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found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETS in respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the
ETSI Web server (https:/ipr.etsi.org/).

Pursuant to the ETSI Directivesincluding the ETSI IPR Policy, no investigation regarding the essentiality of IPRS,
including I PR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETS| Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM 2M ™ |ogo is atrademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM ® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword

This Technical Report (TR) has been produced by ETSI Technical Committee Securing Artificial Intelligence (SAl).

Modal verbs terminology

In the present document “should", "should not", "may", "need not", "will", "will not", "can" and "cannot" areto be
interpreted as described in clause 3.2 of the ET S| Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Introduction

Security testing of Al aims at identifying vulnerabilitiesin Al models. On the one hand, security testing of Al has some
commonalities with security testing of traditional software systems. On the other hand, the functioning of Al andin
particular ML poses new challenges and requires different approaches for several reasons:

e  Thereare significant differences between symbolic Al, sub symbolic Al, i.e. ML, versus traditional software
systems that have strong implications on Al and ML security and on how to test their security properties.

. Non-determinism: Al-based systems can evolve at runtime (self-learning systems), and thus, security
properties can degrade at runtime, too. If faced with the same input at different times, self-learning Al-based
systems can provide different predictions.

. Test oracle problem: assigning atest verdict is different and more difficult for Al-based systems since not all
expected results are known a priori.
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. Data-driven algorithms: in contrast to traditional systems, (training) data forms the behaviour of sub symbolic
Al, meaning security testing should be extended from the Al component to the data used for training or
continuous learning of a system.

Testing consists of several activities that include test planning and control, test design, test implementation, test
execution and test evaluation. The present document covers the testing activities test design, test execution and test
evaluation. For that purpose, the present document introduces methods and metrics to design test cases (see clause 4), to
measure the progress (see clause 5) and to evaluate test cases (see clause 6).

The present document addresses security testing approaches for Al, security test oracles for Al, and definition of test
adequacy criteriafor security testing of Al. Techniques of each of these topics are applied together to security test a

ML component. Security testing approaches are used to generate test cases that are executed against the ML component.
Security test oracles enable to calculate atest verdict to determine if atest case has passed, that is, no vulnerability has
been detected, or failed, that is avulnerability has been identified. Test adequacy criteria are used to determine the
entire progress and can be employed to specify a stop condition for security testing.

The security testing approaches addressed by the present document are not solely related to security but to robustness as
well. Issues with the robustness of ML components can result in both security and safety issues. Security issues of aML
component can enable an adversary to achieve a violation of one of the security properties, i.e. confidentiality, integrity,
and availability. Safety issues of aML component might endanger the environment in which the ML component and the
system it is part of is operating. Security issues might also lead to safety issues when, for instance, the availability or
integrity of safety measuresis affected. Testing of robustness of ML components related to safety-issuesin the
Automotive domain has been discussed, for instance, in[i.1].

ETSI
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1 Scope

The present document identifies methods and techniques that are appropriate for security testing of ML-based
components. Security testing of Al does not end at the component level. Asfor testing of traditional software, the
integration with other components of a system needs to be tested as well. However, integration testing is not the subject
of the present document.

The present document addresses:
. security testing approaches for Al;
. security test oracles for Al;
e  definition of test adequacy criteria for security testing of Al.

Techniques of each of these topics should be applied together to security test of aML component. Security testing
approaches are used to generate test cases that are executed against the ML component. Security test oracles enable to
calculate atest verdict to determine if atest case has passed, that is, no vulnerability has been detected, or failed, that is
avulnerability has been identified. Test adequacy criteria are used to determine the entire progress and can be employed
to specify a stop condition for security testing.

2 References

2.1 Normative references

Normative references are not applicable in the present document.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long-term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] Berghoff, C., Bidlik, P., Neu, M., Tsankov, P., & von Twickel, A. (2021, June). Robustness
Testing of Al Systems. A Case Study for Traffic Sign Recognition. In IFIP International
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generating next test cases. arXiv preprint arXiv:2002.12543.

[i.6] McKeeman, W. M. (1998). Differential testing for software. Digital Technical Journal, 10(1),
100-107.

[i.7] Pei, K., Cao, Y., Yang, J., & Jana, S. (2017, October). Deepxplore: Automated whitebox testing of
deep learning systems. In proceedings of the 26th Symposium on Operating Systems Principles
(pp. 1-18).
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3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:
adversarial example: carefully crafted input which mislead a model to give an incorrect prediction
perturbation: semantically meaningless modification of an input
EXAMPLE: Perturbation can have the form of noise added to an image.
substitute model: model created by an adversary to craft transferable adversarial examples

NOTE 1: The substitute model performs the same task as the target model but may use a different ML technique or
adifferent dataset.

NOTE 2: The terms surrogate model and substitute model are used synonymously.
surrogate model: See substitute model.
target label: label that an adversary wants the target model to output if fed with an adversarial example
target model: model an adversary wants to make wrong predictions

transferable adver sarial example; adversarial example which is crafted for one model but can also fool a different
model with a high probability

true label: correct label for an input from the ground truth

3.2 Symbols

For the purposes of the present document, the following symbols apply:

Lo Pseudo distance (number of non-zero elements)

L, Euclidean distance

Lo Chebyshev distance

Liow Flow field function

L, Distance that needs to be specified by the parameter p with p € {0,2, 0}

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

Al Artificial Intelligence

CLEVER Cross Lipschitz Extreme Vaue for nEtwork Robustness
DSA Distance-based Surprise Adequacy

FAB Fast Adaptive Boundary attack

FGSM Fast Gradient Sign Method

JSMA Jacobian-based Saliency Map Attack

L-BFGS computer-memory-Limited approximation of the Broyden-Fletcher-Goldfarb-Shanno algorithm
LSA Likelihood-based Surprise Adequacy

ML Machine Learning

NaN Not a Number

PGD Projected Gradient Descent

RelL U Rectified Linear Unit

SAI Securing Artificial Intelligence

SPSA Simultaneous Perturbation Stochastic Approximation
TISMA Taylor ISMA

WJISMA Weighted ISMA

ETSI



11 ETSI TR 104 066 V1.1.1 (2024-07)

Z00 Zeroth Order Optimization-based attacks
4 Security testing techniques
4.1 Introduction

Security testing techniques are used for designing test cases that are later on executed against an ML component. Such
test cases consist of the input data that is fed to the ML component to identify a vulnerability, e.g. a susceptibility to a
specific adversarial example. Clause 4 presents different approaches that can be employed for crafting such inputs. The
presented testing approaches can be divided into those that have been developed for traditional software and can be
employed for security testing of ML components as well, and those that are specific to ML. Furthermore, not al of them
are security-specific but can be more versatile with respect to the quality characteristics in question.

