

ETSI TR 123 946 V18.1.0 (2025-04)

LTE;
5G;

Guidelines for CAPIF Usage
(3GPP TR 23.946 version 18.1.0 Release 18)

TECHNICAL REPORT

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)13GPP TR 23.946 version 18.1.0 Release 18

Reference
RTR/TSGS-0623946vi10

Keywords
5G,LTE

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver repository.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2025.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)23GPP TR 23.946 version 18.1.0 Release 18

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI IPR online database.

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™, LTE™ and 5G™ logo are trademarks of ETSI registered for the benefit of its Members and of the
3GPP Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of
the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Legal Notice
This Technical Report (TR) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities. These shall be
interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found at 3GPP to ETSI numbering cross-referencing.

Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://webapp.etsi.org/key/queryform.asp
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)33GPP TR 23.946 version 18.1.0 Release 18

Contents

Intellectual Property Rights .. 2

Legal Notice ... 2

Modal verbs terminology .. 2

Foreword ... 5

Introduction .. 5

1 Scope .. 6

2 References .. 6

3 Definitions of terms, symbols and abbreviations ... 7

3.1 Terms .. 7

3.2 Symbols .. 7

3.3 Abbreviations ... 7

4 Overview of CAPIF ... 7

4.1 Introduction .. 7

4.2 Functional Architecture .. 7

4.3 Functional Entities .. 9

4.4 RNAA and CAPIF.. 9

4.5 Relationship between RNAA and OAuth 2.0 ... 10

4.6 Overview CAPIF operations .. 11

4.6.1 General .. 11

4.6.2 Usage of CAPIF by API invoker .. 11

4.6.3 Usage of CAPIF by API provider ... 12

5 Role of Stakeholders for API Exposure ... 14

5.1 Stakeholders in CAPIF ... 14

5.2 Basic roles .. 14

5.2.1 CAPIF provider .. 14

5.2.2 Service API provider .. 15

5.2.3 API invoker ... 15

5.2.4 Resource owner .. 15

5.3 Mapping of stakeholders to CAPIF roles ... 15

5.4 Usage of CAPIF in different phases of an application business lifecycle .. 16

6 Exemplary Use Cases and Adoption .. 17

6.1 The deployment of the API Invoker as AF on the UE for RNAA .. 17

6.2 The deployment of the API Invoker as AF on the network for RNAA .. 20

6.3 GSMA Operator Platform deployment via CAPIF .. 22

6.4 CAPIF Vendor Extensibility .. 22

6.5 ETSI MEC deployment based on CAPIF ... 23

6.6 MEC Platform as an API Provider ... 23

6.6.1 Introduction... 23

6.6.2 Registering the MEC Platform as an API Provider in CAPIF .. 23

6.6.3 Publishing an API for the MEC Platform ... 25

6.7 Open-source implementation of CAPIF ... 26

7 Summary .. 27

Annex A: Examples from OpenCAPIF .. 28

Annex B: CAPIF Vendor Extensibility .. 29

B.1 Include Vendor Specific information ... 29

B.2 Query for Vendor Specific information ... 29

B.3 ETSI MEC extensibility to CAPIF ... 29

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)43GPP TR 23.946 version 18.1.0 Release 18

Annex C: Open-source implementation of CAPIF .. 33

C.1 NEF Publishes an API .. 33

C.2 API consumption from an API Invoker ... 45

Annex D: CAPIF Test cases ... 56

D.1 General ... 56

D.2 Test Plan for CAPIF API Invoker Management .. 56

D.3 Test Plan for CAPIF API Provider Management ... 60

D.4 Test Plan for CAPIF API Publish Service .. 65

D.5 Test Plan for CAPIF Discover Service API ... 74

D.6 Test Plan for CAPIF API Security Service .. 79

D.7 Test Plan for CAPIF API Access Control Policy Service .. 96

D.8 Test Plan for CAPIF API Logging Service .. 107

D.9 Test Plan for CAPIF API Events Service ... 110

D.10 Test Plan for CAPIF API Auditing Service ... 121

Annex E: Change history ... 125

History .. 126

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)53GPP TR 23.946 version 18.1.0 Release 18

Foreword
This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction
This TR provides guidelines for CAPIF usage for the benefit of the Application developer and API provider
communities.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)63GPP TR 23.946 version 18.1.0 Release 18

1 Scope
This TR provides guidelines for CAPIF usage for the benefit of the Application developer and API provider
communities. This document also describes the usage and deployment options in CAPIF.

The work takes into consideration the work done for CAPIF in 3GPP TS 23.222 [2] and 3GPP TS 29.222 [3] and
3GPP TS 33.122 [4], and other related work outside 3GPP.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

- For a specific reference, subsequent revisions do not apply.

- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2] 3GPP TS 23.222: "Common API Framework for 3GPP Northbound APIs; Stage 2".

[3] 3GPP TS 29.222: "Common API Framework for 3GPP Northbound APIs; Stage 3".

[4] 3GPP TS 33.122: "Security Aspects of Common API Framework for 3GPP Northbound APIs".

[5] ETSI GS MEC 011 (V3.3.1), "Multi-access Edge Computing (MEC); Edge Platform Application
Enablement".

[6] 3GPP TR 23.958: "Edge Application Standards in 3GPP and Alignment with External
Organizations".

[7] EVOLVED-5G ICT-41 project, "EVOLVED-5G", https://evolved-5g.eu.

[8] EVOLVED-5G NEF emulator (V2.2.3), "EVOLVED-5G NEF emulator",
https://github.com/EVOLVED-5G/NEF_emulator.

[9] ETSI Software Development Group OpenCAPIF, "OpenCAPIF", https://ocf.etsi.org.

[10] ETSI Labs OCF capif, "capif", https://labs.etsi.org/rep/ocf/capif.

[11] GSMA PRD OPG.02 - "Operator Platform Telco Edge Requirements Version 7.0",
https://www.gsma.com/solutions-and-impact/technologies/networks/wp-
content/uploads/2024/09/OPG.02-v7.0-Operator-Platform-Requirements-and-Architecture.pdf.

[12] OpenCAPIF ETSI SDG OCF Documentation – Postman, "ETSI SDG OCF Documentation -
Postman", https://ocf.etsi.org/documentation/develop/testing/postman/.

[13] OpenCAPIF ETSI SDG OCF Documentation - Common Operations, "ETSI SDG
OCF Documentation - Common Operations",
https://ocf.etsi.org/documentation/develop/testing/testplan/common_operations/.

[14] 3GPP TS 29.122: "T8 reference point for Northbound APIs".

[15] IETF RFC 6749 (October 2012): "The OAuth 2.0 Authorization Framework".

https://evolved-5g.eu/
https://github.com/EVOLVED-5G/NEF_emulator
https://ocf.etsi.org/
https://labs.etsi.org/rep/ocf/capif
https://ocf.etsi.org/documentation/develop/testing/postman/
https://ocf.etsi.org/documentation/develop/testing/testplan/common_operations/

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)73GPP TR 23.946 version 18.1.0 Release 18

[16] 3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".

3 Definitions of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term
defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

For the purposes of the present document, the terms given in clause 3 of 3GPP TS 23.222 [2] and clause 3 of
3GPP TS 29.222 [3] shall also apply.

3.2 Symbols
For the purposes of the present document, the following symbols apply:

<symbol> <Explanation>

3.3 Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An
abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in
3GPP TR 21.905 [1].

For the purposes of the present document, the abbreviations given in clause 3 of 3GPP TS 23.222 [2] and clause 3 of
3GPP TS 29.222 [3] shall also apply.

4 Overview of CAPIF

4.1 Introduction
3GPP specifies multiple northbound API-related specifications. To avoid duplication and inconsistency of approaches
between different API specifications and to specify common services (e.g. authorization), 3GPP developed a common
API framework (CAPIF) that includes aspects applicable to any northbound service APIs. The key CAPIF
specifications are:

- 3GPP TS 23.222 [2] defines the CAPIF architecture and procedures;

- 3GPP TS 29.222 [3] defines the API messages and protocol for CAPIF APIs; and

- 3GPP TS 33.122 [4] defines CAPIF security procedures.

4.2 Functional Architecture
The CAPIF functional architecture is specified in 3GPP TS 23.222 [2] and consists of CAPIF core function, API
Provider Domain Functions and API invoker. CAPIF architecture is based on the well-known Service Oriented
Architecture (SOA) design paradigm, where a Service producer (i.e. API provider) is able to publish (1) the offered
service APIs which can be discovered (2) by the Service consumers (e.g. API invokers) and further can invoke (3) the
discovered service APIs as per the authorization.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)83GPP TR 23.946 version 18.1.0 Release 18

Service Consumer

(API invoker)

Service Producer

(API provider domain

functions)

Service Access Controller

(CCF)

1. API publish

2. API discover

3. API invocation

Figure 4.2-1: CAPIF based on SOA

Figure 4.2-1 provides an illustration of CAPIF based on SOA with the following relationship:

1. The functionalities related to Service Access Controller are supported by CAPIF core function.

2. The Service producer is the API Provider Domain Functions.

3. The Service consumer is the API Invoker.

Most CAPIF APIs are provided by a CAPIF core function entity and can be consumed by applications (API invokers)
and application providers (CAPIF defines an API provider as three functions: API exposure, API publishing, and API
management). CAPIF core function APIs enable onboarding, publishing, discovery, authentication, registration,
authorization, logging, charging, monitoring, configuration, topology hiding, and other procedures. One CAPIF API
(AEF security) is provided by the API exposure function.

CAPIF-1e

CAPIF core function

P
L
M
N
 T
ru
s
t
D
o
m
a
in

CAPIF APIs

CAPIF-3e

CAPIF-4e

API exposing function

API publishing function

API provider domain

API management function
CAPIF-5e

3
r
d

 p
a
rt
y
 T
ru
st
 D
o
m
a
in

CAPIF-2e

API invoker

Service APIsService APIsService APIs

Figure 4.2-2: Functional model for the CAPIF to support 3rd party API providers

(adapted from 3GPP TS 23.222 [2] Figure 6.2.1-1: Functional model for the CAPIF to support 3rd party API providers).

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)93GPP TR 23.946 version 18.1.0 Release 18

The CAPIF architecture includes multiple deployment models e.g. centralized vs. distributed, single vs. multiple API
providers (see 3GPP TS23.222 [2] clause 7).

4.3 Functional Entities
API invoker: Typically provided by a 3rd party application provider who has service agreement with the PLMN
operator.

The API invoker supports several CAPIF capabilities such as supporting authentication, obtaining authorization, and
discovering service APIs and invoking service APIs.

CAPIF core function (CCF): Supports capabilities used by other functional entities, for example the following:

- For the API invoker: authenticating the API invoker, providing authorization information, and service API
discovery.

- For the API exposing function: (AEF) providing the service API access policy, providing API routing
information, and charging of service API invocations.

- For the API publishing function: publishing and storing the service APIs information.

- For the API management function: providing the service API invocation log for auditing, storing configurations
of the API provider policies, and updating registration information of API provider domain functions.

A CAPIF core function can also interact with another CAPIF core function for API publishing and discovery.

API exposing function (AEF): The API exposing function (AEF) is the provider of the Service APIs and is also the
service communication entry point of the Service API to API invokers.

API publishing function (APF): The API publishing function (APF) enables the API provider to publish the Service
APIs information to enable the discovery of Service APIs by the API invoker.

API management function (AMF): The API management function (AMF) enables the API provider to manage service
APIs such as querying the Service API invocation log for auditing, monitoring the events, and configuring the API
provider policies.

Authorization function: The authorization function enables receiving authorization from the resourse owner function
and providing the API invoker with the authorization information which is needed to access the resource owner’s
resources. This function is used in RNAA scenarios.

Resource owner function (ROF): The resource owner function enables the authorization for resource access and
managing and revoking authorization for resource access. This function is used in RNAA scenarios.

4.4 RNAA and CAPIF
RNAA (Resource owner-aware Northbound API Access) is an OAuth 2.0-based authorization mechanism for CAPIF
and enables API invokers to have authorized access to resources of a resource owner provided by service APIs offered
by the API exposing function.

The relationship between the RNAA and CAPIF is described in this clause. The CAPIF architecture given in
clause 6.2.0 of 3GPP TS 23.222 [2] can use OAuth 2.0 token's mechanism to authorize API invokers. As per OAuth
2.0, API invoker performs the function of the client, the CAPIF core function performs the function of the authorization
server, and the API exposing function performs the exposure of the protected resources. The API invoker is authorized
with an authorization grant type of client credentials described in clause 6.5 of 3GPP TS 33.122 [4].

The RNAA architecture given in clause 6.2.3 of 3GPP TS 23.222 [2] supports an authorization grant type of
authorization code grant. The resource owner function in the RNAA architecture has the role of the resource owner,
authorizing the API invoker to invoke the API exposing function.

Figure 4.4-1 shows the architectural model for the RNAA which allows the resource owner to provide authorization to
the API invocation. The authorization function and the resource owner function are used in RNAA scenarios.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)103GPP TR 23.946 version 18.1.0 Release 18

API invoker

CAPIF-1e

CAPIF core function

API exposing function

Service APIsService APIsService APIs
CAPIF-3

CAPIF-2e

API invoker

CAPIF-1
CAPIF-2P

L
M
N
 T
ru
s
t
D
o
m
a
in

CAPIF-4
API publishing function

CAPIF APIs

CAPIF-5
API management function

Resource owner function

CAPIF-8

Authorization function

API provider domain

used in RNAA scenarios

Figure 4.4-1: High level functional architecture for CAPIF supporting RNAA

4.5 Relationship between RNAA and OAuth 2.0
This clause shows the relationship between RNAA and OAuth 2.0. The Table 4.5-1 shows the mapping of OAuth 2.0
and RNAA. The details of OAuth 2.0 are specified in IETF RFC 6749 [15] and the details of RNAA are in
3GPP TS 23.222 [2].

Table 4.5-1: RNAA relationship with OAuth 2.0

Role OAuth 2.0 RNAA
The entity capable of granting access
to a protected resource.

Resource Owner Resource owner via Resource owner
function

The server hosting the protected
resources, capable of accepting and
responding to protected resource
requests using access tokens.

Resource Server API exposing function

The application making protected
resource requests on behalf of the
resource owner and with its
authorization.

Client API invoker

The server issuing access tokens to
the client after successfully
authenticating the resource owner and
obtaining authorization.

Authorization Server Authorization function

The software agent responsible for
retrieving and facilitating end-user
interaction for authorization.

User Agent Resource owner function hosting
environment

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)113GPP TR 23.946 version 18.1.0 Release 18

4.6 Overview CAPIF operations

4.6.1 General

This clause provides the overview of CAPIF operations from the perspective of an Application (API invoker) and API

provider. The detail of the CAPIF overall operations is shown in Annex A of 3GPP TS 23.222 [2].

4.6.2 Usage of CAPIF by API invoker

Figure 4.6.2-1 describes the usage of CAPIF by API invoker for APIs which does not involve resource owner
authorization.

API invoker CAPIF core function
API exposing
function (AEF)

1. Onboarding API invoker to the CAPIF

3. API invoker discovering service APIs

2. Authentication between the API invoker and the CAPIF core
function

5. Service API invocation by the API invoker

4. API invoker obtaining authorization to access servie API

Figure 4.6.2-1: Usage of CAPIF by API invoker for APIs which does not involve resource owner

1. API invoker onboards to the CAPIF core function, as specified in clause 8.1 of 3GPP TS 23.222 [2].

2. The API invoker authenticates with the CAPIF core function, as specified in clause 8.10 of 3GPP TS 23.222 [2].

3. The API invoker discovers the service API, as specified in clause 8.7 of 3GPP TS 23.222 [2].

4. To access the service API, the API invoker obtains authorization with the CAPIF core function, as specified in
clause 8.11 of 3GPP TS 23.222 [2].

5. The API invoker performs service API invocation, as specified in clause 8.16 of 3GPP TS 23.222 [2].

Figure 4.6.2-2 describes the usage of CAPIF by API invoker for APIs which involves resource owner authorization.

API invoker CAPIF core function
API exposing
function (AEF)

1. Onboarding API invoker to the CAPIF

3. API invoker discovering service APIs

2. Authentication between the API invoker and the CAPIF core
function

5. Service API invocation by the API invoker

Resource owner
function

4. API invoker obtaining authorization information to access servie API

Figure 4.6.2-2: Usage of CAPIF by API invoker for APIs which involve resource owner

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)123GPP TR 23.946 version 18.1.0 Release 18

1. API invoker onboards to the CAPIF core function, as specified in clause 8.1 of 3GPP TS 23.222 [2].

2. The API invoker authenticates with the CAPIF core function, as specified in clause 8.10 of 3GPP TS 23.222 [2].

3. The API invoker discovers the service API, as specified in clause 8.7 of 3GPP TS 23.222 [2].

4. To access the service API, the API invoker obtains authorization with the CAPIF core function, and then
requests service API invocation as specified in clause 8.31 of 3GPP TS 23.222 [2].

5. The API invoker performs service API invocation, as specified in clause 8.16 of 3GPP TS 23.222 [2].

4.6.3 Usage of CAPIF by API provider

Figure 4.6.3-1 describes the usage of CAPIF by API provider for APIs which does not involve resource owner
authorization.

API invoker CAPIF core function
API publishing
function (APF)

API exposing
function (AEF)

API management
function (AMF)

API provider domain

1. Publish service APIs

2. Authenticating the API invoker prior to service API invocation

3. Authenticating the API invoker upon the service API invocation

4. Authentication between the API invoker and the AEF

5. Service API invocation by the API invoker with access control

6. Logging service API invocations

7. Charging the invocation of service APIs

8. Monitoring API status and service API invocation

9. Querying service API invocation logs

Figure 4.6.3-1: Usage of CAPIF by API provider for APIs which does not involve resource owner

1. The API publishing function sends service API publish request to the CAPIF core function, as specified in
clause 8.3 of 3GPP TS 23.222 [2].

2. The API provider authenticates the API invoker prior to the service API invocation, utilizes the API exposing
function, as specified in clause 8.14 of 3GPP TS 23.222 [2].

3. The API provider authenticates the API invoker upon invocation of the service APIs, utilizes the API exposing
function, as specified in clause 8.15 of 3GPP TS 23.222 [2].

4. The API provider authorizes the API invoker to access, as specified in clause 8.16 of 3GPP TS 23.222 [2].

5. The API provider controls the access of the service API by the API invoker based on policy or usage limits, as
specified in clause 8.16 and 8.17 of 3GPP TS 23.222 [2].

6. The API provider maintains the log of the API invocations at the CAPIF core function for services such as
charging, invocation history, utilizes the API exposing function, as specified in clause 8.19 of
3GPP TS 23.222 [2].

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)133GPP TR 23.946 version 18.1.0 Release 18

7. The API provider facilitates charging of the API invocations, utilizes the API exposing function, as specified in
clause 8.20 of 3GPP TS 23.222 [2].

8. The API provider facilitates monitoring such as API invoker's ID and IP address, utilizes the API management
function, as specified in clause 8.21 of 3GPP TS 23.222 [2].

9. The API provider utilizes the API management function for auditing, as specified in clause 8.22 of
3GPP TS 23.222 [2].

Figure 4.6.3-2 describes the usage of CAPIF by API provider for APIs which involves resource owner authorization.

API invoker CAPIF core function
API publishing
function (APF)

API exposing
function (AEF)

API management
function (AMF)

API provider domain

1. Publish service APIs

2. Authenticating the API invoker prior to service API invocation

3. Authenticating the API invoker upon the service API invocation

5. Authentication between the API invoker and the AEF

6. Service API invocation by the API invoker with access control

7. Logging service API invocations

8. Charging the invocation of service APIs

9. Monitoring API status and service API invocation

10. Querying service API invocation logs

Resource owner
function

4. API invoker obtaining authorization to access service API

Figure 4.6.3-2: Usage of CAPIF by API provider for APIs which involve resource owner

1. The API publishing function sends service API publish request to the CAPIF core function, as specified in
clause 8.3 of 3GPP TS 23.222 [2].

2. The API provider authenticates the API invoker prior to the service API invocation, utilizes the API exposing
function, as specified in clause 8.14 of 3GPP TS 23.222 [2].

3. The API provider authenticates the API invoker upon invocation of the service APIs, utilizes the API exposing
function, as specified in clause 8.15 of 3GPP TS 23.222 [2].

4. API authorization is based on the authorization information obtained from the resource owner function, as
specified in clause 8.31 of 3GPP TS 23.222 [2].

5. The API provider authorizes the API invoker to access, as specified in clause 8.16 of 3GPP TS 23.222 [2].

6. The API provider controls the access of the service API by the API invoker based on policy or usage limits, as
specified in clause 8.16 and 8.17 of 3GPP TS 23.222 [2].

7. The API provider maintains the log of the API invocations at the CAPIF core function for services such as
charging, invocation history, utilizes the API exposing function, as specified in clause 8.19 of
3GPP TS 23.222 [2].

8. The API provider facilitates charging of the API invocations, utilizes the API exposing function, as specified in
clause 8.20 of 3GPP TS 23.222 [2].

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)143GPP TR 23.946 version 18.1.0 Release 18

9. The API provider facilitates monitoring such as API invoker's ID and IP address, utilizes the API management
function, as specified in clause 8.21 of 3GPP TS 23.222 [2].

10. The API provider utilizes the API management function for auditing, as specified in clause 8.22 of
3GPP TS 23.222 [2].

5 Role of Stakeholders for API Exposure

5.1 Stakeholders in CAPIF
Several stakeholders are considered to interact within the API exposure ecosystem, for instance: MNO, NPN owners,
channel aggregators, application service developers, application service providers (ASP), authorization service
providers, identity service providers, resource owners, API invokers.

The functional model description for CAPIF is given in clause 6.2.0 of 3GPP TS 23.222 [2]. Different business
relationships are considered for CAPIF as follows:

- Basic CAPIF business relationships are given in clause 5.1 of 3GPP TS 23.222 [2].

- CAPIF business relationships for RNAA are provided in clause 5.2 of 3GPP TS 23.222 [2].

- In case of interconnection among CAPIF providers, CAPIF business relationships are given in clause 4.12 of
3GPP TS 23.222 [2].

Some exemplary business relationships are reproduced in Figure 5.1-1.

Service API

arrangement

API invoker

API providerCAPIF provider

Service

Agreement

Resource owner

Resource Access

Arrangement

CAPIF provider
for interconnection

Business relationship
for interconnection

API invoker

Service

Agreement

Figure 5.1-1: Basic business relationships in CAPIF

CAPIF has three main stakeholder roles (CAPIF provider, API provider, and API invoker) and RNAA has resource
owner role.

5.2 Basic roles

5.2.1 CAPIF provider

The CAPIF provider contains an instance of CAPIF core function, and API provider, and API invokers and it could be a
PLMN, SNPN or 3rd party. The CAPIF provider and the API provider can be part of the same organization (e.g. PLMN
operator), in which case the business relationship between the two is internal to a single organization. The CAPIF
provider and the API provider can be part of different organizations, in which case the business relationship between the
two must exist in clause 5.1 of 3GPP TS 23.222 [2].

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)153GPP TR 23.946 version 18.1.0 Release 18

5.2.2 Service API provider

The service API provider hosts one or more service APIs and has a service API arrangement with CAPIF provider to
offer the service APIs to the API invoker.

Requirements for enabling API invoker is given in clause 4.1.2 of 3GPP TS 23.222 [2].

5.2.3 API invoker

The API invoker is typically provided by a 3rd party application provider who has service agreement with PLMN
operator and consumes the CAPIF APIs and service APIs. The API invoker may reside within the same trust domain as
the PLMN operator network. There are various API invokers like application management client (used by application
developers, application service provider), hosted applications (on cloud, edge or UE), and channel aggregator (who
aggregates the CAPIF APIs and/or the service APIs).

Requirements for supporting 3rd party API providers is given in clause 4.1.3 of 3GPP TS 23.222 [2].

5.2.4 Resource owner

The resource owner is a UE user or an MNO subscriber capable of granting access to a protected resource related to the
resource exposed by the API provider. In the current release, it is a user of the UE hosting the API invoker that can
authorize the API access in clause 6.3.8 of 3GPP TS 23.222 [2].

Requirements for supporting RNAA is given in clause 4.17.2 of 3GPP TS 23.222 [2].

5.3 Mapping of stakeholders to CAPIF roles
The figure 5.3-1 provides the mapping of the stakeholders to CAPIF roles and illustrates the usage of CAPIF
capabilities.

The following examples of API invoker roles are illustrated:

1. Application management client: The application developers utilize the CAPIF APIs using an Application
management client as an API invoker to obtain the service APIs information to implement the application
program. Such application programs are hosted on cloud, edge or on a UE.

2. Hosted applications: The Hosted applications (which are programmed to utilize the service APIs) as an API
invoker invoke the CAPIF APIs and service APIs as per the application business logic.

3. Channel Aggregator Platform: The Channel Aggregator aggregates the APIs from one or more southbound
CAPIF providers with the intention to re-expose such APIs or expose value-added APIs developed using the
APIs from the southbound CAPIF providers to the northbound side Application management client or Hosted
applications. The Channel Aggregator Platform as API invoker invokes the CAPIF APIs and service APIs as per
its business logic.

4. BSS/OSS System: The BSS/OSS system of MNO enables the business relationship with the Application Service
Providers (the consumers of the service APIs exposed by the MNO's exposure platform). The BSS/OSS system
as an API invoker invoke the CAPIF APIs as per its business logic.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)163GPP TR 23.946 version 18.1.0 Release 18

CCF AEF

AEF #n

CCF AEF

AEF #n

CAPIF provider
+API provider

(e.g. MNO)

Channel Aggregator Platform
(API invoker)

Application Management Client
(API invoker)

Channel
Aggregator

(e.g., operator,
Hyperscaler, OTT)

Application
developer

Uses the Application Management
Client to obtain the API description
document and usage instruction and
develops (program) the Applications

Uses the Application management client
to monitor the API invocation event,
account, billing

Hosted Applications
(API invoker)

Obtain the service
APIs, API invoker
management, etc
(CAPIF API operations)

Application
Service

Provider

API invoker
authorization

(CAPIF API operations)

Service API
invocations

Operates the Channel
Aggregator Platform

Operates the Exposure
Platform

Exposure Platform Exposure Platform

CAPIF API
operations

Service API
invocations

BSS/OSS system
(API invoker)

Operates the BSS/OSS system

Figure 5.3-1: Mapping of the stakeholders to CAPIF roles

5.4 Usage of CAPIF in different phases of an application
business lifecycle

This clause shows an example of CAPIF usage in application service system. In this example, there are following
stakeholders/roles: application service provider, application developer, and CAPIF provider and service API provider as
defined in 3GPP TS 23.222 [2].

Figure 5.4-1 shows the whole service flow of CAPIF usage by the 3rd party during the application business lifecycle.
The application business lifecycle includes 3 phases:

Phase 1. Application development preparation phase: Before the application developer develops the application,
the developer determines the candidate service APIs to be used for the application. The developer selects the
CAPIF provider and the service API provider. As part of the service agreement with the CAPIF provider, the
developer needs to ensure the API invoker is pre-provisioned with the required onboarding enrolment
information and security credentials. This enables the API invoker to establish a secure connection with the
CAPIF core function over which an onboarding API invoker request can be initiated, as specified in clause 8.1 in
3GPP TS 23.222 [2]. Then the developer searches the interested service API(s) information, e.g. available
service API, service API name, and so on via the utilizes the application management client (act as API invoker),
which invokes the CAPIF_Discover_Service_API to obtain that service API information from the CCF. The
developer may find the service API provider at any time later.

Phase 2. Application development and testing phase: The application developer obtains the detailed service API
information including API usage instructions which enables the application developer to program the service
API into the application. In addition, the developer may also obtain the security credential of the service API
before programming it (option #1). Later, the application developer can test the application which invokes the
corresponding CAPIF API and service API (e.g. in a sandbox mode).

Phase 3. Application deployment and execution phase: After the development, the application is commercial
released. The host application (acting as API invoker) obtains the authorization from CAPIF core function to

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)173GPP TR 23.946 version 18.1.0 Release 18

invoke the service API as specified in clause 8.11 of 3GPP TS 23.222 [2]. The host application may obtain the
security credential of the service API invocation (Option #2). Upon receiving the access token from CAPIF core
function, the application initiates the service API invocation, as specified in clause 8.16 in 3GPP TS 23.222 [2].
In RNAA scenario, the API invoker obtains authorization with the CAPIF core function as specified in
clause 8.31 of 3GPP TS 23.222 [2], and then requests service API invocation.

NOTE 1: There are two options about obtaining the security credential of the service API invocation. Option #1 is
fetching it during phase 1 or phase 2 and program it into the host application. In this option, the security
can not be dynamically refreshed at any time and a security credential obtained during the preparation and
testing phase might not be appropriate for deployment. Option #2 is fetching it during the host application
is running. In this option, the security can be dynamically refreshed at any time.

NOTE 2: Beyond 3GPP Release 18, the CAPIF continues to evolve and new features offering enhancement to the
different phases of an application business lifecycle are under consideration.

CAPIF provider

+ API provider

(e.g., MNO)

Searching

available API, API

name and API GW

URL on API portal

Get Account

and

authorization

key / token

Developing application

software to use the

CAPIF APIs and/or

service APIs

Test, package the application

AEF

APP software installed

on server/client.

