act Address_List[1]);

V_Callld := V_REGQ STER Request.reqHeader.call |d;
V_CSeq : = V_REGQ STER Request . reqHeader . cSeq;
V_From : = V_REGQ STER Request . reqHeader . f ronFi el d;
V_To := V_REGQ STER Request . reqHeader . t oFi el d;

V_Via := V_REGQ STER Request . reqHeader . vi a;

/1 update sent_|abel according to received via header field
get Vi aRepl yAddr (V_Vi a. vi aBody) ;

//Add a Tag in the TO field

V_To.toParans := {{TAG |ID, GCetAvalueTag()}};

/1 Check Contact content
V_Contact Li st := V_REG STER Request . reqHeader. cont act. cont act Body. cont act Addr ess_Li st;
nbel enent : = sizeof (V_ContactList);

for (i:=1;i==nbel ement;i:=i+1)

hasBeenFound: =f al se;
/1 Check that paraneters are present in the contact
if (match(V_ContactList[i], ContactAdress_r_1))

{
V_CenericParanList := V_ContactList[i].contactParans;
nbparam : = si zeof (V_Generi cParanii st);
ji=1;

/] Check that at |east one paraneter is set to action="proxy"

ETSI

10 ETSI TR 102 026 V1.1.1 (2002-01)

if (match(V_GenericParaniist[j], GenericParamr_1))

hasBeenFound: =t r ue;

}

/1 Check that contact does not include a paraneter set to action="redirect"
if (match(V_GenericParanlist[j], GenericParamr_2))

hasBeenFound: =f al se;

j 1= nbparam
Yo
JE L
whil e (j <=nbparam) //end | oop on contact paraneters
}
i f (not hasBeenFound)
{

verdict.set(fail);

/1 Answer with a 409 status nessage

SI P1. send (Response_409 s_1(V_Callld, V_CSeq, V_From V_To,
V_Via)) to sent_|label; stop

}

} //end For on Contact |ist

verdi ct. set (pass);
//Send a 200CK Answer to the UA with an Expire header field set
//to PX_DELTA REG STRATI ON and the contact |ist
Sl P1. send (Response_200_s_2(V_Callld, V_CSeq, V_From V_To,

V_Via, V_REGQ STER Request.reqHeader. contact,
PX_DELTA REGQ STRATION)) to sent_| abel

}
[] SIPl.trigger fromrcv_| abel

all tinmer.stop;
verdict.set(fail);
stop

[T Twait.tinmeout {verdict.set(inconc); stop}

}
} // end testcase SIP_RG RT_V_001

5.3 Expressing SIP messages in TTCN-3

Currently many SIP test suites specify one single text string for each instance of a message. Changing one element in a
message means that a complete, new message needs to written. The end result is many hundreds of individual SIP
messages. No rationalization. No reuse. Worse till, matches on incoming messages have to be exact, where in practice
adegree of flexibility is often desirable.

The TTCN-3 approach alows to set and match individual elements of datain complex messages. To give a high degree
of controllability and observahility. Because SIP messages are text based they have no explicit structure, contrary to
conventional telecommunications protocol. For example:

INVI TE sip:test@ip.comSIP/2.1
From userB<si p: xxx@yy. zzz>
To: user A<si p: aaa@bb. ccc>
CSeq: 1 INVITE

Content -Length: O

In order to test SIP using TTCN-3 it is necessary to give the messages at least some level of structuring. Highly
structured SIP data will give a good degree of control but will probably lead to a humanly unreadable test suite.
Conversely, little or no structuring will give good readability but very little control. In this clause we present a style of
using TTCN-3 that attempts to achieve controllability while retaining a good degree of readability.

ETSI

11 ETSI TR 102 026 V1.1.1 (2002-01)

A SIP message has three basic parts, the Request (or Status) line, the headers and the (optional) message body. The
components of a Request or Status line appear in agiven order. In TTCN-3 this can be represented using a record type,
for example:

/1 SI P Message Request
type record SI P_REQUEST

{ charstring Met hod optional, // even mandatory fields are optional
charstring Request _URI optional, // so that we can specify invalid nmessages
charstring S| P_Ver si on optional,

}

Actual messages can be defined using TTCN-3 templates. For example:

tenpl ate SI P_REQUEST MyRequest : =

{ Met hod = "INVITE ",

Request _URI := "sip:test@ip.com",

SIP_Version := "SIP/2.1\r\n" [/ where \r\n represents %13%l10 the CR + LF characters
}

Explicit spaces could be included in the structure rather than having them as part of the actua string value
(seeclause 5.3.1).

For the sake of this discussion let us assume that SIP headers are text strings terminated by an end of line character
(e.g., CRor LF or CRLF). Generally, SIP messages alow headers to appear in any order. However, for sent messages
(i.e. SIP Requests) the TTCN-3 Tester should specify messages with the SIP headersin agiven order. In TTCN-3 this
can be expressed using the record of type.

/1 Unbounded array of character strings (i.e. headers)
type record of charstring REQUEST_HEADERS;

/1 Unbounded array of character strings (i.e. body el ements)
type record of charstring REQUEST_BODY;

/1 SIP Message = Request Line + Headers + Body
type record SI P_REQUEST

charstring Met hod optional, // even mandatory fields are optional
charstring Request _URI optional, // so that we can specify invalid nmessages
charstring Sl P_Versi on optional,

REQUEST_HEADERS Message_Headers optional,
REQUEST_BODY Message_Body opti onal
}

For received messages (i.e. SIP Responses) the TTCN-3 Tester should be prepared to accept messages with the SIP
headers appearing in an arbitrary order. In TTCN-3 this can be expressed using the set of type.

/1 Unbounded set of character strings (i.e. headers)
type set of charstring RESPONSE_HEADERS;

/1 Unbounded set of character strings (i.e. body el ements)
type set of charstring RESPONSE_BODY;

/1 SIP Message = Response Line + Headers + Body
type record Sl P_RESPONSE

charstring S| P_Versi on optional, // even mandatory fields are optional
charstring St at us_Code optional, // so that we can specify invalid nmessages
charstring Reason_Phrase optional,

RESPONSE_HEADERS Message_Headers optional,

RESPONSE_BCDY Message_Body optional

ETSI

12 ETSI TR 102 026 V1.1.1 (2002-01)

531 SIP headers

Inits simplest form a SIP header can be represented as a single text string, as described in clause 5.3. For example:

"CSeq: 1 INVITE\r\n"

However, the CSeq header could be represented as a structured type of several elements:

type record CSEQ

tag charstring,
spl charstring,
counter charstring,
sp2 charstring,

nmethod charstring // could also be enunerated type

}

/1 wth the val ue:
tenpl ate CSEQ MyCSeq :
{ tag 1= "CSeq: ",
spl to
counter :
sp2
met hod
eol

" WI TE",
"“\r\n"

}
Representing headersin this way gives awide range of control (we can explicitly accessindividual fieldsin SIP

headers). However, readability can be seriously affected if this approach is not used care. Note also that the
REQUEST_HEADERS type (for example) can no longer be asimplerecord of charstring but would need, for
example, to be aunion of the different message header structures. See also clause 3.3.2.2.

One method to give some form of pseudo-structure to the char string and yet retain readability is to use the
concatenator operator, for example (where CRLF ="\r\n" and SP=""):

"CSeq:" & SP & "1" & SP & "INVITE" & CRLF

NOTE: Regular expressions (patterns) will be introduced into TTCN-3 see clause 5.3.2 for a description and
clause 5.3.2.3 for a SIP example.

tenpl ate S| P_RESPONSE MyResponse : =

{ SIP_Version = "INVITE'" & SP,
St at us_Code = "200" & SP,
Reason_Phr ase = "K' & CRLF,
Message_Headers : = { "From" & "userB<sip: xxx@yy.zzz>" & CRLF,

"To:" & "userA<si p: aaa@bb. ccc>" & CRLF,
"CSeq:" & "1" & "INVITE'" & CRLF,
"Content-Length: " & "0",
* /1 Al other headers are ignored
1,
Message_Body = omt
}

This approach makes more sense when used with parameterized templates and wildcards, as explained in
clauses5.3.1.1and 5.3.1.2.

See annex A for afull example (test case) which applies the various approaches described in the previous clauses.

