ETSI TR 102 327 vi.1.1 @ooa-oa)

Technical Report

Broadband Radio Access Networks (BRAN);
HIPERACCESS;

Application Programming Interface (API) definition for the
UDP/IP based testing of HIPERACCESS protocol prototypes

D

2 ETSI TR 102 327 V1.1.1 (2004-04)

Reference
DTR/BRAN-0030007

Keywords

access, API, broadband, HIPERACCESS, IP,
network, radio, testing

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:

editor@etsi.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2004.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.org

3 ETSI TR 102 327 V1.1.1 (2004-04)

Contents

Intellectual Property RIGNES.........oo et 5
0T oo O 5
1 o010 SRS 6
2 REFEIEICES ...t bbb b e bt e et bRt bt b et bRt b e r e 6
3 Definitions and @DBreVIBLiONS...........coveieiieiiee e 6
31 DEFINITIONS. ...ttt b e R Rt R R R et R Rt R e R et r e 6
3.2 ABDIEVIBLIONS ..ottt e et n R n et n e 6
4 THE COMCEPLS.....coteitieeesie ettt ete st ettt et et e e st e e te e besbeeaeesbeeae e beebeentesbeeaeebesaeenseaseessesesreenseseesneentensnns 7
4.1 THE FEOUITEIMENT ...ttt et h et b et h et h et b b e eb b e s e b bt e e bt bt b e st b et es e b b nens 7
4.2 Virtual tester/ProtoCol Layer TESLEr (PLT) ...cceiiieirieirterieesie sttt 7
421 A generic, technology-neutral and iNEXPENSIVE SOIULIONc..eiiirieiiereee e e 8
4211 The data on the WIrE INTEITACE ..o s ne e 11
4.2.2 AAVaNtages aNd SPIN-OFFS........eiiiii bbbt bt 12
4.3 PLT COMPONENES ...ttt s e e e s e s ae e sh e e sr e e s n e e b e s ne s e e san e e 13
43.1 Wire interface data/Wire at@QraIMScieeieeieeie e ettt e te et e s aesae e sneesseeneesnseenaessaesneeseens 13
432 TRE AP . E R R R et R e n e 16
4.3.3 Wire transport module/Adaptation [AYENcceiee e eeraesraesnees 17
5 Implementing the PLT for the HIPERACCESS DLC ProtoColccceevieevienieieesieceeeee e seesie e 17
51 Test architeCture fOr tNE DL C TAYENciiiieereeerte ettt ek b e e b b e b b seene s 17
511 TESE CONFIGUIBLIONSveteeeteeeee etttk b et b bt b et b e bt b et nb e e e 18
5111 TeSt CONFIGUIALIONS FOr AT ...ttt bbbttt b et et nn e 18
5112 TeSt CONFIGUIALIONS FOr AP ...ttt s 19
52 PLT COMPONENES ...ttt s s s s s e e e e e e s e sh e e sr e e s n e e n e s e e s e e san e e 19
521 RS 1o J el 0.0 0] = P 19
5211 TESE SYSEEIM ...ttt b et b e R R R et R et r e 19
5212 ADSITECE TESE SUITE (ATS) 1.ttt b e 20
5213 TESE SYSLEM PrOLOLYPE ...ttt sttt st e st s et e st e sa b e e s ate e sabeesabe e sabeesnbeesnbeesnree s 20
52131 COOBCS ...ttt b bt bt e bR bt E bR b e R bt E et ne R R e R e Rt e R 22
5.2.2 Devel OPEd COMPONENES......ccvi e sieiee et este et e e et e e e seesseesseesaeesse e seenteenseeseesteeseenseenseensesneennes 23
5221 WWITE TBEAGIEIM....ee ettt bbb bbbt bt b e s b et bt b st eb e e et eb e e et et nn e 23
5222 The APl for HIPERACCESS DL C......ooiiii ettt e e e et s sne s sneeneeneeneas 24
5223 WiITE tranNSPOrt MOGUIE. ...ttt bbbt b et b et b e et eb e et b e e 27
523 ClOCKS N THMING ¢ttt b ek b e e s b seehe b se e st e b e se e st e b e se et ebese e e ebesbe e ebesb e e ebesbenneben 27
524 HeuristicS for defining @N AP ... bbbt b e 27
6 The SDL model 8S an TUT PrOtOLYPE......ccveeeeeierieeteetesieste ettt 28
6.1 ST 10700 (S I=To =0 (0] 1 F= Y S 29
6.2 SDL model suitable for teSt Validation ..o s 31
7 CONCIUSIONS ...ttt h e b e h et b et b et bt e b et e Rt e b et h b bt e b e et en et et neanas 31
7.1 Applicability to Protocols UNder TESE (PUT)cuciiiieiiriiieierieie et 31
7.2 Applicability to iNteroperability EVENTS........c.coiriiic et 31
7.3 Applicability to full-fEatured LESE SYSEEMS.c.eiuiieeirieere et 31
Annex A: HIPERACCESS Wire Datagram SpeCifiCationccccoevirereierienenesieseeese e 32
Al Wiredatagram ASN.L MOQUIE.......c.ooiiiiiiiieiet ettt bbb nr e 32
A.2 AN eXampleWITE GalAgraM........cciiieieeiiiee s ese sttt e st e st e s te e e et e steessesaeeeesbesnaetesteensentesseensenneens 33
Annex B: HIPERACCESS API SPECITICALIONS.......cciuiriireiieieieiesiesiesieseee e 34
B.1 DatagramSOCKEtAPI SPECITICAION.ccuiuiiiriieiieciitee et 34
B.2 SOCKEtAAAress SPECITICALION.cciieeiie et re e et e s re e e e besreeneeneens 36

ETSI

4 ETSI TR 102 327 V1.1.1 (2004-04)

ST N = V =] 10= - o TSRO 37
Annex C: WiretranSport MOAUIE. ..o 38
Annex D: (O FoTox €= To I T 011 o S 39
5 200 R O o ox S 3F=aTo 11011F o SRS 39
D.11 CIOCKS. ..ttt ettt et et bbb e a e e a e e e e R e R e SR e eR £ SR e e R R e RS R e AR e AR e eR e e Rt eh e et e n e bt eReebe Rt ene e e enns 39
D.1.2 I 211 SRS 40
D.1.3 LTSRNz o] o TSP U TP 40
D.14 L0 LT gTo T L= V7= o1 o PSS 42
Annex E: Abstract Test Suite (ATS) text BIOCK........cccov e 43
E.1 TheTTCN Graphical form (TTCN.GR)cccciiieiiiicie ettt te e sre e e e ene e 43
E.2 TheTTCN Machine Processable form (TTCN.MP) ... 43
[11 (TSR P PSPPSR 44

ETSI

5 ETSI TR 102 327 V1.1.1 (2004-04)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Report (TR) has been produced by ETSI Project Broadband Radio Access Networks (BRAN).

ETSI

http://webapp.etsi.org/IPR/home.asp

6 ETSI TR 102 327 V1.1.1 (2004-04)

1 Scope

The present document presents the results of work to develop a generic solution for inexpensively testing any protocol
and a specific implementation of this solution for the HIPERACCESS DL C protocol [1]. The generic solution provides
an inexpensive means to test any protocol implementation. The implementation is software-based but can be hardware
as well. The implementation in software on a PC-based platformisa"virtual" test system. The implementation in
hardware with radio transport and frequency capabilitiesis classic radio-based test equipment.

2 References
For the purposes of this Technical Report (TR), the following references apply:
[1] ETSI TS 102 000: "Broadband Radio Access Networks (BRAN); HIPERACCESS; DL C protocol
specification”.
2] ETSI TS 102 149-3: "Broadband Radio Access Networks (BRAN); HIPERACCESS;

Conformance Testing for the Data Link Control (DLC) layer; Part 3: Abstract Test Suite (ATS)".

[3] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[4] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:
Protocol Layer Tester (PLT): virtua test system for the testing of protocol layers

virtual tester: a PC-based test system that replaces hardware components of sophisticated test equipment with software
components

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AP Access Point

AP Application Programming Interface
ASP Abstract Service Primitive

AT Access Terminal

ATS Abstract Test Suite

ATSP Abstract Testing Service Pimitives
DL DownLink

DLC Data Link Control

ETS Executable Test Suite

FTP File Transfer Protocol

IuT Implementation Under Test

LT Lower Tester

MAC Medium Access Control

MTU Maximum Transmission Unit for |Pv4
PA Platform Adaptor

PCO Point of Control and Observation

ETSI

7 ETSI TR 102 327 V1.1.1 (2004-04)

PDU Protocol Data Unit
PHY PHYsicd
PLT Protocol Layer Tester
PUT Protocol Under Test
SA System Adaptor
SAP Service Access Point
SAR Segmentation And Reassembly
SDL Specification and Description Language
SUT System Under Test
TCP Transmission Control Protocol
TE Test Equipment
TRA Test Runtime Adapter
TSO Test Suite Operation
TTCN-2 Tree and Tabular Combined Notation version 2
TTCN-3 Testing and Test Control Notation version 3
UDPF/IP User Datagram Protocol over the Internet Protocol
UL UpLink
WD Wire Datagram
Wi Wire Interface

4 The concepts

4.1 The requirement

The terms of reference for the present document call for avirtual tester that will run existing test specifications. This
virtual tester would consist of the following:

. a subset of the existing test suite;
. an adaptation layer that would map the protocol messages into UDP/IP packets; and

. an Application Programming I nterface (API) for UDP/IP based testing with services that the executable test
suite could use to transport messages and other information to and from the System Under Test (SUT).

Such avirtual tester would allow the HIPERACCESS companies to test and debug DL C protocol stacks early in their
development stage and would facilitate and speed up the development of a full-fledged radio-based test tool. Such atool
could be used at interoperability events as well to provide a cheap and fast means to conformance test prototypes. Such
conformance testing would be useful to determine errorsin implementations and identify possible reasons for
interoperability failures.

4.2 Virtual tester/Protocol Layer Tester (PLT)

The ETSI Abstract Test Suites (ATS) are designed to test a device to see if it conforms to the base specification.
Usually this base specification specifies the device's protocol layers and performance requirements. The test suite
usually mirrors these in its organization and function. The layers may be according to the OSI model or per the protocol
designers' concept.

The ATS can be executed only if there is test equipment to run it upon. Test equipment does not come "off the shelf" for
today's high performance protocols such as those for broadband radio networks. Test equipment for such protocols
requires much the same devel opment effort as the implementation itself. Simply said, full-featured conformance test
equipment development is very expensive. Thisleads to a chicken-and-egg problem. On one hand, prototypes and
implementations need to be tested to ensure they are conformant and interoperate and give them the chanceto win in
the marketplace. On the other hand, test equipment with al the required features for conformance testing is too
expensive during prototyping and development.

During prototyping and developing, much of the system's design and implementation is done in software. Only when
development and debugging are compl ete should the design become reality in firmware and hardware. If protocol layer
conformance testing could be conducted in parallel during design on protocol prototypes in software or
implementations, then product development and testing would be cheaper and quicker.

ETSI

8 ETSI TR 102 327 V1.1.1 (2004-04)

Isthere away to inexpensively conformance test the protocolsin development or finalized that normally require
expensive test equipment? The work described in the present document shows that there are low-cost off-the-shelf
technology-neutral components requiring a minimum of "glue” to make a"virtual tester".

A "virtual tester" is a PC-based test system that replaces the expensive hardware components of sophisticated test
equipment with much cheaper software components.

The development of advanced protocols requires testing and the testing equipment to run these tests. Radio protocols
complicate these tasks and increase devel opment times and testing costs. For radio protocols, test equipment is usually
not available in time during development to test the implementation's behaviour over the air interface. The expensive
up-front cost of radio-based test equipment precludes their arrival in time for use during protocol devel opment.

Therefore, some type of relatively inexpensive means to test protocol implementation behaviour during prototyping and
development could be of benefit to manufacturers and testers. This testing would, of necessity, not be conducted over
the air interface because of the expense of devel oping such eguipment.

