

ETSI TS 103 973 V1.1.1 (2024-10)

Coded Multisource Media Format (CMMF) for
Content Distribution and Delivery

TECHNICAL SPECIFICATION

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)2

Reference
DTS/JTC-112

Keywords
broadband, broadcast, CDN, container,

distribution, multimedia, multi-path, multi-source,
network coding, robustness

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2024.

© European Broadcasting Union 2024.
All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)3

Contents

Intellectual Property Rights .. 15

Foreword ... 15

Modal verbs terminology .. 15

Introduction .. 16

1 Scope .. 17

2 References .. 17

2.1 Normative references ... 17

2.2 Informative references .. 18

3 Definition of terms, symbols and abbreviations ... 18

3.1 Terms .. 18

3.2 Symbols .. 20

3.3 Abbreviations ... 20

4 Overview .. 21

4.0 Introduction .. 21

4.1 Source data ... 23

4.2 CMMF bitstream creation .. 23

4.2.1 Encoding CMMF .. 23

4.2.2 Symbol groups in CMMF ... 25

4.2.3 Decoding CMMF .. 25

4.2.4 Mapping to/from CMMF .. 27

4.3 Media delivery using CMMF ... 28

4.3.1 Overview .. 28

4.3.2 CMMF transport objects and transport sessions ... 29

4.3.3 CMMF delivery architecture reference points .. 29

4.3.4 CMMF delivery procedure ... 32

4.3.5 CMMF Configuration Information ... 35

4.3.6 CMMF as a Content Delivery Protocol .. 35

4.4 Overview of the Specification .. 35

5 Bitstream syntax ... 36

5.0 Bitstream organization ... 36

5.1 Semantics of syntax specification... 37

5.1.1 Pseudocode syntax .. 37

5.1.2 Bitstream variable syntax .. 37

5.1.3 Bitstream structure syntax .. 37

5.1.4 Iteration and conditional operators ... 38

5.1.5 Boolean operations ... 38

5.1.6 Labels and comments.. 39

5.1.7 Operational variables not in the bitstream .. 39

5.1.8 Arrays ... 39

5.1.9 Bit field encoding ... 39

5.2 Syntax specification ... 40

5.2.1 cmmf_bitstream() ... 40

5.2.2 subatom() .. 40

5.2.3 sync() .. 41

5.2.4 bitstream_header() .. 42

5.2.5 block_header() .. 42

5.2.6 addl_cce_parameters() .. 44

5.2.7 prng_parameters() ... 45

5.2.8 packet() ... 45

5.2.9 packet_header() ... 45

5.2.10 encoder_content_info() ... 46

5.2.11 media_segment_info() .. 47

5.2.12 cmmf_time() ... 49

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)4

5.2.13 chunked_subatom() ... 50

5.2.14 block_group_directory() ... 50

5.2.15 fb_integrity() ... 51

5.2.16 packet_integrity() .. 51

5.2.17 coefficient_vector() ... 51

5.2.18 extension() .. 52

5.2.19 packet_header_only().. 52

5.2.20 rfc5052_information() .. 52

5.2.21 packet_group() .. 53

5.2.22 packet_group_header() ... 53

5.2.23 num_bits_code() ... 54

5.2.24 block_index_or_count_value() ... 55

5.2.25 multi_block_packet_group() ... 55

5.2.26 mbpg_header() .. 55

6 Bitstream description .. 56

6.0 Introduction .. 56

6.1 Description of bitstream elements .. 56

6.1.1 cmmf_bitstream() ... 56

6.1.2 subatom() .. 57

6.1.2.0 Introduction ... 57

6.1.2.1 subatom_id, subatom_id_ext ... 57

6.1.2.2 b_bitstream_id_present ... 57

6.1.2.3 sas_bits .. 58

6.1.2.4 bitstream_id ... 58

6.1.2.5 subatom_size ... 58

6.1.3 sync() .. 58

6.1.3.0 Introduction ... 58

6.1.3.1 syncword ... 58

6.1.3.2 version ... 58

6.1.3.3 b_content_encode_uuid ... 58

6.1.3.4 content_encode_uuid... 58

6.1.4 bitstream_header() .. 59

6.1.4.0 Introduction ... 59

6.1.4.1 content_source_size .. 59

6.1.4.2 content_source_type .. 59

6.1.4.3 b_content_source_split .. 59

6.1.4.4 content_soure_split_start, content_source_split_end .. 59

6.1.4.5 code_type, code_type_ext ... 59

6.1.4.6 b_rfc5052, rfc5052_information(), b_addl_rfc5052_information_present ... 60

6.1.4.7 block_count_minus1, block_count .. 60

6.1.4.8 b_content_block_separate_sources ... 61

6.1.4.9 num_content_block_sources_minus1 ... 61

6.1.4.10 b_profile_information_present .. 61

6.1.4.11 profile_type_size, profile_type.. 61

6.1.4.12 profile_description .. 61

6.1.4.13 b_block_cc_encrypted ... 61

6.1.4.14 bitstream_encryption_key_id_size_exp .. 61

6.1.4.15 bitstream_encryption_key_id .. 61

6.1.5 block_header() .. 62

6.1.5.0 Introduction ... 62

6.1.5.1 block_index ... 62

6.1.5.2 block_size.. 62

6.1.5.3 block_symbol_size .. 62

6.1.5.4 bns_bits ... 62

6.1.5.5 block_num_symbols ... 62

6.1.5.6 b_block_max_symbol_index_present ... 62

6.1.5.7 bmsi_bits ... 62

6.1.5.8 block_max_symbol_index .. 63

6.1.5.9 b_block_content_source_index_present ... 63

6.1.5.10 block_content_source_index ... 63

6.1.5.11 b_block_composite_sources.. 63

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)5

6.1.5.12 block_num_composite_sources_minus1 ... 63

6.1.5.13 bcss_bits .. 63

6.1.5.14 block_composite_source_size ... 63

6.1.5.15 b_addl_block_coding_info_present .. 63

6.1.5.16 addl_block_coding_mask .. 64

6.1.5.17 b_addl_window_info_present ... 64

6.1.5.18 b_reserved_block_coding_params_present ... 64

6.1.5.19 block_mask ... 64

6.1.5.20 b_sufficient_symbols_present ... 65

6.1.5.21 bsp_bits ... 65

6.1.5.22 block_symbols_present ... 65

6.1.5.23 block_field_size_exp... 65

6.1.5.24 Encrypted Coefficients .. 66

6.1.5.24.0 Introduction ... 66

6.1.5.24.1 block_cc_encryption_info_size_bits_code .. 66

6.1.5.24.2 byte_align .. 66

6.1.5.24.3 block_cc_encryption_info_size ... 66

6.1.5.24.4 block_cc_encryption_algorithm .. 67

6.1.5.24.5 block_cc_encryption_mode ... 67

6.1.5.24.6 block_cce_key_size_exp, block_cce_key ... 67

6.1.5.24.7 b_addl_block_cce_params_present ... 67

6.1.5.24.8 addl_cce_parameters() ... 67

6.1.5.25 Pseudorandom Noise Generator (PRNG) .. 68

6.1.5.25.0 Introduction ... 68

6.1.5.25.1 prng_type ... 69

6.1.5.25.2 prng_seed_bits_code ... 69

6.1.5.25.3 prng_seed... 69

6.1.5.25.4 prng_density_percentage ... 69

6.1.6 packet() ... 69

6.1.6.0 Introduction ... 69

6.1.6.1 packet_block_index... 70

6.1.6.2 coded_symbol ... 70

6.1.7 packet_header() ... 70

6.1.7.0 Introduction ... 70

6.1.7.1 b_systematic_symbol .. 70

6.1.7.2 packet_mask .. 71

6.1.7.3 psi_bits .. 72

6.1.7.4 packet_symbol_index .. 72

6.1.7.5 Encryption Parameters .. 72

6.1.7.5.0 Introduction ... 72

6.1.7.5.1 b_systematic_symbol_encrypted ... 72

6.1.7.5.2 b_addl_packet_cce_params_present .. 72

6.1.7.6 window_start_index, window_stop_index .. 73

6.1.7.7 byte_align .. 73

6.1.8 encoder_content_info() ... 73

6.1.8.0 Introduction ... 73

6.1.8.1 b_encoder_id_present ... 73

6.1.8.2 encoder_uuid ... 73

6.1.8.3 Content Identification.. 73

6.1.8.4 b_content_id_present .. 73

6.1.8.4.0 Introduction ... 73

6.1.8.4.1 content_id_type ... 74

6.1.8.4.2 content_id_size_minus1 .. 74

6.1.8.4.3 content_id .. 74

6.1.8.5 b_content_location_present ... 74

6.1.8.6 content_location_size, content_location ... 74

6.1.8.7 b_content_type_present ... 74

6.1.8.8 content_type_size, content_type ... 74

6.1.8.9 b_content_header_present ... 75

6.1.8.10 content_header_size, content_header .. 75

6.1.8.11 b_file_integrity_present .. 75

6.1.8.12 b_media_preso_dur_present.. 75

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)6

6.1.9 media_segment_info() .. 75

6.1.9.0 Introduction ... 75

6.1.9.1 media_segment_block_index, media_segment_block_index_ext ... 75

6.1.9.2 media_segment_index, media_segment_index_ext .. 76

6.1.9.3 b_composite_source_index _present ... 76

6.1.9.4 media_segment_composite_source_index .. 76

6.1.9.5 b_asset_name_present ... 76

6.1.9.6 asset_name_size, asset_name .. 76

6.1.9.7 segment_tag_mask .. 76

6.1.9.8 segidx_bits, segcnt_bits ... 76

6.1.9.9 segment_index .. 76

6.1.9.10 segment_count .. 76

6.1.9.11 b_media_mime_type_present.. 77

6.1.9.12 media_mime_type_size, media_mime_type ... 77

6.1.9.13 b_media_codec_present .. 77

6.1.9.14 media_codec_size, media_codec .. 77

6.1.9.15 b_bit_rate_present ... 77

6.1.9.16 bit_rate_bits_code ... 77

6.1.9.17 bit_rate .. 77

6.1.9.18 b_ms_content_type_present .. 77

6.1.9.19 ms_content_type ... 78

6.1.9.20 b_ms_content_type_info_present .. 78

6.1.9.21 b_aspect_ratio_present .. 78

6.1.9.22 sample_aspect_ratio .. 78

6.1.9.23 sar_width, sar_height .. 78

6.1.9.24 b_dynamic_resolution_video .. 78

6.1.9.25 b_resolution_present ... 78

6.1.9.26 resolution_width, resolution_height .. 78

6.1.9.27 b_frame_rate_present .. 78

6.1.9.28 frame_rate ... 79

6.1.9.29 b_hdr_info_present ... 79

6.1.9.30 hdr_compatibility_mask .. 79

6.1.9.31 b_addl_hdr_info_present ... 79

6.1.9.32 hdr_compat_mask_index .. 80

6.1.9.33 hdr_profile .. 80

6.1.9.34 hdr_level ... 80

6.1.9.35 hdr_compatibility_id ... 80

6.1.9.36 b_addl_video_info_present ... 80

6.1.9.37 b_sampling_freq_present .. 80

6.1.9.38 b_sampling_freq_is_48k ... 80

6.1.9.39 sampling_frequency .. 80

6.1.9.40 b_audio_config_present .. 80

6.1.9.41 audio_channel_config ... 81

6.1.9.42 b_audio_props_present ... 82

6.1.9.43 b_virtualized_bin .. 82

6.1.9.44 b_object_audio .. 82

6.1.9.45 b_complexity_index_present .. 82

6.1.9.46 complexity_index .. 82

6.1.9.47 b_addl_audio_info_present ... 82

6.1.9.48 b_addl_ms_content_type_info_present ... 82

6.1.9.49 accessibility_mask .. 82

6.1.9.50 language_size, language .. 83

6.1.10 cmmf_time() ... 83

6.1.10.0 Introduction ... 83

6.1.10.1 b_ddhhmmss ... 83

6.1.10.2 DD:HH:MM:SS format ... 83

6.1.10.3 int_seconds_bits_code... 83

6.1.10.4 int_seconds .. 84

6.1.10.5 b_fract_seconds_present ... 84

6.1.10.6 fract_seconds_bits_code ... 84

6.1.10.7 fract_seconds ... 84

6.1.11 chunked_subatom() ... 84

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)7

6.1.11.0 Introduction ... 84

6.1.11.1 chunk_segment_id .. 85

6.1.11.2 chunk_segment_index ... 85

6.1.11.3 num_chunk_segments ... 85

6.1.11.4 original_subatom_id, original_subatom_id_ext .. 85

6.1.11.5 oss_bits .. 85

6.1.11.6 original_subatom_size... 85

6.1.11.7 byte_align .. 85

6.1.11.8 chunked_subatom_segment_data .. 85

6.1.12 block_group_directory() ... 86

6.1.12.0 Introduction ... 86

6.1.12.1 block_group_dir_mask .. 86

6.1.12.2 block_header_subatom_offset[block] ... 86

6.1.12.3 num_packet_groups[block] ... 86

6.1.12.4 packet_group_index[block][pg] .. 86

6.1.12.5 packet_group_subatom_offset[block][pg] .. 86

6.1.12.6 num_multi_block_packet_groups ... 87

6.1.12.7 multi_block_packet_group_subatom_offset[mbpg] .. 87

6.1.13 fb_integrity() ... 87

6.1.13.0 Introduction ... 87

6.1.13.1 fb_hash_type ... 87

6.1.13.2 fb_hash_algorithm .. 87

6.1.13.3 fb_hash_size .. 88

6.1.13.4 b_fb_integrity_ext ... 88

6.1.13.5 fb_hash .. 88

6.1.14 packet_integrity() .. 88

6.1.14.0 Introduction ... 88

6.1.14.1 packet_hash_algorithm ... 89

6.1.14.2 packet_hash_size ... 89

6.1.14.3 b_packet_integrity_ext .. 89

6.1.14.4 packet_hash ... 89

6.1.15 coefficient_vector() ... 90

6.1.15.0 Introduction ... 90

6.1.15.1 coded_symbol_coeff[index] .. 90

6.1.16 extension() .. 90

6.1.16.0 Introduction ... 90

6.1.16.1 extension_byte_size .. 90

6.1.17 packet_header_only().. 90

6.1.18 packet_group() .. 90

6.1.18.0 Introduction ... 90

6.1.18.1 packet_group_block_index ... 91

6.1.18.2 packet_group_index .. 91

6.1.18.3 pgns_bits ... 91

6.1.18.4 packet_group_num_symbols ... 91

6.1.18.5 packet_group_type .. 91

6.1.18.6 coded_symbol ... 91

6.1.19 packet_group_header() ... 91

6.1.19.0 Introduction ... 91

6.1.19.1 packet_group_symbol_arrangement ... 92

6.1.19.2 packet_group_mask... 92

6.1.19.3 pgsi_bits .. 93

6.1.19.4 packet_group_symbol_index .. 93

6.1.19.5 pgfsi_bits ... 93

6.1.19.6 packet_group_first_symbol_index .. 93

6.1.19.7 packet_group_index_difference .. 93

6.1.19.8 pgfsii_bits .. 94

6.1.19.9 Symbol Arrangements in a Packet Group ... 94

6.1.19.10 Encryption Parameters .. 94

6.1.19.10.0 Introduction ... 94

6.1.19.10.1 b_addl_packet_group_cce_params_present .. 95

6.1.20 num_bits_code() ... 95

6.1.20.0 Introduction ... 95

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)8

6.1.20.1 bits_code ... 95

6.1.21 block_index_or_count_value() ... 95

6.1.21.0 Introduction ... 95

6.1.21.1 block_index_or_count, block_index_or_count_ext .. 95

6.1.22 multi_block_packet_group() ... 95

6.1.22.0 Introduction ... 95

6.1.22.1 mbpg_index ... 96

6.1.22.2 mbpg_start_block_index ... 96

6.1.22.3 mbpg_num_blocks .. 96

6.1.22.4 mbpg_num_symbols ... 96

6.1.22.5 coded_symbol ... 96

6.1.23 mbpg_header() .. 97

6.1.23.0 Introduction ... 97

6.1.23.1 mbpg_symbol_arrangement .. 97

6.1.23.2 mbpgsi_bits ... 97

6.1.23.3 mbpg_source_block_index, mbpg_symbol_index .. 98

6.1.23.4 mbpgfsi_bits .. 98

6.1.23.5 mbpg_first_symbol_index, b_mbpg_is_symbol_group_subset,
mbpg_symbol_group_subset_index .. 98

6.1.23.6 mbpg_index_difference ... 98

6.1.23.7 mbpgsai_bits_code .. 98

6.1.23.8 Symbol Arrangements in a Multiple Block Packet Group .. 99

6.1.23.9 b_mbpg_integrity_present ... 103

6.1.23.10 b_mbpg_header_ext_present ... 103

7 Design considerations... 103

7.0 Introduction .. 103

7.1 Coding coefficients... 103

7.1.0 Generating coding coefficients using a PRNG ... 103

7.1.1 Coefficient density control .. 105

7.1.2 Mersenne twister PRNG type ... 105

7.2 Handling variable source symbol size .. 105

7.3 Encrypting coding coefficient information ... 106

7.3.0 Introduction... 106

7.3.1 Using a bitstream/session key and symmetric keys .. 107

Annex A (normative): xCD-1 .. 109

A.0 Introduction .. 109

A.1 Encoding ... 109

A.2 Decoding .. 112

Annex B (informative): Media service architecture Examples .. 114

B.0 Introduction .. 114

B.1 MPEG-DASH HTTP adaptive streaming service example .. 114

Annex C (informative): Example bitstreams ... 119

C.0 Introduction .. 119

C.1 Multisource Video-on-Demand .. 119

C.1.0 Multisource Video-on-Demand example using code_type xCD-1 ... 119

C.1.1 Bitstream construction .. 119

C.1.2 Sync construction ... 120

C.1.3 Subatom construction ... 121

C.1.3.1 Bitstream header subatom construction .. 121

C.1.3.2 Block header subatom construction .. 123

C.1.3.3 Encoder content information subatom construction ... 126

C.1.3.4 Media segment information subatom construction ... 128

C.1.3.5 Packet subatom construction - systematic symbol .. 132

C.1.3.6 Packet subatom construction - coded symbol ... 134

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)9

C.2 Encrypted coding coefficient information example using CMMF ... 136

Annex D (normative): Content delivery protocol-based instantiations ... 138

D.1 CMMF content delivery protocol principles .. 138

D.1.1 Introduction .. 138

D.1.2 FEC Building Block principles .. 138

D.1.3 FEC Schemes and related information ... 138

D.1.4 FEC Scheme information in CMMF .. 139

D.1.5 Configuration Information parameters ... 141

D.1.6 Example Instantiations ... 142

D.2 FLUTE-based CMMF CDP Instantiation .. 142

D.2.1 Introduction .. 142

D.2.2 Procedures for FLUTE-based CMMF CDP Instantiation .. 143

D.2.3 Extended File Delivery Table ... 144

D.2.3.1 Semantics .. 144

D.2.3.2 Extended FDT Schema for CMMF ... 145

D.2.3.3 Extended FDT Description for CMMF ... 146

D.2.3.4 IANA registration for Extended FDT Description.. 146

D.2.4 Transport object formats .. 147

D.2.4.1 General .. 147

D.2.4.2 Source objects ... 147

D.2.4.3 Coded/repair objects ... 148

D.2.4.3.1 General .. 148

D.2.4.3.2 Mapping of FEC Payload ID information to transport blocks .. 150

D.2.4.3.2.1 General .. 150

D.2.4.3.2.2 Symbol group arrangement 3: encoding symbol interleaving ... 151

D.2.4.3.2.3 Symbol group arrangement 2: source symbol interleaving ... 153

D.2.5 Examples .. 154

D.2.5.1 Single file - source and partial encoding object .. 154

D.2.5.2 Multiple files - self-contained objects including source symbols ... 155

D.2.6 Potential receiver operation .. 155

History .. 156

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)10

List of figures
Figure 1: CMMF layer within multimedia transport stack ..22

Figure 2: CMMF encode example ...24

Figure 3: Example symbol groups ...25

Figure 4: CMMF decode example ...26

Figure 5: CMMF bitstream encoding/packaging ...27

Figure 6: CMMF bitstream decoding ..27

Figure 7: Generic Example CMMF delivery/transport sessions ...28

Figure 8: Delivery session model for CMMF ...29

Figure 9: CMMF delivery architecture reference points ...30

Figure 10: HTTP-Based Adaptive Streaming CMMF Delivery Procedure Example ...33

Figure 11: High-level CMMF bitstream organization ...36

Figure 12: Example symbol arrangement for mbpg_symbol_arrangement=0010b (Source-Symbol Interleaved
Arrangement) ..101

