

ETSI TR 103 841 V1.1.1 (2024-07)

SmartM2M;
oneM2M Performances Evaluation Tool (Proof of Concept)

TECHNICAL REPORT

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 2

Reference
DTR/SmartM2M-103841

Keywords
evaluation, KPI, oneM2M, performance, scenarios,

simulation

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
https://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2024.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 3

Contents

Intellectual Property Rights .. 4

Foreword ... 4

Modal verbs terminology .. 4

Introduction .. 4

1 Scope .. 5

1.1 Context for the present document ... 5

1.2 Scope of the present document. .. 6

2 References .. 6

2.1 Normative references ... 6

2.2 Informative references .. 6

3 Definition of terms, symbols and abbreviations ... 7

3.1 Terms .. 7

3.2 Symbols .. 7

3.3 Abbreviations ... 7

4 oneM2M profiler .. 8

4.0 Introduction .. 8

4.1 Structure ... 8

4.2 Operating system interaction .. 10

4.3 Profiler usage .. 10

4.3.1 Installation and configuration ... 10

4.3.2 Execution .. 10

4.4 Profiler output format ... 11

5 oneM2M IoT system simulator .. 11

5.0 Introduction .. 11

5.1 OMNeT++ .. 11

5.2 oneM2M deployment model .. 12

5.3 Mapping on OMNeT++ library and the NED topology ... 16

5.3.1 Mapping of Meta Model on OMNeT++ ... 16

5.3.2 Mapping of the probes in the simulator .. 17

5.4 Installation and configuration ... 17

6 Frameworks at work ... 18

6.1 Mapping Scenario Description ... 18

6.1.1 Running example: A traffic light system .. 18

6.1.2 OMNeT++ files .. 19

6.1.3 Synthetizing KPIs ... 21

6.2 Performance evaluation analysis .. 21

7 Conclusions .. 24

Annex A: Source code .. 25

History .. 26

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 4

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Technical Report (TR) has been produced by ETSI Technical Committee Smart Machine-to-Machine
communications (SmartM2M).

Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Introduction
ETSI TTF T019 aims are studying, analysing, evaluating and simulating IoT application deployments on some
oneM2M open-source implementations. Evaluation will be conducted based on case studies, deployment model and
performance KPIs (Key Performance Index), all described in ETSI TR 103 839 [i.1] and ETSI TS 103 840 [i.2].

The objective of the present document is to describe and present the simulation tool and the profiler tool developed to
that aim. The simulation tool is a OMNeT++ library implementing the deployment scenario models, and the case
studies as described in ETSI TR 103 839 [i.1] and ETSI TS 103 840 [i.2]. The profiler is a standalone software to be run
together with a real open-source oneM2M implementation dealing from scripts creating oneM2M "burst'' till real case
study. The profiler provides KPIs values concerning the oneM2M implementation performance and/or the case study:
these KPI values will be used as parameters in the OMNeT++ simulator allowing a realistic large-scale simulation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 5

1 Scope

1.1 Context for the present document
The oneM2M standards are now mature: multiple deployments exist all over the world at both experimental and
operational levels. The experimental deployments are conducted for multiple reasons:

• to evaluate the capabilities of the standard in terms of expressiveness, usability on specific equipment,
connection with specific existing systems or performance evaluation;

• to provide a methodological study, based on performance evaluation (time, space) on a given set of
"paradigmatic use cases";

• to measure KPIs defined in the present document of implementations that are compliant with the oneM2M
standard, available either freely or commercially.

Use cases are evaluated in terms of chosen KPI: e.g. running time, memory space, numerosity of oneM2M entities
(e.g. AE, MN-CSE, CSE), data transfer volume and real-time needs. Using a selected set of available oneM2M CSE
implementations [i.9], a simulation library or an ad hoc simulator is to be provided, offering the ability to evaluate and
simulate the performance of the use cases and give crucial information/feedback to the general user of oneM2M to
choose and tune their IoT applications based on oneM2M framework [i.5]. The results of this tool development and
evaluations of the use cases will be the basis to generate other deliverables. The present document was developed in the
context of ETSI TTF T019, set up to perform work on "Performance Evaluation and Analysis for oneM2M Planning
and Deployment". Five elements were addressed sequentially:

1) A collection of use cases and derived requirements were formally identified and defined. This work includes
identification of relevant deployment scenarios. The present document adopted the use case style and template
from oneM2M with a minor modification to address some performances issues. This phase of the work
resulted in deliverable ETSI TR 103 839 [i.1].

2) The definition of performance evaluation model, with specification of procedures to assess the performance
of oneM2M-based IoT platforms. This includes the identification and definition of a set/list of KPIs necessary
to assess the deployment. For those KPIs, provision of a formal description of the test campaign and the test
results to be obtained. This phase of the work resulted in deliverable ETSI TS 103 840 [i.2].

3) The creation of a proof of concept of a performance evaluation tool. This work also relies on a formal
description of the identified deployment scenarios (single vertical domain & multiple vertical domains). This
phase of the work resulted in the present document.

4) A practical demonstration and analysis exercise putting the proposed tool to use, with a specific oneM2M
implementation but aimed at being a blueprint for the adoption and re-use of the results of ETSI
TR 103 839 [i.1], ETSI TS 103 840 [i.2], and the present document with other oneM2M implementations and
deployment scenarios. This phase of the work will be used in deliverables ETSI TR 103 842 [i.3] and ETSI
TR 103 843 [i.4].

5) The development of a set of guidelines and best practices documenting best practices and lessons learnt as
well as providing instructions for IoT solution topology, capacity provisioning, and expected performances
that will gives crucial directives and information to designer and implementors. This phase of the work
resulted in deliverable provisioning and expected performances ETSI TR 103 843 [i.4].