Proven wire interfaces are cheaper and more reliable than new air interfaces. Thus, one reason for avirtual tester isto
test protocols destined for an expensive interface in their prototyping and/or development stage. The tester would use a
substitute wire interface for the lower transport layers. Another reason for avirtual tester isto conformance test any
protocol for an expensive or inexpensive interface during design and development. Finally, avirtual tester could be used
at interoperability or similar events to conformance test i mplementations and prototypes.

The Abstract Test Suite (ATS) used for protocol testing would remain the same whether for a virtual tester or classical
test equipment. Thus, no additional costs would be incurred for writing Abstract Test Suitesto run over either test
equipment.

The present document is concerned only with protocol messages. However, the use of wire transport layers for testing
data normally transmitted using radio can apply to other types of data such as frames. The transmission of datain
framesis not similar to protocol behaviour, e.g. aMAC protocol. However, the frame data can till be captured and
transmitted over any type of wire protocol such as UDP over IP. The present document does not investigate frame
testing or any other type of testing other than protocol conformance testing. Subsequent BRAN Technical Reports on
UDP/IP testing substituting for radio testing may cover these non-classic protocol types of testing.

Answering the question of "What is being tested?" isimportant. The present document addresses the testing of
MAC/radio link layer type protocols including their behaviour and effects upon radio transmission characteristics. The
radio link layer protocol can force changesin transmission frequency, channel, and power. Otherwise said, the radio
link layer sometimes changes the performance of the physical layer. These effects are included in the Abstract Test
Suite. Thus, device behaviour such as signal strength is tested as well as protocol behaviour if such behaviour is directly
linked to the protocol function.

In our view, such behaviour is not PHY layer specific but linked intimately with the protocol and included in the radio
link layer ATS. One could argue that such tests are PHY layer tests. Our view isthat such PHY behaviour, being the
result of radio link layer protocol actions, isrightfully included in thelink layer ATS. Only that PHY level behaviour
that is not a direct result of radio link protocol layer behaviour should be included ina PHY layer ATS, if such exists.

Because the work in the present document specifically address classic protocol layer testing, the virtual tester becomes a
"Protocol Layer Tester" (PLT).

The protocol used for the feasibility study is the HIPERACCESS DL C protocol.

4.2.1 A generic, technology-neutral and inexpensive solution

To be generic, the PLT concept must not be tied to technology that is either hardware or software-expensive. A generic
solution should have the following characteristics:

. apply to any protocol or transfer scheme where environment characteristics can be modelled with binary data;
e.g. PDUs, frames, waveforms, transmission frequency, transmission power, received power, €etc.;

. Abstract Test Suites(ATS) written in the ET Sl-used testing languages TTCN-2 and TTCN-3. However, test
suitesin TCL, Java, C and its offspring, Perl scripts, etc. can be easily incorporated;

. test execution environments and systems that are either open-source, low-cost, or available from several
vendors. Forcing atest execution environment to come from a specific vendor increases the probability of high
COsts,

ETSI

9 ETSI TR 102 327 V1.1.1 (2004-04)

. common and low-cost wire interfaces such as UDP/IP/Ethernet, TCP/IP/Ethernet, etc.;

. no/low-cost programming tools for making the PLT's software components and "gluing" them together with
APIs,

. testing of protocols regardlessif based on SO 9646, another standard, or a proprietary scheme;
. protocols that conform or not to the OSI layer model.

Figure 1 shows the relationship between the Protocol Layer Tester (PLT) and Protocol Under Test (PUT) that satisfies
these characteristics.

Protocol

Layer PUT
Tester

ASP(PUT PDUs)

Figure 1: PLT and PUT

In general, the Protocol Layer Tester (PLT) exchanges Abstract Services Primitives (ASP) or Protocol Data
Units (PDUs) on the upper and lower end of the Protocol Under Test (PUT).

Figure 2 shows the basic components of both the PLT and PUT using the same relationship shown in figure 1.

r Tester Platform

PUT Platform

PUT Execution
Controller

Test Execution
Controller

Test Suite Codec
Protocol

Under Test
(PUT)

Codec

Test Runtime
Adapters

PUT Adapter

Trans porter

Figure 2: PLT and PUT components

To be inexpensive, these components cannot be tied to any particular technology with expensive purchase, system, or
license costs. The following no/low cost components are part of the PLT:

. Tester Platform: a PC serves as the test equipment's hardware platform with a hard-wired connection, rather
than aradio link, from the PC to the PLT;

. Test Execution Controller, Codec and Test Runtime Adapters: these are componentsin an off-the-shelf test
execution tool;

ETSI

10 ETSI TR 102 327 V1.1.1 (2004-04)

Test Suite: (An ATS written for conformance testing of the protocol.) at ETSI where both base specifications
and test specifications are usually written for a given product. For the PLT, the ATS used for final product
testing is the same as that used for protocol layer prototype testing. Thus, there are no additional test writing
costs. The same test execution tool that has the Test Execution Controller, Codec, and Test Runtime Adapter
converts the AT S into an executable program (ETS) on the PC hardware platform;

PUT Platform: thisis an implementor decision. It is usually a PC;

PUT Execution Controller: the controller tells the PUT how to react to certain conditions. Thisisan
implementor decision. This can either be a software module in the form of a script or an operator passing
commands usually as primitivesto the PUT;

PUT and Codec: these are what the implementor must develop in any case. The use of aPLT should not
increase his development costs for both. The protocol layer implementation istypically assumed to bein
software;

PUT adapter: alow-cost adapter to receive and transmit the PDUs and other required data. Thisisimplementor
effort required specifically to run tests against the PLT;

Transporter: asfigure 2 shows, the transporter "glues' the Test Platform to the PUT platform. The
development of the virtual tester/PLT primarily centered around this transporter.

PLT Platform |

PUT PlatformI

Test Runtime Adapters

PUT Adapters

----1-- Interface

Wire Interface

;
I
I
I
:
1
API-------- :
1
1
1
1
1
1

TE Transport Module

PUT Transport Module

fm——————mm e mm———— - - ——

Figure 3: One concept for the transporter

Figure 3 isaconceptual diagram of one way to implement the transporter and is that used for work presented in the
present document. A following isabrief description of the components.

Test Runtime Adapters; a component of the test execution tool. They adapt the software elements of the Test
Equipment (TE)/Abstract Test Suite (ATS) to the platform and other hardware. For example, the interfaces to
platform timers or signal strength measuring apparatus are part of this adapter. The Test Runtime

Adapter (TRA) is provided with the test execution tool and is not specified herein;

Application Programmer Interface (API): the APl that is the subject of the present document and is part of the
present document. It is the interface between the Test Runtime Adapter and the TE Transport Module. The
present document specifies a generic API and then instantiates the generic API for the HIPERACCESS
Protocol;

TE Transport Module: thisis a software module that basically shuttles data back and forth between the wire
interface and the API. It is a software module that uses the calls to the platforms wire input and output ports.
Its specification is also included in the present document;

Wire Interface: thisis physical interface that connectsthe PLT and PUT. It replaces the radio Physical (PHY)
layer and isthe reason why the PLT is so inexpensive compared to classical radio protocol (and other) test
equipment. It can be any wire PHY interface, but the most common by far on PC platformsis Ethernet. The
protocols over the Ethernet PHY layer are IP and over them are |P-based protocols such as TCP or UDP. The
simplest in use isthe latter and was used in this work. TCP would be appropriate if there are large packets for
reassembly or if transmission order can vary due to I P routing. Such was not the case in our work;

ETSI

11 ETSI TR 102 327 V1.1.1 (2004-04)

. PUT Transport Module: this module is on the PUT side and has the same functions as those of the TE
Transport Module. Because the PUT Adapter is not identical to the Test Runtime Adapter (TRA), and is
proprietary, the PUT Transport Moduleis not identical to the TE's. However the concepts are identical. The
difference liesin the function names used by the PUT's adapter. Wire interface function calls may or may not
have the same names as the TE's depending on the operating systems used and version numbers. Thisis not
part of PLT per se and, thus, is not technically in the present document's scope. However, since to test the
PLT, the team had to make a PUT, thisisincluded in the work. (There is currently no vendor hardware or
software implementation/prototype to test against.);

. Interface (PUT-Side): thisinterface is defined by the PUT Adapter and, as such, is proprietary. However, it
may very well be that the PUT developer may wish to use the very same API and its description for her
interface. Aswill be seen later, the interface contains al the information necessary for testing the protocol
using ETSI's ATSs. Thus, there will be many elements that the Interface must use already specified in the
PLT-side API. Of course, the PLT-side API isin the public domain and encouraged for use by all;

. PUT Adapters: during development, the PUT designer places an APl with primitives under the Protocol in
order to drive the lower layers. She may as well have placed an adaptation layer for design reasons. Thisis
proprietary and not a part of the transporter. It may or may not exist. In addition, the designer may decide to
combine the PUT Adapters with the Transport Module to make one entity. For our work to make the test PUT,
PUT adapters, interface, and Transport Module were one entity.

However, thereis aneed for an API between the testing executables and the transport module to execute methods and
pass data back and forth. For inexpensive development, this API should be ssmple in concept and practice for both
methods and data.

4211 The data on the wire interface

For classic protocol test equipment that tests protocols on layer 2 or above, the PHY layer isbuilt into the test
equipment. Thus, for radio protocols, aradio PHY layer is part of the conformance test equipment. To do so requires
the equivalent of designing and building a radio-based device similar to the IUT for mounting on atest platform. The
TE then transmits and receives messages/PDUs/packets/frames or whatever over this PHY interface using the test suite
asthe criteriafor which messages must be sent and should be received.

Thisis prohibitively expensive unless there is an assured market that will defray the high costs. Thisis not always the
case. The PLT replaces the expensive PHY layer with an inexpensive one.

Layer 2 protocols often control Layer 1 behaviour. For example, the BRAN DLC protocols have measures for dynamic
frequency selection, transmission power adjustment, frequency shifting, antenna characteristics modification, etc. The
ETSI ATSsinclude observing if thisPHY layer behaviour conforms with the instructions given by the Layer 2 DLC
protocol. For example, say that a DL C protocol function changes the transmitting power to compensate for rain fading
with atwo-way handshake. Say that the TE is the access point and the IUT is the mobile terminal. The test case would
have TE sending the command to increase the power. It would then wait to receive the mobile terminal's
acknowledgement plus it would measure the received power both before and after the command to seeif the behaviour
was correct.

Sincethe PLT iswire-based, it does not measure received power. However, the test case requires the measured power
to assign a verdict. Something has to be done. In this case, the measured power is sent on the wire in adata field.

In essence, the data on the wire interface is a snapshot of the environment affected by the protocol's behaviour plus the
protocol messages sent and received between the PLT and PUT.

What doesthe PLT do? It transmits and receives " message snapshots”.

What is a"message snapshot"? Just as a snapshot of a person is the person and the environment around him at apoint in
time, a message snapshot is the protocol message (a PDU for example) plus the environment/context at the point in time
when the PDU is received or transmitted. The environment includes things like rx/tx signa strength, rx/tx signal
frequency, lower layer information such as MAC ID, terminal 1D, PHY modes, frame number, timer information,
connection IDs, grant information, frame headers, etc. The list could be endless.

The environment/context is the only information needed by the implementation, prototype, or tester to determine the
behaviour associated with the protocol message in the snapshot. It is the data needed for the TE to test the PUT. For the
PUT, it isthe data it needs to exhibit the expected behaviour. To create an environment/context and then to transform
that environment into the needed datais a major reason for the expense of full-featured TE.

ETSI

12 ETSI TR 102 327 V1.1.1 (2004-04)

For the PLT, on receiving a message snapshot, it determines if the message with its context is expected. If so the test
continues or afinal Pass verdict is assigned. If not, an Inconclusive or aFail verdict is assigned. In sending a message
snapshot, the PLT forwards a protocol message and that message's context/environment to the Protocol Under

Test (PUT) and then determinesif the PUT's response conforms to the expected behaviour.

The PUT takes the snapshot's message, determines the context from the snapshot, and reacts hopefully in accordance
with the base specification. All thisis carried on the wire.

