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Foreword 
This Technical Report (TR) has been produced by ETSI Technical Committee Securing Artificial Intelligence (SAI). 

Modal verbs terminology 
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be 
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions). 

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. 

Introduction 
Security testing of AI aims at identifying vulnerabilities in AI models. On the one hand, security testing of AI has some 
commonalities with security testing of traditional software systems. On the other hand, the functioning of AI and in 
particular ML poses new challenges and requires different approaches for several reasons: 

• There are significant differences between symbolic AI, sub symbolic AI, i.e. ML, versus traditional software 
systems that have strong implications on AI and ML security and on how to test their security properties. 

• Non-determinism: AI-based systems can evolve at runtime (self-learning systems), and thus, security 
properties can degrade at runtime, too. If faced with the same input at different times, self-learning AI-based 
systems can provide different predictions. 

• Test oracle problem: assigning a test verdict is different and more difficult for AI-based systems since not all 
expected results are known a priori. 

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx
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• Data-driven algorithms: in contrast to traditional systems, (training) data forms the behaviour of sub symbolic 
AI, meaning security testing should be extended from the AI component to the data used for training or 
continuous learning of a system. 

Testing consists of several activities that include test planning and control, test design, test implementation, test 
execution and test evaluation. The present document covers the testing activities test design, test execution and test 
evaluation. For that purpose, the present document introduces methods and metrics to design test cases (see clause 4), to 
measure the progress (see clause 5) and to evaluate test cases (see clause 6). 

The present document addresses security testing approaches for AI, security test oracles for AI, and definition of test 
adequacy criteria for security testing of AI. Techniques of each of these topics are applied together to security test a 
ML component. Security testing approaches are used to generate test cases that are executed against the ML component. 
Security test oracles enable to calculate a test verdict to determine if a test case has passed, that is, no vulnerability has 
been detected, or failed, that is a vulnerability has been identified. Test adequacy criteria are used to determine the 
entire progress and can be employed to specify a stop condition for security testing. 

The security testing approaches addressed by the present document are not solely related to security but to robustness as 
well. Issues with the robustness of ML components can result in both security and safety issues. Security issues of a ML 
component can enable an adversary to achieve a violation of one of the security properties, i.e. confidentiality, integrity, 
and availability. Safety issues of a ML component might endanger the environment in which the ML component and the 
system it is part of is operating. Security issues might also lead to safety issues when, for instance, the availability or 
integrity of safety measures is affected. Testing of robustness of ML components related to safety-issues in the 
Automotive domain has been discussed, for instance, in [i.1]. 
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1 Scope 
The present document identifies methods and techniques that are appropriate for security testing of ML-based 
components. Security testing of AI does not end at the component level. As for testing of traditional software, the 
integration with other components of a system needs to be tested as well. However, integration testing is not the subject 
of the present document. 

The present document addresses: 

• security testing approaches for AI; 

• security test oracles for AI; 

• definition of test adequacy criteria for security testing of AI. 

Techniques of each of these topics should be applied together to security test of a ML component. Security testing 
approaches are used to generate test cases that are executed against the ML component. Security test oracles enable to 
calculate a test verdict to determine if a test case has passed, that is, no vulnerability has been detected, or failed, that is 
a vulnerability has been identified. Test adequacy criteria are used to determine the entire progress and can be employed 
to specify a stop condition for security testing. 

2 References 

2.1 Normative references 
Normative references are not applicable in the present document. 

2.2 Informative references 
References are either specific (identified by date of publication and/or edition number or version number) or 
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referenced document (including any amendments) applies. 

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee 
their long-term validity. 

The following referenced documents are not necessary for the application of the present document but they assist the 
user with regard to a particular subject area. 
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Conference on Artificial Intelligence Applications and Innovations (pp. 256-267). Springer, Cham. 

[i.2] American fuzzy lop. 

[i.3] LLVM compiler infrastructure: "libFUZZER". 

[i.4] Odena, A., & Goodfellow, I. (2018). Tensorfuzz: Debugging neural networks with 
coverage-guided fuzzing. arXiv preprint arXiv:1807.10875. 

[i.5] Chen, T. Y., Cheung, S. C., & Yiu, S. M. (2020). Metamorphic testing: a new approach for 
generating next test cases. arXiv preprint arXiv:2002.12543. 

[i.6] McKeeman, W. M. (1998). Differential testing for software. Digital Technical Journal, 10(1), 
100-107. 

[i.7] Pei, K., Cao, Y., Yang, J., & Jana, S. (2017, October). Deepxplore: Automated whitebox testing of 
deep learning systems. In proceedings of the 26th Symposium on Operating Systems Principles 
(pp. 1-18). 

https://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
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[i.8] Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., & Madry, A. (2019). Adversarial 
examples are not bugs, they are features. Advances in neural information processing systems. 

[i.9] Tramèr, F., Papernot, N., Goodfellow, I., Boneh, D., & McDaniel, P. (2017). The space of 
transferable adversarial examples. arXiv preprint arXiv:1704.03453. 
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3 Definition of terms, symbols and abbreviations 

3.1 Terms 
For the purposes of the present document, the following terms apply: 

adversarial example: carefully crafted input which mislead a model to give an incorrect prediction 

perturbation: semantically meaningless modification of an input 

EXAMPLE: Perturbation can have the form of noise added to an image. 

substitute model: model created by an adversary to craft transferable adversarial examples 

NOTE 1: The substitute model performs the same task as the target model but may use a different ML technique or 
a different dataset. 

NOTE 2: The terms surrogate model and substitute model are used synonymously. 

surrogate model: See substitute model. 

target label: label that an adversary wants the target model to output if fed with an adversarial example 

target model: model an adversary wants to make wrong predictions 

transferable adversarial example: adversarial example which is crafted for one model but can also fool a different 
model with a high probability 

true label: correct label for an input from the ground truth 

3.2 Symbols 
For the purposes of the present document, the following symbols apply: 

�� Pseudo distance (number of non-zero elements) �� Euclidean distance �� Chebyshev distance ����� Flow field function �� Distance that needs to be specified by the parameter � with � ∈ �0,2, ∞� 
3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

