

ETSI TR 102 397-5-1 V1.1.1 (2005-12)

Technical Report

Open Service Access (OSA);
Mapping of Parlay X Web Services to Parlay/OSA APIs;

Part 5: Multimedia Messaging Mapping;
Sub-part 1: Mapping to User Interaction

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 2

Reference
DTR/TISPAN-01021-05-01-OSA

Keywords
API, OSA, service

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.

© The Parlay Group 2005.
All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.

TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 3

Contents

Intellectual Property Rights ..4

Foreword...4

1 Scope ..5

2 References ..5

3 Definitions and abbreviations...5
3.1 Definitions..5
3.2 Abbreviations ...5

4 Mapping Description..6

5 Sequence Diagrams ..6
5.1 Send Multimedia Message to One or More Addresses...6
5.2 Notification of Multimedia Message Reception and Retrieval ..9

6 Detailed Mapping Information...11
6.1 Operations ..11
6.1.1 sendMessage ...11
6.1.1.1 Mapping to IpUIManager.createNotification..11
6.1.1.2 Mapping to IpUIManager.createUI ...11
6.1.1.3 Mapping to IpUI.sendInfoAndCollectReq ...12
6.1.2 getMessageDeliveryStatus..13
6.1.2.1 Mapping from IpAppUI.sendInfoAndCollectRes ...13
6.1.2.2 Mapping from IpAppUI.sendInfoAndCollectErr ...13
6.1.2.3 Mapping from IpAppUIManager.reportEventNotification ..14
6.1.3 startMessageNotification ..14
6.1.3.1 Mapping to IpUIManager.createNotification..14
6.1.4 notifyMessageReception...15
6.1.4.1 Mapping from IpAppUIManager.reportEventNotification ..15
6.1.5 getReceivedMessages ...16
6.1.6 getMessageURIs ...16
6.1.7 getMessage ...16
6.1.8 stopMessageNotification ..16
6.1.8.1 Mapping to IpUIManager.destroyNotification..16
6.2 Exceptions ..16

7 Additional Notes ..16

History ..17

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 4

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Report (TR) has been produced by ETSI Technical Committee Telecommunications and Internet
converged Services and Protocols for Advanced Networking (TISPAN).

The present document is part 5, sub-part 1, of a multi-part deliverable providing an informative mapping of Parlay X
Web Services to the Parlay Open Service Access (OSA) APIs and, where applicable, to IMS, as identified below:

Part 1: "Common Mapping";

Part 2: "Third Party Call Mapping";

Part 3: "Call Notification Mapping";

Part 4: "Short Messaging Mapping";

Part 5: "Multimedia Messaging Mapping";

Sub-part 1: "Mapping to User Interaction";

Sub-part 2: "Mapping to Multi-Media Messaging";

Part 6: "Payment Mapping";

Part 7: "Account Management Mapping";

Part 8: "Terminal Status Mapping";

Part 9: "Terminal Location Mapping";

Part 10: "Call Handling Mapping";

Part 11: "Audio Call Mapping";

Part 12: "Multimedia Conference Mapping";

Part 13: "Address list Management Mapping";

Part 14: "Presence Mapping".

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP.

http://webapp.etsi.org/IPR/home.asp
http://www.parlay.org/

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 5

1 Scope
The Parlay X Web Services provide powerful yet simple, highly abstracted, imaginative, telecommunications functions
that application developers and the IT community can both quickly comprehend and use to generate new, innovative
applications.

The Open Service Access (OSA) specifications define an architecture that enables application developers to make use
of network functionality through an open standardized interface, i.e. the Parlay/OSA APIs.

The present document is part 5, sub-part 1, of an informative mapping of Parlay X Web Services to Parlay/OSA APIs.

The present document specifies the mapping of the Parlay X Multimedia Messaging Web Service to the Parlay/OSA
User Interaction Service Capability Feature (SCF).