Figure 13: Example symbol arrangement for mbpg_symbol_arrangement=0011b (Encoded-Symbol Interleaved
Arrangement) ..103

Figure 14: Block PRNG ..104

Figure 15: Packet PRNG ...104

Figure 16: Handling variable size data ..106

Figure 17: Bitstream, block, key management ..107

Figure 18: Client process for decryption ...108

Figure 19: Bitstream and key download process ...108

Figure A.1: xCD-1 segment to symbols ..110

Figure A.2: xCD-1 symbol vector and coefficient matrix ...111

Figure A.3: xCD-1 coefficient matrix ...111

Figure A.4: xCD-1 coded symbol vector and decoded coefficient matrix ..112

Figure A.5: xCD-1 symbol reconstruction ..113

Figure A.6: xCD-1 data extraction ..113

Figure B.1: MPEG-DASH with CMMF Delivery System Example ...114

Figure B.2: CMMF reference architecture in relation to MPEG-DASH HTTP adaptive etreaming example115

Figure B.3: Example MPEG-DASH master manifest ...116

Figure B.4: CMMF bitstreams generated to deliver the MPEG-DASH packaged content ...116

Figure B.5: CMMF request and content delivery example for MPEG-DASH ..117

Figure C.1: Multi-source CDN-client communication ..119

Figure C.2: CMMF multisource example bitstream arrangement ...120

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)11

Figure C.3: Bitstream with example encrypted coding coefficient information..137

Figure D.1: High Level Procedure for a FLUTE-based CMMF delivery ...143

Figure D.2: Formation of transport objects from source objects ...151

Figure D.3: Symbol arrangement for arrangement 3 ...152

Figure D.4: Symbol arrangement for arrangement 2 ...154

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)12

List of tables
Table 1: Example mapping..28

Table 2: Example of bitstream variable ...37

Table 3: Example of bitstream structure ...38

Table 4: Example of shorthand If syntax format ...38

Table 5: Example of expanded If syntax format ...38

Table 6: Example of Boolean operation syntax format ...38

Table 7: Example of bitstream label ..39

Table 8: Example of bitstream comment ...39

Table 9: Example of operational variable format ..39

Table 10: Bit field descriptors ...40

Table 11: Syntax of cmmf_bitstream()..40

Table 12: Syntax of subatom() ..40

Table 13: Syntax of sync() ..41

Table 14: Syntax of bitstream_header() ..42

Table 15: Syntax of block_header() ..42

Table 16: Syntax of addl_cce_parameters() ..44

Table 17: Syntax of prng_parameters() ...45

Table 18: Syntax of packet() ...45

Table 19: Syntax of packet_header() ...45

Table 20: Syntax of encoder_content_info() ...46

Table 21: Syntax of media_segment_info() ..47

Table 22: Syntax of cmmf_time() ...49

Table 23: Syntax of chunked_subatom() ...50

Table 24: Syntax of block_group_directory() ...50

Table 25: Syntax of fb_integrity() ...51

Table 26: Syntax of packet_integrity() ..51

Table 27: Syntax of coefficient_vector() ...51

Table 28: Syntax of extension() ..52

Table 29: Syntax of packet_header_only() ..52

Table 30: Syntax of rfc5052_information()...52

Table 31: Syntax of packet_group() ..53

Table 32: Syntax of packet_group_header() ...53

Table 33: Syntax of num_bits_code() ...54

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)13

Table 34: Syntax of block_index_or_count_value() ...55

Table 35: Syntax of multi_block_packet_group() ...55

Table 36: Syntax of mbpg_header() ..55

Table 37: subatom_id meaning ...57

Table 38: Subatom dependencies ..57

Table 39: content_source_type meaning ...59

Table 40: code_type meaning ..59

Table 41: Object Transmission Information Fields ...60

Table 42: addl_block_coding_mask meaning ...64

Table 43: block_mask meaning ...64

Table 44: block_field_size_exp information ...65

Table 45: block_cc_encryption_info_size_bits_code meaning ...66

Table 46: block_cc_encryption_algorithm meaning ...67

Table 47: block_cc_encryption_mode meaning ..67

Table 48: cce_parameter_type meaning ..68

Table 49: block_prng_type meaning ...69

Table 50: block_prng_seed_bits_code meaning ..69

Table 51: packet_mask meaning ...71

Table 52: content_id_type description ..74

Table 53: segment_tag_mask meaning ...76

Table 54: bit_rate_bits_code meaning ...77

Table 55: ms_content_type description ...78

Table 56: frame_rate values ..79

Table 57: hdr_compatibility_mask values ...79

Table 58: sampling_frequency values ...80

Table 59: audio_channel_config values ..81

Table 60: accessibility_mask meaning ..82

Table 61: DD:HH:MM:SS format fields and meaning..83

Table 62: int_seconds_bits_code meaning ..83

Table 63: fract_seconds_bits_code meaning ...84

Table 64: fract_seconds range and divisor ..84

Table 65: block_group_dir_mask meaning ...86

Table 66: fb_hash_type meaning...87

Table 67: fb_hash_algorithm meaning ..87

Table 68: fb_hash_size meaning ...88

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)14

Table 69: Allowed fb_hash_size values based on fb_hash_algorithm ..88

Table 70: packet_hash_algorithm meaning ...89

Table 71: packet_hash_size meaning ..89

Table 72: Allowed packet_hash_size values based on packet_hash_algorithm ..89

Table 73: packet_group_type meaning ...91

Table 74: packet_group_symbol_arrangement Meaning ..92

Table 75: packet_group_mask meaning ..92

Table 76: Arithmetic coded symbol arrangement in a packet group pseudocode ...94

Table 77: bits_code meaning ...95

Table 78: mbpg_symbol_arrangement Meaning ...97

Table 79: mbpgsai_bits_code meaning ...98

Table 80: Separate systematic and interleaved coded symbol arithmetic sequences symbol arrangement in a multi-block
group pseudocode ..99

Table 81: Interleaved by block coded symbol arithmetic sequences symbol arrangement in a multi-block group
pseudocode ..102

Table 82: Density controller pseudocode ..105

Table 83: Mersenne twister pseudocode ...105

Table C.1: sync() structure construction ...120

Table C.2: Bitstream header subatom construction ...121

Table C.3: Block header subatom construction ...123

Table C.4: Encoder content info subatom construction ...126

Table C.5: Media segment info subatom construction ..128

Table C.6: Packet subatom - systematic packet construction ..132

Table C.7: Packet subatom - coded packet construction ...134

Table D.1: Parameters and Coding of FEC schemes used in CMMF ...139

Table D.2: FEC scheme parameters to CMMF mapping ..140

Table D.3: Example Configuration Information parameters ...141

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)15

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword
This Technical Specification (TS) has been produced by Joint Technical Committee (JTC) Broadcast of the European
Broadcasting Union (EBU), Comité Européen de Normalisation ELECtrotechnique (CENELEC) and the European
Telecommunications Standards Institute (ETSI).

NOTE: The EBU/ETSI JTC Broadcast was established in 1990 to co-ordinate the drafting of standards in the
specific field of broadcasting and related fields. Since 1995 the JTC Broadcast became a tripartite body
by including in the Memorandum of Understanding also CENELEC, which is responsible for the
standardization of radio and television receivers. The EBU is a professional association of broadcasting
organizations whose work includes the co-ordination of its members' activities in the technical, legal,
programme-making and programme-exchange domains. The EBU has active members in about
60 countries in the European broadcasting area; its headquarters is in Geneva.

European Broadcasting Union
CH-1218 GRAND SACONNEX (Geneva)
Switzerland
Tel: +41 22 717 21 11
Fax: +41 22 717 24 81

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)16

Introduction
The Coded Multisource Media Format (CMMF) is an extensible container format designed to facilitate the management
and interchange of audio-visual media and metadata in one or more coded representations (e.g. encoded with
application-layer, linear, network, or channel codes).

The coded media representations supported by CMMF enable the efficient use of multisource, multipath and
multi-access connectivity for network-delivered media applications.

Additionally, CMMF supports signalling and encapsulations of:

• Coding type.

• Media-related information and metadata.

• Payload integrity information.

• Encoder UUID.

This bitstream format provides a standard to the industry so that a single container format can be used for a wide variety
of content and use cases.

Motivation

CMMF provides a generic container format that supports multimedia (e.g. video and audio streaming, broadcast, XR,
video conferencing, and online gaming) delivery through coding the underlying content. This format supports multiple
types of codes (currently xCD-1, RaptorQ, and Reed-Solomon) and can be optimized for a range of networks and use
cases. Specifically, CMMF supports efficient decentralized multi-source and multi-path content delivery for use cases
such as audio and video streaming that require high availability/robustness but also have strict latency and bandwidth
constraints. CMMF is designed to operate with existing and future streaming source (e.g. HLS, MPEG-DASH, CMAF,
etc.) and network protocols (e.g. HTTP, TCP, UDP, WebRTC, etc.) protocols, while remaining protocol-agnostic. A
multisource media encoder is envisioned to take an existing packaged media format as a source and generate CMMF
bitstreams for delivery over networks to clients for rendering.

CMMF provides a flexible and extensible framework for managing the delivery of encoded multimedia content.
Standardizing the container format rather than a code type enables cooperation within the industry by creating a
common interchange format for the distribution and delivery of encoded content. This allows Service Providers
(e.g. Mobile Network Operators or media platforms) to distribute media in an encoded format that can be interpreted
and decoded by their partners.

Document structure

Clause 4 gives an overview of the functionality provided by the CMMF bitstream format.

Clause 5 provides the definition of the CMMF bitstream format, with clause 5.1 defining the semantics, and clause 5.2
the syntax.

Clause 6 provides a description of the bitstream elements.

Clause 7 gives guidance for implementations of the CMMF container format.

Annex A provides the definition of the xCD-1 coding format.

Annex B provides a high-level example of a Media Service Architecture with CMMF.

Annex C provides application examples of the CMMF container format, with different use cases and coding formats.

Annex D provides a mapping of CMMF to IETF RFC 5052 [15] principles, including application examples.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)17

1 Scope
The present document specifies a Coded Multisource Media Format (CMMF) container. This format is used to support
storage and delivery of linear, network or channel coded multisource audio/video media over networks. It also specifies
the xCD-1 linear coding type. The present document also includes examples.

2 References

2.1 Normative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] IETF RFC 9562: "Universally Unique IDentifiers (UUIDs)".

[2] EIDR: "EIDR ID Format", V1.51, October 5, 2017.

[3] IETF RFC 8107: "Advertising Digital Identifier (Ad-ID) URN Namespace Definition".

[4] ISO 639: "Code for individual languages and language groups".

[5] IETF RFC 6381: "The 'Codecs' and 'Profiles' Parameters for "Bucket" Media Types".

[6] IETF RFC 4646: "Tags for Identifying Languages".

[7] ISO/IEC 646:1991: "Information technology -- ISO 7-bit coded character set for information
interchange".

[8] Mersenne Twister Home Page: "A very fast random number generator Of period 219937-1".

[9] FIPS PUB 180-4: "Secure Hash Standard (SHS)", August 2015.

[10] ISO/IEC 23091-2: "Information technology -- Coding-independent code point -- Part 2: Video".

[11] IETF RFC 3629: "UTF-8, a transformation format of ISO 10646".

[12] IETF RFC 4648: "The Base16, Base32, and Base64 Data Encodings".

[13] IETF RFC 6330: "RaptorQ Forward Error Correction Scheme for Object Delivery".

[14] IETF RFC 5510: "Reed-Solomon Forward Error Correction (FEC) Schemes".

[15] IETF RFC 5052: "Forward Error Correction (FEC) Building Block".

[16] IETF RFC 5053: "Raptor Forward Error Correction Scheme for Object Delivery".

[17] IETF RFC 5775: "Asynchronous Layered Coding (ALC) Protocol Instantiation".

[18] IETF RFC 6726: " FLUTE - File Delivery over Unidirectional Transport".

[19] ETSI TS 126 346: "Universal Mobile Telecommunications System (UMTS); LTE; 5G;
Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs (3GPP TS 26.346)".

[20] Recommendation ITU-R BS.2051-3: "Advanced sound system for programme production".

https://docbox.etsi.org/Reference
https://www.rfc-editor.org/info/rfc9562
https://eidr.org/documents/EIDR_ID_Format.pdf
https://www.rfc-editor.org/info/rfc8107
https://www.iso.org/advanced-search/x/title/status/P/docNumber/639/docPartNo/docType/0/langCode/ics/currentStage/true/searchAbstract/true/stage/stageDateStart/stageDateEnd/committee/sdg
https://www.rfc-editor.org/info/rfc6381
https://www.rfc-editor.org/info/rfc4646
https://www.iso.org/standard/4777.html
http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.iso.org/search.html?q=ISO%2FIEC%2023091-2
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc6330
https://www.rfc-editor.org/info/rfc5510
https://www.rfc-editor.org/info/rfc5052
https://www.rfc-editor.org/info/rfc5053
https://www.rfc-editor.org/info/rfc5775
https://www.rfc-editor.org/info/rfc6726
https://www.etsi.org/deliver/etsi_ts/126300_126399/126346/
https://www.itu.int/rec/R-REC-BS.2051/en

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)18

[21] IETF RFC 1321: "The MD5 Message-Digest Algorithm".

[22] IETF RFC 4337: "MIME Type Registration for MPEG-4".

[23] IETF RFC 2046: "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types".

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] IETF RFC 8446: "The Transport Layer Security (TLS) Protocol Version 1.3".

[i.2] ISO/IEC 23009-1: "Information technology -- Dynamic adaptive streaming over
HTTP (DASH) -- Part 1: Media presentation description and segment formats".

[i.3] ISO/IEC 23000-19: "Information technology -- Multimedia application
format (MPEG-A) -- Part 19: Common media application format (CMAF) for segmented media".

[i.4] IETF RFC 2616: "Hypertext Transfer Protocol -- HTTP/1.1".

[i.5] IETF RFC 9110: "HTTP Semantics".

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

bitstream: sequence of bits

block: unit of data on which a block-based code is applied

NOTE: All coding operations (encoding and decoding) on one block are independent of all coding operations on
another block.

block coding: coding technique where the input is first be segmented into a sequence of blocks, or chunks; then
encoding and decoding are performed independently on a per-block basis

block size: number of bytes that a block of data contains

block symbol count: number of source symbols belonging to a block

byte: 8 bits

channel: generic term for any type of communication technology

EXAMPLE: An Ethernet link, a Wi-Fi® network, or a full path between two nodes within a network.

code rate: ratio between the number of source symbols, and the number of source plus coded or repair symbols

NOTE: The code rate is greater than zero, and less or equal to one, where a code rate close to one indicates that a
small number of coded or repair symbols have been produced during the encoding process, while a code
rate close to zero indicates a large number of coded or repair symbols.

https://www.rfc-editor.org/info/rfc1321
https://www.rfc-editor.org/info/rfc4337
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc8446
https://www.iso.org/advanced-search/x/title/status/P/docNumber/23009/docPartNo/1/docType/0/langCode/ics/currentStage/true/searchAbstract/true/stage/stageDateStart/stageDateEnd/committee/sdg
https://www.iso.org/advanced-search/x/title/status/P/docNumber/23000/docPartNo/19/docType/0/langCode/ics/currentStage/true/searchAbstract/true/stage/stageDateStart/stageDateEnd/committee/sdg
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc9110

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)19

code type: type of coding (linear, network, or channel coding scheme) used to create coded symbols

coded symbol, encoded symbol, or repair symbol: unit of data that is the result of a coding operation

coding or encoding: operation that takes source symbols as input and produces coded symbols as output

coding coefficient: coefficient chosen from the same finite field encoding and decoding operations are performed over

NOTE: Methods of choosing this coefficient may include: randomly (e.g. LT codes), in a predefined table
(e.g. Reed-Solomon, etc.), or using a predefined algorithm plus a seed (e.g. LDPC, RaptorQ, etc.).

coding matrix, generator matrix, or coefficient matrix: matrix (G) that transforms the set of input symbols (X) into a
set of coded or repair symbols (Y): Y = X • G

NOTE: Defining a generator matrix is typical with block codes. The set of input symbols X can consist only of
source symbols.

coding vector or coefficient vector: set of coding coefficients used to generate a certain coded or repair symbol
through linear coding

NOTE: The number of nonzero coefficients in the Coding Vector defines its density.

decoding: operation that takes coded symbols as input and produces source symbols as output

encoding: operation that takes source symbols as input and produces coded symbols as output

encoding block: See block.

encoding symbol: See coded symbol.

encoding window or coding window: set of source symbols used as input to the coding operations

NOTE: The set of symbols will typically change over time, as the coding window slides over the input flow.

encoding window size or coding window size: number of source symbols in the current encoding window

NOTE: This size may change over the time.

erasure: drop or loss of information along a communication path

erasure channel: communication path where information is either dropped or received without any error

finite field, galois field, or coding field: finite fields, used in linear codes, have the desired property of having all
elements (except zero) invertible for the + and × operators, and all operations over any elements do not result in an
overflow or underflow

finite field size or coding field size: number of elements in a finite field

EXAMPLE: The binary extension field {0..2m-1} has size q = 2m.

flow or stream: stream of information (or packets) that are logically grouped

input or source symbol: unit of data that is an input to an encoding operation or an output of a decoding operation

linear coding: process in which a linear combination of a set of source symbols is generated using a given set of
coefficients and resulting in a coded symbol or repair symbol

multipath coding: coding that enables transmission over multiple routes that have multiple (at least partially) disjoint
paths from the source to each given destination

multisource coding: coding that enables transmission from multiple sources over (at least partially) disjoint paths to
each given destination

network: interconnected set of nodes that communicate over a collection of links or channels

node: point of connection in a communication network

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)20

object: ordered sequence of data and associated metadata delivered as part of a flow. an object can be a source object,
or a coded/repair object

output symbol: See coded symbol.