Security established

with CAPIF provider

API GW

address resolving API invocation

Application software

development preparation phase
Application software development and testing phase Application deployment and execution phase

API

forwarding

AEF

NOTE: API gateway can be mapped to AEF

Appliction

developer

Appliction

 service provider

• CAPIF_API_invoker

_mgmt
• CAPIF_Discover
_Service _API;
 CAPIF_Event_API

Application management client Hosted Application

CAPIF core function

Find more

service API

• CAPIF_Discover_S

ervice _API• CAPIF_Security API

Get Account

and

authorization

key / token

Application management client

Option2: dytnamic API invoker authorization

• AEF_Security _API

Get
apiRoot

• Service API

CAPIF APIs AEF APIs + Service APIs

API invoker API invoker

API invoker
use

use

operate

Stakeholder/Role
CAPIF functional entity

CAPIF API/AEF API/
Service API

work
activities

work flow

Get new account for commerial use

Hosted

Application

API

invoker

Get new account
for testing use

Option1: static API invoker authorization

Figure 5.4-1: Usage of CAPIF in different phases of an application business lifecycle

6 Exemplary Use Cases and Adoption

6.1 The deployment of the API Invoker as AF on the UE for
RNAA

Several RNAA deployments are described in clause 7.5 of 3GPP TS 23.222 [2], and the following is an example of a
RNAA deployment in which API invoker is deployed as AF on the UE.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)183GPP TR 23.946 version 18.1.0 Release 18

In this deployment scenario, UE, which functions as both the API Invoker (AF) and the resource owner function,
requests resource owner consent from the resource owner function through CAPIF core function to obtain the resource
(e.g., QoS).

Figure 6.1-1 illustrates integrated fundamental deployment of the API Invoker as AF on the UE for RNAA.

CAPIF core function

API exposing function

Service APIsService APIsService APIs
CAPIF-3

API invoker

(AF)

CAPIF-1
CAPIF-2

P
L
M
N
 T
ru
s
t
D
o
m
a
in

CAPIF-4
API publishing function

CAPIF APIs

CAPIF-5
API management function

Resource owner function

CAPIF-8

Authorization function

API provider domain

UE

NEF

Figure 6.1-1: The deployment of the API Invoker as AF on the UE for RNAA

Figure 6.1-2 illustrates the procedure for the deployment of the API Invoker as AF on the UE for RNAA.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)193GPP TR 23.946 version 18.1.0 Release 18

API invoker

(AF)
CAPIF core function

API exposing

function (AEF)

1. Onboarding API invoker to the CAPIF

3. API invoker discovering service APIs

4. Authentication between the API invoker and the AEF

2. Authentication between the API invoker and the CAPIF core function

6. Service API invocation by the API invoker

Resource owner

function

(Resource Owner´s)

5. API invoker obtaining authorization information to access servie API

UE

Figure 6.1-2: The deployment of the API Invoker as AF on the UE for RNAA

The following procedure is for the deployment of the API Invoker as AF on the UE for RNAA:

1. The API invoker triggers onboard API invoker request towards the CAPIF core function. The CAPIF core
function then verifies the request and responds to the API invoker with the result.

2. The API invoker sends an obtain service API authorization request to the CAPIF core function for obtaining
permission to access the service API. The CAPIF core function validates the authentication of the API invoker
and checks whether the API invoker is permitted to access the requested service API. Then, the CAPIF core
function responds to the API invoker with the authorization information required to access the service APIs.

3. The API invoker sends a service API discover request to the CAPIF core function and the CAPIF core function
verifies the identity of the API invoker. Then the CAPIF core function sends a service API discover response to
the API invoker with the list of service API information for which the API invoker has the required
authorization.

4. The AEF sends an obtain access control policy request to the CAPIF core function for obtaining the policy to
perform the access control on service API invocations. The CAPIF core function checks whether the AEF is
authorized to receive the access control policy corresponding to the service APIs requested. The AEF is provided
the access control policy for the service API via an obtain access control policy response.

5. The API invoker requests the resource owner's authorization information to invoke the service API, exposed by
the API exposing function. The authorization function facilitates this request by involving the resource owner.
Then, the API invoker sends a service API invocation request to the API exposing function, which in turn sends
a response back to the API invoker.

6. The API invoker (UE) sends service API invocation request to the and the AEF checks whether the API invoker
is authorized to invoke that service API, based on the authorization information. The API invoker receives the
service API invocation response as a result of the service API invocation.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)203GPP TR 23.946 version 18.1.0 Release 18

6.2 The deployment of the API Invoker as AF on the network for
RNAA

In this deployment scenario, the UE, which functions as both the application and the resource owner function, initiates
the application's requests. The API Invoker then requests resource owner consent from the resource owner function
through CAPIF core function to obtain the resource (e.g., QoS).

Figure 6.6-1 illustrates integrated fundamental deployment of the API Invoker as AF on the network for RNAA.

API invoker

CAPIF-1e

CAPIF core function

API exposing function

Service APIsService APIsService APIs
CAPIF-3

CAPIF-2e

CAPIF-1
CAPIF-2P

L
M
N
 T
ru
s
t
D
o
m
a
in

CAPIF-4
API publishing function

CAPIF APIs

CAPIF-5
API management function

Resource owner function

(Resource Owner's)

CAPIF-8

Authorization function

API provider domain

UE

NEF

Application
API invoker

(AF)

Figure 6.6-1: The deployment of the API Invoker as AF on the network for RNAA

Figure 6.6-2 illustrates the procedure for the deployment of the API Invoker as AF on the network for RNAA.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)213GPP TR 23.946 version 18.1.0 Release 18

API invoker

(AF)
CAPIF core function

API exposing

function (AEF)

1. Onboarding API invoker to the CAPIF

3. API invoker discovering service APIs

4. Authentication between the API invoker and the AEF

2. Authentication between the API invoker and the CAPIF core function

Resource owner

function

(Resource Owner´s)

UE

5. API invoker obtaining authorization information to access servie API

6. Service API invocation by the API invoker from application on UE

Figure 6.2-2: The procedure for the deployment of the API Invoker as AF on the network for RNAA

The following procedure is for API Invoker deployment on the network as AF for RNAA:

1. The API invoker triggers onboard API invoker request towards the CAPIF core function. The CAPIF core
function then verifies the request and responds to the API invoker with the result.

2. The API invoker sends an obtain service API authorization request to the CAPIF core function for obtaining
permission to access the service API. The CAPIF core function validates the authentication of the API invoker
and checks whether the API invoker is permitted to access the requested service API. Then, the CAPIF core
function responds to the API invoker with the authorization information required to access the service APIs.

3. The API invoker sends a service API discover request to the CAPIF core function and the CAPIF core function
verifies the identity of the API invoker. Then the CAPIF core function sends a service API discover response to
the API invoker with the list of service API information for which the API invoker has the required
authorization.

4. The AEF sends an obtain access control policy request to the CAPIF core function for obtaining the policy to
perform the access control on service API invocations. The CAPIF core function checks whether the AEF is
authorized to receive the access control policy corresponding to the service APIs requested. The AEF is provided
the access control policy for the service API via an obtain access control policy response.

5. The API exposing function obtains the resource owner consent from the resource owner. The API invoker
requests the resource owner's authorization information to invoke the service API, exposed by the API exposing
function. The authorization function facilitates this request by involving the resource owner. Then, the API
invoker sends a service API invocation request to the API exposing function, which in turn sends a response
back to the API invoker.

6. From the application’s request on UE, the API invoker sends service API invocation request to the AEF and the
AEF checks whether the API invoker is authorized to invoke that service API, based on the authorization
information. The API invoker receives the service API invocation response as a result of the service API
invocation.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)223GPP TR 23.946 version 18.1.0 Release 18

6.3 GSMA Operator Platform deployment via CAPIF
The GSMA Operator Platform defines a common platform exposing operator services / capabilities to customers /
application providers in the 5G-era. The requirement that an Operator Platform’s SBI-NR can work with CAPIF when
available is specified in clause 5.1.4.2.2 of GSMA PRD OPG.02 [11] and application session continuity support for
handovers between 4G and 5G based on combined SCEF+NEF via CAPIF is described in clause 5.2.2.6.7 of
GSMA PRD OPG.02 [11].

Figure 6.3-1 illustrates integrated fundamental GSMA Operator Platform deployment of the SCEF and the NEF with
the CAPIF. In this deployment model, the GSMA Operator Platform functions as the API invoker.

NOTE: An Operator Platform's SBI-NR can work without CAPIF. If CAPIF is not supported, the SBI-NR API
will provide an alternate means of providing these functions.

CAPIF core function

API exposing function

Service APIsService APIsService APIs
CAPIF-3

CAPIF-1

CAPIF-2

(T8)

P
L
M
N
 T
ru
st
 D
o
m
a
in

CAPIF-4
API publishing function

API provider domain 1

CAPIF APIs

CAPIF-5
API management function

API invoker

CAPIF-1e

API exposing function

Service APIsService APIsService APIs

API publishing function

API provider domain 2

API management function

CAPIF-3

CAPIF-4

CAPIF-5

CAPIF-2

(N33)

SCEF

NEF

Capabilities Exposure Role

Federation Manager Role

Service Resource Manager Role

API Invoker

Operator Platform

Application Provider

NBI

Operator Platform

User Client

UNI

EWBI

CAPIF-2

SBI-NR

(N33)

CAPIF-2

SBI-NR

(T8)

P
L
M
N
 T
ru
st
 D
o
m
a
in

CAPIF-1

SBI-NR

Figure 6.3-1: Integrated GSMA Operator Platform deployment of the SCEF and the NEF with the
CAPIF

6.4 CAPIF Vendor Extensibility
Vendor extensibility is a CAPIF feature that enables third-party API frameworks to re-use CAPIF functionality, adapted
to their requirements, by extending either CAPIF APIs or CAPIF data models. A detailed description of vendor
extensibility mechanisms is provided on 3GPP TS 29.122 [14] and 3GPP TS 29.500 [16]. The CAPIF APIs supporting
this feature are the following:

- CAPIF_Publish_Service_API, including “VendorExt” option in the supported feature list (see Table 8.1.6-1 of
3GPP TS 29.222 [3], which lists 3 features), indicating the support for CAPIF vendor specific extensions on the
ServiceAPIDescription data model.

- CAPIF_Discover_Service_API, including “VendSpecQueryParams” option in the supported feature list (see
Table 8.2.6-1 of 3GPP TS 29.222 [3], which lists 9 features), indicating the support of vendor specific query
parameters in API discovery requests.

Annex B provides more details of CAPIF vendor extensibility and illustrates ETSI MEC leveraging the CAPIF vendor
extensibility feature.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)233GPP TR 23.946 version 18.1.0 Release 18

6.5 ETSI MEC deployment based on CAPIF
The ETSI MEC platform is the collection of essential functionalities required to run MEC applications on a particular
Virtualisation infrastructure and enable them to provide and consume MEC services. In clause 9 of
ETSI GS MEC 011 V3.3.1 [5], a description is provided on how the MEC service management APIs can be realized by
CAPIF APIs. The clause describes how MEC deployments can reuse CAPIF functionality to harmonize between MEC
and CAPIF, e.g., to integrate MEC applications into a joint 3GPP-MEC deployment. To enable such harmonization, a
variant of the MEC service management functionality is defined that leverages the CAPIF Publish Service API, CAPIF
Discover Service API and CAPIF Events API. The variant is referred to as the "MEC profile of CAPIF".

This deployment option for ETSI MEC based on CAPIF is also depicted at a high-level in clause 7.2 of
3GPP TR 23.958 [6].

6.6 MEC Platform as an API Provider

6.6.1 Introduction

This clause outlines the registration process for the MEC platform as an API provider within the CAPIF framework,
describing the necessary steps and requirements for API publication and management.

6.6.2 Registering the MEC Platform as an API Provider in CAPIF

To register the MEC platform as an API provider in CAPIF, an access token (access_token) is required to authorize
the provider’s onboarding. Once the required information is available, the provider submits an HTTP POST request to
the following URI:

POST {apiRoot}/api-provider-management/v1/registrations

Request Headers:
 • Authorization: Bearer {access_token}
 • Content-Type: application/json

In the request body, include the regSec field (holding the token) and provide a Certificate Signing Request (CSR)
along with relevant details for each provider function: Application Management Function (AMF), API Publishing
Function (APF), and API Exposing Function (AEF). Additionally, a domain name and other provider-related
information can be specified.

Example Request Body:

HTTP POST https://capif.mec.example.com/api-provider-management/v1/registrations

Request headers:
Authorization: Bearer eyJhbGci0iJSUzIlNiIsInR5cCI6IkpXVCJ9
Content-Type: application/json

Request body:
{
 "regSec": "eyJhbGci0iJSUzIlNiIsInR5cCI6IkpXVCJ9",
 "apiProvFuncs": [
 {
 "regInfo": {
 "apiProvPubKey": "-----BEGIN CERTIFICATE REQUEST-----\nCSR Body\n-----
END CERTIFICATE REQUEST-----\n"
 },
 "apiProvFuncRole": "AEF",
 "apiProvFuncInfo": "AEF for MEC Platform"
 },
 {
 "regInfo": {

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)243GPP TR 23.946 version 18.1.0 Release 18

 "apiProvPubKey": "-----BEGIN CERTIFICATE REQUEST-----\nCSR Body\n-----
END CERTIFICATE REQUEST-----\n"
 },
 "apiProvFuncRole": "APF",
 "apiProvFuncInfo": "APF for MEC Platform"
 },
 {
 "regInfo": {
 "apiProvPubKey": "-----BEGIN CERTIFICATE REQUEST-----\nCSR Body\n-----
END CERTIFICATE REQUEST-----\n"
 },
 "apiProvFuncRole": "AMF",
 "apiProvFuncInfo": "AMF for MEC Platform"
 }
],
 "apiProvDomInfo": "MEC Platform",
 "apiProvName": "OCF_MEC"
}

Upon successful registration, CAPIF returns the location of the newly created resource in the Location field of the
header. The response body includes signed certificates and IDs for each provider function, as well as the domain ID.

Response headers:
Location: https://capif.mec.example.com/api-provider-
management/v1/registrations/3a4df5f6e30a5ee34de346004ee6bb

Response body:
{
 "apiProvDomId": "3a4df5f6e30a5ee34de346004ee6bb",
 "regSec": "eyJhbGci0iJSUzIlNiIsInR5cCI6IkpXVCJ9",
 "apiProvFuncs": [
 {
 "apiProvFuncId": "AEFb1a522967511fd6d6def0cbb3b5f05",
 "regInfo": {
 "apiProvPubKey": "-----BEGIN CERTIFICATE REQUEST-----\nCSR\n-----END
CERTIFICATE REQUEST-----\n",
 "apiProvCert": "-----BEGIN CERTIFICATE -----\nAEF CERTIFICATE\n-----END
CERTIFICATE-----\n"
 },
 "apiProvFuncRole": "AEF",
 "apiProvFuncInfo": "AEF for MEC Platform "
 },
 {
 "apiProvFuncId": "APF54f49ee44f67c81fc7d7f321195531",
 "regInfo": {
 "apiProvPubKey": "-----BEGIN CERTIFICATE REQUEST-----\nCSR\n-----END
CERTIFICATE REQUEST-----\n",
 "apiProvCert": "-----BEGIN CERTIFICATE -----\nAPF CERTIFICATE\n-----END
CERTIFICATE-----\n"
 },
 "apiProvFuncRole": "APF",
 "apiProvFuncInfo": "APF for MEC Platform"
 },
 {
 "apiProvFuncId": "AMFOdbe115f6759f0fec943321dc2184d",
 "regInfo": {
 "apiProvPubKey": "-----BEGIN CERTIFICATE REQUEST-----\nCSR\n-----END
CERTIFICATE REQUEST-----\n",
 "apiProvCert": "-----BEGIN CERTIFICATE -----\nAMF CERTIFICATE\n-----END
CERTIFICATE-----\n"
 },

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)253GPP TR 23.946 version 18.1.0 Release 18

 "apiProvFuncRole": "AMF",
 "apiProvFuncInfo": "AMF for MEC Platform"
 }
],
 "apiProvDomInfo": "MEC Platform",
 "apiProvName": "OCF_MEC"
}

6.6.3 Publishing an API for the MEC Platform

To publish an API, the MEC platform uses mutual TLS authentication with the APF certificate to make an HTTP POST
request to the following URI:

POST {apiRoot}/published-apis/v1/{apfId}/service-apis

The request body should specify details of the API to be published, including name, status, version, resources, and
protocol details.

Example Request Body:

HTTP POST https://capif.mec.example.com/published-
apis/v1/APF54f49ee44f67c81fc7d7f321195531/service-apis

Request body:
{
 "apiName": "Application Instance Registration",
 "apiStatus": {
 "aefIds": ["AEFb1a522967511fd6d6def0cbb3b5f05"]
 },
 "aefProfiles": [
 {
 "aefId": "AEFb1a522967511fd6d6def0cbb3b5f05",
 "versions": [
 {
 "apiVersion": "v1",
 "expiry": "2100-11-30T10:32:02.004Z",
 "resources": [
 {
 "resourceName": "MEC RESOURCE NAME",
 "commType": "REQUEST_RESPONSE",
 "uri": "/mec_app_support/v2/registrations",
 "custOpName": "http_post",
 "operations": [
 "POST"
],
 "description": "App Registration Resource"
 },]
 }],

"protocol": "HTTP_1_1",
 "dataFormat": "JSON",
 "securityMethods": [
 "OAUTH",
],
 "interfaceDescriptions": [
 {
 "ipv4Addr":”X.X.X.X",
 "port": NNNN,
 "securityMethods": [
 "OAUTH"
]
 }

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)263GPP TR 23.946 version 18.1.0 Release 18

]
 }
],
 "description": "MEC App Registration API",
 "supportedFeatures": "1ff",
 "shareableInfo": {
 "isShareable": true,
 "capifProvDoms": [
 "MEC Platform"
]
 },
 "serviceAPICategory": "MEC Service Management",
 "apiProvName": "OCF_MEC"
}

Upon successful API publication, CAPIF returns the location of the created resource in the Location field of the header
and provides the service API ID of the published API in the response body.

This contribution provides a structured approach for onboarding and publishing APIs for the MEC platform within
CAPIF, ensuring alignment with CAPIF’s standard onboarding and security procedures.

6.7 Open-source implementation of CAPIF
As stated in Annex B.2.2.3 of 3GPP TS 23.222 [2], the NEF can implement the functionalities of the API provider
domain functions, as reproduced in Figure 6.7-1.

CAPIF core function

API exposing function

Service APIsService APIsService APIs
CAPIF-3

API invoker

(AF)

CAPIF-1

CAPIF-2

(Nnef)P
L
M
N
 T
ru
s
t
D
o
m
a
in

CAPIF-4
API publishing function

API provider domain

CAPIF APIs

CAPIF-5
API management function

NEF

Figure 6.7-1: NEF implements the service specific aspect compliant with the CAPIF architecture

Evolved-5G [7] (ICT-41-2020 project from call H2020-ICT-2018-2020) developed an open-source project of the
CAPIF Release 17 under the Apache-2.0 license. EVOLVED-5G implementation of CAPIF works with an open-source
implementation of a NEF emulator available in [8]. The NEF emulator used for Evolved-5G implementation supports
two services, namely Nnef_EventExposure and Nnef_AFsessionWithQoS [8].

Evolved-5G implementation has been used as the seed code for OpenCAPIF SDG [9] created by ETSI in January 2024.

OpenCAPIF has adopted the following APIs from CAPIF:

- CAPIF API Invoker Management API

- CAPIF API Provider Management API

- CAPIF Publish Service API

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)273GPP TR 23.946 version 18.1.0 Release 18

- CAPIF Discover Service API

- CAPIF Security API, including obtaining the OAuth 2.0 authorization information with JWT access tokens

- CAPIF Access Control Policy API

- CAPIF Logging API Invocation API

- CAPIF Events API

- CAPIF Auditing API

The implementation also includes a Testing Suite of the above services.

Every CAPIF API is implemented in a separate container for future scalability adaptation. All APIs are exposed and
support mutual TLS authentication as specified in 3GPP TS 33.122 [4].

The Source Code of OpenCAPIF and the instructions to deploy it are included in the ETSI GitLab repository [10].

Annex C provides more details of Open-source implementation of CAPIF for NEF publishing API and API
consumption from an API Invoker.

7 Summary
This guide presents a number of use cases and adoption strategies for CAPIF. Several stakeholders (e.g., developers,
aggregators, CSPs, etc.) can compare them with their own use cases to understand how to apply/map CAPIF
capabilities to their own needs.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)283GPP TR 23.946 version 18.1.0 Release 18

Annex A:
Examples from OpenCAPIF
All the requests shown in this document for OpenCAPIF can be tested using the OpenCAPIF Postman collection [12].
The collection includes a guide on its use and how to correctly test each of the requests. The following table shows the
mapping between each of the requests presented in this document to the corresponding request in the OpenCAPIF
Postman collection.

Table A-1: The OpenCAPIF Postman collection

Request Section OCF Postman Example

CAPIF_API_Invoker_Management_API 6.8.1 https://ocf.etsi.org/documentation/develop/testing/postman/#07-
onboard_invoker

CAPIF_API_Provider_Management_API 6.4.1 https://ocf.etsi.org/documentation/develop/testing/postman/#04-
onboard_provider

CAPIF_Publish_Service_API 6.4.3 https://ocf.etsi.org/documentation/develop/testing/postman/#05-
publish_api

CAPIF_Discover_Service_API 6.8.3 https://ocf.etsi.org/documentation/develop/testing/postman/#08-
discover

CAPIF_Security_API create context 6.8.5 https://ocf.etsi.org/documentation/develop/testing/postman/#09-
security_context

CAPIF_Security_API authorization info 6.8.7 https://ocf.etsi.org/documentation/develop/testing/postman/#10-
get_token

API Invocation 6.8.9 https://ocf.etsi.org/documentation/develop/testing/postman/#11-
call_service

https://ocf.etsi.org/documentation/develop/testing/postman/
https://ocf.etsi.org/documentation/develop/testing/postman/
https://ocf.etsi.org/documentation/develop/testing/postman/
https://ocf.etsi.org/documentation/develop/testing/postman/
https://ocf.etsi.org/documentation/develop/testing/postman/
https://ocf.etsi.org/documentation/develop/testing/postman/
https://ocf.etsi.org/documentation/develop/testing/postman/
https://ocf.etsi.org/documentation/develop/testing/postman/
https://ocf.etsi.org/documentation/develop/testing/postman/
https://ocf.etsi.org/documentation/develop/testing/postman/
https://ocf.etsi.org/documentation/develop/testing/postman/
https://ocf.etsi.org/documentation/develop/testing/postman/
https://ocf.etsi.org/documentation/develop/testing/postman/
https://ocf.etsi.org/documentation/develop/testing/postman/

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)293GPP TR 23.946 version 18.1.0 Release 18

Annex B:
CAPIF Vendor Extensibility

B.1 Include Vendor Specific information
An API provider can include a vendor specific attribute in the ServiceAPIDescription model by enabling “VendorExt”
supported feature option and adding the field in the following manner (see clause 5.2.13.2 of 3GPP TS 29.122 [14]):

"vendorSpecific-<vendor-identification>": {

...

}

where “vendor-identification” represents a unique name of the vendor publishing the API, using one of the following
structures:

a) IANA-assigned enterprise code (e.g., vendorSpecific-010415 for “3GPP”)
b) Domain name (e.g., vendorSpecific-3gpp.org)
c) URN (e.g., vendorSpecific-urn:3gpp:example)

B.2 Query for Vendor Specific information
An API invoker can discover API services including vendor specific attributes by adding the following query
parameters (see clause 5.2.13.3 of 3GPP TS 29.122 [14]):

a) supported-features, enabling “VendSpecQueryParams” option
b) vend-spec-<query-parameter-name> = {

"target": "...",
"value": "..."

}

where “query-parameter-name” represents the actual name of the query parameter, “target” is a
JSON pointer towards the targeted attribute in the targeted resource representation and “value” is the actual value of
the query parameter to be used for filtering.

B.3 ETSI MEC extensibility to CAPIF
According to ETSI GS MEC 011 V3.3.1 [5] specification, MEC framework, leveraging CAPIF extensibility feature,
can engage CAPIF and re-use its functionalities. A concrete example is presented in Table B.3-1 and Table B.3-4,
describing the request that a MEC platform has to send towards CAPIF to publish an API, as well as a request of an
invoker searching an API with MEC specific attributes.

ETSI MEC supports two extensibility attributes on CAPIF:

a) “vendorSpecific-urn:etsi:mec:capifext:service-info” in ServiceAPIDescription and
ServiceAPIDescriptionPatch data types, and

b) “vendorSpecific-urn:etsi:mec:capifext:transport-info” in AefProfile data type

Both attributes are included on the following API Publish request.

Table B.3-1: Publish MEC API with vendor specific attributes in CAPIF (schema)

HTTP POST {apiRoot}/published-apis/v1/{apfId}/service-apis

Request body:
{

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)303GPP TR 23.946 version 18.1.0 Release 18

 "apiName": "string",
 "aefProfiles": [
 {
 "aefId": "string",
 "versions": [
 {
 "apiVersion": "string",
 "expiry": "string",
 "resources": [
 {
 "resourceName": "string",
 "commType": "string",
 "uri": "string",
 "custOpName": "string",
 "operations": ["string"],
 "description": "string"
 }
],
 "custOperations": [
 {
 "commType": "string",
 "custOpName": "string",
 "operations": [
 "string"
],
 "description": "string"
 }
]
 }
],
 "interfaceDescriptions": [
 {
 "ipv4Addr": "string",
 "port": "int",
 "securityMethods": [
 "string"
]
 }
],
 "vendorSpecific-urn:etsi:mec:capifext:transport-info": {
 "name": "string",
 "description": "string",
 "type": "string",
 "protocol": "string",
 "version": "string",
 "security": {
 "grantTypes": "string",
 "tokenEndpoint": "string"
 }
 }
 }
],
 "vendorSpecific-urn:etsi:mec:capifext:service-info": {
 "serializer": "string",
 "state": "string",
 "scopeOfLocality": "string",
 "consumedLocalOnly": "boolean",
 "isLocal": "boolean",
 "category": {
 "href": "string",
 "id": "string",
 "name": "string",
 "version": "string"
 }
 },
 "description": "string",
 "supportedFeatures": "string",
 "apiProvName": "string"
}

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)313GPP TR 23.946 version 18.1.0 Release 18

When APIs are published including Vendor Specific information, API Invokers can filter the Discovery of APIs
including query parameters to filter by vendor specific information. Here we show some examples of CAPIF Discover
API including vendor specific filtering.

The schema for discovering APIs using vendor specific information is shown in Table B.3-2 and Table B.3-3:

Table B.3-2: Discover APIs with vendor specific query parameters (schema for transport-info)

HTTP GET {apiRoot}/service-apis/v1/allServiceAPIs?
 api-invoker-id="string"&
 supported-features="string"&
 vend-spec-type={"target": "...", "value": "string"}

Table B.3-3: Discover APIs with vendor specific query parameters (schema for service-info)

HTTP GET {apiRoot}/service-apis/v1/allServiceAPIs?
 api-invoker-id="string"&
 supported-features="string"&
 vend-spec-state={"target": "...", "value": "string"}

Based in these schemas, the following examples show how to use CAPIF Extensibility. Table B.3-4 shows an API
Publication that includes both transport-info and service-info as part of the API description published.

Table B.3-4: Publish MEC API with vendor specific attributes in CAPIF (OCF example)

HTTP POST https://capif.mobilesandbox.cloud:37211/published-apis/v1/{apfId}/service-
apis

Request body:

{
 "apiName": "api_demo_v2",
 "aefProfiles": [
 {
 "aefId": "AEFb1a522967511fd6d6def0cbb3b5f05",
 "versions": [
 {
 "apiVersion": "v2",
 "expiry": "2021-11-30T10:32:02.004Z",
 "resources": [
 {
 "resourceName": "endpoint_1",
 "commType": "REQUEST_RESPONSE",
 "uri": "/endpoint",
 "custOpName": "string",
 "operations": [
 "GET"
],
 "description": "Endpoint to receive a welcome message"
 }
],
 "custOperations": [
 {
 "commType": "REQUEST_RESPONSE",
 "custOpName": "string",
 "operations": [
 "GET"
],
 "description": "string"
 }
]
 }
],
 "interfaceDescriptions": [

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)323GPP TR 23.946 version 18.1.0 Release 18

 {
 "ipv4Addr": "localhost",
 "port": 8089,
 "securityMethods": ["Oauth"]
 }
],
 "vendorSpecific-urn:etsi:mec:capifext:transport-info": {
 "name": "trasport1",
 "description": "Transport Info 1",
 "type": "REST_HTTP",
 "protocol": "HTTP",
 "version": "2",
 "security": {
 "grantTypes": "OAUTH2_CLIENT_CREDENTIALS",
 "tokenEndpoint": "https://token-endpoint.example.com/"
 }

 }
 }
],
 "vendorSpecific-urn:etsi:mec:capifext:service-info": {
 "serializer": "JSON",
 "state": "ACTIVE",
 "scopeOfLocality": "MEC_SYSTEM",
 "consumedLocalOnly": "True",
 "isLocal": "True",
 "category": {
 "href": "https://location.example.com",
 "id": "Location",
 "name": "Location",
 "version": "1.0"
 }
 },
 "description": "Hello api services",
 "supportedFeatures": "1ff",
 "apiProvName": "OCF_MEC"
 }

The next example in Table B.3-5 shows how to query CAPIF using transport-info to query for APIs which
vend-spec-type is “REST_HTTP”.

Table B.3-5: Discover APIs with vendor specific query parameters (OCF example for transport-info)

HTTP GET https://capif.mobilesandbox.cloud:37211/service-apis/v1/allServiceAPIs?
 api-invoker-id=INVd4d70e16c52bace2b8f40ed6f6badS&
 supported-features=7&
 vend-spec-type={"target": "/vendorSpecific-urn:etsi:mec:capifext:transport-info",
"value": "REST_HTTP"}

Similarly, the next example in Table B.3-6 shows how to query CAPIF for APIs that contains service-info which
vend-spec-state is “ACTIVE”.