2 References
For the purposes of this Technical Report (TR) the following references apply:

[1] ETSI TR 121 905: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Vocabulary for 3GPP Specifications (3GPP TR 21.905)".

[2] W3C Recommendation (2 May 2001): "XML Schema Part 2: Datatypes".

NOTE: Available at http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

[3] ETSI TR 102 397-1: "Open Service Access (OSA); Mapping of Parlay X Web Services to
Parlay/OSA APIs; Part 1: Common Mapping".

[4] W3C Note (11 December 2000): "SOAP Messages with Attachments".

NOTE: Available at http://www.w3.org/TR/SOAP-attachments

[5] ETSI TS 123 140: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Multimedia Messaging Service (MMS); Functional
description; Stage 2 (3GPP TS 23.140)".

[6] IETF RFC 2822: "Internet Message Format".

NOTE: Available at http://www.ietf.org/rfc/rfc2822.txt

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in TR 102 397-1 [3] and the following apply:

Shortcode: Short telephone number, usually 4 to 6 digits long. This is represented by the 'tel:' URI defined in
TR 102 397-1 [3].

Whitespace: See definition for CFWS as defined in RFC 2822 [6].

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in TR 102 397-1 [3] and the following apply:

MMS Multimedia Messaging Service
SMS Short Message Service

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/SOAP-attachments
http://www.ietf.org/rfc/rfc2822.txt

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 6

4 Mapping Description
The Multimedia Messaging capability can be implemented with the Parlay/OSA User Interaction SCF.

It is applicable to ETSI OSA 1.x/2.x/3.x, Parlay/OSA 3.x/4.x/5.x and 3GPP Releases 4.x/5.x/6.x.

5 Sequence Diagrams

5.1 Send Multimedia Message to One or More Addresses
This describes where an application sends a multimedia message to one or more addresses.

1. Prior to processing any sendMessageRequest messages from the application, the web service creates an event
notification with criteria identifying the application (OriginatingAddress) and the terminal delivery
related states (ServiceCode).

2. The application requests the sending of a multimedia message to multiple addresses using the sendMessage
operation. If the contents of the sendMessageRequest message are invalid for any reason, the appropriate
service or policy exception is thrown. Otherwise, a sendMessageResponse message is returned to the
application containing a unique identifier for this multimedia delivery request and processing continues as
described below.

3. The web service resolves all group addresses in the addresses part of the sendMessageRequest message to
individual destination addresses. The web service creates a UI session for each individual destination address
in the request.

4. The web service sends the message to each individual destination address and requests a message identifier
(e.g. a network tracking number) using the sendInfoAndCollectReq method.

5. The application can invoke the getMessageDeliveryStatus operation at any time after it receives the
sendMessageResponse message and use the unique identifier it received in this message to obtain the current
delivery status for each individual destination address. At this stage, the status returned for each address is
either MessageWaiting or, in the event of an error, DeliveryImpossible.

6. The web service processes an invocation of a sendInfoAndCollectRes method for each individual
destination address, which contains a message identifier (e.g. a network tracking number).

7. After the web service processes the sendInfoAndCollectRes method invocation for a destination
address, it releases the associated UI session objects created in step 3.

8. The application can invoke the getMessageDeliveryStatus operation. At this stage, the status returned for
each individual destination address is one of the following:

- MessageWaiting, if the sendInfoAndCollectRes method has not yet been invoked.

- DeliveryImpossible, in the event an error occurred.

- DeliveryUncertain, otherwise.

9. The web service processes an invocation of a reportEventNotification method containing the
message identifier (i.e. as received by the web service in step 6), the terminal delivery related status and the
sent message. This method notifies the application of an occurred network event matching specific terminal
delivery related status criteria, which were previously installed with an invocation (in step 1) of the
createNotification method.

10. [RESERVED FOR FUTURE USE] If the receiptRequest part of the associated, original sendMessageRequest
message was present, and this capability is supported by the web service, then the web service invokes the
notifyMessageDeliveryReceipt operation to notify the application of the final status of the message delivery to
an individual destination address.

