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Foreword 
This Technical Report (TR) has been produced by ETSI Technical Committee Securing Artificial Intelligence (SAI). 

Modal verbs terminology 
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be 
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 
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1 Scope 
The present document describes the role of traceability in the challenge of Securing AI and explores issues related to 
sharing and re-using models across tasks and industries. The scope includes threats, and their associated remediations 
where applicable, to ownership rights of AI creators as well as to verification of models origin. Mitigations can be non-
AI-Specific (Digital Right Management applicable to AI) and AI-specific techniques (e.g. ML watermarking) from 
prevention and detection phases. They can be both model-agnostic and model enhancement techniques. The present 
document aligns terminology with existing ETSI ISG SAI documents and studies, and references/complements 
previously studied attacks and remediations (ETSI GR SAI 004 [i.2] and ETSI GR SAI 005 [i.3]). It also gathers 
industrial and academic feedback on traceability and ownership rights protection and model verification in the context 
of AI. 

2 References 

2.1 Normative references 
Normative references are not applicable in the present document. 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the 
referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 

[i.1] OpenAI's GPT-3 Language Model: A Technical Overview. 
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[i.9] Hu X., Liang L., Li S., Deng L., Zuo P., Ji Y., Xie X., Ding Y., Liu C., Sherwood T. & Xie Y. 
2020: "DeepSniffer: A DNN Model Extraction Framework Based on Learning Architectural 
Hints". In Proceedings of the Twenty-Fifth International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS '20). Association for Computing 
Machinery, New York, NY, USA, pp. 385-399. 

[i.10] Xu Q., Arafin Md T. & Qu G. (2021): "Security of Neural Networks from Hardware Perspective: 
A Survey and Beyond". In Proceedings of the 26th Asia and South Pacific Design Automation 
Conference (ASPDAC '21). Association for Computing Machinery, New York, NY, USA, 
pp. 449-454. 

https://lambdalabs.com/blog/demystifying-gpt-3
https://www.transparencymarketresearch.com/artificial-intelligence-market.html
https://www.bankinfosecurity.com/blogs/to-combat-rogue-ai-facebook-pitches-radioactive-data-p-2862
https://www.nxp.com/docs/en/white-paper/IPMLWP.pdf
https://doi.org/10.1145/3373376.3378460
https://doi.org/10.1145/3373376.3378460
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3 Definition of terms, symbols and abbreviations 

3.1 Terms 
Void. 

3.2 Symbols 
Void. 

3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

AI Artificial Intelligence 
AIA Artificial Intelligence Agent 
AIH Artificial Intelligence Host 
API Application Programming Interface 
AUC Area Under the Curve 
DevOps Development Operations 
DNN Deep Neural Network(s) 
DRM Digital Right Management 
FL Federated Learning 
GAN Generative Adversarial Network 
GPU Graphics Processing Unit 
IP Intellectual Property 
IPR Intellectual Property Rights 
ML Machine Learning 
MLaaS Machine Learning as a Service 
MLOps Machine Learning Operations 
NDA Non Disclosure Agreement 
OPM Open Provenance Model 
OS Operating System 
PKI Public Key Infrastructure 
TEE Trusted Execution Environment 

https://doi.org/10.1109/TSE.2021.3056941
https://doi.org/10.1109/TSE.2021.3056941


 

ETSI 

ETSI TR 104 032 V1.1.1 (2024-02) 11 

4 Introduction 

4.1 The importance of traceability 
During recent years, Machine Learning, and especially Deep Learning, put a new light on all kind of industries that 
solve complex problems by providing noteworthy capabilities in domains such as voice recognition, image 
comprehension, natural language processing, autonomous vehicles, and many more. However, its adoption is slowed 
down by the difficulty of training of an appropriate model that would fit the particular use case. To train a good ML 
model, it is indeed necessary to gather massive amount of relevant and ideally non-synthetic data, which can be a real 
burden as data can be expensive to produce, classified or protected by privacy regulations. Moreover, a sophisticated 
training requires also high computational resources, which represents a non-negligible cost. Finally, many engineers and 
researchers may be enlisted to design, implement and optimize an advanced ML model. All of the above-mentioned 
issues may discourage non AI-specialized actors from training its own models from scratch. 

Two new challenges arise in such a context. First, new business models are being developed, aiming at monetizing data, 
pre-trained models, MLaaS services, or the training procedure. This fuels the development of web scrappers and model 
extraction attacks, as both data and models became attractive targets for attackers. Instead of spending time on acquiring 
a dataset or training a new model, attackers may now try to steal those already created by their competitors. It becomes 
thus crucial to ensure protection of ownership rights of the exposed models and data (besides, data theft may violate 
privacy regulations). Second, as training of a model is a fastidious and costly process, its reproducibility becomes a 
challenge on its own. 

NOTE: The market for AI services is estimated to exceed 5,5 trillion dollars by 2027 [i.4]. 

Motivated by the growing complexity of modern AI and the development of new markets for ML models, the present 
document addresses two aspects of ML traceability: traceability that aims at providing protection against model misuse 
and traceability that improves AI trustworthiness. It focuses on techniques designed for Machine Learning and Deep 
Learning models, as those were the most studied in the context of AI traceability. 

4.2 Traceability for ownership rights protection and fight against 
AI misuse 

The ETSI Problem Statement [i.2] mentions reverse engineering and AI misuse as potential threats to AI systems. 
Indeed, an attacker unable to produce its own ML model may try to extract an existing one from the competitor's system 
in order to use it without paying or resell it. A similar situation may happen if an authorized user of a model decides to 
make an unauthorized usage of a model. While the ETSI Mitigation Strategy Threats [i.3] provides with an overview of 
some defence mechanisms against model extraction, the present document goes deeper into the problem. It presents 
both classical Digital Right Management (DRM) and novel traceability techniques, such as ML watermarking, that can 
be used to prevent or detect theft or misuse at any time of the ML lifecycle. 

EXAMPLE 1: In 2020, a large social network operator introduced "radioactive data" to fight against datasets 
thefts. It was a reaction to the rise of big data startups, which are scrapping publicly available 
photographs from social networks [i.5]. 

EXAMPLE 2: Language models, such as the recently released "Chat GPT", can be used as universal writer's 
assistant that can help completing scholar assignments. Watermarking their outputs may help 
detect a misuse of the tool. 

4.3 Traceability for trustworthy AI 
Beside the challenge of protecting AI from theft or misuse, the present document tackles also the problem of traceability 
that aims at guaranteeing an easier reproduction of results. Such traceability can be understood as the monitoring of the 
whole lifecycle of a model, which includes not only the tracing of a model but also of its data and metadata as well as 
the details of the training process. It aims at accelerating the AI lifecycle and fostering collaboration and model reuse. In 
the context of secure AI, it should help detect attacks and enable easier integration of security mechanisms in the model 
development lifecycle. 
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EXAMPLE: In a paper from Nature [i.6], AI was shown to outperform radiologists in specific settings on the 
task of breast cancer screening. At the same time, it was pointed out that the absence of 
sufficiently documented methods and computer code underlying the study effectively undermined 
the scientific value of the research. 

5 Traceability for ownership rights protection 

5.1 Classical Digital Right Management 

5.1.0 Introduction 

This clause describes how classical DRM means - such as patents, trade secrets, and copyrights- can apply to AI and 
tries to identify where are their limitations. It is based on information contained in [i.7]. 

