

ETSI TR 102 397-5-2 V1.1.1 (2005-12)

Technical Report

Open Service Access (OSA);
Mapping of Parlay X Web Services to Parlay/OSA APIs;

Part 5: Multimedia Messaging Mapping;
Sub-part 2: Mapping to Multi-Media Messaging

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 2

Reference
DTR/TISPAN-01021-05-02-OSA

Keywords
API, OSA, service

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.

© The Parlay Group 2005.
All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.

TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 3

Contents

Intellectual Property Rights ..5

Foreword...5

1 Scope ..6

2 References ..6

3 Definitions and abbreviations...6
3.1 Definitions..6
3.2 Abbreviations ...7

4 Mapping Description..7

5 Sequence Diagrams ..8
5.1 Send Multimedia Message to One or More Addresses (Messaging Paradigm)..8
5.2 Notification of Multimedia Message Reception and Retrieval (Messaging Paradigm)11
5.3 Send Multimedia Message to One or More Addresses (Mailbox Paradigm) ...13
5.4 Notification of Multimedia Message Reception and Retrieval (Mailbox Paradigm)16

6 Detailed Mapping Information...19
6.1 Operations (Messaging Paradigm) ...19
6.1.1 sendMessage ...19
6.1.1.1 Mapping to IpMMMManager.openMMM ...19
6.1.1.2 Mapping to IpMMM.sendMessageReq ...20
6.1.2 getMessageDeliveryStatus..21
6.1.2.1 Mapping from IpAppMMM.sendMessageRes..21
6.1.2.2 Mapping from IpAppMMM.sendMessageErr..21
6.1.2.3 Mapping from IpAppMMM.messageStatusReport..22
6.1.2.4 Mapping to IpMMM.queryStatusReq ...22
6.1.2.5 Mapping from IpAppMMM.queryStatusRes..22
6.1.2.6 Mapping from IpAppMMM.queryStatusErr..23
6.1.3 startMessageNotification ..23
6.1.3.1 Mapping to IpMMMManager.createNotification ...23
6.1.4 notifyMessageReception...23
6.1.4.1 Mapping from IpAppMMMManager.reportNotification ...24
6.1.4.2 Mapping from TpNewMessageArrivedInfo..24
6.1.4.3 Mapping from IpAppMMM.messageReceived ...25
6.1.5 getReceivedMessages ...25
6.1.6 getMessageURIs ...25
6.1.7 getMessage ...25
6.1.8 stopMessageNotification ..25
6.1.8.1 Mapping to IpMMMManager.destroyNotification ...26
6.2 Operations (Mailbox Paradigm) ...26
6.2.1 sendMessage ...26
6.2.1.1 Mapping to IpMMMManager.openMailbox ..26
6.2.1.2 Mapping to IpMailbox.putMessageReq ..27
6.2.2 getMessageDeliveryStatus..27
6.2.2.1 Mapping from IpAppMailbox.putMessageRes...28
6.2.2.2 Mapping from IpAppMailbox.putMessageErr...28
6.2.2.3 Mapping to IpMailbox.getMessageInfoPropertiesReq ...28
6.2.2.4 Mapping from IpAppMailbox.getMessageInfoPropertiesRes29
6.2.2.5 Mapping from IpAppMailbox.getMessageInfoPropertiesErr29
6.2.3 startMessageNotification ..29
6.2.3.1 Mapping to IpMMMManager.createNotification ...29
6.2.4 notifyMessageReception...30
6.2.4.1 Mapping from IpAppMMMManager.reportNotification ...31
6.2.4.2 Mapping to IpMMMManager.openMailbox ..31
6.2.4.3 Mapping to IpMailbox.getMessageContentReq..32
6.2.4.4 Mapping from IpAppMailbox.getMessageContentRes ..32

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 4

6.2.4.5 Mapping to IpMailbox.getMessageBodyPartsReq ...33
6.2.4.6 Mapping from IpAppMailbox.getMessageBodyPartsRes ...33
6.2.5 getReceivedMessages ...33
6.2.6 getMessageURIs ...33
6.2.7 getMessage ...33
6.2.8 stopMessageNotification ..34
6.2.8.1 Mapping to IpMMMManager.destroyNotification ...34
6.3 Exceptions ..34

7 Additional Notes ..34

History ..35

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 5

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Report (TR) has been produced by ETSI Technical Committee Telecommunications and Internet
converged Services and Protocols for Advanced Networking (TISPAN).

The present document is part 5, sub-part 2, of a multi-part deliverable providing an informative mapping of Parlay X
Web Services to the Parlay Open Service Access (OSA) APIs and, where applicable, to IMS, as identified below:

Part 1: "Common Mapping";

Part 2: "Third Party Call Mapping";

Part 3: "Call Notification Mapping";

Part 4: "Short Messaging Mapping";

Part 5: "Multimedia Messaging Mapping";

Sub-part 1: "Mapping to User Interaction";

Sub-part 2: "Mapping to Multi-Media Messaging";

Part 6: "Payment Mapping";

Part 7: "Account Management Mapping";

Part 8: "Terminal Status Mapping";

Part 9: "Terminal Location Mapping";

Part 10: "Call Handling Mapping";

Part 11: "Audio Call Mapping";

Part 12: "Multimedia Conference Mapping";

Part 13: "Address list Management Mapping";

Part 14: "Presence Mapping".

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP.

http://webapp.etsi.org/IPR/home.asp
http://www.parlay.org/

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 6

1 Scope
The Parlay X Web Services provide powerful yet simple, highly abstracted, imaginative, telecommunications functions
that application developers and the IT community can both quickly comprehend and use to generate new, innovative
applications.

The Open Service Access (OSA) specifications define an architecture that enables application developers to make use
of network functionality through an open standardised interface, i.e. the Parlay/OSA APIs.

The present document is part 5, sub-part 2, of an informative mapping of Parlay X Web Services to Parlay/OSA APIs.

The present document specifies the mapping of the Parlay X Multimedia Messaging Web Service to the Parlay/OSA
Multi-Media Messaging Service Capability Feature (SCF).

2 References
For the purposes of this Technical Report (TR) the following references apply:

[1] ETSI TR 102 397-1: "Open Service Access (OSA); Mapping of Parlay X Web Services to
Parlay/OSA APIs; Part 1: Common Mapping".

[2] IETF RFC 2822: "Internet Message Format".

NOTE: Available at http://www.ietf.org/rfc/rfc2822.txt

[3] W3C Note (11 December 2000): "SOAP Messages with Attachments".

NOTE: Available at http://www.w3.org/TR/SOAP-attachments

[4] IETF RFC 2045: "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies".

NOTE: Available at http://www.ietf.org/rfc/rfc2045.txt

[5] IETF RFC 2046: "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types".

NOTE: Available at http://www.ietf.org/rfc/rfc2046.txt

[6] IETF RFC 2557: "MIME Encapsulation of Aggregate Documents, such as HTML (MHTML)".

NOTE: Available at http://www.ietf.org/rfc/rfc2557.txt

[7] ETSI TR 121 905: "Universal Mobile Telecommunications System (UMTS); Vocabulary for
3GPP Specifications (3GPP TR 21.905)".

[8] W3C Recommendation (2 May 2001): "XML Schema Part 2: Datatypes".

[9] ETSI TS 123 140: "Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); Multimedia Messaging Service (MMS); Functional
description; Stage 2 (3GPP TS 23.140)".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in TR 102 397-1 [1] and the following apply:

Shortcode: Short telephone number, usually 4 to 6 digits long. This is represented by the 'tel:' URI defined in
TR 102 397-1 [1].

http://www.ietf.org/rfc/rfc2822.txt
http://www.w3.org/TR/SOAP-attachments
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2557.txt

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 7

Whitespace: See definition for CFWS as defined in RFC 2822 [2].

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in TR 102 397-1 [1] and the following apply:

MMS Multimedia Messaging Service

4 Mapping Description
The Multimedia Messaging capability can be implemented with the Parlay/OSA Multi-Media Messaging SCF.

It is applicable to ETSI OSA 3.x, Parlay/OSA 5.x and 3GPP Release 6.x.

The following tables list the versions of the applicable mapping source documents, for both the ETSI/Parlay and the
3GPP specification sets.

Table 1: ETSI/Parlay Mapping Source Documents

Parlay X 2.1 Web
Services

Parlay 3.5 Parlay 4.3 Parlay 5.1

Draft ES 202 391-5 V1.1.3 n/a n/a Draft ES 203 915-15 V0.0.4

Table 2: 3GPP Mapping Source Documents

Release 6 Parlay X
Web Services

Release 4 Release 5 Release 6

TS 29.199-5 V6.3.0 n/a n/a TS 29.198-15 V6.2.1

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 8

5 Sequence Diagrams

5.1 Send Multimedia Message to One or More Addresses
(Messaging Paradigm)

This describes where an application sends a multimedia message to one or more addresses.

1. The application requests the sending of a multimedia message to multiple addresses using the sendMessage
operation. If the contents of the sendMessageRequest message are invalid for any reason, the appropriate
service or policy exception is thrown. Otherwise processing continues as described below.

2. The web service creates a Multi-Media Messaging interface object for this application request (single-shot,
page mode); no source or destination address information is provided in the method invocation. If the method
invocation fails for any reason, the appropriate service or policy exception is thrown. Otherwise processing
continues as described below.