11. The web service releases the associated UI session object created in step 9.

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 7

12. The application can invoke the getMessageDeliveryStatus operation. At this stage, the status returned for
each individual destination address is one of the following:

- Delivered, if this status is reported by the reportEventNotification method.

- MessageWaiting, if the sendInfoAndCollectRes method has not yet been invoked.

- DeliveryImpossible, in the event an error occurred.

- DeliveryUncertain, otherwise.

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 8

Application Multimedia
Messaging

IpAppUI
Manager

IpAppUI IpUI
Manager

IpUI

2a: sendMessageRequest

"new"

3: createUI() "new"

2b: sendMessageResponse

4: sendInfoAndCollectReq()

6: sendInfoAndCollectRes() "forward event"

FOR FUTURE USE
10.1a: notifyMessage
DeliveryReceiptRequest

8a: getMessageDeliveryStatusRequest

IpAppUI
IpAppUI

IpUI

1: createNotification()

"destroy"

7: release()

9.1: reportEventNotification()
"forward event"

11.1: release()

 "new"

FOR FUTURE USE
10.1b: notifyMessage
DeliveryReceiptResponse

8b: getMessageDeliveryStatusResponse

FOR FUTURE USE
10.xa: notifyMessage
DeliveryReceiptRequest

9.x: reportEventNotification()
"forward event"

11.x: release()

 "new"

12a: getMessageDeliveryStatusRequest

12b: getMessageDeliveryStatusResponse

5a: getMessageDeliveryStatusRequest

5b: getMessageDeliveryStatusResponse

FOR FUTURE USE
10.xb: notifyMessage
DeliveryReceiptResponse

IpUI

Figure 1

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 9

5.2 Notification of Multimedia Message Reception and Retrieval
1. The application registers for the reception of multimedia messages by invoking startMessageNotification.

The request includes event criteria consisting of a value for the multimedia message destination address (the
messageServiceActivationNumber part) and an optional text string for matching against the first word of the
subject of the multimedia message or the first word in the text part of the multimedia message (the criteria
part); also a URI for a Web Service implementing the MessageNotification interface on the client application
side, and a correlation value for identifying this event registration request.

- Note that the application may also register offline for the reception of multimedia messages: i.e. without
using the Parlay X interface and the startMessageNotification operation. The registration request should
at a minimum specify the message destination address. The request may also specify a URI for a Web
Service implementing the MessageNotification interface on the client application side and/or the
optional text string criteria. The registration request is assigned a unique registration identifier.

2. A check is made within the web service to see if a notification for the given multimedia message destination
address is active. If no notification is active, then the Multimedia Messaging web service requests that a
notification be created by the UI SCS; note that the optional text string criteria (for matching against the first
word in the message subject or body) is not sent to the UI SCS. Otherwise a notification is already active and
the request is not made.

3. The UI SCS sends a reportEventNotification containing the message identifier, the message delivery
status and the received message. The web service stores the multimedia message information.

4. The web service releases the UI session within the notification and verifies the event satisfies all criteria
specified in step 1, including matching the first word of the message subject or body against the value of the
optional text string criteria. If the event is verified, then it stores the received message and notifies the
application (step 5); else the event is invalid (step 5 is skipped) and it discards the received message.

5. The web service notifies the application of the received multimedia message information by invoking the
notifyMessageReception operation on the application Web Service. Note that if the multimedia message is
pure ASCII text, then the whole message is delivered to the application Web Service.

6. Steps 3, 4 and 5 are repeated for any received message event matching the notification criteria. The application
may invoke the getReceivedMessages operation to request a list of references to received multimedia
messages matching a registration identifier associated with off-line provisioned notification criteria. The web
service returns the list of any such multimedia message references. Note that for each multimedia message that
is pure ASCII text, the web service delivers the whole message to the application and then deletes it.