5311 Parameterization

TTCN-3 templates can be parameterized. For example, we could parameterize the counter in the CSeq header:

tenpl ate SI P_RESPONSE MyResponse (charstring COUNTER) : =

{ :
Message_Headers := { :
"CSeq:" & COUNTER & "I NVITE" & CRLF
),
Message_Body = omt

}

/1 And in the receive line we could wite:
pco. recei ve(M/Respons("1"))

ETSI

13 ETSI TR 102 026 V1.1.1 (2002-01)

531.2 Wildcards

The TTCN-3 matching mechanisms (wildcards) can also be used. For example, we could wildcard the counter in the
CSeq header:

tenpl ate S| P_RESPONSE MyResponse : =

{ :
Message_Headers := { :
"CSeq:" & <?> & "INVITE" & CRLF
}
Message_Body = omt
}

NOTE: The exact syntax of TTCN-3 wildcards and patternsis still under review.

5.3.1.3 Using modified templates

Another mechanism that could be used is derived, or modified, templates. For example, a complete SIP message would
contain al the headers, say, from " Allow" to "WWWAuthenticate".

/1 SI P Message Request
type record SI P_REQUEST

charstring Met hod optional, // even mandatory fields are optional
charstring Request _URI optional, // so that we can specify invalid nmessages
charstring Sl P_Versi on optional,

charstring Al | ow optional ,

charét ring From optional,

charstring To optional ,

charstring CSeq optional,

charstring Content-Length optional

charstri ng WANMut hent i cat e optional,

RESPONSE_BODY Message_Body opti onal
}

A base response template where all headers are omitted:

NOTE: For SIP Responses the wildcard "*" would probably be used instead of omit.

tenpl ate SI P_REQUEST MyBaseRequest : =

{ Met hod = "INVITE" & SP,
Request _URl := "sip:test@ip.com & SP,
SIP_Version := "SIP/2.1" & CRLF,
Al |l ow = omt,
Fr oh = omt,
To = omt,
CSeq = omt,
Cont ent Lengt h = omt,
V\W/\Aﬁthenticate = omt,
MessageBody = omt

}

The following template produces the same SIP message as the examplein clause 5.3. That is, by default all other
headers are omitted.

tenpl ate SI P_REQUEST MyRequest nodifies SIP_REQUEST MyBaseRequest : =

{ Met hod = "INVITE" & SP,
Request _URl := "sip:test@ip.com & SP,
SIP_Version := "SIP/2.1" & CRLF,
From = "From" & "userB<sip: xxx@yy.zzz>" & CRLF,
To = "To:" & "userA<sip:aaa@bb.ccc>" & CRLF,
CSeq = "CSeq:" & "1" & "INVITE" & CRLF,

Cont ent Lengt h "Content-Length: " & "0"

ETSI

14 ETSI TR 102 026 V1.1.1 (2002-01)

5.3.2

TTCN-3 now supports limited regular expressions, or patterns. These may be used to match character string values
anywhere that wildcards and matching mechanisms are currently allowed in TTCN-3.

TTCN-3 regular expressions

Work is progressing to introduce more complicated pattern-matching into the language. It is expected that tool-makers
will implement these proposals as they develop. Thiswill ensure that, for EP TIPHON at least, pattern matching
capabilities will be available in atimely manner.

5.3.2.1 Simple patterns

In addition to literal characters, character patterns allow the use of meta characters"?' and "*" to mean any character
and any number of any character respectively. For example:

tenpl ate charstring My/Tenpl ate: = pattern "ab??xyz*";

This template would match any character string that consists of the characters "ab", followed by any two characters,
followed by the characters "xyz", followed by any number of any characters.

The metacharacter "\" is used as an escape character. For example:

tenpl ate charstring MyTenpl ate: = pattern "ab?\ ?xyz*";

This template would match any character string which consists of the characters "abr", followed by any characters,
followed by the characters " ?xyz", followed by any nhumber of any characters.

In addition to direct string values it is also possible within the pattern statement to use references to existing templates,
constants or variables. The reference shall resolve to one of the character string types and more than one. For example:

const charstring MyString: = "ab?";
tenpl ate charstring MyTenpl ate: = pattern MyStri ng;
This template would match any character string that consists of the characters "ab", followed by any characters. In

effect any character string following the pat t er n keyword either explicitly or by reference will be interpreted
following the rules defined in this clause.

5.3.2.2

The draft proposal (July 2001) for a more sophisticated pattern matching mechanism in TTCN-3 is described below.
This proposal (or something very similar) will be incorporated into the language by October 2001 (support in tools for
thisfeature is already available).

More complex patterns

Thelist of meta characters for TTCN-3 patternsis shown in table 1.

Table 1: List of TTCN-3 Pattern Metacharacters

Metacharacter
? Match any character

Description

*

Match any character zero or more times

\

Cause the following meta character to be interpreted as a literal

[l

Match any character within the specified set

{ group, plane, row, cell }

Match the Universal character specified by the quadruple

<reference> Insert the referenced user defined string and interpret it as a regular expression
\d Match any numerical digit (equivalent to [0-9])

\w Match any alphanumeric character (equivalent to [0-9a-zA-Z])

\\ Match the backspace character

Match the double quote character

| Used to denote two alternative expressions

@) Used to group an expression

#(n, m) Match the preceding expression at least n times but no more than m times

ETSI

15 ETSI TR 102 026 V1.1.1 (2002-01)

5.3.2.2.1 Set expression

The set expression is delimited by the"[" "]" symbols. In addition to character literals, it is possible to specify character
ranges using the separator "-". The set expression can a so be negated by placing the "A" character as the first character
after the opening square brace.

For example:
tenpl ate charstring RegExpl:= pattern “[a-z]"; [/ this will nmatch any character froma to z
tenpl ate charstring RegExp2: = pattern “[”a-z]"; [/ this will natch any character except a to z

tenpl ate charstring RegExp3:= pattern “[A-E][0-9][0-9][0-9] YKE";

/1 RegExp3 will match a string which starts with a letter between A and E then has three
/] digits and the letters YKE

5.3.2.2.2 Reference expression

In addition to direct string values it is also possible within the pattern statement to use references to existing templates,
constants or variables. The reference is enclosed within the "<" ">" characters. The reference shall resolve to one of the
character string types. For example:

const charstring MyString: = "ab?";

tenplate charstring MyTenpl ate: = pattern “<M/String>";

This template would match any character string that consists of the characters"ab", followed by any characters. In
effect any character string following the pat t er n keyword either explicitly or by reference will be interpreted
following the rules defined in this clause.

tenpl ate universal charstring M/Tenpl atel: = pattern “<M/String>de{1, 1, 13, 7}";

This template would match any character string which consists of the characters"ab", followed by any characters,
followed by the characters "de", followed by the character in 15010646 with group = 1, plane = 1, row = 13 and
cel =7.

5.3.2.2.3 Match expression n times

To specify that the preceding expression should be matched a number of timesthe "#(n, m)" syntax isused. This
specifies that the preceding expression must be matched at least n times but not more than m times.

For example:
tenpl ate charstring RegExp4:= pattern “[a-z]#(9, 11)”"; /1l match at least 9 but no nore than 11
/] characters froma to z
tenpl ate charstring RegExp5: = pattern “[a-z]#(9)"; /1 match exactly 9
/Il characters froma to z
tenpl ate charstring RegExp6: = pattern “[a-z]#(9,)”; /1 match at least 9
/Il characters froma to z
tenpl ate charstring RegExp7:= pattern “[a-z]#(, 11)”; /1 match no nore than 11
/1 characters froma to z
5.3.2.3 Using regular expressions with SIP

Patterns would replace the syntax illustrated in clause 5.1. For example, the following pattern indicates that " CSeq" may
be followed by 1 or more spaces, that the counter value (e.g., "1") isin the template parameter COUNTER (see
clause 5.3.1.1) and that "INVITE" is preceded by at least one space and followed by exactly one CRLF.

pattern "CSeq: <SP>#(1,) <COUNTER><SP>#(1,) | NVl TE<CRLF>"

Following this approach the example of 5.3.1 would become:

tenpl ate SI P_REQUEST MyRequest (charstring COUNTER) : =
{ SIP_Version pattern "I NVI TE<SP>#(1,)",

St at us_Code pattern "200<SP>#(1,)",

Reason_Phr ase pattern " OK<CRLF>",

From = pattern "From <SP>#(1,)\ <userB<si p: xxx@yy. zzz\ ><CRLF>",
To = pattern "To: :<SP>#(1,)\<userA<sip: aaa@bb. ccc\ ><CRLF>",
CSeq = pattern "CSeq: <SP>#(1,) <COUNTER><SP>#(1,)| NVI TE<CRLF>",

ETSI

16 ETSI TR 102 026 V1.1.1 (2002-01)

Content-Length := pattern "Content-Length: <SP>#(1,)0<CRLF>"
}

6 Suitability of TTCN-3 for OSP testing

In order to understand the suitability of TTCN-3 for testing OSP it is necessary to consider three main aspects:

» thebasic testing architecture, i.e. the location of the test interfaces;
¢ the expression of dynamic behaviour (i.e. OSP message exchanges);
 the representation of data (i.e. OSP messages).