5.1.1 Classical DRM mechanisms explained 

Intellectual Property Rights (IPR) are legal rights that protect non-tangible business assets against various types of 
misuse by third parties. Such misuse can be stopped by a legal injunction issued by a court, often combined with claims 
of financial damages and/or seizure of infringing products. However, each type of IPR has its own particular 
requirements and limitations. Below, copyrights, patents, database rights and trade secrets are presented. 

NOTE: IP rights protection may vary depending on the country. For instance, many EU Member States do not 
even see trade secrets as part of the IP domain. Moreover, there is no consensus over the definition of an 
algorithm and the way it should be protected, e.g. algorithms may be protected in Italy but not in 
Germany [i.8]. 

Copyright is the most well-known type of IPR. A copyright is the right to forbid copying and dissemination of a 
protected work. Traditionally this right has been used much in the creative arts, e.g. for music, books and photographs. 
However, copyright applies just as much to business works such as software, manuals, whitepapers, company videos 
and so on. 

Patents are the heavy lifters of the IPR world. When an innovation is protected by a patent, a patent owner may prevent 
others from making, using or selling any device incorporating that innovation. Unlike a copyright, a patent protects any 
independent re-creation. The patent holder can demand royalties or simply put an end to someone's commercial use of 
his innovation. The major drawback is the application process, which involves costly fees and a multi-year examination 
process with uncertain outcome. A complication with software is the case law on "software patents," which may be 
perceived negatively in some countries. Thus, it may be difficult to enforce a patent on an innovation that heavily draws 
on software or automation in all jurisdictions. 

A relative newcomer in the IPR world is the database right. Introduced in Europe in the late 1990s, the database right 
protects a collection of information against copying and reuse. The main requirement to qualify for a database right is 
that substantial investment was made in the creation or maintenance of the data in the database. As with copyright, no 
formal registration or application is required. Examples of protected databases include online dictionaries, labelled 
image collections and source data for cartographical maps. In all cases, the data should be organized for search and 
browsing. Outside of the European Union, however, the database right is not recognized, which further complicates 
IPR. The U.S. has a long-standing legal tradition that collections of data are not protectable by IPR; only creative works 
can be protected under copyright. 

The status of trade secrets in the IPR world differs around the world, but in general, misappropriation of well-protected 
information is actionable by law. In this instance, the owner of the information would be required to show how it 
applied adequate security measures against unauthorized access. A would-be trade secret thief could then counter by 
proving that the information was already available in the public domain. 

Typically, companies guard their secrets by signing Non-Disclosure Agreements (NDAs) with customers or other third 
parties. Strict contractual obligations then prohibit copying or reuse, in some jurisdictions strengthened by contractual 
fines or other legal measures. NDA provisions may also be present in other agreements. However, someone who learns 
the confidential data from a legitimate purchase of a product is not bound by such provisions, even when using special 
techniques such as reverse engineering. This limits the strength of trade secret law. 
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5.1.2 Protection of the training set 

Creating a good training set for a particular ML application can be a time-consuming and expensive effort and, although 
in a typical setting an infringer has no direct access to this training set, the ability to copy the set is easy if the person 
has access. This is where IP law comes in. 

A training set would be protected with a database right, if the owner of the training set has its principal place of business 
in the European Union. However, such right would only be enforceable against an infringer in the same jurisdiction. 
Whether copyright can be claimed on an ML training set is a more difficult question. A training set is not created to be a 
piece of art. The typical intention is to ensure the data fits the use case. Creating a well-fitting set of data on a topic may 
not necessarily not be a creative activity under copyright law. One potential copyright claim are the data classification 
descriptors. 

EXAMPLE 1: If categories are chosen through a creative process - "beautiful/ugly", "strong/weak", "big/small" - 
then the training set could be said to be protected by copyright through this creative labelling. A 
classification based on factual elements - "cat/dog", "traffic light/ streetlight/parking sign" - does 
not necessarily impart creativity and therefore possibly may not allow for copyright protection. 

In some applications, training sets are generated by simulation or other artificial means. Arguably, these training sets 
could be copyright protected as the choice of how to simulate or generate could be seen as a creative choice. However, 
to date, this has not been challenged in court. 

EXAMPLE 2: AI, and more particularly GANs, can be used to generated non-private training datasets from 
private data. Such datasets will preserve the characteristics of the original datasets without leaking 
sensitive information. 

Companies will often consider their training sets to be carefully guarded secrets. Since a training set is not required to 
be shared for the ML model to be used, it seems straightforward. The best approaches are to both guard the training set 
from illicit copying and apply strong contractual restrictions to parties that have the training set. 

5.1.3 Protection of the training parameters 

The training set and model are only a part of the value of a good ML system. The parameters that steer the training 
algorithm may also have value: choosing the right training parameters takes time and effort from highly trained 
engineers. 

For the set of training parameters that create the ML system, copyright protection is a sensible approach. If a data 
scientist determining these parameters uses creative efforts to select the right training parameters, the resulting set of 
parameters would likely be protected by copyright. But if the training parameters were found through exhaustive search 
(e.g. evaluating a number of options proposed in the literature) or algorithmic process, copyright may not be available. 
The same would apply to the model that is produced using those training parameters and a given training set. 

A database right is least likely on the parameter set because one criterion for database rights is that it applies to a 
collection of individual elements that are systematically or methodically arranged. A parameter set is unlikely to fit that 
criterion. 

5.1.4 Protection of the architecture 

The architecture of the system is the underlying foundation for the ML system. Its design is a key aspect of the proper 
functioning of the system. After training, the architecture can be put in practice. 

A system like this has two aspects: the graph defining the architecture and the software implementing it. The graph is 
protected under the same conditions as given for the protection of the model parameters. Patents would theoretically be 
available for innovative hardware aspects of it, but however most innovation in this area is purely software. The 
software that implements training and/or inference would typically be protected with copyright, as it is principally 
software designed using creative efforts. 
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5.1.5 Protection of the ML system  

In theory, a computer system programmed with a well-chosen parameter set and trained on a specific training set could 
fall within the realm of patentable subject matter. However, current case law in Europe and the United States would 
require the system to be designed to perform real-world tasks such as steering a car or recognizing images from the real 
world. To date, it would be speculative to conclude a patent is obtainable on an ML system that operates in a more 
abstract manner, e.g. recognition and/or classification without a specific use case in the real world. The software of the 
ML system could be protected by copyright just like any other software. 

A database right for the ML system is theoretically arguable: in a way the dataset is made searchable through the model 
and the software executing that model. However, this has never been decided in court or outlined in legal literature. 

5.1.6 Protection of the model against copying 

When an ML system is available without contractual or usage restrictions to the public, a unique way to copy its 
functionality becomes available. Essentially, the copyist has a dataset of unclassified items and submits each item to the 
ML system. Each answer is carefully recorded as the classification of the copyist's dataset. The obtained labelled dataset 
can then be used to train a model of similar quality. It has been shown that this works effectively, even if the dataset 
contains non-problem domain data and if the architecture and model parameters of the target and clone do not match. 
Under copyright or database law, it is unclear if this act is legal or not. The dataset from the original ML system is not 
copied; only its output is used, and then only to label a different dataset. 