3. A sendMessageResponse message is returned to the application containing a unique identifier for this
message delivery request.

4. The web service invokes the sendMessageReq method on the Multi-Media Messaging interface object to
send the message to each individual destination address.

5. The application can invoke the getMessageDeliveryStatus operation at any time after it receives the
sendMessageResponse message and use the unique identifier it received in this message to obtain the current
delivery status for each individual destination address. At this stage, the status returned for each address is
either MessageWaiting or, in the event of an error, DeliveryImpossible.

6. The web service processes an invocation of the sendMessageRes method indicating that the message has
been successfully sent to the destination address(es). However it does not indicate that the message was
delivered or read.

7. The application can invoke the getMessageDeliveryStatus operation. At this stage, the status returned for
each individual destination address is one of the following:

- DeliveryImpossible, in the event an error occurred.

- DeliveryUncertain, otherwise.

8. The web service processes one or more invocations of the messageStatusReport method, one for each
destination address associated with the message, which contains the terminal delivery related status.

9. [RESERVED FOR FUTURE USE] If the receiptRequest part of the associated, original sendMessageRequest
message was present, and this capability is supported by the web service, then the web service invokes the
notifyMessageDeliveryReceipt operation to notify the application of the final status of the message delivery to
an individual destination address.

10. The application can invoke the getMessageDeliveryStatus operation. At this stage, the status returned for an
individual destination address depends on whether a messageStatusReport method has been invoked for
that address. If the method has not been invoked, the delivery status is as described in step 7. Otherwise this
method has been invoked and the delivery status is one of the following:

- Delivered, if deliveryReportType parameter value = P_MESSAGE_REPORT_DELIVERED.

- DeliveryImpossible, if deliveryReportType parameter value = P_MESSAGE_REPORT_
NOT_DELIVERABLE.

- DeliveryUncertain, if deliveryReportType parameter value = P_MESSAGE_REPORT_
DELIVERY_UNDEFINED.

11. If the web service has not yet received all the requested terminal delivery related status reports, it may
optionally invoke the queryStatusReq method to poll the network for this information.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 9

12. The web service processes an invocation of the queryStatusRes method containing terminal delivery
related status for all destination addresses associated with the message.

13. [RESERVED FOR FUTURE USE] If the receiptRequest part of the associated, original sendMessageRequest
message was present, and this capability is supported by the web service, then the web service invokes the
notifyMessageDeliveryReceipt operation to notify the application of the final status of the message delivery to
an individual destination address. (However if the delivery status is unchanged from the status previously
reported to the application, then the web service does not need to invoke this operation.)

14. The application can invoke the getMessageDeliveryStatus operation. At this stage, the status returned for all
associated destination addresses reflects the results provided by the queryStatusRes method (step 12),
i.e.:

- Delivered, if deliveryReportType parameter value = P_MESSAGE_REPORT_DELIVERED.

- DeliveryImpossible, if deliveryReportType parameter value = P_MESSAGE_REPORT_
NOT_DELIVERABLE.

- DeliveryUncertain, if deliveryReportType parameter value = P_MESSAGE_REPORT_
DELIVERY_UNDEFINED.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12)10

 Application Multimedia
Messaging

IpAppMMM
Manager

IpAppMMM IpMMM
Manager

IpMMM

1: sendMessageRequest
"new"

2: openMultiMediaMessaging()
"new" 3: sendMessageResponse

4: sendMessageReq()

6: sendMessageRes()

"forward event"

8: messageStatusReport()

"forward event"

12: queryStatusRes()
"forward event"

10a: getMessageDeliveryStatusRequest

10b: getMessageDeliveryStatusResponse 11: queryStatusReq()

FOR FUTURE USE 9b: notifyMessageDeliveryReceiptResponse

FOR FUTURE USE 9a: notifyMessageDeliveryReceiptRequest

FOR FUTURE USE 13b: notifyMessageDeliveryReceiptResponse

 FOR FUTURE USE 13a: notifyMessageDeliveryReceiptRequest

5a: getMessageDeliveryStatusRequest

5b: getMessageDeliveryStatusResponse

7a: getMessageDeliveryStatusRequest

7b: getMessageDeliveryStatusResponse

14a: getMessageDeliveryStatusRequest

14b: getMessageDeliveryStatusResponse

Figure 1

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 11

5.2 Notification of Multimedia Message Reception and Retrieval
(Messaging Paradigm)

1. The application registers for the reception of multimedia messages by invoking startMessageNotification.
The request includes event criteria consisting of a value for the multimedia message destination address (the
messageServiceActivationNumber part) and an optional text string for matching against the first word of the
subject of the multimedia message or the first word in the text part of the multimedia message (the criteria
part); also a URI for a Web Service implementing the MessageNotification interface on the client application
side, and a correlation value for identifying this event registration request.

- Note that the application may also register offline for the reception of multimedia messages: i.e. without
using the Parlay X interface and the startMessageNotification operation. The registration request should
at a minimum specify the message destination address. The request may also specify a URI for a Web
Service implementing the MessageNotification interface on the client application side and/or the
optional text string criteria. The registration request is assigned a unique registration identifier.

2. A check is made within the web service to see if a notification for the given multimedia message destination
address is active. If no notification is active, then the Multimedia Messaging web service requests that a
notification be created by the MMM SCS; note that the optional text string criteria (for matching against the
first word in the message subject or body) is not sent to the MMM SCS. Otherwise a notification is already
active and the request is not made.

3. The MMM SCS sends a reportNotification containing a set of one (or more) multimedia message(s)
and related message information, where the destination address of each message is the same: i.e. equivalent to
the value specified in the event criteria (steps 1 and 2).

4. For each multimedia message, the web service verifies the first word of the message body matches the value of
the optional text string criteria associated with this destination address. If a message is verified, then the web
service stores the message and notifies the application by invoking the notifyMessageReception operation on
the corresponding, previously provisioned, application Web Service (i.e. as defined in the reference part of the
startMessageNotificationRequest message). Note that if the multimedia message is pure ASCII text, then the
whole message is delivered to the application Web Service. Otherwise, if a message cannot be verified, the
web service discards it.

5. The application may invoke the getReceivedMessages operation to request a list of references to received
multimedia messages matching a registration identifier associated with off-line provisioned notification
criteria. The web service returns the list of any such multimedia message references. Note that for each
multimedia message that is pure ASCII text, the web service delivers the whole message to the application and
then deletes it.

6. The application retrieves the text portion of a multimedia message associated with one of the message
references, and a list of URI file references for any message attachments, by invoking the getMessageURIs
operation.

7. The application retrieves the whole multimedia message associated with one of the message references, by
invoking the getMessage operation.

8. The application terminates an existing registration for the reception of multimedia messages by invoking the
stopMessageNotification operation. The request includes the same correlation value previously specified in
the earlier startMessageNotification operation (step 1).

- Note that the application may also deregister offline for the reception of multimedia messages: i.e.
without using the Parlay X interface and the stopMessageNotification operation. The deregistration
request would specify the registration identifier associated with the original, offline registration operation
(step 1).

9. A check is made within the web service to see if the registration identifier (correlation value) represents the
last active notification for the corresponding destination address. If it is the last, then the web service requests
that the notification be destroyed by the MMM SCS. Otherwise at least one other notification (i.e. associated
with a different text string criteria value) remains active for this destination address and the request is not
made.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12)12

 Application Multimedia
Messaging

IpAppMMM
Manager

IpMMM
Manager

"new"

2: createNotification(): P_EVENT_MSG_NEW_MESSAGE_ARRIVED

"forward event"

4a: notifyMessageReceptionRequest

4b: notifyMessageReceptionResponse

5a: getReceivedMessagesRequest

5b: getReceivedMessagesResponse

1a: startMessageNotificationRequest

Notification(s) only sent if the event
satisfies all criteria specified in
startMessageNotification

3: reportNotification(): P_EVENT_MSG_NEW_MESSAGE_ARRIVED

8a: stopMessageNotificationRequest
9: destroyNotification()

8b: stopMessageNotificationResponse

Notification is only created if one is not already
active for the specified destination address: i.e
messageServiceActivationNumber

Notification is only destroyed if it is the last one active for the
specified destination address: i.e messageServiceActivationNumber

6a: getMessageURIsRequest

6b: getMessageURIsResponse

7a: getMessageRequest

7b: getMessageResponse

1a: startMessageNotificationResponse

Figure 2

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 13

5.3 Send Multimedia Message to One or More Addresses
(Mailbox Paradigm)

This describes where an application sends a multimedia message to one or more addresses.

1. The application requests the sending of a multimedia message to multiple addresses using the sendMessage
operation. If the contents of the sendMessageRequest message are invalid for any reason, the appropriate
service or policy exception is thrown. Otherwise processing continues as described below.

2. If a mailbox for the requesting application is not already open, then the web service opens a Mailbox interface
object. If the method invocation fails for any reason, the appropriate service or policy exception is thrown.
Otherwise processing continues as described below.

3. A sendMessageResponse message is returned to the application containing a unique identifier for this
message delivery request.

4. The web service invokes the putMessageReq method one or more times on the Mailbox interface object to
place the message in an 'outbox' to be sent to each individual destination address. Note that, by invoking the
method separately for each individual destination address, the web service receives a messageId for each
destination that can be subsequently used to poll for delivery status on a per destination basis, e.g. in step 8.