Table B.3-6: Discover APIs with vendor specific query parameters (OCF example for service-info)

HTTP GET https://capif.mobilesandbox.cloud:37211/service-apis/v1/allServiceAPIs?
 api-invoker-id=INVd4d70e16c52bace2b8f40ed6f6badS&
 supported-features=7&
 vend-spec-state={"target": "/vendorSpecific-urn:etsi:mec:capifext:service-info",
"value": "ACTIVE"}

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)333GPP TR 23.946 version 18.1.0 Release 18

Annex C:
Open-source implementation of CAPIF

C.1 NEF Publishes an API
The 5GS network exposure function (NEF) can use CAPIF capabilities to publish and manage its APIs, including
managing charging. One of several possible deployment arrangements is shown in Figure C.1-1.

Figure C.1-1: NEF implements the CAPIF API provider domain functions

Signalling for the NEF to publish its APIs to the CAPIF core function is shown in Figure C.1-2, followed by tables
detailing the mandatory attributes of the associated request and response schema and example content for those requests
and responses, which is based on publicly available examples provided by the OpenCAPIF [9].

A pre-condition is that the NEF (API management function) has been made aware of the appropriate CAPIF core
function endpoint (apiRoot) with which to initiate the registration, as well as having been provided with a token to
access the CAPIF core function.

CAPIF core function

API exposing function

Service APIsService APIsService APIs
CAPIF-3

API invoker

(AF)

CAPIF-1

CAPIF-2

(Nnef)P
L
M
N
 T
ru
s
t
D
o
m
a
in

CAPIF-4
API publishing function

API provider domain

CAPIF APIs

CAPIF-5
API management function

NEF

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)343GPP TR 23.946 version 18.1.0 Release 18

Figure C.1-2: Publish a service API

Details of the signalling flow in Figure C.1-2 are as follows:

NOTE 1: The JSON schema and example snippets provided in the following clauses are aligned with
3GPP TS 29.222 [3], in which apiVersion is specified as "v1". The example snippets themselves can
be tested using the OpenCAPIF Postman collection presented in Annex A and also in the OpenCAPIF
Postman documentation [12].

1. CAPIF_API_Provider_Managment_API

The API provider includes:

- Authorization HTTP header (access token)

- Security information enabling the CCF to validate the registration (regSec)

- An array (apiProvFuncs) of at least one API provider domain function profiles

- Optionally API provider domain information (apiProvDomInfo) and the API provider name (apiProvName)

Table C.1-1: Register API_provider request (schema)

HTTP POST {apiRoot}/api-provider-management/v1/registrations

Request headers:
Authorization: "string"

Request body:
{
 "regSec": "string",
 "apiProvFuncs": [
 {
 "regInfo": {
 "apiProvPubKey": "string",
 },
 "apiProvFuncRole": "string",
 "apiProvFuncInfo": "string"
 }

API Publishing

Function
CAPIF Core Function

API Management

Function

1. Register_API_Provider

2. 201 Created

3. CAPIF_Publish_Service_API

4. 201 Created

NEF

5. CAPIF administrator

creates policy

API Exposing

Function

6. CAPIF_Access_Control_Policy_API

7. 200 OK

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)353GPP TR 23.946 version 18.1.0 Release 18

],
 "apiProvDomInfo": "string",
 "suppFeat": "string",
 "apiProvName": "string"
}

Given the schema provided in Table C.1-1, an example of the API Provider registration process using OpenCAPIF
open-source implementation is now described and then provided in Table C.1-1-OCF. The presented traces contain
actual values to illustrate the usage of the information elements in the JSON schema.

NOTE 2: The security related information provided in the examples are truncated for readability, e.g., the value
associated with regSec and apiProvPubKey.

Before carrying out onboarding, the provider requires the:

- OpenCAPIF access token, that will allow the creation of the provider.

- CA_ROOT certificate, necessary to validate the Certificates in all requests.

- URL to which to make the request, i.e., <{apiRoot}/api-provider-management/v1/registrations>.

NOTE 3: In OpenCAPIF, all this information is obtained in a dedicated user registration process [13].

In the presented example, the OpenCAPIF instance is deployed at capif.mobilesandbox.cloud:37211. This instance
URL is assumed throughout the presented example traces.

To carry out the onboarding of a provider, the API Provider is required to provide the following fields:

- regSec: Contains the OpenCAPIF access token obtained during registration process for the creation of the
provider. The Token is also provided in the Authorization HTTP Header.

- apiProvFuncRole: Type of provider function to be created. It can be AMF, APF or AEF.

- apiProvPubKey: It is the certificate signing request (CSR) of the Provider’s function that OpenCAPIF will use
to issue the provider’s valid certificates. Each function needs to include its own CSR to request a valid
Certificate.

- apiProvFuncInfo: Information about the provider function that is being created.

- apiProvDomInfo: Information about the provider domain that is being created.

The API Provider onboarding request example is shown in Table C.1-1-OCF. The example request is to onboards an
API Provider with three functions: AEF, APF and AMF. Therefore, 3 CSRs are provided to obtain 3 Certificates.

Table C.1-1-OCF: Register API provider request (OCF example)

HTTP POST https://capif.mobilesandbox.cloud:37211/api-provider-
management/v1/registrations

Request headers:
Authorization: Bearer eyJhbGci0iJSUzIlNiIsInR5cCI6IkpXVCJ9
Content-Type: application/json

Request body:
{
 "regSec": "eyJhbGci0iJSUzIlNiIsInR5cCI6IkpXVCJ9",
 "apiProvFuncs": [
 {
 "regInfo": {
 "apiProvPubKey": "-----BEGIN CERTIFICATE REQUEST-----
\nMIICeTCCAWECAQAWNDEMMAoGA1UEAwwDQUGMRcwFQYDVQQ\n-----END CERTIFICATE REQUEST-----\n"
 },
 "apiProvFuncRole": "AEF",
 "apiProvFuncInfo": "AEF for NEF example"
 },
 {
 "regInfo": {

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)363GPP TR 23.946 version 18.1.0 Release 18

 "apiProvPubKey": "-----BEGIN CERTIFICATE REQUEST-----
\nMIICeTCCAWECAQAWNDEMMAoGA1UEAwwDQUGMRcwFQYDVQQ\n-----END CERTIFICATE REQUEST-----\n"
 },
 "apiProvFuncRole": "APF",
 "apiProvFuncInfo": "APF for NEF example"
 },
 {
 "regInfo": {
 "apiProvPubKey": "-----BEGIN CERTIFICATE REQUEST-----
\nMIICeTCCAWECAQAWNDEMMAoGA1UEAwwDQUGMRcwFQYDVQQ\n-----END CERTIFICATE REQUEST-----\n"
 },
 "apiProvFuncRole": "AMF",
 "apiProvFuncInfo": "AMF for NEF example"
 }
],
 "apiProvDomInfo": "NEF example",
 "apiProvName": "OCF_NEF"
 "suppFeat": "3",
}

Upon getting this Request, Open CAPIF core function assigns identity IDs for the API provider (apiProvDomId)
and each of its functions (apiProvFuncId) and returns them in the response (see next section). Furthermore, it
provides certificates (apiProvCert) for each of the API provider functions based on each function’s CSR
(apiProvPubKey).

2. 201 Created

The API provider domain has been registered successfully. The URI of the created resource is returned in the
"Location" HTTP header, including the assigned registration identifier (registrationId).

Table C.1-2: Register API provider response (schema)

201
Response headers:
Location: {apiRoot}/api-provider-management/v1/registrations/{registrationId}
Response body:
{
 "apiProvDomId": "string",
 "regSec": "string",
 "apiProvFuncs": [
 {
 "apiProvFuncId": "string",
 "regInfo": {
 "apiProvPubKey": "string",
 "apiProvCert": "string"
 },
 "apiProvFuncRole": "string",
 "apiProvFuncInfo": "string"
 }
],
 "apiProvDomInfo": "string",
 "suppFeat": "string",
 "apiProvName": "string"
}

The response received from the successful onboarding request using OpenCAPIF project for the creation of a new API
Provider includes the following fields:

- apiProvDomId: Identifier of the created provider, which is also the ID returned as part of the ‘Location’
header.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)373GPP TR 23.946 version 18.1.0 Release 18

- apiProvCert: Certificate of the provider function created from the CSR sent in the onboarding request, which
will be used for subsequent requests from the provider towards OpenCAPIF. Each function is provided with its
own Certificate (i.e., one each for the AEF, APF and AMF functions).

- apiProvFuncId: Identifier of the provider function created.

The example Register API provider response is shown in Table C.1-2-OCF.

Table C.1-2-OCF: Register API provider response (OCF example)

Response headers:
Location: https://capif.mobilesandbox.cloud:37211/api-provider-
management/v1/registrations/3a4df5f6e30a5ee34de346004ee6bb

Response body:
{
 "apiProvDomId": "3a4df5f6e30a5ee34de346004ee6bb",
 "regSec": "eyJhbGci0iJSUzIlNiIsInR5cCI6IkpXVCJ9",
 "apiProvFuncs": [
 {
 "apiProvFuncId": "AEFb1a522967511fd6d6def0cbb3b5f05",
 "regInfo": {
 "apiProvPubKey": "-----BEGIN CERTIFICATE REQUEST-----
\nMIICeTCCAWECAQAWNDEMMAoGA1UEAwwDQUGMRcwFQYDVQQ\n-----END CERTIFICATE REQUEST-----\n",
 "apiProvCert": "-----BEGIN CERTIFICATE -----
\nMIIDRTCCA12gAwIBAgIUC2D11wSISz1CjKiFXJ3vwKxVhREwDQYJKoZ\n-----END CERTIFICATE-----\n"
 },
 "apiProvFuncRole": "AEF",
 "apiProvFuncInfo": "AEF for NEF example"
 },
 {
 "apiProvFuncId": "APF54f49ee44f67c81fc7d7f321195531",
 "regInfo": {
 "apiProvPubKey": "-----BEGIN CERTIFICATE REQUEST-----
\nMIICeTCCAWECAQAWNDEMMAoGA1UEAwwDQUGMRcwFQYDVQQ\n-----END CERTIFICATE REQUEST-----\n",
 "apiProvCert": "-----BEGIN CERTIFICATE -----
\nMIIDRTCCA12gAwIBAgIUC2D11wSISz1CjKiFXJ3vwKxVhREwDQYJKoZ\n-----END CERTIFICATE-----\n"
 },
 "apiProvFuncRole": "APF",
 "apiProvFuncInfo": "APF for NEF example"
 },
 {
 "apiProvFuncId": "AMFOdbe115f6759f0fec943321dc2184d",
 "regInfo": {
 "apiProvPubKey": "-----BEGIN CERTIFICATE REQUEST-----
\nMIICeTCCAWECAQAWNDEMMAoGA1UEAwwDQUGMRcwFQYDVQQ\n-----END CERTIFICATE REQUEST-----\n",
 "apiProvCert": "-----BEGIN CERTIFICATE -----
\nMIIDRTCCA12gAwIBAgIUC2D11wSISz1CjKiFXJ3vwKxVhREwDQYJKoZ\n-----END CERTIFICATE-----\n"
 },
 "apiProvFuncRole": "AMF",
 "apiProvFuncInfo": "AMF for NEF example"
 }
],
 "apiProvDomInfo": "NEF example",
 "apiProvName": "OCF_NEF"
 "suppFeat": "3",
}

3. CAPIF_Publish_Service_API

The API publishing function sends information on the offered APIs by providing the API exposing function profiles
array (aefProfiles). The published APIs resource created in response to the request represents all published service
APIs of the NEF.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)383GPP TR 23.946 version 18.1.0 Release 18

NOTE 4: The example content in Table C.1.3, the attribute apiStatus is omitted, implying the Service API is
active at all AEF(s) present in the aefProfiles attribute. Furthermore, it is assumed the exchange is
over CAPIF-4, rather than CAPIF-6/6e. As a consequence, the pubApiPath and ccfId attributes are
omitted.

Table C.1-3: Publish API request (schema)

HTTP POST {apiRoot}/published-apis/v1/{apfId}/service-apis

Request body:
{
 "apiName": "string",
 "apiStatus": {
 "aefIds": [
 "string"
]
 },
 "aefProfiles": [
 {
 "aefId": "string",
 "versions": [
 {
 "apiVersion": "string",
 "expiry": "string",
 "resources": [
 {
 "resourceName": "string",
 "commType": "string",
 "uri": "string",
 "custOpName": "string",
 "operations": ["string"],
 "description": "string"
 },
 {
 "resourceName": "string",
 "commType": "string",
 "uri": "string",
 "custOpName": "string",
 "operations": ["string"],
 "description": "string"
 }
],
 "custOperations": [
 {
 "commType": "string",
 "custOpName": "string",
 "operations": [
 "string"
],
 "description": "string"
 }
]
 }
],
 "protocol": "string",
 "dataFormat": "string",
 "securityMethods": [
 "string",
],
 "interfaceDescriptions": [
 {
 "ipv4Addr": "string",
 "port": "int",
 "securityMethods": [
 "string"
]
 }
]
 }

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)393GPP TR 23.946 version 18.1.0 Release 18

],
 "description": "string",
 "supportedFeatures": "string",
 "shareableInfo": {
 "isShareable": "boolean",
 "capifProvDoms": [
 "string"
]
 },
 "serviceAPICategory": "string",
 "apiSuppFeats": "string",
 "pubApiPath": {
 "ccfIds": [
 "string"
]
 },
 "ccfId": "string",
 "apiProvName": "string"
}

To publish a service using OpenCAPIF, it is necessary to specify the following fields:

- apiName: Name of the API to be published, which must be unique in CAPIF.

- apiStatus: Represents the API status. In addition, if this attribute is omitted, it is understood that the API is
available in all AEFs of aefProfiles. It contains the aefIds field which is a list of the AEFs that expose the
API. If this list is empty or the attribute is omitted, it is understood that the API is inactive in all aefProfiles.

- aefProfiles: List of Information about AEFs that expose the API. This information contains the following
fields:

o aefId: AEF identifier of the provider that exposes the service.
o versions: List of information about API versions. Each version contains the resources supported by

the API. Each version contains:
 apiVersion: usable version of the API.
 expiry: date on which the API version expires and will no longer be available.
 resources: A list of resources that contain the API version. Each resource contains the

following information:
• resourceName: Name of the resource for which its information is specified.
• commType: Type of use of the resource, which can be receiving a response when

making a request (REQUEST_RESPONSE) or a subscription to receive
notifications (SUBSCRIBE_NOTIFY)

• uri: URI to make the request to use the described API resource.
• custOpName: Part of the URI structure used for a custom operation associated with

the resource. The attributes custOpName and custOperations are mutually
exclusive.

• custOperations: List of the resource's custom operations associated to this
resource. The attributes custOpName and custOperations are mutually
exclusive.

• operations: List of HTTP methods supported by the API resource.
• description: Descriptive text of the API resource.

 custOperations: List of custom operations without resource association.
o protocol: Indicates a protocol and protocol version used by the API.
o dataFormat: Indicates the data sending format which can be JSON, XML or PROTOBUF3.
o securityMethods: Indicates the possible security methods of the API.
o domainName: Domain name to which the API belongs.
o interfaceDescriptions: List of interfaces to which API requests can be made.

Only domainName or interfaceDescription can be specified.

- supportedFeatures: Indicates the one or more CAPIF Publish Service API specific supported features (from
the nine features specified in 3GPP TS 29.222 [3], clause 8.2.6), e.g., support for API status monitoring in the
CAPIF layer as part of the SEAL framework, support for RNAA functionality.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)403GPP TR 23.946 version 18.1.0 Release 18

- shareableinfo: Indicates whether the service API and/or the service API category can be shared to the list of
CAPIF provider domains.

- serviceAPICategory: The service API category to which the service API belongs to.

- apiSuppFeats: Indication provided by the consumer (i.e., related to the AEF) which optional features are
supported by the service API.

- apiProvName: API provider Name that publishes the API.

The example API Publish request to publish “3gpp-as-session-with-qos” API from NEF is shown in Table C.1-3-
OCF, for which there are twenty-nine optional service specific features (apiSuppFeats) specified in
3GPP TS 29.122 [14], where it is indicated that all features are supported by setting "apiSuppFeats" to hexadecimal
"1FFFFFFF". For the CAPIF Publish Service API, the example hexadecimal "EF" (binary “0 1110 1111”) provided
for "supportedFeatures" indicates that all features are supported, other than feature #5 (ProtocDataFormats_Ext1)
and #9 (VendorExt).

Table C.1-3-OCF: Publish API request (OCF example)

HTTP POST https://capif.mobilesandbox.cloud:37211/published-
apis/v1/APF54f49ee44f67c81fc7d7f321195531/service-apis

Request body:
{
 "apiName": "3gpp-as-session-with-qos",
 "apiStatus": {
 "aefIds": ["AEFb1a522967511fd6d6def0cbb3b5f05"
]
 },
 "aefProfiles": [
 {
 "aefId": "AEFb1a522967511fd6d6def0cbb3b5f05",
 "versions": [
 {
 "apiVersion": "v1",
 "expiry": "2100-11-30T10:32:02.004Z",
 "resources": [
 {
 "resourceName": "QOS_SUBSCRIPTIONS",
 "commType": "SUBSCRIBE_NOTIFY",
 "uri": "/{scsAsId}/subscriptions",
 "operations": [
 "GET",
 "POST"
],
 "description": "Endpoint to manage monitoring subscriptions"
 },
 {
 "resourceName": "QOS_SUBSCRIPTION_SINGLE",
 "commType": "SUBSCRIBE_NOTIFY",
 "uri": "/{scsAsId}/subscriptions/{subscriptionId}",
 "operations": [
 "GET",
 "PUT",
 "DELETE"
],
 "description": "Endpoint to manage single subscription"
 }
],
 }
],
 "protocol": "HTTP_1_1",
 "dataFormat": "JSON",
 "securityMethods": [
 "OAUTH",
 "PSK"
],
 "interfaceDescriptions": [

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)413GPP TR 23.946 version 18.1.0 Release 18

 {
 "ipv4Addr": "127.0.0.1",
 "port": 4443,
 "securityMethods": [
 "OAUTH"
]
 }
]
 }
],
 "description": "3gpp-as-session-with-qos NEF API",
 "supportedFeatures": "ef",
 "shareableInfo": {
 "isShareable": true,
 "capifProvDoms": [
 "mobilesandbox.cloud"
]
 },
 "serviceAPICategory": "NEF",
 "apiSuppFeats": "1fffffff",
 "apiProvName": "OCF_NEF"
}

4. 201 Created

The service API has been published successfully The URI of the created resource is returned in the "Location" HTTP
header, including the assigned service API identifier (serviceApiId) that is also equal to the API identifier (apiId)
in the response body.

Table C.1-4: Publish API response (schema)

{
201
Response headers:
Location: {apiRoot}/published-apis/v1/{apfId}/service-apis/{serviceApiId}

Response body:
{
 "apiName": "string",
 "apiId": "string",
 "apiStatus": {
 "aefIds": [
 "string"
]
 },
 "aefProfiles": [
 "object"
],
 "description": "string",
 "supportedFeatures": "string",
 "shareableInfo": {
 "isShareable": "boolean",
 "capifProvDoms": [
 "string"
]
 },
 "serviceAPICategory": "string",
 "apiSuppFeats": "string",
 "pubApiPath": {
 "ccfIds": [
 "string"
]
 },
 "ccfId": "string"
 "apiProvName": "string"
}

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)423GPP TR 23.946 version 18.1.0 Release 18

The response to a successful API Publish request using OpenCAPIF contains the following information:

- Location: URL with the resource created for the API Published.

- apiId: The assigned Identifier to the Published API. It is required for the UPDATE or DELETE API
procedures once the API has been published.

The information from the API that was sent in the request will be obtained as a response with a new field, the "apiId",
which is the identifier of the API that has been created and will enable subsequent modify or delete procedures.

Table C.1-4-OCF: Publish API response (OCF example)

Response headers:
Location: https://capif.mobilesandbox.cloud:37211/published-
apis/v1/APF54f49ee44f67c81fc7d7f321195531/service-apis/f55731ec5f8ce703ac1f69605ad095

Response body:
{
 "apiName": "3gpp-as-session-with-qos",
 "apiId": "f55731ec5f8ce703ac1f69605ad095",
 "aefProfiles": [
 {
 "aefId": "AEFb1a522967511fd6d6def0cbb3b5f05",
 "versions": [
 {
 "apiVersion": "v1",
 "expiry": "2100-11-30T10:32:02.004Z",
 "resources": [
 {
 "resourceName": "QOS_SUBSCRIPTIONS",
 "commType": "SUBSCRIBE_NOTIFY",
 "uri": "/{scsAsId}/subscriptions",
 "custOpName": "http_post",
 "operations": [
 "GET",
 "POST"
],
 "description": "Endpoint to manage monitoring subscriptions"
 },
 {
 "resourceName": "QOS_SUBSCRIPTION_SINGLE",
 "commType": "SUBSCRIBE_NOTIFY",
 "uri": "/{scsAsId}/subscriptions/{subscriptionId}",
 "operations": [
 "GET",
 "PUT",
 "DELETE"
],
 "description": "Endpoint to manage single subscription"
 }
],
 }
],
 "protocol": "HTTP_1_1",
 "dataFormat": "JSON",
 "securityMethods": [
 "OAUTH",
 "PSK"
],
 "interfaceDescriptions": [
 {
 "ipv4Addr": "127.0.0.1",
 "port": 4443,
 "securityMethods": [
 "OAUTH"
]
 }
]
 }

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)433GPP TR 23.946 version 18.1.0 Release 18

],
 "description": "3gpp-as-session-with-qos NEF API",
 "supportedFeatures": "ef",
 "shareableInfo": {
 "isShareable": true,
 "capifProvDoms": [
 "mobilesandbox.cloud"
]
 },
 "serviceAPICategory": "NEF",
 "apiSuppFeats": "1fffffff"
 "apiProvName": "OCF_NEF"
}

5. CAPIF administrator creates policy

The procedures for creation of the access control policy at the CAPIF core function by the CAPIF administrator is
outside the scope of 3GPP TS 23.222 [2] and can be triggered because of the API management function issuing the
"Register API provider" request or prior to that. Either way, sufficient information must be provided to enable the AEF
specific access control policy list resource for the service API to be created. Specifically, each policy must include the
CCF assigned API invoker identifier (apiInvokerId) and can include allowed total invocations
(allowedTotalInvocations), invocations per second (allowedInvocationsPerSecond), invocation time range
list (allowedInvocationTimeRangeList). Since an API invoker identifier is mandatory, it is a prerequisite that API
invoker has been onboarded prior to invoking the highlighted access control policy procedures.

6. CAPIF_Access_Control_Policy_API

The Access Control List (ACL) service allows the provider to use AEF to obtain the access control list from invokers
for an exposing API. The provider is in charge of making the request to the CAPIF Core Function and using the list
received to control an invoker's access to one of its APIs.

Table C.1-6: GET access control policy request (schema)

HTTP GET {apiRoot}/access-control-policy/v1/accessControlPolicyList/{serviceApiId}?aef-
id="string"

The AEF may make a request to OpenCAPIF to obtain all the ACLs of a service that it is exposing, for this it must
specify in the URL of the request the identifier of the service (apiId received in the API Publish response) for which it
wants the list of ACLs, in addition to the AEF’s own identifier to check that it has access to that list.

Table C.1-6-OCF: ACL Request (OCF example)

HTTP GET https://capif.mobilesandbox.cloud:37211/access-control-
policy/v1/accessControlPolicyList/f55731ec5f8ce703ac1f69605ad095?aef-
id=AEFb1a522967511fd6d6def0cbb3b5f05

7. 200 OK

The request has been successfully received and the CAPIF Core Function returns the invoker access control information
for the requested API. The AEF will use this information to allow or not the use of the API by the invoker.

Table C.1-7: GET access control policy response (schema)

200

Response body:
{
 "apiInvokerPolicies": [
 {
 "apiInvokerId": "string",

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)443GPP TR 23.946 version 18.1.0 Release 18

 "allowedTotalInvocations": "integer",
 "allowedInvocationsPerSecond": "integer",
 "allowedInvocationTimeRangeList": [
 {
 "startTime": "string",
 "stopTime": "string"
 }
]
 }
]
}

OpenCAPIF provides the access control policy information for the NEF API Published "3gpp-as-session-with-qos"
containing the following information:

- apiInvokerId: identifier of the invoker to which the access policy belongs.

- allowedTotalInvocations: Total number of invocations allowed on the service API by the API invoker.

- allowedInvocationsPerSecond: invocations per second allowed on the service API by the API invoker.

- allowedInvocationTimeRangeList: the time ranges during which the invocations are allowed on the
service API by the API invoker.

Table C.1-7-OCF: GET access control policy response (OCF example)

200

Response body:
{
 "apiInvokerPolicies": [
 {
 "apiInvokerId”: "INVd4d70e16c52bace2b8f40ed6f6badS",
 "allowedTotalInvocations": 1200,
 "allowedInvocationsPerSecond": 2,
 "allowedInvocationTimeRangeList": [
 {
 "startTime": "2024-08-19T09:00:00.000000+02:00",
 "stopTime": "2024-08-23T16:00:00.000000+02:00"
 }
]
 }
]
}

8. Offboarding API Provider

The provider can request its deletion from CAPIF using the offboarding service. By using this service, all information
stored in the CAPIF Core Function related to the provider will be deleted, including APIs published by the provider,
security contexts of those APIs, ACLs, etc.

Table C.1-8: DELETE API provider request (schema)

HTTP DELETE {apiRoot}/api-provider-management/v1/registrations/{registrationId}

For the process of deleting a Provider in OpenCAPIF, you will need the AMF certificate and the identifier of the
provider that you want to delete. This data is obtained in the provider creation process and by simply making the
corresponding request we will eliminate the provider.

Table C.1-8-OCF: DELETE API provider request (OCF example)

HTTP DELETE https://capif.mobilesandbox.cloud:37211/api-provider-
management/v1/registrations/3a4df5f6e30a5ee34de346004ee6bb

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)453GPP TR 23.946 version 18.1.0 Release 18

9. 204 No Content

The response will be a 204 No Content, which indicates that the provider has been successfully deleted along with
everything related to it, APIs Published, security contexts associated with its services, ACLs of its services, etc.

C.2 API consumption from an API Invoker
This section explains how an API Invoker can use OpenCAPIF [9] to discover and consume APIs, based on
3GPP TS 23.222 [2] and 3GPP TS 29.222 [3] for the schema. The API Invoker application needs to obtain the
following information from OpenCAPIF during user registration, similarly to the API Provider onboarding:

- CA_ROOT: Root certificate from the OpenCAPIF Certificate Authority to validate Certificates.

- Token: Token for the API Invoker onboarding request.

- Onboarding URL: URL for requesting the API Invoker onboarding.

This section explains:

- how to onboard an API Invoker in OpenCAPIF, to be able to discover all the APIs published in the CAPIF Core
Function.

- request the creation of a security context, which is necessary to consume an API.

- request the required OAuth token to consume the API; and finally, how to make the request directly to the
published API.

All the requests shown in this document can be tested using the OpenCAPIF Postman collection found in Annex A and
in the OpenCAPIF Postman documentation [12].

1. CAPIF_API_Invoker_Management (Registration)

Before carrying out onboarding, the invoker will need the CAPIF access token that will allow the creation of the
invoker, the CA_ROOT certificate necessary to validate all the requests, and the URL to which to make the request
<{apiRoot}/api-invoker-management/v1/onboardedInvokers>.

In OpenCAPIF, all this information is obtained in the user registration process [13].

To onboard an API Invoker in CAPIF, it is necessary to utilize the token received in the Authentication HTTP header.
In addition, a Certificate Signing Request (CSR) will have to be created with two keys so that the CAPIF Core Function
can issue a valid certificate that will be used by the invoker to be able to make the subsequent requests. In the following
example, the {apiList} field has been omitted, as it will discover the APIs that can be used with the discover service.

Table C.2-1: Register API Invoker request (schema)

HTTP POST {apiRoot}/api-invoker-management/v1/onboardedInvokers

Request headers:
Authorization: "string"

Request body:
{
 "onboardingInformation": {
 "apiInvokerPublicKey": "string"
 },
 "notificationDestination": "string",
 "apiInvokerInformation": "string",
 "websockNotifConfig": {
 "websocketUri": "string",
 "requestWebsocketURI": "boolean"
 }
}

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)463GPP TR 23.946 version 18.1.0 Release 18

To perform the onboarding of an API Invoker, the following data will have to be specified:

- apiInvokerPublicKey: It is the certificate signing request of the invoker that CAPIF will use to issue the
invoker’s valid certificate.

- apiInvokerInformation: Generic information related to the API invoker such as details of the device or the
application

- notificationDestination: URL where the API invoker can receive CAPIF notifications.

Table C.2-1-OCF: Register API Invoker request (OCF example)

HTTP POST https://capif.mobilesandbox.cloud:37211/api-invoker-
management/v1/onboardedInvokers/

Request headers:
Authorization: Bearer eyJhbGci0iJSUzIlNiIsInR5cCI6IkpXVCJ9
Content-Type: application/json

Request body:
{
 "onboardingInformation": {
 "apiInvokerPublicKey": "-----BEGIN CERTIFICATE REQUEST-----
\nMIICeTCCAWECAQAHISNoGA1ERGAwwDQUGMRcwFQYDVQQ\n-----END CERTIFICATE REQUEST----\n"
 },
 "notificationDestination": " http://nef_notification_destination:8080/",
 "apiInvokerInformation": "NEF Invoker",
 "websockNotifConfig": {
 "websocketUri": "websocketUri",
 "requestWebsocketURI": true
 }
}

The CAPIF Core Function assigns an identity for the API invoker (apiInvokerId) and a certificate
(apiInvokerCertificate) based on provided public key(apiInvokerPublicKey).