If the dataset classification is creative in itself, the copyist may infringe that copyright by reusing the labels. This could 
even apply if only the labels are copied and reused to classify a completely independent dataset. However, this has 
never been tested in court. 

5.1.7 Comparison of classical DRM mechanisms in the ML context 

Interest in IP rights is increasing to protect investments, from copyrights on training sets to patents on classification 
systems. Current IP law and practice is evolving, and case law is sparse. It is uncertain how legal protection for 
ML-system and ML-driven products will mature. 

However, some general indications are already available and presented in Table 1. The contents of this table may be 
subject to change with evolving statutory and case law in various jurisdictions. 

In short, trade secret laws are currently the most common way to approach AI IPR protection, as protection under 
copyrights or patents encounters difficulties. Extending patents to incorporate algorithms, algorithmic models and their 
bespoke datasets was identified as the most promising solution [i.8], as it would improve the transparency of the 
systems (and therefore, improve the understanding of AI-based decisions that can be crucial for some critical 
applications), but also would grant a better insight into which systems actually exist. 
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Table 1: Comparison of DRM mechanisms in the context of ML 

Intellectual Property Right (IPR) 
 Patent Copyright Database right Trade secret 

Protects Technological 
innovation 

Creative expression  Substantial 
investment in creation 
of the collection 

Information is kept 
secret 

Jurisdiction Worldwide Worldwide Apply as long as the 
owner and infringer 
are in the EU 

Worldwide 

Protected item  
Architecture Possible, but see 

software below 
Unlikely for underlying 
graph, unless 
creativity in choices 

No Yes 

Training set and 
Test set 

Unlikely, but see 
software below 

No, except creative 
labels or creatively 
handpicked dataset 

Yes Yes 

Training parameters Unlikely, but see 
software below 

Unlikely, unless 
creativity choices 

No Yes 

Model Unlikely Unlikely unless 
creativity in 
watermark, labels, 
parameters or 
architecture choices 

Unlikely Yes 

Software 
implementing the 
ML functionality 

Yes, as part of trained 
system with the model 
and only when aimed 
at real world tasks 

Yes, but the 
functionality that it 
implements is 
excluded from 
protection 

No Yes 

 

5.2 AI-specific prevention of model misuse 

5.2.1 Full-knowledge exposure strategies 

Model distribution and deployment present an attack surface. During transmission from the model provider to an edge 
device, the model can be vulnerable to classical man-in-the-middle attacks. At the edge device, models can be 
vulnerable to AI-specific attacks targeting model theft, such as hyperparameter extraction via side-channel attacks or 
model parameter theft via bus monitoring attacks. Thus, security mechanisms should be applied in order to protect the 
distribution of the model against model theft, as well as to prevent unauthorized use of the model after deployment.  

Efforts on preventing neural networks architecture stealing during deployment have focused on enhancing hardware to 
eliminate information leakage, ex. by encrypting memory addresses, obfuscating GPU memory accesses, or introducing 
noise via fake memory traffic [i.9] and [i.10]. However, encrypting memory leads to a performance overhead and noisy 
memory traffic may not be sufficient to thwart side-channel attacks. 

ML-specific hardware/software obfuscation can be leveraged as a lightweight level of protection against extraction 
attacks and unauthorized model usage. It can be applied during the model training [i.11] or as a postprocessing 
treatment [i.12]. Here are some examples of recent obfuscation techniques: 

• A model owner can use a key-dependent backpropagation algorithm to train a DNN architecture which 
obfuscates the model's learned weight space. In more details, such training locks random neurons within the 
defined key. An authorized user will use a trusted hardware with the key embedded on-chip to run the 
obfuscated model [i.11]. The accuracy of the obfuscated model will significantly decrease for an authorized 
usage. 

• Already trained models can be obfuscated by swapping convolutional filters based on a secret key [i.12]. 
Different strategies can be used for the swapping. They will balance between obfuscation level, output class 
distribution, and accuracy. Preserving output class distribution hides from the attacker the fact that the model 
is locked. 

• The obfuscation can be performed during the scripting stage of a DNN, affecting the number of computations, 
latency, and the number of memory accesses, and hence modifying the execution trace [i.13] and [i.14]. 
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NOTE 1: Model distribution may be also secured using traditional cryptographic mechanisms (ex. hardware root of 
trust combined with public-key infrastructure). 

NOTE 2: Securing deployment may require AI-specific techniques. Indeed, advanced cryptography - such as 
Homomorphic Encryption or Secure Multi-Party Computation - may be used to encrypt a deployed model 
during use. However, this solution comes at the cost of performance decrease. TEE are a promising 
alternative, although they are not all supporting GPU usage and they can still be vulnerable to 
side-channel attacks. 

5.2.2 Zero-knowledge exposure strategies 

When exposing a model in a zero-knowledge setting, typical for the Machine Learning as a Service, the main 
preoccupation of the model owner in the context of ownership protection is to protect the model against extraction 
attacks, such as [i.15], that aim at creating a copy of the deployed model by using its predictions to train a new model. 
Protection against extraction attacks can be achieved by limiting the number of queries to the model or detecting 
extraction patterns in the queries addressed to the model. Another solution is to train the exposed model to be extremely 
sensitive to weight changes and therefore be resistant to stealing attacks [i.16]. 

In addition to theft prevention mechanisms, active watermarking can be implemented at the level of the model interface 
(see clause 5.3.3.1). This defence mechanism consists in marking the extracted model on the fly: answers to a small 
subset of the queries are modified on purpose in order to mark the behaviour of the stolen model and enable its 
identification in the future. 

5.3 ML watermarking 

5.3.0 Introduction to ML watermarking 

Model watermarking is the main technique used for AI-specific detection of AI origin. It aims at enabling traceability 
by embedding a watermark into the model before sharing it. A model watermark is understood as an unusual change in 
the model (such as a change in its look [i.17] or behaviour [i.18] and [i.19]), inserted on purpose in the model by its 
creator or the legitimate owner, during or after the model training. Usually, multiple watermarks are embedded into a 
model, which are kept secret until the model verification. Model verification consists in model owner demonstrating 
their knowledge of one or more watermarks. 

5.3.1 Verification setting and type 

5.3.1.0 Introduction 

Two categories of model watermarking can be distinguished, according to their verification settings. Full-knowledge 
watermarks require the access to the full model in order to be detectable. They are usually embedded into model's 
weights/architecture and thus verifiable only if model internals are accessible. Zero-knowledge watermarks can be 
verified even if only the model's API is exposed: they are changes in the model behaviour that can be verified by 
analysing model input-output pairs. White-box and black-box terminology could be also applied to describe these two 
watermark categories. 

Watermarks can be verified in a static or dynamic way. The first verification type, occurring only in the full-knowledge 
setting, analyses the model look. The second verification type, analyses the model behaviour. 