5. The application can invoke the getMessageDeliveryStatus operation at any time after it receives the
sendMessageResponse message and use the unique identifier it received in this message to obtain the current
delivery status for each individual destination address. At this stage, the status returned for each address is
either MessageWaiting or, in the event of an error, DeliveryImpossible.

6. The web service processes invocations of the putMessageRes method indicating that the message has been
successfully sent to the destination address(es). However it does not indicate that the message was delivered or
read.

7. The application can invoke the getMessageDeliveryStatus operation. At this stage, the status returned for
each individual destination address is one of the following:

- DeliveryImpossible, in the event an error occurred.

- DeliveryUncertain, otherwise.

8. The web service invokes the getMessageInfoPropertiesReq method one or more times on the
Mailbox interface object, one for each destination address associated with the message, to poll for message
delivery status.

9. The web service processes invocations of the getMessageInfoPropertiesRes method containing
message delivery status.

10. [RESERVED FOR FUTURE USE] If the receiptRequest part of the associated, original sendMessageRequest
message was present, and this capability is supported by the web service, then the web service invokes the
notifyMessageDeliveryReceipt operation to notify the application of the final status of the message delivery to
an individual destination address.

11. The application can invoke the getMessageDeliveryStatus operation. At this stage, the status returned for an
individual destination address depends on whether a getMessageInfoPropertiesRes method has been
invoked for that address. If the method has not been invoked, the delivery status is as described in step 7.
Otherwise this method has been invoked and the delivery status is one of the following:

- Delivered, if MessageStatus parameter value = P_MMM_SENT_MSG_STATUS_DELIVERED,
P_MMM_SENT_MSG_STATUS_READ or P_MMM_SENT_MSG_STATUS_DELETED_UNREAD.

- DeliveryImpossible, if MessageStatus parameter value =
P_MMM_SENT_MSG_STATUS_NOT_DELIVERABLE or
P_MMM_SENT_MSG_STATUS_EXPIRED.

- DeliveryUncertain, if MessageStatus parameter value = P_MMM_SENT_MSG_STATUS_SENT.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 14

12. If the web service has not yet received a final message delivery status for all the destination addresses, it may
optionally (re-)invoke the getMessageInfoPropertiesReq method one or more times on the Mailbox
interface object to poll for message delivery status.

13. The web service processes invocations of the getMessageInfoPropertiesRes method containing
message delivery status.

14. [RESERVED FOR FUTURE USE] If the receiptRequest part of the associated, original sendMessageRequest
message was present, and this capability is supported by the web service, then the web service invokes the
notifyMessageDeliveryReceipt operation to notify the application of the final status of the message delivery to
an individual destination address. (However if the delivery status is unchanged from the status previously
reported to the application, then the web service does not need to invoke this operation.)

15. The application can invoke the getMessageDeliveryStatus operation. At this stage, the status returned for all
associated destination addresses reflects the results provided by the getMessageInfoPropertiesRes
methods (steps 9 and 13), i.e.:

- Delivered, if MessageStatus parameter value = P_MMM_SENT_MSG_STATUS_DELIVERED,
P_MMM_SENT_MSG_STATUS_READ or P_MMM_SENT_MSG_STATUS_DELETED_UNREAD.

- DeliveryImpossible, if MessageStatus parameter value =
P_MMM_SENT_MSG_STATUS_NOT_DELIVERABLE or
P_MMM_SENT_MSG_STATUS_EXPIRED.

- DeliveryUncertain, if MessageStatus parameter value = P_MMM_SENT_MSG_STATUS_SENT.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12)15

Application

Multimedia
Messaging

IpAppMMM
Manager

IpAppMailbox IpMMM
Manager

IpMailbox

1: sendMessageRequest
"new"

2: openMailbox()
"new" 3: sendMessageResponse

4: putMessageReq()

6: putMessageRes()

"forward event"

9: getMessageInfoPropertiesRes() "forward event"

13: getMessageInfoPropertiesRes ()
"forward event"

11a: getMessageDeliveryStatusRequest

11b: getMessageDeliveryStatusResponse

12: getMessageInfoPropertiesReq ()

FOR FUTURE USE 10b: notifyMessageDeliveryReceiptResponse

FOR FUTURE USE 10a: notifyMessageDeliveryReceiptRequest

FOR FUTURE USE 10b: notifyMessageDeliveryReceiptResponse

 FOR FUTURE USE 10a: notifyMessageDeliveryReceiptRequest

5a: getMessageDeliveryStatusRequest

5b: getMessageDeliveryStatusResponse

7a: getMessageDeliveryStatusRequest

7b: getMessageDeliveryStatusResponse

15a: getMessageDeliveryStatusRequest

15b: getMessageDeliveryStatusResponse

8: getMessageInfoPropertiesReq()

Figure 3

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 16

5.4 Notification of Multimedia Message Reception and Retrieval
(Mailbox Paradigm)

1. The application registers for the reception of multimedia messages by invoking startMessageNotification.
The request includes event criteria consisting of a value for the multimedia message destination address (the
messageServiceActivationNumber part) and an optional text string for matching against the first word of the
subject of the multimedia message or the first word in the text part of the multimedia message (the criteria
part); also a URI for a Web Service implementing the MessageNotification interface on the client application
side, and a correlation value for identifying this event registration request.

- Note that the application may also register offline for the reception of multimedia messages: i.e. without
using the Parlay X interface and the startMessageNotification operation. The registration request should
at a minimum specify the message destination address. The request may also specify a URI for a Web
Service implementing the MessageNotification interface on the client application side and/or the
optional text string criteria. The registration request is assigned a unique registration identifier.

2. A check is made within the web service to see if a notification for the given multimedia message destination
address is active. If no notification is active, then the Multimedia Messaging web service requests that a
notification be created by the MMM SCS; note that the optional text string criteria (for matching against the
first word in the message subject or body) is not sent to the MMM SCS. Otherwise a notification is already
active and the request is not made.

3. The MMM SCS sends a reportNotification containing a set of one (or more) received message
notification(s) and related message information, where the mailbox identifier of each message is the same:
i.e. equivalent to the value specified in the event criteria (steps 1 and 2).

4. If one is not already open, the web service opens a Mailbox interface object associated with the mailbox
identifier reported in the event notification.

5. The MMM SCS performs the following processing for each received message notification:

- If the Subject field is present (i.e. the value of the MessageDescription.Subject element is non-
null) but the first word does not match the value of any of the optional text string criteria associated with
this destination address, then the web service discards the notification. The web service may invoke
either the deleteMessageReq or moveMessageReq method on the Mailbox interface object to
clean-up the mailbox and folder.

- If the Subject field is not present (i.e. the value of the MessageDescription.Subject element is
null), then the web service retrieves the message content in order to perform the criteria matching
operation. The web service invokes the getMessageContentReq method.

- If the Subject field is present (i.e. the value of the MessageDescription.Subject element is non-
null) and the first word matches the value of an optional text string criteria associated with this
destination address, then processing is as follows:

- If the message is pure text [i.e. the value(s) of the
ExtendedHeaderInformation.MimeContent element(s) denote text content], then the
web service retrieves the message content by invoking the getMessageContentReq method.

- If the message is not pure text, then the web service retrieves all parts of the multimedia message
by invoking the getMessageBodyPartsReq method.

6. The web service notifies the application of a valid received message by invoking the notifyMessageReception
operation on the corresponding, previously provisioned, application Web Service. Note that if the multimedia
message is pure ASCII text, then the whole message is delivered to the application Web Service. This
operation is invoked under the following circumstances:

- The first word of the subject field (step 5) matches the optional text string criteria associated with the
application Web Service.

- The subject field (step 5) was absent, the message is pure text, and the first word of the message body
matches the optional text string criteria associated with the application Web Service.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 17

7. The web service performs one of the following method invocations on the Mailbox interface object:

- deleteMessageReq or moveMessageReq to clean-up the mailbox and folder, if the subject field
(step 5) associated with the message was absent and the first word of the message body does not match
any optional text string criteria associated with the application Web Service;

- setMessageInfoPropertiesReq, if it stores a retrieved message, in order to change the value of
the MessageStatus element from P_MMM_RECEIVED_MSG_STATUS_UNREAD to
P_MMM_RECEIVED_MSG_STATUS_READ;

- getMessageBodyPartsReq, to retrieves all parts of a multimedia message, if the subject field
(step 5) associated with the multimedia message was absent and the first word of the message body
matches optional text string criteria associated with the application Web Service.

8. The web service processes invocations of the getMessageBodyPartsRes method. For each invocation,
the web service stores the message and notifies the application of a valid received multimedia message by
invoking the notifyMessageReception operation on the corresponding, previously provisioned, application
Web Service.

9. The web service invokes setMessageInfoPropertiesReq, for each stored multimedia message, in
order to change the value of the MessageStatus element from
P_MMM_RECEIVED_MSG_STATUS_UNREAD to P_MMM_RECEIVED_MSG_STATUS_READ.

10. The application may invoke the getReceivedMessages operation to request a list of references to received
multimedia messages matching a registration identifier associated with off-line provisioned notification
criteria. The web service returns the list of any such multimedia message references. Note that for each
multimedia message that is pure ASCII text, the web service delivers the whole message to the application and
then deletes it.