AI Artificial Intelligence 
CLEVER Cross Lipschitz Extreme Value for nEtwork Robustness 
DSA Distance-based Surprise Adequacy 
FAB Fast Adaptive Boundary attack 
FGSM Fast Gradient Sign Method 
JSMA Jacobian-based Saliency Map Attack 
L-BFGS computer-memory-Limited approximation of the Broyden-Fletcher-Goldfarb-Shanno algorithm 
LSA Likelihood-based Surprise Adequacy 
ML Machine Learning 
NaN Not a Number 
PGD Projected Gradient Descent 
ReLU Rectified Linear Unit 
SAI Securing Artificial Intelligence 
SPSA Simultaneous Perturbation Stochastic Approximation 
TJSMA Taylor JSMA 
WJSMA Weighted JSMA 
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ZOO Zeroth Order Optimization-based attacks 

4 Security testing techniques 

4.1 Introduction 
Security testing techniques are used for designing test cases that are later on executed against an ML component. Such 
test cases consist of the input data that is fed to the ML component to identify a vulnerability, e.g. a susceptibility to a 
specific adversarial example. Clause 4 presents different approaches that can be employed for crafting such inputs. The 
presented testing approaches can be divided into those that have been developed for traditional software and can be 
employed for security testing of ML components as well, and those that are specific to ML. Furthermore, not all of them 
are security-specific but can be more versatile with respect to the quality characteristics in question. 

NOTE: It is necessary to ensure that the system is not designed to recognise the adversarial examples used in a 
test environment and to run in such a way that the test is passed by bypassing normal operation. 

4.2 Mutation testing 

4.2.1 Coverage-guided fuzzing 

Coverage-guided fuzzing is a technique that has been established for traditional software systems. For such systems, 
code coverage has been extensively used as coverage metrics together with genetic algorithms, mostly using binary 
mutation without protocol models, as in American Fuzzy Lop [i.2] and libFuzzer [i.3]. Odena et al. [i.4] transferred this 
approach to neural networks of different architectures. Instead of random binary mutation, they use specific mutators 
for images and text. For images, their approach mutates existing pictures by adding white noise either to the extent of a 
user-configurable variance or by a user-configurable �� norm. As distance metric the approximate nearest neighbour 
that is greater than a given threshold is used and assume a higher coverage is the distance to the nearest neighbour is 
above this threshold. 

NOTE: �� norm or Chebyshev distance simply takes the (mathematically absolutely) largest component of a 
vector. 

4.2.2 Metamorphic testing 

Metamorphic testing [i.5] is a testing approach that relies on metamorphic relations to identify test inputs for which the 
relationships between their outputs are known or could be identified, for instance using statistical methods. Based on 
existing, passing test cases, new test cases can be derived using the metamorphic relations. Hence, metamorphic testing 
requires the identification of metamorphic relations as a first step. This can be a challenging task for complex scenarios 
where relationships between different inputs and output are not obvious. The simplest example of a metamorphic 
relation is for the sine function where two metamorphic relations can be derived from the periodicity of the sine 
function: 

 sin � = sin�� + 2�� (1) 

and 

 |sin �| = |sin�� + ��| (2) 

Metamorphic relations can be more complex than simple equality and the absolute value and can involve any 
mathematical function. They are usually specific to the problem domain. 

4.3 Differential testing 
Differential testing [i.6] is a testing technique developed for traditional software that uses another system as a reference 
system to identify deviations of the system under test when different behaviours of both systems can be observed. Test 
cases are generated randomly, and test cases that result in different behaviours between the system under test and the 
reference system are considered to have revealed a bug and are retained as regression test and for debugging purposes. 
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The approach has been adapted for deep learning systems by Pei et al. [i.7] using neuron coverage metric (see 
clause 5.2.2) to identify faults in neural networks by using an objective function that considers both systems and tries to 
find inputs that lead to different classification results using their gradients. 

4.4 Adversarial attacks 

4.4.1 Introduction to adversarial data generation 

Adversarial data generation is a discipline of adversarial machine learning that encompasses techniques for generating 
such inputs for which an ML model generates incorrect outputs. Such inputs are close to known inputs with corrects 
outputs but despite that similarity have a different output. Such inputs are called adversarial samples or adversarial 
examples and they have first been developed for computer vision. The general approach adds some noise, e.g. to an 
image, to achieve a different output even though both inputs are so similar that there is no deviation that would justify a 
different output. Even though adversarial examples have been widely generated for images, they are possible to be 
generated for any kind of data. 

The distance between an uncorrupted input with uncorrupted output and corrupted input with a corrupted output is 
measured using some norm. Most used norms are the �� norm, the �� norm and the �� norm. They differ in how the 
approximate the distance and their computational complexity. �� norm measures just the number of non-zero elements 
of a vector after subtracting the vectors from input and corrupted input, �� measures the Euclidean distance between 
two vectors and is the computationally most complex norm, and �� measures the largest difference of the elements of 
the difference vector. The lower the measured distance, the closer the corrupted inputs are to uncorrupted inputs. The 
closer corrupted inputs are to uncorrupted inputs, the more likely it is they remain undetected, e.g. by a human, or they 
are not successful due to a mitigation measure. Hence, the distance of the corrupted data to uncorrupted data generated 
by a generation technique including the used norm to measure the distance constitute one aspect of the power of attacks, 
referred to as quality of examples in Table 1. In general, many approaches are guided by the gradient of the cost 
function and work iteratively. Thus, there are lots of full-knowledge approaches that require access to the internals of 
the models. However, zero-knowledge approaches can estimate the gradient or employ a local search or use substitute 
models constructed from queries to the model under attack. Another way to measure the power of an attack generated 
through adversarial data generation is whether the technique can perform a specific corrupted output, i.e. if it is 
targeted, or whether it can just be able to generate any corrupted output. 

An important aspect relevant for adversarial attacks is their property of transferability. Adversarial attacks transfer 
between models of different architecture and models trained with different training sets. Transferability of adversarial 
attacks has been investigated quite much. Several aspects have been investigated why adversarial attacks are 
transferable. For instance, transferability can result from non-robust features in the used dataset [i.8], but also from 
common adversarial subspaces shared between two ML models [i.9]. Model properties, e.g. properties of the input 
gradients, e.g. their size and the alignment between two models, have been also identified to facilitate the transferability 
of adversarial examples [i.10]. This property reduces the effort for the attacker as well as for testing. Thus, it makes the 
approach of building a database of adversarial samples justifiable. 