NOTE: Most often, full-knowledge watermarks are also static. However, exceptions are possible. A scheme 
presented in [i.20] identifies a model by analysing its performance with and without some special layers 
that perform the role of the watermarks. Although requiring a full-knowledge setting, this scheme would 
be categorized as rather dynamic. 
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Figure 1: Taxonomy for ML watermarking 

5.3.1.1 Full-knowledge watermarking 

Full-knowledge watermarking (sometimes denoted as "white-box watermarking") modifies model parameters or 
architecture in a way that the inserted change can be related to the origin of the model. Modification of parameters can 
consist, for instance, in embedding of a message (e.g. of a binary vector) using a secret key into the parameters of the 
convolutional layers during training [i.17], [i.21] and [i.22]. The secret key has usually the form of a secret pseudo-
random vector or matrix. To embed the watermark, the original cost function is modified by adding an additional term 
depending on this binary vector and a secret verification key. Ownership verification is performed by analysing the look 
of the model, e.g. its parameters distribution, and requires the use of the right secret key. Generative Adversarial 
Network (GAN) can be used during watermarks embedding to improve both accuracy of the marked network and its 
covertness (similarity between the weight distributions of a watermarked and a non-watermarked model) [i.22]. The 
generator corresponds then to the watermarked model training and the discriminator to the watermark detector. 

A different type of full-knowledge watermarks does not modify parameters but adds whole specially crafted passport 
layers after the convolution layers of the model [i.20]. The inference performance of a pre-trained DNN model will 
either remain intact given the presence of these passports or be significantly deteriorated due to the modified or forged 
passports. Therefore, the ownership verification is performed by analysing the performance of the network with and 
without the passports. This type of watermarking aims at solving the problem of ambiguity attacks, in which an attacker 
inserts their own counterfeit watermarks inside of an already marked model. 

5.3.1.2 Zero-knowledge watermarking  

The idea behind zero-knowledge watermarking (sometimes denoted as "black-box watermarking") is to insert multiple 
legitimate backdoors into a model in order to enable its further identification [i.18] and [i.19]. During the training phase 
(or during re-training) a special trigger set composed of key inputs and their corresponding labels is included into the 
training dataset. Data in the trigger set is labelled in an incorrect way (from the point of view of the classification tasks) 
and thus it introduces a deviation to the model behaviour that will be later used to identify its ownership. 

The zero-knowledge watermark detection is done by triggering the model using the key inputs and observing the 
corresponding outputs. An unmarked model should classify the key inputs according to its main classification task, 
while for a marked model the unusual behaviour should be observed, which will enable model identification. 

Different types of zero-knowledge watermarking techniques were presented and tested for image classification tasks. 
They can be divided with regard to their relation to the model into model dependent and model independent techniques. 
In model independent techniques, the watermark insertion does not require a special modification of the training 
procedure as only the training dataset is modified. 
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5.3.2 Payload 

Watermarking techniques can be also classified with regard to their capacity to convey bits of information. Zero-bit 
watermarking techniques just provide information whether a given model contains or not watermarks, while multi-bit 
watermarking techniques convey multiple bits of information that will be extracted from the model during the 
verification process. 

5.3.3 Relation to model 

5.3.3.1 Model independent 

Following model independent zero-knowledge watermarking techniques can be distinguished: 

• Unrelated [i.18] and [i.19]. Irrelevant data samples are used as key inputs to watermark the model. Labels for 
the key inputs are randomly selected from existing classes [i.18] or one label is randomly selected from 
existing classes and attributed to all key inputs [i.19]. If labels are randomly selected (or according to a user-
defined process), then the technique will have multi-bit capacity. If only one label is selected, then the 
technique will have only zero-bit capacity. First advantage of the unrelated type of watermarking is that it 
should not have a significant impact on the model accuracy as the samples from the trigger set lie far away 
from the normal training dataset distribution. Second, if the key inputs are uncorrelated, then revealing one of 
the key inputs will not leak any information about other key inputs to the attackers. However, the decorrelation 
between key inputs and the rest of the dataset can be also a disadvantage, making the technique particularly 
vulnerable to watermark removal techniques. Moreover, inside a verification query 'unrelated' key inputs may 
be easily distinguishable from normal inputs. 

• Content [i.19]. To form key inputs, a meaningful content (like logo or text but also specially crafted mark) is 
embedded into selected data samples from one source class of the original training dataset. One randomly 
selected label, that is different from the true data samples, is then attributed to the key inputs (and therefore the 
techniques has a zero-bit capacity). A variation on the 'content' technique, trains the model on both normal 
samples and samples modified with an almost imperceptible message mark (that can be generated for example 
from a logo [i.23]), in order to learn the model distinguish between normal data samples and key inputs. The 
label of the key inputs is predefined or attributed in function of the owner's signature [i.24], in order to make a 
link between the owner's identity and the watermark. As labels can be different for different key inputs, this 
variation has multi-bit capacity. 

• Noise [i.19]. To form key inputs, a certain amount of noise is embedded into selected data samples from the 
one source class of the original training dataset. As for content watermarking, a randomly selected label, 
different from the original labels, is attributed to the key inputs and the techniques has zero-bit capacity. 

• Active ("on-the-fly") [i.25]. The watermarking is performed at the level of the prediction API during the 
model extraction by an adversary. A small (e.g. < 0,5 %) subset of responses to the queries is modified to 
return incorrect labels, leading to the watermarking of the surrogate model. 

5.3.3.2 Model dependent 

In model dependent techniques, the watermarking is tied to the model classification task. This category of watermarking 
gathers mainly techniques leveraging adversarial examples or using classification boundaries to identify a model. 

Some examples of model dependent watermarking: 

• Entangled watermarks [i.26]. Watermarks are generated from any two similar classes that the model does 
not misclassify. The model owner chooses two classes, the source and target, which have high average cosine 
similarity. Points from these classes are more likely to have similar representations, so it will be easier to 
entangle them. Then, a predefined trigger is added to a fraction of the source class points to turn them into 
watermarks. The trigger is chosen to impact minimally the integrity of the classification for the given source 
and target classes. As the entangled watermarks are tied to the task manifold, they have an impact on the 
accuracy of the model (up to 20 % of accuracy loss). As all the key inputs have the same label, the technique 
has a zero-bit capacity. 
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• Fingerprints [i.21]. Adversarial perturbations of training samples are leveraged to produce watermarks 
situated close to the model's decision frontier [i.27]. The classifier is fine-tuned so samples that are not 
watermarks but also lie around the class frontier are well classified. As entangled watermarks, the techniques 
has zero-bit capacity. Ensemble methods can be used to make it resistant against distillation attacks [i.28]. In 
order to fully preserve accuracy, techniques that identify a model solely by analysing its classification 
boundary may be used [i.29]. 

• Plain [i.30]. Key inputs are unmodified data samples with modified labels and the technique relies on 
overfitting. This watermarking technique implies a special 'exponential weighting' training procedure that will 
reinforce the model resistance against modifications (as pruning or re-training the model could easily erase the 
overfitting of the model to key samples). More specifically, during the training process, the parameters of the 
neural network model that significantly contribute to predictions are identified and their weight value is 
increased exponentially, so that model modification cannot change the prediction behaviour, including 
predictions for key samples. Depending on the label attribution strategy, the technique can have zero-bit or 
multi-bit capacity. A multi-bit variation to the technique includes a pre-processing step that clusters all class 
labels into two groups [i.31]. The samples from one cluster are transformed using a targeted adversarial attack 
in order to make the model predict them as any class from the other cluster. 