11. The application retrieves the text portion of a multimedia message associated with one of the message
references, and a list of URI file references for any message attachments, by invoking the getMessageURIs
operation.

12. The application retrieves the whole multimedia message associated with one of the message references, by
invoking the getMessage operation.

13. The application terminates an existing registration for the reception of multimedia messages by invoking the
stopMessageNotification operation. The request includes the same correlation value previously specified in
the earlier startMessageNotification operation (step 1).

- Note that the application may also deregister offline for the reception of multimedia messages: i.e.
without using the Parlay X interface and the stopMessageNotification operation. The deregistration
request would specify the registration identifier associated with the original, offline registration operation
(step 1).

14. A check is made within the web service to see if the registration identifier (correlation value) represents the
last active notification for the corresponding destination address. If it is the last, then the web service requests
that the notification be destroyed by the MMM SCS. Otherwise at least one other notification (i.e. associated
with a different text string criteria value) remains active for this destination address and the request is not
made.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12)18

IpMailbox

IpAppMailbox

Application Short Messaging IpAppMMM
Manager

IpMMM
Manager

"new"

2: createNotification(): P_EVENT_MSG_NEW_MAILBOX_MESSAGE_ARRIVED

6a: notifySmsReceptionRequest

6b: notifySmsReceptionResponse

1a: startMessageNotificationRequest

13a: stopMessageNotificationRequest 14: destroyNotification()

13b: stopMessageNotificationResponse

Notification is only destroyed if it is the
last one active for the specified destination
address

11b: getMessageURIsResponse

1b: startSmsNotificationResponse

Application Multimedia
Messaging

IpAppMMM
Manager

IpMMM
Manager

"forward event"
3: reportNotification(): P_EVENT_MSG_NEW_MAILBOX_MESSAGE_ARRIVED

Notification is only created if one is
not already active for the specified
destination address

4: openMailbox()
"new"

5a: deleteMessageReq(), moveMessageReq(), getMessageContentReq() or getMessageBodyPartsReq()

5b: deleteMessageRes(), moveMessageRes(), getMessageContentRes() or getMessageBodyPartsRes()
"forward event"

7a: deleteMessageReq(), moveMessageReq(), setMessageInfoPropertiesReq() or getMessageBodyPartsReq

7b: deleteMessageRes(), moveMessageRes(), setMessageInfoPropertiesRes() or getMessageBodyPartsRes

"forward event”

11a: getMessageURIsRequest

"new"

8a: notifySmsReceptionRequest

8b: notifySmsReceptionResponse

9a: setMessageInfoPropertiesReq()

9b: setMessageInfoPropertiesRes()

"forward event"

10b: getReceivedMessagesResponse
10a: getReceivedMessagesRequest

12b: getMessageResponse

12a: getMessageRequest

Figure 4

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 19

6 Detailed Mapping Information

6.1 Operations (Messaging Paradigm)

6.1.1 sendMessage

The sequence diagram in clause 5.1 (figure 1) illustrates the flow for the sendMessage operation.

The sendMessage operation is synchronous from the Parlay X client's point of view. It is mapped to the following
Parlay/OSA methods:

• IpMMMManager.openMMM.

• IpMMM.sendMessageReq.

6.1.1.1 Mapping to IpMMMManager.openMMM

The IpMMMManager.openMMM method is invoked with the following parameters:

Name Type Comment
defaultDestination
AddressList

TpTerminating
AddressList

Not mapped. [Optional parameter]

defaultSource
Address

TpAddress Not mapped. [Optional parameter]

appMMM IpAppMMMRef Reference to callback (internal)

The result from IpMMMManager.openMMM is of type TpMMMIdentifier and identifies the MMM interface object
upon which future methods are invoked: e.g. IpMMM.sendMessageReq. It is also correlated with the value of the
requestIdentifier part returned to the application in the sendMessageResponse message

Parlay exceptions thrown by IpMMMManager.openMMM are mapped to Parlay X exceptions as defined in
clause 6.2.1.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 20

6.1.1.2 Mapping to IpMMM.sendMessageReq

The IpMMM.sendMessageReq method is invoked with the following parameters:

Name Type Comment
sessionID TpSessionID Not mapped. [The value provided in the result from

IpMMMManager.openMMM]
sourceAddress TpAddress The address used to represent the sender of the message. For

alphanumeric message addresses - i.e. the optional senderAddress part of
sendMessageRequest - the address plan P_ADDRESS_PLAN_UNDEFINED
is used.

destination
AddressList

TpTerminating
AddressList

Specifies the addresses to which the message should be sent. It is
constructed based on the URIs provided in the addresses part of
sendMessageRequest, mapped as described in TR 102 397-1 [1]. Only the
ToAddressList element of TpTerminatingAddressList is populated.

deliveryType TpMessage
DeliveryType

Set to the P_MMM_MMS value.

message
Treatment

TpMessage
TreatmentSet

Consists of the following elements:
• a DeliveryReport element with value set to a value of "9", which

represents a logical "OR" (and request for notification) of ONLY the
following delivery states:
P_MESSAGE_REPORT_DELIVERY_UNDEFINED;
P_MESSAGE_REPORT_DELIVERED; and
P_MESSAGE_REPORT_NOT_DELIVERABLE.

• a BillingID element constructed from the code element of the
optional charging part (if present);

• a DeliveryTime element set to a value of P_MMM_SEND_IMMEDIATE;
• a ValidityTime element set to a vendor-specific value.

message TpOctetSet The actual message that needs to be sent: i.e. the Attachment(s) to the
sendMessageRequest message. The message and the headers are
transferred to the Messaging service. The message will be taken as is. No
checking is done on the message.

If the web service knows the messaging system and understands the format
for sending attachments, it can do so as an alternative, or in addition, to
populating the message and additionalHeaders parameters.

additionalHeaders TpMessage
HeaderFieldSet

Consists of multiple elements mapped as follows:
• the optional subject part maps to the Subject field
• the optional priority part maps to the Priority field, as follows:

• Default, Normal -> P_MMM_MESSAGE_PRIORITY_UNDEFINED
• Low -> P_MMM_MESSAGE_PRIORITY_LOW
• High -> P_MMM_MESSAGE_PRIORITY_HIGH

• the Attachment(s) containing the message content map(s) to multiple
MimeXxx fields. For each Attachment, values must be assigned to at
least the following header fields (see note):
• MimeContent (e.g. 'image/gif'), which has the same semantics as the

"Content-Type:" field that is defined in RFC 2045 [4] and RFC 2046 [5].
• EITHER MimeID (e.g. 'abcd'), which has the same semantics as the

"Content-ID:" field that is defined in RFC 2045 [4],
OR MimeExtensionField.FieldName = 'Content-Location:' (e.g.
'filename.ext'), which has semantics defined in RFC 2557 [6]

• MimeEncoding (e.g. 'binary'), which has the same semantics as the
"Content-Transfer-Encoding:" field that is defined in RFC 2045 [4].

NOTE: The content of a multimedia message is sent as an Attachment(s). However, since the Attachment(s) are
sent transparently to the underlying network, there are additional considerations. The Parlay X Multimedia
Messaging Web Service should check that all minimum required header fields are available; the set of
minimum required header fields may vary based on the underlying network or as mandated by policies in
the gateway.

The result from IpMMM.sendMessageReq is of type TpAssignmentID and is used internally to correlate the
callbacks. Specifically it is used to correlate with future invocations of the IpMMM.queryStatusReq method and of
IpAppMMM callback interface methods.

Parlay exceptions thrown by IpMMM.sendMessageReq are not mapped to Parlay X exceptions. Instead they are
reported to the application in a getMessageDeliveryStatusResponse message, with the following part values:

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 21

• the deliveryStatus.address element has an address value contained in the ToAddressList element of the
terminatingAddressList parameter of the IpMMM.sendMessageReq method, mapped as
described in TR 102 397-1 [1];

• the deliveryStatus.deliveryStatus element has the value: DeliveryImpossible.

6.1.2 getMessageDeliveryStatus

The sequence diagram in clause 5.1 (figure 1) illustrates the flow for the getMessageDeliveryStatus operation.

The getMessageDeliveryStatus operation is synchronous from the Parlay X client's point of view. It is mapped to the
following Parlay/OSA methods:

• IpAppMMM.sendMessageRes.

• IpAppMMM.sendMessageErr.

• IpAppMMM.messageStatusReport.

• IpMMM.queryStatusReq.

• IpAppMMM.queryStatusRes.

• IpAppMMM.queryStatusErr.

The delivery status provided to the Parlay X client will depend on the timing of the getMessageDeliveryStatus
operation invocation. If a message status report is received from the network as a result of an earlier sendMessage-
related operation, then the delivery status information provided in the IpAppMMM.messageStatusReport
callback is mapped. If such a report has not been received, then the IpMMM.queryStatusReq method is invoked.

6.1.2.1 Mapping from IpAppMMM.sendMessageRes

The IpAppMMM.sendMessageRes method is invoked with the following parameters:

Name Type Comment
sessionID TpSessionID Not mapped. [The value provided in the result from

IpMMMManager.openMMM]
assignmentID TpAssignmentID Not mapped. [The value provided in the result from

IpMMM.sendMessageReq]

In the absence of more recent delivery status information (i.e. as provided in an
IpAppMMM.messageStatusReport or an IpAppMMM.queryStatusRes method), this method results in the
assignment of the DeliveryUncertain value to the deliveryStatus element of each DeliveryInformation parameter of
the deliveryStatus part of a getMessageDeliveryStatusResponse message.