The snapshot/context also includes test architecture/configuration information. Simple tester-to-device and concurrent
tester-to-devices testing is possible with the PLT and the wire data. Shown in figure 4 are just two of many testing
configurations possible witha PLT.

PUT Hard-wire PLT PUT
connection (2nd instance)
Hard-wire PLT
PUT connection

Device-to-Device Test Architecture (1t instance)

PUT
(3rd
instance)

Tester-to-3 PUT Test Architecture
Figure 4. Two test configurations with a PLT

In the left hand, the configuration is straightforward and the wire need not carry configuration information. The right
hand case is different. The tester will be sending messages to all three PUT instantiations. The destination of each
message has to be indicated in some manner on the wire interface. Similarly, each PUT's response must be tagged with
the originating PUT in some way as well.

4.2.2 Advantages and spin-offs

The advantages of the PLT solution with its APl and wire interface are;

. testing of protocol implementations without using expensive test equipment;

. validation of the ATS's correctness without needing expensive test equipment. This validation also occurs
sooner because the waiting for the manufacturing expensive testing equipment is eliminated;

. protocol devel opment/debugging and the writing/running of tests can occur in parallel thereby reducing the
time-to-market and reduced costs because prototype and test debugging occur during the development process,

. although designed for the test equipment side in conformance testing, the protocol implementor can take the
components developed for the PLT and "plug" them, with some modification, into the PUT sidein order to run
the conformance tests.

A PLT hasdirect application to protocol development as well.

. implementors devel oping the protocol for which a PLT's message snapshot has been already designed can use
the snapshot to determine what environmental variables are necessary;

. the PLT's API can possibly be used as part of the PUT's interface to lower protocol layers,

. if the protocol developers want to use the PLT to test their implementation, they can use the hard-wire
transport module in the PLT to provide the glue between their implementation and the hard-wire connection
(with some modification if the operating system and programming languages are different).

ETSI

13 ETSI TR 102 327 V1.1.1 (2004-04)

Thiswork also provides spin-offs that, in the long run, could be more beneficial than the above advantages:

. the API is multipurpose. Itsintended purpose is for conformance (device to test equipment) testing, but it can
also be used in device to device testing at interoperability events, bake-offs, and plugfests. Other possible
purposes are providing an interface between an implementation and a simulator or between a simulator and
test equipment;

. the results provide an inexpensive and quick way to validate the correctness of the base specification's
correctness. The combined use of a protocol prototype "moving" with a base specification's devel opment with
tests "moving" along with the base specification's development yields quick results back to the base
specification writers;

. the concept can be applied to any entity for which test cases are written. The concept is not limited to protocol
layers. One possible application is the testing of abstract representations in software of physical layer
characteristics. For example, this concept can be used to test the effects of a specific waveform anomaly that
may not be producible by electronics. (In this case, the test equipment side costs are minimal but it may be too
expensive to convert a hardware radio frequency interface into a software interface.) "Frame" testing is also
another possibility.

4.3 PLT components

The following text describes in detail the generic PLT components requiring devel opment: the Wire Interface Data, the
Application Programmer Interface (API), and the TE Transport Module. Clause 5 presents these components as
developed for the HIPERACCESS DL C protocol. The Test Runtime Adapters (TRA) and the Wire Interface (WI)
components are off-the-shelf and were not developed. The following components were devel oped for having a PUT to
test against: PUT transport module, the Interface (PUT-Side), and the PUT Adapters. The effort in their development is
not to be counted with that for the PLT.

4.3.1 Wire interface data/wire datagrams

Wireis used to transmit single or multiple PDUs or frames to and from a protocol implementation without the need of
concrete lower layer implementations. It also carries the additional information needed by the PLT and PUT entities.
The transport service provided by lower layer protocolsis provided now by the transporter.

The concepts follow a message-oriented communication paradigm rather than stream-oriented or operation-oriented
paradigms.

The wire interface data replaces the protocol's transport and physical layers.

Proper operation of the protocol layer within the PUT typically depends on additional information that is not included in
the PDUs. Thisinformation is frequently related to the lower layer protocols. Examples for alayer 3 protocol might
includeaMAC id. In addition, the APl concept must identify PCOs (Point of Control and Observation) and/or SAPs
(Service Access Points) if required by the receiving side. Other information optionally included in the API might be text
strings for operator instructions.

Typicaly aPUT is embedded in an environment that offers different types of information including (but not limited to)
physical layer and other parameters. Real world protocol implementations might use on thisinformation asis or
perform operations upon it. The wire interface data is this information between the PLT and PUT or between PUTsin
the case of interoperability testing.

EXAMPLE: A test for an (imaginary) protocol might be for a change between two different physical modes.
The tester indicates to the PUT that it should change the physical mode; the PUT acknowledges
the change using the old physical mode; PUT starts using the new physical mode and indicates that
hand-over has taken place using the new physical mode.

Just from this short example it can be seen that both entities, the PUT and the PLT, need write and read accessto
environmental information like the actual physical mode used. The PUT in this example would instruct the underlying
layer that a physical mode change should occur (write access). The PLT would have some kind of external operation
that accesses the underlying layer and queries the actual physical mode used.

If areal system would be tested instead of a PUT, the tested protocol would communicate with its lower layer. The real
test device would implement the external operations by accessing the lower layers and reading this information out.

ETSI

14 ETSI TR 102 327 V1.1.1 (2004-04)

However in a PLT/PUT scenario, this necessary information must be communicated between PUT and PLT. Thisisthe
wire interface data.

The transmitted data must have a structure so that modules can access, manipulate, and store values. This structure
includes both the messages and the snapshot/context/environment. We call encoded structure with the message and
message's environment the Wire Datagram. The Wire Datagram provides the framework to transmit this information
between the PLT and PUT.

The Wire Datagram (WD)

header bod
1% Y

Wire Datagram
Figure 5: Structure of a Wire Datagram

The Wire Datagram consists of two parts, its header and the body or payload (see figure 5). The header contains the
snapshot/context (PUT-related lower layer information, PCO/SAP information and possibly additional information)
while the body/payload carries the encoded PDUSs, frames, etc. The PDU is encoded according to the protocol
specification with either standardized methods (e.g. ASN.1 PER) or custom-made transfer syntax.

Write access of aPUT/PLT environment/context would update the header of the Wire Datagram. Read access by a
PLT/PUT would use the results to make a decision.

For the purpose of this work we assume that the Wire Datagram is transmitted and received via buffers of byte arrays.
However, its type specification isindependent of the means used to store, transmit, and receive the data. We have
defined a buffer implementation (see figure 5) for the Wire Datagram.

offset =2 | he11
ength =
¥ >V

I complete data buffer %
area to be used —1

Figure 5a: Possible internal structure of a DatagramPacket

According to the present document only the data area as described by the parameters offset and length are used.
However, without specifying any particular parameters for offset and length the complete data buffer will be used to
store information.

The API focuses on the communication of Datagrams. Within the API, Wire Datagrams are further specialized in order
to provide access to the header information independently from their encoding. The encoding of the header information
depends on the field of application and can vary from standardized encoding rules to self-defined encoding rules. Asthe
framework is focusing on an early stage of the test suite and protocol specification phase, it may be necessary to change
the encoding over time.

Wire Datagram requirements are summarized as follows:
. the transporter relies on a given functionality independent of the specific contents;

. the PLT/PLU implementation requires an abstract access to the contents of the Wire Datagram independent of
the encoding and independent of the transporter implementation.

ETSI

15 ETSI TR 102 327 V1.1.1 (2004-04)

Test Adapter’s View

Test Runtime
Adapters —

AP' E——— ! E— .<\\\\

Transporter

Transporter’'s View

NOTE: Itis understood that the transporter accesses also other data from a DatagramPacket, in particular socket
addresses and port number. However this visualization is omitted for readability reasons.

Figure 6: Different views via specialized interfaces

Figure 6 shows how different actors use a Wire Datagram. While the Test Runtime Adapter accesses (read/write)
individual elements of the datagram, the transporter perceives the datagram only as payload for the underlying transport
mechanism, e.g. UDP. The upper view is always specific to a particular protocol or technology. Clause 5.3 describes the
Wire Datagram for the HIPERACCESS DL C protocol.

Use of the Header
The header fields represent the environment that the PUT and the Test Equipment need for operation.

For example, the base specification requires specific behaviour when the received power level does not meet certain
conditions. In actual deployment, rain fading can cause decreased received power requiring the protocol to adjust power
levels. To ensure that an IUT conforms to the standard in such events, testing an SUT or a PUT requires in some way
those reduced power levelsthat are part of its environment.

It isdifficult to make rain in atest environment. In testing an SUT, the Test Equipment may have some built-in function
to reduce transmission power to provoke the expected behaviour. In testing an IUT, there may be a different way to
provoke the behaviour. Also, the test writer does not usually know how the tester will use the Test Equipment to run the
test. For example, to reduce power levels one tester may reduce transmitting power from the Test Equipment; another
may set up agrid connected to ground between the Test Equipment and the SUT; and another may simply take the SUT
and walk away far enough from the Test Equipment. To cover these possibilities, the test writer usually creates a " stub"
or a hook to the environment that controls the transmission power. The Test Equipment manufacturer and the tester are
left to their own devices on how they want to control the power. The interface between their method and the test suiteis
this"stub” or hook. In TTCN-2, thisinterfaceisa TSO (Test Suite Operation).

To invoke the protocol actions for adjusting power levels, the PUT's controller must detect the change and then
command the PUT to start the transaction to adjust the power level. Thisis where the header field comesin. The header
field "rxPower" carries the information that the PUT's controller needs to determine if the power levels need adjustment
or not.

One can see from this example the heuristic why TSOs are very good indicators of header fields.

Clause 5.3 discusses the HIPERACCESS header in detail.

ETSI

16

4.3.2 The API

The well-known socket concepts have been adopted for defining the generic interface structure shown in figure 7.

ETSI TR 102 327 V1.1.1 (2004-04)

<<interface>>
org::etsi::ttcn:udp::DatagramSocketAPI

close(): void

connection(in remote: SocketAddress): boolean
disconnect(): void

isConnected(): boolean

receive(in packet: DatagramPacket, in timeout: int): boolean
send(in packet: DatagramPacket): boolean

org::etsi::ttcn:udp::DatagramPacket

<<interface>> \

getData(): byte[]

getLength(): int

getOffset(): int

getSocketAdress(): SocketAddress

setData(in buf: byte[], in offset: int, in length: int): void
setData(in buf: byte[]): void

setLength(in length: int): void

setSocketAddress(in address: SocketAddress): void

\\\\ \N
Y <<interface>>
SO org::etsi::ttcn:udp::SocketAddress
\\\\
N

getHostName()
getPort()
setBzHostName()
setPort()

Figure 7: Abstract APl description

A Dat agr anBocket APl USeS Dat agr arrPacket s in order to communicate with a remote peer entity as described viathe
Socket Addr ess. On thislevel of abstraction the API defines the means of implementing communication between the
PLT and the PUT. In addition does this level of abstraction allow the reuse of the implementation on both sides?

All operations at the interfaces have been defined using UML notation. This clause specifies only interfaces, not any
concrete implementations. The operations definitions are defined using the following template.

Signature

Si gnature

In parameters

Description of data passed as parameters to the operation from the calling entity to the called

entity.

Return value

Description of data returned from the operation to the calling entity.

Effect

Behaviour required of the called entity before the operation may return.

The Dat agr anSocket APl defines an interface on how a Test Runtime Adapter can communicate with the Transport
Module. Basicaly, it abstracts from any protocol test suite the relevant additional information in the message header.
The Dat agr anSocket APl together with the Dat agr anPacket interface and the Socket Addr ess interface focuses
completely on the communication between PLT and PUT.

Figure 7 highlights the location of the API. The Test Runtime Adapter uses implementation of the Dat agr anPacket API
from the Transport Module and therefore does not have not to deal with transporting packets to the PUT.