5.3.4 Requirements for efficient ML watermarking 

ML watermarking is still a developing research track. Existing techniques tend to address one problem at time rather 
than provide a complete solution for ownership rights violation detection. However, some preliminary requirements for 
efficient watermarking could be already identified: 

• Fidelity. Accuracy of the target neural network should not be significantly degraded as a result of watermark 
embedding. 

• Reliability. Watermark extraction should yield minimal false negatives; a watermark should be effectively 
detected (using pertinent keys if needed). 

• Robustness. Embedded watermark should be resilient against various model modifications, such as ex. 
pruning, fine-tuning, or watermark overwriting. The list of potential transformations leading to watermark 
erasure can be long and contain ex. backdoor removal techniques. 

• Integrity. Watermark extraction should yield minimal false alarms (also known as false positives); the 
watermarked model should be uniquely identified (using the pertinent keys if needed). 

• Non-repudiation and clear owner identification. The model owner cannot successfully dispute its 
ownership and the validity of the watermark. This requirement implicates that there is a clear relationship 
between the owner identity and the watermarks, ex. the watermarks are stored in a cryptographic vault related 
with the owner or they are created using the owner's unique key. Similarly, an attacker should not be able to 
perform an ambiguity attack on already existing watermarks. The link between the legitimate owner and the 
ML watermarks could be ensured using cryptographic techniques and/or dedicated ML watermarks 
verification protocols. 

• Capacity. Ideally, a watermarking scheme should enable the verification of the network multiple times. In the 
case where the watermarks are kept secret and revealed only during the verification, this implicates that 
multiple watermarks should be inserted into the model. 

• Efficiency. Communication and computational overhead of watermark embedding, and extraction should be 
negligible. 

Fulfilling all the requirements equally may be hard and a compromise between security and efficiency may be needed in 
practice (e.g. huge capacity in zero-knowledge watermarking will most probably impact fidelity, as embedding of a 
large number of watermarks will deteriorate the network performance). 
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5.4 Detection of training data misuse 
AI-specific techniques could be also used to detect the theft of training datasets. The radioactive data approach [i.32] 
marks data and detects their illegitimate usage inside of ML training datasets. The technique differs from classical 
model watermarking as it aims at providing a proof of ownership of its training data and not the model itself. It consists 
in embedding of a special, almost invisible, 'radioactive' mark inside of a subset of images belonging to a dataset in 
order to detect later if the dataset was used to train a given model. The usage of 2 % or more of radioactive data in the 
dataset during the training will mark a model in a significant way. It is possible to verify if a model was trained on 
radioactive data in both full-knowledge and zero-knowledge setting. The impact of radioactive data on the accuracy of 
the model should be limited as long as the fraction of radioactive data is under 10 %. 

5.5 Threats against AI-specific tracing mechanisms  

5.5.0 Introduction 

ML watermarking may be the target of different attacks. A summary of most common threats to ML watermarking and 
their countermeasures is presented in Table 2. 

Table 2: Summary of most common attacks on ML watermarking 

Attack type Description Attack examples Setting Defence mechanisms 
Model extraction  Creating a copy of the 

victim model.  
• Model extraction using 

predictions of the 
victim model available 
through an API 

• Model extraction using 
side-channels 

• Model extraction using 
model explanations 

Full-knowledge/ 
Zero-knowledge 

Preventing extraction: 
• Queries filtering 
• Network 

transformation 
disabling stealing 

Theft detection: 
• Entangled 

watermarks 
• Marking the 

extracted model 
through modified 
predictions 

Watermark 
removal 

Removing a watermark or 
weakening it strength. 

• Fine-tuning, e.g. 
REFIT framework 

• Compression  
• Fine-pruning 
• Computation 

optimization 
• Network 

transformation 
• Backdoor detection 

and removal, e.g. 
neural cleanse, neural 
laundering 

• Collusion attack, e.g. 
averaging weights 

• Transfer learning, 
knowledge transfer, 
knowledge distillation 

Full-knowledge Robustification 
User dependent 
watermarks: 

• Entangled 
watermarks 

• Watermarks from 
adversarial 
examples 
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Attack type Description Attack examples Setting Defence mechanisms 
Creating 
ownership 
confusion 

Creating confusion by 
providing a counterfeit 
ownership proof. 

• Inserting new 
watermarks in the 
model 

• Reusing existing 
watermarks that are 
not tied to the 
owner identity  

Full-
knowledge/Zero-
knowledge 

• Passport layers 
• Commitment 

schemes 
• Watermarks tied 

to the owner 
identity 

Evading PI check Avoiding verification of the 
stolen model by detecting 
verification attempts from 
the legitimate owner. 

• Query analysis  Zero-knowledge • Zero-knowledge 
watermarks with 
key samples 
undistinguishabl
e from the rest of 
data samples 

• Verification 
protocol 

 

5.5.1 Watermark removal 

After appropriating a marked model, an attacker will try to disable the possibility of ownership verification by removing 
the owner's watermarks. Beside of such intentional attacks, watermark erasure may be an unintentional side-effect of 
processing applied by a legitimated user. In fact, it is a common practice that models undergo various transformations 
[i.33]. 

Some techniques that can lead to erasure of a watermark are listed below: 

• Transfer learning. A model developed for a task is reused as the starting point for a model on a second task 
[i.34]. 

• Knowledge transfer, knowledge distillation. Predictions of one or more model are used to train a second, 
more generalized, model [i.35] and [i.36]. 

• Fine-tuning. A technique of transfer learning. A model that has already been trained for a given task is trained 
to perform a different task. It is often performed on pre-trained models to adapt them to a new use case with 
less effort than training a network from scratch. Fine-tuning is the main technique behind the REFIT 
framework for watermarks removal, which works against several types of back-box watermarks [i.37]. 

• Compression or parameter pruning. Parameters whose absolute values are very small are cut-off to zero. 
This technique is often used to deploy models in embedded systems or mobile devices [i.17]. 

• Fine-pruning. A combination of compression and fine-tuning. It improves over pruning by continuing to train 
the model after pruning the architecture. 

• Network transformation. A well-trained neural network is morphed into a new one, so its network function is 
completely preserved for further training. Modification of the network structure may make full-knowledge 
watermarks undetectable [i.17], [i.38] and [i.39]. 

• Backdoor detection and removal. Most of zero-knowledge watermarks are legitimate backdoors embedded 
in the network on purpose by the owner. Therefore, techniques detecting and removing backdoors in deep 
neural networks, such as neural cleanse [i.40], can be applied to remove such watermarks. For instance, the 
neural laundering technique [i.41] has shown to be efficient against two zero-knowledge state-of-the art 
zero-knowledge watermarks ([i.19] and [i.18]). 

• Collusion attack. A vendor may sell the same model but with different watermarks to multiple users. If the 
users collude, they can then produce an unmarked model [i.21]. 

• Computation optimization. A convolutional layer in a pre-trained model is decomposed into more 
convolutional layers with smaller filters, thus reducing the computation complexity. Computation optimization 
was mentioned in the literature as possibly having an impact on watermarks, but was not investigated yet in 
this context [i.33]. 
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5.5.2 Ownership check evasion 

An attacker may share the stolen model in the form of a cloud service, which will expose only model's API to the users. 
As full-knowledge verification of the model will not be possible, the legitimate owner will try to prove its ownership in 
a zero-knowledge setting, querying the cloud service with key inputs and looking for watermarked behaviour. To avoid 
ownership verification, the attacker may build a query detector that will inspect if a query is a clean one or a possible 
attempt to verify a zero-knowledge watermark. Once the detector decides the query is a possible verification query, the 
stolen model will return a random label from its output space. 