7. The application retrieves the text portion of a multimedia message associated with one of the message
references, and a list of URI file references for any message attachments, by invoking the getMessageURIs
operation.

8. The application retrieves the whole multimedia message associated with one of the message references, by
invoking the getMessage operation.

9. The application terminates an existing registration for the reception of multimedia messages by invoking the
stopMessageNotification operation. The request includes the same correlation value previously specified in
the earlier startMessageNotification operation (step 1).

- Note that the application may also deregister offline for the reception of multimedia messages: i.e.
without using the Parlay X interface and the stopMessageNotification operation. The deregistration
request would specify the registration identifier associated with the original, offline registration operation
(step 1).

10. A check is made within the web service to see if the registration identifier (correlation value) represents the
last active notification for the corresponding destination address. If it is the last, then the web service requests
that the notification be destroyed by the UI SCS. Otherwise at least one other notification (i.e. associated with
a different text string criteria value) remains active for this destination address and the request is not made.

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 10

Application Multimedia
Messaging

IpAppUI
Manager

IpUI
Manager

IpUI

1a: startMessageNotificationRequest

1b: startMessageNotificationResponse

2: createNotification() - if no notification is active for
the specified destination address

9a: stopMessageNotificationRequest

9b: stopMessageNotificationResponse

10: destroyNotification() - if no other notifications are active for
the destination address

6a: getReceivedMessagesRequest

6b: getReceivedMessagesResponse

5a: notifyMessageReceptionRequest

3: reportEventNotification()
"forward event"

4: release()

5b: notifyMessageReceptionResponse

 "new"

7a: getMessageURIsRequest

7b: getMessageURIsResponse

8a: getMessageRequest

8b: getMessageResponse

Figure 2

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 11

6 Detailed Mapping Information

6.1 Operations

6.1.1 sendMessage

The sequence diagram in clause 5.1 (figure 1) illustrates the flow for the sendMessage operation.

The sendMessage operation is synchronous from the Parlay X client's point of view. It is mapped to the following
Parlay/OSA methods:

• IpUIManager.createNotification;

• IpUIManager.createUI;

• IpUI.sendInfoAndCollectReq.

6.1.1.1 Mapping to IpUIManager.createNotification

Prior to processing any sendMessageRequest messages from the application, the web service creates an event
notification with criteria identifying the application (OriginatingAddress) and the terminal delivery related states
(ServiceCode). The IpUIManager.createNotification method is invoked with the following parameters:

Name Type Comment
appUIManager IpAppUIManagerRef Reference to callback (internal).
eventCriteria TpUIEventCriteria The mapping to the eventCriteria parameter is as follows:

• The OriginatingAddress element identifies the Parlay X
application: e.g. as appropriate, the Plan element is assigned a
value of P_ADDRESS_PLAN_URL, P_ADDRESS_PLAN_SMTP etc.

• The DestinationAddress element is not mapped: i.e. the Plan
element is assigned a value of P_ADDRESS_PLAN_ANY.

• The ServiceCode element, which defines a 2-digit code indicating
the UI to be triggered, is set to an operator-specific value identifying
one or more terminal delivery related status event(s) to be monitored.

The result from IpUIManager.createNotification is of type TpAssignmentID and is used internally to
correlate the callbacks. Specifically it is used to correlate a future invocation of the IpAppUIManager.
reportEventNotification method, which reports a terminal delivery related status event for multimedia
messages originated by this Parlay X application.

Parlay exceptions thrown by IpUIManager.createNotification indicate that the delivery receipt notification
capability is not supported for this application. They are not mapped to Parlay X exceptions.

6.1.1.2 Mapping to IpUIManager.createUI

The IpUIManager.createUI method is invoked with the following parameters:

Name Type Comment
appUI IpAppUIRef Reference to callback (internal).
userAddress TpAddress Specifies the address to which the message should be sent. It is

constructed based on the URI provided in the addresses part of
sendMessageRequest, mapped as described in TR 102 397-1 [3].