The SocketAddress

A Socket Addr ess defines the host and the port to be used. Within the Dat agr anSocket APl the Socket Addr ess will be
used for described the local as well as the remote addresses.

ETSI

17 ETSI TR 102 327 V1.1.1 (2004-04)

4.3.3 Wire transport module/Adaptation layer

The Transport Module takes the context/environment information and PDU/message provided in the API, placesit into
the buffer discussed, and transmits it to the PUT over the wire interface in the Wire Datagram. Simply said, it formsthe
Wire Datagram given the information provided by the API.

In the other direction, the Transport Module receives the Wire Datagram as transmitted by the PUT, placesit into a
buffer, determines the API data, and transmits the data via the API to the Test Runtime Adapters.

Itisarelatively straightforward module written specifically for the operating system and version. It can be in any
programming language.

5 Implementing the PLT for the HIPERACCESS DLC
protocol

The idea of using wire for conformance testing the HIPERACCESS DL C came from successful techniques used in the
HiperLan interoperability events organized by the ETSI Plugtests™ Service. The interoperability testsinvolved two
IUTs connected viathe LAN transmitting the RLC datain UDP datagrams carried over |P. The idea was to replace one
of the IUTs with simple conformance test equipment for testing only the protocol layer. This simple equipment would
include a PC platform, the ATS aready devel oped for the protocol and the other adaptations required to send and
receive the UDP datagrams viathe TE.

One of ETSI'stest specification goalsisto validate a test suite before its publication. A test suite can only be validated
if an application (the IUT) is provided by a manufacturer. Better validation is achieved with several IUTs from different
manufacturers.

The HIPERACCESS ATS produced in prior work is source of the executable test suite part of the PLT. It is based on
the test architectures shown in clause 5.1.

5.1 Test architecture for the DLC layer

Notional UT
Lower Tester SUT
DLC PCO
DLC DLC
(ATS)
(IuT)
S e,
SAR/MAC SAR/MAC
PHY > PHY
<

Figure 8: Test architecture for DLC

A single-party testing concept is used that consists of the following abstract testing functions:

Lower Tester: A Lower Tester (LT) islocated in the remote BRAN HA test system. It controls and observes the
behaviour of the IUT.

DLCATS: A DLC Abstract Test Suite (ATS) islocated in the remote BRAN HA test system.

ETSI

18 ETSI TR 102 327 V1.1.1 (2004-04)

DLC PCO: The Point of Control and Observation (PCO) for DLC testing is located at a SAP between the
DLC layer and the MAC layer. All test events at the PCO are specified in terms of Abstract
Testing Service Primitives (ATSP defined in clause 7) containing complete PDUs. To avoid the
complexity of datafragmentation and recombination testing, the SAP is defined below these
functions.

Notional UT: No explicit Upper Tester (UT) existsin the System Under Test (SUT). Nevertheless, some specific
actions to cover implicit send events and to obtain feedback information are necessary for
complete testing. A black box covering these requirementsis used in the SUT asanotional UT as
defined in
SO 9646. Thisnotional UT is part of the test system.

The PLT issituated at the left hand side in the shaded DLC block. The PUT is on the right hand side in the black DLC
(1UT) block. The lower SAR/MAC and PHY layers have been replaced by the API and wire data transport module. The
radio interfaceis, of course, replaced by the UDP/IP wire interface. The lower test is part of the test execution system.
The Notional UT and SUT are prototype-dependent. They are usually the test engineer running the prototype on a PC.

51.1 Test configurations

5.1.1.1 Test configurations for AT

Two configurations are defined for AT testing and used in the ATS.

AP AT

+—> (1UT)
(T ester)

Figure 9: Normal configuration for AT

The normal configuration (see figure 9) is for testing the behaviour between the AT and only one AP.

T ester AT
AP1
D E— (UT)
= 4
AP2 T
-~

Figure 10: Load levelling configuration for AT
The load-levelling configuration (see figure 10) is used when the AT hasto interact with two APs. In that case, the two

simulated APs are configured to be either a multi-sector AP or two separate APs. Concurrent TTCN functions are used
for testing this configuration.

ETSI

19 ETSI TR 102 327 V1.1.1 (2004-04)

5.1.1.2 Test configurations for AP

One configuration is defined for AP testing.

AT AP

- > (IUT)
(T ester)

Figure 11: Normal configuration for AP

The normal configuration (see figure 11) isfor testing the behaviour between the AT and only one AP.

5.2 PLT components

The below discussion uses figure 2 as the basic components diagram.

52.1 Existing components

The components described below exist already and were taken " off-the-shelf* and used as such.

5211 Test system
The test systemis TTCN3-based.
According to ES 201 873-6 [4] atest system contains, as a minimum, the following components:

. atest management entity;

atesting language execution environment;
. one or more codecs; and
. an adapter to the test system used.

This structure is presented in figure 12.

ETSI

20 ETSI TR 102 327 V1.1.1 (2004-04)

SA System Adapter PA Platform Adapter

SuUT

Figure 12: A TTCN-3 Test System

The TE, the TTCN-3 Execution Environment executes the TTCN-3 specification. The communication with the System
Under Test (SUT) is performed by the System Adaptor (SA), while the implementation of time and of TTCN-3 external
functions is done within the Platform Adaptor (PA). Otherwise said, the System Adapter communicates with PUT. The
System and Platform Adaptors are the TTCN-3 equivalent of the Test Runtime Adapters shown in figure 2. The test
execution control maps to the TTCN-3 Test Management component. Component Handling is not shown in

figure 2. It isused for concurrent/parallel testing where there is more than one IUT or where two or more components
of the test suite are executed at the same time. The interface between the TE and the SA and the TE and the PA is
defined within the TRI part of TTCN-3.

TCI definesinterfaces for the implementation of codecs that encode and decode data present in the TE according to the
specified encoding rules.

The following clauses present the individual components in more detail.

5.2.1.2 Abstract Test Suite (ATS)

TS 102 149-3 [2] has been developed within ETSI in TTCN-2 and contains currently 384 test cases organized into
116 groups. The ATS consists of 179 ASN.1 and 2 TTCN (PDU) type definitions and it uses 55 test suite operations. A
description of the test architecture and the three test configurations necessary for the ATS were presented above.

The running of the ATS against a manufactured implementation usually requires the expensive test equipment
associated with conformance testing. However, the present document presents running the ATS against a protocol layer
implementation and requires much simpler test equipment—the PLT. It isimportant to emphasize that for testing with
the PLT and for validating/building the test system prototype that no modification of the ATS hasto be performed.
5.2.1.3 Test system prototype

The Test System Prototype has been developed on the basis of the TTCN-2 ATS which was then trand ated
automatically into its TTCN-3 equivalent.

The Test System Prototype uses only standardized interfaces and follows a generic test implementation framework
derived from the generic test system architecture as presented in clause 5.2.1.1. The following steps are part of the
implementation process:

1) Adaptation to the test system.
2) Implementation of codecs.

3) Integration of the test management functions.

ETSI

21 ETSI TR 102 327 V1.1.1 (2004-04)

Test suite validation should rely on the execution of the test suite. There are other validation methods such as
wal k-through that are useful aswell. But nothing is better for validation then executing the test suite against something.

For this work, the test validation process was split into three steps.
Step 1

The implementation of the HIPERACCESS Test System Prototype requires the implementation of a System

Adapter (SA) and Platform Adapter (PA) as defined in ES 201 873-5 [3]. The purpose of the SA isto implement the
communication aspects of the ATS. In other words to implement the sending and receiving of messages. Asthe
implementation of and the access to underlying communication layers vary from test device to test device, thisstepis
referred to as adaptation to the test system. Different test devices are used for different test purposes. In the context of
the HIPERACCESS test system prototype, the test device is defined to be a PC offering UDP/IP communication. For
the implementation of the System Adaptor (SA), built-in operations of the Java SDK have been used to realize a
UDP/IP connection. Adapting the test system prototype to other lower layers requires changing only the SA
implementation.

This step included:
. the implementation of the test system adapter on the test tool side by respecting the defined UDP/IP interface;

. the generation of coding/decoding functions from ASN.1 HIPERACCESS protocol specification using PER
rules as specified in the DLC Technical Specification. As different projects have shown, the implementation of
a codec can congtitute a significant amount of time, especially in a Protocol Layer Tester scenario. The
regquired amount of effort heavily depends on the type of encoding (e.g. text based, tabular based, etc.) and the
notation used to describe this encoding. Codecs are discussed further in clauses 5.2.1.3.1, 5.2.1.3.1.1 and
5.213.1.2;

. the trandation of the test suite from TTCN-2 to TTCN-3. The source ATS was written in TTCN-2. Because of
the standardized TRI and TCI for TTCN-3 and the availability of test equipment with these interfaces, the
TTCN-2 ATS was converted automatically to an equivalent TTCN-3 ATS;

. the compilation of the TTCN-3 test suite.

While the interfaces for the first step is defined in ES 201 873-5 [3], the interfaces for step two and three are defined in
ES 201 873-6 [4].

Step 2

The task of encoders and decoders (short: codecs) isto translate the abstract data as defined in an abstract test suite into
its concrete representation. This concrete representation is referred to as encoding or coding. In general all datathat is
exchanged with the "real” test system (also the Test System Prototype) has to be encoded. Although the encoding of the
same data might be different and depends of the usage of the data, typically the term encoding relates to the encoding
related to the peer entity, the IUT. Thus the implementation of the HIPERACCESS Test System Prototype requires an
implementation of the encoding as specified in the HIPERACCESS specification, i.e. ASN.1 PER encoding.

Step 3

The last step refers to accessibility of the HIPERACCESS Test System Prototype. Executing an implemented test suite
means that for starting and stopping, atest run must be available. Thistask typically depends on the test device and,
therefore, on the test management capabilities offered. The targeted platform for the HIPERACCESS Test System
Prototype is a standard PC. Therefore the availability of atest management system can not be guaranteed. However, the
used test execution environment TTrun offers the basic functionality of a graphical test management system. Thus only
the used test management has to be configured. Migrating the Test System Prototype onto a physical test device would
require some additional resources for thistask. However this would be in the responsibility of the test solution provider,
and had been therefore not considered.

The experimental HIPERACCESS Test System Prototype was built on PC/Windows 2000 using Java 2 SDK with the
TTCN-3 runtime environment (TTrun) from Testing Technologies. TTrun implements the TTCN-3 Runtime Interface
specified by ES 201 873-5 [3].

ETSI

22 ETSI TR 102 327 V1.1.1 (2004-04)

5.2.1.3.1 Codecs

One of the most time and resource consuming task in test suite implementation is to implement the codecs . The codec
trandates the abstract data as described in TTCN into its concrete representation and vice versa. In general, protocols
define either their own encoding scheme by using a so called "tabular" encoding, or they rely upon standardized
encoding rules such as ASN.1. Examples for these encoding rules are BER and PER. However, the availability of
defined and standardized encoding rules does not solve the problem that that codecs have to be integrated into the test
environment.

InaPLT context, codecs for two tasks can be identified. On one hand, codecs that encodes/decodes ASP and PDUs for
the peer communication with the PUT are needed. On the other hand codecs for the encoding and decoding of the Wire
Datagrams are needed. While the encoding rules for the first one are specified by the appropriate protocol standard, the
latter one is defined as part of PLT development. The encoding rules for ASPs and PDUs cannot be modified by the
PLT developer while those for the PUT's Wire Datagram are the devel oper's choice.

52.1.3.1.1 PDU and ASP Codecs

HIPERA CCESS defines protocol data units using the ASN.1 with encoding rules. For the implementation of the PER
encoding rules, different commercial tools and software libraries are available. However, asit already has been stated
before, the availability of tools that produce standard compliant encodings does not solve the problem of integrating
theminto the PLT.

Existing encoding/decoding tools typically offer avalue API in order to fill in the tool's proprietary data structures.
Afterwards the codec operates on this codec internal data structures in order to generate the encoded representation of
this data structure. Figure 13 shows this process.

Codec internal
representation

Bit representation

Value API

Figure 13: General operation of codecs
Integrating existing codecs into an existing environment like PLT's TTCN-3 conformant runtime environment is

reduced to the task of translating an application (i.e. tester) internal data structure into the codecs' internal data structure
and vice versa (seefigure 14).

