

ETSI TS 103 634 V1.5.1 (2024-06)

Digital Enhanced Cordless Telecommunications (DECT);
Low Complexity Communication Codec plus (LC3plus)

TECHNICAL SPECIFICATION

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)2

Reference
RTS/DECT-00399

Keywords
audio, codec, DECT, full-band, LC3plus,

superwideband, voice, VoIP

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
https://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2024.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)3

Contents

Intellectual Property Rights .. 9

Foreword ... 9

Modal verbs terminology .. 9

Executive summary .. 10

Introduction .. 10

1 Scope .. 11

2 References .. 11

2.1 Normative references ... 11

2.2 Informative references .. 12

3 Definition of terms, symbols and abbreviations ... 13

3.1 Terms .. 13

3.2 Symbols .. 14

3.2.1 Mathematical symbols .. 14

3.2.2 Operator symbols .. 14

3.3 Abbreviations ... 14

4 General description... 17

4.1 Overview .. 17

4.2 Transcoding functions .. 17

4.3 ANSI C-code .. 19

4.4 Conformance testing... 19

4.5 RTP payload format ... 20

4.6 Performance characterization ... 20

5 Codec algorithm description .. 20

5.1 General codec description .. 20

5.2 General codec parameters... 21

5.2.1 Audio channels ... 21

5.2.2 Sampling rates .. 21

5.2.3 Bits per sample ... 22

5.2.4 Frame size and delay... 22

5.2.5 Bit budget and bitrate .. 22

5.2.6 Bandwidth ... 23

5.3 Encoding process .. 23

5.3.1 Encoder modules .. 23

5.3.2 Input signal ... 24

5.3.3 Input signal scaling ... 24

5.3.4 Low Delay MDCT analysis .. 24

5.3.4.1 Overview ... 24

5.3.4.2 Update time buffer .. 24

5.3.4.3 Time-frequency transformation... 24

5.3.4.4 Energy estimation per band ... 25

5.3.4a Near Nyquist detector ... 26

5.3.5 Bandwidth detector ... 26

5.3.5.1 Algorithm .. 26

5.3.5.2 Parameters ... 27

5.3.6 Time Domain Attack Detector .. 27

5.3.6.1 Overview ... 27

5.3.6.2 Downsampling and Filtering of Input Signal .. 28

5.3.6.3 Energy Calculation .. 28

5.3.6.4 Attack Detection ... 28

5.3.7 Spectral Noise Shaping ... 29

5.3.7.1 Overview ... 29

5.3.7.2 SNS analysis ... 29

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)4

5.3.7.2.1 Overview ... 29

5.3.7.2.2 Padding .. 29

5.3.7.2.3 Smoothing ... 30

5.3.7.2.4 Pre-emphasis ... 30

5.3.7.2.5 Noise floor ... 30

5.3.7.2.6 Logarithm .. 30

5.3.7.2.7 Band Energy Grouping .. 31

5.3.7.2.8 Mean removal and scaling, attack handling... 31

5.3.7.3 SNS quantization ... 32

5.3.7.3.1 General .. 32

5.3.7.3.2 Stage 1 ... 32

5.3.7.3.3 Stage 2 ... 33

5.3.7.3.4 Multiplexing of SNS VQ Codewords .. 38

5.3.7.3.5 Synthesis of the Quantized SNS scale factor vector .. 40

5.3.7.4 SNS scale factors interpolation ... 40

5.3.7.5 Spectral shaping .. 40

5.3.8 Bandwidth control .. 41

5.3.9 Temporal Noise Shaping (TNS) ... 41

5.3.9.1 Overview ... 41

5.3.9.2 TNS analysis ... 42

5.3.9.3 Quantization .. 43

5.3.9.4 Filtering ... 44

5.3.10 Long Term Post Filter (LTPF) .. 44

5.3.10.1 Overview ... 44

5.3.10.2 Time-domain signals ... 45

5.3.10.3 Resampling.. 45

5.3.10.4 High-pass filtering ... 45

5.3.10.5 Pitch detection algorithm .. 46

5.3.10.6 LTPF bitstream ... 47

5.3.10.7 LTPF pitch-lag parameter ... 47

5.3.10.8 LTPF activation bit ... 48

5.3.11 Spectral quantization... 49

5.3.11.1 Overview ... 49

5.3.11.2 Bit budget .. 49

5.3.11.3 First global gain estimation ... 49

5.3.11.4 Quantization .. 51

5.3.11.5 Bit consumption .. 51

5.3.11.6 Truncation ... 53

5.3.11.7 Global gain adjustment ... 53

5.3.12 Residual coding .. 54

5.3.13 Noise level estimation ... 54

5.3.13.1 Overview ... 54

5.3.13.2 Relevant spectral lines ... 55

5.3.13.3 Noise level calculation .. 55

5.3.14 Bitstream encoding ... 56

5.3.14.1 Overview ... 56

5.3.14.2 Initialization .. 56

5.3.14.3 Side information .. 56

5.3.14.4 Arithmetic encoding .. 57

5.3.14.4.1 Overview ... 57

5.3.14.4.2 Pseudo code implementation ... 58

5.3.14.5 Residual data and finalization ... 59

5.3.14.6 Functions ... 59

5.3.15 Encoding of Low Frequency Effects (LFE) .. 61

5.4 Decoding process ... 62

5.4.1 Decoder modules .. 62

5.4.2 Bitstream decoding ... 62

5.4.2.1 Overview ... 62

5.4.2.2 Initialization .. 62

5.4.2.3 Side information .. 63

5.4.2.4 Special decoder mode indicators ... 63

5.4.2.5 Padding pattern ... 64

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)5

5.4.2.6 Bandwidth interpretation ... 64

5.4.2.7 Arithmetic decoding .. 65

5.4.2.8 Residual data and finalization ... 66

5.4.2.9 Functions ... 68

5.4.3 Residual decoding ... 69

5.4.4 Noise filling .. 69

5.4.5 Global gain.. 70

5.4.6 TNS decoder ... 70

5.4.7 SNS decoder ... 71

5.4.7.1 Overview ... 71

5.4.7.2 SNS scale factor decoding .. 71

5.4.7.2.1 SNS VQ decoding ... 71

5.4.7.2.2 Stage 1 SNS VQ decoding... 71

5.4.7.2.3 Stage 2 SNS VQ decoding... 72

5.4.7.2.4 Unit energy normalization of the received shape .. 75

5.4.7.2.5 Reconstruction of the Quantized SNS Scalefactors ... 75

5.4.7.3 SNS scale factors interpolation ... 75

5.4.7.4 Spectral Shaping ... 76

5.4.8 Low delay MDCT synthesis ... 76

5.4.9 Long term postfilter .. 77

5.4.9.1 Overview ... 77

5.4.9.2 Transition handling ... 77

5.4.9.3 Remaining of the frame ... 78

5.4.10 Output signal scaling and rounding .. 80

5.5 Frame structure ... 80

5.6 Error concealment .. 80

5.6.1 General consideration ... 80

5.6.2 PLC trigger ... 81

5.6.3 PLC method selection and method application ... 81

5.6.3.1 Method selection ... 81

5.6.3.2 MDCT frame repetition with sign scrambling .. 83

5.6.3.3 Time domain concealment .. 86

5.6.3.3.1 Overview ... 86

5.6.3.3.2 LPC parameter calculation .. 86

5.6.3.3.3 Construction of the periodic part of the excitation .. 87

5.6.3.3.4 Construction of the random part of the excitation ... 88

5.6.3.3.5 Construction of the total excitation, synthesis and post-processing .. 90

5.6.3.3.6 Time domain alias cancelation .. 90

5.6.3.3.7 Handling of multiple frame losses ... 90

5.6.3.4 Frequency domain concealment (Phase ECU) .. 91

5.6.3.4.1 Phase ECU overview ... 91

5.6.3.4.2 Spectral Shape ... 92

5.6.3.4.3 Transient analysis .. 93

5.6.3.4.4 Fine Spectral analysis .. 94

5.6.3.4.4a Noise only analysis and modification .. 95

5.6.3.4.4b Single sinusoid analysis and modification ... 95

5.6.3.4.5 Frame reconstruction ... 96

5.6.4 PLC operation related to LTPF ... 97

5.7 External rate adaptation .. 98

5.8 High-resolution audio support .. 98

5.8.1 Overview .. 98

5.8.2 Changes to the algorithm in high-resolution mode ... 98

5.8.3 High-Resolution mode and channel coding .. 102

5.9 Tables and constants ... 103

5.9.1 Band tables index .. 103

5.9.2 Low delay MDCT windows.. 103

5.9.2.1 Frame size 2,5 ms .. 103

5.9.2.2 Frame size 5 ms ... 104

5.9.2.3 Frame size 7,5 ms .. 104

5.9.2.4 Frame size 10 ms ... 104

5.9.3 SNS quantization .. 104

5.9.4 Temporal noise shaping .. 106

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)6

5.9.5 Long term postfiltering ... 106

5.9.6 Spectral data.. 107

6 Source code description.. 107

6.1 Overview .. 107

6.2 Contents of the C source code .. 107

6.3 File formats .. 108

6.3.1 Sound file (encoder input and decoder output) ... 108

6.3.2 Switching profile (encoder input) ... 108

6.3.3 Parameter bitstream file (encoder output and decoder input) ... 108

6.4 Test vector package .. 108

7 Conformance .. 109

7.1 Overview .. 109

7.2 Test framework .. 109

7.2.1 Test material ... 109

7.2.2 Test permutations and codec parameters .. 109

7.2.3 Modules under test .. 110

7.2.4 Quality metric calculation ... 110

7.2.4.1 Root Mean Square ... 110

7.2.4.2 Delta ODG value ... 111

7.2.4.3 Maximum Loudness Difference (MLD) ... 112

7.2.4.4 Thresholds ... 113

7.2.5 Software and tools .. 113

7.2.5.1 Gen_rate_profile ... 113

7.2.5.2 Eid-xor .. 113

7.2.5.3 flipG192 .. 113

7.2.5.4 G.192 bitstream format ... 114

7.2.5.5 Note to platform-dependent conformance ... 114

7.2.5.6 Reference conformance test script .. 114

7.3 Conformance tests .. 114

7.3.1 Test groups.. 114

7.3.2 Core coder tests ... 114

7.3.2.1 SQAM test... 114

7.3.2.2 Band limitation test ... 115

7.3.2.3 Low pass test ... 115

7.3.2.4 Bitrate switching test ... 115

7.3.2.5 Bandwidth switching test .. 115

7.3.3 Concealment tests ... 116

7.3.3.1 Packet loss concealment .. 116

7.3.3.2 Partial concealment ... 116

7.3.4 Channel coder ... 116

7.3.4.1 Channel coder test for correctable frames ... 116

7.3.4.2 Channel decoder test for non-correctable frames .. 116

7.3.4.3 Error protection mode switching test .. 117

7.3.4.4 Combined channel coding test for correctable frames .. 117

7.3.4.5 Combined channel coding test for non-correctable frames ... 117

7.3.4.6 Void... 117

7.3.5 High-resolution mode test ... 118

7.3.5.1 Core coder tests ... 118

7.3.5.2 Concealment tests ... 118

7.3.5.3 Channel coder ... 118

7.3.5.4 Precision tests .. 119

7.3.5.4.1 General .. 119

7.3.5.4.2 Total Harmonic Distortion plus Noise ... 119

7.3.5.4.3 Signal to Noise Ratio ... 119

7.3.6 Low Frequency Effects (LFE) test .. 120

7.4 Mapping conformance test, module and quality metric ... 120

7.4.1 Encoder ... 120

7.4.2 Decoder ... 120

7.4.3 Encoder-Decoder (EncDec) .. 121

7.5 Quality metric thresholds ... 121

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)7

7.6 Conformance criteria .. 121

7.7 Codec tests.. 122

7.7.1 General LC3plus test .. 122

7.7.2 Applications .. 122

Annex A (normative): Application layer forward error correction .. 123

A.1 Channel Coder .. 123

A.1.1 Overview .. 123

A.1.2 Bitrate Conversion .. 124

A.1.3 General Channel Coder Parameters .. 125

A.1.3.1 EP mode .. 125

A.1.3.2 Slot Size .. 125

A.1.3.3 EPMR ... 125

A.1.3.4 Combined Channel Coding Flag ... 125

A.1.4 Derived Channel Coder Parameters ... 125

A.1.4.1 Number of Code Words .. 125

A.1.4.2 Code Word Lengths .. 126

A.1.4.3 Hamming Distances .. 126

A.1.4.4 Number of Partial Concealment Code Words ... 126

A.1.4.5 Size of Partial Concealment Block ... 126

A.1.4.6 CRC Hash Sizes .. 126

A.1.4.7 Data Size ... 126

A.1.5 Algorithmic Description of the Channel Encoder .. 127

A.1.5.1 Input/Output .. 127

A.1.5.2 Data Pre-Processing .. 127

A.1.5.3 Reed-Solomon Encoding .. 128

A.1.5.4 Mode Signalling .. 129

A.1.5.5 Code Word Multiplexing .. 130

A.1.6 Algorithmic Description of the Channel Decoder .. 130

A.1.6.1 Input/Output .. 130

A.1.6.2 Code Word De-Multiplexing .. 130

A.1.6.3 Mode Detection .. 130

A.1.6.3.1 Overview ... 130

A.1.6.3.2 Stage 1 ... 131

A.1.6.3.3 Stage 2 ... 131

A.1.6.4 EPMR Estimation when Frame is not decodable .. 132

A.1.6.5 Error Correction .. 133

A.1.6.5.1 Overview ... 133

A.1.6.5.2 Calculation of Error Locator Polynomials .. 134

A.1.6.5.3 Calculation of Error Positions ... 135

A.1.6.5.4 Calculation of Error Symbols .. 136

A.1.6.6 De-Colouration and RS Decoding .. 136

A.1.6.7 Data Post-Processing .. 137

A.1.7 Padding bytes ... 138

A.1.8 Bit error Concealment .. 139

A.1.8.1 Reorder Bitstream ... 139

A.1.8.2 Bit error Concealment trigger ... 139

A.1.8.3 Partial Concealment .. 140

A.2 Redundancy frames .. 143

A.2.1 Overview .. 143

A.2.2 Example configuration ... 143

Annex B (normative): RTP payload format for the LC3plus codec .. 144

B.1 Introduction .. 144

B.2 LC3plus RTP payload format ... 145

B.2.1 Byte order ... 145

B.2.2 RTP header usage ... 145

B.2.2.1 General .. 145

B.2.2.2 Marker bit ... 146

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)8

B.2.2.3 Sequence number .. 146

B.2.2.4 Time stamp ... 146

B.2.3 Packetization Considerations.. 146

B.2.4 Payload Structure ... 147

B.2.5 Payload header, frame data length request ... 147

B.2.6 Table of Contents ... 148

B.2.7 Forming the payload ... 150

B.2.8 Speech_bad frame data ... 150

B.2.9 NO_DATA frames data .. 151

B.2.10 Example of NO_DATA or Speech_bad in payload ... 151

B.2.11 Payload examples ... 151

B.2.11.1 General .. 151

B.2.11.2 Single-Channel Payload Carrying a Single Frame Encoded with WB at 32 kbit/s 151

B.2.11.3 Single-Channel Payload Carrying a Single Frame Encoded with SWB at 64 kbit/s 152

B.2.11.4 Single-Channel Payload Carrying Two Active Frames Encoded with WB at Different Bitrates 153

B.2.11.5 Multi-Channel Payload Carrying One Frame Block for Two Channels ... 154

B.2.12 Packetization .. 155

B.3 Payload format parameters ... 156

B.3.1 General ... 156

B.3.2 LC3plus media type registration .. 156

B.3.3 Mapping media type parameters into SDP ... 158

B.3.4 Offer-answer model considerations .. 158

B.3.5 SDP examples .. 160

B.3.5.1 General .. 160

B.3.5.2 SDP negotiation for WB ... 160

B.3.5.3 SDP negotiation for SWB ... 160

B.4 IANA considerations .. 161

Annex C (informative): An example FEC control unit ... 162

C.1 Overview .. 162

C.2 Parameters .. 162

C.2.1 General ... 162

C.2.2 Setup Parameters .. 162

C.2.2.1 Minimal and maximal EP mode ... 162

C.2.2.2 Perceptual quality table ... 162

C.2.2.3 Initial FER reduction factors ... 162

C.2.3 Input Parameters ... 163

C.2.3.1 General .. 163

C.2.3.2 EPOK flags ... 163

C.2.3.3 Other part's EPMR .. 163

C.2.3.4 Other part's detected EP mode .. 163

C.2.4 Output Parameters .. 163

C.2.4.1 This part's EPMR .. 163

C.2.4.2 This part's EP mode .. 163

C.2.5 Derived Quantities .. 163

C.2.5.1 Other part's assumed EP mode .. 163

C.2.5.2 Bad frame indicator estimates ... 164

C.2.5.3 Frame error rate estimates ... 164

C.2.5.4 FER reduction factors ... 164

C.2.5.5 Mean value estimator consistency .. 165

C.2.5.6 Stable reduction factors .. 165

C.3 EPMR selection .. 165

C.3.1 FER estimator selection .. 165

C.3.2 Optimal EPMR selection .. 166

C.4 EP mode selection .. 166

Annex D (informative): Change history ... 167

History .. 168

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)9

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee Digital Enhanced Cordless
Telecommunications (DECT).

Clause 4 provides an overview of the LC3plus codec, whilst clause 5 provides detailed algorithmic descriptions of the
encoder and the decoder.

Clause 6 introduces the bit exact, fixed point ANSI C source code, which is attached to the present document, that
provides a reference implementation of the LC3plus audio codec. The conformance procedure for verifying optimized
implementations is available in clause 7.

Annex A provides a description of the Application Layer Forward Error Correction (AL-FEC) function associated with
the LC3plus codec.

Annex B provides the payload format description of LC3plus inside the Real-time Transport Protocol (RTP).

Annex C provides an example algorithm which adaptively controls the FEC strength with respect to the error
characteristic of the transport channel.

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)10

Executive summary
The present document is the specification of the Low Complexity Communication Codec plus (LC3plus), a
transformation-based audio codec operating at all common sampling rates and a wide range of bit rates. The present
document includes beside the technical description of the core codec also packet loss concealment and forward error
correction schemes such as a channel coder to be ready for use in applications like VoIP and DECT. Besides voice
applications, the codec is also applicable for high quality music transmission up to transparency.

Introduction
With the introduction of the 3GPP Enhanced Voice Services (EVS) [i.1] in 2014, the mobile voice communication was
enriched with the SWB audio quality. However, this technical development came along with a significant increase in
computational complexity and memory demands which limits the deployment to relatively powerful mobile phones.
LC3plus aims to provide the low complexity counterpart of EVS in order to make SWB also available on low-cost
terminals such as VoIP or DECT. The codec allows perfect interoperability between mobile and other networks by
means of transcoding and fits complexity wise very well to the requirements of DECT and VoIP terminal equipment.
Due to the codec's flexible design the applications are not limited to voice services but can be extended to high quality
music streaming as well.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)11

1 Scope
The present document contains the specification of the Low Complexity Communication Codec plus (LC3plus). The
specification includes a full algorithmic description of both the encoder and the decoder. It includes reference
fixed-point and floating-point ANSI C source code and conformance test procedures.

The codec has been designed on the one hand for Digital Enhanced Cordless Telecommunications (DECT) and the New
Generation DECT (NG-DECT) systems but also for VoIP and other applications such as music streaming.

The LC3plus codec provides the following basic features:

• Capability for speech and audio coding

• Several low delay modes

• Low computational complexity

• Multiple bitrates from 16 kbit/s up to 320 kbit/s and more

• Multiple audio bandwidth from narrow band to full-band and ultra-band

• High- resolution mode for high precision, high dynamic range and audio bandwidth up to the Nyquist
frequency also for ultra-band

• Advanced error concealment

• Application Layer Forward Error Correction (AL-FEC) including channel coder functionality

• RTP payload format

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] IETF RFC 3264: "An Offer/Answer Model with Session Description Protocol (SDP)",
J. Rosenberg and H. Schulzrinne, June 2002.

[2] IETF RFC 3550: "RTP: A Transport Protocol for Real-Time Applications", STD 64,
H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, July 2003.

[3] IETF RFC 3551: "RTP Profile for Audio and Video Conferences with Minimal Control", STD 65,
H. Schulzrinne and S. Casner, July 2003.

[4] IETF RFC 8866: "SDP: Session Description Protocol", A. Begen, P. Kyzivat, C. Perkins,
M. Handley, January 2021.

[5] IETF RFC 4855: "Media Type Registration of RTP Payload Formats", S. Casner, February 2007.

https://docbox.etsi.org/Reference
https://www.rfc-editor.org/info/rfc3264
https://www.rfc-editor.org/info/rfc3550
https://www.rfc-editor.org/info/rfc3551
https://www.rfc-editor.org/info/rfc8866
https://www.rfc-editor.org/info/rfc4855

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)12

[6] IETF RFC 4867: "RTP Payload Format and File Storage Format for the Adaptive Multi-Rate
(AMR) and Adaptive Multi-Rate Wideband (AMR-WB) Audio Codecs", J. Sjoberg,
M. Westerlund, A. Lakaniemi, April 2007.

[7] European Broadcasting Union TECH 3253: "Sound Quality Assessment Material recordings for
subjective tests".

NOTE: Attachment available at https://tech.ebu.ch/publications/sqamcd.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] 3GPP TS 26.445 (V16.0.0): "Codec for Enhanced Voice Services (EVS); Detailed Algorithmic
Description".

[i.2] T. R. Fischer: "A pyramid vector quantizer", IEEE™ Trans. On Information Theory, July 1986,
pp. 568-583.

[i.3] B. Fries and M. Fries: "Digital Audio: Essentials", February 2015, p. 159.

[i.4] Recommendation ITU-T G.191: "Software tools for speech and audio coding standardization",
2009.

[i.5] ETSI TR 103 633: "Digital Enhanced Cordless Telecommunications (DECT); Low Complexity
Communication Codec Plus (LC3plus); Performance characterization".

[i.6] C. Perkins, O. Hodson, V Hardman: "A Survey of Packet-Loss Recovery Techniques for
Streaming Audio", IEEE™ Network, 1998.

[i.7] 3GPP TR 26.843 (V16.0.0): "Study on non-bit-exact conformance criteria and tools for floating-
point EVS codec", August 2018, pp. 18-19.

[i.8] Recommendation ITU-T G.192: "A common parallel digital interface for speech standardization
activities", March 1996, p. 14.

[i.9] SourceForge: "SoX - Sound eXchange".

[i.10] Wine-HQ: "Wine".

[i.11] Recommendation ITU-R BS.1387-1: "Method for objective measurements of perceived audio
quality", November 2001.

[i.12] Recommendation ITU-T G.722: "7 kHz audio-coding within 64 kbit/s", November 1988.

[i.13] Recommendation ITU-T G.726: "40, 32, 24, 16 kbit/s Adaptive Differential Pulse Code
Modulation (ADPCM)", December 1990.

[i.14] ISO/IEC 14496-3:2009: "Information Technology -- Coding of Audio-Visual Objects -- Part 3:
Audio", March 2009.

https://www.rfc-editor.org/info/rfc4867
https://tech.ebu.ch/docs/tech/tech3253.pdf
https://tech.ebu.ch/publications/sqamcd
https://sourceforge.net/projects/sox/files/sox/14.4.2/sox-14.4.2-win32.zip
https://www.winehq.org/

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)13

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

codec redundancy: redundancy created by the LC3plus codec

NOTE: The codec encodes two variants of a frame, one primary encoding and one secondary (or redundant)
encoding. The primary encoding typically uses more bits than the secondary encoding.

frame: portion of the media for a single channel, e.g. speech or audio or a combination thereof, that is input to the
encoder or output of the decoder for one channel

NOTE: A frame includes a frame duration of audio (see frame duration definition below).

frame aggregation: encapsulation of several non-redundant frames within the same packet

frame data: encoded media for a single audio frame and a single channel, either output from the encoder or input to the
decoder

NOTE: Frame data may include any of the following: active audio, Silence Description (SID), NO_DATA
errframe or Speech_bad frame. The frame data is not protected with the channel coding specified in
Annex A.

frame data block: frame data for one or more channels for a single frame period

NOTE: For mono input audio signals, a frame data block includes the frame data for a single audio frame, see
frame data. In this case, the frame data block is identical to the frame data. For stereo and multi-channel
input audio signals, a frame data block contains the frame data from all channels. Thereby, a frame data
block includes the same number of frames as there are channels.

frame duration: time duration for a frame

NOTE: For NB, WB, SSWB, SWB, FB, FBHR or UBHR, the frame duration is either 2,5 ms, 5 ms, 7,5 ms or
10 ms. For FBCD, the frame duration is either approximately 2,72 ms, approximately 5,44 ms, 8,16 ms or
approximately 10,88 ms.

frame period: time period for a frame, from time T until time T+frame_duration

full-band: speech or audio sampled at 48 kHz

full-band, compact disc: speech or audio sampled at 44,1 kHz

high-resolution mode: LC3plus operation mode for higher bit rates, higher precision and wider audio bandwidth

narrow-band: speech or audio sampled at 8 kHz

NO_DATA frame: type of frame data that spends no bits on encoding the audio

NOTE: A NO_DATA frame is sometimes included when creating the payload and a frame needs to be included
but no active frame or SID frame is available, for example when sending redundancy with offset or multi-
channel audio where some channels are idle or in DTX.

no request (NO_REQ): type of FDLR that includes no adaptation request

semi-super-wideband: speech or audio sampled at 24 kHz

speech_bad frame: type of frame data indicating that the frame data has been discarded because of errors

NOTE: For example, when a media gateway detects bit errors in the frame data it may discard the frame data and
instead send a Speech_bad frame towards the receiver to explicitly indicate that the frame data was
dropped.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)14

super-wideband: speech or audio sampled at 32 kHz

ultra-band: speech or audio sampled at 96 kHz

wideband: speech or audio sampled at 16 kHz

3.2 Symbols

3.2.1 Mathematical symbols

For the purposes of the present document, the following mathematical symbols apply:

Δ��� Difference between two ODG values � Algorithmic delay of the codec ������ Delay due to the frame size �	�
� Delay due to the MDCT look ahead ����� Energy per band � Sampling rate ������ Band indices in dependency of sampling rate ��	
�� Number of bytes (octets) per frame ��
� Number of bits per frame (8 ∗ ��	
��) �� Number of bands a.k.a number of entries in ��� − 1 �
 Number of audio channels ��� Number of bandwidth sections �� Number of encoded spectral lines �� Number of samples processed in one frame a.k.a frame size �� Frame duration specified in milliseconds �� Low Delay MDCT window ���� Frequency Coefficients ��(�) Time domain sample of block b and index n ��(�) Frequency domain bin of block b and frequency index k � Number of leading zeros in MDCT window

3.2.2 Operator symbols

For the purposes of the present document, the following operator symbols apply:

a mod b Modulo operator defined by � − � ��
�
�

{x|condition(x)} Defines the quantity of x where x fulfils a certain condition ��, �� The transpose of vector x and matrix X respectively
a | b Set construction operator with elements a such that b is fulfilled
argmax X Returns the position of the first occurrence of the maximum value of array X
argmin X Returns the position of the first occurrence of the minimum value of array X ��
��� or ⌊�⌉ Round � to nearest integer, e.g. ⌊3,2⌉ = 3; ⌊4,5⌉ = 5 ⌊�⌋ Round � to next lower integer, e.g. ⌊3,2⌋ = 3; ⌊4,5⌋ = 4 ⌈�⌉ Round � to next higher integer, e.g. ⌈3,2⌉ = 4; ⌈4,5⌉ = 5
{�, �, . . } Ordered sequence of values. Indexing starts with 0, if not specified otherwise �(�. .�) Sequence of values indexed from � to �, i.e. {����, ��� + 1�, … , ����} � ← 	 Reading from 	 and storing in �. Defines in-place operations with formulas,

e.g. �(�) ← �(� + 1) shifts samples in � by one

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AL-FEC Application Layer FEC
ALU Arithmetic Logic Unit
ANSI-C American National Standards Institute C

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)15

ATH Absolute Threshold for Hearing curve
BEC Bit Error Condition
BFI Bad Frame Indicator
BS.1387-1 Method for Objective Measurements of Perceived Audio Quality
BW BandWidth
BWR BandWidth and Resolution (index)
CC Channel Counter
CD Compact Disc
CR Change Request
CRC Cyclic Redundancy Check
DCT Discrete Cosine Transform
DCT-II Discrete Cosine Transform type II
DECT Digital Enhanced Cordless Telecommunications
DFT Discrete Fourier Transform
DR LC3plus Reference Decoder
DSP Digital Signal Processor
DTX Discontinuous Transmission
DuT Decoder under Test
EBU European Broadcasting Union
ECU Error Concealment Unit
EncDec Encoder-Decoder
EP Error Protection
EPMR Error Protection Mode Request
EPOK Error Protection OK
ER LC3plus Reference Encoder
EuT LC3plus Encoder under Test
EVS Enhanced Voice Services
FB Full-Band
FBCD Full-Band, Compact Disc
FBHR Full-Band High Resolution
FC Frame and Channel
FDB Frame Data Block
FDI Frame Duration Index
FDL Frame Data Length
FDLR Frame Data Length Request
FEC Forward Error Correction
FER Frame Error Rate
FFT Fast discrete Fourier Transform
FIR Finite Impulse Response
FP Fixed Part
FTD Frame Type Description
GCC GNU™ Compiler Collection
GFSK Gaussian Frequency Shift Keying
HF High Frequency
HFCB High Frequency Code Book

NOTE: Part of SNS VQ.

HR High Resolution
IANA Internet Assigned Numbers Authority
IDCT Inverse DCT
IIR Infinite Impulse Response
IMDCT Inverse Modified Discrete Cosine Transformation
IP Internet Protocol
ITDA Inverse Time Domain Aliasing
LC3plus Low Complexity Communication Codec plus
LD-MDCT Low Delay Modified Discrete Cosine Transform
LF Low Frequency
LFCB Low Frequency Code Book

NOTE: Part of SNS VQ.

LFE Low Frequency Effects

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)16

LLVM Low Level Virtual Machines
LP Linear Prediction
LPC Linear Predictive Coding
LSB Least Significant Bit
LTPF Long Term Post Filter
MDCT Modified Discrete Cosine Transformation
MGw Media Gateway
MLD Maximum Loudness Difference
MPVQ Modular Pyramid Vector Quantizer index

NOTE: A partial PVQ index.

MSB Most Significant Bit
MSE Mean Square Error
MSVC Microsoft Visual C++
N total Number of samples per channel
NA Not Available
NB Narrow-Band
NO_REQ NO REQuest
ODG Objective Difference Grade
PC Personal Computer
PCM Pulse Code Modulation
PH Payload Header
PLC Packet Loss Concealment
PP Portable Part
PVQ Pyramid Vector Quantizer
RFC Request For Comments
RMS Root Mean Square
RS Reed Solomon
RTCP Real-Time Control Protocol
RTP Real-time Transport Protocol
SDP Session Description Protocol
SID SIlence Description
SNR Signal to Noise Ratio
SNS Spectral Noise Shaping
SNS-VQ Spectral Noise Shaping Vector Quantizer
SQAM Sound Quality Assessment Material
SSWB Semi-Super-WideBand
STL Software Tools Library
SWB Super-WideBand
TDA Time Domain Aliasing
THD+N Total Harmonic Distortion plus Noise
TNS Temporal Noise Shaping
ToC Table of Contents
TS Technical Specification
TSI Time Stamp Increment
UB Ultra-Band
UBHR Ultra-Band High Resolution
UDP User Datagram Protocol
VoIP Voice over IP
VQ Vector Quantizer
WB WideBand

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)17

4 General description

4.1 Overview
The LC3plus codec can operate at highly flexible modes. For regular operation mode, the codec supports coding of
speech and audio for several audio bandwidths, using the sampling frequencies 8 kHz, 16 kHz, 24 kHz, 32 kHz or
48 kHz. The LC3plus codec may also be used for streaming audio and therefore also supports CD sampling rate
(44,1 kHz). It supports encoding and decoding using either a 2,5 ms, 5 ms, 7,5 ms or 10 ms frame duration. A large
number of compressed frame sizes from 20 bytes to 400 bytes can be configured, see also the feature summary in
Table 5.1. Note, that the 7,5 ms frame duration is supported for other wireless systems besides DECT.

To support different use cases and varying operation conditions, the LC3plus includes support for end-to-end adaptation
of both the coded audio bandwidth and the bitrate.

The LC3plus also includes a high-resolution coding mode using Full-Band (FB) and Ultra-Band (UB) audio encoding at
sampling frequencies of 48 kHz and 96 kHz with maximum frame sizes of 625 bytes for a 10 ms frame duration. Frame
durations of 2,5 ms, 5 ms and 7,5 ms are supported as well. The high-resolution mode targets higher bit-rates, higher
Signal-To-Noise ratios and coding the full audio spectrum up to the Nyquist frequency. The supported configurations
are listed in Table 5.2.

The LC3plus codec provides a flexible error concealment algorithm, optimized both for all kind of audio signals.
LC3plus is further associated with Application Layer Forward Error Correction (AL-FEC) including a channel coder
functionality, which is essential if bit errors in the transport layer are propagated up to the application layer. It supports
the usage of redundancy packets as AL-FEC strategy for packet-based networks.

An RTP payload format is available in Annex B for transmission over IP/UDP for e.g. VoIP applications.

4.2 Transcoding functions
This clause provides a high-level overview of the operation of the LC3plus including the interfaces and configuration
options. The following figures outline possible LC3plus configuration scenarios. The full technical details of the codec
are provided in clause 5 of the present document.

Figure 4.1: LC3plus operation for one channel without error protection

As shown in Figure 4.1, a LC3plus encoder takes PCM input samples and creates compressed frames which are
transmitted to the receiver side where the frames are decoded and the PCM data is restored. Configuration parameters
which usually need to be identical at encoder and decoder side are sampling rate, frame duration, error protection
enabled/disabled flag. Those parameters usually do not change during a session.

T
ra

n
sm

itt
er

(T
X

)

Encoder
Session

Configuration

byte_count,
InputPCM LC3plus

Frame
Encoding

Payload(TX)

bits_per_audio_sample_enc

R
e

ce
iv

e
r (

R
X

)

LC3plus
Frame

Decoding

Payload(Rx)

Decoder
Session

Configuration

bits_per_audio_sample_dec

OutputPCM

Common
Session

Configuration

sampling frequency fs, frame duration Nms

number of channels NC=1, error protection
EP disabled, max. bit rate

byte_count,
BFI flag

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)18

The bits per audio sample may differ at encoder and decoder side, as those values are independent from the transmitted
LC3plus frame. The encoder may compress a 24 bit per sample PCM input and the decoder may render it with 16 bits
per sample and vice versa.

The decoder requires the length information for the LC3plus frame (byte_count) in order to apply decoding. In addition,
the decoder accepts Bad Frame Indicators (BFI_flag). If BFI_flag unequal zero, the LC3plus frame is considered as
missing, partially corrupt or as a redundancy frame at lower quality. In that case the LC3plus decoder applies
concealment. For a zero BFI_flag, the decoder applies the regular process for rendering the frame to PCM data.

Figure 4.2: LC3plus operation for one channel including channel coder for error protection

Figure 4.2 outlines the LC3plus operation with enabled error protection where the channel coder is creating protected
payloads.

The channel encoder is initialized with the number of gross bytes (channel coding bytes plus source coding bytes) and
the EP_mode for selecting the strength of the error protection capability. The EP_mode can be changed on a frame by
frame basis. For error protected payloads, the gross rate is usually kept constant for all EP modes. Increasing protection
capability comes along with decreased bit rate for the codec. The channel coder requests a LC3plus frame with a certain
codec rate (byte_count) depending on gross bytes and EP_mode.

The LC3plus channel decoder is able to detect the applied EP mode for a given gross rate and payload. It extracts the
potentially corrected LC3plus frame and the related frame sizes (byte_count). The tool provides further information on
the channel characteristic, e.g. the number of distorted bits. The channel decoder controls the BFI_flag signalling
whether the payload is correct, partially correct or not reliable.

The channel coder also transports Error Protection Mode Requests (EPMRs), a two-bit field indicating which EP mode
should be used for encoding at the other side in bi-directional setups.

T
ra

ns
m

itt
er

(T
X

)
Encoder
Session

Configuration

InputPCM LC3plus
Frame

Encoding

Payload(TX)

bits_per_audio_sample_enc

R
ec

ei
ve

r (
R

X
)

LCplus
Frame

Decoding

Payload(Rx)

Decoder
Session

Configuration

bits_per_audio_sample_dec

OutputPCM

Common
Session

Configuration

sampling frequency fs, frame duration Nms,

number of channels NC=1, error protection
EP enabled, max. bit rate

byte_count,
BFI flag

LC3plus
Channel
Encoder

LCplus
Channel
Decoder

EP_mode, gross bytes
byte_count gross bytes

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)19

Figure 4.3: LC3plus operation for multiple audio channels

Figure 4.3 outlines LC3plus operating for coding multiple audio channels. The number of audio channels NC are usually
the same on encoder and decoder side, however may be switched during the session due to bit rate constraints. Multiple
audio channels are compressed as independent single channels which requires an appropriate payload format for
transmission.

The encoder compresses NC PCM input buffers representing different audio channels. Each LC3plus frame may be
compressed using a different bit rate (byte_count) which may change on frame by frame basis over time for each
channel.

4.3 ANSI C-code
A reference ANSI C-code implementation of the LC3plus codec is available in archive ts_103634v010501p0.zip which
accompanies the present document, see clause 6 for a more detailed description. The ANSI C-code implementation is
available in fixed-point arithmetic for efficient implementation in fixed-point Digital Signal Processors (DSPs).
Additionally, a version for floating-point arithmetic is provided. Any feature limitation of the two versions is listed in
the Readme contained in archive ts_103634v010501p0.zip which accompanies the present document.

In case of differences between the description in the present document and the ANSI C-code, the ANSI C-code shall be
used.

The C-code package contains a set of test vectors available in archive ts_103634v010501p0.zip which accompanies the
present document, to verify that the compilation of the fixed-point reference implementation and of the floating-point
reference implementation operates as expected, see clause 6.4.

4.4 Conformance testing
Conformance tests are defined in clause 7, testing encoder, decoder and complete codec implementations of any kind of
arithmetic, precision and platform. For that, the implementation under test is compared against the fix-point reference
executable and the difference is evaluated using quality metrics such as Root Mean Square, Maximum Loudness
Difference or Objective Difference Grade. The compilation of the fix-point reference executable and the floating-point
reference executable shall be done without any source code modifications and the resulting reference executables shall
be verified with the provided test vector package, see clause 6.4.

The conformance for the high-resolution mode is based on a comparison to the floating-point reference executable and
includes besides quality tests also metrics measuring the precision of the implementation under test. The conformance
procedure is specified in clause 7.3.5.

All other conformance tests except for the high-resolution mode conformance shall use the fixed-point executable as
reference.

T
ra

n
sm

itt
e

r(
T

X
)

Encoder
Session

Configuration

byte_count[NC],
InputPCM[NC], LC3plus

Frame
Encoding

Payload(TX)

bits_per_audio_sample_enc

R
ec

e
iv

e
r (

R
X

)

LC3plus
Frame

Decoding

Payload(Rx)

Decoder
Session

Configuration

bits_per_audio_sample_dec

OutputPCM
[NC]

Common
Session

Configuration

sampling frequency fs, frame duration Nms

number of channels NC, error protection EP
disabled, max. bit rate

byte_count[NC],
BFI flag[NC]

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)20

4.5 RTP payload format
An RTP payload format for transporting LC3plus encoded audio in IP/UDP/RTP is defined in Annex B. The RTP
payload format supports all possible combinations of frame durations, audio bandwidths and bitrates the LC3plus codec
may generate.

The RTP payload format also defines configuration parameters that can be used to negotiate how the LC3plus codec
can be used in a particular session, for example when the Session Description Protocol (SDP), IETF RFC 8866 [4], is
used.

4.6 Performance characterization
The LC3plus characterization is available in ETSI TR 103 633 [i.5].

5 Codec algorithm description

5.1 General codec description
This clause describes the technical specification of the Low Complexity Communication Codec plus (LC3plus). The
main features of LC3plus coding one audio channel are:

Table 5.1: Feature summary

Feature Supported Range
Frame duration 2,5 ms, 5 ms, 7,5 ms and 10 ms (2,72 ms, 5,44 ms, 8,16 ms and

10,88 ms @ 44,1 kHz)
Look ahead delay 2,5 ms (2,72 ms @ 44,1 kHz) for frame durations of 2,5 ms, 5 ms and

10ms
4 ms (5,017 ms @ 44,1 kHz) for frame duration of 7,5 ms

Total algorithmic delay Frame duration + Look ahead delay = 5 ms, 7,5 ms, 11,5 ms and 12,5 ms
(for sampling rates other than 44,1 kHz)

Supported sampling rates 8, 16, 24, 32, 44,1 and 48 kHz
Audio bandwidth Max. 20 kHz for 48 kHz
Supported Bit rate Depends on frame duration and sampling rate:

• 20 to 143 bytes per frame and channel for 10 ms and 8 kHz
• 20 to 277 bytes per frame and channel for 10 ms and 16 kHz
• 20 to 393 bytes per frame and channel for 10 ms and 24 kHz
• 20 to 400 bytes per frame and channel for 10 ms and 32 kHz
• 20 to 400 bytes per frame and channel for 10 ms and 48 kHz
• 20 to 143 bytes per frame and channel for 7,5 ms and 8 kHz
• 20 to 277 bytes per frame and channel for 7,5 ms and 16 kHz
• 20 to 393 bytes per frame and channel for 7,5 ms and 24 kHz
• 20 to 400 bytes per frame and channel for 7,5 ms and 32 kHz
• 20 to 400 bytes per frame and channel for 7,5 ms and 48 kHz
• 20 to 163 bytes per frame and channel for 5 ms and 8 kHz
• 20 to 200 bytes per frame and channel for 5 ms and not 8 kHz
• 20 to 100 bytes per frame and channel for 2,5 ms

LC3plus decoder shall accept up to 400 bytes per frame independent of
frame duration

Supported bits per audio sample No restriction by the algorithm, however optimized for 16, 24, 32 bit depth
input, see the limitation described in clause 5.2.3

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)21

The LC3plus furthermore features a high-resolution mode for sampling frequencies of 48 kHz and 96 kHz. The main
features of this mode are:

Table 5.2: Feature Summary High-Resolution Mode

Feature Supported Range
Frame duration 2,5 ms, 5 ms, 7,5 ms and 10 ms
Look ahead delay 2,5 ms (2,72 ms @ 44,1 kHz) for frame durations of 2,5 ms, 5 ms and

10 ms
4 ms (5,017 ms @ 44,1 kHz) for frame duration of 7,5 ms

Total algorithmic delay Frame duration + Look ahead delay = 5 ms, 7,5 ms, 11,5 ms, and 12,5
ms

Supported sampling rates 48 kHz and 96 kHz
Audio bandwidth Always up to the Nyquist frequency
Supported Bit rate (per frame and channel) The following rates are recommended for regular channel operation

depending on sampling frequency and frame duration:
• 156 to 625 bytes per frame at 48 kHz, 10 ms
• 187 to 625 bytes per frame at 96 kHz, 10 ms
• 117 to 475 bytes per frame at 48 kHz, 7,5 ms
• 141 to 475 bytes per frame at 96 kHz, 7,5 ms
• 93 to 375 bytes per frame at 48 kHz, 5 ms
• 109 to 375 bytes per frame at 96 kHz, 5 ms
• 54 to 210 bytes per frame at 48 kHz, 2,5 ms
• 62 to 210 bytes per frame at 96 kHz, 2,5 ms

For fallback operation under challenging channel conditions, the
minimum bytes per frame (���������) might be reduced to

������′��� = ����������
	

�.

LC3plus decoder shall accept payloads down to 20 bytes per frame
independent of frame duration

Supported bits per audio sample No restriction by the algorithm, however optimized for 24, 32 bit depth
input, see the limitation described in clause 5.2.3

The high-resolution mode is not compatible with the other modes of LC3plus. The support and usage of the
high-resolution mode shall be negotiated out of band. The high-resolution extension is described separately in
clause 5.8 as a differential description to clauses 5.2 to 5.7.

The description uses both floating point and integer data format representations, assuming that implementations on
platforms with 16, 24, 32 and 64-bit word length using fixed or floating point ALU can be realized with adequate
precision.

For all read and write operations, the little-endian bit ordering shall be used.

5.2 General codec parameters

5.2.1 Audio channels

The algorithm describes only the coding of a single audio channel. Any stereo or multi-channel coding shall be
supported by coding of multiple mono streams.

5.2.2 Sampling rates

The codec supports the sampling rates � of 8 000 Hz, 16 000 Hz, 24 000 Hz, 32 000 Hz, 44 100 Hz and 48 000 Hz. For
the 44 100 Hz mode, all configurations, e.g. frame size in number of samples, are identical to the 48 000 Hz mode.

A sampling rate index is defined as follows:

���� = min �4,
�

8 000
− 1� �1�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)22

The sampling rate index for the relevant sampling frequencies are given in Table 5.3 below.

Table 5.3: Sampling rate index function

	
 (Hz) 8 000 16 000 24 000 32 000 44 100/48 000
	
�� 0 1 2 3 4

5.2.3 Bits per sample

The codec algorithm itself has the restriction that the sample resolution is limited to a maximum of 32 bits per audio
sample of the input and output audio samples. Typical values are 16, 24 or 32 bits per audio sample.

5.2.4 Frame size and delay

The codec works at a frame duration �� of 2,5 ms, 5 ms, 7,5 ms and 10 ms resulting in a frame length �� =
��∙�����∙���

� ���

samples, where:

 ���� = �48 000

44 100
, �� � = 44 100 !"

1 , �
ℎ� ���

. �2�
The algorithmic delay of the codec � consists of the delay due to frame length ������ and the overlap of the MDCT �	�
�. The delays in samples are given by ������ = ��, �	�
� = �� − 2� where � is the number of leading zeros in
the MDCT window. The MDCT overlap towards future samples in milliseconds is given by �� as outlined in Table

5.4. � is therefore given by � =
��

�
− �� ∙

��∙�����

� ���
. The algorithmic delay of the codec is determined by � = ������ + �	�
�. Table 5.4 outlines typical delay value.

Table 5.4: Algorithmic codec delay # depending on frame size $�� and sampling rate %�

�
 ��
 	

∈ [� ,�� ,�� ,�� ,��] 	

∈ [�� �]
2,5 ms 1,25 ms 5 ms 5,44 ms
5 ms 1,25 ms 7,5 ms 8,16 ms

7,5 ms 2 ms 11,5 ms 12,517 ms
10 ms 1,25 ms 12,5 ms 13,6 ms

5.2.5 Bit budget and bitrate

The number of bytes available in one frame is denoted ��	
��. The number of bytes ��	
�� to use for encoding a
single channel is a required external input to each single channel LC3plus encoder. The same number of bytes (now to
be used for decoding) is also a required external input to each single channel LC3plus decoder. The corresponding
number of bits available in one frame is thus ��
� = 8 ∙ ��	
��. And the bitrate of the codec in kilobits per

second (kbit/s) is then �
 �
� =
����

�����_��������
=

����

���

=
 ∙��!��

���

.

The algorithm is verified for the bit rate range from ��	
�� = 20 up to ��	
�� = 400 per channel for all sampling
rates.

Table 5.5: Examples for bit rates depending on bytes per frame (������) and frame duration (���)

���
������

20 40 80 120 160 400
2,5 ms 64 kbps 128 kbps 256 kbps 384 kbps 512 kbps 1 280 kbps
5 ms 32 kbps 64 kbps 128 kbps 192 kbps 256 kbps 640 kbps

7,5 ms 21,33 kbps 42,66 kbps 85,33 kbps 128 kbps 170,66 kbps 426,66 kbps
10 ms 16 kbps 32 kbps 64 kbps 96 kbps 128 kbps 320 kbps

The present document does not specify nor recommend what bitrate to use for encoding a frame of audio samples, this
will be specified by the application making use of the LC3plus codec.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)23

5.2.6 Bandwidth

The parameter � represents the audio bandwidth in Hz and is by default � � min ���
�

, 20 000� ∙ ���� . � may be set

externally to a lower value, which will limit the spectrum (clause 5.3.8) and deactivate the bandwidth detector
(clause 5.3.5). The external value shall represent the supported audio bandwidths NB, WB, SSWB, SWB and FB,
i.e. 4 000 Hz, 8 000 Hz, 12 000 Hz, 16 000 Hz, or 20 000 Hz.

To increase audio quality for low bitrates, � shall be limited to a corrected bandwidth �� of 12 000 Hz as follows:

�� � �min�12 000, �� , � ��� � 32 000 ��� ������ � 36� �� �� � 48 000 ��� ������ � 40�� ��� �� � 10 �, �!�� �2.1�

where ������ describes the bytes per frame and channel, � the sampling frequency and �� the frame duration. For
combined channel coding ������ is the minimum of both channels.

For encoding Low Frequency Effects (LFE) channels, the encoder should follow the procedure in clause 5.3.15.

5.3 Encoding process

5.3.1 Encoder modules

A high-level overview of the encoding modules is given in Figure 5.1. The coder is a spectral transform coder which
converts a segment of the time domain into a spectral representation (using a LD-MDCT transform). The corresponding
frequency components are processed by a Spectral Noise Shaping (SNS) module to reduce perceived spectral
quantization noise. The SNS-module contains a vector quantizer, where the first stage is a split VQ and the second stage
is a low complexity algorithmic Pyramid VQ. Subsequently, a Temporal Noise Shaping (TNS) module is used to reduce
perceived temporal quantization noise. The SNS and TNS shaped components are quantized by a spectral quantizer
module. For the spectral coefficients that are quantized to 0, the decoder will substitute these zero values by noise to
reduce artifacts. The Noise Level module computes the proper level to be used by the decoder. Eventually the spectral
coefficients are entropy encoded and multiplexed into the bitstream. Two additional modules are included in the
encoder. A BW Detector module is used to determine if the signal is oversampled and contains high frequency spectral
coefficients without energy. This information is shared with the TNS and Noise Level estimator to restrict their usage to
the active signal region. The decoder uses a pitch based postfilter (LTPF), and the associated pitch is determined in the
encoder and transmitted to the decoder.