2. 201 Created

The API Invoker has been registered successfully. The URI of the created resource is returned in the “Location” HTTP
header including the assigned registration identifier (apiInvokerId).

Table C.2-2: Register API-Invoker response (schema, then example content)

201
Response headers:
Location: {apiRoot}/api-invoker-management/v1/onboardedInvokers/{apiInvokerId}

Response body:
{
 "apiInvokerId": "string",
 "onboardingInformation": {
 "apiInvokerPublicKey": "string",
 "apiInvokerCertificate": "string",
 "onboardingSecret": "string"
 },
 "notificationDestination": "string",
 "apiInvokerInformation": "string",
 "websockNotifConfig": {
 "websocketUri": "string",
 "requestWebsocketURI": "boolean"
 }
}

The fields that are returned when onboarding an invoker, that are populated by the CCF, are:

- apiInvokerId: Identifier of the invoker created.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)473GPP TR 23.946 version 18.1.0 Release 18

- apiInvokerCertificate: Certificate of the Invoker created from the CSR sent in the onboarding request,
which will be used for the following requests from the Invoker to CAPIF Core Function.

Table C.2-2-OCF: Register API-Invoker response (OCF example)

Response headers:
Location: https://capif.mobilesandbox.cloud:37211/api-invoker-
management/v1/onboardedInvokers/INVaa03f9911db37be051b243ce3caad9

Response body:
{
 "apiInvokerId": "INVaa03f9911db37be051b243ce3caad9",
 "onboardingInformation": {
 "apiInvokerPublicKey": "-----BEGIN CERTIFICATE REQUEST-----
\nMIICeTCCAWECAQAHISNoGA1ERGAwwDQUGMRcwFQYDVQQ\n-----END CERTIFICATE REQUEST----\n",
 "apiInvokerCertificate": "-----BEGIN CERTIFICATE-----
\nMIIDgjCCAmqgAwIBAgIUS18nvjZYU5B+ptuAw/
x3gQWYEJVxDha9112mP7lclNg5yd5o1Xwj1Imbht2z33ZJ4jxA=\n-----END CERTIFICATE-----\n"
 },

 "apiInvokerInformation": "NEF Invoker",
 "websockNotifConfig": {
 "websocketUri": "websocketUri",
 "requestWebsocketURI": true
 }
}

3. CAPIF_Discovery_Service_API

After onboarding the API Invoker, the API Discovery function is used by invokers to obtain all the APIs published in
CAPIF, providing all the necessary information that an API Invoker needs to be able to make a request to each such
API.

Table C.2-3: Discover APIs request (schema, then example content)

HTTP GET {apiRoot}/service-apis/v1/allServiceAPIs?api-invoker-id={apiInvokerId}

The API Invoker must make the request to CAPIF using its identifier {apiInvokerId} in order to verify that the
invoker is registered in CAPIF.

Table C.2-3-OCF: Discover APIs request (OCF example)

HTTP GET https://capif.mobilesandbox.cloud:37211/service-apis/v1/allServiceAPIs?api-
invoker-id=INVaa03f9911db37be051b243ce3caad9

4. OK 200

Upon successful request, the API Invoker will receive the 200 OK code and all the information about the APIs
published in the CAPIF Core Function containing the AEF profiles exposing the APIs. Using this information, the API
Invoker can decide which APIs it wants to use.

Table C.2-4-OCF: Discover APIs response (schema)

200

Response body:
{
 "serviceAPIDescription":[{
 "apiName": "string",
 "apiId": "string",
 "apiStatus": {
 "aefIds": [
 "string"

https://capif.mobilesandbox.cloud:37211/api-invoker-management/v1/onboardedInvokers/INVaa03f9911db37be051b243ce3caad9

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)483GPP TR 23.946 version 18.1.0 Release 18

]
 },
 "aefProfiles": [
 {
 "aefId": "string",
 "versions": [
 {
 "apiVersion": "string",
 "expiry": "string",
 "resources": [
 {
 "resourceName": "string",
 "commType": "string",
 "uri": "string",
 "custOpName": "string",
 "operations": ["string"],
 "description": "string"
 },
 {
 "resourceName": "string",
 "commType": "string",
 "uri": "string",
 "custOpName": "string",
 "operations": ["string"],
 "description": "string"
 }
],
 "custOperations": [
 {
 "commType": "string",
 "custOpName": "string",
 "operations": [
 "string"
],
 "description": "string"
 }
]
 }
],
 "protocol": "string",
 "dataFormat": "string",
 "securityMethods": [
 "string",
],
 "interfaceDescriptions": [
 {
 "ipv4Addr": "string",
 "port": "int",
 "securityMethods": [
 "string"
]
 }
]
 }
],
 "description": "string",
 "supportedFeatures": "string",
 "shareableInfo": {
 "isShareable": "boolean",
 "capifProvDoms": [
 "string"
]
 },
 "serviceAPICategory": "string",
 "apiSuppFeats": "string",
 "pubApiPath": {
 "ccfIds": [
 "string"
]

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)493GPP TR 23.946 version 18.1.0 Release 18

 },
 "ccfId": "string"
 "apiProvName": "string"
 }
]
}

The API Invoker will receive a list with the APIs published in CAPIF, including the following information:

- apiName: Name of the published API, which will be unique in CAPIF.

- apiStatus: Represents the API status, in addition, if this attribute is omitted, it is understood that the API is
available in all AEFs of aefProfiles. It contains the aefIds field which is a list of the AEFs that expose the
API. If this list is empty or the attribute is omitted, it is understood that the API is inactive in all aefProfiles.

- aefProfiles: List of Information about AEFs that expose the API. This information contains the following
fields:

o aefId: AEF identifier of the provider that exposes the service.
o versions: list of information about API versions. Each version contains the resources supported by

the API. Each version contains:
 apiVersion: usable version of the API.
 expiry: date on which the API version expires and will no longer be available.
 resources: A list of resources that contain the API version. Each resource contains the

following information:
• resourceName: Name of the resource for which its information is specified.
• commType: Type of use of the resource, which can be receiving a response when

making a request (REQUEST_RESPONSE) or a subscription to receive
notifications (SUBSCRIBE_NOTIFY)

• uri: URI to make the request to use the described API resource.
• custOpName: Part of the URI structure used for a custom operation associated with

the resource. The attributes custOpName and custOperations are mutually
exclusive.

• custOperations: List of the resource's custom operations associated to this
resource. The attributes custOpName and custOperations are mutually
exclusive.

• operations: list of HTTP methods supported by the API resource.
• description: descriptive text of the API resource.

 custOperations: List of custom operations without resource association.
o protocol: indicates a protocol and protocol version used by the API.
o dataFormat: Indicates the data sending format which can be JSON, XML or PROTOBUF3.
o securityMethods: Indicates the possible security methods of the API.
o domainName: Domain name to which the API belongs.
o interfaceDescriptions: List of interfaces to which API requests can be made.

Only domainName or interfaceDescription can be specified.

- supportedFeatures: Indicates the one or more CAPIF Discover Service API specific supported features
(from the three features specified in 3GPP TS 29.222 [3], clause 8.1.6), e.g., support for RNAA functionality.

- shareableinfo: Indicates whether the service API and/or the service API category can be shared to the list of
CAPIF provider domains.

- serviceAPICategory: The service API category to which the service API belongs to.

- apiSuppFeats: Indication provided by the consumer (i.e., related to the AEF) which optional features are
supported by the service API.

- apiProvName: API provider Name that publishes the API.

An example for the Discover APIs response for an NEF that exposes the “3gpp-as-session-with-qos” API is shown
in Table C.2-4-OCF, for which there are twenty-nine optional service specific features (apiSuppFeats) specified
in 3GPP TS 29.122 [14].

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)503GPP TR 23.946 version 18.1.0 Release 18

Table C.2-4-OCF: Discover APIs response (OCF example)

200

Response body:

{
 "serviceAPIDescription":[
 {
 "apiName": "3gpp-as-session-with-qos",
 "apiId": "f55731ec5f8ce703ac1f69605ad095",
 "aefProfiles": [
 {
 "aefId": "string",
 "versions": [
 {
 "apiVersion": "v1",
 "expiry": "2100-11-30T10:32:02.004Z",
 "resources": [
 {
 "resourceName": "QOS_SUBSCRIPTIONS",
 "commType": "SUBSCRIBE_NOTIFY",
 "uri": "/{scsAsId}/subscriptions",
 "operations": [
 "GET",
 "POST"
],
 "description": "Endpoint to manage monitoring subscriptions"
 },
 {
 "resourceName": "QOS_SUBSCRIPTION_SINGLE",
 "commType": "SUBSCRIBE_NOTIFY",
 "uri": "/{scsAsId}/subscriptions/{subscriptionId}",
 "operations": [
 "GET",
 "PUT",
 "DELETE"
],
 "description": "Endpoint to manage single subscription"
 }
],
 }
],
 "protocol": "HTTP_1_1",
 "dataFormat": "JSON",
 "securityMethods": [
 "OAUTH",
 "PSK"
],
 "interfaceDescriptions": [
 {
 "ipv4Addr": "127.0.0.1",
 "port": 4443,
 "securityMethods": [
 "OAUTH"
]
 }
]
 }
],
 "description": "3gpp-as-session-with-qos NEF API",
 "supportedFeatures": "7",
 "shareableInfo": {
 "isShareable": true,
 "capifProvDoms": [
 "mobilesandbox.cloud"
]
 },
 "serviceAPICategory": "NEF",
 "apiSuppFeats": "1fffffff",
 "apiProvName": "OCF_NEF"

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)513GPP TR 23.946 version 18.1.0 Release 18

 }
]
}

5. CAPIF_Security_API

This request is responsible for requesting the creation of a security context to be able to use an API. If this step were not
carried out, even if the API invoker had the information on an API it wished to use, the token giving access to the API
would be missing, which can only be obtained once the security context has been created.

Table C.2-5: Create Security Context request (schema)

HTTP PUT {apiRoot}/capif-security/v1/trustedInvokers/{apiInvokerId}

Request body:
{
 "securityInfo": [
 {
 "prefSecurityMethods": [
 "string"
],
 "aefId": "string",
 "apiId": "string",
 "authenticationInfo": "string",
 "authorizationInfo": "string"
 }
],
 "notificationDestination": "string",
 "supportedFeatures": "string"
}

In this request we find the following fields:

- securityInfo: List of information that represents the details of the interfaces and security methods of the
APIs the API invoker wishes to use.

- prefSecurityMethods: List of preferred security methods for using an API. In the examples, OAuth tokens
are used.

- aefId: Identifier of the API exposing function that expose the API.

- apiId: Identifier of the API that that the API invoker wishes to use.

- notificationDestination: Address where the notifications should be delivered to.

The following example asks for OAUTH as the preferred security method. When this method is selected by the CAPIF
Core Function, the API invoker must make another request to obtain the necessary security access token to consume the
API.

Table C.2-5-OCF: Create Security Context request (OCF example)

HTTP PUT https://capif.mobilesandbox.cloud:37211/capif-
security/v1/trustedInvokers/INVaa03f9911db37be051b243ce3caad9

Request body:
{
 "securityInfo": [
 {
 "prefSecurityMethods": ["OAUTH"],
 "selSecurityMethod": "OAUTH",
 "aefId": "AEFb1a522967511fd6d6def0cbb3b5f05",
 "apiId": "f55731ec5f8ce703ac1f69605ad095",
 "authenticationInfo": "authenticationinfo",

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)523GPP TR 23.946 version 18.1.0 Release 18

 "authorizationInfo": "authorizationInfo"
 }
],
 "notificationDestination": "http://nef_notification_destination:8080/",
 "supportedFeatures": "f"
}

OpenCAPIF selects one of the preferred methods to make requests to the API based in AEF profile. In this example,
only one Security Method is requested by the API Invoker, so OpenCAPIF checks that this Security Method is
supported by the API Exposer.

6. 201 Created

The security context has been created successfully and the security context created with the selected security method is
returned in the response body.

Table C.2-6: Create Security Context response (schema)

201

Response headers:
Location: {apiRoot}/capif-security/v1/trustedInvokers/{apiInvokerId}

Response body:
{
 "securityInfo": [
 {
 "prefSecurityMethods": [
 "string"
],
 "selSecurityMethod": "string",
 "aefId": "string",
 "apiId": "string",
 "authenticationInfo": "string",
 "authorizationInfo": "string"
 }
],
 "notificationDestination": "string",
 "supportedFeatures": "string"
}

The {selSecurityMethod} is returned, which specifies the security method that will be used so that the API Invoker
can consume the API and the URI of the created resource in the “Location” HTTP header that includes the
{apiInvokerId}.

Table C.2-6-OCF: Create Security Context response (OCF example)

201

Response headers:
Location: https://capif.mobilesandbox.cloud:3721/capif-
security/v1/trustedInvokers/INVaa03f9911db37be051b243ce3caad9

Response body:
{
 "securityInfo": [
 {
 "prefSecurityMethods": ["OAUTH"],
 "selSecurityMethod": "OAUTH",
 "aefId": "AEFb1a522967511fd6d6def0cbb3b5f05",
 "apiId": "f55731ec5f8ce703ac1f69605ad095",
 "authenticationInfo": "authenticationinfo",
 "authorizationInfo": "authorizationInfo"
 }
],
 "notificationDestination": "http://nef_notification_destination:8080/",

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)533GPP TR 23.946 version 18.1.0 Release 18

 "supportedFeatures": "f"
}

7. CAPIF_Security_API (Obtain Token)

When the security method selected is OAUTH in the security context created by the API Invoker, the API Invoker must
make a request to the CAPIF Core Function to obtain the access token to consume the API.

Table C.2-7: Obtain Access Token request (schema, then example content)

HTTP POST {apiRoot}/capif-security/v1/trustedInvokers/{apiInvokerId}/token

Request body:
{
 "grantType": "string",
 "clientId": "string",
 "scope": "string"
}

The fields necessary to request the access token are:

- grantType: It is used to specify whether the token request is made by the API Invoker themselves
(client_credentials) or for the use of RNAA (authorization_code)

- clientId: Identifier of the invoker that is requesting the token.

- scope: a String that contains a list of AEF identifiers and its associated API names for which the access token is
authorized for use. It takes the format of: 3gpp#aefId1:apiName1,apiName2;aefId2:apiName1,apiName2

The request to obtain the OAuth token in OpenCAPIF is displayed in the following table:

Table C.2-7-OCF: Obtain Access Token request (OCF example)

HTTP POST https://capif.mobilesandbox.cloud:37211/capif-
security/v1/trustedInvokers/INVaa03f9911db37be051b243ce3caad9/token

Request body:
{
 "grantType": "client_credentials",
 "clientId": "INVaa03f9911db37be051b243ce3caad9",
 "scope": "3gpp#AEFb1a522967511fd6d6def0cbb3b5f05:/nef/api/v1/3gpp-as-session-with-
qos"
}

8. 200 OK

In response, the API Invoker will obtain the token that is needed to consume the API that was specified in the request.

Table C.2-8: Obtain Access Token response (schema)

200

Response body:
{
 "access_token": "string",
 "token_type": "string",
 "expires_in": "integer",
 "scope": "string"
}

The fields returned in the response are:

https://capif.mobilesandbox.cloud:37211/capif-security/v1/trustedInvokers/INVaa03f9911db37be051b243ce3caad9/token
https://capif.mobilesandbox.cloud:37211/capif-security/v1/trustedInvokers/INVaa03f9911db37be051b243ce3caad9/token

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)543GPP TR 23.946 version 18.1.0 Release 18

- access_token: OAuth access token necessary to make the request to the selected API.

- token_type: Contains the type of token that is returned (i.e. “Bearer”).

- expires_in: Contains the number of seconds after which the access_token expires.

- scope: It is the scope requested in the request and that uses the token to enable the use of an API. It takes the
following format: 3gpp#aefId1:apiName1,apiName2;aefId2:apiName1,apiName2

Table C.2-8-OCF: Obtain Access Token response (OCF example)

200

Response body:
{
 "access_token": "eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9",
 "token_type": "Bearer",
 "expires_in": 600,
 "scope": "3gpp#AEFb1a522967511fd6d6def0cbb3b5f05:3gpp-as-session-with-qos"
}

9. CAPIF_API_Invocation

The API invoker’s request to the consuming API does not go through CAPIF, rather it is made directly to the API
Exposer. For this request, the data obtained from AEF Profile in the Discover request is used (IP/hostname, port,
endpoint, method, etc...), it is also necessary to use the access token obtained from CAPIF that will be in the header of
the request.

As an example, the request is to the API that has been published as a NEF provider and the OAuth token that has been
obtained as an API Invoker.

Table C.2-9: Invoke API request (schema)

HTTP {operation} {ipv4Addr}:{port}{uri}

Request headers:

Authorization: "string"
Content-Type: "string"

Request body:

{

 API BODY

}

To make the request to the API, the access token obtained from the CAPIF Core Function must be entered in the
Authorization header, from there, everything depends on the description of the published API.

Each description contains either the ipv4Addr or the domainName, both along with the port to which the request can
be made. Also, depending on the resource to be called, the appropriate operation and uri specific to that resource.
This is in addition to having to pass data and use the format according to the dataFormat field and also specifying this
format in the header.

The following example shows how an invoker would use the NEF API that has been published:

Table C.2-9-OCF: Invoke API request (OCF example)

HTTP POST https://127.0.0.1:4443/nef/api/3gpp-as-session-with-
qos/v1/{scsAsId}/subscriptions

Request headers:
Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9
Content-Type: "application/json"

https://127.0.0.1:4443/nef/api/3gpp-as-session-with-qos/v1/%7bscsAsId%7d/subscriptions
https://127.0.0.1:4443/nef/api/3gpp-as-session-with-qos/v1/%7bscsAsId%7d/subscriptions

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)553GPP TR 23.946 version 18.1.0 Release 18

Request body:
{
 "ipv4Addr": "10.0.0.3",
 "notificationDestination": "http://localhost:80/api/v1/utils/session-with-
qos/callback",
 "snssai": {
 "sst": 1,
 "sd": "000001"
 },
 "dnn": "province1.mnc01.mcc202.gprs",
 "qosReference": 9,
 "altQoSReferences": [0],
 "qosMonInfo": {
 "reqQosMonParams": ["DOWNLINK"],
 "repFreqs": ["EVENT_TRIGGERED"],
 "repThreshDl": 20,
 "repThreshUl": 20,
 "repThreshRp": 50,
 "waitTime": 2,
 "repPeriod": 3
 }
}

This would make a request to the NEF API that was used as an example. In this case, the API Invoker would receive the
code 201 Created as it is used to create a subscription to the AsSessionWithQoS.

10. CAPIF_API_Invoker_Management (Deregistration)

The invoker can request its deletion from CAPIF using the offboarding service. By using this service, all information
stored in the CAPIF Core Function related to the invoker will be deleted, including all the security contexts created for
the APIs, ACLs, events subscriptions, etc.

Table C.2-10: DELETE API Invoker request (schema, then example content)

HTTP DELETE {apiRoot}/api-invoker-management/v1/onboardedInvokers/{apiInvokerId}

For the process of deleting an invoker in CAPIF, the certificate and identifier of the invoker to be deleted is required.
That information is obtained through the invoker creation process. Then by making the following request, the invoker is
eliminated.

Table C.2-10-OCF: DELETE API Invoker request (OCF example)

HTTP DELETE https://capif.mobilesandbox.cloud:37211/api-invoker-
management/v1/onboardedInvokers/INVaa03f9911db37be051b243ce3caad9

11. 204 No Content

The successful response will be a 204 No Content, which indicates that the invoker has been successfully deleted along
with everything related to it: security context of the APIs; ACLs of the services; events subscriptions etc.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)563GPP TR 23.946 version 18.1.0 Release 18

Annex D:
CAPIF Test cases

D.1 General
This Annex contains CAPIF test cases including the expected responses from CCF. The test cases defined enable
testing not only the success responses (200, 201, 204) but also error codes as defined in 3GPP TS 29.222 [3] Annex A
(normative) OpenAPI specification. These test cases are aligned with 3GPP TS 29.222 [3].

The annex defines tests for the following CAPIF APIs:

1. CAPIF_API_Invoker_Management_API
2. CAPIF_API_Provider_Management_API
3. CAPIF_Publish_Service_API
4. CAPIF_Discover_Service_API
5. CAPIF_Events_API
6. CAPIF_Security_API
7. CAPIF_Access_Control_Policy_API
8. CAPIF_Logging_API_Invocation_API
9. CAPIF_Auditing_API

D.2 Test Plan for CAPIF API Invoker Management
This section list test cases for the CAPIF_API_Invoker_Management_API.

Test Case 1: Onboard Invoker

Test ID capif_api_invoker_management-1

Description This test will try to register a new Invoker at CAPIF Core

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.
Invoker was not onboarded previously

Execution
Steps

1. Onboard Invoker at CCF
2. Store signed Certificate

Information of
Test

1. Create CSR, public and private key at invoker
2. Onboard Invoker:

a. Send POST to https://{CAPIF_HOSTNAME}/api-invoker-
management/v1/onboardedInvokers

b. “onboardingInformation” -> ”apiInvokerPublicKey”: must contain CSR generated by
Invoker

c. Send in Authorization Header the Bearer access_token obtained previously
(Authorization:Bearer ${access_token})

Expected
Result

1. Onboarding response:
a. Status code 201 Created
b. Response Body must follow APIInvokerEnrolmentDetails data structure with:

• apiInvokerId
• onboardingInformation->apiInvokerCertificate must contain the certificate

signed.
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/api-invoker-
management/{apiVersion}/onboardedInvokers/{onboardingId}

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)573GPP TR 23.946 version 18.1.0 Release 18

Test Case 2: Onboard Invoker Already onboarded

Test ID capif_api_invoker_management-2

Description This test will check second onboard of same Invoker is not allowed.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.
Invoker was onboarded previously

Execution
Steps

1. Onboard Invoker at CCF
2. Store signed Certificate
3. Onboard again the Invoker at CCF

Information of
Test

1. Perform Onboard Invoker
2. Repeat Onboard Invoker:

a. Send POST to https://{CAPIF_HOSTNAME}/api-invoker-
management/v1/onboardedInvokers

b. “onboardingInformation” -> ”apiInvokerPublicKey”: must contain CSR generated by
Invoker

c. Send in Authorization Header the Bearer access_token obtained previously
(Authorization:Bearer ${access_token})

Expected
Result

1. Response to first Onboard request must accomplish:
a. Status code 201 Created
b. Response Body must follow APIInvokerEnrolmentDetails data structure with:

• apiInvokerId
• onboardingInformation->apiInvokerCertificate must contain the certificate

signed.
c. Response Header Location must be received with URI to new resource created,

following this structure:
 {apiRoot}/api-invoker-
management/{apiVersion}/onboardedInvokers/{onboardingId}

2. Response to Second Onboard must accomplish:
a. Status code 403 Forbidden
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 403
• title with message “Forbidden”
• detail with message “Invoker Already registered”
• cause with message “Identical invoker public key”

Test Case 3: Update Onboarded Invoker

Test ID capif_api_invoker_management-3

Description This test will try to update information of previous onboard Invoker at CAPIF Core.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.
Invoker was onboarded previously with {onboardingId}

Execution
Steps

1. Onboard Invoker at CCF
2. Store signed Certificate
3. Update Onboarding Information at CCF with a minor change on “notificationDestination”

Information of
Test

1. Perform Onboard Invoker
2. Update information of previously onboarded Invoker:

a. Send PUT to https://{CAPIF_HOSTNAME}/api-invoker-
management/v1/onboardedInvokers/{onboardingId}

b. “notificationDestination”: "http://host.docker.internal:8086/netapp_new_callback"

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)583GPP TR 23.946 version 18.1.0 Release 18

Expected
Result

1. Response to first Onboard request must accomplish:
a. Status code 201 Created
b. Response Body must follow APIInvokerEnrolmentDetails data structure with:

• apiInvokerId
• onboardingInformation->apiInvokerCertificate must contain the certificate

signed.
c. Response Header Location must be received with URI to new resource created,

following this structure:
 {apiRoot}/api-invoker-
management/{apiVersion}/onboardedInvokers/{onboardingId}

2. Response to Update Request (PUT) with minor change must contain:
a. Status code 200 OK
b. “notificationDestination” on response must contain the new value

Test Case 4: Update Not Onboarded Invoker

Test ID capif_api_invoker_management-4

Description This test will try to update information of not onboarded Invoker at CAPIF Core.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.
Invoker was not onboarded previously

Execution
Steps

1. Onboard Invoker at CCF
2. Store signed Certificate
3. Update Onboarding Information at CCF of not onboarded

Information of
Test

1. Perform Onboard Invoker
2. Update information of not onboarded Invoker:

a. Send PUT to https://{CAPIF_HOSTNAME}/api-invoker-
management/v1/onboardedInvokers/{onboardingId}

Expected
Result

1. Response to first Onboard request must accomplish:
a. Status code 201 Created
b. Response Body must follow APIInvokerEnrolmentDetails data structure with:

• apiInvokerId
• onboardingInformation->apiInvokerCertificate must contain the certificate

signed.
c. Response Header Location must be received with URI to new resource created,

following this structure:
 {apiRoot}/api-invoker-
management/{apiVersion}/onboardedInvokers/{onboardingId}

2. Response to Update Request (PUT) must contain:
a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 404
• title with message “Not Found”
• detail with message “Please provide an existing Network App ID”
• cause with message “Not exist Network App ID”

Test Case 5: Offboard Invoker

Test ID capif_api_invoker_management-5

Description This test case will check that a Registered Invoker can be deleted.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.
Invoker was onboarded previously

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)593GPP TR 23.946 version 18.1.0 Release 18

Execution
Steps

1. Onboard Invoker at CCF
2. Store signed Certificate
3. Offboard Invoker at CCF

Information of
Test

1. Perform Onboard Invoker
2. Offboard onboarded Invoker:

a. Send DELETE to https://{CAPIF_HOSTNAME}/api-invoker-
management/v1/onboardedInvokers/{onboardingId}

Expected
Result

1. Response to first Onboard request must accomplish:
a. Status code 201 Created
b. Response Body must follow APIInvokerEnrolmentDetails data structure with:

• apiInvokerId
• onboardingInformation->apiInvokerCertificate must contain the certificate

signed.
c. Response Header Location must be received with URI to new resource created,

following this structure:
 {apiRoot}/api-invoker-
management/{apiVersion}/onboardedInvokers/{onboardingId}

2. Response to Offboard Request (PUT) must contain:
a. Status code 204 Not Content

Test Case 6: Offboard Not previously Onboarded Invoker

Test ID capif_api_invoker_management-6

Description This test case will check that a Non-Registered Network App cannot be deleted.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.
Invoker was not onboarded previously

Execution
Steps

1. Onboard Invoker at CCF
2. Store signed Certificate
3. Offboard Invoker at CCF

Information of
Test

1. Perform Onboard Invoker
2. Offboard onboarded Invoker:

a. Send DELETE to https://{CAPIF_HOSTNAME}/api-invoker-
management/v1/onboardedInvokers/{onboardingId}

Expected
Result

1. Response to first Onboard request must accomplish:
a. Status code 201 Created
b. Response Body must follow APIInvokerEnrolmentDetails data structure with:

• apiInvokerId
• onboardingInformation->apiInvokerCertificate must contain the certificate

signed.
c. Response Header Location must be received with URI to new resource created,

following this structure:
 {apiRoot}/api-invoker-
management/{apiVersion}/onboardedInvokers/{onboardingId}

2. Response to Offboard Request (DELETE) must contain:
a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 404
• title with message “Not Found”
• detail with message “Please provide an existing Network App ID”
• cause with message “Not exist Network App ID”

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)603GPP TR 23.946 version 18.1.0 Release 18

Test Case 7: Update Onboarded Invoker Certificate

Test ID capif_api_invoker_management-7

Description This test will try to update public key and get a new signed certificate by CAPIF Core.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.
Invoker was onboarded previously with {onboardingId}

Execution
Steps

1. Onboard Invoker at CCF
2. Store signed Certificate
3. Update Onboarding Information at CCF with a new public key and CSR

Information of
Test

1. Perform Onboard Invoker
2. Create new CSR, public and private key at invoker
3. Update information of previously onboarded Invoker:

a. Send PUT to https://{CAPIF_HOSTNAME}/api-invoker-
management/v1/onboardedInvokers/{onboardingId}

b. Store new invoker certificate.
Expected
Result

1. Response to first Onboard request must accomplish:
a. Status code 201 Created
b. Response Body must follow APIInvokerEnrolmentDetails data structure with:

• apiInvokerId
• onboardingInformation->apiInvokerCertificate must contain the certificate

signed.
c. Response Header Location must be received with URI to new resource created,

following this structure:
 {apiRoot}/api-invoker-
management/{apiVersion}/onboardedInvokers/{onboardingId}

2. Response to Update Request (PUT) must contain:
a. Status code 200 OK
b. Response Body must follow APIInvokerEnrolmentDetails data structure with:

• apiInvokerCertificate with new certificate on response -> store to use.

D.3 Test Plan for CAPIF API Provider Management
This section list test cases for the CAPIF_API_Provider_Management_API.