packet: unit of data that is sent over a network

rank or encoding rank: number of linearly independent linearly encoded symbols, or equivalently the number of
linearly independent equations of the linear system

repair flow: flow containing repair packets after FEC encoding

single-path coding: coding over a route that has a single path from the source to each destination(s). in case of
multicast or broadcast traffic, this route is a tree

sliding window coding: coding technique that generates coded or repair symbol(s) on the fly, from the set of source
symbols present in the sliding encoding window at that time

NOTE: The sliding window may be either of fixed size (Fixed Sliding Window), or of variable size over time
(Elastic Sliding Window).

sliding window size, encoding window size, or coding window size: number of symbols in the current window

NOTE: This size may change over the time.

source coding: process of removing redundant and/or (perceptually) irrelevant information from an information source,
i.e. compression of data or media (audio, video)

source data, source file, or original data: unit of data that may be partitioned into blocks where each block is an input
to an encoding operation

source flow: flow of source information to which coding is to be applied, potentially along with other source flows

source node: node that generates one or more source flows

source symbol, information symbol, systematic symbol: unit of data originating from the source that is used as input
to encoding operations

symbol: unit of data that is manipulated during encoding and decoding operations

symbol size: size of each symbol on which encode and decode operations are performed

systematic coding: coding technique where source symbols are part of the output flow generated by an encoder

3.2 Symbols
For the purposes of the present document, the following symbols apply:

^ Exponentiation: a^b is equivalent to ab

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

Ad-ID Advertising digital Identifier
AES Advanced Encryption Standard
ASCII American Standard Code for Information Interchange
CBC Cipher Block Chaining
CDN Content Delivery Network
CDP Content Delivery Protocol
CFB Cipher FeedBack
CI Configuration Information
CMMF Coded Multisource Media Format
CRC Cyclic Redundancy Check

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)21

CTR CounTeR
DASH Dynamic Adaptive Streaming over HTTP
ECB Electronic Code Book
EFD Extended FDT Description
EFDT Extended File Delivery Table
EIDR Entertainment IDentifier Registry
ESI Encoding Symbol ID
FDT File Delivery Table
FEC Forward Erasure Correction
HAS HTTP Adaptive Streaming
HDR High Dynamic Range
HLS HTTP Live Streaming
HTTP Hyper-Text Transfer Protocol
IV Initialization Vector
KMS Key Management System
LDPC Low-Density Parity-Check
LT code Luby Transform code
MIME Multipurpose Internet Mail Extensions
MT Mersenne Twister
OFB Output FeedBack
OTI Object Transmission Information
PGP Pretty Good Privacy
PRNG PseudoRandom Number Generator
SBN Source Block Number
SHA-1 Secure Hash Algorithm 1
TCP Transmission Control Protocol
TLS Transport Layer Security
TOI Transport Object Identifier
TSI Transport Session Identifier
UDP User Datagram Protocol
UTF Unicode Transformation Format
UUID Universally Unique IDentifier
VoD Video-on-Demand
xCD-1 Multisource Media Coding (Experience Coding and Delivery)

4 Overview

4.0 Introduction
Media delivery over the internet today relies on using a single representation for coded media across storage,
distribution, and delivery systems. Within a server-client single-path streaming model, traditional source coding
techniques are applied to the media and segment-based media formatting is utilized for storage and delivery. This
allows clients to download appropriate bit rates and/or resolutions of media during streaming sessions, aiming to
provide a high-quality experience across varying network conditions.

Content Delivery Networks (CDNs) are commonly used to copy media across multiple Points of Presence (PoPs) to
help improve Quality of Service (QoS) and Quality of Experience (QoE) by distributing and caching media closer to
viewers. Client traffic from a CDN is commonly delivered through a single network path and relies on a single
representation of the media. The CDN server fulfils client requests during the streaming session until the client (or
related steering mechanism) requests switching to a different CDN due to network conditions, performance metrics, or
other metrics that impact QoE. Switching among available CDNs is not always seamless and can result in clients
experiencing delays and/or periods of degraded QoE.

Content services using multiple CDNs replicate identical media representations across each of them. This redundancy
limits the efficiency in settings where, the downloading of media over a multiple network paths to a client device from
two or more CDNs, content origins, network storage locations, or in multi-access settings, is necessary to ensure the
highest degree of network QoS is continuously available.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)22

The Coded Multisource Media Format (CMMF) provides a framework to enable efficient use of multiple information
sources and network pathways to improve network QoS and client QoE in cloud-based or network-powered settings. By
redesigning the media format from using a single representation, single encoded version of the source media to using
multiple representations of the source media (multisource), CMMF enables seamless load balancing among the most
performant network pathways and information sources (e.g. CDN servers, storage servers, etc.) and limits or eliminates
the amount of redundant information stored and transmitted since each CMMF source contains a unique/useful coded
version of the source media. This method efficiently enhances network performance (e.g. increased throughput/rendered
bit rate, lower rebuffering and start times) and resilience without having to rely on centralized orchestration or complex
download scheduling.

CMMF is designed to carry multisource-coded representations of media, where multiple CMMF bitstreams can be
generated with each containing unique/useful coded versions of the source content. Multisource representations (or
CMMF encoded versions) are generated using various linear, network, or channel coding methods. A single CMMF
bitstream may contain all of the necessary information needed to reconstruct the original source information; or in some
use cases, multiple CMMF bitstreams may be required to fully reconstruct the original source content.

Different coding methods are supported in CMMF. Some coding methods are typically employed in Forward Error
Correction (FEC) applications, such as FEC codes/schemes that follow IETF RFC 5052 [15]. The coded data generated
by these codes can be mapped to and carried within a CMMF bitstream. As such, similar concepts for partitioning of
media data, ancillary data to aid in transmission and delivery, are re-used and expanded upon for the context of creating
multisource representations (or simply to leverage a common bitstream format for carrying a single source
representation). While the terms "repair" or "FEC" appear in the present document, this is done to provide a foundation
for comparison with terminology used for these existing codes/schemes and is not necessarily meant to imply that
CMMF is solely used to repair some form of loss or corruption.

CMMF has been designed in accordance with standard networking principles as an additional, independent layer within
the media delivery stack. Moreover, CMMF is agnostic to how the underlying source content has been prepared
(i.e. encoded and packaged) and is also agnostic to the underlying methods used to store and transport content within a
network.

Figure 1: CMMF layer within multimedia transport stack

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)23

A system utilizing CMMF is envisaged to:

• Take elementary media streams in an already packaged media format as the source data.

• Encode the source media using an appropriate CMMF coding method.

• Generate multiple CMMF bitstreams according to the syntax and semantics described in clause 5 and clause 6.

• Deliver the CMMF bitstreams (either on-the-fly or taken from storage) and possibly ancillary configuration
data over networks using an appropriate transport protocol(s) to clients.

• Decode the received CMMF bitstreams.

• Client renders the CMMF-decoded media.

Annex C provides different examples illustrating how CMMF can be used to provide multisource media delivery.

4.1 Source data
Source data is used to create multiple CMMF encoded versions. CMMF can be applied to any media object type, such
as a WAV audio clip, an MPEG-4 video clip, an MPEG Dynamic Adaptive Streaming over HTTP (DASH) [i.2] video
segment, or an MPEG Common Media Application Format (CMAF) [i.3] addressable resource.

In a common practice, a CMMF encoder will take an existing packaged media format (e.g. ISO BMFF/CMAF). CMMF
is not a replacement for these formats. Rather, CMMF supplements these formats by enabling more efficient and
flexible strategies to deploy and manage these existing formats within the network. Staying agnostic to the packaging
format allows CMMF to operate in a decentralized manner by avoiding the requirement of establishing and maintaining
manifests. For any given asset, new CMMF bitstreams can be dynamically generated and/or destroyed without the need
to touch existing CMMF bitstreams for that asset or updating manifests in all the places they are located.

The source data encoded within a CMMF bitstream may have additional assigned metadata associated with it that may
be used by an application or a network delivery protocol to properly process the data or deliver it across a network.
Examples may include manifests, URLs to the source data (as referred to by an application), the content type, timing
information, etc. It is not intended for CMMF to replace this metadata. Depending on the application, use case, network
architecture, etc., this metadata may or may not be communicated using CMMF.

4.2 CMMF bitstream creation

4.2.1 Encoding CMMF

Generating a CMMF encoded version can be either a real-time process, or a file-based process depending on the
application. In this process, the application of linear, network or channel coding to source coded and packaged audio-
visual media (i.e. the source data) typically follows these basic steps:

1) Partitioning of the source data into block_count number of source blocks. The value of block_count may
be small (e.g. 1) or large depending on the size of the source data and the code type (the specific linear,
network, or channel coding scheme) that is applied.

2) Partition each of the source blocks into block_num_symbols worth of source symbols, xi, where i is the
index of the original source symbol in the source block. Each symbol is of size block_symbol_size (in
bytes), padding the final symbol with zero-valued bytes if necessary. The value of block_symbol_size is
typically chosen by the application, for example taking into account the size of the data to be encoded. In a
similar way, the value of block_num_symbols is typically chosen based on the specific application and the
code type used.

3) Based on the code type used, encode the source symbols to create at least block_num_symbols worth of
coded_symbol instances (depending on code type), yi. The number of coded symbols generated is typically a
function of the code type, use case, and network. Each code type will take in certain coding parameters
(e.g. block_count, block_num_symbols) and generate additional coding parameters
(e.g. block_symbol_size).

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)24

A graphical representation of these steps is illustrated by the example in Figure 2. In this example, the original source
(media) data file or stream is partitioned into three source blocks. Each source block is further partitioned into eight
source symbols xn,i, where n is the block index (generally n=0, 1, …, block_count - 1) and i = 0, 1, …,
block_num_symbols - 1. These source symbols are then encoded by one of the supported CMMF code types to
produce the resulting coded symbols yn,j, i ≤ j.

Figure 2: CMMF encode example

The resulting coded symbols and associated coding parameters are formatted per the CMMF syntax as described in
clause 5 and clause 6, for storage, interchange, or delivery. The coding parameters are necessary to ensure that a
compliant CMMF decoder can reconstruct the original (media) source symbols and the source file. Depending on the
type of code utilized, the coding parameters can include an Encoding Symbol Index (ESI), a block index or Source
Block Number (SBN), coefficient vector, Pseudo-Random Number Generator (PRNG) seed, etc. along with the
block_num_symbols, block_symbol_size, etc. An implementor may choose the code type and how the source data
is partitioned into blocks and symbols. In some cases (for example if the code type is an FEC code/scheme based on
IETF RFC 5052 [15]) an implementor may follow the block partitioning algorithm specified in section 9 of IETF
RFC 5052 [15] or the partitioning defined in a specific FEC scheme.

CMMF supports multiple methods of data partitioning and coding. In addition to block coding, where the source data
and source blocks are available in their entirety at the time of CMMF bitstream generation, CMMF also supports
sliding-window constructions for use cases that may have rigid latency requirements and the availability of the source
data is variable in both time and size.

Depending on the application, encoding of a CMMF bitstream may or may not be an active process (i.e. real-time). A
CMMF bitstream may be generated at the time of a request by an application/client, within a CMMF-aware network
delivery protocol, or the generation can occur offline and bitstreams stored for future delivery and/or processing.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)25

4.2.2 Symbol groups in CMMF

Coded/repair symbols (including systematic or source symbols) can be grouped and packaged in different ways within
the CMMF bitstream. The symbol grouping can be chosen to best fit the needs of a given application. Example symbol
groups include:

• Individual symbol group (i.e. not grouped): Each coded/repair symbol is packaged individually within the
bitstream. See also clause 6.1.6.

• Single block symbol group: Coded/repair symbols from the same block can be grouped and packaged
collectively within the bitstream. See also clause 6.1.18.

• Multiple block symbol group: Coded/repair symbols from multiple blocks can be grouped and packaged
collectively within the bitstream. See also clause 6.1.22.

Example symbol groups are shown in Figure 3.

Figure 3: Example symbol groups

In Figure 3, a file is split into two blocks, each partitioned into five symbols, and each encoded to ten coded/repair
symbols (including the five source/systematic symbols):

a) Shows each coded/repair symbol as its own individual symbol group.

b) Shows examples of four single block symbol groups.

c) Shows examples of two multiple block symbol groups.

The arrangement of symbols within a symbol group may follow a specific pattern. Symbol groups may be distinct,
i.e. each unique coded/repair symbol is added exactly once to exactly one symbol group. Symbol groups may also have
a property of completeness, i.e. the source object can be recovered from all symbols in the symbol group.

4.2.3 Decoding CMMF

The CMMF bitstream specifies and enables carriage and signalling of essential coding parameters required for
reconstruction of the original source symbols in a decoder.

The basic steps for decoding include:

1) For each block, decode the received coded symbols yn,j recreating the source symbols xn,i.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)26

2) Concatenate each source symbol xn,i and removing any zero-padding from the last symbol if necessary to
reform the original source block.

3) Concatenate each of the reassembled source blocks to reform the original source coded media file/data.

These steps are illustrated in Figure 4.

Figure 4: CMMF decode example

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)27

4.2.4 Mapping to/from CMMF

The coding CMMF employs is essentially a mapping of information from one form to another to enable additional
methods and approaches to communicate or store that information across a network. CMMF supports multiple code
types to help ensure applicability in different use cases. A CMMF encoder and decoder may include native support for
one or more code types. For some code types, existing and/or standardized encoders, decoders, and bitstream formats
may already exist. To improve interoperability and make use of CMMF as an interchange and container format, in some
applications a CMMF encoder may contain a bitstream mapper used to translate the coding parameter(s) and coded
symbol(s) information produced by existing/standardized linear, network or channel encoders to the equivalent bitfield
information and format(s) in the CMMF bitstream as defined in clause 6. Conversely, a receiver, upon parsing a CMMF
bitstream, may be required to implement a de-mapping function to translate the relevant CMMF bitfield information
back into the original bitfield syntax or format to use with existing/standardized decoder components. High-level
representative functional components for generating and parsing a CMMF bitstream are shown in Figure 5 and
Figure 6.

Figure 5: CMMF bitstream encoding/packaging

Figure 6: CMMF bitstream decoding

Although shown as a single processing block in the figures above, the mapper and de-mapper functions may be specific
for each code type. The code type specific encoders and decoders may be either tightly integrated or only loosely
integrated depending on the availability of existing components, it is left for the integrator to determine the level of
integration.

As an example of the mapping process when using a Reed-Solomon code type, some of the coding parameters may
include:

• Galois Field Size.

• Source Block Number (for each coded symbol).

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)28

• Encoding Symbol ID (for each coded symbol).

Table 1 shows a sample mapping to CMMF for these two coding parameters.

Table 1: Example mapping

Original coding parameter CMMF coding
parameter

Mapping function Relevant clause

Galois Field Size {where size
= 2^^m}

 if (m==1) {block_mask =
BBBBB0Bb} else
{block_field_size_exp = m}

6.1.5.16, 6.1.5.19

Source Block Number (SBN) packet_block_index packet_block_index = SBN 6.1.6.1
Encoding Symbol ID (ESI) packet_symbol_index packet_symbol_index = ESI 6.1.7.4

4.3 Media delivery using CMMF

4.3.1 Overview

CMMF supplements existing methods to stream/deliver media across networks by enabling content to be delivered from
multiple sources and/or across multiple network paths. In general, CMMF can be integrated into existing workflows
through the addition of a minimal set of new components. All that is required is a CMMF bitstream generator/encoder
located at the entry point into or within the network and a CMMF receiver located near or on a media client. CMMF
bitstreams created by one or more CMMF bitstream encoders can then be cached and/or delivered from multiple
network sources or across multiple network paths using existing network protocols (e.g. HTTP/TCP, webRTC, FLUTE,
etc.). Figure 7 shows generic example of some possible delivery/transport scenarios that might occur in a many-to-one
multisource application using CMMF. There are six scenarios shown where the creation, storage/caching, and delivery
of CMMF bitstreams containing encoded representations of the original source media differ.

Figure 7: Generic Example CMMF delivery/transport sessions

In Figure 7, objects are delivered, or flow, from the original source media to a CMMF receiver. An object can be a
source object (which is essentially the source data), or a coded/repair object (i.e. a CMMF bitstream) generated by a
CMMF encoder. In the first scenario, the source object is delivered to the CMMF receiver as would occur in an existing
"legacy" application. While not shown, this source object may be stored and/or cached within the network prior to
delivery to the CMMF receiver. In the second and fifth scenarios, a real-time CMMF encoder creates a coded
representation (i.e. a CMMF bitstream) from the source data which is then transmitted immediately to the CMMF
receiver. The third, fourth, and sixth scenarios show a CMMF encoder creating another coded representation of the
source, but the output of this CMMF encoder is stored and/or cached where it sits until accessed by a CMMF receiver.
Other scenarios and integrations are possible that are not depicted within the diagram, including scenarios where the
CMMF encoder and an existing network component (e.g. storage, cache, network protocol) are tightly integrated.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)29

Any single scenario, multiple of a single scenario, or combination of scenarios can be used in the delivery of a source
object using CMMF. Objects, whether source and/or coded/repair objects, are collected by the CMMF receiver where
they are processed and the decoded yielding the original source media. Further details regarding the delivery/transport
of CMMF based on existing use cases and network protocols are provided in annex A, annex B, and annex C.

4.3.2 CMMF transport objects and transport sessions

Objects to be delivered using CMMF in the context of the present document may be organized using transport objects
where transport objects are organized in a delivery session composed of one or more transport sessions:

• A transport session consists of one or multiple transport objects. Each transport object can be uniquely
identified within the session, for example, by a Transport Object Identifier (TOI).

• Each transport object is assigned to exactly one transport session within the delivery session. Transport
sessions can be uniquely identified by a Transport Session Identifier (TSI).

• Transport objects within a transport session are uniquely identified by a TOI and may be ordered.

• Transport objects within a transport session may share common metadata and other properties.

• Transport objects within a transport session may have associated timing, for example media time.

• Transport objects in different transport sessions may contain source and/or coded/repair objects generated
from the same source data.

An overview of a CMMF session model is provided in Figure 8. A delivery session consists of S transport sessions,
each identified by a TSI = 0, …, S-1, and each transport session consists of N[TSI] transport objects, each identified by
a TOI = 0, …, N[TSI]-1. Note that this model applies if only a single transport session with a single transport object is
created.

Figure 8: Delivery session model for CMMF

The method used to form transport objects and map them to TSI/TOI combinations within a delivery session is
application and use case dependent. Object formation and mapping may be dependent on numerous factors including
the formatting of the underlying source data, application requirements, network protocols, content delivery protocols,
etc.

4.3.3 CMMF delivery architecture reference points

CMMF provides a general framework for multisource-coded media that can be utilized across many different media
delivery architectures and use cases. While many of these architectures and scenarios differ in one way or another,
many common concepts and approaches are often shared. Figure 9 provides a notional reference architecture
comprising of common components within media delivery architectures and illustrates how CMMF can be integrated
within them.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)30

Figure 9: CMMF delivery architecture reference points

Figure 9 shows four major components:

• Application Provider: The application provider is responsible for producing source media and configuring
their service. Sub-components within the Application Provider include:

- Source Transport Objects: Source Transport Objects consist of original source media intended to be
delivered to a Media Application/Client. Examples may include CMAF/MPEG-DASH/HLS video/audio
segments, etc.

