ETSI TS 103 836-5-1 V2.1.1 (2024-07)

Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 5: Transport Protocols; Sub-part 1: Basic Transport Protocol; Release 2 Reference

RTS/ITS-003105

Keywords

addressing, autonomic networking, ITS, network, protocol

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from: <u>https://www.etsi.org/standards-search</u>

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at <u>https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx</u>

If you find errors in the present document, please send your comment to one of the following services: <u>https://portal.etsi.org/People/CommiteeSupportStaff.aspx</u>

If you find a security vulnerability in the present document, please report it through our Coordinated Vulnerability Disclosure Program: https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of experience to understand and interpret its content in accordance with generally accepted engineering or other professional standard and applicable regulations.

No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI. The copyright and the foregoing restriction extend to reproduction in all media.

> © ETSI 2024. All rights reserved.

Contents

Intelle	ectual Property Rights	4
Forev	vord	4
Moda	l verbs terminology	4
Introc	luction	4
1	Scope	6
2 2.1 2.2	References Normative references Informative references	6
3 3.1 3.2 3.3	Definition of terms, symbols and abbreviations Terms Symbols Abbreviations	7 7 7
4	Services provided by the Basic Transport Protocol	7
5	Format convention	8
6	BTP packet structure	9
7 7.1 7.2 7.2.1 7.2.2	BTP header Overview BTP-A header Structure of the BTP-A header Fields of the BTP-A header	9 .10 .10
7.2.2 7.3 7.3.1 7.3.2	BTP-B header Structure of the BTP-B header Fields of the BTP-B header	.10 .10
8 8.1 8.2 8.3	Protocol operations General Source operations Destination operations	.11 .11
Anne	x A (informative): BTP data services	.13
A.1	General	.13
A.2	BTP-Data.request	.13
A.3	BTP-Data.indication	.14
Anne	x B (informative): Change History	.16
Histo	ry	.17

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECTTM, **PLUGTESTSTM**, **UMTSTM** and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPPTM** and **LTETM** are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2MTM** logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. **GSM**[®] and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Intelligent Transport Systems (ITS).

The present document is part 5, sub-part 1 of a multi-part deliverable. Full details of the entire series can be found in ETSI TS 103 836-1 [1].

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Introduction

The Basic Transport Protocol (BTP) provides an end-to-end, connection-less transport service in the ITS ad hoc network. Its main purpose is the multiplexing of messages from different processes at the ITS facilities layer for the transmission of packets via the GeoNetworking protocol at the source ITS station and the de-multiplexing at the destination ITS station. BTP enables protocol entities at the ITS facilities layer to access services of the GeoNetworking protocol as well as to pass protocol control information between the ITS facilities layer and the GeoNetworking protocol.

Message multiplexing/demultiplexing is based on ports, an ITS station-internal 16 bit address. A port represents a communication endpoint that identifies the ITS station protocol entity at the source (source port) or the destination (destination port). The usage of ports is similar to the two-stage packet transport in the IP protocol suite, where the IP provides the routing of packets from source to destination and the transport protocol, such as UDP, multiplexes/demultiplexes messages from/to application processes. In the case of BTP, the GeoNetworking protocol transports the packets among the ITS stations and the BTP protocol delivers the packets to the entities at the ITS facilities layer. BTP also adopts the concept of "well-known ports" from the IP protocol suite that assigns fixed ports to specific ITS facilities layer protocols. The definition of the ports, however, is beyond the scope of the present document.

BTP is a lightweight protocol: It has a 4-byte protocol header and requires minimal processing. It provides an unreliable transport of packets, i.e. packets can arrive out-of-order, appear duplicated or can be lost. The design of BTP assumes that entities using the protocol are either tolerant against the unreliable packet transport or provide appropriate mechanisms for reliable communication in their protocols.

1 Scope

The present document specifies the Basic Transport Protocol (BTP) for the transport of packets among ITS stations. It resides on top of the GeoNetworking protocol specified in ETSI TS 103 836-4-1 [4] with its media-dependent extensions and below the ITS-S facilities layer. It provides an end-to-end, connection-less and unreliable transport service.

6

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are necessary for the application of the present document.