These aspects are described in clauses 6.1, 6.2 and 6.3 respectively.

6.1 Architectural considerations for testing OSP

For the test architecture the discussion of clause 5.1 also appliesto OSP. A more detailed test architecture is shown in
figure 2. The adaptation layer is shown in more detail in figure 3.

Tester IUT
TTCN OSP
Adaptation layer XML
HTTP HTTP
SSL TCP TCP SSL TCP TCP
port 443 port 80 port 443 port 80
IP

Figure 2: Test architecture

ASN.11exr(Note) XMLasci

ASN.1pgR XMLgy

Figure 3: Adaptation layer

6.1.1 Normal OSP message exchange
In the case of normal OSP message exchange the adaptation layer shall proceed the following tasks:

» The Adaptation layer shall receive an ASCII string (XML 5g¢y;) Or abinary presentation of the XML document
(XMLg) fromthe HTTP layer.

» The Adaptation layer shall decode XML o), Or XML, according to the OSP DTD. The OSP DTD is defined
in TS 101 321 [3], annex A.

¢ The Adaptation layer shall map the decoded result to the TTCN3 types. The TTCN3 types are defined in
annex C.

¢ The Adaptation layer shall add al the raw data received from the HTTP layer in the payload field of the TTCN3
type. If amatching error in the Tester occurs, the raw data will be compared with the parsed data in order to see
if the matching error is aresult of an OSP protocol error or if it isaresult of aparsing error.

ETSI

17 ETSI TR 102 026 V1.1.1 (2002-01)

6.1.2 Token carriage

In the case of Token Carriage the Adaptation layer may receive the following formats:

6.2

ASN.1pcR: The Adaptation layer receives an ASN. 1o, format as defined in TS 101 321 [3], clause D.2.1. The
Adaptation layer shall convert the ASN.1pe, format to the TTCN3 types. The TTCN3 types are defined in
annex C of [3].

XML pgcyi: The Adaptation layer receives an ASCII string as defined in TS 101 321 [3], clause D.2.2. The rules
of clause 4.2.1 shall apply.

XMLg,y - The Adaptation layer receives a binary presentation of the XML document as defined in
TS 101 321 [3], clause D.2.3. The rules of clause 4.2.1 shall apply.

Expressing OSP dynamic behaviour in TTCN-3

The dynamic behaviour of OSP istrivial, comprising simple Request/Response (Client/Server) interchanges.

testcase OSP_SV_PRI_BV_001() runs on MIC_COSP

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

{

}

Sel ection: Pics Table 1.1/2 [1] AND Pics Table 1.20/1 [1] AND Pics Table I.20/2
(1]

Precondi tion: None

Ref: Clause 6.2.1 [1]

Pur pose: Ensure that the IUT, on receipt of a Pricinglndication,

sends a PricingConfirmation with a conponent|D attribute associated to the Prici

ngl ndication, with a Timestanp and a Status el enment.

The Timestanp el ement shall contain the definition of the time according to | SO

8601 [8]. The Status el enment shall contain the Code el ement. The Code el ement sh
all contain the code val ue 2xx.

/lactivate DF_Server();

var integer TCV_Msgld;

var integer TCV_Conpld;
var integer TCV_Code;

var integer TCV_Result[3];

var PricingConfirnmation TCV_Pri Conf;
TCV_Result:= Calc_lds();
TCV_Msgl d: = TCV_Resul t[0] ;
TCV_Conpl d: = TCV_Resul t[1] ;
OSP_I nit (I UTisServer_E, PX_TCPPort);
L1. send(Prilnd_S1(TCV_Msgld, TCV_Conpld, PX Currency, PX_ Anount,
PX_I ncrenent, PX_Unit));

TAC. start;
alt

[T Ll.receive(PriConf_RI(TCV_Msgld, TCV_Conpld)) -> value TCV_Pri Conf

TCV_Code: = TCV_Pri Conf. pri ci ngConfirmati onContents.
st at us. st at usCont ents. code;

TAC. st op
}
[1 TAC tineout
{
verdict.set(fail);
st op
}

}

if ((200<= TCV_Code)and (TCV_Code<= 299))
{verdict.set(pass)}
el se
{verdict.set(fail)}
/'l end testcase OSP_SV_PRI _BV_001

ETSI

18 ETSI TR 102 026 V1.1.1 (2002-01)

6.3 Expressing OSP messages in TTCN-3

OSP is XML-based and the real complexity of the protocol isin the OSP messages.

There are several XML standards such as Document Type Definitions (DTD), Schemas, Style sheets, XML Documents
etc. For OSP testing purposes style sheets are not relevant and XML Schemas are not used. In the present document we
shall therefore concentrate on: DTD and XML documents themsel ves.

The declaration of TTCN3 typesis explained by the example of the XML AuthorizationRequest component.

6.3.1 AuthorizationRequest

6.3.1.1 XML declaration

The structure of the XML AuthorizationRequest component has the following characteristics:
a) there aretwo basic parts, the AttributeList part and the Element part.
b) within the Element part the elements appear in a given order.

c) theelements may appear multiple times.

<! ELEMENT Aut hori zati onRequest (Tinmestanp, Callld+, Sourcelnfo, SourceAlternate*,
Destinationlnfo, DestinationAlternate*, Service, MxinmnDestinations, Token*,
Subscri ber Aut henti cati onl nfo*)>

<! ATTLI ST Aut hori zati onRequest conponent!|d | D #REQUI RED>

6.3.1.2 TTCNS3 type

The TTCN-3 type represents the structure of the XML AuthorizationRequest component:

a) thetwo basic parts are represented in type record AuthorizationRequest. For testing purposes the payload is

added.

b) al elements are represented in type record AuthorizationRequestContents.

c) theelement Callld may appear multiple times. Itstypeis: typerecord of length(1 .. 255) Callld Callld_List.

type record Authorizati onRequest

Aut hori zat i onRequest Attri bute
Aut hori zat i onRequest Cont ent s
Aut hori zat i onRequest Payl oad

aut hori zati onRequest Attri bute,
aut hori zat i onRequest Cont ent s,
aut hori zati onRequest Payl oad

}

type record AuthorizationRequestAttribute

I nt 255 nessagel d,

PDUType pduType (AUTHORI ZATI ONREQUEST_E) ,

I nt 255 conponent | d

}

type record AuthorizationRequest Contents

{

Intl nunber Ti mestanp (1),
Ti mest anp ti nest anp,

I nt 255 nunber Cal | 1 d,

Cal I 1 d_Li st callld,

Intl nunber Sourcel nfo (1),
Sour cel nfo sour cel nf o,

I nt 255 nunber Sour ceAl t er nat e,

SourceAl ternate_Li st

Intl

Desti nationlnfo

I nt 255

Desti nati onAl t ernat e_Li st
Intl

Service

Intl

Maxi munDest i nati on

sourceAl ternate optional,
nunber Destinationlnfo (1),
desti nati onl nf o,

nunber Dest i nati onAl t er nat e,
destinationAlternate optional,
nunber Servi ce (1),

servi ce,

nunber Maxi munDesti nati ons (1),
maxi nunDest i nati ons,

ETSI

19 ETSI TR 102 026 V1.1.1 (2002-01)

I nt 255 nunber Token,

Token_Li st token optional,

I nt 255 nurber Subscri ber Aut henti cati onl nf o,
Subscri ber Aut henti cati onl nfo_Li st subscri ber Aut henti cati onl nfo opti onal
}

type record Authorizati onRequest Payl oad

{

I nt 255 payl oadl engt h,

Char 255 payl oad

}

6.3.1.3 TTCN3 template

A TTCN-3 template for receiving a XML AuthorizationReguest component is shown:

a) eachfield of authorizationRequestAttribute, authorizationRequestContents and
authorizationRequestPayload has a value or a wildcard assigned,;

b) elementsarereceived either with wildcards or a certain value;

c) theelement Callld shall be received one time.
tenpl ate Authorizati onRequest Aut Req_R1:=

aut hori zati onRequest Attri bute: =
{
nessagel d: = ?,
pduType: = AUTHORI ZATI ONREQUEST _E,
conponent 1 d: = ?
b
aut hori zati onRequest Contents: =
{
nunber Ti mest anp: = 1,
ti mestanp: = Ti nestanp_R1,
nunberCall I d: = 1,
callld:= Callld_R1,
nunber Sour cel nfo: = 1,
sour cel nfo: = Sourcel nfo_R1,
nunber Sour ceAl ternate: = ?,
sourceAl ternate: = *,
nunber Desti nati onlnfo: = 1,
destinationl nfo: = Destinationlnfo_R1,
nunber Desti nati onAlternate: = ?,
destinationAlternate: = *,
nunber Servi ce: = 1,
service: = Service_R1,
nunber Maxi munDesti nations: = 1,
maxi munDest i nati ons: = Maxi nunDesti nati ons_R1,
nunber Token: = 2,
token: = *,
nunber Subscri ber Aut henti cati onl nfo: = ?,
subscri ber Aut henti cationl nfo: = *

b

aut hori zat i onRequest Payl oad: =

payl oadl engt h: =?,
payl oad: = ?