- Media Information: Depending on the method used to prepare the source media for delivery or the use
case, information may be defined that describes the characteristics of that media. Examples may include
MPEG-DASH/HLS manifests, etc. This information may include details on how the source transport
objects are structured within a delivery session.

- CMMF Configuration Information: Depending on the use case and delivery architecture, global
configuration information necessary for the delivery of source media using CMMF may be defined. This
information may include details about how to configure either the CMMF encoder or decoder, provide
information about where a CMMF receiver can access CMMF bitstreams, etc. In some use cases, the
CMMF Configuration Information may fully include the Media Information or in other cases the CMMF
Configuration Information may be used as a supplement to the Media Information. While the reference
architecture shows that the Application Provider is aware of CMMF's use and defines the CMMF
Configuration Information, use cases and delivery architectures exists where the Application Provider is
agnostic to the CMMF's use. In these use cases and delivery architectures, the CMMF Configuration
Information may be defined by a network provider or other entity responsible for delivering the
Application Providers' media. The present document defines one instantiation of CMMF Configuration
Information based on an Extended File Delivery Table (EFDT).

• CMMF Bitstream Generator/Source: CMMF Bitstream Generators/Sources are responsible for generation of
CMMF bitstreams containing coded representations of Source Transport Objects. Depending on the use case
and/or network architecture, one or more CMMF Bitstream Generators/Sources may be used. Their location(s)
may be centralized or distributed across a network. In some deployments, a single CMMF Bitstream
Generator/Source may be collocated with the Application Provider and create every CMMF bitstream used in
delivery of the required media. In other deployments, CMMF Bitstream Generators/Sources may be located at
each PoP within the network where content is cached and only responsible for creating CMMF bitstreams
intended to be cached only on that specific PoP. These generators/sources may also create Coded/Repair
Objects as part of an active process (i.e. in real-time) or off-line as the use case/delivery architecture dictates.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)31

• CMMF Receiver: CMMF Receivers are responsible for obtaining one or more CMMF bitstreams created by
one or more CMMF Bitstream Generators/Sources, decoding those CMMF bitstreams, and recovering the
original source media. A CMMF receiver does not necessarily require any one CMMF bitstream in its entirety.
Rather, it requires enough information from all received bitstreams to be able to decode, at which point
delivery of the remainder of any outstanding CMMF bitstream(s) may be terminated. The CMMF receiver
may also use parts of source objects together with CMMF bitstreams to recover the entire source objects. The
CMMF Receiver may be collocated with the Media Application/Client or located elsewhere in the network at a
point where multisource/multipath delivery is no longer desired. The CMMF Receiver may require Media
Information, CMMF Configuration Information, and/or information from the Media Application/Client to
obtain the required CMMF bitstreams and recover the associated source media. The CMMF Receiver outputs
recovered Source Transport Objects. Depending on the implementation of the interface between the CMMF
Receiver and Media Application/Client, these recovered Source Transport Objects may be cached within the
CMMF Receiver until the media application requires them or they may be immediately delivered to the media
application as they are recovered.

• Media Application/Client: The Media Application/Client is responsible for playback of the recovered source
media. In some use cases, the Media Application/Client may control which source media is selected (using the
Media Configuration Information) for playback. In these cases, the Media Application/Client may provide
input via a Media Control process to the CMMF Receiver.

Figure 9 also shows reference points between the components listed above. Depending on the use case and delivery
architecture, these reference points may or may not be utilized:

• C1: This reference point is included as reference only and is not intended to replace or replicate the process
other protocols (e.g. MPEG-DASH, HLS, etc.) use to transfer media information between an Application
Provider and Media Application/Client. It describes the Media Information that is sent from the Application
Provider to the Media Application/Client. This information generally describes the source media; and an
example may include a MPEG-DASH or HLS manifest.

• C2: This reference point describes the Media Information used in defining the CMMF Configuration
Information. For example, this information may be used to define source blocks within CMMF bitstreams
based the structure defined in the Media Information.

• C3: This reference point describes the Media Information that is sent to and used by the CMMF Bitstream
Generator/Source to produce coded/repair transport objects.

• C4: This reference point describes the CMMF Configuration Information that is sent to and used by the
CMMF Bitstream Generator/Source. This information may be used to configure the CMMF Bitstream
Generator/Source and/or used in the production of coded/repair transport objects.

• C5: This reference point describes the CMMF Configuration Information that is sent to and used by the
CMMF Receiver. This information may contain details not otherwise specified within clause 5 and clause 6.
For example, it may contain information that is used by the CMMF Receiver for purposes such as transport
object discovery, how Coded/Repair Transport Objects are formed, system operation, etc.

• C6: This reference point describes the Media and/or CMMF Configuration Information that is sent by the
CMMF Bitstream Generator/Source to the CMMF receiver. Unlike the other interfaces, this interface may
contain configuration information that is specific to a given transport session and/or network protocol. An
example may include the delivery of an EFDT.

• S1: This reference point provides Source Transport Objects between the Application Provider and one or more
CMMF Bitstream Generators/Sources. These objects are unmodified from the original media/data. These
objects may be used in the creation of Coded/Repair Transport Objects encapsulated within one or more
CMMF Bitstreams.

• S2: This reference point provides Source Transport Objects between the Application Provider and the CMMF
Receiver. These objects are unmodified from the original media/data.

• S3: This reference point provides Source Transport Objects between the CMMF Receiver and the Media
Application/Client. These objects may have been obtained by the CMMF Receiver from reference point S2 or
recovered from Coded/Repair Transport Objects received over reference point R1.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)32

• R1: This reference point provides Coded/Repair Transport Objects between one or more CMMF Bitstream
Generators/Sources and the CMMF Receiver. Details on the formats used to communicate these transport
objects are provided in clause 5 and clause 6.

• M1: This reference point provides control and/or configuration information from a Media Application/Client
to the CMMF Receiver. For example, this control/information may include details regarding which Source
and/or Coded/Repair Transport Objects the CMMF Receiver should obtain.

Examples of deployment options along with other details on the CMMF sender and CMMF receiver architectures are
provided in annex D.

4.3.4 CMMF delivery procedure

The procedure for delivering source media using CMMF is highly dependent on the use case, delivery architecture, and
network protocols utilized. As a result, defining one generic procedure is not possible. However, Figure 10 provides an
example delivery procedure for HTTP-based adaptive streaming scenarios.

NOTE: Other delivery procedures are also possible for the same scenario.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)33

Figure 10: HTTP-Based Adaptive Streaming CMMF Delivery Procedure Example

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)34

Within this example, an Application Provider encodes, prepares, and packages source media into an MPEG-DASH or
HLS stream. This results in multiple segmented representations of the source media at different bit rates and/or
resolutions along with a MPEG-DASH or HLS manifest. Each segment is assumed to be a unique source transport
object with a unique TOI. This source media is streamed to clients using the following procedure:

Content Provisioning:

• The Application Provider in this example provisions an origin server with the source transport objects thereby
making the source media available to Media Applications/Clients.

• The Application Provider publishes the Media Configuration Information (e.g. MPEG-DASH or HLS
manifest).

• The Application Provider establishes global settings CMMF (e.g. CMMF code type, coded/repair transport
object to source transport object mappings, source locations, etc.) for how to encode and distribute CMMF
bitstreams to clients. These settings are stored within the CMMF Configuration Information.

Media Application/Client Initialization:

• During initialization, a Media Application/Client will obtain all or a subset of the CMMF Configuration
Information from the Application Provider. This CMMF Configuration Information, at a minimum, provides
the Media Application/Client information about where to obtain source and/or coded/repair transport objects
once a media selection has been made.

Media Player Initialization:

• Upon selection of the media to be played, the media player is initialized. As part of this process, the media
player obtains the Media Configuration Information (e.g. MPEG-DASH or HLS manifest) from the
Application Provider.

Source Transport Object Delivery:

• Once the Media Application/Client has obtained the Media Configuration Information, it selects the source
transport objects it wants to fetch and play. These source transport objects are requested from the CMMF
Receiver. In the case of this example, source transport object TOI = i is requested.

• The CMMF Receiver replicates the request for TOI = i across S transport sessions where each transport
session provides a unique source and/or coded/repair transport objects created from source transport object
TOI = i. Each transport session is terminated at one of S sources (e.g. cache, CDN PoP, etc.).

• Each source s determines whether the transport object TOI = i for transport session TSI = s is cached locally. If
so (i.e. a cache hit), it replies to the CMMF Receiver with the necessary transport object. If not, it obtains the
transport object for the transport session from the CMMF Bitstream Generator/Source.

• In this example, the CMMF Bitstream Generator/Source is collocated with an origin server that stores the
original source transport object TOI = i. Upon a request from source s (i.e. a cache miss), the CMMF
Bitstream Generator/Source obtains the source transport object TOI = i from the origin server, encodes the
transport object associated with TSI = s and TOI = i, and responds to the request from source s.

• Once the CMMF receiver obtains enough information from the combination of source and/or coded/repair
transport objects from the different transport sessions, it decodes and recovers the original source transport
object TOI = i and responds to the Media Application/Client.

• This process repeats for each source transport object requested by the Media Application/Client.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)35

4.3.5 CMMF Configuration Information

Additional information may need to be communicated between components of the reference CMMF delivery
architecture shown in clause 4.3.3 to enable multi-source delivery using CMMF. In general, this information is specific
to the operation of CMMF and intended to supplement existing information defined for the media delivery protocol
(e.g. MPEG-DASH, HLS, etc.) in use. The method used to communicate this information is dependent on the use case
and/or scenario. In some implementations, this information can be transmitted via a configuration file or supplied via an
API. In other implementations, this information can be provided in the form of an EFDT as described in clause D.2.3.
Examples of the type of information that may be contained with the CMMF Configuration Information include:

• code type the CMMF encoder should use;

• host URLs of the locations for each source where CMMF encoded content is available;

• arrangement of symbols that are included in each of the transport objects;

• etc.

Specific examples of different versions of CMMF Configuration Information are provided in annex B, annex C and
annex D.

4.3.6 CMMF as a Content Delivery Protocol

As described in clause 4.3.1, CMMF provides a means to generate coded/repair transport objects for transport/delivery
sessions. In one instantiation, the CMMF coded/repair framework can be based on the Forward Error Correction (FEC)
Building Block as defined in IETF RFC 5052 [15], CMMF can be considered as a Content Delivery Protocol (CDP)
specification as defined in clause 8 of IETF RFC 5052 [15]. When operating as a CDP, additional requirements on
CMMF apply in order to support applications requiring reliable delivery according to IETF RFC 5052 [15].

The CMMF CDP Framework, example CDP CMMF instantiations, and alignment to the File Delivery over
Unidirectional Transport (FLUTE) protocol [18] are further described in clause D.2.

4.4 Overview of the Specification
The remainder of the present document defines a bitstream syntax for communicating multi-source encoded media and
provides examples of delivery architectures that utilize CMMF for multi-source delivery:

• Clause 5 and clause 6 provide the bitstream's syntax and semantics respectively. These clauses define the
syntax used on interface R1 of Figure 9.

• Clause 7 provides additional information that should be considered in the design of CMMF encoders, parsers,
and decoders.

• Annex A provides the normative definition of the xCD-1 code type that can be used within CMMF to encode
media for multi-source delivery; and

• Annex D provides a normative mapping between CMMF and the principles defined in IETF RFC 5052 [15]. It
also provides an instantiation for a Configuration information, namely an Extended file delivery table, aligned
with IETF RFC 6726 [18].

• Finally, annex B, annex C and clause D.2.5 provide examples of possible implementations of CMMF within
existing content delivery systems.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)36

5 Bitstream syntax

5.0 Bitstream organization
The syntax specification presented in clause 5.2 shows how the CMMF bitstream (cmmf_bitstream()) is the
top-level structure of a bitstream. Every bitstream begins with a sync() structure, and contains one or more subatom
(subatom()) structures.

A subatom is a generic container that can be populated with different types of data. Because a subatom can carry only
one type of data, the type of data carried within defines a subatom type, and the associated data structure. For example,
a bitstream header subatom is an instance of the subatom() syntactical structure carrying a bitstream_header()
syntactical structure. In the present document the subatom type may be referred to by a name (e.g. bitstream header
subatom) or its associated syntactical structure (bitstream_header()).

Figure 11 shows the high-level hierarchical organization for a CMMF bitstream with N subatoms.

Figure 11: High-level CMMF bitstream organization

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)37

There are several types of subatom data types defined for the CMMF bitstream, including:

• Sync (sync())

• Bitstream header (bitstream_header())

• Encoder and content information (encoder_content_info())

• Media segment information (media_segment_info())

• Block header (block_header())

• Packet (packet())

• Chunked subatom (chunked_subatom())

• Block group directory (block_group_directory())

• Packet header only (packet_header_only())

• Packet group (packet_group())

• Multiple block packet group (multi_block_packet_group())

While a bitstream containing a single subatom would be technically valid, a decoder typically needs to receive multiple
subatoms, for example receipt of a bitstream header, block header(s), and packet(s) subatoms would allow for
successful decode a CMMF bitstream and reconstruction the original source data.

The syntax permits additional subatom data types to be defined for future applications.

5.1 Semantics of syntax specification

5.1.1 Pseudocode syntax

The following pseudocode within syntax boxes describes the order of arrival of information within the CMMF
bitstream. This pseudocode is roughly based on C language syntax, but simplified for ease of reading. For bitstream
elements that are larger than one bit, the order of the bits in the serial bitstream is either most-significant-bit-first (for
numerical values), or left-bit-first (for bit-field values). Fields or elements contained in the bitstream are indicated with
bold type. Syntactic elements are typographically distinguished by the use of a different font
(e.g. block_count_minus1).

5.1.2 Bitstream variable syntax

The variable syntax is described in the format of a three-column table in the present document.

In these tables, first column entries in bold signify the occurrence of the corresponding variable in the bitstream; the
second column specifies the bit-field length and way of encoding (according to the notation in clause 5.1.9); the third
column provides (where applicable) a reference to a clause containing more information about the variable.

Table 2 provides an example of the bitstream variable syntax format for the block_count_minus1 metadata field.

Table 2: Example of bitstream variable

Syntax Encoding Clause
code_type u(4) 6.1.4.5

5.1.3 Bitstream structure syntax

Bitstream structures (also referred to as elements) are defined using the C procedure syntax.

The substructure is expanded by the C call syntax name (<arguments>).

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)38

Table 3 shows an example of the bitstream structure syntax format.

Table 3: Example of bitstream structure

Syntax Encoding Clause
name(<optional arguments>)
{
 .
 .
}

5.1.4 Iteration and conditional operators

Iteration is expressed using the usual C statements for, while, and do...while. Conditional expansion uses these
constructs:

• if (…) ...

• if (…) ... else ...

• if (…) ... else if () ...

These examples demonstrate the procedure of reading a flag from the stream and performing an <action> if the flag is
set (binary 1).

Table 4 provides an example of a shorthand if syntax format.

Table 4: Example of shorthand If syntax format

Syntax Encoding Clause
if (flag) <action> b(1)

Table 5 provides an example of an expanded if syntax format, which is the expansion of the preceding shorthand if
syntax format.

Table 5: Example of expanded If syntax format

Syntax Encoding Clause
flag b(1)
if (flag) {
 <action>
}

5.1.5 Boolean operations

The Boolean operators && and || follow normal C conventions.

For example, for an && operation, the right-hand side is not evaluated if the left-hand side is FALSE, as listed in
Table 6.

Table 6: Example of Boolean operation syntax format

Syntax Encoding Clause
if (paramA && paramB) { b(1)
 <action>
}

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)39

5.1.6 Labels and comments

Labels are flush against the left margin and are indicated as comments in the code.

Table 7 shows an example label:

Table 7: Example of bitstream label

Syntax Encoding Clause
/* Label */

Labels are regarded as markers within the expanded bitstream, not as textual markers within the syntax description.

Comments are indented and aligned with associated syntax.

Table 8 shows an example comment:

Table 8: Example of bitstream comment

Syntax Encoding Clause
if (flag)
{
 /* Comment */
 field
}

5.1.7 Operational variables not in the bitstream

Some operational variables that are not present in the bitstream but are useful for performing certain operations (such as
parsing the bitstream) are presented in not bold, as shown in the example in Table 9.

Table 9: Example of operational variable format

Syntax Encoding Clause
block_count = block_count_minus1 + 1

5.1.8 Arrays

Some bitstream elements naturally form arrays. Even if bitstreams are naturally included in arrays, this syntax
specification treats all bitstream elements individually. Where appropriate, arrays are described as multiple elements
(for example, block_header_subatom_offset[blk]) within control structures, such as for loops, that are employed
to increment the index (blk for block in this example).

5.1.9 Bit field encoding

The encoded data can be thought of as a serial bitstream containing items of data that occupy fields of varying length
(for example, three bits to specify a number in the range [0…7]). The bits occupying each field are presented with the
most-significant bit first.

Because fields can be of variable length, they can generally straddle word boundaries. However, the complete CMMF
bitstream and some of its substructures are aligned with 8-bit word (or byte) boundaries.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)40

Values are encoded in signed or unsigned bit fields and are referred to in the syntax description using the notation listed
in Table 10.

Table 10: Bit field descriptors

Bit field encoding Description
b(n) Boolean, n bit field: 1 is TRUE, 0 is FALSE.
v(n) Bit field taking n bits, with arbitrary representation.
s(n) Signed integer taking n bits (n ≥ 1), represented in two's complement.
u(n) Unsigned integer taking n bits (n ≥ 0, u(0) = 0).

pad(n) Pad with n zero bits.
pad Pad with an arbitrary number of zero bits. The number is determined by a specified variable.

If a Boolean bitstream element is defined to signal a whether statement then the statement is true if the Boolean is
set (TRUE), i.e. the corresponding bit is set to 1. A subsequent otherwise statement is true if the Boolean is
cleared (FALSE), i.e. the corresponding bit is set to 0.

Bit fields indicated as reserved are encoded as v(n) with all bits set to 0 and shall be ignored by bitstream parsers that
conform to this version of CMMF.

When present in the syntax, the byte_align field uses the pad bitfield encoding with 0 to 7 zero bits. The field
ensures that there exists a whole number of bytes relative to a reference starting point.

