

ETSI TR 103 966 V1.1.1 (2024-10)

CYBER Security (CYBER);
Quantum-Safe Cryptography (QSC);

Deployment Considerations for Hybrid Schemes

TECHNICAL REPORT

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 2

Reference
DTR/CYBER-QSC-0021

Keywords
cybersecurity, hybrid, quantum safe cryptography

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2024.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 3

Contents

Intellectual Property Rights .. 5

Foreword ... 5

Modal verbs terminology .. 5

1 Scope .. 6

2 References .. 6

2.1 Normative references ... 6

2.2 Informative references .. 6

3 Definition of terms, symbols and abbreviations ... 9

3.1 Terms .. 9

3.2 Symbols .. 10

3.3 Abbreviations ... 10

4 Introduction .. 11

5 Motivations ... 12

5.1 Hybrid security ... 12

5.2 Hybrid interoperability ... 12

5.3 Protocol constraints and validation .. 13

6 Design considerations... 13

6.1 Security .. 13

6.1.1 Hybrid security ... 13

6.1.2 Hybrid interoperability ... 14

6.2 Efficiency ... 15

6.2.1 Bandwidth ... 15

6.2.2 Computation ... 15

6.2.3 Latency ... 15

6.2.4 Energy ... 16

6.3 Complexity ... 16

6.3.1 Protocol ... 16

6.3.2 Implementation ... 17

7 Deployment considerations .. 18

7.1 Algorithm selection .. 18

7.1.1 Number of components ... 18

7.1.2 Choice of components .. 18

7.2 Key management .. 18

7.2.1 Component key reuse.. 18

7.2.2 Component key compromise .. 19

7.3 Migration and forwards compatibility .. 19

8 Conclusions .. 20

Annex A: Key encapsulation mechanisms ... 22

A.1 Introduction .. 22

A.2 Traditional KEMs ... 23

A.2.1 RSA-KEM .. 23

A.2.2 DHKEM ... 23

A.3 Hybrid KEM examples ... 24

A.3.1 Concatenation only ... 24

A.3.2 Concatenation with simple KDF .. 25

A.3.3 Concatenation with full KDF ... 26

Annex B: Digital signature algorithms ... 28

B.1 Introduction .. 28

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 4

B.2 Separability ... 28

B.3 Hybrid signature examples ... 29

B.3.1 Concatenation only ... 29

B.3.2 Concatenation with identifiers .. 29

B.3.3 Strong non-separability .. 30

Annex C: Change History ... 32

History .. 33

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 5

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Technical Report (TR) has been produced by ETSI Technical Committee Cyber Security (CYBER).

Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 6

1 Scope
The present document explores issues around combining traditional and post-quantum algorithms to construct hybrid
cryptographic schemes.

Specifically, the present document examines some of the reasons for proposing and adopting hybrid schemes, both for
key establishment and digital signatures; clarifies some of the terminology used to describe hybrid schemes; discusses
some of the security, efficiency, and agility trade-offs; highlights some important things to consider when selecting
algorithm and parameter combinations; explores some potential deployment and migration issues; and identifies
situations where hybrid schemes will need to be deprecated in favour of purely post-quantum algorithms.

The present document does not provide guidance on whether or not to use hybrid schemes.

2 References

2.1 Normative references
Normative references are not applicable in the present document.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI TR 103 616: "CYBER; Quantum-safe signatures".

[i.2] ETSI TR 103 692: "CYBER; State management for stateful authentication mechanisms".

[i.3] ETSI TS 103 744: "CYBER; Quantum-Safe Cryptography (QSC); Quantum-safe hybrid key
exchanges".

[i.4] ETSI TR 103 823: "CYBER; Quantum-safe public-key encryption and key encapsulation".

[i.5] IETF RFC 5652: "Cryptographic Message Syntax (CMS)".

[i.6] IETF RFC 6090: "Fundamental elliptic curve cryptography algorithms".

[i.7] IETF RFC 8551: "Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 4.0 message
specification".

[i.8] IETF RFC 9370: "Multiple key exchanges in the Internet Key Exchange protocol Version 2
(IKEv2)".

[i.9] IRTF IETF RFC 7748: "Elliptic curves for security".

[i.10] IRTF IETF RFC 8391: "XMSS: eXtended Merkle Signature Scheme".

[i.11] IRTF IETF RFC 8554: "Leighton-Micali hash-based signatures".

[i.12] IRTF IETF RFC 9180: "Hybrid public key encryption".

[i.13] NIST FIPS 140-3: "Security requirements for cryptographic modules".

[i.14] NIST FIPS 186-4: "Digital Signature Standard (DSS)".

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 7

[i.15] NIST FIPS 203 (initial public draft): "Module-lattice-based key-encapsulation mechanism
standard".

[i.16] NIST FIPS 204 (initial public draft): "Module-lattice-based digital signature standard".

[i.17] NIST FIPS 205 (initial public draft): "Stateless hash-based digital signature standard".

[i.18] NIST SP 800-56A Rev. 3: "Recommendation for pair-wise key establishment schemes using
discrete logarithm cryptography".

[i.19] NIST SP 800-56B Rev. 2: "Recommendation for pair-wise key establishment schemes using
integer factorization cryptography".

[i.20] NIST: "Post-quantum cryptography FAQs".

[i.21] Recommendation ITU-T X.509: "Information technology - Open Systems Interconnection - The
Directory: Public key and attribute certificate frameworks".

[i.22] M.R. Albrecht, et al: "Classic McEliece: conservative code-based cryptography". NIST round
3 post-quantum submission.

[i.23] R. Avanzi et al: "CRYSTALS-Kyber: Algorithm specifications and supporting documentation".
NIST round 3 post-quantum submission.

[i.24] J.-P. Aumasson et al: "SPHINCS+: Submission to the NIST post-quantum project". NIST round
3 post-quantum submission.

[i.25] N. Aviram et al: "DROWN: Breaking TLS using SSLv2". USENIX Security 2016.

[i.26] J. Baena et al: "Improving support-minors rank attacks: Applications to GeMSS and Rainbow".
CRYPTO 2022.

[i.27] S. Bai et al: "CRYSTALS-Dilithium: Algorithm specifications and supporting documentation".
NIST round 3 post-quantum submission.

[i.28] M. Barbosa et al: "X-Wing: The hybrid KEM you've been looking for". IACR ePrint 2024/039.

[i.29] N. Bindel and B. Hale: "A note on hybrid signature schemes". IACR ePrint 2023/423.

[i.30] N. Bindel et al: "Hybrid key encapsulation mechanisms and authenticated key exchange".
PQCrypto 2019.

[i.31] N. Bindel et al: "Transitioning to a quantum-resistant public key infrastructure". PQCrypto 2017.

[i.32] W. Beullens: "Breaking Rainbow takes a weekend on a laptop". CRYPTO 2022.

[i.33] D. Bleichenbacher: "Chosen ciphertext attacks against protocols based on the RSA encryption
standard PKCS# 1". CRYPTO 1998.

[i.34] C. Bonnell et al: "A mechanism for encoding differences in paired certificates". IETF
Internet-Draft (work in progress), draft-bonnell-lamps-chameleon-certs-03.

[i.35] F. Byszio, K.-D. Wirth and K. Nguyen: "Intelligent composed algorithms". IACR ePrint 2021/813.

[i.36] M. Campagna and A. Petcher: "Security of hybrid key encapsulation". IACR ePrint 2020/1364.

[i.37] W. Castryck and T. Decru: "An efficient key recovery attack on SIDH". EUROCRYPT 2023.

[i.38] D. Connolly, P. Schwabe and B. Westerbaan: "X-Wing: General-purpose hybrid post-quantum
KEM". IETF Internet-Draft (work in progress), draft-connolly-cfrg-xwing-kem-01.

[i.39] Y. Dodis and J. Katz: "Chosen-ciphertext security of multiple encryption", TCC 2005.

[i.40] B. Dowling et al: "A cryptographic analysis of the TLS 1.3 handshake protocol candidates". ACM
CCS 2015.

https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 8

[i.41] P.-A. Fouque et al: "Falcon: Fast-Fourier lattice-based compact signatures over NTRU". NIST
round 3 post-quantum submission.

[i.42] M. Friedl, J. Mojzis and S. Josefsson: "Secure Shell (SSH) key exchange method using hybrid
Streamlined NTRU Prime sntrup761 and X25519 with SHA-512: sntrup761x25519-sha512". IETF
Internet-Draft (expired), draft-josefsson-ntruprime-ssh-02.

[i.43] F. Giacon, F. Heuer and B. Poettering: "KEM combiners". PKC 2018.

[i.44] P. Kampanakis, D. Stebila and T. Hansen: "Post-quantum hybrid key exchange in SSH". IETF
Internet-Draft (work in progress), draft-kampanakis-curdle-ssh-pq-ke-21.

[i.45] A. Kipnis, J. Patarin and L. Goubin: "Unbalanced oil and vinegar signature schemes".
EUROCRYPT 1999.

[i.46] V. Klíma, O. Pokorný and T. Rosa: "Attacking RSA-based sessions in SSL/TLS". CHES 2003.

[i.47] S. Kousidis, J.Roth, F. Strenzke and A. Wussler: "Post-quantum cryptography in OpenPGP". IETF
Internet-Draft (work in progress), draft-ietf-openpgp-pqc-02.

[i.48] K. Kwiatkowski and P. Kampanakis: "Post-quantum hybrid ECDHE-Kyber key agreement for
TLSv1.3". IETF Internet-Draft (expired), draft-kwiatkowski-tls-ecdhe-kyber-01.

[i.49] A. Langley: "CECPQ1 results". Imperial Violet blog, 28 November 2016.

[i.50] A. Langley: "CECPQ2". Imperial Violet blog, 12 December 2018.