Table 1 presents an overview of the characteristics and properties of adversarial data generation techniques that are 
presented in more detail in the remainder of clause 4.4. 
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Table 1: Overview of techniques for adversarial sample generation 

Knowledge Optimization Technique Computational  
Efficiency 

Query 
Efficiency 

Quality of 
examples 

Supported 
norms 

Targeted/ 
untargeted 

Full 
knowledge 

Gradient-
based 

L-BFGS low low medium �� targeted 
NewtonFool high medium low �� untargeted 
FGSM high high low �� targeted 
Basic Iterative 
Method/Projected 
Gradient Descent 

low high medium �� targeted 

JSMA low medium high �� targeted 
Carlini/Wagner low low very high ��, ��, �� targeted 
DeepFool high low high ��  

adaptable 
any �� 
norm 

untargeted 

Shadow Attack low low very high adaptable 
any �� 
norm 

untargeted 

Fast Adaptive 
Boundary Attack 

high medium very high adaptable 
any �� 
norm 

untargeted 

Gradient-free Spatial 
Transformation 

low low high specific 
(����� 

based on 
��) 

targeted 

Fast Feature 
Fool 

high medium high �� untargeted 

Generative 
Universal 
Adversarial 
Perturbations 

low low high ��, �� targeted 

Zero 
knowledge 

training a 
surrogate 
model 

Surrogate 
models 

low low any full 
knowledge 

any full 
knowledge 

targeted 

gradient 
estimation 

ZOO low medium high �� targeted 
SPSA low low high adaptable 

any �� 
norm 

untargeted 

search-
based 

Rotation and 
Translation 

high low high n/a untargeted 

Boundary Attack low low medium adaptable 
any �� 
norm 

untargeted 

Square Attack medium low medium ��, �� untargeted 
GenAttack medium low medium �� targeted 
Universal 
Adversarial 
Perturbations  

low low high ��, �� untargeted 

 

4.4.2 Security testing techniques requiring full knowledge 

4.4.2.1 Gradient-based techniques 

4.4.2.1.1 L-BFGS 

L-BFGS is an optimization algorithm (belonging to the class of quasi-Newton methods) that Szegedy et al. [i.11] used 
to approximate the minimal distance (using the �� norm) between two images with different classification results by a 
deep neural network. The perturbed image using a minimizer 
 is approximated since the original box-constrained 
optimization problem is a hard problem. 
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L-BFGS is a computer-memory-limited approximation of the Broyden–Fletcher–Goldfarb–Shanno algorithm. Szegedy 
et al. use L-BFGS to approximate a perturbed image (denoted by ��	 = � + 
) using line search to find the minimum 
c > 0 for which the minimizer 
 satisfies ��� + 
� = �, i.e. lead to a different result of the classifier, by minimizing: 

  ⋅ ‖
‖ + ���� + 
, �� (3) 

Where: 

•  >  0; 

• �����′, �� is a continuous loss function of the classifier �: ℝ
 → �1. . �� with k labels; 

• � is the targeted label with � ∈ �1. . ��; 
• � + 
 = ��	 is a perturbed image. 

The approximation produces close adversarial samples at the cost of higher computational effort than FGSM since it 
uses the �� norm instead of �� norm. 

4.4.2.1.2 NewtonFool 

Jang et al. [i.12] first proposed utilizing a gradient descent-based approach in producing adversarial samples. The attack 
is very simple in nature, wherein the goal of the algorithm is to consider the score distribution produced by the model 
for each possible class and attempting to find some perturbation that would reduce the probability of the original class. 
This attack intrinsically exploits the nature of the softmax layer present in classification-based models to derive the 
adversarial samples, at the cost of lowering its generalizability across data modalities. 

The calculation of the adversarial sample is as follows: 

 �	 = � +
�⋅�������
���������

� (4) 

Where: 

• � is the maximum value between the model gradient under �� norm and the relative difference of the higher 
class probability prior to the softmax activation layer of the classifier; 

• ����� represents the class score distribution prior to the softmax activation layer. 

4.4.2.1.3 Fast Gradient Sign Method (FGSM) 

Fast Gradient Sign Method (FGSM) [i.13] is a single-step method to produce adversarial samples using the �� norm. 
The method calculates adversarial samples basically by choosing for each input feature in which direction it should 
modify its input. FGSM can be used to generate untargeted as well as targeted attacks. 

The calculation for untargeted attacks is as follows: 

 �	 = � + � ⋅ sign�∇ ��,����� (5) 

Where: 

• � is a small real number to be chosen for perturbation, small enough to be undetected ([i.13] chose 0,25 for a 
shallow softmax classifier); 

• ��,���� is the loss function of classifier � for true label �; 
• � is the true label. 

The calculation for targeted attacks is as follows: 

 �	 = � − � ⋅ sign�∇ ��,����� (6) 
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Where: 

• � is a small real number to be chosen for perturbation, small enough to be undetected ([i.13] chose 0,25 for a 
shallow softmax classifier); 

• ��,���� is the loss function of classifier � for target label �; 
• � is the target label. 

4.4.2.1.4 Basic iterative method/projected gradient descent 

The basic iterative method is an iterative version of the initial FGSM method. The basic iterative method extends it by 
starting with a valid image and adds in each step adding a parameter-based amount of noise to the pixel. It crafts the 
adversarial example starting with the original image and extends this step-wise as follows: 

 ������� = �����,������� + � ⋅ sign ∇���,��������� (7) 

Where: 

• � is the unperturbed image; 

• � is the true label for �; 

• ��,���� is the loss function of classifier � for true label �; 
• �����,���′� performs per-pixel clipping of the image �′, so the result will be in �-neighbourhood (according to 

the ��) of the source image �; 

• � determines the amount of changes applied to each pixel per step. 

Kurakin et al. [i.14] selected the number of iterations heuristically by min�� + 4;  1,25��. 
The basic iterative method is also known as Projected Gradient Descent (PGD) when it is used with noisy starting 
points [i.15]. Several improvements have been proposed for these iterative attacks. Dong et al. [i.16] proposed adding a 
momentum term to escape local maxima and achieve better convergence. Xie et al. [i.17] proposed applying random 
transformations every set number of iterations to further diversify the adversarial inputs and converge more quickly to 
an adversarial sample. Other similar improvements have also been proposed and claim to have a significant impact in 
the overall efficiency and quality of the produced adversarial samples in various use cases. 

One issue with the basic iterative method and the projected gradient descent attack is that these attacks require careful 
and precise parameter-tuning to obtain the best results, in particular with regards to the amount of perturbation to be 
added in each successive step of the algorithm. While improvements have been suggested to alleviate this concern, 
Croce and Hein [i.18] proposed a parameter-free alternative called auto projected gradient descent. 

Unlike the former iterative attacks, auto projected gradient descent optimizes the amount of perturbation to be added in 
a dynamic fashion at each step of the iteration as it gradually transitions from exploring the entire feasible region to a 
local optimization problem. Simultaneously, it adds a momentum term to control the convergence procedure and avoid 
local minima. Finally, when the dynamic step size is halved in a single step, which is to say when the algorithm 
converged to some local minimum, the algorithm restarts from the current best candidate solution in order to prevent 
premature convergence. 