5.2 Syntax specification

5.2.1 cmmf_bitstream()

Table 11: Syntax of cmmf_bitstream()

Syntax Encoding Clause
cmmf_bitstream() 6.1.1
{
 sync() 5.2.3
 while (true)
 {
 subatom() 5.2.2
 }
}

5.2.2 subatom()

Table 12: Syntax of subatom()

Syntax Encoding Clause
subatom() 6.1.2
{
/* subatom header start */
 subatom_id u(4) 6.1.2.1
 if (subatom_id == 0xF) {
 subatom_id_ext u(8) 6.1.2.1
 subatom_id = subatom_id + subatom_id_ext
 }

 b_bitstream_id_present b(1) 6.1.2.2
 reserved v(1)

 sas_bits = num_bits_code() 6.1.2.3,

5.2.23

 if (b_bitstream_id_present) {
 bitstream_id v(16) 6.1.2.4

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)41

Syntax Encoding Clause
 }

 subatom_size u(sas_bits) 6.1.2.5
/* subatom header end */
/* subatom data start */
 switch(subatom_id)
 {
 case SUBATOM_ID_SYNC:
 sync() 5.2.3
 break
 case SUBATOM_ID_BITSTREAM_HEADER:
 bitstream_header() 5.2.4
 break
 case SUBATOM_ID_ENCODER_CONTENT_INFO:
 encoder_content_info() 5.2.10
 break
 case SUBATOM_ID_MEDIA_SEGMENT_INFO:
 media_segment_info() 5.2.11
 break
 case SUBATOM_ID_BLOCK_HEADER:
 block_header() 5.2.5
 break
 case SUBATOM_ID_PACKET:
 packet() 5.2.8
 break
 case SUBATOM_ID_CHUNKED_SUBATOM:
 chunked_subatom() 5.2.13
 break
 case SUBATOM_ID_BLOCK_GROUP_DIRECTORY:
 block_group_directory() 5.2.14
 break
 case SUBATOM_ID_PACKET_HEADER_ONLY:
 packet_header_only() 5.2.19
 break
 case SUBATOM_ID_PACKET_GROUP:
 packet_group() 5.2.21
 break
 case SUBATOM_ID_MULTI_BLOCK_PACKET_GROUP:
 multi_block_packet_group() 5.2.25
 break
 default:
 UNKNOWN v(subatom_size × 8)
 }

 padding pad
/* subatom data end */
}

5.2.3 sync()

Table 13: Syntax of sync()

Syntax Encoding Clause
sync() 6.1.3
{
 syncword v(64) 6.1.3.1
 version v(4) 6.1.3.2
 b_content_encode_uuid b(1) 6.1.3.3
 reserved v(3)
 if (b_content_encode_uuid) {
 content_encode_uuid v(128) 6.1.3.4
 }
}

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)42

5.2.4 bitstream_header()

Table 14: Syntax of bitstream_header()

Syntax Encoding Clause
bitstream_header() { 6.1.4
 content_source_size u(64) 6.1.4.1
 content_source_type v(3) 6.1.4.2
 reserved v(1)
 b_content_source_split b(1) 6.1.4.3
 if (b_content_source_split) {
 content_source_split_start u(64) 6.1.4.4
 content_source_split_end u(64) 6.1.4.4
 }
 code_type u(4) 6.1.4.5
 if (code_type == 0xF) {
 code_type_ext u(8) 6.1.4.5
 code_type = code_type + code_type_ext
 }
 b_rfc5052 b(1) 6.1.4.6
 if (b_rfc5052) {
 rfc5052_information() 5.2.20
 }
 block_count_minus1 = block_index_or_count_value() 6.1.4.7,

5.2.24
 block_count = block_count_minus1 + 1 6.1.4.7
 b_content_block_separate_sources b(1) 6.1.4.8
 if (b_content_block_separate_sources) {
 num_content_block_sources_minus1 u(8) 6.1.4.9
 }
 b_profile_information_present b(1) 6.1.4.10
 if (b_profile_information_present) {
 profile_type_size u(4) 6.1.4.11
 profile_type v(profile_type_size × 8) 6.1.4.11
 profile_description v(32) 6.1.4.12
 }
 b_block_cc_encrypted b(1) 6.1.4.13
 if (b_block_cc_encrypted) {
 bitstream_encryption_key_id_size_exp u(4) 6.1.4.14
 bseki_bits = 2^ bitstream_encryption_key_id_size_exp
 bitstream_encryption_key_id v(bseki_bits) 6.1.4.15
 }
}

5.2.5 block_header()

Table 15: Syntax of block_header()

Syntax Encoding Clause
block_header() 6.1.5
{
 block_index = block_index_or_count_value() 6.1.5.1,

5.2.24
 block_size u(32) 6.1.5.2
 block_symbol_size u(32) 6.1.5.3
 bns_bits = num_bits_code() 6.1.5.4,

5.2.23
 block_num_symbols u(bns_bits) 6.1.5.5

 b_block_max_symbol_index_present b(1) 6.1.5.6
 if (b_block_max_symbol_index_present)
 {
 bmsi_bits = num_bits_code() 6.1.5.7,

5.2.23
 block_max_symbol_index u(bmsi_bits) 6.1.5.8

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)43

Syntax Encoding Clause
 }

 b_block_content_source_index_present b(1) 6.1.5.9
 if (b_block_content_source_index_present)
 {
 block_content_source_index u(8) 6.1.5.10
 }

 b_block_composite_sources b(1) 6.1.5.11
 if (b_block_composite_sources)
 {
 block_num_composite_sources_minus1 u(8) 6.1.5.12
 blk_num_cmp_sources = block_num_composite_sources_minus1 + 1

 for (cmpsrc=0; cmpsrc < blk_num_cmp_sources; cmpsrc++) {
 bcss_bits = num_bits_code() 6.1.5.13,

5.2.23

 block_composite_source_size u(bcss_bits) 6.1.5.14
 }
 }

 b_addl_block_coding_info_present b(1) 6.1.5.15
 if (b_addl_block_coding_info_present)
 {

addl_block_coding_mask v(3) 6.1.5.16
if (addl_block_coding_mask & 0x1) {

b_addl_window_info_present b(1) 6.1.5.17
if (b_addl_window_info_present) {

addl_window_info() = extension(4)
}

}
if (addl_block_coding_mask & 0x2) {

 b_reserved_block_coding_params_present b(1) 6.1.5.18
 if (b_reserved_block_coding_params_present) {
 reserved_block_coding_params() = extension(4)
 }
 }

if (addl_block_coding_mask & 0x4) {
reserved_block_coding_info() = extension(4)

}
}

 block_mask v(6) 6.1.5.19
 if (block_mask & 0x1)
 {
 b_sufficient_symbols_present b(1) 6.1.5.20
 if (!b_sufficient_symbols_present)
 {
 bsp_bits = num_bits_code() 6.1.5.21,

5.2.23
 block_symbols_present u(bsp_bits) 6.1.5.22
 }
 }
 else
 {
 /* Symbols present count not available */
 }
 if (block_mask & 0x2)
 {
 block_field_size_exp v(3) 6.1.5.23
 }
 else
 {
 /* GF{2^1}, block_field_size_exp_val=1 */
 }
 if (block_mask & 0x4)

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)44

Syntax Encoding Clause
 {
 /* Coding coeff info in packet header subatoms */
 }
 if (block_mask & 0x8)
 {
 block_cc_encryption_info_size_bits_code v(1) 6.1.5.24.1

byte_align pad 6.1.5.24.2
 bcceis_bits = (block_cc_encryption_info_size_bits_code + 1) × 8
 block_cc_encryption_info_size u(bcceis_bits) 6.1.5.24.3
/* block encryption info start */
 reserved v(1)
 block_cc_encryption_algorithm v(3) 6.1.5.24.4
 block_cc_encryption_mode v(4) 6.1.5.24.5
 block_cce_key_size_exp u(4) 6.1.5.24.6
 bck_bits = 2^block_cce_key_size_exp
 block_cce_key v(bck_bits) 6.1.5.24.6
 b_addl_block_cce_params_present b(1) 6.1.5.24.7
 if (b_addl_block_cce_params_present)
 {
 addl_cce_parameters() 5.2.6
 }
 padding pad
/* block encryption info end */
 }
 if (block_mask & 0x10)
 {
 prng_parameters() 5.2.7
 }
 if (block_mask & 0x20)
 {
 block_integrity() = fb_integrity() 5.2.15
 }
}

5.2.6 addl_cce_parameters()

Table 16: Syntax of addl_cce_parameters()

Syntax Encoding Clause
addl_cce_parameters() 6.1.5.24.8
{
 num_addl_cce_params_minus1 u(2) 6.1.5.24.8.1
 for (eprm = 0; eprm < (num_addl_cce_params_minus1 + 1); eprm++)
 {
 cce_parameter_type v(3) 6.1.5.24.8.2
 cce_parameter_size_exp u(4) 6.1.5.24.8.3
 ccep_bits = 2 ^ cce_parameter_size_exp
 cce_parameter v(ccep_bits) 6.1.5.24.8.3
 }
}

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)45

5.2.7 prng_parameters()

Table 17: Syntax of prng_parameters()

Syntax Encoding Clause
prng_parameters() 6.1.5.25
{
 prng_type v(3) 6.1.5.25.1
 prng_seed_bits_code v(2) 6.1.5.25.2
 ps_bits = 2 ^ (prng_seed_bits_code + 4)
 prng_seed u(ps_bits) 6.1.5.25.3
 prng_density_percentage u(7) 6.1.5.25.4
}

5.2.8 packet()

Table 18: Syntax of packet()

Syntax Encoding Clause
packet() 6.1.6
{
 if (block_count > 1)
 {
 packet_block_index = block_index_or_count_value() 6.1.6.1,

5.2.24
 }
 else
 {
 packet_block_index = 0 6.1.6.1
 }
 packet_header() 5.2.9
 coded_symbol v(css_bits) 6.1.6.2
}

5.2.9 packet_header()

Table 19: Syntax of packet_header()

Syntax Encoding Clause
packet_header() 6.1.7
{
 b_systematic_symbol b(1) 6.1.7.1

 packet_mask v(7) 6.1.7.2
 if (packet_mask & 0x1)
 {
 psi_bits = num_bits_code() 6.1.7.3,

5.2.23
 packet_symbol_index u(psi_bits) 6.1.7.4
 }
 if (packet_mask & 0x2)
 {
 if (b_systematic_symbol) {
 b_systematic_symbol_encrypted b(1) 6.1.7.5.1
 } else {
 reserved v(1)
 }
 b_addl_packet_cce_params_present b(1) 6.1.7.5.2
 if (b_addl_packet_cce_params_present) {
 addl_cce_parameters() 5.2.6
 }
 }
 if (block_mask & 0x4) {

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)46

Syntax Encoding Clause
 window_start_index u(16) 6.1.7.6
 window_stop_index u(16) 6.1.7.6
 window_size = (window_stop_index - window_start_index + 1) % 65
536

 } else {
 window_size = block_num_symbols
 }
 if (packet_mask & 0x8) {
 prng_parameters() 5.2.7
 }
 if (packet_mask & 0x10) {
 coefficient_vector(window_size, block_field_size_exp_val) 5.2.17
 }
 if (packet_mask & 0x20) {
 packet_integrity() 5.2.16
 }
 if (packet_mask & 0x40) {
 packet_header_extension() = extension(5) 5.2.18
 }
 byte_align pad 6.1.7.7
}

5.2.10 encoder_content_info()

Table 20: Syntax of encoder_content_info()

Syntax Encoding Clause
encoder_content_info() 6.1.8
{
 b_encoder_id_present b(1) 6.1.8.1
 if (b_encoder_id_present)
 {
 encoder_uuid v(128) 6.1.8.2
 }
 b_content_id_present b(1) 6.1.8.4
 if (b_content_id_present)
 {
 content_id_type v(4) 6.1.8.4.1
 content_id_size_minus1 u(8) 6.1.8.4.2
 content_id v((content_id_size_minus1+1) × 8) 6.1.8.4.3
 }
 b_content_location_present b(1) 6.1.8.5
 if (b_content_location_present)
 {
 content_location_size_minus1 u(11) 6.1.8.6
 content_location v((content_location_size_minus1+1)

×8)
6.1.8.6

 }
 b_content_type_present b(1) 6.1.8.7
 if (b_content_type_present)
 {
 content_type_size u(8) 6.1.8.8
 content_type v(content_type_size×8) 6.1.8.8
 }
 b_content_header_present b(1) 6.1.8.9
 if (b_content_header_present)
 {
 content_header_size u(7) 6.1.8.10
 content_header v(content_header_size×8) 6.1.8.10
 }
 b_file_integrity_present b(1) 6.1.8.11
 if (b_file_integrity_present)
 {
 file_integrity() = fb_integrity() 5.2.15
 }

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)47

Syntax Encoding Clause
 b_media_preso_dur_present b(1) 6.1.8.12
 if (b_media_preso_dur_present)
 {
 media_presentation_duration() = cmmf_time() 5.2.12
 }
 reserved v(4)
}

5.2.11 media_segment_info()

Table 21: Syntax of media_segment_info()

Syntax Encoding Clause
media_segment_info() 6.1.9
{
 media_segment_block_index = block_index_or_count_value() 6.1.9.1,

5.2.24
 reserved v(4)
 b_composite_source_index_present b(1) 6.1.9.3
 if (b_composite_source_index_present)
 {
 media_segment_composite_source_index u(8) 6.1.9.4
 }
 media_segment_index u(2) 6.1.9.2
 if (media_segment_index == 0x3)
 {
 media_segment_index_ext u(6) 6.1.9.2
 media_segment_index = media_segment_index +
media_segment_index_ext

 }
 if (b_asset_name_present) b(1) 6.1.9.5
 {
 asset_name_size u(8) 6.1.9.6
 for (i = 0; i < asset_name_size; i++)
 {
 asset_name[i] v(8) 6.1.9.6
 }
 }
 segment_tag_mask v(4) 6.1.9.7
 if (segment_tag_mask & 0x1) {
 segment_duration() = cmmf_time() 5.2.12
 }
 if (segment_tag_mask & 0x2) {
 segment_start_time() = cmmf_time() 5.2.12
 }
 if (segment_tag_mask & 0x4) {
 segidx_bits = num_bits_code() 6.1.9.8,

5.2.23
 segment_index u(segidx_bits) 6.1.9.9
 }
 if (segment_tag_mask & 0x8) {
 segcnt_bits = num_bits_code() 6.1.9.8,

5.2.23
 segment_count u(segcnt_bits) 6.1.9.10
 }
 if (b_media_mime_type_present) { b(1) 6.1.9.11
 media_mime_type_size u(6) 6.1.9.12
 for (i = 0; i < media_mime_type_size; i++) {
 media_mime_type[i] v(8) 6.1.9.12
 }
 }
 if (b_media_codec_present) { b(1) 6.1.9.13
 media_codec_size u(6) 6.1.9.14
 for (i = 0; i < media_codec_size; i++) {
 media_codec[i] v(8) 6.1.9.14

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)48

Syntax Encoding Clause
 }
 }
 if (b_bit_rate_present) { b(1) 6.1.9.15
 bit_rate_bits_code v(1) 6.1.9.16
 bps_bits = (bit_rate_bits_code + 3) × 8
 bit_rate u(bps_bits) 6.1.9.17
 }
 if (b_ms_content_type_present) { b(1) 6.1.9.18
 ms_content_type v(3) 6.1.9.19
 b_ms_content_type_info_present b(1) 6.1.9.20
 }
 else
 {
 /* b_ms_content_type_info_present = 0b */
 }
 if (b_ms_content_type_info_present) {
 switch (ms_content_type) {
 case 0x0:
 if (b_aspect_ratio_present) { b(1) 6.1.9.21
 sample_aspect_ratio u(8) 6.1.9.22
 if (sample_aspect_ratio == 255) {
 sar_width u(8) 6.1.9.23
 sar_height u(8) 6.1.9.23
 }
 }
 b_dynamic_resolution_video b(1) 6.1.9.24
 if (b_resolution_present) { b(1) 6.1.9.25
 resolution_width u(16) 6.1.9.26
 resolution_height u(16) 6.1.9.26
 }
 if (b_frame_rate_present) { b(1) 6.1.9.27
 frame_rate v(5) 6.1.9.28
 }
 reserved v(4)
 if (b_hdr_info_present) { b(1) 6.1.9.29
 hdr_compatibility_mask v(16) 6.1.9.30
 if (b_addl_hdr_info_present) { b(1) 6.1.9.31
 hdr_compat_mask_index u(4) 6.1.9.32
 hdr_profile u(8) 6.1.9.33
 hdr_level u(8) 6.1.9.34
 hdr_compatibility_id u(8) 6.1.9.35
 }
 }
 if (b_addl_video_info_present) { b(1) 6.1.9.36
 addl_video_info = extension(6) 5.2.18
 }
 break

 case 0x1:
 if (b_sampling_freq_present) { b(1) 6.1.9.37
 b_sampling_freq_is_48k b(1) 6.1.9.38
 if (!b_audio_fs_is_48k) {
 sampling_frequency v(4) 6.1.9.39
 }
 }
 if (b_audio_config_present) { b(1) 6.1.9.40
 audio_channel_config v(24) 6.1.9.41
 }
 if (b_audio_props_present) { b(1) 6.1.9.42
 reserved v(1)
 b_virtualized_bin b(1) 6.1.9.43
 reserved v(2)
 b_object_audio b(1) 6.1.9.44
 if (b_complexity_index_present) { b(1) 6.1.9.45
 complexity_index u(8) 6.1.9.46
 }
 }

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)49

Syntax Encoding Clause
 if (b_addl_audio_info_present) { b(1) 6.1.9.47
 addl_audio_info = extension(6) 5.2.18
 }
 break

 default:
 if (b_addl_ms_content_type_info_present) { b(1) 6.1.9.48
 addl_ms_content_type_info() = extension(6) 5.2.18
 }
 }
 }

 accessibility_mask v(4) 6.1.9.49
 if (accessibility_mask & 0x1) {
 language_size u(6) 6.1.9.50
 for (i = 0; i < language_size; i++) {
 language[i] v(8) 6.1.9.48
 }
 }
 if (accessibility_mask & 0x2) {
 reserved v(3)
 }
 if (accessibility_mask & 0x4) {
 reserved v(4)
 }
 if (accessibility_mask & 0x8) {
 addl_accessibility_info() = extension(4) 5.2.18
 }
}

5.2.12 cmmf_time()

Table 22: Syntax of cmmf_time()

Syntax Encoding Clause
cmmf_time() 6.1.10
{
 b_ddhhmmss_format b(1) 6.1.10.1
 if (b_ddhhmmss_format) {
 if (b_dd_present) (b(1) 6.1.10.2
 days u(5) 6.1.10.2
 }
 if (b_hh_present) (b(1) 6.1.10.2
 hours u(5) 6.1.10.2
 }
 if (b_mm_present) (b(1) 6.1.10.2
 minutes u(6) 6.1.10.2
 }
 if (b_ss_present) (b(1) 6.1.10.2
 seconds u(6) 6.1.10.2
 }
 } else {
 int_seconds_bits_code v(2)
 is_bits = (int_seconds_bits_code) × 8
 int_seconds u(is_bits) 6.1.10.4
 }
 b_fract_seconds_present b(1) 6.1.10.5
 if (b_fract_seconds_present) {
 fract_seconds_bits_code v(2)
 fs_bits = 10 × 2^ fract_seconds_bits_code
 fract_seconds u(fs_bits) 6.1.10.7
 }
}

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)50

5.2.13 chunked_subatom()

Table 23: Syntax of chunked_subatom()

Syntax Encoding Clause
chunked_subatom() 6.1.11
{
/* chunk subatom info start */
 chunk_segment_id u(16) 6.1.11.1
 chunk_segment_index u(24) 6.1.11.2
 if (chunk_segment_index == 0)
 {
 num_chunk_segments u(24) 6.1.11.3
 original_subatom_id u(4) 6.1.11.4
 if (original_subatom_id == 0xF)
 {
 original_subatom_id_ext u(8) 6.1.11.4
 original_subatom_id = original_subatom_id +
original_subatom_id_ext

 }
 oss_bits = num_bits_code() 6.1.11.5,

5.2.23
 original_subatom_size u(oss_bits) 6.1.11.6
 }
 byte_align pad 6.1.11.7
/* chunk subatom info stop */
 chunk_subatom_segment_data u(cssd_bits) 6.1.11.8
}