[i.51] Y. Nir: "A hybrid signature method with strong non-separability". IETF Internet-Draft (expired),
draft-nir-lamps-altcompsigs-00.

[i.52] M. Ounsworth and J. Gray: "Composite ML-KEM for use in the internet X.509 Public Key
Infrastructure and CMS". IETF Internet-Draft (work in progress),
draft-ietf-lamps-pq-composite-kem-03.

[i.53] M. Ounsworth, J. Gray and S. Mister: "Composite encryption for use in internet PKI". IETF
Internet-Draft (expired), draft-ounsworth-pq-composite-encryption-01.

[i.54] M. Ounsworth, J. Gray, M. Pala and J. Klaussner: "Composite signatures for use in internet PKI".
IETF Internet-Draft (work in progress), draft-ietf-lamps-pq-composite-sigs-10.

[i.55] M. Ounsworth, M. Pala and J. Klaussner: "Composite public and private keys for use in internet
PKI". IETF Internet-Draft (expired), draft-ounsworth-pq-composite-keys-05.

[i.56] M. Ounsworth, A. Wussler and S. Kousidis: "Combiner function for hybrid key encapsulation
mechanisms (Hybrid KEMs)". IETF Internet-Draft (work in progress),
draft-ounsworth-cfrg-kem-combiners-05.

[i.57] C. Paquin, D. Stebila and G. Tamvada: "Benchmarking post-quantum cryptography in TLS".
PQCrypto 2020.

[i.58] A. Petcher and M. Campagna: "Security of hybrid key establishment using concatenation". IACR
ePrint 2023/972.

[i.59] B. Poettering and S. Rastikian: "A study of KEM generalizations". SSR 2023.

[i.60] J. Proos and C. Zalka: "Shor's discrete logarithm quantum algorithm for elliptic curves". Quantum
Information and Computation 3.4 (2003), 317-344.

[i.61] P.W. Shor: "Algorithms for quantum computation: discrete logarithms and factoring". FOCS,
1994.

[i.62] D. Sikeridis, P. Kampanakis and M. Devetsikiotis: "Post-quantum authentication in TLS 1.3: A
performance study". NDSS 2020.

[i.63] D. Sikeridis, P. Kampanakis and M. Devetsikiotis: "Assessing the overhead of post-quantum
cryptography in TLS 1.3 and SSH". CoNEXT 2020.

https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 9

[i.64] V. Shoup: "A proposal for an ISO standard for public key encryption". IACR ePrint 2001/112.

[i.65] D. Stebila, S. Fluhrer and S. Gueron: "Hybrid key exchange in TLS 1.3". IETF Internet-Draft
(work in progress), draft-ietf-tls-hybrid-design-10.

[i.66] G. Taspoulos et al: "Energy consumption evaluation of post-quantum TLS 1.3 for
resource-constrained embedded devices". IACR ePrint 2023/506.

[i.67] B. Westerbaan and D. Stebila: "X25519Kyber768Draft00 hybrid post-quantum key agreement".
IETF Internet-Draft (expired), draft-tls-westerbaan-xyber768d00-03.

[i.68] B. Westerbaan and C.A. Wood: "X25519Kyber768Draft00 hybrid post-quantum KEM for
HPKE". IETF Internet-Draft (work in progress), draft-westerbaan-cfrg-hpke-xyber768d00-03.

[i.69] R. Zhang, et al: "On the security of multiple encryption or CCA-security + CCA-security =
CCA-security?". PKC 2004.

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

active adversary: adversary who can query a decapsulation oracle with chosen ciphertexts or a signing oracle with
chosen messages

NOTE 1: An active adversary who is attempting to recover the session key for a target ciphertext is not permitted to
query the decapsulation oracle with that ciphertext.

NOTE 2: An active adversary who is attempting to forge a signature value for a target message is not permitted to
query the signing oracle with that message.

NOTE 3: The present document assumes that active adversaries only have classical access to the decapsulation or
signing oracles. Adversaries who can query decapsulation or signing oracles with inputs in quantum
superposition are out of scope.

classical adversary: adversary who can only implement attacks on classical computers

component algorithm: cryptographic algorithm that forms part of a hybrid scheme or hybrid protocol

hybrid interoperability: property that a hybrid scheme or hybrid protocol can be completed successfully provided that
at least one component algorithm is supported by both parties

hybrid protocol: protocol that incorporates two or more component algorithms providing the same cryptographic
functionality

NOTE 1: The present document only considers hybrid protocols where at least one component is a post-quantum
algorithm and at least one is a traditional algorithm. Hybrid protocols that combine two or more
post-quantum algorithms and no traditional algorithms are out of scope.

EXAMPLE 1: A protocol that uses a hybrid key establishment scheme for confidentiality and a traditional digital
signature algorithm for authentication.

EXAMPLE 2: A protocol that uses a post-quantum key encapsulation mechanism for confidentiality and a hybrid
digital signature scheme for authentication.

EXAMPLE 3: A protocol that establishes an initial session key using a traditional key exchange, updates the
session key using a post-quantum key encapsulation mechanism, and then performs authentication
using a traditional digital signature algorithm.

NOTE 2: A protocol that negotiates the use of either a traditional algorithm or a post-quantum algorithm, but not
the use of both algorithms, is not considered to be a hybrid protocol.

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 10

hybrid scheme: cryptographic scheme that incorporates two or more component algorithms providing the same
cryptographic functionality

NOTE: The present document only considers hybrid schemes where at least one component is a post-quantum
algorithm and at least one is a traditional algorithm. Hybrid schemes that combine two or more
post-quantum algorithms and no traditional algorithms are out of scope.

EXAMPLE 1: A hybrid key establishment scheme that combines a traditional key exchange and a post-quantum
key encapsulation mechanism.

EXAMPLE 2: A hybrid digital signature scheme that combines a traditional digital signature algorithm and a
post-quantum digital signature algorithm.

hybrid security: property that a hybrid scheme or hybrid protocol remains secure provided that at least one component
algorithm is secure

oracle: functionality that provides an adversary with the output of a cryptographic operation without the adversary
needing to know the keys used in the operation

passive adversary: adversary who can only query an encapsulation oracle or a verification oracle

post-quantum algorithm: public-key algorithm believed to be secure against both classical and quantum adversaries

EXAMPLE 1: Key encapsulation mechanisms based on lattices such as the Module-Lattice-based Key
Encapsulation Mechanism (ML-KEM) [i.15], or error correcting codes such as Classic McEliece
[i.22].

NOTE 1: ML-KEM is derived from the Kyber [i.23] submission to the NIST Post-Quantum Cryptography
Standardisation Project

EXAMPLE 2: Digital signature algorithms based on lattices such as the Module-Lattice-based Digital Signature
Algorithm (ML-DSA) [i.16], or hash functions such as the Stateless Hash-based Digital Signature
Algorithm [i.17].

NOTE 2: ML-DSA is derived from the Dilithium [i.27] submission to the NIST Post-Quantum Cryptography
Standardisation Project.

NOTE 3: SLH-DSA is derived from the SPHINCS+ [i.24] submission to the NIST Post-Quantum Cryptography
Standardisation Project.

quantum adversary: adversary who can implement attacks on both classical and quantum computers

traditional algorithm: public-key algorithm based on integer factorisation, finite field discrete logarithms, or elliptic
curve discrete logarithms

EXAMPLE 1: Key establishment algorithms such as RSA [i.19], Finite-Field Diffie-Hellman (FFDH), and
Elliptic Curve Diffie-Hellman (ECDH) [i.18].

EXAMPLE 2: Digital signature algorithms such as RSA, the finite-field Digital Signature Algorithm (DSA), and
the Elliptic Curve Digital Signature Algorithm (ECDSA) [i.14].

3.2 Symbols
Void.

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

CCA Chosen-Ciphertext Attack
CMS Cryptographic Message Syntax
CRQC Cryptographically Relevant Quantum Computer
DHKEM Diffie-Hellman Key Encapsulation Mechanism

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 11

DSA Digital Signature Algorithm
ECDH Elliptic Curve Diffie-Hellman
ECDSA Elliptic Curve Digital Signature Algorithm
EUF-CMA Existential Unforgeability under Chosen-Message Attack
FFDH Finite-Field Diffie-Hellman
FIPS Federal Information Processing Standard
HPKE Hybrid Public-Key Encryption
IETF Internet Engineering Task Force
IKE Internet Key Exchange
IND-CCA Indistinguishability under Chosen-Ciphertext Attack
IND-CPA Indistinguishability under Chosen-Plaintext Attack
IRTF Internet Research Task Force
KDF Key Derivation Function
KDFEM Key Derivation Function Encapsulation Mechanism
KEM Key Encapsulation Mechanism
LMS Leighton-Micali Signature
ML-DSA Module-Lattice-based Digital Signature Algorithm
ML-KEM Module-Lattice-based Key Encapsulation Mechanism
OW-CCA One-Way under Chosen-Ciphertext Attack
OW-CPA One-Way under Chosen-Plaintext Attack
PKCS Public-Key Cryptography Standards
PRF Pseudo-Random Function
RSA Rivest-Shamir-Adleman
S/MIME Secure/Multipurpose Internet Mail Extensions
SIKE Supersingular Isogeny Key Encapsulation
SLH-DSA Stateless Hash-based Digital Signature Algorithm
SSH Secure Shell
SSL Secure Sockets Layer
TLS Transport Layer Security
UOV Unbalanced Oil and Vinegar
XMSS eXtended Merkle Signature Scheme

4 Introduction
The security of traditional approaches to public-key cryptography, including key establishment and digital signatures,
relies on the difficulty of factoring integers or computing discrete logarithms over finite fields or elliptic curves. When
suitably parameterised, these algorithms are believed to be hard to break using classical computers. However, they are
known to be vulnerable to attacks using quantum computers [i.60] and [i.61].