4.4.2.1.5 Jacobian-based Saliency Map Attack (JSMA) 

Jacobian-based Saliency Map Attack (JSMA) is an attack based on the �� norm [i.19]. It is based on the forward 
derivative determined using the Jacobian matrix to identify the features and its values that has most impact on the 
classification result. Thus, JSMA enables the identification of decision boundaries to enable the efficient search for 
adversarial samples. JSMA generates targeted attacks based on a valid input example, using a maximum distortion 
parameter and a feature variation parameter. 

To generate JSMA attacks, three steps are applied: 

1) The forward derivative of a candidate adversarial sample needs to be computed. To do so, the Jacobian is 
computed layer-wise. 
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2) Use the forward derivative to construct a saliency map for the candidate adversarial sample. Saliency maps 
describe the impact of each input feature on the classification result. 

3) Modify an input feature selected based on saliency map by the feature variation parameter. Repeat this step 
until the networks provides the targeted class as classification result or the maximum distortion parameter has 
been reached. 

NOTE: This attack applies to feed-forward neural networks and can be applied to recurrent neural networks by 
unrolling a certain depth of layers. 

Loison et al. [i.20] developed two improvements on JSMA: Weighted JSMA (WJSMA) and Taylor JSMA (TJSMA). 
WJSMA penalizes gradients related to small probabilities of labels to reduce their impact on saliency maps. 
Additionally, TJSMA penalizes those features components that are close to the maximum feature value through the use 
of Taylor terms. 

4.4.2.1.6 Carlini/Wagner attack 

The attack presented by Carlini et al. [i.21] was developed to show that a hardening mechanism for neural networks 
called defensive distillation is not effective. It generates adversarial examples by the following: 

 �
���� ‖�′ − �‖� +  ⋅ ���′� (8) 

Where: 

• �′ is a perturbed image; 

• � is a valid image; 

•  is an arbitrary number with  > 0; 

• ���′� is an objective function with ���′� ≤ 0 if the classification result is the desired target class ���′� =  . 

The Carlini/Wagner attack [i.21] has been developed for the ��, ��, and �� norm. It has no upper bound on the amount 
of perturbation, hence, it always succeeds in finding an adversarial example. 

4.4.2.1.7 Deepfool 

The Deepfool attack [i.22] crafts an adversarial attack by projecting an image on the decision boundary's nearest 
hyper-polyhedron face. The approach tries to find a solution to this problem iteratively by trying to push an input right 
behind the closest hyperplane of the decision boundary. The closest hyperplane is identified based on the probabilities 
of the classifier's output for each label. Then, Deepfool checks if the classification result differs from the original input. 
Due to its heuristic nature, there is no formal guarantee that the algorithm finds the adversarial image with the least 
perturbation. 

The closest hyperplane is calculated by the following formula: 

 �!���� = argmin
��������������������
�����������

�
�

 (9) 

Where: 

• �� is a valid image; 

• �  refers to the output with the �-th highest probability and �" refers to the output with the highest probability. 
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4.4.2.1.8 Shadow Attack 

Ghiasi et al. [i.23] presented an attack which can be claimed to be a generalization of projected gradient descent, with a 
focus on the visual and defensive imperceptibility of the resulting adversarial samples. The main mechanism they utilize 
is, instead of solving a constrained optimization problem over the model loss exclusively as for projected gradient 
descent, they attach several additional penalty terms to the objective. Specifically, they solve the following optimization 
problem: 

 max! ��#,  � + �� − $"���� − $#�%&��� − $�'�((����� (10) 

Where: 

• � is a valid image; 

• � is the added adversarial perturbation; 

• # represents the model parameters; 

• $", $#�, $� are scalar penalty weights; 

• ���� is a penalty constraining the change per channel; 

• %&��� is a penalty constraining the total variation of the perturbation; 

• '�((����� is a penalty constraining the maximum variation per channel. 

4.4.2.1.9 Fast Adaptive Boundary attack (FAB) 

Croce and Hein [i.24] presented the Fast Adaptive Boundary attack (FAB). The attack functions in a similar way to 
Deepfool (see clause 4.4.2.1.7), where there is a built-in algorithmic incentive to quickly reach the decision boundary. 
However, unlike Deepfool, it also utilizes some additional criteria to emphasize closer proximity to the original image. 
In contrast to Deepfool, FAB includes the box constraint for images, whereas Deepfool performs the clipping after the 
solving, FAB uses a bias toward the original input and also performs backward steps, final search (a further iteration 
once an adversarial example is found, and random restarts, thus, further reducing the perturbation. 

4.4.2.2 Gradient-free techniques 

4.4.2.2.1 Spatial transformation 

In contrast to the first approach to generate adversarial samples that work on pixel level to calculate some specific noise 
that leads to a misclassification, spatial transformation works on the whole image and performs some ''optical'' 
transformation by stretching parts of an image based on the logit outputs of the true label and the targeted label. 

The formal definition of a spatial transformation is given by the following equations [i.25]: 

 �����$�
= ∑ ��%��1 − *+�$� − +�%�*��1 − *,�$� − ,�%�*�%∈��&�	�,��	��  (11) 

Where: 

• ��$� is the value of the i-th pixel at a certain location; 

• �+�$�, ,�$�� is the 2-dimensional location of the i-th pixel; 

• -�+�$�, ,�$�� are the indices for 4-pixel neighbours (top-left, top-right, bottom-left, bottom-right) around the 
location �+�$�, ,�$��. 
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The function to confine the amount of perturbation is called the flow field. This flow field function is determined by 
minimizing the following objective function: 

 � = argmin
�

.������, �� + / ∙ ��������0 (12) 

Where: 

• ���� serves the purpose to ensure the targeted misclassification; 

• �����  minimizes the spatial transformation; 

• / is a factor to balance ���� and ����� . 

 ������, �� = max 1max
$'#

�������$ − �������#, 23 (13) 

Where: 

• ����$ represents the i-th vector of the logit output of the model; 

• 2 is used to control the attack confidence level. 

 �������� = ∑ ∑ 4‖∆+��� − ∆+�%�‖�� + ‖∆,��� − ∆,�%�‖��%∈����
���  �$�(��
�  (14) 

Where: 

• ∆ is the amount of displacement of a pixel. 