As both the PLT's and the codecs' runtime environment are not tailored for a particular purpose, tooling for solving this

task generally isavailable.

Codec internal
Application internal representation
representation

Figure 14: Tree - Usage of encoders

ETSI

23 ETSI TR 102 327 V1.1.1 (2004-04)

Thus the task of encoding PDUS/ASPsinaPLT can be solved efficiently aslong as:
a) standardized encoding rules have been specified in the protocol standard;
b) standardized runtime environments are used.

HIPERA CCESS defines the usage of standardized encoding rules (PER) instead of transfer syntax tables. Thus, existing
coding tools have been used for the implementation of the PDU/ASP codecs. As the test environment offers a
standardized coding interface (TCI-CD), the integration of the codec resulted in the application of an available
TCI-to-Codec trandator. As aresult, the resources required for this integration are remarkably low.

However, the fact that off-the-shelf codecs offer only proprietary interfaces limits the applicability of this approach. If a
standardized coding interface for codec generators would have been available, PLT implementers or users could have
selected codecs according to their interface features, thus increasing acceptance and applicability of the PLT approach
in the area of standardized encoding rules.

5.2.1.31.2 APIs Datagram Codecs

Asdescribed, a PLT exchanges wire datagrams with the PUT. Obviously, this datagram must be encoded and decoded.
Clause 4 introduced the API for construction and accessing these datagrams. However this accessis at an abstract level.
In order to implement a complete PLT the abstract datagram has to be encoded.

The HIPERACCESS wire datagrams have been defined using ASN.1 and the HIPERACCESS API has defined the read
and write access on the information that has been defined using ASN.1. PER has been chosen because of the availability
of codecs. In fact, the same tools used for PDU encoding have been used to gain time and resources. In redlity, the
codec's internal structure had to be accessed in order to provide the API the necessary information. The fact that
standardized notation (ASN.1) together with standardized encoding rules have been chosen to define the datagrams and
their encoding has improved the reliability of the implementations. The manual implementation of codecsis by no
means trivial and is, in fact, quite error prone.

5.2.2 Developed components

The following presents the components that had to be developed for PLT. Additionally, PUT components had to be
developed since a PUT prototype was unavailable at the time of testing.

5.2.2.1 Wire datagram

The ASN.1 description of the wire datagram is at annex A. Annex A aso gives an example of a set of values for one
wire datagram.

Asexplained in clause 4, the wire datagram has two parts: the header containing the context/environment and the body
that contains, in the HIPERACCESS case, a PDU.

Thetable 1 lists each header variable and its definition and use.

Table 1: Header field use

Available as a common time reference between the IUT and TE. The present document
discusses clocking in clause 5. This field is not used in the ATS directly. Testers may decide to
use it for determining timer expirations.

f rameNbr

The DLC protocol specifies message exchange if an invalid Control Zone is detected. Because

cont r ol ZoneSt at us . ’ A .) :
the control zone is not included in PDUs, the field is part of the TE and PLT environment.

The DLC protocol specifies message exchange if an invalid Sector Id is detected. Because the

si dSt at us
control zone is not included in PDUs, the field is part of the TE and PLT environment.

After ranging and in the DL, indicates that the AT can transmit in the UL. Because the normal

nor mal G ant St at us ; : !) . .
grant is not included in PDUs, the field is part of the TE and PLT environment.

In the DL, indicates that the AT can transmit ranging PDUs, Also causes exception conditions if
set to TRUE after initialization. Because the ranging grant is not included in PDUs, the field is part
of the TE and PLT environment.

rangi ngG ant St at us

Certain PDUs are sent over the primary connection ID. Because the connection IDs are not
included in PDU transactions in this context, the field is part of the TE and PLT environment.
Connection IDs are included within some PDUs as part of setup, modification, and closing
procedures. This field does not have an impact on those procedures.

primaryC d

ETSI

24 ETSI TR 102 327 V1.1.1 (2004-04)

basi cGi d Certain PDUs are sent over the basic connection ID. Because the connection IDs are not
included in PDU transactions in this context, the field is part of the TE and PLT environment.
Connection IDs are included within some PDUs as part of setup, modification, and closing
procedures. This field does not have an impact on those procedures.

secondar yGi d Certain PDUs are sent over the secondary connection ID. Because the connection IDs are not
included in PDU transactions in this context, the field is part of the TE and PLT environment.
Connection IDs are included within some PDUs as part of setup, modification, and closing
procedures. This field does not have an impact on those procedures.

Some concurrent testing is required. Thus, two or more of the same type of transaction can occur
in parallel. The protocol uses the transactionld to distinguish the transaction instances. Because
the transaction ID is not included in PDUs, the field is part of the TE and PLT environment.

transactionld

downl i nkPhyNbde Phy Mode is a layer 1 (Physical Layer) attribute thus not an ?ntegral part of the DLC layer. The
DLC protocol is used to change Phy Modes. Protocol behaviour also depends on the Phy Mode.
The actual Phy Mode is not included in PDUs; it is part of the TE and PLT environment.

upl i nkPhyMbde See discussion for downl i nkPhyMbde above.
r xPower See the discussion in the text above this table.
f requency frequency is a layer 1 (Physical Layer) attribute thus not an integral part of the DLC layer. The

DLC protocol is used to change frequency. Protocol behaviour also depends on the frequency.
The actual Phy Mode is not included in PDUs; it is part of the TE and PLT environment.

enr cnr is alayer 1 (Physical Layer) attribute thus not an integral part of the DLC layer. The DLC
protocol is used for CNR reporting.

apt The ATS has concurrent testing for two APs in parallel. This field identifies the AP in question.

apcl d The DLC protocol specifies message exchange if an invalid AP ID is detected. Because this AP

ID is not included in PDUs, the field is part of the TE and PLT environment.

5.2.2.2 The API for HIPERACCESS DLC

In order to facilitate devel opment, the API has been refined with specialized interfaces that provide useful operationsin
order to access the API header elements without dealing with any API coding related issues.

Although the API concept could be abstracted from its transporter and implementation technology, a UDP/IP
transporter is assumed hereafter.

A UDP/IP based transporter uses UDP communication on both sides, the PUT and PLT, for communicating PDUs or
frames.

NOTE 1: For readability reasonsin the following the term PDU is used whenever data send to and received from a
protocol layer is referenced. Depending on the abstraction chosen in the test suite, the relevant data
elements might also be frames, multiple PDU, etc.

The API transfers information between the Test System and the IUT(s). The body contains the protocol message units
that are, in this case, DLC PDUSs. The header contains the information needed both by the IUTs and the Test system.

The Test system information requirements for running the test cases were determined by a hand review of the test cases
to determine what additional information over and above the PDUs were required.

Thisinterface between the test system and the UDP datagram was developed and is shown in figure 15.

ETSI

25 ETSI TR 102 327 V1.1.1 (2004-04)

<<interface>>
org::etsi::ttcn::udp::DatagramPacket

l

<<interface>>
org::etsi::ttcn::HA::HADatagramPacket

setFrameCounter(in int value):void
getFrameCounter():int
setControlZoneValid(in boolean value):void
getControlZoneValid():boolean
setSidValid(in boolean value):void
getSidValid():boolean
setNormalGrantPresent(in boolean value):void
getNormalGrantPresent():boolean
setRangingGrantPresent(in boolean value):void
getRangingGrantPresent():boolean
setPrimaryCid(in int value):void
getPrimaryCid():int

setBasicCid(in int value):void
getBasicCid():int

setSecondaryCid(in int value):void
getSecondaryCid():int
setAssignedCid(in int value):void
getAssignedCid():int
setTransactionld(in int value):void
getTransactionld():int
setDownlinkPhyMode(in int value):void
getDownlinkPhyMode():int
setUplinkPhyMode(in int value):void
getUplinkPhyMode():int
setRxPowerMeasured(in int value):void
getRxPowerMeasured():int
setCarrierFrequency(in int value):void
getCarrierFrequency():int
setCnrMeasured(in int value):void
getCnrMeasured():int

setAPT(in int value):void

getAPT():int

setApcld(in int value):void
getApcld():int

setBody(in byte[] value):void
getBody():byte[]

Figure 15: Interface between Test System and UDP datagram

Asit has been explained above, the Dat agr anPacket interface provides generic means for the communication via the
transporter. But thislevel of abstraction isinsufficient when atest adaptation has to access elements of the API header
and body. Asit will be shown below, the API header contains various types of information where operations on bit
level for providing and retrieving the datais inappropriate.

Implementations of the specified interface HADat agr anPacket hides the need of handling the encoding/decoding of API
messages directly within the test adapter. Datagram implementations can therefore be considered to provide the coding
for different APl messages. The users, i.e. the test adapter implementers can therefore focus on the provisioning of the
necessary APl information. These are techniques borrowed from classical object oriented software engineering that
allows the implementation of reusable software components.

Figure 15 displays the speciaized API definition for a HIPERACCESS API datagram. In the case wheretesting is
focused solely on the DLC layer, asingle specidization is sufficient. However, if additional layers of the protocoal, like
the user plane shall be tested too, those layers might need different information in an API header. Thus, different types
of datagram could be necessary for providing distinct information.

An implementation of HADat agr anPacket provides the encoding/decoding of additional header information like a
primary CID, and of the APl message body.

The Dat agr anPacket and its specialization performs a central role in the encapsulation of the APl message and
therefore increases reusability. On one hand, the implementations of the APl messages (HADat agr anPacket) can be
reused within a Test Runtime Adapter and PUT adapter if required. On the other hand, an implementation of the
transporter is completely independent of the APl messages it transports and thus reusable for different kind of PLTs.

ETSI

26 ETSI TR 102 327 V1.1.1 (2004-04)

Relation to TRI System Adapters

The DatagramSocketAPI has been designed considering the needs of a TTCN-3 System Adaptation (SA) Layer
implementation. According to TRI the SA implements the communications aspects of a TTCN-3 test suite. For the PLT,
this means encoding/decoding of APl messages and their sending/receiving. Clause 4 introduced the concept of a
Protocol Layer Tester (PLT) and described the functionality of Adapters and the Transporter.

For the TRI, the SA implements the Test Runtime Adapters as well as parts of the transporter.

Using the concepts of the Dat agr anBocket APl a possible test case execution results in the following message exchange
between the participating entities.

Displays how a non-concurrent test sui
: TTCNEnvironmet : TestAdapter creates the datagram socket RemoteEnd : DatagramSocketf
—_— displays the relationship between the
TRI operations and the datagram socket
operations
TestSystemUser

I

I

D‘] l
startTestCase |

“ = I

LocalEnd : DatagramSocketf\PI
triExecute+estcase(TriTestCaseId,Tri@rtldList): TriStatus
-

create

connect(SocketAddress): void |

L
triSend(TriCoLrponentld,TriPonld,TriAddrisslriMessage): TriStatus

send(DatagramPacket): void
o

transmit
e —————— T ———— T T
I I | I
I I = :
| | transmit
receive(DatagramPacket): void _ T
S i
I I

triEnqueueMsg(ﬁortld,TriAddress,TriCompor]entId,TriMessage): void

Figure 16: Starting a test case and using the DatagramSocketAPI

Figure 16 displays the necessary steps for a complete send and receive cycle. After the user triggers the execution of a
test case at the test environment, at ri Execut eTest case operation istriggered within the SA according to TRI. Hereiit
is assumed that the creation of the Dat agr anSocket | npl is performed at this point. In a concurrent test configuration
scenario, the creation of the Dat agr anSocket APl implementation could also be postponed to the occurrences of a

tri Map(). For simplicity reasons, we assume that a non-concurrent test scenario is described by figure 16.

From this point in time the test suite is able to receive messages from the PUT.

NOTE 2: The PUT ismodelled in this figure in having an anal ogous implementation of the DatagramSocketAPI.
Although thisis unnecessary, the PUT will use functionality similar to the ones defined within the
DatagramSocketAPI approach within the PUT adapter.