Although existing quantum computers are not large enough to threaten currently deployed algorithms, the risk
associated with the future development of a Cryptographically Relevant Quantum Computer (CRQC) is best mitigated
by migrating to post-quantum cryptography.

EXAMPLE 1: In a store-and-decrypt attack, long-lived sensitive information protected by a traditional key
establishment algorithm could be intercepted and stored by an adversary, and subsequently
decrypted once a CRQC is available.

EXAMPLE 2: In a future forgery attack, a long-lived root of trust protected by a traditional digital signature
algorithm might still be trusted and could be exploited by an adversary once a CRQC is available.

Post-quantum algorithms are intended to be secure against both classical and quantum computers. ETSI
TR 103 616 [i.1] gives an overview of post-quantum digital signature algorithms and ETSI TR 103 823 [i.4] gives an
overview of post-quantum public-key encryption algorithms and key encapsulation mechanisms. (See annexes A and B
for background on key encapsulation mechanisms and digital signature algorithms.)

During the migration to post-quantum cryptography there will be situations where it could be desirable to combine
existing traditional algorithms with post-quantum algorithms in a hybrid scheme. The main reasons for considering
hybrid schemes are:

• to maintain security in the event that vulnerabilities are found in the post-quantum algorithm or its
implementation (see clause 5.1);

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 12

• to provide backwards compatibility for clients that are not yet able to understand and use post-quantum
algorithms (see clause 5.2); and

• to satisfy constraints imposed by protocols or validation requirements (see clause 5.3).

The different reasons for using hybrid schemes mean that different approaches have been proposed for their design and
integration into hybrid protocols. This can lead to differences in:

• security guarantees provided by a hybrid scheme (see clause 6.1);

• efficiency of a hybrid protocol (see clause 6.2); and

• complexity of a hybrid protocol or its implementation (see clause 6.3).

There are a variety of issues that need to be considered when deploying hybrid schemes, which depend on the protocol
and application. These include:

• algorithm choices for a hybrid scheme (see clause 7.1);

• key management approach for a hybrid protocol (see clause 7.2); and

• migration strategies and forward compatibility (see clause 7.3).

5 Motivations

5.1 Hybrid security
A common reason given for deploying hybrid schemes is the potential security risk involved in deprecating traditional
algorithms and moving directly to post-quantum algorithms.

Although post-quantum cryptography has become a significant research topic, there are concerns about the maturity of
the cryptanalysis of some algorithms and families of algorithms. There have been high-profile practical attacks against
GeMSS [i.26], Rainbow [i.32], and SIKE [i.37] during the third round of the NIST Post-Quantum Cryptography
Standardisation Project. It will also take time to build confidence in the assurance of post-quantum implementations.
Post-quantum algorithms tend to be more complicated than traditional algorithms and implementation mistakes can be
difficult to detect. Effective techniques for protecting post-quantum implementations against side-channel attacks are
still being developed.

Well-designed hybrid schemes that remain secure if at least one of their component algorithms is secure can mitigate
future vulnerabilities in post-quantum algorithms or their implementations. This approach has already been used in
experiments exploring the viability of post-quantum algorithms in protocols such as TLS [i.49] and [i.50]. However,
care needs to be taken as hybrid schemes proposed for hybrid interoperability (see clause 5.2) might not provide the
same security guarantees as hybrid schemes proposed for hybrid security, while ad-hoc constructions can introduce
weaknesses that would not be present when using post-quantum algorithms in a non-hybrid mode (see clause 6.1).

5.2 Hybrid interoperability
Another reason commonly given for deploying hybrid schemes is to provide backwards compatibility and allow a
gradual migration to post-quantum algorithms.

In a public or large enterprise system, it might not be possible to update all clients simultaneously to support
post-quantum cryptography. During a gradual migration, such systems would potentially need to cope with mixed
populations of clients: traditional clients that can only understand and use traditional algorithms, post-quantum aware
clients that can understand and use both traditional and post-quantum algorithms, and post-quantum clients that can
only understand and use post-quantum algorithms.

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 13

Hybrid schemes can provide a backwards compatibility mechanism for protocols that do not permit flexible negotiation
of algorithms. For example, Recommendation ITU-T X.509 [i.21] specifies hybrid certificates with non-critical
certificate extensions for post-quantum public keys and signature values that could be used by post-quantum aware
clients, but that would be ignored by traditional clients. However, hybrid schemes proposed for hybrid security (see
clause 5.1) might not provide the same backwards compatibility as hybrid schemes proposed for hybrid interoperability.

5.3 Protocol constraints and validation
Other reasons for retaining traditional algorithms in a hybrid scheme are limitations in the protocol or the need to satisfy
accreditation requirements.

The size of the initial key exchange in IKEv2 is limited by the need to avoid packet fragmentation. Most post-quantum
key exchanges have public keys that are too large to fit into the available space. The pragmatic solution proposed by
IETF RFC 9370 [i.8] keeps a traditional algorithm for the initial key exchange where standard IKE fragmentation
mechanisms cannot be used, and allows it to be followed by one or more key exchanges that can be safely fragmented,
updating the session key appropriately.

FIPS 140-3 [i.13] validation for cryptographic modules requires the use of approved public-key algorithms. NIST have
only approved certain traditional algorithms and have not yet approved any post-quantum algorithms. However, they
indicate in their post-quantum FAQs [i.20] that a post-quantum key establishment or digital signature algorithm can be
included in an implementation if it is used with an approved traditional algorithm in a FIPS-compliant hybrid mode.

6 Design considerations

6.1 Security

6.1.1 Hybrid security

A common assumption is that the use of hybrid schemes can only increase security. In practice, the security provided by
a hybrid scheme depends on the type of scheme and the details of its construction.

Well-designed hybrid schemes can remain secure if at least one component algorithm is secure. It is important to note
that traditional and post-quantum algorithms address different security considerations, so the security properties of a
hybrid scheme intended to provide hybrid security can still be impacted if one if its component algorithms is insecure.

EXAMPLE 1: The "and-mode" hybrid digital signature schemes proposed in [i.31], [i.35] and [i.54] sign the
message using all component digital signature algorithms, and the hybrid signature value is
considered valid only if all component signature values are valid (see clause B.3.1).

 When instantiated with a single traditional digital signature algorithm and a single post-quantum
digital signature algorithm, the hybrid scheme will be secure against both classical and quantum
adversaries provided that the post-quantum algorithm is secure.

 If the post-quantum algorithm is vulnerable, the hybrid scheme remains secure against classical
adversaries because they cannot forge signature values for the traditional algorithm. However, it
will be insecure against quantum adversaries and so will no longer protect against future forgery
attacks (see clause 4).

NOTE: Including more than one post-quantum algorithm in a hybrid scheme can provide additional mitigation
against quantum adversaries at the cost of reducing the efficiency (see clause 6.2) and increasing the
complexity (see clause 6.3) of the scheme.

Care needs to be taken when designing hybrid key encapsulation schemes. Naïve constructions can lead to hybrid
schemes that are less secure than their component algorithms [i.69] and [i.39]. For example, the "concatenation only"
hybrid key encapsulation scheme proposed in [i.35] constructs the hybrid session key as the concatenation of the
session keys from the component algorithms. This will not be secure against active adversaries, regardless of the
security of the component algorithms: changing one component ciphertext only affects the corresponding part of the
session key, not the entire session key (see clause A.3.1 for details).

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 14

ETSI TS 103 744 [i.3] includes constructions for hybrid key encapsulation schemes that maintain their security against
passive adversaries. Bindel et al [i.30] describe constructions for hybrid key encapsulation schemes that maintain their
security against active adversaries.

EXAMPLE 2: The "dual-PRF" hybrid key encapsulation scheme proposed in [i.30] constructs the hybrid session
key by concatenating the session keys from the component algorithms and then passing the result
through a key derivation function together with the component ciphertexts (see clause A.3.3).

 When instantiated with a single traditional key encapsulation mechanism and a single
post-quantum key encapsulation mechanism, the hybrid scheme will be secure against both
classical and quantum adversaries provided that the post-quantum algorithm is secure.

 If the post-quantum algorithm is vulnerable, the hybrid scheme remains secure against classical
adversaries because they cannot recover session keys for the traditional algorithm. However, it will
be insecure against quantum adversaries and so will no longer protect against store-and-decrypt
attacks (see clause 4).

The "dual-PRF" hybrid key encapsulation scheme assumes that all component algorithms are key encapsulation
mechanisms. Although traditional Diffie-Hellman key exchanges can be modelled as key encapsulation mechanisms
(see, for example, the discussion in [i.65]), they will not be secure against active adversaries: it is possible to modify
ciphertexts in a way that causes predictable changes in the session key (see clause A.2.2 for details). For [i.30] to give
full security guarantees against active adversaries it is necessary to use a conversion such as DHKEM [i.12].

6.1.2 Hybrid interoperability

Hybrid schemes that are intended to provide backwards compatibility might not possess the same security guarantees as
hybrid schemes intended to provide hybrid security. They can be vulnerable to downgrade attacks where an attacker
exploits the use of an insecure component algorithm. It is possible for a backwards compatible hybrid scheme to be less
secure than using a post-quantum algorithm in a non-hybrid mode.

EXAMPLE: The "or-mode" hybrid digital signature scheme proposed in [i.35] signs the message using all
component digital signature algorithms and the hybrid signature value is considered valid if any
component signature value is valid.

 When instantiated with a single traditional digital signature algorithm and a single post-quantum
digital signature algorithm, the hybrid scheme is secure against classical adversaries provided both
the post-quantum and traditional algorithms are secure because they cannot forge signature values
for either algorithm. However, it will be insecure against quantum adversaries as they can forge
signature values for the traditional algorithm and so does not protect against future active attacks
(see clause 4).

 If the post-quantum algorithm is vulnerable to a classical attack, the hybrid scheme will be
insecure against classical adversaries.