The present document covers the third of the five items listed above and provides the basis for the related ETSI
publications listed below:

• ETSI TR 103 841 (the present document).

• ETSI TR 103 842 [i.3].

• ETSI TR 103 843 [i.4].

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 6

1.2 Scope of the present document.
The present document presents the tools and libraries developed. More precisely:

1) A Profiler tool, written in Python, whose purpose is to listen or generate requests to a oneM2M CSE
implementation, capture the responses and build a trace file in a given ad hoc format.

2) An OMNeT++ simulation library, written in C++, coupled with the NED proprietary OMNeT++ language,
used to specify the case studies graph topologies, as described in [i.10].

The present document is structured as follows:

• Clauses 1 to 3 provide background and references including the definition of terms, symbols and
abbreviations, which are used in the present document.

• Clause 4 describes the profiler tool that will be run along with an open-source oneM2M implementation, its
internal structure, including its interactions with operating system (e.g. Linux®).

NOTE: Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

• Clause 5 describes the discrete event OMNeT++ simulator and its instantiation of a deployment model applied
on oneM2M case studies, as described in [i.1] and [i.2]. This includes the OMNeT++ library and the NED
topology specifications and oneM2M protocol interconnection rules.

• Clause 6 puts at work the above elements to the case studies defined in ETSI TR 103 839 [i.1], highlighting
the simulation capabilities of the library, according to the KPI synthetized by the profiler.

• Clause 7 provides the conclusions of this work and present some potential improvements and extensions.

2 References

2.1 Normative references
Normative references are not applicable in the present document.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long-term validity.

The following referenced documents are not necessary for the application of the present document, but they assist the
user regarding a particular subject area.

[i.1] ETSI TR 103 839: "SmartM2M; Scenarios for evaluation of oneM2M deployments".

[i.2] ETSI TS 103 840: "SmartM2M; Model for oneM2M Performance Evaluation".

[i.3] ETSI TR 103 842: "SmartM2M; Demonstration of Performance Evaluation and Analysis for
oneM2M Planning and Deployment".

[i.4] ETSI TR 103 843: "SmartM2M; oneM2M deployment guidelines and best practices".

[i.5] oneM2M TS-0001 (V3.34.0): "Functional Architecture".

[i.6] oneM2M TS-0008 (V3.9.0): "CoAP Protocol Binding".

[i.7] oneM2M TS-0009 (V3.9.0): "HTTP Protocol Binding".

https://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=36557
https://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=36185
https://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=36335

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 7

[i.8] ETSI TS 118 110 (V3.1.0): "oneM2M; MQTT Protocol Binding (oneM2M TS-0010 version 3.1.0
Release 3)".

[i.9] oneM2M - List of oneM2M deployments.

[i.10] OMNeT++: "Discrete Event Simulator".

[i.11] Tools Deliverable ETSI repository linked with the present document.

[i.12] OMNeT++: "Installation Guide".

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

guidelines and good practices: methodological document that gives hints to deploy a oneM2M infrastructure

Key Performance Index (KPI): list of criteria to be measured on a system

oneM2M deployment: mapping of a IoT applications on a oneM2M infrastructure

performance evaluation: evaluation of temporal, data transfer volumetry, and scalability aspects of a system

platform evaluation tool: simulation environment that is used to calculate/demonstrate the performance of a system

profiler: monitoring tool measuring KPIs

real time constraints: dynamic constraints to be fulfilled related to time

single/multiple horizontal/vertical domains: interaction capability of many oneM2M infrastructures from different
domains

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ADN Application Dedicated Node
AE Application Entity
CIN Content INstance
CNT CoNTainer
CoAP Constrained Application Protocol
CPU Central Process Unit
CRUD Create, Read, Update, Delete
CSE Common Service Entity
ETSI European Telecommunications Standards Institute
HTTP Hyper Text Transfer Protocol
IDE Integrated Development Environment
IN-CSE Infrastructure Node - Common Services Entity
IoT Internet of Things
JSON JavaScript Object Notation
KPI Key Performance Index
M2M Machine-to-Machine
Mca Reference Point for M2M Communication with AE
Mcc Reference Point for M2M Communication with CSE

https://www.etsi.org/deliver/etsi_ts/118100_118199/118110/03.01.00_60/ts_118110v030100p.pdf
https://www.onem2m.org/using-onem2m/list-of-deployments
https://omnetpp.org/
https://labs.etsi.org/rep/iot/smartm2m-onem2m-performance-evaluation
https://doc.omnetpp.org/omnetpp/InstallGuide.pdf

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 8

MIPS Million Instructions Per Second
MN-CSE Middle Node - Common Services Entity
MQTT Message Queue Telemetry Transport
NED NEtwork Descriptor
OASD oneM2M Application Scenario Descriptor
OCPD oneM2M CSE Performance Descriptor
OM2M Eclipse OM2M - Open-Source platform for M2M communication
OSDD oneM2M Solution Deployment Descriptor
PER Packet Error Rate
SDK Software Development Kit
TCP Transport Control Protocol
TR Technical Report
TS Technical Specification

4 oneM2M profiler

4.0 Introduction
The simulation of an IoT infrastructure in terms of equipment, service layer and application require calibration of the
inputs of the simulator. The different layers of the model proposed in ETSI TS 103 840 [i.2] have an impact on the
overall system. The aim here is to propose a measurement architecture making it possible to extract measurements from
real execution on given equipment, from a specific oneM2M implementation for a particular operation. Those
measurements should be generalized at the simulator level to give KPIs having values as close as possible to the reality
of deployment on other equipment for IoT applications with different configuration and behaviour.