Test Case 1: Onboard API Provider

Test ID capif_api_provider_management-1

Description This test case will check that Api Provider can be registered at CCF

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was not onboarded previously

Execution
Steps

1. Onboard Provider at CCF
2. Store signed Certificates

Information of
Test

1. Create CSR, public and private key for each function.
2. Onboard Provider:

a. Send POST to https://{CAPIF_HOSTNAME}/api-provider-
management/v1/registrations

b. Each function in list “apiProvFuncs” must contain a CSR generated by Provider in
“regInfo”-> ”apiProvPubKey”

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)613GPP TR 23.946 version 18.1.0 Release 18

c. Send in Authorization Header the Bearer access_token obtained previously
(Authorization:Bearer ${access_token})

Expected
Result

1. Onboarding response:
a. Status code 201 Created
b. Response Body must follow APIProviderEnrolmentDetails data structure.
c. For each “apiProvFuncs”, we must check:

• “apiProvFuncId” is set
• “apiProvCert” under “regInfo” is set properly

d. Response Header Location must be received with URI to new resource created,
following this structure:
{apiRoot}/api-provider -management/{apiVersion}/registrations /{registrationId}

Test Case 2: Onboard API Provider Already Onboarded

Test ID capif_api_provider_management-2

Description This test case will check that an API Provider previously registered cannot be re-registered

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was onboarded previously

Execution
Steps

1. Onboard Provider at CCF
2. Store signed Certificates
3. Onboard Again the Provider at CCF

Information of
Test

1. Create CSR, public and private key for each function.
2. Onboard Provider:

a. Send POST to https://{CAPIF_HOSTNAME}/api-provider-
management/v1/registrations

b. Each function in list “apiProvFuncs” must contain a CSR generated by Provider in
“regInfo”-> ”apiProvPubKey”

c. Send in Authorization Header the Bearer access_token obtained previously
(Authorization:Bearer ${access_token})

3. Onboard Again the Provider:
a. Send POST to https://{CAPIF_HOSTNAME}/api-provider-

management/v1/registrations
b. Each function in list “apiProvFuncs” must contain a CSR generated by Provider in

“regInfo”-> ”apiProvPubKey”
4. Send in Authorization Header the Bearer access_token obtained previously

(Authorization:Bearer ${access_token})
Expected
Result

1. Response to first Onboard request must accomplish:
a. Response Body must follow APIProviderEnrolmentDetails data structure.
b. For each “apiProvFuncs”, we must check:

• “apiProvFuncId” is set
• “apiProvCert” under “regInfo” is set properly

c. Response Header Location must be received with URI to new resource created,
following this structure:
 {apiRoot}/api-provider -management/{apiVersion}/registrations
/{registrationId}

2. Response to Second Onboard must accomplish:
a. Status code 403 Forbidden
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 403
• title with message “Forbidden”
• detail with message “Provider Already registered”
• cause with message “Identical Provider reg sec”

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)623GPP TR 23.946 version 18.1.0 Release 18

Test Case 3: Update Onboarded API Provider

Test ID capif_api_provider_management-3

Description This test case will check that a Registered API Provider can be updated

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was onboarded previously

Execution
Steps

1. Onboard Provider at CCF
2. Update Provider

Information of
Test

1. Create CSR, public and private key for each function.
2. Onboard Provider
3. Update information of previously onboarded Provider:

a. Send PUT to https://{CAPIF_HOSTNAME}/api-invoker-
management/v1/onboardedInvokers/{onboardingId}

b. “apiProvDomInfo”: "ROBOT_TESTING_MOD"
c. Use AMF Certificate

Expected
Result

1. Response to first Onboard request must accomplish:
a. Response Body must follow APIProviderEnrolmentDetails data structure.
b. For each “apiProvFuncs”, we must check:

• “apiProvFuncId” is set
• “apiProvCert” under “regInfo” is set properly

c. Response Header Location must be received with URI to new resource created,
following this structure:
 {apiRoot}/api-provider -management/{apiVersion}/registrations
/{registrationId}

2. Update Provider must accomplish:
a. Status code 200 OK
b. Body returned must accomplish APIProviderEnrolmentDetails data structure, with

• “apiProvDomInfo” set to ROBOT_TESTING_MOD

Test Case 4: Update API Provider Not Onboarded

Test ID capif_api_provider_management-2

Description This test case will check that a Non-Registered API Provider cannot be updated

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was not onboarded previously

Execution
Steps

1. Onboard Provider at CCF
2. Update Provider

Information of
Test

1. Create CSR, public and private key for each function.
2. Onboard Provider
3. Update information of previously onboarded Provider:

a. Send PUT to https://{CAPIF_HOSTNAME}/api-invoker-
management/v1/onboardedInvokers/{onboardingId}

b. “apiProvDomInfo”: "ROBOT_TESTING_MOD"
Expected
Result

1. Response to first Onboard request must accomplish:
a. Response Body must follow APIProviderEnrolmentDetails data structure.
b. For each “apiProvFuncs”, we must check:

• “apiProvFuncId” is set
• “apiProvCert” under “regInfo” is set properly

c. Response Header Location must be received with URI to new resource created,
following this structure:

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)633GPP TR 23.946 version 18.1.0 Release 18

 {apiRoot}/api-provider -management/{apiVersion}/registrations
/{registrationId}

2. Update Provider must accomplish:
a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 404
• title with message “Not Found”
• detail with message “Not Exist Provider Enrolment Details”
• cause with message “Not found registrations to Send THIS api provider details”

Test Case 5: Partially Update Onboarded API Provider

Test ID capif_api_provider_management-5

Description This test case will check that a Registered API Provider can be partially updated

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was onboarded previously

Execution
Steps

1. Onboard Provider at CCF
2. Partial Update Provider

Information of
Test

1. Create CSR, public and private key for each function.
2. Onboard Provider
3. Partial update information of previously onboarded Provider:

a. Send PATCH to https://{CAPIF_HOSTNAME}/api-invoker-
management/v1/onboardedInvokers/{onboardingId}

b. “apiProvDomInfo”: "ROBOT_TESTING_MOD"
c. Use AMF Certificate

Expected
Result

1. Response to first Onboard request must accomplish:
a. Response Body must follow APIProviderEnrolmentDetails data structure.
b. For each “apiProvFuncs”, we must check:

• “apiProvFuncId” is set
• “apiProvCert” under “regInfo” is set properly

c. Response Header Location must be received with URI to new resource created,
following this structure:
 {apiRoot}/api-provider -management/{apiVersion}/registrations
/{registrationId}

2. Partial update Provider must accomplish:
a. Status code 200 OK
b. Body returned must accomplish APIProviderEnrolmentDetails data structure, with

• “apiProvDomInfo” set to ROBOT_TESTING_MOD

Test Case 6: Partially Update API Provider Not Onboarded

Test ID capif_api_provider_management-6

Description This test case will check that a Non-Registered API Provider cannot be partially updated

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was not onboarded previously

Execution
Steps

1. Onboard Provider at CCF
2. Partial Update Provider

Information of
Test

1. Create CSR, public and private key for each function.
2. Onboard Provider

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)643GPP TR 23.946 version 18.1.0 Release 18

3. Partial update information of previously onboarded Provider:
4. Send PATCH to https://{CAPIF_HOSTNAME}/api-invoker-

management/v1/onboardedInvokers/{onboardingId}
5. “apiProvDomInfo”: "ROBOT_TESTING_MOD"

Expected
Result

1. Response to first Onboard request must accomplish:
a. Response Body must follow APIProviderEnrolmentDetails data structure.
b. For each “apiProvFuncs”, we must check:

• “apiProvFuncId” is set
• “apiProvCert” under “regInfo” is set properly

c. Response Header Location must be received with URI to new resource created,
following this structure:
 {apiRoot}/api-provider -management/{apiVersion}/registrations
/{registrationId}

2. Partial update Provider must accomplish:
a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 404
• title with message “Not Found”
• detail with message “Not Exist Provider Enrolment Details”
• cause with message “Not found registrations to Send THIS api provider details”

Test Case 7: Delete Onboarded API Provider

Test ID capif_api_provider_management-7

Description This test case will check that a Registered API Provider can be deleted

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was onboarded previously

Execution
Steps

1. Onboard Provider at CCF
2. Store signed Certificates
3. Delete Provider

Information of
Test

1. Create CSR, public and private key for each function.
2. Onboard Provider
3. Delete Provider:

a. Send DELETE to https://{CAPIF_HOSTNAME}/api-provider-
management/v1/registrations/{registrationId}

b. Use AMF certificate
Expected
Result

1. Response to first Onboard request must accomplish:
a. Response Body must follow APIProviderEnrolmentDetails data structure.
b. For each “apiProvFuncs”, we must check:

• “apiProvFuncId” is set
• “apiProvCert” under “regInfo” is set properly

c. Response Header Location must be received with URI to new resource created,
following this structure:
 {apiRoot}/api-provider -management/{apiVersion}/registrations
/{registrationId}

2. Delete Provider must accomplish:
a. Status code 204 Not Found

Test Case 8: Delete not Onboarded API Provider

Test ID capif_api_provider_management-8

Description This test case will check that a Non-Registered API Provider cannot be deleted

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)653GPP TR 23.946 version 18.1.0 Release 18

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was not onboarded previously

Execution
Steps

1. Onboard Provider at CCF
2. Store signed Certificates
3. Delete Provider

Information of
Test

1. Create CSR, public and private key for each function.
2. Onboard Provider:
3. Delete Provider:

a. Send DELETE to https://{CAPIF_HOSTNAME}/api-provider-
management/v1/registrations/{registrationId}
b. Use AMF certificate

Expected
Result

1. Response to first Onboard request must accomplish:
a. Response Body must follow APIProviderEnrolmentDetails data structure.
b. For each “apiProvFuncs”, we must check:

• “apiProvFuncId” is set
• “apiProvCert” under “regInfo” is set properly

c. Response Header Location must be received with URI to new resource created,
following this structure:
 {apiRoot}/api-provider-management/{apiVersion}/registrations
/{registrationId}

2. Responso to Delete Provider must accomplish:
a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 404
• title with message “Not Found”
• detail with message “Not Exist Provider Enrolment Details”
• cause with message “Not found registrations to Send THIS api provider details”

D.4 Test Plan for CAPIF API Publish Service
This section list test cases for the CAPIF_Publish_Service_API.

Test Case 1: Publish API by Authorised API Publisher

Test ID capif_api_publish_service-1

Description This test case will check that an API Publisher can Publish an API

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was onboarded previously

Execution
Steps

1. Onboard Provider at CCF
2. Publish Service API
3. Retrieve {apiId} from body and Location header with new resource created from response

Information of
Test

1. Onboard Provider
2. Publish Service API:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-apis
b. Body serviceAPIDescription with apiName service_1
c. Use APF Certificate

Expected
Result

1. Response to Publish request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId}

2. Published Service API is stored in CAPIF Database.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)663GPP TR 23.946 version 18.1.0 Release 18

Test Case 2: Publish API by NON-Authorised API Publisher

Test ID capif_api_publish_service-2

Description This test case will check that an API Publisher cannot Publish an API without valid apfId

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was not onboarded

Execution
Steps

1. Onboard Provider at CCF
2. Publish Service API with invalid APF ID

Information of
Test

1. Onboard Provider
2. Publish Service API with invalid ID at CCF:

a. Send POST to https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfIdNotValid}/service-apis

b. Body serviceAPIDescription with apiName service_1
c. Use APF Certificate

Expected
Result

1. Response to Publish request must accomplish:
a. Status code 401 Unauthorized
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 401
• title with message “Unauthorized”
• detail with message “Publisher not existing”
• cause with message “Publisher id not found”

2. Published Service API is NOT stored in CAPIF Database.

Test Case 3: Retrieve all APIs Published by Authorised API Publisher

Test ID capif_api_publish_service-3

Description This test case will check that an API Publisher can Retrieve all API published

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was onboarded previously
At least 2 services APIs are published

Execution
Steps

1. Onboard Provider at CCF
2. Publish Service API service_1
3. Retrieve {apiId1} from body and Location header with new resource created from response
4. Publish Service API service_2
5. Retrieve {apiId2} from body and Location header with new resource created from response
6. Retrieve All published APIs and check if both are present

Information of
Test

1. Onboard Provider
2. Publish Service API at CCF:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-apis
b. Body serviceAPIDescription with apiName service_1
c. Get apiId1
d. Use APF Certificate

3. Publish Other Service API at CCF:
a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-apis
b. Body serviceAPIDescription with apiName service_2
c. Get apiId2
d. Use APF Certificate

4. Retrieve all published APIs:
a. Send GET to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-apis

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)673GPP TR 23.946 version 18.1.0 Release 18

b. Use APF Certificate

Expected
Result

1. Response to service 1 Publish request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId1
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId1}

2. Response to service 2 Publish request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId2
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId2}

3. Published Service APIs are stored in CAPIF Database
4. Response to Retrieve all published APIs

a. 200 OK
b. Response body must return an array of ServiceAPIDescription data.
c. Array must contain all previously published APIs.

Test Case 4: Retrieve all APIs Published by NON Authorised API Publisher

Test ID capif_api_publish_service-4

Description This test case will check that an API Publisher cannot Retrieve API published when apfId is not
authorised

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was not onboarded previously
At least 2 services APIs are published

Execution
Steps

1. Onboard Provider at CCF
2. Retrieve All published APIs

Information of
Test

1. Onboard Provider
2. Retrieve all published APIs:

a. Send GET to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-apis
b. Use APF Certificate

Expected
Result

1. Response to Publish request must accomplish:
a. Status code 401 Unauthorized
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 401
• title with message “Unauthorized”
• detail with message “Publisher not existing”
• cause with message “Publisher id not found”

2. Published Service API is NOT stored in CAPIF Database.

Test Case 5: Retrieve single APIs Published by Authorised API Publisher

Test ID capif_api_publish_service-5

Description This test case will check that an API Publisher can Retrieve API published one by one

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)683GPP TR 23.946 version 18.1.0 Release 18

Provider was onboarded previously
At least 2 services APIs are published

Execution
Steps

1. Onboard Provider at CCF
2. Publish Service API service_1
3. Retrieve {apiId1} from body and Location header with new resource created from response
4. Publish Service API service_2
5. Retrieve {apiId2} from body and Location header with new resource created from response
6. Retrieve service_1 API Detail
7. Retrieve service_2 API Detail

Information of
Test

1. Onboard Provider
2. Publish Service API at CCF:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-apis
b. Body serviceAPIDescription with apiName service_1
c. Get apiId1
d. Use APF Certificate

3. Publish Other Service API at CCF:
a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-apis
b. Body serviceAPIDescription with apiName service_2
c. Get apiId2
d. Use APF Certificate

4. Retrieve service_1 published API Details:
a. Send GET to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-

apis/{apiId1}
b. Use APF Certificate

5. Retrieve service_2 published API Details:
a. Send GET to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-

apis/{apiId2}
b. Use APF Certificate

Expected
Result

1. Response to service_1 Publish request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId1
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId1}

2. Response to service_2 Publish request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId2
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId2}

3. Published Service APIs are stored in CAPIF Database
4. Response to Retrieve service_1 published API using apiId1:

a. 200 OK
b. Response body must return an array of ServiceAPIDescription data.
c. Array must contain same information than service_1 published registration response.

5. Response to Retrieve service_2 published API using apiId2:
a. 200 OK
b. Response body must return an array of ServiceAPIDescription data.
c. Array must contain same information than service_2 published registration response.

Test Case 6: Retrieve single APIs NON Published by Authorised API
Publisher

Test ID capif_api_publish_service-6

Description This test case will check that an API Publisher try to get detail of not published API.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)693GPP TR 23.946 version 18.1.0 Release 18

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was onboarded previously
No published API.

Execution
Steps

1. Onboard Provider at CCF
2. Retrieve not published API Detail

Information of
Test

1. Onboard Provider
2. Retrieve not published API Details:

a. Send GET to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-
apis/{SERVICE_API_ID_NOT_VALID}

b. Use APF Certificate
Expected
Result

1. Response to Retrieve for NOT published API must accomplish:
a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 404
• title with message “Not Found”
• detail with message “Service API not found”
• cause with message “No Service with specific credentials exists”

Test Case 7: Retrieve single APIs Published by NON Authorised API
Publisher

Test ID capif_api_publish_service-7

Description This test case will check that an API Publisher cannot Retrieve detailed API published when
apfId is not authorised

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.
Provider was onboarded
Invoker was onboarded

Execution
Steps

1. Onboard Provider at CCF
2. Publish Service API at CCF
3. Retrieve {apiId1} from body and Location header with new resource created from response
4. Onboard Invoker at CCF and store signed Invoker Certificate
5. Retrieve detailed published API acting as Invoker

Information of
Test

1. Onboard Provider and Invoker
2. Publish Service API at CCF:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-apis
b. Body serviceAPIDescription with apiName service_1
c. Get apiId1
d. Use APF Certificate

3. Retrieve service_1 published API Details:
a. Send GET to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-

apis/{apiId1}
b. Use Invoker Certificate

Expected
Result

1. Response to Retrieve for NOT published API must accomplish:
a. Status code 401 Unauthorized
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 401
• title with message “Unauthorized”
• detail with message “User not authorized”
• cause with message “Certificate not authorized”

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)703GPP TR 23.946 version 18.1.0 Release 18

Test Case 8: Update API Published by Authorised API Publisher with valid
serviceApiId

Test ID capif_api_publish_service-8

Description This test case will check that an API Publisher can Update published API with a valid
serviceApiId

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was onboarded previously
A service APIs is published

Execution
Steps

1. Onboard Provider at CCF
2. Publish Service API
3. Retrieve {apiId} from body and Location header with new resource created from response
4. Update published Service API
5. Retrieve detail of Service API

Information of
Test

1. Onboard Provider
2. Publish Service API at CCF:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-
apis

b. Body serviceAPIDescription with apiName service_1
c. Get apiId
d. Use APF Certificate

3. Update published API at CCF:
a. Send PUT to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-

apis/{apiId}
b. Body serviceAPIDescription with overrided apiName to service_1_modified
c. Use APF Certificate

4. Retrieve service_1 published API Details:
a. Send GET to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-

apis/{apiId}
b. Use APF Certificate
c. Check apiName is service_1_modified

Expected
Result

1. Response to Publish request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId}

2. Response to Update Published service request must accomplish:
a. Status code 200 OK
b. Response body must follow ServiceAPIDescription data structure with:

• apiName service_1_modified
3. Response to Retrieve detail of Service API:

a. 200 OK
b. Response body must follow ServiceAPIDescription data structure with:

• apiName service_1_modified

Test Case 9: Update API Published by Authorised API Publisher with invalid
serviceApiId

Test ID capif_api_publish_service-9

Description This test case will check that an API Publisher cannot Update published API with a invalid
serviceApiId

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)713GPP TR 23.946 version 18.1.0 Release 18

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was onboarded previously
A service API is published

Execution
Steps

1. Onboard Provider at CCF
2. Publish Service API
3. Retrieve {apiId} from body and Location header with new resource created from response
4. Update published Service API

Information of
Test

1. Onboard Provider
2. Publish Service API at CCF:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-
apis

b. Body serviceAPIDescription with apiName service_1
c. Get apiId
d. Use APF Certificate

3. Update published API at CCF:
a. Send PUT to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-

apis/{SERVICE_API_ID_NOT_VALID}
b. Body serviceAPIDescription with overrided apiName to service_1_modified
c. Use APF Certificate

Expected
Result

1. Response to Publish request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId}

2. Response to Update Published service request must accomplish:
a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 404
• title with message “Not Found”
• detail with message “Service API not found”

Test Case 10: Update API Published by NON Authorised API Publisher

Test ID capif_api_publish_service-10

Description This test case will check that an API Publisher cannot Update API published when apfId is not
authorised

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.
Provider was onboarded
Invoker was onboarded

Execution
Steps

1. Onboard Provider at CCF
2. Publish Service API at CCF
3. Retrieve {apiId1} from body and Location header with new resource created from response
4. Onboard Invoker at CCF and store signed Invoker Certificate
5. Update published API at CCF as Invoker
6. Retrieve detail of Service API as Provider

Information of
Test

1. Onboard Provider and Invoker
2. Publish Service API at CCF:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-
apis

b. Body serviceAPIDescription with apiName service_1
c. Get apiId

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)723GPP TR 23.946 version 18.1.0 Release 18

d. Use APF Certificate
3. Update published API at CCF:

a. Send PUT to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-
apis/{SERVICE_API_ID_NOT_VALID}

b. Body serviceAPIDescription with overrided apiName to service_1_modified
c. Use Invoker Certificate

4. Retrieve service_1 published API Details:
a. Send GET to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-

apis/{apiId}
b. Use APF Certificate
c. Check apiName is service_1

Expected
Result

1. Response to Update published API acting as Invoker must accomplish:
a. Status code 401 Unauthorized
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 401
• title with message “Unauthorized”
• detail with message “User not authorized”
• cause with message “Certificate not authorized”

2. Response to Retrieve Detail of Service API
a. 200 OK
b. Response Body must follow ServiceAPIDescription data structure with:

• apiName service_1

Test Case 11: Delete API Published by Authorised API Publisher with valid
serviceApiId

Test ID capif_api_publish_service-11

Description This test case will check that an API Publisher can Delete published API with a valid
serviceApiId

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was onboarded previously
A service API is published

Execution
Steps

1. Onboard Provider at CCF
2. Publish Service API
3. Retrieve {apiId} from body and Location header with new resource created from response
4. Remove published Service API at CCF
5. Try to retrieve deleted Service API from CCF

Information of
Test

1. Onboard Provider
2. Publish Service API at CCF:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-
apis

b. Body serviceAPIDescription with apiName service_1
c. Get apiId
d. Use APF Certificate

3. Remove published API at CCF:
a. Send DELETE to https://{CAPIF_HOSTNAME}/published-

apis/v1/{apfId}/service-apis/{apiId}
b. Use APF Certificate

4. Retrieve service_1 published API Details:
a. Send GET to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-

apis/{apiId}
b. Use APF Certificate

Expected
Result

1. Response to Publish request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)733GPP TR 23.946 version 18.1.0 Release 18

c. Response Header Location must be received with URI to new resource created,
following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId}

2. Response to Remove Published service request must accomplish:
a. Status code 204 NoContent

3. Response to Retrieve detail for DELETED published API must accomplish:
a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 404
• title with message “Service API not found”
• detail with message “No Service with specific credentials exists”

Test Case 12: Delete API Published by Authorised API Publisher with invalid
serviceApiId

Test ID capif_api_publish_service-12

Description This test case will check that an API Publisher cannot Delete with invalid serviceApiId

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was onboarded previously
A service API is published

Execution
Steps

1. Onboard Provider at CCF
2. Publish Service API
3. Retrieve {apiId} from body and Location header with new resource created from response
4. Remove published Service API at CCF

Information of
Test

1. Onboard Provider
2. Publish Service API at CCF:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-
apis

b. Body serviceAPIDescription with apiName service_1
c. Get apiId
d. Use APF Certificate

3. Remove published API at CCF:
a. Send DELETE to https://{CAPIF_HOSTNAME}/published-

apis/v1/{apfId}/service-apis/{SERVICE_API_ID_NOT_VALID}
b. Use APF Certificate

Expected
Result

1. Response to Publish request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId}

2. Response to Remove Published service request must accomplish:
a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 404
• Title with message “Not Found”
• title with message “Service API not found”
• detail with message “Service API id not found”

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)743GPP TR 23.946 version 18.1.0 Release 18

Test Case 13: Delete API Published by NON Authorised API Publisher with
valid serviceApiId

Test ID capif_api_publish_service-12

Description This test case will check that an API Publisher cannot Delete with invalid serviceApiId

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard a Provider.
Provider was onboarded previously
A service APIs is published

Execution
Steps

1. Onboard Provider at CCF
2. Publish Service API
3. Retrieve {apiId} from body and Location header with new resource created from response
4. Onboard Invoker at CCF and store signed Invoker Certificate
5. Remove published Service API at CCF with invalid serviced as Invoker

Information of
Test

1. Onboard Provider and Invoker
2. Publish Service API at CCF:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-
apis

b. Body serviceAPIDescription with apiName service_1
c. Get apiId
d. Use APF Certificate

3. Remove published API at CCF as Invoker:
a. Send DELETE to https://{CAPIF_HOSTNAME}/published-

apis/v1/{apfId}/service-apis/{apiId}
b. Use Invoker Certificate

Expected
Result

1. Response to Remove Published service request must accomplish:
a. Status code 401 Unauthorized
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 401
• title with message “Unauthorized”
• detail with message “User not authorized”
• cause with message “Certificate not authorized”

D.5 Test Plan for CAPIF Discover Service API
This section list test cases for the CAPIF_Discover_Service_API.

Test Case 1: Discover Published Service Apis by Authorised Invoker

Test ID capif_api_discover _service-1

Description This test case will check if Invoker can discover published service APIs.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.
Service APIs are published

Execution
Steps

1. Onboard Provider at CCF and publish Service API at CCF.
2. Onboard Invoker at CCF
3. Discover Service APIs by Invoker

Information of
Test

1. Onboard Provider and Invoker
2. Publish Service API:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-
apis

b. Body serviceAPIDescription with apiName service_1

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)753GPP TR 23.946 version 18.1.0 Release 18

c. Use APF Certificate
3. Request Discover Published APIs:

a. Send GET to https://{CAPIF_HOSTNAME}/service-apis/v1/allServiceAPIs?api-
invoker-id={apiInvokerId}

b. Param api-invoker-id is mandatory
c. Use Invoker Certificate

Expected
Result

1. Response to Publish request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId}

2. Response to Discover Request by Invoker:
a. Status code 200 OK
b. Response body must follow DiscoveredAPIs data structure:

• Check if DiscoveredAPIs contains the API Published previously

Test Case 2: Discover Published Service APIs by Non Authorised Invoker

Test ID capif_api_discover _service-2

Description This test case will check that an API Publisher can't discover published APIs because is not
authorized.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.
Service APIs are published

Execution
Steps

1. Onboard Provider at CCF and publish Service API at CCF.
2. Onboard Invoker at CCF
3. Discover Service APIs by Invoker

Information of
Test

1. Onboard Provider and Invoker
2. Publish Service API:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-
apis

b. Body serviceAPIDescription with apiName service_1
c. Use APF Certificate

3. Request Discover Published APIs:
a. Send GET to https://{CAPIF_HOSTNAME}/service-apis/v1/allServiceAPIs?api-

invoker-id={apiInvokerId}
b. Param api-invoker-id is mandatory
c. Use not Invoker Certificate

Expected
Result

1. Response to Publish request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId}

2. Response to Discover Request by no Invoker:
a. Status code 401 Unauthorized
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 401
• title with message “Unauthorized”
• detail with message “User not authorized”
• cause with message “Certificate not authorized”

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)763GPP TR 23.946 version 18.1.0 Release 18

Test Case 3: Discover Published Service APIs by Not Registered API Invoker

Test ID capif_api_discover _service-3

Description This test case will check that a not registered invoker is forbidden to discover published APIs.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.
Service APIs are published

Execution
Steps

1. Onboard Provider at CCF and publish Service API at CCF.
2. Onboard Invoker at CCF
3. Discover Service APIs by Invoker

Information of
Test

1. Onboard Provider and Invoker
2. Publish Service API:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-
apis

b. Body serviceAPIDescription with apiName service_1
c. Use APF Certificate

3. Request Discover Published API with not valid apiInvokerId:
a. Send GET to https://{CAPIF_HOSTNAME}/service-apis/v1/allServiceAPIs?api-

invoker-id={NOT_VALID_INVOKER_ID}
b. Param api-invoker-id is mandatory
c. Use Invoker Certificate

Expected
Result

1. Response to Publish request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId}

2. Response to Discover Request by Invoker:
a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 404
• Title with message “Not Found”
• title with message “API Invoker does not exist”
• detail with message “API Invoker id not found”

Test Case 4: Discover Published Service APIs by Authorised Invoker with 1
result filtered

Test ID capif_api_discover _service-4

Description This test case will check if Invoker can discover published service APIs

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.
At least 2 Service APIs are published

Execution
Steps

1. Onboard Provider at CCF and publish Service API service_1 and service_2 at CCF.
2. Onboard Invoker at CCF
3. Discover Service APIs by Invoker
4. Discover filtered by api-name service_1 Service APIs by Invoker

Information of
Test

1. Onboard Provider and Invoker
2. Publish Service API:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-
apis

b. Body serviceAPIDescription with apiName service_1
c. Use APF Certificate

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)773GPP TR 23.946 version 18.1.0 Release 18

3. Publish Service API:
a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-

apis
b. Body serviceAPIDescription with apiName service_2
c. Use APF Certificate

4. Request Discover Published APIs filtering by api-name:
a. Send GET to https://{CAPIF_HOSTNAME}/service-apis/v1/allServiceAPIs?api-

invoker-id={apiInvokerId}&api-name=service_1
b. Param api-invoker-id is mandatory
c. Use Invoker Certificate
d. Filter by api-name service_1

Expected
Result

1. Response to Publish service_1 request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId1
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId1}

2. Response to Publish service_2 request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId2
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId2}

3. Response to Discover Request by Invoker:
a. Status code 200 OK
b. Response body must follow DiscoveredAPIs data structure:

• Check if DiscoveredAPIs contains only the API Published with api-name
service_1

Test Case 5: Discover Published Service APIs by Authorised Invoker with no
match

Test ID capif_api_discover _service-5

Description This test case will check if Invoker can discover published service APIs.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.
At least 2 Service APIs are published

Execution
Steps

1. Onboard Provider at CCF and publish Service API service_1 and service_2 at CCF.
2. Onboard Invoker at CCF
3. Discover Service APIs by Invoker
4. Discover filtered by api-name not published Service API by Invoker

Information of
Test

1. Onboard Provider and Invoker
2. Publish Service API:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-
apis

b. Body serviceAPIDescription with apiName service_1
c. Use APF Certificate

3. Publish Service API:
a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-

apis
b. Body serviceAPIDescription with apiName service_2
c. Use APF Certificate

4. Request Discover Published APIs filtering by api-name not published:
a. Send GET to https://{CAPIF_HOSTNAME}/service-apis/v1/allServiceAPIs?api-

invoker-id={apiInvokerId}&api-name=NOT_VALID_NAME

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)783GPP TR 23.946 version 18.1.0 Release 18

b. Param api-invoker-id is mandatory
c. Use Invoker Certificate
d. Filter by api-name NOT_VALID_NAME

Expected
Result

1. Response to Publish service_1 request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId1
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId1}

2. Response to Publish service_2 request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId2
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId2}

3. Response to Discover Request by Invoker:
a. Status code 200 OK
b. Response body must follow DiscoveredAPIs data structure:

• Check if DiscoveredAPIs contains the previously registered Service API
Published.

