
Feasibility Study on
using Transition System Semantics for
Specifying Semantics of UML∗ Diagrams
in the Context of the MTS-UML Project

Annex to MTS-UML Feasibility Study

March 2003

Contents

1 Scope and Purpose 1

2 Introduction 2

3 Syntax 3

4 Semantics 8

5 Conclusions and Recommendations 20

1 Scope and Purpose

This document is an annex to the feasibility study document produced for the MTS-UML work
item. This document describes an operational semantics for a self-contained, modified fragment
of that part of the UML 2 superstructure submission by the U2 partners† that seems to be
amenable for inclusion in the UML profile for communicating systems that will be developed
by the MTS-UML project Technical Committee.‡

The purpose of this annex is to give basis for evaluating the feasibility of using transition
system semantics for describing semantics for at least major parts of the UML profile that will
be developed in the MTS-UML project. The main questions are:

1. Will the size of the semantics description be modest enough so that the amount of work
that is required to produce it matches the scope and depth of the overall project?

2. Is a semantics described in the form of a transition system accessible for the intended
audience, which consists of (in order of precedence) (1) execution and verification tool
implementors, and (2) other technical experts who must have in-depth understanding of
the meaning of diagrams drawn using the profile?

∗ UML is a trademark of Object Management Group.† This submission will be referenced in this document later
just by the name ‘U2’. ‡ The principal author for this annex is Antti Huima (Mr.); for technical communication,
please contact primarily the author via e-mail at e-mail addressantti.huima@conformiq.com .

2 Introduction 2

2 Introduction

DESCRIPTION, SPECIFICATION AND PROGRAMMING LANGUAGES, whether textual or graph-
ical, can be seen to consist of two parts: (1) syntax and (2) semantics. Thesyntax of a lan-
guage describes how descriptions, specifications or programs (from now on these will be called
compactly ‘programs’) should be structured and how they should ‘look’. Thesemantics of a
language describes what the valid programs in that language ‘mean’. Usually the semantics
of a [programming] language is a framework for interpreting any particular valid program as a
computational process.

For example, in the context of specifying computer communication protocols, the semantics
of a corresponding specification language should give interpretation for a valid specification as
a (maybe only partially defined) computational process—in some abstract or concrete execution
framework—that is an implementation of the specified protocol.

Experience suggests that specifying a language purely from the syntactic point of view
causes problems when the language is used, typically only later. For example, without semanti-
cal guidelines, different tool vendors can interpret the meaning of a particular program in quite
different ways, causing major problems for interoperability between tools. Furthermore, with-
out standardized semantics, the value of a description or a specification diminishes because its
meaning is open to various interpretations.

The main goal for an explicitly specified semantics is to provide a framework forunique
interpretationof programs in terms of computational processes, modulosemantic variation
pointsthat have been intentionally left in and that have been properly designated as such.

One way to describe the semantics of a language is to use exclusively informal languages,
nowadays typically technical English. This has the advantage that the semantics descriptions
tend to be easier to access at first. However, when the details of a semantics are of interest,
the inherent ambiguity of natural languages can become a problem that cannot be overcomed
without sacrifying readibility.

Therefore, often semantics are described by using at least partially mathematical notations,
instead of natural language only. One then speaks of ‘formal semantics’. In general, formal
means ‘according to a form’. The idea is that one agrees on a mathematical framework for
describing the semantics, and then employs that framework to cover those parts of the semantics
that are cumbersome to explicate in natural languages.

There exist various frameworks for specifying formal semantics in the practice. The two
most commonly employed by the programming language analysis and implementation com-
munities are (1) transition semantics and (2) denotational semantics. Of these two, transition
semantics are by far more execution and implementation oriented, and are therefore much easier
to understand for someone who is not deeply involved in theoretical computer science. Tran-
sition semantics come in various flavors which mostly differ in the form of presentation; the
underlying ideas are the same. The one flavor that is considered in this study is ‘abstract ma-
chine semantics’. Abstract machine semantics are most direct and execution oriented of the
various transition semantics frameworks. It just involves writing down a compact description
of a concrete executor, for the particular language in question.

In this study we employ the ideas of abstract machine semantics to give semantics for a
fragment of UML state charts augmented with a language for describing actions.

2.1 Purpose

The purpose of this study is to give a feeling of how the operational semantics for the developed
profile would be described in the MTS-UML project. Furthermore, this study gives feedback

3 Syntax / 2.2 Language Considered 3

on the size and complexity of such a semantics. See the first section (Scope and Purpose) for
related discussion.

2.2 Language Considered

This study gives a draft operational semantics for a subset of UML state chart notation, with
an action syntax that closely corresponds with the real needs at ETSI, even though the surface
syntax is heread hoc(and provided just for concreteness, because semantics could be described
in terms of a more abstract syntax instead).

The language fragment in this document can be roughly characterized as follows:

• Flat (non-hierarchical) state machines with completion triggers, signal triggers and time-
out triggers; and guards and actions.

• Data model consists of integers and process identifiers (pids). Signals are the only com-
pounds. A signal carries zero or more parameters, each of which is either a pid or an
integer.

• Multiple active classes exist and communicate with each other through asynchronous
signal passing. Every agent has one queue that is of unbounded size. There is no signal
deferring mechanism. Implicit consumption is in effect. Active classes can be constructed
dynamically. Upon terminating, an active class disappears and all further messages sent
to it are discarded silently.

• The syntax for actions includes data manipulation, sending messages, and control struc-
tures such as for-loops, while-loops and switch/case statements.

• There are per-state-machine local variables (parts or members) that hold state during the
life span of an agent (ActiveClass).