NOTE: The only difference between the "or-mode" hybrid digital signature scheme and the "and-mode" hybrid
digital signature scheme in clause 6.1.1 is the verification process. Switching an existing client from an
"or-mode" verification policy to an "and-mode" verification policy would prevent downgrade attacks on
that client without affecting the validity of previously issued hybrid signature values, provided that the
client supported both component algorithms. However, this would come at the cost of losing backwards
compatibility since the client would no longer accept any hybrid signature values where it did not support
one of the component algorithms.

Bindel et al [i.31] investigated a similar backwards compatible approach to S/MIME [i.7] signed messages by including
SignedData and SignerInfo objects [i.5] for each component digital signature algorithm. Unfortunately, IETF
RFC 5652 [i.5] and IETF RFC 8551 [i.7] do not specify how to validate multiple SignerInfo objects. In their
experiments, Bindel et al found that the behaviour of existing S/MIME implementations was not consistent: one
implementation would accept the message if it could validate any one of the SignerInfo objects, other implementations
would reject the message if they could not validate all SignerInfo objects.

There have been fewer proposals for backwards compatible hybrid key establishment schemes. Although a backwards
compatible hybrid encryption scheme was included in [i.53], that work has now been stopped and there is no equivalent
in the newer hybrid key encapsulation work [i.52].

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 15

6.2 Efficiency

6.2.1 Bandwidth

Post-quantum algorithms typically have larger public keys, ciphertexts, or signature values than traditional algorithms.
Migrating from a traditional algorithm to a post-quantum algorithm will have an impact on the bandwidth efficiency of
a protocol.

Deploying a hybrid scheme that combines an elliptic curve algorithm and a single post-quantum algorithm can be
almost as bandwidth efficient as using the post-quantum algorithm on its own.

EXAMPLE 1: A hybrid key exchange combining the traditional key exchange X25519 [i.9] and the
post-quantum key encapsulation mechanism ML-KEM-768 would have a hybrid public key that is
less than 3% larger than the public key for ML-KEM-768.

EXAMPLE 2: A hybrid digital signature scheme combining the traditional digital signature algorithm
ECDSA-P256 and the post-quantum digital signature algorithm ML-DSA-44 would have a hybrid
signature value that is less than 3 % larger than the signature value for ML-DSA-44.

Hybrid schemes incur a proportionally higher overhead for post-quantum algorithms that have small public keys, such
as SLH-DSA; small ciphertexts, such as Classic McEliece [i.22]; or small signature values, such as UOV [i.45]. In
applications with extremely tight bandwidth constraints this could discourage or even prevent their use.

Deploying a hybrid scheme that includes an RSA-based algorithm or includes more than one post-quantum algorithm
can be significantly less bandwidth efficient than using a single post-quantum algorithm on its own.

Hybrid protocols can increase the number of messages passed between parties, either by design to avoid certain
protocol constraints or as an unintended consequence of the algorithm negotiation process.

EXAMPLE 3: The hybrid IKEv2 protocol specified in IETF RFC 9370 [i.8] derives the session key from an
initial key exchange followed by one or more additional key exchanges. The key exchanges are
performed in series with one exchange being completed before the next exchange starts. Each
exchange requires a separate round trip.

6.2.2 Computation

The performance of post-quantum cryptography can vary significantly depending on the specific choice of algorithm,
platform, and implementation approach. This means that the computational overhead of deploying a hybrid scheme that
combines an elliptic curve algorithm and a single post-quantum algorithm can vary.

Hybrid schemes will incur a proportionally higher computational overhead when using a fast post-quantum algorithm.

EXAMPLE: The post-quantum key encapsulation mechanism ML-KEM-512 is about twice as fast as the
traditional key exchange ECDH-P256. A hybrid key exchange combining ECDH-P256 and
ML-KEM-512 requires three times the computational resources of ML-KEM-512 on its own
[i.63].

Deploying a hybrid scheme that includes an RSA-based algorithm or includes more than one post-quantum algorithm
can require significantly more computational resources than using a single post-quantum algorithm on its own.

6.2.3 Latency

The latency of protocols such as TLS is often determined by the bandwidth required by the handshake rather than the
computational cost of the cryptographic algorithms, particularly on network links with long round-trip times or high
rates of packet loss.

EXAMPLE: Under realistic network conditions [i.63], a hybrid TLS handshake combining the traditional key
exchange ECDH-P256 and the post-quantum key encapsulation mechanism ML-KEM-512 only
increases the latency by 1% compared to using ML-KEM-512 on its own.

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 16

NOTE: Replacing the traditional digital signature algorithm with a post-quantum digital signature algorithm can
have a more significant impact on the latency of TLS than the key exchange due to the increased
signature value and certificate sizes [i.62].

6.2.4 Energy

Energy consumption is an important consideration for battery-powered devices. For protocols such as TLS, energy
consumption can depend on both the computational and bandwidth requirements of the algorithms. This will vary for
different algorithms. Fast and relatively small post-quantum algorithms can be competitive with traditional algorithms.

EXAMPLE 1: On a constrained client [i.66], the energy consumption of a TLS handshake using the
post-quantum key encapsulation mechanism ML-KEM-512 and the post-quantum digital signature
algorithm ML-DSA-44 is about the same as a TLS handshake using the traditional key exchange
ECDH-P256 and the traditional digital signature algorithm ECDSA-P256.

NOTE: The computational and bandwidth costs of the cryptographic algorithms only account for part of the
energy consumption of the TLS handshake. This means that a TLS handshake using a hybrid key
exchange that combines ML-KEM-512 and ECDH-P256 would require less than twice the energy of a
TLS handshake using ML-KEM-512 by itself.

 Slow or relatively large post-quantum algorithms can require significantly more energy than traditional algorithms.

EXAMPLE 2: On a constrained client [i.66], verification for the post-quantum digital signature algorithm
SLH-DSA-128f takes about 8 times the energy of verification for the traditional digital signature
algorithm ECDSA-P256.

6.3 Complexity

6.3.1 Protocol

Adapting existing protocols to use hybrid schemes involves modifying mechanisms for identifying and negotiating
algorithms, and extending structures for public keys, ciphertexts, and signature values. Cryptographic agility can help
ease the migration to post-quantum cryptography and mitigate potential vulnerabilities in the algorithms.

EXAMPLE 1: The hybrid TLS key exchange proposed in [i.65] uses a fixed combination of algorithms and
parameters that is opaque to the protocol. Each combination is represented by its own algorithm
identifier; for example, [i.48] includes an identifier for ECDH-P256 with Kyber768 and [i.67]
includes a separate identifier for X25519 with Kyber768. A hybrid key exchange is then
negotiated using the existing TLS negotiation mechanism. In particular, the list of supported
groups can contain identifiers for traditional, post-quantum, and hybrid key exchanges.

NOTE 1: Backwards compatibility can be achieved in TLS at the cost of additional data in the initial client message
or an extra round trip in the handshake. If the client sends a hybrid public key, but the server is not
post-quantum aware, the server cannot use the traditional component public key on its own even if the
client has indicated support for the traditional component key exchange. Instead, either the client needs to
send a traditional public key along with the hybrid public key or the server needs to reject the hybrid
public key and explicitly request a traditional public key.

Hybrid protocols that use fixed algorithm combinations offer limited cryptographic agility since the only combinations
that can be used are ones that have already been assigned algorithm identifiers. It is not feasible to register all possible
combinations of algorithms and parameters, particularly if they include more than two component algorithms. For
example, [i.48] includes an identifier for the hybrid key exchange ECDH-P256 with Kyber768, but not for ECDH-P384
with Kyber768 or ECDH-P256 with Kyber1024. Adjusting algorithm combinations in response to improvements in
cryptanalysis will likely require new identifiers to be registered.

NOTE 2: The order of the component algorithms in a combination can be important. A hybrid key exchange that
combines ECDH-P256 with ML-KEM-768 will not necessarily give the same shared secrets as a hybrid
key exchange that combines ML-KEM-768 with ECDH-P256.

However, flexibility increases protocol complexity and could lead to new vulnerabilities being introduced at the
protocol level.

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 17

EXAMPLE 2: The hybrid IKEv2 protocol proposed in IETF RFC 9370 [i.8] negotiates each component key
exchange separately. It allows up to seven additional key exchanges during the establishment of
the initial IKE security association or a child security association following authentication. This
provides flexibility but adds to the complexity of algorithm negotiation and reduces the efficiency
of the protocol (see clause 6.2.1).

NOTE 3: Allowing additional key exchanges prior to authentication increases the risk of denial-of-service attacks,
particularly as post-quantum key encapsulation mechanisms can be more resource intensive than
traditional key exchanges.

Further, some protocols have been designed to use a traditional Diffie-Hellman key exchange and rely on functionality
that might not hold for post-quantum or hybrid key encapsulation. For example, authenticated modes of HPKE [i.12]
cannot be instantiated using the post-quantum key encapsulation mechanism ML-KEM or a hybrid key encapsulation
scheme that includes ML-KEM as a component. In those cases, the protocol would need to be adapted to use a different
mechanism that does not rely on the same functionality.

Similarly, the security analysis for some protocols might assume that a traditional Diffie-Hellman key exchange is being
used; for example, the cryptographic analysis of the TLS 1.3 handshake in [i.40]. Post-quantum key encapsulation
mechanisms and hybrid key encapsulation schemes can have subtly different security properties and they can be
integrated into protocols in subtly different ways. This could require additional analysis to ensure that using a
post-quantum or hybrid key exchange provides the same protocol security guarantees.

6.3.2 Implementation

Post-quantum algorithms can be more complicated to implement than traditional algorithms. For example, the digital
signature algorithm Falcon [i.41] uses floating-point arithmetic in signature generation. Stateful hash-based digital
signature algorithms such as XMSS [i.10] and LMS [i.11] require careful state management by the signer [i.2].