ETSI

27 ETSI TR 102 327 V1.1.1 (2004-04)

Thusthe Dat agr anSocket APl is connected to the PUT using the connect operation. Sending a message from within the
test suite will trigger atriSend operation at the SA. Thiswill result in sending the message within aDat agr anPacket to
the PUT using the send operation on the Dat agr anBocket API , after having encoded the test suite PDU/ASP into the API

message.

Processing a message received from the PUT will be identified by a successful call to receive on the

Dat agr anBocket API . The return Dat agr anPacket will contain the APl message sent by the PUT. The Dat agr anPacket
contains the encoded APl message. The PDU/ASP will be extracted and enqueued within the test system using the

tri EnqueueMessage() operation of the TRI interface.

5.2.2.3 Wire transport module

The Wire Transport Module is the software code required to place/extract the API information into/from the Wire
Datagram structure and send/receive the datagram on the wire. Annex C presents the Java code for the Wire Transport
module.

5.2.3 Clocks and timing

A detailed study was made of clocks and timing to determine how to best employ them in the PLT. Annex D presents
that study.

5.2.4 Heuristics for defining an API
During the development of the API, lessons were learned that could be applied to the development of other APIs.

The type of testing affects the API. The API for conformance testing may have more information than that for
interoperability testing. For example, signal strengths may not be needed in interoperability testing but they may be
necessary for conformance testing.

Another way of saying the same thing is that the testing configurations for interoperability testing are different from
those for conformance testing. For interoperability testing, two or more implementations are connected. In conformance
testing, test equipment is connected to one or more IUTs. Thisis afundamental architectural difference that could
require different testing information requirementsin their respective APl headers.

These heuristics apply only to conformance testing architectures.

The manufacturer of an IUT must define his own information requirements because he is the best situated to know what
the implementation's information requirements are.

ETSI isbest situated to determine what the test system's information requirements are. Thus, the following heuristics
apply only to the information requirements for the TS side of the test architecture.

The manufacturer can significantly reduce the burden of developing its API requirements by using the ETSI Test
System information requirements as a basis for its requirements.

The basic source for APl elementsisthe ATS. An ETSI ATS iswritten in either TTCN-2 or TTCN-3. The source ATS
for the APl is TS 102 149-3 [2] written in TTCN-2. TTCN-2 concepts and components such as Abstract Service
Primitives (ASPs) do not map into equivalent TTCN-3 concepts. For example, if one says ASP to apure TTCN-3
writer, that test writer would have no idea what is meant. The equivalent code structures would very possibly bein the
TTCN-3 tests but there would is no formal concept with a name to identify this code structure. Fortunately, all TTCN-2
code structures can be mapped/converted into equivalent TTCN-3 code.

Because the TTCN-2 test suite was used as one source for the API, the TTCN-2 concepts are used in the heuristics
given below. The TTCN-3 reader must perform the exercise to convert these heuristicsinto her/his equivalent TTCN-3
code constructs.

The simplest heuristic is that the APl body contains the set of al possible protocol message units; e.g. PDUS,
multi-messages, packed PDUs, etc.

A simple heuristic independent of the testing language is to include in the API header all test suite data declarations that
are not used in the body part of the API; i.e. all other data declarations not in the set of all possible messages. However
this set of declarationsisonly a subset of the API header. There may be data types in the messages that are also needed
inthe API header data. The heuristic is simple, its application is time-consuming.

ETSI

28 ETSI TR 102 327 V1.1.1 (2004-04)

The different PCO types and their values are another source of API header information. (The PCO concept is valid for
both TTCN-3 and TTCN-2.) If there is more than one PCO used in atest, the APl header must contain the PCO value.

All datatypes TTCN-2 ASPs and their TTCN-3 equivalent, except for the protocol message units, are very good API
header data type candidates.

Clocking information, like a frame number, shared between the TS and the IUT must be in the API header.

Returned TTCN-2 Test Suite Operation or Procedure types and their TTCN-3 equivalent are good API header data type
candidates. Signal strength and transmitted/received frequencies often fall into this category.

MAC-1Ds, connection numbers and/or identifiers, and their equivalents will always be in the API header.

Concurrent testing requires either multiple subsets of the APl header data or successive sending of UDP datagramsin
the same direction each of which has different APl header data for distribution to the instances being concurrently
tested. In either case, the adaptation layer must have additional logic to direct the successive datagrams to the proper
instance or to direct the same datagram to the different instances given in the subsets.

A complete API can be large. It can dominate the size of the UDP datagram. If it is coupled with alarge sized message
unit, it is quite possible to exceed system MTU limits. One way of limiting size isto send only that datathat is
necessary for the message units being transported. That is, make all API data types optional and send only that whichis
necessary. Thiswill require additional logic in the adaptation layers to determine which data elements are sent. Two
factors that decide the sent data elements are the message in the body and the test case number.

The test case number is a useful, but not mandatory, APl header field. Adaptation layer logic can key upon the test case
number to determine adaptation layer behaviour and the use of optional data elements.

The API data encoding can be in any coding scheme shared by the adaptation layers. The encoding should consider the
largest integer transported. API data types can include large integers greater than 232, Some encoding schemes cannot
handle integers larger than 232. In this case, a different encoding scheme must be used.

Always check to see if the IUT hasits own elements to add to the API header.

Additional text strings can be added to the APl header for instructing the tester, for information purposes, or for
adaptation layer control logic.

6 The SDL model as an IUT prototype

The HIPERACCESS virtual tester implementation was well advanced and no prototype HIPERACCESS protocol
implementation was yet available. Validation of the test suite against such prototypes is therefore deferred for later.

Since HIPERA CCESS standard included the executable SDL model, an attempt was made to use this as an equivalent
of an early prototype.

The goal of thiswork was aligned with resources available, which meant that proving the concept and achieving afirst
working prototype was set as a primary target.

The HIPERACCESS SDL model contained in the standard was developed primarily as precise specification of the
protocol behaviour, allowing for formal validation using state exploration tools. Such a model heeded to me modified in
order to communicate with the environment using UDP packets contained the protocol message as well asthe Wire
datagram header.

ETSI

29 ETSI TR 102 327 V1.1.1 (2004-04)

6.1 SDL model adaptation layer

In order to implement the communication with the environment of the SDL model based on UDP packets, the software
generator APIgen developed at Kaiserslautern University was used. The analysis of this software lead to a believe that
this could be successfully used for the purposes of this work. The characteristics of language components that were used
in this project such as ASN.1 encoded with PER rules for both protocol message content and the header part were
expected to create some difficulties. This anticipation was proven correct and APIgen had some difficulties to cope with
our requirements. However, Kaiserdautern University managed to produce more advanced versions of their tools able
to cope with our requirements.

In the present document, we would like to acknowledge excellent support that we received from Kaiserdlautern
University.

Theinitial SDL model of HIPERACCESS protocol contains one process specifying the protocol behaviour. This
process communicates with the peer protocol entity using HIPERACCESS protocol messages. Such a process was
supplemented with two additional processes as shown in figure 17.

ETSI

30

ETSI TR 102 327 V1.1.1 (2004-04)

block type 1(2)
RRC AP UDP BT UDP_sock.con,
- = - UDP_resolv.ind, UDP_sock.req,
s - UDP_close.ind, UDP_resolv.req,
| 5 UDP_hindok, UDP_bind, UDP_sock.req,
! | UDP_bindfail, UDP_resolv.req,
””””” pong_UDP_prep, UDP_bind,
pong_UDP_receive pingASN_UDP_send
pong_UDP_prep,
pingASN_UDP_send
UDPsignalRoute UDPgate
UDP_1:UDP_PT Lelp2
UDP_sock.con,
UDP_resolv.ind,
UDP_close.ind,
- . UDP_bindok,
api_in apl_out UDP_bindfail,
pong_UDP_receive
AP1] API_UL
API_DL Pt
api_dl api_ul
API_handler:
API_handlerType
rrcDL Bcast rrcUL
T(RRC_DL)} RIcGeneralBroadcastlnformatiori
BcastRoute
RRC_DL RRC_UL
|RRC_UL)|
RRC_RLC out B RRC_RLC_in
RRC_AP:
RRC_AP_PT
Figure 17

The original process dealing with pure protocol messagesis RRC_AP. The process API_handler is receiving outgoing
protocol messages, encoding them, adding the header part and passing the complete content as a single message type to
the UDP_1 process exclusively responsible for packing the content into UDP packets. The flow isinversein the
receiving direction - received UDP packets are passed to API_handler, the content is decoded there and the SDL signal
contained is sent to the RRC_AP process.

The principles of building the UDP adaptation layer have been successfully tried out. Experiments with the tester
communicating with the SDL model were successful. The SDL model can be compiled in the application debug mode,
which allows the use of the SDL simulator environment and user interface. Thisis particularly useful since traces of test
runs can be recorded as MSC diagrams. Equally, the ability to examine the SDL model during test run execution alows
for improved debugging in case of problems.

ETSI

31 ETSI TR 102 327 V1.1.1 (2004-04)

6.2 SDL model suitable for test validation

It would beideal if the same SDL behaviour description could be used for specification and SDL validation and for test
case validation. However, the extent to which thisis possible still needs to be established. Further work will be required
to provide guidance for SDL modelling.

7 Conclusions

7.1 Applicability to Protocols Under Test (PUT)

A PLT hasdirect application to a protocol prototype in development or testing:

« implementors developing the protocol for which a PLT's message snapshot has been aready designed can use
the snapshot to determine what environmental variables are necessary;

e thePLT's API can possibly be used asthe PUT's API to lower levelsin the protocol stock;

e if the protocol developers want to use the PLT to test their implementation, they can use the hard-wire
transport module in the PLT to provide the glue between their implementation and the hard-wire connection.

7.2 Applicability to interoperability events

The PLT isan excellent tool for use at networking and device interop events. It can be used to ensure the conformance
of the protocol layer itself. The protocol layer is only one element in the entire system specified in a standard. The PLT
allows testing of the protocol implementation separate from its surrounding systems. In this way, the tester and
manufacturer can be certain that the protocol layer conforms to the requirements.

Once the tester is sure that the protocol layer is conformant, then testing can be accomplished on the system using the
same test suite to determine if the entire device is conformant to the base standard!

7.3 Applicability to full-featured test systems
The PLT specification provides valuable data to a full-featured test equipment manufacturer:

. the environment/context in the PLT message snapshot gives the test equipment manufacturers the list of
variables and the interfaces that must be included in the test equipment in order to run the conformance test
suites. In the case of HIPERACCESS, a TE manufacturer knows at a glance that it must provide Frame
Number, PHY Mode, frequency, and transmission power components among others;

. he also sees at a glance a strictly defined (typed) interface for passing variables to and from the ETS. Thisis
the PLT's API;

. the PLT specification does not constrain how a manufacturer is to provide a certain environment variable. For
example, in the case of power attenuation due to rain fading, the manufacturer has free rein on how to
accomplish the fading. One could reduce transmitting power at the test equipment; another could place a
grounded grid between the TE and the SUT; or another could simply pickup the SUT and walk away with it
until the power has attenuated. The PLT does not impose a particular solution. It only provides a proposed
interface;

. the PLT API and environment/context can be developed in conjunction with the ATS. Thus, the it can be
included in the published ATS and be immediately available to test equipment manufacturers. This adds value
tothe ATS for them.

ETSI

32 ETSI TR 102 327 V1.1.1 (2004-04)

Annex A:
HIPERACCESS Wire Datagram Specification

Annex A specifies the wire datagram for the HIPERACCESS PLT. It is specified in ASN.1 to show the datagram's
structure. PLT development and the testing conducted with it used the ASN.1 specification. However, implementors can
use equivalent data typesin other languages such as C, C++, Java, etc. The only condition isthat the PLT and PUT
share the same coding/decoding schemes for the wire datagram.