The result from IpUIManager.createUI is of type TpUIIdentifier and identifies the User Interaction
interface objects upon which future methods are invoked: e.g. IpUI.sendInfoAndCollectReq.

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 12

Parlay exceptions thrown by IpUIManager.createUI are not mapped to Parlay X exceptions. Instead they are
reported to the application in a getMessageDeliveryStatusResponse message, with the following part values:

• the deliveryStatus.address element has the value of the address specified in the userAddress parameter of
the IpUIManager.createUI method, mapped as described in TR 102 397-1 [3];

• the deliveryStatus.deliveryStatus element has the value: DeliveryImpossible.

6.1.1.3 Mapping to IpUI.sendInfoAndCollectReq

The IpUI.sendInfoAndCollectReq method is invoked with the following parameters:

Name Type Comment
userInteraction
SessionID

TpSessionID Not mapped. [The value provide in the result from
IpUIManager.createUI].

info TpUIInfo There is no direct mapping for optional Attachments, W3C Note [4]. However
there are several alternatives:
• If the attachment(s) are pure text, then the content can be included in-

band using the InfoData element.
• If the attachment(s) are binary, then the content can be included in-band

using the InfoBinData element or by using the variableInfo
parameter (see below).

• If the message is stored on a multimedia system, then its location
(e.g. a URI) can be referenced using the InfoData or InfoAddress
element; i.e. the message is sent out-of-band.

language TpLanguage Not mapped.
variableInfo TpUIVariableInfo

Set
• Some mapping support for the optional Attachments: the web service

implementation can create local files for the attachments and provide
the SCF with their URI references, by mapping them to
VariablePartAddress element(s).

• Some mapping support for the optional messagePriority part: i.e. it
could be mapped to a VariablePartInt element.

• Some mapping support for the optional charging part: i.e. it could be
mapped to a VariablePartPrice element(s).

• Some mapping support for the optional senderAddress part: i.e. it
could be mapped to a VariablePartAddress element.

• Some mapping support for the optional subject part: i.e. it could be
mapped to a VariablePartAddress element. However, if this
message is mapped to SMS, then this parameter will be used as the
sender address, even if a separate senderAddress part is provided.

criteria TpUICollect
Criteria

Not mapped. Specifies additional properties for the collection of information
from the network: i.e. a message identifier for the Multimedia Message.

response
Requested

TpUIResponse
Request

Not mapped. Set to P_UI_RESPONSE_REQUIRED.

The result from IpUI.sendInfoAndCollectReq is of type TpAssignmentID and is used internally to
correlate the callbacks. Specifically it is used to correlate a future invocation of the
IpAppUI.sendInfoAndCollectRes method.

Parlay exceptions thrown by IpUI.sendInfoAndCollectReq are not mapped to Parlay X exceptions. Instead
they are reported to the application in a getMessageDeliveryStatusResponse message, with the following part values:

• the deliveryStatus.address element has the value of the address specified in the userAddress parameter of
the IpUIManager.createUI method, mapped as described in TR 102 397-1 [3];

• the deliveryStatus.deliveryStatus element has the value: DeliveryImpossible.

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 13

6.1.2 getMessageDeliveryStatus

The sequence diagram in clause 5.1 (figure 1) illustrates the flow for the getMessageDeliveryStatus operation.

The getMessageDeliveryStatus operation is synchronous from the Parlay X client's point of view. It is mapped from
the following Parlay/OSA methods:

• IpAppUI.sendInfoAndCollectRes.

• IpAppUI.sendInfoAndCollectErr.

• IpAppUIManager.reportEventNotification.

The delivery status provided to the Parlay X client will depend on the timing of the getMessageDeliveryStatus
operation invocation. If a message event notification is triggered in the network as a result of an earlier sendMessage
operation, then the delivery status information provided in the IpAppUIManager.reportEventNotification
callback is mapped. If such a notification is not enabled, or it has not triggered, then the delivery status provided in the
IpAppUI.sendInfoAndCollectRes callback is mapped.