Figure 5.1: Encoder high-level overview

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)24

5.3.2 Input signal

The input signal �() of the current frame
 consists of �� audio samples, �(0), … , �(�� − 1) where the newest one is
located at �(�� − 1). Audio samples of past frames are accessed by negative indexing, e.g. �(−1) is the most recent
sample of the previous frame.

The input signal �() is typically retrieved in Pulse-Code-Modulation (PCM) format consisting of integer values in the
range of [−2���, 2��� − 1], where � is the bit depth of the PCM input signal, e.g. 16, 24 or 32 bits per sample.

Any other audio format may need to be converted to match value scaling and data format.

5.3.3 Input signal scaling

The input signal is first scaled to the range [-32 768, 32 768] according to:

���	� = ��	
�	� ∙ 2�������� 3�

where � is the smallest integer such that ���	� fits in this range. E.g. for integer PCM format � equals the bit-depths
and for floating point PCM format � is equal to 1. The scaled signal is subsequently clipped according to:

��	� = �2�� − 1, ���() > 2�� − 1

−2��, ���	� < −2�����	�, ��ℎ������ 4�

to fit the native 16 bit PCM range [-32 768, 32 767].

5.3.4 Low Delay MDCT analysis

5.3.4.1 Overview

The Low Delay Modified Discrete Cosine Transform (LD-MDCT) converts the audio input time domain samples into
spectral coefficients and corresponding energy values grouped into bands. Figure 5.2 outlines the processing blocks.

Figure 5.2: Low delay MDCT overview

5.3.4.2 Update time buffer

The time input buffer for the MDCT � shall be updated according to:

�	� = ��� − �� + 	� ��� 	 = 0 … 2�� − 1 − ��2�� − � + 	� = 0 ��� 	 = 0 … � − 1
5�

where the latter initialization is typically jointly optimized with the subsequent time-frequency transformation.

5.3.4.3 Time-frequency transformation

A block of �� time samples is transformed to the frequency coefficients �(�) using equation (6):

��� = � 2��

� ����_��
() ∙ �	� cos � ���

�	 +
1

2
+

��

2
� �� +

1

2
� �����

���

 ��� � = 0 … �� − 1 6�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)25

where ����_��
 is the Low Delay MDCT window chosen for the frame size and length. The window has been optimized

for �� = 480 and all other versions with same ��� but different �� have been generated by means of interpolation. All
window coefficients are given in clause 5.9.2. All windows with identical ��� are compatible to each other meaning
that sampling rate conversion can be conducted as well.

The window shape is the result of an optimization algorithm, therefore there is no mathematical formula to calculate the
coefficients. The optimization focused on exploiting the advantages of an asymmetric shape while keeping the temporal
envelope close to one and providing a high stop-band attenuation. The result is given in Figure 5.3. As can be seen, the
window shows two sections with an amplitude higher than one, which needs to be considered for fix-point
implementations. The plot also shows the leading zeros � at the right side of the window.

Figure 5.3: Plot of low delay MDCT window !��_���, section greater than one are marked in red,
leading zeroes are marked in black

For �� = 48 000 Hz, a maximum audio bandwidth of 20 kHz is encoded (about 18,4 kHz at �� = 44 100 "#). The
number of encoded frequency coefficients are defined as:

�� = min(�� , 40 ∙ ���) 7�

5.3.4.4 Energy estimation per band

The energy per band $�
� is computed as follows:

 $�
� = � ����%��
 + 1� − %��
�
���

������

�� ���
��

 ���
 = 0 … �� − 1 8�

where ��� are the MDCT coefficients computed in clause 5.3.4.3, �� is the number of bands and %��
� are the band
indices given in clause 5.9.1.

0 120 240 360 480 600 720 840 960

window coefficient w 480(n)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

am
pl

itu
de

leading
zeros Z

amplitude > 1

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)26

5.3.4a Near Nyquist detector

The near Nyquist detector is used to identify signals with comparatively high energy in the range close to the Nyquist
frequency. The near Nyquist detector is active only for sample rates �� ≤ 32 000 "#. The Aliasing-like structures in
these signals can accidently trigger TNS and lead to distortions. To identify such signals the detector compares the
energy of the upper and lower bands and sets the near_nyquist_flag to 1 if the following condition is fulfilled:

� $�	�����

����_
 !

 > ��"#$%�# ∙ � $�	�����_
 !

���

 8.1�

where 		_�&� is the highest band index of the considered energy bands as listed in Table 5.5a and ��"#$%�# is 30. The
near_nyquist_flag is handed over to the TNS module to deactivate TNS in case of a near Nyquist signal.

Table 5.5a: ��_'()_ and frame duration (���)

��� ��_�	

2,5 ms �� − 2
5 ms �� − 3

7,5 ms �� − 4

10 ms �� − 2

5.3.5 Bandwidth detector

5.3.5.1 Algorithm

This tool detects bandlimited signals coded at higher sampling rates, e.g. NB telephone call coded at 8 kHz but
upsampled to a higher sampling rate. The detector provides guidance to the TNS (see clauses 5.3.8 and 5.4.6) and noise
filling tool (see clauses 5.3.13 and 5.4.4) in order to avoid any spreading or smearing of noise into the empty upper
spectrum. The quantization of the spectrum is not controlled by the BW detector to avoid any hard cut-offs in the
spectrum in case of uncertain detections.

The detector is able to detect the commonly used speech bandwidths in voice communication, i.e. NB (0 to 4 kHz),
WB (0 to 8 kHz), SSWB (0 to 12 kHz), SWB (0 to 16 kHz) and FB (0 to 20 kHz). The definitions for NB, WB, SWB
and FB are taken from the 3GPP EVS codec [i.1], where an audio bandwidth up to the Nyquist frequency is assumed.
For the LC3, SSWB is defined in the present document as a 24 kHz sampled signal with an audio bandwidth up to the
Nyquist frequency.

The bandwidth detector works as a two-stage classifier on the band energies $�, as defined in clause 5.3.4.4. The first
stage is designed to detect active bands. To this end, a sequence of low-energy flags *&�� is calculated for � = 0 … ��' − 1 as:

*&�� =

⎩⎨
⎧

1 , � $�	�%�' �"(��� − %�' �")$"�� + 1
< .&����� ���	��

�� ��� ��
����

0 , ��ℎ������

9�

*&−1� is defined to be 0. The values of %�' �")$"(�) and %�' �"(�(�) are given in Table 5.6 and define frequency
regions above the cut-off frequencies for the bandwidths in question. The quietness thresholds are given by .& = {20, 10, 10, 10}. The first stage classifier outputs a bandwidth index
�� which is the largest index between 0 and ��' (with 0 and ��� included) such that ������ − 1� = 0.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)27

The second stage determines the final bandwidth index ��. If ��� = ���, then �� is set to ���. Otherwise, the second
stage classifier aims at detecting an energy drop above the cut-off frequency of the candidate bandwidth ���. This is
done by testing the condition:

max
��� �����������	�����
� � ���� ����������
�

�10�	
�� ���� − ������������ �� > ������� �10�
where �� = {15, 23, 20, 20} and � = {4, 4, 3, 1} for 10 ms frame duration and � = {4, 4, 3, 2} for 7,5 ms frame
duration. If this condition holds then �� is set to ��� and otherwise it is set to ���. The parameter ��� stores the value ��.

Considering the corrected bandwidth �� (clause 5.2.6), the bandwidth index ��� shall be adjusted to ����:

���� = ��� ���� ,
��

4 000
− 1� �10.1�

If � is set externally, the bandwidth detector may be skipped and the index calculated by ���� =
��

� ���
− 1.

The bandwidth information (NB, WB, SSWB, SWB, FB) is retrieved by mapping ���� to the bandwidth column in
Table 5.6. The bandwidth information is used to control the TNS and the Noise level estimation. The parameter ���� is
stored in the bit stream using the number of bits ������� as outlined in Table 5.6.

5.3.5.2 Parameters

Table 5.6 lists the used parameters to detect the active bandwidth for a given sampling rate �� and frame duration ���.

Table 5.6: Parameter table bandwidth detector

��� �� (Hz) ��� ��� ����� ��� ���	 Bandwidth (���
) ����	��
2,5 ms 8 000 0 - - {NB} 0
2,5 ms 16 000 1 {24, 0, 0, 0} {34, 0, 0, 0} {NB, WB} 1
2,5 ms 24 000 2 {24, 35, 0, 0} {32, 39, 0, 0} {NB, WB, SSWB} 2
2,5 ms 32 000 3 {24, 33, 39, 0} {31, 38, 42, 0} {NB, WB, SSWB, SWB} 2
2,5 ms 44 100, 48 000 4 {22, 31, 37, 41} {29, 35, 40, 43} {NB, WB, SSWB, SWB, FB} 3
5 ms 8 000 0 - - {NB} 0
5 ms 16 000 1 {39, 0, 0, 0} {49, 0, 0, 0} {NB, WB} 1
5 ms 24 000 2 {35, 47, 0, 0} {44, 51, 0, 0} {NB, WB, SSWB} 2
5 ms 32 000 3 {34, 44, 50, 0} {42, 49, 53, 0} {NB, WB, SSWB, SWB} 3
5 ms 44 100, 48 000 4 {32, 42, 48, 52} {40, 46, 51, 54} {NB, WB, SSWB, SWB, FB} 4

7,5 ms 8 000 0 - - {NB} 0
7,5 ms 16 000 1 {51, 0, 0, 0} {63, 0, 0, 0} {NB, WB} 1
7,5 ms 24 000 2 {45, 58, 0, 0} {55, 63, 0, 0} {NB, WB, SSWB} 2
7,5 ms 32 000 3 {42, 53, 60, 0} {51, 58, 63, 0} {NB, WB, SSWB, SWB} 2
7,5 ms 44 100, 48 000 4 {40, 51, 57, 61} {48, 55, 60, 63} {NB, WB, SSWB, SWB, FB} 3
10 ms 8 000 0 - - {NB} 0
10 ms 16 000 1 {53, 0, 0, 0} {63, 0, 0, 0} {NB, WB} 1
10 ms 24 000 2 {47, 59, 0, 0} {56, 63, 0, 0} {NB, WB, SSWB} 2
10 ms 32 000 3 {44, 54, 60, 0} {52, 59, 63, 0} {NB, WB, SSWB, SWB} 2
10 ms 44 100, 48 000 4 {41, 51, 57, 61} {49, 55, 60, 63} {NB, WB, SSWB, SWB, FB} 3

Note that when �� = 8 000 ��, the bandwidth detector is not needed and then the assignments ���� = 0 and ������� = 0 are made, i.e. the parameter ���� is not stored in the bit stream.

5.3.6 Time Domain Attack Detector

5.3.6.1 Overview

The time domain attack detector is active only when one of the following conditions is satisfied:

• �� = 32 000 ��, ��� = 10 and 80 < ���� � < 340

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)28

• �� ≥ 44 100 ��, ��� = 10 and 100 ≤ ���� � < 340

• �� = 32 000 ��, ��� = 7,5 !�" 61 ≤ ���� � < 150

• �� ≥ 44 100 ��, ��� = 7,5 !�" 75 ≤ ���� � < 150

If active, the transient detector outputs a flag ����(#) for each frame #, which takes values 1, indicating that an attack
was detected, or 0, indicating that no attack was detected in this frame. If not active, �����#� is set to 0. In the following,
the start-up frame index is denoted #�.

5.3.6.2 Downsampling and Filtering of Input Signal

The first step is a downsampling of the input signal $����,� = 0 …�� − 1, which is performed as:

$���
������ = % $� � ��

160
� + ��

�	

���
 � �

���

 �	& � = 0 … 159 �11�
Next, the downsampled signal is high pass filtered according to:

$��

������ = 0,375 $���
������ − 0,5 $���

����� − 1� + 0,125 $���
����� − 2�, �	& � = 0 … 159. �12�

As in the case of the input signal, samples at negative indices correspond to samples from previous frames,

i.e. $���
����−1� and $���

����−2� hold the values $���
������159� and $���

������158�. The values $���

�����−1� and $���

�����−2� are
defined to be zero.

5.3.6.3 Energy Calculation

The attack detector operates on block wise energies on 4 blocks of 40 samples.

����
������ = % $��

�������,�	& � = 0 … 3

��
��

 ���

, �13�
which are compared to a delayed long term temporal envelope which is inductively defined by:

'���
������ = max (0,25 '���

����� − 1�, ����
����� − 1�), �	& � = 0 … 3, �14�

where the values at index -1 correspond again to the values at index 3 in frame # − 1. The values '���

�����−1� and

 ����

�����−1� are defined to be zero.

5.3.6.4 Attack Detection

An attack is detected if:

����
������ > 8,5 '���

���
(�) �15�

holds for any � between 0 and 3. Furthermore, in this case the attack position ����(#) is defined to be the largest n such
that the inequality holds. Otherwise, ����(#) is set to -1. The value ����(#� − 1) is defined to be -1.

The attack flag for frame # is computed as:

�����#� = *1

0

 �� �����#� ≥ 0 	& �����# − 1� ≥ 2, �� .
�16�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)29

5.3.7 Spectral Noise Shaping

5.3.7.1 Overview

Spectral Noise Shaping (SNS) applies a set of scale factors to the MDCT spectrum. These scale factors shape the
quantization noise introduced in the frequency domain by the spectral quantization. The noise shaping is performed in
such a way that the quantization noise is minimally perceived by the human ear, maximizing the perceptual quality of
the decoded output.

The SNS encoder performs the following four steps. A set of 16 scale factors is first estimated as described in
clause 5.3.7.2. These 16 scale factors are then quantized and encoded as described in clause 5.3.7.3. The quantized scale
factors are then interpolated as described in clause 5.3.7.4. Finally, the MDCT spectrum is shaped using the
64 interpolated scale weights as described in clause 5.3.7.5. Figure 5.4 outlines the processing steps.

Figure 5.4: SNS encoder overview

5.3.7.2 SNS analysis

5.3.7.2.1 Overview

In the first step of the SNS encoder, a set of 16 scale factors are estimated. These scale factors are derived from the
64 energies per band ����� (see clause 5.3.4.4). In case, the codec is configured to operate on less than 64 bands ��,
the given energy values are padded to get exactly 64 energies per band �����.
5.3.7.2.2 Padding

In case the configuration of the codec results in a number of bands �� < 64, the energy array ����� is extended by
repeating the entries, starting from the lowest ones, until the vector has reached its dedicated size of 64. Two cases need
to be considered.

For �� < 32, the lowest values need to be repeated four times and the higher ones two times.

n4=round(abs(1-32/��)* ��)
n2 = �� - n4

for i=0..n4-1
 for i2=0..3
 ���(i*4+i2) = ��(i);

for i=0..n2-1
 for i2=0..1
 ���((n4-1)*2+i*2+i2) = ��((n4-1)+i);

For �� < 64, some lower values need to be repeated twice:

n2 = 64 -��

for i=0..n2-1
 for i2=0..1
 ���(i*2+i2) = ��(i);

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)30

for i=0.. ��
 ���((n2-1)*2+i) = ��((n2-1)+i);

Finally, all 64 extrapolated values in ��� are copied back to �� and used for further processing.

5.3.7.2.3 Smoothing

The energy per band ����� is first smoothed using:

�!��� = +0,75 ∙ ���0� + 0,25 ∙ ���1� , �� � = 0

0,25 ∙ ���62� + 0,75 ∙ ���63� , �� � = 63

0,25 ∙ ���� − 1� + 0,5 ∙ ����� + 0,25 ∙ ���� + 1� , 	�ℎ &��� �17�
5.3.7.2.4 Pre-emphasis

The smoothed energy per band �!��� is then pre-emphasized using:

�"��� = �!��� ∙ 10
�∙#�
��
��∙�� �	& � = 0 … 63 �18�

with
�$ � given in Table 5.7.

Table 5.7: Pre-emphasis tilt factor table

�� (Hz)
����
8 000 14

16 000 18
24 000 22
32 000 26

44 100, 48 000 30

5.3.7.2.5 Noise floor

A noise floor at -40 dB is added to �"��� using:

�"���� = max��"���,�	�� ��		&� �	& � = 0 … 63 �19�
with the noise floor being calculated by:

�	�� ��		& = max�∑ �"�����
���

64
∙ 10

�
��
��, 2���� �20�

5.3.7.2.6 Logarithm

A transformation into the logarithm domain is then performed using:

�	��� =
log��"�����

2
 �	& � = 0 … 63 �21�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)31

5.3.7.2.7 Band Energy Grouping

The vector �	����, with �� ∈ [0, 63] is then grouped and decimated by a factor of 4 using:

������ =

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧�(0)�	(0) + %�(#)

%

���

�	�4�� + # − 1� , �� �� = 0

%�(#)

�

���

�	�4�� + # − 1� + ��5��	(63) , �� �� = 15

%�(#)

%

���

�	�4�� + # − 1� , 	�ℎ &���
 �22�

with �� ∈ [0, 15], and

��#� = 1 1

12
,

2

12
,

3

12
,

3

12
,

2

12
,

1

12
2 �23�

5.3.7.2.8 Mean removal and scaling, attack handling

Mean removal and scaling is performed according to:

�3������ = 0,85������� −
∑ ������%

���

16
� �	& �� = 0. . .15. �24�

If the attack detection is not active or if it is active and �����#� = 0, then the final scale factors are given by:

�3���� = �3����� �	& � = 0 … 15. �25�
Otherwise, if attack detection is active and �����#� = 1, a second smoothing is applied to the scale factors according to:

�3���0� =
1

3
�3���0� + �3���1� + �3���2��, �26�

�3���1� =
1

4
��3���0� + �3���1� + �3���2� + �3��(3)�, �27�

�3����� =
1

5
% �3��(� + �)

�

����

 �	& � = 2 … 13, �28�
�3���14� =

1

4
��3���12� + �3���13� + �3���14� + �3��(15)�, �29�

and

�3���15� =
1

3
�3���13� + �3���14� + �3���15��. �30�

From these values the final scale factors are computed as:

�3���� = ���� ∙ ��3����� −
∑ �3������%

���

16
� �	& � = 0. . .15. �31�

where ���� = 0,5 if ��� = 10, and ���� = 0,3 if ��� = 7,5.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)32

5.3.7.3 SNS quantization

5.3.7.3.1 General

The SNS scale factors scf(n) (obtained in clause 5.3.7.2) are quantized using a two-stage vector quantizer employing a
total of 38 bits (R = 2,375 bits/coefficient), the first stage is a 10 bit split VQ and the second stage is a low complexity
algorithmic Pyramid Vector Quantizer (PVQ). To further maintain low overall VQ complexity the Pyramid VQ is
analysed in a gain/shape manner in a transformed domain, enabling an efficient shape only search, followed by a low
complexity total MSE evaluation in a combined gain and shape determination step. In general, PVQ quantizers are a
family of L1-norm based algorithmic vector quantizers, employing very little storage space and utilizing an algorithmic
structure that enables efficient search procedures. A general background to PVQ may be found in [i.2], however note
that the actual PVQ-search and indexing method in the present document is different from what is described in that
reference.

Figure 5.5: High level overview of Encoder SNS VQ analysis

5.3.7.3.2 Stage 1

The first stage is a split VQ employing two off-line trained stochastic codebooks LFCB and HFCB. Each codebook row
has dimension 8 and the number of codebook columns is limited to 32, requiring 5 bits for each split for transmission.
The MSE distortions for the two code books are defined as follows:

����_��� � 	
����� � ����������

�

���

 �32�

����_��� � 	
���� � 8� � ����������

�

���

 �33�

The best index for the low-frequency split is found according to:

���_�� � argmin
��� � …. ��

����_��� �34�

The best index for the high-frequency split is found according to:

���_�� � argmin
��� � …. ��

����_��� �35�

Codebooks LFCB and HFCB may be searched in any order.

The first stage vector is composed as:

�$1��� � �������_�����, '(� �)0 … 7-, �36�

�$1�� � 8� � ���������
���, '(� �)0 … 7-. �37�

The first stage residual signal is calculated as:

(1��� � ����� � �$1���, '(� �)0 … 15-. �38�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)33

5.3.7.3.3 Stage 2

5.3.7.3.3.1 General

On a high level the overall mean square error that is minimized by the second stage is:

������ℎ��	_
,���_�, ������	�,��������	�� =

���1� − �����_�,�����_	 ∙ ��
,������ ,��������	�,��������	�� ∙ �����
�

�39�

where Ggain_i,shape_j is a scalar value, D is a 16-by-16 rotation matrix (realizing an IDCT rotation) and xq,shape_j is a unit
energy normalized vector of length 16. The �ℎ��	_
,���_�, ������	�,��������	� are vector quantization
sub-indices that results in a total of 228 possible gain-shape combinations. The target of the second stage SNS VQ search
is to find the set of indices that results in a minimum dMSE distortion value.

Depending on the selected shape index shape_j the number of leading sign indices LSindices are one {LS_indA} or two
{LS_indA, LS_indB}, and similarly depending on the selected shape index shape_j the number of MPVQindices are one
{idxA} or two {idxA, idxB}.

5.3.7.3.3.2 Transform

The second stage employs a 16-dimensional DCT-rotation using a 16x16 matrix D. The D-matrix has been determined
off-line for efficient scale factor quantization, it has the property that DTD = I (the identity matrix). To reduce the
encoder side search complexity the reverse(analysis) transform D (= DCT) may be used prior to the shape and gain
determination, while on the decoder side only the forward(synthesis) transform DT (=IDCT) is required. The coefficients
of the full D rotation matrix are listed in clause 5.9.3, here it should be noted that one may also use the equivalent
conventional DCT (realized as the orthogonalized DCT-II) and the corresponding IDCT functions to realize these
transformations.

5.3.7.3.3.3 Stage 2 Target Preparation

The shape search target preparation consists of a 16x16 dimensional matrix analysis rotation. An orthogonalized
DCT-II is implemented using matrix multiplication with 16x16 matrix D, where the DCT base vectors are stored
column wise as:

�2������ = � �1����� ∙ 	�� + ��� ∙ 16�
��

�����

 , �ℎ
�
 � = �0 … 15� �40�

5.3.7.3.3.4 Shape Candidates

There are four different 16-dimensional unit energy normalized shape candidates evaluated, where the normalization is
always performed over 16 coefficients. The pulse configurations for two sets (A and B) of scale factors for each
candidate shape index (shape_j) are given in Table 5.8.

Table 5.8: SNS VQ second stage shape candidate pulse configurations

Shape
index

(shape_j)
Shape name Scale factor set A Scale factor set B

Pulse
configuration,

Set A,
PVQ(NA, KA)

Pulse
configuration,

Set B,
PVQ(NB, KB)

0 'regular' {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} {10, 11, 12, 13, 14, 15} PVQ(10, 10) PVQ(6, 1)
1 'regular_lf' {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} {10, 11, 12, 13, 14, 15} PVQ(10, 10) Zeroed
2 'outlier_near' {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15}
Empty set PVQ(16, 8) Empty

3 'outlier_far' {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15}

Empty set PVQ(16, 6) Empty

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)34

The shape index shape_j=0 pulse configuration is a hybrid PVQ shape configuration, with KA=10 over NA=10 scale
factors and KB=1 over the remaining NB=6 scale factors. For shape index 0, it should be noted that the two sets of unit
pulses are unit energy normalized over the full target dimension N=NA+NB =16, even though the PVQ integer pulse and
sign enumeration is performed separately for each scale factor set.

5.3.7.3.3.5 Stage 2 Shape Search

The goal of the PVQ(N, K) shape search procedure is to find the best normalized vector xq(n). In vector notation xq(n) is
defined as:

	 =
�

��
� �41�
where y = yN.K belongs to PVQ(N, K) and this integer vector is a deterministic point on the surface of an N-dimensional

hyper-pyramid with K unit pulses. The L1-norm of yN,K is K, in other words, yN.K is an integer shape code vector of
dimension N according to:

��,� = � � : �|�| = �

���

��

� �42�
As a result of the definition, xq is a unit energy normalized integer vector , a deterministic point on the

N-dimensional non-integer unit energy hypersphere. A high K value leads to a better shape approximation over
dimension N but also has a higher cost in terms of bit rate, for transmitting the location of the K unit pulses in the vector
of dimension N.

The best integer y vector is the one minimizing the mean squared shape error between the second stage target vector
t2rot(n) = x(n) and the normalized quantized output vector xq. The shape search is achieved by minimizing a distortion
measure according to equation (43), where the shape distortion measure ���������� is obtained by assuming an optimal
gain in equation (39).

���������� = −
	 = −
�
��
��
� �43�

By squaring the numerator and denominator in equation (43) one may also maximize the quotient QPVQ-shape:

���������� =
�
����
� =

���������
�
���� �44�
where corrxy is the correlation between vector x and vector y. One may also use an efficient iterative search method in
the all positive hyperoctant in N-dimensional space. In such a search in the all positive hyper-octant for the best (in an
MSE sense) always positive integer vector �, the correlation ������ and
�
���� terms may always be evaluated as
vector products �||
�� and �
�, respectively. However with the unit pulse iterative approach, the search for the
optimal (in an MSE sense) PVQ vector shape y(n) with L1-norm K, may be simplified using iterative updates of the
QPVQ.-shape variables for each unit pulse position candidate �� according to:

��������,��� = �������� − 1� + 1 ∙ |�(��)| �45�

�
������,��� =
�
������ − 1� + 2 ∙ 1� ∙ ��� − 1,��� + 1� �46�

where corrxy(k-1) signifies the correlation achieved so far by placing the previous k-1 positive unit pulses,
energyy(k-1) signifies the accumulated energy achieved so far by placing the previous k-1 positive unit pulses, and
y(k-1, nc) signifies the amplitude of y at position nc from the previous placement of a total of k-1 unit pulses. When no
previous pulses have been placed, y is an all zero vector and thus corrxy is zero, and hence also energyy is zero.

����������(�,��) =
�������(�,��)��
�
����(�,��)

 �47�
The best position nbest for the kth unit pulse, is iteratively updated by increasing nc from 0 to N-1:

����� = �� , �� ������������,��� > ������������,������ �48�

y KN ,

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)35

To avoid divisions (which is especially important in fixed point arithmetic) the QPVQ-shape maximization update decision
may be performed using a cross-multiplication of a saved best squared correlation numerator bestCorrSq so far and the
saved best energy denominator bestEn so far.

����� = �����������	 =
�������,�������� = ��������,��� , ��
�������,��� ∙ ����� > ���������	 ∙ ������(�,�) �49�
It should be noted the pulse search methodology has to increase the number of pulses for each unit pulse addition loop,
i.e. one shall force at least one update of ���� over the positions 0 to N-1 in equation (48) or in the cross-multiplied
version equation (49).

The iterative maximization in the all positive hyperoctant of QPVQ-shape(k, nc) may start from a zero number of initially
placed unit pulses (ystart(n) = 0, for n=0...15) or alternatively from a low cost pre-placement number of unit pulses
based on a projection to an integer valued point below the K'th-pyramid's surface, with a guaranteed undershoot of unit
pulses in the target L1 norm K. Such a projection may be made as follows:

����	
� =
� − 1∑ |�2���()|���

��

 �50�
���
���� = �|�2�����| ∙ ����	
��, ��� = 0 … 15 �51�

If a projection is used in combination with an iterative positive unit pulse search approach one will need to calculate
������� − 1� as �|�|�������� and �������� − 1� as ������������� before commencing the unit pulse addition
iterations.

Four signed integer pulse configurations vectors yj are established by using the distortion measure �������
�� and then
their corresponding unit energy shape vectors ��,� are computed according to equation (41).

In the j=0 search, the set B positions only contain a single non-stacked unit pulse with a fixed energy contribution, this
means that the search for the single pulse in set B may be simplified to search only for the maximum absolute value in
the six set B locations.

For the j=0,1 normalization, each total pulse configuration yj always spans 16 coefficients. Hence, the energy
normalization is always performed over dimension 16, even though two shorter position sets are used for enumeration
of the y0 integer vector and one position set (set A) of dimension 10 for the y1 integer vector.

An efficient overall unit pulse search (for all four shape candidates) may be achieved by searching the shapes in the
order from shape j=3 to shape j=0, by making a first projection to a point on or below the pyramid K=6, updating the
correlation and energy terms, and then sequentially adding unit pulses and saving intermediate shape results until K is
correct for each of the four shape candidates with a higher number of unit pulses K. Note that as the regular set A shapes
j=0,1 spans over different allowed scale factor dimensions/regions than the two outlier shapes (j=2,3), one will need to
handle the search start pulse configuration for the two regular shapes by removing any unit pulses which are not
possible to index in the regular shape set A(j=0,1). As the described iterative pulse search is performed in the all
positive hyperoctant, a final step of setting the signs of the non-zero entries in yj (n) based on the corresponding sign in
target vector x(n)= t2rot(n) is performed.

A step-by-step example of a search procedure is shown in Table 5.9 and example of resulting vectors are shown in
Table 5.10.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)36

Table 5.9: Informational example of a PVQ search strategy for the described PVQ based shapes

Search
step

Related
shape
index

(j)

Description of search step Resulting vector

1 3 Project to or below pyramid N=16, K=6,
(and update energy energyy and correlation corrxy terms to reflect the pulses
present in y3, start)

y3, start

2 3 Add unit pulses until K=6 is reached over N=16 samples, save y3 y3 =y2, start
3 2 Add unit pulses until K=8 is reached over N=16 samples,

save y2
y2 =y1, pre-start

4 1 Remove any unit pulses in y1, pre-start that are not part of set A to yield y1, start y1, start
5 1 Update energy energyy and correlation corrxy terms to reflect the pulses

present in y1, start
y1, start

(unchanged)

6 1 Add unit pulses until K=10 is reached over N=10 samples (in set A), save y1 y1=y0, start

7 0 Add unit pulses to y0, start until K=1 is reached over N=6 samples (in set B),
save y0

y0

8 3, 2, 1, 0 Add signs to non-zero positions of each yj vector from the target vector x,
save y3, y2, y1, y0 as shape vector candidates (and for subsequent indexing
of one of them)

y3, y2, y1, y0

9 3, 2, 1, 0 Unit energy normalize each yj vector to candidate vector xq.j xq,3, xq,2, xq,1, xq,0

Table 5.10: Informational example of potentially available integer vectors yj and their corresponding
unit energy normalized vectors xq,j, after completing the PVQ search

Shape
index

(j)

Example Integer vector yj Corresponding unit energy normalized vector xq,j
(NB! Shown in very low precision here)

0 y0 = [-10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] xq,0 = [-0,995, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,100]
1 y1 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0] xq,1 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1,0, 0, 0, 0, 0, 0, 0]
2 y2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -7] xq,2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0,141, 0, 0, 0, 0, 0, -0,990]
3 y3 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, -1, 1] xq,3 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0,408, 0,408, -0,408,

0,408, -0,408, 0,408]

5.3.7.3.3.6 Adjustment Gain Candidates

There are four different adjustment gain candidate sets, one set corresponding to each overall shape candidate j. The
adjustment gain configuration for each of the shapes are given in Table 5.11.

Table 5.11: SNS VQ Second Stage Adjustment Gain sets

Gain set index
(same as

Shape index = j)

Corresponding
Shape name

Number of
gain levels

Adjustment Gain set values
(Gi, j)

See clause 5.9.3

Start adjustment
gain index
��������

End adjustment
gain index
��������

0 'regular' 2 sns_vq_reg_adj_gains[2] 0 1
1 'regular_lf' 4 sns_vq_reg_lf_adj_gains[4] 0 3
2 'outlier_near' 4 sns_vq_near_adj_gains[4] 0 3
3 'outlier_far' 8 sns_vq_far_adj_gains[8] 0 7

5.3.7.3.3.7 Shape and Gain combination determination

The best possible shape and gain is determined among the possible shape candidates and each corresponding gain set.
To minimize complexity the Mean Square Error (MSE) versus the target may be evaluated in the rotated domain,
i.e. the same domain in which the shape search was performed.

������, �� = 	�
2������ − ��,� �,�(�)��
�	

��

, ��� � = 0 … 3, � = 0 …������� �52�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)37

Out of the total 18(2+4+4+8) possible gain-shape combinations, the shape_index shape_j and adjustment gain index
gain_i that results in the minimum MSE is selected for subsequent enumeration and multiplexing.

{�ℎ���_� = � ,����_� = �} = argmin
��� … �, ���…���	�
��

	
���, �� 53�

5.3.7.3.3.8 Enumeration of the selected PVQ pulse configurations

The pulse configuration(s) of the selected shape are enumerated using an efficient scheme which separates each PVQ(N,

K) pulse configuration into two short codewords: a leading sign index bit and an integer MPVQ-index codeword. The
MPVQ-index bit-space is typically fractional (i.e. a non-power of 2 total number of pulse configurations). The indexing
step may also be referred to as enumeration.

The largest sized MPVQ integer shape index (shape_j=2, 'outlier_near') fits within a 24 bit unsigned word, enabling
fast implementations of MPVQ enumeration and de-enumeration on platforms supporting unsigned integer arithmetic of
24 bits or higher.

The enumeration scheme uses an indexing offsets table MPVQ_offsets(n, k) which may be found as a table of unsigned
integer values in clause 5.9.3. The offset values in MPVQ_offsets (dimension n, L1-norm k) are defined recursively as:

���������
,�� =
���������
��,���� +
���_�������(�, � − 1) +
���_�������(� − 1, �), 54�

with initial conditions MPVQ_offsets (n, k=0) = 0 for n>=0, MPVQ_offsets (n=0, k) =1 for k>0.

The actual enumeration of a signed integer vector y (=vec_in) with an L1 norm of K (=k_val_in) over dimension
N (=dim_in) into an MPVQ shape index index and a leading sign index lead_sign_ind is shown in C-style pseudo code
below:

[index, lead_sign_ind] =
MPVQenum (dim_in, /* I : dimension of vec_in */
 vec_in[N] /* i : PVQ integer pulse train */
{
 /* init */
 next_sign_ind = 0x80000000U; /* sentinel for first sign */
 k_val_acc = 0;
 pos = dim_in;
 index = 0;
 n = 0;
 row_ptr = &(MPVQ_offsets[n]);

 /* MPVQ-index composition loop */
 tmp_h_row = row_ptr[0];
 for (pos--; pos >= 0; pos--) {
 tmp_val = vec_in[pos];
 [index, next_sign_ind] = encPushSign(tmp_val, next_sign_ind, index);
 index += tmp_h_row;
 k_val_acc += abs(tmp_val);

 if (pos != 0) {
 n += 1; /* switch row in offset table MPVQ_offsets(n, k) */
 }
 row_ptr = &(MPVQ_offsets[n]);
 tmp_h_row = row_ptr[k_val_acc];
 }
 lead_sign_ind = next_sign_ind;

 return [index, lead_sign_ind] ;
}

[index, next_sign_ind] =
encPushSign(val, next_sign_ind_in, index_in)
{
 index = index_in;
 if ((next_sign_ind_in & 0x80000000U) == 0) && (val != 0) {
 index = 2*index_in + next_sign_ind_in;
 }
 next_sign_ind = next_sign_ind_in;
 if (val < 0) {
 next_sign_ind = 1;
 }
 if (val > 0){
 next_sign_ind = 0;

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)38

 }
 /* if val==0, there is no new sign information to "push",
 i.e. next_sign_ind is not changed */
 return [index, next_sign_ind];
}

The MPVQ_enum() function above implements a PVQ-enumeration method that passes through all the possible
combinations of signed elements given the input signed integer PVQ-vector vec_in, while sequentially pushing one
bit of sign information from the end of the vector (pos= dim_in-1) towards the front(pos=0). The function
encPushSign() stores the information about the other non-leading signs in the larger of two codewords. This
enumeration method enables a separation of a large total PVQ-index into two shorter separate codewords.

The following MPVQ enumeration calls are made for a selected shape_j.

Table 5.12: Scale factor VQ second stage shape enumeration of integer vector yshape_j into MPVQ
shape indices{idxA, idxB}, and leading signs indices{LS_indA, LS_indB}

for each possible selected shape index shape_j

Shape
index

(shape_j)
Shape name Scale factor set A enumeration Scale factor set B enumeration

0 'regular' [idxA , LS_indA] = MPVQenum(10, 10, y0)
z(n-10) = y0(n), for n=10...15

[idxB, LS_indB] = MPVQenum(6, 1, z)
1 'regular_lf' [idxA, LS_indA] = MPVQenum(10, 10, y1) n/a
2 'outlier_near' [idxA, LS_indA] = MPVQenum(16, 8, y2) n/a
3 'outlier_far' [idxA, LS_indA] = MPVQenum(16, 6, y3) n/a

5.3.7.3.4 Multiplexing of SNS VQ Codewords

The SNS VQ Stage 1 codewords are multiplexed in the following order: ���_��(5 bits) followed by ���_��(5 bits).

The second stage SNS VQ codeword multiplexing is performed differently depending on the selected shape shape_j.

To efficiently use the available 38 bits for the second stage SNS scale factor quantizer, the fractional sized
MPVQ-indices, the LSB of shape index j, the second stage shape codewords and potentially an LSB of the gain
codeword are jointly encoded. The overall parameter encoding order for the second stage multiplexing components is
shown in Table 5.13.

Table 5.13: Multiplexing order and parameters for the second stage

SNS-VQ
Multiplexing

order

Stage 2 parameter
description

Parameter

0 Stage 2 submode bit shape_j>>1, (as the submodeMSB bit)

1 Gain index gain_i or
MSBs of the adjustment

gain index gain_i

gain_i , (the gain index), for even(shape_j)
(or gain_i>>1; for odd (shape_j)

2 Leading sign of shape in
set A

LS_indA

3 A joint shape index (for set
A and set B) and possibly

an LSB gain bit

Joint composition of :
�����

,
, ��_���	, ���	, ��	������� , ��	�	
�

The LSB submode bit is encoded as a bitspace section inside the
overall joint shape codeword indexjoint

In the multiplexing of leading signs LS_indA and/or LS_indB, each leading sign is multiplexed as 1 if the leading sign is
negative and multiplexed as a 0 if the leading sign is positive.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)39

Table 5.14: Submode bit values, sizes of the various second stage MPVQ shape indices, and the
adjustment gain separation sections for each shape index (= shape_j)

Shape index
(shape_j) Shape name

Submode
bit value
(regular/
outlier)

SZMPVQ Set A
(excl. LS_indA)

SZMPVQ Set B
(excl. LS_indB)

Number
of

LSB gain
index
code

points

Adjustment
gain index bit

separation
{MSBs, LSB}

0 'regular' 0
SZshapeA,0 =
2390004

(~21,1886 bits)

SZshapeB,0 = 6
(~2,585 bits)

0 {1, 0}

1 'regular_lf' 0 SZshapeA,1 =
SZshapeA,0

SZshapeB,1 = 1
(0 bits)

2 {1, 1}

2 'outlier_near' 1
SZshapeA,2 =
15158272

(~23,8536 bits)
n/a 0 {2, 0}

3 'outlier_far' 1
SZshapeA,3 =

774912
(~19,5637 bits)

n/a 2 {2, 1}

In Table 5.14 one can find that each logical shape index shape_j also represents a combination of a vector shape and an
allocation of gain adjustment bits {MSBs, LSB} for that logical index. Each of the four different of gain-shape coding
schemes have different trade-offs in gain resolution (ranging from 1 to 3 bits per residual vector) and in shape resolution
(ranging from ~1,22 to ~2,11 bits per residual coefficient), thus enabling the second stage SNS-VQ to represent signals
requiring both high shape resolution and signals requiring a high dynamic range.

Encoding of gain or MSBs of gains:

For a selected shape with shape index shape_j = 0 and shape_j = 2, submodeLSB is set to 0, and the selected gain index
is sent without modification as index gain_i, for gain value �����_� ,�����_	, requiring 1 bit for shape_j = 0 and 2 bits for
shape_j = 2.

For a selected shape with shape index shape_j = 1 and shape_j = 3, submodeLSB is set to1, and for a selected gain
value �����_� ,�����_	 with gain index i, the MSB part of the gain index is first obtained by a removal of the LSBgain bit.
I.e. gain_i MSBs = gain_i >> 1;LSBgain = gain_i &0x1. The multiplexing of gain_iMSBs will require 1 bit for shape_j = 1
and 2 bits for shape_j = 3. The LSBgain bit will be multiplexed into the joint index.

Joint index composition:

Joint index for a selected shape index of shape_j = 0 ('regular') and submodeLSB = 0

�����	
���,� = �2 ∙ ���� + 	
_���� + 2� ∙
������,� + ��� �55�
where the range of idxB is from 0 to (SZshapeB,0 -1).

Joint index for a selected shape index of shape_j = 1 ('regular_lf') and submodeLSB = 1

�����	
���,� = 	
����� ∙
������,� + ��� �56�
as log2(SZshapeB,1) = 0 bits are required for set B, idxB is not multiplexed into indexjoint,1.

Joint index for a selected shape index of shape_j = 2 ('outlier_near') and submodeLSB = 0

�����	
���,� = ��� �57�
Joint index for a selected shape index of shape_j = 3 ('outlier_far') and submodeLSB = 1

�����	
���,� =
������,� + 	
����� + 2 ∙ ��� �58�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)40

5.3.7.3.5 Synthesis of the Quantized SNS scale factor vector

The quantized first stage vector st1, the quantized second stage unit energy shape vector ��,�����_	, the quantized
adjustment gain �����_�,�����_	 (with gain index gain_i), and the rotation matrix D (now used to implement the synthesis
IDCT transform) are used to establish the quantized scale factor vector ������� as follows:

������� = ��1��� + �����_� ,�����_	 ∙ � ���,�����_	(���) ∙ ����� + � ∙ 16 ��
��

�
���

, ��� � = 0 … 15 �59�

5.3.7.4 SNS scale factors interpolation

The quantized scale factors ������� (obtained in clause 5.3.7.3) are interpolated using:

��������0� = �����0�
��������1� = �����0�

��������4� + 2� = ������� +
1

8
������� + 1� − �������� ��� � = 0. . 14

��������4� + 3� = ������� +
3

8
������� + 1� − �������� ��� � = 0. . 14

��������4� + 4� = ������� +
5

8
������� + 1� − �������� ��� � = 0. . 14

��������4� + 5� = ������� +
7

8
������� + 1� − �������� ��� � = 0. . 14

��������62� = �����15� +
1

8
������15� − �����14��

��������63� = �����15� +
3

8
������15� − �����14��

�60�

In case, the codec is configured to operate on a number of bands �� < 64, the number of scale factors need to be
reduced using the following pseudo code:

If �� < 32
 n4=round(abs(1-32/��)* ��)
 n2 = �� - n4

 for i=0..n4-1

 tmp(i) =
�

�
∑ �������(�)������
����

for i=0..n2-1

 tmp(n4+i) =
�

�
∑ �������(�)����������
��������

else if 		 < 64
 n2 = 64 -		;

for i=0..n2-1

 tmp(i) =
�

�
∑ �������(�)������
����

for i=n2.. 		-1
 tmp(i) = �������(n2 + �)

In case �� < 64, the the vector tmp is copied to �������. Finally, the scale factors are transformed back into the linear
domain using:

	���
�� = 2�����	
��� �� � = 0 … ��
61�

5.3.7.5 Spectral shaping

The SNS scale factors 	���
�� are applied on the MDCT frequency coefficients for each band separately in order to
generate the shaped spectrum ��(�) as outlined by the following code:

for b=0 to 	
 − 1 do
 for k=
��(�) to
���� + 1 − 1

 ��(�) = ��� ∙ ����

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)41

5.3.8 Bandwidth control

For specific scenarios a bandwidth restricted LC3plus frame might be required. The bandwidth is controlled by the
parameter �� representing the audio bandwidth in Hz. Depending on ��, the start frequency index �	 is calculated by

�	 = ��� ∙
���

���
�. A short roll-off is applied on the shaped MDCT spectrum and the remaining lines are set to zero.

��
�	 + �� ← ��
�	 + �� ∙ 2������ �� � = −1 … 2

 ��
�	 + �� = 0 �� � = 3 …��

62�

5.3.9 Temporal Noise Shaping (TNS)

5.3.9.1 Overview

Temporal Noise Shaping (TNS) is used to control the temporal shape of the quantization noise within each window of
the transform. If TNS is active in the current frame, up to two filters per MDCT-spectrum will be applied. The
processing steps are outlined in Figure 5.6.

Figure 5.6: TNS encoder overview

The number of filters for each configuration and the start and the stop frequency of each filter are given in Table 5.15.

Table 5.15: TNS encoder parameters

�
��

 Bandwidth num_tns_filters start_freq(f) stop_freq(f) sub_start(f,s) sub_stop(f,s)
2,5 NB 1 {3} {20} {{3, 10}} {{10, 20}}
2,5 WB 1 {3} {40} {{3, 20}} {{20, 40}}
2,5 SSWB 1 {3} {60} {{3,30}} {{30, 60}}
2,5 SWB 1 {3} {80} {{3, 40}} {{40, 80}}
2,5 FB 1 {3} {100} {{3, 51}} {{51, 100}}
5 NB 1 {6} {40} {{6, 23}} {{23, 40}}
5 WB 1 {6} {80} {{6, 43}} {{43, 80}}
5 SSWB 1 {6} {120} {{6, 63}} {{63, 120}}

5 SWB 2 {6, 80} {80, 160} {{6, 43},
{80, 120}}

{{43, 80},
{120, 160}}

5 FB 2 {6, 100} {100, 200} {{6, 53},
{100, 150}}

{{53, 100},
{150, 200}}

7,5 NB 1 {9} {60} {{9, 26, 43}} {{26, 43, 60}}
7,5 WB 1 {9} {120} {{9, 46, 83}} {{46, 83, 20}}
7,5 SSWB 1 {9} {180} {{9, 66, 123}} {{66, 123, 180}}

7,5 SWB 2 {9, 120} {120, 240} {{9, 46, 82},
{120, 159, 200}}

{{61, 110, 160},
{213, 266, 320}}

7,5 FB 2 {9, 150} {150, 300} {{9, 56, 103},
{150, 200, 250}}

{{56, 103, 150},
{200, 250, 300}}

10 NB 1 {12} {80} {{12, 34, 57}} {{34, 57, 80}}
10 WB 1 {12} {160} {{12, 61, 110}} {{61, 110, 160}}
10 SSWB 1 {12} {240} {{12, 88, 164}} {{88, 164, 240}}

10 SWB 2 {12, 160} {160, 320} {{12, 61, 110},
{160, 213, 266}}

{{61, 110, 160},
{213, 266, 320}}

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)42

�
��

 Bandwidth num_tns_filters start_freq(f) stop_freq(f) sub_start(f,s) sub_stop(f,s)

10 FB 2 {12, 200} {200, 400} {{12, 74, 137},
{200, 266, 333}}

{{74, 137, 200},
{266, 333, 400}}

The TNS encoding steps are described in the clauses below. First, an analysis estimates a set of reflection coefficients
for each TNS Filter. Then, these reflection coefficients are quantized. And finally, the MDCT-spectrum is filtered using
the quantized reflection coefficients.

5.3.9.2 TNS analysis

The complete TNS analysis described below is repeated for every TNS filter �, with � = 0 … num_tns_filters-1
(�um_filters is given in Table 5.15).

The normalized autocorrelation function is calculated as follows, for each � = 0 … 8:

���� =

⎩⎪⎨
⎪⎧����� , if
���� = 0

�

���

∑ ��������� + ��sub_stop(f,s)-1-k
��sub_start��,������

�

���

, otherwise

 �63�

where:

����� = �3 , �� � = 0

0 , ��ℎ������ �64�

and

���� = ������sub_stop(f,s)-1

��sub_start��,��

 ��� � = 0 … 2 �65�

where sub_start(�, �) and sub_stop(�, �) are given in Table 5.15.

The normalized autocorrelation function is lag-windowed using:

�	��� = ����exp �−
1

2
�0,02����� ��� � = 0 … 8 �66�

The Levinson-Durbin recursion is used to obtain LPC coefficients ����, � = 0 … 8 and a prediction error �. It is
described by the following pseudo code:

� = ���0�

���0� = 1

for � = 1 to 8 do

 �� =
�∑ �������	��
���

���
���

�

 �
�0� = 1

 for � = 1 to � − 1 do

 �
��� = �
����� + �� ∙ �
���� − ��

 �
��� = ��

 � = �1 − ��� ∙ �

where ���� = �
���, � = 0 … 8 are the estimated LPC coefficients and � is the prediction error.

The decision to turn the TNS filter � on or off in the current frame is based on the prediction gain and the
near_nyquist_flag.

If predGain > �ℎ���ℎ and the near_nyquist_flag obtained in clause 5.3.4a is 0, then turn on the TNS filter �with �ℎ���ℎ = 1,5 and the prediction gain is computed by:

predGain =
�	�0�� �67�

The additional steps described below are performed only if the TNS filter � is turned on.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)43

A weighting factor is computed by:

� = �1 − �1 − ����� �ℎ���ℎ2 − predGain�ℎ���ℎ2 − �ℎ���ℎ
, if tns_lpc_weighting = 1 and predGain < �ℎ���ℎ2

1 , otherwise
�68�

where �ℎ���ℎ2 = 2, ���� = 0,85, and

tns_lpc_weighting = �1 , if nbits < 480

0 , otherwise
 �69�

The LPC coefficients are weighted using the factor �: �	��� = ����� ��� � = 0 … 8 �70�

The weighted LPC coefficients are converted to reflection coefficients using the following algorithm:

����� = �����,� = 0, … ,8

for � = 8 to 1 do

 ���� − 1� = �
���

 � = �1 − ���� − 1��

 for � = 1 to � − 1 do

 �
����� =
������	��
�����(
��)

�

where ����, �� = �����, � = 0 … 7 are the final estimated reflection coefficients for the TNS filter �.

If the TNS filter � is turned off, then the reflection coefficients are simply set to 0: ����, �� = 0, � = 0 … 7.

5.3.9.3 Quantization

For each TNS filter �, the reflection coefficients obtained in clause 5.3.9.2 are quantized using scalar uniform
quantization in the arcsine domain:

�����, �� = nint �arcsin�����, ���
Δ

 + 8 ��� � = 0 … 7 �71�

and

�����, �� =
nint!2�� ∙ sin!Δ������, �� − 8�""

2��
 ��� � = 0 … 7 �72�

where Δ =
�

��
 and nint(.) is the rounding-to-nearest-integer function. �����, �� are the quantizer output indices and �����, �� are the quantized reflection coefficients rounded to a 16-bit

precision to unify representation on various platforms.