A.1 Wire datagram ASN.1 module

HAapi
DEFI NI TI ONS AUTQVATI C TAGS :: =

BEG N
W reDat agram : : = SEQUENCE {

hdr Header,
body Body }

Body ::= OCTET STRI NG --ASN. 1 PER encoded MacManagenent Msg from H PERACCESS Spec
Header ::= SEQUENCE {
f rameNbr FrameCount er,
control ZoneSt at us Control ZoneVal i d,
si dSt at us Sidvalid,
nor mal Gr ant St at us Nor nal G ant Present,
rangi ngGrant St at us Rangi ngG ant Present ,
primaryCid PrimaryGid,
basi cC d Basi cGi d,
secondaryC d SecondaryCi d,
assignedG d Assi gnedCi d,
transactionld Transactionl d,
downl i nkPhyMbde Downl i nkPhyMbde,
upl i nkPhyMbde Upl i nkPhyMbde,
r x Power RxPower Measur ed,
frequency Carri er Frequency,
cnr Cnr Measur ed,
apt APT,
apcld Apcld }
APT .= | NTEGER(O. . 1)

| NTEGER(O. . 16777215)

FrameCount er

Control ZoneVval i d = BOOLEAN
Sidvalid = BOOLEAN
Nor mal G ant Pr esent = BOOLEAN
Rangi ngG ant Pr esent 1= BOOLEAN
Basi cGi d = Cd(1024..2047) -- from1*1024 to 2*1024-1
PrinmaryGid = C d(2048..3071) -- from2%¥1024 to 3*1024-1
SecondaryCi d = G d(3072..4095) -- from3*1024 to 4*1024-1
Carri er Frequency = | NTEGER(0..130000) ~-- 17 bit, granu=0. 5M1z, range=[0, 65] GHz
Cnr Measur ed = | NTEGER(0. . 255) -- 8 bit, granu=0. 25dB, range=[4, 40] dB, absol ute
Apcl d = I NTEGER(1..16777216)
Downl i nkPhyMode : = ENUMERATED ({ -- 3 bit
noNewPhyMbde (0),
downl i nkPhyModel (1),
downl i nkPhyMbde2 (2),
downl i nkPhyMbde3 (3),

ETSI

33 ETSI TR 102 327 V1.1.1 (2004-04)

downl i nkPhyMbde4 (4),
downl i nkPhyModeFut ur eReserved (7)
}
Upl i nkPhyMode ;1= ENUMERATED { -- 3 bit

undef i ned (0),
upl i nkPhyMbdel (1),
upl i nkPhyMbde2 (2),
upl i nkPhyMbde3 (3),

upl i nkPhyMbdeFut ur eReser ved (7)

cd = | NTEGER(0. . 65535) -- 16 bit, connection ID
Assi gnedGi d = DataC d -- 16 bit, tenp for AT initiated req
Transactionl d = | NTEGER(0. . 131071) -- 17 bit, uniquely assigned by sender

Dat aCi d = Cd(MilticastCd | UnicastCid)

Mul ticastCid = C d(4096. .8191) -- from4*1024 to 8*1024-1
UnicastCi d = G d(8192..65535) -- from 8%*1024 to 64*1024-1
RxPower Measur ed = | NTEGER(0. . 255) -- 8 bit, granu=0. 25dB,

-- range=[- 88, - 28] dBm absol ute

END

A.2 An example wire datagram

The following example shows a typical wire datagram with valuesin ASN.1 value notation. Thisiswhat is encoded and
passed in the UDP payload of the wire UDP/IP interface. As said above, the actual encoding and decoding of these
valuesis at the discretion of the users. ASN.1 encoding/decoding is not required. The below examples show structure
and valuesonly.

wi r eDat agr anExanpl e WreDatagram :: = {

hdr {
f raneNbr 16777215,
control ZoneSt at us TRUE,
si dSt at us TRUE,
nor mal Grant St at us TRUE,
rangi ngGrant St at us FALSE,
pri maryCi d 3071,
basicC d 2047,
secondaryCGi d 4095,
assignedG d 65535,
transactionld 131071,
downl i nkPhyMbde downl i nkPhyMbde2,
upl i nkPhyMbde upl i nkPhyMbde3,
r xPower 255,
frequency 130000,
cnr 255,
apt apt1,
apcld 16777216 },

body '4E00'H }

ETSI

34 ETSI TR 102 327 V1.1.1 (2004-04)

Annex B:

HIPERACCESS API Specifications

B.1 DatagramSocketAPI Specification

connect

Signature

connect (in renote: Socket Address): bool ean.

In parameters

r enot e the remote peer entity described as SocketAddress.

Return value

true if the connection could have been established, f al se otherwise.

Effect

Connects this socket. The socket is configured so that it only receives datagrams from, and
sends datagrams to, the given renot e peer address. Once connected, datagrams may not be
received from or sent to any other address. A datagram socket remains connected until it is
explicitly disconnected.

disconnect

Sighature di sconnect (): void.
In parameters None.

Return value Voi d.

Effect

The socket can receive datagrams from, and sends datagrams to, any remote address.

isConnected

Signature

i sConnect (): bool ean.

In parameters

None.

Return value

t rue if this socket is connected, f al se otherwise.

Effect

The operation returns t r ue if the socket is connected, f al se otherwise.

send

Signature

send(in packet: DatagranPacket): bool ean.

In parameters

packet the packet to be send.

Return value

true if the send operation was successful, f al se otherwise.

Effect

Sends a datagram packet from this socket. The Dat agr anPacket includes information
indicating the data to be sent, its length, the IP address of the remote host, and the port
number on the remote host.

On a send operation, if the packet's address is set and the packet's address and the socket's
address (in case the socket is connected) do not match, f al se will be returned and the packet
will not be send.

receive

Signature

recei ve(i nout packet: DatagranPacket, in timeout: int): bool ean.

In parameters

packet a DatagranmPacket where the received packet could be stored in
ti meout the amount of milliseconds the operation blocks when waiting to receive a packet.

Return value

true if a packet has been received or a timeout has occurred, f al se in any other error
condition.

Effect

Receives a datagram packet from this socket. When this method returns, the
DatagramPacket's buffer is filled with the data received. The datagram packet also contains
the sender's IP address, and the port number on the sender's machine. This method blocks
until a datagram is received or the indicated time (in milliseconds) has passed. If a timeout has
occurred packet will be returned unmodified.

The length field of the datagram packet object contains the length of the received message. If
the message is longer than the packet's length, the message is truncated.

ETSI

35 ETSI TR 102 327 V1.1.1 (2004-04)

close

Sighature close(): void.
In parameters None.

Return value Void.

Effect

Closes the socket. All resources bound to this socket will get released.

getData

Signature

getData(): byte[].

In parameters

None.

Return value

The buffer used to receive or send data.

Effect

Returns the data buffer. The data received or the data to be sent starts from the of f set inthe
buffer, and runsfor | engt h long. The values for of f set and | engt h can be retrieved with the
respective operations.

getLength

Signature

getLength(): int.

In parameters

None.

Return value

The length of the data to be sent or the length of the data received.

Effect

Returns the length of the data to be sent or the length of the data received. The length of the
data specifies the number of bytes in the byte buffer being relevant.

getOffset

Signature

getOFfset(): int.

In parameters

None.

Return value

The offset of the datato be sent or the offset of the datareceived.

Effect

Returns the offset of the data to be sent or the offset of the datareceived.

getSocketAddress

Signature

get Socket Address(): Socket Address.

In parameters

None.

Return value

The associated Socket Addr ess Of this Dat agr amPacket if present, or nul | else.

Effect

Gets the Socket Addr ess (usually IP address + port number) of the remote host that this
packet is being sent to or is coming from.

setData

Signature

SetData (in buf: byte[]): voidO.

In parameters

buf the data for the byte buffer.

Return value

Void.

Effect

Set the data buffer for this packet, with the of f set of this Dat agr anPacket set to 0, and the
I engt h set to the length of buf . of f set and | engt h can be retrieved with the respective
operations.

setData

Signature

setData (in buf: byte[], in offset: int, in length: int): void.

In parameters

buf the buffer to set for this packet.
of f set the offset into the data.
I engt h the length of the data and/or the length of the buffer used to receive data.

Return value

Void.

Effect

Set the data buffer for this packet. This setsthe data, | engt h and of f set of the packet.

ETSI

setLength

36 ETSI TR 102 327 V1.1.1 (2004-04)

Sighature

setLength(in length: int) void.

In parameters

I engt h the length to set for this packet.

Return value

Void.

Effect Set the length for this packet. The length of the packet is the number of bytes from the packet's
data buffer that will be sent, or the number of bytes of the packet's data buffer that will be used
for receiving data. The length must be lesser or equal to the offset plus the length of the
packet's buffer.

setSocketAddress
Signature set Socket Address(in address: Socket Address) void.

In parameters

Addr ess the Socket Addr ess.

Return value

Void.

Effect

Sets the Socket Addr ess (usually IP address + port number) of the remote host to which this

datagram is being sent.

B.2

getHostName

SocketAddress specification

Signature

get Host Narme(): String.

In parameters

None.

Return value

The host name of this Socket Addr ess.

Effect If no host Nane has been provided before the dotted IP-address " 0. 0. 0. 0" will be returned.
setByHostName
Signature set ByHost Narme(i n hostnane: String): void.

In parameters

host the specified host, or nul | for the local host.

Return value

Void.

Effect Sets this Socket Addr ess to the IP address of a host, given the host's name. The host name
can either be a machine name, such as "portal . etsi.org", or a dotted ip-address of the
form ,212. 234. 161. 115' .
The port of this Socket Addr ess remains unchanged.
setPort
Sighature SetPort(in port: int) void.

In parameters

port the specified port number.

Return value

Voi d.

Effect Sets this Socket Addr ess to this port number. The host name of this Socket Addr ess remains
unchanged.

getPort

Sighature getPort(): int.

In parameters

None.

Return value

the port nunber.

Effect

Returns the port number of this Socket Addr ess.

ETSI

37

ETSI TR 102 327 V1.1.1 (2004-04)

B.3

Therefore implementations have been done using Java.

Java interface

The work described in the present document has been performed mainly using the Java programming language.

The presented interfaces have been trandated into Javainterface. The source code of thisinterfacesis presented in the

following:

/1 Dat agranBocket APl . j ava
package org.etsi.ttcn.udp ;

public interface DatagranSocket API

public
public
public
public
public
public

bool ean connect (Socket Address renot e)
voi d di sconnect ()

bool ean i sConnect ed()

bool ean send(Dat agr anPacket packet)
bool ean recei ve(Dat agr anPacket packet,

voi d cl ose()

/| Dat agr anPacket.j ava

package org.etsi.ttcn.udp ;
public interface DatagranPacket {

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

C
C
Cc
Cc
C
C
Cc
Cc

byte[] getData()
int getOfset()
int getlLength()

{

voi d setData(byte[] buf,
voi d set Socket Addr ess(Socket Addr ess address) ;

Socket Addr ess get Socket Addr ess()

voi d setData(byte[] buf)

voi d setLength(int

}

/] Socket Address. j ava
package org.etsi.ttcn. udp;
public interface Socket Address {

public
public
public
public

String get Host Nane()
voi d set ByHost Name(Stri ng host Nane)
void setPort(int port)

int getPort()

| engt h)

int offset,

int

ETSI

| engt h)

int timeout)

38 ETSI TR 102 327 V1.1.1 (2004-04)

Annex C:
Wire transport module

Void.

ETSI

39 ETSI TR 102 327 V1.1.1 (2004-04)

Annex D:
Clocks and timing

D.1 Clocks and timing

The development of the API raised a question concerning clocks. Isit advantageous for PLT and PUT to share the same
clock whose value can be manipulated? In this way, the time waiting for timers to expire during testing could be
reduced thereby saving time for those testing. In effect, a shared clock could allow a"time warp” to the next testable
condition like the expiry of atimer or the reception of asignal. Thisis similar to moving our personal clock ahead one
hour for Daylight Savings Time in order to wake up earlier.

In some BRAN testing, time warping could be very useful because some timers have a duration of 6 000 ms. These long
timers coupled with the scaling required by less than real-time simulations could result in long wait times. See the
clause on "Timing".

Thisissue resulted in the following analysis.