4.1 Structure
The minimum oneM2M-level configuration needed to perform measurements requires a CSE and a client application
making REST requests to the CSE. These two entities can be on the same equipment or on different equipment
communicating via a network. Added to this is an entity called profiler responsible for observing the CSE instance and
its use of the resources of the hardware equipment. These observations are then processed by the profiler and saved on
permanent media in a file.

The implementation of a CSE involves complex mechanisms such as the use of thread, processing priority, recovery,
cache, etc. The observation of each of these mechanisms and their impact can only be done by direct insertion of a
probe into the code of a CSE itself. This makes the approach not portable and restricted to experts in a specific stack.
The choice for profiling was to treat the CSE as a black box and to put probes at the operating system level and
therefore the resource requests made by the CSE to the operating system of a machine. This approach makes the profiler
independent of CSE implementations but still maintains a dependence on the type of operating system. The precision of
the metrics obtained remains sufficient to detect and give the order of magnitude of saturation phenomena (for example
of memory) or inadequate response time for a given use case.

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 9

Figure 4.1-1: Interactions between the profiler and the oneM2M system

Figure 4.1-1 gives an overall view of the system and the exchanges with the different steps of the profiling. In the initial
state, the profiler is executed on a machine and an oneM2M query generation client is launched, then the experimental
protocol is started:

1) The query generator begins by asking the profiler to launch and start monitoring a particular oneM2M CSE.

2) The CSE is executed on the machine.

3) The query generator warns the profiler that has to begin its observation on a particular sequence of queries that
it will perform on the CSE.

4) The profiler launches its observation.

5) The query generator executes a set of queries to the CSE. This sends the oneM2M primitives that arrive on the
Mca or Mcc interfaces of the CE implementation.

6) The query generator notifies the profiler that the queries on the CSE have been completed and that it can
generate the observation statistics of the hardware resources used by the CSE.

7) The profiler saves its observations in a file which will be used as input to the simulator.

8) When the entire profiling plan is completed, the query generator asks the profiler to stop the CSE.

9) The profiler stops the CSE and terminates.

10) The query generator ends.

This simple exchange protocol allows to configure various query generation scenarios. To do this, it is enough to define
the oneM2M query plan at the query generator level and on the other hand to explain the method for calculating the
statistics on the profiler side for this particular query sequence.

Profiler

Computer

oneM2M Stack
(ACME, OM2M,

Mobius, …)

1 - request run CSE
(ACME, OM2M,

Ocean)

3 - request to start to
observe computer

resources (processor,
memory, …)

oneM2M
Resources
generator

Computer

5 - CRUD request
on oneM2M

resources to a CSE

4 - observe
computer
resources

usage

6 - request to stop to
observe computer

resources (AE create)

7 - save on file computer
resources usage for a

specific oneM2M
resources

2 - run
CSE

(ACME,
OM2M,

mobius)

8 - request
Stop CSE

9 - Stop CSE

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 10

4.2 Operating system interaction
In this "black box" profiling model, there is a strong dependency on the operating system. Those provide libraries for
relating the use of hardware and system resources by a particular running process. There are many possible metrics.
Here too, the structure of the profiler as an independent entity on the same machine as the CSE makes it possible to
enrich the metrics according to needs. For example, in the UNIX world and more particularly Linux, all the files under
the /proc directory allow to know the use of resources via measurements directly in the kernel or via counters. For
example, the "stat" file gives information on the number of processor ticks used by the process, the "statm" file gives
information on the use of RAM and virtual memory, etc.

4.3 Profiler usage

4.3.1 Installation and configuration

The installation and configuration process involves the oneM2M implementation to observe, the profiler and the query
generator.

Step 1: Install a oneM2M implemention to observe on the target deployment machine. The oneM2M CSE
implementation needs to be configured according to the instructions of that implementation; i.e.name of the CSE,
address, etc. It is noted that version 1 of query generator only accepts the http protocol.

Step 2: Install the profiler and the query generator from the ETSI git repository. These programs are written in Python
and require the Python interpreter to be installed on the CSE machine and the query generator machine.

Step 3: Configure the profiler. The profiler program must be put in the directory where the CSE code is located. In
version 1 of the profiler only CSEs from the ACME, Mobius and OM2M distributions are created. Three parameters
must be configured in the profiler:

1) the HOST variable specifying the IP address of the profiler;

2) the PORT specifying the port which will be used to communicate with the profiler;

3) the MIPS (million instructions per second) constant for the processor processing capacity in term of MIPS.

Step 4: Configure the query generator. The connection with the profiler must be made through the HOST and PORT
variables of the generator which has the same values as the HOST and PORT variables of the profiler. Then it is needed
to configure the information concerning the oneM2M implementation through the variables CSE_URL_XXX and
ORIGIN_XXX (XXX is to be replaced by the correct oneM2M implementation name) which gives respectively the
URL of the CSE and the authentication necessary for connection.

Step 5: Configure the connection with an http server if the use case incudes the oneM2M notification mechanism via
the HTTP_SERVEUR variable. For example, the ACME notification server can be used.

4.3.2 Execution

Once the system is configured as described in clause 4.3.1. the simulation can be executed.

Step 1: Run the profiler via the command: "python3 profiler.py".

Step 2: Run the query generator. Two modes exist:

1) Interactive mode: "python3 oneM2M_Ressources.py manual", in this mode an interaction with the user allows
the user to choose the IoT stack, the type of resource, the number of operations to be done on the same type of
resources to generate averages.

2) Automatic mode: "python3 oneM2M_Resources.py auto [OM2M/ACME/MOBIUS] [number of iterations per
test]", in this mode a pre-defined scenario allows the user to create and destroy the most classic oneM2M
resources by choosing the stack to execute and the number of requests per resource to generate the statistic.