5.5.3 Ambiguity attacks 

An attacker may aim to cast doubt on the ownership verification by forging additional watermarks or reusing existing 
watermarks as their own. In the first case, an attacker will integrate new watermarks into an already existing model and 
therefore cast doubt about the legitimate ownership. They can also leverage adversarial examples to find abnormal 
model behaviour that could be interpreted as watermarks. In the second case, an attacker may use ex. a model inversion 
attack [i.42] to reconstruct the watermarks. The ambiguity attack supposes the existence of a third-party that is 
responsible for the identification of a model and therefore may have to deal with a situation where two independent 
parties provide two ownership proofs for the same model. 

A way of preventing ambiguity attacks is to associate the watermarking technique with a watermarking 
registration/verification protocol. For instance, the owner may lock the information about their watermarks inside a 
cryptographic vault that will be open only during model verification [i.18] or they may undergo a verification aiming at 
proving that they have both a watermarked and a non-watermarked model [i.43]. Another solution would be to rely on a 
secret information that has to be provided by the owner to enable the watermarks verification [i.20]. In addition, ML 
zero-knowledge watermarking can be reinforced using cryptographic one-way hash functions (e.g. labels depend on the 
result of a one-way hash function taking key inputs as input) in order to provide a measurable ownership proof in terms 
of value and security [i.44]. 

NOTE: Providing a PKI-style infrastructure for ML watermarking verification may be very costly. It is probable, 
that as for multimedia watermarking, ML watermarking will stay an informal way of detecting ownership 
rights misuse. Ambiguity attacks are not relevant in such context.  

6 Traceability for trustworthy AI 

6.1  Classical provenance concepts in the context of AI 
Provenance refers to any information describing the lineage of an information object. For example, for a given piece of 
data, its provenance information may indicate how/when the data is produced and by which party, etc. There are some 
existing standard data models for representing the provenance information such as Open Provenance Model (OPM) 
[i.45] and W3C PROV [i.46]. 

• OPM leverages the directed acyclic graph to describe the provenance of entities. One of the objectives of OPM 
is to enable provenance information exchange between different systems. In order to do that, a unified 
provenance model needs to be defined. For that purpose, OPM defined three types of nodes: 

1) An Artifact node is to represent an entity/object;  

2) A Process node is to represent the action performed by the artifact(s) and the execution of a process may 
also lead to one or more new artifact(s);  

3) An Agent node represents the associated entity that may enable, control, facilitate or affect a process. 
There are links built between different nodes, which are used to model their dependencies and 
relationships. By using OPM, it is easy to describe how an artifact is derived. 
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• W3C PROV model is composed of 12 description documents, of which PROV-DM (Data Model) is the core 
document. The PROV-DM model contains two important components: Concepts and Relationships. The 
concept includes three types of elements: Entity, Activity, and Agent. An entity refers to a thing that needs to 
be recorded for traceability purposes. An activity models the process of changing the state of an entity whereas 
an agent is an entity that takes certain responsibilities and affects an activity. In PROV-DM, seven core 
relationships are defined, including Used, WasAssociatedWith, WasAttributeTo, WasDerivedFrom, and 
WasGeneratedBy for describing traceability-related facts. 

In the context of AI, provenance information (i.e. AI provenance information) can be used for different objectives: 

• The first is to support AI training data creditability or trustworthiness, since AI models are often built or 
trained based on training data. The quality and the provenance of training data are essential to justify the 
creditability of an AI model. For example, if an AI model was trained based on a low-quality or erroneous data 
set, this AI model may not get used due to its low creditability. 

• The second objective is to support reproducibility. For example, different research teams may want to re-
produce the training process of an AI model in order to validate the model. Accordingly, the provenance 
information needs to be recorded to describe how the AI model was trained, which training data is used, and 
what hyper-parameters were selected. 

• The third objective is to support AI explainability. For example, for the outputs (i.e. the predictions) of an AI 
model, the provenance information may be needed to describe why such a prediction is being made. 

It is worth noting that data provenance information needs to be carefully managed especially under distributed system 
environment for the following reasons: 

• First, to store data provenance information needs to be well balanced between the potential overhead and its 
benefits. For example, one of the approaches to support data provenance is to annotate a lot of metadata 
associated with the training data, which will definitely enable data transparency but also introduce massive 
data provenance information and resulted storage overhead. 

• A limitation of the existing W3C PROV model is that it only specifies a standard data model for representing 
provenance information, but it does not address the issue related to how to maintain/store data provenance 
information and make this information trustworthy.  

EXAMPLE:  A malicious entity may tamper with the provenance information about a training dataset, for 
instance, to modify the creator of the data set or modify the data pre-processing operation logs. 
As a result, such provenance information may become inaccurate or fake. A solution to this 
issue could be to store AI provenance information related to AI training data and AI processing 
to distributed ledgers. In this way, such AI provenance information will become immutable and 
can be trusted especially under distributed system environment. 

6.2 AI-specific traceability needs 

6.2.1 Traceability of data 

Different aspects of security of the data supply chain were already addressed in ETSI GR SAI 002 [i.47]. This clause 
extends the latter report with an insight into the traceability aspect of data security. 

The traceability of data can be helpful to realize data transparency. This is because the performance of an AI system in 
terms of AI model accuracy may largely depend on the training data quality. Therefore, the trustworthy AI relies on a 
trustworthy data set or data sources. To justify the trustworthiness of data, data traceability should be in place. Data 
provenance information may describe the following key aspects: who generated this data set, when this data set was 
generated, where this data set is hosted/stored, what are the characteristics (quality, features, etc.) of the data set, etc. It 
is often the case that raw data may not be ready to use by the AI system. Accordingly, certain data pre-processing may 
be needed in order to conduct data cleaning or other transformation operations. Therefore, how the data is being cleaned 
or pre-processed may also need to be traced. 
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More importantly, in a distributed AI scenario where the AI processing pipeline is distributed among different entities, 
more sophisticated AI data provenance management is needed. In this scenario, AI applications may initiate various AI 
processing tasks in an ad hoc way and those AI tasks may require AI processing to be executed by one or more AI 
Hosts (AIHs), where each AIH may host an AI Agent (AIA) for conducting AI-related processing (training or inferring) 
and/or some AI data to be used by AI processing. Federated Learning (FL) is a good example in which multiple FL 
participants (as AIHs) use their local data and computing resources to collaboratively train an AI model. 

To generate data provenance information and data trace records is the first step. The next step is to guarantee the 
security of data trace records. For example, data trace records may need to be securely stored and cannot be altered; 
distributed ledgers with its immutability property can be leveraged to store data trace records. Also, the access to data 
trace records need to be secure and only open to authorized parties. 