- [1] <u>ETSI TS 103 836-1</u>: "Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 1: Requirements; Release 2".
- [2] <u>ETSI TS 103 836-2</u>: "Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 2: Scenarios; Release 2".
- [3] <u>ETSI TS 103 836-3</u>: "Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 3: Network architecture; Release 2".
- [4] <u>ETSI TS 103 836-4-1</u>: "Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 4: Geographical addressing and forwarding for point-to-point and point-to-multipoint communications; Sub-part 1: Media-Independent Functionality; Release 2".
- [5] <u>ETSI TS 103 248</u>: "Intelligent Transport Systems (ITS); GeoNetworking; Port Numbers for the Basic Transport Protocol (BTP); Release 2".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1] IETF RFC 768: "User Datagram Protocol".

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the terms given in ETSI TS 103 836-3 [3] and the following apply:

BTP-PDU: protocol Protocol Data Unit exchanged between BTP peer entities

destination: receiving BTP entity in the ITS station

destination port: port at which the destination is expected to listen for a BTP packet

GN-PDU: protocol Data Unit exchanged between peer entities of the GeoNetworking protocol

ITS-FPCI: protocol Control Information passed from the ITS Facilities layer to the BTP

port: ITS station-internal address that identifies a protocol entity at the ITS facilities layer and represents an endpoint of a logical connection

source: originating BTP entity in the ITS station

source port: port identifying the originating protocol entity at the ITS facilities layer

NOTE: Such an entity may be listening for a reply BTP packet.

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in ETSI TS 103 836-3 [3] and the following apply:

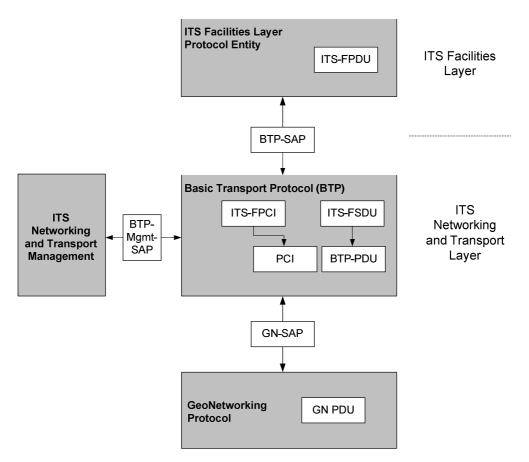
BTP	Basic Transport Protocol
BTP-PDU	Basic Transport Protocol Protocol Data Unit
BTP-SAP	Basic Transport Protocol Service Access Point
GN-PDU	GeoNetworking protocol PDU exchanged between peer entities of the GeoNetworking protocol
GN-SAP	GeoNetworking Service Access Point
ITS-FPCI	ITS Facility layer Protocol Control Information
ITS-FPDU	ITS Facilities layer Protocol Data Unit
ITS-FSDU	ITS Facilities layer Service Data Unit
PCI	Protocol Control Information

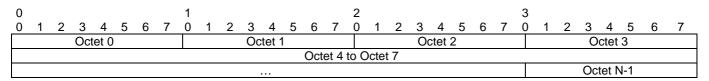
4 Services provided by the Basic Transport Protocol

The Basic Transport Protocol (BTP) provides an end-to-end, connection-less transport service in the ITS ad hoc network (ETSI TS 103 836-3 [3]). Similar to UDP (IETF RFC 768 [i.1]), it offers a minimal transport service, i.e. the non-guaranteed delivery of BTP-PDUs among BTP entities. It also allows protocol entities at the ITS facilities layer to directly access the services provided by the GeoNetworking protocol.

The BTP shall meet the requirements specified in ETSI TS 103 836-1 [1] and support the use cases defined in ETSI TS 103 836-2 [2].

The BTP provides services to ITS facilities layer protocol entities (figure 1). The services are provided via the BTP-SAP using service primitives of different types that carry parameters, i.e. Protocol Control Information (ITS-FPCI), and the PDU of the upper protocol entity, i.e. ITS-FPDU. In order to provide its packet transport services, BTP uses the services of the GeoNetworking protocol (ETSI TS 103 836-4-1 [4]).




Figure 1: SAPs, SDUs and PDUs relevant for the BTP

The present document specifies the following SAPs:

- BTP-SAP between BTP and the ITS facilities layer; and
- BTP-Mgmt-SAP between the BTP and the ITS Network and Transport Management.

5 Format convention

The basic convention for the specification of packet formats is illustrated in figure 2. The bits are grouped into octets. The bits of an octet are always shown horizontally and are numbered from 0 to 7. Up to 4 octets are shown horizontally; multiple sets of 4 octets are grouped vertically. Octets are numbered from 0 to N-1.