5.2.14 block_group_directory()

Table 24: Syntax of block_group_directory()

Syntax Encoding Clause
block_group_directory() 6.1.12
{
 block_group_dir_mask v(8) 6.1.12.1
 block_count_minus1 = block_index_or_count_value() 6.1.4.7,

5.2.24
 if (block_group_dir_mask & 0x1)
 {
 for (block = 0; block < (block_count_minus1 + 1); block++) {
 block_header_subatom_offset[block] u(64) 6.1.12.2
 }
 }
 if (block_group_dir_mask & 0x2)
 {
 for (block = 0; block < (block_count_minus1 + 1); block++) {
 num_packet_groups[block] u(8) 6.1.12.3
 for (pg = 0; pg < num_packet_groups[block]; pg++) {
 if (block_group_dir_mask & 0x4)
 {
 packet_group() 5.2.21
 }
 else
 {
 packet_group_index[block][pg] u(8) 6.1.12.4
 }
 }
 }
 for (block = 0; block < (block_count_minus1 + 1); block++) {
 for (pg = 0; pg < num_packet_groups[block]; pg++) {
 packet_group_subatom_offset[block][pg] u(64) 6.1.12.5
 }
 }
 }

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)51

Syntax Encoding Clause
 if (block_group_dir_mask & 0x8)
 {
 num_multi_block_packet_groups u(16) 6.1.12.6
 for (mbpg = 0; mbpg <; mbpg++) {
 multi_block_packet_group_subatom_offset[mbpg] u(64) 6.1.12.7
 }
 }
/* directory end */
}

5.2.15 fb_integrity()

Table 25: Syntax of fb_integrity()

Syntax Encoding Clause
fb_integrity() 6.1.13
{
 fb_hash_type v(2) 6.1.13.1
 fb_hash_algorithm v(3) 6.1.13.2
 fb_hash_size v(4) 6.1.13.3
 reserved v(6)
 b_fb_integrity_ext b(1) 6.1.13.4
 if (b_fb_integrity_ext)
 {
 fb_integrity_extension() = extension(3) 5.2.18
 }
 fb_hash v(fb_hash_bits) 6.1.13.5
}

5.2.16 packet_integrity()

Table 26: Syntax of packet_integrity()

Syntax Encoding Clause
packet_integrity() 6.1.14
{
 packet_hash_algorithm v(3) 6.1.14.1
 packet_hash_size v(3) 6.1.14.2
 reserved v(1)
 b_packet_integrity_ext b(1) 6.1.14.3
 if (b_packet_integrity_ext)
 {
 packet_integrity_extension() = extension(3) 5.2.18
 }
 packet_hash v(pkt_hash_bits) 6.1.14.4
}

5.2.17 coefficient_vector()

Table 27: Syntax of coefficient_vector()

Syntax Encoding Clause
coefficient_vector(window_size, block_field_size_exp_val) 6.1.15
{
 for (index = 0; index < window_size; index++)
 {
 coded_symbol_coeff[index] u(block_field_size_exp_val) 6.1.15.1
 }
}

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)52

5.2.18 extension()

Table 28: Syntax of extension()

Syntax Encoding Clause
extension(num_bits) 6.1.16
{
 extension_byte_size u(num_bits) 6.1.16.1
 for (i = 0; i < extension_byte_size; i++)
 {
 reserved v(8)
 }
}

5.2.19 packet_header_only()

Table 29: Syntax of packet_header_only()

Syntax Encoding Clause
packet_header_only() 6.1.17
{
 if (block_count > 1)
 {
 packet_block_index = block_index_or_count_value() 6.1.6.1,

5.2.24
 }
 else
 {
 packet_block_index = 0
 }
 packet_header() 5.2.9
}

5.2.20 rfc5052_information()

Table 30: Syntax of rfc5052_information()

Syntax Encoding Clause
rfc5052_information() { 6.1.4.6
 encoding_symbol_length u(32) 6.1.4.6
 if (code_type == 5)
 {
 maximum_source_block_length u(32) 6.1.4.6
 max_number_of_encoding_symbols u(32) 6.1.4.6
 }
 b_addl_rfc5052_information_present b(1)
 if (b_rfc5052_information_present)
 {
 addl_rfc5052_information() = extension(7)
 }
}

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)53

5.2.21 packet_group()

Table 31: Syntax of packet_group()

Syntax Encoding Clause
packet_group() 6.1.18
{
 if (block_count > 1)
 {
 packet_group_block_index = block_index_or_count_value() 6.1.18.1,

5.2.24
 }
 else
 {
 packet_group_block_index = 0 6.1.18.1
 }
 packet_group_index u(8) 6.1.18.2
 reserved v(4)
 pgns_bits = num_bits_code() 6.1.18.3,

5.2.23
 packet_group_num_symbols u(pgns_bits) 6.1.18.4
 packet_group_type v(2) 6.1.18.5
 if ((packet_group_type == 0x0) || (packet_group_type == 0x1))
 (
 packet_group_header() 5.2.22
 }
 if ((packet_group_type == 0x0) || (packet_group_type == 0x2))
 (
/* start hash */
 for (index=0; index < packet_group_num_symbols; index++)
 {
 coded_symbol u(block_symbol_

size * 8)
6.1.18.6

 }
/* end hash */
 }
}

5.2.22 packet_group_header()

Table 32: Syntax of packet_group_header()

Syntax Encoding Clause
packet_group_header() 6.1.19
{
 packet_group_symbol_arrangement v(4) 6.1.19.1
 packet_group_mask v(6) 6.1.19.2
 if (packet_group_mask & 0x1)
 {
 reserved v(32)
 }
 if (packet_group_mask & 0x2)
 {
 switch (packet_group_symbol_arrangement)
 {
 case 0:
 case 1:
 reserved v(4)
 pgsi_bits = num_bits_code() 6.1.19.3,

5.2.23
 for (index=0; index < packet_group_num_symbols; index++)
 {
 packet_group_symbol_index u(pgsi_bits) 6.1.19.4
 }
 break

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)54

Syntax Encoding Clause
 case 2:
 reserved v(4)
 pgfsi_bits = num_bits_code() 5.2.23
 packet_group_first_symbol_index u(pgfsi_bits)
 packet_group_index_difference u(16)
 break
 default:
 reserved v(2)
 pgsii_bits = num_bits_code()
 packet_group_symbol_index_info = extension(pgsii) 5.2.18
 break
 }
 }
 if (packet_group_mask & 0x4)
 {
 b_addl_packet_group_cce_params_present b(1) 6.1.19.1
 if (b_addl_packet_group_cce_params_present)
 {
 addl_cce_parameters() 5.2.6
 }
 }
 if (packet_group_mask & 0x8)
 {
/* start packet_group encryption */
 for (index=0; index < packet_group_num_symbols; index++)
 {
 coefficient_vector(block_num_symbols,
block_field_size_exp_val)

 5.2.17

 }
/* stop packet_group encryption */
 }
 if (packet_group_mask & 0x10)
 {
 packet_group_integrity() = packet_integrity() 5.2.16
 }
 if (packet_group_mask & 0x20)
 {
 packet_group_header_extension = extension(5) 5.2.18
 }
 byte_align pad
}

5.2.23 num_bits_code()

Table 33: Syntax of num_bits_code()

Syntax Encoding Clause
num_bits_code() 6.1.20
{
 bits_code u(2) 6.1.20.1
 num_bits = (bits_code + 1) × 8
 return num_bits
}

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)55

5.2.24 block_index_or_count_value()

Table 34: Syntax of block_index_or_count_value()

Syntax Encoding Clause
block_index_or_count_value() 6.1.21
{
 block_index_or_count u(8) 6.1.21.1
 if (block_index_or_count == 0xFF)
 {
 block_index_or_count_ext u(32) 6.1.21.1
 }
 else
 {
 block_index_or_count_ext = 0 6.1.21.1
 }
 block_index_or_count_val = block_index_or_count +
block_index_or_count_ext

 return block_index_or_count_val
}

5.2.25 multi_block_packet_group()

Table 35: Syntax of multi_block_packet_group()

Syntax Encoding Clause
multi_block_packet_group() 6.1.22
{
 mbpg_index u(16) 6.1.22.1
 mbpg_start_block_index = block_index_or_count_value() 5.2.24,

6.1.22.2
 mbpg_num_blocks = block_index_or_count_value() 5.2.24,

6.1.22.3
 mbpg_num_symbols u(64) 6.1.22.4
 mbpg_header() 5.2.26
/* start hash */
 for (symbol=0; symbol<num_mbpg_symbols; symbol++)
 {
 coded_symbol u(block_symbol_

size × 8)
6.1.22.5

 }
/* end hash */
}

5.2.26 mbpg_header()

Table 36: Syntax of mbpg_header()

Syntax Encoding Clause
mbpg_header() 6.1.23
{
 mbpg_symbol_arrangement v(4) 6.1.23.1
 reserved v(4)
 switch (mbpg_group_symbol_arrangement)
 {
 case 0:
 case 1:
 reserved v(4)
 mbpgsi_bits = num_bits_code() 5.2.23,

6.1.23.2
 for (index=0; index < mbpg_num_symbols; index++)
 {

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)56

Syntax Encoding Clause
 mbpg_source_block_index = block_index_or_count_value() 5.2.24,

6.1.23.3
 mbpg_symbol_index u(mbpgsi_bits) 6.1.23.3
 }
 break
 case 2:
 case 3:
 reserved v(4)
 mbpg_index_difference u(16) 6.1.23.6
 mbpgfsi_bits = num_bits_code() 5.2.23,

6.1.23.4
 mbpg_first_symbol_index u(mbpgfsi_bits) 6.1.23.7
 b_mbpg_is symbol_group_subset b(1)
 if (b_mbpg_is_symbol_group_subset)
 {
 mbpg_symbol_group_subset_index u(64) 6.1.23.5
)
 else
 {
 mbpg_symbol_group_subset_index = 0
 }
 break
 default:
 reserved v(4)
 mbpgsai_bits_code v(2) 6.1.23.7
 mbpgsai_bits = 8 × 2^mbpgsai_bits_code
 mbpg_symbol_arrangement_info = extension(mbpgsai_bits) 5.2.18
 break
 }
 b_mbpg_integrity_present b(1) 6.1.23.9
 if (b_mbpg_integrity_present)
 {
 mbpg_integrity() = packet_integrity() 5.2.16
 }
 b_mbpg_header_ext_present b(1) 6.1.23.10
 if (b_mbpg_header_ext_present)
 {
 mbpg_header_extension = extension(6) 5.2.18
 }
 byte_align pad
}

6 Bitstream description

6.0 Introduction
This clause describes the meaning of the fields in the CMMF bitstream syntax. Bit fields that are similar in purpose
and/or meaning have been grouped and described only once.

6.1 Description of bitstream elements

6.1.1 cmmf_bitstream()

The cmmf_bitstream() is the top-level structure containing the sync() and all subatom() instances for the
encoded CMMF bitstream.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)57

6.1.2 subatom()

6.1.2.0 Introduction

The subatom (subatom()) is a generic structure that represents various types of data present in the CMMF bitstream.

Subatoms inherit values from previously received subatoms with a matching bitstream_id (if present the bitstream).
For example, the packet_header() structure should be able to use block_field_size_exp field present in a
previously received block_header() with the same associated block_index / packet_block_index.

6.1.2.1 subatom_id, subatom_id_ext

The subatom_id field, which is extendable by the subatom_id_ext field, identifies the type of data in contained
within the subatom. This field indicates which syntactical structure is present in the subatom.

Subatom identification values are provided in Table 37.

Table 37: subatom_id meaning

subatom_id value Associated Constant Identifier Subatom Data Type
0 Reserved
1 SUBATOM_ID_SYNC Bitstream synchronization
2 SUBATOM_ID_BITSTREAM_HEADER Bitstream header
3 SUBATOM_ID_ENCODER_CONTENT_INFO Encoder and content information
4 SUBATOM_ID_MEDIA_SEGMENT_INFO Media segment information
5 SUBATOM_ID_BLOCK_HEADER Block header
6 SUBATOM_ID_PACKET Packet
7 SUBATOM_ID_CHUNKED_SUBATOM Chunked subatom
8 SUBATOM_ID_BLOCK_GROUP_DIRECTORY Block header and packet group directory
9 SUBATOM_ID_PACKET_HEADER_ONLY Packet header only
10 SUBATOM_ID_PACKET_GROUP Packet group
11 SUBATOM_ID_MULTI_BLOCK_PACKET_GROUP Multiple block packet group header
12 - 270 Reserved

If a reserved subatom data type is received, a parser shall skip over the subatom.

While a valid bitstream can contain a single subatom type, decoding requires receipt of multiple subatoms, either in a
single bitstream or cumulatively across multiple bitstreams depending on the application.

Although not syntactically hierarchical, subatoms can inherit information from previously received subatom instances.
As such, each subatom is not independent, and may require data from a different/previous subatom() instance to be
parsed and/or decoded correctly. Subatom dependencies are provided in Table 38.

Table 38: Subatom dependencies

Subatom Data Type (subatom_id) Subatom Dependency (subatom_id)
Block header (5) Bitstream header (2)
Packet (6) Block header (5)
Packet header only (9) Block header (5)
Packet group (10) Block header (5)
Multiple block packet group header (11) Block header (5)

Any additional subatom requirements are described within the definition for each subatom.

6.1.2.2 b_bitstream_id_present

This Boolean indicates whether the bitstream_id is present the bitstream. This bit shall be set to the same value in
every subatom() instance in a cmmf_bitstream().

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)58

6.1.2.3 sas_bits

The operational variable sas_bits is used in the syntax to specify the number of bits used to encode the subatom data
and is represented by the num_bits_code() structure.

6.1.2.4 bitstream_id

The bitstream_id field identifies different subatoms as belonging to the same bitstream. In applications where
simultaneous bitstreams are transmitted, this identification enables a receiver/decoder to determine which subatoms
belong to which bitstream.

bitstream_id, if present in the bitstream, shall be set to the same value in every subatom() instance in the
bitstream.

6.1.2.5 subatom_size

The subatom_size field describes the size of the subatom data, in bytes. The subatom data is marked by the 'subatom
data start' and 'subatom data end' labels. That is, the subatom data type as indicated by the subatom_id field, and any
additional padding required to ensure that the subatom_size is an even number of bytes. Packet subatoms and block
directory subatoms shall have no additional padding.

6.1.3 sync()

6.1.3.0 Introduction

The synchronization (sync()) structure appears at the beginning of every bitstream and identifies the stream as being a
CMMF bitstream. Depending on the application, the sync() structure can also be contained within a subatom() as
needed in order to resynchronize in the middle of a stream.

6.1.3.1 syncword

The syncword field is a synchronization word used to identify a CMMF bitstream.

The value of the syncword field shall be 0x89780D430044AC31.

6.1.3.2 version

The version field specifies the version of the CMMF bitstream syntax. Encoders conforming to the present document
shall use a value of 0 for this field. Bitstream parsers conforming to the present document shall be able to parse version
0. Bitstream parsers conforming to the present document shall reject bitstreams with a version higher than 0.

Bitstream parsers capable of parsing a specific version of the CMMF bitstream shall be able to parse all lesser versions
and shall reject all higher versions.

6.1.3.3 b_content_encode_uuid

This Boolean indicates whether the content_encode_uuid field is present in the bitstream.

6.1.3.4 content_encode_uuid

The content_encode_uuid field identifies a specific encode of a piece of content. This field should carry a version 4,
variant 1 universally unique identifier as specified in IETF RFC 9562 [1].

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)59

6.1.4 bitstream_header()

6.1.4.0 Introduction

The bitstream header (bitstream_header()) structure contains high-level general file information about the encoded
data and encoding method.

6.1.4.1 content_source_size

The content_source_size field describes the size of the source data, in bytes. If the source data exceeds the size
practical for an application, the source data can be split, and multiple bitstreams used.

If the content_source_size field is zero, it indicates the source data has a size of 0 bytes, or the size of the source
data is not relevant to the application, or the source data is of an undetermined size.

6.1.4.2 content_source_type

The content_source_type field describes the source of the encoded data within the bitstream as listed in Table 39.

Table 39: content_source_type meaning

content_source_type value Meaning
000b Not indicated
001b Original data file
010b Reserved
011b Live streaming source
100b-111b Reserved

6.1.4.3 b_content_source_split

This Boolean indicates whether the source data has been split and carried in multiple bitstreams. When True, the
content_source_split_start and content_source_split_end fields are present in the bitstream.

6.1.4.4 content_soure_split_start, content_source_split_end

The content_source_split_start and content_source_split_end fields describe the start and end byte range
of the original source data that is carried in the bitsteam. A parser can use this information to reassemble the original
source data.

6.1.4.5 code_type, code_type_ext

The code_type field, which is extendable by the code_type_ext field, identifies the type of code applied to the data
in the bitstream. The different coding types are listed in Table 40. Client rendering devices shall support decoding a
minimum of one of the supported code types.

Table 40: code_type meaning

code _type value Meaning
0 xCD-1, as defined in annex A
1 Raptor as defined in IETF RFC 5053 [16]
2 Reserved
3 Reserved
4 Reserved
5 Reed-Solomon (GF{2^8}), as defined in IETF RFC 5510 [14]
6 RaptorQ, as defined in IETF RFC 6330 [13]
7 - 270 Reserved

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)60

6.1.4.6 b_rfc5052, rfc5052_information(), b_addl_rfc5052_information_present

This Boolean indicates that CMMF is used as a Content Delivery Protocol (CDP) as defined in IETF RFC 5052 [15].
When True, data shall be partitioned according to the algorithm described in section 9.1 of IETF RFC 5052 [15], and
the additional fields contained within the rfc5052_information() structure that describe the mandatory, common,
and scheme-specific Object Transmission Information (OTI) are present in the bitstream. Some of these additional
fields have meaning related to, or identical to, other fields in the bitstream. The OTI fields, their meaning, and related
CMMF fields are specified in Table 41.

Table 41: Object Transmission Information Fields

Field Meaning Related CMMF Field
encoding_symbol_length See section 6.2.4 of IETF RFC 5052 [15] block_symbol_size (see

clause 6.1.5.3)
maximum_source_block_length See section 6.2.4 of IETF RFC 5052 [15] block_num_symbols (see

clause 6.1.5.5)
max_number_of_encoding_symbols See section 6.2.4 of IETF RFC 5052 [15] N/A

When the b_rfc5052 field is True and the rfc5052_information() structure is present, related fields with identical
meaning, the encoding_symbol_length and block_symbol_size, as well as maximum_source_block_length
and block_size, can both be transmitted within the bitstream. In this case, both fields in the shall have the same value.

If the b_rfc5052 field is True, then blocks shall have identical symbol size (block_symbol_size) and the blocks
represent the source blocks according to the source blocking of the IETF RFC 5052 [15] FEC scheme.

The mapping from mandatory, common, and scheme-specific OTI parameters to CMMF bitstream elements/fields and
values is provided in Table D.2 in clause D.1.4.

The b_addl_rfc5052_information_present Boolean indicates whether the addl_rfc5052_information()
structure is present in the bitstream. The addl_rfc5052_information()structure provides a mechanism to transmit
additional IETF RFC 5052 [15] information when needed and is an instance of the extension() structure.