4. Response to Discover Request By Invoker:
a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 404
• Title with message “Not Found”
• title with message “API Invoker{api_invoker_id} has no API Published that

accomplish filter conditions”
• detail with message “No API message Published accomplish filter conditions”

Test Case 6: Discover Published Service APIs by Authorised Invoker not
filtered

Test ID capif_api_discover _service-6

Description This test case will check if Invoker can discover published service APIs.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.
At least 2 Service APIs are published

Execution
Steps

1. Onboard Provider at CCF and publish Service API service_1 and service_2 at CCF.
2. Onboard Invoker at CCF
3. Discover Service APIs by Invoker
4. Discover without filter by Invoker

Information of
Test

1. Onboard Provider and Invoker
2. Publish Service API:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-
apis

b. Body serviceAPIDescription with apiName service_1
c. Use APF Certificate

3. Publish Service API:
a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-

apis
b. Body serviceAPIDescription with apiName service_2
c. Use APF Certificate

4. Request Discover Published APIs filtering by api-name not published:
a. Send GET to https://{CAPIF_HOSTNAME}/service-apis/v1/allServiceAPIs?api-

invoker-id={apiInvokerId}

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)793GPP TR 23.946 version 18.1.0 Release 18

b. Param api-invoker-id is mandatory
c. Use Invoker Certificate

Expected
Result

1. Response to Publish service_1 request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId1
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId1}

2. Response to Publish service_2 request must accomplish:
a. Status code 201 Created
b. Response body must follow ServiceAPIDescription data structure with:

• apiId2
c. Response Header Location must be received with URI to new resource created,

following this structure:
{apiRoot}/published-apis/{apiVersion}/{apfId}/service-apis/{serviceApiId2}

3. Response to Discover Request by Invoker:
a. Status code 200 OK
b. Response body must follow DiscoveredAPIs data structure:

• Check if DiscoveredAPIs contains the 2 previously registered Service API
Published.

D.6 Test Plan for CAPIF API Security Service
This section list test cases for the CAPIF_Security_API.

Test Case 1: Creates a Security Context for an API Invoker

Test ID capif_api_security-1

Description This test case will check that an API Invoker can create a Security context

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Execution
Steps

1. Onboard Invoker at CCF.
2. Stored signed Certificate
3. Create Security Context

Information of
Test

1. Onboard Invoker at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

Expected
Result

1. Create security context:
a. 201 Created response.
b. body returned must accomplish ServiceSecurity data structure.
c. Location Header must contain the new resource URL {apiRoot}/capif-

security/v1/trustedInvokers/{apiInvokerId}

Test Case 2: Creates a Security Context for an API Invoker with provider role

Test ID capif_api_security-2

Description This test case will check that a Provider cannot create a Security context with valid apiInvokerId.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)803GPP TR 23.946 version 18.1.0 Release 18

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Execution
Steps

4. Onboard Invoker at CCF.
5. Onboard Provider at CCF
6. Create Security Context using Provider Certificate

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use AEF Certificate

Expected
Result

1. Create security context using provider certificate:
a. 401 Unauthorized response.
b. body returned must accomplish ProblemDetails data structure, with:

• status 401
• title with message "Unauthorized"
• detail with message "Role not authorized for this API route".
• cause with message "User role must be invoker".

2. No context stored at Database

Test Case 3: Creates a Security Context for an API Invoker with provider role
and invalid apiInvokerId

Test ID capif_api_security-3

Description This test case will check that a Provider cannot create a Security context with invalid
apiInvokerID.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Execution
Steps

1. Onboard Invoker at CCF.
2. Onboard Provider at CCF
3. Create Security Context using Provider Certificate and not valid apiInvokerId

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{API
_INVOKER_NOT_VALID}

b. Use AEF Certificate
Expected
Result

3. Create security context using provider certificate:
a. 401 Unauthorized response.
b. body returned must accomplish ProblemDetails data structure, with:

• status 401
• title with message "Unauthorized"
• detail with message "Role not authorized for this API route".
• cause with message "User role must be invoker".

4. No context stored at Database

Test Case 4: Creates a Security Context for an API Invoker with Invoker role
and invalid apiInvokerId

Test ID capif_api_security-4

Description This test case will check that an Invoker cannot create a Security context with valid apiInvokerId.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)813GPP TR 23.946 version 18.1.0 Release 18

Execution
Steps

1. Onboard Invoker at CCF.
2. Create Security Context using invoker Certificate and not valid apiInvokerId

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{API
_INVOKER_NOT_VALID}

b. Use Invoker Certificate
Expected
Result

1. Create security context using Invoker certificate:
a. 404 Not Found response.
b. body returned must accomplish ProblemDetails data structure, with:

• status 404
• title with message "Not Found"
• detail with message "Invoker not found".
• cause with message "API Invoker not exists or invalid ID".

2. No context stored at Database

Test Case 5: retrieve the Security Context of an API Invoker

Test ID capif_api_security-5

Description This test case will check that a provider can retrieve the Security context of an API Invoker

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Invoker at CCF.
2. Onboard Provider at CCF.
3. Create Security Context using invoker Certificate
4. Retrieve Security Context by Provider

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

3. Retrieve Security Context of Invoker by Provider:
a. Send GET https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using AEF Certificate

Expected
Result

3. Retrieve security context:
a. 200 OK response.
b. body returned must accomplish ServiceSecurity data structure.

Test Case 6: retrieve the Security Context of an API Invoker with invalid
apiInvokerId

Test ID capif_api_security-6

Description This test case will check that a provider can retrieve the Security context of an API Invoker

Pre-
conditions

The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Invoker at CCF.
2. Onboard Provider at CCF.
3. Create Security Context using invoker Certificate
4. Retrieve Security Context by Provider of invalid invoker

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)823GPP TR 23.946 version 18.1.0 Release 18

Informatio
n of Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

3. Retrieve Security Context of Invoker by Provider:
a. Send GET https://{CAPIF_HOSTNAME}/trustedInvokers/{API_INVOKER_NOT_VAL

ID}
b. Using AEF Certificate

Expected
Result

1. Retrieve security context:
a. 404 Not Found response.
b. body returned must accomplish ProblemDetails data structure, with:

• status 404
• title with message "Not Found"
• detail with message "Invoker not found".
• cause with message "API Invoker not exists or invalid ID".

Test Case 7: Retrieve the Security Context of an API Invoker with invalid
apfId

Test ID capif_api_security-7

Description This test case will check that a provider cannot retrieve the Security context of an API Invoker
without valid apfId

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Invoker at CCF.
2. Onboard Provider at CCF.
3. Create Security Context using invoker Certificate
4. Retrieve Security Context by Provider

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

3. Retrieve Security Context of Invoker by Provider:
a. Send GET https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using Invoker Certificate

Expected
Result

1. Retrieve security context:
a. 401 Unauthorized response.
b. body returned must accomplish ProblemDetails data structure, with:

• status 401
• title with message "Unauthorized"
• detail with message "Role not authorized for this API route".
• cause with message "User role must be aef".

Test Case 8: Delete the Security Context of an API Invoker

Test ID capif_api_security-8

Description This test case will check that a provider can delete a Security context

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)833GPP TR 23.946 version 18.1.0 Release 18

Execution
Steps

1. Onboard Invoker at CCF.
2. Onboard Provider at CCF.
3. Create Security Context using invoker Certificate
4. Delete Security Context by Provider

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

3. Delete Security Context of Invoker by Provider:
a. Send DELETE https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use AEF Certificate

4. Retrieve Security Context of Invoker by Provider:
a. Send GET https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using AEF Certificate

Expected
Result

1. Delete Security Context:
a. 204 No Content response

2. Retrieve security context:
a. 404 Not Found response.
b. body returned must accomplish ProblemDetails data structure, with:

• status 404
• title with message "Not Found"
• detail with message "Security context not found".
• cause with message "API Invoker not exists or invalid ID".

Test Case 9: Delete the Security Context of an API Invoker with Invoker entity
role

Test ID capif_api_security-9

Description This test case will check that an Invoker cannot delete a Security context

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Invoker at CCF.
2. Onboard Provider at CCF.
3. Create Security Context using invoker Certificate
4. Delete Security Context by Invoker

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

3. Delete Security Context of Invoker by invoker:
a. Send DELETE https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

Expected
Result

1. Delete Security Contex by invokert:
a. 401 Unauthorized response.
b. body returned must accomplish ProblemDetails data structure, with:

• status 401
• title with message "Unauthorized"
• detail with message "Role not authorized for this API route".
• cause with message "User role must be aef".

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)843GPP TR 23.946 version 18.1.0 Release 18

Test Case 10: Delete the Security Context of an API Invoker with Invoker
entity role and invalid apiInvokerId

Test ID capif_api_security-10

Descriptio
n

This test case will check that an Invoker cannot delete a Security context with invalid apiInvokerId.

Pre-
conditions

The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Invoker at CCF.
2. Onboard Provider at CCF.
3. Create Security Context using invoker Certificate
4. Delete Security Context by Invoker with invalid apiInvokerId

Informatio
n of Test

4. Onboard Invoker and provider at CCF.
5. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

6. Delete Security Context of Invoker by invoker:
a. Send DELETE https://{CAPIF_HOSTNAME}/trustedInvokers/{API_INVOKER_NOT_

VALID}
b. Use Invoker Certificate

Expected
Result

2. Delete Security Contex by invokert:
a. 401 Unauthorized response.
b. body returned must accomplish ProblemDetails data structure, with:

• status 401
• title with message "Unauthorized"
• detail with message "Role not authorized for this API route".
• cause with message "User role must be aef".

Test Case 11: Delete the Security Context of an API Invoker with invalid
apiInvokerId

Test ID capif_api_security-11

Descriptio
n

This test case will check that an Provider cannot delete a Security context of invalid apiInvokerId

Pre-
conditions

The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Invoker at CCF.
2. Onboard Provider at CCF.
3. Create Security Context using invoker Certificate
4. Delete Security Context by Provider with invalid apiInvokerId

Informatio
n of Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

3. Delete Security Context of Invoker by invoker:
a. Send DELETE https://{CAPIF_HOSTNAME}/trustedInvokers/{NOT_VALID_API_INV

OKER_ID}
b. Use AEF Certificate

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)853GPP TR 23.946 version 18.1.0 Release 18

Expected
Result

1. Delete Security Contex by invokert:
a. 404 Not Found response.
b. body returned must accomplish ProblemDetails data structure, with:

• status 404
• title with message "Not Found"
• detail with message "Invoker not found".
• cause with message "API Invoker not exists or invalid ID".

Test Case 12: Update the Security Context of an API Invoker

Test ID capif_api_security-12

Description This test case will check that an API Invoker can update a Security context

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Invoker at CCF.
2. Onboard Provider at CCF.
3. Create Security Context using invoker Certificate
4. Update Security context by invoker
5. Retrieve Security Context By Provider

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

3. Update Security Context of Invoker:
a. Send POST https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}/update
b. body service security body but with notification destination modified

to http://robot.testing2
c. Using Invoker Certificate.

4. Retrieve Security Context of Invoker by Provider:
a. Send GET https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using AEF Certificate.

Expected
Result

1. Update Security Context by invoker:
a. 200 OK response.
b. body returned must accomplish ServiceSecurity data structure.

2. Retrieve security context:
a. 200 OK response.
b. body returned must accomplish ServiceSecurity data structure.

• Check is this returned object match with modified one.

Test Case 13: Update the Security Context of an API Invoker with provider
entity role

Test ID capif_api_security-13

Description This test case will check that a provider cannot update a Security context

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Invoker at CCF.
2. Onboard Provider at CCF.
3. Create Security Context using invoker Certificate

https://ocf.etsi.org/documentation/develop/testing/testplan/api_security_service/service_security.json
http://robot.testing2/

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)863GPP TR 23.946 version 18.1.0 Release 18

4. Update Security context as provider

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

3. Update Security Context of Invoker:
a. Send POST https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}/update
b. body service security body but with notification destination modified

to http://robot.testing2
c. Using AEF Certificate.

Expected
Result

1. Update Security Context by provider:
a. 401 Unauthorized response.
b. body returned must accomplish ProblemDetails data structure, with:

• status 401
• title with message "Unauthorized"
• detail with message "Role not authorized for this API route".
• cause with message "User role must be aef".

Test Case 14: Update the Security Context of an API Invoker with provider
entity role and invalid apiInvokerId

Test ID capif_api_security-14

Description This test case will check that a provider cannot update a Security context of invalid apiInvokerId

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

5. Onboard Invoker at CCF.
6. Onboard Provider at CCF.
7. Create Security Context using invoker Certificate
8. Update Security context as provider

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

3. Update Security Context of Invoker:
a. Send POST https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}/update
b. body service security body but with notification destination modified

to http://robot.testing2
c. Using AEF Certificate.

Expected
Result

1. Update Security Context by provider:
a. 401 Unauthorized response.
b. body returned must accomplish ProblemDetails data structure, with:

• status 401
• title with message "Unauthorized"
• detail with message "Role not authorized for this API route".
• cause with message "User role must be aef".

Test Case 15: Update the Security Context of an API Invoker with invalid
apiInvokerId

Test ID capif_api_security-15

Description This test case will check that an API Invoker cannot update a Security context not valid apiInvokerId

https://ocf.etsi.org/documentation/develop/testing/testplan/api_security_service/service_security.json
http://robot.testing2/
https://ocf.etsi.org/documentation/develop/testing/testplan/api_security_service/service_security.json
http://robot.testing2/

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)873GPP TR 23.946 version 18.1.0 Release 18

Pre-
conditions

The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Invoker at CCF.
2. Onboard Provider at CCF.
3. Create Security Context using invoker Certificate
4. Update Security context as invoker

Informatio
n of Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{API_INVOKER_NOT_VAL
ID}

b. Use Invoker Certificate
3. Update Security Context of Invoker:

a. Send POST https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}/update
b. body service security body but with notification destination modified

to http://robot.testing2
c. Using Invoker Certificate.

Expected
Result

1. Update Security Context:
a. 404 Not Found response.
b. body returned must accomplish ProblemDetails data structure, with:

• status 404
• title with message "Not Found"
• detail with message "Invoker not found".
• cause with message "API Invoker not exists or invalid ID".

Test Case 16: Revoke the authorization of the API Invoker for APIs

Test ID capif_api_security-16

Description This test case will check that a Provider can revoke the authorization for APIs

Pre-
conditions

The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Invoker at CCF.
2. Onboard Provider at CCF.
3. Create Security Context using invoker Certificate
4. Revoke Security Context by Provider
5. Retrieve Security Context by Provider

Informatio
n of Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{API_INVOKER_NOT_VAL
ID}

b. Use Invoker Certificate
3. Revoke Authorization by Provider:

a. Send POST https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}/delete
b. Using AEF Certificate.

4. Retrieve Security Context by Provider:
a. Send GET https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using AEF Certificate.

Expected
Result

1. Revoke authorization:
a. 204 No Content response

2. Retrieve Security Context:
a. 404 Not Found response.
b. body returned must accomplish ProblemDetails data structure, with:

• status 404
• title with message "Not Found"

https://ocf.etsi.org/documentation/develop/testing/testplan/api_security_service/service_security.json
http://robot.testing2/

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)883GPP TR 23.946 version 18.1.0 Release 18

• detail with message "Security context not found".
• cause with message "API Invoker has not security context".

Test Case 17: Revoke the authorization of the API Invoker for APIs without
valid apfId

Test ID capif_api_security-17

Description This test case will check that an Invoker can't revoke the authorization for APIs

Pre-
conditions

The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Invoker at CCF.
2. Onboard Provider at CCF.
3. Create Security Context using invoker Certificate
4. Revoke Security Context by Invoker
5. Retrieve Security Context by Provider

Informatio
n of Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{API_INVOKER_NOT_VAL
ID}

b. Use Invoker Certificate
3. Revoke Authorization by invoker:

a. Send POST https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}/delete
b. Using Invoker Certificate.

4. Retrieve Security Context by Provider:
a. Send GET https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using AEF Certificate.

Expected
Result

1. Revoke authorization:
a. 401 Unauthorized response.
b. body returned must accomplish ProblemDetails data structure, with:

• status 401
• title with message "Unauthorized"
• detail with message "Role not authorized for this API route".
• cause with message "User role must be provider".

2. Retrieve Security Context:
a. 200 OK response.
b. body returned must accomplish ServiceSecurity data structure.

• Check is this returned object match with created one.

Test Case 18: Revoke the authorization of the API Invoker for APIs with
invalid apiInvokerId

Test ID capif_api_security-18

Descriptio
n

This test case will check that an API Exposure Function cannot revoke the authorization for APIs for
invalid apiInvokerId

Pre-
conditions

The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Invoker at CCF.
2. Onboard Provider at CCF.
3. Create Security Context using invoker Certificate

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)893GPP TR 23.946 version 18.1.0 Release 18

4. Revoke Security Context by Provider wit invalid apiInvokerId
5. Retrieve Security Context by Provider

Informatio
n of Test

1. Onboard Invoker and provider at CCF.
2. Create Security Context for this Invoker:

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{API_INVOKER_NOT_VALI
D}

b. Use Invoker Certificate
3. Revoke Authorization by provider:

a. Send POST https://{CAPIF_HOSTNAME}/trustedInvokers/{API_INVOKER_NOT_VA
LID}/delete

b. Using Invoker Certificate.
4. Retrieve Security Context by Provider:

a. Send GET https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using AEF Certificate.

Expected
Result

1. Revoke authorization:
a. 404 Not Found response.
b. body returned must accomplish ProblemDetails data structure, with:

• status 404
• title with message "Not Found"
• detail with message "Invoker not found".
• cause with message "API Invoker not exists or invalid ID".

2. Retrieve Security Context:
a. 200 OK response.
b. body returned must accomplish ServiceSecurity data structure.

• Check is this returned object match with created one.

Test Case 19: Retrieve access token

Test ID capif_api_security-19

Description This test case will check that an API Invoker can retrieve a security access token OAuth 2.0.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Provider and publish Service API service_1 at CCF.
2. Onboard Invoker at CCF.
3. Discover service APIs by Invoker
4. Create Security Context using invoker Certificate
5. Request Access token

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body with apiName service_1
c. Use APF Certificate

3. Request Discover Published APIs not filtered:
a. Send GET to ccf_discover_url https://{CAPIF_HOSTNAME}/service-

apis/v1/allServiceAPIs?api-invoker-id={apiInvokerId}
b. Param api-invoker-id is mandatory
c. Using Invoker Certificate

4. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using Invoker Certificate.
c. Create Security Information Body with one securityInfo for each aef present at each

serviceAPIDescription present at Discover.
5. Request Access Token by invoker:

a. Sent POST https://{CAPIF_HOSTNAME}/securities/{securityId}/token:

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)903GPP TR 23.946 version 18.1.0 Release 18

b. body access token req body and example example
c. securityId is apiInvokerId.
d. grant_type=client_credentials.
e. Create Scope properly for request: 3gpp#{aef_id}:{api_name}
f. Using Invoker Certificate.

Expected
Result

1. Response to request access token:
a. 200 OK
b. body must follow AccessTokenRsp with:

• access_token present
• token_type=Bearer

Test Case 20: Retrieve access token by provider

Test ID capif_api_security-20

Description This test case will check that an API Provider cannot retrieve a security access token OAuth 2.0.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Provider and publish Service API service_1 at CCF.
2. Onboard Invoker at CCF.
3. Discover service APIs by Invoker
4. Create Security Context using invoker Certificate
5. Request Access token as Provider

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body with apiName service_1
c. Use APF Certificate

3. Request Discover Published APIs not filtered:
a. Send GET to ccf_discover_url https://{CAPIF_HOSTNAME}/service-

apis/v1/allServiceAPIs?api-invoker-id={apiInvokerId}
b. Param api-invoker-id is mandatory
c. Using Invoker Certificate

4. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using Invoker Certificate.
c. Create Security Information Body with one securityInfo for each aef present at each

serviceAPIDescription present at Discover.
5. Request Access Token by invoker:

a. Sent POST https://{CAPIF_HOSTNAME}/securities/{securityId}/token:
b. body access token req body
c. securityId is apiInvokerId.
d. grant_type=client_credentials.
e. Create Scope properly for request: 3gpp#{aef_id}:{api_name}
f. Using AEF Certificate.

Expected
Result

1. Response to request access token:
a. 401 Unauthorized response.
b. body returned must accomplish AccessTokenErr data structure, with:

• error unauthorized_client
• error_description=Role not authorized for this API route

https://ocf.etsi.org/documentation/develop/testing/testplan/api_security_service/access_token_req.json
https://ocf.etsi.org/documentation/develop/testing/testplan/api_security_service/access_token_req.json
https://ocf.etsi.org/documentation/develop/testing/testplan/api_security_service/access_token_req.json

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)913GPP TR 23.946 version 18.1.0 Release 18

Test Case 21: Retrieve access token by provider with invalid apiInvokerId

Test ID capif_api_security-21

Description This test case will check that an API Exposure Function cannot retrieve a security access token
without valid apiInvokerId

Pre-
conditions

The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Provider and publish Service API service_1 at CCF.
2. Onboard Invoker at CCF.
3. Discover service APIs by Invoker
4. Create Security Context using invoker Certificate
5. Request Access token as Provider with invalid apiInvokerId

Informatio
n of Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body with apiName service_1
c. Use APF Certificate

3. Request Discover Published APIs not filtered:
a. Send GET to ccf_discover_url https://{CAPIF_HOSTNAME}/service-

apis/v1/allServiceAPIs?api-invoker-id={apiInvokerId}
b. Param api-invoker-id is mandatory
c. Using Invoker Certificate

4. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using Invoker Certificate.
c. Create Security Information Body with one securityInfo for each aef present at each

serviceAPIDescription present at Discover.
5. Request Access Token by invoker:

a. Sent
POST https://{CAPIF_HOSTNAME}/securities/{API_INVOKER_ID_NOT_VALID}/to
ken:

b. body access token req body
c. securityId is apiInvokerId.
d. grant_type=client_credentials.
e. Create Scope properly for request: 3gpp#{aef_id}:{api_name}
f. Using AEF Certificate.

Expected
Result

1. Response to request access token:
a. 401 Unauthorized response.
b. body returned must accomplish AccessTokenErr data structure, with:

• error unauthorized_client
• error_description=Role not authorized for this API route

Test Case 22: Retrieve access token with invalid apiInvokerId

Test ID capif_api_security-22

Description This test case will check that an API Invoker can't retrieve a security access token without valid
apiInvokerId

Pre-
conditions

The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

https://ocf.etsi.org/documentation/develop/testing/testplan/api_security_service/access_token_req.json

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)923GPP TR 23.946 version 18.1.0 Release 18

Execution
Steps

1. Onboard Provider and publish Service API service_1 at CCF.
2. Onboard Invoker at CCF.
3. Discover service APIs by Invoker
4. Create Security Context using invoker Certificate
5. Request Access token as invoker with invalid apiInvokerId

Informatio
n of Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body with apiName service_1
c. Use APF Certificate

3. Request Discover Published APIs not filtered:
a. Send GET to ccf_discover_url https://{CAPIF_HOSTNAME}/service-

apis/v1/allServiceAPIs?api-invoker-id={apiInvokerId}
b. Param api-invoker-id is mandatory
c. Using Invoker Certificate

4. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using Invoker Certificate.
c. Create Security Information Body with one securityInfo for each aef present at each

serviceAPIDescription present at Discover.
5. Request Access Token by invoker:

a. Sent
POST https://{CAPIF_HOSTNAME}/securities/{API_INVOKER_ID_NOT_VALID}/to
ken:

b. body access token req body
c. securityId is apiInvokerId.
d. grant_type=client_credentials.
e. Create Scope properly for request: 3gpp#{aef_id}:{api_name}
f. Using Invoker Certificate.

Expected
Result

1. Response to request access token:
a. 404 Not Found response.
b. body returned must accomplish ProblemDetails29571 data structure, with:

• status 404
• title Not Found
• detail Security context not found
• cause API Invoker has no security context

Test Case 23: Retrieve access token with invalid client_id

Test ID capif_api_security-23

Description This test case will check that an API Exposure Function cannot retrieve a security access token
without valid client_id at body

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Provider and publish Service API service_1 at CCF.
2. Onboard Invoker at CCF.
3. Discover service APIs by Invoker
4. Create Security Context using invoker Certificate
5. Request Access token as invoker

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body with apiName service_1

https://ocf.etsi.org/documentation/develop/testing/testplan/api_security_service/access_token_req.json

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)933GPP TR 23.946 version 18.1.0 Release 18

c. Use APF Certificate
3. Request Discover Published APIs not filtered:

a. Send GET to ccf_discover_url https://{CAPIF_HOSTNAME}/service-
apis/v1/allServiceAPIs?api-invoker-id={apiInvokerId}

b. Param api-invoker-id is mandatory
c. Using Invoker Certificate

4. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using Invoker Certificate.
c. Create Security Information Body with one securityInfo for each aef present at each

serviceAPIDescription present at Discover.
5. Request Access Token by invoker:

a. Sent POST https://{CAPIF_HOSTNAME}/securities/{apiInvokerId}/token:
b. body access token req body
c. securityId is apiInvokerId.
d. grant_type=client_credentials.
e. Client_id is not valid
f. Create Scope properly for request: 3gpp#{aef_id}:{api_name}
g. Using Invoker Certificate.

Expected
Result

1. Response to request access token:
a. 400 Bad Request response.
b. body returned must accomplish AccessTokenErr data structure, with:

• error invalid_client
• error_description=Client Id not found

Test Case 24: Retrieve access token with unsupported grant_type

Test ID capif_api_security-24

Description This test case will check that an API Exposure Function cannot retrieve a security access token
with unsupported grant_type

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Provider and publish Service API service_1 at CCF.
2. Onboard Invoker at CCF.
3. Discover service APIs by Invoker
4. Create Security Context using invoker Certificate
5. Request Access token as invoker

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body with apiName service_1
c. Use APF Certificate

3. Request Discover Published APIs not filtered:
a. Send GET to ccf_discover_url https://{CAPIF_HOSTNAME}/service-

apis/v1/allServiceAPIs?api-invoker-id={apiInvokerId}
b. Param api-invoker-id is mandatory
c. Using Invoker Certificate

4. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using Invoker Certificate.
c. Create Security Information Body with one securityInfo for each aef present at each

serviceAPIDescription present at Discover.
5. Request Access Token by invoker:

a. Sent POST https://{CAPIF_HOSTNAME}/securities/{apiInvokerId}/token:

https://ocf.etsi.org/documentation/develop/testing/testplan/api_security_service/access_token_req.json

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)943GPP TR 23.946 version 18.1.0 Release 18

b. body access token req body
c. securityId is apiInvokerId.
d. grant_type=not_valid.
e. Create Scope properly for request: 3gpp#{aef_id}:{api_name}
f. Using Invoker Certificate.

Expected
Result

1. Response to request access token:
a. 400 Bad Request response.
b. body returned must accomplish AccessTokenErr data structure, with:

• error unsupported_grant_type
• error_description=Invalid value for grant_type \(${grant_type}\), must be

one of \['client_credentials'\] - 'grant_type'

Test Case 25: Retrieve access token with invalid scope

Test ID capif_api_security-25

Description This test case will check that an API Exposure Function cannot retrieve a security access token
with complete invalid scope

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Provider and publish Service API service_1 at CCF.
2. Onboard Invoker at CCF.
3. Discover service APIs by Invoker
4. Create Security Context using invoker Certificate
5. Request Access token as invoker

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body with apiName service_1
c. Use APF Certificate

3. Request Discover Published APIs not filtered:
a. Send GET to ccf_discover_url https://{CAPIF_HOSTNAME}/service-

apis/v1/allServiceAPIs?api-invoker-id={apiInvokerId}
b. Param api-invoker-id is mandatory
c. Using Invoker Certificate

4. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using Invoker Certificate.
c. Create Security Information Body with one securityInfo for each aef present at each

serviceAPIDescription present at Discover.
5. Request Access Token by invoker:

a. Sent POST https://{CAPIF_HOSTNAME}/securities/{apiInvokerId}/token:
b. body access token req body
c. securityId is apiInvokerId.
d. grant_type=client_credentials.
e. Create Scope properly for request: not-valid-scope
f. Using Invoker Certificate.