Figure 2: Format convention

When (a part of) an octet represents a numeric quantity, the leftmost bit in the diagram is the most significant bit. Similarly, when a numeric value spans multiple octet fields the leftmost field is the most significant (i.e. Big Endian or Network Byte Order). 9

EXAMPLE: The decimal value 199 is represented as shown below:

0 1 2 3 4 5 6 7 1 1 0 0 0 1 1 1

6 BTP packet structure

As specified in ETSI TS 103 836-3 [3], the BTP is used in the GeoNetwork protocol stack.

A BTP packet shall be comprised of the protocol headers and the payload as depicted in figure 3:

- The access layer header is the header of the underlying ITS access technology.
- The GeoNetworking header is the header of the GeoNetworking packet as defined in ETSI TS 103 836-4-1 [4] and extended for media-dependent GeoNetworking functionalities.
- The BTP header is the header of the Basic Transport Protocol as defined in the present document.
- The payload represents the user data that is created by upper protocol entities, i.e. the ITS-FSDU, and passed to the BTP entity for transmission.

NOTE: The general packet structure is shown as seen by the entity of the ITS access technology layer.

Access	GeoNetworking	BTP	
layer	header	header	Payload
header	neauei	neauei	

Figure 3: BTP packet structure

7 BTP header

7.1 Overview

BTP defines two protocol headers:

- BTP-A for interactive packet transport; and
- BTP-B for non-interactive packet transport.

The headers are distinguished by the *Next Header* field in the GeoNetworking header (ETSI TS 103 836-4-1 [4]) as illustrated in table 1.

Table 1: Encoding of BTP header types in the Next Header (NH) field of the GeoNetworking Common Header

Next Header (NH)	Encoding	Description
BTP-A	1	BTP-A header
BTP-B	2	BTP-B header

NOTE: The encoding of the Next Header field is specified in ETSI TS 103 836-4-1 [4]. In case of conflict in the encoding, ETSI TS 103 836-4-1 [4] takes precedence.

7.2 BTP-A header

7.2.1 Structure of the BTP-A header

The BTP-A header carries the source and the destination port (figure 4). The destination port identifies the protocol entity at the ITS facilities layer in the destination of a BTP-PDU. The source port indicates the port that the ITS facilities layer protocol entity in the source has used to send the ITS-FSDU. The source port represents the port to which a reply to the BTP PDU should be addressed in the absence of other information.

0	1		2	3	
0 1 2 3	3 4 5 6 7 0 1 2	4 5 6 7	0 1 2 3 4 5	6 7 0 1 2 3	4 5 6 7
	Destination port			Source port	

Figure 4: BTP-A header format

7.2.2 Fields of the BTP-A header

The BTP header shall carry the fields as specified in table 2.

Table 2: Fields of BTP-A header

Field	Field name	Octet p	osition	Туре	Unit	Description
#		First	Last			
1	Destination port	0	1	16 bit integer		Identifies the protocol entity at the destination's ITS facilities layer.
2	Source port	2	3	16 bit integer		Identifies the port of the protocol entity at the source's ITS facilities layer.

7.3 BTP-B header

7.3.1 Structure of the BTP-B header

The BTP-B header carries the destination port, but no source port (figure 5). The destination port identifies the protocol entity at the ITS facilities layer in the destination of a BTP-PDU and shall be set to the values in ETSI TS 103 248 [5]. The destination protocol provides additional info if *Destination port* is a well-known port. Setting is beyond the scope of the present document; default setting is 0.

0								1								2								3							
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
						Des	tina	tion	por	t											D	esti	nati	on p	ort i	nfo					

Figure 5: BTP-B header format

7.3.2 Fields of the BTP-B header

The BTP-B header shall carry the fields as specified in table 3.

Table 3: Fields of BTP-B header

11

Field	Field name	Octet p	osition	Туре	Unit	Description
#		First	Last			
1	Destination port	0	1	16 bit integer		Identifies the protocol entity at the ITS facilities layer in the destination and shall be set to the values in ETSI TS 103 248 [5].
2	Destination port info	2	3	16 bit integer		Provides additional info if <i>Destination port</i> is a well-known port. Setting is beyond the scope of the present document; default setting is 0.

8 Protocol operations

8.1 General

This clause specifies the operations of a BTP entity for sending and receiving a BTP-PDU.