4.4.2.2.2 Fast feature fool 

Fast feature fool is an approach to universal adversarial perturbations that works independent from specific training data 
and would result in a misclassification for most of the input data [i.26]. The approach employs a �� norm to confine the 
amount of perturbation. The idea of the approach is to exploit the dependencies between the layers of a convolutional 
neural network. To do so, fast feature fool aims at over-saturating the activations, i.e. features of each convolutional 
layer to propagate misclassification from one layer to the next. 

 �5(( = − log�∏ �)7���*
$+� � s.t. ‖�‖� < 8 (15) 

Where: 

• �)7��� is the mean activation of the output at layer �; 
• � is the perturbation that is fed to the neural network; 

• 9 is the number of layers of the model; 

• 8 is the maximum allowed pixel intensity. 

4.4.2.2.3 Generative universal adversarial perturbations 

Generative universal adversarial perturbations employ a generative network that is trained against the target model 
[i.27]. It creates a fixed size perturbation � independent from the input image of the target model. This � is then scaled 
by a factor :. The scaled perturbation is added to an image and then fed to the target network to compute its loss. The 
loss is used to update the weights of the generative network. Since the generative network is unaware of the used image, 
it is learning universal adversarial perturbations. 
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4.4.3 Security testing techniques requiring zero knowledge 

4.4.3.1 ZOO: Zeroth Order Optimization-based attacks 

The ZOO attack is a zero-knowledge approach that does not rely on training a surrogate model to obtain gradient 
information from it to apply adversarial sample generation techniques [i.28]. Instead, it estimates the gradient with the 
symmetric difference quotient and employs it to generate attacks using through zeroth-order stochastic coordinate 
descent. 

ZOO further uses dimension reduction, hierarchical attack, and importance sampling techniques to make the attack 
generation more efficient. The quality of examples with respect to noise is comparable to Carlini/Wagner attack. 

The gradient itself is estimated using symmetric difference quotient: 

 �$ =
,����
,�	

≈
����-⋅(	�����-⋅(	�

�-  (16) 

Where: 

• ���� is the function whose gradient is to be estimated; 

• �$ is the point at which the i-th element of the vector is approximated; 

• ℎ is a very small number; 

• ;$ is the standard basis vectors with 1 at the i-th element. 

The attacks are generated using stochastic coordinate descent which in each iteration randomly selects any input feature 
to optimize using the estimated gradient aiming at a better perturbation to generate an adversarial example. The 
algorithm can be used also with the Adam optimizer of with or without Newton's method. 

4.4.3.2 Boundary attack 

Brendel et al. [i.29] proposed a zero-knowledge attack which relies on the outputs only to approximate the decision 
boundary of the model and then query the model repeatedly as it tries to minimize the perturbation required to obtain a 
misclassification. It does so in several steps: 

1) It first attempts to find a valid adversarial sample by adding a large perturbation to the input image in a random 
direction. 

2) Utilizing the adversarial sample, it attempts to reduce the perturbation to approximate the distance to the 
decision boundary of the target model over a predefined number of steps. 

3) The attack then involves performing a rejection sampling procedure alongside the boundary of the attack for a 
specified number of iterations, returning the best candidate as the solution of this optimization procedure. 

4.4.3.3 Square attack 

Adriushchenko et al. [i.30] proposed a zero-knowledge attack which involves performing a random search technique to 
add random perturbations to the image in an attempt to solve a constrained optimization problem over some custom 
defined loss. During each iterative step, the attack perturbs a square selection of pixels as defined by the �� norm 
specified. Additionally, the attack utilizes early termination once it finds a valid adversarial sample. It is a technique 
with high query efficiency and can quickly converge to a valid adversarial sample. While it can be easy to detect and 
defend against Square Attack, doing so will increase model robustness against multiple types of attacks that replace 
regions of the input with repeated patterns. 

4.4.3.4 SPSA-based attacks 

To estimate the gradient, a technique called stochastic approximation using simultaneous perturbation can be applied. 
The approach has been employed by Uesato et al. [i.31] to generate adversarial attacks and is considered to be more 
reliable in finding adversarial samples. However, the optimization is more difficult than for optimization algorithms 
used by other attacks due to the high number of hyperparameters [i.32]. Furthermore, even though it provides reliably 
adversarial examples, they are often worse than those from other attacks [i.31]. 
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4.4.3.5 Rotation and translation 

The approach from [i.33] applies a rotation and a translation to an input image to obtain a misclassification. The 
approach optimizes over a set of parameters, i.e. the translation coordinates of the picture and the degree of rotation. 
Since the transformation is implemented as a differentiable function, the optimization can be based on the loss function. 
Due to the only three dimensions of the parameter space, grid search is a feasible and successful approach. Due to the 
quite small input space, worst-of-k is the third approach that randomly samples k attack parameters and then assesses on 
which of these k parameters the target model performs worst. The transformation is defined as follows: 

 <+′,′
= = <cos # −(��#(��# 5(# = ∙ <+,= + <�+�,= (17) 

Where: 

• <+,= is the location of the pixel to be transformed. 

• # is the degree of rotation performed to the image; 

• � is the amount of translation. 

4.4.3.6 GenAttack 

In contrast to other approaches, GenAttack [i.34] employs a genetic algorithm for generating adversarial attacks with 
zero knowledge about the internals of the ML component. Individuals for the population are bred by adding random 
noise along each dimension around an original valid example. The fitness function considers the attacked model's 
increasing confidence in the target label and decreasing confidence in the other labels as a fitness function. Crossover is 
implemented by exchanging features between two individuals using a fitness-based probability function. In contrast to 
the ZOO attack, GenAttack can reduce the number of queries. 

4.4.3.7 Universal adversarial perturbations 

Moosavi et al. [i.35] employ the Deepfool approach to generate universal adversarial perturbations using a local search 
that aims at moving a datapoint to the decision boundary of a classification region. Universal adversarial perturbations 
lead to a misclassification on almost any input. The algorithm presented by Moosavi et al. [i.35] iterates over a dataset 
containing all the images, computes the minimal perturbation that would move the point to the decision boundary of the 
currently considered classification regions, and updates the universal perturbation with the newly identified minimal 
perturbation. The computation is performed using the Deepfool approach described in clause 4.4.2.1.6.  A graphical 
representation of the approach for generating universal adversarial perturbations can be found as Figure 2 of [i.35]. 