6.1.2.2 Mapping from IpAppMMM.sendMessageErr

The IpAppMMM.sendMessageErr method is invoked with the following parameters:

Name Type Comment
sessionID TpSessionID Not mapped. [The value provided in the result from

IpMMMManager.openMMM]
assignmentID TpAssignmentID Not mapped. [The value provided in the result from

IpMMM.sendMessageReq]
error TpMessaging

Error
Maps to the DeliveryImpossible value of the deliveryStatus element of
each DeliveryInformation parameter of the deliveryStatus part of a
getMessageDeliveryStatusResponse message.

errorDetails TpString Not mapped.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 22

6.1.2.3 Mapping from IpAppMMM.messageStatusReport

The IpAppMMM.messageStatusReport method is invoked with the following parameters:

Name Type Comment
sessionID TpSessionID Not mapped. [The value provided in the result from

IpMMMManager.openMMM]
assignmentID TpAssignmentID Not mapped. [The value provided in the result from

IpMMM.sendMessageReq]
destinationAddress TpAddress Maps to the address element of one DeliveryInformation parameter of

the deliveryStatus part of getMessageDeliveryStatusResponse.
deliveryReportType TpMessageDelive

ryReportType
Maps to the deliveryStatus element of one DeliveryInformation
parameter of the deliveryStatus part of
getMessageDeliveryStatusResponse, as follows:
• P_MESSAGE_REPORT_ DELIVERY_UNDEFINED maps to

DeliveryUncertain.
• P_MESSAGE_REPORT_DELIVERED maps to Delivered.
• P_MESSAGE_REPORT_NOT_DELIVERABLE maps to

DeliveryImpossible.
deliveryReportInfo TpString Not mapped.

6.1.2.4 Mapping to IpMMM.queryStatusReq

The IpMMM.queryStatusReq method is invoked with the following parameters:

Name Type Comment
sessionID TpSessionID Not mapped. [The value provided in the result from

IpMMMManager.openMMM]
assignmentID TpAssignmentID Not mapped. [The value provided in the result from

IpMMM.sendMessageReq]

Parlay exceptions thrown by IpMMM.queryStatusReq are not mapped to Parlay X exceptions.

6.1.2.5 Mapping from IpAppMMM.queryStatusRes

The IpAppMMM.queryStatusRes method is invoked with the following parameters:

Name Type Comment
sessionID TpSessionID Not mapped. [The value provided in the result from

IpMMMManager.openMMM]
assignmentID TpAssignmentID Not mapped. [The value provided in the result from

IpMMM.sendMessageReq]
result TpQueryStatus

ReportSet
This is a set of tuples where each tuple contains a DestinationAddress
of the message, together with the ReportedStatus for that address.
Each tuple maps to the address and deliveryStatus elements of one
DeliveryInformation parameter of the deliveryStatus part of the
getMessageDeliveryStatusResponse message. The mapping to the
deliveryStatus element is as follows:
• P_MESSAGE_REPORT_ DELIVERY_UNDEFINED maps to

DeliveryUncertain.
• P_MESSAGE_REPORT_DELIVERED maps to Delivered.
• P_MESSAGE_REPORT_NOT_DELIVERABLE maps to

DeliveryImpossible.
In the event that the messaging system provides additional delivery states
to those requested in the messageTreatment parameter (clause 6.1.1.2),
the mapping to the deliveryStatus element is as follows:
• P_MESSAGE_REPORT_READ and

P_MESSAGE_REPORT_DELETED_UNREAD map to Delivered.
• P_MESSAGE_REPORT_EXPIRED maps to DeliveryImpossible.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 23

6.1.2.6 Mapping from IpAppMMM.queryStatusErr

This failed attempt to poll for delivery status does not change the current deliveryStatus value (i.e. Delivered,
DeliveryImpossible, or DeliveryUncertain) for any of the destination addresses.

6.1.3 startMessageNotification

The sequence diagram in clause 5.2 (figure 2) illustrates the flow for the startMessageNotification operation, which is
mapped to the Parlay/OSA method: IpMMMManager.createNotification, provided there is no existing
notification already established for the destination address contained in the messageServiceActivationNumber part.

6.1.3.1 Mapping to IpMMMManager.createNotification

The IpMMMManager.createNotification is invoked with the following parameters:

Name Type Comment
appMMM
Manager

IpAppMMM
ManagerRef

Not mapped. Reference to callback (internal).

eventCriteria TpMessaging
EventCriteriaSet

Contains a single element specifying the event notification criteria, for the
messaging event: P_EVENT_MSG_NEW_MESSAGE_ARRIVED. The criteria
consist of 3 fields:
• The SourceAddress is not mapped. It is set to be valid for all senders.
• The DestinationAddress is constructed based on the URI provided

in the messageServiceActivationNumber part of the
startMessageNotificationRequest message, mapped as described in
TR 102 397-1 [1].

• The CreateMultiMediaMessagingSession element is not mapped.
It is set to a value of 'FALSE': i.e. the SCF will not create a MMM
session object when a new message arrives.

The result from IpMMMManager.createNotification is of type TpAssignmentID and is used internally to
correlate the callbacks. Specifically it is correlated with the value of the reference part received from the application in
the startMessageNotificationRequest message and the correlator part returned to the application in the
notifyMessageReceptionRequest message.

Note that the reference part and the optional criteria part of a startMessageNotificationRequest message are not
mapped to IpMMMManager.createNotification. Instead the web service uses all the text string criteria values
associated with a specific destination address to parse any event reported for that address by the
IpAppMMMManager.reportNotification method. The web service determines whether the event is valid,
i.e. there is a match with a text string criteria value. If valid, the web service stores the message and selects the
previously provisioned application callback web service to receive the notifyMessageReceptionRequest message. If
invalid, the web service discards the event notification.

Parlay exceptions thrown by IpMMMManager.createNotification are mapped to Parlay X exceptions as
defined in clause 6.2.1.

6.1.4 notifyMessageReception

The notifyMessageReception operation is mapped from the following Parlay/OSA methods:

• IpAppMMMManager.reportNotification, as illustrated in the sequence diagram in clause 5.2
(figure 2).

• IpAppMMM.messageReceived, which contains a message received for a remote party within the context
of the conversation or session currently active. The message may be, but is not necessarily in reply to a
message sent by the application using the IpMMM.sendMessageReq method (clause 6.1.1.2). Note that the
reference information for the application web service, upon which the notifyMessageReception operation is
invoked, must be provisioned offline, since online provisioning using the MessageNotificationManager
interface is only applicable for messages which are received outside the context of the conversation or session.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 24

6.1.4.1 Mapping from IpAppMMMManager.reportNotification

The IpAppMMMManager.reportNotification method is invoked with the following parameters:

Name Type Comment
assignmentID TpAssignmentID Not mapped. [The value provide in the result from

IpMMMManager.createNotification]
eventInfo TpMessaging

EventInfoSet
Contains a set of multimedia messages with the same destination address
and an event type = EventNewMessageArrived. The mapping of each
message (type TpNewMessageArrivedInfo) to the message part of a
notifyMessageReceptionRequest messages is described in clause 6.1.4.2.

The result from IpAppMMMManager.reportNotification is of type IpAppMultiMediaMessagingRef.
It is set to null.

6.1.4.2 Mapping from TpNewMessageArrivedInfo

The mapping from TpNewMessageArrivedInfo to the message part of a notifyMessageReceptionRequest
message is as follows:

Name Type Comment
SourceAddress TpAddress Maps to the senderAddress element of the message part. The data

type mapping from TpAddress to xsd:anyURI is described in
TR 102 397-1 [1].

DestinationAddress
Set

TpAddressSet Consists of a single destination address element, which maps to the
messageServiceActivationNumber element of the message part. The
data type mapping from TpAddress to xsd:anyURI is described in
TR 102 397-1 [1].

Message TpOctetSet If the Message field is pure ASCII text, then this field maps to the
message element of the message part. Otherwise, the Message field,
together with content from the Headers field, is stored by the Multimedia
Messaging web service and a reference to it is returned to the
application in the messageIdentifier element.

Headers TpMessage
HeaderFieldSet

Consists of multiple elements mapped to elements of the message part
as follows:
• the Subject field maps to the subject element;
• the Priority field maps to the priority element, as follows:

• P_MMM_MESSAGE_PRIORITY_UNDEFINED -> Default or
Normal;

• P_MMM_MESSAGE_PRIORITY_LOW -> Low;
• P_MMM_MESSAGE_PRIORITY_HIGH -> High;

• other fields, if present, are not directly mapped.
MultiMedia
MessagingIdentifier

TpMultiMedia
MessagingIdentifier

Not applicable. This parameter is null, reflecting the criteria value
included in the IpMMMManager.createNotification invocation.

Note that this mapping occurs if there is at least one active notification established for the value of the
eventInfo.DestinationAddress(Set) element, an associated application callback web service, and one of
the following conditions is satisfied:

• There is only one active notification that was defined without the optional text string criteria value.

• There is one active notification that was defined with the optional text string criteria value and that value
matches the first word in the value of the eventInfo.Message element.