8.2 Source operations

On reception of a BTP-Data.request primitive, the source shall execute the following operations:

- 1) create a BTP-PDU with the ITS-FSDU as payload and a BTP packet header (clause 7):
 - a) if the BTP type parameter in the *BTP-Data.request* primitive is BTP-A, set the BTP header fields as specified in table 4;

Table 4:	Field	settings	for the	BTP-A	header
----------	-------	----------	---------	--------------	--------

Field name	Field setting	Description
Source port	BTP-Data.request primitive	Identifies the port of the protocol entity at the source's ITS facilities layer in the source of the BTP PDU.
Destination port	Value of Destination port parameter from the BTP-Data.request primitive	Identifies the protocol entity at the destination ITS facilities layer.

b) if the BTP type parameter in the *BTP-Data.request* primitive is BTP-B, set the BTP header fields as specified in table 5;

Table 5: Field settings for the BTP-B header

Field name	Field setting	Description
Destination port	Value of Destination port parameter from the	Identifies the protocol entity at the destination ITS
	BTP-Data.request primitive	facilities layer and shall be set to the values in
		ETSI TS 103 248 [5].
Destination port info	Value of Destination port info parameter from	Provides additional info if Destination port is a
	the BTP-Data.request primitive	well-known port. Setting is beyond the scope of the
		present document; default setting is 0.

2) pass the BTP-PDU to the GeoNetworking protocol entity via the GN-SAP by means of a *GN-Data.request* primitive with the parameter settings in table 6.

Parameter name	Parameter setting
Upper protocol entity	BTP
Packet transport type	Value of BTP-Data.request parameter GN Packet transport type.
Destination address	Value of BTP-Data.request parameter GN Destination address.
Communication profile	Value of BTP-Data.request parameter Communication profile.
Maximum packet lifetime	Value of BTP-Data.request parameter Maximum packet lifetime.
	Omitted if not used in BTP-Data.request.
Maximum repetition time	Value of BTP-Data.request parameter Maximum repetition time.
	Omitted if not used in BTP-Data.request.
Repetition interval	Value of BTP-Data.request parameter Repetition interval
	Omitted if not used in BTP-Data.request.
Traffic class	Value of BTP-Data.request parameter Traffic class.
Length	Length of [ITS-FSDU +4].
Data	BTP-SDU payload.

Table 6: Parameter settings in the GN-Data.request primitive to request sending a GeoNetworking packet

8.3 Destination operations

On reception of a BTP-PDU via the *GN-Data.indication* primitive, the destination shall pass the payload of the BTP-PDU via the BTP-SAP by means of a *BTP-Data.indication* with the parameter settings in table 7.

Parameter name	Parameter setting
Source port	If BTP header type is BTP-A, set to Source port in the BTP-A header.
-	If BTP header type is BTP-B, omit this parameter.
Destination port	Set to Destination port in the BTP-A or BTP-B header.
Destination port info	If BTP header type is BTP-A, omit this parameter.
	If BTP header type is BTP-B, set to Destination port info in BTP-B
	header.
GN Packet transport type	Value of GN-Data.indication parameter GN Packet transport type.
GN Destination address	Value of GN-Data.indication parameter GN Destination address.
GN Source position vector	Value of GN-Data.indication parameter Source position vector.
GN Traffic class	Value GN-Data.indication parameter Traffic class. Omitted if not used
	in GN-Data.indication.
GN Remaining packet lifetime	Value of GN-Data.indication parameter Remaining packet lifetime.
	Omitted if not used in GN-Data.indication.
Length	Length of [GN-PDU payload - 4].
Data	BTP-PDU payload.

 Table 7: Parameter settings in the GN-Data.indication primitive to indicate the reception of a BTP PDU

Annex A (informative): BTP data services

A.1 General

The BTP data service primitives allow entities of ITS Facilities protocols to send and receive PDUs via the BTP-SAP.

13

A.2 BTP-Data.request

The *BTP-Data.request* primitive is used by the ITS Facilities protocol entity to request sending a BTP-PDU. Upon reception of the *BTP-Data.request* primitive, the BTP protocol delivers the BTP-SDU to the GeoNetworking protocol entity via the GN-SAP.

The parameters of the BTP-Data.request are as follows:

BTP-Data.request (

- BTP type, *Source port, (optional)* Destination port, Destination port info, (optional) GN Packet transport type, GN Destination address, GN Communication profile, GN Security profile, (optional) GN Maximum packet lifetime, (optional) GN Repetition interval, (optional) GN Maximum repetition time, (optional) GN Maximum hop limit, (optional) GN Traffic class, Length, Data)
- NOTE: *GN* in the primitive parameters indicates that this parameter is passed to the GeoNetworking protocol entity via the GN-SAP without being used by BTP.