The order of the quantized reflection coefficients is calculated using:

� = 7
while � ≥ 0 and �����,	� = 0 do
 � = � − 1
���	��	() = � + 1

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)44

The total number of bits consumed by TNS in the current frame can then be computed as follows:

�#������ = $2 048 + �#�������������� + �#�������������
2 048

%num_tns_filters��

���

 �73�

with:

�#�������������� = �ac_tns_order_bits[tns_lpc_weighting][���������� − 1] , �� ���������� > 0

0 , ��ℎ������ �74�

and

�#������������� = & ac_tns_coef_bits!�"!�����, ��"������������

��

, �� ���������� > 0

0 , ��ℎ������ �75�

The tables ac_tns_order_bits and ac_tns_coef_bits are given in clause 5.9.4.

5.3.9.4 Filtering

The MDCT spectrum ��(�) is filtered using the following algorithm:

for � = 0 to (
� − 1) do
 ����� = �����

�� = �� = ⋯ = �� = 0

for 	 = 0 to num_tns_filters-1 do

 if ����	��	�	� > 0�

 for � = start_freq�	� to stop_freq�f� − 1 do

 = �����
 ����� =

 for � = 0 to ����	��	�	� − 1� do
 st��� = �����,	� ∙ t + st�

 t = t + �����,	�st�

 st� = st����
 st���� = st���

 ����� = (�)

where ��(�) is the TNS filtered MDCT spectrum. The initial condition for ��� − 1� for the first TNS filter (f = 0) is
0, for the second TNS filter (f = 1) is carried over from the first TNS filter (f = 0).

5.3.10 Long Term Post Filter (LTPF)

5.3.10.1 Overview

A Long Term Post Filter (LTPF) module controls a pitch based postfilter on the decoder side which perceptually shapes
quantization noise in spectral valleys. Figure 5.7 outlines the processing steps of the LTPF encoder.

Figure 5.7: LTPF encoder overview

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)45

NOTE: The processing of the LTPF decoder (clause 5.4.9) depends on the bitrate of the current frame. At high
bitrates (see clause 5.4.9.3 for exact parameters), the coefficients ���� and ���� are set to zero, meaning
that the transition handling (clause 5.4.9.2) has no effect on the input data. However, the pitch
information computed in clause 5.3.10.7 is very valuable for a packet loss concealment algorithm and is
therefore calculated and encoded into the bitstream on the encoder side regardless of the bitrate of the
current frame.

5.3.10.2 Time-domain signals

Several time-domain signals are computed in the LTPF encoder described below. These are processed with filters which
contain a memory and thus operate on audio samples computed in the previous frames. For simplicity, audio samples of
past frames are accessed by negative indexing, e.g. '��−1� is the most recent sample of the signal '� in the previous
frame. Note that in practice, a buffer mechanism would have to be implemented.

5.3.10.3 Resampling

The input signal at sampling rate �� is resampled at a fixed sampling rate of 12,8 kHz (for input sampling rates of 8, 16,
24, 32 and 48 kHz and to about 11,76 kHz for input sampling rate of 44,1 kHz). The resampling is performed using an
upsampling step followed by a low-pass-filtering step followed by a downsampling step approach that can be
formulated as a polyphase implementation as follows:

'��,
��� = ������ ∙ ('�)*15�(+ + � −
120(, ℎ��,
�(∙ � − 15 ∙ � ∙ (mod ()�

���
�

��
���
�

 ��� � = 0 … -����,
 − 1 �76�

where '�(�) is the scaled input signal, '��,
(�) is the resampled signal at 12,8 kHz, (=
��� !

��
 is the upsampling factor

(note that (= 4 for �� = 44,1 �./) and ℎ��,
 is the impulse response of a FIR low-pass filter given by:

ℎ��,
��� = �tab_resamp_filter!� + 119" , if − 120 < � < 120

0 , otherwise
 �77�

with the table tab_resamp_filter values are given in clause 5.9.5 and the length of the resampled signal defined as:

-����,
 =
0�� ∙ 128

10
 �77.1�

and

������ = �0,5, �� �� == 8 �./
1, ��ℎ������ �77.2�

5.3.10.4 High-pass filtering

The resampled signal is high-pass filtered using a 2-order IIR filter with a cut-off frequency of 50 Hz and a transfer
function given by:

.���/� =
0,9827947082978771 − 1,965589416595754/�� + 0,9827947082978771/��

1 − 1,9652933726226904/�� + 0,9658854605688177/�� �78�

The high-pass filtered signal is denoted as '1��,
��� in the following. The high-pass filtered signal is further delayed by
24 samples: '1��,
_"��� = '1��,
�� − 2#��$� ��� � = 0 … -����,
 + 1 �79�

where a negative index of '1��,
 means that the samples has been taken from the previous processed frame. At start-up,
these values are considered to be zero (the last 2#��$ values of the previously processed frame). 2#��$ = 44 samples for 0�� = 7,5 ms, otherwise 2#��$ = 24.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)46

5.3.10.5 Pitch detection algorithm

The delayed 12,8 kHz signal '1��,
_"(�) is downsampled by a factor of 2 to 6,4 kHz using:

'%,&��� = '1��,
_"�2� + � − 3�ℎ����&

��

 ��� � = 0 … -��%,& − 1 �80�

where:

-��%,& =
-����,

2
 �80.1�

with the FIR filter coefficients given by:

ℎ[5] = {
0,1236796411180537, 0,2353512128364889, 0,2819382920909148, 0,2353512128364889, 0,1236796411180537}

The autocorrelation of '%.&(�) is computed by:

3%,&��� = '%,&���'%,&�� − �� ��� � = ���� … ���'(���,	��

��)�,	

 �81�

where ���� = 17 and ���' = 114 as the minimum and maximum lags and Δ%,& = −48 for N*+ = 2,5, Δ%,& = −32 for
N*+ = 5 and Δ%,& = 0 for N*+ > 5. A negative index of '%,& means that the sample has been taken from the previous
processed frame. At start-up, these values shall be set to zero.

The autocorrelation is weighted using: 3%,&
	 ��� = 3%,&������� ��� � = ���� … ���' �82�

where �(�) is defined as follows:

���� = 1 − 0,5
�� − ���������' − ����� ��� � = ���� … ���' �83�

The first estimate of the pitch-lag 4� is the lag that maximizes the weighted autocorrelation: 4� = argmax
�
��…
�

3%,&
	 ��� �84�

The second estimate of the pitch-lag 4� is the lag that maximizes the non-weighted autocorrelation in the neighborhood
of the pitch-lag estimated in the previous frame: 4� = argmax

�
��
�

…
�
�

3%,&��� �85�

with ����, = max (���� , 4-��. − 4), ���', = min (���' , 4-��. + 4) and 4-��. is the final pitch-lag estimated in the
previous frame for N*+ > 5 (4-��. = ���� in the first frame). For N*+ = 5, 4-��. is the final pitch-lag estimated in the
frame preceding the previous frame, i.e, 4-��. is updated every second frame. For N*+ = 2,5, 4-��. is the final pitch-lag
estimated three frames prior, i.e 4-��. is updated every fourth frame. Note that if more than one lag maximizes the
(non-weighted) autocorrelation, the smallest lag is chosen.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)47

The final estimate of the pitch-lag in the current frame is then given by:

4���� = 54�
if normcorr�'%,&, ����(�� , 4�� ≤ 0,85 ∙ normcorr�'%,&, ����(�� , 4��4� otherwise

 �86�

where normcorr(', 6, 4) is the normalized correlation of the signal ' of length 6 at lag 4:

 normcorr�', 6, 4� = max ⎝
⎛0,

∑ '���'�� − 4�#��
��)�,	9∑ '����#��

��)�,	
∑ '��� − 4�#��
��)�,	 ⎠

⎞ �87�

and

 ����(�� = &64, 0�� = 10

48, 0�� = 7,5

32, 0�� = 5

16, 0�� = 2,5

 �87.1�

A negative index of x means that the sample has been taken from the previous processed frame. At start-up, these
values shall be set to zero.

5.3.10.6 LTPF bitstream

The first bit of the LTPF bitstream signals the presence of the pitch-lag parameter in the bitstream. It is obtained by:

pitch_present = �1 if normcorr�'%,&, ����(�� , 4����� > 0,6

0 otherwise
 �88�

If pitch_present is 0, no more bits are encoded, resulting in a LTPF bitstream of only one bit.

If pitch_present is 1, two more parameters are encoded, one pitch-lag parameter encoded on 9 bits, and one bit to signal
the activation of LTPF. In that case, the LTPF bitstream is composed by 11 bits.

�#���#��$ = �1 , �� pitch_present = 0

11 , ��ℎ������ �89�

The pitch-lag parameter and the activation bit are obtained as described in the following clauses.

5.3.10.7 LTPF pitch-lag parameter

The integer part of the LTPF pitch-lag parameter is given by:

pitch_int = argmax
�
��

��
…
�

��
3��,
��� �90�

with:

3��,
��� =
∑ '1��,
_"���'1��,
_"�� − ��(����,���

��)��,�9∑ '1��.
�
� ���(����,���

��)��,�
∑ '1��,
�

� �� − ��(����,���

��)��,�

 ��� � = (����,, − 4) … (���',, + 4) �91�

and ����,, = max (32, 24���� − 4), ���',, = min (228, 24���� + 4) and Δ��,
 = −32 for N*+ = 2,5 and Δ��,
 = 0 for
N*+ > 2,5.

A negative index of '1��,
_" means that the sample has been taken from the previous processed frame. At start-up, these
values shall be set to zero.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)48

The fractional part of the LTPF pitch-lag is then given by:

pitch_fr =

⎩⎪⎨
⎪⎧0 if pitch_int ≥ 157

argmax
����,�,�

�����<�=� if 157 > pitch_int ≥ 127

argmax
���/…/

�����<�=� if 127 > pitch_int > 32

argmax
���…/

�����<�=� if pitch_int = 32

 �92�

with:

�����<�=� = 3��,
�pitch_int + >�ℎ&�4> − =�&

���&

, �93�

= being an array of pre-defined indices dependent on pitch_int and ℎ& is the impulse response of a FIR low-pass filter
given by:

ℎ&��� = �tab_ltpf_interp_R�� + 15� , if − 16 < � < 16

0 , otherwise
 �94�

with tab_ltpf_interp_R is provided by Table 5.42 in clause 5.9.5. However, if pitch_int = ����,, , then = in Equation (92)
is starting from 0.

If pitch_fr < 0 then both pitch_int and pitch_fr are modified according to:

pitch_int = pitch_int − 1

pitch_fr = pitch_fr + 4
 �95�

Finally, the pitch-lag parameter index is given by:

pitch_index = &pitch_int + 283 if pitch_int ≥ 157

2 ∗ pitch_int +
pitch_fr

2
+ 126 if 157 > pitch_int ≥ 127

4 ∗ pitch_int + pitch_fr − 128 if 127 > pitch_int

 �96�

5.3.10.8 LTPF activation bit

A normalized correlation is first computed as follows:

�� =
∑ '���, 0�'��� − pitch_int, −pitch_fr�(����,���

��)��,�9∑ '����, 0�(����,���

��)��,�
∑ '���� − pitch_int, −pitch_fr�(����,���

��)��,�

 �97�

with:

'���, =� = '1��,
_"�� + ��ℎ��4� − =��

���

 �98�

and ℎ� is the impulse response of a FIR low-pass filter given by:

ℎ���� = �tab_ltpf_interp_x12k8�� + 7� , if − 8 < � < 8

0 , otherwise
 �99�

with tab_ltpf_interp_x12k8 is given in clause 5.9.5.

The LTPF activation bit is then set according to:

if (gain_ltpf)
{

if (
 (mem_ltpf_active==0 && (
!� == 10 || mem_mem_nc > 0.94) && mem_nc>0.94 && nc>0.94) ||
 (mem_ltpf_active==1 && nc>0.9) ||
 (mem_ltpf_active==1 && abs(pitch-mem_pitch)<2 && (nc-mem_nc)>-0.1 && nc>0.84)
)

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)49

{
 ltpf_active = 1;
}
else
{
 ltpf_active = 0;
}

} else
{
 ltpf_active = 0;
}

where mem_ltpf_active is the value of ltpf_active in the previous frame (it is 0 if pitch_present = 0 in the previous
frame), mem_nc is the value of nc in the previous frame (it is 0 if pitch_present = 0 in the previous frame),
mem_mem_nc is the value of nc in the penultimate frame, pitch = pitch_int+pitch_fr/4, mem_pitch is the value of pitch
in the previous frame (it is 0 if pitch_present == 0 in the previous frame) and gain_ltpf is a global parameter of the
LTPF obtained in clause 5.4.9.3.

The LTPF shall be disabled for signals with a comparatively high energy in the range close to the Nyquist frequency;
therefore, the value of ltpf_active is set to 0 if the near_nyquist_flag in clause 5.3.4a is 1.

5.3.11 Spectral quantization

5.3.11.1 Overview

The MDCT spectrum after TNS filtering (��(�), see clause 5.3.9.4) is quantized using dead-zone plus uniform
threshold scalar quantization and the quantized MDCT spectrum ����� is then encoded using arithmetic encoding.
A global gain ?? controls the step size of the quantizer. This global gain is quantized with 8 bits and the quantized
global gain index ??��� is then an integer between 0 and 255. The global gain index is chosen such that the number of
bits needed to encode the quantized MDCT spectrum is as close as possible to the available bit budget.

5.3.11.2 Bit budget

The number of bits available for coding the spectrum is given by: �#����-�� = �#��� − �#���0	 − �#������ − �#���#��$ − �#������ − �#���1��� − �#����� − �#������ �100�

with �#��� given in clause 5.2.5, �#���0	 given in clause 5.3.5, �#������ given in clause 5.3.9.3, �#���#��$ given in
clause 5.3.10.6, �#������ = 38, �#���1��� = 8, �#����� = 3, and

�#������ =

⎩⎪
⎨
⎪⎧@log�)02

2
,A + 3 , if �#��� ≤ 1 280

@log�)02
2

,A + 4 , if 1 280 < �#��� ≤ 2 560

@log�)02
2

,A + 5 , otherwise

 �101�

5.3.11.3 First global gain estimation

An offset is first computed using:

�#��������3 = �0,8 ∙ �#��������3�(� + 0,2 ∙ min�40, max�−40, �#��������3�(� + �#����-���(� − �#�����3�(��� , if ����������3�(� = 0

0 , otherwise
�102�

with �#��������3�(� is the value of �#��������3 in the previous frame, �#����-���(� is the value of �#����-�� in the previous
frame, �#�����3�(� is the value of �#�����3 in the previous frame (�#�����3 is computed in clause 5.3.11.5) and ����������3�(�
is the value of ����������3 in the previous frame (����������3 is computed at the end of this clause). Note that �#��������3�(� , �#����-���(� , �#�����3�(� and ����������3�(� are all initialized to zero before the first frame is processed. If the
spectrum was re-quantized in the previous frame, �#��������3�(� , �#����-���(� ��= ����������3�(� refer to the values prior to
re-quantization.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)50

This offset is then used to adjust the number of bits available for coding the spectrum:

�#����-��, = nint��#����-�� + �#��������3� �103�

A global gain index is then estimated such that the number of bits needed to encode the quantized MDCT spectrum is as
close as possible to the available bit budget. This estimation is based on a low-complexity bisection search which
coarsely approximates the number of bits needed to encode the quantized spectrum. The algorithm can be described as
follows:

Compute the quantized gain index offset ??��� by:

??��� = − min)115, * �#���
10 ∙ (����� + 1)

+, − 105 − 5 ∙ (����� + 1) �104�

and the energy E[k] (in dB) of blocks of 4 MDCT coefficients given by:

B��� = 10 ∙ log�� C2�/� + ���4 ∙ � + ���/

���

� ��� � = 0 …
��
4

− 1 �105�
and conduct the following steps:

fac = 256;
����� = 255;
for (iter = 0; iter < 8; iter++)
{
 fac >>= 1;
 ����� -= fac;
 tmp = 0;
 iszero = 1;
 for (i = ��/4-1; i >= 0; i--)
 {
 if (E[i]*28/20 < (�����+�����))
 {
 if (iszero == 0)
 {
 tmp += 2.7*28/20;
 }
 }
 else
 {
 if ((�����+�����) < E[i]*28/20 - 43*28/20)
 {
 tmp += 2*E[i]*28/20 – 2*(�����+�����) - 36*28/20;
 }
 else
 {
 tmp += E[i]*28/20 – (�����+�����) + 7*28/20;
 }
 iszero = 0;
 }
 }
 if (tmp > �������	

� *1.4*28/20 && iszero == 0)
 {
 ����� += fac;
 }
}

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)51

Finally, the quantized gain index is limited such that the quantized spectrum stays within the range [-32 767, 32 767]:

if (����� < ����� || ��
�� == 0)

{
 ����� = �����;
 	
�
�����	� = 1;
}
else
{
 	
�
�����	� = 0;
}

with:

		��� =
�28 ∙ log10� ����
32 767 − 0,375

�� − 		��� , if ���� > 0

0 , otherwise

 �106�
and

���� = max
	
����

������ �107�
5.3.11.4 Quantization

The quantized global gain index found in clause 5.3.11.3 is first unquantized using:

		 = 10
�������

�� �108�
The spectrum � is then quantized using:

���� =

⎩⎪⎨
⎪⎧�����		 + 0,375� , if ���� ≥ 0

�����		 − 0,375� , otherwise

 ��� � = 0 …�� − 1 �109�

5.3.11.5 Bit consumption

The number of bits �������� needed to encode the quantized MDCT spectrum ���� can be accurately estimated using
the algorithm below. In the first calculation of bit consumption, the modeFlag is initialized to -1, whereas in a possible
second calculation step after the global gain adjustment, the modeFlag shall be initialized to 0.

Two bitrate flags are first computed using:

if (nbits > (160 + ��
��� * 160))

{
 rateFlag = 512;
}
else
{
 rateFlag = 0;
}
if (modeFlag == 0 && (nbits >= (480 + ��

��� * 160)))
{
 modeFlag = 1;
}
else
{
 modeFlag = 0;
}

Then the index of the last non-zeroed 2-tuple is obtained by:

lastnz = ��;
while (lastnz>2 && ��[lastnz-1] == 0 && ��[lastnz-2] == 0)
{
 lastnz -= 2;
}

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)52

The number of bits �������� is then computed as follows:

�����	�� = 0;
���������
 = 0;
�������� = 0;

if (modeFlag < 0) {
 lastnz_trunc = lastnz;
} else {
 lastnz_trunc = 2;
}
c = 0;
for (n = 0; n < lastnz; n=n+2)
{
 t = c + rateFlag;
 if (n > ��/2)
 {
 t += 256;
 }
 a = abs(��[n]);
 b = abs(��[n+1]);

 if (modeFlag <= 0) {
 �����	�� = �����	�� + min(a, 1) * 2048;
 �����	�� = �����	�� + min(b, 1) * 2048;
 }

 lev = 0;
 while (max(a,b) >= 4)
 {
 pki = ac_spec_lookup[t+lev*1024];
 �����	�� += ac_spec_bits[pki][16];
 if (lev == 0 && modeFlag == 1)
 {
 �������� += 2;
 }
 else
 {
 �����	�� += 2*2048;
 }
 a >>= 1;
 b >>= 1;
 lev = min(lev+1,3);
 }
 pki = ac_spec_lookup[t+lev*1024];
 sym = a + 4*b;
 �����	�� += ac_spec_bits[pki][sym];
 a_lsb = abs(��[n]);
 b_lsb = abs(��[n+1]);
 �����	�� += (min(a_lsb,1) + min(b_lsb,1)) * 2048;
 if (lev > 0 && modeFlag == 1)
 {
 a_lsb >>= 1;
 b_lsb >>= 1;
 if (a_lsb == 0 && ��[n] != 0)
 {
 ��������++;
 }
 if (b_lsb == 0 && ��[n+1] != 0)
 {
 ��������++;
 }
 }
 �����	�� += (min(a,1) + min(b,1)) * 2048;
 if (modeFlag >= 0 && (��[n] != 0 || ��[n+1] != 0) && (�����	�� <= �������	
*2048))
 {
 lastnz_trunc = n + 2;
 ���������
 = �����	��;
 }
 if (lev <= 1)
 {
 t = 1 + (a+b)*(lev+1);
 }
 else
 {
 t = 12 + lev;

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)53

 }
 c = (c&15)*16 + t;
}
�����	�� = ceil(�����	��/2048) + ��������;
if (modeFlag >= 0) {
 ���������
 = ceil(���������
/2048);
} else {
 ���������
 = �����	��;
}

if (modeFlag > 0) {
 �����	�� = �����	�� + ��������;
 ���������
 = ���������
 + ��������;;
}

with ac_lookup and ac_bits determined by the tables given in clause 5.9.6, Table 5.43.

5.3.11.6 Truncation

The quantized spectrum is truncated such that the number of bits needed to encode it is within the available bit budget.

for (k = lastnz_trunc; k < lastnz; k++)
{
 ��[k] = 0;
}

with lastnz and lastnz_trunc given in clause 5.3.11.5.

A flag which allows the truncation of the LSBs in the arithmetic encoding/decoding is obtained using:

if (modeFlag == 1 && �����	�� > �������	
)
{
 lsbMode = 1;
}
else
{
 lsbMode = 0;
}

5.3.11.7 Global gain adjustment

The number of bits �������� (computed in clause 5.3.11.5) is compared with the available bit budget ���������
(computed in clause 5.3.11.2). If they are far from each other (as defined by the conditions given below), then the
quantized global gain index 		��� is adjusted and the spectrum is requantized using clauses 5.3.11.4, 5.3.11.5 and
5.3.11.6. The algorithm used to adjust the quantized global gain index 		��� is given below. Note that the whole
process is done only once. The value of ����������� shall not be updated if requantization is carried out.

if ((����� < 255 && �����	�� > �������	
) ||
 (����� > 0 && �����	�� < �������	
 – delta2))
{
 if (�����	�� < �������	
 – delta2)
 {
 ����� -= 1;
 }
 else if (����� == 254 || �����	�� < �������	
 + delta)
 {
 ����� += 1;
 }
 else
 {
 ����� += 2;
 }
 ����� = max(�����, �����);
}

where the delta values are obtained using:

if (�����	�� < t1[��
���])

{
 delta = (�����	��+48)/16;
}

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)54

else if (�����	�� < t2[��
���])

{
 tmp1 = t1[��

���]/16+3;
 tmp2 = t2[��

���]/48;
 delta = (�����	��-t1[��

���])*(tmp2-tmp1)/(t2[��
���]-t1[��

���]) + tmp1;
}
else if (�����	�� < t3[��

���])
{
 delta = �����	��/48;
}
else
{
 delta = t3[��

���]/48;
}
delta = nint(delta);
delta2 = delta + 2;

and the three tables t1, t2 and t3 are given below:

t1[5] = {80, 230, 380, 530, 680};
t2[5] = {500, 1025, 1550, 2075, 2600};
t3[5] = {850, 1700, 2550, 3400, 4250};

5.3.12 Residual coding

Residual coding uses the remaining non-used bits to refine the non-zero quantized coefficients. It is performed only
when lsbMode is 0.

Firstly, the maximum number of bits available for residual coding is calculated using:

nbits_residual_max = �������	
 - ���������
 + 4;

Then, the residual bits are computed using:

k = 0;
nbits_residual = 0;
while (k < �� && nbits_residual < nbits_residual_max)
{
 if (��[k] != 0)
 {
 if (��[k] >= ��[k]*gg)
 {
 res_bits[nbits_residual] = 1;
 }
 else
 {
 res_bits[nbits_residual] = 0;
 }
 nbits_residual++;
 }
 k++;
}

5.3.13 Noise level estimation

5.3.13.1 Overview

The noise level estimator controls the noise filling on decoder side. On encoder side, the noise level parameter is
estimated, quantized and transmitted in the bit stream.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)55

5.3.13.2 Relevant spectral lines

The noise level is estimated based on the spectral coefficients which have been quantized to zero, i.e. ���� == 0. The
indices for the relevant spectral coefficients are given by:

������ = �1 if ������� ≤ � < ������ �! ���� == 0 ��� "" � = � − ������� … min���_���#, � + ��_��!�ℎ�
0 otherwise

�110�
where ��_���# depends on the bandwidth detected in clause 5.3.5 as defined in Table 5.16.

Table 5.16: Mapping table $%_&'() according to bandwidth

 Bandwidth (����)
NB WB SSWB SWB FB

��_���� 8 ∙ ��� 16 ∙ ��� 24 ∙ ��� 32 ∙ ��� ��

The tuning parameters ��_�� �� and ��_��!�ℎ are given in Table 5.17.

Table 5.17: Tuning table for noise level estimation

	�� 	
_���� 	
_�����
2,5 6 1
5 12 1

7,5 18 2
10 24 3

5.3.13.3 Noise level calculation

For the identified indices, the mean level of the missing coefficients is estimated based on the spectrum after TNS
filtering (�(�), see clause 5.3.9.4) and normalized by the global gain. If nbytes is larger than 20 or if the frame length
is not 10 ms, the noise level is calculated as:

*�� =

∑ ������ ∙
������		����

� 	∑ ����������

� 	

�111�

where �� is defined in clause 5.3.4.3. Otherwise, if the frame length is 10 ms and nbytes equals 20, two noise levels are
calculated over the upper and lower half of the relevant spectral lines. To this end, a split point �	 is calculated as the
mean value of the relevant spectral lines, i.e.:

 �	 =
∑ "��#�$∙�
��	

��
∑ "��#�$
��	

��

The two noise levels are then computed as:

 *��� =
∑ "��#�$∙

�������
��

�

��
∑ "��#�$
�

��

and

 *��� =
∑ "��#�$∙

�������
��

��	

����

∑ "��#�$
��	

����

and the final noise level is calculated as *�� = min�*���, *����.

The final noise level is quantized to eight steps:

��� = ,���, -� ⌊8 − 16 ∙ *��⌉, 0�, 7� �112�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)56

5.3.14 Bitstream encoding

5.3.14.1 Overview

The bitstream of an encoded audio frame consists of the four parts:

• initial side information;

• a dynamic data block for which is arithmetically coded;

• a dynamic data block with signs and least significant bits of the encoded spectrum;

• residual data.

An overview on the bitstream structure and layout is provided in clause 5.5. The following clauses define the exact
payload writing process of all codec elements.

5.3.14.2 Initialization

bp = 0;
bp_side = nbytes – 1;
mask_side = 1;
c = 0;
nlsbs = 0;

for (i = 0; f < nbytes; i++)
{
 bytes[i] = 0;
}

5.3.14.3 Side information

/* Bandwidth */
if (������� > 0)
{
 write_uint_backward(bytes, &bp_side, &mask_side, ���
, �������);
}

/* Last non-zero tuple */
write_uint_backward(bytes, &bp_side, &mask_side, (lastnz_trunc >> 1) - 1, ceil(log2(��/2)));
/* LSB mode bit */
write_bit_backward(bytes, &bp_side, &mask_side, lsbMode);

/* Global Gain */
write_uint_backward(bytes, &bp_side, &mask_side, �����, 8);

/* TNS activation flag */
for (f = 0; f < num_tns_filters; f++)
{
write_bit_backward(bytes, &bp_side, &mask_side, min(���	����, 1));
}

/* Pitch present flag */
write_bit_backward(bytes, &bp_side, &mask_side, pitch_present);

/* Encode SCF VQ parameters - 1st stage (10 bits) */
write_uint_backward(bytes, &bp_side, &mask_side, ind_LF, 5);
write_uint_backward(bytes, &bp_side, &mask_side, ind_HF, 5);

/* Encode SCF VQ parameters - 2nd stage side-info (3-4 bits) */
write_bit_backward(bytes, &bp_side, &mask_side, shape_j>>1)
submode_LSB = (shape_j & 0x1); /* shape_j is the stage2 shape_index [0…3] */
submode_MSB = (shape_j>>1);
gain_MSBs = gain_i; /* where gain_i is the SNS-VQ stage 2 gain_index */
gain_MSBs = (gain_MSBs >> sns_gainLSBbits[shape_j]);
write_uint_backward(bytes,&bp_side,&mask_side,gain_MSBs, sns_gainMSBbits[shape_j]);
write_bit_backward(bytes, &bp_side, &mask_side, LS_indA);

/* Encode SCF VQ parameters - 2nd stage MPVQ data */
if (submode_MSB == 0) {
 if (submode_LSB == 0) {

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)57

 tmp = index_joint_0; /* Eq. 55 */
 } else {
 tmp = index_joint_1; /* Eq. 56 */
 }
 write_uint_backward(bytes, &bp_side, &mask_side, tmp, 13)
 write_uint_backward(bytes, &bp_side, &mask_side, tmp>>13, 12);
} else {
 if (submode_LSB == 0) {
 tmp = index_joint_2; /* Eq. 57 */
 } else {
 tmp = index_joint_3; /* Eq. 58 */
 }
 write_uint_backward(bytes, &bp_side, &mask_side, tmp, 12);
 write_uint_backward(bytes, &bp_side, &mask_side, tmp>> 12, 12);
}

/* LTPF data */
if (pitch_present != 0)
{
write_uint_backward(bytes, &bp_side, &mask_side, ltpf_active, 1);
write_uint_backward(bytes, &bp_side, &mask_side, pitch_index, 9);
}

/* Noise Factor */
write_uint_backward(bytes, &bp_side, &mask_side, ���, 3);

5.3.14.4 Arithmetic encoding

5.3.14.4.1 Overview

The TNS data (if TNS is active) and the quantized spectral coefficients � are noiselessly encoded. � is encoded
starting from the lowest-frequency coefficient, progressing to the highest-frequency coefficient. They are encoded by
groups of two coefficients a and b resulting in a so-called 2-tuple {a, b}.

Each frequency coefficient 2-tuple {a, b} is split into three parts namely, MSB, LSB and the sign. The sign is coded
independently from the magnitude using uniform probability distribution. Note that a and b may have different signs.
Signs are only coded for non-zero values of a and b. The magnitude itself is further divided into two parts. The two
Most Significant Bits (MSBs) of the 2-tuple {a, b} are combined and coded with an arithmetic encoder. The remaining
Least Significant Bit planes (LSBs, if applicable) are encoded individually using uniform probability distribution. For
2-tuples for which the magnitude of one of the two spectral coefficients is higher than 3, one or more escape symbols
are transmitted first for signalling any additional bit plane.

The relation between a 2-tuple, the individual spectral values a and b of a 2-tuple, the most significant bit planes m and
the remaining least significant bit planes, r, are illustrated in the example in Figure 5.8. In this example, three escape
symbols are sent prior to the actual value m, indicating three transmitted least significant bit planes.

Note that lsbMode==1 is a special case used for high-bitrate modes where the first bit plane (lev=0) is encoded
separately as residual bits.

Figure 5.8: Example of a coded pair (2-tuple) of spectral values a and b
and their representation as m and r

a
b
s
(A
m
p
li
tu
d
e
)

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)58

5.3.14.4.2 Pseudo code implementation

/* Arithmetic Encoder Initialization */
ac_enc_init(&st);

/* TNS data */
for (f = 0; f < num_tns_filters; f++)
{
 if (���	���� > 0)
 {
 ac_encode(bytes, &bp, &st,
 ac_tns_order_cumfreq[tns_lpc_weighting][���	����-1],
 ac_tns_order_freq[tns_lpc_weighting][���	����-1]);
 for (k = 0; k < 	���	����; k++)
 {
 ac_encode(bytes, &bp, &st, ac_tns_coef_cumfreq[k][���,��],
 ac_tns_coef_freq[k][���,��]);
 }
 }
}

c = 0;

/* Spectral data */
for (k = 0; k < lastnz_trunc; k += 2)
{
 t = c + rateFlag;
 if (k > ��/2)
 {
 t += 256;
 }
 a = abs(��[k]);
 b = abs(��[k+1]);
 lev = 0;
 while (max(a,b) >= 4)
 {
 pki = ac_spec_lookup[t+min(lev,3)*1024];
 ac_encode(bytes, &bp, &st, ac_spec_cumfreq[pki][16],
 ac_spec_freq[pki][16]);
 if (lsbMode == 1 && lev == 0)
 {
 lsb0 = a & 1;
 lsb1 = b & 1;
 }
 else
 {
 write_bit_backward(bytes, &bp_side, &mask_side, a & 1);
 write_bit_backward(bytes, &bp_side, &mask_side, b & 1);
 }
 a >>= 1;
 b >>= 1;
 lev++;
 }
 pki = ac_spec_lookup[t+min(lev,3)*1024];
 sym = a + 4*b;
 ac_encode(bytes, &bp, &st, ac_spec_cumfreq[pki][sym], ac_spec_freq[pki][sym]);
 a_lsb = abs(��[k]);
 b_lsb = abs(��[k+1]);
 if (lsbMode == 1 && lev > 0)
 {
 a_lsb >>= 1;
 b_lsb >>= 1;
 lsbs[nlsbs++] = lsb0;
 if (a_lsb == 0 && ��[k] != 0)
 {
 lsbs[nlsbs++] = ��[k]>0?0:1;
 }
 lsbs[nlsbs++] = lsb1;
 if (b_lsb == 0 && ��[k+1] != 0)
 {
 lsbs[nlsbs++] = ��[k+1]>0?0:1;
 }
 }
 if (a_lsb > 0)
 {
 write_bit_backward(bytes, &bp_side, &mask_side, ��[k]>0?0:1);

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)59

 }
 if (b_lsb > 0)
 {
 write_bit_backward(bytes, &bp_side, &mask_side, ��[k+1]>0?0:1);
 }
 lev = min(lev,3);
 if (lev <= 1)
 {
 t = 1 + (a+b)*(lev+1);
 }
 else
 {
 t = 12 + lev;
 }
 c = (c&15)*16 + t;
}

5.3.14.5 Residual data and finalization

/* Residual bits */
nbits_side = nbits – (8 * bp_side + 8 – log2(mask_side));
nbits_ari = bp * 8;
nbits_ari += 25 – floor(log2(st->range));
if (st->cache >= 0)
{
 nbits_ari += 8;
}
if (st->carry_count > 0)
{
 nbits_ari += st->carry_count * 8;
}
nbits_residual_enc = nbits – (nbits_side + nbits_ari);
if (lsbMode == 0)
{
nbits_residual_enc = min(nbits_residual_enc, nbits_residual);
for (k = 0; k < nbits_residual_enc; k++)
{
 write_bit_backward(bytes, &bp_side, &mask_side, res_bits[k]);
}
}
else
{
nbits_residual_enc = min(nbits_residual_enc, nlsbs);
for (k = 0; k < nbits_residual_enc; k++)
{
 write_bit_backward(bytes, &bp_side, &mask_side, lsbs[k]);
}
}

/* Arithmetic Encoder Finalization */
ac_enc_finish(bytes, &bp, &st);

where res_bits and nbits_residual are given in clause 5.3.12.

5.3.14.6 Functions

write_bit_backward(bytes[], *bp, *mask, bit)
{
 if (bit == 0)
 {
 bytes[*bp] &= ~*mask;
 }
 else
 {
 bytes[*bp] |= *mask;
 }
 if (*mask == 0x80)
 {
 *mask = 1;
 *bp -= 1;
 }
 else
 {
 *mask <<= 1;
 }
}

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)60

write_uint_backward(bytes[], *bp, *mask, val, numbits)
{
 for (k = 0; k < numbits; k++)
 {
 bit = val & 1;
 write_bit_backward(bytes, bp, mask, bit);
 val >>= 1;
 }
}

write_uint_forward(bytes[], bp, val, numbits)
{
 mask = 0x80;
 for (k = 0; k < numbits; k++)
 {
 bit = val & mask;
 if (bit == 0)
 {
 bytes[bp] &= ~mask;
 }
 else
 {
 bytes[bp] |= mask;
 }
 mask >>= 1;
 }
}

ac_enc_init(*st)
{
 st->low = 0;
 st->range = 0x00ffffff;
 st->cache = -1;
 st->carry = 0;
 st->carry_count = 0;
}

ac_shift(bytes[], *bp, *st)
{
 if (st->low < 0x00ff0000 || st->carry == 1)
 {
 if (st->cache >= 0)
 {
 bytes[(*bp)++] = st->cache + st->carry;
 }
 while (st->carry_count > 0)
 {
 bytes[(*bp)++] = (st->carry + 0xff) & 0xff;
 st->carry_count -= 1;
 }
 st->cache = st->low >> 16;
 st->carry = 0;
 }
 else
 {
 st->carry_count += 1;
 }
 st->low <<= 8;
 st->low &= 0x00ffffff;
}

ac_encode(bytes[], *bp, *st, cum_freq, sym_freq)
{
 r = st->range >> 10;
 st->low += r * cum_freq;
 if (st->low >> 24)
 {
 st->carry = 1;
 }
 st->low &= 0x00ffffff;
 st->range = r * sym_freq;
 while (st->range < 0x10000)
 {
 st->range <<= 8;
 ac_shift(bytes, bp, st);
 }
}

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)61

ac_enc_finish(bytes[], *bp, *st)
{
 bits = 1;
 while ((st->range >> (24-bits)) == 0)
 {
 bits++;
 }
 mask = 0x00ffffff >> bits;
 val = st->low + mask;
 over1 = val >> 24;
 val &= 0x00ffffff;
 high = st->low + st->range;
 over2 = high >> 24;
 high &= 0x00ffffff;
 val = val & ~mask;
 if (over1 == over2)
 {
 if (val + mask >= high)
 {
 bits += 1;
 mask >>= 1;
 val = ((st->low + mask) & 0x00ffffff) & ~mask;
 }
 if (val < st->low)
 {
 st->carry = 1;
 }
 }
 st->low = val;
 for (; bits > 0; bits -= 8)
 {
 ac_shift(bytes, bp, st);
 }
 bits += 8;
 if (st->carry_count > 0)
 {
 bytes[(*bp)++] = st->cache;
 for (; st->carry_count > 1; st->carry_count--)
 {
 bytes[(*bp)++] = 0xff;
 }
 write_uint_forward(bytes, *bp, 0xff>>(8-bits), bits);
 }
 else
 {
 write_uint_forward(bytes, *bp, st->cache, bits);
 }
}

5.3.15 Encoding of Low Frequency Effects (LFE)

For the optimal support of a Low Frequency Effects (LFE) channel, the following encoder modules should be modified
as follows:

• Bandwidth detector is deactivated and the bandwidth index 0%�� is set to 0 (narrow band) (see clause 5.3.5).

• TNS is deactivated by setting �1������0� = 0, num_tns_filters = 1, �����&�' = 1 (see clause 5.3.9).

• LTPF is deactivated by setting ltpf_active to 0 (see clause 5.3.10).

• The noise level parameter ��� (see clause 5.3.13) is set to 7 in order to generate minimal noise filling.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)62

5.4 Decoding process

5.4.1 Decoder modules

A high-level overview of all decoder modules is given in Figure 5.9. The decoder is reversing the encoding process and
essentially transforms the spectral coefficients into a time domain signal. First the transmitted parameters are decoded
and the spectral coefficients are restored. The Noise Filling module inserts noise for the coefficients that are zero and
are in-band as indicated by the BW info. The coefficients are processed by the Temporal Noise Shaping (TNS) and
Spectral Noise Shaping (SNS) decoders, which have taken their respective parameters from the received bitstream. The
reconstructed spectral coefficients are transformed to the time domain using an Inverse LD-MDCT. Finally, the time
domain signal is filtered by the Long Term Post Filter (LTPF), which uses the transmitted pitch information to define its
filter.

Figure 5.9: Decoder high level overview

5.4.2 Bitstream decoding

5.4.2.1 Overview

The bitstream of a coded audio frame consists of the four parts:

• side information;

• a dynamic data block for which is arithmetically coded;

• a dynamic data block with signs and least significant bits of the encoded spectrum;

• residual data.

An overview of the bitstream structure and layout is provided in clause 5.5. The following clauses define the exact
payload reading process of all codec elements.

The decoder may detect Bit Error Conditions (BECs) in the bit stream. In the following clauses, possible locations are
outlined in the bit stream where bit errors can be detected and marked as BEC_detect=1. In the case of positive BEC
detection, the decoder shall stop parsing and apply packet loss concealment. In case special decoder modes are detected
as outlined in clause 5.4.2.4, the special decoder modes shall be applied instead of packet loss concealment.

5.4.2.2 Initialization

bp = 0;
bp_side = nbytes – 1;
mask_side = 1;
c = 0;
BEC_detect = 0;

B
its

tr
ea

m
M

ul
tip

le
x

Inv. LD-
MDCT

Output
Signal

SNS
Dec

Global
Gain

Arithm. Decode
& Residual

Noise
filling

LTPF

TNS
Dec

Restored
Spectrum

BW info

Signal path Data path Control path

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)63

5.4.2.3 Side information

/* Bandwidth */
if (������� > 0)
{
 ���
 = read_uint(bytes, &bp_side, &mask_side, �������);
 if (��

��� < ���
)
 {
 BEC_detect = 1;
 }
}
else
{
 ���
 = 0;
}

/* Last non-zero tuple */
nbits_lastnz = ceil(log2(��/2));
tmp_lastnz = read_uint(bytes, &bp_side, &mask_side, nbits_lastnz);
lastnz = (tmp_lastnz + 1) << 1;
if (lastnz > ��)
{
 /* check for special decoder modes, see clause 5.4.2.4; if no
 special mode detected, consider this as bit error (BEC) */
 BEC_detect = 1;
}

/* LSB mode bit */
lsbMode = read_bit(bytes, &bp_side, &mask_side);

/* Global Gain */
����� = read_uint(bytes, &bp_side, &mask_side, 8);

/* TNS activation flag */
if (���
 < 3)
{
 num_tns_filters = 1;
}
else
{
 num_tns_filters = 2;
}
for (f = 0; f < num_tns_filters; f++)
{
	���	���� = read_bit(bytes, &bp_side, &mask_side);
}

/* Pitch present flag */
pitch_present = read_bit(bytes, &bp_side, &mask_side);

/* SNS-VQ integer bits */
/* Read 5+5 bits of SNQ VQ stage 1 according to clause 5.4.7.2.2 */
/* Read 28 bits of SNQ VQ stage 2 according to clause 5.4.7.2.3 */

/* LTPF data */
if (pitch_present != 0)
{
ltpf_active = read_uint(bytes, &bp_side, &mask_side, 1);
pitch_index = read_uint(bytes, &bp_side, &mask_side, 9);
}
else
{
 pitch_index = 0;
 ltpf_active = 0;
}

/* Noise Level */
��� = read_uint(bytes, &bp_side, &mask_side, 3);

5.4.2.4 Special decoder mode indicators

The indicated modes in this clause may be set by an external application layers to trigger a specific behaviour of the
decoder, e.g. the decoder shall apply packet loss concealment due to a broken payload.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)64

For that, the bit stream element tmp_lastnz (see clause 5.4.2.3) is used to indicate that the decoder shall operate in
special mode. For signalling the mode, some non-meaningful values of tmp_lastnz are used according to
Table 5.18.

Table 5.18: Special decoder mode indicators

Lastnz Mode Meaning
MAXnz PLC Apply Packet Loss Concealment

MAXnz - 1 PADDING Padding pattern need to be removed before frame
starts, see clause 5.4.2.5

MAXnz - 2 DTX Apply Discontinuous Transmission
… RESERVED

MAXnz - 7 RESERVED

Where MAXnz is the maximum possible value of tmp_lastnz according to the used sampling rate as outlined in
Table 5.19.

Table 5.19: Maximum value of tmp_lastnz according to sampling rate

 MAXnz(��, ��)

�� �� = 8 000 Hz �� =16 000 Hz �� = 24 000 Hz �� = 32 000 Hz �� = 44 100 Hz,
48 000 Hz

	�� = 2,5 15 31 31 63 63
	�� = 5 31 63 63 127 127
	�� = 7,5 31 63 127 127 255
	�� = 10 63 127 127 255 255

In case, the behaviour of a certain special decoder mode is not known by the decoder, the decoder shall set BFI=1 and
apply PLC.

5.4.2.5 Padding pattern

For specific transports scenarios a padding might be required to reach a certain frame size. At decoder side this pattern
needs to be removed before the side information can be interpreted. In case the special mode PADDING is detected, the
decoder shall read the remaining bits to complete the first two bytes of the side information. The meaning of the two
bytes is outlined in Table 5.20.

Table 5.20: Padding signalling as part of side information. Bandwidth bits read first followed by
Lastnz bits, padding length bits and reserved bits

Reserved bits Padding length bits Lastnz bits Bandwidth bits

4 bits 16 - Lastnz bits - bandwidth bits -
Reserved bits ceil(log2(��/2)) �����	

The padding length bits determine the number of bytes to be skipped. The decoding process starts again reading the side
information at the new bit stream position. The procedure may be repeated multiple times in case the intended padding
size cannot be signalled by the available padding length bits. Padding bits shall not have any influence on the bit rate
parameter for controlling the tuning settings for dedicated bit rates. This means after removal of padding bits, the real
codec bit rate shall be determined and the tuning parameters shall be updated as done for external rate adaptation
described in clause 5.7.

NOTE: The minimum padding size is two bytes. The maximum is not limited, however if the remaining frame
size has less than 20 bytes, i.e. the minimum LC3plus frame size, the frame is considered as corrupt.

5.4.2.6 Bandwidth interpretation

Depending on the transmitted parameter 0%�� (see clause 5.4.2.3) and the sample frequency ��, the bandwidth
information can be interpreted as outlined in Table 5.21.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)65

Table 5.21: Mapping 2()* to bandwidth

�� (Hz) ������� Bandwidth (����)
8 000 0 {NB}

16 000 1 {NB, WB}
24 000 2 {NB, WB, SSWB}
32 000 2 {NB, WB, SSWB, SWB}

44 100, 48 000 3 {NB, WB, SSWB, SWB, FB}

5.4.2.7 Arithmetic decoding

/* Arithmetic Decoder Initialization */
ac_dec_init(bytes, &bp, &st);

/* TNS data */
maxTnsOrder = 8;
if ��� <= 5
{
 maxTnsOrder = maxTnsOrder >> 1
}
for (f = 0; f < num_tns_filters; f++)
{
 if (���������� > 0)
 {
 ���������� = ac_decode(bytes, &bp, &st,
 ac_tns_order_cumfreq[tns_lpc_weighting],
 ac_tns_order_freq[tns_lpc_weighting], 8,
 &BEC_detect);
 ���������� = ���������� + 1;
 for (k = 0; k < 8; k++)
 {
 �����,�� = 8;
 }
 if ���������� > maxTnsOrder
 {
 BEC_detect = 1;
 }
 for (k = 0; k < ����������; k++)
 {
 �����,�� = ac_decode(bytes, &bp, &st, ac_tns_coef_cumfreq[k],
 ac_tns_coef_freq[k], 17, &BEC_detect);
 }
 }
}

/* Spectral data */
for (k = 0; k < lastnz; k += 2)
{
 t = c + rateFlag;
 if (k > ��/2)
 {
 t += 256;
 }
 �		[k] = �		[k+1] = 0;
 for (lev = 0; lev < 14; lev++)
 {
 pki = ac_lookup[t+min(lev,3)*1024];
 sym = ac_decode(bytes, &bp, &st, ac_spec_cumfreq[pki],
 ac_spec_freq[pki], 17, &BEC_detect);
 if (sym < 16)
 {
 break;
 }
 if (lsbMode == 0 || lev > 0)
 {
 bit = read_bit(bytes, &bp_side, &mask_side);
 �		[k] += bit << lev;
 bit = read_bit(bytes, &bp_side, &mask_side);
 �		[k+1] += bit << lev;
 }
 }
 if (lev == 14)
 {

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)66

 BEC_detect = 1;
 }
 if (lsbMode == 1)
 {
 save_lev[k] = lev;
 }
 a = sym & 0x3;
 b = sym >> 2;
 �		[k] += a << lev;

 �		[k+1] += b << lev;

 if (�		[k] > 0)
 {
 bit = read_bit(bytes, &bp_side, &mask_side);
 if (bit == 1)
 {
 �		[k] = -�		[k];
 }
 }
 if (�		[k+1] > 0)
 {
 bit = read_bit(bytes, &bp_side, &mask_side);
 if (bit == 1)
 {
 �		[k+1] = -�		[k+1];
 }
 }
 lev = min(lev,3);
 if (lev <= 1)
 {
 t = 1 + (a+b)*(lev+1);
 }
 else
 {
 t = 12 + lev;
 }
 c = (c&15)*16 + t;
 if (bp – bp_side > 3 || BEC_detect == 1)
 {
 BEC_detect = 1;
 }
}

5.4.2.8 Residual data and finalization

for (k = lastnz; k < ��; k++)
{
 �		[k] = 0;
}

/* Number of residual bits */
nbits_side = nbits – (8 * bp_side + 8 – log2(mask_side));
nbits_ari = (bp – 3) * 8;
nbits_ari += 25 – floor(log2(st->range));
nbits_residual = nbits – (nbits_side + nbits_ari);
if (nbits_residual < 0)
{
 BEC_detect = 1;
}

/* Decode residual bits */
if (lsbMode == 0)
{
 nResBits = 0;
for (k = 0; k < ��; k++)
{
 if (�		[k] != 0)
 {
 if (nResBits == nbits_residual)
 {
 break;
 }
 resBits[nResBits++] = read_bit(bytes, &bp_side, &mask_side);
 }
}
}

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)67

else
{
 for (k = 0; k < lastnz; k+=2)
 {
 if (save_lev[k] > 0)
 {
 if (nbits_residual == 0)
 {
 break;
 }
 bit = read_bit(bytes, &bp_side, &mask_side);
 nbits_residual--;
 if (bit == 1)
 {
 if (�		[k] > 0)
 {
 �		[k] += 1;
 }
 else if (�		[k] < 0)
 {
 �		[k] -= 1;
 }
 else
 {
 if (nbits_residual == 0)
 {
 break;
 }
 bit = read_bit(bytes, &bp_side, &mask_side);
 nbits_residual--;
 if (bit == 0)
 {
 �		[k] = 1;
 }
 else
 {
 �		[k] = -1;
 }
 }
 }
 if (nbits_residual == 0)
 {
 break;
 }
 bit = read_bit(bytes, &bp_side, &mask_side);
 nbits_residual--;
 if (bit == 1)
 {
 if (�		[k+1] > 0)
 {
 �		[k+1] += 1;
 }
 else if (�		[k+1] < 0)
 {
 �		[k+1] -= 1;
 }
 else
 {
 if (nbits_residual == 0)
 {
 break;
 }
 bit = read_bit(bytes, &bp_side, &mask_side);
 nbits_residual--;
 if (bit == 0)
 {
 �		[k+1] = 1;
 }
 else
 {
 �		[k+1] = -1;
 }
 }
 }
 }
 }

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)68

}

/* Noise Filling Seed */
tmp = 0;
for (k = 0; k < ��; k++)
{
 tmp += abs(�		[k]) * k;
}
nf_seed = tmp & 0xFFFF; /* Note that tmp is a 32-bit signed int and nf_seed is an unsigned 16-bit
int */

/* Zero frame flag */
if (lastnz == 2 && �		[0] == 0 && �		[1] == 0 &&

�
� == 0 && ��� == 7)
{
 zeroFrame = 1;
}
else
{
 zeroFrame = 0;
}

5.4.2.9 Functions

read_bit(bytes[], *bp, *mask)
{
 if (bytes[*bp] & *mask)
 {
 bit = 1;
 }
 else
 {
 bit = 0;
 }
 if (*mask == 0x80)
 {
 *mask = 1;
 *bp -= 1;
 }
 else
 {
 *mask <<= 1;
 }
 return bit;
}

read_uint(bytes[], *bp, *mask, numbits)
{
 value = read_bit(bytes, bp, mask);
 for (i = 1; i < numbits; i++)
 {
 bit = read_bit(bytes, bp, mask);
 value += bit << i;
 }
 return value;
}

ac_dec_init(bytes[], *bp, *st)
{
 st->low = 0;
 st->range = 0x00ffffff;
 for (i = 0; i < 3; i++)
 {
 st->low <<= 8;
 st->low += bytes[(*bp)++];
 }
}

ac_decode(bytes[], *bp, *st, cum_freq, sym_freq, numsym, *BEC_detect)
{
 tmp = st->range >> 10;
 if (st->low >= (tmp<<10))
 {
 *BEC_detect = 1;
 }
 val = numsym-1;
 while (st->low < tmp * cum_freq[val])
 {

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)69

 val--;
 }
 st->low -= tmp * cum_freq[val];
 st->range = tmp * sym_freq[val];
 while (st->range < 0x10000)
 {
 st->low <<= 8;
 st->low &= 0x00ffffff;
 st->low += bytes[(*bp)++];
 st->range <<= 8;
 }
 return val;
}

5.4.3 Residual decoding

Residual decoding is performed only when lsbMode is 0.

k = = n = 0;
while (k < �� && n < nResBits)
{
 if (�		[k] != 0)
 {
 if (resBits[n++] == 0)
 {
 if (�		[k] > 0)
 {
 �		[k] -= 0.1875;
 }
 else
 {
 �		[k] -= 0.3125;
 }
 }
 else
 {
 if (�		[k] > 0)
 {
 �		[k] += 0.3125;
 }
 else
 {
 �		[k] += 0.1875;
 }
 }
 }
 k++;
}

5.4.4 Noise filling

Noise filling is performed only when zeroFrame is 0.