NOTE: Itisnecessary to ensure that the system is not designed to recognise the adversarial examples used in a
test environment and to run in such away that the test is passed by bypassing normal operation.

4.2 Mutation testing

4.2.1 Coverage-guided fuzzing

Coverage-guided fuzzing is atechnique that has been established for traditional software systems. For such systems,
code coverage has been extensively used as coverage metrics together with genetic algorithms, mostly using binary
mutation without protocol models, asin American Fuzzy Lop [i.2] and libFuzzer [i.3]. Odena et a. [i.4] transferred this
approach to neural networks of different architectures. Instead of random binary mutation, they use specific mutators
for images and text. For images, their approach mutates existing pictures by adding white noise either to the extent of a
user-configurable variance or by a user-configurable L., norm. As distance metric the approximate nearest nei ghbour
that is greater than a given threshold is used and assume a higher coverage is the distance to the nearest neighbour is
above this threshold.

NOTE: L, norm or Chebyshev distance simply takes the (mathematically absolutely) largest component of a
vector.

4.2.2 Metamorphic testing

Metamorphic testing [i.5] is a testing approach that relies on metamorphic relations to identify test inputs for which the
relationships between their outputs are known or could be identified, for instance using statistical methods. Based on
existing, passing test cases, new test cases can be derived using the metamorphic relations. Hence, metamorphic testing
requires the identification of metamorphic relations as afirst step. This can be a challenging task for complex scenarios
where relationships between different inputs and output are not obvious. The simplest example of a metamorphic
relation is for the sine function where two metamorphic relations can be derived from the periodicity of the sine
function:

sinx = sin(x + 2m) Q)
and
[sin x| = |sin(x + )| )

Metamorphic relations can be more complex than simple equality and the absolute value and can involve any
mathematical function. They are usually specific to the problem domain.

4.3 Differential testing

Differential testing [i.6] is atesting technique developed for traditional software that uses another system as a reference
system to identify deviations of the system under test when different behaviours of both systems can be observed. Test
cases are generated randomly, and test cases that result in different behaviours between the system under test and the
reference system are considered to have revealed a bug and are retained as regression test and for debugging purposes.
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The approach has been adapted for deep learning systems by Pei et al. [i.7] using neuron coverage metric (see
clause 5.2.2) to identify faults in neural networks by using an objective function that considers both systems and triesto
find inputs that lead to different classification results using their gradients.

4.4 Adversarial attacks

4.4.1 Introduction to adversarial data generation

Adversarial data generation is a discipline of adversarial machine learning that encompasses techniques for generating
such inputs for which an ML model generatesincorrect outputs. Such inputs are close to known inputs with corrects
outputs but despite that similarity have adifferent output. Such inputs are called adversarial samples or adversaria
examples and they have first been developed for computer vision. The general approach adds some noise, e.g. to an
image, to achieve a different output even though both inputs are so similar that there is no deviation that would justify a
different output. Even though adversarial examples have been widely generated for images, they are possible to be
generated for any kind of data.

The distance between an uncorrupted input with uncorrupted output and corrupted input with a corrupted output is
measured using some norm. Most used norms are the L, norm, the L, norm and the L., norm. They differ in how the
approximate the distance and their computational complexity. L, norm measures just the number of non-zero elements
of avector after subtracting the vectors from input and corrupted input, L, measures the Euclidean distance between
two vectors and is the computationally most complex norm, and L., measures the largest difference of the elements of
the difference vector. The lower the measured distance, the closer the corrupted inputs are to uncorrupted inputs. The
closer corrupted inputs are to uncorrupted inputs, the more likely it is they remain undetected, e.g. by a human, or they
are not successful due to a mitigation measure. Hence, the distance of the corrupted data to uncorrupted data generated
by a generation technique including the used norm to measure the distance constitute one aspect of the power of attacks,
referred to as quality of examplesin Table 1. In general, many approaches are guided by the gradient of the cost
function and work iteratively. Thus, there are lots of full-knowledge approaches that require access to the internals of
the models. However, zero-knowledge approaches can estimate the gradient or employ alocal search or use substitute
models constructed from queries to the model under attack. Another way to measure the power of an attack generated
through adversarial data generation is whether the technique can perform a specific corrupted output, i.e. if itis
targeted, or whether it can just be able to generate any corrupted output.

An important aspect relevant for adversarial attacks istheir property of transferability. Adversaria attacks transfer
between models of different architecture and models trained with different training sets. Transferability of adversarial
attacks has been investigated quite much. Several aspects have been investigated why adversarial attacks are
transferable. For instance, transferability can result from non-robust features in the used dataset [i.8], but also from
common adversarial subspaces shared between two ML models[i.9]. Model properties, e.g. properties of the input
gradients, e.g. their size and the alignment between two models, have been also identified to facilitate the transferability
of adversarial examples[i.10]. This property reduces the effort for the attacker as well as for testing. Thus, it makes the
approach of building a database of adversarial samplesjustifiable.