The BTP type parameter specifies whether the BTP is interactive (BTP-A) or non-interactive (BTP-B).

The *Source port* parameter specifies the BTP port that is used to send the ITS-FSDU and is the port to which a reply should be sent in the absence of other information. The *Source port* parameter is optional and is only used for interactive packet transport (BTP-A).

The Destination port parameter specifies the BTP port at the destination.

The *Destination port info* parameter specifies additional information for the destination port if the port is a well-known port.

The *GN Packet transport type* parameter specifies the packet transport type (GeoUnicast, SHB, TSB, GeoBroadcast, GeoAnycast).

The *GN Destination address* parameter specifies the destination address for GeoUnicast or the geographical area for GeoBroadcast/GeoAnycast.

The GN Communication profile parameter determines the LL protocol entity (unspecified, ITS-G5A).

The GN Security profile parameter determines the security service to invoke.

The *GN Maximum packet lifetime* parameter specifies the maximum tolerable time in [s] a GeoNetworking packet can be buffered until it reaches its destination. The parameter is optional.

The *GN Repetition interval* parameter specifies the duration between two consecutive transmissions of the same GeoNetworking packet in [ms] during the repetition time. The parameter is optional. If it is not used, the packet is not repeated.

The *GN Maximum repetition time* parameter specifies the time in [s] a GeoNetworking packet is repeated. The parameter is optional; if the Repetition interval is not used, it is omitted.

The *GN Maximum hop limit* specifies the number of hops a packet is allowed to have in the network, i.e. how often the packet is allowed to be forwarded.

The GN Traffic class parameter specifies the traffic class for the message.

The Length parameter indicates the length of the Data parameter.

The Data parameter represents the payload of the BTP packet to be transmitted, i.e. the ITS-FPDU.

A.3 BTP-Data.indication

The *BTP-Data.indication* primitive indicates to an ITS facilities layer protocol entity that a ITS-FSDU has been received. The ITS-FSDU is processed as determined by the receiving upper protocol entity.

The parameters of the BTP-Data.indication primitive are as follows:

BTP-Data.indication (Source port, (optional) Destination port, Destination port info, (optional) GN Destination address, GN Source position vector, GN Security report, (optional) GN Certificate id, (optional) GN Permissions, (optional) GN Traffic class, GN Remaining packet lifetime, (optional) Length, Data)

NOTE: *GN* in the primitive parameters indicates that this parameter is passed to the ITS facilities layer protocol entity via the BTP-SAP without being used by BTP.

The *Source port* parameter specifies the BTP port that is used to send the ITS-FSDU and is the port to which a reply should be sent in the absence of other information. The *Source port* parameter is optional and is only used for interactive packet transport (BTP-A).

The Destination port parameter specifies the BTP port at the destination.

The *Destination port info* parameter specifies additional information for the destination port if the port is a well-known port.

The *GN Destination address* parameter specifies the destination address for GeoUnicast or the geographical area for GeoBroadcast/GeoAnycast, with which the GeoNetworking packet was generated by the source.

The *GN Source position vector* parameter specifies the GeoNetworking address, geographical position and optionally other parameters of the source of the received GeoNetworking packet.

The GN Security report contains result information from the security operations for decryption and verification (parameter *report* in the service primitive SN-DECAP.confirm).

The *GN Certificate id* contains the identification of source certificate, for example the certificate hash (parameter *certificate_id* in the service primitive *SN-DECAP.confirm*).

The *GN Permissions* parameter contains the sender permissions (parameter *permissions* in the service primitive *SN-DECAP.confirm*).

15

The GN Traffic Class parameters is the traffic class, with which the GeoNetworking packet was generated by the source.

The GN Remaining packet lifetime parameter is the remaining lifetime of the packet.

The Length parameter indicates the length of the Data parameter.

The Data parameter represents the payload of the received BTP packet, i.e. the ITS-FPDU.

Annex B (informative): Change History

Date	Version	Information about changes
February 2022	0.0.1	Initial version based on ETSI EN 302 636-5-1 v1.2.1
January 2024	0.0.2	Update based on discussions in ITS-WG3#64
March 2024	0.0.3	Clean version for approval

History

Document history			
V2.0.0	November 2022	Publication	
V2.1.1	July 2024	Publication	

17