The indices for the relevant spectral coefficients are given by:

������ = �1 if ��_�	
�	 ≤ � < �_�	��
�� ������ == 0 ���
�� � = � − ��_��	ℎ. . min��_�	��, � + ��_��	ℎ�
0 otherwise

�113�

where �_�	�� depends on the bandwidth information (see clause 5.4.2.4) as defined in Table 5.22.

Table 5.22: Mapping table ��_���� according to bandwidth

 Bandwidth (����)
NB WB SSWB SWB FB

��_	
�� 8 ∙�� 16 ∙�� 24 ∙�� 32 ∙�� �

The tuning parameters ��_�	
�	 and ��_��	ℎ are given in Table 5.23.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)70

Table 5.23: Tuning table for noise level estimation

��� ��_����� ��_�����
2,5 6 1
5 12 1

7,5 18 2
10 24 3

The noise filling is applied on the identified relevant spectral lines ������ using the transmitted noise factor ��� given
in clause 5.4.2.3 and the random seed (nf_seed) given in clause 5.4.2.8.

���	 = (8-���)/16;
for k=0..bw_stop-1
 if ��(k)==1
 nf_seed = (13849+nf_seed*31821) & 0xFFFF;
 if nf_seed<0x8000
 �		(�) = ���	 ;
 else
 �		(�) = −���	 ;

5.4.5 Global gain

The global gain is applied to the spectrum after the noise filling has been applied using formula (114):

������ = ������ ∙ 10
�������������	

 ��� � = 0 … �� − 1 �114�

where ���� is the global gain index retrieved in the side information described in clause 5.4.2.3, and

����� = − min �115, � ���	�
10 ∙ (���� + 1)

 ! − 105 − 5 ∙ (���� + 1) �115�

5.4.6 TNS decoder

The quantized reflection coefficients are obtained for each TNS filter � using:

�"���, �� =
nint#2�� ∙ sin#Δ��"���, �� − 8�$$

2�� � = 0 … 7 �116�

with �"���, �� are the quantizer output indices.

The TNS parameters depend on the transmitted bandwidth information (see clause 5.4.2.4) as shown in Table 5.24.

Table 5.24: TNS decoder parameters

��� Bandwidth num_tns_filters start_freq(f) stop_freq(f)
2,5 NB 1 {3} {20}
2,5 WB 1 {3} {40}
2,5 SSWB 1 {3} {60}
2,5 SWB 1 {3} {80}
2,5 FB 1 {3} {100}
5 NB 1 {6} {40}
5 WB 1 {6} {80}
5 SSWB 1 {6} {120}
5 SWB 2 {6, 80} {80, 160}
5 FB 2 {6, 100} {100, 200}

7,5 NB 1 {9} {60}
7,5 WB 1 {9} {120}
7,5 SSWB 1 {9} {180}
7,5 SWB 2 {9, 120} {120, 240}
7,5 FB 2 {9, 150} {150, 300}
10 NB 1 {12} {80}
10 WB 1 {12} {160}
10 SSWB 1 {12} {240}

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)71

�
��

 Bandwidth num_tns_filters start_freq(f) stop_freq(f)
10 SWB 2 {12, 160} {160, 320}
10 FB 2 {12, 200} {200, 400}

The MDCT spectrum ������ as generated in clause 5.4.5 is then filtered using the following algorithm:

for � � 0 to NE-1 do
 ��

���	 � �����	

s� � s� � ⋯ � s� � 0
for � � 0 to num_tns_filters-1 do
 if �rc���	��f	 � 0	

 for � � start_freq��	 to stop_freq�f	 � 1 do

 t � ��
���� � rc��rc������f� � 1, f� ∙ s��������	
��

 for � � rc������f� � 2 to 0 do

 � � � � ����, �� ∙ s�

 s��� � ����, �� ∙ � � ��

 ��
���� � �

 �� � �

where �
�
���� is the output of the TNS decoder.

5.4.7 SNS decoder

5.4.7.1 Overview

The SNS decoder performs the following three steps. A set of 16 quantized scale factors is first decoded as described in
clause 5.4.7.2. Note that these quantized scale factors are the same as the quantized scale factors as determined by the
encoder (see clause 5.3.7.3). Similarly to the encoder (see clauses 5.3.7.4 and 5.3.7.5), the quantized scale factors are
then interpolated as described in clause 5.4.7.3 and used to shape the MDCT spectrum as described in clause 5.4.7.4.

5.4.7.2 SNS scale factor decoding

5.4.7.2.1 SNS VQ decoding

Figure 5.10 provides an overview of the SNS scale factor decoding.

Figure 5.10: High level overview of Decoder SNS scale factor synthesis

5.4.7.2.2 Stage 1 SNS VQ decoding

The first stage parameters are decoded as follows:

 ind_LF = read_uint(bytes, &bp_side, &mask_side, 5); /* stage1 LF */
 ind_HF = read_uint(bytes, &bp_side, &mask_side, 5); /* stage1 HF */

The first stage indices ind_LF and ind_HF are converted into signal st1(n) according to equations �36� and (37) in
clause 5.3.7.3.2.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)72

5.4.7.2.3 Stage 2 SNS VQ decoding

5.4.7.2.3.1 Stage 2 SNS-VQ index demultiplexing

To efficiently use the available total bit space for the scale factor quantizer (38 bits), in combination with the fractional
sized MPVQ-indices, the shape selection LSB, the second stage shape codewords and the adjustment gain least
significant bit were jointly encoded as described in Table 5.14 and the subsequent paragraph in the encoder
clause 5.3.7.3.4.

On the decoder/receiver side the reverse process takes place.

The second stage MSB submode bit, initial gain index and the Leading Sign index are first read from the decoded
bitstream decoded as follows:

submodeMSB = read_bit(bytes, &bp_side, &mask_side);
if(submodeMSB == 0){
 Gind = read_uint(bytes, &bp_side, &mask_side, 1);
} else {
 Gind = read_uint(bytes, &bp_side, &mask_side, 2);
}
LS_indA = read_bit(bytes, &bp_side, &mask_side); /* LS_indA 1 bit */

If submodeMSB equals 0, corresponding to one of the shapes (shape_j = 0 or shape_j = 1), the following
demultiplexing procedure is followed:

/* 'regular'/'regular_lf' demultiplexing, establish if shape_j is 0 or 1 */

tmp = read_uint(bytes, &bp_side, &mask_side, 13) ;
tmp |= (read_uint(bytes, &bp_side, &mask_side, 12)<<13) ;
[BEC_detect, submodeLSB, idxA, idxBorGainLSB] =
 dec_split_st2VQ_CW(tmp, 4780008U>>1, 14);

if(submodeLSB != 0) {
 Gind = (Gind<<1) + idxBorGainLSB; /* for regular_lf */
} else {
 idxB = idxBorGainLSB>>1; /* for regular */
 LS_indB = idxBorGainLSB&0x1);
}

with function dec_split_st2VQ_CW defined as:

[BEC_detect, submodeLSB, idxA, idxBorGainLSB] =

 dec_split_st2VQ_CW(cwRx, szA, szB)
{
 if(cwRx >= szB * szA) {
 idxA = 0;
 idxBorGainLSB = 0;
 submodeLSB = 0;
 BEC_detect = 1;
 return;
 }

 idxBorGainLSB = floor(cwRx / szA);
 idxA = cwRx – idxBorGainLSB*szA;

 submodeLSB = 0;
 idxBorGainLSB = idxBorGainLSB – 2 ;
 if(idxBorGainLSB < 0) {
 submodeLSB = 1;
 }
 idxBorGainLSB = idxBorGainLSB + 2*submodeLSB ;

 BEC_detect = 0;

 return;
}

If submodeMSB equals 1, ('outlier_near' or 'outlier_far' submodes) the following demultiplexing procedure is followed:

/* outlier_* demultiplexing, establish if shape_j is 2 or 3 */

tmp = read_uint(bytes, &bp_side, &mask_side, 12);
tmp |= (read_uint(bytes, &bp_side, &mask_side, 12)<<12);

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)73

idxA = tmp;
idxB = -1;
submodeLSB = 0;
BEC_detect = 0;

if (tmp >= ((30316544U>>1) + 1549824U)) {
 BEC_detect = 1;
} else {
 tmp -= (30316544U>>1);
 if(tmp >= 0) {
 submodeLSB = 1;
 Gind = (Gind<<1) + (tmp&0x1);
 idxA = tmp>>1;
 }
}

Finally the decombined/demultiplexed second stage indices shape_j and gain_i are determined as follows:

shape_j = (submodeMSB<<1) + submodeLSB;
gain_i = Gind;

5.4.7.2.3.2 De-enumeration of the shape indices

If shape_j is 0, the two shapes A and B, (where shape A is a function of LS_indA and idxA, and shape B is a function of
LS_indB and idxB) are de-enumerated into signed integer vectors, otherwise (shape_j is not 0) only one shape is
de-enumerated. The setup of the four possible shape configurations is described in Table 5.9.

The actual de-enumeration of a leading sign index LS_ind and an MPVQ shape index MPVQ_ind into a signed integer
PVQ vector y (=vec_out) with an L1 norm of K (=k_val_in) over dimension N (=dim_in), is shown in C-style pseudo
code below.

MPVQdeenum(dim_in, /* i : dimension of vec_out */
 k_val_in, /* i : number of unit pulses */
 LS_ind, /* i : leading sign index */
 MPVQ_ind, /* i : MPVQ shape index */
 vec_out / o : PVQ integer pulse train */
{
 for (i=0; i < dim_in; i++){
 vec_out[i] = 0;
 }

 leading_sign = 1;
 if (LS_ind != 0){
 leading_sign = -1;
 }

 mind2vec_tab (dim_in,
 k_val_in,
 leading_sign,
 MPVQ_ind,
 vec_out,
 MPVQ_offsets);
 return;
}

with:

mind2vec_tab (short dim_in, /* i: dimension */
 short k_max_local, /* i: nb unit pulses */
 short leading_sign, /* i: leading sign */
 unsigned int ind, /* i: MPVQ-index */
 short *vec_out, /* o: pulse train */
 unsigned int MPVQ_offsets [][11] /* i: offset matrix */
)
{
 /* init */
 h_row_ptr = &(MPVQ_offsets[(dim_in-1)][0]);
 k_acc = k_max_local;

 /* loop over positions */
 for (pos = 0; pos < dim_in; pos++) {

 if (ind != 0) {
 k_acc = k_max_local;;
 UL_tmp_offset = h_row_ptr[k_acc];

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)74

 wrap_flag = (ind < UL_tmp_offset) ;
 UL_diff = ind - UL_tmp_offset;

 while (wrap_flag != 0) {
 k_acc--;
 wrap_flag = (ind < h_row_ptr[k_acc]);
 UL_diff = ind - h_row_ptr[k_acc];
 }

 ind = UL_diff;
 k_delta = k_max_local - k_acc;
 } else {
 mind2vec_one(k_max_local, leading_sign, &vec_out[pos]);
 break;
 }

 k_max_local = setval_update_sign(
 k_delta,
 k_max_local,
 &leading_sign,
 &ind,
 &vec_out[pos]);
 h_row_ptr -= 11; /* reduce dimension in MPVQ_offsets table */
 }
 return;
}

with:

mind2vec_one(short k_val_in, /* i: nb unit pulses */
 short leading_sign, /* i: leading sign -1, 1 */
 short *vec_out /* o: updated pulse train */
)
{
 amp = k_val_in;
 if (leading_sign < 0)
 {
 amp = -k_val_in ;
 }
 *vec_out = amp;

 return;
}

with:

[k_max_local_out] = setval_update_sign (
 short k_delta, /* i */
 short k_max_local_in, /* i */
 short *leading_sign, /* i/o */
 unsigned int *ind_in, /* i/o */
 short *vec_out /* i/o */
)
{
 k_max_local_out = k_max_local_in;
 if (k_delta != 0) {
 mind2vec_one(k_delta, *leading_sign, vec_out);
 *leading_sign = get_lead_sign(ind_in);
 k_max_local_out -= k_delta ;
 }
 return k_max_local_out;
}

with:

[leading_sign] = get_lead_sign(unsigned int *ind_in)
{
 leading_sign = +1;
 if (((*ind)&0x1) != 0) {
 leading_sign = -1;
 }
 (*ind) = (*ind >> 1);

 return leading_sign;
}

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)75

The MPVQdeenum() function above uses a table based approach to decompose the two input indices into a signed
integer PVQ vector with L1 norm of k_val_in and a leading sign for the first non-zero element according to the
LS_ind index. As the encoder side enumeration was performed from the end of the vector to the start of the vector the
de-enumeration takes place from the start(0) to the end (dim_in-1) of the vector.

The following MPVQ de-enumeration calls are made for the demultiplexed shape_j.

Table 5.25: SNS VQ second stage shape de-enumeration into integer vector yshape_j
for each possible received shape index shape_j

Shape index
(shape_j) Shape name Scale factor set A

de-enumeration
Scale factor set B de-enumeration

(or initialization)

0 'regular'
MPVQdeenum(10, 10, y0,

LS_indA, idxA)
MPVQdeenum(6, 1, z, LS_indB, idxB);

yo(n) = z(n-10), for n=10...15

1 'regular_lf'
MPVQdeenum(10, 10, y1,

LS_indA, idxA)
y1(n) = 0, for n=10...15

2 'outlier_near'
MPVQdeenum(16, 8, y2,

LS_indA, idxA)
n/a

3 'outlier_far'
MPVQdeenum(16, 6, y3,

LS_indA, idxA)
n/a

5.4.7.2.4 Unit energy normalization of the received shape

The de-enumerated signed integer vector y shape_j is normalized to a unit energy vector xq, shape_j over dimension 16
according to equation (41).

5.4.7.2.5 Reconstruction of the Quantized SNS Scalefactors

The adjustment gain value �����_� ,�����_	 for gain index gain_i and shape index shape_j is determined based on table
lookup (see clause 5.3.7.3.3.6, Table 5.11).

Finally, the synthesis of the quantized scale factor vector scfQ(n) is performed in the same way as on the encoder side,
see clause 5.3.7.3.5.

5.4.7.3 SNS scale factors interpolation

The quantized scale factors ������� (obtained in clause 5.4.7.2) are interpolated using:

����	�
�0� = �����0�����	�
�1� = �����0�
����	�
�4� + 2� = ������� +

1

8
������� + 1� − �������� �� � = 0 … 14

����	�
�4� + 3� = ������� +
3

8
������� + 1� − �������� �� � = 0 … 14

����	�
�4� + 4� = ������� +
5

8
������� + 1� − �������� �� � = 0 … 14

����	�
�4� + 5� = ������� +
7

8
������� + 1� − �������� �� � = 0 … 14

����	�
�62� = �����15� +
1

8
������15� − �����14��

����	�
�63� = �����15� +
3

8
������15� − �����14��

�117�

In case, the codec is configured to operate on a number of bands �
 < 64, the number of scale factors need to be
reduced using the following pseudo code:

If �� < 32
 n4=round(abs(1-32/��)* ��)
 n2 = �� - n4

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)76

 for i=0…n4-1

 tmp(i) =
�

�
∑ ������	(�)������
����

for i=0…n2-1

 tmp(n4-1+i) =
�

	
∑ ������	(�)������	���
������	�

else if �� < 64
 n2 = 64 -��;

for i=0…n2-1

 tmp(i) =
�

	
∑ ������	(�)��	���
��	�

for i=n2… �� − 1
 tmp(i) = ������	(n2 + �)

In case �
 < 64, the the vector tmp is copied to ����	�
. Finally, the scale factors are transformed back into linear
domain using:

������� = 2��������� �� � = 0. . .�
 �118�
5.4.7.4 Spectral Shaping

The SNS scale factors ������� are applied on the TNS filtered MDCT frequency lines for each band separately in order
to generate the shaped spectrum ��(�) as outlined by the following code:

for (b=0; b<�
; b++) {
 for (k=
��(�); k<
��(� + 1); k++) {

 �(�) = ������ ∙ ������
 }
}

5.4.8 Low delay MDCT synthesis

The reconstructed spectrum ��(�) is transformed to the time domain by the following steps:

1) Generation of time domain aliasing buffer
̂���

̂��� = � 2�� � ��(�) cos � ��� �� +

1

2
+
��
2
� �� +

1

2
������

���

 �� � = 0 … 2�� − 1 �119�
2) Windowing of time-aliased buffer

̂��� = ������
�2� − 1 − �� ∙
̂��� �� � = 0 … 2�� − 1 �120�

3) Conduct overlap-add operation to get reconstructed time samples �����
����� = ! ��������	

+
̂�" + �� �� � = 0 …�� − " − 1 �121�
����� =
̂�" + �� �� � = �� − "…�� − 1 �122�

 ! ��������	
=
̂��� + " + �� �� � = 0 …�� − " − 1 �123�

with ! _���_������ is initialized to 0 before decoding the first frame.

More information is provided in clause 5.3.3 regarding any definition related to the MDCT operation.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)77

5.4.9 Long term postfilter

5.4.9.1 Overview

The decoded signal after MDCT synthesis is postfiltered in the time-domain using an IIR filter whose parameters
depend on the LTPF bitstream data "pitch_index" and "ltpf_active". As the filter coefficients are a pre-defined set, the
result of the IIR filter is always stable. To avoid any discontinuity when the parameters change from one frame to the
next, a transition mechanism is applied.

For simplicity, audio samples of past frames are accessed by negative indexing, e.g. ���1� is the most recent sample of
the signal � in the previous frame. Note that in practice, a buffer mechanism would have to be implemented.

The LTPF sharpens the harmonic structure of the signal by attenuating the quantization noise in the spectral valleys. An
example of an LTPF frequency response for a speech signal is given in Figure 5.11.

Figure 5.11: Example of LTPF frequency response for a speech signal: the harmonic structure is
sharpened by attenuation of the spectral valleys and quantization noise is perceptually optimized

5.4.9.2 Transition handling

The transition corresponds to the first 2,5 ms of the current frame (� � 0 … ��∙�����
���

� 1).

Note that mem_ ltpf_active corresponds to the value of ltpf_active in the previous frame (it is initialized to zero before
the first frame is processed), ����� is the filter input signal (i.e. the decoded signal after MDCT synthesis), ��������� is
the filter output signal, the filter parameters �	
, ���, ��� and ��� are given below, and �	

�
 , ���
�
, ���
�
 and ���
�
. Where mem always denotes the value from the previous frame.

Five different cases are considered:

1) First case: ltpf_active = 0 and mem_ ltpf_active = 0

��������� � ����� �124�

2) Second case: ltpf_active = 1 and mem_ ltpf_active = 0

������ ��� ← ����� � ����� � � �	
������� � ������

���

� � �����, ���������� �� � ��� � ����2 � ������

���

� �125�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)78

3) Third case: ltpf_active = 0 and mem_ ltpf_active = 1

�����	��� ← �
��� − �1 −
����� � � �����������
�� − ��	���

��

− � ��������, ������������	 �� − ������� +
���

2
− ��	���

��

� �126�

with �������, ������, ������� and ������ are the filter parameters computed in the previous frame:

4) Fourth case: ltpf_active = 1 and mem_ltpf_active = 1 and ���� = ������� and ��� = ������

�����	��� ← �
��� − � ��������
�� − ��	���

��

+ � �����, ���������	 �� − ���� +
���

2
− ��	���

��

�127�

5) Fifth case: ltpf_active = 1 and mem_ltpf_active = 1 and (���� ≠ ������� or ��� ≠ ������)

�����	 ���� ← �
��� − �1 −
����� � � �����������
�� − ��	���

��

− � ��������, ������������	 � �� − ������� +
���

2
− ��	���

��

� �128�

�����	��� ← �����	 ���� −
���� � � ������������	 ��� − ��	���

��

− � �����, ���������	 �� − ���� +
���

2
− ��	���

��

� �129�

where ��� =
��

�
∙
��

���

.

5.4.9.3 Remaining of the frame

The remainder of the frame corresponds to the remaining samples of the current frame (� =
��∙���	

���
… �� − 1).

Two different cases are considered:

1) First case: ltpf_active = 0

�����	��� = �
��� �130�

2) Second case: ltpf_active = 1

�����	��� ← �
��� − � ��������
�� − ��	���

��

+ � �����, ���������	 �� − ���� +
���

2
− ��	���

��

 �131�

with �
��� is the filter input signal (i.e. the decoded signal after MDCT synthesis), �����	��� is the filter output signal and � = 0 … �� − 1.

The integer part ���� and the fractional part ��� of the LTPF pitch-lag are computed as follows. First the pitch-lag at
12,8 kHz (see clause 5.3.10) is recovered using:

pitch_int =

⎩⎪⎨
⎪⎧pitch_index − 283 if pitch_index ≥ 440

�pitch_index

2
 − 63 if 440 > pitch_index ≥ 380

�pitch_index

4
 + 32 if 380 > pitch_index

 �132�

pitch_fr = !0 if pitch_index ≥ 440

2 ∙ pitch_index − 4 ∙ pitch_int − 252 if 440 > pitch_index ≥ 380
pitch_index − 4 ∙ pitch_int + 128 if 380 > pitch_index

 �133�

pitch = pitch_int +
pitch_fr

4
 �134�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)79

The pitch-lag is then scaled to the output sampling rate "� and converted to integer and fractional parts using:

pitch
��

= pitch ∙

8 000 ∙ �#$� � "�
8 000

�
12 800

�135�

��� = nint �pitch
��

∙ 4� �136�

���� = %���
4

& �137�

��� = ��� − 4 ∙ ���� �138�

The filter coefficients ������� and �����, ���� are computed as follows:

������� = 0,85 ∙ '�$����� ∙ tab_ltpf_num_fs[gain_ind](�) "�� � = 0 … ���� �139�

�����, ���� = '�$����� ∙ tab_ltpf_den_fs*���+(�) "�� � = 0 … ��� �140�

with:

��� = max �4,
"�

4 000
� �141�

���� = ��� − 2 �142�

and '�$�_�,�" and '�$�_$�� are obtained according to:

/* correction table for smaller frame sizes */
if �

��
 == 2.5

 t_nbits = nbits * 4 * (1 - 0.4);
else if �

��
== 5

 t_nbits = nbits * 2 - 160;
else if �

��
== 7,5

 t_nbits = round(nbits * 10 / 7.5);
else if �

��
== 10

 t_nbits = nbits
end

/* tuning lookup */
fs_idx = min(4,(�

�
/8000-1));

if (t_nbits < 320 + fs_idx*80)
{
 gain_ltpf = 0.4;
 gain_ind = 0;
}
else if (t_nbits < 400 + fs_idx*80)
{
 gain_ltpf = 0.35;
 gain_ind = 1;
}
else if (t_nbits < 480 + fs_idx*80)
{
 gain_ltpf = 0.3;
 gain_ind = 2;
}
else if (t_nbits < 560 + fs_idx*80)
{
 gain_ltpf = 0.25;
 gain_ind = 3;
}
else
{
 gain_ltpf = 0;
}

The tables for tab_ltpf_num_fs[gain_ind][�] and tab_ltpf_den_fs[���][�] are given in clause 5.9.5, Table 5.42.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)80

5.4.10 Output signal scaling and rounding

The LTPF output signal ������ ��� for all samples with index � ∈ �0, �� � 1� is clipped to upper integer value range:

��������� � � 2�	 � 1, ��������� � 2�	 � 1�2�	, ��������� � �2�	������ ���, ��ℎ������ �143�

Afterwards, the signal ��������� is scaled to the proper range using:

�
��� � �������������� ∙ 2��	���� �144�

The output signal �
��� is in the PCM integer format using � bits per sample.

5.5 Frame structure
The frame structure of the codec consists of four parts, i.e.:

• Side information containing static bits about the configuration of the frame data. This data block starts at the
end of the frame and is read backwards. It includes information audio bandwidth, global gain, noise level,
TNS activity, LTPF, SNS data, the index of the last non-zero spectral line and parts of the quantized spectrum.
An exact bit stream definition can be found in clause 5.4.2.3.

• A dynamic data block which is arithmetically coded and contains TNS and fractional parts of the quantized
spectrum. This block is read from the beginning of the frame towards the end. The decoding of this block is
described in clause 5.4.2.4.

• A dynamic data block with signs and least significant bits part of the quantized spectrum. This block is read
backwards from the end of the static side information bits. The decoding of this dynamic data block is
described in clause 5.4.2.7.

• The residual data is located between the two dynamic data blocks and contains refinements of the quantized
spectrum. It is read backwards starting immediately after the last encoded side information dynamic data block
with spectrum signs and spectrum LSBs. The residual data is described according to clause 5.4.2.8.

Figure 5.12: Frame structure

5.6 Error concealment

5.6.1 General consideration

The purpose of the Packet Loss Concealment (PLC) is to conceal the effect of unavailable or corrupted frame data for
decoding. The overall composite PLC algorithm is described in clause 5.6.3 and when this composite algorithm shall be
applied for the LC3, is described in clause 5.6.2.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)81

The frame loss concealment procedure comprises of three sub-concealment methods for various signal types. Best
possible codec performance in error-prone situations with frame losses is obtained through selecting the most suitable
method, as described in clause 5.6.3. The packet loss sub-concealment methods are:

• MDCT frame repetition with sign scrambling, clause 5.6.3.2

• Time domain concealment, clause 5.6.3.3

• Frequency domain concealment (Phase ECU), clause 5.6.3.4

The overall composite PLC algorithm including all three sub-concealment methods and the corresponding PLC method
selection as described in clause 5.6.3 shall be used to guarantee a certain service quality.

5.6.2 PLC trigger

The decoder shall apply a packet loss concealment algorithm for the following three events:

a) The decoder receives an externally determined Bad Frame Indicator (BFI=1) flag signalling a lost frame or the
presence of any detected bit error in the received compressed frame to the decoder.

b) The special decoder mode for PLC is detected as described in clause 5.4.2.4.

c) The decoder detects a bit error marked with BEC_detect=1 in clause 5.4.2.

5.6.3 PLC method selection and method application

5.6.3.1 Method selection

The selection of the PLC method is performed only in the first lost frame after a good frame and remains unchanged in
subsequently lost frames. The criteria for the method selection are:

• Pitch value ��:

�� = � 0, pitch_present = 0
pitch_int, pitch_present = 1

�145�
 where pitch_present and pitch_int are the LTPF parameters calculated in clauses 5.3.10.6 and 5.3.10.7 from

the last good frame.

• Cross-correlation value ��	

:

��	

 =
∑ ���� ∙ ��� − ������

�����∑ ���� ∙ �������
��� � ∙ �∑ ��� − ��� ∙ ��� − ������

��� � �146�
 where ����, � = 0 … − 1 are the last decoded time samples, and

 =

⎩⎪
⎨⎪
⎧�	 ∙

64

12 800
, �� < �	 ∙

64

12 800�� , �	 ∙
64

12 800
≤ �� ≤

�	
100�	

100
, T
 >

�	
100

�147�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)82

• Spectral centroid ��:

�� =
�	

48 000
∙

∑ ��(�) ∙
�����(�)�

�
���∑ ��(�)�

��� ∙ (��	�4� + 4� − ��	�4��)
�148�

where:

�������� = � �����(����)

������������

 �	
 � = 0 … 15 �149�
and

����� =
2	��������

10�∙
�����
��

 �	
 � = 0 … 15 �150�
 where ������(�) is the scalefactor vector of the last good frame, ����� is the tilt factor given in Table 5.7 and ���� is ��	 if ��	 = 64 and otherwise as described in the following pseudo code:

If �� < 32
����(0) = 0

 j = 32 - ��

 for (i=��-1; i>=j; i--)
 ����((i+j)*2+2) = ����� + 1�
 ����((i+j)*2+1) = ����� + 1�

for (i=j-1; i>=0; i--)
 ����(i*4+4) = ����� + 1�
 ����(i*4+3) = ����� + 1�
 ����(i*4+2) = ����� + 1�
 ����(i*4+1) = ����� + 1�

else if �� < 64

����(0) = 0
 j = 64 - ��

 for (i=��-1; i>=j; i--)
 ����(i+j+1) = ����� + 1�

for (i=j-1; i>=0; i--)
 ����(i*2+2) = ����� + 1�

 ����(i*2+1) = ����� + 1�.

The decision logic of the different PLC methods uses the criteria shown above and the value �����:

����� =
7 640

32 768
��	

 − �� −

5 112

32 768
�151�

The decision is done as follows:

• MDCT frame repetition with sign scrambling is selected if �� = 0

• Time domain concealment is selected if �� > 0 and either ����� > 0 or �	 < 10

• Frequency domain concealment (Phase ECU) is selected if �� > 0 and ����� ≤ 0 and �	 = 10

If the sample frequency fs is equal to 24 kHz or is greater or equal to 44,1 kHz, the PLC method decision is stored for
the last 2 seconds in ������, ��, where � is the frame index and � is the PLC method index defined by:

• 3: stores decision of ��� domain concealment

• 4: stores decision of MDCT frame repetition with sign scrambling

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)83

The frame in ����(�, �) is marked as 1 for the selected PLC method index and 0 for the remaining method. For each �������, a �	���
�_�	!��
(�) is calculated by longterm_counter(m) = ∑ ����(�, �)����
��� , where ���� is

maximum frame index representing 2 seconds.

For every frame where a concealment method is selected, the buffers shall be updated as follows, and long-term counter
variables shall be calculated. In addition to that, an overall_counter variable shall be updated as follows:

overall_counter = min(overall_counter+1, 0.5*kmax);

In case of a lost frame and the sample frequency being 24 kHz or greater or equal to 44,1 kHz, a PLC fadeout parameter
plc_fadeout_type shall be calculated based on the longterm_counter variables:

if (fs_idx == 2 || fs_idx >= 4)
{
 if ((longterm_counter(3) < thresh_tdc_cnt){
 PlcAdvSetup->plc_fadeout_type = 1;
 }
 else if (longterm_counter(4) < thresh_ns_cnt){
 PlcAdvSetup->plc_fadeout_type = 1;
 }
 else if ((longterm_counter(3) + longterm_counter(4) < thresh_tdc_ns_cnt){
 PlcAdvSetup->plc_fadeout_type = 1;
 }
 else {
 PlcAdvSetup->plc_fadeout_type = 0;
 }

} else {
 plc_fadeout_type = 0;
}

if (overall_counter < (0.5*kmax))
{
 plc_fadeout_type = 0;
}

Where thresh_tdc_cnt, thresh_ns_cnt and thresh_tdc_ns_cnt are defined in Table 5.25a depending on the frame
duration.

Table 5.25a: Thresholds for PLC longterm counter variables

 ���
 10 7,5 5 2,5

thresh_tdc_cnt 9 7 22 20
thresh_ns_cnt 7 7 15 21

thresh_tdc_ns_cnt 73 87 141 278

If the relative pitch change of the last valid frame exceeds a threshold of 0,36, the pitch is considered as unstable and
the ���_��� 	!�_�"� is set to 2, which controls the fadeout (see clause 5.6.3.3.7). In each valid frame, the
rel_pitch_change is calculated from the old pitch value of the previous frame and the new pitch value of the current
frame:

 �_����ℎ_�ℎ��� =
|!���"_#���!���"_$%&|

'() (!���"_#�� ,�)
 �151.1�

with ����ℎ_� # = ��$� +
!
�

�
, ����ℎ_	�� = ��$�

�%� +
!
�
��

�
 and ��$� , ��� , ��$�

�%� , ���
�%� defined in clause 5.4.9.2.

The rel_pitch_change shall be only considered for high-resolution mode at frame durations of 2,5 and 5 ms.

5.6.3.2 MDCT frame repetition with sign scrambling

The intermediate spectrum of the concealed frame $′% (�) is derived by sign scrambling of the last received shaped
spectrum $&��	�*##�(�) of clause 5.4.8:

for k=0.. �� − 1
 plc_seed = (16831 + plc_seed*12821) & 0xFFFF;
 if plc_seed < 0
 if pitch_present == 0 || plc_seed < randThreshold || plc_fadeout_type != 0

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)84

 �′� (�) = −�	�	
������;
 else

 �′� (�) = �	�	
������;

with the initial value of plc_seed=24 607 (this value is initialized only once at decoder startup and is not reset after
the appearance of an error-free frame), where pitch_present is the LTPF parameter calculated in clause 5.3.10.6 from
the last good frame, and

randThreshold = −32 768 ∙ linFuncStartStop �152�
where linFuncStartStop is determined as follows:

plc_duration_inFrames = plc_end_inFrames - plc_start_inFrames;
x = max(plc_start_inFrames, (min (nbLostCmpt, plc_end_inFrames)));
m = -1 / plc_duration_inFrames;
b = - plc_end_inFrames;
linFuncStartStop = m * (x + b);

where:

plc_end_inFrames = '����	 ∙
10�	

(�153�
with:

����	 =
)*+4_�,-.��_/0_�_1.

10
�154�

where the default value of PLC4_TRANSIT_END_IN_MS = 60 with the minimum value of 20, nbLostCmpt being the
number of consecutive concealed frames, and

plc_start_inFrames = 2 1, if pitch_present = 0' 20�	

(, otherwise
�154.1�

where pitch_present is the LTPF parameter calculated in clause 5.3.10.6 from the last good frame. To prevent rapid
high energy increase, the spectrum is high pass filtered with $′% �0� ← $′% �0� ∙ 0,2 and $′% �1� ← $′% �1� ∙ 0,5. The
spectrum $′% (�) is damped adaptivly based on the two damping factors: ��	#′ = 0,8 + 0,2 ∙ 3 �155�

and ����′ = 0,3 + 0,2 ∙ 3 �156�
where 3 is the stability factor computed as follows:

3 = 1,25 −
1

25
�4��������� − �����+���5+

�

���

�157�
where the stability factor 3 is truncated to 0 ≤ 3 ≤ 1, with larger values of 3 corresponding to more stable signals. This
limits energy and spectral envelope fluctuations. If there are no two adjacent scale factor vectors present, 3 is set to 0,8.
The two factors ��	#′ and ����′ are calculated if nbLostFrames = 1 and stay for consecutive lost frames. Based on
these and the number of consecutive lost frames, the two damping factors ��	#′′� and ����′′� are calculated as follows:

��	#′′� = 2 0, �� ��*	��+���_�	� > ����	��	#′ ∙ 0,5, �� �� ��*	��+���_�	� > 2��	#′, �� �158�
and

����′′� = 2 0, �� ��*	��+���_�	� > ����	����′ ∙ 0,5, �� �� ��*	��+���_�	� > 2����′, �� �159�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)85

where:

��*	��+���_�	� = 6(��*	��+��� − 1) +
10�	

10�	

7 �160�
Finally, the two damping factors ��	#� and ����� are calculated as follows:

��	#� =

⎩⎪⎨
⎪⎧ ���	#,,

�
� , �	
 �	 = 2,5���	#,,

�
� , �	
 �	 = 5����	#,,

��-�
, �	
 �	 = 7,5��	#,,

� , 	�ℎ
#��
�161�

and

����� =

⎩⎪⎨
⎪⎧ �����′′�

�
, �	
 �	 = 2,5�����′′�

�
, �	
 �	 = 5������′′��-�
, �	
 �	 = 7,5����′′� , 	�ℎ
#��

�162�
For plc_fadeout_type == 0, the corresponding cumulative attenuation factors cum_fading_slow. and cum_fading_fast.
are calculated as follows:

cum_fading_slow. = cum_fading_slow.�� ∙ ��	#� �163�
and

cum_fading_fast. = cum_fading_slow.�� ∙ ����� �164�
where cum_fading_slow.�� and cum_fading_fast.�� are the cumulative attenuation factors of the previous frame or 1
if nbLostFrames = 1.

For plc_fadeout_type != 0 the cumulative attenuation factor cum_fading_slow. is calculated:

cum_fading_slow. =

⎩⎪⎨
⎪⎧ cum_fading_slow.��, if nbLostCmpt < 4 ∙

10

N'/

cum_fading_slow.�� ∙ 0,9, else if nbLostCmpt < 8 ∙
10

N'/

cum_fading_slow.�� ∙ 0,85, else

�164.1�

Finally, the damping is processed as follows:

ad_ThreshFac_start = 10;
ad_ThreshFac_end = 1.2;
ad_threshFac = (ad_ThreshFac_start - ad_ThreshFac_end) * linFuncStartStop + ad_ThreshFac_end;

frame_energy = mean(�	′(�)(0.. �� − 1).^2);
energThreshold = ad_threshFac * frame_energy;

for k=0.. �� − 1

 if (�	′(�)^2) < energThreshold || plc_fadeout_type != 0
 m = cum_fading_slow;
 n = 0;
 else
 m = cum_fading_fast;
 n = (cum_fading_slow-cum_fading_fast) * sqrt(energThreshold) * sign(�	′(�));
 end

 �	(�) = m * �	′(�) + n;
end

to form the spectrum $&(�) for clause 5.4.8.

If the Long Term Postfilter was active in the last good frame, the filter is also applied on the synthesized concealed time
signal as described in clause 5.6.4 with 8 = ��	#�.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)86

5.6.3.3 Time domain concealment

5.6.3.3.1 Overview

The time domain concealment method is a pitch-based PLC technique operating in the time domain. It is best suited for
signals with a dominant harmonic structure. The general description of the algorithm is as follow: the synthesized signal
of the last decoded frames is inverse filtered with the Linear Prediction (LP) filter as describes in clause 5.6.3.3.2 to
obtain the periodic signal as described in clause 5.6.3.3.3. The random signal is generated by a random generator with
approximately uniform distribution as described in clause 5.6.3.3.4. The two excitation signals are summed up to form
the total excitation signal as described in clause 5.6.3.3.5, which is adaptively faded out with the attenuation factor
described in clause 5.6.3.3.7 and finally filtered with the LP filter to obtain the synthesized concealed time signal. If
LTPF was active in the last good frame, the LTPF is also applied on the synthesized concealed time signal as described
in clause 5.6.4. To get a proper overlap with the first good frame after a lost frame, the time domain alias cancelation
signal is generated as described in clause 5.6.3.3.6.

5.6.3.3.2 LPC parameter calculation

The time domain concealment method is operating in the excitation domain of the time domain, therefore an LP filter is
calculated in the first lost frame after a good frame and remains for the subsequently lost frames. The order of the LP
filter is:

1 = � 8, �� �	 = 8 000 ��� �	 = 2,5
16, �� �165�

The autocorrelation function
(�) is derived from the energies per band /0��� (see clause 5.3.4.4), but with:

� = 9 60, �	! = 32 000 ��� �	! = 96 000 and �	 = 7,5
60, �	 = 48 000 ��� �	 = 2,5

40, �	 = 24 000 ��� �	 = 5
min (� , 80), �� �166�

and

��	��� =
��

�, �	
 � = 0 … � �167�
Afterwards /0��� is pre-emphasized using:

/���� = /0��� ∙ :1 + ;+ − 2; ∙ cos :<(� + 0,5)�

== , �	
 � = 0 … 0 − 1 �168�
with ; given in Table 5.26.

Table 5.26: Pre-emphasis factor table

�� (Hz) �
8 000 0,62
16 000 0,72
24 000 0,82

≥ 32 000 0,92

The vector ����� is transformed to the time domain using an inverse odd DFT:

������� = �� 	
 ����� ∙ ���∙�

��
(�	

�
)

���

��

� , �� � = 0 …�� − 1 �169�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)87

In case �����0� = 0, set �����0� = 1 and �����1 …�� − 1� = 0. The first M samples are extracted into the vector �� = �����0 …� − 1�. The autocorrelation function is lag windowed using:

������� = � ����� ∙ 1,0001, �� � = 0����� ∙ ��� �− 1

2
�120���� ��� , �� � = 1 …� �170�

The Levinson-Durbin recursion described in clause 5.3.9.2 is used with ������� to obtain LPC coefficients �����, � = 0 …� for the concealed frame.

5.6.3.3.3 Construction of the periodic part of the excitation

5.6.3.3.3.1 Processing in the first lost frame

The last � + �� +
��

�
 decoded time samples are first pre-emphasized with the pre-emphasis factor from Table 5.26

using the filter: ������������ = 1 − ���
 �171�
to obtain the signal �������, � = 0 …� + �� +

��

�
, where �� is the pitch-lag value pitch_int or pitch_int + 1 if

pitch_fr > 0, where the values pitch_int and pitch_fr are the pitch-lag values transmitted in the last good bitstream, as
described in clause 5.4.9.3.

The pre-emphasized signal, ����(�), is further filtered with the inverse LP filter, �����, calculated in clause 5.6.3.3.2 to
obtain the prior excitation signal:

���� �� − �� −
��
2
� = ������ + �� +
 ����� ∙ ������ + � − ���

�

, �� � = 0 …�� +
��
2

− 1 �172�
If the stability factor from clause 5.6.3.2 is smaller than one, the pitch period to construct the periodic excitation
signal are inductively defined by:

ℎ��!���"#���� ←
������ − �� − 5 + �� ∙ ℎ��(�)
�

��

, �� � = 0 … �� − 1 �173�

where ℎ�� constitutes an 11-tap linear phase FIR filter whose coefficients are given in Table 5.27. Otherwise, they are
defined by:

ℎ��!���"#���� = ������ − ���, �� � = 0 … �� − 1 �174�
[$�%] �175�

Table 5.27: Low pass FIR filter coefficients

�� (Hz) ���
8 000 to 16 000 {0,0053, 0,0000, -0,0440, 0,0000, 0,2637, 0,5500, 0,2637, 0,0000, -0,0440, 0,0000, 0,0053}

> 16 000 {-0,0053, -0,0037, -0,0140, 0,0180, 0,2668, 0,4991, 0,2668, 0,0180, -0,0140, -0,0037, -0,0053}

The gain of pitch &� is calculated as follows:

&�� =
∑ ������ + �� ∙ ������ + �� + ����

�
�

�� ∑ ������ + �����
�
�

��

�176�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)88

If pitch_fr = 0 then &� = &�� . Otherwise, &��� is calculated as follows:

&��� =
∑ ������ + � + 1� ∙ ������ + �� + ����

�
�

�� ∑ ������ + � + 1����
�
�

��

�177�
and &� = max (&�� ,&���). If &��� > &�� then �� = �� − 1 for further processing.

Finally, &� is truncated to 0 ≤ &� ≤ 1. Furthermore, if nbLostCmpt = 1:

• ()�
 = 1

• * = 0.

5.6.3.3.3.2 Processing in each lost frame

The periodic part of the excitation is constructed based on the content of the ℎ��!���"#� as described in the
following pseudo code:

 harmonicBufPtr = ℎ��������	
 + (((nbLostCmpt - 1) * ��) ��� �) ;

 for (k = 0; k < � +
��

�
; k++) {

 if (harmonicBufPtr - ℎ��������	
 >= �) {
 harmonicBufPtr = ℎ��������	
;
 }
 ����[�] = *harmonicBufPtr++;
 }

The formed periodic excitation, ������� is attenuated as follows:

����+��� = ,1 +
��� − 1

�() − ()�
�- ∙ �������, �� � = 0 …�� − 1 �178�
where the attenuation factor: () = (�179� (is given in clause 5.6.3.3.7.

Furthermore, if nbLostCmpt > 1:

• ()�
 is () of the previous frame.

• &� is set to ()�
.

5.6.3.3.4 Construction of the random part of the excitation

The random part of the excitation is generated with a simple random generator with approximately uniform distribution
as follows: ����,��(�) = (16 831 + ����,���� − 1� ∙ 12 821) & 0xFFFF, �� � = 0 …�� + 10 �180�
where ����,���−1� is initialized with 24 607 for the very first frame concealed with this method. For further frames, ����,����� + 10� is stored and used as next ����,���−1�.
To shift the noise towards higher frequencies, the excitation signal is high pass filtered with an 11-tap linear phase FIR
filter given in Table 5.28 to get:

����,����� =
����,���� + �� ∙ ℎ��(�)
�

��

, �� � = 0 …�� �181�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)89

Table 5.28: High pass FIR filter coefficients

�� (Hz) ���
8 000 to 16 000 {0, -0,0205, -0,0651, -0,1256, -0,1792, 0,8028, -0,1792, -0,1256, -0,0651, -0,0205, 0}

 > 16 000 {-0,0517, -0,0587, -0,0820, -0,1024, -0,1164, 0,8786, -0,1164, -0,1024, -0,0820, -0,0587, -0,0517}

To ensure that the noise fades to full band noise, the random part of the excitation ����(�) is composed via an
interpolation between the full band ����,��(�) and the high pass filtered version ����,����� as: ������� = * ∙ ����,���� + 5� + �1 − *� ∙ ����,��(�), �� � = 0 …�� − 1 �182�
where * = 0 for the first lost frame after a good frame, and * = �1 − ()� ∙ . �183�

with:

. =
��/0.1!�._2�

(��/0.1!�._2� + 30)
�183.1�

for the second and further consecutive frame losses, where ��/0.1!�._2� is calculated in equation (160), and () = (�184�
The fading speed is dependent on the attenuation factor (calculated in clause 5.6.3.3.7. For adjusting the noise level,
the gain of noise, &�� , is calculated in the first lost frame after a good frame as:

&�� =
3∑ 4���� 5� −

��
2
6 − &�7 ∙ ���� 5� − �� −

��
2
68���

�
�

�� ��/2

�185�
where: &�7 = &� �186�
and &� is the gain of pitch calculated in clause 5.6.3.3.3. To prevent high energy increase at �� = 8 000 ��, &�� is
controlled by:

&�� ←

⎩⎪⎨
⎪⎧3∑ 4���� 5� −

��
2
68���

�
�

�� ��/2
, �� &�� >

3∑ 4���� 5� −
��
2
68���

�
�

�� ��/2 &�� , �20�
�187�

If �� = pitch_int after clause 5.6.3.3.3, then &� = &�� . Otherwise, a second gain of noise, &���, is calculated as done in
equation (185) and equation (187), but with �� = pitch_int. Following, &� = min (&�� ,&���).

The composed random excitation ������� is attenuated as follows:

����+��� = ,1 +
��� − 1

� ()()�
 − 1�- ∙ &� ∙ �� ∙ �������, �� � = 0 …�� − 1 �188�
where ()�
 = 1 if nbLostCmpt = 1 and ()�
 is () of the previous frame if nbLostCmpt > 1 and the normalization factor �� is:

�� = =1,1 − 0,75&�> ∙
1?������� ∙ ��������� , �� � = 0 …�� − 1 �189�

to obtain ����+���. The noise gain, &�, is calculated only in the first lost frame after a good frame and is stored as &�,���� = &� ∙ (for the next consecutive frame loss, where &�,���� is the gain of noise of the next consecutive frame
loss.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)90

5.6.3.3.5 Construction of the total excitation, synthesis and post-processing

The random excitation, ����+���, is added to the periodic excitation, ����+���, to form the total excitation signal �������. The synthesized signal 0@�.ℎ��� for the concealed frame is obtained by filtering the total excitation with the
LP filter, �����, from clause 5.6.3.3.2 and post-processed with the de-emphasis filter, which is the inverse filter from
equation (171).

If ��/0.1!�._2� = �
��� and ��/0.1!�._2��
 < ��/0.1!�._2�, with ��/0.1!�._2� from
equation (160), ��/0.1!�._2��
 is ��/0.1!�._2� from the previous frame and �
��� from equation (154), then 0@�.ℎ��� is faded out to zero as follows:

0@�.ℎ��� ← �1 −
���� ∙ 0@�.ℎ���, �� � = 0 …�� − 1 �190�

where for �2�_��%�#._.@�� ≥ 1, A/14_�������_���_��_	� in equation (154) is set to 200.

For further frame losses the signal and
 is set to zero.