Table 1 presents an overview of the characteristics and properties of adversarial data generation techniques that are
presented in more detail in the remainder of clause 4.4.
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Table 1: Overview of techniques for adversarial sample generation

Knowledge |Optimization Technique Computational | Query |Quality of |Supported Targeted/
Efficiency Efficiency |examples norms untargeted
Full Gradient- L-BFGS low low medium L, targeted
knowledge |based NewtonFool high medium low L, untargeted
FGSM high high low Lo targeted
Basic Iterative low high medium Lo targeted
Method/Projected
Gradient Descent
JSMA low medium high Lo targeted
Carlini/Wagner low low very high | Ly, Ly, Ly, targeted
DeepFool high low high L, untargeted
adaptable
any L,
norm
Shadow Attack low low very high | adaptable untargeted
any L,
norm
Fast Adaptive high medium | very high | adaptable untargeted
Boundary Attack any L,
norm
Gradient-free |Spatial low low high specific targeted
Transformation (Lriow
based on
Ly)
Fast Feature high medium high Lo untargeted
Fool
Generative low low high Ly, L targeted
Universal
Adversarial
Perturbations
Zero training a Surrogate low low any full any full targeted
knowledge |[surrogate models knowledge |knowledge
model
gradient Z00 low medium high L, targeted
estimation SPSA low low high adaptable untargeted
any L,
norm
search- Rotation and high low high n/a untargeted
based Translation
Boundary Attack low low medium | adaptable untargeted
any L,
norm
Square Attack medium low medium Ly, L untargeted
GenAttack medium low medium Lo targeted
Universal low low high Ly, Lo untargeted
Adversarial
Perturbations
4.4.2 Security testing techniques requiring full knowledge
4421 Gradient-based techniques
4.42.1.1 L-BFGS

L-BFGS is an optimization algorithm (belonging to the class of quasi-Newton methods) that Szegedy et al. [i.11] used
to approximate the minimal distance (using the L, norm) between two images with different classification results by a
deep neural network. The perturbed image using aminimizer r is approximated since the original box-constrained
optimization problem is a hard problem.
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L-BFGS is a computer-memory-limited approximation of the Broyden—Fl etcher—Gol dfarb—Shanno algorithm. Szegedy
et al. use L-BFGS to approximate a perturbed image (denoted by x; = x + r) using line search to find the minimum
¢ > 0 for which the minimizer r satisfies f (x + r) = [, i.e. lead to adifferent result of the classifier, by minimizing:

c-lirll +J;(x +7,D (©)

e Ji(x/,1) isacontinuous loss function of the classifier f: R™ — {1..k} with k labels;
. [ isthe targeted label with [ € {1..k};
e x+r =x; isaperturbed image.

The approximation produces close adversarial samples at the cost of higher computational effort than FGSM since it
uses the L, norm instead of L, norm.

44212 NewtonFool

Jang et al. [i.12] first proposed utilizing a gradient descent-based approach in producing adversarial samples. The attack
isvery smplein nature, wherein the goal of the algorithm is to consider the score distribution produced by the model
for each possible class and attempting to find some perturbation that would reduce the probability of the original class.
This attack intrinsically exploits the nature of the softmax layer present in classification-based models to derive the
adversarial samples, at the cost of lowering its generalizability across data modalities.

The calculation of the adversarial sample is asfollows:

, 8- (VFs(x))
X =X o E—— 4
(v G @)

Where:

. ¢ isthe maximum value between the model gradient under L, norm and the relative difference of the higher
class probability prior to the softmax activation layer of the classifier;

e F,(x) represents the class score distribution prior to the softmax activation layer.

44213 Fast Gradient Sign Method (FGSM)

Fast Gradient Sign Method (FGSM) [i.13] is asingle-step method to produce adversarial samples using the L., norm.
The method calcul ates adversarial samples basically by choosing for each input feature in which direction it should
modify itsinput. FGSM can be used to generate untargeted as well astargeted attacks.

The calculation for untargeted attacksis as follows:
x'=x+e€- sign(V]f_l(x)) 5)
Where:

. e isasmall real number to be chosen for perturbation, small enough to be undetected ([i.13] chose 0,25 for a
shallow softmax classifier);

e Jpi(x) isthelossfunction of classifier f for truelabel I
e listhetruelabel.

The calculation for targeted attacksis as follows:

x'=x—¢€- sign(V]f_,(x)) (6)
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Where:

. e isasmall real number to be chosen for perturbation, small enough to be undetected ([i.13] chose 0,25 for a
shallow softmax classifier);

e Jpi(x) isthelossfunction of classifier f for target label [;

. listhe target |abel.

44214 Basic iterative method/projected gradient descent

The basic iterative method is an iterative version of theinitial FGSM method. The basic iterative method extends it by
starting with avalid image and adds in each step adding a parameter-based amount of noise to the pixel. It craftsthe
adversarial example starting with the original image and extends this step-wise as follows:

Xy = Clipx {X§™ + a - sign VyJp, (X§™)} (7)
Where:
e X isthe unperturbed image;
J listhetruelabel for X;
e Jri(x) isthelossfunction of classifier f for truelabel I

e Clipx (X'} performs per-pixel clipping of the image X', so the result will be in e-neighbourhood (according to
the L,,) of the source image X;

. a determines the amount of changes applied to each pixel per step.
Kurakin et al. [i.14] selected the number of iterations heuristically by min(e + 4; 1,25¢).

The basic iterative method is also known as Projected Gradient Descent (PGD) when it is used with noisy starting
points [i.15]. Several improvements have been proposed for these iterative attacks. Dong et al. [i.16] proposed adding a
momentum term to escape local maxima and achieve better convergence. Xie et a. [i.17] proposed applying random
transformations every set number of iterations to further diversify the adversarial inputs and converge more quickly to
an adversarial sample. Other similar improvements have also been proposed and claim to have a significant impact in
the overall efficiency and quality of the produced adversarial samplesin various use cases.

One issue with the basic iterative method and the projected gradient descent attack is that these attacks require careful
and precise parameter-tuning to obtain the best results, in particular with regards to the amount of perturbation to be
added in each successive step of the algorithm. While improvements have been suggested to alleviate this concern,
Croce and Hein [i.18] proposed a parameter-free alternative called auto projected gradient descent.

Unlike the former iterative attacks, auto projected gradient descent optimizes the amount of perturbation to be added in
adynamic fashion at each step of the iteration asit gradually transitions from exploring the entire feasible region to a
local optimization problem. Simultaneoudly, it adds a momentum term to control the convergence procedure and avoid
local minima. Finally, when the dynamic step sizeis halved in asingle step, which is to say when the algorithm
converged to some local minimum, the algorithm restarts from the current best candidate solution in order to prevent
premature convergence.