5 Test adequacy criteria 

5.1 Introduction 
Clause 5 provides information on several metrics that might be useful when security testing ML components. Such 
metrics are test coverage criteria discussed in clause 5.2.1 and stop criteria discussed in clause 5.2.2. In contrast to 
traditional security testing for which coverage metrics are used to measure test progress and are used as a stop criterion, 
e.g. code coverage, testing of ML models provides explicit stop criteria, often in terms of adversarial robustness metrics 
that enable the direct measurement on whether the ML component is getting more secure. The metrics and coverage 
criteria in clause 5 are considered as not sufficient to increase the robustness of neural networks [i.36]. Hence, such 
metrics should not be used solely. 

NOTE: Coverage metrics in traditional software testing are used to measure the intensity as piece of software has 
been tested [i.37]. 
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5.2 Test coverage criteria 

5.2.1 Common concepts and notations 

5.2.1.1 Introduction 

Most of the subsequent clauses refer to some common formulas to simplify the coverage metrics and increase their 
comprehensiveness. These common formulas are introduced in the subsequent clauses. 

5.2.1.2 Activation value 

The activation value of a neuron n of a neural network that is stimulated with an input x has the following notation: 

 >��, �� (18) 

Where: � is referring to the considered neuron from the neural network; 

 � is the input to the neural network. 

5.2.1.3 Activation trace 

Kim et al. [i.38] introduced the notion of an activation trace that captures the activation values of the neurons of a neural 
network when stimulated with a certain input, and the set of all activation values as a matrix that can be obtained when 
stimulating the neural network with a set of inputs. In that sense, it is a generalization of the activation values with 
respect to the considered neurons and inputs. The activation trace of a set of neurons is defined as follows: 

 ����� = ?>���, ��
…>��., ��@ (19) 

Where: 

• - refers to an ordered subset of neurons from a neural network; 

• � is an input t to the neural network. 

The cardinality of ����� is equal to |-|. 
The set of activation values obtained from a set of inputs is defined as follows: 

 A���� = ���|� ∈ �� (20) 

Where: 

• - refers to an ordered subset of neurons from a neural network; 

• � is an input t to the neural network. 

5.2.1.4 Major function region 

The basis of k-multisection neuron coverage is the so-called major function region derived from the training set. The 
major function region is a closed interval B�5C. , ℎ��ℎ.D where the �5C.and ℎ��ℎ. are the minimal and maximal 
activation values >��, �� of a neuron n obtained from the training set. K-multisection neuron coverage is discussed in 
clause 5.2.2.3. 
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5.2.2 Neuron-level coverage metrics 

5.2.2.1 Overview 

Neuron-level coverage metrics are measuring activation values and are structuring them in areas observed during 
training that are then compared to what is observed during testing. Figure 1 shows the different areas that are observed 
by the different metrics. The vertical bar represents the range of activation values of a neuron observed when the 
training set is fed to the trained model, its lower bound is denoted by >
$.,#/�$., its upper bound by >
��,#/�$.. The part 
of this range above a certain threshold comprised by the bracket referred to by A is subject to neuron coverage. The 
range of B is divided into k equal section and is measured by k-multisection coverage. k-multisection coverage has 
similarities to equivalence partitioning for testing traditional software but the sections have no semantics in k-
multisection coverage. Neuron boundary coverage measures how many neurons are activated below >
$.,#/�$. and 
above >
��,#/�$. by the training set, denoted by C and D. In that sense, it is similar to boundary value analysis for 
testing traditional software. Strong neuron coverage is identical to neuron boundary coverage but focusses only on the 
values above >
��,#/�$., denoted by C. 

 

Figure 1: Illustration of neuron-level coverage metrics for a single neuron 

5.2.2.2 Neuron coverage 

Pei et al. introduced the metric of neuron coverage in [i.7] for a neural network with Rectified Linear Units (ReLUs) as 
activation function. Given a test input set, neuron coverage is measured by the number of neurons whose output value is 
higher than a certain threshold for all elements from the test input set. The formal definition given in [i.7] is as follows: 

 -�5,�%,  � =
�0��∀� ∈ %, >��, �� >  1�

|�|  (21) 

Where: 

• % is the set of test inputs; 

• � is an element from the set of test inputs; 

• - is the set of all neurons from the network; 

• � refers to a neuron from the network; 

•   is a threshold that determines whether a neuron is activated, e.g. 0; 

• >��, �� denotes the activation values of the neuron n if the neural network receives test input x. 

NOTE 1: The parameter t, i.e. the threshold, determines how hard it is to achieve the coverage criterion. 

NOTE 2: This metric was applied to neural networks with ReLUs as activation function. 

�
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5.2.2.3 k-multisection neuron coverage 

The k-multisection neuron coverage metrics measures for each neuron how well its output space is covered. It does this 
by dividing the interval between the minimum and maximum output value of each neuron, observed during training, 
into k equal sections and counting the ratio of sections that are covered by at least one value of the test set [i.39]. 

 

Figure 2: Illustration of k-multisection neuron coverage for a single neuron 

The basis of k-multisection neuron coverage is the so-called major function region derived from the training set. The 
major function region is a closed interval B�5C. , ℎ��ℎ.D where the �5C. and ℎ��ℎ. are the minimal and maximal 
activation values >��, �� of a neuron n obtained from the training set. To measure the degree to which a major function 
region, i.e. the interval B�5C. , ℎ��ℎ.D, is covered, it is partitioned into k sections. If for each of these k partitions at least 
one activation value is observed, this neuron is considered as covered. The major function region of a neuron is 
completely covered if all k partitions of its major function region are covered by the test input set. A formal definition 
from [i.39] is as follows: 

 9E-�5,�%, �� =
∑ �0F$.�∃� ∈ %: >��, �� ∈ F$.1�
∈�

 ⋅|�|  (22) 

Where: 

• % is the set of test inputs; 

• � is an element from the set of test inputs; 

• - is the set of all neurons from the network; 

• � refers to a neuron from the network; 

• F$. refers to the set of values of the i-th partition of the major function region of neuron n; 

• >��, �� denotes the activation values of the neuron n if the neural network receives test input x. 

NOTE 1: The parameter k, i.e. the number of partitions derived from a major function region, determines how hard 
it is to achieve the coverage criterion. 