6.2.2 Traceability of the processing pipeline 

AI processing pipeline also needs to support traceability. The first reason is that AI reproducibility needs to be realized. 
For example, a research team-1 may intend to reproduce the AI training process for an AI model X, which was 
generated by another team-2. The second reason is to support AI explainability. It is worth noting that AI processing 
can be either centralized or distributed, which may lead to the need for different traceability solutions: 

• In a centralized AI processing case, all the processing is conducted by a centralized node/server. In other 
words, all the stages of the pipeline are executed by the same node. Various types of information can be 
recorded as provenance information. For example, the basic training environment information needs to be 
recorded such as software running environment, OS information, etc. Next, the input and output information of 
each stage can be recorded. During the model training stage, training-specific information is also essential for 
reproducing the training process, such as the hyperparameter selections/decisions, parameter values that are 
randomly set, etc. 

• In distributed AI processing case, multiple nodes or parties collaboratively work together to complete an AI 
processing pipeline. In this scenario, more information needs to be recorded. For example, in addition to 
recording AI processing information about each node, other system-wise or network information needs to be 
recorded, such as the data flow and interactions among different nodes. In one example, node A is responsible 
for the data pre-processing stage, and the output of node A will be sent to node B that is responsible for the AI 
model training stage. In another example, even within the same AI training stage, multiple nodes may be 
involved (e.g. to split and distribute model training to multiple distributed nodes). Accordingly, how those 
nodes collaborate with each other may need to be recorded as provenance information of the AI processing 
pipeline. In addition, other system context information also needs to be recorded, such as the network 
conditions or connectivity qualities between different parties since this information may explain the 
performance of the AI processing pipeline. For example, an AI training delay may be not solely due to the 
insufficient computing power of different nodes, but also by caused by the poor network connectivity among 
them. 

In distributed AI processing case, an important traceability-related issue is how to coordinate those multiple nodes 
(e.g. AIAs) so that they can efficiently and flexibly trace the AI processing pipeline. For example, traceability can be 
jointly designed and integrated with AI task deployment and/or AI model deployment: 

• First, a traceability management node can be used to configure appropriate trace instructions to different AIAs; 
a trace instruction can specify what kinds of information should be logged by the selected AIAs during the 
execution of an AI task. 

• Once an AIA obtains the AI task, it will install the AI task, prepare the needed AI data set, and/or connect to 
other AIAs if needed. The AIA may also configure its local AI tracing module based on the received AI trace 
instructions, in order to generate desired AI provenance information. 

• Similarly, an AIA running an AI model may also be configured with trace instructions in order to record who 
are the consumers of this AI model for inference and/or detect whether any evasion attack exists. 

• During the whole AI pipeline processing, all the created AI provenance information may be logged into a 
distributed ledgers so that the traceability information may not get malicious manipulation, which is essentially 
important to realize trustworthy AI. 
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6.2.3 Traceability of outputs 

6.2.3.0 Introduction to outputs traceability 

The outputs of an AI model may also require traceability, which has a number of potential benefits: 

• The first benefit is to support AI explainability. For example, when an input is sent to an AI model, a 
prediction output is generated, along with useful information regarding why such a prediction is made. In 
many critical applications, such as medical AI, an explainable prediction is essentially important to justify its 
reasonability in order to convince doctors to adopt the prediction result during diagnosis. 

• The second benefit is to record AI model inheritance. For example, in a transfer learning scenario, a trained AI 
model for application A may be treated as an initial AI model for training by another application B. In 
particular, it is known that intrinsic AI model defects may also be inherited by successors. Therefore, the 
traceability of AI model inheritance is very beneficial for AI model diagnosis. 

• The third benefit is to record useful information for detecting any potential security attack, such as an AI 
evasion attack. By recording all the inputs to an AI model and its prediction results, it is possible to identify 
potential evasion attacks. For example, if two similar inputs (e.g. 99,99 % similarities) get two significantly 
different prediction results, it is possible that the AI model is experiencing an evasion attack. 

• The fourth benefit is to detect the potential data set drift. In general, an AI model is trained based on certain 
training data. In practice, after the AI model is deployed, over time, the inputs of data for prediction may 
change, e.g. having a different data distribution compared to the original training data. The traceability 
information can be helpful to detect potential data drift so that the AI model calibration or re-training can be 
conducted in time. 

6.2.3.1 Types of concept drift 

Concept drift is a common phenomenon in the field of AI where data distribution changes. The data distribution refers 
to the joint probability distribution in the input data x and output data y, i.e. p(X, y). Concept drift means that the joint 
probability distribution changes. The situation that causes the model posterior probability p (y|X) to change is called 
real concept drift, and other types of concept drift are called virtual concept drift [i.48]. Real concept drift has higher 
impact on model performance than virtual concept drift: 

• Causes of concept drift. Concept drift is usually caused by external scenarios. For example, the change from 
urban to rural environment in autonomous driving, and the change of user purchasing interest with the season. 
This is mostly the change of p(X), which is consistent with 'data set drift' mentioned in the present clause. The 
other is the change of the decision boundary p(y|X). For example, with the expansion of network bandwidth 
over time, the definition of abnormal burst traffic changes too.  

• Concept drift classification from the perspective of drift transition. Concept drift can be divided into 
sudden drift, incremental drift, gradual drift, recurring drift, and blip drift [i.49]. Sudden drift refers to rapid 
and irreversible change. Both incremental and gradual drifts refer to the slowness of changes. Recurring drift is 
a temporary change that restores the previous state within a short period of time. A blip drift is a rare event that 
can be considered anomaly or an outlier. 

Concept drift can be managed by detection or adaption. Concept drift detection can use a data-oriented approach, which 
treats the concept drift problem as an independent step before model optimization. Concept drift adaption can use a 
model-oriented approach, which tends to manage concept drift implicitly by model adaptation and model 
generalization. 

Concept detection methods include three strategies: probability distribution-based method, statistical features-based 
methods, and model-based feature methods: 

1) Probability distributions of input data can be approximated by parametric methods (such as Gaussian 
distribution) and nonparametric methods (such as kernel density estimation). Probability distribution 
difference could be calculated by Kullback-Leibler divergence [i.50]. 

2) Statistical features include mean, median, variance and so on. Concept drift happens when statistical features 
change beyond a threshold [i.51]. 
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3) Model-based feature method tries to extract high-dimensional features from data through deep learning or 
other methods. This method is more effective especially when data distribution is difficult to distinguish when 
applied statistical features [i.52]. 

Concept drift adaption methods include model adaptation and model generalization methods: 

1) Model adaptation methods include continual learning, transfer learning, ensemble learning and meta-learning 
[i.53]. Continual learning aims to learn an adaptive model for new tasks (concepts) sequentially without 
forgetting old knowledge. Transfer learning is related to problems such as multitasking and domain adaption 
where concept drifts naturally exist. Ensemble learning can train multiple learners according to different 
conceptual scenarios. Meta-learning learns novel concepts through a small number of new samples. 

2) For model generalization methods, data augmentation [i.54] and [i.55], causal inference learning [i.56] and 
modularity learning [i.57] can improve the model generalization ability in the concept drift scenario. 

Concept drift detection has a number of evaluation metrics [i.48], including: 

1) False alarms: The ratio of the number of false alarms in detection to the total number of detections. 

2) Missing rate: The number of drifts that actually occurred but was not detected by the detection method. 

3) Drift detection delay: The time interval between the detection point of concept drift and the actual concept 
drift point. Generally speaking, the time delay is used to measure the timeliness of the detection method for 
concept drift detection. 