- Note that the 'first word' in the message is defined as the initial characters after discarding any leading
Whitespace and ending with a Whitespace or end of message. The matching shall be case-insensitive.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 25

6.1.4.3 Mapping from IpAppMMM.messageReceived

The IpAppMMM.messageReceived method is invoked with the following parameters:

Name Type Comment
sessionID TpSessionID Not mapped. [The value provide in the result from

IpMMMManager.openMMM - clause 6.1.1.1]
message TpOctetSet If the message parameter is pure ASCII text, then this field maps to the

message element of the message part. Otherwise, the message
parameter, together with content from the headers parameter, is stored by
the Multimedia Messaging web service and a reference to it is returned to
the application in the messageIdentifier element.

headers TpMessage
HeaderFieldSet

Consists of multiple elements mapped to elements of the message part as
follows:
• The optional Sender field maps to the senderAddress element. [The

data type mapping from TpAddress to xsd:anyURI is described in
TR 102 397-1 [1].

• The optional Subject field maps to the subject element.
• The optional Priority field maps to the priority element, as follows:

• P_MMM_MESSAGE_PRIORITY_UNDEFINED -> Default or Normal.
• P_MMM_MESSAGE_PRIORITY_LOW -> Low.
• P_MMM_MESSAGE_PRIORITY_HIGH -> High.

other fields, if present, are not directly mapped.

The optional senderAddress part of the original sendMessageRequest message associated with this multimedia
session, which was established as described in clause 6.1.1.1, is mapped to the messageServiceActivationNumber
element of the message part of the notifyMessageReceptionRequest message.

As previously noted, the endpoint definition of the application web service to which the
notifyMessageReceptionRequest message is sent, including the value of the correlator part, is provisioned offline.

6.1.5 getReceivedMessages

The sequence diagram in clause 5.2 (figure 2) illustrates the flow for the getReceivedMessages operation. It is not
explicitly mapped to any Parlay/OSA method. Instead, the getReceivedMessages operation is a bulk retrieval capability
for previously received multimedia messages matching criteria defined in an off-line provisioning step. This retrieval
operation includes matching messages previously and individually reported to the application via the
notifyMessageReception operation.

6.1.6 getMessageURIs

The sequence diagram in clause 5.2 (figure 2) illustrates the flow for the getMessageURIs operation. It is not explicitly
mapped to any Parlay/OSA method. Instead, the getMessageURIs operation is a retrieval capability for a received
multimedia message whose reference was previously obtained by the application via the notifyMessageReception or
getReceivedMessages operations.

6.1.7 getMessage

The sequence diagram in clause 5.2 (figure 2) illustrates the flow for the getMessage operation. It is not explicitly
mapped to any Parlay/OSA method. Instead, the getMessage operation is a retrieval capability for a received
multimedia message whose reference was previously obtained by the application via the notifyMessageReception or
getReceivedMessages operations.

6.1.8 stopMessageNotification

The sequence diagram in clause 5.2 (figure 2) illustrates the flow for the stopMessageNotification operation, which is
mapped to the Parlay/OSA method: IpMMMManager.destroyNotification, provided that the referenced
notification is the last active notification for the associated destination address. Otherwise at least one other notification
(i.e. associated with a different text string criteria value) remains active for this destination address and the mapping is
not performed.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 26

6.1.8.1 Mapping to IpMMMManager.destroyNotification

The IpMMMManager.destroyNotification is invoked with the following parameters:

Name Type Comment
assignmentID TpAssignmentID Not mapped. [The value provide in the result from

IpMMMManager.createNotification and correlated with the value of
the reference part received from the application in the original
startMessageNotificationRequest message and the value of the
correlator part received from the application in the
stopMessageNotificationRequest message]

Parlay exceptions thrown by IpMMMManager.destroyNotification are mapped to Parlay X exceptions as
defined in clause 6.2.1.

6.2 Operations (Mailbox Paradigm)

6.2.1 sendMessage

The sequence diagram in clause 5.3 (figure 3) illustrates the flow for the sendMessage operation.

The sendMessage operation is synchronous from the Parlay X client's point of view. It is mapped to the following
Parlay/OSA methods:

• IpMMMManager.openMailbox, if not already opened for the application.

• IpMMM.putMessageReq.

6.2.1.1 Mapping to IpMMMManager.openMailbox

The IpMMMManager.openMailbox method is invoked with the following parameters:

Name Type Comment
mailboxID TpString Not mapped. [Specifies the identity of the application's mailbox in the

messaging system]
authenticationInfo TpString Not mapped. [Authentication information needed to open the application's

mailbox, such as a key or password]
appMailbox IpAppMailboxRef Reference to callback (internal)

The result from IpMMMManager.openMailbox is of type TpMailboxIdentifier and identifies the Mailbox
interface object upon which future methods are invoked: e.g. IpMailbox.putMessageReq. It is also correlated
with the value of the requestIdentifier part returned to the application in the sendMessageResponse message.

Parlay exceptions thrown by IpMMMManager.openMailbox are mapped to Parlay X exceptions as defined in
clause 6.3.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 27

6.2.1.2 Mapping to IpMailbox.putMessageReq

The IpMailbox.putMessageReq method is invoked with the following parameters:

Name Type Comment
mailboxSessionID TpSessionID Not mapped. [The value provided in the result from

IpMMMManager.openMailbox]
folderID TpString In order to send a message from the mailbox, the web service places the

message in a designated folder, from which it will be sent. The folder to use is
indicated by the service property P_PUT_MESSAGE_FOLDER_TO_SEND.

message TpOctetSet The actual message that needs to be sent. The message and the headers are
transferred to the Messaging service. The message will be taken as is. No
checking is done on the message. The web service may construct the content of
the message parameter from the parts of the sendMessageRequest message
by including the following information:
• the 'To:' header field containing a single destination address, derived from

the addresses part;
• the 'From:' header field containing an individual destination address, derived

from the senderName;
• the 'Priority:' header field containing a value mapped from the priority part;
• the 'Subject:' header field containing a value mapped from the subject part;
• the message 'body' field containing the message content, which is derived

from the Attachment(s) to the sendMessageRequest message. For each
Attachment, values must be assigned to at least the following MIME Header
fields (see note):

• 'Content-Type:' (e.g. 'image/gif'), which has semantics defined in
RFC 2045 [4] and RFC 2046 [5]

• EITHER 'Content-ID:' (e.g. 'abcd'), as defined in RFC 2045 [4],
OR 'Content-Location' (e.g. 'filename.ext'), as defined in RFC 2557 [6]

• 'Content-Transfer-Encoding:' (e.g. 'binary'), as defined in RFC 2045 [4]
Notes:
• The optional charging part is not mapped.
• If the web service knows the messaging system and understands the format

for sending attachments, it can do so as an alternative, or in addition, to
populating the message parameter.

NOTE: The content of a multimedia message is sent as an Attachment(s). However, since the Attachment(s) are
sent transparently to the underlying network, there are additional considerations. The Parlay X Multimedia
Messaging Web Service should check that all minimum required header fields are available; the set of
minimum required header fields may vary based on the underlying network or as mandated by policies in
the gateway.

The result from IpMailbox.putMessageReq is of type TpAssignmentID and is used internally to correlate the
callback invocation of the IpAppMailbox.getMessageRes/Err method.

Parlay exceptions thrown by IpMailbox.putMessageReq are not mapped to Parlay X exceptions. Instead they are
reported to the application in a getMessageDeliveryStatusResponse message, with the following part values:

• the deliveryStatus.address element contains the associated message destination address, originally derived
from the addresses part;

• the deliveryStatus.deliveryStatus element has the value: DeliveryImpossible.

6.2.2 getMessageDeliveryStatus

The sequence diagram in clause 5.3 (figure 3) illustrates the flow for the getMessageDeliveryStatus operation.

The getMessageDeliveryStatus operation is synchronous from the Parlay X client's point of view. It is mapped to/from
the following Parlay/OSA methods:

• IpAppMailbox.putMessageRes.

• IpAppMailbox.putMessageErr.

• IpMailbox.getMessageInfoPropertiesReq.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 28

• IpAppMailbox.getMessageInfoPropertiesRes.

• IpAppMailbox.getMessageInfoPropertiesErr.

The delivery status provided to the Parlay X client will depend on the timing of the getMessageDeliveryStatus
operation invocation. If the delivery status for some destination addresses is known, as a result of earlier invocations of
the IpMailbox.getMessageInfoPropertiesReq method, then the delivery status information provided in the
IpAppMailbox.getMessageInfoPropertiesRes callback methods is mapped. If such a report has not been
received for some destination addresses, then the IpMailbox.getMessageInfoPropertiesReq method is
invoked for each of those destination addresses.

6.2.2.1 Mapping from IpAppMailbox.putMessageRes

The IpAppMailbox.putMessageRes method is invoked with the following parameters:

Name Type Comment
mailboxSessionID TpSessionID Not mapped. [The value provided in the result from

IpMMMManager.openMailbox]
requestID TpAssignmentID Not mapped. [The value provided in the result from

IpMailbox.putMessageReq]
messageID TpString Not mapped. [The new ID of the message which has been placed in the

folder, from which it will be sent, as requested]

In the absence of more recent delivery status information (i.e. as provided in an
IpAppMailbox.getMessageInfoPropertiesRes method), this method results in the assignment of the
following values to one DeliveryInformation parameter of the deliveryStatus part of a
getSmsDeliveryStatusResponse message:

• the address element contains the associated message destination address;

• the deliveryStatus element has the value: DeliveryUncertain.