5.6.3.3.6 Time domain alias cancelation

To get a proper overlap add in the case the next frame is a good frame, the time domain alias cancelation part �������
has to be generated. For that, �� − � additional samples are created the same way as described above to obtain the
signal ��� ��� = 0 … 2�� − �. On that, the time domain alias cancelation part is created by the following steps:

1) Zero padding the synthesized time domain buffer ���
���� = � 0, 0 ≤ < ��� − ��, � ≤ < 2�� �191�

2) Windowing ���� with the MDCT window ��() ����� = ���� ∙ ����, 0 ≤ < 2�� �192�
3) Reshaping from 2�� to ��

��� = �−��� �3��
2

+ � − ��� �3��
2

− 1 − � , 0 ≤ <
��
2��� �−

��
2

+ � − ��� �3��
2

− 1 − � ,
��
2

≤ < �� �193�
4) Reshaping from �� to 2��

���� =

⎩⎪
⎪⎨
⎪⎪
⎧ � ���

2
+ � , 0 ≤ <

��
2

−� �3��
2

− 1 − � ,
��
2

≤ < ��
−� �3��

2
− 1 − � , �� ≤ <

3��
2

−� �−
3��

2
+ � ,

3��
2

≤ < 2��
�194�

5) Windowing ���� with the flipped MDCT window ��() ������� = ���2�� − 1 − � ∙ ����, 0 ≤ < 2�� �195�
5.6.3.3.7 Handling of multiple frame losses

In general, the constructed signal fades out towards zero for multiple frame losses. The fade out speed is controlled by
an attenuation factor
 which is dependent on the previous attenuation factor
�	, the gain of pitch �
 calculated on the
last correctly received frame and updated in every consecutive frame loss, the number of consecutive erased frames !"�#$%&'$, and the stability factor (, as calculated in clause 5.6.3.2. The attenuation factor is calculated as follows:

��������	���� =
������	
���
��

���
�

��

���

�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)91

type2fadeoutselector = 10

if (plc_fadeout_type == 2 && (��� == 5 || ��� == 2.5){

 if (type2fadeoutselector⋅2⋅ ��
���

 >= �������	
�){

 if (�������	
� <= 3⋅ ��
���

){

 � = 0.95
(���	�
���

��

���
 � �) ∙

���

��
 }
 else {

 �_�ℎ�� = (�������	
� − 3�

��

���
)⋅ �

���

 � = 0.7
(�_����

��

���
 � �) ∙

���

��
 }
 }
 else {

 � = 0.5
(���	�
���

��

���
 � �) ∙

���

��
 }

} else {
 �������	
��	� = ��������	
� − 1� & 0�0003

if (��� == 10 || (��� == 7.5 && �������	
��	� ! = 1) || (��� == 5 && (�������	
��	� & 0�0001 == 0)) || (��� ==

2.5 && �������	
��	� == 0))

 if (�������	
�_��� == 1)
 � = ���
 if (� > 0.98)
 � = 0.98
 else if (� < 0.925)
 � = 0.925
 else if (�������	
�_��� == 2)
 � = (0.63 + 0.35 �)∙ ��
 if � < 0.919
 � = 0.919;
 else
 � = (0.652 + 0.328 �)∙ ��
else
 � = ���

if (�������	
�_��� > 3)

 � = � ∙ 0.5
���

���
if (�������	
�_��� > 5)
 �� = �

}

5.6.3.4 Frequency domain concealment (Phase ECU)

5.6.3.4.1 Phase ECU overview

One of the advanced ECU modes is the Phase ECU and it is used for both speech signals and general audio signals. It
operates by performing a time evolution of decoded signal in the frequency domain. This technique assumes that the
lost frame can be represented by a limited number of sinusoidal components that are identified in a time signal. These
sinusoidal components are time evolved to replace the lost frame, the calculated frame substitute is then processed using
the MDCT-related TDA and ITDA steps.

The Phase ECU operation employs in total a 26 ms duration time domain signal for calculating the replacement signal
in case of lost frames, the most recent(rightmost) 16 ms part of the decoded signal, with length ����� samples is called
the prototype signal ������.
For the first lost frame there are three separate steps: a transient analysis, fine spectral analysis and frame
reconstruction. In the first step, the transient analysis, the spectral shape and the frame energy are used to detect
transients in sub bands and calculate modification parameters, which is described in clause 5.6.3.4.3. The second step,
the fine spectral analysis, identifies the sinusoidal components which is described in clause 5.6.3.4.4. In the final third
step, the frame reconstruction, the sinusoids are time evolved and are converted back to the time domain and that is
described in clause 5.6.3.4.5. In case of consecutive lost frames, that is during error bursts, processing consists of
control parameter updates made by the transient analysis described in clause 5.6.3.4.3 and frame reconstruction as
described in clause 5.6.3.4.5.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)92

5.6.3.4.2 Spectral Shape

For the transient analysis the Phase ECU uses a MDCT based spectral shape and a frame energy to estimate how the
signal evolves over time. The spectral shape is calculated based on the decoded MDCT coefficients. The transient
analysis spectral shape consists of sub-band energy estimates where the number of sub-bands depends on the sampling
frequency as seen in Table 5.29.

Table 5.29: Phase ECU Number of bins table

�� (Hz) ����
8 000 4
16 000 5
24 000 6
32 000 7

44 100, 48 000 8

Table 5.30 shows how MDCT coefficients are divided among the sub-bands. The table entries show start coefficients of
each sub-band.

Table 5.30: Phase ECU MDCT band start coefficients

Frame duration Vector name MDCT coefficient number MDCT resolution
10 ms ���_�����_	
��() {4, 14, 24, 44, 84, 164, 244,

324, 404}
50 Hz

The sub-band based spectral shapes are normalized to the range [0,1] so first the total magnitude of the MDCT
coefficients are calculated as:

�ℎ���_�
������ = � �_������(�)�

	
� (�, �������)

���

�196�

�ℎ���_�
����� = � �_�����(�)�

	
� (�, �������)

���

�197�
Two normalized spectral shapes for the sub-bands are calculated as:

�ℎ���������� =
1�ℎ���_�
������ � �_������(�)�

���_�����_�����������

�����_�����_����(�)

, 0 ≤ < ���� �198�
which forms the normalized spectral shape for corresponding to the last encoded frame (analysed over the most recent
16,25 ms on the encoder side), and

�ℎ��������� =
1�ℎ���_�
����� � �_�����(�)�

���_�����_�����������

�����_�����_����(�)

, 0 ≤ < ���� �199�
which forms the normalized spectral shape corresponding to the frame preceding the last encoded frame.

Two frame energies are calculated as:

�_������ = � ������� ∙ ����������
�������

���

�200�

�_����� = � ������� ∙ ���������
�������

���

�201�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)93

Where ���� is the Phase ECU spectral analysis window, ������ consists of the most recent ����� samples of the total
26 ms time domain signal, and ����� corresponds to the first ����� samples of the 26 ms signal.

5.6.3.4.3 Transient analysis

The transient analysis employs the spectral shapes and the frame energies to analyse how the sub-band energies are
evolving over the last 26 ms in each band and to build a long-term spectral average �� � for each band , an average
that is used to adjust the scaling of the FFT synthesis bins during extended burst errors.

Table 5.31: Phase ECU FFT Sub-Bands start bin numbers

Vector name FFT bin numbers (at 250 Hz resolution)
grp_start_bin(k) {1, 3, 5, 9, 17, 33, 49, 65, 81, 97}

The spectral shapes and frame energies are used to generate the approximations of sub-band energies corresponding to
the last 26 ms. The first corresponds to the frame before the last frame as:

�����() = � ∙ �ℎ��������� ∙ �_����� , 0 ≤ < ���� �202�
The second corresponds to the last frame as:

������() = � ∙ �ℎ���������� ∙ �_������ , 0 ≤ < ���� �203�
Where � is a constant that depends on the sampling frequency and handles the conversion of the MDCT based spectral
shape to an approximation of an FFT based spectral analysis and are shown in Table 5.32.

Table 5.32: Phase ECU MDCT coefficient to FFT bin spectral shape conversion factor �

�� (Hz) � (factor)
8 000 1,9906
16 000 4,0445
24 000 6,0980
32 000 8,1533

44 100, 48 000 12,2603

These are used to calculate the ratio of energies for the two positions as:

�����() =
������()�����()

, 0 ≤ < ���� �204�
This forms the basis of a frequency selective transient detection for each frequency band . The gain in compared with
an upper and lower threshold that represent onset and offset detection respectively. If ������� > 10 or ������� < 0,1
is fulfilled the band contains a transient and ������� is set to 1. The gains �!���� are set to 1. If a band has a
transient, the gain �!���� is updated to:

�!��() = min �1,��������� , 0 ≤ < ���� �205�
The gains �!���� for the first lost frame are saved into �′!����.
To better handle burst conditions, magnitude and phase modification factors are updated. The first part in the magnitude
modification is a low-resolution spectral shape, and is calculated according to the following:

������() = �1

2
∙

������� + ������()���_�����_ !�� + 1� − ���_�����_ !�()
, 0 ≤ < ���� �206�

Here ������() now forms a low-resolution bin amplitude estimate in band . It is used for a generating a spectrally
shaped additive noise signal to which the substitution signal is pulled towards in case of burst frame losses.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)94

The second part in the magnitude modification is the adjustment of the gain �!��() which is updated band wise
according to:

�!��() = �′!��() ∙ 10
�"	��

��# , 0 ≤ < ���� �207�
where:

 "��� = 0,30103

���� = #3 , �$	_����
%�_�&�� = 0
5 , �$	_����
%�_�&�� = 1

���� = #2 , �$	_����
%�_�&�� = 0
9 , �$	_����
%�_�&�� = 1

�208�

' ���� = 0, ����� ≤ ����

 ���� = ������ − ����� ∙ "��� , ���� < ����� ≤ �������� = ���� ∙ "��� + ������ − ����� ∙ 6,0206, ����� > ���� + ���� + ���� �209�
Here ����� is the number of consecutive lost frames.

The attenuation factors (() and)() are updated as:

(�� = �!��())�� =)!$�� ∙ �1 − (�()
 , 0 ≤ < ���� �210�

Through variable (() the concealment method is modified by selectively adjusting the magnitude of the substitution
frame spectrum base on the frequency domain transient detector status �����().

The scaling factor)() is used to scale the spectrally shaped additive noise signal such that, except for the incorporated
gradual muting behaviour through factor)!$��, it compensates for the energy loss caused by the attenuation with factor (().

For = 5,)() is further adjusted as)�� =)() ∙ 0,5 and for > 6 then)�� =)() ∙ 0,1. This superimposes a
low-pass characteristic on the additive noise signal, which avoids unpleasant high frequency noise in the substitution
signals.

Further at the end of a longer burst off lost frames the additive noise scaling factor)!$�� is adjusted for every frame as
follows:

)	%&' = *)!$�� ∙ 0,5, ����� > 5 ∩ �$	_����
%�_�&�� = 0)!$�� ∙ 0,5, ����� > 14 ∩ �$	_����
%�_�&�� = 1)	%&' , otherwise

�210.1�
5.6.3.4.4 Fine Spectral analysis

For the first lost frame the prototype frame signal, ������ , is used for a fine high-resolution spectral analysis:

��(�) = FFT ������� ∙ ���������	 , 0 ≤ � <
���� , 0 ≤ � ≤ ���	 �211�
Where ��(�) is complex valued, ���(�) is a hamming-rectangular window, and
���� is the length of the FFT input
which depends on the sampling frequency used as shown in Table 5.33.

Table 5.33: Phase ECU Prototype length and Number of FFT bins

�� (Hz) ����� (samples) ���� (complex valued bins)
8 000 128 64

16 000 256 128
24 000 384 192
32 000 512 256

44 100, 48 000 768 384

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)95

The shape of the window is defined as a periodic hamming window:

������ =

⎩⎪⎨
⎪⎧ 0,56 + 0,46 ∙ cos � � ∙ �
� + 1

� , 0 ≤ � <
�
1,00 ,
� ≤ � <
 −
�
0,56 + 0,46 ∙ cos�� ∙ �� −
���� + 2 ∙
��
� + 1

� ,
 −
� ≤ � <
����
�212�

And
� is the length of the hamming part which depends on the sampling frequency �� as shown in Table 5.34.

Table 5.34: Phase ECU Length of hamming part in HammRect window

�� (Hz) �	 (samples)
8 000 12

16 000 24
24 000 36
32 000 48

44 100, 48 000 96

In case of a burst error consecutive frames are based on the same prototype signal analysis so the complex valued
spectrum ��(�) is saved. To locate the peaks in the spectrum the magnitude spectrum is first calculated |��(�)| and
this is sent to the peak locator method. It returns the found number of peaks ��
�� and the peak locations �����, � = 0, … ,��
�� − 1. These peak locations only hold peak locations with the frequency resolution of the FFT bin
distance, which is insufficient for high quality phase evolution. To increase the frequency resolution the magnitude
spectrum and peak locations are sent to a refinement method that use both real valued and complex valued interpolation.
After the interpolation the peak locations are fractional peak locations �′����, � = 0, … ,��
�� − 1.

These fractional peak locations (sinusoidal frequencies) form the basis of the sinusoidal mode used for the
reconstructions of the lost audio frames described further during frame reconstruction in clause 5.6.3.4.5.

5.6.3.4.4a Noise only analysis and modification

If the peak locator results in many peaks, i.e. ��
�� > 14, then the complete signal �� is assumed to not contain
sinusoids and is evolved as a noise only signal by setting the number of peak locations to zero (i.e. ��
��= 0), and thus
evolving the spectrum as a single valley noise only signal with random phases per spectral bin.

5.6.3.4.4b Single sinusoid analysis and modification

Before evolving the identified spectral peaks, the ��
��integer peak locations in ��, the corresponding fine spectral
analysis amplitudes |��������| = ���������, the longer term spectral band amplitude estimates ������������� are
analyzed improve the fidelity when reconstructing single pure relatively high SNR sinusoid signals.

An initial hypothesis of a single sinusoidal is initialized based on the peak locator result as follows:

single_����_present = �� !"�, ��
�� = 0 ∪ ��
�� > 2 �#$�, 1 ≤ ��
�� ≤ 2
�212.1�

If the condition single_����_present is �#$� a secondary analysis whether to keep the ����� valley amplitudes or mute
the ����� valley bins in is made as follows:

• The register �%�_&���'� is initialized zero (implying an initial assumption of a pure sinusoid), the register is
then used to store the evaluation results of three different non-pure-tone(npt) criteria:

1) The assumed single sinusoid main lobe width is analyzed using ��, ��
�� and ��������� and the valley bins
amplitudes will be kept if the main lobe is too wide to represent a single pure sinusoid: For an established too
wide main lobe a value 0x01 is added to �%�_&���'�.

2) The dynamic range of the assumed sinusoid is analyzed in the bins surrounding the assume sinusoid bin, using: ��, ��
��and (����)���� . The valley bins amplitudes will be kept if the amplitudes variation in an 812,5 Hz
wide band centered on the assumed main lobe is less than 24 dB and thus not likely to represent a single pure
sinusoid. If low dynamics is observed near the main lobe, a value 0x02 is added to �%�_&���'�.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)96

3) The spectral amplitude envelope is analyzed in terms of an expected dual sided band-wise tapering-off for a
pure sinusoid, using ��, ��
��, the fine resolution amplitudes ���������, the coarse longer term resolution
amplitudes in ������������� and band-border sensitivity weights "'*+,(�����) for each band border, where
the scATH weights are based on the Absolute Threshold for hearing Curve (ATH), and are thus taking into
account the increased subjective sensitivity in the central region compared to the low and high frequency
regions. If the band-wise weighted accumulated amplitude increases from low to high on the high frequency
side of the central band is larger than 6,0 dB, a value 0x10 is added to �%�_detect. If the band-wise weighted
accumulated amplitude increases from high to low on the low frequency side of the central band is larger than
6,0 dB, a value 0x20 is added to �%�_&���'�. If the band-wise weighted accumulated amplitude increases on
both sides of the central band is larger than 4,5 dB, a value 0x40 is added to �%�_&���'�.

Table 5.34a: Phase ECU Sinusoidal analysis ATH-weights

Vector name ATH-weights per band border
����	(

��) {0,455, 0,931, 0,973, 1,000, 0,908, 0,776, 0,500}

Subsequently after the analysis steps a resulting all zero �%�_detect register is used in the frame reconstruction to turn
off the noise generation in the assumed spectral valley bins, this deactivation reduces a granular evolution noise which
may otherwise arise due to the Phase ECU approximation of a pure sinusoid being represented using a limited number
of spectral bins around a main central lobe. On the other hand, when �%�_&���'� is non-zero the signal is assumed to be
a single sinusoid with a significant background noise envelope and it will be evolved without losing energy in the
non-sinusoidal valley regions of the overall spectrum.

5.6.3.4.5 Frame reconstruction

For the reconstruction the fractional peak locations from the spectral analysis is used to create a time evolved
reconstruction frame. This is done by phase adjusting the identified peaks �′� of size ��
�� to fit the time location of
the reconstructed frame.

While the exact time evolution of the sinusoids of the windowed prototype signal frame would require complex super
position of frequency-shifted, phase-evolved and sampled instances of the spectrum of the used window function, Phase
ECU operates with an approximation of the window function spectrum such that it comprises only a region around its
main lobe. With this approximation the substitution frame spectrum is composed of strictly non-overlapping portions of
the approximated window function spectrum and hence the time evolution of the sinusoids of the windowed prototype
signal frame reduces to phase shifting the sinusoidal components of the prototype spectrum in --regions around each
spectral peak � by an amount .(�).

Note that this amount .(�) merely depends on the respective sinusoidal frequency (fractional peak location) �′����, � = 0, … ,��
�� − 1 and the time shift between the lost frame and the prototype signal frame. This is expressed
in equation (213). The phase shift is calculated as:

.(�) = 2� ∙
���(�)
���� ∙ �2 ∙
 −

2 ∙
 −
����
2

−

2+ ���� − /� , 0 ≤ � < ��
�� �213�
where ���� is the offset in number of samples since the last good frame. ���� is a variable incremented by
 for each
lost frame, and
 equals the length of the frame.

Table 5.35: Phase ECU frame size table

�� (Hz) � (samples)
8 000 80

16 000 160
24 000 240
32 000 320

44 100, 48 000 480

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)97

Next the spectrum around each spectral peak � is evolved and random noise component related to burst loss handling is
added:

���(�) = α�k� ∙ ����� ∙ ��∙���� + β(k) ∙ 0̅������� ∙ ��∙�∗�∙����(�) �214�
Where � = � − -�, … , � + -�, # �&(�) is a random number between 0 and 1.

-� = min �5,
����� − ���� − 1� − 1

2
�

-� = min �5,
���� + 1� − ����� − 1

2
�, 0 ≤ � < ��
�� �215�

The remaining spectral coefficients which have not been evolved are processed in similar manner but with a
randomized phase. In the special case of a pure single sinusoid is identified and the register �%�_&���'� only contains
zeroes, the amplitudes of the valley spectral coefficients are zeroed.

For clarity it is to be noted that the first additive term in equation (214) relates to phase shifting the sinusoidal
components of the prototype spectrum. In addition, for longer bursts the magnitude of the prototype signal frame
spectral coefficients is attenuated with the scaling factor 2���. The second additive term in equation (214) modifies the
substitution frame spectral coefficients by an additive noise component, where the magnitude of the additive noise
component corresponds to the scaled coefficients of the low-resolution magnitude spectrum of the previous good frame, 0̅����,. The scaling factor 3��� is chosen such that, except for the incorporated gradual muting behaviour, it
compensates for the energy loss caused by the attenuation with factor 2���. This is an aspect of the long-term muting
behaviour which is outlined in clause 5.6.3.4.3.

The reconstructed signal ������ is produced by applying the Inverse FFT to the evolved spectrum ��� and normalizing
the resulting time domain signal using the �ℎ#(�) window according to equation (216).

������ = IFFT��������/�ℎ#(�) , 0 ≤ � <
���� , 0 ≤ � ≤ ���	 �216�
The reconstructed signal ������ of length
���� is then extended in two directions to achieve the same length (2 ∙
) as
the normal MDCT window. The extended signal �′�� is constructed as follows, a first 2 ms part is copied from a
position 3,75 ms from the end of the prototype signal ������(�), a second 1,75 ms part is created by overlap adding the
end 1,75 ms of the prototype signal ������(n), with the initial 1,75 ms part of the reconstructed signal ������. A third
12,5 ms part is copied from the remaing reconstructed signal ������. Finally, a fourth 3,75 ms part, after the copied
reconstructed signal consists of zeroes. The total composite extended signal �′����� of length (2 ∙
) is then MDCT
windowed and time domain aliased in a manner corresponding normal encoding described in clause 5.3.4. The resulting
windowed and the time-domain aliased signal is then inverse time domain aliased, windowed and overlap-added with
the previous frame in a manner corresponding to normal decoding steps described in clause 5.4.8.

5.6.4 PLC operation related to LTPF

If mem_ltpf_active=1 in the concealed frame, then ltpf_active is set to 1 if the concealment method is as defined in
clause 5.6.3.2 or clause 5.6.3.3. Therefore, the Long Term Postfilter is applied on the synthesized time domain signal as
described in clause 5.4.9, but with �4��� being the decoded signal after MDCT synthesis of clause 5.6.3.2 or the
synthesized time domain signal of clause 5.6.3.3.5, pitch_int and pitch_fr are pitch_int and pitch_fr of the last good
frame, and

gain_ltpf = gain_ltpf_last ∙ 2 �217�
where gain_ltpf_last is the LTPF gain of the previous frame and 2 is the attenuation factor from clause 5.6.3.2 or
clause 5.6.3.3.7 respectively.

If mem_ltpf_active=1 and the concealment method is as defined in clause 5.6.3.4 in a first concealed frame, then
ltpf_active is set to 0, this enables the fade-out path of the LTPF filter from clause 5.4.9.2.

For consecutive lost frames, the pitch values pitch_int and pitch_fr which are used for the LTPF stay fixed.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)98

5.7 External rate adaptation
The LC3plus encoder may change the length of a compressed audio frame (nbytes) in a seamless manner. To enable
this, the encoder receives an external command to change the compressed frame size, which is applied to the current
frame and subsequent frames. The decoder determines the bit rate from the received packet size.

Whenever the bit rate (nbytes) is changed, the variables describing the bit rate defined in clause 5.2.5 need to be
updated. These variables control tuning parameter for the TNS (see clauses 5.3.8 and 5.4.6), the LTPF (see
clauses 5.3.10 and 5.4.9) and the Time Domain Attack Detector (clause 5.3.6) modules.

5.8 High-resolution audio support

5.8.1 Overview

High-resolution audio typically stands for high sampling rates �, i.e. 48 kHz or 96 kHz, and high resolution and
dynamic range for the audio sample, i.e. at least 24 bits per sample. The supported codec rates are therefore
significantly higher compared to regular transmissions.

LC3plus features a high-resolution audio coding mode that operates at sampling rates 48 and 96 kHz and provides

always an audio bandwidth of
��
� , where Full-Band High Resolution (FBHR) stands for an audio bandwidth of 24 kHz

and Ultra-Band High Resolution (UBHR) stands for an audio bandwidth of 48 kHz. The high-resolution mode supports
all frame durations and a wide range of bitrates, see Table 5.2.

The main differences between the high-resolution mode and the normal coding mode are a different set of MDCT
windows that exhibit a higher stop-band attenuation and the use of a 24-bit dynamic for the quantizer of the spectral
coefficients. An exhaustive list of changes to the encoding and decoding procedure is stated below.

The high-resolution mode is not compatible to the other modes of LC3plus. The support and usage of the high-
resolution mode shall be negotiated out of band.

5.8.2 Changes to the algorithm in high-resolution mode

The changes to the algorithm in order to operate in high-resolution mode are:

• Clause 5.2.2: the sampling rate index 5 is added for 96 kHz.

• Clause 5.3.4.3: the MDCT window is replaced by a high-resolution window. The coefficients of these
windows are given in clause 5.9.2 with suffix _HR. Furthermore, the parameter �� is set to �� resulting in full
encoding of the spectrum.

• Clause 5.3.4.4: band numbers and band limits are defined according to values in clause 5.9.1 with suffix _HR.

• Clause 5.3.4a.

For high resolution mode the near Nyquist detector is replaced by a tone detector which is based on a spectral flatness
calculation. In this case the near_nyquist_flag is set to 1 if the inverse spectral flatness exceeds the tone detector
threshold (+5���
�) according to equation 217.0:

1�� ∑ � ����!"��#$

2
% �"�∑ '���(�����)����

��� *
 > +5���
� �217.0�

Table 5.35a: 78+,-.�, frame duration (9/�)

��� ��_��
2,5 ms 301695

5 ms 382564

7,5 ms 743496

10 ms 83402

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)99

• Clause 5.3.5: no bandwidth detection is carried out, i.e. the bandwidth B is set to
�	
� . Furthermore, �:;�"�0 is

set to zero and consequently no bandwidth information is encoded in the bitstream.

• Clause 5.3.6: no attack detection is carried out, i.e. the attack flag is defined to be 0.

• Clause 5.3.7.2.4: for � = 96 000 ,< the parameter =��'� = 34 is used.

• Clause 5.3.7.2.8: the compression factor 0,85 in formula �24� is replaced by the compression factor cf, which
is calculated according to:

'� =

⎩⎪⎨
⎪⎧ 0,6 × 0,35 ��# 9/� = 10 �& �:;�" > 4 400

0,6 × 0,3 ��# 9/� = 7,5 �& �:;�" > 3 300

0,6 × 0,25 ��# 9/� = 5 �& �:;�" > 2 300
 0,6 × 0,25 ��# 9/� = 2,5 �& �:;�" > 1 150

0,6 �!"�

�217.1�
• Clause 5.3.8: TNS parameters are taken from Table 5.36 where the entries with bandwidth FBHR are used

when � = 48 000 ,< and the entries with bandwidth UBHR are used when � = 96 000 ,<.

Table 5.36: TNS parameters for high-resolution mode

��� Bandwidth num_tns_filters start_freq(f) stop_freq(f) sub_start(f,s) sub_stop(f,s)
2,5 FBHR 1 {3} {100} {{3, 51}} {{51, 100}}
2,5 UBHR 1 {3} {100} {{3, 51}} {{51, 100}}

5 FBHR 2 {6, 100} {100, 200} {{6, 53},
{100, 150}}

{{53, 100},
{150, 200}}

5 UBHR 2 {6, 100} {100, 200} {{6, 53},
{100, 150}}

{{53, 100},
{150, 200}}

7,5 FBHR 2 {9, 150} {150, 300} {{9, 56, 103},
{150, 200, 250}}

{{56, 103, 150},
{200, 250, 300}}

7,5 UBHR 2 {9, 150} {150, 300} {{9, 56, 103},
{150, 200, 250}}

{{56, 103, 150},
{200, 250, 300}}

10 FBHR 2 {12, 200} {200, 400}
{{12, 74, 137},

{200, 266 333}}
{{74, 137, 200},
{266, 333, 400}}

10 UBHR 2 {12, 200} {200, 400} {{12, 74, 137},
{200, 266, 333}}

{{74, 137, 200},
{266, 333, 400}}

• Clause 5.3.10: LTPF analysis is carried out as is with > = 2 in equation �76� and the threshold for
pitch_present is changed from 0,6 to 0,4 in formula (88).

pitch_present = �1 if normcorr��1,2, '�##'
� ,+34��� > 0,4

0 otherwise
 �217.2�

• Clause 5.3.11.2: the value �:;�"��� is incremented by 1.

• Clause 5.3.11.3: if the sampling frequency is 96 kHz, i.e. ���� = 5, the calculation of the global gain offset in
equation (104) is changed to:

==��� = max �− min �115, ? �:;�"
10 ∙ (���� + 1)

@� − 105 − 5 ∙ (���� + 1), −181�

Then, a signal adaptive noise floor is added in the calculation of ���� in formula �105�, i.e. the value is calculated as:

 ���� = 10 ∙ log�$ �256� + ∑ ���4 ∙ � + ���6�#$ + �����	 ��# � = 0 …
"

2 − 1,

 where ����� is defined by:

 ����� = max7 A��(�)A ∙ 25�
� ��5'�0 �� .

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)100

 The parameter #�=B;�" depends on bitrate, frame duration and sampling frequency and is computed as:

 #�=B;�" = max �C;� �D ��
�� 8$$E + F��9 , ��, 23	 , 6	

 with F��9 , �� as specified in Table 5.37.

Table 5.37: Parameter C for calculating regularization bits

��� \ �� �� = 48 000 Hz �� = 96 000 Hz
2,5 -6 -6
5 0 0

7,5 2 1
10 2 5

 The parameter !��B;�" depends on the center of mass of the absolute values of the residual spectrum and is
computed as:

 !��B;�" =
2

"�	 �2�9 − min �:�:� , 2�9	 	,

 where:

 G$ = ∑ A��(�)A"
5��#$ + 1058

 and

 G� = ∑ � A��(�)A"
5��#$ + 1058

 are moments of the absolute spectrum.

Furthermore, the parameter ==9�� is calculated as:

 ==9�� = HI28 ∙ log10 � ;���
8388606

�J − ==��� , if ��9�< > 0

0 , otherwise.

• Clause 5.3.11.4: the quantization offset is changed to 0,5, i.e. quantization is carried out according to:

 �=��� = KD;����� + 0,5E , if ����� ≥ 0

L;����� − 0,5M , otherwise
 ��# � = 0 …�� − 1.

• Clause 5.3.11.5: For 96 kHz rateFlag and modeFlag shall not be changed and initialized by modeFlag = -1
and rateFlag = 0.

• Clause 5.3.11.7: the lists t1, t2 and t3 are extended as follows: t1[5] = 830, t2[5] = 3 125, t3[5] = 5 100.
Furthermore, the global gain adjustment is changed to:

if (����� < 255 && �������� > ���������)
{
 factor = 1;
 if (frame_ms == 2.5)
 {
 if(�������� < 520)
 {
 factor = 3;
 }
 else
 {
 factor = 4;
 }
 }
 else if (frame_ms == 5)
 {
 factor = 2;
 }
 else if (frame_ms == 7,5)

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)101

 {
 factor = 1,2;
 }

 ����� += floor(factor * ((�������� - ���������)/delta + 1));
 ����� = min(�����, 255);
}

• Clause 5.3.12: residual coding is extended to calculate at most 20 bits per non-zero quantized spectral
coefficient. These residual bits are determined as to minimize the error term:

 ��������� − ∑ �−1������ ∙ 2����
	�
�
� � − �����.

 Calculation of the residual bits is carried out as follows. First the maximal number of residual coding bits is
determined according to:

nbits_residual_max = ��������� - ������	
�� + 14;

 Then, the residual bits are computed according to the following pseudo code:

iter = 0;
nbits_residual = 0;
offset = 0.25;
while (nbits_residual < nbits_residual_max && iter < 20)
{
 k = 0;

 while (k < �� && nbits_residual < nbits_residual_max)
 {
 if (��[k] != 0)
 {
 if (�[k] >= ��[k]*gg)
 {
 res_bits[nbits_residual] = 1;
 �[k] -= offset * gg;
 }
 else
 {
 res_bits[nbits_residual] = 0;
 �[k] += offset * gg;
 }
 nbits_residual++;
 }
 k++;
 }
 iter++;
 offset /= 2;
}

• Clause 5.3.13: the parameter 	
_��� is set to 40�� .

• Clause 5.4.2.7: the loop:

for (lev = 0; lev < 14; lev++)
is replaced by the loop
for (lev = 0; lev < 22; lev++).

• Clause 5.4.2.8: the loop:

/* Noise Filling Seed */
tmp = 0;
for (k = 0; k < ��; k++)
{
 tmp += abs(��	[k]) * k;
}

 is replaced by:

/* Noise Filling Seed */
tmp = 0;
for (k = 0; k < ��; k++)
{
 tmp += (abs(��	[k])&32767) * k;

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)102

}

• Clause 5.4.3: residual decoding is performed according to the following pseudo code:

iter = n = 0;
offset = 0.25;
while (iter < 20 && n < nResBits)
{
 k = 0;
 while (k < �� && n < nResBits)
 {
 if (��	[k] != 0)
 {
 if (resBits[n++] == 0)
 {
 ��	[k] -= offset;

 }
 else
 {
 ��	[k] +=offset;
 }
 }
 k++;
 }
 iter ++;
 offset /= 2;
}

• Clause 5.4.9: no long-term post filtering is applied.

• Clause 5.6.3.1: as frequency domain concealment (Phase ECU) is not available for 96 kHz sampling rate, time
domain concealment is selected instead if �� > 0 and ����� ≤ 0 and �� = 10.

For 48 kHz sampling rate and 10 ms frame duration, either this modified method selection or the original
method in clause 5.6.3.1 shall be used.

5.8.3 High-Resolution mode and channel coding

When the high-resolution mode is combined with the channel coder as specified in clause A.1, the bitrate limits for the
encoder are specified in terms of gross_bytes per channel. In particular, the lower bitrate limits given in Table 5.2 shall
apply to gross_bytes. Furthermore, an additional upper bound of 400 gross_bytes per channel is enforced, which limits
the maximum bitrate for 10 ms framing in Table 5.2. Channel coding and decoding is then carried out as for a regular
LC3plus payload.

The LC3plus decoder in combination with the channel coder shall accept high-resolution payloads of the following
sizes:

• 87 to 625 bytes per frame at 48 kHz, 10 ms

• 105 to 625 bytes per frame at 96 kHz, 10 ms

• 87 to 625 bytes per frame at 48 kHz, 7,5 ms

• 105 to 625 bytes per frame at 96 kHz, 7,5 ms

• 51 to 375 bytes per frame at 48 kHz, 5 ms

• 59 to 375 bytes per frame at 96 kHz, 5 ms

• 27 to 210 bytes per frame at 48 kHz, 2,5 ms

• 32 to 210 bytes per frame at 96 kHz, 2,5 ms

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)103

5.9 Tables and constants

5.9.1 Band tables index

The values representing the variable ��(�) can be found under ./src/floating_point/constants.c contained in archive
ts_103634v010501p0.zip which accompanies the present document. ��(�) for 2,5 ms frame duration:

ACC_COEFF_PER_BAND_8_2_5ms[21]
ACC_COEFF_PER_BAND_16_2_5ms[36]
ACC_COEFF_PER_BAND_24_2_5ms[41]
ACC_COEFF_PER_BAND_32_2_5ms[44]
ACC_COEFF_PER_BAND_48_2_5ms[45]
ACC_COEFF_PER_BAND_48_2_5ms_HR[46]
ACC_COEFF_PER_BAND_96_2_5ms_HR[50]
 ��(�) for 5 ms frame duration:

ACC_COEFF_PER_BAND_8_5ms[40]
ACC_COEFF_PER_BAND_16_5ms[51]
ACC_COEFF_PER_BAND_24_5ms[53]
ACC_COEFF_PER_BAND_32_5ms[55]
ACC_COEFF_PER_BAND_48_5ms[56]
ACC_COEFF_PER_BAND_48_5ms_HR[56]
ACC_COEFF_PER_BAND_96_5ms_HR[59]
 ��(�) for 7,5 ms frame duration:

ACC_COEFF_PER_BAND_8_7,5ms[61]
ACC_COEFF_PER_BAND_16_7,5ms[65]
ACC_COEFF_PER_BAND_24_7,5ms[65]
ACC_COEFF_PER_BAND_32_7,5ms[65]
ACC_COEFF_PER_BAND_48_7,5ms[65]
ACC_COEFF_PER_BAND_48_7,5ms_HR[65]
ACC_COEFF_PER_BAND_96_7,5ms_HR[65]

 ��(�) for 10 ms frame duration:

ACC_COEFF_PER_BAND_8[65]
ACC_COEFF_PER_BAND_16[65]
ACC_COEFF_PER_BAND_24[65]
ACC_COEFF_PER_BAND_32[65]
ACC_COEFF_PER_BAND_48[65]
ACC_COEFF_PER_BAND_48_HR[65]
ACC_COEFF_PER_BAND_96_HR[65]

5.9.2 Low delay MDCT windows

5.9.2.1 Frame size 2,5 ms

Note that the non HR windows are a symmetric Kaiser-Bessel-Derived windows as defined in [i.14] with �� = 10. The
values representing the variable
���_��

 can be found under ./src/floating_point/constants.c contained in archive
ts_103634v010501p0.zip which accompanies the present document.

Table 5.38: MDCT windows for 2,5 ms

����_��
 Constant name in ./src/floating_point/constants.c

��,�_�� MDCT_WINDOW_80_2_5ms[40]

��,�_�� MDCT_WINDOW_160_2_5ms[80]

��,�_�� MDCT_WINDOW_240_2_5ms[120]

��,�_�� MDCT_WINDOW_320_2_5ms[160]

��,�_��� MDCT_WINDOW_480_2_5ms[240]

��,�_���_	
 MDCT_HRA_WINDOW_480_2_5ms[240]

��,�_���_	
 MDCT_HRA_WINDOW_960_2_5ms[480]

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)104

5.9.2.2 Frame size 5 ms

Table 5.39: MDCT windows for 5 ms

����_��
 Constant name in ./src/floating_point/constants.c

��_�� MDCT_WINDOW_80_5ms[80]

��_�� MDCT_WINDOW_160_5ms[160]

��_��� MDCT_WINDOW_240_5ms[240]

��_��� MDCT_WINDOW_320_5ms[320]

��_��� MDCT_WINDOW_480_5ms[480]

��_���_	
 MDCT_HRA_WINDOW_480_5ms[480]

��_���_	
 MDCT_HRA_WINDOW_960_5ms[960]

5.9.2.3 Frame size 7,5 ms

Table 5.39a: MDCT windows for 7,5 ms

����_��
 Constant name in ./src/floating_point/constants.c

��,�_�� MDCT_WINDOW_80_7_5ms[120]

��,�_��� MDCT_WINDOW_160_7_5ms[240]

��,�_��� MDCT_WINDOW_240_7_5ms[360]

��,�_��� MDCT_WINDOW_320_7_5ms[480]

��,�_��� MDCT_WINDOW_480_7_5ms[720]

��,�_���_	
 MDCT_HRA_WINDOW_480_7_5ms[720]

��,�_���_	
 MDCT_HRA_WINDOW_960_7_5ms[1440]

5.9.2.4 Frame size 10 ms

Table 5.40: MDCT windows for 10 ms

����_��
 Constant name in ./src/floating_point/constants.c

���_�� MDCT_WINDOW_80[160]

���_��� MDCT_WINDOW_160[320]

���_��� MDCT_WINDOW_240[480]

���_��� MDCT_WINDOW_320[640]

���_��� MDCT_WINDOW_480[960]

���_���_	
 MDCT_HRA_WINDOW_480_10ms[960]

���_��_	
 MDCT_HRA_WINDOW_960_10ms[1920]

5.9.3 SNS quantization

Table 5.41: Tables for SNS quantization

Variable in the present document Constant name in ./src/floating_point/constants.c.
LFCB sns_C1[8][32]
HFCB sns_C2[8][32]

sns_vq_reg_adj_gains sns_vq_reg_adj_gains_fl[2]
sns_vq_reg_lf_adj_gains sns_vq_reg_lf_adj_gains_fl[4]
sns_vq_near_adj_gains sns_vq_near_adj_gains_fl[4]
sns_vq_far_adj_gains sns_vq_far_adj_gains_fl[8]

MPVQ_offsets pvq_enc_A[16][11]
Variable in the present document Constant name in ./src/ fixed_point/constants.c.

sns_gainMSBbits sns_gainMSBbits[4]
sns_gainLSBbits sns_gainLSBbits[4]

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)105

NOTE: The matrix D[16][16] described below is used for the calculation in equation �40�. The fix-point
reference source code uses an in-place DCT-II function to do this calculation with pre-calculated
constants.

double D[16][16] = {
/* D consists of the base vectors of the DCT (orthogonalized DCT-II)*/
/* (the DCT base vector are stored in column-wise in this table)*/
/* first row results in the first coeff in fwd synthesis (dec+(enc))*/
/* first column results in the first coeff in the analysis(encoder) */
+2.500000000000000e-01, +3.518509343815957e-01, +3.467599613305369e-01, +3.383295002935882e-01,
+3.266407412190941e-01, +3.118062532466678e-01, +2.939689006048397e-01, +2.733004667504394e-01,
+2.500000000000001e-01, +2.242918965856591e-01, +1.964237395967756e-01, +1.666639146194367e-01,
+1.352990250365493e-01, +1.026311318805893e-01, +6.897484482073578e-02, +3.465429229977293e-02

+2.500000000000000e-01, +3.383295002935882e-01, +2.939689006048397e-01, +2.242918965856591e-01,
+1.352990250365493e-01, +3.465429229977286e-02,
-6.897484482073579e-02, -1.666639146194366e-01, -2.500000000000001e-01,
-3.118062532466678e-01, -3.467599613305369e-01, -3.518509343815956e-01,
-3.266407412190941e-01, -2.733004667504394e-01, -1.964237395967756e-01,
-1.026311318805893e-01,

+2.500000000000000e-01, +3.118062532466678e-01, +1.964237395967756e-01, +3.465429229977286e-02, -
1.352990250365493e-01, -2.733004667504394e-01,
-3.467599613305369e-01, -3.383295002935882e-01, -2.500000000000001e-01,
-1.026311318805894e-01, +6.897484482073574e-02, +2.242918965856590e-01, +3.266407412190941e-01,
+3.518509343815957e-01, +2.939689006048397e-01, +1.666639146194367e-01,

+2.500000000000000e-01, +2.733004667504394e-01, +6.897484482073575e-02,
-1.666639146194366e-01, -3.266407412190941e-01, -3.383295002935882e-01,
-1.964237395967755e-01, +3.465429229977288e-02, +2.500000000000001e-01, +3.518509343815957e-01,
+2.939689006048397e-01, +1.026311318805893e-01,
-1.352990250365493e-01, -3.118062532466679e-01, -3.467599613305369e-01,
-2.242918965856590e-01,

+2.500000000000000e-01, +2.242918965856591e-01, -6.897484482073575e-02,
-3.118062532466678e-01, -3.266407412190941e-01, -1.026311318805894e-01, +1.964237395967755e-01,
+3.518509343815957e-01, +2.500000000000001e-01,
-3.465429229977282e-02, -2.939689006048397e-01, -3.383295002935882e-01,
-1.352990250365493e-01, +1.666639146194367e-01, +3.467599613305369e-01, +2.733004667504394e-01,

+2.500000000000000e-01, +1.666639146194366e-01, -1.964237395967756e-01,
-3.518509343815956e-01, -1.352990250365493e-01, +2.242918965856591e-01, +3.467599613305369e-01,
+1.026311318805894e-01, -2.500000000000001e-01,
-3.383295002935882e-01, -6.897484482073574e-02, +2.733004667504394e-01, +3.266407412190941e-01,
+3.465429229977289e-02, -2.939689006048397e-01,
-3.118062532466677e-01,

+2.500000000000000e-01, +1.026311318805894e-01, -2.939689006048397e-01,
-2.733004667504393e-01, +1.352990250365493e-01, +3.518509343815957e-01, +6.897484482073579e-02, -
3.118062532466678e-01, -2.500000000000001e-01, +1.666639146194366e-01, +3.467599613305369e-01,
+3.465429229977293e-02,
-3.266407412190941e-01, -2.242918965856591e-01, +1.964237395967756e-01, +3.383295002935882e-01,

+2.500000000000000e-01, +3.465429229977287e-02, -3.467599613305369e-01,
-1.026311318805893e-01, +3.266407412190941e-01, +1.666639146194366e-01,
-2.939689006048397e-01, -2.242918965856591e-01, +2.500000000000001e-01, +2.733004667504393e-01, -
1.964237395967756e-01, -3.118062532466678e-01, +1.352990250365493e-01, +3.383295002935882e-01, -
6.897484482073578e-02,
-3.518509343815956e-01,

+2.500000000000000e-01, -3.465429229977287e-02, -3.467599613305369e-01, +1.026311318805893e-01,
+3.266407412190941e-01, -1.666639146194366e-01,
-2.939689006048397e-01, +2.242918965856591e-01, +2.500000000000001e-01,
-2.733004667504393e-01, -1.964237395967756e-01, +3.118062532466678e-01, +1.352990250365493e-01, -
3.383295002935882e-01, -6.897484482073578e-02, +3.518509343815956e-01,

+2.500000000000000e-01, -1.026311318805894e-01, -2.939689006048397e-01, +2.733004667504393e-01,
+1.352990250365493e-01, -3.518509343815957e-01, +6.897484482073579e-02, +3.118062532466678e-01, -
2.500000000000001e-01,
-1.666639146194366e-01, +3.467599613305369e-01, -3.465429229977293e-02,
-3.266407412190941e-01, +2.242918965856591e-01, +1.964237395967756e-01,
-3.383295002935882e-01,

+2.500000000000000e-01, -1.666639146194366e-01, -1.964237395967756e-01, +3.518509343815956e-01, -
1.352990250365493e-01, -2.242918965856591e-01, +3.467599613305369e-01, -1.026311318805894e-01, -
2.500000000000001e-01, +3.383295002935882e-01, -6.897484482073574e-02, -2.733004667504394e-01,
+3.266407412190941e-01, -3.465429229977289e-02, -2.939689006048397e-01, +3.118062532466677e-01,

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)106

+2.500000000000000e-01, -2.242918965856591e-01, -6.897484482073575e-02, +3.118062532466678e-01, -
3.266407412190941e-01, +1.026311318805894e-01, +1.964237395967755e-01, -3.518509343815957e-01,
+2.500000000000001e-01, +3.465429229977282e-02, -2.939689006048397e-01, +3.383295002935882e-01,
-1.352990250365493e-01, -1.666639146194367e-01, +3.467599613305369e-01,
-2.733004667504394e-01,

+2.500000000000000e-01, -2.733004667504394e-01, +6.897484482073575e-02, +1.666639146194366e-01, -
3.266407412190941e-01, +3.383295002935882e-01,
-1.964237395967755e-01, -3.465429229977288e-02, +2.500000000000001e-01,
-3.518509343815957e-01, +2.939689006048397e-01, -1.026311318805893e-01,
-1.352990250365493e-01, +3.118062532466679e-01, -3.467599613305369e-01, +2.242918965856590e-01,

+2.500000000000000e-01, -3.118062532466678e-01, +1.964237395967756e-01,
-3.465429229977286e-02, -1.352990250365493e-01, +2.733004667504394e-01,
-3.467599613305369e-01, +3.383295002935882e-01, -2.500000000000001e-01, +1.026311318805894e-01,
+6.897484482073574e-02, -2.242918965856590e-01, +3.266407412190941e-01, -3.518509343815957e-01,
+2.939689006048397e-01,
-1.666639146194367e-01,

+2.500000000000000e-01, -3.383295002935882e-01, +2.939689006048397e-01,
-2.242918965856591e-01, +1.352990250365493e-01, -3.465429229977286e-02,
-6.897484482073579e-02, +1.666639146194366e-01, -2.500000000000001e-01, +3.118062532466678e-01, -
3.467599613305369e-01, +3.518509343815956e-01,
-3.266407412190941e-01, +2.733004667504394e-01, -1.964237395967756e-01, +1.026311318805893e-01,

+2.500000000000000e-01, -3.518509343815957e-01, +3.467599613305369e-01,
-3.383295002935882e-01, +3.266407412190941e-01, -3.118062532466678e-01, +2.939689006048397e-01, -
2.733004667504394e-01, +2.500000000000001e-01,
-2.242918965856591e-01, +1.964237395967756e-01, -1.666639146194367e-01, +1.352990250365493e-01, -
1.026311318805893e-01, +6.897484482073578e-02,
-3.465429229977293e-02 };

5.9.4 Temporal noise shaping

The following variables can be found under ./src/fixed_point/constants.c contained in archive ts_103634v010501p0.zip
which accompanies the present document.

ac_tns_order_bits[2][8]
ac_tns_order_cumfreq[2][8]
ac_tns_coef_bits[8][17]
ac_tns_order_freq[2][8]
ac_tns_coef_freq[8][17]
ac_tns_coef_cumfreq[8][17]

5.9.5 Long term postfiltering

The values representing the variables of the long term postfilter can be found under ./src/fixed_point/constants.c
contained in archive ts_103634v010501p0.zip which accompanies the present document.

Table 5.42: Tables for LTPF

Variable in the present document Constant name in ./src/floating_point/constants.c.
tab_resamp_filter[240] lp_filter[240]
tab_ltpf_interp_R[33] inter4_1[33]
tab_interp_x12k8[4][4] enc_inter_filter[4][4]
tab_ltpf_num_8000[4][4] conf_inter_filter_16[4][4]
tab_ltpf_num_16000[4][4] conf_inter_filter_16[4][4]
tab_ltpf_num_24000[4][6] conf_inter_filter_24[4][6]
tab_ltpf_num_32000[4][8] conf_inter_filter_32[4][8]
tab_ltpf_num_48000[4][12] conf_inter_filter_16[4][12]
tab_ltpf_den_8000[4][3] conf_tilt_filter_16[4][3]
tab_ltpf_den_16000[4][3] conf_tilt_filter_16[4][3]
tab_ltpf_den_24000[4][5] conf_tilt_filter_24[4][5]
tab_ltpf_den_32000[4][7] conf_tilt_filter_32[4][7]
tab_ltpf_den_48000[4][11] conf_tilt_filter_48[4][11]

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)107

5.9.6 Spectral data

The values representing the variables of the spectral quantization can be found under ./src/fixed_point/constants.c
contained in archive ts_103634v010501p0.zip which accompanies the present document.

Table 5.43: Tables for spectra quantization

Variable in the present document Constant name in ./src/floating_point/constants.c.
ac_spec_lookup[4096] ari_spec_loopup_fl[4096]
ac_spec_cumfreq[64][18] ari_spec_cumfreq_fl[64][18]
ac_spec_freq[64][18] ari_spec_freq_fl[64][18]
ac_spec_bits[64][18] ari_spec_bits_fl[64][18]

6 Source code description

6.1 Overview
This clause gives an overview of the reference C code included in archive ts_103634v010501p0.zip which accompanies
the present document.

The ANSI-C codec has been verified on the following systems:

• PC compatible computers with Visual C++ compiler, 32-bit builds.

• PC compatible computers with:

- GCC compiler version 4.9.2 (Debian™ 4.9.2-10+deb8u1), 64-bit builds.

- GCC compiler version 6.3.0 (Debian™ 6.3.0-18+deb9u1), 64-bit builds.

NOTE: Debian is a trademark owned by Software in the Public Interest, Inc.

- clang version 6.0.0, 64-bit builds.

• PC compatible computers with LLVM compiler version 9.0.0, 64-bit builds.