These two executions generate a file with the statistics indexed by the name of the stack. The output file named
STACKNAME_resources is in the directory where the profiler tool is located.

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 11

4.4 Profiler output format
The profiler generates a text file. The format of this text file is:

• a first line gives an information on performance of the machine with indication of MIPS;

• all other lines have the format: type of oneM2M resources, type of action and a list of hardware type and value
measured.

The first list of hardware resource on this first version is:

• cpu: average time of processors usage in second;

• mem: average size of memory in bytes.

EXAMPLE: MIPS 4589
AE, Create, cpu, 0.023333333333333428, mem, 43690.666666666664
AE, Delete, cpu, 0.013333333333333345, mem, 43690.666666666664
CNT, Create, cpu, 0.020000000000000018, mem, 43690.666666666664
SUB, Create, cpu, 0.03333333333333336, mem, 87381.33333333333

5 oneM2M IoT system simulator

5.0 Introduction
This clause presents the oneM2M IoT system simulator and its associated results in terms of performance evaluation.
The objective is to present and explain the main phases of the instantiation, in the OMNeT++ environment, of a use
case proposed in ETSI TS 103 840 [i.2] and its associated oneM2M multi-layered model proposed into the present
document. The resulting simulator takes as inputs the KPIs produced by the oneM2M profiler presented in clause 4. The
simulator produces itself performance evaluation results of the system also called KPIs.

5.1 OMNeT++
OMNeT++ is an extensible, component-based C++ simulation library and framework (Integrated Development
Environment (IDE)), dedicated to distributed/networked systems simulations. The OMNeT++ environment is open
source and thus, federates a large community who develops different features and libraries for specifying, editing,
programming, and simulating networked systems.

The simulation engine is a discrete event simulator that can handle multiple nodes and their network topology.
Depending on the fine or coarse grain modelling-level of the system under evaluation, the environment can provide
either predefined libraries that implements full protocol stacks such as TCP/IP, MQTT, or enables a more or less
accurate programming of the communication protocols and nodes behaviour, their interconnections, as well as the
performance parameters to be measured. The integrated discrete event simulation engine also supports parallel
distributed simulation to run large-scale topologies and system's behaviour.

The programming features of the IDE are intensively used for the development of a oneM2M system simulator. The
notions of modules (simple or compound), gates, channels, network, interfaces are the inner elements of an OMNeT++
specification. Each element is associated with a C++ class with the associated properties, attributes, variables, and
behaviour. The element behaviour is developed in two C++ methods namely: initialize() and handleMessage(). The
method initialize() is called at the initial stage (transitional phase) where OMNeT++ elements of these different types
are instantiated in the simulator whereas the handleMessage() method is called every simulation step and covers the
permanent behaviour of the element.

The <project-name>.ini and <project-tname>.ned files participate in the definition of the network. The
<project-name>.ini file contains the parameters and variables initialization values for a current simulation whereas in
the <project-tname>.ned file, the NEtwork Descriptor (NED) language, allows the description of the topology of an
OMNeT++ system. It has a programming syntax closed to an imperative language to define graph topologies of
different shapes, such as, e.g. tree, ring, mesh, and their size. This is a real advantage of OMNeT++ over its direct
competitor NS-3.

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 12

5.2 oneM2M deployment model
The simulator is organized into multiple modules either simple or compound with respect to the meta model defined in
ETSI TS 103 840 [i.2]. The modules are organized into three categories: ApplicationLayer, ServiceLayer and
InfrastructureLayer.

Application Layer

The application layer is represented by a compound module named Application that hosts 3 types of submodules as
showed in Figure 5.2-1.

Figure 5.2-1: Application layer modules

• Actuator:Actuator [0..N]: an Actuator is a simple module that receives messages from a remote CSE.

• Sensor:Sensor [0..N]: a Sensor is a simple module that sends messages to a remote CSE. One of the main
parameters of this module is a JSON object representing a CinGenerator as defined in ETSI TS 103 840 [i.2].
The CinGenerator is a description of how Content Instances (CIN) messages are being generated by the
sensor. The CinGenerator includes information on when a CIN is generated but also its size. Concerning the
event generation, the simulator supports periodic generation, stochastic generation (uniform & exponential
distribution), and generation following a time-series provided in an external file. Concerning the size of the
message, the simulator supports constant size, stochastic size (uniform & normal distributions), and generation
following a time-series provided in an external file.

• rt:AppRouter [1..1]: rt is a simple module that handles messages routing between sensors/actuators and the
underlying communications services.

Both Sensor and Actuator modules have a parameter IntializationProcedure that contains the internal actions and
messages sent to the remote CSE at start-up. Examples of these messages include the creation of oneM2M resources
such as ApplicationEntity (AE), CoNtainTers (CNT), SUBscription (SUB) or initial ContentInstances (CIN).

Finally, an Application can host multiple Sensor and Actuator modules.

Service Layer

The service layer is mainly represented by the compound module CSE as showed in Figure 5.2-2.