6.2.2.2 Mapping from IpAppMailbox.putMessageErr

The IpAppMailbox.putMessageErr method is invoked with the following parameters:

Name Type Comment
mailboxSessionID TpSessionID Not mapped. [The value provided in the result from

IpMMMManager.openMailbox]
requestID TpAssignmentID Not mapped. [The value provided in the result from

IpMailbox.putMessageReq]
error TpMessaging

Error
Results in the assignment of the following values to one
DeliveryInformation parameter of the deliveryStatus part of a
getSmsDeliveryStatusResponse message:
• the address element contains the associated message destination

address;
• the deliveryStatus element has the value: DeliveryImpossible.

errorDetails TpString Not mapped.

6.2.2.3 Mapping to IpMailbox.getMessageInfoPropertiesReq

The IpMailbox.getMessageInfoPropertiesReq method is invoked with the following parameters:

Name Type Comment
mailboxSessionID TpSessionID Not mapped. [The value provided in the result from

IpMMMManager.openMailbox]
messageID TpString Not mapped. [The value provided in the result from

IpAppMailbox.putMessageRes]

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 29

The result from IpMailbox.getMessageInfoPropertiesReq is of type TpAssignmentID and is used
internally to correlate the callback invocation of the IpAppMailbox.getMessageInfoPropertiesRes/Err
method.

Parlay exceptions thrown by IpMailbox.getMessageInfoPropertiesReq are not mapped to Parlay X
exceptions.

6.2.2.4 Mapping from IpAppMailbox.getMessageInfoPropertiesRes

The IpAppMailbox.getMessageInfoPropertiesRes method is invoked with the following parameters:

Name Type Comment
mailboxSessionID TpSessionID Not mapped. [The value provided in the result from

IpMMMManager.openMailbox]
requestID TpAssignmentID Not mapped. [The value provided in the result from

IpMailbox.getMessageInfoPropertiesReq]
messageID TpString Not mapped. [The value provided in the invocation of

IpMailbox.getMessageInfoPropertiesReq]
returnedProperties TpMessageInfo

PropertySet
Provides various message properties (names and values). Of these, the
value of a single element, MessageStatus, is mapped to the
deliveryStatus element of one DeliveryInformation parameter of the
deliveryStatus part of a getSmsDeliveryStatusResponse message, as
follows:
• Delivered, if MessageStatus parameter value =

P_MMM_SENT_MSG_STATUS_DELIVERED,
P_MMM_SENT_MSG_STATUS_READ or
P_MMM_SENT_MSG_STATUS_DELETED_UNREAD.

• DeliveryImpossible, if MessageStatus parameter value =
P_MMM_SENT_MSG_STATUS_NOT_DELIVERABLE or
P_MMM_SENT_MSG_STATUS_EXPIRED.

• DeliveryUncertain, if MessageStatus parameter value =
P_MMM_SENT_MSG_STATUS_SENT.

[Note that the address element of the DeliveryInformation parameter
contains the associated message destination address]

6.2.2.5 Mapping from IpAppMailbox.getMessageInfoPropertiesErr

This failed attempt to poll for delivery status does not change the current deliveryStatus value (i.e. Delivered,
DeliveryImpossible, or DeliveryUncertain) for any of the destination addresses.

6.2.3 startMessageNotification

The sequence diagram in 0 illustrates the flow for the startMessageNotification operation, which is mapped to the
Parlay/OSA method: IpMMMManager.createNotification, provided there is no existing notification already
established for the destination address contained in the messageServiceActivationNumber part.

6.2.3.1 Mapping to IpMMMManager.createNotification

The IpMMMManager.createNotification is invoked with the following parameters:

Name Type Comment
appMMM
Manager

IpAppMMM
ManagerRef

Not mapped. Reference to callback (internal)

eventCriteria TpMessaging
EventCriteriaSet

Contains a single element specifying the event notification criteria, for the
messaging event: P_EVENT_MSG_NEW_MAILBOX_MESSAGE_ARRIVED. The
criteria consist of 2 fields:
• MailboxID, which identifies a mailbox in the messaging system that is

correlated with the short message destination address contained in the
messageServiceActivationNumber part

• AuthenticationInfo, which provides the authentication information
needed to open the mailbox, such as a key or password

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 30

The result from IpMMMManager.createNotification is of type TpAssignmentID and is used internally to
correlate the callbacks. Specifically it is correlated with the value of the reference part received from the application in
the startMessageNotificationRequest message and the correlator part returned to the application in the
notifyMessageReceptionRequest message.

Note that the reference part and the optional criteria part of a startMessageNotificationRequest message are not
mapped to IpMMMManager.createNotification. Instead the web service uses all the text string criteria values
associated with a specific destination address to parse any received message event reported for that address by the
IpAppMMMManager.reportNotification method. The web service determines whether the event is valid -
i.e. there is a match with a text string criteria value. If valid, the web service retrieves and stores the message and selects
the previously provisioned application callback web service to receive the notifyMessageReceptionRequest message.
If invalid, the web service discards the event notification.

Parlay exceptions thrown by IpMMMManager.createNotification are mapped to Parlay X exceptions as
defined in clause 6.3.

6.2.4 notifyMessageReception

The sequence diagram in clause 5.4 (figure 4) illustrates the flow for the notifyMessageReception operation, which is
mapped to/from the following Parlay/OSA methods:

• IpAppMMMManager.reportNotification.

• IpMMMManager.openMailbox.

• IpMailbox.getMessageContentReq.

• IpAppMailbox.getMessageContentRes.

• IpMailbox.getMessageBodyPartsReq.

• IpAppMailbox.getMessageBodyPartsRes.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 31

6.2.4.1 Mapping from IpAppMMMManager.reportNotification

The IpAppMMMManager.reportNotification method is invoked with the following parameters:

Name Type Comment
assignmentID TpAssignmentID Not mapped. [The value provide in the result from

IpMMMManager.createNotification]
eventInfo TpMessaging

EventInfoSet
Contains a set of one (or more) received message notification(s) and related
message information. For each notification, the fields of the
EventNewMailboxMessageArrived element are mapped as follows:
• MailboxID: the mailbox identifier in each message notification is the

same; i.e. it is equivalent to the value specified in the event criteria
(clause 6.2.3.1). This field correlates with the message destination
address returned in the messageServiceActivationNumber element of
the message part.

• FolderID: the folder identifier in each message notification specifies
the identity of the folder in which the received message is stored

• MessageDescription contains sub-fields, of which three are
applicable for the mapping:
• MessageID: the message identifier for the received message, which

is used by the web service to retrieve the message.
• From: the sender of the received message, which maps to the

senderAddress element of the message part. The data type
mapping from TpAddress to xsd:anyURI is described in
TR 102 397-1 [1].

• Subject, which maps to the subject element of the message part.
If the Subject is a non-null text string, then the first word is used
for matching against optional text string criteria, where:
• the 'first word' in the message is defined as the initial

characters after discarding any leading Whitespace and ending
with a Whitespace or end of message;

• the matching is case-insensitive.
• ExtendedHeaderInformation contains sub-fields, of which the

following are applicable for the mapping:
• Priority, which maps to the priority element of the message part,

as follows:
• P_MMM_MESSAGE_PRIORITY_HIGH -> High.
• P_MMM_MESSAGE_PRIORITY_LOW -> Low.
• P_MMM_MESSAGE_PRIORITY_UNDEFINED -> Default or Normal.

• MimeContent sub-field(s), defining the content type for each
attachment, if any. If none exist, or all the value(s) denote text
formatting only, then the message is pure ASCII text.

The result from IpAppMMMManager.reportNotification is of type IpAppMultiMediaMessagingRef.
It is set to null.

6.2.4.2 Mapping to IpMMMManager.openMailbox

The IpMMMManager.openMailbox method is invoked with the following parameters:

Name Type Comment
mailboxID TpString Specifies the identity of the application's mailbox in the messaging

system: i.e. as specified in the eventInfo parameter of the
reportNotification method (clause 6.2.4.1).

authenticationInfo TpString Specifies authentication information needed to open the application's
mailbox, such as a key or password: i.e. as specified in the
AuthenticationInfo field of the eventCriteria parameter of the
createNotification method (clause 6.2.3.1).

appMailbox IpAppMailboxRef Reference to callback (internal)

The result from IpMMMManager.openMailbox is of type TpMailboxIdentifier and identifies the Mailbox
interface object upon which future methods are invoked: e.g. IpMailbox.getMessageContentReq,
IpMailbox.getMessageBodyPartsReq.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 32

Parlay exceptions thrown by IpMMMManager.openMailbox are not mapped to Parlay X exceptions.

6.2.4.3 Mapping to IpMailbox.getMessageContentReq

The IpMailbox.getMessageContentReq method is invoked with the following parameters:

Name Type Comment
mailboxSessionID TpSessionID Not mapped. [The value provided in the result from

IpMMMManager.openMailbox]
folderID TpString Not mapped. [The value provided in the eventInfo parameter of the

reportNotification method (clause 6.2.4.1)]
messageID TpString Not mapped. [The value provided in the

MessageDescription.MessageID field of the eventInfo parameter of
the reportNotification method (clause 6.2.4.1)]

The result from IpMailbox.getMessageContentReq is of type TpAssignmentID and is used internally to
correlate the callback invocation of the IpAppMailbox.getMessageContentRes/Err method.