3 Syntax

This section describes the syntax that is assumed in the description of the semantics. Note that
this syntax is not the one that will be included the profile for communicating systems. However,
it probably correlates with it in structure and therefore is suitable for being considered in this
feasibility study.

3.1 Textual Syntax

This subsection describes the textual part of the syntax, i.e. the language for describing (1)
actions, (2) guards, and (3) triggers. In U2 there are also graphical versions of many of the
constructs. Because they do not differ semantically it is enough to consider the textual version
here (from the feasilibity study point of view).

The description of the textual syntax is based on standard notation for context-free gram-
mars. Low-level lexical productions have been omitted, as well as standard aspects such as
white space or comments. Subscripts on tokens such as in〈expr〉t denote types. So〈expr〉t is
‘expression of type t’. ‘pid’ and ‘int’ are the two particular types in the language.

3 Syntax / 3.1 Textual Syntax 4

Actions are statements.

〈action〉 −→ 〈stmt〉

Guards are expressions. Note that expressions can have syntactically a side effect in this lan-
guage, for example because the form that constructs a new dynamic instance of an ActiveClass
is an expression of value type is pid. The semantics allows to have side-effecting guards, even
though that is of course a practice that must be recommended against.

〈guard〉 −→ 〈expr〉

There are three forms of triggers: completion triggers (denoted by empty string on a transition),
signal triggers, and timeout triggers (the ‘after’ notation in UML).

〈trigger〉 −→ 〈completionTrigger〉 | 〈signalTrigger〉 | 〈timeoutTrigger〉

Statement can be either atomic (〈assign〉, 〈skip〉, 〈route〉 or 〈send〉), or structural (〈block〉,
〈while〉, 〈for〉, 〈if〉 or 〈switch〉). Blocks are used for sequencing, but at the same time also
to create local scopes in which local variables can be declared (local to a statement, not local to
a state machine).

〈stmt〉 −→ 〈atomic〉 | 〈structural〉
〈atomic〉 −→ 〈assign〉 | 〈skip〉 | 〈route〉 | 〈send〉

〈structural〉 −→ 〈block〉 | 〈while〉 | 〈for〉 | 〈if〉 | 〈switch〉

Theskip statement does nothing (it is the empty statement). It is included here partly because
having it makes describing the semantics easier, particularly in the case ofif without anelse
brach (standard practice).

〈skip〉 −→ ‘skip ’ ‘ ; ’

Assignment. Note that the type of the variable must match the type of the expression.

〈assign〉 −→ 〈variable〉t ‘ := ’ 〈expr〉t ‘ ; ’

Route input messages. Theroute statement is used to designate at run-time the recipient for
messages that come in from the environment and that have a particular signal class.

〈route〉 −→ ‘ route ’ 〈signalName〉 ‘ to ’ 〈expr〉pid ‘ ; ’

Send a message. The destination (of type pid) is evaluated dynamically as well as the parameters
to the signal being sent. The type of the signal is designated by the〈signalName〉 token.

〈send〉 −→ ‘send ’ 〈expr〉pid ‘ : ’ 〈signalName〉 〈argList〉 ‘ ; ’

A block consists of a (possibly empty) sequence of local variable declarations, and a non-empty
sequence of statements.

〈block〉 −→ ‘{’ 〈localDecl〉∗ 〈stmt〉+ ‘}’

3 Syntax / 3.1 Textual Syntax 5

Simple conditional, i.e.if . The short-hand version that does not have anelse branch cor-
responds to having anelse branchskip; . Note that〈block〉 derives from a〈stmt〉 so it is
possible to have a block as the consequence action (which is of course as expected). From
the semantics point of view, zero is considered as false and non-zero integral value as true.
Therefore the type of the test expression is int here.

〈if〉 −→ ‘ if ’ ‘ (’ 〈expr〉int ‘) ’ 〈stmt〉
| ‘ if ’ ‘ (’ 〈expr〉int ‘) ’ 〈stmt〉 ‘else ’ 〈stmt〉

While loop.

〈while〉 −→ ‘while ’ ‘ (’ 〈expr〉int ‘) ’ 〈stmt〉

For loop.

〈for〉 −→ ‘ for ’ ‘ (’ 〈stmt〉 ‘ ; ’ 〈expr〉int ‘ ; ’〈stmt〉 ‘) ’ 〈stmt〉

Switch. In the switch/case construct here, the expressions at the particular cases can be non-
constant and evaluated dynamically. Of course this does prohibit one from using constants if
necessary. Thedefault construct has not been included because it is not semantically difficult
to manage anyway.

〈switch〉 −→ ‘switch ’ ‘ (’ 〈expr〉t ‘) ’ ‘ {’ 〈case〉t∗ ‘}’

〈case〉t −→ ‘case ’ 〈expr〉t ‘ : ’ 〈stmt〉

Local declarations consist of a type identifier and a variable name. It is possible to define a
variable with the same time multiple times in blocks inside on another. The variable name
always refers to the innermost definition as usual (known as lexical scoping in higher-order
languages).

〈localDecl〉 −→ 〈type〉 〈variable〉 ‘ ; ’

〈type〉 −→ ‘ int ’ | ‘pid ’

Expressions.

〈expr〉t −→ 〈arithmetic〉t | 〈variable〉t | 〈conditional〉t

Special expressions that always have type pid. Theenv literal denotes the environment—the
external entity with which the global system communicates.

〈expr〉pid −→ ‘env ’ | 〈create〉

Create a new dynamic instance of a class. The class is designated by〈className〉; the corre-
sponding state machine is assumed to exist. The mechanism by which the class name is mapped
to the corresponding state machine is not formalized but assumed to be present (typically no
point in formalizing such a thing).