Expected
Result

1. Response to request access token:
a. 400 Bad Request response.
b. body returned must accomplish AccessTokenErr data structure, with:

• error invalid scope
• error_description=The first characters must be ‘3gpp’

https://ocf.etsi.org/documentation/develop/testing/testplan/api_security_service/access_token_req.json
https://ocf.etsi.org/documentation/develop/testing/testplan/api_security_service/access_token_req.json

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)953GPP TR 23.946 version 18.1.0 Release 18

Test Case 26: Retrieve access token with invalid aefId at scope

Test ID capif_api_security-26

Description This test case will check that an API Exposure Function cannot retrieve a security access token
with invalid aefId at scope

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Provider and publish Service API service_1 at CCF.
2. Onboard Invoker at CCF.
3. Discover service APIs by Invoker
4. Create Security Context using invoker Certificate
5. Request Access token as invoker

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body with apiName service_1
c. Use APF Certificate

3. Request Discover Published APIs not filtered:
a. Send GET to ccf_discover_url https://{CAPIF_HOSTNAME}/service-

apis/v1/allServiceAPIs?api-invoker-id={apiInvokerId}
b. Param api-invoker-id is mandatory
c. Using Invoker Certificate

4. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using Invoker Certificate.
c. Create Security Information Body with one securityInfo for each aef present at each

serviceAPIDescription present at Discover.
5. Request Access Token by invoker:

a. Sent POST https://{CAPIF_HOSTNAME}/securities/{apiInvokerId}/token:
b. body access token req body
c. securityId is apiInvokerId.
d. grant_type=client_credentials.
e. Create Scope properly for request: 3gpp#1234:*service_1
f. Using Invoker Certificate.

Expected
Result

1. Response to request access token:
a. 400 Bad Request response.
b. body returned must accomplish AccessTokenErr data structure, with:

• error invalid scope
• error_description=One of aef_id does not belong of your security context

Test Case 27: Retrieve access token with invalid apiName at scope

Test ID capif_api_security-27

Description This test case will check that an API Exposure Function cannot retrieve a security access token
with invalid apiName at scope

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

API Invoker has created a valid Security Context

Execution
Steps

1. Onboard Provider and publish Service API service_1 at CCF.
2. Onboard Invoker at CCF.
3. Discover service APIs by Invoker

https://ocf.etsi.org/documentation/develop/testing/testplan/api_security_service/access_token_req.json

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)963GPP TR 23.946 version 18.1.0 Release 18

4. Create Security Context using invoker Certificate
5. Request Access token as invoker

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body with apiName service_1
c. Use APF Certificate

3. Request Discover Published APIs not filtered:
a. Send GET to ccf_discover_url https://{CAPIF_HOSTNAME}/service-

apis/v1/allServiceAPIs?api-invoker-id={apiInvokerId}
b. Param api-invoker-id is mandatory
c. Using Invoker Certificate

4. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Using Invoker Certificate.
c. Create Security Information Body with one securityInfo for each aef present at each

serviceAPIDescription present at Discover.
5. Request Access Token by invoker:

a. Sent POST https://{CAPIF_HOSTNAME}/securities/{apiInvokerId}/token:
b. body access token req body
c. securityId is apiInvokerId.
d. grant_type=client_credentials.
e. Create Scope properly for request: 3gpp#{aef_id}:not-valid
f. Using Invoker Certificate.

Expected
Result

1. Response to request access token:
a. 400 Bad Request response.
b. body returned must accomplish AccessTokenErr data structure, with:

• error invalid scope
• error_description=One of the api names does not exist or is not associated with

the aef id provided

D.7 Test Plan for CAPIF API Access Control Policy Service
This section list test cases for the CAPIF_Access_Control_Policy_API.

Test Case 1: Retrieve ACL

Test ID capif_api_acl -1

Description This test case will check that an API Provider can retrieve ACL from CAPIF

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Security context created for Service API published

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API with name service_1
3. Create Security Context
4. Provider Get ACL information

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

https://ocf.etsi.org/documentation/develop/testing/testplan/api_security_service/access_token_req.json

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)973GPP TR 23.946 version 18.1.0 Release 18

3. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

4. Provider Retrieve ACL
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId}?aef-id=${aef_id}
b. Use serviceApiId and aefId
c. Use AEF Certificate

Expected
Result

1. Response to ACL Service must accomplish:
a. 200 OK Response.
b. body returned must accomplish AccessControlPolicyList data structure.
c. apiInvokerPolicies must:

• contain only one object.
• apiInvokerId must match apiInvokerId registered previously.

Test Case 2: Retrieve ACL with 2 Service APIs published

Test ID capif_api_acl-2

Description This test case will check that an API Provider can retrieve ACL from CAPIF for 2 different
serviceApis published.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Services API published in CAPIF

Security context created for Service API published

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API with name service_1 and service_2
3. Create Security Context
4. Provider Get ACL information for service_1
5. Provider Get ACL information for service_2

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Publish Service API at CCF:
a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-

apis/v1/{apfId}/service-apis
b. body [service api description] with apiName service_2
c. Use APF Certificate

4. Create Security Context for both published APIs
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

5. Provider Retrieve ACL for serviceApiId1:
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId1}?aef-id=${aef_id}
b. Use serviceApiId and aefId
c. Use AEF Certificate

6. Provider Retrieve ACL for serviceApiId2:
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId2}?aef-id=${aef_id}
b. Use serviceApiId and aefId
c. Use AEF Certificate

Expected
Result

1. Response to ACL Service for service_1 must accomplish:
a. 200 OK Response.
b. body returned must accomplish AccessControlPolicyList data structure.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)983GPP TR 23.946 version 18.1.0 Release 18

c. apiInvokerPolicies must:
• contain only one object.
• apiInvokerId must match apiInvokerId1 registered previously.

2. Response to ACL Service for service_2 must accomplish:
a. 200 OK Response.
b. body returned must accomplish AccessControlPolicyList data structure.
c. apiInvokerPolicies must:

• contain only one object.
• apiInvokerId must match apiInvokerId2 registered previously.

Test Case 3: Retrieve ACL with security context created by two different
Invokers

Test ID capif_api_acl-3

Description This test case will check that an API Provider can retrieve ACL from CAPIF containing 2
objects.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service API published in CAPIF

Security context created by two API Invokers for Service API published

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API with name service_1 and service_2
3. Create Security Context
4. Provider Get ACL information for service_1
5. Provider Get ACL information for service_2

Information of
Test

1. Onboard two Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Create Security Context for each invoker:
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

4. Provider Retrieve ACL for serviceApiId:
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId1}?aef-id=${aef_id}
b. Use serviceApiId and aefId
c. Use AEF Certificate

Expected
Result

1. Response to ACL Service must accomplish:
a. 200 OK Response.
b. body returned must accomplish AccessControlPolicyList data structure.
c. apiInvokerPolicies must:

• contain two objects.
• One object must match with apiInvokerId1 and the other one with apiInvokerId2.

Test Case 4: Retrieve ACL filtered by api-invoker-id

Test ID capif_api_acl-4

Description This test case will check that an API Provider can retrieve ACL filtering by apiInvokerId from
CAPIF containing 1 objects.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)993GPP TR 23.946 version 18.1.0 Release 18

Pre-
conditions

The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service API published in CAPIF

Security context created by two API Invokers for Service API published

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API with name service_1 and service_2
3. Create Security Context
4. Provider Get ACL information for service_1 indicating first api-invoker-id
5. Provider Get ACL information for service_2 indicating second api-invoker-id

Information
of Test

1. Onboard two Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Publish another Service API at CCF:
a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-

apis/v1/{apfId}/service-apis
b. body [service api description] with apiName service_2
c. Use APF Certificate

4. Create Security Context for each invoker for both published APIs:
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

5. Provider Retrieve ACL for serviceApiId1:
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId1}?aef-id=${aef_id}&api-invoker-
id={apiInvokerId1}

b. Use serviceApiId, aefId and apiInvokerId1
c. Use AEF Certificate

6. Provider Retrieve ACL for serviceApiId2:
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId1}?aef-id=${aef_id}&api-invoker-
id={apiInvokerId2}

b. Use serviceApiId, aefId and apiInvokerId2
c. Use AEF Certificate

Expected
Result

1. Response to ACL Service must accomplish:
a. 200 OK Response.
b. body returned must accomplish AccessControlPolicyList data structure.
c. apiInvokerPolicies must:

• contain two objects.
• One object must match with apiInvokerId1

2. Response to ACL Service must accomplish:
a. 200 OK Response.
b. body returned must accomplish AccessControlPolicyList data structure.
c. apiInvokerPolicies must:

• contain two objects.
• One object must match with apiInvokerId2

Test Case 5: Retrieve ACL filtered by supported-features

Test ID capif_api_acl-5

Description This test case will check that an API Provider can retrieve ACL filtering by supportedFeatures
from CAPIF containing 1 objects.

Pre-
conditions

The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1003GPP TR 23.946 version 18.1.0 Release 18

Service API published in CAPIF

Security context created by two API Invokers for Service API published

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API with name service_1
3. Create Security Context
4. Provider Get ACL information indicating first supported-features
5. Provider Get ACL information indicating second supported-features

Information
of Test

1. Onboard two Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Create Security Context for each invoker for both published APIs:
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

4. Provider Retrieve ACL for serviceApiId1:
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId1}?aef-id=${aef_id}&supported-
features={apiInvokerId1}

b. Use serviceApiId, aefId and apiInvokerId1
c. Use AEF Certificate

5. Provider Retrieve ACL for serviceApiId2:
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId1}?aef-id=${aef_id}& supported-
features={apiInvokerId2}

b. Use serviceApiId, aefId and apiInvokerId2
c. Use AEF Certificate

Expected
Result

1. Response to ACL Service must accomplish:
a. 200 OK Response.
b. body returned must accomplish AccessControlPolicyList data structure.
c. apiInvokerPolicies must:

• contain two objects.
• One object must match with supportedFeatures1

2. Response to ACL Service must accomplish:
a. 200 OK Response.
b. body returned must accomplish AccessControlPolicyList data structure.
c. apiInvokerPolicies must:

• contain two objects.
• One object must match with supportedfeatures2

Test Case 6: Retrieve ACL with aef-id not valid

Test ID capif_api_acl -6

Description This test case will check that an API Provider can't retrieve ACL from CAPIF if aef-id is not
valid

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Security context created for Service API published

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API with name service_1
3. Create Security Context
4. Provider Get ACL information

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1013GPP TR 23.946 version 18.1.0 Release 18

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

4. Provider Retrieve ACL
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId}?aef-
id=${AEF_ID_NOT_VALID}

b. Use serviceApiId and AEF_ID_NOT_VALID
c. Use AEF Certificate

Expected
Result

1. Response to ACL Service must accomplish:
a. 404 Not Found Response.
b. body returned must accomplish Problem Details data structure.
c. apiInvokerPolicies must:

• status 404
• title with message "Not Found"
• detail with message "No ACLs found for the requested service: {service_api_id},

aef_id: {aef_id}, invoker: {api_invoker_id} and supportedFeatures:
{supported_features}".

• cause with message "Wrong id".

Test Case 7: Retrieve ACL with service-id not valid

Test ID capif_api_acl -7

Description This test case will check that an API Provider can't retrieve ACL from CAPIF if service-api-id is
not valid

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Security context created for Service API published

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API with name service_1
3. Create Security Context
4. Provider Get ACL information

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

4. Provider Retrieve ACL
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${NOT_VALID_SERVICE_API_ID}?aef-
id=${aefId}

b. Use NOT_VALID_SERVICE_API_ID and aef_id
c. Use AEF Certificate

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1023GPP TR 23.946 version 18.1.0 Release 18

Expected
Result

1. Response to ACL Service must accomplish:
a. 404 Not Found Response.
b. body returned must accomplish Problem Details data structure.
c. apiInvokerPolicies must:

• status 404
• title with message "Not Found"
• detail with message "No ACLs found for the requested service: {service_api_id},

aef_id: {aef_id}, invoker: {api_invoker_id} and supportedFeatures:
{supported_features}".

• cause with message "Wrong id".

Test Case 8: Retrieve ACL with service-id and aef-id not valid

Test ID capif_api_acl -8

Description This test case will check that an API Provider can't retrieve ACL from CAPIF if service-api-id
and aef-id are not valid

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Security context created for Service API published

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API with name service_1
3. Create Security Context
4. Provider Get ACL information

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

4. Provider Retrieve ACL
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${NOT_VALID_SERVICE_API_ID}?aef-
id=$AEF_ID_NOT_VALID}

b. Use NOT_VALID_SERVICE_API_ID and AEF_ID_NOT_VALID
c. Use AEF Certificate

Expected
Result

1. Response to ACL Service must accomplish:
a. 404 Not Found Response.
b. body returned must accomplish Problem Details data structure.
c. apiInvokerPolicies must:

• status 404
• title with message "Not Found"
• detail with message "No ACLs found for the requested service: {service_api_id},

aef_id: {aef_id}, invoker: {api_invoker_id} and supportedFeatures:
{supported_features}".

• cause with message "Wrong id".

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1033GPP TR 23.946 version 18.1.0 Release 18

Test Case 9: Retrieve ACL without Security Context created previously by
Invoker

Test ID capif_api_acl -9

Description This test case will check that an API Provider can't retrieve ACL if no invoker had requested
Security Context to CAPIF

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Security context not created for Service API published

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API with name service_1
3. Provider Get ACL information

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Provider Retrieve ACL
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId}?aef-id=${aefId}
b. Use serviceApiId and aefId
c. Use AEF Certificate

Expected
Result

1. Response to ACL Service must accomplish:
a. 404 Not Found Response.
b. body returned must accomplish Problem Details data structure.
c. apiInvokerPolicies must:

• status 404
• title with message "Not Found"
• detail with message "No ACLs found for the requested service: {service_api_id},

aef_id: {aef_id}, invoker: {api_invoker_id} and supportedFeatures:
{supported_features}".

• cause with message "Wrong id".

Test Case 10: Retrieve ACL filtered by api-invoker-id not present

Test ID capif_api_acl -10

Description This test case will check that an API Provider get not found response if filter by not valid api-
invoker-id doesn't match any registered ACL.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Security context created for Service API published

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API with name service_1
3. Create Security Context
4. Provider Get ACL information

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1043GPP TR 23.946 version 18.1.0 Release 18

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

4. Provider Retrieve ACL
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId }?aef-id=${aefId}&api-invoker-
id={NOT_VALID_API_INVOKER_ID}

b. Use serviceApiId, aefId and NOT_VALID_API_INVOKER_ID
c. Use AEF Certificate

Expected
Result

1. Response to ACL Service must accomplish:
a. 404 Not Found Response.
b. body returned must accomplish Problem Details data structure.
c. apiInvokerPolicies must:

• status 404
• title with message "Not Found"
• detail with message "No ACLs found for the requested service: {service_api_id},

aef_id: {aef_id}, invoker: {api_invoker_id} and supportedFeatures:
{supported_features}".

• cause with message "Wrong id".

Test Case 11: Retrieve ACL with APF Certificate

Test ID capif_api_acl -11

Description This test case will check that an API Provider can't retrieve ACL from CAPIF using APF
Certificate

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Security context created for Service API published

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API with name service_1
3. Create Security Context
4. Provider Get ACL information

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

4. Provider Retrieve ACL
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId}?aef-id=${aef_id}
b. Use serviceApiId and aefId
c. Use APF Certificate

Expected
Result

1. Response to ACL Service must accomplish:
a. 401 Unauthorized
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 401

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1053GPP TR 23.946 version 18.1.0 Release 18

• title with message "Unauthorized"
• detail with message "Role not authorized for this API route".
• cause with message "Certificate not authorized".

Test Case 12: Retrieve ACL with AMF Certificate

Test ID capif_api_acl -12

Description This test case will check that an API Provider can't retrieve ACL from CAPIF using AMF
Certificate

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Security context created for Service API published

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API with name service_1
3. Create Security Context
4. Provider Get ACL information

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

4. Provider Retrieve ACL
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId}?aef-id=${aef_id}
b. Use serviceApiId and aefId
c. Use AMF Certificate

Expected
Result

1. Response to ACL Service must accomplish:
a. 401 Unauthorized
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 401
• title with message "Unauthorized"
• detail with message "Role not authorized for this API route".
• cause with message "Certificate not authorized".

Test Case 13: Retrieve ACL with Invoker Certificate

Test ID capif_api_acl -13

Description This test case will check that an API Provider can't retrieve ACL from CAPIF using Invoker
Certificate

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Security context created for Service API published

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1063GPP TR 23.946 version 18.1.0 Release 18

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API with name service_1
3. Create Security Context
4. Invoker Get ACL information

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

4. Invoker Retrieve ACL
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId}?aef-id=${aef_id}
b. Use serviceApiId and aefId
c. Use Invoker Certificate

Expected
Result

1. Response to ACL Service must accomplish:
a. 401 Unauthorized
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 401
• title with message "Unauthorized"
• detail with message "Role not authorized for this API route".
• cause with message "Certificate not authorized".

Test Case 14: No ACL for invoker after being removed

Test ID capif_api_acl -14

Description This test case will check that ACLs are removed after invoker is removed.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Security context created for Service API published

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API with name service_1
3. Create Security Context
4. Provider Get ACL information
5. Remove Invoker from CAPIF
6. Provider Get ACL information

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Create Security Context for this Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

4. Provider Retrieve ACL
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId}?aef-id=${aef_id}&api-invoker-
id={api-invoker-id}

b. Use serviceApiId, aefId and api-invoker-id
c. Use AEF Certificate

5. Remove Invoker from CAPIF

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1073GPP TR 23.946 version 18.1.0 Release 18

6. Provider Retrieve ACL
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId}?aef-id=${aef_id}&api-invoker-
id={api-invoker-id}

b. Use serviceApiId, aefId and api-invoker-id
c. Use AEF Certificate

Expected
Result

1. Response to first ACL Service request must accomplish:
a. 200 OK Response.
b. body returned must accomplish AccessControlPolicyList data structure.
c. apiInvokerPolicies must:

• contain only one object.
• apiInvokerId must match with apiInvokerId registered previously

2. Response to second ACL Service request must accomplish:
a. 404 Not Found Response.
b. body returned must accomplish Problem Details data structure.
c. apiInvokerPolicies must:

• status 404
• title with message "Not Found"
• detail with message "No ACLs found for the requested service:

{NOT_VALID_SERVICE_API_ID}, aef_id: {AEF_ID_NOT_VALID},
invoker: None and supportedFeatures: None".

• cause with message "Wrong id".

D.8 Test Plan for CAPIF API Logging Service
This section list test cases for the CAPIF_Logging_API_Invocation_API.

Test Case 1: Creates a new individual CAPIF Log Entry

Test ID capif_api_logging -1

Description This test case will check that a CAPIF AEF can create log entry to Logging Service

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API
3. Create Log Entry

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Log Entry:
a. Send POST to https://{CAPIF_HOSTNAME}/api-invocation-logs/v1/{aefId}/logs
b. Body InvocationLog
c. Use AEF Certificate

Expected
Result

1. Response to Logging Service must accomplish:
a. 201 Created
b. Response Body must follow InvocationLog data structure with:

• aefId
• apiInvokerId
• logs

c. Response Header Location must be received with URI to new resource created,
following this structure: {apiRoot}/api-invocation-logs/v1/{aefId}/logs/{logId}

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1083GPP TR 23.946 version 18.1.0 Release 18

Test Case 2: Creates a new individual CAPIF Log Entry with invalid aefId

Test ID capif_api_logging -2

Description This test case will check that a CAPIF subscriber (AEF) cannot create Log Entry without valid
aefId

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API
3. Create Log Entry

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Log Entry:
a. Send POST to https://{CAPIF_HOSTNAME}/api-invocation-logs/v1/{not-valid-

aefId}/logs
b. Body InvocationLog
c. Use AEF Certificate

Expected
Result

1. Response to Logging Service must accomplish:
a. 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 404
• title with message "Not Found"
• detail with message "Exposer not exist".
• cause with message "Exposer id not found".

Test Case 3: Creates a new individual CAPIF Log Entry with invalid
serviceAPI

Test ID capif_api_logging-3

Description This test case will check that a CAPIF subscriber (AEF) cannot create Log Entry without valid
aefId

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API
3. Create Log Entry

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Log Entry:
a. Send POST to https://{CAPIF_HOSTNAME}/api-invocation-logs/v1/{aefId}/logs
b. Body InvocationLog with serviceAPI apiName apiId not valid]
c. Use AEF Certificate

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1093GPP TR 23.946 version 18.1.0 Release 18

Expected
Result

1. Response to Logging Service must accomplish:
a. 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 404
• title with message "Not Found"
• detail with message "Service not exist".
• cause with message "Service id not found".

Test Case 4: Creates a new individual CAPIF Log Entry with invalid
apiInvokerId

Test ID capif_api_logging-4

Description This test case will check that a CAPIF subscriber (AEF) cannot create Log Entry without valid
apiInvokerId

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API
3. Create Log Entry

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body serviceApiDescription with apiName service_1
c. Use APF Certificate

3. Log Entry:
a. Send POST to https://{CAPIF_HOSTNAME}/api-invocation-logs/v1/{aefId}/logs
b. Body InvocationLog with apiInvokerId not valid
c. Use AEF Certificate

Expected
Result

1. Response to Logging Service must accomplish:
a. 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 404
• title with message "Not Found"
• detail with message "Invoker not exist".
• cause with message "Invoker id not found".

Test Case 5: Creates a new individual CAPIF Log Entry with invalid aefId in
body

Test ID capif_api_logging-5

Description This test case will check that a CAPIF subscriber (AEF) cannot create Log Entry without valid
aefId in body

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API
3. Create Log Entry

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1103GPP TR 23.946 version 18.1.0 Release 18

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body serviceApiDescription with apiName service_1
c. Use APF Certificate

3. Log Entry:
a. Send POST to https://{CAPIF_HOSTNAME}/api-invocation-logs/v1/{aefId}/logs
b. Body InvocationLog with aefId not valid
c. Use AEF Certificate

Expected
Result

1. Response to Logging Service must accomplish:
a. 401 Unauthorized
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 401
• title with message "Unauthorized"
• detail with message "AEF id not matching in request and body".
• cause with message “Not identical AEF id".

D.9 Test Plan for CAPIF API Events Service
This section list test cases for the CAPIF_Events_API.

Test Case 1: Creates a New Individual CAPIF Event Subscription

Test ID capif_api_events-1

Description This test case will check that a CAPIF subscriber (Invoker or Provider) can Subscribe to Events

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker
or Provider.

Execution
Steps

1. Onboard Invoker at CCF.
2. Subscribe to Events
3. Retrieve (subscribeId) and (subscriptionId) from Location Header

Information of
Test

1. Onboard Invoker at CCF.
2. Event Subscription:

a. Send POST to https://{CAPIF_HOSTNAME}/capif-
events/v1/{subscriberId}/subscriptions

b. Use Invoker Certificate
Expected
Result

1. Onboard Invoker.
2. Response to Event Subscription must accomplish:

a. Status code 201 Created
b. The URI of the created resource shall be returned in the “Location” HTTP header,

following this structure {apiRoot}/capif-
events/{apiVersion}/{subscriberId}/subscriptions/{subscriptionId}

c. Response body must follow EvenstSubscription data structure:
3. Event subscriptions are stored in CAPIF Database

Test Case 2: Creates a New Individual CAPIF Event Subscription with invalid
subscriberId

Test ID capif_api_events-2

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1113GPP TR 23.946 version 18.1.0 Release 18

Description This test case will check that a CAPIF subscriber (Invoker or Publisher) cannot Subscribe to
Events without valid SubcriberId

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker
or Provider.

Execution
Steps

1. Onboard Invoker at CCF.
2. Subscribe to Events with an invalid subscriberId
3. Retrieve (subscribeId) and (subscriptionId) from Location Header

Information of
Test

1. Onboard Invoker at CCF.
2. Event Subscription:

a. Send POST to https://{CAPIF_HOSTNAME}/capif-
events/v1/{INVALID_SUBSCRIBER_ID}/subscriptions

b. Use Invoker Certificate
Expected
Result

1. Onboard Invoker.
2. Response to Event Subscription must accomplish:

a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 404
• Title with message “Not Found”
• Title with message “Invoker or APF or AEF or AMF Not found”
• Detail with message “Subscriber Not Found”

3. Event subscription are not stored in CAPIF Database

Test Case 3: Delete an Individual CAPIF Event Subscription

Test ID capif_api_events-3

Description This test case will check that a CAPIF subscriber (Invoker or Publisher) can Delete an Event
Subscription

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker
or Provider.

Execution
Steps

1. Onboard Invoker at CCF.
2. Subscribe to Events with an invalid subscriberId
3. Retrieve (subscribeId) and (subscriptionId) from Location Header
4. Remove Event Subscription

Information of
Test

1. Onboard Invoker at CCF.
2. Event Subscription:

a. Send POST to https://{CAPIF_HOSTNAME}/capif-
events/v1/{subscriberId}/subscriptions

b. Use Invoker Certificate
3. Remove Event Subscription:

a. Send DELETE to https://{CAPIF_HOSTNAME}/capif-
events/v1/{subscriberId}/subscriptions/{subscriptionId}

b. Use Invoker Certificate
Expected
Result

1. Onboard Invoker.
2. Response to Event Subscription must accomplish:

a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 404
• Title with message “Not Found”
• Title with message “Invoker or APF or AEF or AMF Not found”
• Detail with message “Subscriber Not Found”

3. Event subscriptions are stored in CAPIF Database
4. Remove Event Subscription:

a. 204 No Content

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1123GPP TR 23.946 version 18.1.0 Release 18

5. Event Subscription is not present in CAPIF Database

Test Case 4: Delete an Individual CAPIF Event Subscription with an Invalid
subscriberId

Test ID capif_api_events-4

Description This test case will check that a CAPIF subscriber (Invoker or Publisher) cannot Delete to Events
without valid SubcriberId

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker
or Provider.
CAPIF subscriber is subscribed to Events.

Execution
Steps

1. Onboard Invoker at CCF.
2. Subscribe to Events with an invalid subscriberId
3. Retrieve (subscribeId) and (subscriptionId) from Location Header
4. Remove Event Subscription with not valid Subscriber

Information of
Test

1. Onboard Invoker at CCF.
2. Event Subscription:

a. Send POST to https://{CAPIF_HOSTNAME}/capif-
events/v1/{subscriberId}/subscriptions

b. Use Invoker Certificate
3. Remove Event Subscription with Invalid subscriberId:

a. Send DELETE to https://{CAPIF_HOSTNAME}/capif-
events/v1/{INVALID_SUBSCRIBER_ID}/subscriptions/{subscriptionId}

b. Use Invoker Certificate
Expected
Result

1. Onboard Invoker.
2. Response to Event Subscription must accomplish:

a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 404
• Title with message “Not Found”
• Title with message “Invoker or APF or AEF or AMF Not found”
• Detail with message “Subscriber Not Found”

3. Event subscriptions are stored in CAPIF Database
4. Remove Event Subscription with invalid subscriberId:

a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 404
• Title with message “Not Found”
• Title with message “Invoker or APF or AEF or AMF Not found”
• Detail with message “Subscriber Not Found”

Test Case 5: Delete an Individual CAPIF Event Subscription with an Invalid
subscriptionId

Test ID capif_api_events-5

Description This test case will check that a CAPIF subscriber (Invoker or Publisher) cannot Delete an Event
Subscription without valid SubscriptionId

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker
or Provider.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1133GPP TR 23.946 version 18.1.0 Release 18

Execution
Steps

1. Onboard Invoker at CCF.
2. Subscribe to Events with an invalid subscriberId
3. Retrieve (subscribeId) and (subscriptionId) from Location Header
4. Remove Event Subscription with not valid subscriptionId

Information of
Test

1. Onboard Invoker at CCF.
2. Event Subscription:

a. Send POST to https://{CAPIF_HOSTNAME}/capif-
events/v1/{subscriberId}/subscriptions

b. Use Invoker Certificate
3. Remove Event Subscription with not valid subscriptionId:

a. Send DELETE to https://{CAPIF_HOSTNAME}/capif-
events/v1/{subscriberId}/subscriptions/{SUBSCRIPTION_ID_NOT_VALID}

b. Use Invoker Certificate
Expected
Result

1. Onboard Invoker.
2. Response to Event Subscription must accomplish:

a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 404
• Title with message “Not Found”
• Title with message “Invoker or APF or AEF or AMF Not found”
• Detail with message “Subscriber Not Found”

3. Event subscriptions are stored in CAPIF Database
4. Remove Event Subscription:

a. Status code 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• Status 404
• Title with message “Not Found”
• Title with message “Service API not existing”
• Detail with message “Event API subscription Id not found”

Test Case 6: Invoker receives Service API invocation Events

Test ID capif_api_events-6

Descriptio
n

This test case will check that a CAPIF Invoker subscribed to
SERVICE_API_INVOCATION_SUCCESS and SERVICE_API_INVOCATION_FAILURE, receive
the notification when AEF Send TO logging service result of invocations to their APIs.