6.1.2.1 Mapping from IpAppUI.sendInfoAndCollectRes

The IpAppUI.sendInfoAndCollectRes method is invoked with the following parameters:

Name Type Comment
userInteraction
SessionID

TpSessionID Not mapped. [The value provide in the result from
IpUIManager.createUI].

assignmentID TpAssignmentID Not mapped. [The value provide in the result from
IpUI.sendInfoAndCollectReq].

response TpUIReport The response parameter maps to the DeliveryUncertain value of the
DeliveryStatus element of a DeliveryInformation parameter of the
deliveryStatus part of a getMessageDeliveryStatusResponse message.

collectedInfo TpString If the response parameter value is P_UI_REPORT_INFO_COLLECTED,
then the collectedInfo parameter contains a network message identifier
for the Multimedia Message. This identifier is subsequently used for
correlating with the value of the eventNotificationInfo.UIEventData
element of the IpAppUIManager.reportEventNotification method:
clause 6.1.2.3.

6.1.2.2 Mapping from IpAppUI.sendInfoAndCollectErr

The IpAppUI.sendInfoAndCollectErr method is invoked with the following parameters:

Name Type Comment
userInteraction
SessionID

TpSessionID Not mapped. [The value provide in the result from
IpUIManager.createUI].

assignmentID TpAssignmentID Not mapped. [The value provide in the result from
IpUI.sendInfoAndCollectReq].

error TpUIError Maps to the DeliveryImpossible value of the deliveryStatus element of a
DeliveryInformation parameter of the deliveryStatus part of a
getMessageDeliveryStatusResponse message.

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 14

6.1.2.3 Mapping from IpAppUIManager.reportEventNotification

The IpAppUIManager.reportEventNotification method is invoked with the following parameters:

Name Type Comment
userInteraction TpUIIdentifier Not mapped. Specifies the reference to the User Interaction interface and

the sessionID to which the notification relates.
eventNotification
Info

TpUIEvent
NotificationInfo

The mapping to the deliveryStatus part is as follows:
• The OriginatingAddress element is not mapped. It identifies the

Parlay X application, as described in clause 6.1.1.1
• The DestinationAddress element maps to the

DeliveryInformation.address element.
• The ServiceCode element contains an operator-specific value

reporting a terminal delivery related status event. It is (one of) the
value(s) specified in the ServiceCode element of the
eventCriteria parameter of the
IpUIManager.createNotification method (clause 6.1.1.1). This
operator-specific value maps to one of the following values of the
DeliveryInformation.deliveryStatus element:
• DeliveryImpossible.
• Delivered.

• The DataTypeIndication element is not mapped, but should have a
value of P_UI_EVENT_DATA_TYPE_TEXT.

• The UIEventData element (a text string) provides the correlation with
the UI interface objects used to send the message to the destination
address. [It contains the message identifier returned to the web service
in the collectedInfo parameter of the
IpAppUI.sendInfoAndCollectRes method (clause 6.1.2.1).]

assignmentID TpAssignmentID Not mapped. [The value provide in the result from
IpUIManager.createNotification].

The result from IpAppUIManager.reportEventNotification is of type IpAppUIRef and is used internally
to correlate with the User Interaction interface instance (i.e. of type IpUI) associated with the event notification. This
callback reference result parameter may be set to a default value since there is no further interaction with this message
delivery status-related UI instance: the IpUI.release method is invoked as shown in clause 5.1 (step 11).

6.1.3 startMessageNotification

The sequence diagram in clause 5.2 (figure 2) illustrates the flow for the startMessageNotification operation, which is
mapped to the Parlay/OSA method: IpUIManager.createNotification, provided there is no existing
notification already established for the destination address contained in the messageServiceActivationNumber part.