〈create〉 −→ ‘create ’ 〈className〉

3 Syntax / 3.1 Textual Syntax 6

Standard arithmetic constructs: the four binary operations (add, subtract, multiply, divide),
unary negation, and the evaluation of a literal constant (to be able to pronounce e.g. ‘one’).

〈arithmetic〉int −→ 〈expr〉int ‘+’ 〈expr〉int | 〈expr〉int ‘ - ’ 〈expr〉int

| 〈expr〉int ‘* ’ 〈expr〉int | 〈expr〉int ‘ / ’ 〈expr〉int

| ‘ - ’ 〈expr〉int

| 〈literalNumber〉

The conditional expressions that has here the same syntax as it has in C++.

〈conditional〉 −→ 〈expr〉int ‘?’ 〈expr〉t ‘ : ’ 〈expr〉t

List of arguments to signal: a list of expressions separated by commas.

〈argList〉 −→ ‘ (’ ‘) ’ | ‘ (’ 〈args〉 ‘) ’

〈args〉 −→ 〈expr〉 | 〈args〉 ‘ , ’ 〈expr〉

Completion trigger syntax.

〈completionTrigger〉 −→ 〈empty〉

Timeout triggers.〈timeValue〉 should be a non-negative number (typically a floating-point num-
ber in the units of seconds).

〈timeoutTrigger〉 −→ ‘after ’ ‘ (’ 〈timeValue〉 ‘) ’

Signal triggers. A signal trigger is associated with a parameter list, which is a list of variable
names separated by commas. When the trigger comes, the names are bound to the run-time
values of the parameters in signal. The variables are available in both the associated guard and
in the associated action.

〈signalTrigger〉 −→ 〈signalName〉 〈parList〉
〈parList〉 −→ ‘ (’ ‘) ’ | ‘ (’ 〈pars〉 ‘) ’

〈pars〉 −→ 〈expr〉 | 〈pars〉 ‘ , ’ 〈variable〉

The grammar does not have one root symbol, because parts of the language described above
appear in three different contexts:

• Actions on transitions, which derive from〈action〉 and are hence conrectely statements
(〈stmt〉).

• Guards on transitions, which derive from〈guard〉 and are hence concretely expressions
(〈expr〉).

• Triggers on transitions, which derive from〈trigger〉. The language derived from〈trigger〉
is used only for this purpose and is not included in the language derived from〈stmt〉,
which is apparent in the grammar above. Note that on the contrary, statements can include
expressions that derive from〈expr〉.

3 Syntax / 3.2 Graphical (Non-Textual) Syntax 7

3.2 Graphical (Non-Textual) Syntax

The remaining part of the syntax describes the structure of the graphical notation. Note that the
exact graphical syntax is not explicated here, because it defined in the UML standard.

The constructs that are allowed for state machines in the context of this study are

• Initial pseudostates.

• Final states.

• Atomic (not compound) states.

• Transitions.

• Guards on transitions (represented by fragments of the action language derived from
〈guard〉).

• Actions on transitions (represented by fragments of the action language derived from
〈action〉).

• Triggers on transitions (represented by fragments of the action language derived from
〈trigger〉).

• State-machine local variables, which are in UML also attributes of the class whose be-
havior is defined by a state machine.

We assume that all states and pseudostates in state machines have unique names or identi-
fiers. The set from which these identifiers can be chosen is denoted by States. We do not need
to explicate the internal structure of that set here, expect that we naturally assume that it is big
enough. Naturally, if there are two different states in a state machine they also must have dif-
ferent names. We similarly assume that all transitions in a state machine have different names
or identifiers, the names being chosen from another abstract set Trans.

Because transitions and states are uniquely named, there is no need to make a distinction
between a state and its name; and similarly for transitions. Therefore we identify a state with
its name and a transition with its name in the sequel.

Local variables have also names, chosen from the set Vars. The set of local variables for a
state machine is hence a set of variable names.

Hence, a state machine can now be described as a tuple (a compound) of five elements,
which are the sets of its initial states, final states, atomic states, transitions, and local variables.
The set of all valid state machines formed in this way is denoted from now on by SMs. Hence,

SMs=℘(States)×℘(States)×℘(States)×℘(Trans)×℘(Vars)

where℘(S) is the power set ofS, namely the set of all [proper and trivial] subsets ofS. A
particular state machine is thus of the form

〈I ,F,S,T,V〉

where

I ⊆ States

F ⊆ States

S⊆ States

T ⊆ Trans

V ⊆ Vars.

4 Semantics / 3.3 Systems 8

Furthermore, because initial pseudostates, final staes and atomic states are mutually disjoint,

I ∩F = /0
I ∩S= /0

F ∩S= /0.

Every state machine must have at least one initial state, thus also

I 6= /0.

For M a state machine, we denote its initial states also by InitialStatesOf(M). Hence,
InitialStatesOf(〈I ,F,S,T,V〉) = I . Similarly, the set of local variables (V) of a machineM is
denoted by LocalVariablesOf(M).

Every transitiont is always associated with a source, a destination, a trigger, a guard, and
an action. These are denoted by SourceOf(t), DestinationOf(t), TriggerOf(t), GuardOf(t), and
ActionOf(t), respectively.