6.2.4 Model metadata and lifecycle management 

In order to support full-fledged AI model traceability, it is necessary to record essential information across the whole 
lifecycle of an AI model, referred to as model trace records. For example, MLOps (DevOps for ML) becomes popular 
in the sense that not only "how to build models" should be managed and recorded, but "how to run/operate models" 
should also be managed. MLOps allows the developers to apply frequent small/incremental upgrades to the AI model 
on a daily basis. Model trace records need to be securely stored and only be accessible to authorized parties. Distributed 
ledgers can be leveraged to store model trace records to prevent any party from modifying them: 

For example, [i.58] defined an MLOps framework, which extends the software lifecycle management to the AI domain 
and aims to enable customization/trust/traceability/flexibility of AI pipelines. 

Vartak et al. [i.59] also focused on the model lifecycle management aspect. The major observation of this research is 
that it is very difficult for AI researchers/engineers to remember all the details of an AI training process and the 
obtained insights. Accordingly, this work proposed the so-called ModelDB, which is to provide an end-to-end AI model 
management solution. ModelDB may allow a user to track all the provenance information of an AI model by 
conducting visual exploration and analysis.  

6.2.5 Reproducibility of the training process 

6.2.5.1 Definition of reproducibility 

Reproducibility is a fundamental concept in science, though the exact terminology and definition varies [i.60]. One 
general definition for reproducibility is that the results of a study or an experiment can be repeated identically by 
following the same methodology. In the domain of machine learning, the concept of reproducibility has been discussed 
in research and practice. Following the similar definitions in [i.64] and [i.61], a machine learning model's training 
process is reproducible, if under the same training setup (e.g. the same training dataset, training code, environment), the 
trained model produces the same results under the same evaluation criteria [i.62]. The evaluation criteria may be 
defined for a data sample (e.g. inference results) or over a data distribution (e.g. performance metrics). 

NOTE: The concept is to be distinguished from replicable, which means under a different data sample (from the 
same distribution as the original data sample) combined with original code and analysis yields similar 
results. 
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Reproducibility of the model training process is helpful in the development of AI models in the following ways: 

• It is critical for the training process to be reproducible for debugging and testing, so that the problematic 
behaviour can be consistently reproduced. When developers make changes to any part of the AI training 
process (let it be environment, data, or code), it would be unclear whether the difference between the newly 
trained model's performances is resulted by the intentional changes from the developers, or simply from 
randomness, if the training process is irreproducible. 

• Reproducible training process is critical for auditing and claim verification. Auditors and customers would not 
be able to verify the performance and behaviour claims of a model based on one training process, if such 
process cannot be reproduced even when all assets are traced. In this regards, reproducibility complements 
traceability in achieving a more trustworthy AI model. 

6.2.5.2 Evaluation and measurement of reproducibility 

As defined in clause 6.2.5.1, the reproducibility of a model's training process has a prerequisite that the training setup is 
consistent: 

• Most of the training setups are textual or numerical in nature (e.g. training code and environment 
configurations) and therefore straightforward to ensure consistency. 

• For assets such as datasets that are not necessarily textual or numerical in nature, comparisons with hash 
functions (e.g. SHA256) can be used to ensure binary consistency. 

Once the prerequisite is guaranteed, one can repeat the training process for two or more times to measure the 
reproducibility across multiple training processes. There are multiple different evaluation criteria that can be used, with 
different levels of difficulties to satisfy. Examples categorized based on level of difficulties to satisfy are described 
below: 

• Criteria with lower level difficulties to satisfy: 

1) Metric-level correctness. Several different performance metrics can be used to assess the reproducibility 
of the correctness of models, including but not limited to: accuracy, precision, recall, F1-score, AUC 
(for classification task), mae_loss (for regression task). These metrics should be calculated across 
multiple runs (≥ 30) [i.63] to assess the variance of the distribution [i.64]. In addition, for classification 
tasks, class-level metrics can be evaluated in addition to overall metrics. 

2) Model complexity. In the field of AutoML, neural network architectures can be generated automatically 
using a search-based approach [i.65]. These automatically generated neural network architectures can 
also have reproducibility. To evaluate whether the generated neural network architecture is reproducible, 
model complexity metrics can be used. Common metrics for model complexity includes model size, 
number of parameters, and other network-related complexity metrics [i.66]. 

3) Resource consumption [i.67]. To evaluate model reproducibility by resource consumption, the 
resources consumed by the training and inference process should be clearly stated. Metrics of evaluating 
training process resource consumption include training time and training epochs. Pham et al. [i.64] 
discovered that the training time across different runs of the training process can vary up to 4 014,8 %. 
This result reflects the impact from randomness in the training process. In addition, the resources 
consumed by the inference process can also be evaluated using metrics such as inference time. 

• Criteria with higher level difficulties to satisfy: 

1) Instance-level correctness. To evaluate the reproducibility of the instance-level correctness of a model, 
one can compare the inference results of individual data points in a given test set across different training 
runs. Metrics such as the ratio of data points with consistent inference results over the total number of 
data points can be calculated. 

2) Model robustness [i.68]. Model robustness metrics such as misclassification ratio can be used to 
evaluate a model's ability to handle adversarial attacks. The consistency of such metrics under the same 
adversarial inputs across several training runs can be used to evaluate the reproducibility of model 
robustness. 
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3) Model interpretation [i.67]. Many techniques have been proposed to provide interpretations of a model. 
At a global (model) level, interpretations can be derived using techniques such as permutation feature 
importance score [i.69]. At a local (instance) level, interpretations can be derived using techniques such 
as LIME [i.70], Anchor [i.71], and SHAP [i.72]. High reproducibility of model interpretation is an 
important aspect of high quality interpretations. For example, to evaluate the reproducibility of global 
interpretations, rankings of feature importance can be extracted from each run of training process, and 
then compared using metrics such as Kendall's tau (also known as Kendall rank correlation coefficient), 
Kendall's w (also known as Kendall's coefficient of concordance) or top_n overlap score [i.73].  

EXAMPLE 1: Assume that the training setup is determined (i.e. the training data, training code, software and 
hardware environments are set) for a given binary classification task. To evaluate the 
reproducibility of the training process, one can repeat the training twice and obtain two trained 
models under such identical training setup. The two trained models are then tested on the same test 
dataset. If the accuracies of the two models on the test dataset are identical, one can conclude that 
under the metric-level correctness evaluation criteria, the training process is reproducible.  

EXAMPLE 2: Furthermore, if for every data point in the test dataset, the two models produce identical inference 
results, one can then conclude that under the instance-level correctness evaluation criteria, the 
training process is reproducible. 

NOTE: Metrics listed above are often real numbers, and hence when compared, should take into consideration the 
precision of floating-point numbers stored in memory. 

6 Conclusion 
The present document summarizes existing and potential mitigation approaches against the misuse of the ownership 
rights, as well as presents existing challenges related to traceability in the context of ML. Classical Digital Right 
Management solutions are presented in the light of ML in the first part of the present document. Then, novel AI-specific 
techniques enabling models identification are presented along with the related threats and countermeasures. The second 
part of the present document is dedicated to the problem of traceability for trustworthy AI. It starts with the description 
of classical provenance concepts in the context of AI. It follows with a description of AI-specific traceability needs 
through the whole lifecycle of a model, which should be addressed in order to enable a good reproducibility of the 
results. 
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