6.1.4.7 block_count_minus1, block_count

The operational variable block_count_minus1 which is represented by the block_index_or_count_value()
structure, describes the total number of blocks present in the bitstream, minus one.

The operational variable block_count is used throughout the syntax and is calculated as follows:

block_count = block_count_minus1 + 1

The equation assumes that the block_count_minus1 operand has accounted for the block_count_ext field when
present in the bitstream.

For live streaming applications where the source data stream may continue indefinitely, three options are available.
First, the value of block_index_or_count in the block_index_or_count_value() structure, and thereby the
value of block_count_minus1 may be 0, meaning there is only a single block present in the bitstream. Other
parameters, such as the window_start_index and window_stop_index fields contained within the packet subatom
can be used to differentiate between encoding blocks. Second, the value of block_index_or_count in the
block_index_or_count_value() structure may be 255. If the block_index exceeds 256 blocks, a subsequent
bitstream shall be created with the block_index reset to 0. This second option can also be used when an application or
code type require more than 256 blocks, e.g. Reed-Solomon coding. Third, the extension
block_index_or_count_ext in the block_index_or_count_value() structure can be used to signal a
significant number of additional blocks if necessary.

block_count_minus1 may appear in multiple subatoms, such as the bitstream header and block directory subatoms.
All instances of this operational variable within a bitstream shall be set to the same value.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)61

6.1.4.8 b_content_block_separate_sources

This Boolean indicates whether blocks contain data from separate (but possibly related) sources. For example, block 0
may contain a video segment, while block 1 may contain an audio segment for the same content. When this field is
TRUE the num_content_block_sources_minus1 field is present in the bitstream.

An individual block may be composed of multiple smaller sources (see clause 6.1.5.11 b_block_composite_sources).
When a block is composed of multiple smaller sources (i.e. b_block_composite_sources is TRUE), for the
purposes of setting b_content_block_separate_sources (and the related
b_block_content_source_index_present field in block_header()) it shall be considered as having a single
source.

For more information on b_block_content_source_index_present, see clause 6.1.5.9.

6.1.4.9 num_content_block_sources_minus1

num_content_block_sources_minus1 describes the number of sources of data that populate the blocks in the
bitstream, minus one. The number of sources shall be less than or equal to the number of blocks (indicated by the
block_count variable) present in the bitstream.

6.1.4.10 b_profile_information_present

This Boolean indicates whether information about the profile that this bitstream conforms to, as indicated by the
profile_type_size, profile_type, and profile_description fields, is present in the bitstream.

6.1.4.11 profile_type_size, profile_type

The profile_type field is a string of ASCII [7] or UTF-8 [11] characters describing the entity defining the profile.
The size (in bytes) of the profile_type field is indicated by the profile_type_size field.

profile_type shall not be set to a value of 0.

6.1.4.12 profile_description

The profile_description field identifies the profile which the bitstream conforms to, as defined by the entity
indicated by the profile_type field.

A profile may impose constraints on the coding type used, number of blocks, number of symbols or other encoding
parameters. Determining whether a bitstream conforms to a specific profile may be useful to applications to quickly
determine whether a bitstream is suitable for a specific decoder/parser with restricted or limited capabilities.

6.1.4.13 b_block_cc_encrypted

This Boolean indicates whether the coding coefficient information in one or more blocks is encrypted.

In this case, the bitstream_encryption_key_id_size_exp and bitstream_encryption_key_id fields are
present in the bitstream. The bitstream_encryption_key_id can then be used to retrieve the required
bitstream_encryption_key from a secure/trusted third-party.

6.1.4.14 bitstream_encryption_key_id_size_exp

The bitstream_encryption_key_id_size_exp field contains the exponent used to determine the size (in bits)
used to transmit the subsequent bitstream_encryption_key_id. The size is given by the following equation:

bseki_bits = 2^ bitstream_encryption_key_id_size_exp

6.1.4.15 bitstream_encryption_key_id

The bitstream_encryption_key_id field identifies the key used to symmetrically encrypt certain block encryption
parameters.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)62

The identification can be a simple numeric identifier, or for example, a hash of the key.

The encryption method is outside the scope of the present document.

6.1.5 block_header()

6.1.5.0 Introduction

The block header (block_header()) structure provides information about how the portion of the data within that
block is encoded. It contains fields that describe the coding parameters used for the indicated block.

6.1.5.1 block_index

The operational variable block_index, which is represented by the block_index_or_count_value() structure,
describes which block this block_header() instance is associated with.

6.1.5.2 block_size

The block_size field describes the number of bytes from the original data the block contains.

A block_size value of 0 may be used to indicate that the block size is either not relevant, or the block is empty, or the
size is undetermined. A block_size value of 0 shall only be used when block_count is 1.

6.1.5.3 block_symbol_size

The block_symbol_size field describes the size in bytes of each symbol and coded symbol in the block.

A block_symbol_size value of 0 is used to indicate that the coded symbols in the block have a varying size, and the
size shall be determined by other means. The block_symbol_size shall not have a value of 0 when packet group
subatoms are present.

For more information on coded_symbol, see clause 6.1.6.2.

6.1.5.4 bns_bits

The operational variable bns_bits is used in the syntax to specify the number of bits used to encode the
block_num_symbols field and is represented by the num_bits_code() structure.

6.1.5.5 block_num_symbols

The block_num_symbols field describes the number of symbols that the original block of data has been divided into.

A block_num_symbols value of 0 may be used to indicate that the block has an unknown number of symbols. A
block_num_symbols value of 0 shall only be used when block_count is 1.

6.1.5.6 b_block_max_symbol_index_present

This Boolean indicates whether the maximum encoded symbol index (or row index) value for the given block is present
in the bitstream. When TRUE, the block_max_symbol_index field is present in the bitstream.

6.1.5.7 bmsi_bits

The operational variable bmsi_bits is used in the syntax to specify the number of bits used to encode the
block_max_symbol_index field and is represented by the num_bits_code() structure.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)63

6.1.5.8 block_max_symbol_index

The block_max_symbol_index field identifies either the value of the maximum symbol index when encoded symbol
indexes are used to identify coded symbols, or the value of the maximum row index when a pseudo-random number
generator is used to determine the coding coefficients for the block.

For example, if a block contains 20 coded symbols with symbol index values 0-19, then the
block_max_symbol_index value for the block would be 19.

6.1.5.9 b_block_content_source_index_present

This Boolean indicates whether the given block contains data from a different source than the other blocks present in
the bitstream. When TRUE, the block_content_source_index field is present in the bitstream.

If the b_block_content_separate_sources field in the bitstream_header() is TRUE, then
b_block_content_source_index_present field shall be TRUE.

6.1.5.10 block_content_source_index

The block_content_source_index field identifies which source, of the num_content_block_sources the data
in this block is associated with. The field has a range of [0, num_content_block_sources - 1].

6.1.5.11 b_block_composite_sources

This Boolean indicates whether the given block contains composite data from multiple different sources. The
b_block_composite_sources field indicates whether additional fields that describe the number and size of each
composite source are present in the bitstream.

6.1.5.12 block_num_composite_sources_minus1

The block_num_composite_sources_minus1 field describes the number of composite sources that make up the
data contained within the block, minus 1. The field has a range of [1, 256]. For each composite source, there will be an
instance of num_bits_code() and the block_composite_source_size field in the bitstream.

6.1.5.13 bcss_bits

The operational variable bcss_bits contains the number of bits the subsequent related field requires and is represented
by the num_bits_code() structure.

6.1.5.14 block_composite_source_size

The block_composite_source_size field describes the size of the composite source data, in bytes, that is present
within the block.

6.1.5.15 b_addl_block_coding_info_present

This Boolean indicates whether additional information describing the coding used in the given block follows in the
bitstream.

Otherwise, no sliding window is used and the coding information is described by other fields in the bitstream
(e.g. code_type, block_mask).

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)64

6.1.5.16 addl_block_coding_mask

The addl_block_coding_mask field is a bit mask that describes additional coding information and indicates which
subsequent fields are present in the bitstream as specified in Table 42.

Table 42: addl_block_coding_mask meaning

addl_block_coding_mask bit Meaning
0 Sliding window coding used: This bit indicates whether a sliding window is

used. The start and stop indexes of the sliding window are present in the
packet subatom or the packet header only subatom.

1 Reserved: This bit indicates whether the
b_reserved_block_coding_params_present element is present in the
bitstream. See clause 6.1.5.15.

2 Reserved: This bit indicates whether the reserved_block_coding_info()
structure is present in the bitstream. This structure is an instance of the
extension() structure, and shall be ignored by bitstream parsers that
conform to this version of CMMF.

6.1.5.17 b_addl_window_info_present

This Boolean indicates whether the addl_window_info() element follows. The addl_window_info() element is
an instance of the extension() structure.

6.1.5.18 b_reserved_block_coding_params_present

This Boolean indicates whether the reserved_block_coding_params() element follows. The
reserved_block_coding_params() element is an instance of the extension() structure, and shall be ignored by
bitstream parsers that conform to this version of CMMF.

6.1.5.19 block_mask

The block_mask field is an array of Booleans that indicates which subsequent fields are present and follow in the
bitstream as listed in Table 43.

Table 43: block_mask meaning

block_mask bit Meaning
0 Sufficient symbols present: This Boolean indicates whether fields describing the number of

encoded symbols contained within the bitstream are present in the bitstream. Otherwise,
the number of encoded symbols contained within the bitstream cannot be immediately
ascertained without attempting to parse the full bitstream and a system is unable to
determine if enough symbols are present to perform a full decode of the given block.

1 Block Field size: This Boolean indicates whether fields specifying the Galois field size
used during the encoding process are present in the bitstream. Otherwise, the default
Galois field size, GF{2}, block_field_size_exp_val = 1, is used for code_type values
that support different Galois field sizes. code_type values where the Galois field size is
irrelevant shall set this bit to False.

2 Separated coding coefficients: This Boolean indicates whether the coding coefficient
information is carried separately, either in the packet_header() structure as part of the
packet header only subatoms, or within the packet_group_header() structure as part of
the packet group header only subatoms. Otherwise, the coding coefficient information is
included in the packet_header() within the packet subatoms or the
packet_group_header() within the packet group subatoms. When this Boolean is FALSE,
packet header only subatoms and packet group header only subatoms shall not be
present in the bitstream.

3 Encrypted coding coefficient information: This Boolean indicates whether the coding
coefficient information (and in some cases the coded symbol itself) is encrypted using
symmetric encryption described by fields that follow in the bitstream.

4 Block seed: This Boolean indicates whether fields indicating the pseudorandom number
generator seed used to generate the coding coefficients for every coded symbol in the
block are present in the bitstream. Otherwise, the coding coefficients are transmitted by
other means in the bitstream.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)65

block_mask bit Meaning
5 Block integrity: This Boolean indicates whether the block_integrity() structure is

present in the bitstream. This structure provides a mechanism to verify that the received
and decoded data in the block matches that of the original source. This structure is an
instance of the fb_integrity() structure.

Bit 2 (separated coding coefficients) and bit 4 (block seed) of block_mask are mutually exclusive., and shall not both
be set simultaneously.

EXAMPLE: A block_mask value of 100010b, with bit 1 set indicating an alternate block field size, and bit 5
set indicating the presence of the block integrity check.

6.1.5.20 b_sufficient_symbols_present

This Boolean indicates whether a sufficient number of encoded symbols (greater than or equal to
block_num_symbols) are present in the bitstream to decode the current block. Otherwise, the
block_symbols_present field is present in the bitstream.

6.1.5.21 bsp_bits

The operational variable bsp_bits is used in the syntax to specify the number of bits used to encode the
block_symbols_present field and is represented by the num_bits_code() structure.

6.1.5.22 block_symbols_present

The block_symbols_present field describes the number of encoded symbols present within the bitstream associated
with the current block.

In a multisource network there may be multiple CMMF bitstreams, with some bitstreams containing a sufficient number
of encoded symbols to decode the current block and others with only a partial set of symbols. The
block_symbols_present field describes the number of encoded symbols present within the bitstream, associated
with the current block. A system may use this information to determine whether it needs to seek alternate sources
(i.e. bitstreams) to obtain additional encoded symbols.

6.1.5.23 block_field_size_exp

If block_field_size_exp is present in the bitstream, coding coefficients are used to create encoded symbols. These
coefficients come from a finite field set, a Galois field. The size of this Galois field is given by a characteristic prime,
2 in this case, and an exponent. This determines the number of possible coding coefficients in the field set. In addition
to the field size, a Galois field set is also defined by the characteristic polynomial.

block_field_size_exp specifies both the field size exponent, and characteristic polynomial (given by P(x)) used to
define the Galois field used for the block. The field is interpreted as listed in Table 44.

Table 44: block_field_size_exp information

block_field_size_exp value Field Size Exponent Characteristic polynomial P(x)
000b 2 x2 + x + 1
001b 4 x4 + x + 1
010b 8 x8 + x4 + x3 + x2 + 1
011b 16 x16 + x12 + x3 + x + 1
100b-111b Reserved

For example, if block_field_size_exp has a value of 001b, then the field size exponent is 4 and the resulting
Galois field size is GF{24} or GF{16}, meaning there are only 16 possible coding coefficients. Also, the characteristic
polynomial is given by P(x) = x4 + x + 1.

If the block_field_size_exp field is not present in the bitstream, i.e. if bit 1 of block_mask is set to 0, then the
field size exponent takes on a default value of 1.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)66

If the reserved values of block_field_size_exp (100b-111b) is received, it is considered an error.

The syntax uses an operational variable, block_field_size_exp_val. This variable takes on the field size exponent
value indicated by the block_field_size_exp field or has the default value (1) when the block_field_size_exp
field is not present in the bitstream.

6.1.5.24 Encrypted Coefficients

6.1.5.24.0 Introduction

When bit 3 of the block_mask field is set, the coding coefficient information in the bitstream is encrypted. The coding
coefficient information can be any of:

• prng_parameters() in block_header()

• coefficient_vector() in packet_header() within the packet subatom or the packet header only subatom

• coefficient_vector() instances in packet_group_header() within the packet group subatom

• prng_parameters() in packet_header()

• coded_symbol in packet() for systematic packets

When the coding coefficient information is encrypted, keys and other encryption parameters are needed in order to
decrypt the coefficients and ultimately decode the encoded symbols.

The following fields describe the coding coefficient information encryption keys and parameters.

For more information on generating coding coefficients using a PRNG, see clause 7.1.0.

6.1.5.24.1 block_cc_encryption_info_size_bits_code

The block_cc_encryption_info_size_bits_code field describes the number of bits used to describe the size of
the block encryption information size (indicated by the block_cc_encryption_info_size field). The meaning of
this field is specified in Table 45.

Table 45: block_cc_encryption_info_size_bits_code meaning

block_cc_encryption_info_size_bits_code value Meaning
0b The subatom data size is indicated using 8 bits.
1b The subatom data size is indicated using 16 bits.

The variable bcceis_bits is used in the syntax to specify the number of bits used to encode the block encryption
information and is based on the block_cc_encryption_info_size_bits_code field according to the following
equation:

bcceis_bits = (block_cc_encryption_info_size_bits_code + 1) × 8

6.1.5.24.2 byte_align

This bit field of size 0 to 7 bits is used for the byte alignment of the associated block_header() structure. Byte
alignment is defined relative to the start of the enclosing syntactic element.

6.1.5.24.3 block_cc_encryption_info_size

The block_cc_encryption_info_size field describes the size of the block encryption information data, in bytes.
The data comprises of several fields and is marked by the 'block encryption info start' and 'block encryption info end'
labels including any additional padding required to ensure that the block_cc_encrypton_info_size is an even
number of bytes.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)67

NOTE: All the fields between the 'block encryption info start' and 'block encryption info end' labels are
themselves encrypted using the key identified by the bitstream_encryption_key_id field. This blob
of data has to be decrypted first, then parsed according to the relevant block_header() syntax to obtain
the actual bitstream field values.

6.1.5.24.4 block_cc_encryption_algorithm

block_cc_encryption_algorithm specifies the algorithm used to encrypt the coding coefficient information. The
different algorithm types are listed in Table 46.

Table 46: block_cc_encryption_algorithm meaning

block_cc_encryption_algorithm Value Meaning
000b AES
001b-111b Reserved

6.1.5.24.5 block_cc_encryption_mode

block_cc_encryption_mode specifies the mode of chaining operation used to encrypt the coding coefficient
information. The different algorithm types are listed in Table 47.

Table 47: block_cc_encryption_mode meaning

block_cc_encryption_mode Value Meaning
0000b Electronic Code Book (ECB)
0001b Cipher Block Chaining (CBC)
0010b Cipher Feedback (CFB)
0011b Output Feedback (OFB)
0100b Counter (CTR)
0101b Open Pretty Good Privacy (openPGP)
0110b-1111b Reserved

6.1.5.24.6 block_cce_key_size_exp, block_cce_key

block_cce_key is the symmetric key used to encrypt the coding coefficient information. The key size (in bits) of the
block_cce_key field is indicated by the block_cce_key_size_exp field according to the equation:

bck_bits = 2 ^ block_cce_key_size_exp

6.1.5.24.7 b_addl_block_cce_params_present

This Boolean indicates whether additional encryption parameters required to decrypt the coding coefficient information,
contained in the addl_cce_parameters() structure, follow in the bitstream.

6.1.5.24.8 addl_cce_parameters()

6.1.5.24.8.0 Introduction

The addl_cce_parameters() structure contains additional encryption parameters. The context of
addl_cce_parameters() is defined by the containing block_header(), packet_header(), or
packet_group_header() structure.

6.1.5.24.8.1 num_addl_block_cce_params_minus1

num_addl_block_cce_params_minus1 describes the number of additional encryption parameters, minus one. There
can be up to 4 additional encryption parameters.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)68

6.1.5.24.8.2 cce_parameter_type

cce_parameter_type specifies the type of encryption parameter that follows in the bitstream. The parameter types
are listed in Table 48.

Table 48: cce_parameter_type meaning

cce_parameter_type Value Meaning
000b Number once (nonce)
001b Initialization Vector (IV)
010b Initial value
011b Counter start value
100b Counter (CTR)
101b-111b Reserved

6.1.5.24.8.3 cce_parameter_size_exp, cce_parameter

cce_parameter is an encryption parameter used to encrypt the coding coefficient information. The type of parameter
is described by the cce_parameter_type field. The parameter size (in bits) of the cce_parameter field is indicated
by the cce_parameter_size_exp field according to the equation:

ccep_bits = 2 ^ cce_parameter_size_exp

6.1.5.25 Pseudorandom Noise Generator (PRNG)

6.1.5.25.0 Introduction

A PRNG is used to generate coding coefficients that are applied to source symbols to create encoded symbols. The
generated coefficients can be transmitted verbatim in the bitstream, or the state of the PRNG, known as the seed, can be
transmitted and a decoder can regenerate the same coding coefficient matrix calculated in an encoder. Using a row
index, a decoder can select the appropriate row of the coding coefficient matrix. Transmission of the PRNG seed and
row index can be more efficient than transmission of the coding coefficients.

Depending on the code_type value, a PRNG seed may be used to determine the coding coefficient(s) for all the coded
symbols within a block, or the coded symbol in a packet.

To control the density of coding coefficients, i.e. the percentage of non-zero coefficients, a density value can be
transmitted to modify the coefficients output from the PRNG can be transmitted.