44215 Jacobian-based Saliency Map Attack (JSMA)

Jacobian-based Saliency Map Attack (JSMA) is an attack based on the L, norm [i.19]. It is based on the forward
derivative determined using the Jacobian matrix to identify the features and its values that has most impact on the
classification result. Thus, JSMA enables the identification of decision boundariesto enable the efficient search for
adversarial samples. JSMA generates targeted attacks based on avalid input example, using a maximum distortion
parameter and a feature variation parameter.

To generate ISMA attacks, three steps are applied:

1) Theforward derivative of a candidate adversarial sample needs to be computed. To do so, the Jacobian is
computed layer-wise.
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2) Usetheforward derivative to construct a saliency map for the candidate adversarial sample. Saliency maps
describe the impact of each input feature on the classification result.

3) Moaodify an input feature selected based on saliency map by the feature variation parameter. Repeat this step
until the networks provides the targeted class as classification result or the maximum distortion parameter has
been reached.

NOTE: Thisattack appliesto feed-forward neural networks and can be applied to recurrent neural networks by
unrolling a certain depth of layers.

Loison et a. [i.20] developed two improvements on JISMA: Weighted ISMA (WJSMA) and Taylor JISMA (TJSMA).
WJISMA penalizes gradients related to small probabilities of 1abels to reduce their impact on saliency maps.
Additionally, TISMA penalizes those features components that are close to the maximum feature val ue through the use
of Taylor terms.

44.2.1.6 Carlini/Wagner attack

The attack presented by Carlini et al. [i.21] was developed to show that a hardening mechanism for neural networks
called defensive digtillation is not effective. It generates adversarial examples by the following:

argmin ||x' — x|, + ¢ - f(x) (8)
Where:
e  x'isaperturbed image;
e xisavaidimage;
. c isan arbitrary number with ¢ > 0;
e  f(x') isan objective function with f(x") < 0 if the classification result isthe desired target class C(x") = t.

The Carlini/Wagner attack [i.21] has been developed for the L, L,, and L., norm. It has no upper bound on the amount
of perturbation, hence, it always succeeds in finding an adversarial example.

44217 Deepfool

The Deepfool attack [i.22] crafts an adversarial attack by projecting an image on the decision boundary's nearest
hyper-polyhedron face. The approach triesto find a solution to this problem iteratively by trying to push an input right
behind the closest hyperplane of the decision boundary. The closest hyperplane is identified based on the probabilities
of the classifier's output for each label. Then, Deepfool checksif the classification result differs from the original input.
Dueto its heuristic nature, there is no formal guarantee that the algorithm finds the adversarial image with the least
perturbation.

The closest hyperplane is calculated by the following formula:

I(x0) = argminw

9

Wizl
Where:
e  x,isavalidimage;

e f, refersto the output with the k-th highest probability and k refers to the output with the highest probability.
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44.21.8 Shadow Attack

Ghiasi et d. [i.23] presented an attack which can be claimed to be a generalization of projected gradient descent, with a
focus on the visual and defensive imperceptibility of the resulting adversarial samples. The main mechanism they utilize
is, instead of solving a constrained optimization problem over the model loss exclusively as for projected gradient
descent, they attach several additional penalty termsto the objective. Specifically, they solve the following optimization
problem:

maxg L(6, x + 8) — A.C(6) — A1, TV(S8) — A Dissim(5) (10

Where:

e xisavalidimage;

. 6 isthe added adversarial perturbation;

. 6 represents the model parameters;

o A A, A @re scalar penalty weights;

. C(8) isapenalty constraining the change per channel;

. TV (&) isapenalty constraining the total variation of the perturbation;

e Dissim(6) isapenalty constraining the maximum variation per channel.

44219 Fast Adaptive Boundary attack (FAB)

Croce and Hein [i.24] presented the Fast Adaptive Boundary attack (FAB). The attack functionsin a similar way to
Deepfool (seeclause 4.4.2.1.7), where there is a built-in a gorithmic incentive to quickly reach the decision boundary.
However, unlike Deepfooal, it also utilizes some additional criteriato emphasize closer proximity to the original image.
In contrast to Deepfool, FAB includes the box constraint for images, whereas Deepfool performs the clipping after the
solving, FAB uses a bias toward the original input and also performs backward steps, final search (afurther iteration
once an adversarial example is found, and random restarts, thus, further reducing the perturbation.

4.4.2.2 Gradient-free techniques

44221 Spatial transformation

In contrast to the first approach to generate adversarial samples that work on pixel level to calculate some specific noise
that leads to a misclassification, spatial transformation works on the whole image and performs some "optical"
transformation by stretching parts of an image based on the logit outputs of the true label and the targeted label.

The formal definition of a spatial transformation is given by the following equations[i.25]:
xc(tgv = quN(u(i),v(i)) x(q) (1 - |u(i) - u(q)D(l - |v(i) - U(Q)D (11)
Where:
e x@ jsthevalue of thei-th pixel at a certain location;

o (u®,v®)isthe 2-dimensional location of thei-th pixel;

o N(u®,v®) aretheindices for 4-pixel neighbours (top-I&ft, top-right, bottom-left, bottom-right) around the
location (u®, v®).

ETSI



18 ETSI TR 104 066 V1.1.1 (2024-07)

The function to confine the amount of perturbation is called the flow field. This flow field function is determined by
minimizing the following objective function:

f= argj{nin[l'adv (x, f) +7- Lflow (f)] (12
Where:
. Lqq» SErvesthe purpose to ensure the targeted misclassification;
®  Lg,y, Minimizesthe spatia transformation;

. T isafactor to balance Lqq,, and Lgyg,,-

Laav (. f) = max (max g (aan)i — 9 (Xaar)erk) (13)
Where:
o  g(x); representsthei-th vector of the logit output of the model;

. k is used to control the attack confidence level.

Litow (f) = X3 PEE 3 v VI18u® — Au@ |12 + [[av®) — Av@)||2 (14)
Where:

. A isthe amount of displacement of a pixel.

44222 Fast feature fool

Fast feature fool is an approach to universal adversarial perturbations that works independent from specific training data
and would result in a misclassification for most of the input data [i.26]. The approach employs a L., norm to confine the
amount of perturbation. The idea of the approach is to exploit the dependencies between the layers of a convolutional
neural network. To do so, fast feature fool aims at over-saturating the activations, i.e. features of each convolutional
layer to propagate misclassification from one layer to the next.