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 13

Figure 5.2-2: Service layer modules

Depending on its parameters, the CSE compound module hosts multiple simple modules that implement a feature of a
oneM2M CSE. These modules are the following:

core:Core [1..1]: this mandatory module is responsible for handling CRUD operations received by a CSE through
message passing. One of its main parameters is a JSON object that represents a oneM2M CSE Performance Descriptor
(OCPD) as defined in ETSI TS 103 840 [i.2]. Based on this parameter, the CSE core can simulate the processing cost of
a message and its associated operations in terms of computing (CPU) and memory (RAM) resources.

mqtt:MQTTBinding [0..1]: this optional module is responsible for managing the MQTT protocol
encapsulation/decapsulation of primitive oneM2M messages (requests & responses).

coap:COAPBinding [0..1]: this optional module is responsible for managing the CoAP protocol
encapsulation/decapsulation of primitive oneM2M messages (requests & responses).

http:HTTPBinding [0..1]: this optional module is responsible for managing the HTTP protocol
encapsulation/decapsulation of primitive oneM2M messages (requests & responses).

remoteDB:TCPBinding [0..1]: this optional module represents a data persistence service that is available in a remote
host, and that needs a TCP communication. It is suitable for representing CSEs that use remote databases.

localDB: DataStorage [0..1]: this optional module represents a data persistence service that is embedded within the
CSE. It is suitable for representing CSEs that use embedded databases (either file-based or in-memory database).

rt:CSERouter [1..1]: this is a simple module that handles messages routing between different components of the CSE
and the underlying communication services.

NOTE 1: A CSE has at least one protocol binding (HTTP, CoAP or MQTT) [i.6], [i.7] and [i.8].

NOTE 2: A CSE has one persistence service, either local or remote.

Infrastructure Layer

The infrastructure layer is represented by modules related to hosting nodes (IoT, CSE, Generic Server) and to
networking.

First, all hosting nodes derive from one generic node: the HWNode one. This compound module hosts the following
modules, as showed in Figure 5.2-3.

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 14

Figure 5.2-3: Infrastructure layer modules

application:Application [0..N]: this compound module represents the IoT applications (cf. Application Layer) that run
on the hosting node.

hostRouter:HostRouter [1..1]: this is a simple module that handles messages routing between different
applications/services running on the hosting nodes and the underlying communication services (NICs).

ramManager:RAMManager [1..1]: this is a simple module that tracks the overall usage of the processing power of
the hosting node (i.e. CPU).

cpuManager:CPUManager [1..1]: this is a simple module that tracks the overall usage of the memory of the hosting
node (i.e. RAM).

ioManager:IOManager [1..1]: this is a simple module that tracks the overall usage of the disk usage of the hosting
node.

nic:NIC [1..N]: this simple module represents a networking interface available on the hosting node.

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 15

Based on this generic hosting node, three specific nodes are defined:

IoTNode
The IoTNode is a hosting node that run only IoT applications. An IoT application
manages sensors and/or actuators.

CSENode
The CSENode extends the generic HWNode and hosts one CSE. It can also
host an MQTT Broker alongside the CSE. The connection between the
hostRouter and the CSE represent the Mca/Mcc interfaces depending on
whether the message arrives from an application or another CSE.

ServerNode
The ServerNode extends the HWNode by hosting an MQTT Broker and/or a
database. This node is suitable for representing nodes acting as remote
databases for a CSE, an independent MQTT Broker, or any application logic
such as a monitoring application.

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 16

The networking aspect is represented by two simple modules and four specific channels:

NetworkElement: This simple module represents a network router with
basic IPv4 routing logic. It can be connected to any hosting node using a
specific network channel.

Internet: This is a simple module that is similar to the NetworkElement
module since it acts as second hop router and connects all the network
elements present in the IoT solution. It could be seen as the core network of
telecom operators.

Four channels are defined in the simulator. These channels represent the
common communication links found in IoT solutions. Each channel defines
its own data rate, latency, Bit Error Rate (BER) and Packet Error
Rate (PER).

5.3 Mapping on OMNeT++ library and the NED topology

5.3.1 Mapping of Meta Model on OMNeT++

In order to start the simulation of an IoT solution that follows the Meta Model defined in ETSI TS 103 840 [i.2], two
main files are provided in the simulator:

• First, the physical topology (Infrastructure Layer) of the IoT solution is defined in a file compliant with the
syntax and semantics of OMNeT++'s description language (NED). This file describes the topology such a
graph where vertices are one of the following: IoTNode, CSENode, ServerNode, NetworkElement, and
Internet. These vertices are connected using one of the four links defined in the simulator: WiFiLink,
CellularLink, LoRaLink, and FiberLink. The topology that can be seen as a tree with 3 levels:

- Level 0 (root element): Internet node.

- Level 1: nodes of type NetworkElement.

- Level 2: nodes of type IoTNode, CSENode, or ServerNode.

A second file is the omnetpp.ini that contains values for the relevant parameters of the modules present in the topology
file. All these parameters are of basic types such as String, IPAddress, Integer. Two specific parameters use structured
data that can also be references to external files. These parameters are the following:

• Event Generator:

- NED Module:

 oneM2M.Solution.ApplicationLayer.Sensor

- Usage (in INI file):

 <Solution>.<IoTNode>.application[appIndex].sensor[sensorIndex].cinGenerator

- Description: the ContentInstance generator parameter is a structured object using JSON format that
implements a part of the oneM2M Application Scenario Descriptor (OASD) as defined in ETSI
TS 103 840 [i.2]. It contains information about how a sensor generates oneM2M messages (i.e. CREATE
operation of ContentInstance resource on the remote CSE) in terms of time instant and message data size.
The schema for this object is given in the gitlab repository [i.11].

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 17

• Performance Descriptor:

- NED Modules:

 oneM2M.Solution.ServiceLayer.CSE

 oneM2M.Solution.ServiceLayer.Components.Persistence.DataStorage

- Usage (in INI file):

 <Solution>.<CSENode>.cse.performanceDescriptor

 <Solution>.<CSENode>.cse.localDB.performanceDescriptor

 <Solution>.<ServerNode>.database.performanceDescriptor

- Description: the performance descriptor parameter is a structured object using JSON format that
implements a part of the oneM2M CSE Performance Descriptor (OCPD) defined in [i.2]. Since this
object contains information about system resources usage in terms of processing, memory, and disk
usages for each CRUD operation per resource type, this parameter is provided for both the CSE module
and the DataStorage module (embedded within the CSENode or hosted in a separate ServerNode). The
schema for this object is given in the gitlab repository [i.11].