Pre-
conditions

The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker and
Provider.
Provider had a Service API published on CAPIF
Mock Server is up and running to receive requests.
Mock Server is clean

Execution
Steps

1. Onboard Provider and publish one API at CCF
2. Onboard Invoker at CCF.
3. Discover Published APIs and extract apiIds and apiNames.
4. Subscribe SERVICE_API_INVOCATION_SUCCESS

and SERVICE_API_INVOCATION_FAILURE event filtering by aefId.
5. Retrieve (subscribeId) and (subscriptionId) from Location Header
6. Emulate Success and Failure on API invocation of provider by Invoker, using Invocation Logs

API.
Informatio
n of Test

1. Onboard Provider
2. Publish Service API at CCF:

a. Send POST to https://{CAPIF_HOSTNAME}/published-apis/v1/{apfId}/service-apis
b. Body serviceAPIDescription with apiName service_1
c. Get apiId
d. Use APF Certificate

3. Onboard Invoker at CCF.

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1143GPP TR 23.946 version 18.1.0 Release 18

4. Discover published APIs:
a. Get Api Ids And Api Names from response.

5. Event Subscription to SERVICE_API_INVOCATION_SUCCESS and
SERVICE_API_INVOCATION_FAILURE of provider previously registered:

a. Send POST to https://{CAPIF_HOSTNAME}/capif-
events/v1/{subscriberId}/subscriptions

b. Body of Event Subscription request with:
• Events:

['SERVICE_API_INVOCATION_SUCCESS','SERVICE_API_INVOCATION_
FAILURE']

• eventFilter: only receive events from provider's aefId.
c. Use Invoker Certificate

6. Create a Log Entry emulating provider receive Success and Failure api Invocation from Invoker
a. Send POST to https://{CAPIF_HOSTNAME}/api-invocation-logs/v1/{aefId}/logs
b. body log entry request body with:

• aefId from provider published.
• apiInvokerId from invoker onboarded.
• apiId of published API
• apiName of published API
• 200 and 400 results in two logs.

c. Use AEF Certificate

Expected
Result

1. Response to Event Subscription must accomplish:
a. 201 Created
b. The URI of the created resource shall be returned in the "Location" HTTP header,

following this structure: {apiRoot}/capif-
events/{apiVersion}/{subscriberId}/subscriptions/{subscriptionId}

c. Response Body must follow EventSubscription data structure.
2. Response to creation of log entry on CCF must accomplish:

a. 201 Created
b. The URI of the created resource shall be returned in the "Location" HTTP header,

following this structure: {apiRoot}/api-invocation-
logs/{apiVersion}/{aefId}/subscriptions/{logId}

3. Mock Server received messages must accomplish:
a. Two Events have been received.
b. Validate received events follow EventNotification data structure,

with invocationLog in eventDetail parameter.
• One should be SERVICE_API_INVOCATION_SUCCESS related with 200 result

at Log.
• The other one must be SERVICE_API_INVOCATION_FAILURE related

with 400 result at Log.

Test Case 7: Invoker subscribe to Service API Available and Unavailable
events

Test ID capif_api_events-7

Description This test case will check that a CAPIF Invoker subscribed to SERVICE_API_AVAILABLE and
SERVICE_API_UNAVAILABLE, receive the notification when AEF publish and remove it.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker
and Provider.
Provider had a Service API published on CAPIF
Mock Server is up and running to receive requests.
Mock Server is clean

https://ocf.etsi.org/documentation/develop/testing/testplan/api_logging_service/invocation_log.json

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1153GPP TR 23.946 version 18.1.0 Release 18

Execution
Steps

1. Onboard Provider and publish one API at CCF
2. Onboard Invoker at CCF.
3. Discover Published APIs and extract apiIds and apiNames.
4. Subscribe SERVICE_API_INVOCATION_SUCCESS

and SERVICE_API_INVOCATION_FAILURE event filtering by aefId.
5. Retrieve (subscribeId) and (subscriptionId) from Location Header
6. Provider publish new API
7. Provider remove published API

Information of
Test

1. Perform provider registration
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Store serviceApiId
d. Use APF Certificate

3. Perform invoker onboarding
4. Discover published APIs:

a. Get Api Ids And Api Names from response.
5. Event Subscription to SERVICE_API_AVAILABLE and SERVICE_API_UNAVAILABLE

of provider previously registered:
a. Send POST to https://{CAPIF_HOSTNAME}/capif-

events/v1/{subscriberId}/subscriptions
b. body event subscription request body with:

• events: ['SERVICE_API_AVAILABLE','SERVICE_API_UNAVAILABLE']
• eventFilter: only receive events from provider's aefId.

c. Use Invoker Certificate
6. Publish new Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_2
c. Store serviceApiId
d. Use APF Certificate

7. Remove published Service API at CCF:
a. Send DELETE to resource URL https://{CAPIF_HOSTNAME}/published-

apis/v1/{apfId}/service-apis/{SERVICE_API_ID}
b. Use APF Certificate

Expected
Result

1. Response to Event Subscription must accomplish:
a. 201 Created
b. The URI of the created resource shall be returned in the "Location" HTTP header,

following this structure: {apiRoot}/capif-
events/{apiVersion}/{subscriberId}/subscriptions/{subscriptionId}

c. Response Body must follow EventSubscription data structure.
2. Mock Server received messages must accomplish:

a. Two Events have been received.
b. Validate received events follow EventNotification data structure,

with invocationLog in eventDetail parameter.
• One should be SERVICE_API_AVAILABLE apiId of service_2 published

API.
• The other one must be SERVICE_API_UNAVAILABLE apiId

of service_1 published API.

Test Case 8: Invoker subscribe to Service API Update

Test ID capif_api_events-8

Description This test case will check that a CAPIF Invoker subscribed to SERVICE_API_UPDATE, receive
the notification when AEF Update some information on API Published.

https://ocf.etsi.org/documentation/develop/testing/testplan/common_operations/
https://ocf.etsi.org/documentation/develop/testing/testplan/common_operations/
https://ocf.etsi.org/documentation/develop/testing/testplan/api_events_service/event_subscription.json

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1163GPP TR 23.946 version 18.1.0 Release 18

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker
and Provider.
Provider had a Service API published on CAPIF
Mock Server is up and running to receive requests.
Mock Server is clean

Execution
Steps

1. Onboard Provider and publish one API at CCF
2. Onboard Invoker at CCF.
3. Discover Published APIs and extract apiIds and apiNames.
4. Subscribe to SERVICE_API_UPDATE event filtering by aefId.
5. Retrieve (subscribeId) and (subscriptionId) from Location Header
6. Provider update information of Service API Published.

Information of
Test

1. Perform provider registration
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Store serviceApiId
d. Use APF Certificate

3. Perform invoker onboarding
4. Discover published APIs:

a. Get Api Ids And Api Names from response.
5. Event Subscription to SERVICE_API_AVAILABLE and SERVICE_API_UNAVAILABLE

of provider previously registered:
a. Send POST to https://{CAPIF_HOSTNAME}/capif-

events/v1/{subscriberId}/subscriptions
b. body event subscription request body with:

• events: [‘SERVICE_API_UPDATE’]
• eventFilter: only receive events from provider's aefId.

c. Use Invoker Certificate
6. Update published API at CCF:

a. Send PUT to resource URL https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis/{serivceApiId}

b. body [service api description] with overrided apiName to service_1_modified**
c. Use APF Certificate

Expected
Result

1. Response to Event Subscription must accomplish:
a. 201 Created
b. The URI of the created resource shall be returned in the "Location" HTTP header,

following this structure: {apiRoot}/capif-
events/{apiVersion}/{subscriberId}/subscriptions/{subscriptionId}

c. Response Body must follow EventSubscription data structure.
2. Response to Update Published Service API:

a. 200 OK
b. Response Body must follow ServiceAPIDescription data structure with:

• apiName service_1_modified**
3. Mock Server received messages must accomplish:

a. One Events have been received.
b. Validate received events follow EventNotification data structure,

with invocationLog in eventDetail parameter.
• Event should be SERVICE_API_UPDATE with eventDetail with

modified apiName.

Test Case 9: Provider subscribe to API Invoker Events

Test ID capif_api_events-9

Description This test case will check that a CAPIF Provider subscribed to API Invoker events
(API_INVOKER_ONBOARDED, API_INVOKER_UPDATED and

https://ocf.etsi.org/documentation/develop/testing/testplan/common_operations/
https://ocf.etsi.org/documentation/develop/testing/testplan/common_operations/
https://ocf.etsi.org/documentation/develop/testing/testplan/api_events_service/event_subscription.json

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1173GPP TR 23.946 version 18.1.0 Release 18

API_INVOKER_OFFBOARDED), receive the notifications when Invoker is onboarded, updated
and removed respectively.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker
and Provider.
Provider had a Service API published on CAPIF
Mock Server is up and running to receive requests.
Mock Server is clean

Execution
Steps

1. Onboard Provider and publish one API at CCF
2. Subscribe Provider to API_INVOKER_ONBOARDED, API_INVOKER_UPDATED

and API_INVOKER_OFFBOARDED events.
3. Onboard Invoker at CCF.
4. Update Onboarding Information at CCF with a minor change on "notificationDestination"
5. Offboard Invoker

Information of
Test

1. Perform provider registration
2. Event Subscription to API_INVOKER_ONBOARDED, API_INVOKER_UPDATED and

API_INVOKER_OFFBOARDED events:
a. Send POST to https://{CAPIF_HOSTNAME}/capif-

events/v1/{subscriberId}/subscriptions
b. body event subscription request body with:

• events: ['API_INVOKER_ONBOARDED', 'API_INVOKER_UPDATED',
'API_INVOKER_OFFBOARDED']

c. Use Provider AMF Certificate
3. Perform invoker onboarding
4. Update information of previously onboarded Invoker:

a. Send PUT to https://{CAPIF_HOSTNAME}/api-invoker-
management/v1/onboardedInvokers/{onboardingId}

b. Reference Request Body is: [put invoker onboarding body]
c. "notificationDestination":

"http://host.docker.internal:8086/netapp_new_callback",
5. Offboard:

a. Send DELETE to https://{CAPIF_HOSTNAME}/api-invoker-
management/v1/onboardedInvokers/{onboardingId}

Expected
Result

1. Response to Event Subscription must accomplish:
a. 201 Created
b. The URI of the created resource shall be returned in the "Location" HTTP header,

following this structure: {apiRoot}/capif-
events/{apiVersion}/{subscriberId}/subscriptions/{subscriptionId}

c. Response Body must follow EventSubscription data structure.
2. Response to Onboard request must accomplish:

a. 201 Created
b. Response Body must follow APIInvokerEnrolmentDetails data structure with:

• apiInvokerId
• onboardingInformation->apiInvokerCertificate must contain the public key

signed.
c. Response Header Location must be received with URI to new resource created,

following this structure: {apiRoot}/api-invoker-
management/{apiVersion}/onboardedInvokers/{onboardingId}

3. Response to Update Request (PUT) with minor change must contain:
a. 200 OK response.
b. notificationDestination on response must contain the new value

4. Response to Offboard Request (DELETE) must contain:
a. 204 No Content

5. Mock Server received messages must accomplish:
a. Three Events have been received.
b. Validate received events follow EventNotification data structure,

with apiInvokerIds in eventDetail parameter.
• One Event should be API_INVOKER_ONBOARDED with eventDetail with

modified apiInvokerId.

https://ocf.etsi.org/documentation/develop/testing/testplan/common_operations/
https://ocf.etsi.org/documentation/develop/testing/testplan/api_events_service/event_subscription.json
https://ocf.etsi.org/documentation/develop/testing/testplan/common_operations/

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1183GPP TR 23.946 version 18.1.0 Release 18

• One Event should be API_INVOKER_UPDATED with eventDetail with
modified apiInvokerId.

• One Event should be API_INVOKER_OFFBOARDED with eventDetail with
modified apiInvokerId.

Test Case 10: Provider subscribe to ACL Update event

Test ID capif_api_events-10

Descriptio
n

This test case will check that a CAPIF Provider subscribed to
ACCESS_CONTROL_POLICY_UPDATE receive a notification when ACL Changes.

Pre-
conditions

The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker and
Provider.
Provider had a Service API published on CAPIF
API Invoker had a Security Context for the Service API published by Provider
Mock Server is up and running to receive requests.
Mock Server is clean

Execution
Steps

1. Onboard Provider.
2. Publish a provider API with name service_1.
3. Onboard Invoker at CCF.
4. Subscribe Provider to ACCESS_CONTROL_POLICY_UPDATE event.
5. Discover APIs filtered by aef_id
6. Create Security Context for Invoker.
7. Provider Retrieve ACL

Informati
on of Test

1. Perform provider registration
2. Perform invoker onboarding
3. Event Subscription to ACCESS_CONTROL_POLICY_UPDATE event:

a. Send POST to https://{CAPIF_HOSTNAME}/capif-
events/v1/{subscriberId}/subscriptions

b. body event subscription request body with:
• events: ['ACCESS_CONTROL_POLICY_UPDATE']
• eventFilters: apiInvokerIds array with apiInvokerId of invoker

c. Use Provider AMF Certificate
4. Discover published APIs
5. Create Security Context for Invoker

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

6. Provider Retrieve ACL
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId}?aef-id=${aef_id}
b. Use serviceApiId and aefId
c. Use AEF Provider Certificate

Expected
Result

1. Response to Event Subscription must accomplish:
a. 201 Created
b. The URI of the created resource shall be returned in the "Location" HTTP header,

following this structure: {apiRoot}/capif-
events/{apiVersion}/{subscriberId}/subscriptions/{subscriptionId}

c. Response Body must follow EventSubscription data structure.
2. Create security context:

a. body returned must accomplish ServiceSecurity data structure.
b. Location Header must contain the new resource URL {apiRoot}/capif-

security/v1/trustedInvokers/{apiInvokerId}
3. ACL Response:

a. 200 OK Response.
b. body returned must accomplish AccessControlPolicyList data structure.
c. apiInvokerPolicies must:

https://ocf.etsi.org/documentation/develop/testing/testplan/common_operations/
https://ocf.etsi.org/documentation/develop/testing/testplan/common_operations/
https://ocf.etsi.org/documentation/develop/testing/testplan/api_events_service/event_subscription.json

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1193GPP TR 23.946 version 18.1.0 Release 18

• contain only one object.
• apiInvokerId must match apiInvokerId registered previously.

4. Mock Server received messages must accomplish:
a. One Event has been received.
b. Validate received event follow EventNotification data structure,

with accCtrlPolListExt in eventDetail parameter.
• One Event should

be ACCESS_CONTROL_POLICY_UPDATE with eventDetail with accCtrlPolLi
stExt including the apiId and apiInvokerPolicies.

Test Case 11: Provider receives an ACL unavailable event when invoker
removes Security Context

Test ID capif_api_events-11

Description This test case will check that a CAPIF Invoker subscribed to
ACCESS_CONTROL_POLICY_UNAVAILABLE will receive the notification when AEF
remove Security Context created previously.

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker
and Provider.
Provider had a Service API published on CAPIF
API Invoker had a Security Context for the Service API published by Provider
Mock Server is up and running to receive requests.
Mock Server is clean

Execution
Steps

1. Onboard Provider.
2. Publish a provider API with name service_1.
3. Onboard Invoker at CCF.
4. Subscribe Invoker to ACCESS_CONTROL_POLICY_UNAVAILABLE event.
5. Discover APIs filtered by aef_id
6. Create Security Context for Invoker.
7. Provider Retrieve ACL
8. Remove Security Context for Invoker.

Information of
Test

1. Perform provider registration
2. Perform invoker onboarding
3. Event Subscription to ACCESS_CONTROL_POLICY_UNAVAILABLE event:

a. Send POST to https://{CAPIF_HOSTNAME}/capif-
events/v1/{subscriberId}/subscriptions

b. body event subscription request body with:
• events: ['ACCESS_CONTROL_POLICY_UNAVAILABLE']
• eventFilters: apiInvokerIds array with apiInvokerId of invoker

c. Use Invoker Certificate
4. Discover published APIs
5. Create Security Context for Invoker

a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

6. Provider Retrieve ACL
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId}?aef-id=${aef_id}
b. Use serviceApiId and aefId
c. Use AEF Provider Certificate

7. Delete Security Context of Invoker by Provider:
a. Send DELETE https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use AEF Certificate

Expected
Result

1. Response to Event Subscription must accomplish:
a. 201 Created

https://ocf.etsi.org/documentation/develop/testing/testplan/common_operations/
https://ocf.etsi.org/documentation/develop/testing/testplan/common_operations/
https://ocf.etsi.org/documentation/develop/testing/testplan/api_events_service/event_subscription.json

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1203GPP TR 23.946 version 18.1.0 Release 18

b. The URI of the created resource shall be returned in the "Location" HTTP header,
following this structure: {apiRoot}/capif-
events/{apiVersion}/{subscriberId}/subscriptions/{subscriptionId}

c. Response Body must follow EventSubscription data structure.
2. Create security context:

a. body returned must accomplish ServiceSecurity data structure.
b. Location Header must contain the new resource URL {apiRoot}/capif-

security/v1/trustedInvokers/{apiInvokerId}
3. ACL Response:

a. 200 OK Response.
b. body returned must accomplish AccessControlPolicyList data structure.
c. apiInvokerPolicies must:

• contain only one object.
• apiInvokerId must match apiInvokerId registered previously.

4. Delete security context:
a. 204 No Content response

5. Mock Server received messages must accomplish:
a. One Event has been received.
b. Validate received event follow EventNotification data structure,

with accCtrlPolListExt in eventDetail parameter.
• One Event should

be ACCESS_CONTROL_POLICY_UNAVAILABLE without eventDetail.

Test Case 12: invoker receives an invoker Authorization Revoked and ACL
unavailable event when Provider revoke Invoker Authorization

Test ID capif_api_events-12

Descripti
on

This test case will check that a CAPIF Invoker subscribed to
API_INVOKER_AUTHORIZATION_REVOKED and
ACCESS_CONTROL_POLICY_UNAVAILABLE receive both notification when AEF revoke
invoker's authorization.

Pre-
conditio
ns

The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker and
Provider.
Provider had a Service API published on CAPIF
API Invoker had a Security Context for the Service API published by Provider
Mock Server is up and running to receive requests.
Mock Server is clean

Executio
n Steps

1. Onboard Provider.
2. Publish a provider API with name service_1.
3. Onboard Invoker at CCF.
4. Invoker to ACCESS_CONTROL_POLICY_UNAVAILABLE and

API_INVOKER_AUTHORIZATION_REVOKED events.
5. Discover APIs filtered by aef_id
6. Create Security Context for Invoker.
7. Revoke Authorization by Provider

Informat
ion of
Test

1. Perform provider registration
2. Perform invoker onboarding
3. Event Subscription to ACCESS_CONTROL_POLICY_UNAVAILABLE and

API_INVOKER_AUTHORIZATION_REVOKED event:
a. Send POST to https://{CAPIF_HOSTNAME}/capif-events/v1/{subscriberId}/subscriptions
b. body event subscription request body with:

• events: ['ACCESS_CONTROL_POLICY_UNAVAILABLE','API_INVOKER_AU
THORIZATION_REVOKED']

• eventFilters: apiInvokerIds array with apiInvokerId of invoker
c. Use Invoker Certificate

4. Discover published APIs

https://ocf.etsi.org/documentation/develop/testing/testplan/common_operations/
https://ocf.etsi.org/documentation/develop/testing/testplan/common_operations/
https://ocf.etsi.org/documentation/develop/testing/testplan/api_events_service/event_subscription.json

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1213GPP TR 23.946 version 18.1.0 Release 18

5. Create Security Context for Invoker
a. Send PUT https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}
b. Use Invoker Certificate

6. Provider Retrieve ACL
a. Send GET https://{CAPIF_HOSTNAME}/access-control-

policy/v1/accessControlPolicyList/${serviceApiId}?aef-id=${aef_id}
b. Use serviceApiId and aefId
c. Use AEF Provider Certificate

7. Revoke Authorization by Provider:
a. Send POST https://{CAPIF_HOSTNAME}/trustedInvokers/{apiInvokerId}/delete
b. body security notification body
c. Using AEF Certificate.

Expected
Result

1. Response to Event Subscription must accomplish:
a. 201 Created
b. The URI of the created resource shall be returned in the "Location" HTTP header, following

this structure: {apiRoot}/capif-
events/{apiVersion}/{subscriberId}/subscriptions/{subscriptionId}

c. Response Body must follow EventSubscription data structure.
2. Create security context:

a. body returned must accomplish ServiceSecurity data structure.
b. Location Header must contain the new resource URL {apiRoot}/capif-

security/v1/trustedInvokers/{apiInvokerId}
3. ACL Response:

a. 200 OK Response.
b. body returned must accomplish AccessControlPolicyList data structure.
c. apiInvokerPolicies must:

• contain only one object.
• apiInvokerId must match apiInvokerId registered previously.

4. Revoke Authorization:
a. 204 No Content response

5. Mock Server received messages must accomplish:
a. Two Event has been received.
b. Validate received event follow EventNotification data structure,

with accCtrlPolListExt in eventDetail parameter.
• One Event should

be ACCESS_CONTROL_POLICY_UNAVAILABLE without eventDetail.
• One Event should

be API_INVOKER_AUTHORIZATION_REVOKED without eventDetail.

D.10 Test Plan for CAPIF API Auditing Service
This section list test cases for the CAPIF_Auditing_API.

Test Case 1: Get CAPIF Log Entry

Test ID capif_api_auditing-1

Description This test case will check that a CAPIF AMF can get log entry to Logging Service

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Log Entry exist in CAPIF

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API
3. Create Log Entry
4. Get Log Entry

https://ocf.etsi.org/documentation/develop/testing/testplan/api_events_service/security_notification.json

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1223GPP TR 23.946 version 18.1.0 Release 18

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Log Entry:
a. Send POST to https://{CAPIF_HOSTNAME}/api-invocation-logs/v1/{aefId}/logs
b. Body InvocationLog
c. Use AEF Certificate

4. Get Log:
a. Send GET to https://{CAPIF_HOSTNAME}/logs/v1/apiInvocationLogs?aef-

id={aefId}&api-invoker-id={api-invoker-id}
b. Use AMF Certificate

Expected
Result

1. Response to Logging Service must accomplish:
a. 200 OK
b. Response Body must follow InvocationLog data structure with:

• aefId
• apiInvokerId
• logs

Test Case 2: Get CAPIF Log Entry With no Log entry in CAPIF

Test ID capif_api_auditing-2

Description This test case will check that a CAPIF AEF cannot get log entry to Logging Service

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API
3. Get Log Entry

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Get Log:
a. Send GET to https://{CAPIF_HOSTNAME}/logs/v1/apiInvocationLogs?aef-

id={aefId}&api-invoker-id={api-invoker-id}
b. Use AMF Certificate

Expected
Result

1. Response to Logging Service must accomplish:
a. 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 404
• title with message "Not Found Log Entry in CAPIF".
• cause with message "Not Exist Logs with the filters applied".

Test Case 3: Get CAPIF Log Entry without aef-id and api-invoker-id

Test ID capif_api_auditing-3

Description This test case will check that a CAPIF AMF cannot get log entry to Logging Service

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1233GPP TR 23.946 version 18.1.0 Release 18

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Log Entry exist in CAPIF

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API
3. Create Log Entry
4. Get Log Entry

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Log Entry:
a. Send POST to https://{CAPIF_HOSTNAME}/api-invocation-logs/v1/{aefId}/logs
b. Body InvocationLog
c. Use AEF Certificate

4. Get Log:
a. Send GET to https://{CAPIF_HOSTNAME}/logs/v1/apiInvocationLogs
b. Use AMF Certificate

Expected
Result

1. Response to Logging Service must accomplish:
a. 400 Bad Request
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 400
• title with message "Bad Request"
• detail with message "aef_id and api_invoker_id parameters are mandatory".
• cause with message "Mandatory parameters missing".

Test Case 4: Get CAPIF Log Entry with filter api-version

Test ID capif_api_auditing-4

Description This test case will check that a CAPIF AMF can get log entry to Logging Service with filter api-
version

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Log Entry exist in CAPIF

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API
3. Create Log Entry
4. Get Log Entry

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Log Entry:
a. Send POST to https://{CAPIF_HOSTNAME}/api-invocation-logs/v1/{aefId}/logs
b. Body InvocationLog
c. Use AEF Certificate

4. Get Log:

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1243GPP TR 23.946 version 18.1.0 Release 18

a. Send GET to https://{CAPIF_HOSTNAME}/logs/v1/apiInvocationLogs?aef-
id={aefId}&api-invoker-id={api-invoker-id}&api-version={v1}

b. Use AMF Certificate
Expected
Result

1. Response to Logging Service must accomplish:
a. 200 OK
b. Response Body must follow InvocationLog data structure with:

• aefId
• apiInvokerId
• logs

Test Case 5: Get CAPIF Log Entry with filter api-version but not exist in log
entry

Test ID capif_api_auditing-5

Description This test case will check that a CAPIF AMF cannot get log entry to Logging Service with filter
api-version

Pre-conditions The Administrator must have previously registered the User
The user must have the access token, the ca root certificate and the URLs to onboard an Invoker.

Service published in CAPIF

Log Entry exist in CAPIF

Execution
Steps

1. Onboard Invoker and Provider at CCF.
2. Publish Service API
3. Create Log Entry
4. Get Log Entry

Information of
Test

1. Onboard Invoker and provider at CCF.
2. Publish Service API at CCF:

a. Send POST to ccf_publish_url https://{CAPIF_HOSTNAME}/published-
apis/v1/{apfId}/service-apis

b. body [service api description] with apiName service_1
c. Use APF Certificate

3. Log Entry:
a. Send POST to https://{CAPIF_HOSTNAME}/api-invocation-logs/v1/{aefId}/logs
b. Body InvocationLog
c. Use AEF Certificate

4. Get Log:
a. Send GET to https://{CAPIF_HOSTNAME}/logs/v1/apiInvocationLogs?aef-

id={aefId}&api-invoker-id={api-invoker-id}&api-version={v58}
b. Use AMF Certificate

Expected
Result

1. Response to Logging Service must accomplish:
a. 404 Not Found
b. Error Response Body must accomplish with ProblemDetails data structure with:

• status 404
• title with message "Parameters do not match any log entry".
• cause with message "No logs found ".

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1253GPP TR 23.946 version 18.1.0 Release 18

Annex E:
Change history

Change history
Date Meeting TDoc CR Rev Cat Subject/Comment New

version
2023-10 SA6#57 TR Initial Version as per S6-233407 0.0.0
2023-10 SA6#57 Implementation of the following pCRs approved by SA6:

S6-233386
0.1.0

2023-11 SA6#58 Implementation of the following pCRs approved by SA6:
S6-233904, S6-233908, S6-233909, S6-233910.

0.2.0

2024-03 SA6#59 Implementation of the following pCRs approved by SA6:
S6-240528, S6-240529, S6-240531, S6-240533, S6-240582.

0.3.0

2024-04 SA6#60 Implementation of the following pCRs approved by SA6:
S6-241358, S6-241351.

0.4.0

2024-05 SA6#61 Implementation of the following pCRs approved by SA6:
S6-242323, S6-242703, S6-242704, S6-242705.

0.5.0

2024-08 SA6#62 Implementation of the following pCRs approved by SA6:
S6-243646, S6-243061, S6-243062, S6-243724, S6-243518, S6-
243628, S6-243629, S6-243067, S6-243519, S6-243069, S6-
243631, S6-243265, S6-243510, S6-243633.

0.6.0

2024-10 SA6#63 Implementation of the following pCRs approved by SA6:
S6-244167, S6-244198, S6-244557, S6-244558, S6-244559, S6-
244560, S6-244561.

0.7.0

2024-11 SA6#64 Implementation of the following pCRs approved by SA6:
S6-245431, S6-245434, S6-245645, S6-245665.

0.8.0

2024-11 SA6#64 Implementation of the following pCR approved by SA6 on email
approval:
S6-245722, restructuring prior to initial publication.

0.9.0

2024-12 SA#106 SP-241701 Submitted to SA#106 for information and approval 1.0.0
2024-12 SA#106 SP-241701 MCC Editorial update for publication after TSG SA approval

(SA#106)
18.0.0

2025-03 SA#107 SP-250200 0001 2 F CAPIF supported features 18.1.0
2025-03 SA#107 SP-250200 0002 1 F Correction to obtaining CAPIF credentials 18.1.0

ETSI

ETSI TR 123 946 V18.1.0 (2025-04)1263GPP TR 23.946 version 18.1.0 Release 18

History

Document history

V18.0.0 January 2025 Publication

V18.1.0 April 2025 Publication

	Intellectual Property Rights
	Legal Notice
	Modal verbs terminology
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Overview of CAPIF
	4.1 Introduction
	4.2 Functional Architecture
	4.3 Functional Entities
	4.4 RNAA and CAPIF
	4.5 Relationship between RNAA and OAuth 2.0
	4.6 Overview CAPIF operations
	4.6.1 General
	4.6.2 Usage of CAPIF by API invoker
	4.6.3 Usage of CAPIF by API provider

	5 Role of Stakeholders for API Exposure
	5.1 Stakeholders in CAPIF
	5.2 Basic roles
	5.2.1 CAPIF provider
	5.2.2 Service API provider
	5.2.3 API invoker
	5.2.4 Resource owner

	5.3 Mapping of stakeholders to CAPIF roles
	5.4 Usage of CAPIF in different phases of an application business lifecycle

	6 Exemplary Use Cases and Adoption
	6.1 The deployment of the API Invoker as AF on the UE for RNAA
	6.2 The deployment of the API Invoker as AF on the network for RNAA
	6.3 GSMA Operator Platform deployment via CAPIF
	6.4 CAPIF Vendor Extensibility
	6.5 ETSI MEC deployment based on CAPIF
	6.6 MEC Platform as an API Provider
	6.6.1 Introduction
	6.6.2 Registering the MEC Platform as an API Provider in CAPIF
	6.6.3 Publishing an API for the MEC Platform

	6.7 Open-source implementation of CAPIF

	7 Summary
	Annex A: Examples from OpenCAPIF
	Annex B: CAPIF Vendor Extensibility
	B.1 Include Vendor Specific information
	B.2 Query for Vendor Specific information
	B.3 ETSI MEC extensibility to CAPIF

	Annex C: Open-source implementation of CAPIF
	C.1 NEF Publishes an API
	C.2 API consumption from an API Invoker

	Annex D: CAPIF Test cases
	D.1 General
	D.2 Test Plan for CAPIF API Invoker Management
	D.3 Test Plan for CAPIF API Provider Management
	D.4 Test Plan for CAPIF API Publish Service
	D.5 Test Plan for CAPIF Discover Service API
	D.6 Test Plan for CAPIF API Security Service
	D.7 Test Plan for CAPIF API Access Control Policy Service
	D.8 Test Plan for CAPIF API Logging Service
	D.9 Test Plan for CAPIF API Events Service
	D.10 Test Plan for CAPIF API Auditing Service

	Annex E: Change history
	History