Loss = —log(T1K, 1,(8)) St |16l < & (15)
Where:
e [,(8) isthe mean activation of the output at layer i;
. 6 isthe perturbation that is fed to the neural network;
e K isthe number of layers of the model;

. & isthe maximum allowed pixel intensity.

44223 Generative universal adversarial perturbations

Generative universal adversarial perturbations employ a generative network that istrained against the target model
[.27]. It creates afixed size perturbation § independent from the input image of the target model. This § is then scaled
by afactor w. The scaled perturbation is added to an image and then fed to the target network to computeitsloss. The
lossis used to update the weights of the generative network. Since the generative network is unaware of the used image,
it islearning universal adversarial perturbations.
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4.4.3 Security testing techniques requiring zero knowledge

4431 ZOO: Zeroth Order Optimization-based attacks

The ZOO attack is a zero-knowledge approach that does not rely on training a surrogate model to obtain gradient
information from it to apply adversarial sample generation techniques[i.28]. Instead, it estimates the gradient with the
symmetric difference quotient and employsit to generate attacks using through zeroth-order stochastic coordinate
descent.

Z00 further uses dimension reduction, hierarchical attack, and importance sampling techniques to make the attack
generation more efficient. The quality of examples with respect to noise is comparable to Carlini/Wagner attack.

The gradient itself is estimated using symmetric difference quotient:

_f(x) _ flx+hep)—(x—h-e;
T ooy = 2h

(16)

i
Where:
e  f(x) isthefunction whose gradient is to be estimated;
e x; isthepoint at which thei-th element of the vector is approximated;
. h isavery small number;
. e; isthe standard basis vectors with 1 at the i-th element.

The attacks are generated using stochastic coordinate descent which in each iteration randomly selects any input feature
to optimize using the estimated gradient aiming at a better perturbation to generate an adversarial example. The
algorithm can be used also with the Adam optimizer of with or without Newton's method.

4.4.3.2 Boundary attack

Brendel et al. [i.29] proposed a zero-knowledge attack which relies on the outputs only to approximate the decision
boundary of the model and then query the model repeatedly as it tries to minimize the perturbation required to obtain a
misclassification. It does so in severa steps.

1) Itfirst attemptsto find avalid adversarial sample by adding a large perturbation to the input image in arandom
direction.

2) Utilizing the adversarial sample, it attempts to reduce the perturbation to approximate the distance to the
decision boundary of the target model over a predefined number of steps.

3) Theattack then involves performing a rejection sampling procedure alongside the boundary of the attack for a
specified number of iterations, returning the best candidate as the solution of this optimization procedure.

4.4.3.3 Square attack

Adriushchenko et a. [i.30] proposed a zero-knowledge attack which involves performing a random search technique to
add random perturbations to the image in an attempt to solve a constrained optimization problem over some custom
defined loss. During each iterative step, the attack perturbs a square selection of pixels as defined by the L,, norm
specified. Additionaly, the attack utilizes early termination onceit finds avalid adversarial sample. It isatechnique
with high query efficiency and can quickly converge to avalid adversarial sample. While it can be easy to detect and
defend against Square Attack, doing so will increase model robustness against multiple types of attacks that replace
regions of the input with repeated patterns.

4434 SPSA-based attacks

To estimate the gradient, a technique called stochastic approximation using simultaneous perturbation can be applied.
The approach has been employed by Uesato et al. [i.31] to generate adversarial attacks and is considered to be more
reliable in finding adversarial samples. However, the optimization is more difficult than for optimization algorithms
used by other attacks due to the high number of hyperparameters [i.32]. Furthermore, even though it providesreliably
adversarial examples, they are often worse than those from other attacks [i.31].
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4435 Rotation and translation

The approach from [i.33] applies arotation and a translation to an input image to obtain a misclassification. The
approach optimizes over a set of parameters, i.e. the translation coordinates of the picture and the degree of rotation.
Since the transformation isimplemented as a differentiable function, the optimization can be based on the loss function.
Due to the only three dimensions of the parameter space, grid search is afeasible and successful approach. Due to the
quite small input space, worst-of-k is the third approach that randomly samples k attack parameters and then assesses on
which of these k parameters the target model performs worst. The transformation is defined as follows:

e R vt B R @

Where:
. [1;] isthe location of the pixel to be transformed.

. 0 isthe degree of rotation performed to the image;

. 6 isthe amount of trandation.

4.43.6 GenAttack

In contrast to other approaches, GenAttack [i.34] employs a genetic algorithm for generating adversarial attacks with
zero knowledge about the internals of the ML component. Individual s for the population are bred by adding random
noise along each dimension around an original valid example. The fitness function considers the attacked model's
increasing confidence in the target label and decreasing confidence in the other labels as a fitness function. Crossover is
implemented by exchanging features between two individuals using a fitness-based probability function. In contrast to
the ZOO attack, GenAttack can reduce the number of queries.

4.4.3.7 Universal adversarial perturbations

Moosavi et al. [i.35] employ the Deepfool approach to generate universal adversarial perturbations using alocal search
that aims at moving a datapoint to the decision boundary of a classification region. Universal adversaria perturbations
lead to a misclassification on almost any input. The algorithm presented by Moosavi et d. [i.35] iterates over a dataset
containing all the images, computes the minimal perturbation that would move the point to the decision boundary of the
currently considered classification regions, and updates the universal perturbation with the newly identified minimal
perturbation. The computation is performed using the Deepfool approach described in clause 4.4.2.1.6. A graphical
representation of the approach for generating universal adversarial perturbations can be found as Figure 2 of [i.35].

5 Test adequacy criteria

5.1 Introduction

Clause 5 provides information on several metrics that might be useful when security testing ML components. Such
metrics are test coverage criteria discussed in clause 5.2.1 and stop criteria discussed in clause 5.2.2. In contrast to
traditional security testing for which coverage metrics are used to measure test progress and are used as a stop criterion,
e.g. code coverage, testing of ML models provides explicit stop criteria, often in terms of adversarial robustness metrics
that enable the direct measurement on whether the ML component is getting more secure. The metrics and coverage
criteriain clause 5 are considered as not sufficient to increase the robustness of neural networks [i.36]. Hence, such
metrics should not be used solely.