D.1.1 Clocks

In testing, clocks are the source for timer values and expiration. The PLT and PUT each require a clock. They can share
the same clock or each can have their own independent clock.

Anexampleof aPLT and PUT sharing the same clock is where the frame number generated by the oneis used as the
clocking signal by the other. For HIPERACCESS, thisis possible for real implementations since AP periodically sends
frames including a frame number that increments by one each time sent.

Independent clocks are usually used in both implementations and test equipment. Normally, the test equipment and the
SUT each have and use their own clock.

The clock can be integrated into the PLT or PUT respectively or separated fromit (i.e. internal versus external clocks).
An oscillator within adeviceisan internal clock example. Such adevice usually does not have an interface that test
equipment or an observer can access. Thus, internal clocks allow their time to be observed but the time value cannot be
manipulated. Thus, thetimeis absolute.

Externa clocks have an interface that allow time values to be changed. An exampleis the system clock of a computer.
If an application program accesses the system clock for its timing purposes, the application program does so through an
interface. Theoretically, any clock can be connected to thisinterface. Thus, the time values can be manipulated viathe
interface. The time isrelative to the clock on the interface.

Table D.1 shows the possible combinations for clocks external and internal for the TE and SUT and presents an
example for each. These clocks are unshared.

Table D.1: Internal and external clock examples for unshared clocks

SUT Clock TE Clock Example
Internal Internal Interoperability testing of two HIPERACCESS devices with one used as a
"golden" SUT.
Internal External Conformance Testing a real HIPERACCESS implementation over its air
interface.
External Internal SUT is a TTCN executable using the system clock. TE is an SDL using

internal logic for clocking an not the system clock.

Admittedly a far-fetched example but SDL can be used to validate the
TTCN test suite. In this case, SUT is TTCN ATS and TE is the SDL.
External External Testing using PLT and PUT that each derive its timing from PC system
clocks.

ETSI

40 ETSI TR 102 327 V1.1.1 (2004-04)

Table D.2 shows the possible combinations for shared clocks external and internal to the TE and SUT with examples.

Table D.2: Internal and external clock examples for shared clocks

SUT Clock TE Clock Example
Internal Internal Impossible case. By definition, two clocks that are internal cannot be
shared.
Internal External Conformance Testing a real HIPERACCESS implementation over its air

interface. The TE uses the SUT's frame number. In this case the SUT
must be a HIPERACCESS AP. An AT does not generate the frame
number.

External Internal Say that a protocol specification requires a device on one side of the
protocol to generate the clocking for the other side. When the TE is on the
clock generator side, then the clock could be considered internal to the TE
if the clocking conforms to the specification. Obviously, "time warping" via
an external clock is non-conformant in this case. The SUT then relies upon
the TEs timing indication. An example might be an AT relying upon the AP
for timing information and the TE has the AP role.

External External Testing using PLT and PUT that each derive their timing information from
a shared buffer/stack. This is the classic "time warping" example.

D.1.2 Timing

There are some long timersin the BRAN protocols. One of the scenarios of testing wireless protocols over wire
includesa TTCN platform running tests against software simulations (e.g. SDL). Such simulations are likely not able to
run implementationsin real time. For example, decoding a DL frame, determining the corresponding protocol action,
and encoding the UL response within the delay of lessthen a millisecond is unlikely with an SDL simulation.
Therefore, time scaling will be necessary to alow the simulation adequate time. The scaling may be by afactor from

10 to 100. This could ultimately result in having to wait 10 min or so real time to see if the timer under test operates
correctly.

It would be interesting for the tester to reduce this amount of wait time when testing opposite slow simulations or
testing-thus the "time warp" idea.

D.1.3 Time warping

The principle of time warping issimple. The TE and SUT each jump the same amount of time thereby speeding up test
execution time. Of course, behaviour must not have occurred during the time warp. The time warp must occur in "dead
time" for both the SUT and the TE. Unobserved behaviour ruins any value of testing.

The principleis shownin figure D.1.

ETSI

41 ETSI TR 102 327 V1.1.1 (2004-04)

Timer
Queue
TPS A
TT3
TE SUT Tea ety
Order
TT3 TP3 TT2
i T + T =
it m2 P2 Tn
TTl TPl TPl

T7,= TE timer n expiry
Tpn = IUT timer n expiry

(Try < Typ<Tyz)and (Tp; < Tpp < Tpy)
Figure D.1: Timer queue setup for time warping

Infigure D.1, the timer events for the Test Equipment (TE) and the IUT in the SUT are arranged in chronological order
in atimer queue. The timer events for the TE are known when the executable test case makes a call to the TRI to start or
stop atimer.

Knowing the timer eventsin the IUT are problematical. If the lUT schedules timer events using an external clock, then
the calls to schedule those timers can be monitored in order to build the SUT timer event queue. External clocks are
used in protocol simulations and prototypes. Production implementations use internal or external clocks. For UDP/IP
testing, it islikely that the IUT will use an external clock and, thus, it islikely the [UT timer queue can be devel oped.

If the SUT has an internal clock that the tester cannot manipulate, then time warping is not possible. For example, if the
TE uses an external interrupt for timing, but the SUT uses an internal oscillator for its timing, then one cannot "warp"
the oscillator to atimein the future by the any increment. Thus, the warping cannot be synchronized making it useless.

Once both timer queues are known, they are combined into one queue in chronological order to run the test.

In running atest, only one of two events are possible: a message is sent/received or atimer expiry. Practically speaking,
two or more of these events cannot occur simultaneously since the events occur in a stack-like FIFO manner. Thus, we
consider only two different events can occur:

. Sent/received messages.

- For receiving a message, there are guard timers set awaiting the arrival of an expected message. If the
received message is the expected message, these guard timers are cancelled and operation continues.
This means that the guard timers are removed from the consolidated timer queue. If the received message
is unexpected, then the test case stops. All timers are now useless and removed from the queue except for
those needed to close out the test case and bring the IUT to a given state.

- Timers or management entities cause message transmission. In the event of management entities
transmitting a message, they usually start guard timers because a response to the message is required.
These timers are added in chronological order to the queue. For timer-caused message transmission, see
the point immediately below.

. Timer expiry occurs when atimer in the queue expires firing the actions necessary to send the message. When
atimer in the queue expires, it is removed from the queue. The expiry of timer usually causes some response
that then causes other timersto be set and placed in the queue.

The times used in the queue can be either absolute or relative. Absolute time starts at zero at the start of the first event.
The setting of atimer is an event as well as transmitting or receiving a message. All times placed on the queue are based
upon this first event. Relative time is the adjustment of the timesin the timer queue by determining the time between
the last event and the event that has just occurred and subtracting it from all the timer valuesin the queue. The type of
time used (relative or absolute) is a matter of implementation convenience.

ETSI

42 ETSI TR 102 327 V1.1.1 (2004-04)

Note that random events can generated using a pseudo random number generator to determine the occurrence in time of
the event. In this way, random events are placed into the timer queue.

Figure D.2 is an example of the queue, in relative time, after the earliest timer has expired.

Timer
Queue

TPS - TPl

TT3 - TPl

_ Expiry
TPZ TPl Order

TT2 - TPl

TT1‘ TPl

Timer
Queue

TP3 h TPl

TT3 - TPl

Expiry
TP2 - Tpl Order

TT2 - TPl

TT1' TPl

Figure D.2: Timer queue after timer expiry (relative time)

D.1.4 Using time warping

The advantage of using time warping is to reduce testing time. One can skip to the next timer or message event rather
than waiting for atimer event to occur in real or simulated time. In some cases, simulated time can be significantly
longer than real time and lead to very long waits between events. In the event of one BRAN protocol, this wait time can
be up to 6 min per event. With several eventsin atest case, atester would have to spend a half-hour or more running
one test case.

Several hand walk-throughs of test cases using time warping were conducted. Time warping was applicable to al tests
and arrived at the same results as real-time testing. Scenarios were devised to "break” the concept but the concept
remained intact.

Warping was not tried on a prototype implementation or simulation.

Asdiscussed above, time warping could not be applied to IUT/SUT with internal clocks. Simply, there is no way to
"warp" the IUT/SUT into the same time as the TE.

Using warping on a prototype implementation or simulation will require software to access the external clock interfaces,
form the timer queues, and manipulate them. The time and resources needed to devel op this software must be compared
against the time and resources saved during test execution. If tests are to be run often, warping appears to be
advantageous. If not, then the straightforward use of time appears to be advantageous.

Time warping was not used for UDP/IP testing for resource reasons. Since the STF is exploring the feasibility of
UDP/IP testing, the actual time spent in running testsis significantly less than the total time for setting up of the TE,
conversion of the transfer syntax, and the conversion of TTCN-2 to TTCN-3. The benefits obtained from warping
would not outweigh the time required to devel op the software necessary to implement warping.

However, warping may be viable for HIPERACCESS work if UDP/IP testing is pursued.

ETSI

43 ETSI TR 102 327 V1.1.1 (2004-04)

Annex E:
Abstract Test Suite (ATS) text block

This ATS has been produced using the Testing and Test Control Notation (TTCN) according to ES 201 873-2 [4].

The ATS was devel oped on a separate TTCN software tool and therefore the TTCN tables are not compl etely
referenced in the table of contents. The ATS itself contains atest suite overview part which provides additional
information and references.

E.1 The TTCN-3 ATS

The TTCN-3 representation of the Hiperaccess ATS is contained in the archive HIPERACCESS _ATS.ZIP contained in
the archive ts_102327v010101p0.ZIP which accompanies the present document. The TTCN-3 representation is a result
of the trandation from TTCN-2 representation.

E.2 The Java code of the test adapter

The Java code devel oped for the Hiperaccess virtual tester prototype is contained in the archive
HIPERACCESS TestAdapter.ZIP contained in the archive ts_102327v010101p0.ZI P which accompanies the present
document.

ETSI

44

ETSI TR 102 327 V1.1.1 (2004-04)

History

Document history

V111

April 2004

Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 The concepts
	4.1 The requirement
	4.2 Virtual tester/Protocol Layer Tester (PLT)
	4.2.1 A generic, technology-neutral and inexpensive solution
	4.2.1.1 The data on the wire interface

	4.2.2 Advantages and spin-offs

	4.3 PLT components
	4.3.1 Wire interface data/wire datagrams
	4.3.2 The API
	4.3.3 Wire transport module/Adaptation layer

	5 Implementing the PLT for the HIPERACCESS DLC protocol
	5.1 Test architecture for the DLC layer
	5.1.1 Test configurations
	5.1.1.1 Test configurations for AT
	5.1.1.2 Test configurations for AP

	5.2 PLT components
	5.2.1 Existing components
	5.2.1.1 Test system
	5.2.1.2 Abstract Test Suite (ATS)
	5.2.1.3 Test system prototype
	5.2.1.3.1 Codecs

	5.2.2 Developed components
	5.2.2.1 Wire datagram
	5.2.2.2 The API for HIPERACCESS DLC
	5.2.2.3 Wire transport module

	5.2.3 Clocks and timing
	5.2.4 Heuristics for defining an API

	6 The SDL model as an IUT prototype
	6.1 SDL model adaptation layer
	6.2 SDL model suitable for test validation

	7 Conclusions
	7.1 Applicability to Protocols Under Test (PUT)
	7.2 Applicability to interoperability events
	7.3 Applicability to full-featured test systems

	Annex A: HIPERACCESS Wire Datagram Specification
	A.1 Wire datagram ASN.1 module
	A.2 An example wire datagram

	Annex B: HIPERACCESS API Specifications
	B.1 DatagramSocketAPI Specification
	B.2 SocketAddress specification
	B.3 Java interface

	Annex C: Wire transport module
	Annex D: Clocks and timing
	D.1 Clocks and timing
	D.1.1 Clocks
	D.1.2 Timing
	D.1.3 Time warping
	D.1.4 Using time warping

	Annex E: Abstract Test Suite (ATS) text block
	E.1 The TTCN Graphical form (TTCN.GR)
	E.2 The TTCN Machine Processable form (TTCN.MP)

	History