NOTE: These JSON parameters can be supplied inline in the INI file or in a separate file based on a prefix:

 Inline use in the INI file: parameter = "data://<JSON_OBJECT>".

 External reference from the INI file: parameter = "file://<FILE_PATH>".

5.3.2 Mapping of the probes in the simulator

Measurement probes are integrated in the source code of the simulator to build KPIs and evaluate the performance of
the IoT system based on multiple simulation runs. These indicators include measures such as runtime, memory
utilization, volume of data transferred, as well as specific metrics for each CRUD operations in the context of oneM2M
resource creation on oneM2M objects. The associated KPIs are defined and described in clause 5 of ETSI
TS 103 840 [i.2].

To operate, these probes are parameterized:

• First, by defining values to be integrated into the simulator such as importing the profiler results: for example,
the size of the data produced by the sensors, the CPU delay to create a resource in a CSE, or the size of the ram
used for this creation. This information is parameterized in the .ini file.

• A second part is to instantiate the probe with a variable that should evolve during the simulation run, for
example, the total size of data produced, the total CPU duration for creating resources on a CSE. These
variables are declared and managed in the C++ files of OMNeT++ elements.

• A third part is the declaration of the data format to be produced for the associated results. It can be either in
scalar mode or more complex mode. This declaration of result format is specified in the .ini file.

• Last, these probes thus formed, register metrics values during simulations traces and aggregated and
consolidated the results ranged as minimum, average and maximum values, or variance. These results can be
linked to several characteristics of the system, i.e.: time computing, memory consumption, communication rate
and data volume, just to mention a few.

5.4 Installation and configuration
The ETSI lab repository [i.11] contains the source codes of the two tools developed during the project. These tools: the
oneM2M-stack-profiler and the OMNeT-oneM2M-simulator can be downloaded and experimented. The current clause
explains how to use and experiment the performance evaluation of a oneM2M IoT system with the OMNeT++
simulator.

In a previous paragraph of clause 5, the underlying concepts of the simulator have been presented. The current clause
explains how to play with the simulator and the implemented use case.

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 18

The tool repository for the oneM2M simulator contains two folders:

• simulation_results is a well-named folder that contains an extract of the different simulation runs.

• src contains the source code of the OMNeT++ simulator and the different topologies (.ned files).

• The development has been conducted with OMNeT++ V6.0.3.

Here is a fast installation procedure to run the simulator:

1) Download and install:

- OMNeT++ on [i.10].

- the code contained in the src directory from the GitLab repository [i.11].

2) Start the IDE OMNeT++:

- see the OMNeT++ installation guide [i.12].

3) Create an OMNeT++ project:

- Choose "Empty Project with src and simulations folders".

- Delete a package.ned file that has been generated in the project.

- In the src folder -> Import code file system by selecting the local src folder that contains the code.

4) Build the project:

- Click right on the package -> "Build Project".

5) Run a simulation:

- Click right on the package -> "Run As" -> "Run Simulation".

- Choose the src/omnetpp.ini as configuration file.

- The user is now able to run multiple simulations by choosing different topologies namely (...).

6 Frameworks at work

6.1 Mapping Scenario Description

6.1.1 Running example: A traffic light system

To simulate the Traffic Light use case presented in ETSI TS 103 840 [i.2], the first step is to translate the corresponding
oneM2M Solution Deployment Descriptor (OSDD) into a NED topology file in OMNeT++. Based on the infrastructure
view of an IoT solution, as showed in Figure 6.1.1-1 (left) this translation is represented in OMNeT++ as per
Figure 6.1.1-1 (right):

• The solution nodes are represented by their corresponding NED module from the simulation library: IoTNode,
CSENode or ServerNode.

• Each AccessNetwork is represented by a NetworkElement NED module. Connections between the relevant
nodes and this NetworkElement use the corresponding link type. For example, the AccessNetwork is Wi-Fi®,
the links between the nodes and the corresponding NetworkElement will use WiFiLink channel.

• Finally, the Internet entity in the model is represented by the specific NED module: Internet. All links between
the network elements and the Internet node are assumed of FiberLink type.

NOTE: This translation phase can benefit from automation to address large instances of IoT solutions that is out
of the scope of ETSI TTF T019.

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 19

The second step is to supply an OMNeT++ simulation parameters file a.k.a. INI file that contains the values of all the
relevant parameters of the involved NED modules.

Infrastructure layer view of the Traffic Light use
case [i.2]

NED Topology view of the same use case in the OMNeT++
Simulator

Figure 6.1.1-1: Infrastructure view and their associated OMNeT++ view

6.1.2 OMNeT++ files

The corresponding NED topology file for this example is as follows:

package onem2msimulator.simulations;

import oneM2M.Solution.InfrastructureLayer.Networking.CellularLink;

import oneM2M.Solution.InfrastructureLayer.Networking.FiberLink;

import oneM2M.Solution.InfrastructureLayer.Networking.WifiLink;

import oneM2M.Solution.InfrastructureLayer.Networking.NetworkElement;

import oneM2M.Solution.InfrastructureLayer.Networking.Internet;

import oneM2M.Solution.InfrastructureLayer.Nodes.CSENode;

import oneM2M.Solution.InfrastructureLayer.Nodes.IoTNode;

import oneM2M.Solution.InfrastructureLayer.Nodes.ServerNode;

network SimpleNetwork

{

 parameters:

 // name: Traffic Light Use Case

 // description: A traffic light scenario with 3 CSEs, 5 IoTNodes connected to 3 different access networks