6.1.3.1 Mapping to IpUIManager.createNotification

The IpUIManager.createNotification is invoked with the following parameters:

Name Type Comment
appUIManager IpAppUIManagerRef Not mapped. Reference to callback (internal).
eventCriteria TpUIEvent

Criteria
Specifies the event notification criteria, consisting of 3 elements:
• The OriginatingAddress is not mapped. It is set to be valid for all

senders.
• The DestinationAddress is constructed based on the URI provided

in the messageServiceActivationNumber part of the
startMessageNotificationRequest message, mapped as described in
TR 102 397-1 [3].

• The ServiceCode element is not mapped.

The result from IpUIManager.createNotification is of type TpAssignmentID and is used internally to
correlate the callbacks. Specifically it is correlated with the value of the reference part received from the application in
the startMessageNotificationRequest message and the correlator part returned to the application in the
notifyMessageReceptionRequest message.

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 15

Note that the reference part and the optional criteria part of a startMessageNotificationRequest message are not
mapped to IpUIManager.createNotification. Instead the web service uses all the text string criteria values
associated with a specific destination address to parse any event reported for that address by the
IpAppUIManager.reportEventNotification method. The web service determines whether the event is
valid - i.e. there is a match with a text string criteria value. If valid, the web service stores the message and selects the
previously provisioned application callback web service to receive the notifyMessageReceptionRequest message. If
invalid, the web service discards the event notification.

Parlay exceptions thrown by IpUIManager.createNotification are mapped to Parlay X exceptions as
defined in clause 6.2.

6.1.4 notifyMessageReception

The sequence diagram in clause 5.2 (figure 2) illustrates the flow for the notifyMessageReception operation, which is
mapped from the Parlay/OSA method: IpAppUIManager.reportEventNotification.

6.1.4.1 Mapping from IpAppUIManager.reportEventNotification

The IpAppUIManager.reportEventNotification method is invoked with the following parameters:

Name Type Comment
userInteraction TpUIIdentifier Not mapped. Specifies the reference to the User Interaction interface and

the sessionID to which the notification relates.
eventNotification
Info

TpUIEvent
NotificationInfo

The mapping to the message part is as follows:
• The OriginatingAddress element maps to the senderAddress

element.
• The DestinationAddress element maps to the

messageServiceActivationNumber element.
• The ServiceCode element is not mapped.
• If the event-related message is ASCII text, then the

DataTypeIndication element has a value of
P_UI_EVENT_DATA_TYPE_TEXT, and the UIEventData element
should contain the message, using a vendor/operator-specific
convention, which maps to the message element. In this case the
messageIdentifier element is absent.

• If the event-related message is not ASCII text, then the UIEventData
element should contain the message, using a vendor/operator-specific
convention – also see note below. The multimedia message is stored by
the Parlay X Multimedia Messaging Web Service. The latter returns a
reference to this stored message in the messageIdentifier element. In
this case the message element is absent.

assignmentID TpAssignmentID Not mapped. [The value provide in the result from
IpUIManager.createNotification].

Note that there is no direct mapping for Attachments. Binary content may be included in-line in the UIEventData
element of the eventNotificationInfo parameter. Alternatively, the messaging system implementation could
create local file(s) for the attachment(s) and provide the SCF with their URI reference(s). These URI reference
parameters and others – e.g. that map to fileReferences, priority, bodyText and subject parts - could also be encoded
in the UIEventData element of the eventNotificationInfo parameter.

Note that this mapping occurs if there is at least one active notification established for the value of the
eventNotificationInfo.DestinationAddress element, an associated application callback web service,
and one of the following conditions is satisfied:

• There is only one active notification that was defined without the optional text string criteria value.

• There is one active notification that was defined with the optional text string criteria value and that value
matches the first word in the value of the eventNotificationInfo.UIEventData element.

- Note that the 'first word' in the message is defined as the initial characters after discarding any leading
Whitespace and ending with a Whitespace or end of message. The matching shall be case-insensitive.