Hybrid schemes and hybrid protocols require implementations to support both traditional and post-quantum algorithms.
Most hybrid proposals have been designed so that standalone implementations of the component algorithms can be
reused without change (see, however, clause B.3.3). Implementations will need to include mechanisms for combining
shared secrets in hybrid key exchanges or additional verification logic in hybrid digital signature schemes. Errors in the
implementation of either of these can lead to vulnerabilities that weaken the security of the hybrid scheme.

Deploying hybrid schemes that include more than two component algorithms can increase the complexity of
implementation testing and validation due to the number of potential algorithm combinations and code paths.

Traditional and post-quantum algorithms can have different interfaces and security considerations that impact the way
they need to be handled by the implementation. This applies similarly to hybrid schemes.

EXAMPLE 1: In the traditional digital signature algorithm ECDSA , message hashing can be separated from the
rest of the signing process. If a cryptographic security module is being used to protect the ECDSA
private key, then only the hash of the message needs to be sent to the module for signing.

 In the post-quantum digital signature algorithm SLH-DSA, message hashing includes a random
value generated by the signer and the security of the algorithm depends on this value being
unpredictable. If a cryptographic security module is being used to protect the SLH-DSA private
key, then the full message needs to be sent to the module for signing.

NOTE: It is possible to avoid sending the full message to the module by pre-hashing the message before signing
and verification; for example, as is done for the CMS signed-data content type [i.5]. However, the hash
function used for pre-hashing needs to be chosen carefully so that it does not weaken the security of the
hybrid digital signature scheme.

EXAMPLE 2: In a protocol with a traditional Diffie-Hellman key exchange such as TLS 1.3, the server can cache
their public key for a short period of time and use it in key exchanges with several different clients.
This will not preserve forward secrecy, but is otherwise secure provided that the server validates
the client public keys.

 With a post-quantum key encapsulation mechanism or a hybrid key encapsulation scheme, the
server sends a ciphertext that depends on the client public key so caching is not possible. Further,
if a server attempts to reuse the same random seed when computing ciphertexts for two different
client public keys, this can reveal enough information for a passive adversary to recover the
session keys.

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 18

7 Deployment considerations

7.1 Algorithm selection

7.1.1 Number of components

It is important to consider the number of component algorithms to include when planning to deploy hybrid schemes.

The simplest approach is to combine a single traditional algorithm with a single post-quantum algorithm. This can
minimise bandwidth and computational overheads, provide backwards compatibility in schemes intended for hybrid
interoperability, and mitigate classical weaknesses in the post-quantum algorithm in schemes intended for hybrid
security.

A more conservative approach would be to combine a single traditional algorithm with two or more post-quantum
algorithms. This can provide additional flexibility in schemes intended for hybrid interoperability, or additional
reassurance in schemes intended for hybrid security. However, each additional post-quantum algorithm will
significantly increase the bandwidth and computational overheads.

Where there is enough confidence in the security of a post-quantum algorithm it might not be necessary to deploy it in a
hybrid scheme. For example, hash-based digital signature algorithms such as SLH-DSA are well enough understood
that they could be used without a traditional digital signature algorithm in some applications.

7.1.2 Choice of components

It is important to consider the choice of component algorithms carefully.

In general, it is preferable to use component algorithms that have been selected for standardisation following a public
review process, as they are likely to have received greater scrutiny. Component algorithms that are less mature and have
not had the same level of analysis will not increase confidence in the security of the hybrid scheme. In some cases,
weak component algorithms can compromise the security of the hybrid scheme (see clause 6.1.2).

Including two or more component algorithms constructed from the same underlying mathematical problem is unlikely
to increase confidence in the security of the hybrid scheme, as a sufficiently general attack could apply to all algorithms
constructed from that problem.

EXAMPLE: An earlier version of the "composite keys" proposal [i.55] listed explicit algorithm identifiers for
hybrid digital signature schemes that combined a traditional digital signature algorithm, the
post-quantum digital signature algorithm Dilithium-5, and the post-quantum digital signature
algorithm Falcon-1024. Dilithium and Falcon both use structured lattices so could both be affected
by an attack that exploits the structure.

In particular, including more than one traditional algorithm in a hybrid scheme will provide minimal security benefit
because they are all vulnerable to a quantum adversary.

If there are concerns about the precise level of security provided by a post-quantum algorithm, these could be mitigated
by increasing the size of its parameters; for example, by deploying a hybrid that combines ECDH-P256 with
ML-KEM-768 or ML-KEM-1024 rather than ML-KEM-512.

7.2 Key management

7.2.1 Component key reuse

When generating a hybrid key, it is essential that the component keys are generated independently from each other. If
the component keys are related - for example, if they are derived from the same seed - then the compromise of one
could affect the security of the others. However, some proposals allow multiple different hybrid keys to contain the
same component key or allow a component of a hybrid key to be used in a non-hybrid mode.

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 19

EXAMPLE 1: The TLS hybrid key exchange proposed in [i.65] can provide backwards compatibility by sending
the server the client public keys for both the traditional key exchange and the hybrid key exchange
at the same time (see clause 6.3.1). If the traditional key exchange is one of the component
algorithms for the hybrid key exchange, the client might want to reuse the traditional public key as
a component of the hybrid public key to improve efficiency. This type of component key reuse is
permitted by [i.65].

EXAMPLE 2: If an organisation already has a long-lived traditional certificate that is widely trusted, they might
want to deploy a hybrid certificate [i.21] that includes a new post-quantum public key along with
the existing traditional public key for backwards compatibility.

There are risks to allowing the same component key to be used in different contexts. In a hybrid digital signature
scheme, the components of the hybrid signature value are often valid signature values for the component digital
signature algorithms. In a hybrid key encapsulation scheme, the components of the hybrid ciphertext are often valid
ciphertexts for the component key encapsulation algorithms. If the hybrid scheme does not tightly bind together the
component algorithms, this could lead to active attacks that use signing or decapsulation oracles (see clause B.2). At the
very least, it can invalidate the assumptions made by any security proofs.

7.2.2 Component key compromise

Hybrid schemes are typically designed with the expectation that the traditional component key will eventually be
compromised by a quantum adversary. Post-quantum component keys could be compromised through a weakness in the
algorithm, vulnerabilities in the implementation, or other misuse of the keys.

Hybrid security is intended to ensure that the compromise of a single component key is not enough to break the hybrid
scheme; all component keys need to be compromised to break the hybrid security. However, compromise of a
component key can still impact the security of the scheme (see clause 6.1.1) and it might be necessary to revoke the
hybrid key, depending on the use case.

EXAMPLE: If the compromise of a post-quantum component key in a hybrid key encapsulation scheme means
that the hybrid key is now vulnerable to the store-and-decrypt threat, then the hybrid scheme can
no longer be safely used to protect long-lived sensitive information.

Hybrid interoperability can often mean that the compromise of a single component key is enough to break the hybrid
scheme (see clause 6.1.2). In that case it will be necessary to revoke the hybrid key.

Key management policy will dictate whether the revocation of a hybrid key means that all of its component keys are
also considered compromised [i.55]. Allowing the same component key to be used in multiple hybrid keys can
complicate this. Revoking a single hybrid key could lead to the revocation of further hybrid keys if they share a
common component key.

7.3 Migration and forwards compatibility
The approach to migration will depend on a number of factors.

If a protocol does not allow on-line algorithm negotiation, it might be necessary to deploy post-quantum algorithms in a
hybrid scheme that provides hybrid interoperability. If a protocol will be used to protect long-lived sensitive
information or involves a long-lived root of trust, it will be important to provide hybrid security. Achieving both hybrid
interoperability and hybrid security in the same protocol can be difficult. In some cases, the requirements for
confidentiality and for authentication can be different.

EXAMPLE 1: The TLS hybrid key exchange specified in [i.65] is intended to provide hybrid security as a TLS
session could be used to protect long-lived sensitive data. Hybrid interoperability can be achieved
through the existing TLS key exchange negotiation mechanism and is protected against downgrade
attacks by the authentication.

 However, [i.57] argues that hybrid security is less of a concern for TLS authentication as it only
needs to be secure at the time the TLS session is being established. Instead, the existing TLS
digital signature algorithm negotiation mechanism can be used to negotiate independent traditional
or post-quantum certificate chains.

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 20

EXAMPLE 2: The hybrid key encapsulation schemes specified in [i.52] are intended to provide hybrid security
for S/MIME as message encryption could be used to protect the confidentiality of long-lived
sensitive data. Algorithm negotiation is not possible, but hybrid interoperability can be achieved
by having both traditional and hybrid encryption certificates for the recipient. A sender that is
post-quantum aware can use the hybrid encryption certificate, otherwise they can use the
traditional encryption certificate.

 S/MIME authentication could be used to provide non-repudiation of long-lived data, even when
confidentiality does not need to be protected. Hybrid interoperability is important in this case as
the sender might not know whether the recipient is post-quantum aware. The approach from [i.31]
can be applied to sign the message with both a traditional and a post-quantum digital signature
algorithm. A recipient that is post-quantum aware can verify both signature values, otherwise they
can verify the traditional signature value.

EXAMPLE 3: Firmware signing can involve a long-lived root of trust that is difficult to update so hybrid security
is critical, but hybrid interoperability is less of a concern as the firmware developer will likely
know whether a device is post-quantum aware. It is straightforward to use the "concatenation
only" hybrid digital signature scheme [i.54] in this case (see clause A.3.1). Alternatively, a stateful
hash-based digital signature algorithm such as LMS [i.11] or XMSS [i.10] can be used if safe state
management is possible.

In the future, there will be enough confidence in the security of post-quantum algorithms and their implementations that
hybrid schemes will no longer be necessary for hybrid security. Keeping the traditional component algorithms will incur
overheads without any security benefit and could lead to downgrade attacks on some hybrid schemes once a CRQC is
available. Forward compatibility is the notion that protocols can migrate away from hybrid schemes to use
post-quantum algorithms by themselves.