ETSI

20 ETSI TR 102 026 V1.1.1 (2002-01)

6.3.2 Parameterization

TTCN-3 templates can be parameterized. For example, the messageld, the componentld, the currency in use, the
amount (number of currencies being accounted), the increment (number of units being accounted) and the units (by
which pricing is measured) are parameterized in the Pricinglndication PDU.

tenpl ate Prici ngl ndi cation Prilnd_S1(integer nsgld,integer conpld, Char3 p_currency,
float p_anmount, integer p_increnent, UnitContents p_unitContents):=
{

pricinglndicationAttribute: =

{
nmessagel d: = nsgl d,
pduType: = PRI CI NG NDI CATI ON_E,
conponent | d: = conpl d

H

pricingl ndi cati onContents: =

{
nunber Ti mest anp: = 1,
timestanp: = Ti nestanp_S1,
nunber Sour cel nfo: = 1,
sour cel nfo: = Sourcel nfo_S1,
nunber Desti nati onlnfo: = 1,
destinationl nfo: = Destinationlnfo_S1,
nunber Currency: = 1,
currency: = Currency_S1(p_currency),
nunber Amount : = 1,
anmount : = Anmount _S1(p_anount),
nunber | ncrenment: = 1,
increment:= Increment_S1(p_increnent),
nunberUnit:= 1,
unit:= Unit_S1(p_unitContents),
nunber Servi ce: = 1,
service: = Service_S1,
nunber Val i dAfter: = 1,
val i dAfter: = Vali dAfter_S1,
nunber Val i duntil:= 1,
validUntil:= Validuntil_S1

b

prici ngl ndi cati onPayl oad: =

{
pay! oadl engt h: =0,
payl oad: = omi t

6.3.3 Wildcards
The TTCN-3 matching mechanisms (wildcards) can also be used.
For example, when receiving a Status element, then:

e any critical Attribute,

e any code shall,

e any numberDescription,

e any or no description

shall be received.
tenplate Status Status_Rl:=
{
critical Attribute: = ?,
statusContents: =
{
code: = ?,
nunber Descri ption: = ?,
description: = *
}
}

ETSI

21 ETSI TR 102 026 V1.1.1 (2002-01)

7 Practical experience of using TTCN-3

In the context of ETS| the practical use of TTCN-3 has been demonstrated on at least two occasions:

¢ ThelPV6 Interoperability Events (October 2000 and November 2001) where Ericsson demonstrated their
(prototype) TTCN-3 based test platform by executing a hundred or so IPV6 TTCN-3 tests against a number of
different IPV6 Routers.

+ The 7h SIP Bake-off (March 2001) where TestingTech demonstrated the execution of a small number (but
fully-functional) TTCN-3 SIP tests against areal SIP implementation. At the same event, ACACIA also
performed conformance testing of a number of SIP implementations. These tests were actually writtenin
TTCN-2, which shows that the technigues work even if the more elegant solution is TTCN-3.

e AtIMTC/TTC Winterop in Kobe Japan a conformance testing facility was organized by TestingTech using
approximately 100 TIPHON SIP testsin TTCN-3.

¢ For examples of how the ideas in the present document have been applied see the ETSI test suites for SIP and
OSP.

8 Availability of tools

Two types of tools are needed:

« Development Environments (DES) with editors, syntax checkers etc. for writing and checking the TTCN-3 test
suites, and

e TTCN-3 compilers and real SIP test systems on which the test suites will be executed.

The Specialist Task Forces at ETSI will require the first type of tool. At the time of writing the present document there
exists at least one editor combined with a simple syntax checker and built-in support for Test Purposes (TTCN-3
StarterPac). A command-line TTCN-3 syntax checker (part of the Debian GNU/Linus package) is also available from
the University of Luebeck (Belgium). Thistool, which runs under Windows as well as Linux, can be linked to TTCN-3
customized versions of editors such as EMACS and Edit++. ETSI already has access to all these tools so support in that
areais adequate, at least for the time-being. Commercial editors and sophisticated development environments are
expected Q3 - Q4 of 2001 from companies such as Telelogic, DaVinci Communications and TestingTech.

NOTE: Therewill also be support for the Tabular and Graphical Presentation Formats of TTCN-3

It is expected that the ETSI Secretariat (viathe PTCC) will keep track of developmentsin that area so that the STFs
have the best possible support available.

Generation of executable test suites (not done by ETSI) will require TTCN-3 compilers. SIP test systems will also need
to implement the low-level processing (encoding/decoding) describe in clause 5 of the present document. One
commercial TTCN-3 compiler (from TestingTech) is aready available and others are expected later in 2001.

Supporters of this work such as Nokia and Ericsson have (or are developing) their own in-house TTCN-3 tools. It is not
yet known whether these tools will be made available on a commercial basis.

Finally, it isvery important that producers of the TTCN-3 test specifications liase closely with these, and indeed all,
tool makersto ensure that the test suites are implementable in a reasonable manner on the real equipment that is
currently available.

9 Maintenance of the TTCN-3 standard

TTCN-3[1] isan ETSI Standard which will also be published as ITU-T Recommendation Z.140 [4]. ETS| Technical
Committee MTS (Methods for Testing and Specification) is committed to the devel opment and maintenance of
TTCN-3. In particular, an STF (Speciaist Task Force) isin place to support maintenance of the standard in 2001 and
the early part of 2002. It is planned that at least some level of MTS/STF support for maintenance will continue in the
future on an as needed basis.

ETSI

22 ETSI TR 102 026 V1.1.1 (2002-01)

10 Training

It is expected that the PTCC (ETSI's Protocol and Testing Competence Centre) will provide the necessary training of
the STF expertsinvolved in the production of the TIPHON TTCN-3 test specifications. Assuming a good working
knowledge of TTCN-2 existing users should pick-up TTCN-3 without much difficulty.

It isunderstood that MTS is considering the production of TTCN-3 educational material. Thisinitiative should be
encouraged.

ETSI

23 ETSI TR 102 026 V1.1.1 (2002-01)

Annex A:
Suggested style guidelines

A.l Introduction

Thisrule and guideline are given to promote good style in the development of TTCN-3 Abstract Test Suites (ATS). Itis
by no means mandatory but is to be seen as atool available to a Special Task Force leader responsible for a TTCN-3
project. This leader will be faced from the start with style decisions, especidly if the team is composed of a mix of
members from the C-type languages community and the TTCN-2 community. Hopefully, this guide will help the leader
in the first steps along this thorny decision path. If nothing else, it highlights the style issues that will require resolution.

Whether in TTCN-3 or any other language, good programming style is consistent, easy to read and understand, and free
of common style errors recognized by any language community.

Good styleisan aid to both the ATS writer and reader. The writer's creativity is not lessened by good style. In fact,
good style coupled with a creative solution often yields elegant code.

The reader benefits from style by knowing the means that will show key items within the code. Uniform style lessens
confusion on how to interpret code. Style has special importance because it improves readability. Readability is
especialy important in the testing community since the human tester must often understand the test case code in order
to understand why atest case failed. Thus, in the testing environment, there is an additional class of code readers other
than the maintainer; i.e. the tester. The ultimate success of TTCN-3 code may very well depend upon its tester
readability rather than writer or maintainer readability.

There are many guidelines but only one rule and its two corollaries. And, thisrule is not really mandatory since this
annex isonly informative!

The guidelines are recommendations to the writer. In some cases, several options given. Hopefully, the writer will chose
one of them. In other cases, there is only one example shown. If the writer does not like it, feel freeto "roll your own."
Of course, the One Rule applies to this new style.

A.2 The rule and its two corollaries

TheRule
The same coding style shall be used throughout the ATS.

For example, only one commenting style shall be used throughout the same document. Mixed styles are unacceptable.

First Corollary
Maintenance of an ATS will adhere to the coding style used in the original ATS. (Mixed coding style is harder to
maintain than poor style.)

Second Corollary
Every time The Ruleis broken, it must be clearly justified in clear documentation presented at the beginning of the
ATS.