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 16

The result from IpAppUIManager.reportEventNotification is of type IpAppUIRef and is used internally
to correlate with the User Interaction interface instance (i.e. of type IpUI) associated with the event notification.

6.1.5 getReceivedMessages

The sequence diagram in clause 5.2 (figure 2) illustrates the flow for the getReceivedMessages operation. It is not
explicitly mapped to any Parlay/OSA method. Instead, the getReceivedMessages operation is a bulk retrieval capability
for previously received multimedia messages matching criteria defined in an off-line provisioning step. This retrieval
operation includes matching messages previously and individually reported to the application via the
notifyMessageReception operation.

6.1.6 getMessageURIs

The sequence diagram in clause 5.2 (figure 2) illustrates the flow for the getMessageURIs operation. It is not explicitly
mapped to any Parlay/OSA method. Instead, the getMessageURIs operation is a retrieval capability for a received
multimedia message whose reference was previously obtained by the application via the notifyMessageReception or
getReceivedMessages operations.

6.1.7 getMessage

The sequence diagram in clause 5.2 (figure 2) illustrates the flow for the getMessage operation. It is not explicitly
mapped to any Parlay/OSA method. Instead, the getMessage operation is a retrieval capability for a received
multimedia message whose reference was previously obtained by the application via the notifyMessageReception or
getReceivedMessages operations.

6.1.8 stopMessageNotification

The sequence diagram in clause 5.2 (figure 2) illustrates the flow for the stopMessageNotification operation, which is
mapped to the Parlay/OSA method: IpUIManager.destroyNotification, provided that the referenced
notification is the last active notification for the associated destination address. Otherwise at least one other notification
(i.e. associated with a different text string criteria value) remains active for this destination address and the mapping is
not performed.

6.1.8.1 Mapping to IpUIManager.destroyNotification

The IpUIManager.destroyNotification is invoked with the following parameters:

Name Type Comment
assignmentID TpAssignmentID Not mapped. [The value provide in the result from

IpUIManager.createNotification and correlated with the value of
the reference part received from the application in the original
startMessageNotificationRequest message and the value of the
correlator part received from the application in the
stopMessageNotificationRequest message].

Parlay exceptions thrown by IpUIManager.destroyNotification are mapped to Parlay X exceptions as
defined in clause 6.2.

6.2 Exceptions
For this mapping document, the mapping of Parlay/OSA API method exceptions to Parlay X Web Service exceptions is
common and defined in TR 102 397-1 [3]. There are no service-specific exception mappings.

7 Additional Notes
No additional notes are provided.

ETSI

ETSI TR 102 397-5-1 V1.1.1 (2005-12) 17

History

Document history

V1.1.1 December 2005 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Mapping Description
	5 Sequence Diagrams
	5.1 Send Multimedia Message to One or More Addresses
	5.2 Notification of Multimedia Message Reception and Retrieval

	6 Detailed Mapping Information
	6.1 Operations
	6.1.1 sendMessage
	6.1.1.1 Mapping to IpUIManager.createNotification
	6.1.1.2 Mapping to IpUIManager.createUI
	6.1.1.3 Mapping to IpUI.sendInfoAndCollectReq

	6.1.2 getMessageDeliveryStatus
	6.1.2.1 Mapping from IpAppUI.sendInfoAndCollectRes
	6.1.2.2 Mapping from IpAppUI.sendInfoAndCollectErr
	6.1.2.3 Mapping from IpAppUIManager.reportEventNotification

	6.1.3 startMessageNotification
	6.1.3.1 Mapping to IpUIManager.createNotification

	6.1.4 notifyMessageReception
	6.1.4.1 Mapping from IpAppUIManager.reportEventNotification

	6.1.5 getReceivedMessages
	6.1.6 getMessageURIs
	6.1.7 getMessage
	6.1.8 stopMessageNotification
	6.1.8.1 Mapping to IpUIManager.destroyNotification

	6.2 Exceptions

	7 Additional Notes
	History