NOTE: Coverage metricsin traditional software testing are used to measure the intensity as piece of software has
been tested [i.37].
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5.2 Test coverage criteria

5.2.1 Common concepts and notations

5211 Introduction

Most of the subsequent clauses refer to some common formulas to simplify the coverage metrics and increase their
comprehensiveness. These common formulas are introduced in the subsequent clauses.

5.2.1.2 Activation value

The activation value of aneuron n of aneural network that is stimulated with an input x has the following notation:
¢(n,x) (18)

Where: n isreferring to the considered neuron from the neural network;

x isthe input to the neural network.

521.3 Activation trace

Kim et al. [i.38] introduced the notion of an activation trace that captures the activation val ues of the neurons of a neural
network when stimulated with a certain input, and the set of all activation values as a matrix that can be obtained when
stimulating the neural network with a set of inputs. In that sense, it is a generalization of the activation values with
respect to the considered neurons and inputs. The activation trace of a set of neuronsis defined as follows:

¢(n11x)
aN(x)=< > (29
¢ (ny, x)

Where:

e N refersto an ordered subset of neurons from a neural network;

e xisaninputttothe neura network.
The cardinality of ay(x) isequal to |[N]|.
The set of activation values obtained from a set of inputsis defined as follows:

Ay(X) = {aylx € X3 (20)

Where:

e N refersto an ordered subset of neurons from a neural network;

e  xisaninputttothe neura network.

5214 Major function region

The basis of k-multisection neuron coverage is the so-called major function region derived from the training set. The
major function region isaclosed interval [low,,, high,] where the low,,and high,, are the minimal and maximal
activation values ¢ (n, x) of aneuron n obtained from the training set. K-multisection neuron coverageis discussed in
clause 5.2.2.3.
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5.2.2 Neuron-level coverage metrics

5221 Overview

Neuron-level coverage metrics are measuring activation values and are structuring them in areas observed during
training that are then compared to what is observed during testing. Figure 1 shows the different areas that are observed
by the different metrics. The vertical bar represents the range of activation values of a neuron observed when the
training set is fed to the trained model, its lower bound is denoted by ¢, ¢rqin, its upper bound by ¢4y ¢rqin- The part
of this range above a certain threshold comprised by the bracket referred to by A is subject to neuron coverage. The
range of B isdivided into k equal section and is measured by k-multisection coverage. k-multisection coverage has
similarities to equivalence partitioning for testing traditional software but the sections have no semanticsin k-
multisection coverage. Neuron boundary coverage measures how many neurons are activated below ¢y, ¢rqin and
above ¢ay 1rain DY the training set, denoted by C and D. In that sense, it is similar to boundary value analysis for
testing traditional software. Strong neuron coverage isidentical to neuron boundary coverage but focusses only on the
values above ¢4 trqin, denoted by C.

C
* max,train

A

reshold

3

n,train )

- D
Figure 1: lllustration of neuron-level coverage metrics for a single neuron

5.2.2.2 Neuron coverage

Pei et a. introduced the metric of neuron coveragein [i.7] for aneural network with Rectified Linear Units (ReLUs) as
activation function. Given atest input set, neuron coverage is measured by the number of neurons whose output value is
higher than a certain threshold for all elements from the test input set. The formal definition givenin[i.7] isasfollows:

|{n|Vx ET,p(n,x) > t}|
[N|

NCov(T,t) = (21)
Where:

. T isthe set of test inputs;

e  xisaneement from the set of test inputs;

e N istheset of al neuronsfrom the network;

e nrefersto aneuron from the network;

. t isathreshold that determines whether a neuron is activated, e.g. 0;

. ¢(n, x) denotes the activation values of the neuron n if the neural network receives test input Xx.

NOTE 1: The parameter t, i.e. the threshold, determines how hard it is to achieve the coverage criterion.

NOTE 2: This metric was applied to neural networks with ReL Us as activation function.
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5.2.2.3 k-multisection neuron coverage

The k-multisection neuron coverage metrics measures for each neuron how well its output space is covered. It doesthis
by dividing the interval between the minimum and maximum output value of each neuron, observed during training,
into k equal sections and counting the ratio of sections that are covered by at least one value of the test set [i.39].

quax,train

k
i+1 X
i X
2 X
1

¢min,train (ptest
Figure 2: lllustration of k-multisection neuron coverage for a single neuron

The basis of k-multisection neuron coverage is the so-called major function region derived from the training set. The
major function region isaclosed interval [low,,, high,,] where the low,, and high,, are the minimal and maximal
activation values ¢ (n, x) of aneuron n obtained from the training set. To measure the degree to which a major function
region, i.e. theinterval [low,, high,], iscovered, it is partitioned into k sections. If for each of these k partitions at least
one activation value is observed, this neuron is considered as covered. The mgjor function region of aneuronis
completely covered if al k partitions of its major function region are covered by the test input set. A formal definition
from[i.39] isasfollows:

Snen{S{'[3x € T: p(n,x) € S7'

KMNCov(T, k) = T

(22)

Where:
. T isthe set of test inputs;
e  xisaneement from the set of test inputs;
. N isthe set of all neurons from the network;
e nrefersto aneuron from the network;
. S refersto the set of values of the i-th partition of the major function region of neuron n;
. ¢(n, x) denotes the activation values of the neuron n if the neural network receives test input Xx.

NOTE 1: The parameter k, i.e. the number of partitions derived from a major function region, determines how hard
it isto achieve the coverage criterion.