6.2 Contents of the C source code
The C code is organized as follows.

Table 6.1: Source code directory structure

Directory Description
README.txt Compile instructions, feature list, command lines

src/fixed_point Project files for fixed point code
src/floating_point Project files for floating point code

testvec Test vector package: MD5 hashes for fix-point and floating-point reference code
testvec/input Input PCM Files
conformance Conformance package: conformance script and tools

helper tool Some scripts for simulating applications
fec_control_unit Implementation of FEC control unit example from Annex C

The fix-point as well as the floating-point project contain a makefile and a Visual Studio MSVC file for compilation.
Once the software is compiled, this directory will contain a compiled version of the codec with the name LC3plus.
More information is provided in the Readme.txt file contained in archive ts_103634v010501p0.zip which accompanies
the present document.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)108

6.3 File formats

6.3.1 Sound file (encoder input and decoder output)

Speech files use the Wave file format [i.3] with either 16 or 24 bits per sample. The encoder input Wave file defines the
sampling frequency that will be used by the encoder. The byte order depends on the host architecture, e.g. least
significant byte first on PCs.

6.3.2 Switching profile (encoder input)

The encoder program can read in a switching profile which specifies the encoding parameter that will be used for each
audio frame. The profile consists of a binary file of little-endian 64-bit values, where each value represents a frame's
parameter. If the switching file is shorter than the input, it will be looped from the beginning.

Possible parameters for switching files are bit rate in bps, bandwidth in Hz or ep class in class × 100.

6.3.3 Parameter bitstream file (encoder output and decoder input)

The LC3plus software support the G.191 bit stream format [i.4] and therefore, the bit stream can be manipulated with
the STL error insertion devices. For a correct decoder initialization, the encoder writes an additional configuration file
which is provided to the decoder. The configuration contains information on sampling rate, number of channels and
usage of channel coder.

6.4 Test vector package
The test vector package verifies the compilation of the reference fixed-point and floating-point source code and that the
resulting executables run as expected on a dedicated platform with bit exact results. This is a pre-requisite for the
conformance tests (see clause 7) where an implementation under test is compared to these reference executables.

The test vector package shall not replace the conformance tests. For testing an implementation with bit-exact behaviour,
the conformance test and the RMS metric should be used.

The package contains:

• Six input PCM audio files sampled at 8 kHz, 16 kHz, 24 kHz, 32 kHz, 44,1 kHz and 48 kHz.

• Two text files containing the pre-calculated MD5 hashes of the configurations stated in Table 6.2.

The files are located according to Table 6.1.

In order to verify the correct compilation, the user shall compile the source code in the 'src' folder and run the script via
'perl testvecCheck.pl'. The script will create bitstreams and decoded PCM files with the test executable and compare the
MD5 hashes of the output files with the pre-calculated hashes. If all hashes match, the test is passed. If at least one MD5
hash differs, the test is considered as failed. The result is printed in the console after the script has finished.

Table 6.2: Supported Configurations

Sampling rate
[kHz]

Bit rate
[kbit/s]

EP Mode [0 = off, 4 = highest protection]

8 32 0, 4
16 32 0, 4
24 48 0, 4
32 48 0, 4

44,1 64 0, 4
48 64 0, 4

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)109

7 Conformance

7.1 Overview
The conformance procedure shall be applied to verify the quality of LC3plus encoder and decoder implementation. It
allows testing of implementation with a non-bit-exact behaviour compared to the fix-point reference executable. Given
that, also floating-point implementations can be verified.

Clause 7.2 describes the test framework and specifies several quality metrics (clause 7.2.4) which can assess the quality
of the implementation.

Clause 7.3 defines several conformance tests grouped into core coder tests (clause 7.3.2), concealment tests
(clause 7.3.3) and channel coder tests (clause 7.3.4). Most of the tests can be conducted by the modules (encoder,
decoder and codec) (clause 7.2.3) separately.

Clause 7.4 specifies which quality metric shall be used for a dedicated conformance tests and which modules shall be
tested separately. Clause 7.5 defines the criteria for considering an implementation as conformant. Clause 7.7.2 gives an
example for specifying conformance for specific applications.

The conformance scripts include a reference implementation of the item preparation, core coder test, packet-loss tests
and the channel coder tests. The conformance scripts are contained in archive ts_103634v010501p0.zip which
accompanies the present document.

7.2 Test framework

7.2.1 Test material

A selection of nine items from the European Broadcasting Union Sound Quality Assessment Material
EBU SQAM CD [7] shall be used. The material ensures testing of a wide range of LC3plus features. These items are
trimmed according to Table 7.1.

Table 7.1: LC3plus Conformance Test Items

Track Name Track Number Start [s] Fragment Length [s] Used in PLC test
ABBA 69 7 8 YES
Castanets 27 0 8 YES
Eddie_Rabbitt 70 0 8 NO
Female_Speech_German 53 0 8 YES
Glockenspiel 35 0 10 NO
Harpsichord 40 39 9 YES
Male_Speech_English 50 0 8 YES
Piano_Schubert 60 0 8 NO
Violoncello 10 0 10 NO

For all items, a fade-in of 0,5 s and a fade-out of 0,7 s is chosen. The exact command lines used for pre-processing the
test items are provided in the LC3plus Conformance Script (clause 7.2.5.6). Note that a subsection of these items is used
for the PLC and channel coder tests.

7.2.2 Test permutations and codec parameters

The input items in combination with the codec parameters, e.g. bit rates, sampling rates, frame sizes, are permutated in
order to create a set of test conditions. These permuted test conditions are used for each test unless stated otherwise.

For the channel coder tests, the parameters are in addition permutated with the five Error Protection (EP) modes (0, 1, 2,
3, 4).

The codec parameters depend on the application under test, e.g. 16 kHz sampling rate and bit rate 32 kbit/s for regular
WB voice calls.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)110

7.2.3 Modules under test

The conformance is applied for the following modules. Each module test creates two audio files which are further
analysed by quality metrics in order to compare module under test and reference:

• Encoder under Test (EuT): Items are encoded with the EuT and the Reference Encoder (ER) at all
permutations and decoded with the Reference Decoder (DR).

• Decoder under Test (DuT): Items are encoded with the ER at all permutations and decoded with the DR and
DuT.

• Encoder-Decoder (EncDec): Items are encoded with the EuT and decoded with the DuT as well as encoded
with the ER and decoded with the DR.

The reference executables/modules (DR and ER) shall be compiled without any modification of the reference source
code and shall pass the test vector check outlined in clause 6.4.

7.2.4 Quality metric calculation

7.2.4.1 Root Mean Square

The RMS metric compares two time-domain signals and calculates its similarity in accuracy. The RMS level is
calculated as follows:

 ��� = �1��(������ − �� ���)�

�

	
�

 �218�
where Out(n) denotes output signal under test, and Ref(n) denotes the reference signals for the comparison.

To fulfil the RMS/LSB Measurement test at an accuracy level of K bits, an LC3plus encoder and decoder shall provide
an output waveform such that the RMS level of the difference signal between the output of the decoder under test and

the output of the reference decoder is less than
�

����∙���,	
. In addition, the difference signal shall have a maximum

absolute value (RMSmax.abs.diff) below a certain threshold.

An RMS tool implementation is provided within the LC3plus conformance script package as C source code. This code
can be compiled and the executable can be used to compare two audio files and calculate the overall RMS in dB, with
the maximum absolute difference of two audio samples and the reached RMS criterion expressed in bits. The RMS tool
can be used with the following command line:

 ./rms file1.wav file2.wav [k]

where k is an optional parameter to set the conformance threshold in bits. Figure 7.1 illustrates the process and the
calculation of the RMS value.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)111

Figure 7.1: RMS calculation procedure for Encoder, Decoder and EncDec tests

NOTE: RMS might not be applicable for testing encoder implementations operating on different platforms,
e.g. floating point. In that case Delta ODG is recommended.

7.2.4.2 Delta ODG value

To calculate the Objective Difference Grade (ODG) between two audio files, Recommendation ITU-R BS.1387-1 [i.11]
(Advanced) implementation shall be used. The "Method for objective measurements of perceived audio quality"
(BS.1387-1 Advanced) algorithm executable calculates the ODG between a coded audio file and the reference audio
file. The ODG value is calculated for two files for each test permutation:

• ODG between reference audio and coded audio using LC3plus Reference codec

• ODG between reference audio and coded audio using LC3plus codec under test

The difference between the two ODGs (∆���) shall not exceed a certain threshold according to clause 7.2.4.3.
Figure 7.2 illustrates the coding process and the calculation of ∆��� for Encoder and EncDec Tests.

Figure 7.2: ∆ODG calculation procedure for Encoder and EncDec tests

Input

LC3 REF
Encoder

LC3 REF
Decoder

RMS Tool

LC3 TEST
Encoder

LC3 REF
Decoder

LC3 TEST
Decoder

LC3 TEST
Decoder

RMS Tool

RMS Tool

Decoder test

Encoder test

EncDec test

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)112

7.2.4.3 Maximum Loudness Difference (MLD)

The MLD value is calculated for two decoded files for each test permutation according to [i.7]. The following steps
according to Recommendation ITU-R BS.1387-1 [i.11] need to be processed first:

• Filterbank (Annex 2, clause 2.2.5 of [i.11]):

- subsample factor F changed to 16 for higher time resolution.

• Outer and Middle Ear Filtering (Annex 2, clause 2.2.6 of [i.11]).

• Frequency Domain Smearing (Annex 2, clause 2.2.7 of [i.11]).

• Rectification (Annex 2, clause 2.2.8 of [i.11]).

• Time Domain Smearing 1 - Backward Masking (Annex 2, clause 2.2.9 of [i.11]).

• Adding of Internal Noise (Annex 2, clause 2.2.10 of [i.11]).

• Time Domain Smearing 2 - Forward Masking (Annex 2, clause 2.2.11 of [i.11]).

• Loudness (Annex 2, clause 3.3 of [i.11]):

- This clause defines the specific loudness patterns �[�,�] for � subbands and � time samples.

- The specific loudness patterns are calculated for:

 reference signal ����[�,�]

 signal under test ����[�,�]

Maximum Loudness Difference (MLD):

• The loudness difference �����!�" is calculated as follows:

 �����!�" = ∑ #����!�,�" − ����!�,�"#��
�
�

• The Maximum Loudness Difference (MLD) for this item is then the maximum over all � time samples. Note
that � has a granularity of 2 ms:

 MLD = max (��������)
The MLD tool C source code is provided within this conformance package. Figure 7.3 illustrates the coding process and
the calculation of the MLD value.

The MLD tool can be used with the following command line:

 ./mld file1.wav file2.wav

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)113

Figure 7.3: Calculation procedure of MLD for encoder LFE and
 decoder concealment/error protection tests

7.2.4.4 Thresholds

See clause 7.5.

7.2.5 Software and tools

7.2.5.1 Gen_rate_profile

This tool can be used to create switching files:

 gen_rate_profile -layers A, B, C, … SWF_FILE period

where A, B, C are the values which should be switched (e.g. bitrates or error protection modes), SWF_FILE is the
generated switching profile and period the number of frames between switching points.

NOTE: For error protection switching files, the error protection mode is multiplied with a value of 100 in order to
operate this tool.

7.2.5.2 Eid-xor

This tool can be used to introduce bit errors to a G.192 bitstream:

 eid-xor -bs g192 in_bs error_pattern out_bs

where in_bs and out_bs are the input and output bitstreams both in the G.192 format [i.8] and error_pattern the error
pattern in byte format.

7.2.5.3 flipG192

This tool can flip a number of bits in a number of frames in a G.192 bitstream. It is provided as C source code and is
used for the error protection test with a correctable number of flipped bits. It can be used as follows:

 flipG192 in_bs out_bs FLIPS FRAMES SEED VERBOSE

where in_bs and out_bs are the input and output bitstreams both in the G.192 format, FLIPS is the number of bits to flip
in every frame, FRAMES is the number of frames to flip in percent, SEED is an integer seed for the random generator
and VERBOSE specifies if the information about the flipped bits and the respective frames shall be shown (1) or not (0).

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)114

7.2.5.4 G.192 bitstream format

The test implementation shall be able to read and write a bitstream in the G.192 format [i.8]. All tests within this script
use this format.

Each bit of the bitstream data is represented by a 16-bit word and is preceded by a synchronization word and the length
word. A bit '0' is coded as the softbit '0x007F' and a bit '1' is coded as softbit '0x0081'. The synchronization word can
take the following values:

• '0x6B21' representing a good frame

• '0x6B20' representing a bad/lost frame (bfi == 1)

• '0x6B22' representing a partially bad/lost frame (bfi == 2)

The length field contains the length (the total number of bits) as a 16-bit word.

7.2.5.5 Note to platform-dependent conformance

To prepare the audio samples for the conformance test, it is recommended to use SoX (Sound eXchange) [i.9] for any
operations on the audio samples in order to prepare them for the conformance test. SoX behaves differently on different
platforms, meaning that the same resampling operation on the same file will not be bit-exact if executed on different
platforms. Therefore, to avoid such issues, it is recommended to use the SoX Windows-executable (together with
Wine [i.10] on non-Windows platforms) to avoid such issues.

7.2.5.6 Reference conformance test script

The conformance test script is a Python® script that implements all test procedures mentioned within the present
document. It can be used on an operating system with Python3 installed:

 lc3_conformance.py config.cfg [-v -w -keep]

where config.cfg is the configuration file containing all operation points to be tested. Detailed instructions and the
prerequisites for running this script are provided in the Readme.txt contained in archive ts_103634v010501p0.zip which
accompanies the present document. An example configuration file is also provided within the example_config.cfg file.

7.3 Conformance tests

7.3.1 Test groups

The LC3plus conformance tests are combined into the three groups:

• Core coder tests, see clause 7.3.2

• Concealment tests, see clause 7.3.3

• Channel coder tests, see clause 7.3.4

For the LC3plus high-resolution conformance, the tests above are modified and extended according to clause 7.3.5. For
testing the dedicated LFE encoder operation mode, the test in clause 7.3.6 applies.

7.3.2 Core coder tests

7.3.2.1 SQAM test

The SQAM Test aims to verify the intrinsic audio quality of an implementation under test. It uses the nine prepared test
items (Table 7.1) to provide audio quality metrics in comparison to the reference implementation.

Items are generated depending on the tested module according to clause 7.2.3. Quality metrics according to clause 7.4
are conducted.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)115

7.3.2.2 Band limitation test

The band limitation test verifies the correct implementation of the bandwidth detector/limiter inside the LC3plus
encoder and decoder. Therefore, the item Female_Speech_German from the EBU SQAM CD is resampled and low
pass filtered to create the following test configurations.

Table 7.2: Test Configurations for Band Limitation Test

Sampling Rate [kHz] Bandwidth Bitrate [bytes /
frame]

16 NB 40
24 NB, WB 60
32 NB, WB, SSWB 80
48 NB, WB, SSWB, SWB 115

Items are generated depending on the tested module according to clause 7.2.3. Quality metrics according to clause 7.4
are conducted.

7.3.2.3 Low pass test

The Low Pass Test shall verify the correct implementation of the cut-off frequency of 20 kHz used in the EuT.
Therefore, the test is only relevant for sampling rates higher than 32 kHz. For this test, a signal consisting of white noise
above 20 kHz is used. The energy � of the output PCM file is calculated according to:

� = 10 ∙ �����	
�
_��(�)�
�

�	�
�219�

� should be below the limit of 70 dB, where N is the total number of audio samples.

Items are generated depending on the tested module according to clause 7.2.3. Quality metrics according to clause 7.4
are conducted.

7.3.2.4 Bitrate switching test

The conformance tool shall be used for verifying the rate switching capability of the codec at runtime. It is required for
the test implementation to accept a switching file instead of the bitrate parameter. The test implementation shall detect
such a switching file and initialize the codec to the first bitrate from the bit rate switching file. The bitrate switching test
is carried out for all frame sizes with the respective bitrate switching files and is following the same test procedure as
outlined in the SQAM tests (clause 7.3.2.1).

Switching files are generated as a list of 64 bit values, where each value indicates the bit rate for a single frame. The
rate switching test generates one or more switching profiles and executes the SQAM test using the switching profiles
instead of the bit rate. The switching file shall contain all possible bit rate steps from the minimum to the maximum
supported bit rate.

Items are generated depending on the tested module according to clause 7.2.3. Quality metrics according to clause 7.4
are conducted.

7.3.2.5 Bandwidth switching test

The conformance tool shall be used for verifying the bandwidth switching capability of the codec at runtime. It is
required for the test implementation to accept a bandwidth switching file. The test implementation shall detect such a
switching file.

Switching files are generated using the STL gen_rate_profile tool according to clause 7.2.5.1. The switching values are
provided in Hz, i.e. 4 000 stands for NB audio bandwidth. The switching pattern shall contain all typical audio
bandwidths supported by the sampling rate, e.g. for sampling rate 24 000, the switching file shall contain the values
4 000, 8 000 and 12 000.

The bandwidth switching test generates one or more switching profiles and executes the SQAM test using the switching
profiles instead of the bit rate.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)116

Items are generated depending on the tested module according to clause 7.2.3. Quality metrics according to clause 7.4
are conducted.

7.3.3 Concealment tests

7.3.3.1 Packet loss concealment

The PLC tests shall verify the correct implementation of the packet loss concealment. Two PLC tests shall be carried
out: a test with a 10 % random error pattern and a test with a 10 % burst error pattern. These tests follow the same
procedure as the SQAM decoder test and add an additional error insertion step between encoding with the ER and
decoding with the DR and the DuT:

• The eid-xor tool (clause 7.2.5.2) is used to add an error pattern to the bitstreams. The error pattern is provided
within the files 'plc_fer_eid.dat' (10 % random pattern) and 'plc_bfer_eid.dat' (10 % burst pattern).

• Items are generated only for the decoder module according to clause 7.2.3. Quality metrics according to
clause 7.4 are conducted.

7.3.3.2 Partial concealment

This test shall verify the correct implementation of the partial concealment.

This test follows the same procedure as the packet loss concealment test (clause 7.3.3.1) and all bitstreams are in
addition encoded with the channel encoder in the highest error protection mode (4). The eid-xor tool (clause 7.2.5.2) is
used to add a bit error pattern to the bitstreams. The error pattern is provided within the file 'pc_ber_3percent.dat'.

Items are generated only for the decoder module only according to clause 7.2.3. Quality metrics according to clause 7.4
are conducted.

7.3.4 Channel coder

7.3.4.1 Channel coder test for correctable frames

This test verifies the correct implementation of the channel coder together with the LC3plus core codec excluding
packet loss concealment. The tests execute the SQAM test, but protected bitstreams are created, bit errors are inserted
using flipG192 (clause 7.2.5.3), distorted bit streams are decoded and the wave output files are compared by the quality
metrics. The test includes all channel coder configuration outlined in Table 7.3.

Table 7.3: Configuration of channel coder test

EP Mode Number of flipped bits Percent of frames to be
flipped

1 0 50
2 1 50
3 2 50
4 3 50

Items are generated depending on the tested module according to clause 7.2.3. Quality metrics according to clause 7.4
are conducted.

7.3.4.2 Channel decoder test for non-correctable frames

This test follows the procedure from the channel coder test for correctable frames (clause 7.3.4.1) but inserts a
non-correctable amount of bit errors. Formula (220) is used to calculate the number of flipped bits and 50 percent of all
frames are flipped:

����� =
��
��
 ∙ ���� ∙ ����
�

24 000
�220�

where bitrate is the nominal bitrate in bit/s, epmode the error protection mode and frame_ms the frame size in ms.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)117

The DR and the DuT use the corrupt bitstreams to decode them into audio wave files. The output audio files are
afterwards compared according to clause 7.2.4.2. In this test, also the following channel decoder output variables are
compared:

• bfi flag

• error report

• EPMR flag

The decoder under test shall be able to write out the output variables into separate binary files in an integer 64-bit
format.

Items are generated only for the decoder module only according to clause 7.2.3. Quality metrics according to clause 7.4
are conducted.

This test mandates that the respective decoder output variables are identical to the output of the reference decoder,
i.e. that the binary files containing these variables are bit exact.

7.3.4.3 Error protection mode switching test

This test shall verify the correct update of all codec settings in case of error protection mode switching at runtime.

It is following the same test procedure as outlined in the SQAM tests (clause 7.3.2.1) and uses an error protection mode
switching file as additional parameter.

The error protection mode switching file used for this test is provided within the package and contains the error
protection mode value multiplied with a value of 100 in a 64-bit integer format for each frame. If the end of the file was
reached while reading, the file is read again from the beginning. The LC3plus test implementation shall be able to read
such a switching file and update all codec parameters accordingly.

Items are generated depending on the tested module according to clause 7.2.3. Quality metrics according to clause 7.4
are conducted.

7.3.4.4 Combined channel coding test for correctable frames

This test shall verify the correct behaviour of the combined channel coding for a stereo audio input. It follows the same
test procedure as outlined in the channel encoder and decoder tests for correctable frames stated in clause 7.3.4.1.

The evaluation of the audio quality within these tests is done separately for each channel, i.e. the output stereo files are
split into their individual channels before applying the quality metrics. The worst value out of all channels is then
selected for further evaluation.

Items are generated depending on the tested module according to clause 7.2.3. Quality metrics according to clause 7.4
are conducted. The comparison of the channel decoder output variables is applicable only for decoder tests and is not
used for encoder and EncDec tests.

7.3.4.5 Combined channel coding test for non-correctable frames

This test shall verify the correct behaviour of the combined channel coding for a stereo audio input. It follows the same
test procedure as outlined in the channel encoder and decoder tests for non-correctable frames stated in clause 7.3.4.2.
The evaluation of the audio quality is performed as outlined in clause 7.3.4.4.

Items are generated depending on the tested module according to clause 7.2.3. Quality metrics according to clause 7.4
are conducted.

7.3.4.6 Void

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)118

7.3.5 High-resolution mode test

7.3.5.1 Core coder tests

For testing the high-resolution mode the following changes apply to the test procedures:

• SQAM test (clause 7.3.2.1):

- ODG is measured with the floating-point reference executable as DR and ER.

- ODG threshold shall be 0,02 for all bitrates ≥ the lowest recommended rate in Table 5.2. For bitrates
below the lowest recommended rate in Table 5.2, the ODG threshold shall be determined according to
equation (220.5) as for all other tests.

- RMS threshold shall be k = 22.

- RMSmax. abs. diff threshold shall be 0,00001872.

• Bitrate switching test (clause 7.3.2.4):

- ODG is measured with the floating-point reference executable as DR and ER.

- ODG threshold shall be 0,02 for all bitrates ≥ the lowest recommended rate in Table 5.2. For bitrates
below the lowest recommended rate in Table 5.2, the ODG threshold shall be determined according to
equation (220.5) as for all other tests.

- RMS threshold shall be k = 22.

- RMSmax. abs. diff threshold shall be 0,00001872.

• Low pass test (clause 7.3.2.3) is N/A.

• Band limitation test (clause 7.3.2.2) is N/A.

• Bandwidth switching test (clause 7.3.2.5) is N/A.

7.3.5.2 Concealment tests

Changes compared to clause 7.3.3:

• RMS or MLD is measured with the floating-point reference executable as DR and ER.

• RMS threshold shall be k = 22.

• RMSmax. abs. diff threshold shall be 0,00001872.

7.3.5.3 Channel coder

Changes compared to clause 7.3.4:

• ODG, RMS or MLD is measured with the floating-point reference executable as DR and ER.

• ODG threshold shall be 0,02 for all bitrates ≥ the lowest recommended rate in Table 5.2. For bitrates below the
lowest recommended rate in Table 5.2, the ODG threshold shall be determined according to equation (220.5)
as for all other tests.

• RMS threshold shall be k = 22.

• RMSmax. abs. diff threshold shall be 0,00001872.

For all channel coder tests, the effective net bitrate shall be used for the delta ODG threshold definition.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)119

7.3.5.4 Precision tests

7.3.5.4.1 General

The precision of an implementation under test, especially a fix-point implementation, shall be measured as outlined in
the following:

The measurement is carried out on pure sinusoidal signals with an amplitude of -3 dB, a precision of at least 24 bits per
audio sample and a duration of one second. The sinusoidal sequence �� is generated by:

 �� = cos �� � �
��

∙ �� ��� � = 0. . �� − 1,

where � denotes the frequency of the sinusoid under test, and �� denotes the sampling rate and � the time index.

These test sequences are subsequently encoded and decoded in high resolution mode. The coding should be conducted
using the maximum bit rate for each frame duration. The decoded test file is here denoted as coded_output.wav.

The precision shall be measured for � = 100 frequency steps equally spaced in the logarithmic domain over the
complete spectrum resulting in the frequencies:

f�i� = 10�∙
log��

��
� ���

� for i = 1, 2, . . . , n
�220.1�

and additionally, 1 kHz frequency.

The test point at 1 kHz and the worst value over all frequencies shall be checked against the thresholds.

For measuring the encoder or decoder precision alone, the floating-point reference executable shall be used as
counterpart.

7.3.5.4.2 Total Harmonic Distortion plus Noise

The Total Harmonic Distortion plus Noise (THD+N) value is calculated by comparing the energy of the coded output to
the energy of the sinusoidal sequence after applying a notch-filter to remove the sinusoidal component.
Let �� ,� = 0. .� − 1, denote the sequence of samples from coded_output.wav containing test signal frequency �.

The distortion on the signal is then calculated as:

����� = �� − 2 cos �2 � ��� � ���� + ���� + 1,9 cos �2 � ��� � ���� − 0,9025 ���� �220.2�
for � = 2. .� − 1, where �� and �� are defined to be 0. The THD+N value is then calculated as:

THD + N(f) = 10 log�� �∑ ���(�)
������
�	��∑ ���������
�	�� (�)

 , �220.3�
with �� =

��
��.

7.3.5.4.3 Signal to Noise Ratio

The Signal to Noise Ratio (SNR) is calculated by:

SNR��� = 10 log�� � ∑ ���(�)
������
�	��∑ ���(�) − ��(�)��������

�	��
 , �220.4�

with �� =
��
�� and �� being the sequence of samples from coded_output.wav containing test signal frequency �.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)120

7.3.6 Low Frequency Effects (LFE) test

The test of the Low Frequency Effects (LFE) mode verifies the correct configuration of bandwidth detector, LTPF, TNS
and noise filling on LC3plus encoder side. Therefore, a sine sweep signal with frequencies from 10 to 250 Hz is
generated and the EuT is compared to the reference implementation using MLD as quality metric.

As the test only verifies the EuT, additional tests for DuT, concealment and channel coder are required at the
corresponding bitrate.

7.4 Mapping conformance test, module and quality metric

7.4.1 Encoder

Table 7.4 describes the available tests for an LC3plus encoder and the applicable quality metric.

Table 7.4: EuT tests and metrics

Test Name Metric
SQAM RMS or ODG
Band limitation RMS or ODG
Low pass Energy
Bitrate switching RMS or ODG
Bandwidth switching RMS or ODG
Channel coder correctable frame RMS or ODG
Channel coder error protection mode switching RMS or ODG
Combined channel coding correctable frame RMS or ODG
Precision THD+N and SNR
Low-frequency effects MLD

7.4.2 Decoder

Table 7.5 describes the available tests for an LC3plus decoder and the applicable quality metric.

Table 7.5: DuT tests and metrics

Test Name Metric
SQAM RMS
Band limitation RMS
Bitrate switching RMS
Packet loss concealment MLD or RMS
Partial concealment MLD or RMS
Channel coder correctable frame RMS
Channel Coder, Non-correctable frame MLD or RMS
Channel coder error protection mode switching RMS
Combined channel coding correctable frame RMS
Combined channel coding non-correctable frame MLD or RMS
Precision THD+N and SNR

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)121

7.4.3 Encoder-Decoder (EncDec)

Table 7.6 describes the available tests for an LC3plus EncDec and the applicable quality metric.

Table 7.6: EuT-DuT tests and metrics

Test Name Metric
SQAM RMS or ODG
Band limitation RMS or ODG
Low pass Energy
Bitrate switching RMS or ODG
Bandwidth switching RMS or ODG

7.5 Quality metric thresholds
The thresholds for each quality metric are outlined in Table 7.7. For each test, the conformance criteria stated in
clause 7.6 apply.

Table 7.7: Thresholds for quality metrics

Metric
Threshold

High-Resolution Tests All other Tests
RMS k k = 22 k = 14
RMSmax. abs.diff 0,00001872 0,00148

ODG

Bitrates ≥ lowest
recommended

rate

bitrates < lowest
recommended

rate 0,06 | 0,08 | 0,12 | 0,15
(see note 1)

0,02
0,06 | 0,08 | 0,12

| 0,15 (see
notes 1 and 2)

Energy 70
MLD 4
THD+N (1 kHz) -120 dB
worst THD+N over all frequencies -110 dB
SNR (1 kHz) 120 dB
worst SNR over all frequencies 110 dB
Binary file (channel coder debug data) Files shall be bitexact
NOTE 1: The delta threshold is set depending on the ODG of the reference file (������) and the

sampling frequency according to equation (220.5).
NOTE 2: The lowest recommended bitrates are found in Table 5.2.

��
�_
ℎ��ℎ���(!"#��� , ��) =

⎩⎪⎨
⎪⎧0,06 ��� !"#��� > −1 ��� �� ≠ 8()*

0,08 ��� !"#��� > −2,3 ��� �� ≠ 8()*
0,12 ��� !"#��� ≤ −2,3 ��� �� ≠ 8()*
0,15 ��� �� = 8()*

�220.5�

7.6 Conformance criteria
A LC3plus implementation shall pass all required conformance tests to be considered as a conformant implementation.
The required codec configurations and conformance test may depend on the application as described in clause 7.7.2. If
not stated otherwise, all conformance tests listed in clause 7.7.1 shall be fulfilled.

A conformance test is considered as passed if all test permutations pass the threshold condition (clause 7.5) with the
required quality metric. In case more than one quality metric is allowed, the conformance test shall pass all test
permutations for one dedicated quality metric. Mixing the pass/fail results of different quality metrics shall not be
allowed. Only one quality metric can be selected in the conformance reference script for each test.

A conformance test can be considered as failed if at least one of the test conditions of a test permutation does not pass
the threshold criteria.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)122

7.7 Codec tests

7.7.1 General LC3plus test

LC3plus codec parameter configurations for testing are:

• All configurations listed in Table 5.1 and Table 5.2

• Channel coder enabled/disabled

• Concealment enabled

For a full compliant implementation, the conformance criteria in clause 7.5 for all conformance tests listed in clause 7.4
shall be fulfilled using the given parameters above.

7.7.2 Applications

The conformance tests depend on the required application. Application test specifications may require additional tests.
The application typically defines the codec configuration parameters (clause 7.2.2), i.e. bit rate, sampling rate, etc., and
which conformance test groups are required for which modules (clause 7.2.3).

Table 7.8 gives an example which application may require particular conformance tests.

Table 7.8: Example conformance tests for specific applications

LC3plus
application

Codec configuration Conformance tests group
(see clause 7.3.1) (see note 1)

Sampling rate
[Hz]

Frame size
[ms]

Bit rate
[bytes per

frame]

Core coder Concealment Channel
Coder

LC3plus WB
VoIP

16 000 10 40 Enc, Dec,
EncDec

Dec N/A

LC3plus WB
Voice DECT

16 000 10 40 Enc, Dec,
EncDec

Dec Enc, Dec

LC3plus music
DECT

48 000 10 80, 120, 160
(see note 2)

Enc, Dec,
EncDec

Dec Enc, Dec

LC3plus low
delay DECT

32 000 2,5 40, 80 Enc, Dec,
EncDec

Dec Enc, Dec
(see note 3)

NOTE 1: Some conformance tests are conducted for the modules encoder (enc), decoder (dec) and codec (EncDec)
separately.

NOTE 2: As LC3plus operates in dual-mono for stereo signals, the conformance tests are applied on mono signals
only.

NOTE 3: For some bit rates, the channel coder operates on combined stereo payloads (see clause 7.3.4.4).

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)123

Annex A (normative):
Application layer forward error correction

A.1 Channel Coder

A.1.1 Overview
The LC3plus channel coder features for every slot size from 40 to 400 bytes four different protection classes, also
referred to as EP modes. Mode 1 provides strong error detection capability and modes 2 to 4 provide in addition
increasingly strong error correction capability. The EP modes are switchable on the fly which enables the device to
adapt to varying signal strengths. Furthermore, an Error Protection Mode Request (EPMR) is transmitted inside a
protected LC3 frame in order to request a protected LC3 frame with a desired protection strength from the remote
sender.

An example of the LC3plus codec and the channel coder operated by a control unit is displayed in Figure A.1.

Figure A.1: LC3plus Codec with Error Protection (FP perspective)

The setup is identical in FP and PP but for simplicity the FP perspective is taken. At start-up, the FEC Control Unit is
initialized with the target size gross_bytes which is the size of the protected LC3plus frame in bytes, and an initial
EP mode. The FEC control unit then provides the LC3plus encoder with the target size for the current LC3plus frame,
nbytes_enc, and the FEC Encoder with the EP mode ���� for the current frame and the EPMR of the fixed part
EPMR_FP. The parameter EPMR_FP is added to the frame data to be sent to the PP inside the protected LC3plus
frame. It should be noted that nbytes_enc is determined by the channel coder parameters ���� and gross_bytes. An
example with gross_bytes equal to 40 (i.e. the case for DECT Normal Slots with GFSK) is given in Table A.1.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)124

Table A.1: Frame Sizes and Error Correction Capability for Normal Slots

EP mode: 1 2 3 4
nbytes: 36 32 26 20

error correction: 0 bit errors up to 3 bit errors up to 9 bit errors up to 18 bit errors

For deciding on the current EP mode and EPMR_FP, the control unit can rely on information from the decoding chain.
The FEC decoder takes as input the parameter gross_bytes and a protected LC3plus frame of that size. The FEC
decoder performs mode detection (the EP mode not being transmitted explicitly), error detection and possibly error
correction from which the value error_report is generated. E.g. if a protected frame is correctable, this value simply
gives the number of corrected bits. It is a guidance to the control unit for selecting the FPs EPMR. The FEC decoder
further retrieves the PPs EPMR which, in the simplest case, can be directly translated into an EP mode by the control
unit. The FEC decoder furthermore generates a bad frame indicator bfi, the size of the encoder LC3plus frame
nbytes_dec and the LC3plus frame itself which is provided to the LC3plus decoder.

An example for an FEC control unit is provided in Annex C.

The EPMR is protected by the channel coder and is therefore validated with very high confidence for correctable
frames. In case of an uncorrectable frame, the EPMR may still be retrieved and often even validated with high or very
high confidence. To differentiate these cases, the decoded EPMR (EPMR_PP in the present example) takes values from
0 to 11 whereas the encoded EPMR (EPMR_FP in the present example) takes values from 0 to 3, where the requested
EP mode is EPMR + 1. If the decoded EPMR, �+,-��� , falls into the range from 0 to 3 this indicated that its value
directly corresponds to an EPMR and that it has been validated with very high accuracy (i.e. a confidence of roughly
1 − 2���). This is in particular the case, when the received frame is correctable. If the decoded EPMR falls into the
range from 4 to 7 this indicates that the EPMR has been validated with high accuracy (i.e. a confidence of roughly
1 − 2��) and the corresponding EPMR is given by �+,-��� − 4. Finally, if the decoded EPMR falls into the range
from 8 to 11, this indicates that no validation of the EPMR value has been performed. In this case the corresponding
EPMR is �+,-��� − 8 and its correctness depends on the integrity of the bit-location of 2 EPMR bits in the bitstream.
These considerations should be taken into account when received EPMRs are evaluated by the FEC control unit.

For stereo content, the frames of left and right channel are channel encoded in a combined way as long as gross_bytes
does not exceed 160. This is done to increase efficiency for low bit-rate stereo transmission. To this end, the two
LC3plus frames are concatenated before channel encoding. If nbytes is larger than 160 the two frames are channel
encoded separately and the two protected LC3plus frames are concatenated.

A.1.2 Bitrate Conversion
The conversion from gross bitrate ��� in bps to LC3plus codec .�� bitrate is carried out as stated in the following for
several frame durations.

For 10 ms frame duration, the gross bitrate is assumed to be a multiple of 800. The codec bitrate for the different EP
modes is calculated as:

• EP mode 1

.�� = /������ ∶= ��� − 3 200 �A. 1�
• EP mode 2

.�� = /������ ∶= ��� − 800�0 ���
6 000

1 + 2 + 2��� �������� , �A. 2�
 where 2����� is defined to be 1 if � > 3 and 0 otherwise.word

• EP mode 3

.�� = /������ ∶= ��� − 800�2 0 ���
6 000

1 + 2 + 2��� �������� + 22��� �������� �A. 3�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)125

• EP mode 4

.�� = /������ ∶= ��� − 800�3 0 ���
6 000

1 + 2 + 2��� �������� + 22��� �������� �A. 4�
For 5 ms frame duration, the gross bitrate is assumed to be a multiple of 1 600. The codec bitrate in EP mode � is
calculated as:

.�� = 2/
����/2� �A. 5�
For 2,5 ms frame duration, the gross bitrate is assumed to be a multiple of 3 200. The codec bitrate in EP mode � is
calculated as:

.�� = 4/
����/4� �A. 6�
Table A.2 outlines typical channel coder rate and codec rate for a given ��� for DECT applications.

Table A.2: Codec rates for typical DECT configurations

��� (��	
 ���) \
�� ���

1 2 3 4

40 bytes, 10 ms interval 36 bytes 32 bytes 26 bytes 20 bytes
80 bytes, 10 ms interval 76 bytes 66 bytes 53 bytes 42 bytes

A.1.3 General Channel Coder Parameters

A.1.3.1 EP mode

The EP mode � is a number from 1 to 4, where � = 1 provides only basic error protection and � = 2, 3, 4 provides
increasing error correction capability. At the channel encoder the EP mode is denoted by ���� and at the channel
decoder it is denoted ���� .

A.1.3.2 Slot Size

The slot size �� specifies the size of the channel encoded frame in octets and equals the parameter gross_bytes in
Figure A.1. �� may take all integer values from 40 to 400, covering nominal bitrates from 32 to 320 kbit/s at a frame
rate of 100 Hz.

A.1.3.3 EPMR

The Error Protection Mode Request (EPMR) is a two-bit symbol represented by numbers from 0 to 3. The requested EP
mode is EPMR + 1.

A.1.3.4 Combined Channel Coding Flag

The combined channel coding flag ..._���� takes values 0 and 1 and indicates if the input data contains data from
multiple audio channels.

A.1.4 Derived Channel Coder Parameters

A.1.4.1 Number of Code Words

The parameter ��� specifies the number of code words that are used to encode the data frame. It is derived from the slot
size by:

��� ∶= 02��
15

1 . �A. 7�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)126

A.1.4.2 Code Word Lengths

The parameter 4� is defined for � = 0 …��� − 1 and specifies the length of the �th code word in semi-octets. It is
derived from the slot size �� as:

4� ∶= 52�� − � − 1���
6 + 1. �A. 8�

A.1.4.3 Hamming Distances

The parameter ��,
 specifies the Hamming distance of the �th Code in EP mode �. It is given by:

��,� ∶= 71, � = 0
0, � > 0

�A. 9�
and for � > 1 by:

��,
 ∶= 2� − 1 ��� � = 0 …��� − 1. �A. 10�
A.1.4.4 Number of Partial Concealment Code Words

The parameter ����� specifies the number of partial concealment code words and is derived from slot size �� and EP
mode � by:

����� ∶= 8⌊0,080447761194030 ∙ �� − 1,791044776119394 + 0,5⌋, � = 3 ��� �� ≥ 80 ��� ..._���� = 0⌊0,066492537313433 ∙ �� − 1,970149253731338 + 0,5⌋, � = 4 ��� �� ≥ 80 ��� ..._���� = 0
0, ��.

�A. 11�
A.1.4.5 Size of Partial Concealment Block

The parameter ��� specifies the size of the partial concealment block in semi-octets and is derived from slot size �� and
EP mode � by:

��� ∶= 	 (4� − ��,
 + 1)
�����

�	���������
. �A. 12�

A.1.4.6 CRC Hash Sizes

The numbers ����� and �����, which correspond to sizes of CRC hash values, are derived from slot size and EP mode � by:

����� ∶= ;2, � ≥ 2 ��� �� = 40
3, �� �A. 13�

����� is set to:

����� ∶= ;2, �� ≥ 80 ��� � > 2 ��� ..._���� = 0,
0, ��.

�A. 14�
A.1.4.7 Data Size

The parameter �� specifies the data size in a channel encoded frame of size �� encoded in EP mode � in octets. Its
value is given by:

�� ∶= �� − ����� − ����� − 	 ��,
 − 1

2

�����

�	�

�A. 15�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)127

A.1.5 Algorithmic Description of the Channel Encoder

A.1.5.1 Input/Output

The channel encoder takes as input the slot size ��, the EP mode ����, the Error Protection Mode Request �+,-, a
data sequence ����(0 …�� − 1) of octets and a combined channel coding flag ..._���� and returns a sequence of
octets ���(0 …�� − 1). Octets are interpreted as numbers from 0 to 255 according to the specified endianness.

A.1.5.2 Data Pre-Processing

The data sequence is first split into a sequence ��(0 … 2�� − 1) of semi-octets with reversed ordering, where ��(2()
holds the upper half of ����(�� − 1 − () and ��(2(+ 1) holds the lower half. In formulas this is:

���2(� ∶= <����=�� − 1 − (>
16

? �A. 16�
and

���2(+ 1� ∶= ��=����=�� − 1 − (>, 16> �A. 17�
where ��(�, �) denotes the remainder in the long division of � by �, i.e. the uniquely determined number �, such that
0 ≤ � < |�| and such that � − � is divisible by �.

Next, CRC hash values are calculated on the bit-expansions of the sequences:

���=0 … 2�� − ��� − 1> ∶= ��(0. . . 2�� − ��� − 1) �A. 18�
and

���=0 …��� − 1> ∶= ��=2�� − ��� … 2�� − 1> �A. 19�
Note that ��� might be zero in which case ��� is the empty sequence. The bit-expansion of a semi-octet sequence �(0 …� − 1) is defined by the sequence �(0 … 4� − 1), where:

��4(+ A� ∶= ��
�(��(�)), �A. 20�
with (ranging from 0 to � − 1 and A ranging from 0 to 3 and where ��
� is the function returning the Ath bit according
to the specified endianness.

The first CRC hash sequence, calculated on an extension of ���, has length 8����� − 2 and the binary generator
polynomials are given by:

������ = 1 + x� + x� + x + x�� + x�� �A. 21�
and

������ = 1 + �� + �! + �� + � + ��� + ��� + ��� + �� + ��� �A. 22�
The second CRC hash sequence, calculated on ���, has length 8����� and the binary generator polynomial is given by:

������ = 1 + � + �� + �! + �� + �" + � + ��� + ��! + ��� �A. 23�
The CRC hash sequence of length (on a binary data sequence �(0 …� − 1) for a given binary generator polynomial �(�) of degree (is defined as usual to be the binary sequence �(0 … (− 1) such that the binary polynomial:

��� = 	���� ��#��

�	�
+ 	�������

�	�
 ��$# �A. 24�

is divisible by ����.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)128

Let ��� denote the bit-expansion of ��� and let ��� denote the bit-expansion of ���. Then the sequence ���(0 … 8����� − 3) is set to be the hash sequence of length 8����� − 2 calculated on the concatenated sequence:

����%� = ���
���+,-�, ��
���+,-�, ����0�… ���=8�� − 4��� − 1>� . �A. 25�
Furthermore, ���(0 … 8����� − 1) is set to be the second hash sequence of length 8����� calculated on ���. Note that ��� is the empty sequence if ����� = 0.

The first pre-processed data sequence ����(0. .8=�� + ����� + �����> − 1) is then defined by:

�����0 … 8����� − 3� ∶= ����0 … 8����� − 3�, �A. 26�
�����8����� − 2� ∶= ��
���+,-�, �A. 27�
�����8����� − 1� ∶= ��
���+,-� �A. 28�

�����8����� … 8������ + ������ − 1� ∶= ����0 … 8����� − 1� �A. 29�
����=8������ + ������… 8=�� + ����� + �����> − 4��� − 1> ∶= ���=0 … 8�� − 4��� − 1> �A. 30�

and

����=8������ + ����� + �&� − 4��� … 8=����� + ����� + ��> − 1>: = ���=0 … 4��� − 1> �A. 31�
The final pre-processed data sequence is given by swapping the EPMR bits at positions 8����� − 2 and 8����� − 1
with bits at positions (∶= 4(4� − ��,
���

) and (+1, i.e.:

��������� − 2� ∶= ����(() �A. 32�
��������� − 1� ∶= �����(+ 1� �A. 33�
����(� ∶= ���������� − 2�. �A. 34�

����(+ 1� ∶= ����(����� − 1) �A. 35�
and

������ ∶= ����(�) �A. 36�
for � different from 8����� − 2 , 8����� − 1, (, and (+ 1. Swapping of these bits ensures that the EPMR bits are
stored in an EP mode independent bit positions.

The bit-sequence ��� is converted into a semi-octet sequence ���(0 … 2=����� + ����� + ��>) by reversing the
bit-expansion, i.e.:

����(� ∶= ����4(� + 2 ����4(+ 1� + 4 ����4(+ 2� + 8 ����4(+ 3� �A. 37�
Note that it is not necessary to actually carry out the bit-expansions described in this clause as CRC hashes can be
computed efficiently on data blocks.

A.1.5.3 Reed-Solomon Encoding

For Reed-Solomon (RS) encoding the pre-processed data sequence ��� from clause A.1.5.2 is split into ��� sequences "� , also referred to as data words, according to:

"� �0 … 4� − ��,
���
� = ��� �B� … B� + 4� − ��,
���

� , �A. 38�
where � ranges from 0 to ��� − 1 and where the split points B� are inductively defined by B� = 0 and B�$� = B� + 4� − ��,
���

+ 1.

The RS codes are constructed over #C�16� = #C(2)/(�� + � + 1), where the residue class of � in #C(2)/(�� + � + 1) is chosen as unit group generator, denoted as usual by D.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)129

Semi-octets are mapped to elements of #C�16� using the data-to-symbol mapping:

� → ��� ∶= ��
���� D� + ��
���� D� + ��
���� D� + ��
���� D�. �A. 39�
The mapping is one-to-one and the inverse mapping is denoted E → 〈E〉, such that �〈E〉� = E.

With this notation the Reed-Solomon generator polynomials for Hamming distances 3, 5, and 7 are given by:

H���� ∶= �8� + �6� � + �1� ��, �A. 40�
H!���: = �7� + �8� � + �12� �� + �13� �� + �1� ��, �A. 41�

and

H"���: = �12� + �10� � + �12� �� + �3� �� + �9� �� + �7� �! + �1� �� . �A. 42�
For � ranging from 0 to ��� − 1 the RS redundancy sequences -�(0 … ��,
���

− 2) for the data words "� are calculated.

These are the (uniquely determined) seqences of semi-octets such that the polynomial:

���� ∶= 	 �-��(�� �#
�	,
���

��

#	�
+ 	 �"��(�� �#$�	,
���

��
'	��	,
���

#	�

�A. 43�
is divisible by H�	,
���

(�). The �th code word I� is then defined to be the sequence of 4� semi-octets given by:

I� �0 …��,
���
− 2� ∶= -�(0 … ��,
���

− 2) �A. 44�
and

I� ���,
���
− 1 … 4� − 1� ∶= "� �0 … 4� − ��,
���

� �A. 45�
Note that if ��,
���

= 1 the RS redundancy sequence is empty and I� simply equals "� .
A.1.5.4 Mode Signalling

The EP mode ���� is not explicitely transmitted but rather signalled implicitly by coloring the first 6 code words by
mode dependent coloration sequences, i.e.:

II��(� ∶= J��
���(I��(�, ���
���
�(� � < 6I��(� ��,

�A. 46�
where ��
���(�, �) denotes the bit-wise xor operation on two semi-octets. The signalling sequences ���
 are given by:

�����0. .14� = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) �A. 47�
�����0. .14� = (7, 15, 5, 6, 14, 9, 1, 3, 12, 10, 13, 3, 2, 0, 0) �A. 48�
�����0. .14� = (7, 11, 14, 1, 2, 3, 12, 11, 6, 15, 7, 6, 12, 0, 0) �A. 49�
�����0. .14� = (6, 15, 12, 2, 9, 15, 2, 8, 12, 3, 10, 5, 4, 0, 0) �A. 50�

Note that code word coloration leaves the EPMR bits located in I�(4� − 1) unchanged.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)130

A.1.5.5 Code Word Multiplexing

The sequences II� are multiplexed into a sequence of octets first by interleaving the semi-octets in a reversed order
according to:

��(�2�� − ��� (− � − 1� ∶= II��(�, �A. 51�
where � ranges from 0 to ��� − 1 and (ranges from 0 to 4� − 1, and then by pairing consecutive semi-octets according
to:

����(� ∶= ��(�2(� + 16 ��((2(+ 1) �A. 52�
where (ranges from 0 to �� − 1.

A.1.6 Algorithmic Description of the Channel Decoder

A.1.6.1 Input/Output

The channel decoder takes as input the slot size ��, a sequence *��(0 …�� − 1) of octets, and a combined channel
coding flag ..._���� and returns the data size ��, a sequence of decoded octets *���(0 …�� − 1), a bad frame
indicator ��� taking values 0, 1, and 2, a EPMR estimate KL�M taking values from 0 to 11, a number ����_����

taking values from −1 to 480 (indicating the number of corrected bits if ��� = 0), bit position indicators �_��_��

and �_��_���ℎ
 for partial concealment, and a number ��(_����� taking values from 0 to 15. If the channel coder
exits with ��� equal to 1, the number ����_����
 shall be -1.

The values �� and *���(0 …�� − 1) are only specified if ��� ≠ 1, and the value of the bit position indicators �_��_��
 and �_��_���ℎ
 is only specified if ��� = 2.

A.1.6.2 Code Word De-Multiplexing

From the slot size �� the derived parameters ��� and 4� are calculated according to clauses A.1.4.1 and A.1.4.2. The
input sequence *��(0 …�� − 1) is then split into a sequence *�((0 … 2�� − 1) of semi-octets according to:

�(�2(� ∶= ��(���(�, 16) �A. 53�
and

�(�2(+ 1� ∶= <���(�
16

? �A. 54�
for (= 0 …�� − 1, and code words NN� are extracted according to the data arrangements of clause A.1.5.5, i.e.:

NN��(� ∶= *�(�2�� − (��� − � − 1�, �A. 55�
where � ranges from 0 to ��� − 1 and (ranges from 0 to 4� − 1.