ETSI

24 ETSI TR 102 026 V1.1.1 (2002-01)

A.3 Some guidelines

A.3.1 Module organization

The ATS will be organized into a hierarchical structure. First, by use of the intrinsic TTCN-3 separation between the
Definitions and Control Parts of the module. And, secondly, by use of the gr oup reserved word. The latter structuring
mechanism is not strictly formal in this version of TTCN-3 since the scope of the items in the newly defined groups
may extend to other groups outside of the original. One must understand grouping as a conceptual structure within the
ATS writer's mind rather than the organization being in the code itself.

A proposed module organization follows. It amplifies the strict TTCN-2 organization by incorporating some TTCN-3
features. Different group names and structures are possible. In any event, this Test Suite Structure (TSS) must be
specified in detail in an ETSI document. Thiswill give the writer the opportunity to explain and justify in detail the test
suite structure as shown in the TTCN-3 grouping.

In the following organization, indentation indicates sublevels in the structure. Items with the same indentation are equal
within the hierarchy.

| npor t edDef i ni tions
Syst enConfi guration
Test Conponent s
Mrc
PTCs
Ports
Pr ot ocol Messages
Types
Si mpl eTypes
Si npl eConst ant s
Si npl eVari abl es
Conposi t eTypes
Conposi t eConst ant s
Conposi teVari abl es
MessageConponent Types
MessageTypes
Abstract ServicePrinitives
Coor di nati onMessages
PDUs
Messages
Dat agr anms
Mul ti MessageTypes
Tenpl at es
Si npl eTenpl at es
Conposi t eTenpl at es
MessageConponent Tenpl at es
MessageTenpl at es
ASPt enpl at es
CM enpl at es
PDUt enpl at es
MessageTenpl at es
Dat agr anTenpl at es
Mul ti MessageTenpl at es
Functi ons
Test CaseSel ecti onExpressi ons
Test GroupSel ecti onExpr essi ons
ATSoper at i ons
Behavi our
Behavi our Funct i ons
Pr eanbl es
Post anbl es
Test St eps
Defaul ts
Test Cases
Si del
Si delVal i dBehavi or
Si dell nval i dBehavi or
Si dell nopport uneBehavi or
Si dell ncorrect Synt axHandl i ng
Si delError Handl i ng
Si de2
Si de2Val i dBehavi or
Si de2l nval i dBehavi or
Si de2l noppor t uneBehavi or

ETSI

25 ETSI TR 102 026 V1.1.1 (2002-01)

Si de2l ncorrect Synt axHandl i ng
Si de2Er r or Handl i ng

Some explanatory comments follow:

| mportedDefinitions
This clause contains all TTCN-3 code which uses the reserved word i mpor t ed in the definitions. This permits the
reader to see in one place all referencesto definitions which are outside of the current ATS.

Exanpl e: inport all from AnASNLMbdul e | anguage "ASN. 1: 1997";

Syst enConfi guration
This group attempts to unify all definitions concerning the configuration of the System Under Test into one hierarchy.
This group appearsintuitively to be valid across all systems under test and, thus, should be consistent acrossall ATSs.

Pr ot ocol Messages
This subgroup simply defines the message identifiers, their types, and their i n and out qualifiers. It does not give the
actual list of the elements composing the messages. Thisis done later in the MessageTypes group.

Si mpl eTypes

This subgroup contains only those definitions and constants which use only one of the basic types of TTCN-3.
Structured types or non-basic TTCN-3 types are not used herein. Enumerations and unions are not considered basic
typesin this structure.

Conposi t eTypes

This subgroup contains structured, union, and enumerated types which are not actual messages. It does include message
elements such as information elements familiar to the ISDN world or attributes familiar to the IETF type protocols. The
definition of messagesisinthe MessageTypes group.

MessageConponent Types

The word "message” means different things in different protocols. Its context here is the largest data structure sent
between two communicating entities for a given protocol level of the entities. A Message Component is an element of a
message at one level below the message. For ISDN-like protocoals, it could be an Information Element. For IP-like
protocols, it could be an Attribute. M essages are usually record-like structures of different elements. One of these
elements is a message component. Of course, asis the case with the other guidelines, the ATS writer may eliminate this
level of abstraction.

MessageTypes

Thisisavery sensitive subject. The word "message" means different things in different protocols. Its context here isthe
largest data structure sent between two communicating entities for a given protocol level of the entities. In ISDN-like
protocols, these messages are named PDUS. In IP-like protocols, these messages are called datagrams. In other
messages, these messages are called "messages'. One can see where there might be some confusion. The subgroups
shown in the example hierarchy do not al have to exist. Some protocols will use one of the subgroups while others will
use another completely different subgroup. Thelist of MessageTypes subgroupsis not exhaustive. The appropriate
subgroup name will often be found in the protocol's specification.

Abstract ServicePrimtives

Abstract Service Primitives are a pure TTCN-2 concept. If the writer does not like it, she does not have to use it.
However, if the writer chooses to wrap the messages in a function with other parameters and then send and receive this
function, the chances are that the function is an Abstract Service Primitivein the TTCN-2 sense.

Coor di nati onMessages
Coordination Messagesis avalid semantic concept in both TTCN languages. They are used in modelling and testing
concurrent activity or two or more equivalent items under test.

PDUs, Messages, andDat agr ans
See the above discussion on MessageTypes.

Mul ti MessageTypes

One sees, at times, messages composed of messages, e.g. in IETF-like protocols. For example, a message sent from one
peer to another may contain messages from the same protocol. This group attempts to abstract these messagesinto a
Separate semantic group.

ETSI

26 ETSI TR 102 026 V1.1.1 (2002-01)

Tenpl at es

The substructure of the templates group should mirror the structure of the MessageTypes group. In an addition,
editing tools should alow the reader/writer to shift back and forth between atemplate and its corresponding type
definition. Thisis especialy useful for the template writer who can use the type definition as a basic structure for
building the template.

Functi ons
All functions should be placed into a hierarchy and located in one place in the ATS.

Test CaseSel ecti onExpr essi ons

Test case selection expressions are a pure TTCN-2 construct and concept which has been grafted onto this structure.
The running or not of a certain test case is often based on configuration information or other parameters shown in the
PICS document. The boolean conditions for running or not running a test case should be grouped into atest case
selection expression group.

Test G oupSel ecti onExpressi ons
The same type of logic exists for this group asthat for Test CaseSel ect i onExpr essi ons. Groups of test cases
are often not run because of configuration options not being implemented and documented in the PICS.

ATSoper ati ons

The ATS writer will be writing many functionsin TTCN-3. Thisis one of the language's greatest opportunities. These
functions should be grouped into logical unitsif at all possible. Possible subgroups are not shown in the proposed
hierarchy but should be devel oped by the writer. If no hierarchical structure is possible or advisable, present the
functions in alphabetical order under this group.

Behavi our

The subgroups under Behavi our are largely taken from TTCN-2 and could apply to any TTCN-3 code.

Preanbl es, Postanbl es, TestSteps, Defaults, andTest Cases areal TTCN-2 constructs and
semantics but would seem universal in their application as TTCN-3 functions. These are, in effect, logical test
groupings of TTCN-3 functions. If the writer has another hierarchy of functions which are related to behaviour, it could
be giveninthe Behavi our Funct i ons group. A C-like programmer could under Test St eps as subroutines called
within the test case.

Behavi our Functi ons
Seethe Behavi our group comments.

Test Cases

An ATSusualy contains the test cases for both peers of the protocol. The Test Suite Structure document defines this
structure. This structure should be exactly mirrored in the ATS itself.

Since TTCN-3 groups do not define scoping limits but are only a structuring tool, the names of each group must be
different from any other name or a compiler error will result. For example, one cannot use the subgroup name

Val i dBehavi or under the group Si del and the same subgroup name under the group Si de2. The names
themselves must be different; e.g. Si delVal i dBehavi or and Si de2Val i dBehavi or . This scoping limitation
may be changed in a future TTCN-3 version.

ETSI

27 ETSI TR 102 026 V1.1.1 (2002-01)

A.3.2 Comments

There are several recommended alternatives for block comment style shown below. Remember to use The Rule and
employ the same block comment form throughout an ATS. Do not change the comment style within an ATS. Block
comments are tabbed over to the same column as the item of code they describe.