Parlay exceptions thrown by IpMailbox.getMessageContentReq are not mapped to Parlay X exceptions.

6.2.4.4 Mapping from IpAppMailbox.getMessageContentRes

The IpAppMailbox.getMessageContentRes method is invoked with the following parameters:

Name Type Comment
mailboxSessionID TpSessionID Not mapped. [The value provide in the result from

IpMMMManager.openMailbox]
requestID TpAssignmentID Not mapped. [The value provided in the result from

IpMailbox.getMessageContentReq]
contentType TpString Not mapped.
contentTransfer
Encoding

TpString Not mapped.

content TpOctetSet Contains the body of the message.

If the MessageDescription.Subject field of the eventInfo parameter
of the reportNotification method (clause 6.2.4.1) was null, the first
word of this content field is used for matching against optional text string
criteria, where:
• the 'first word' in the message is defined as the initial characters after

discarding any leading Whitespace and ending with a Whitespace or
end of message;

• the matching is case-insensitive.

If the message is pure ASCII text, as indicated in the
ExtendedHeaderInformation.MimeContent field(s) of the eventInfo
parameter of the reportNotification method (clause 6.2.4.1), then this
content field is mapped to the message element of the message part.
[Otherwise, the content field is discarded and all parts of the multimedia
message are retrieved using the
Ip(App)Mailbox.getMessageBodyPartsReq/Res methods].

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 33

6.2.4.5 Mapping to IpMailbox.getMessageBodyPartsReq

The IpMailbox.getMessageBodyPartsReq method is invoked with the following parameters:

Name Type Comment
mailboxSessionID TpSessionID Not mapped. [The value provided in the result from

IpMMMManager.openMailbox]
folderID TpString Not mapped. [The value provided in the eventInfo parameter of the

reportNotification method (clause 6.2.4.1]
messageID TpString Not mapped. [The value provided in the

MessageDescription.MessageID field of the eventInfo parameter of
the reportNotification method (clause 6.2.4.1)]

partIDs TpStringList Set to a null string value to indicate that all message parts are to be
retrieved.

The result from IpMailbox.getMessageBodyPartsReq is of type TpAssignmentID and is used internally to
correlate the callback invocation of the IpAppMailbox.getMessageBodyPartsRes/Err method.

Parlay exceptions thrown by IpMailbox.getMessageBodyPartsReq are not mapped to Parlay X exceptions.

6.2.4.6 Mapping from IpAppMailbox.getMessageBodyPartsRes

The IpAppMailbox.getMessageBodyPartsRes method is invoked with the following parameters:

Name Type Comment
mailboxSessionID TpSessionID Not mapped. [The value provide in the result from

IpMMMManager.openMailbox]
requestID TpAssignmentID Not mapped. [The value provided in the result from

IpMailbox.getMessageBodyPartsReq]
bodyParts TpBodyPartList Contains the details and content of each part of the multimedia message.

The web service stores the retrieved information and returns a reference for
the stored multipart message to the application in the messageIdentifier
element of the message part.

6.2.5 getReceivedMessages

The sequence diagram in clause 5.4 (figure 4) illustrates the flow for the getReceivedMessages operation. It is not
explicitly mapped to any Parlay/OSA method. Instead, the getReceivedMessages operation is a bulk retrieval capability
for previously received multimedia messages matching criteria defined in an off-line provisioning step. This retrieval
operation includes matching messages previously and individually reported to the application via the
notifyMessageReception operation.

6.2.6 getMessageURIs

The sequence diagram in clause 5.4 (figure 4) illustrates the flow for the getMessageURIs operation. It is not explicitly
mapped to any Parlay/OSA method. Instead, the getMessageURIs operation is a retrieval capability for a received
multimedia message whose reference was previously obtained by the application via the notifyMessageReception or
getReceivedMessages operations.

6.2.7 getMessage

The sequence diagram in clause 5.4 (figure 4) illustrates the flow for the getMessage operation. It is not explicitly
mapped to any Parlay/OSA method. Instead, the getMessage operation is a retrieval capability for a received
multimedia message whose reference was previously obtained by the application via the notifyMessageReception or
getReceivedMessages operations.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 34

6.2.8 stopMessageNotification

The sequence diagram in clause 5.4 (figure 4) illustrates the flow for the stopMessageNotification operation, which is
mapped to the Parlay/OSA method: IpMMMManager.destroyNotification, provided that the referenced
notification is the last active notification for the associated destination address. Otherwise at least one other notification
(i.e. associated with a different text string criteria value) remains active for this destination address and the mapping is
not performed.

6.2.8.1 Mapping to IpMMMManager.destroyNotification

The IpMMMManager.destroyNotification is invoked with the following parameters:

Name Type Comment
assignmentID TpAssignmentID Not mapped. [The value provide in the result from

IpMMMManager.createNotification and correlated with the value of
the reference part received from the application in the original
startMessageNotificationRequest message and the value of the
correlator part received from the application in the
stopMessageNotificationRequest message]

Parlay exceptions thrown by IpMMMManager.destroyNotification are mapped to Parlay X exceptions as
defined in clause 6.1.6.

6.3 Exceptions
In addition to the common mapping of Parlay/OSA API method exceptions to Parlay X Web Service exceptions, which
is defined in TR 102 397-1 [1], there are the following service-specific exception mappings:

Parlay/OSA Exception Service
Exception

Notes

P_MMM_INVALID_MAILBOX SVC0001 With error number
P_MMM_INVALID_AUTHENTICATION_
INFORMATION

SVC0001 With error number

7 Additional Notes
No additional notes are provided.

ETSI

ETSI TR 102 397-5-2 V1.1.1 (2005-12) 35

History

Document history

V1.1.1 December 2005 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Mapping Description
	5 Sequence Diagrams
	5.1 Send Multimedia Message to One or More Addresses (Messaging Paradigm)
	5.2 Notification of Multimedia Message Reception and Retrieval (Messaging Paradigm)
	5.3 Send Multimedia Message to One or More Addresses (Mailbox Paradigm)
	5.4 Notification of Multimedia Message Reception and Retrieval (Mailbox Paradigm)

	6 Detailed Mapping Information
	6.1 Operations (Messaging Paradigm)
	6.1.1 sendMessage
	6.1.1.1 Mapping to IpMMMManager.openMMM
	6.1.1.2 Mapping to IpMMM.sendMessageReq

	6.1.2 getMessageDeliveryStatus
	6.1.2.1 Mapping from IpAppMMM.sendMessageRes
	6.1.2.2 Mapping from IpAppMMM.sendMessageErr
	6.1.2.3 Mapping from IpAppMMM.messageStatusReport
	6.1.2.4 Mapping to IpMMM.queryStatusReq
	6.1.2.5 Mapping from IpAppMMM.queryStatusRes
	6.1.2.6 Mapping from IpAppMMM.queryStatusErr

	6.1.3 startMessageNotification
	6.1.3.1 Mapping to IpMMMManager.createNotification

	6.1.4 notifyMessageReception
	6.1.4.1 Mapping from IpAppMMMManager.reportNotification
	6.1.4.2 Mapping from TpNewMessageArrivedInfo
	6.1.4.3 Mapping from IpAppMMM.messageReceived

	6.1.5 getReceivedMessages
	6.1.6 getMessageURIs
	6.1.7 getMessage
	6.1.8 stopMessageNotification
	6.1.8.1 Mapping to IpMMMManager.destroyNotification

	6.2 Operations (Mailbox Paradigm)
	6.2.1 sendMessage
	6.2.1.1 Mapping to IpMMMManager.openMailbox
	6.2.1.2 Mapping to IpMailbox.putMessageReq

	6.2.2 getMessageDeliveryStatus
	6.2.2.1 Mapping from IpAppMailbox.putMessageRes
	6.2.2.2 Mapping from IpAppMailbox.putMessageErr
	6.2.2.3 Mapping to IpMailbox.getMessageInfoPropertiesReq
	6.2.2.4 Mapping from IpAppMailbox.getMessageInfoPropertiesRes
	6.2.2.5 Mapping from IpAppMailbox.getMessageInfoPropertiesErr

	6.2.3 startMessageNotification
	6.2.3.1 Mapping to IpMMMManager.createNotification

	6.2.4 notifyMessageReception
	6.2.4.1 Mapping from IpAppMMMManager.reportNotification
	6.2.4.2 Mapping to IpMMMManager.openMailbox
	6.2.4.3 Mapping to IpMailbox.getMessageContentReq
	6.2.4.4 Mapping from IpAppMailbox.getMessageContentRes
	6.2.4.5 Mapping to IpMailbox.getMessageBodyPartsReq
	6.2.4.6 Mapping from IpAppMailbox.getMessageBodyPartsRes

	6.2.5 getReceivedMessages
	6.2.6 getMessageURIs
	6.2.7 getMessage
	6.2.8 stopMessageNotification
	6.2.8.1 Mapping to IpMMMManager.destroyNotification

	6.3 Exceptions

	7 Additional Notes
	History