A.1.6.3 Mode Detection

A.1.6.3.1 Overview

Mode detection aims at recovering the EP mode ���� by analysing the code words NN�, where � ranges from 0 to 5. The
detected mode is denoted ���� and takes values from 0 to 4, where 0 indicates that no mode has been detected. Once a
mode has been detected all derived codec parameters such as the data size, hamming distances, number of partial
concealment code words, etc. are defined according to this mode. The mode is chosen from a list of candidate modes,
initially containing EP modes 1 to 4, which is then narrowed down step by step.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)131

A.1.6.3.2 Stage 1

Stage 1 tries to determine whether the frame was encoded in EP mode 1. To this end, the first two syndromes of code
word 0 are calculated, where the (th syndrome of code word NN� is defined to be the #C(16) symbol:

B#)�* ∶= 	�NN����� D#�
'	��

�	�
. �A. 56�

Mode 1 is selected if the following two conditions are satisfied:

1) B�)�* = [0] and B�)�* = [0].

2) The data, extracted according to the frame arrangement of ���� = 1, passes the first cyclic redundancy check
as outlined in clause A.1.6.7 with *���0 … 2�� − 2� = =NN��2 … 4� − 1�,NN�, … ,NN�����>.

If these conditions are satisfied, ����_����
 and ��� are set to 0 and the channel decoder outputs the data *���(0 …�� − 1) as generated in clause A.1.6.7. Otherwise, mode detection enters stage 2 and mode 1 is removed from
the candidate list.

A.1.6.3.3 Stage 2

Stage 2 tries to determine whether the frame was encoded in EP modes 2, 3, or 4. To this end, syndromes B#)�* are
calculated for � = 0 … 5 and (= 1 … 6.

If for one � ∈ {2,3,4} the conditions:

B#)�* + 	����
���� D#�
��

�	�
= �0� �A. 57�

are satisfied for � = 0 … 5 and (= 1 … ��,
 − 1, that is all syndromes coloured according to mode � vanish, then ����: = � is selected and the channel coder proceeds to clause A.1.6.6. Note that such an � is necessarily unique so the

modes may be tested in any order.

If no such � can be found, then mode detection calculates the error locator polynomials Λ�,
(�) for � = 0 … 5 and � = 2 … 4. This is done according to clause A.1.6.5.2 with
 =
+�	,
��,

� , and

O# = B#)�* + 	����
���� D#�,

��

�	�
�A. 58�

the coloured syndromes according to mode �, for (= 1 … 2
.
All modes � for which Λ� ,
��� = [0] for at least one � from 0 to 5 are excluded from further consideration.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)132

For the remaining modes a risk value is computed. The risk value ��((�) for mode � is based on the degrees of the
error locator polynomials Λ-,.

��� and is computed as mantissa exponent pair:

�/
, P
� ∶= �Q��=/�,
, P�,
> ∗ =/�,
, P�,
>� ∗ =/�,
, P�,
>� ∗ =/�,
 , P�,
>R ∗ =/�,
, P�,
> ∗ =/!,
, P!,
>, �A. 59�
where the mantissa exponent pairs =/�,
 , P�,
> are specified in Table A.3, and where the multiplication of two mantissa
exponent pairs is defined as follows: Given two pairs �/, P� and (//, P′), where 0 ≤ /, // < 2�!, the product �/, P� ∗ (//, P′) is defined to be the pair (///, P′′) given by:

/// ∶= ;⌊/ //2���⌋, / /′ < 2� ⌊/ //2��!⌋, �� �A. 60�
and

P′′ ∶= ; P + P′, / /′ < 2� P + P/ + 1, ��.
�A. 61�

Such a mantissa exponent pair �/, P� corresponds to the number / ∙ 20���.

Table A.3: Fundamental Risk Values

� \ � ∶= ��� (��,�) 0 1 2 3
1 (only for � = 0) (16 384, -8) (26 880, -1) NA NA

2 (16 384, -8) (26 880, -1) NA NA
3 (16 384, -16) (26 880, -9) (20 475, -2) NA
4 (16 384, -24) (26 880, -17) (20 475, -10) (19 195, -4)

All modes � for which the corresponding risk value �(�(�) lies above a slot size dependent threshold ���(_
ℎ��ℎ are
removed from the list of candidate modes. The risk threshold is defined to be:

���(_
ℎ��ℎ ∶= ;21 990 ∙ 2��", �� = 40

25 166 ∙ 2���, �� > 40.
�A. 62�

The remaining modes with risk value smaller than or equal to ���(_
ℎ��ℎ are enumerated as �� , A = 1 …�, such that
for every A = 1 …� − 1 either ��(=��> < ��((��$�), or ��(=��> = ��(=��$�> and �� < ��$� holds.

Starting from mode ��, the error positions �
�,�,# in code words NN� are determined according to clause A.1.6.5.3 with

Λ��� = Λ�,
�
��� for � = 0 … 5. If calculation of error positions was successful for all code words then ���� = �� is

selected and the channel decoder proceeds to clause A.1.6.5. Otherwise, if error positions cannot be determined for one
index, the same procedure is carried out for mode ��$� while A < �. Otherwise, ���� is set to 0 indicating that no mode
has been detected.

In case no mode is detected, i.e. ���� = 0 , ����_ ����
 is set to −1 and EPMR detection is carried out according to
clause A.1.6.4 with , = {1, 2, 3, 4} before the channel decoder exits with ��� = 1.

A.1.6.4 EPMR Estimation when Frame is not decodable

In case the frame is not decodable the EPMR is estimated by analysing the first code word NN� and the corresponding
error locator polynomials Λ�,
 for all modes � ∈ ,, where , is a given set of candidate modes.

First all modes are removed from , for which either:

• the error locator polynomial Λ�,
 is not valid, or

• the risk value exponent P�,
 as specified in Table A.3 is larger than −8.

The set of remaining modes is denoted ,�.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)133

If ,� is empty the EPMR estimate KL�M is set to:

KL�M = ��
�=NN��4� − 1�> + 2 ��
�=NN��4� − 1�> + 8, �A. 63�
where the summand 8 indicates that this value is not validated.

If ,� is not empty then let � denote the element of ,� for which the risk value exponent P�,
 is minimal (note that
such a mode always exists since P�,� and P�,� cannot both have value −8 by design of the signalling sequences). Then,
error correction is performed on NN� according to clause A.1.6.5 with ���� = � and the EPMR estimate is derived
from the corrected code word NN�� as either:

KL�M = ��
�=NN���4� − 1�> + 2 ��
�=NN���4� − 1�> + 4 �A. 64�
if P�,
 > −16, where the summand 4 indicates that the EPMR was validated with high confidence, or:

KL�M = ��
�=NN���4� − 1�> + 2 ��
�=NN���4� − 1�> �A. 65�
if P�,
 ≤ −16 indicating that the EPMR value was validated with very high confidence.

A.1.6.5 Error Correction

A.1.6.5.1 Overview

Full error correction is carried out only upon successful mode detection. In this case the error positions for �����,�,# for

the first 6 codewords were already computed in clause A.1.6.3.3. Error correction may also be carried out only for the
first code word for EPMR recovery. In this case the following steps are only carried out for � = 0.

The code words NN� with � ≤ 5 are corrected by calculating the error symbols S�,# according to clause A.1.6.5.4 with:

� = deg �Λ�,����� �A. 66�
O# = B#)�* + 	T����������U D#(

��

(�
, �A. 67�

B#)�* being defined as in clause A.1.6.3.3, and V# = �����,�,# . �A. 68�
The corrected code words are then defined by:

NN���(� = ; ��
���(NN��(�, < S�,(> (= V(��� ��� �NN�(() ��,
�A. 69�

where <∙> is the inverse data-to-symbol mapping specified in clause A.1.5.3.

For the remaining code words with index � > 5 error correction is performed by carrying out the usual steps:

1) Syndromes are calculated according to:

O# = 	�NN����� D#(
'	��

(�

�A. 70�
 for (= 1 … 2
 with
 ∶=

�	,������
� .

2) If all syndromes are zero, the code word is presumed error free, and thus the corrected code word NN�� is set to NN�.
3) Otherwise, the error locator polynomial Λ(y) is calculated according to clause A.1.6.5.2.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)134

4) Upon success (i.e. Λ�y� ≠ [0]), error positions V#, (= 0 … �� − 1 with �� ∶= deg (Λ�y�), are calculated
according to clause A.1.6.5.3.

5) Upon success, error symbols S�,# , (= 0 …�� − 1, are calculated according to clause A.1.6.5.4 and error
correction is performed according to:

NN���(� = ; ��
���(NN��(�, 〈S�,(〉) (= V(��� ��� �NN�(() ��.
�A. 71�

If error correction fails for an index � < ��� − �����, i.e. one of the steps 3, 4 or 5 failed, the bad frame indicator ��� is
set to 1, ����_����
 is calculated as specified below and channel decoding is terminated.

For indices � ≥ ��� − ����� a sequence W(��� − ����� …��� − 1) is defined as follows. If error correction fails for
an index � ≥ ��� − ����� or if the risk value exponent P�,
 as specified in Table A.3 is larger than −16 the value W(�)
is set to 0, indicating that the data in code word NN� is not reliable without further validation. If error correction fails for
such an index �, the corrected code word NN�� is nevertheless defined to be NN� but the first bad frame indicator ���� is
set to 2.

The value of ����_����
 is determined as follows. If error correction failed for an index � < ��� − ����� then let ��
denote the smalles index for which it failed and set M = X0, . . . , �� − 1Y. Otherwise let M denote the set of all indices
0 < � < ��� for which error correction succeded. The value of ����_����
 is then calculated as:

		��
�(

�	

�	��∈1
〈S�,�〉) + ��
�=〈S�,�〉> + ��
�= 〈S�,�〉> + ��
�= 〈S�,�〉> �A. 72�

that is the total number of bits corrected in code words NN� with � ∈ M.
If �� = 40 the number of bit correction is artificially reduced to increase error detection. If all code words have been
corrected successfully the first bad frame indicator is set depending on a mode dependent error threshold ���
 given
by:

���
 ∶= 8 3 � = 1
9 � = 2

18 � = 3

�A. 73�
If ����_����
 ≤ ������� the first bad frame indicator ���� is set to 0 and otherwise it is set to 1.

If ����_����
 ≤ ������� the first bad frame indicator ���� is set to 0 and otherwise it is set to 1.

The value ��(_����� is calculated as follows. If ���� ≠ 0 it is set to 0. Furthermore, if no errors were detected, it is
set to 15. Otherwise, a flag ��(� is calculated for � = 1. .4. If �� ≠ 40 the value ��(� is calculated as:

��(
 = J1, max ��� �Z�,����� , A = 0. .��� − 1� < �,

0, ��.
�A. 73.1�

If �� = 40, the value also depends on ���
 and ����_����
 and is calculated as:

��(
 = J1, max ��� �Z�,����� , A = 0. .��� − 1� < � ��� ����_����
 ≤ ���
 ,

0, ��.
�3. 73.2�

The value ��(
 thus gives an estimate whether the current frame would have been correctable in mode �. The value ��(_����� is then calculated as:

��(_����� = ��(� + 2 ��(� + 4 ��(� + 8 ��(�. �3. 73.3�
A.1.6.5.2 Calculation of Error Locator Polynomials

The error locator polynomial is calculated from a sequence O# , (= 1 … 2
, of symbols in #C(16), where
 is a number
from 1 to 3.

If O# = [0] for (= 1 … 2
, the error locator polynomial Λ(y) is set to [1].

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)135

Otherwise, the determinants of matrices ,(are calculated for � = 1 …
, where:

,� ∶= �O��, �A. 74�
,� ∶= �O� O�O� O�� , �A. 75�

,� ∶= �O� O� O�O� O� O�O� O� O! �A. 76�
and

det�,�� = O�, �A. 77�
det�,�� = O�O� + O��, �A. 78�

det�,�� = O�O�O! + O�O�� + O��O! + O��. �A. 79�
If all determinants are [0] for � = 1 …
 the error locator polynomial Λ��� is set to [0], which is a non-valid error locator
polynomial in the sense of clause A.1.6.5.3.

Otherwise, take [to be the largest index from 1 to t such that det�,2� ≠ 0. Then the coefficients of the error locator
polynomial are computed as:

�\2⋮\� ∶= ,2
�� �O2$�⋮O�2 �A. 80�

where the inverse matrices are given by:

,�
�� ∶= �O����, �A. 81�

,�
�� ∶= det�,���� �O� O�O� O�� , �A. 82�

,�
�� ∶= det�,����] O�O! + O�� O�O! + O�O� O�O� + O��O�O� + O�O! O�O! + O�� O�O� + O�O�O�O� + O�� O�O� + O�O� O�O� + O�� ^ . �A. 83�

If \2 = [0], the error locator polynomial is set to �0�.
Otherwise, if [=
, the error locator polynomial is set to:

Λ��� ∶= [1] + \� � + … + \� �� �A. 84�
and if [<
 it is further tested whether:

	O2$#$� \2�#$� = O�2$�$�2

#	�
�A. 85�

holds for � = 0. .2�
 − [� − 1. If all these equalities hold, then the error locator polynomial is set to:

Λ��� ∶= [1] + \� � + … + \2 �2 �A. 86�
Otherwise, it is set to [0].

A.1.6.5.3 Calculation of Error Positions

Error positions are calculated from the error locator polynomial:

Λ��� ∶= �1� + \� � + … + \� �� . �A. 87�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)136

The error locator polynomial is said to be valid, if it admits a representation:

Λ��� = _�� + D���, where 0 ≤ �# < 4� and

3��

#	�
�# ≠ �(for (≠ � �A. 88�

in which case the error positions are given by �# for (= 0 … � − 1. Otherwise, the list of error positions is empty.

The values �# can be determined by testing Λ�D��� = 0 for � = 0 … 4� − 1. Alternatively, tabulation of error locations
indexed by \� is possible and might be considerably faster.

A.1.6.5.4 Calculation of Error Symbols

Error symbols are calculated from syndromes O�, … ,O� and error positions V�, … , V��� by solving the linear system:

3��V�, … , V���� � S�
⋮S��� = �O�⋮O� �A. 89�

over #C�16�, where 3��V�, … , V���� are the Vandermonde matrices:

3��V�� ∶= �D4�� �A. 90�
3��V�, V�� ∶= � D4� D4�D�4� D�4�� , �A. 91�

and

3��V�, V�, V�� ∶= � D4� D4� D4�D�4� D�4� D�4�D�4� D�4� D�4�
 . �A. 92�

The matrix inverses are given by:

3����V�� = �D�4�� �A. 93�
3�
���V�, V�� = det=3��V�, V��>�� �D�4� D4�D�4� D4�� , �A. 94�

and

3�
���V�, V� , V�� = det�3��V�, V�, V�� ��� �D�4�$�4� + D�4�$�4� D4�$�4� + D4�$�4� D4�$�4� + D4�$�4�D�4�$�4� + D�4�$�4� D4�$�4� + D4�$�4� D4�$�4� + D4�$�4�D�4�$�4� + D�4�$�4� D4�$�4� + D4�$�4� D4�$�4� + D4�$�4�

 �A. 95�
with:

det(3�(V�, V�)) = D4�$�4� + D4�$�4� �A. 96�
and

det�3��V�, V�, V�� � = D4�$�4�$�4� + D4�$�4�$�4� + D4�$�4�$�4� + D4�$�4�$�4� + D4�$�4�$�4� + D4�$�4�$�4� . �A. 97�
A.1.6.6 De-Colouration and RS Decoding

De-coloration according to the detected EP mode ���� is done by applying the corresponding signalling sequence from
clause A.1.5.4, giving rise to de-colourated code words:

N��(� ∶= J��
���(NN�� �(�, ��������(�) � < 6,NN���(� ��.
�A. 98�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)137

Then, redundancy decoding is applied according to mode ���� producing the data words:

�� �0 … �� − ��,����� ∶= �� ���,���� − 1. . . �� − 1� �A. 99�
which are combined into the data sequence 	��(0 …
� − 1), with
� as specified in clause A.1.4.7 with � = ����,
according to:

	�� �� … � + �� − ��,����� ∶= ��(0. . . �� − ��,����) �A. 100�
for � = 0 …
�� − 1, where the split points � are defined as in clause A.1.5.3. This yields a sequence of length
2(
� +
�	�
 +
�	��). After RS redundancy decoding the FEC decoder proceeds to clause A.1.6.7 Data
Post-Processing.

A.1.6.7 Data Post-Processing

Data post-processing consists of hash removal and validation, and EPMR extraction. The sequence 	�� from
clause A.1.6.7 is expanded into the corresponding bit sequence ��� from which the sequence ���� is derived by
reversing the bit swap from clause A.1.5.2, i.e. swapping bits at positions 8
�	�
 − 2 and � ∶= 4(�� − ��,����

) and

bits at positions 8
�	�
 − 2 and � +1.

The sequence ���� is then split into sequences ��
, ���, ��
�� , and ���, corresponding to sequences ��
, ���, ��
�� , and ��� from clause A.1.5.2, given by: ��
�0 … 8
�	�
 − 3� ∶= �����0 … 8
�	�
 − 3�, �A. 101� ����0 … 8
�	�� − 1� ∶= �����8
�	�
 … 8�
�	�
 +
�	��� − 1�, �A. 102� ��
���0 … 1� ∶= �����8
�	�
 − 3 … 8
�	�
 − 1�, �A. 103�
��
���2 … 8
� − 4
�� + 1� ∶= ����(8�
�	�
 +
�	���… 8�
�	�
 +
�	�� +
�� − 4
�� − 1 �A. 104�

and

����0 … 4
�� − 1� ∶= ����(8�
�	�
 +
�	�� +
�� − 4
�� … 8�
�	�
 +
�	�� +
�� �A. 105�
The two cyclic redundancy checks (CRC) are carried out on ��
�� and ��� by re-calculating the hash sequences
specified in clause A.1.5.2.

If the calculated 8
�	�
 − 2 bit redundancy sequence for ��
�� specified in clause A.1.5.2 does not match ��
 the bad
frame indicator ��� is set to 1 and the EPMR is estimated according to clause A.1.6.4 with � = ������. Otherwise, the
EPMR estimate is set to: ��
� = ��
���0� + 2 ��
���1�. �A. 106�
If the first CRC is passed and if ���� ≠ 2, the second CRC is carried out calculating the 8
�	�� hash sequence for ���
as specified in clause A.1.5.2. If the result does not match the sequence ��� the bad frame indicator ��� is set to 2,
indicating the loss of partial concealment data. If the first CRC is passed and ���� = 2 then ��� is set to 2 without
carrying out the second CRC.

If both CRCs are passed, the bad frame indicator ��� is set to 0, indicating that the decoded data is valid.

If ��� = 2, the position indicators ��_��_���� and ��_��_�� ℎ� representing the left and right border of the potentially
corrupted bits in the partial concealment block are determined from the sequence !(
�� −
���� …
�� − 1) from
clause A.1.6.5 in the following way.

If one of the two following conditions is true, then ��_��_���� is set to 0 and ��_��_�� ℎ� is set to 4
�� − 1.

1) !��� = 0 for
�� −
���� ≤ � <
�� (no trusted code words exist)

2) !��� = 1 for
�� −
���� ≤ � <
�� (all code words are trusted but errors have been detected)

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)138

Otherwise, the position indicators are calculated as follows. If !�
�� − 1� = 0, then ��_��_���� is set to 0. Otherwise,
there exists a maximal index �� such that !��� = 1 for �� ≤ � <
�� and ��_��_���� is calculated as:

�������� = 4 " ��� − ��,���� + 1�����

����

. �A. 107�
Analogously, there exists a minimal index �
 such that
�� −
���� ≤ �
 <
�� and !��
� = 0, and ��_��_�� ℎ� is
calculated as:

�����	
�� = 4 " ��� − ��,���� + 1� − 1

����

����

. �A. 108�
If ��� ≠ 1 the output data 	��� is generated by reversing the pre-processing steps from clause A.1.5.2 by setting:

��
�0 … 8
� − 4
�� − 1� ∶= ��
���2 … 8
� − 4
�� + 1�, �A. 109�
	�
��� = ��
�4�� + 2 ��
�4� + 1� + 4 ��
�4� + 2� + 8 ��
(4� + 2) �A. 110�

for � = 0 … 2
� −
�� − 1,

	����� = ����4�� + 2 ����4� + 1� + 4 ����4� + 2� + 8 ���(4� + 2) �A. 111�
for � = 0 …
�� − 1,

	��0 … 2
� −
�� − 1� ∶= 	�
 �A. 112�
	��2
� −
�� … 2
� − 1� ∶= 	�� �A. 113�

and

	������ ∶= 	��2
� − 2� − 1� + 16 	�(2
� − 2� − 2) �A. 114�
for � = 0 …
� − 1.

A.1.7 Padding bytes
Padding bytes can be detected as the special decoder mode PADDING described in clause 5.4.2.4. The difference for
operating with enabled channel coder is that the padding signalling elements (see Table 5.20) are read from the right
side of the LC3plus frame. The additional number of bytes to be skipped as described in the padding length bits are
located at the left side of the LC3plus frame in order to optimize the bitstream layout for partial concealment described
in clause A.1.8.3.

The decoding procedure complies of a regular channel decoding step. Then when all potential PADDING signal 16-bit
code words are detected, the number of padding signals is counted as nsig_pad and the number of padded bytes in the
code words is counted as nbytes_padd. The left sided and right sided padding bytes are to be removed and the codec
parameters need to be updated according to the real bit rate, see clause 5.7.

If padding is detected the output parameters of the LC3 channel coder are updated according to the following pseudo
code:

Np = Np – 2*nsig_pad – nbytes_pad;
Npc = max(Npc – 2*nbytes_sig, 0);
if (bfi == 2)
{
 if (be_bp_right < 8*nbytes_pad)
 {
 bfi = 0;
 }
 else
 {
 be_bp_left = max(be_bp_left – 8*nbytes_pad, 0);
 be_bp_right = be_bp_right – 8*nbytes_pad;
 }

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)139

}

If padding removal results in a payload size smaller than 20 bytes, i.e. the minimal LC3 payload size, the bad frame
indicator is set to 1.

A.1.8 Bit error Concealment

A.1.8.1 Reorder Bitstream

Before the channel coder is applied at encoder side, the bitstream is reordered such that preferably the coding data
corresponding to the highest spectral coefficients including the residual signal are in front of the bitstream. At decoder
side, the bitstream is read in a different way to repeal the reordering mechanism.

At encoder side, the bitstream bs is rearranged as follows:

bs_rearranged(k) = # bs_enc(b_left + �) , 0 ≤ � < block_size
bs_enc(� − block_size) , block_size ≤ � < b_left + block_size

bs_enc(�) , b_left + block_size ≤ k < len
�A. 115�

where

len = 8 ∙ �����$ �A. 116�
and

block_size = 8 %
��
2
& �A. 117�

and
�� calculated in clause A.1.4.5 subject to the changes in clause A.1.7 and b_left is the byte position at the left side
where the last block_size bits fit exactly in the bitstream, this means that the partial concealment block is
[b_left:b_left+block_size-1].

The rearrangement of the bitstream bs_rearranged at decoder side is done by initializing the arithmetic decoder byte
position bp = block_size instead of 0 as done in clause 5.4.2.2. The border b_left at decoder side is determined as: �_���� = ��_$��� , �� ��++ == ��_$��� '� �� == ��_$���--. �A. 118�
If bp++ == b_left, then bp = 0; if bp_side-- == b_left -1, then bp_side = (block_size/8)-1.

If the arithmetic decoder triggers an unexpected bit error in the partial concealment block, meaning outside the range
[��_��_����: ��_��_�� ℎ�], then the lowest MDCT bin which cannot be decoded, ���, is set to the highest frequency,
which can be decoded outside the partial concealment block.

A.1.8.2 Bit error Concealment trigger

If only part of the residual is missing, for example ��_��_���� and ��_��_�� ℎ� only affect residual bits, then the bfi
flag is set to zero and the residual block is skipped, before decoding the frame as a regular frame.

If ��� is the lowest MDCT bin which cannot be decoded and ��� < 4
��, then the decoder shall apply packet loss
concealment for the following five events:

a) if there are uncorrectable bit errors in the bitstream, except the partial concealment code block;

b) if the stability factor (according to equation (157) is lower than 0,5;

c) if (≥ 0,5 and pitch_present = 1 as described in clause 5.4.2.3 and ��� <)800
�

��
*;

d) if (≥ 0,5 and pitch_present = 1 and ��� < peak_detector(�+���� ,
�), where �+���� is the shaped spectrum of
the last non-PLC frame; and

function [�����] = pc_peak_detector(������, ��)
block_size = 3;
thresh1 = 8;

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)140

fac = 0.3;

mean_block_nrg = mean(������.^2);
maxPeak = 0;
����� = 0;

if abs(������(0)) > abs(������(1))

 block_cent = sum(������(0:1).^2);
 if block_cent/block_size > thresh1*mean_block_nrg
 cur_max = max(abs(������(0:1)));

 next_max = max(abs(������(2:2+block_size-1)));

 if cur_max > next_max
 maxPeak = block_cent;
 ����� = 1;

for k = 0:block_size-1
 if abs(������(k+1)) >= abs(������(k)) && abs(������(k+1)) >= abs(������(k+2))

 block_cent = sum(������(k:k+block_size-1).^2);

 if block_cent/block_size > thresh1*mean_block_nrg
 cur_max = max(abs(������(k:k+block_size-1)));
 prev_max = 0;
 for j = k-block_size:k-1
 if j > 0
 prev_max = max(abs(������(j)), prev_max);

 next_max = max(abs(������(k+block_size:k+2*block_size-1)));

 if cur_max >= prev_max && cur_max > next_max
 if block_cent > fac*maxPeak
 ����� = k+block_size-1;
 if block_cent >= maxPeak
 maxPeak = block_cent;

for k = block_size.. ��-(2*block_size)
 if abs(������(k+1)) >= abs(������(k)) && abs(������(k+1)) >= abs(������(k+2))

 block_cent = sum(������(k:k+block_size-1).^2);

 if block_cent/block_size > thresh1*mean_block_nrg
 cur_max = max(abs(������(k:k+block_size-1)));

 prev_max = max(abs(������(k-block_size:k-1)));

 next_max = max(abs(������(k+block_size:k+2*block_size-1)));

 if cur_max >= prev_max && cur_max > next_max
 if block_cent > fac*maxPeak
 ����� = k+block_size-1;
 if block_cent >= maxPeak
 maxPeak = block_cent;

e) if (≥ 0,5 and pitch_present = 0; and

" ��,��
,���� ����

���

< 0,3 " ��,��
,���� ��

���

�A. 119�
 where ��,��

,��� is the quantized spectrum of the last non-PLC frame of clause 5.4.2.8.

If none of the five events triggers or ��� ≥ 4
��, partial concealment of clause A.1.8.3 shall be applied.

A.1.8.3 Partial Concealment

The partial concealment is a method to conceal the missing spectral lines, which for example are not available due to
non-correctable bit errors in the partial concealment code block encapsulated by ��_��_���� and ��_��_�� ℎ� as
described in clause A.1.6.7, while decoding the rest of the payload as usual. Figure A.2 gives a decoder overview
including the partial concealment processing blocks marked in green and the update steps marked in red which have to
be done in every frame expect for frames which are concealed with PLC.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)141

Figure A.2: Decoder overview including partial concealment

As the quantized spectrum ��- is only valid from 0…��� − 1, the upper bins are synthesized as follows:

for k=���.. �� − 1
 seed = (16831 + seed*12821) & 0xFFFF;
 if (seed < 0 && pitch_present == 0) || seed < randThreshold
 �	�(�) = −�	,
�

���� ∙ 	
�;
 else
 �	���� = �	,
�

���� ∙ 	
�;

 if |�	����| < 0.625

 �	���� = 0;

with the initial value of seed = 24 607, pitch_present from clause 5.4.2.3, ��-��� being the quantized spectrum of the
current frame, ��,��

,��� being the quantized spectrum of the last non-PLC frame of clause 5.4.2.8, randThreshold being
calculated as done in clause 5.6.3.2 and �./ being the rescaling factor: �./ = �./�� ∙ �./���� �A. 120�
where �./ is bounded by 0 ≤ �./ ≤ 1, and

�./�� =
 ���� �A. 121�

where ���� is the global gain of the previous frame and is the global gain of the current frame of clause 5.4.5 and
if the following two conditions are met:

1��� " �+������������

���

>
1
� − ��� " �+����������

�����

 ����� ∙ " ��,��
,��������

���

> � ∙ " ��-(�)�

����

���

�A. 122�
then

�./���� = 0 � ∙ ∑ ��-��������

��� ����� ∙ ∑ ��,��
,��������

���

. �A. 123�
otherwise �./���� = 1.

B
its

tr
ea

m
D

em
ul

tip
le

x Inv. LD-
MDCT

Output
Signal

SNS
Dec

Global
Gain

Arithm.
Decoder &
Residual

Noise
Filling

LTPF

TNS
Dec

Restored
Spectrum

BW info

Signal path Data path Control path

Partial Frame
Repetition &
Rescaling

Storage of
Spectrum

���

Storage of
qu. Spectrum

Fade-out &
Sign

Scrambling

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)142

Afterwards, the residual decoding in clause 5.4.3 is skipped. Other than that, the frame is processed and handled as a
regular good frame, meaning that the blocks noise filling, global gain, temporal noise shaping and spectral noise
shaping are applied to form the intermediate spectrum �+′(�) right before the IMDCT, see Figure A.2. To form the
reconstructed spectrum �+(�), the intermediate spectrum �+′(�) is damped adaptively based on the two damping factors:

$�'2� = #30,8 + 0,2 ∙ (�
, �'�
�� = 2,530,8 + 0,2 ∙ (�
, �'�
�� = 5

0,8 + 0,2 ∙ (, '�ℎ��2�$� �A. 124�
and

�.$�� = #30,3 + 0,2 ∙ (�
, �'�
�� = 2,530,3 + 0,2 ∙ (�
, �'�
�� = 5

0,3 + 0,2 ∙ (, '�ℎ��2�$� �A. 125�
where (is the stability factor according to equation (157), but between $/�4�
��� and $/�4���. The corresponding
cumulative attenuation factors cum_fading_slow_pc and cum_fading_fast_pc are derived as follows:

cum_fading_slow_pc = cum_fading_slow_pc �
 ∙ slow �A. 126�
and

cum_fading_fast_pc = cum_fading_fast_pc �
 ∙ fast �A. 127�
where cum_fading_slow_pc �
 and cum_fading_fast_pc �
 are the cumulative attenuation factors of the previous
frame or 1 if nbLostFrames = 1, where nbLostFrames is the number of consecutive frames which are concealed with
partial concealment plus the number of consecutive frames which are concealed with packet loss concealment right
before partial concealment is used.

If the previous frame was concealed with packet loss concealment, the cumulative attenuation factors
cum_fading_slow_pc �
 and cum_fading_fast_pc �
 are calculated as follows:

cum_fading_slow_pc �
 = 53�0,8 + 0,2 ∙ (�!��������
, �'�
�� = 2,53�0,8 + 0,2 ∙ (�!��������
, �'�
�� = 5�0,8 + 0,2 ∙ (�!������� , '�ℎ��2�$� �A. 127.1�

and

cum_fading_fast_pc �
 = 53�0,3 + 0,2 ∙ (�!��������
, �'�
�� = 2,53�0,3 + 0,2 ∙ (�!��������
, �'�
�� = 5�0,3 + 0,2 ∙ (�!������� , '�ℎ��2�$� �A. 127.2�

where (�!� is the stability factor used in the previous packet loss concealment frame and ��6�/ is the number of
consecutive frames concealed with packet loss concealment before the first partial concealment frame.

Finally, the damping is processed as follows:

ad_ThreshFac_start = 10;
ad_ThreshFac_end = 1.2;
ad_threshFac = (ad_ThreshFac_start - ad_ThreshFac_end) * linFuncStartStop + ad_ThreshFac_end;

frame_energy = mean(��′(�)(���.. �� − 1).^2);
energThreshold = ad_threshFac * frame_energy;

for k=���.. �� − 1
 if (��′(�)^2) < energThreshold
 m = cum_fading_slow_pc;
 n = 0;
 else
 m = cum_fading_fast_pc;
 n = (cum_fading_slow_pc-cum_fading_fast_pc) * sqrt(energThreshold) * sign(��′(�));
 end

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)143

 ��(�) = m * ��′(�) + n;
end

to form the spectrum �+(�) for clause 5.4.8.

A.2 Redundancy frames

A.2.1 Overview
A packet-based application layer forward error correction algorithm can be implemented with LC3plus as well. In [i.6],
this mechanism is described as media specific FEC. This means a packet contains a primary encoded LC3plus frame
and a secondary LC3plus frame which is delayed in time by an offset of t packets.

As packet loss usually coincides with high jitter, a jitter buffer manager can compensate for the high jitter and may
forward the secondary LC3plus frame in order to compensate the missing primary frame. Primary and secondary frame
might be identical in terms of configuration and bitrate or the secondary frame might be of lower bit rate and lower
quality.

In the case that secondary LC3plus frames contain a lower audio bandwidth, the frames shall be labelled as secondary
frames in the RTP frame type description. This flag shall be forwarded to the decoder. For LC3plus frames labelled as
secondary frames, the decoder shall select the concealment strategy as done in clause A.1.8.2, which is the partial
concealment algorithm described in clause A.1.8.3 or the frame loss concealment algorithm as described in clause 5.6.3,
where ��� is set to the lower bandwidth in the coded secondary frame.

If the partial concealment algorithm is selected, the same processing is done as described in clause A.1.8.3. The only
difference is in the noise filling processing after partial concealment. If the bandwidth index 6�� (see clause 5.4.2.3)
from the previous frame is not the same as for the secondary frame, and the secondary frame contains a lower audio
bandwidth than the primary frame, then the bandwidth index from the previous frame is used together with the noise
filling gain ���- given in clause 5.4.4 of the previous frame for the MDCT bins beginning at ���. However, this noise
filling gain is further multiplied with �./���� as calculated in equation (A. 123) and limited between 0,0625 and 0,5.

A.2.2 Example configuration
Table A.4 shows some examples applicable for VoIP scenarios using 64 kbit/s gross rate.

Table A.4: Configuration of secondary and primary frames

Label
Primary frame Secondary frame

bit rate Bandwidth (Hz) bit rate Bandwidth (Hz)
NB VoIP 32 kbit/s 4 000 32 kbit/s 4 000
WB VoIP 32 kbit/s 8 000 32 kbit/s 8 000

SWB VoIP 48 kbit/s 16 000 16 kbit/s 4 000
FB VoIP 48 kbit/s 20 000 16 kbit/s 4 000

A script-based simulation framework tools/lc3plus_redundancy_simulator.pl can be found in archive
ts_103634v010501p0.zip which accompanies the present document. The simulation assembles primary and secondary
frames into a new bit stream based on a given error pattern. Secondary frames are labelled with BFI = 3 in the G192 file
format. An example call is given in tools/lc3plus_redundancy_example.sh.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)144

Annex B (normative):
RTP payload format for the LC3plus codec

B.1 Introduction
This annex specifies the payload format for packetization of the Low Complexity Communication Codec (LC3plus)
coded speech and/or audio signals into the Real-time Transport Protocol (RTP).

The RTP payload format is specified in clause B.2 and supports transmission of:

- different audio bandwidths and sampling frequencies;

- different frame durations;

- encoding at different bitrates;

- high-resolution encoding;

- multiple frames per payload;

- signalling for fast codec rate adaptation;

- single as well as multiple audio channels;

- application layer redundancy, including both codec redundancy and packetization redundancy.

SDP parameters are defined in clause B.3. Usage of the SDP parameters in in the offer-answer model is included in
clause B.3.

The RTP payload format is intended to be used when transmitting LC3plus coded audio in IP/UDP/RTP networks. The
payload format supports both single-channel operation as well as multi-channel operation as shown in Figures B.1 and
B.2.

Figure B.1: Single-channel operation

For multi-channel operation, several independent instances of the LC3plus codec are used but the payload format
supports packetizing frames from several codecs into the same RTP packet, as shown in Figure B.2.

LC3plus
encoder

Input

sound
Frame RTP

packetizer

LC3plus
decoder

RTP
unpacketizer

Frame data

Output

sound
Frame Frame data

IP network

RTP packet

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)145

Figure B.2: Multi-channel operation

B.2 LC3plus RTP payload format

B.2.1 Byte order
The byte order used in the present document is the network byte order, i.e. the most significant byte (octet) first. The bit
order is the most significant bit first. This practice is presented in all figures as having the most significant bit located
left-most on each line and indicated with the lowest number.

B.2.2 RTP header usage

B.2.2.1 General

The format of the RTP header is specified in IETF RFC 3550 [2]. This payload format uses the fields of the RTP header
in a manner consistent with IETF RFC 3550 [2].

LC3plus
encoder

channel 1

Input

sound
channel 1

Frame

RTP
packetizer

LC3plus
decoder

channel 1

RTP
unpacketizer

Frame data
channel 1

Output

sound
channel 1

Frame

Frame data
channel 1

IP

network

RTP packet

LC3plus
encoder

channel N

Input

sound
channel N

Frame
Frame data
channel N

LC3plus
decoder

channel N

Output

sound
channel N

Frame

Frame data
channel N

Frame data

block

Frame data

block

:

:

:

:

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)146

B.2.2.2 Marker bit

When an RTP stream is used for transporting a single audio channel, the RTP header marker bit (M) shall be set to 1 if
the first frame-block carried in the RTP packet contains a speech frame which is the first in a talkspurt. For all other
RTP packets the marker bit shall be set to zero (M=0). This is the same usage as described in IETF RFC 3551 [3].

When an RTP stream is used for transporting multiple channels, the RTP header marker bit shall be set to 1 if any of the
channels contains a speech frame that is the first in the talkspurt and when all channels were inactive (in DTX) for the
preceding frame period.

B.2.2.3 Sequence number

The RTP Sequence Number is incremented by 1 for each transmitted packet, as described in IETF RFC 3550 [2].

B.2.2.4 Time stamp

The RTP clock rate for the LC3plus codec is defined based on the audio bandwidth that is allowed for the payload type.
The RTP clock rate may therefore be different for different LC3plus payload types and is chosen as shown below:

• Payload types supporting NB, WB, SSWB, SWB, FB, FBHR or UBHR (but not FBCD) use an RTP clock rate
of 96 000 (Hz). The Time Stamp Increment (TSI) between consecutive frame data blocks then becomes:

- For 2,5 ms frame duration: 240

- For 5 ms frame duration: 480

- For 10 ms frame duration: 960

• Payload types supporting FBCD (but none of the other audio bandwidths) use an RTP clock rate of
44 100 (Hz). The TSI between consecutive frame data blocks then becomes:

- For 2,72 ms frame duration: 120

- For 5,44 ms frame duration: 240

- For 10,88 ms frame duration: 480

Sessions may consist of several payload types of any combination of NB, WB, SSWB, SWB, FBCD, FB, FBHR and
UBHR. However, for each RTP payload type, only one of the audio bandwidths and therefore only one of the RTP
clock rates can be used.

The RTP payload may contain multiple frame blocks of coded speech, comfort noise parameters (SID frames), bad
frame indicator (Speech_bad) or NO_DATA frames in any combination. Within one RTP payload type, the frame
duration shall be constant. The RTP Time Stamp corresponds to the sampling time of the first sample encoded by the
first frame block in the packet, i.e. the oldest sample of the oldest frame.

The RTP Time Stamp may increment with any integer multiples of the Time Stamp increments indicated above,
including 0 and even negative integers, depending on e.g. DTX usage, frame aggregation, application layer redundancy
and redundancy offset.

B.2.3 Packetization Considerations
A receiver shall be prepared to receive frame data multiple times, including both exact duplicates and encoded with
different number of octets. If multiple versions of the same speech frame are received, the frame encoded with the
largest number of octets should be used by the speech decoder. A frame shall not be encoded as speech in one packet
and SID in another packet.

The payload length is always an integer number of octets. If additional padding is required to bring the payload length
to a larger multiple of octets, then the P bit in the RTP in the header may be set and padding appended as specified in
IETF RFC 3550 [2].

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)147

B.2.4 Payload Structure
The payload format structure for the LC3plus codec is shown in Figure B.3.

+----------------+---------------------+----------------
| Payload Header | Table of Contents | Frame data ...
+----------------+---------------------+----------------

Figure B.3: Payload format structure

The Payload Header (PH) is variable size, 1, 2 or 3 octets, and contains the Frame Data Length Request (FDLR) as
described in clause B.2.5.

The Table of Contents (ToC) includes one Frame Type Description (FTD) for each frame data included in the payload
as described in clause B.2.4. The length of the ToC therefore depends on the number of frames encapsulated in the
packet.

The audio data frame includes an integer a number of octets, which may be different for different frames. The Frame
Type Description describes the content of the corresponding audio data frame. The size (number of octets) of each
frame data is derived from the FTD. The size of the frame data may be 0, which is the case for Speech_bad and
NO_DATA frames, see clauses B.2.8 and B.2.9, respectively.

B.2.5 Payload header, frame data length request
The payload header includes the Frame Data Length Request (FDLR) field, as described in Figure B.4.

1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+
| FDLR1 | (FDLR2) | (FDLR3) |
+-+

Figure B.4: FDLR

FDLR (8, 16 or 24 bits):
Indicates the frame data length that is requested by the media receiver. The FDLR is sent from the media receiver back
to the media sender. The FDLR is encoded with 1, 2 or 3 octets as shown in Table B.1. The FDLR is represented with
1 octet (FDLR1) for values up to 254 and can be extended to 2 octets (FDLR1 and FDLR2) for values up to 509 and to
3 octets (FDLR1, FDLR2 and FDLR3) for values up to 765, see Table B.1. FDLR=0 is used to indicate NO_REQ; the
media receiver is not allowed to request Speech_bad (FDLR=1) or SID (FDLR=2).

Table B.1: FDLR encoding

FDLR index
(decimal)

FDLR1
(binary)

FDLR2
(binary)

FDLR3
(binary)

Requested encoding
size

(#octets)
0 0000 0000 Not used Not used NO_REQ
1 0000 0001 Not used Not used Not allowed in FDLR
2 0000 0010 Not used Not used Not allowed in FDLR
3 to
19

0000 0011 to
0001 0011

Not used Not used Reserved

20 to
254

0001 0100 to
1111 1110

Not used Not used 20 to
254

255 to
509

1111 1111 0000 0000 to
1111 1110

Not used 254 to
509

510 to
765

1111 1111 1111 1111 0000 0000 to
1111 1111

765

The FDLR is used for adaptation purposes for bi-directional streams and indicates the FDL the media receiver wants to
receive. In cases where the media sender is not sending any media packets but needs to send a FDLR, it is possible to
generate an "empty" payload including only NO_DATA frame(s) to allow for sending the FDLR.

The FDLR indicates the maximum FDL the receiver wants to receive. The encoder may however use a lower FDL, if
allowed by the session setup configuration.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)148

A FDLR containing NO_REQ indicates that the media receiver has not included any Frame Data Length Request in the
current payload. However, adaptation requests may also be sent with other means, e.g. using RTCP. Therefore, when a
media sender receives a NO_REQ then this is ignored but other adaptation requests may be followed. If no previous
FDLR has been received and if no other adaptation request using other means have been received, then the sender may
use any of the FDLs allowed by the session setup and should use the highest FDL. If a previous FDLR other than
NO_REQ has been received, then the previous FDLR is still valid. A FDLR is valid until it is updated by a later valid
received FDLR other than NO_REQ.

When a media receiver sends a FDLR then the FDLR SHALL be:

• either an FDL allowed for the session; or

• NO_REQ.

An entity receiving a FDLR shall verify that the requested size is allowed by the session setup configuration. An entity
receiving a FDLR requesting an FDL that is not allowed for the session SHALL ignore the FDLR.

The RTP payload SHALL always include exactly one payload header.

B.2.6 Table of Contents
The Table of Contents (ToC) consists of one Frame Type Descriptions (FTD) for each frame included in the RTP
payload. Each FTD is 2, 3 or 4 octets long depending on the length of the Frame Data Length (FDL) field. The FTD
describes the encoding of the corresponding audio frame. As shown in Figure B.5, all FTDs for all frames are
encapsulated first in the RTP payload and the frame data for all frames are encapsulated after the last FTD. The FTDs
are listed in the same order as the frame data in the RTP payload with the oldest frame included first and then further
frame data are encapsulated in consecutive order. The structure of the ToC is shown in Figure B.5.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| PH(FDLR) | FTD(1) | FTD(2) ...
+-+
 | ...etc...
+-+
| FTD(N) | Frame data for frames 1 - N ...
+-+

Figure B.5: Example of payload including first the PH (1 octet FDLR),

then the ToCs for N frames and then the frame data for N frames

The content of the FTD is shown in Figure B.6.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|FC |FDI| BWR |H| FDL1 | (FDL2) | (FDL3) |
+-+

Figure B.6: FTD content

FC (2 bits):
Frame and Channel (FC) indicator for subsequent frame data (if available). The meaning of the FC indicator is
shown in Table B.2. The FC value defines the media time stamp (in integer increments of TSI) and the channel
counter (CC, starting from 1 for the first channel) for the subsequent FTD (if available).

Table B.2: FC encoding

FC Description TS next entry CC next entry
00 Last FDL in ToC, no FDL follows the current

FDL
N/A N/A

01 The next FDL is for the next channel for the
same media time

+=0 +=1

10 The next FDL is for first channel for next media
time, channel counter is reset

+=TSI =1

11 Reserved N/A N/A

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)149

FDI (2 bits):
Frame Duration Index, with encoding as shown in Table B.3. The FDI shall be static for a given payload type
during the session. The FDI also dictates the TSI, needed for deriving the media time in case of more than one
frame in the payload.

Table B.3: FDI encoding

FDI value
(decimal)

FDI value
(binary)

TSI (decimal)
NB, WB, SSWB,
SWB, FB, FBHR,

UBHR

Frame duration
NB, WB, SSWB,
SWB, FB, FBHR,

UBHR
[ms]

TSI
(decimal)

FBCD

Frame duration
FBCD
[ms]

0 00 240 2,5 ms 120 ca 2,72 ms
1 01 480 5 ms 240 ca 5,44 ms
2 10 960 10 ms 480 ca 10,88 ms
3 11 N/A Reserved N/A Reserved

BWR (3 bits):
Bandwidth and resolution combination used by the codec is jointly encoded into a BandWidth and
Resolution (BWR) index. The BWR index is encoded as shown in Table B.4. The BWR encoding is defined in
Table B.4. The BWR index shall be static for a given payload type during the session.

Table B.4: BWR encoding

BWR value
(decimal)

BWR value
(binary)

Bandwidth and Resolution

0 000 NB
1 001 WB
2 010 SSWB
3 011 SWB
4 100 FBCD
5 101 FB
6 110 FBHR
7 111 UBHR

H (1 bit):
Indicates whether the corresponding frame is a normal frame (primary encoding) or a helper frame (secondary
encoding). 0 indicates a primary frame, 1 indicates secondary (redundant) frame.

FDL (8, 16 or 24 bits):
Frame Data Length, indicates the number of octets used for the frame data. The frame data length is encoded
with 1, 2 or 3 octets as shown in Table B.5. The FDL is represented with 1 octet (FDL1) for values up to 254
and can be extended to 2 octets (FDL1 and FDL2) for values up to 509 and to 3 octets (FDL1, FDL2 and
FDL3) for values up to 765, see Table B.5.

Table B.5: FDL encoding

FDL index
(decimal)

FDL1
(binary)

FDL2
(binary)

FDL3
(binary)

Indicated encoding size
(#octets)

0 0000 0000 Not used Not used NO_REQ
1 0000 0001 Not used Not used Speech_bad
2 0000 0010 Not used Not used SID
3 to
19

0000 0011 to
0001 0011

Not used Not used Reserved

20 to
254

0001 0100 to
1111 1110

Not used Not used 20 to
254

255 to
509

1111 1111 0000 0000 to
1111 1110

Not used 254 to
509

510 to
765

1111 1111 1111 1111 0000 0000 to
1111 1111

765

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)150

B.2.7 Forming the payload
The RTP payload is formed by packing:

• first the payload header (FDLR); then

• all the FTDs for all the frames included in the payload; and

• then the audio data frames;

as shown in Figure B.7.

+--+------+--------+ +--------+-----+-------+ +-------+
|PH|FTD(i)|FTD(i+1)|...|FTD(i+n)|Fr(i)|Fr(i+1)|...|Fr(i+n)|
+--+------+--------+ +--------+-----+-------+ +-------+

PH Payload header, includes the FDLR
FTD(i) FTD for frame number i
Fr(i) Frame data for frame number i

Figure B.7: Payload including several FTDs and several frames

Since all these elements are octet aligned then the created payload will also be octet aligned and no further padding
should normally be needed.

If additional padding is needed, this is included at the end of the payload as described in IETF RFC 3550 [2].

The frame data bits are included in the payload in the same order as they are delivered from the encoder.

When several speech frames are included in the RTP payload, the ToC will include several FTDs, one for each frame
data included in the RTP payload.

The FTDs in the ToC are included in the following order:

1) First the FTD for the first channel of the first FDB (oldest frame).

2) Then the FTDs for the remaining channels for the first FDB in increasing CC order.

3) Then the FTD for the first channel of the second FDB.

4) Then the FTDs for the remaining channels for the second FDB.

5) Etc. to the last FDB.

The FDBs are then appended after the ToC in the same order as the FTDs in the ToC.

B.2.8 Speech_bad frame data
The receiver should verify that the received frame data is valid and error free. Such verification should also be done by
Media Gateways.

If it is detected that the frame data is not valid, e.g. because of bit errors, then the frame data may be dropped and may
be replaced by Speech_bad frame data. This is an explicit signalling to the media receiver that the frame data has been
dropped. Knowing that a frame has been dropped can be beneficial for the media receiver because it then does not need
to wait for the packet to be received. As a comparison, when a packet is lost in the transmission, then the jitter buffer
would not know if or when the packet will be received until it decides to declare the packet as a late loss.

When Speech_bad frame data is received then the decoder normally activates the packet loss concealment for that
frame. However, when redundancy transmission is used, the decoder should, whenever possible, use the redundant
frame data received in other packets for the decoding instead of performing packet loss concealment.