 // authors: TTF T019 Experts

 // version: 1.0

 submodules:

 cloudServer: ServerNode;

 mnNode1: CSENode;

 mnNode2: CSENode;

 inNode: CSENode;

 FiberNet: NetworkElement;

 Cellular: NetworkElement;

 WiFi: NetworkElement;

 INTERNET: Internet;

 intersection01: IoTNode;

 intersection02: IoTNode;

 intersection03: IoTNode;

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 20

 intersection04: IoTNode;

 intersection05: IoTNode;

 connections:

 mnNode1.toNetwork[0] <--> CellularLink <--> Cellular.link++;

 intersection03.toNetwork[0] <--> CellularLink <--> Cellular.link++;

 intersection02.toNetwork[0] <--> CellularLink <--> Cellular.link++;

 intersection01.toNetwork[0] <--> CellularLink <--> Cellular.link++;

 mnNode2.toNetwork[0] <--> WifiLink <--> WiFi.link++;

 intersection04.toNetwork[0] <--> WifiLink <--> WiFi.link++;

 intersection05.toNetwork[0] <--> WifiLink <--> WiFi.link++;

 inNode.toNetwork[0] <--> FiberLink <--> FiberNet.link++;

 cloudServer.toNetwork[0] <--> FiberLink <--> FiberNet.link++;

 WiFi.internetLink <--> FiberLink <--> INTERNET.link++;

 Cellular.internetLink <--> FiberLink <--> INTERNET.link++;

 FiberNet.internetLink <--> FiberLink <--> INTERNET.link++;

}

The corresponding INI file for this example is as follows:

[General]

network = onem2msimulator.simulations.SimpleNetwork

SimpleNetwork.intersection*.appCount = 1

SimpleNetwork.intersection*.application[0].name = "app1"

SimpleNetwork.intersection*.application[0].sensorCount = 1

SimpleNetwork.intersection*.application[0].sensor[0].name = "intersectionState"

SimpleNetwork.intersection*.application[0].actuatorCount = 1

SimpleNetwork.intersection*.application[0].actuator[0].name = "threeLights"

SimpleNetwork.mnNode1.name = "mn1-cse"

SimpleNetwork.mnNode2.name = "mn2-cse"

SimpleNetwork.inNode.name = "in-cse"

SimpleNetwork.cloudServer.nic[0].name = "eth0"

SimpleNetwork.inNode.nic[0].name = "eth0"

SimpleNetwork.mnNode*.nic[0].name = "wlan0"

SimpleNetwork.intersection*.nic[0].name = "wlan0"

SimpleNetwork.FiberNet.subnetAddress = "10.0.1.0/24"

SimpleNetwork.cloudServer.nic[0].networkAddress = "10.0.1.10"

SimpleNetwork.inNode.nic[0].networkAddress = "10.0.1.11"

SimpleNetwork.Cellular.subnetAddress = "10.0.2.0/24"

SimpleNetwork.mnNode1.nic[0].networkAddress = "10.0.2.10"

SimpleNetwork.intersection01.nic[0].networkAddress = "10.0.2.11"

SimpleNetwork.intersection02.nic[0].networkAddress = "10.0.2.12"

SimpleNetwork.intersection03.nic[0].networkAddress = "10.0.2.13"

SimpleNetwork.WiFi.subnetAddress = "10.0.3.0/24"

SimpleNetwork.mnNode2.nic[0].networkAddress = "10.0.3.10"

SimpleNetwork.intersection04.nic[0].networkAddress = "10.0.3.11"

SimpleNetwork.intersection05.nic[0].networkAddress = "10.0.3.12"

SimpleNetwork.intersection01.application[0].remoteCSE = "mn1-cse"

SimpleNetwork.intersection02.application[0].remoteCSE = "mn1-cse"

SimpleNetwork.intersection03.application[0].remoteCSE = "mn1-cse"

SimpleNetwork.intersection04.application[0].remoteCSE = "mn2-cse"

SimpleNetwork.intersection05.application[0].remoteCSE = "mn2-cse"

SimpleNetwork.mnNode1.cse.remoteCSE = "in-cse"

SimpleNetwork.mnNode2.cse.remoteCSE = "in-cse"

SimpleNetwork.intersection01.application[0].remoteCSEAddress = "10.0.2.10"

SimpleNetwork.intersection02.application[0].remoteCSEAddress = "10.0.2.10"

SimpleNetwork.intersection03.application[0].remoteCSEAddress = "10.0.2.10"

SimpleNetwork.intersection04.application[0].remoteCSEAddress = "10.0.3.10"

SimpleNetwork.intersection05.application[0].remoteCSEAddress = "10.0.3.10"

SimpleNetwork.mnNode1.cse.remoteCSEAddress = "10.0.1.11"

SimpleNetwork.mnNode2.cse.remoteCSEAddress = "10.0.1.11"

SimpleNetwork.intersection01.application[0].sensor[0].cinGenerator = "data://{ \"type\": \"SimulatedEvent\",

\"eventDistribution\": { \"type\": \"Constant\", \"constant\": 13.0 }, \"dataSizeDistribution\": {

\"type\": \"Constant\", \"constant\": 100 }}"

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 21

SimpleNetwork.intersection02.application[0].sensor[0].cinGenerator = "file://sample_cin_generator_v1.json"

SimpleNetwork.intersection03.application[0].sensor[0].cinGenerator = "file://sample_cin_generator_v1.json"

SimpleNetwork.intersection04.application[0].sensor[0].cinGenerator = "file://sample_cin_generator_v1.json"

SimpleNetwork.intersection05.application[0].sensor[0].cinGenerator = "file://sample_cin_generator_v1.json"

SimpleNetwork.mnNode1.cse.performanceDescriptor = "file://acme_performances_v1.json"