EXAMPLE 4: The TLS key exchange negotiation can be used to negotiate purely post-quantum algorithms. If a
post-quantum aware client sends a post-quantum public key but the server only supports hybrid
schemes, then the server can reject the post-quantum public key and explicitly request a hybrid
public key. Downgrade protection is provided by using a post-quantum certificate chain for the
TLS authentication.

EXAMPLE 5: Post-quantum algorithms are currently too large for the initial key exchange in IKEv2 so the
hybrid protocol in IETF RFC 9370 [i.8] will likely need to keep a traditional key exchange
algorithm until the fragmentation issue is resolved.

NOTE: In some situations, there could be a reason to continue to use hybrid schemes that only involve
post-quantum component algorithms. This is out of scope of the present document.

8 Conclusions
Deploying post-quantum cryptography alongside existing traditional algorithms in a hybrid scheme or hybrid protocol
can mitigate potential vulnerabilities in post-quantum implementations or provide backwards compatibility during a
post-quantum migration. Bandwidth, computation, and latency overheads can be minimised by pairing a post-quantum
algorithm with a traditional elliptic curve algorithm, but the complexity of protocols, implementations, and key
management will increase.

Hybrid schemes and hybrid protocols need to be designed carefully. Post-quantum algorithms can have subtly different
functionality and security properties compared to existing traditional algorithms. It is important to understand the
impact of using post-quantum algorithms or hybrid schemes on the security analysis of a protocol and to understand the
security guarantees that remain if one of the component algorithms is broken. Inappropriate hybrid schemes can be less
secure than using post-quantum algorithms in a non-hybrid mode.

Hybrid protocols can provide both hybrid security and hybrid interoperability through algorithm negotiation, but this
needs to be protected against downgrade attacks. The requirements will depend on the specific protocol or use case and
might be different for confidentiality and authentication. The choice of post-quantum algorithm or hybrid algorithm
combination also needs careful consideration. It is not advisable to deploy post-quantum algorithms that have not been
through a standardisation process or have not received sufficient analysis, even when used in a hybrid scheme or hybrid
protocol.

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 21

Eventually, there will be enough confidence in the security of post-quantum algorithms and their implementations that
hybrid schemes and hybrid protocols will no longer be necessary. Migrating to purely post-quantum algorithms and
protocols at this point will avoid the overheads and additional complexity associated with hybrids and will minimise
any potential risk from continuing to use traditional component algorithms that are known to be vulnerable to quantum
adversaries.

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 22

Annex A:
Key encapsulation mechanisms

A.1 Introduction
A Key Encapsulation Mechanism (KEM) consists of a triple of functions:

• Key generation: Returns a new public and private key pair.

• Encapsulation: Takes a public key as input and returns a randomly selected session key and a ciphertext that
encapsulates the session key.

• Decapsulation: Takes a private key and a ciphertext as input and returns a session key.

NOTE 1: Some KEMs can have decapsulation failures where decapsulation either returns an error or a session key
that does not match the encapsulated session key.

In practice, KEMs usually involve two parties: a sender and recipient. The sender encapsulates a session key for the
recipient, using the recipient's public key. KEMs differ from public-key encryption schemes in that the session key is an
output of encapsulation rather than an input to encryption.

The two main security notions for KEMs are Indistinguishability under Chosen-Plaintext Attack (IND-CPA) and
Indistinguishability under Chosen-Ciphertext Attack (IND-CCA). Informally, these are defined as follows:

• IND-CPA security: Given a public key �, ciphertext �, and session key �, the adversary tries to determine
whether � was encapsulated by � or was chosen randomly.

• IND-CCA security: Given a public key �, ciphertext �, and session key �, the adversary tries to determine
whether � was encapsulated by � or was chosen randomly, when they are also given access to a decapsulation
oracle that returns the session key encapsulated by any other ciphertext �′ ≠ �.

NOTE 2: This version of Indistinguishability under Chosen-Ciphertext Attack is usually referred to as IND-CCA2
security in the academic literature. A more restricted version, IND-CCA1, only allows the adversary to
query the decapsulation oracle before they have been given the challenge ciphertext �.

IND-CPA security roughly corresponds to a passive adversary who can only observe ciphertexts sent from an honest
sender to the recipient. IND-CCA security roughly corresponds to an active adversary who can construct malformed
ciphertexts and observe the recipient's responses in order to learn information about the session key.

Two related security notions are One-Way under Chosen-Plaintext Attack (OW-CPA) and One-Way under
Chosen-Ciphertext Attack (OW-CCA), Informally, these are defined as follows:

• OW-CPA security: Given a public key � and ciphertext �, the adversary tries to recover the session key �
encapsulated by �.

• OW-CCA security: Given a public key � and ciphertext �, the adversary tries to recover the session key �
encapsulated by �, when they are also given access to a decapsulation oracle that returns the session key
encapsulated by any other ciphertext �′ ≠ �.

NOTE 3: IND-CPA security implies OW-CPA security since an adversary cannot tell when they have recovered
the correct session key for the given ciphertext. Similarly, IND-CCA security implies OW-CCA security.

EXAMPLE: Bleichenbacher's attack on RSA encryption with PKCS#1 v1.5 padding [i.33] exploits the
malleability of RSA decryption. By carefully modifying the ciphertext, an adversary can use the
result of the padding checks to learn information about, and eventually recover, the original
message. This directly led to vulnerabilities in RSA-based sessions for early versions of SSL and
TLS 1.0 [i.46], and later resurfaced in the cross-protocol attack DROWN on TLS 1.2 [i.25].

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 23

A.2 Traditional KEMs

A.2.1 RSA-KEM
Basic RSA encryption can be converted into an IND-CCA secure KEM (see [i.64] or section 7.2.1 in [i.19]) using a key
derivation function KDF:

• Key generation:

- Choose primes �, � and compute � = ��.

- Choose an encryption exponent � with gcd��, 	� − 1
	� − 1
� = 1.

- Compute the decryption exponent � such that �� ≡ 1 mod (� − 1)(� − 1).

- Return the public key (�, �) and private key (�,�).

• Encapsulation: Given the public key 	�, �
:

- Choose a random value
 ∈ {1, … ,� − 1}.

- Compute � ≡
� mod �.

- Return the ciphertext � and session key � = KDF	

.

• Decapsulation: Given the private key 	�,�
 and ciphertext �:

- Compute
 ≡ �� mod �.

- Return the session key � = KDF	

NOTE: The use of a KDF is necessary for the IND-CPA security of RSA-KEM. If the adversary is given the
ciphertext � and a value
 instead of � = KDF(
), they could determine whether � encapsulates
 by
trial encrypting �� ≡
� mod � and checking whether �� = �.

A.2.2 DHKEM
Let � be the generator of a group � of prime order �, written additively. The Diffie-Hellman key agreement in � can be
converted into an IND-CCA secure KEM [i.12] using a key derivation function KDF:

• Key generation:

- Choose a random value
 ∈ {1, … , � − 1}.

- Compute � = �
��.

- Return the public key � and private key
.

• Encapsulation: Given the public key �:

- Choose a random value � ∈ {1, … , � − 1}.

- Compute � = ����.

- Compute � = ����.

- Return the ciphertext � and session key � = KDF(� || �).

• Decapsulation: Given the private key
 and ciphertext �:

- Compute � = �
��.

- Return the session key � = KDF(� || �).

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 24

NOTE 1: The use of a KDF is necessary for the OW-CCA and IND-CCA security of DHKEM. If the adversary is
given the ciphertext � and can query a decapsulation oracle with ciphertexts �′ ≠ � to obtain the value
�� = �
��′ instead of �′ = ���(�′ || �′), then querying the oracle with the ciphertext �� = −� would
give �� = �
��� = �−
�� = −� which allows recovery of �.

NOTE 2: The inclusion of the ciphertext � in the KDF input is necessary to protect against instantiations of
Diffie-Hellman where it is possible for an adversary to find a different ciphertext �′ that gives the same
shared secret � as � since, in this case, querying the decapsulation oracle with the ciphertext �′ would
give the same session key � = KDF(�) instead of �� = KDF(� || ��).

EXAMPLE 1: X25519 [i.9] is not OW-CCA or IND-CCA secure if the KDF does not include the ciphertext � as
an input because it permits the use of public keys that lie outside the cryptographic subgroup �.
Given a ciphertext �, an adversary can choose the different ciphertext �� = � + �, for a point � of
small order, and the shared secret will be �� = �
��� = �
�� + �
�� = �
�� = � due to private
key clamping.

EXAMPLE 2: Compact representation ECDH-P256 [i.6] is not OW-CCA or IND-CCA if the KDF does not
include the ciphertext � as an input because it only uses the
-coordinate of � as the shared secret
rather than the full point. Given a ciphertext �, an adversary can choose the different ciphertext
�� = −� and �� = �
��� = �−
�� = −� will have the same
-coordinate as �.

A.3 Hybrid KEM examples

A.3.1 Concatenation only
The simplest approach to constructing a hybrid KEM from a pair of component KEMs, KEM� and KEM�, is
concatenation:

• Key generation:

- Call KEM�. KeyGen() to obtain the component public key �� and component private key ��.

- Call KEM�. KeyGen() to obtain the component public key �� and component private key ��.

- Return the hybrid public key � = �� || �� and the hybrid private key � = �� || ��.

• Encapsulation: Given the hybrid public key �:

- Call KEM�. Encaps(��) to obtain the component ciphertext �� and component session key ��.

- Call KEM�. Encaps(��) to obtain the component ciphertext �� and component session key ��.

- Return the hybrid ciphertext � = �� || �� and final session key � = �� || ��.

• Decapsulation: Given the hybrid private key � and hybrid ciphertext �:

- Call KEM�. Decaps(��,�) to obtain the component session key ��.