Let us denote by Acts the set of all actions (i.e. statements), by Guards the set of all guards
(i.e. expressions) and by Trig the set of all triggers. Then, ifM = 〈I ,F,S,T,V〉 is a state machine,
the following well-formedness conditions apply.

t ∈ T ⇒ SourceOf(t) ∈ I ∪S

t ∈ T ⇒ DestinationOf(t) ∈ F ∪S

t ∈ T ⇒ GuardOf(t) ∈ Guards

t ∈ T ⇒ TriggerOf(t) ∈ Trig

t ∈ T ⇒ ActionOf(t) ∈ Acts.

Furthermore, there should be at least one outgoing transition from an initial state, thus

i ∈ I ⇒∃t ∈ T : SourceOf(t) = i.

For further convenience, we denote by TimeoutTransitionsOf(s) all those transitions from
s that have a timeout trigger, and by TimeoutOf(t) the timeout value associated with transition
t. Similarly, TypedSignalTransitionsOf(s,T) denotes the set of transitions with sources and a
signal trigger on signal typeT; and CompletionTransitionsOf(s) denotes the set of transitions
with sources and a completion trigger.

3.3 Systems

The specification of a complete system consists of a set of classes. Every classc is associated
with a particular state machine, denoted by MachineOf(c). Furthermore, one class is designated
as the “initial class”. When a run-time instance of the system is initialized, one instance of the
designated initial class is created spontaneously. Other agent instances can be then constructed
by executing the create action. The initial class is denoted by InitialClass in the semantics.

4 Semantics

This section describes the execution semantics for the syntax described in the previous chapter.
The semantics is described as an abstract machine semantics, which is a simple form of

transition semantics.

4 Semantics / 4.1 Transition Semantics 9

4.1 Transition Semantics

Any transition semantics describes the behavior of a system, which is a computational process,
as atransition system. A transition system is a graph whose nodes are called ‘system states’ and
whose arcs are called ‘transitions’. Furthermore, a transition system has a designated ‘initial
state’. In more concrete terms, a transition system describes what is the initial state from which
the specified system starts, and how the system’s state evolves. This evolution is described
in terms of atomic transitions from one system state to another. Longer sequences of such
transitions correspond to longer execution of the system.

A system for computer communications does not usually execute in isolation. Rather, it
executes in connection to an externalenvironmentwith which the system exchanges signals∗.
Furthermore, real-world protocols often involve timing aspects (for example in the form of
timeouts).

Because of these considerations, we divide the atomic transitions that can transform a sys-
tem state into another into the following four classes:

1. An internal computational step, that is assumed to take zero time and that does not involve
signal exhange with the external environment (it could involve internal signal passing
within the system itself).

2. An event where the environment sends a signal to the system. Typically this involves
pushing the received signal on a signal queue in the system.

3. A transition where the system sends a signal to the environment. (Typically this involves
also an internal computational step in the system.)

4. A time passing transition. This kind of transition occurs when the system has ‘done
everything’ for the moment and all its components are ‘waiting’ for a while.

In general, ifg andg′ are two global system states (g asglobal), we write

g
τ−→ g′

to denote an internal computational step fromg to g′,

g
recvs−−−→ g′

to denote the event of environment sending the signals to the system,

g
sends−−−→ g′

to denote a step during which the system sends the signals to the environment, and

g
δ−→ g′

to denote the case that the system remains inactive forδ seconds, and that the environment does
not send anything in during that time.†

Hence, a transition system consists of

∗ Often called alsomessages. † One might wonder how the ‘system can know’ that the environment ‘will not

send anything soon’, which could seem like a prerequisite for ‘taking’ a transitiong
δ−→ g′ for δ > 0. But this is

not actually a problem, becauseδ can be always small enough to allow for a new message from the environment
arbitrarily soon.

4 Semantics / 4.1 Transition Semantics 10

1. A set of global configurations, which we denote byG .

2. An initial configuration, denoted byg0.

3. Set of transition labels, denoted byL , which containsτ, δ for all δ ≥ 0, and recvs and
sends for every potential signal instances.

4. A relation∆ (labelled transition relation) overG ×L ×G . If 〈g, `,g′〉 ∈ ∆, we denote

g
`−→ g′ and otherwise¬(g `−→ g′). When the label is immaterial, we write justg→ g′ to

denote∃` : g
`−→ g′.

Hence, a transition system can be written down as a tuple〈G ,g0,L ,∆〉.

4.1.1 Wall Clock

We assume that every global stateg is associated with a global wall clock reading, denoted by
κ(g). It always holds thatκ(g)≥ 0, and if

g→ g′

thenκ(g) ≤ κ(g′). That is, time does not progress backwards when system state evolves for-
wards. Furthermore,κ(g0) will be zero always (time begins at the initial configuration).

4.1.2 Behaviors

The operational semantics developed here will attach a transition system to every valid system
description. Let this transition system be〈G ,g0,L ,∆〉.

A path in this system is an alternating sequence of states and labels,

g1, `1,g2, `2,g3, `3, . . .

so that
g1

`1−→ g2
`2−→ g3

`3−→ ·· ·

A path is either infinite (continues for ever) or finite, in which case the last element on the
sequence must be naturally a state (rather than a label).

Every path defines atimed trace, which consists of a smallest interval on the real axis that
covers all the wall-clock readings on the path, plus all the I/O events from the path associated
with the wall-clock times on which they occur. Formally, let

P = g1, `1,g2, `2,g3, `3, . . .

be a path (either finite or infinite), and let

G = {g1,g2, . . .}

Let
c1 = inf{κ(g) | g∈ G}

and let
c2 = sup{κ(g) | g∈ G}.