SimpleNetwork.mnNode2.cse.performanceDescriptor = "file://acme_performances_v1.json"

SimpleNetwork.inNode.cse.performanceDescriptor = "file://acme_performances_v1.json"

SimpleNetwork.mnNode1.cse.localDB.performanceDescriptor = "file://sample_memory_db_performances_v1.json"

SimpleNetwork.mnNode2.cse.localDB.performanceDescriptor = "file://sample_memory_db_performances_v1.json"

SimpleNetwork.inNode.hasLocalDB = false

SimpleNetwork.inNode.cse.dbServerAddress = "10.0.1.10"

SimpleNetwork.cloudServer.hasDataBase = true

SimpleNetwork.cloudServer.database.performanceDescriptor = "file://sample_server_db_performances_v1.json"

6.1.3 Synthetizing KPIs

Simulation results are recorded using OMNeT++ built-in support. This support is mainly achieved through two SDK
tools:

• output vectors (cOutVector): output vectors are time series data, recorded from simple modules or channels.
They can be used to record evolving data over time such as queue length, processing time, end-to-end delays,
etc. Every output vector is identified by a name. Recording is done through the method:

- cOutVector::recordWithTimestamp(timestamp, value).

• output scalars (cStdDev): output scalars are summary results. They are computed during the simulation and
written out at the end. They can be single integer/real values, or a statistical summary composed of multiples
fields such as mean, standard deviation, sum, minimum, maximum, etc. They can also be used to store
histogram data. As for output vectors, output scalars are identified by a name. Recording data is done through
the method:

- cStdDev::collect(value).

Output vectors and scalars are inserted though out the simulation modules, in particular:

• Memory usage in every HWNode and its subclasses (IoTNode, CSENode, ServerNode);

• Processing time in every CSENode and especially in the CSE Core module;

• Processing time for every storage module (local or remote);

• End-to-End delay in every Sensor module (time span between the instant the oneM2M request is issued by the
sensor and the instant the oneM2M response is received by the sensor);

• etc.

At the end of the simulation, all simulations results are automatically stored in separate files (*.vec and *.sca) that can
be further processed by OMNeT++ for visualization or data analysis.

6.2 Performance evaluation analysis
Simulation can be run both in graphical mode and in silent mode (no GUI). In graphical mode, different views are
proposed: timeline, scheduled events, topology, etc. as shown in Figure 6.2-1.

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 22

Figure 6.2-1: OMNeT++simulation run in graphical mode

Any output vector declared in the simulation is listed under the parent module. Output vectors can be visualized in
real-time during the simulation (one new window per output vector). Results, using the GUI OMNeT++ interface, are
displayed in Figures 6.2-2, 6.2-3 and 6.2-4.

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 23

Figure 6.2-2: real-time visualization of simulation results through output vectors.

At the end of the simulation, OMNeT++ offers a complete set of tools for analysing the simulation results. A list of
output vectors and scalars are summarized. The user can plot the simulation results individually or combined. Meta
analysis such as difference, division, linear trend, moving average, etc. can be additionally computed.

Figure 6.2-3: OMNeT++ simulation results browser

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 24

Figure 6.2-4: OMNeT++ results viewer

7 Conclusions
The present document details the two tools developed in ETSI TTF T019, namely a profiler, written in Python and a
simulation library, written in the OMNeT++ simulator. The first one allows to profile the use of hardware resources by
a subset of resources of a CSE of the oneM2M standard. The profiler car run different oneM2M stacks and observe their
hardware usage based on a set of oneM2M resources calls. The second one allows to simulate a complete deployment
of an oneM2M architecture, extrapolating and scaling up the information provided by the profiler and carrying out a
complex and large scale IoT application.

Clause 4 describes how the profiler works and the measurements it provides.

Clause 5 presents a complete mapping of oneM2M meta model into OMNeT++ objects. The modules and their
relationship are explained in relation to ETSI TS 103 840 [i.2] describing the used meta-models.

Clause 6 shows the use of the simulator in a simple scenario. ETSI TR 103 842 [i.3] will complete the usage based on
the scenarios defined in ETSI TR 103 839 [i.1].

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 25

Annex A:
Source code
See https://labs.etsi.org/rep/iot/smartm2m-onem2m-performance-evaluation/profiler.

See https://labs.etsi.org/rep/iot/smartm2m-onem2m-performance-evaluation/onem2m-simulator.

https://labs.etsi.org/rep/iot/smartm2m-onem2m-performance-evaluation/onem2m-profiler
https://labs.etsi.org/rep/iot/smartm2m-onem2m-performance-evaluation/onem2m-simulator

ETSI

ETSI TR 103 841 V1.1.1 (2024-07) 26

History

Document history

V1.1.1 July 2024 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Introduction
	1 Scope
	1.1 Context for the present document
	1.2 Scope of the present document.

	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 oneM2M profiler
	4.0 Introduction
	4.1 Structure
	4.2 Operating system interaction
	4.3 Profiler usage
	4.3.1 Installation and configuration
	4.3.2 Execution

	4.4 Profiler output format

	5 oneM2M IoT system simulator
	5.0 Introduction
	5.1 OMNeT++
	5.2 oneM2M deployment model
	5.3 Mapping on OMNeT++ library and the NED topology
	5.3.1 Mapping of Meta Model on OMNeT++
	5.3.2 Mapping of the probes in the simulator

	5.4 Installation and configuration

	6 Frameworks at work
	6.1 Mapping Scenario Description
	6.1.1 Running example: A traffic light system
	6.1.2 OMNeT++ files
	6.1.3 Synthetizing KPIs

	6.2 Performance evaluation analysis

	7 Conclusions
	Annex A: Source code
	History