- Call KEM�. Decaps(��,�) to obtain the component session key ��.

- Return the final session key � = �� || ��.

NOTE 1: The hybrid KEM will be IND-CPA secure if both component KEMs are IND-CPA secure. This follows
from the observation that the final session key � = �� || �� will be indistinguishable from �� = ��

� || ��
for a random ��

� by the IND-CPA security of KEM� and �′ = ��
� || �� will be indistinguishable from

��� = ��
� || ��

� for a random ��
� by the IND-CPA security of KEM�.

NOTE 2: The hybrid KEM will not be IND-CPA secure if one of the component KEMs is not IND-CPA secure.
Suppose that KEM� is not IND-CPA secure. With high probability, the adversary can determine whether
the session key � = �� || �� was encapsulated by the hybrid ciphertext � = �� || �� by checking whether
the corresponding component session key �� was encapsulated by the component ciphertext ��.

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 25

 In particular, the hybrid KEM will not be IND-CPA secure once a CRQC is available since a quantum
adversary will be able to break the IND-CPA security of the traditional component KEM.

NOTE 3: The hybrid KEM will not be IND-CCA secure even if both component KEMs are IND-CCA secure. The
adversary can choose a different component ciphertext ��� ≠ �� for KEM� and request the decapsulation
�′ = ��

� || ��
� of the new hybrid ciphertext �′ = ��� || ��. With high probability, the adversary can then

determine whether the session key � = �� || �� was encapsulated by the hybrid ciphertext � = �� || ��
by checking whether ��

� = ��.

EXAMPLE 1: The "concatenation only" hybrid KEM has been proposed for use in TLS [i.65], [i.48], [i.67].
Although the hybrid KEM is not IND-CCA secure by itself, the TLS key schedule includes the
hybrid ciphertext when deriving the traffic keys so these will still be indistinguishable from
random provided that at least one of the component KEMs is OW-CCA secure (see clause A.3.3).

EXAMPLE 2: The "concatenation only" hybrid KEM has been proposed for use in HPKE [i.68]. In contrast to
TLS, the HPKE key schedule does not include the hybrid ciphertext when deriving the encryption
keys so the general construction will not be IND-CCA secure. Nevertheless, [i.68] claims that it
will be secure when used with DHKEM(X25519) and Kyber768.

A.3.2 Concatenation with simple KDF
The IND-CPA and IND-CCA attacks on the "concatenation only" hybrid KEM in clause A.3.1 can be prevented by
using a key derivation function KDF to produce the final session key:

• Key generation:

- Call KEM�. KeyGen() to obtain the component public key �� and component private key ��.

- Call KEM�. KeyGen() to obtain the component public key �� and component private key ��.

- Return the hybrid public key � = �� || �� and the hybrid private key � = �� || ��.

• Encapsulation: Given the hybrid public key �:

- Call KEM�. Encaps(��) to obtain the component ciphertext �� and component session key ��.

- Call KEM�. Encaps(��) to obtain the component ciphertext �� and component session key ��.

- Return the hybrid ciphertext � = �� || �� and final session key � = KDF(�� || ��).

• Decapsulation: Given the hybrid private key � and hybrid ciphertext �:

- Call KEM�. Decaps(��,�) to obtain the component session key ��.

- Call KEM�. Decaps(��,�) to obtain the component session key ��.

- Return the final session key � = KDF(�� || ��).

NOTE 1: The hybrid KEM will be IND-CPA secure if at least one of the component KEMs is OW-CPA secure,
when KDF is modelled as a random oracle. This follows from the same argument as Theorem 1 in [i.36].

NOTE 2: While it is plausible that the hybrid KEM might be IND-CCA secure if both of the component KEMs are
OW-CPA or IND-CCA secure, there is currently no proof of this in the academic literature.

NOTE 3: There are examples where the hybrid KEM is not IND-CCA secure even though one of the component
KEMs is IND-CCA secure. Suppose that KEM� is IND-CCA secure, but that given any ciphertext �� for
KEM� the adversary can find a different ciphertext ��� that encapsulates the same session key ��. In this
case, the adversary can determine whether the hybrid ciphertext � = �� || �� encapsulates a final session
key � by querying the decapsulation oracle with the different hybrid ciphertext � = �� || ��� to obtain the
key �� = KDF(�� || ��) and checking whether �� = �.

EXAMPLE 1: The "concatenation with simple KDF" hybrid KEM will not be IND-CCA secure if the traditional
component KEM is X25519 or compact representation ECDH-P256 without applying the full
DHKEM conversion (see clause A.2.2).

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 26

EXAMPLE 2: The "concatenation with simple KDF" hybrid KEM has been proposed for use in SSH [i.42],
[i.44]. These specify either X25519 or compact representation ECDH for the traditional
component key, but the SSH key schedule includes the hybrid ciphertext when deriving the
encryption and integrity keys so these will still be indistinguishable from random (see
clause A.3.3).

A.3.3 Concatenation with full KDF
Adjusting the key derivation function slightly can prevent the IND-CCA attack on the "concatenation with simple KDF"
hybrid KEM from clause A.3.2:

• Key generation:

- Call KEM�. KeyGen() to obtain the component public key �� and component private key ��.

- Call KEM�. KeyGen() to obtain the component public key �� and component private key ��.

- Return the hybrid public key � = �� || �� and the hybrid private key � = �� || ��.

• Encapsulation: Given the hybrid public key �:

- Call KEM�. Encaps(��) to obtain the component ciphertext �� and component session key ��.

- Call KEM�. Encaps(��) to obtain the component ciphertext �� and component session key ��.

- Return the hybrid ciphertext � = �� || �� and final session key � = KDF(�� || �� || �� || ��).

• Decapsulation: Given the hybrid private key � and hybrid ciphertext �:

- Call KEM�. Decaps(��,�) to obtain the component session key ��.

- Call KEM�. Decaps(��,�) to obtain the component session key ��.

- Return the final session key � = KDF(�� || �� || �� || ��).

NOTE 1: The hybrid KEM will be IND-CCA secure if at least one of the component KEMs is IND-CCA secure
and KDF satisfies certain pseudo-random function security assumptions [i.43].

NOTE 2: Traditional Diffie-Hellman key exchanges are not IND-CCA secure KEMs when used without a
DHKEM-like conversion (see clause A.2.2).

EXAMPLE 1: The "concatenation with full KDF" hybrid KEM is proposed as a general construction in [i.56] and
for use in OpenPGP in [i.47].

EXAMPLE 2: The CatKDF hybrid KEM specified in ETSI TS 103 744 [i.3] is a more general version of the
"concatenation with full KDF" hybrid KEM. This is flexible enough to cover the use of
"concatenation only" hybrid KEMs in the TLS and SSH key schedules [i.58] and has been shown
to be IND-CCA secure if at least one of the component KEMs is OW-CCA secure, when KDF is
modelled as a random oracle [i.58].

EXAMPLE 3: The X-Wing hybrid KEM proposed in [i.38] is an optimised version of the "concatenation with
full KDF" hybrid KEM for the specific combination of X25519 with ML-KEM-768. This keeps
the X25519 ciphertext as an input to the KDF, but omits the ML-KEM-768 ciphertext. It is shown
to be IND-CCA secure if ML-KEM-768 is IND-CCA secure or if both ML-KEM-768 is
Ciphertext Collision Resistant and X25519 satisfies the Strong Diffie-Hellman assumption, when
KDF is modelled as a random oracle [i.28].

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 27

EXAMPLE 4: An alternative approach has been proposed by Poettering and Rastikian in [i.59]. They consider a
generalised form of KEM, called a KDF Encapsulation Mechanism (KDFEM), which splits out
the final KDF step; that is, encapsulation produces a ciphertext �, handle ��, and intermediate
state ��, and the session key is derived via a separate evaluation function as � = KDF(�� || ��).
In the hybrid KEM, the final session key is derived as � = KDF	��� || ���
 ⊕ KDF	��� || ���

where the two handles have been switched. They show that this is secure against active adversaries
if one of the component KDFEMs is secure against active adversaries and the other is correct.

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 28

Annex B:
Digital signature algorithms

B.1 Introduction
A digital signature algorithm consists of a triple of functions:

• Key generation: Returns a new public and private key pair.

• Signature generation: Takes a private key and message as inputs, and returns a signature value.

• Verification: Takes a public key, message and signature value as inputs, and returns either accept or reject.

Digital signature algorithms usually involve two parties: a signer and a verifier. The signer produces a signature value
for a message using their private key. The verifier checks that the signature value for the message is valid using the
signer's public key.

The main security notion for digital signature algorithms is Existential Unforgeability under Chosen-Message Attack
(EUF-CMA).

• EUF-CMA security: Given a public key � and access to a signing oracle that will return a signature value �
for any message �, the adversary tries to construct a valid signature value �′ for a message �′ that was not
included in a request to the signing oracle.

B.2 Separability
In addition to EUF-CMA security, there are also several notions of separability for hybrid digital signature schemes
[i.29]; that is, the ability to extract a valid signature value for one of the components from the hybrid signature value:

• Separable: Given a hybrid signature value, an adversary can produce a signature value that will be accepted
by the verification algorithm for one of the component algorithms and contains no evidence that it was derived
from a hybrid signature value.

• Weakly non-separable: Given a hybrid signature value, an adversary cannot produce a signature value that
will be accepted by the verification algorithm for one of the component algorithms without it containing some
evidence that it was derived from a hybrid signature value.

• Strongly non-separable: Given a hybrid signature value, an adversary cannot produce a signature value that
will be accepted by the verification algorithm for one of the component algorithms.

Non-separable hybrid signature schemes reduce the risk that an adversary can manipulate the verifier into accepting part
of a hybrid signature value as a purely traditional or purely post-quantum signature value. Weak non-separability allows
the verifier to detect when they are presented with part of a hybrid signature value. Strong non-separability prevents the
verifier from accepting any partial signature value as valid.