Let
E = {〈c,e, i〉 | c = κ(gi),e= `i ,e is of the form sends or recvs}

4 Semantics / 4.2 Structure of System States 11

The timed trace generated byP is then the tuple〈c1,c2,E〉 wherec1—c2 is the time interval
for the trace. Note that the indexi is included in the timed events so that it does not become a
problem if multiple events take place at the same time.

A path isprogressiveif the time interval for the corresponding timed trace has no upper
bound. That is, time progresses arbitrarily far towards infinity on the path. A global configura-
tion is progressiveif at least one progressive path emanates from it, and otherwisenonprogres-
sive.

Nonprogressive states in the semantics here are related to situations where a computational
error occurs (such as division by zero). After such an error, “time stops”. This means in practice
that what should happen after the error is left undefined (i.e. as a semantic variation point),
because the semantics does not say anything of the time after the error occurred.

4.1.3 Conforming Implementations

An implementation of the description language in this study can be seen as a device doing
timed signal I/O, parameterized by a program (i.e. specification or description). LetI be an
implementation,s a program andI(s) the set of all timed traces that the implementationI can
produce when runnings against an environment. LetT(s) be the transition system defined by
the semantics fors and letg0 be its initial state.

The implementation conforms to the semantics here if and only if:For every timed trace
t ∈ I(s) generated against and by the implementation, it holds that it is either the timed trace of
a progressive path from g0 in T(s), or a prefix of t is generated by a path from g0 in T(s) that
goes through a nonprogressive global configuration g.

The above requirement can be rephrased as saying that the implementation cannot have
behaviors that are not generated by the semantics, unless they involve a state from which the
system’s behavior is left undefined (e.g. division by zero).

4.2 Structure of System States

The set of all possible system states (system configurations) is denoted byG . A system config-
uration consists of three elements:

1. A collection of active class instance configurations, indexed by the process identifiers
(PIDs) of the instances. The set of possible configurations for active class instances is
denoted byC and the set of all potential process identifiers is denoted byP. Therefore
the collection itself is of typeP ↪→ C , where↪→ denotes a partial function; that is: a
function that is defined only for some of the elements in its domain. (Here the number
of live instances is always finite and therefore the mapping function is defined only for a
finite number of PIDs; these are those PIDs that have been ‘created’ in the system prior
to any particular point in time.)

As a component of a global system state, the collection of active class instance configu-
rations is denoted byA.

2. The global wall-clock value, which is a non-negative real number (the set of non-negative
real numbers is denoted here byR+

0).

As a component of a global system state, the wall-clock value is denoted byκ (as a
mnemonic for ‘clock’).

4 Semantics / 4.3 Structure of Instance Configurations 12

G Set of possible global configurations
C Set of possible ActiveClass configurations
P Set of possible run-time pids
R

+
0 Set of possible wall-clock values (non-negative real numbers)

where

G = (P ↪→ C)×R+
0 × (Signs↪→P).

Table 1: Types related to global system states.

3. The ‘routing table’, which tells which types of signals are handled by which active class
instances. This is a mapping from signal types (Signs) to PIDs has therefore the form
Signs↪→P.

When the environment sends a signal to the system, the signal is delivered to the signal
queue of the instance denoted by the routing table (choice is based purely on the type of
the signal, not on its actual parameters). If the type is not mentioned in the routing table
or the corresponding agent has terminated, the signal is [silently] dropped.

As a component of a global system state, the routing table is denoted byR.

The sets defined above are enumerated in Table 1.

4.3 Structure of Instance Configurations

Recall that set of all potential active class instance configurations is denoted byC . In this section
the internal structure of this set is defined.

An instance configuration consists of the following elements:

1. The syntactic state machine that this instance is ‘executing’. Clearly, this is an element of
the set SMs.

As a component of an instance configuration, the state machine is denoted byM.

2. The set of currently active state in the state machine. This is an element of States. When
the instance is within an RTC step, i.e. execution the activities that correspond to the firing
of a transition, the active state component of the instance configuration contains the target
state of the transition (rather than the source).

As a component of an instance configuration, the currently active state is denoted bys.

3. An execution stack, which is a finite sequence of ‘executor control tokens’. The executor
control tokens include program fragments and auxiliary tokens. The set of all possible
executor control tokensis denoted by X and hence the set of all possible execution stacks
can be denoted by X∗.

As a component of an instance configuration, the execution stack is denoted byX.

4. A value stack, which is a finite sequence of values. Hence, the set of all possible value
stacks can be denoted by Val∗, where Val is the set of all possible values. (In the data
model considered here, a value is either an integer or a PID or the special valueUndef
denoting an undefined value)

As a component of an instance configuration, the value stack is denoted byV.

4 Semantics / 4.4 Initializing a System Instance 13

X Set of executor control tokens
Val Set of all possible values
Loc Set of memory locations

where

C = SMs×States×X∗×Val∗× (Vars↪→ Loc)× (Loc ↪→ Val)× (Signs× (Val∗))∗

Val = Z∪P∪{Undef}
Stmt⊆ X

Exprs⊆ X

Table 2: Types related to instance configurations.

5. An environment, which is a maps variables to locations. A location is an abstraction for
a ‘memory cell’. Every location can ‘contain’ one value. The information about which
cells contain which values is contained in the store component (which comes next). The
set of all possible environments is hence the set Vars↪→ Loc.

As a component of an instance configuration, the environment is denoted byε (as a
mnemonic forenvironment).

6. A store, which is maps locations to values. Together, an environment and store defined a
mapping from variables to values.

The set of all possible stores is hence the set Loc↪→ Val.

As a component of an instance configuration, the environment is denoted byσ (as a
mnemonic forstore).