NOTE 2: This metric applies to feed-forward neural networks and can be applied to recurrent neural networks by
unrolling a certain depth of layers.
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5.2.2.4 Neuron boundary coverage

Neuron boundary coverage measures for each neuron if avalue below and above the minimal and maximal output value
observed during training, is observed during testing [i.39]. It is based on corner cases derived from the mgjor function
region of each neuron as defined in clause 5.2.2.3:

__ |LowerCornerNeuron|+|UpperCornerNeuron|

NBCov(T) = 2] (23)

Where:
e  LowerCornerNeuron = {n € N|3x € T: p(n, x) € (—, low,)};
. UpperCornerNeuron = {n € N|3x € T: ¢(n,x) € (high,, +)};
. N isthe set of all neurons from the network;
. n refersto a neuron from the network;
. T isthe set of test inputs;
. x isan element from the set of test inputs;
. low,, isthe lower border of the major function region of neuron n;
. high,, isthe upper border of the major function region of neuron n.

NOTE: This metric applies to feed-forward neural networks and can be applied to recurrent neural networks by
unrolling a certain depth of layers.

5.2.25 Strong neuron activation coverage

Strong neuron activation coverage measures for each neuron how many corner cases above the maximal output value
observed during training are observed during testing [i.39]. It can be considered as a specialization of neuron boundary
coverage. A formal definition from [i.39] is asfollows:

SNACov(T) = |Upp€TCO1|”ZTTNeuron o0

Where:
. UpperCornerNeuron = {n € N|3x € T: ¢(n,x) € (high,, +)};
. N isthe set of all neurons from the network;
. n n refersto a neuron from the network;
. T isthe set of test inputs;
. x isan element from the set of test inputs;
. high,, isthe upper border of the major function region of neuron n.

NOTE: Thismetric applies to feed-forward neural networks and can be applied to recurrent neural networks by
unrolling a certain depth of layers.
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5.2.3 Layer coverage metrics

5.231 Top-k neuron coverage

Top-k active neurons is defined based on the activation values of the neurons of a single layer. Top-k neuron coverage
measures how many different neurons were the most k active neurons during testing [i.39]. The higher the number of
k neurons during testing is considered better. A formal definition is as follows:

TKNCov(T, k) = UXET(Uisli;ll””k("'i” (25)

Where:
. T isthe set of test inputs;
e  xisaneement from the set of test inputs;
e N istheset of al neuronsfrom the network;
. [ isthe number of layers of the neural network;

. topy (x, 1) isthe set of k neuronsin layer i of the neural network with k highest activation values ¢ (n, x)
giveninput x.

NOTE 1: The parameter k determines how many active neurons are considered for this metric. If k isset to 1, this
metric is similar to neuron coverage without a threshold value (see clause 5.2.2.2).

NOTE 2: This metric applies to feed-forward neural networks and can be applied to recurrent neural networks by
unrolling a certain depth of layers.

5.2.3.2 Top-k neuron patterns

Top-k neuron patternsis similar to top-k neuron coverage by considering the top-k active neurons as k-tuples instead of
single neurons [i.39]. A formal definition is as follows:

TKNPat(T, k) = |{topy(x,1), ..., top, (x, )]|x € T}| (26)
Where:
. T isthe set of test inputs;
. x isan element from the set of test inputs;
. [ isthe number of layers of the neural network;

. topy (x,1) isthetuple of k neuronsin layer i of the neural network with highest activation values ¢ (n, x)
giveninput x.

NOTE: This metric applies to feed-forward neural networks and can be applied to recurrent neural networks by
unrolling a certain depth of layers.

5.2.4  Surprise Adequacy

5241 Basic idea

Surprise metrics are based on the idea that atest set should be somehow new to a neural network with respect to the
training data set [i.38]. Surprise adequacy is measured using similarity of new test inputs to existing training inputsin
terms of activation values expressed as activation traces (as specified in clause 5.2.1.3).
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5.2.4.2 Likelihood-based Surprise Adequacy

Likelihood-based Surprise Adequacy (LSA) [i.38] uses kernel density estimation to approximate the probability density
of the activation values in an activation trace and defines surprise adequacy based on a density function £ such that the
metric increases when the density function decreases:

LSA(x) = —log (f(x)) (27
Where:
e  xisthetestinput;
e  fisthedensity function.

NOTE: Thismetric is computationally expensive. Hence, the authors reduce the computational effort by
considering only neurons from a selected layer and ignore neurons whose activation value variance is
below a certain threshold. The computational costs can further be reduced by computing LSA per class
under the assumption that the activate traces are similar if inputs are from the same class.

The authors use a Gaussian kernel function to produce the following density function:

—1 .
|An ()]

fx) = Vxier Ku(an () — ay(x) (28)
where:

. x isthe test input;

. T isthe set of training inputs;

. x; isan input from thetraining set T;

e N isthe number of considered neurons, e.g. reduced to a single layer of a neural network;

e  Ap(T) arethe activation traces of the training set of the considered neurons N;

. K isthe kernel function, e.g. Gaussian kernel function with a bandwidth matrix H.

5.24.3 Distance-based Surprise Adequacy

Distance-based Surprise Adequacy (DSA) [i.38] is a computationally cheaper version of L SA that uses Euclidean
distance of activation tracesinstead of a density function to compare new inputs with activation traces from the training
phase. It uses the distance between a new input and the closest activation trace obtained from the training set. A formal
definition of DSA isasfollows:

distg
distp

DSA(x) = (29)
Where:

® dist, = |lay(xq) — ay(x)Il;

° x, = argmin||ay(x,) — ay(x)I;
D(xj)=cx

e D(x;) denotesthe classification result of aneural network when stimulated with input x;;

. ¢, isthe predicted class of input x.
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5.3 Stop criteria

5.3.1 Relationship of stop criteria to metrics for neural networks

Stop criteriafor testing are usually defined on the basis of metrics as those provided by clause 5.2. However, as
discussed by [i.36], relying on such metricsis not sufficient when using security testing with these metrics together with
adversarial training to achieve networks that are more robust with respect to adversarial samples than the neural

network before testing and adversarial training. Hence, the following metrics provide a means to identify a neural
network'’s robustness and thus, can serve as stop criterion in conjunction with a goal to be specified before testing,

e.g. as arobustness requirement.

532 Adversarial robustness

5.3.2.1 Global Lipschitz constant

53211 Introduction

The basic idea of the Lipschitz constant isthat it confines the maximum slope of a continuous function and thus, implies
that small changes to the input only lead to small changesin the output of function. The Lipschitz constant measures the
factor between the output difference and the input difference and can be illustrated as follows:

If ) = FCIlp, < A-lIx =2, (30)

Where:

. x isan input value;

e X isanother input value;

e  f(x) isthefunction value of x;

. f (%) isthe function value of %;

. II'- I, isan L,-norm;

. A isthe value whose smallest value is the Lipschitz constant.