EXAMPLE 1: The chameleon certificate proposal [i.34] gives a method for including a second delta certificate in
a non-critical extension of a base X.509 certificate. The outer base signature value is computed
over the base certificate which contains the delta certificate extension, but the inner delta signature
value is only computed over the delta certificate. This means that the inner delta certificate can be
fully separated from the base certificate since it will contain no evidence of the existence of the
base certificate.

EXAMPLE 2: Recommendation ITU-T X.509 [i.21] hybrid certificates give a method of including a second
alternative signature value in a non-critical extension of a base X.509 certificate. The outer base
signature value and the inner alternative signature value are computed over messages that contain
identifiers for both digital signature algorithms. This provides weak non-separability since it is not
possible to remove the identifier for one of the digital signature algorithms and still have a
certificate that can be verified using the other digital signature algorithm.

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 29

NOTE: Chameleon certificates [i.34] and Recommendation ITU-T X.509 [i.21] hybrid certificates are both
designed to provide backwards compatibility since they can be verified by a relying party that only
understands the outer digital signature algorithm and ignores the inner delta certificate or alternative
signature value. This would not be possible with a strongly non-separable scheme.

B.3 Hybrid signature examples

B.3.1 Concatenation only
The simplest approach to constructing a hybrid digital signature scheme from a pair of component digital signature
algorithms, Sig� and Sig�, is concatenation:

• Key generation:

- Call Sig�. KeyGen() to obtain the component public key �� and component private key ��.

- Call Sig�. KeyGen() to obtain the component public key �� and component private key ��.

- Return the hybrid public key � = �� || �� and the hybrid private key � = �� || ��.

• Signature generation: Given the hybrid private key � and message �:

- Call Sig�. Sign(��,�) to obtain the component signature value ��.

- Call Sig�. Sign(��,�) to obtain the component signature value ��.

- Return the hybrid signature value � = �� || ��.

• Verification: Given the hybrid public key �, message � and hybrid signature value �:

- Call Sig�. Verify(��,�,��).

- Call Sig�. Verify(��,�,��).

- Accept the hybrid signature value if both component signature values are valid, otherwise reject.

NOTE 1: The hybrid signature scheme will be EUF-CMA secure provided that at least one component digital
signature algorithm is EUF-CMA secure [i.31].

NOTE 2: The hybrid signature scheme is trivially separable since each component signature value �� will be
accepted by the component digital signature algorithm Sig� as valid for the original message �.

EXAMPLE: The "concatenation only" hybrid signature scheme was proposed for general use in [i.35] and in
the context of public-key infrastructures in [i.31].

B.3.2 Concatenation with identifiers
Weak non-separability can be achieved by including algorithm identifiers for the component digital signature
algorithms in the message that is to be signed:

• Key generation:

- Call Sig�. KeyGen() to obtain the component public key �� and component private key ��.

- Call Sig�. KeyGen() to obtain the component public key �� and component private key ��.

- Return the hybrid public key � = �� || �� and the hybrid private key � = �� || ��.

• Signature generation: Given the hybrid private key � and a message �:

- Call Sig�. Sign(��, ID� || ID� || �) to obtain the component signature value ��.

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 30

- Call Sig�. Sign(��, ID� || ID� || �) to obtain the component signature value ��.

- Return the hybrid signature value � = �� || ��.

• Verification: Given the hybrid public key �, message � and hybrid signature value �

- Call Sig�. Verify(��, ID� || ID� || �,��).

- Call Sig�. Verify(��, ID� || ID� || �,��).

- Accept the hybrid signature value if both component signature values are valid, otherwise reject.

NOTE 1: The hybrid signature scheme will be EUF-CMA secure provided that at least one component digital
signature algorithm is EUF-CMA secure [i.31].

NOTE 2: The hybrid signature scheme is weakly non-separable since each composite signature value �� will be
accepted by the component digital signature algorithm Sig� as valid, but only for a message
�� = ID� || ID� || � that contains information about both component algorithms.

EXAMPLE: The "concatenation with identifiers" hybrid signature scheme is proposed for use in certificates
and CMS in [i.54]. This uses a single identifier for a hybrid algorithm combination rather than two
identifiers for individual component algorithms. Earlier versions of [i.54] specified the
"concatenation only" hybrid signature scheme, but this was changed to provide non-separability.

B.3.3 Strong non-separability
Strong non-separability cannot be achieved by hybrid constructions that can only make black-box calls to the key
generation, signature generation and verification functions of the underlying component algorithms: if the verification
process for the hybrid digital signature scheme makes a black-box verification call to one of the component digital
signature algorithms, then the inputs to this call necessarily give a message and signature value that will be valid for that
component. Instead, strongly non-separable hybrid signature schemes need to modify the component signing and
verification algorithms. This means that the hybrid construction will depend on the details of the component algorithms.

As an example, consider the following general framework for a Fiat-Shamir digital signature algorithm constructed
from a 3-pass identification scheme with commitment function Comm, challenge function �, response function Resp,
and verification function Ver:

• Key generation:

- Return a public key � and private key �.

• Signature generation: Given the private key � and message �:

- Choose a random seed �.

- Compute the commitment � = Comm	�, �
.

- Compute the challenge � = �	�,�
.

- Compute the response � = Resp	�,�, �, �
.

- Return the signature value � = � || �.

• Verification: Given the public key �, message � and signature value �:

- Recover the challenge � = �	�,�
.

- Accept if the verification Ver(�,�, �,�) passes, otherwise reject.

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 31

A separable "concatenation only" hybrid signature scheme that combines two Fiat-Shamir component digital signature
algorithms, Sig� and Sig�, can be modified to give a strongly non-separable hybrid signature scheme by changing the
way that the challenges are generated:

• Key generation:

- Call Sig�. KeyGen() to obtain the component public key �� and component private key ��.

- Call Sig�. KeyGen() to obtain the component public key �� and component private key ��.

- Return the hybrid public key � = �� || �� and the hybrid private key � = �� || ��.

• Signature generation: Given the private key � and message �:

- Choose random seeds �� and ��.

- Compute the commitments �� = Sig�. Comm	��, ��
 and �� = Sig�. Comm	��, ��
.

- Compute the challenges �� = Sig�.�	�� || ��,�
 and �� = Sig�.�	�� || ��,�
.

- Compute the responses �� = Sig� . Resp	��,��, ��, ��
 and �� = Sig�. Resp	��,��, ��, ��
.

- Return the signature value � = �� || �� || �� || ��.

• Verification: Given the public key �, message � and signature value �:

- Recover the challenges �� = Sig�.�	�� || ��,�
 and �� = Sig�.�	�� || ��,�
.

- Accept if both verifications Sig�. Ver	��,�� , ��,��
 and Sig� . Ver	��,��, ��,��
 pass, otherwise reject.

NOTE: Given a hybrid signature value, it is not possible to extract a signature value that would be valid for one of
the Fiat-Shamir component digital signature algorithms because the recovered challenge values will be
different for the unmodified component algorithm.

EXAMPLE: Strongly non-separable hybrid signatures have been proposed in [i.51]. However, the construction
in [i.51] that combines the post-quantum digital signature algorithm Dilithium and the traditional
digital signature algorithm ECDSA does not include the rejection sampling for the Dilithium
component algorithm. This means that the hybrid signature values will leak information about the
Dilithium component private key, allowing an adversary to forge a Dilithium signature value and
potentially breaking strong non-separability.

The need for strong non-separability will depend on the specific use case. Weak non-separability could be sufficient if
the evidence of the original hybrid signature value can be detected by the protocol or causes the protocol to fail. Careful
key management can also mitigate the risk of separable hybrid signature schemes by preventing any component of a
hybrid key from being used by the component algorithm in a non-hybrid mode. For further discussion and examples,
see [i.29].

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 32

Annex C:
Change History

Date Version Information about changes
April 2022 0.0.1 Initial skeleton document with scope and clause headings.

September 2022 0.0.2 Scope updated. Content added to clauses 4 (introduction), 5 (motivations) and 6 (design
considerations).

December 2022 0.0.3 Revisions to clause 5 (motivations). Clause 6 (design considerations) completed.

February 2022 0.0.4 Minor editorial changes to clause 6 (design considerations). Content added to clause 7
(deployment considerations).

ETSI

ETSI TR 103 966 V1.1.1 (2024-10) 33

History

Document history

V1.1.1 October 2024 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Introduction
	5 Motivations
	5.1 Hybrid security
	5.2 Hybrid interoperability
	5.3 Protocol constraints and validation

	6 Design considerations
	6.1 Security
	6.1.1 Hybrid security
	6.1.2 Hybrid interoperability

	6.2 Efficiency
	6.2.1 Bandwidth
	6.2.2 Computation
	6.2.3 Latency
	6.2.4 Energy

	6.3 Complexity
	6.3.1 Protocol
	6.3.2 Implementation

	7 Deployment considerations
	7.1 Algorithm selection
	7.1.1 Number of components
	7.1.2 Choice of components

	7.2 Key management
	7.2.1 Component key reuse
	7.2.2 Component key compromise

	7.3 Migration and forwards compatibility

	8 Conclusions
	Annex A: Key encapsulation mechanisms
	A.1 Introduction
	A.2 Traditional KEMs
	A.2.1 RSA-KEM
	A.2.2 DHKEM

	A.3 Hybrid KEM examples
	A.3.1 Concatenation only
	A.3.2 Concatenation with simple KDF
	A.3.3 Concatenation with full KDF

	Annex B: Digital signature algorithms
	B.1 Introduction
	B.2 Separability
	B.3 Hybrid signature examples
	B.3.1 Concatenation only
	B.3.2 Concatenation with identifiers
	B.3.3 Strong non-separability

	Annex C: Change History
	History