NOTE 2: This metric applies to feed-forward neural networks and can be applied to recurrent neural networks by 
unrolling a certain depth of layers. 
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5.2.2.4 Neuron boundary coverage 

Neuron boundary coverage measures for each neuron if a value below and above the minimal and maximal output value 
observed during training, is observed during testing [i.39]. It is based on corner cases derived from the major function 
region of each neuron as defined in clause 5.2.2.3: 

 -G�5,�%� =
|4��(/5�/.(/�(&/�.|�|6��(/5�/.(/�(&/�.|

�⋅|�|  (23) 

Where: 

• �5C;
�5
�;
-;+
5� = �� ∈ -|∃� ∈ %: >��, �� ∈ �−∞, �5C.��; 
• H��;
�5
�;
-;+
5� = �� ∈ -|∃� ∈ %: >��, �� ∈ �ℎ��ℎ. , +∞��; 
• - is the set of all neurons from the network; 

• � refers to a neuron from the network; 

• % is the set of test inputs; 

• � is an element from the set of test inputs; 

• �5C. is the lower border of the major function region of neuron n; 

• ℎ��ℎ. is the upper border of the major function region of neuron n. 

NOTE: This metric applies to feed-forward neural networks and can be applied to recurrent neural networks by 
unrolling a certain depth of layers. 

5.2.2.5 Strong neuron activation coverage 

Strong neuron activation coverage measures for each neuron how many corner cases above the maximal output value 
observed during training are observed during testing [i.39]. It can be considered as a specialization of neuron boundary 
coverage. A formal definition from [i.39] is as follows: 

 F-A�5,�%� =
|6��(/5�/.(/�(&/�.|

|�|  (24) 

Where: 

• H��;
�5
�;
-;+
5� = �� ∈ -|∃� ∈ %: >��, �� ∈ �ℎ��ℎ. , +∞��; 
• - is the set of all neurons from the network; 

• � n refers to a neuron from the network; 

• % is the set of test inputs; 

• � is an element from the set of test inputs; 

• ℎ��ℎ. is the upper border of the major function region of neuron n. 

NOTE: This metric applies to feed-forward neural networks and can be applied to recurrent neural networks by 
unrolling a certain depth of layers. 
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5.2.3 Layer coverage metrics 

5.2.3.1 Top-k neuron coverage 

Top-k active neurons is defined based on the activation values of the neurons of a single layer. Top-k neuron coverage 
measures how many different neurons were the most k active neurons during testing [i.39]. The higher the number of 
k neurons during testing is considered better. A formal definition is as follows: 

 %9-�5,�%, �� =
⋃ �⋃ #�����,$��	� ��∈�

|�|  (25) 

Where: 

• % is the set of test inputs; 

• � is an element from the set of test inputs; 

• - is the set of all neurons from the network; 

• � is the number of layers of the neural network; 

•  5� ��, �� is the set of � neurons in layer � of the neural network with � highest activation values >��, �� 
given input �. 

NOTE 1: The parameter � determines how many active neurons are considered for this metric. If � is set to 1, this 
metric is similar to neuron coverage without a threshold value (see clause 5.2.2.2). 

NOTE 2: This metric applies to feed-forward neural networks and can be applied to recurrent neural networks by 
unrolling a certain depth of layers. 

5.2.3.2 Top-k neuron patterns 

Top-k neuron patterns is similar to top-k neuron coverage by considering the top-k active neurons as k-tuples instead of 
single neurons [i.39]. A formal definition is as follows: 

 %9-I� �%, �� = |� 5� ��, 1�, … ,  5� ��, ��|� ∈ %�| (26) 

Where: 

• % is the set of test inputs; 

• � is an element from the set of test inputs; 

• � is the number of layers of the neural network; 

•  5� ��, �� is the tuple of � neurons in layer � of the neural network with highest activation values >��, �� 
given input �. 

NOTE: This metric applies to feed-forward neural networks and can be applied to recurrent neural networks by 
unrolling a certain depth of layers. 

5.2.4 Surprise Adequacy 

5.2.4.1 Basic idea 

Surprise metrics are based on the idea that a test set should be somehow new to a neural network with respect to the 
training data set [i.38]. Surprise adequacy is measured using similarity of new test inputs to existing training inputs in 
terms of activation values expressed as activation traces (as specified in clause 5.2.1.3). 
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5.2.4.2 Likelihood-based Surprise Adequacy 

Likelihood-based Surprise Adequacy (LSA) [i.38] uses kernel density estimation to approximate the probability density 
of the activation values in an activation trace and defines surprise adequacy based on a density function �! such that the 
metric increases when the density function decreases: 

 �FA��� = − log 1�!���3 (27) 

Where: 

• � is the test input; 

• �! is the density function. 

NOTE: This metric is computationally expensive. Hence, the authors reduce the computational effort by 
considering only neurons from a selected layer and ignore neurons whose activation value variance is 
below a certain threshold. The computational costs can further be reduced by computing LSA per class 
under the assumption that the activate traces are similar if inputs are from the same class. 

The authors use a Gaussian kernel function to produce the following density function: 

 �!��� =
�

|8��9�|
⋅ ∑ 9:������ − ����$���	∈9  (28) 

where: 

• � is the test input; 

• % is the set of training inputs; 

• �$ is an input from the training set %; 

• - is the number of considered neurons, e.g. reduced to a single layer of a neural network; 

• A��%� are the activation traces of the training set of the considered neurons -; 

• 9: is the kernel function, e.g. Gaussian kernel function with a bandwidth matrix H. 

5.2.4.3 Distance-based Surprise Adequacy 

Distance-based Surprise Adequacy (DSA) [i.38] is a computationally cheaper version of LSA that uses Euclidean 
distance of activation traces instead of a density function to compare new inputs with activation traces from the training 
phase. It uses the distance between a new input and the closest activation trace obtained from the training set. A formal 
definition of DSA is as follows: 

 'FA��� =
�$�#�
�$�#�

 (29) 

Where: 

• J�( � = ‖������ − ����$�‖; 

• �� = argmin
;��	�+"�

‖������ − ����$�‖; 

• '��$� denotes the classification result of a neural network when stimulated with input �$; 
• � is the predicted class of input x. 
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5.3 Stop criteria 

5.3.1 Relationship of stop criteria to metrics for neural networks 

Stop criteria for testing are usually defined on the basis of metrics as those provided by clause 5.2. However, as 
discussed by [i.36], relying on such metrics is not sufficient when using security testing with these metrics together with 
adversarial training to achieve networks that are more robust with respect to adversarial samples than the neural 
network before testing and adversarial training. Hence, the following metrics provide a means to identify a neural 
network's robustness and thus, can serve as stop criterion in conjunction with a goal to be specified before testing, 
e.g. as a robustness requirement. 