7. A message queue, which is a sequence of signal instances. A signal instance consists of
a signal type and a sequence of values (the parameters). Hence, all signal instance have
the type Signs× (Val∗) and message queues have the type(Signs× (Val∗))∗.

As a component of an instance configuration, the message queue is denoted byQ.

The sets defined above are enumerated in Table 2.

4.4 Initializing a System Instance

The initial configuration (g0) for a system is the special tokenSTART.

4.5 Transition Schemes

This section gives transition schemes that together define the transition relation∆.
In the transition schemes, some elements are boxed like this:X . The boxings do not

convey any semantical information. They are purely visual hints to show which parts of the
global state “change” when the transition is “taken”.

“Semantical braces” like this:[[if(e) b1 elseb2]] are used to visually separate source-level
program code from the notation used to describe the semantics itself. They do not convey any
other semantical information expect that what is contained inside is indeed source-level code.

4 Semantics / 4.5 Transition Schemes 14

BLOCKS〈
A

[
p 7→

〈
M,s, [[{d1, . . . ,dk s1, . . . ,sk} X]] ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[d1]] · · · [[dk]] [[s1]] · · · [[sk]] Res(ε) X ,V,ε,σ,Q

〉]
,κ,R

〉
(1)

〈
A

[
p 7→

〈
M,s, Res(ε′) X ,V, ε ,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X ,V, ε′ ,σ,Q

〉]
,κ,R

〉
(2)

I F〈
A

[
p 7→

〈
M,s, [[if(e) b1 elseb2]] X ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[e]] Branch(b1,b2) X ,V,ε,σ,Q

〉]
,κ,R

〉
(3)

〈
A

[
p 7→

〈
M,s, [[if(e) b1]] X ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[e]] Branch(b1,skip) X ,V,ε,σ,Q

〉]
,κ,R

〉
(4)

〈
A

[
p 7→

〈
M,s, Branch(b1,b2) X , v V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, b1 X , V ,ε,σ,Q

〉]
,κ,R

〉
WHEN v 6= 0 (5)

〈
A

[
p 7→

〈
M,s, Branch(b1,b2) X , v V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, b2 X , V ,ε,σ,Q

〉]
,κ,R

〉
WHEN v = 0 (6)

WHILE〈
A

[
p 7→

〈
M,s, [[while(e) b]] X ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[e]] Whl(e,b) X ,V,ε,σ,Q

〉]
,κ,R

〉
(7)

〈
A

[
p 7→

〈
M,s, Whl(e,b) X , v V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[b]] [[e]] Whl(e,b) X , V ,ε,σ,Q

〉]
,κ,R

〉
WHEN v 6= 0 (8)

〈
A

[
p 7→

〈
M,s, Whl(e,b) X , v V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X , V ,ε,σ,Q

〉]
,κ,R

〉
WHEN v = 0 (9)

4 Semantics / 4.5 Transition Schemes 15

FOR〈
A

[
p 7→

〈
M,s, [[for(b1;e;b2) b]] X ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[b1]] [[while(e){{b}b2}]] X ,V,ε,σ,Q

〉]
,κ,R

〉
(10)

SWITCH〈
A

[
p 7→

〈
M,s, [[switch(e){c1, . . . ,ck}]] X ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[e]] [[c1]] · · · [[ck]] EndSw X ,V,ε,σ,Q

〉]
,κ,R

〉
(11)

〈
A

[
p 7→

〈
M,s, [[casee : b]] X ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[e]] Case(b) X ,V,ε,σ,Q

〉]
,κ,R

〉
(12)

〈
A

[
p 7→

〈
M,s, Case(b) X , v2 v1 V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[b]] SwDone X , v1 V ,ε,σ,Q

〉]
,κ,R

〉
WHEN v1 = v2 (13)

〈
A

[
p 7→

〈
M,s, Case(b) X , v2 v1 V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X , V ,ε,σ,Q

〉]
,κ,R

〉
WHEN v1 6= v2 (14)

〈
A

[
p 7→

〈
M,s, SwDone x X ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, SwDone X ,V,ε,σ,Q

〉]
,κ,R

〉
WHEN x 6= EndSw (15)

〈
A

[
p 7→

〈
M,s, SwDone EndSw X ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, EnsDw X ,V,ε,σ,Q

〉]
,κ,R

〉
(16)

〈
A

[
p 7→

〈
M,s, EndSw X , v V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X , V ,ε,σ,Q

〉]
,κ,R

〉
(17)

VARIABLES〈
A

[
p 7→

〈
M,s, [[type var;]] X ,V, ε , σ ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X ,V, ε[var 7→ `] , σ[` 7→ Undef] ,Q

〉]
,κ,R

〉
WHERE ` is a new location (18)

4 Semantics / 4.5 Transition Schemes 16

〈
A

[
p 7→

〈
M,s, [[var := e;]] X ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[e]] Set(var) X ,V,ε,σ,Q

〉]
,κ,R

〉
(19)

〈
A

[
p 7→

〈
M,s, [[var]] X , V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X , σ(ε(var)) V ,ε,σ,Q

〉]
,κ,R

〉
(20)

〈
A

[
p 7→

〈
M,s, Set(var) X , v V ,ε, σ ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X , V ,ε, σ[ε(var) 7→ v] ,Q

〉]
,κ,R

〉
(21)

〈
A

[
p 7→

〈
M,s, [[env]] X , V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X , Env V ,ε,σ,Q

〉]
,κ,R

〉
(22)

ARITHMETIC〈
A

[
p 7→

〈
M,s, [[const]] X , V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X , K (const) V ,ε,σ,Q

〉]
,κ,R

〉
(23)