/
Here is an exanpl e bl ock conment.
The comment text should be tabbed or spaced over uniformy
to the sane colum as the code it descri bes.
The openi ng sl ash-star and closing star-slash are alone on a line.
This comrent explains the code imedi ately bel ow.
/
function
get Repl yAddr (in Via locVia, address |ocAddress)
runs on Si pConponent
return address {
/*
* This conment substitutes for the operations
* defining the function.
*/
return | ocAddress

* % ok ok % F X

/1
/1 Another exanple format for block comments.
/1 The comment text should be tabbed or spaced over unifornly
/1 to the sane colum as the code they descri be.
/1 The openi ng sl ash-slash and cl osing sl ash-slash are alone on a line.
/1 This comment explains the code i nmediately bel ow
/1
function
get Repl yAddr (in Via locVia, address |ocAddress)
runs on Si pConponent
return address {
/1
/1 This coment substitutes for the operations
/1 defining the function.
/1
return | ocAddress

}

There are also severa aternatives for in-line comments. Again, use the same format throughout an ATS. Do not change
formats within an ATS. Just like block comments, these should also be tabbed over to the same column as the item they
describe.

One alternatives for an in-line comment:

get Repl yAddr (in Via locVia, address |ocAddress)

runs on Si pConponent

return address{
/* This is in-line comment is for the line below */
| ocaddress : = addressSt ub;
return | ocAddress

}
Another aternative for an in-line comment:

get Repl yAddr (in Via locVia, address |ocAddress)

runs on Si pConponent

return address{
/1l This is an in-line coment is for the line bel ow
| ocaddress : = addressSt ub;
return | ocAddress

}

End-of-line comments can also appear in one of several forms. The only requirement isto select one of them, or make
your own, and then follow The Rule. If more than one such short comment appears in a block of code, they should align
on the same column.

ETSI

28 ETSI TR 102 026 V1.1.1 (2002-01)

One way of writing in-line comments:

if (nyvar < 10) {
nyVar := nyVar + 10; /* Must align on the bel ow colum. */
I og("nyVar was < 10 but not any nore") /* log does not mean |ogarithmhere */

el se {
nmyVar := nyVar/5 /* Still in the sane code bl ock. */
}

And anot her away:
if (nyvar < 10) {
nyVar := nyVar + 10; /1 Must align on the bel ow col um.
I og("nyVar was < 10 but not any nore") /1 1og does not nean |ogarithm here

el se {
nmyVar := nyVar/5 /1 Still in the sane code bl ock.
}

Comments can be thought of as either strategic or tactical. A strategic comment describes what a function or a set of
code isintended to do and is placed before this code. A tactical comment describes what a single line of codeis
intended to do and is placed, if possible, at the end of this line. Unfortunately, too many tactical comments can cause
clutter and, at times, make code unreadable. For this reason, it is recommended to primarily use strategic comments
unlesstrying to explain very complicated code.

Use comments to justify offensive code; i.e. hacks. The comment should explain the behaviour requiring the hack and
why the hack isagood fix. In testing, hacks may be required for test equipment performance reasons.

A.3.3 Type definitions

A.3.3.1 Basic types

Unrelated definitions, even of the same type, should be on separate lines. If types are grouped and have a similar
structure, the elements should align on the same column. Similar basic type definitions can be informally grouped under
an explanatory comment. Dissimilar basic type definitions should be separated by an empty line.

/* Basic type definitions. Note the columm alignment. */
type charstring Charl I ength(1);

type charstring Char2 I ength(2);

type charstring Char20 Ilength(0 .. 20);

type charstring Char255 I ength(0 .. 255);

type charstring Char511 I ength(0 .. 511);

type octetstring Cct16 | ength(16);

type integer Intl (0 .. 1);

type integer Int20 (0 .. 20);

type integer Int255 (0 .. 255);

type integer Int511 (0 .. 511);

/* List type definitions*/

type record of length(l .. 255) AuthorityURL AuthorityURL_List;
type record of length(l .. 255) Callld Cal | | d_Li st;

type bitstring AbitString | engt h(9);
type bitstring AnotherBitString | ength(2);

type charstring AcharString I ength(2);
type charstring AnotherCharString | engt h(300);

type AthirdCharString Anot her Char String;

ETSI

29 ETSI TR 102 026 V1.1.1 (2002-01)

A.3.3.2 Structured types

A.3.3.21 Enumerations

The type nameis placed at the left margin to improve its "findability". The specific numerations are indented and align
on the same column. Explicit enumeration values immediately follow the enumerated field name. Each enumeration
shall have its own separate line.

Although not specificaly a styleissue, all enumerated values must have unique field names within the same scope
level. For example, one cannot use the enumeration field name pri ci ngConf i r mat i on inanother enumeration
definition at the same scoping level. This may be changed in later versions of TTCN-3.

type enuner at ed
OSPnessageType{
pricingl ndi cation(33),
prici ngConfirmation,
aut hori zati onRequest,
aut hori zat i onResponse,
aut hori zati onl ndi cati on,
aut hori zati onConfirmati on,
usagel ndi cati on,
usageConfirnmati on

A.3.3.2.2 Records et al

The type nameis placed at the left margin to improve its "findability”. Each record's element occupies a separate line, is
indented from the record name column and aligned on the same column. Each field name is also column-aligned. Value
initializations are also separated from the previous item by one space.

It is sometimes easy to missthe opt i onal reserved word if they are sparse within the record and close to the right
margin. Thus, opt i onal isseparated from the field name by one space. It is not column aligned.

type record
Prici ngConfirmationAttri bute{

I nt 255 nessagel d,
MessageType nessagetype (PRI Cl NGCONFI RVATI ON) ,
I nt 255 conponent I d optional

}
Unions are similar to records. Note that field initialization cannot occur within union definitions
type union
MyUni onType {
i nt eger nunber,
charstring string

}

A.3.3.2.3 Variable definitions

Arrays

Arrays are seen as variablesin TTCN-3 and not as types.

/1l Gven
type record MyRecordType{
i nt eger fieldl,

M/Q her Struct fiel d2,
charstring field3

h

/'l An array of MyRecordType could be
var MyRecordType MyRecor dArray[10];

Initialization

Default initialization values are not required for variablesin the TTCN-3 specification. Uninitialized variables at run
time shall cause atest case error. Variables are defined only in module control, test cases, and functions. Otherwise
said, variables which are not assigned values by expressions or other operations must be explicitly initialized.

ETSI

30 ETSI TR 102 026 V1.1.1 (2002-01)

Every variable that is defined is given avalue before used. If possible, always use initiaization instead of assignment.
var integer nyVariable := AsynbolicVal ue;

Only oneintialization should occur on one line. Multiple initializations on the same line are more difficult to scan. For
example, write

var bool ean nyFi r st Bool eanVar = true;
var bool ean nySecondBool eanVar : = true;
rather than
var bool ean nyFirstBool eanVar : = true, nySecondBool eanVar := true;

Avoid the uses of humeric values except in obvious cases like iterations or loop counters. Represent them with symbolic
valuesusing const orvar.

A.3.4 Function definitions

Functions should be grouped into some sort of meaningful order. Top-down is generally better than bottom-up, and a
"breadth-first" approach (functions on asimilar level of abstraction together) is preferred over depth-first (functions
defined as soon as possible after their calls). For example, one may create a group of test suite operations which may
require other functions to be called within them. All the test suite operations should be grouped and the sub-functions
called within them should be separated from and after the calling functions. Judgement is especially required here.

If defining large numbers of essentially independent utility functions, consider alphabetical order.

Each function should be preceded by a block comment prologue that gives a short description of what the function is
and (if not clear) how to use it. Avoid duplicating information clear from the code.

If the function returns avalue, ther et ur n Type part of the function header should start in the same column as the
function name. This permits easy identification of the type of the value the function returns. If the value returned
requires along explanation, it should be given in the prologue; otherwise it can be tabbed over on the same line as the
return type.

If afunction does not return a value, then the return type isimplicitly void. The reserved word voi d does not exist in
TTCN-3. The absence of ar et ur n reserved word in afunction header indicates that the function returns no value.
There is no default return type for a function.

The function name and the formal parameter list should be alone on aline and begin in column 1. If the parameter list is
too long for onelineg, it shall be broken into successive lines with the first character of each succeeding line aligned on
the column of the first character of the first parameter.

Avoid long and complex functions. By definition, if the function is difficult to understand, it is too long. Shorter
functions alow errorsto identified more quickly and easily.

Internal variable declarations are grouped at the start of the function body. They are not interspersed throughout the
function's execution part code. The variables are separated from the function's execution part by aclear line.

Comments should start in the same column and over the line(s) of code for which they apply.

/1
/1 1t is unclear fromthe code snip what kind of address is being
/1 returned. This header should give this kind of infornation.
/1l getRepl yAddr returns a val ue of type address as shown in the
/1 header line "return address"
/1
function
get Repl yAddr (in Via I ocVi a,
Addr ess | ocAddr ess,
Par amet er 1 par ant,
Par amet er 2 par ant,
Par amet er 3 par an8,
Etcetera etc)
runs on Si pConponent
return Address{
var integer aNunber ;
var charstring aCharString;
var Address t enpAddr ess;

ETSI

31 ETSI TR 102 026 V1.1.1 (2002-01)

/1 The return address shall be calculated in this
/1 execution section.