5.3.2 Adversarial robustness 

5.3.2.1 Global Lipschitz constant 

5.3.2.1.1 Introduction 

The basic idea of the Lipschitz constant is that it confines the maximum slope of a continuous function and thus, implies 
that small changes to the input only lead to small changes in the output of function. The Lipschitz constant measures the 
factor between the output difference and the input difference and can be illustrated as follows: 

 ‖���� − ����‖� ≤ $ ⋅ ‖� − �K‖% (30) 

Where: 

• � is an input value; 

• �K is another input value; 

• ���� is the function value of �; 

• ���K� is the function value of �K; 

• ‖ ∙ ‖� is an ��-norm; 

• $ is the value whose smallest value is the Lipschitz constant. 

The global Lipschitz constant aggregates all the local Lipschitz constants of a neural network layer-wise. Thus, the 
global Lipschitz constant measures the sensitivity to adversarial samples [i.36]. The assumption for this is that the loss 
for an adversarial sample is to be maximized whilst the �, i.e. the distance of an adversarial sample to a ''normal'' sample 
is minimized. This leads to a situation where a classification error results from, e.g. white noise added to a normal 
sample. Generally, it can be said the smaller the global Lipschitz constant of a network is, the more robust it could be 
considered. 

5.3.2.1.2 Global Lipschitz constant calculation for neural network architectures 

Cisse et al. [i.41] and Dong et al. [i.36] provide rules for calculating the global Lipschitz constant for several neural 
network architectures. The calculation of the Lipschitz constant for a fully connected layer according to [i.36] is as 
follows: 

 $ = max Σ$+�
�� *:$, 

< * (31) 

Where: 

• :$, 
<  is the weight between the �-th neuron in layer �< and the �-th neuron in layer �<��; 

• (< is the number of neurons in Layer �<. 
Cisse et al. [i.41] provide also calculation rules for convolutional layers and aggregation/transfer layers. 
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NOTE 1: The Lipschitz constant is in general independent of the number of layers of a neural network and depends 
mainly on the weights of a network.  

NOTE 2: The calculation of the global Lipschitz constant might be computationally expensive or infeasible. 

5.3.2.1.3 Global Lipschitz constant calculation using Extreme Value Theory 

This attack-independent metric measures the adversarial robustness of a neural network against any attack that identifies 
the minimal distortion given an �� norm [i.40]. CLEVER stands for Cross Lipschitz Extreme Value for Network 
Robustness. In contrast to the global Lipschitz constant that focusses on the relationship between input values and the 
loss of the classification result, the CLEVER score focusses on the minimal distance between an input and a perturbed 
input that leads to different classification result for a given input: 

 �� = �� + � (32) 

where: 

• �� is a valid sample; 

• � is the noise for perturbation with �� distortion ∆�= ‖�‖�. 

The CLEVER score describes the lower boundary of �, i.e. L4 ≤ �, such that the classification results will be the same, 
i.e. '��� = '��K�.  

5.3.2.2 Local adversarial robustness 

Local adversarial robustness is a generalization of the CLEVER score measures the robustness against perturbation 
attacks. It defines for a single input the perturbation threshold for which the classification result remains the same for 
any derived input below that threshold, using a certain Lp-norm. A formal definition is originally given in [i.42] and 
restated by [i.36]: 

 ‖� − �′‖� ≤ � (33) 

Where: 

• � is a single valid input; 

• �′ is any other input that satisfies the above formula; 

• � is that maximum distance around �; 

that satisfies: 

 >��� = >��′� (34) 

Where: 

• >��� denotes the classification result of the neural network for input �; 

• >��′� denotes the classification result of the neural network for input �′. 

NOTE: Katz et al. [i.41] denote this as δ-locally-robust. 

5.3.2.3 Global adversarial robustness 

Global adversarial robustness is a generalization of local adversarial robustness with respect to the given input. In 
contrast to local adversarial robustness that considers a single give input that needs to be robust to perturbations below a 
static threshold, global adversarial robustness extends this statement to any input whose classification result needs to be 
robust against any perturbation below a certain threshold. A formal definition is given by [i.36]: 

 ‖�� − ��‖� ≤ � (35) 
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Where: 

• �� is any valid input; 

• �� is any adversarial perturbation around �� such that the formula above holds; 

• � is that maximum distance around ��; 

that satisfies: 

 |�� − ��| ≤ � (36) 

Where: 

• �� is the output of the neural network for label a for ��; 

• �� is the output of the neural network for label a for ��; 

that holds for any input values �� and �� that satisfy formula (1). 

NOTE 1: Katz et al. [i.42] denote this as ϵ-δ-globally-robust. 

NOTE 2: This theoretical concept can be hard to implement and computationally infeasible for large networks and 
high-dimensional input spaces. 

6 Security test oracles 

6.1 Introduction 
A test oracle is a mechanism for determining whether a test case has passed and involves comparing the system's output 
to the expected output. In doing so, bugs or faults in the system can be detected. 

6.2 Statistical and probabilistic test oracles 
A probabilistic test oracle does not provide an exact verdict whether a test case has failed or passed but provides a 
probability in terms of a real number by using statistical tests and providing an estimation of the error that the test 
verdict given by the oracle is correct [i.43]. Statistical test oracles are useful if the statistical properties of the data are 
known, e.g. the distribution of data. 

6.3 Pseudo test oracles 

6.3.1 Not a Number 

NaN stands for 'Not a Number' and is provided by some programming languages if an input or calculation is not a 
number, e.g. a string, or as a result to some error in the calculation, precision, or length of the resulting value. Odena et 
al. [i.4] used this as an oracle to find numerical errors that result from the fact the neural networks are implemented 
using floating-point math. 

6.3.2 Differential testing 

Differential testing [i.6] or differential fuzzing is employing a pseudo-oracle through another system that provides the 
same functionality (as presented in clause 4.3). Each test case is executed against the system under test as well as the 
reference system. The reference system serves as a pseudo-oracle. The results of both executions are then compared. If 
they are not identical, it is assumed that the system under test is misbehaving. 

NOTE: No system is error-free and hence, also existing but yet undiscovered errors in the reference system can 
lead to false positives and false negatives when calculating the test verdict. 
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6.3.3 Metamorphic relations 

Metamorphic testing [i.5] (discussed in clause 4.2.2) is based on the idea that if a test oracle is not available, comparing 
inputs and outputs of the test item and identifying the relationships between them in terms of, e.g. qualities, inequalities, 
periodicity properties can be used to specify a test oracle. These relationships specify how a modification to an input 
result in which changes to the corresponding outputs and are called metamorphic relations. Thus, metamorphic relations 
can be used in place of test oracles and are helpful if a test oracle is not available. The challenge is the identification of 
expressive and representative metamorphic relations. 
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