(HereK is a function that maps a literal denoting a constant to its denotation, i.e. the corre-
sponding value. The exact definition ofK is omitted as usual.)〈

A
[
p 7→

〈
M,s, [[e1 op e2]] X ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[e1]] [[e2]] Apply2(op) X ,V,ε,σ,Q

〉]
,κ,R

〉
(24)

〈
A

[
p 7→

〈
M,s, [[op e]] X ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[e]] Apply1(op) X ,V,ε,σ,Q

〉]
,κ,R

〉
(25)

〈
A

[
p 7→

〈
M,s, Apply2(+) X , v2 v1 V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X , (v1 +v2) V ,ε,σ,Q

〉]
,κ,R

〉
WHEN v1,v2 ∈ Z (26)

〈
A

[
p 7→

〈
M,s, Apply2(−) X , v2 v1 V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X , (v1−v2) V ,ε,σ,Q

〉]
,κ,R

〉
WHEN v1,v2 ∈ Z (27)

〈
A

[
p 7→

〈
M,s, Apply2(∗) X , v2 v1 V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X , (v1v2) V ,ε,σ,Q

〉]
,κ,R

〉
WHEN v1,v2 ∈ Z (28)

4 Semantics / 4.5 Transition Schemes 17

〈
A

[
p 7→

〈
M,s, Apply2(/) X , v2 v1 V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X ,

⌊
v1

v2

⌋
V ,ε,σ,Q

〉]
,κ,R

〉
WHEN v1,v2 ∈ Z,v2 6= 0 (29)

〈
A

[
p 7→

〈
M,s, Apply1(−) X , v V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X , (−1)v V ,ε,σ,Q

〉]
,κ,R

〉
WHEN v∈ Z (30)

SIGNALS〈
A

[
p 7→

〈
M,s, [[send t: sign(e1, . . . ,ek)]] X ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[e1]] · · · [[ek]] [[t]] Send(sign,k) X ,V,ε,σ,Q

〉]
,κ,R

〉
(31)

〈
A

[
p 7→

〈
M,s, Send(sign,k) X , Env vk · · ·v1 V ,ε,σ,Q

〉]
,κ,R

〉
sendsign(v1,...,vk)−−−−−−−−−−→

〈
A

[
p 7→

〈
M,s, X , V ,ε,σ,Q

〉]
,κ,R

〉
(32)

〈
A

[
p 7→

〈
M,s, Send(sign,k) X , p vk · · ·v1 V ,ε,σ, Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X , V ,ε,σ, Q 〈sign,〈v1, . . . ,vk〉〉

〉]
,κ,R

〉
(33)

〈
A

 p 7→
〈

M,s, Send(sign,k) X , p′ vk · · ·v1 V ,ε,σ,Q
〉

,

p′ 7→
〈

M′,s′,X′,V ′,ε′,σ′, Q′
〉 ,κ,R

〉

τ−→

〈
A

 p 7→
〈

M,s, X , V ,ε,σ,Q
〉

,

p′ 7→
〈

M′,s′,X′,V ′,ε′,σ′, Q′ 〈sign,〈v1, . . . ,vk〉〉
〉 ,κ,R

〉
WHEN p 6= p′ (34)

CREATING NEW I NSTANCES〈
A

[
p 7→

〈
M,s, [[create class]] X , V ,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

 p 7→
〈

M,s, X , p′ V ,ε,σ,Q
〉

,

p̂ 7→
〈
M̂, ŝ,completed,〈〉, ε̂, σ̂,〈〉

〉
 ,κ,R

〉

WHERE

p̂ is a new process identifier

M̂ = MachineOf(class)

ŝ∈ InitialStatesOf(M̂)
`1, . . . , `n are new locations

{v1, . . . ,vn}= LocalVariablesOf(M̂)
ε̂ = [v1 7→ `1, . . . ,vn 7→ `n]
σ̂ = [`1 7→ Undef, . . . , `n 7→ Undef]

(35)

4 Semantics / 4.5 Transition Schemes 18

CREATING I NITIAL I NSTANCE

START
τ−→

〈[
p̂ 7→

〈
M̂, ŝ,completed,〈〉, ε̂, σ̂,〈〉

〉]
,0, []

〉

WHERE

p̂ is a new process identifier

M̂ = MachineOf(InitialClass)

ŝ∈ InitialStatesOf(M̂)
`1, . . . , `n are new locations

{v1, . . . ,vn}= LocalVariablesOf(M̂)
ε̂ = [v1 7→ `1, . . . ,vn 7→ `n]
σ̂ = [`1 7→ Undef, . . . , `n 7→ Undef]

(36)

UPDATING ROUTE TABLE〈
A

[
p 7→

〈
M,s, [[route type: p]] X ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[p]] Route(type) ,V,ε,σ,Q

〉]
,κ,R

〉
(37)

〈
A

[
p 7→

〈
M,s, Route(type) X , p V ,ε,σ,Q

〉]
,κ, R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X , V ,ε,σ,Q

〉]
,κ, R[type7→ p]

〉
(38)

SPONTANEOUS I NPUT FROM ENVIRONMENT〈
A

[
p 7→

〈
M,s,X,V,ε,σ, Q

〉]
,κ,R

〉
recvT(v1,...,vn)−−−−−−−−−→

〈
A

[
p 7→

〈
M,s,X,V,ε,σ, Q 〈T,〈v1, . . . ,vn〉〉

〉]
,κ,R

〉
WHEN R[T] = p (39)

SCHEDULING COMPLETION EVENTS〈
A

[
p 7→

〈
M,s, completed ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, Compl(d1,g1,a1) · · ·Compl(dk,gk,ak) timeouts ,V,ε,σ,Q