/1 This is the code

return | ocAddress;

A.3.5 Whitespace

Whitespace has much more semantic meaning to a human TTCN-3 reader than to a compiler. In this context,
whitespace may have even more meaning than commas, semicolons, et al.

There should be at least 2 blank lines between the end of one function and the comments for the next.

A long string of conditional operators should be split into several lines. Similarly for elaborate loop condition
expressions.

if (anAddress == null

and total < needed

and needed < maxAl | ot nent

and serverActive(currentlnput)) {

fi ndAnot her Server (server Addr ess)

} else {

useThi sServer (t hi sServer Addr ess)
h

Tabulation

Indenting is done by tabulation, not by spacing over. Tabulations may include either 2, 4, 6, or 8 spaces. Some
exceptions may occur under certain structureslikeini f statements where three spaces makes more sense. See above.
Whatever tabulation rules are adopted shall be applied across the entire ATS.

A.3.6 Statements

A.3.6.1 Simple statements
There should be only one statement per line.

The null body of af or or whi | e loop should be alone on aline and commented so that it is clear that the null body is
intentional and not missing code.

for (j :=1; bool eanDat abaseEl ement[j]; j <= 10)
{ // vOD, just want to find the index of the first true elenent };

A.3.6.2 Compound statements
A compound statement is alist of statements enclosed by braces.

There are many common ways of formatting the braces. Each style has lead to religious wars. A recommended style
(closely following Kernigan & Ritchie) is shown below for different situations. In any case, the church and the state
should be separated to reduce the possibility of future crusades, holy wars, whatever. Remember there is only One Rule:
apply the braces style uniformly across the same ATS.

/1l an if statenment without a follow ng el se
if (condition) {

stat enent;

st at ement

}s

/1 an if-else statenent
if (condition) ({

st at enent ;

st at ement
} else {

statenent;

st at ement

ETSI

32 ETSI TR 102 026 V1.1.1 (2002-01)

}s

for (initial; condition; nextConditionValue) {
stat enent;
st at enent

h

while (condition) {
stat enent;
st at ement

h

do {
st at ement ;
st at ement
} while (condition);

Ani f-el se withel se if should be written with the el se conditions left-justified. The format then looks like a
case or switch construct from other languages.
if (firstCondition) {
stat enent;
secondSt at enent
} else if (secondCondition) {
t hi rdSt at ement ;
fourthSt at enent
} elseif (thirdCondition) {
fifthStatenent;
si xt hSt at enent
} else {
def aul t St at enent s;

s
A.3.7 Naming conventions
Constants should bein all CAPS.
The following begin in lower case (unless the identifier used is a proper noun):
e enumerated values,

¢ function names;

record field names;
* union field names;
¢ variable names.

Defined types are Capi t al i zed. Field names within a defined type beginin | ower Case. The type names within a
structured type are Capi t al i zed. This alows some consistency with TTCN-2 practice and ASN.1 requirements.
There would be much confusion if an ASN.1 moduleis used which requirestypes Capi t al i zed and TTCN-3
definitions module which hastypesin| ower Case. Thereader could not know immediately if he was looking at a
type or field name in the code. The mixed conventions also violate The Rule.

Even if TTCN-3 is case-sensitive, avoid names that differ only in case, likef oo and Foo. Similarly, avoid using two
names differentiated only by an underscore like f oobar and f oo_bar . The potential for confusion is considerable.

Similarly, avoid names that look like each other. In many fonts, "I ", "1", and "l " look quite similar (don't they?). A
variable named "l " is particularly bad because it looks so much like "1". The same appliesfor "0" and "O'.

ETSI

33 ETSI TR 102 026 V1.1.1 (2002-01)

Identifiers must start with an alphabetical character. They can include underscores™ " after the first character.
Identifiers are often composed of several words joined together into one character string. It is recommended to use the
style

aConpoundNane

rather than
a_conpound_narre.

Sometimes it is necessary to vary the presentation to increase readability. For example:
t hi sl sAconpoundNane

and
t hi sl sApduMessage

are more readable than
t hi sI sAConpoundNane

and
t hi s| sAPDUMSG

Avoid abbreviationsin identifiers unless they are known by all in the art. PDU may be obviousto OSI types but not so
in the Internet protocol world. And the two worlds meet in ATSs! The same type of confusion resultsin the
abbreviation MSG.

Other examples of name choices:

var integer groupl D, /1 instead of grplD
var integer naneLength; // instead of nanin

The following variable name is ambiguous:
var Address ternProcess; // Terminate process or termnal process?

When dot notation is used in an identifier, do not place spaces between the names and the dot. For example, this:
a. good. dot . notati on

but not this:
not . so . good . dot . notation

One may encounter long identifier in dot notation which may require continuation onto the next line. One styleisto
continue the identifier in the column below the first dot on the following line. For example:

one.style.is.to.continue.the.identifier.in.the.colum.bel ow.the
.first.dot.on.the.follow ng.line

A.3.8 Beautifiers and formatters

EMACS has a useful TTCN-3 formatter which, no doubt, has rules different than these. But do not rely on any
automatic beautifier and formatter. One person who benefits from good program style is the ATS writer, especialy in
the early design of handwritten algorithms or pseudocode. The need for attention to white space and indentation are
greatest during the test development stage. Test developers can do a better job of making clear the complete visual
layout of afunction or file with the normal attention to detail of a careful developer. Beautifiers cannot read our minds.

A.3.9 Presentation fonts and sheet orientation

TTCN-3 should be written in a non-proportional font such as Courier. How else to get easy column alignment?
Proportional fonts should not be used.

Font sizeis at the discretion of the developer. However, the size should be large enough so that the codeis easily
readable when printed.

Printing may be either in "portrait” or "landscape” sheet orientation. Some of the long lines seen in test cases may lead
one to think about landscape mode for test cases and portrait mode for definitions. This would violate The Rule.

ETSI

34 ETSI TR 102 026 V1.1.1 (2002-01)

A.3.10 Alternates, named or not

Alternative behaviour is one of the most important TTCN-3 capabilities and yet one of the most difficult items to make
readable. Nested alternative behaviour is particularly difficult to convincingly portray. Considerable effort is required
for their formatting. First experience has shown that the brackets"[] " are a key element to the eye for identifying
alternate behaviour. Their use coupled with indentation, braces, and other whitespace can provide the meaning to the
eye that the reader and writer need.

The placement of matching bracesis particularly difficult when alternatives become nested; more so when the
aternatives occur two or three levels deep in atest case.

A readable style for nested alternates is suggested in the following example. The comments are for explanatory
purposes only and could be omitted in real code. But, they are useful to determine where oneal t construct leaves off
and the other kicksin.

alt { /1 alt level 1

[1 sipUreceive (iNVITErequest_r_1) -> value i NVITErequest {
recCal | 1d := i NVI TErequest . reqHeader. cal | | d;
recCSeq : = i NVI TEr equest . r eqHeader . cSeq;

recFrom : = i NVI TEr equest . r eqHeader . f ronFi el d;
recTo := i NVI TEr equest . r eqHeader . t oFi el d;
recVia := i NVI TErequest . reqHeader . vi a;

i ut Addr : = get ResponseAddr (recVia);
si pU. send (response_200_s_1(recCallld, recCSeq,
recFrom recTo, recVia)) to iutAddr;
TAck. start (TI MER_ACK) ;
al t { /1 alt level 2
[1 sipU receive (aCKrequest _r_1 (
recCal lid,
recCSeq, ?, recTo, ?)) -> value aCKrequest {
verdi ct. set (pass)
termnateCall ();

[T sipU.receive {
all tinmer.stop;
verdi ct. set (i nconc);
cancel Cal | ();

[T Twait.tineout {

verdi ct. set (i nconc);

cancel Cal | ()

}
} // endalt level 2
/1 end sipU receive at alt level 1
[1 sipUreceive {

all timer.stop;
verdi ct. set (i nconc);
st op

[1 sipMreceive {
all timer.stop;
verdi ct. set (i nconc);
st op

[T Twait.tineout {
verdi ct. set (i nconc);
stop

} /1 endalt level 1

If thereis no match in anamed alternative or inani f , it is excellent style to place actions to take at the end of the
alt/if construct.

ETSI

35 ETSI TR 102 026 V1.1.1 (2002-01)

A.3.11 Calls and references to other modules

Any calls or references to external modules should be placed at the beginning of the ATS immediately following the
ATS modul€e's header. For example:
modul e Style ()

/* External calls and references begin here */
inmport all from AnASN1Mbdul e | anguage "ASN. 1:1997";

/*
* This is the definitions part.
*/

control
{
}

}

A.3.12 Test case style

Test cases are usually where all the action is and where the most complex and lengthy code has a natural tendency to
accumulate. Thus, a specia effort here at abstraction and layout will pay off for both the test writer and her readers.