An RTP packet may contain several Speech_bad frame data, one for each frame data that was found to be invalid.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)151

B.2.9 NO_DATA frames data
In some cases, there is a need for including an "empty" frame in the payload, for example when sending redundant data
with offset. This is done by inserting a NO_DATA frame data in the place where an encoded frame data would
normally be inserted. The NO_DATA frame data is not necessarily generated by the media sender but may also be
inserted by an RTP packetizer in for example a Media Gateway (MGw). NO_DATA frame data can normally be
ignored by the receiver but sometimes the decoder needs to do packet loss concealment for such frames, similar to
frame losses, or decoder may need to generate comfort noise for such frames.

An RTP packet may contain several NO_DATA frame data, one for each frame where no actual frame data has been
included.

B.2.10 Example of NO_DATA or Speech_bad in payload
When the FTD indicates NO_DATA or Speech_bad then the corresponding frame data contains 0 byte. This means that
two octets are included in the ToC for each NO_DATA and Speech_bad frame even if there are no corresponding actual
frames among the list of frames. This is needed to be able to correctly determine the timing of any frames included in
the payload after the NO_DATA or Speech_bad frame.

An example of this case is shown below where three frames are included in the payload, as shown by the three FTDs,
but the second frame is a NO_DATA frame.

+--+------+------+------+-----+-----+
|PH|FTD(1)|FTD(2)|FTD(3)|Fr(1)|Fr(3)|
+--+------+------+------+-----+-----+

Figure B.8: Payload including 3 frames where the 2nd frame is a NO_DATA frame

PH Payload header, includes the FDLR

FTD(1) FTD for frame 1

FTD(2) The FTD for the NO_DATA frame

FTD(3) FTD for frame 3

Fr(1) Frame data for frame number 1

Fr(3) Frame data for frame number 3

The NO_DATA frame is, in this case, necessary because the media time for frame 1 is determined from the RTP Time
Stamp, which is explicitly signalled in the RTP header, while the media time for frame 3 is implicitly determined from
the media time for frame 1 by adding the frame periods for the preceding frames, i.e. 10 ms for frame 1 and another
10 ms for the NO_DATA frame (if 10 ms frames are used).

Inserting a Speech_bad frame is analogous to inserting a NO_DATA frame.

B.2.11 Payload examples

B.2.11.1 General

The following clauses give a few examples of how payloads may be generated.

B.2.11.2 Single-Channel Payload Carrying a Single Frame Encoded with WB
at 32 kbit/s

Figure B.9 shows a payload with:

• FDLR set to 0000 0000 to NO_REQ.

• Single channel (mono) with wideband audio.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)152

• A single 10 ms audio frame is encoded with 32 kbit/s generating 40 octets (320 bits).

• The FTD describes:

- The FC bits are set to 00, since there is no further frame in the payload.

- The FDI bits are set to 10, since the frame duration is 10 ms.

- The BWR bits are set to 001, since wideband audio is transmitted.

- The H bit is set to 0, since the frame is a primary frame.

- The FDL field is set to 40 (0010 1000), since the size of the encoded frame is 40 octets.

• The frame data is represented with d(0)-d(319).

The payload size is 43 octets.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 0 0|0 0:1 0:0 0 1:0:0 0 1 0 1 0 0 0|d(0) |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : d(319)|
 +-+

Figure B.9: Payload including one 10 ms frame encoded at 32 kbit/s

The RTP Time Stamp is set to represent the media time of the beginning of the 10 ms frame (first audio sample in the
input frame).

B.2.11.3 Single-Channel Payload Carrying a Single Frame Encoded with
SWB at 64 kbit/s

Figure B.10 shows a payload with:

• FDLR set to 0000 0000 to NO_REQ.

• Single channel (mono) with superwideband audio.

• A single 10 ms audio frame is encoded with 64 kbit/s generating 80 octets (640 bits).

• The FTD describes:

- The FC bits are set to 00, since there is no further frame in the payload.

- The FDI bits are set to 10, since the frame duration is 10 ms.

- The BWR bits are set to 011, since superwideband audio is transmitted.

- The H bit is set to 0, since the frame is a primary frame.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)153

- The FDL field is set to 80 (0101 0000), since the size of the encoded frame is 80 octets.

• The frame data is represented with d(0)-d(639).

The payload size is 83 octets.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 0 0|0 0:1 0:0 0 1:0:0 0 1 0 1 0 0 0|d(0) |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : d(639)|
 +-+

Figure B.10: Payload including one 10 ms frame encoded at 64 kbit/s

The RTP Time Stamp is set to represent the media time of the beginning of the 10 ms frame (first audio sample in the
input frame).

B.2.11.4 Single-Channel Payload Carrying Two Active Frames Encoded with
WB at Different Bitrates

The diagram below shows a payload with:

• FDLR set to 0010 1000 to request 40 octets (320 kbit/s).

• 1 channel (mono) with wideband audio.

• Two 10 ms frames are encoded, the first encoded with 16 kbit/s generating 20 octets (160 bits), and the second
frame encoded with 24 kbit/s generating 30 octets (240 bits).

• The FTD for the first frame describes:

- The FC bits are set to 10, since another frame follow after the first frame and since there is one channel.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)154

- The FDI bits are set to 10, since the frame duration is 10 ms.

- The BWR bits are set to 001, since wideband audio is transmitted.

- The H bit is set to 0, since the frame is a primary frame.

- The FDL field is set to 20 (0010 0100) since the size is 20 octets.

• The FTD for the second frame describes:

- The FC bits are set to 00, since there is no further frame in the payload.

- The FDI bits are set to 10, since the frame duration is 10 ms.

- The BWR bits are set to 001, since wideband audio is transmitted.

- The H bit is set to 0, since the frame is a primary frame.

- The FDL field is set to 30 (0001 1110) since the size is 30 octets.

• The 160 bits for the first frame are represented with d(1,0) to d(1,159).

• The 240 bits for the second frame are represented with d(2,0) to d(2,239).

The payload size is 1+2+2+20+30 = 55 octets.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 1 0 1 0 0 0|1 0:1 0:0 0 1:0:0 0 1 0 1 0 0 0|0 0:1 0:0 0 1:0:
 +-+
 :0 0 0 1 1 1 1 0|d(1,0) : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | d(1,159)|d(2,0) : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : : |
 +-+
 | : : d(2,239)|
 +-+

Figure B.11: Payload including two 10 ms frames, the first encoded

at 16 kbit/s and the second encoded at 24 kbit/s

The RTP Time Stamp is set to represent the media time of the beginning of the first 10 ms frame (first sample in the
first input frame). The receiver calculates the media time for the first frame from the RTP Time Stamp. To calculate the
media time of the second frame, the receiver adds the frame duration of the preceding frame, in this case 10 ms.

B.2.11.5 Multi-Channel Payload Carrying One Frame Block for Two Channels

The diagram below shows a payload with:

• FDLR set to request NO_REQ (0000 0000).

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)155

• 2 channels (stereo) with fullband audio.

• Two 10 ms frames are included, both are encoded with 96 kbit/s generating 120 octets (960 bits) per channel.

• The FTD for the first frame describes:

- The FC bits are set to 01, since another frame for the next channel follows after the first frame and the
media time is not to be incremented.

- The FDI bits are set to 10, since the frame duration is 10 ms.

- The BWR bits are set to 101, since fullband audio is transmitted.

- The H bit is set to 0, since the frame is a primary frame.

- The FDL field is set to 120 (0111 1000) since the audio is encoded with 120 octets.

• The FTD for the second frame describes:

- The FC bits are set to 00, since there is no further frame in the payload.

- The FDI bits are set to 10, since the frame duration is 10 ms.

- The BWR bits are set to 101, since fullband audio is transmitted.

- The H bit is set to 0, since the frame is a primary frame.

- The FDL field is set to 120 (0111 1000) since the audio is encoded with 120.

• The 960 bits of each frame are represented with d(1, 0) to d(1, 959) and d(2, 0) to d(2, 959), respectively.

The payload size is 1+2+2+120+120 = 245 octets.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 0 0|1 0:1 0:1 0 1:0:0 1 1 1 1 0 0 0|0 0:1 0:1 0 1:0:
 +-+
 :0 1 1 1 1 0 0 0|d(1,0) : : |
 +-+
 : ... :
 +-+
 | d(1,959)|d(2,0) : : |
 +-+
 : ... :
 +-+
 | d(2,959)|
 +-+-+-+-+-+-+-+-+

Figure B.12: Payload including two 10 ms frames for 2 channels,

both encoded at 96 kbit/s

The RTP Time Stamp is used to determine the media time of the beginning of the frame period. The receiver then
determine that the second frames is for the second channel and thus has the same media time as the preceding frame.

B.2.12 Packetization
An implementation of this payload format shall support packetization of up to at least 20 ms (21,76 ms for FBCD),
more specifically:

• 1 to 8 frames per packet for NB, WB, SSWB, SWB, FB, FBHR and UBHR when 2,5 ms frame duration is
used.

• 1 to 8 frames per packet for FBCD when 2,72 ms frame duration is used.

• 1 to 4 frames per packet for NB, WB, SSWB, SWB, FB, FBHR and UBHR when 5 ms frame duration is used.

• 1 to 4 frames per packet for FBCD when 5,44 ms frame duration is used.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)156

• 1 and 2 frames per packet for NB, WB, SSWB, SWB, FB, FBHR and UBHR when 10 ms frame duration is
used.

• 1 and 2 frames per packet for FBCD when 10,88 ms frame duration is used.

This is because it is common to transmit about 50 packets per second for VoIP services. Furthermore, this also reduces
the IP/UDP/RTP overhead that otherwise would become quite extensive when sending frequent small packets.

This does not mean that every packet will always include the maximum number of allowed frames, but also payloads
with fewer frames shall be supported, enabling applications with lower latency at the expense of higher packet rate.

The packetization in a session is typically decided by the ptime value negotiated at session setup. However, this does
not mean that the negotiated packetization is used for the entire session. The packetization may be both smaller and
larger than the ptime value but is limited to the maxptime value (if negotiated).

B.3 Payload format parameters

B.3.1 General
This clause defines parameters of the LC3plus payload format.

This media type registration covers real-time transfer via RTP and non-real-time transfers via stored files. All media
type parameters defined in this clause shall be supported. The receiver shall ignore any unspecified parameter.

The registrations are done following IETF RFC 4855 [5] and the media registration rules IETF RFC 3264 [1].

B.3.2 LC3plus media type registration
Media type name: Audio.

Media subtype name: LC3plus.

Required parameters: Either bwr or both bwr-recv and bwr-send shall be included.

 Either fdi or both fdi-recv and fdi-send shall be included.

Optional parameters: All remaining parameters specified below are optional.

The parameters defined below apply to RTP transfer only.

ptime:
See IETF RFC 8866 [4].

maxptime:
See IETF RFC 8866 [4].

fdl:
Specifies the Frame Data Length (FDL) in integer number of octets, the set of FDLs or the FDL range allowed
in the session for the send and the received directions.
The parameter can either have a single value (fdl1), a comma-separated list (fdl1, fdl2, …, fdlN) of values or a
hyphen-separated pair of two values (fdl1-fdl2).
When a single value is included, then this FDL is the only allowed FDL.
When a comma-separated list is included, then all listed FDLs are allowed and FDLs that are not listed are not
allowed.
When a hyphen-separated pair of values is used, then fdl1 defines the minimum FDL allowed and fdl2 defines
the maximum FDL allowed. Any FDLs in-between these values are also allowed. The fdl1 value shall be
smaller than fdl2 value.
If the fdl parameter is not present, and if neither fdl-recv nor fdl-send are present, then all integer sizes are
allowed.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)157

fdl-recv:
Specifies the FDL, the set of FDLs or the FDL range allowed in the session for the received direction,
otherwise the same as the fdl parameter.
If both fdl and fdl-recv are included, then fdl-recv takes precedence over fdl.

fdl-send:
Specifies the FDL, the set of FDLs or the FDL range allowed in the session for the send direction, otherwise
the same as the fdl parameter.
If both fdl and fdl-send are included, then fdl-send takes precedence over fdl.

bwr:
Specifies the audio BandWidth and Resolution (BWR) combination for the send and the receive direction.
During session setup, the parameter can either have a single value (bwr1) or comma-separated list (bwr1,
bwr2, …, bwrN). When a comma-separated list is used, the bwr shall be listed with the lowest BWR value first
and the remaining BWRs in increasing order, for example "bwr=nb,wb,sswb,swb".
It is not permitted to indicate fbcd in combination with any of the other BWRs. This is because FBCD uses a
different RTP clock rate than the audio bandwidths. If it is desired to allow for FBCD and other audio
bandwidths in a session, then a different RTP definition (different RTP payload type numbers) shall be used.

bwr-recv:
Specifies the audio bandwidth and resolution combinations for the receive direction, otherwise the same as the
bwr parameter.
If both bwr and bwr-recv are included, the bwr-recv takes precedence over bwr.

bwr-send:
Specifies the audio bandwidth and resolution combinations allowed in the session for the send direction,
otherwise the same as the bwr parameter.
If both bwr and bwr-send are included, the bwr-send takes precedence over bwr.

channels:
The number of audio channels per frame data block. See IETF RFC 3551 [3]. This parameter is included on
the a=rtpmap line, for example "a=rtpmap: LC3plus/96000/1" where "/1" indicates the number of channels. If
the channels parameter is not present, its default value is 1. If both ch-send and ch-recv are included (see
below) with different numbers of channels for sending and receiving directions, channels is set to the larger of
the two values.

ch-recv:
Specifies the number of audio channels to be used in the session for the receive direction.
The ch-recv parameter can be a single value, which is a strictly positive integer, i.e. 1 to any larger integer.
If ch-recv is not present, and if channels (see above) are not present, then ch-recv=1, mono, is used.

ch-send:
Specifies the number of audio channels to be used in the session for the send direction.
The ch-send parameter can be a single value, which is a strictly positive integer, i.e. 1 to any larger integer.
If ch-send is not present, and if channels (see above) are not present, then ch-send=1, mono, is used.

fdi:
Specifies the Frame Duration Index (FDI) in decimal form from Table B.3 allowed in the session for the send
and the receive direction.
During session setup, the parameter can either have a single value (fdi1) or a comma-separated list (fdi1, fdi2,
…, fdiN). When a comma-separated list is used, the FDIs shall be listed in increasing order.

fdi-recv:
Specifies the FDI in decimal form from Table B.3 allowed in the session for the receive direction, otherwise
the same as the fdi parameter.
If both fdi and fdi-recv are included, then fdi-recv takes precedence over fdi.

fdi-send:
Specifies the FDI in decimal form from Table B.3 allowed in the session for the send direction, otherwise the
same as the fdi parameter.
If both fdi and fdi-send are included, then fdi-send takes precedence over fdi.

max-red:
See IETF RFC 4867 [6].

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)158

rfdl:
Specifies the redundant FDL in integer number of octets, where the redundancy is created by the LC3plus
codec. The parameter can either be a single value ("rfdl=pr1"), a comma-separated list ("rfdl=rfdl1,rfdl2,…,
rfdlN") or a range ("pred=rfdl1-rfdl2").
Including the rfdl parameter in the SDP means that codec redundancy is supported but is not required to be
used.
Omitting the rfdl parameter in the SDP means that codec redundancy is not to be used.
This parameter does not control the packetization redundancy created by the LC3plus payload format.

rfdl-recv:
Specifies the redundant FDL, the set of redundant FDLs or the redundant FDL range allowed in the session for
receiving direction, otherwise the same as the rfdl parameter.
If both rfdl and rfdl-recv are included, then rfdl-recv takes precedence over rfdl.

rfdl-send:
Specifies the redundant FDL, the set of redundant FDLs or the redundant FDL range allowed in the session for
sending direction, otherwise the same as the rfdl parameter.
If both rfdl and rfdl-send are included, then rfdl-send takes precedence over rfdl.

B.3.3 Mapping media type parameters into SDP
The information carried in the media type specification has a specific mapping to fields in the Session Description
Protocol (SDP) IETF RFC 8866 [4], which is commonly used to describe RTP sessions. When SDP is used to specify
sessions employing the LC3plus codec, the mapping is as follows:

• The media type ("audio") goes in SDP "m=" as the media name.

• The media subtype (payload format name) goes in SDP "a=rtpmap" as the encoding name. The RTP clock rate
in "a=rtpmap" shall be set according to clause B.2.2.4 and the encoding parameters (number of channels) shall
either be explicitly set to N or omitted, implying a default value of 1. The values of N that are allowed are
specified in section 4.1 in IETF RFC 3551 [3].

• The parameters "ptime" and "maxptime" go in the SDP "a=ptime" and "a=maxptime" attributes, respectively.

• Any remaining parameters go in the SDP "a=fmtp" attribute by copying them directly from the media type
parameter string as a semicolon-separated list of parameter=value pairs.

B.3.4 Offer-answer model considerations
The following considerations apply when using SDP Offer-Answer procedures to negotiate the use of LC3plus payload
in RTP:

fdl:
If the SDP offer included a FDL range, it is permissible to include a FDL range, a comma-separated list of
FDLs or a single FDL in the SDP answer.
If the SDP offer included a comma-separated list of FDLs, it is permissible to include a comma-separated list
or a single FDL in the SDP answer but not a FDL range.
If the SDP offer includes a single FDL, the answerer shall either accept this or reject the payload type. The
answerer is in this case not allowed to change the value.
The value(s) in the fdl in the SDP answer shall be identical to or a subset of the value(s) in the fdl in the SDP
offer.

fdl-recv:
The value(s) for fdl-send or fdl shall be identical to or a subset of fdl-recv for the payload type in the SDP
offer.

fdl-send:
The value(s) for fdl-recv or fdl shall be identical to or a subset of fdl-send for the payload type in the SDP
offer.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)159

bwr:
The offerer may indicate several BWR values in the SDP offer but the answerer SHALL select one BWR from
the offered BWR values and include this in the SDP answer.
If the offerer wants to allow for switching between audio bandwidths and/or resolutions within a session, for
example to allow for switching between NB, WB and SWB, then the SDP offer needs to include one RTP
definition (one RTP payload type number) for each respective audio bandwidth and resolution combination.

bwr-recv:
When bwr-recv is offered for a payload type and the payload is accepted, the answerer shall select one of the
indicated BWR values and include this in the bwr-send parameter in the SDP answer.

bwr-send:
When bwr-send is offered for a payload type and the payload is accepted, the answerer shall select one of the
indicated BWR values and include this in the bwr-recv parameter in the SDP answer.

channels:
See <encoding parameters> of a=rtpmap attribute specified in IETF RFC 8866 [4] and clause B.3.2.

ch-recv:
When ch-recv is offered for a payload type and the payload type is accepted, the answerer shall include ch-
send in the SDP answer, and the ch-send shall be identical to the ch-recv parameter for the payload type in the
SDP offer.

ch-send:
When ch-send is offered for a payload type and the payload type is accepted, the answerer shall include ch-
recv in the SDP answer, and the ch-recv shall be identical to the ch-send parameter for the payload type in the
SDP offer.

fdi:
The offerer may indicate several FDI values in the SDP offer but the answerer shall select one FDI from the
offered FDI values and include this in the SDP answer.
If the offerer wants to allow for switching between frame durations, for example to allow both 5 ms and 10 ms
frame durations, then the SDP offer needs to include one RTP definition (one RTP payload type number) for
each respective frame duration.

fdi-recv:
When fdi-recv is offered for a payload type and the payload is accepted, the answerer shall include fdi-send in
the SDP answer, and shall select one of the indicated FDI values.

fdi-send:
When fdi-send is offered for a payload type and the payload is accepted, the answerer shall include fdi-recv in
the SDP answer, and shall select one of the indicated FDI values.

rfdl:
If the SDP offer included a redundant FDL range, it is permissible to include a redundant FDL range, a
comma-separated list of redundant FDLs, a single redundant FDL or reject the redundant FDL in the SDP
answer.
If the SDP offer included a comma-separated list of redundant FDLs, it is permissible to include a comma-
separated list, a single redundant FDL or reject the redundant FDL in the SDP answer but not a redundant FDL
range.
If the SDP offer includes a single redundant FDL, the answerer shall either accept this or reject the redundant
FDL.

rfdl-recv:
When rfdl-recv is offered for a payload type and the payload type is accepted, the answerer may include
rfdl-send in the SDP answer, and the rfdl-send shall be identical to or a subset of rfdl-recv for the payload type
in the SDP offer.

rfdl-send:
When rfdl-send is offered for a payload type and the payload type is accepted, the answerer may include
rfdl-recv in the SDP answer, and the rfdl-recv shall be identical to or a subset of rfdl-send for the payload type
in the SDP offer.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)160

B.3.5 SDP examples

B.3.5.1 General

A number of SDP offer/answer examples are included below to describe different aspects of the session negotiation for
several session variants.

In these examples, long a=fmtp lines are folded to meet the column width constraints of the present document; the
backslash ("\") at the end of a line and the carriage return that follows it should be ignored.

B.3.5.2 SDP negotiation for WB

This example shows the negotiation when offering LC3plus for wideband audio. Recommendations ITU-T G.722 [i.12]
and G.726 [i.13] are also included to ensure fallback to legacy used codecs would be possible in case the answerer does
not support the LC3plus codec.

The SDP offer includes: NB and WB; both 5 ms and 10 ms frame length; and an FDL range from 20 bytes to 40 bytes
(16 kbit/s to 32 kbit/s). The recommended packetization (ptime) is set to 20 ms with a maximum packetization limit of
240 ms.

The answerer accepts to use LC3plus for wideband audio and accepts to use SWB, 10 ms frame length. However,
instead of allowing an FDL range, the answerer limits the FDLs to four different sizes. The recommended packetization
is set to 20 ms but the maximum packetization is limited to 80 ms.

Table B.6: SDP example

Example SDP offer
m=audio 49152 RTP/AVP 96 97 98
a=rtpmap:96 G726-32/8000/1
a=rtpmap:97 G722/8000/1
a=rtpmap:98 LC3plus/96000/1
a=fmtp:98 bwr=nb,wb; fdl=20-40; fdi=1,2
a=ptime:20
a=maxptime:240

Example SDP answer
m=audio 49154 RTP/AVP 98
a=rtpmap:98 LC3plus/96000/1
a=fmtp:98 bwr=wb; fdl=20,26,32,36; fdi=2
a=ptime:20
a=maxptime:80

B.3.5.3 SDP negotiation for SWB

This example shows the negotiation when offering LC3plus for superwideband audio. Recommendations
ITU-T G.722 [i.12] and G.726 [i.13] are also included to ensure fallback to legacy used codecs would be possible in
case the answerer does not support the LC3plus codec.

The SDP offer includes: NB-SWB; both 5 ms and 10 ms frame length; FDL range from 20 bytes to 80 bytes (16 kbit/s
to 64 kbit/s). The recommended packetization (ptime) is set to 20 ms with a maximum packetization limit of 240 ms.

The answerer accepts to use LC3plus for superwideband audio and accepts to use SWB, 10 ms frame length. However,
instead of allowing an FDL range, the answerer limits the FDLs to four different sizes. The recommended packetization
is set to 20 ms but the maximum packetization is limited to 80 ms.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)161

Table B.7: SDP example

Example SDP offer
m=audio 49152 RTP/AVP 96 97 98
a=rtpmap:96 G726-32/8000/1
a=rtpmap:97 G722/8000/1
a=rtpmap:98 LC3plus/96000/1
a=fmtp:98 bwr=nb,wb,swb; fdl=20-80; fdi=1,2
a=ptime:20
a=maxptime:240

Example SDP answer
m=audio 49154 RTP/AVP 98
a=rtpmap:98 LC3plus/96000/1
a=fmtp:98 bwr=swb; fdl=20,40,60,80; fdi=2
a=ptime:20
a=maxptime:80

B.4 IANA considerations
One media type (LC3plus/audio) has been updated, see clause B.3.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)162

Annex C (informative):
An example FEC control unit

C.1 Overview
The FEC control unit, as displayed in Figure A.1, is responsible for determining the optimal EP mode for the incoming
stream when operated as receiver, and to select the EP mode for the outgoing stream when operated as transmitter. For
bi-directional connections, both operations will be performed in each part. The determined optimal EP mode for the
incoming stream is sent back to the other part as EP Mode Request (EPMR) and the EP mode for the outgoing stream is
in turn set based on the EPMR received from the other part. In the following, the perspective of a bi-directional
connection is taken.

EP mode selection from received EPMR is rather straight forward and described in clause C.4. Finding the right EPMR
to be sent to the remote party, however, requires detailed analysis of the error statistics of the incoming stream. The
suggested method's objective is to maximize the perceptual quality of the decoded audio signal, which is estimated
using multiple frame error rate estimators. Note that this is different from minimizing the frame error rate itself. If
e.g. the frame error rate was known to be 1 % in EP mode 1 and 0,5 % in EP mode 4, then an FER minimizing method
would prefer EP mode 4 over EP mode 1. However, considering a 32 kbit/s WB speech connection, the speech
deterioration caused by the lower net bitrate in EP mode 4 would be much higher than that one caused by 1 % FER in
EP mode 1, where the missing frames are extrapolated by the very performant PLC.

An implementation of the algorithm is provided in archive ts_103634v010501p0.zip (folder fec_control_unit) which
accompanies the present document.

C.2 Parameters

C.2.1 General
All frame based parameters are indexed with frame index � starting with value 0.

C.2.2 Setup Parameters

C.2.2.1 Minimal and maximal EP mode

Minimal and maximal EP Modes m� and m�.

C.2.2.2 Perceptual quality table

A table �(�,�) indicating the expected perceptual quality at a frame error rate of � in EP mode �, where � ∈
{0, 1, … , ����} and � ∈ {��,�� + 1, …��}. Such a table can, e.g. be generated by taking average MOS-LQO values
over a relevant database with uniformly distributed frame losses. The table �(�,�) is subsequently extended to real
values � ≥ 0 via linear interpolation in the range �0, ����� and by setting �(�,�) to �(���� ,�) for � > ����. For a
payload size of 40 bytes and NB, WB and SSWB content as well as for a payload size of 80 bytes and SWB content
such tables are provided in the electronic attachment.

C.2.2.3 Initial FER reduction factors

FER reduction factors �����,��,� = m� + 1. .�� express the expected reduction of the frame error rate when
switching from EP mode � − 1 to EP mode �. The initial values ����−1,�� are specified at setup time. A suggested
default setting is �����,�� = 0,5 for all �.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)163

C.2.3 Input Parameters

C.2.3.1 General

All input parameters are given per frame.

C.2.3.2 EPOK flags

EPOK flags from incoming frame, denoted �	
�(�,�). The value �	
�(�,�) is derived from the value �	
�_����
as defined in clause A.1.6.1 via:

�	
���,�� = ��������	
����	
�. �C. 0�
�	
���,�� = 1 is then interpreted as 'frame � would have been decodable in EP mode m', whereas �	
���,�� = 0
assumes the opposite.

C.2.3.3 Other part's EPMR

Other part's decoded EPMR, i.e. the parameter ���� as defined in clause A.1.6, which is here denoted �	�������.

C.2.3.4 Other part's detected EP mode

The value ��� from clause A.1.3.1.

C.2.4 Output Parameters

C.2.4.1 This part's EPMR

The parameter �	���� to be transmitted back to the other part. Only present when this part is receiving audio.

C.2.4.2 This part's EP mode

The parameter ��� to be used as EP mode for encoding the next outgoing frame. Only present when this part is sending
audio.

C.2.5 Derived Quantities

C.2.5.1 Other part's assumed EP mode

The assumed EP mode of the other part is defined as:

������: = � ��� , ��� > 0,���(� − 1), ����,
, �C. 1�

with ����−1�: = ��.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)164

C.2.5.2 Bad frame indicator estimates

Bad frame indicator estimates ���(�,�) are calculated for every valid EP mode � based on the received EPOK flags
and last frame's FER reduction factors in the following way: if a non-zero EPOK flag exists (meaning the received
frame was decodable), �����,�� is set to be 1 − �	
���,��. Otherwise, �����,�� is set to 1 for � ≤ ���(�),
assuming the EP mode equals the EP mode from the last frame and the current frame was lost in this EP mode. The
potential frame loss for higher modes is then estimated by means of sampling. To this end, a random number � is drawn
from a uniform distribution on [0,1] and the FER reduction rates from mode ���(�) to mode � are calculated as:

�� = � ���_���(� − 1,�)

�

����������

, �C. 2�
with ���_����� − 1,�� as defined in clause C.2.5.6. For � > ���(�) the bad frame indicator estimate is then
calculated as:

�����,��: = �1, �� > �,

0, ����.
�C. 3�

For negative frame indices �, �����,�� is defined to be 0.

C.2.5.3 Frame error rate estimates

The frame error rate is estimated by calculating mean values of �����,�� over the most recent frames. This is done
over three different lengths �� = 15,�� = 225 and �� = 3 375 with update intervals �� = 1, �� = 15 and �� = 225. The resulting values are denoted ����(�,�), ����(�,�), and ����(�,�) and are
computed as:

������,��: = 1��! ���(�,�)
�

��������

, �� ��"���� � + 1,������ − 1,��, ����,

�C. 4�
where ����(�,�) is defined to be 0 at negative frame indices � and # ranges over symbols $, %, and &.

C.2.5.4 FER reduction factors

FER reduction factors are calculated on observed values of �����,��, i.e. for � ≤ ���(�) and estimated by moving
average. To be precise, FER reduction from mode � − 1 to � is observed, when: � ≤ ���(�) �C. 5�
and �����,� − 1� = 1 �C. 6�
For each mode � let �(�,�) denote the number of such frames and let ��,�, � = 0, … ,���,�� − 1 be an enumeration
of all for which these conditions hold. Furthermore, ��,� is defined to be -1 for negative indices �. Then ���(�,�) is
calculated as:

�����,��: = 1���! ���(��,� ,�)
���,����

���(�,�)����

, ��� ��"���� ���,�� + 1,���(� − 1,�), ����,

�C. 7�
with ��� = 100 and ��� = 10.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)165

C.2.5.5 Mean value estimator consistency

For a moving average mean value estimator %��,����� of length � and with update interval � dividing � on a binary
sequence �, a consistency value is calculated in the following way. Denote by %��,����� the corresponding mean value
estimator of length � and let 	 = %�,����. Then the estimator consistency at index � is defined by:

'
�����: = (�	�1 − 	�∑ *�	 − �%�,��� − ��+����
���

 0 < 	 < 1,

1, ����,

�C. 8�
Consistency is calculated for FER estimates ������,�� (� = ��, � = ��, � = �����,��) and denoted '
��_������,��, and for FER reduction factors �����,�� (� = ��� , � = ��� , � = ������,� ,��) and denoted '
��_�����,��. Note that '
��_�����,�� though indexed by � actually only depends on the index �(�,�), which
may grow considerably slower than �.

C.2.5.6 Stable reduction factors

Stable reduction factors ���_�����,�� are calculated as follows. First, a reference FER value ���_���_���(�,�) is
assigned to every reduction factor estimate, which is defined to be ��������
����,���, where ���
���� is the last
frame index at which �����,�� was updated. To be precise, ���
���� is the smallest value ≤ �, such that:

�(���
����, m) = ��� ,���,�� + 1��� - − 1, �C. 9�
Then, ���_�����,�� is set to �����,�� if the following two conditions are met:

1) '
��_�����,�� > 0,2

2) ���_&��,���/1,5 < ���_���_���(�,�) < ���_&(�,��) ∙ 1,5

The first condition ensures that the reduction factor estimate is consistent and the second one that the long-term FER
estimate did not change too much since the reduction estimate was last updated. If one of these conditions is not met,
then the default value ����−1,�� is chosen for ���_�����,��.
C.3 EPMR selection

C.3.1 FER estimator selection
For every valid EP mode one of three FER estimators labelled by the symbols S, M, and L is selected according to the
flow chart depicted in Figure C.1, where the condition 'FER_X stable' is defined by '
�� !"���,�� > 0,2 and where the
constants (a, b, c) are set to the values (30, 30, 4). This gives rise to a tuple of selected symbols #(�,�) and with the
ordering S < M < L the first FER estimator selection is set to #�(�) = min

��#�#��

#��,��. This first selection phase aims

at selecting the longest stable estimator but takes sudden FER increases seen by shorter and more frequently updated
estimators into account.

If a sudden increase in ���� is detected, the corresponding ���� estimator is treated as not stable until its value is
updated. Similarly, if a sudden increase in ���� is detected, both the corresponding ���� and the corresponding ����
estimators are treated as not stable until their values are updated.

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)166

Figure C.1: FER estimator selection

C.3.2 Optimal EPMR selection
For FER estimates ��������

��, ��, ������, �� and ������, �� the EP modes �� are determined which maximize
the perceptual quality function 	�������, ��, ��. If no unique maximum exists, then �� is set to the smallest mode
maximizing the perceptual quality function. The first selected EP mode is taken to be ���	,�
 ���

. Subsequently, two
posterior rules are applied, which implement a hangover mechanism for downswitching the EP mode.

���	,�
 ��� 1, ���	,� � 3 ��� ���	,� � �� 1
���	,�, ���� �C. 10�

���	,
 � �� , ���	,� � 2 ��� ���	,� � ��

���	,�, ���� �C. 11�

If the connection is not bi-directional (in which case this part is the receiver) then ����	���� is set to ���	, 1.
Otherwise, a third posterior rule is applied, based on the received values ���������. To this end, let � denote the
largest integer such that �������� �� � 7 for 0 � � �, i.e. the number of consecutive recent frames for which no
high or medium confidence EPMR was received. Then this part's EPMR is set to:

����	����
 min $���	, % & �
10' , ��(1. �C. 12�

C.4 EP mode selection
The first selected EP mode �	�,���� is set to �)�*���������, 4, % 1. If ����	���� � 8, i.e. the received EPMR is of
high or medium confidence, the final EP mode �	���� is taken to be �	�,����. Otherwise, let � be defined as in
clause C.3.1. Then the final EP mode is selected as:

�	�
 min $�	�,� % & �
10' , ��(. �C. 13�

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)167

Annex D (informative):
Change history

Date Version Information about changes
2019-06-19 0.1.0 First complete version for review and approval

2019-06-26 0.1.1 Added terms and abbreviations for RTP payload format in Annex B
Minor editorial updates

2019-08-01 1.1.1 Publication of DTS/DECT-00338

2020-02-19 1.1.2

Freeze automatic clause numbering
Implemented CR on V1.1.1 (DECT(20)000011)
Software updated to V1.1.2; replaced kbps to kbit/s; integrated comments by DECT
delegates; uploaded as early draft

2020-04-15 1.1.3
Implemented CR on V1.1.2 (DECT(20)000092r1)
Software updated to V1.1.3; integrated comments by DECT delegates; uploaded as
early draft

2020-07-29 1.1.4 Editorial changes; software package identical as V1.1.3; ready as final draft
2020-08-17 1.1.5 Editorial changes to complete final draft
2020-10-05 1.2.1 Publication of RTS/DECT-00350
2021-04-07 1.2.2 Implemented CR on V1.2.1 (DECT(21)000055); software updated to V1.2.2
2021-06-14 1.2.3 Implemented CR on V1.2.2 (DECT(21)000139); software updated to V1.2.3
2021-07-09 1.2.4 Implemented CR on V1.2.3 (DECT(21)000179); software updated to V1.2.4

2021-08-05 1.2.5 Editorial changes to prepare final draft; cleaned up all CR defines in software and
updated to V1.2.5

2021-10 1.3.1 Publication of RTS/DECT-00369
2022-07-01 1.3.2 Implemented CR on V1.3.1 (DECT(22)000129); software updated to V1.3.2
2022-11-30 1.3.3 Implemented CR on V1.3.2 (DECT(22)000245); software updated to V1.3.3
2022-12-21 1.3.4 Editorial changes for final draft; software updated to V1.3.4 (all defines accepted)
2023-03 1.4.1 Publication of RTS/DECT-00388

2023-09-25 1.4.2 Implemented CR on V1.4.1 (DECT(23)000174, (23)000175, (23)000176); software
updated to V1.4.2

2024-02-13 1.4.3
Implemented CR on V1.4.2 (DECT(24)000043 corrected in DECT(24)000069); software
updated to V1.4.3

2024-02-13 1.4.4 Updated attached software according to (DECT(24)000043r1)
2024-03-25 1.4.5 Implemented CR on V1.4.4 (DECT(24)000066); software updated to V1.4.5
2024-04-15 1.4.6 Editorial changes for final draft
2024-05 1.5.1 Publication of RTS/DECT-00399

ETSI

ETSI TS 103 634 V1.5.1 (2024-06)168

History

Document history

V1.1.1 August 2019 Publication

V1.2.1 October 2020 Publication

V1.3.1 October 2021 Publication

V1.4.1 March 2023 Publication

V1.5.1 June 2024 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Executive summary
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.2.1 Mathematical symbols
	3.2.2 Operator symbols

	3.3 Abbreviations

	4 General description
	4.1 Overview
	4.2 Transcoding functions
	4.3 ANSI C-code
	4.4 Conformance testing
	4.5 RTP payload format
	4.6 Performance characterization

	5 Codec algorithm description
	5.1 General codec description
	5.2 General codec parameters
	5.2.1 Audio channels
	5.2.2 Sampling rates
	5.2.3 Bits per sample
	5.2.4 Frame size and delay
	5.2.5 Bit budget and bitrate
	5.2.6 Bandwidth

	5.3 Encoding process
	5.3.1 Encoder modules
	5.3.2 Input signal
	5.3.3 Input signal scaling
	5.3.4 Low Delay MDCT analysis
	5.3.4.1 Overview
	5.3.4.2 Update time buffer
	5.3.4.3 Time-frequency transformation
	5.3.4.4 Energy estimation per band

	5.3.4a Near Nyquist detector
	5.3.5 Bandwidth detector
	5.3.5.1 Algorithm
	5.3.5.2 Parameters

	5.3.6 Time Domain Attack Detector
	5.3.6.1 Overview
	5.3.6.2 Downsampling and Filtering of Input Signal
	5.3.6.3 Energy Calculation
	5.3.6.4 Attack Detection

	5.3.7 Spectral Noise Shaping
	5.3.7.1 Overview
	5.3.7.2 SNS analysis
	5.3.7.2.1 Overview
	5.3.7.2.2 Padding
	5.3.7.2.3 Smoothing
	5.3.7.2.4 Pre-emphasis
	5.3.7.2.5 Noise floor
	5.3.7.2.6 Logarithm
	5.3.7.2.7 Band Energy Grouping
	5.3.7.2.8 Mean removal and scaling, attack handling

	5.3.7.3 SNS quantization
	5.3.7.3.1 General
	5.3.7.3.2 Stage 1
	5.3.7.3.3 Stage 2
	5.3.7.3.4 Multiplexing of SNS VQ Codewords
	5.3.7.3.5 Synthesis of the Quantized SNS scale factor vector

	5.3.7.4 SNS scale factors interpolation
	5.3.7.5 Spectral shaping

	5.3.8 Bandwidth control
	5.3.9 Temporal Noise Shaping (TNS)
	5.3.9.1 Overview
	5.3.9.2 TNS analysis
	5.3.9.3 Quantization
	5.3.9.4 Filtering

	5.3.10 Long Term Post Filter (LTPF)
	5.3.10.1 Overview
	5.3.10.2 Time-domain signals
	5.3.10.3 Resampling
	5.3.10.4 High-pass filtering
	5.3.10.5 Pitch detection algorithm
	5.3.10.6 LTPF bitstream
	5.3.10.7 LTPF pitch-lag parameter
	5.3.10.8 LTPF activation bit

	5.3.11 Spectral quantization
	5.3.11.1 Overview
	5.3.11.2 Bit budget
	5.3.11.3 First global gain estimation
	5.3.11.4 Quantization
	5.3.11.5 Bit consumption
	5.3.11.6 Truncation
	5.3.11.7 Global gain adjustment

	5.3.12 Residual coding
	5.3.13 Noise level estimation
	5.3.13.1 Overview
	5.3.13.2 Relevant spectral lines
	5.3.13.3 Noise level calculation

	5.3.14 Bitstream encoding
	5.3.14.1 Overview
	5.3.14.2 Initialization
	5.3.14.3 Side information
	5.3.14.4 Arithmetic encoding
	5.3.14.4.1 Overview
	5.3.14.4.2 Pseudo code implementation

	5.3.14.5 Residual data and finalization
	5.3.14.6 Functions

	5.3.15 Encoding of Low Frequency Effects (LFE)

	5.4 Decoding process
	5.4.1 Decoder modules
	5.4.2 Bitstream decoding
	5.4.2.1 Overview
	5.4.2.2 Initialization
	5.4.2.3 Side information
	5.4.2.4 Special decoder mode indicators
	5.4.2.5 Padding pattern
	5.4.2.6 Bandwidth interpretation
	5.4.2.7 Arithmetic decoding
	5.4.2.8 Residual data and finalization
	5.4.2.9 Functions

	5.4.3 Residual decoding
	5.4.4 Noise filling
	5.4.5 Global gain
	5.4.6 TNS decoder
	5.4.7 SNS decoder
	5.4.7.1 Overview
	5.4.7.2 SNS scale factor decoding
	5.4.7.2.1 SNS VQ decoding
	5.4.7.2.2 Stage 1 SNS VQ decoding
	5.4.7.2.3 Stage 2 SNS VQ decoding
	5.4.7.2.4 Unit energy normalization of the received shape
	5.4.7.2.5 Reconstruction of the Quantized SNS Scalefactors

	5.4.7.3 SNS scale factors interpolation
	5.4.7.4 Spectral Shaping

	5.4.8 Low delay MDCT synthesis
	5.4.9 Long term postfilter
	5.4.9.1 Overview
	5.4.9.2 Transition handling
	5.4.9.3 Remaining of the frame

	5.4.10 Output signal scaling and rounding

	5.5 Frame structure
	5.6 Error concealment
	5.6.1 General consideration
	5.6.2 PLC trigger
	5.6.3 PLC method selection and method application
	5.6.3.1 Method selection
	5.6.3.2 MDCT frame repetition with sign scrambling
	5.6.3.3 Time domain concealment
	5.6.3.3.1 Overview
	5.6.3.3.2 LPC parameter calculation
	5.6.3.3.3 Construction of the periodic part of the excitation
	5.6.3.3.4 Construction of the random part of the excitation
	5.6.3.3.5 Construction of the total excitation, synthesis and post-processing
	5.6.3.3.6 Time domain alias cancelation
	5.6.3.3.7 Handling of multiple frame losses

	5.6.3.4 Frequency domain concealment (Phase ECU)
	5.6.3.4.1 Phase ECU overview
	5.6.3.4.2 Spectral Shape
	5.6.3.4.3 Transient analysis
	5.6.3.4.4 Fine Spectral analysis
	5.6.3.4.4a Noise only analysis and modification
	5.6.3.4.4b Single sinusoid analysis and modification
	5.6.3.4.5 Frame reconstruction

	5.6.4 PLC operation related to LTPF

	5.7 External rate adaptation
	5.8 High-resolution audio support
	5.8.1 Overview
	5.8.2 Changes to the algorithm in high-resolution mode
	5.8.3 High-Resolution mode and channel coding

	5.9 Tables and constants
	5.9.1 Band tables index
	5.9.2 Low delay MDCT windows
	5.9.2.1 Frame size 2,5 ms
	5.9.2.2 Frame size 5 ms
	5.9.2.3 Frame size 7,5 ms
	5.9.2.4 Frame size 10 ms

	5.9.3 SNS quantization
	5.9.4 Temporal noise shaping
	5.9.5 Long term postfiltering
	5.9.6 Spectral data

	6 Source code description
	6.1 Overview
	6.2 Contents of the C source code
	6.3 File formats
	6.3.1 Sound file (encoder input and decoder output)
	6.3.2 Switching profile (encoder input)
	6.3.3 Parameter bitstream file (encoder output and decoder input)

	6.4 Test vector package

	7 Conformance
	7.1 Overview
	7.2 Test framework
	7.2.1 Test material
	7.2.2 Test permutations and codec parameters
	7.2.3 Modules under test
	7.2.4 Quality metric calculation
	7.2.4.1 Root Mean Square
	7.2.4.2 Delta ODG value
	7.2.4.3 Maximum Loudness Difference (MLD)
	7.2.4.4 Thresholds

	7.2.5 Software and tools
	7.2.5.1 Gen_rate_profile
	7.2.5.2 Eid-xor
	7.2.5.3 flipG192
	7.2.5.4 G.192 bitstream format
	7.2.5.5 Note to platform-dependent conformance
	7.2.5.6 Reference conformance test script

	7.3 Conformance tests
	7.3.1 Test groups
	7.3.2 Core coder tests
	7.3.2.1 SQAM test
	7.3.2.2 Band limitation test
	7.3.2.3 Low pass test
	7.3.2.4 Bitrate switching test
	7.3.2.5 Bandwidth switching test

	7.3.3 Concealment tests
	7.3.3.1 Packet loss concealment
	7.3.3.2 Partial concealment

	7.3.4 Channel coder
	7.3.4.1 Channel coder test for correctable frames
	7.3.4.2 Channel decoder test for non-correctable frames
	7.3.4.3 Error protection mode switching test
	7.3.4.4 Combined channel coding test for correctable frames
	7.3.4.5 Combined channel coding test for non-correctable frames
	7.3.4.6 Void

	7.3.5 High-resolution mode test
	7.3.5.1 Core coder tests
	7.3.5.2 Concealment tests
	7.3.5.3 Channel coder
	7.3.5.4 Precision tests
	7.3.5.4.1 General
	7.3.5.4.2 Total Harmonic Distortion plus Noise
	7.3.5.4.3 Signal to Noise Ratio

	7.3.6 Low Frequency Effects (LFE) test

	7.4 Mapping conformance test, module and quality metric
	7.4.1 Encoder
	7.4.2 Decoder
	7.4.3 Encoder-Decoder (EncDec)

	7.5 Quality metric thresholds
	7.6 Conformance criteria
	7.7 Codec tests
	7.7.1 General LC3plus test
	7.7.2 Applications

	Annex A (normative): Application layer forward error correction
	A.1 Channel Coder
	A.1.1 Overview
	A.1.2 Bitrate Conversion
	A.1.3 General Channel Coder Parameters
	A.1.3.1 EP mode
	A.1.3.2 Slot Size
	A.1.3.3 EPMR
	A.1.3.4 Combined Channel Coding Flag

	A.1.4 Derived Channel Coder Parameters
	A.1.4.1 Number of Code Words
	A.1.4.2 Code Word Lengths
	A.1.4.3 Hamming Distances
	A.1.4.4 Number of Partial Concealment Code Words
	A.1.4.5 Size of Partial Concealment Block
	A.1.4.6 CRC Hash Sizes
	A.1.4.7 Data Size

	A.1.5 Algorithmic Description of the Channel Encoder
	A.1.5.1 Input/Output
	A.1.5.2 Data Pre-Processing
	A.1.5.3 Reed-Solomon Encoding
	A.1.5.4 Mode Signalling
	A.1.5.5 Code Word Multiplexing

	A.1.6 Algorithmic Description of the Channel Decoder
	A.1.6.1 Input/Output
	A.1.6.2 Code Word De-Multiplexing
	A.1.6.3 Mode Detection
	A.1.6.3.1 Overview
	A.1.6.3.2 Stage 1
	A.1.6.3.3 Stage 2

	A.1.6.4 EPMR Estimation when Frame is not decodable
	A.1.6.5 Error Correction
	A.1.6.5.1 Overview
	A.1.6.5.2 Calculation of Error Locator Polynomials
	A.1.6.5.3 Calculation of Error Positions
	A.1.6.5.4 Calculation of Error Symbols

	A.1.6.6 De-Colouration and RS Decoding
	A.1.6.7 Data Post-Processing

	A.1.7 Padding bytes
	A.1.8 Bit error Concealment
	A.1.8.1 Reorder Bitstream
	A.1.8.2 Bit error Concealment trigger
	A.1.8.3 Partial Concealment

	A.2 Redundancy frames
	A.2.1 Overview
	A.2.2 Example configuration

	Annex B (normative): RTP payload format for the LC3plus codec
	B.1 Introduction
	B.2 LC3plus RTP payload format
	B.2.1 Byte order
	B.2.2 RTP header usage
	B.2.2.1 General
	B.2.2.2 Marker bit
	B.2.2.3 Sequence number
	B.2.2.4 Time stamp

	B.2.3 Packetization Considerations
	B.2.4 Payload Structure
	B.2.5 Payload header, frame data length request
	B.2.6 Table of Contents
	B.2.7 Forming the payload
	B.2.8 Speech_bad frame data
	B.2.9 NO_DATA frames data
	B.2.10 Example of NO_DATA or Speech_bad in payload
	B.2.11 Payload examples
	B.2.11.1 General
	B.2.11.2 Single-Channel Payload Carrying a Single Frame Encoded with WB at 32 kbit/s
	B.2.11.3 Single-Channel Payload Carrying a Single Frame Encoded with SWB at 64 kbit/s
	B.2.11.4 Single-Channel Payload Carrying Two Active Frames Encoded with WB at Different Bitrates
	B.2.11.5 Multi-Channel Payload Carrying One Frame Block for Two Channels

	B.2.12 Packetization

	B.3 Payload format parameters
	B.3.1 General
	B.3.2 LC3plus media type registration
	B.3.3 Mapping media type parameters into SDP
	B.3.4 Offer-answer model considerations
	B.3.5 SDP examples
	B.3.5.1 General
	B.3.5.2 SDP negotiation for WB
	B.3.5.3 SDP negotiation for SWB

	B.4 IANA considerations

	Annex C (informative): An example FEC control unit
	C.1 Overview
	C.2 Parameters
	C.2.1 General
	C.2.2 Setup Parameters
	C.2.2.1 Minimal and maximal EP mode
	C.2.2.2 Perceptual quality table
	C.2.2.3 Initial FER reduction factors

	C.2.3 Input Parameters
	C.2.3.1 General
	C.2.3.2 EPOK flags
	C.2.3.3 Other part's EPMR
	C.2.3.4 Other part's detected EP mode

	C.2.4 Output Parameters
	C.2.4.1 This part's EPMR
	C.2.4.2 This part's EP mode

	C.2.5 Derived Quantities
	C.2.5.1 Other part's assumed EP mode
	C.2.5.2 Bad frame indicator estimates
	C.2.5.3 Frame error rate estimates
	C.2.5.4 FER reduction factors
	C.2.5.5 Mean value estimator consistency
	C.2.5.6 Stable reduction factors

	C.3 EPMR selection
	C.3.1 FER estimator selection
	C.3.2 Optimal EPMR selection

	C.4 EP mode selection

	Annex D (informative): Change history
	History