〉]
,κ,R

〉

WHERE

{t1, . . . , tk}= CompletionTransitionsOf(s)
di = DestinationOf(ti) for 1≤ i ≤ k

gi = GuardOf(ti) for 1≤ i ≤ k

ai = ActionOf(ti) for 1≤ i ≤ k

and c1 ≤ c2 ≤ ·· · ≤ ck

(40)

4 Semantics / 4.5 Transition Schemes 19

SCHEDULING T IMEOUTS〈
A

[
p 7→

〈
M,s, timeouts ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, TOut(d1,g1,a1,c1) · · ·TOut(dk,gk,ak,ck) Wait ,V,ε,σ,Q

〉]
,κ,R

〉

WHERE

{t1, . . . , tk}= TimeoutTransitionsOf(s)
di = DestinationOf(ti) for 1≤ i ≤ k

gi = GuardOf(ti) for 1≤ i ≤ k

ai = ActionOf(ti) for 1≤ i ≤ k

ci = κ+TimeoutOf(ti) for 1≤ i ≤ k

and c1 ≤ c2 ≤ ·· · ≤ ck

(41)

DISPATCHING SIGNALS〈
A

[
p 7→

〈
M,s, X ,V,ε,σ,

〈
T,P

〉
Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, Try(d1,g1,a1,V1,P) · · · Try(dk,gk,ak,Vk,P) X ,V,ε,σ, Q

〉]
,κ,R

〉

WHERE

{t1, . . . , tk}= TypedSignalTransitionsOf(s,T)
di = DestinationOf(ti) for 1≤ i ≤ k

gi = GuardOf(ti) for 1≤ i ≤ k

ai = ActionOf(ti) for 1≤ i ≤ k

V i = ParameterNamesOf(ti) for 1≤ i ≤ k

and X = Wait or X = TOut(d,g,a,c) X′ for somed,g,a,c,X′

(42)

〈
A

[
p 7→

〈
M,s, Try(d,g,a,〈v1, . . . ,vn〉 ,〈p1, . . . , pn〉) X ,V, ε , σ ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[g]] Run(d,a,ε) X ,V, ε′ , σ′ ,Q

〉]
,κ,R

〉
WHERE

ε′ = ε[v1 7→ `1, . . . ,vn 7→ `n]
σ′ = σ[`1 7→ p1, . . . , `n 7→ pn]

`1, . . . , `n are new locations

(43)

〈
A

[
p 7→

〈
M,s, TOut(d,g,a, t) X ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[g]] Run(d,a,ε) X ,V,ε,σ,Q

〉]
,κ,R

〉
WHEN κ = t (44)

〈
A

[
p 7→

〈
M,s, Compl(d,g,a) X ,V,ε,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, [[g]] Run(d,a,ε) X ,V,ε,σ,Q

〉]
,κ,R

〉
(45)

〈
A

[
p 7→

〈
M, s , Run(d,a,ε′) X , v V , ε ,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M, d , [[a]] Res(ε′) completed , V , ε′ ,σ,Q

〉]
,κ,R

〉
WHEN v 6= 0

(46)

5 Conclusions and Recommendations 20

〈
A

[
p 7→

〈
M,s, Run(d,a,ε′) X , v V , ε ,σ,Q

〉]
,κ,R

〉
τ−→

〈
A

[
p 7→

〈
M,s, X , V , ε′ ,σ,Q

〉]
,κ,R

〉
WHEN v = 0 (47)

T IME PASSING

〈A, κ ,R〉 δ−→
〈

A, κ+δ ,R
〉

WHEN 0≤ δ ≤ min
p

: WaitTime(A[p]) (48)

WaitTime(〈M,s,X,V,ε,σ,Q〉) =

t X = TOut(d,g,a, t) X′ for somed,g,a,X′

∞ X = Wait

0 otherwise

(49)

5 Conclusions and Recommendations

As mentioned in the first section, this study seeks answers for the following two questions:

1. Will the size of the semantics description be modest enough so that the amount of work
that is required to produce it matches the scope and depth of the overall project?

2. Is a semantics described in the form of a transition system accessible for the intended
audience, which consists of (in order of precedence) (1) execution and verification tool
implementors, and (2) other technical experts who must have in-depth understanding of
the meaning of diagrams drawn using the profile?

Let us consider the size issue first. The transition schemes take in this study six (6) pages.
A couple more pages are used to describe the structures on which the schemes are defined, and
to comment and explain. The semantics includes signal passing, multiple, concurrent state ma-
chine instances, timeouts, time, arithmetics, and a block-structured programming language with
control constructs such as for-loops and switch-blocks. It hence seems that the used mechanism
for describing semantics is relatively compact, and that it would be practically possible to de-
fine transition system semantics also for a related UML profile in the context of the MTS-UML
project.

Regarding the accessibility point, the used framework is standard and is present in the text
books on related subjects. During the feasibility study work, the work group took an experiment
where a transition system semantics, very similar to the one here, was presented to technical
audience whose members were not familiar with semantics beforehand. It took less than half
an hour to gain basic understanding of the concepts and ability to read the semantics and un-
derstand how it worked. It hence seems that both practice and anecdotal evidence suggest that
abstract machine based transition system semantics can be used for good effect in the MTS-
UML project.

Hence, in this annex it is recommended that if the profile for communicating systems will be
augmented with an operational semantics, the possibility of structuring it as an abstract machine
transition system semantics will be considered as a viable alternative that can result in compact,
accessible and highly succesful semantics description.