The global Lipschitz constant aggregates all the local Lipschitz constants of a neural network layer-wise. Thus, the
global Lipschitz constant measures the sensitivity to adversarial samples[i.36]. The assumption for thisisthat the loss
for an adversarial sampleisto be maximized whilst the €, i.e. the distance of an adversarial sampleto a"norma" sample
isminimized. Thisleads to a situation where a classification error results from, e.g. white noise added to a normal
sample. Generally, it can be said the smaller the global Lipschitz constant of a network is, the more robust it could be
considered.

5.3.2.1.2 Global Lipschitz constant calculation for neural network architectures

Cisse et al. [i.41] and Dong et al. [i.36] provide rulesfor calculating the global Lipschitz constant for several neural
network architectures. The calculation of the Lipschitz constant for afully connected layer according to [i.36] isas
follows:
A = maxy Zisil|wi]:k| (31)
Where:
. wi’:k isthe weight between the k-th neuronin layer L; and the i-th neuroninlayer L;_,;

. s;j isthe number of neuronsin Layer L;.

Cisse et al. [i.41] provide aso calculation rules for convolutional layers and aggregation/transfer layers.
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NOTE 1: The Lipschitz constant isin general independent of the number of layers of a neural network and depends
mainly on the weights of a network.

NOTE 2: The calculation of the global Lipschitz constant might be computationally expensive or infeasible.

5.3.2.1.3 Global Lipschitz constant calculation using Extreme Value Theory

This attack-independent metric measures the adversarial robustness of a neural network against any attack that identifies
the minimal distortion given an L,, norm [i.40]. CLEVER stands for Cross Lipschitz Extreme Value for Network
Robustness. In contrast to the global Lipschitz constant that focusses on the relationship between input values and the
loss of the classification result, the CLEVER score focusses on the minimal distance between an input and a perturbed
input that leads to different classification result for a given input:

Xq =X+ 06 (32
where;
e  x,isavalid sample;
° 4 isthe noise for perturbation with [,, distortion A, = [|5]],.
The CLEVER score describes the lower boundary of €, i.e. 8, < €, such that the classification results will be the same,
i.e. D(x) = D(X).
5.3.2.2 Local adversarial robustness

Local adversarial robustnessis a generalization of the CLEVER score measures the robustness against perturbation
attacks. It defines for a single input the perturbation threshold for which the classification result remains the same for
any derived input below that threshold, using a certain Lp-norm. A formal definition isoriginaly givenin [i.42] and
restated by [i.36]:

Ix —x'l|lo <& (33)
Where:
e xisasinglevadidinput;
. x' isany other input that satisfies the above formulg;
e  § isthat maximum distance around x;
that satisfies:
P(x) = p(x") (34)
Where:
. ¢ (x) denotes the classification result of the neural network for input x;
e  ¢(x") denotesthe classification result of the neural network for input x'.

NOTE: Katz et dl. [i.41] denote this as 6-locally-robust.

5323 Global adversarial robustness

Global adversaria robustnessis a generalization of local adversarial robustness with respect to the given input. In
contrast to local adversarial robustness that considers a single give input that needs to be robust to perturbations below a
static threshold, global adversarial robustness extends this statement to any input whose classification result needs to be
robust against any perturbation below a certain threshold. A formal definition is given by [i.36]:

X1 = xlle0 <6 (35
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Where:
. x, isany valid input;
. x, isany adversarial perturbation around x; such that the formula above holds;
. 6 isthat maximum distance around x; ;
that satisfies:
lpr —p2l <€ (36)
Where:
. p, isthe output of the neural network for label a for x; ;
. p, isthe output of the neural network for label a for x,;
that holds for any input values x; and x, that satisfy formula (1).
NOTE 1. Katz et al. [i.42] denote this as e-6-globally-robust.

NOTE 2: Thistheoretical concept can be hard to implement and computationally infeasible for large networks and
high-dimensional input spaces.

6 Security test oracles

6.1 Introduction

A test oracle is a mechanism for determining whether a test case has passed and involves comparing the system's output
to the expected output. In doing so, bugs or faultsin the system can be detected.

6.2 Statistical and probabilistic test oracles

A probabilistic test oracle does not provide an exact verdict whether atest case has failed or passed but provides a
probability in terms of areal number by using statistical tests and providing an estimation of the error that the test
verdict given by the oracle is correct [i.43]. Statistical test oracles are useful if the statistical properties of the data are
known, e.g. the distribution of data.

6.3 Pseudo test oracles

6.3.1 Not a Number

NaN stands for 'Not a Number' and is provided by some programming languages if an input or calculation is not a
number, e.g. astring, or as aresult to some error in the calculation, precision, or length of the resulting value. Odena et
al. [i.4] used this as an oracle to find numerical errors that result from the fact the neural networks are implemented
using floating-point math.

6.3.2 Differential testing

Differential testing [i.6] or differential fuzzing is employing a pseudo-oracle through another system that provides the
same functionality (as presented in clause 4.3). Each test case is executed against the system under test as well asthe
reference system. The reference system serves as a pseudo-oracle. The results of both executions are then compared. If
they are not identical, it is assumed that the system under test is misbehaving.

NOTE: No systemiserror-free and hence, also existing but yet undiscovered errors in the reference system can
lead to false positives and fal se negatives when calculating the test verdict.
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6.3.3 Metamorphic relations

Metamorphic testing [i.5] (discussed in clause 4.2.2) is based on the idea that if atest oracle is not available, comparing
inputs and outputs of the test item and identifying the relationships between them in terms of, e.g. qualities, inequalities,
periodicity properties can be used to specify atest oracle. These relationships specify how a modification to an input
result in which changes to the corresponding outputs and are called metamorphic relations. Thus, metamorphic relations
can be used in place of test oracles and are helpful if atest oracle is not available. The challenge is the identification of
expressive and representative metamorphic relations.
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