An example follows. Some explanatory comments are given afterwards.

/~k

* The test purpose appears here as comrented text.
*/

testcase SS_CE_CE_006 ()

runs on Protocol Conponent

system Protocol I nterfaces {

var | NVI TErequest i NVI TEr equest ;
var | NVI TEresponse i NVI TEr esponse;
var ACKrequest aCKr equest ;

var | UTaddr i ut Addr;

/* PREAMBLE */
uaRegi ster();

sut.action ("Please send INVITE");
TWait.start (TIMER_ WAIT);
alt {
[1 pcoU.receive (i NVITErequest) {
mapTol nvi t eResponse (i NVI TEr equest, i NVI TEr esponse);
mapToAckRequest (i NVI TEresponse, aCKrequest);
i ut Addr : = get ResponseAddr(i NVI TErequest);
pcoU.send (i NVI TEresponse) to i utAddr;
TAck.start(TIMER_ACK);
alt {
[T sipU. receive (aCKrequest) {
verdi ct. set (pass);
termnateCall ();

[T sipU.receive {
all timer.stop;
verdi ct. set (i nconc);
cancel Cal | ();

[T Twait.tineout {
verdi ct. set (i nconc);
cancel Cal | ()

/* nested alt ends here */

/* pcoU. receive in first alt ends here */

}
[T sipU.receive {
all timer.stop;
verdi ct. set (i nconc);
st op

[1 sipMreceive {

ETSI

36 ETSI TR 102 026 V1.1.1 (2002-01)

all tinmer.stop;
verdi ct. set (i nconc);
stop

[T Twait.tineout {
verdi ct. set (i nconc);
stop

} /* first level of alt */
} /* end of test case */

The Test Purpose is copied verbatim from the Test Purpose specification and placed as the first element in any test case.
The test case number is usually found in the same document. Test case numbering is not addressed in this guide.

Thetest case line startsin column 1 of the page. Horizontal space becomes critical in test cases because of the length
produced by name dot notation, long parameter lists, and indentation.

If aparameter list islong, it should be broken into separate lines lining up on the same column as the first character in
the first parameter. Refer to the example in alternates, named or not section of this guide for a suggested manner to
portray long parameter lists. For example:

pco.send (aTenpl ate(firstParaneter, paraneter?2,
par anet er 3, paraneter4,
par aneter5, paraneter6,
paranmeter?7, paraneter8,
paraneter9)) {
firstStatenent;
st at ement 2

)i

If all these parameters are necessary for the test case's control, then they should be visible. However, such acaseis not
likely. It is highly recommended to make parameters visible only when they have something to do with test case control
and decision-making. If they are not used for test case control or are not related to the test purpose, it is highly
recommended to abstract them out of the test case by using atype which subsumes them.

Theruns on lineis mandatory and startsin column 1.
Thesyst emlineisaso mandatory and startsin column 1.

The opening brace is placed according to the specific brace style chosen for the entire ATS. Refer to the religious wars
section.

A blank line separates the test case header and the definitions. All definitions used within the test case are placed
immediately after the header. None are placed within the test case behaviour part. These items are indented on a tab
stop.

Another blank line separates the definitions and behaviour parts. The behaviour part begins alignment on the 1t column
to signal the start of the behaviour section and to reduce the page width problem. Note that portrait or landscape
orientation may be used. Usage must be the same throughout the ATS.

Use acomment to indicate the preamble part if that is not obvious in the function name serving as the preamble. A
blank line should separate the preamble(s) from the actual test case code.

Timers are sequential itemsin TTCN-3 rather than being associated with a message asin TTCN-2. They may be
declared anywhere within in the sequence as the writer deems appropriate.

Only one statement per line should be written in atest case. The situation is complicated enough asit is.
See the clause concerning aternates for style guidance.

In TTCN-2 style, one often sees numerous assignment expressions immediately after areceive in order to map the
incoming datainto send data. These leads to long test code which provides little key information during testing. It may
be better to abstract these assignments into a function which maps incoming data into transmit data. If data is needed for
test case decisions or for significant parameters, it can be derived independently using a separate function.

ETSI

37 ETSI TR 102 026 V1.1.1 (2002-01)

One must be very careful of statements which occur, if any, after any al t construct. It would be much better to avoid
them like the plague. It is very good practice to ensure that the test case will ultimately stop in each alt possibility. If
alternates are nested or if functions are called from the alternates, a stop construct should eventually be at the end of the
tree. One can used a named alternate as a default to stop test case execution as well. The named alternates which are
active must be highly visible within the test case to know which alternate applies. A bracketed else[el se] may
also be used asthe last possibility in an alternate to serve as a default. This bracketed else must contain some command
which halts test case execution.

Any statements which occur in sequence after the last alternatein an al t construct are immediately suspect and must
be commented to precisely indicate why the writer has done so and why the alternative solutions above it cannot apply.
Again, avoid them if at all possible.

A.3.13 PICS and PIXIT parameters

TTCN-3 has an elegant way of passing configuration information to the test system via the use of module parameter
lists. For example:

nodul e Style (
ATSPi csTypel atsPicsl, /1 PICS reference
ATSPi xit Type atsPixitl) //PIXIT reference

/~k
* This is the definitions part.
*/

control

{
}
}

Of course, one has the option of including these items as variables or constants within the module itself rather than
passing them as parameters into the module.

ETSI

38 ETSI TR 102 026 V1.1.1 (2002-01)

Annex B:
Bibliography

e« ETSI ES201 873-2: "Methods for Testing and Specification (MTS); The Tree and Tabular Combined Notation
version 3; Part 2: TTCN-3 Tabular Presentation Format (TFT)".

e ETSI TR 101 873-3: "Methods for Testing and Specification (MTS); The Tree and Tabular Combined Notation
version 3; Part 3: TTCN-3 Graphical Presentation Format (GFT)".

e ITU-T Recommendation X.680: "Information technology - Abstract Syntax Notation One (ASN.1):
Specification of basic notation".

¢ |ETF RFC 2543: "Session Initiation Protocol (SIP)".

ETSI

39

ETSI TR 102 026 V1.1.1 (2002-01)

History

Document history

V111

January 2002

Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Abbreviations
	4 Background
	5 Suitability of TTCN-3 for SIP testing
	5.1 Architectural considerations for testing SIP
	5.2 Expressing SIP dynamic behaviour in TTCN-3
	5.3 Expressing SIP messages in TTCN-3
	5.3.1 SIP headers
	5.3.1.1 Parameterization
	5.3.1.2 Wildcards
	5.3.1.3 Using modified templates

	5.3.2 TTCN-3 regular expressions
	5.3.2.1 Simple patterns
	5.3.2.2 More complex patterns
	5.3.2.2.1 Set expression
	5.3.2.2.2 Reference expression
	5.3.2.2.3 Match expression n times

	5.3.2.3 Using regular expressions with SIP

	6 Suitability of TTCN-3 for OSP testing
	6.1 Architectural considerations for testing OSP
	6.1.1 Normal OSP message exchange
	6.1.2 Token carriage

	6.2 Expressing OSP dynamic behaviour in TTCN-3
	6.3 Expressing OSP messages in TTCN-3
	6.3.1 AuthorizationRequest
	6.3.1.1 XML declaration
	6.3.1.2 TTCN3 type
	6.3.1.3 TTCN3 template

	6.3.2 Parameterization
	6.3.3 Wildcards

	7 Practical experience of using TTCN-3
	8 Availability of tools
	9 Maintenance of the TTCN-3 standard
	10 Training
	Annex A: Suggested style guidelines
	A.1 Introduction
	A.2 The rule and its two corollaries
	A.3 Some guidelines
	A.3.1 Module organization
	A.3.2 Comments
	A.3.3 Type definitions
	A.3.3.1 Basic types
	A.3.3.2 Structured types
	A.3.3.2.1 Enumerations
	A.3.3.2.2 Records et al
	A.3.3.2.3 Variable definitions

	A.3.4 Function definitions
	A.3.5 Whitespace
	A.3.6 Statements
	A.3.6.1 Simple statements
	A.3.6.2 Compound statements

	A.3.7 Naming conventions
	A.3.8 Beautifiers and formatters
	A.3.9 Presentation fonts and sheet orientation
	A.3.10 Alternates, named or not
	A.3.11 Calls and references to other modules
	A.3.12 Test case style
	A.3.13 PICS and PIXIT parameters

	Annex B: Bibliography
	History