The prng_parameters() structure contains fields that describe the PRNG seed and density values. The context of
prng_parameters() is defined by the containing block_header(), or packet_header() structure.

If the coding coefficient information is encrypted (i.e. bit 3 of the block_mask field is set), then the
prng_parameters() structure is symmetrically encrypted using the block_cce_key and associated parameters.

When a PRNG is used to generate a matrix of coding coefficients, a row index into this matrix is required in order to
select the appropriate coding coefficients. This row index value is represented by:

• packet_symbol_index in the packet_header() in a packet subatom

• packet_group_symbol_index in the packet_group_header() in a packet group subatom

• mbpg_symbol_index in the mbpg_header() in a multiple block packet group subatom

If a coded symbol has a row index value less than the block_num_symbols value in the associated block header
subatom, then that coded symbol shall be a systematic symbol, regardless of whether it is indicated as such (for example
by the b_systematic_symbol flag in packet_header()). Further, when the row index is less than
block_num_symbols, the identified row of coefficients generated by the PRNG shall be discarded and replaced with a
coefficient vector consisting of all 0's except at the index identified by the row index value (as indicated by either
packet_symbol_index, or packet_group_symbol_index, or mbpg_symbol_index), where the coefficient shall
be 1.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)69

For more information on generating coding coefficients using a PRNG, see clause 7.1.0.

6.1.5.25.1 prng_type

prng_type specifies the type of number generator to use to generate the coding coefficient(s) for the given block or
packet. The different prng types are listed in Table 49.

Table 49: block_prng_type meaning

block_prng_type Value Meaning
000b Mersenne Twister (MT) [8]
001b-111b Reserved

6.1.5.25.2 prng_seed_bits_code

The prng_seed_bits_code field describes the number of bits the prng_seed field is encoded with as indicated in
Table 50.

Table 50: block_prng_seed_bits_code meaning

prng_seed_bits_code value Meaning
0 16 bits
1 32 bits
2 64 bits
3 Reserved

The operational variable ps_bits uses the prng_seed_bits_code value to determine the number of bits the
subsequent prng_seed field requires. It can also be calculated as follows:

ps_bits = 2^(prng_seed_bits_code + 4)

If the reserved value of prng_seed_bits_code (3) is received, it is considered an error.

6.1.5.25.3 prng_seed

prng_seed specifies the seed value used to initialize the PRNG for generating coefficients for the block or packet.

6.1.5.25.4 prng_density_percentage

prng_density_percentage describes the percentage of coding coefficients that are, on average, non-zero. The field
is encoded as a fraction in range (0, 1] and the actual percentage is determined by the following equation:

density percentage = 100 × (prng_density_percentage + 1) / 128

An operational variable, density_int is defined as:

density_int = (prng_density_percentage + 1)

6.1.6 packet()

6.1.6.0 Introduction

The packet (packet()) structure contains the packet_header(), as well as a coded symbol (an individual symbol
group), which is a fundamental piece of encoded data.

Packets, as well as other fields contained within larger structures, inherit values from previous subatom() instances.
For example, the packet() structure inherits the value of the block_field_size_exp field specified in the
associated block_header(), that is, the block_header() with the block_index value that matches the
packet_block_index value.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)70

6.1.6.1 packet_block_index

The operational variable packet_block_index, which is represented by the block_index_or_count_value()
structure if block_count is greater than 1, describes which block this packet() (or packet_header_only())
instance is associated with. If the bitstream only contains a single block (i.e. block_count is 1), then the
block_index_or_count_value() structure is not present in the bitstream and takes on a value of 0.

As an example, if the packet_block_index is 1, then the associated block and its related block_header() instance
has a block_index value of 1 as well.

6.1.6.2 coded_symbol

A coded_symbol is either a systematic symbol or the encoded version of a number of source symbols, generated by
applying coding to the original data symbols. The size of this field is determined by the operational variable css_bits
calculated using the following formula:

css_bits = (subatom_size × 8) -
sizeof(packet_block_index,packet_block_index_ext,packet_header())

In the equation above, subatom_size is the size indicated in the subatom header for this instance of the packet()
subatom. The sizeof function determines the number of bits used by the fields, or expansion of the structures, prior to
the coded_symbol_data field.

If the value of the block_symbol_size field in the associated block_header() instance is not 0, then the value of
css_bits shall be equal to block_symbol_size × 8.

If the coding coefficient information is encrypted (i.e. bit 3 of the block_mask field is set), and the
b_systematic_symbol field is also set, and the b_systematic_symbol_encrypted field is also set, then the
coded_symbol field is symmetrically encrypted using the block_cce_key and associated parameters.

6.1.7 packet_header()

6.1.7.0 Introduction

The packet_header() structure provides information about how the coded symbols were encoded. The
packet_header() will be different depending on whether it is encapsulated in a packet subatom or in a packet header
only subatom.

6.1.7.1 b_systematic_symbol

When True, this boolean indicates that the coded symbol in the packet is systematic (i.e. not coded). In this case, a
symbol index is present in the bitstream so that the original source symbol can be identified and used to decode the
other packets. When this field is False, no immediate indication is given that the coded symbol is systematic, it may
indeed be systematic but more information is needed, for example a coefficient vector, to determine wither it is a
systematic symbol or not.

If the block contains separated coding coefficients in packet header only subatoms (i.e. bit 2 of the block_mask field is
set), then the b_systematic_symbol field shall be cleared in the packet subatom, and its correct value shall be
indicated in the b_systematic_symbol field of the associated packet header only subatom.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)71

6.1.7.2 packet_mask

The packet_mask field is an array of Booleans that describes which subsequent fields are present in the bitstream as
listed in Table 51.

Table 51: packet_mask meaning

packet_mask bit Meaning
0 Symbol/row index present: This Boolean indicates whether index fields are present in the

bitstream that identify the symbol or provide an encoding rank.
1 Coding coefficient encryption parameter(s) present: This Boolean indicates whether

encryption parameters relevant to this packet are present in the bitstream. This bit can only
be set if bit 3 of block_mask is also set.

2 Window size: This Boolean indicates whether the coded symbol in the packet is created
from a subset of the original symbols contained within the block - a window of symbols,
and the start and stop index are present in the bitstream. Otherwise, the coded symbol
was created from all the symbols (as given by the coding coefficients) contained within the
block.

3 Packet seed: This Boolean indicates whether fields specifying the pseudorandom number
generator seed used to generate the coding coefficient for the coded symbol in the packet
are present in the bitstream. Otherwise, the coding coefficients are transmitted by other
means in the bitstream.

4 Coding vector present: This Boolean indicates whether the coefficient_vector()
structure is present in the bitstream. This structure explicitly describes the coding
coefficients that were used to generate the coded symbol in the packet.

5 Packet integrity: This Boolean indicates whether the packet_integrity() structure is
present in the bitstream. This structure provides a mechanism to verify that the received
data in the packet matches that of the original source bitstream.

6 Packet header extension: This Boolean indicates whether the
packet_header_extension() structure is present in the bitstream. The
packet_header_extension() structure provides a mechanism to extend the packet
header syntax with additional information and is an instance of the extension() structure.

Certain bits of the packet_mask are set or cleared depending on the values of other fields. Including:

• If b_systematic_symbol is set, then:

- Bit 0 of packet_mask shall be set.

- Neither bit 2 (window start/stop indexes), nor bit 3 (packet seed), nor bit 4 (coefficient vector) shall be
set. That is, the only allowed packet_mask value is BB0001b (see note below).

• Bit 3 (packet seed) and bit 4 (coefficient vector) are mutually exclusive, and shall not both be set
simultaneously.

• If bit 1 of the addl_block_coding_mask is set, indicating that a sliding window is used, bit 2 of
packet_mask shall be set.

• If bit 2 of block_mask is set, indicating that the coding coefficients are separated and described in the packet
header only subatom, then:

- Bit 0 shall be set in the packet_mask field in both the packet subatom as well as the associated packet
header only subatom. The corresponding packet_symbol_index values shall have the same value in
both instances.

- Bits 1, 2, 3, 4, 5, and 6 of packet_mask in packet subatom shall be cleared. That is, the only allowed
packet_mask value is 000001b (see note). These bits may be set as needed in the associated packet
header only subatom packet_mask field.

NOTE: Bit values indicated as B mean that the value of this bit can be set, or not set depending on other settings
in an encoder.

An example packet_mask can be 0100001b, with bit 0 set indicating the packet_symbol_index field is present in
the bitstream, and bit 5 set indicating the presence of the packet integrity check.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)72

6.1.7.3 psi_bits

The operational variable psi_bits is used in the syntax to specify the number of bits used to encode the
packet_symbol_index field. psi_bits is represented by the num_bits_code() structure.

6.1.7.4 packet_symbol_index

The packet_symbol_index field defines an index whose meaning is context dependent:

• If the b_systematic_symbol is set, the packet_symbol_index value is the original symbol index
number.

• For certain code_type values, (e.g. 1 (RaptorQ) or 2 (Reed-Solomon)), the packet_symbol_index value
represents the encoded symbol index to identify each coded symbol.

• If bit 2 of block_mask is set, the packet_symbol_index value associates packet header only subatoms
carrying the separated coding coefficient information, and the packet subatoms carrying the coded_symbol.

• If bit 4 of block_mask is set, the packet_symbol_index value is the row of the coding coefficient matrix
generated by using the block PRNG. Further, if the b_systematic_symbol field is set for this packet, or the
value of packet_symbol_index is less than block_num_symbols of the associated block header subatom,
then the identified row of coefficients generated by the block PRNG shall be discarded and replaced with a
coefficient vector consisting of all 0's except at the index identified by the packet_symbol_index value,
where the coefficient shall be 1.

The value of the packet_symbol_index field is 0-indexed. For example, a packet_symbol_index value of 0 can
reference the 1st original input symbol for a systematic packet.

6.1.7.5 Encryption Parameters

6.1.7.5.0 Introduction

When bit 1 of the packet_mask field is set, additional encryption parameters needed to decrypt the coding coefficient
information within the packet_header() are present in the bitstream. The coding coefficient information within the
packet_header() can be any of:

• coefficient_vector() in packet_header() within the packet subatom or the packet header only
subatom

• packet_prng_seed in packet_header() or packet_header_only()

• coded_symbol in packet_header() for systematic packets

When the coding coefficient information is encrypted, keys and other encryption parameters are needed in order to
decrypt the coefficient information and ultimately decode the coded symbols.

The following fields describe the additional packet or packet header only encryption parameters.

For more details on encrypting coding coefficient information, see clause 7.3.

6.1.7.5.1 b_systematic_symbol_encrypted

This Boolean indicates whether the coded_symbol field is encrypted. This field can only be set if the
b_systematic_symbol field is also set.

6.1.7.5.2 b_addl_packet_cce_params_present

This Boolean indicates whether additional encryption parameters required to decrypt the coding coefficient information,
contained in the addl_cce_parameters() structure, follow in the bitstream.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)73

6.1.7.6 window_start_index, window_stop_index

The window_start_index and window_stop_index fields indicate the index of the first symbol present in the
coded symbol, the start index, and the index of the last symbol present in the coded symbol, the stop index, to form a
window of contiguous symbols from amongst the total set of symbols contained within the block.

The operational variable window_size is used in the syntax when the window_start_index and
window_stop_index fields are present in the bitstream, the maximum window_size value is 65 536 and is
calculated as follows:

window_size = modulo(window_stop_index - window_start_index + 1, 65 536)

NOTE: Although the maximum window_size value is 65 536 when the window_start_index and
window_stop_index fields are present in the bitstream, other practical considerations may impose a
stricter limit on the maximum window_size value.

If the window_start_index and window_stop_index fields are not present in the bitstream, the window_size
variable is calculated as follows:

window_size = block_num_symbols

Where block_num_symbols is the value taken from the associated block_header().

6.1.7.7 byte_align

This bit field of size 0 to 7 bits is used for the byte alignment of the associated packet_header() structure. Byte
alignment is defined relative to the start of the enclosing syntactic element.

6.1.8 encoder_content_info()

6.1.8.0 Introduction

The CMMF bitstream has applications in online delivery of audio/video content. The optional encoder content
information (encoder_content_info()) structure contains information about the specific encoder utilized, and the
source assets, such as a content identification. This subatom is useful when CMMF bitstreams for a given asset are
generated by multiple encoders in a distributed and/or decentralized fashion. The information contained within this
subatom can be used to both validate that the encoder used to generate the bitstream is authorized and the associated
bitstream is compatible with bitstreams created by other encoders.

6.1.8.1 b_encoder_id_present

This Boolean indicates whether the encoder_uuid field is present the bitstream.

6.1.8.2 encoder_uuid

The encoder_id field identifies the specific encoder used to create the bitstream. The field carries a version 4, variant
1 universally unique identifier as specified in IETF RFC 9562 [1]. This field enables efficient use of a plurality of
encoders in decentralized settings.

6.1.8.3 Content Identification

The content encoded in an CMMF bitstream can have a content identification.

6.1.8.4 b_content_id_present

6.1.8.4.0 Introduction

This Boolean indicates whether the content_id_type, content_id_size_minus1, and content_id, fields are
present the bitstream.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)74

6.1.8.4.1 content_id_type

Several different identification options are supported. The content_id_type field indicates the type of identification
present in the bitstream. The description of the values is specified in Table 52.

Table 52: content_id_type description

content_id_type Value Identification Description Type
0x0 Entertainment Identification Registry (EIDR)
0x1 Advertising Digital Identifier (Ad-iD)
0x2 Custom identification defined by the user
0x3 Universally Unique Identifier (UUID)
0x4 - 0xE Reserved
0xF Unspecified

6.1.8.4.2 content_id_size_minus1

This field indicates the size (in bytes) of the content_id field that immediately follows this field, minus one. For
example, a content_id_size_minus1 value of '11' indicates a content_id of 12 bytes.

6.1.8.4.3 content_id

This field shall contain the content ID associated with the current content as specified by the content_id_type:

• EIDR: For an EIDR content ID type, the content_id field shall contain a 96-bit identifier that is registered
with EIDR (http://eidr.org) in Compact Binary Format as defined by EIDR [2].

• Ad-ID: For an Ad-ID content ID type, the content_id field shall contain an Ad-ID String that represents an
identifier registered with Ad-ID (http://www.ad-id.org/) as defined by Ad-ID [3].

• UUID: For a UUID content ID type, the content_id field shall contain a 128-bit UUID as defined by IETF
RFC 9562 [1].

• Custom ID: For a custom ID type, the content_id field is "free-form" and can be populated with ASCII [7]
or UTF-8 [11] data.

6.1.8.5 b_content_location_present

This Boolean indicates whether the content_location_size and content_location fields are present in the
bitstream.

6.1.8.6 content_location_size, content_location

The content_location field provides the location of the content with size indicated by the
content_location_size field (in bytes). This field is a string of ASCII [7] or UTF-8 [11] characters. The
content_location_size field shall not have a value of 0.

6.1.8.7 b_content_type_present

This Boolean indicates whether the content_type_size and content_type fields are present in the bitstream.

6.1.8.8 content_type_size, content_type

The content_type field is a human-readable description of the type of content with size indicated by the
content_type_size field (in bytes). This field is a string of ASCII [7] or UTF-8 [11] characters. The
content_type_size field shall not have a value of 0.

http://eidr.org/
http://www.ad-id.org/

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)75

6.1.8.9 b_content_header_present

This Boolean indicates whether the content_type_size and content_type_size fields are present in the
bitstream.

6.1.8.10 content_header_size, content_header

The content_header field contains the first content_type_size bytes of the source data, unencoded. The
content_header field can be parsed using existing methods to determine details about the content encoded within the
bitstream. Example details include bit rate, resolution for video content, sampling frequency for audio content, etc. The
content_type_size field shall not have a value of 0.

6.1.8.11 b_file_integrity_present

This Boolean indicates whether the file_integrity() structure is present in the bitstream. The
file_integrity() structure is just an instance of the fb_integrity() structure that applies to the full file.

6.1.8.12 b_media_preso_dur_present

This Boolean indicates whether the media_presentation_duration() structure is present in the bitstream. An
encoded bitstream may only represent a segment of the overall source content, and the
media_presentation_duration() structure indicates the duration of the entire presentation of the source content.
This structure is an instance of the cmmf_time() structure. While this duration is optional, it, along with other fields in
this subatom, is useful to a decoder to determine if the bitstream can be decoded with bitstreams received from other
encoders.

6.1.9 media_segment_info()

6.1.9.0 Introduction

The media segment information (media_segment_info()) structure provides information about the underlying
CMMF encoded media. This optional structure enables a system to inspect the underlying CMMF coded media without
requiring a decode operation in settings that do not support access to a centralized service entity, manifest files, etc.
e.g. information centric networks, peer-to-peer systems, distributed file systems, etc. The media information may be
populated from a DASH or HLS manifest file as an example. The media_segment_info() subatom is useful when
content is stored or cached across multiple endpoints (e.g. a CMMF bitstream containing only packet() subatoms is
cached in one location while another CMMF bitstream containing other subatoms is cached in another location). In
these cases, it may be useful to have information about the underlying essence attached to both bitstreams from both a
network management and a delivery standpoint. As a more concrete example, assuming the encoding of an HLS asset.
The HLS manifest is encoded within one CMMF bitstream while each segment of that stream is encoded into their own
CMMF bitstreams. A management layer can be implemented that links the HLS manifest CMMF bitstream with all of
the segment bitstreams. Alternatively, the media_segment_info() subatom can be used to perform this linking,
which also adds the benefit of not having to duplicate the HLS manifest. This subatom complements the higher-level
manifest and allows for processes within the network to manage how the overall asset is distributed within that network.

A media segment information subatom describes a single type of media (e.g. audio or video). If the media is
multiplexed and contains multiple types of media, or if different blocks contain different types of media, then multiple
instances of the media segment information subatom may be used.

6.1.9.1 media_segment_block_index, media_segment_block_index_ext

The media_segment_block_index field, which is extendable by the media_segments_index_ext field, describes
which block this media_segment_info() instance is associated with.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)76

6.1.9.2 media_segment_index, media_segment_index_ext

The media_segment_index field, which is extendable by the media_segment_index_ext field, identifies the
media index of the instance of the media_segment_info() structure. The index is 0-based and shall have a value 0
except in cases where the media is multiplexed where each multiplexed stream shall have a unique
media_segment_index value.

6.1.9.3 b_composite_source_index _present

This Boolean indicates whether media_segment_composite_source_index is present in the bitstream.

6.1.9.4 media_segment_composite_source_index

When the block associated with the relevant media segment (as indicated by the media_segment_block_index field)
is a composite of different data sources, the media_segment_composite_index identifies which data source in that
block the media segment applies to.

6.1.9.5 b_asset_name_present

This Boolean indicates whether an asset name is present in the bitstream.

6.1.9.6 asset_name_size, asset_name

The asset_name is the name of the media asset of size indicated by the asset_name_size field (in bytes). This field
is free-form and can be any ASCII [7] or UTF-8 [11] string of characters. The asset_name_size field shall not have a
value of 0.

6.1.9.7 segment_tag_mask

The segment_tag_mask field is a bit mask that describes which subsequent fields are present in the bitstream as listed
in Table 53.

Table 53: segment_tag_mask meaning

segment_tag_mask bit Meaning
0 Segment duration present: This bit indicates whether the duration of the encoded media

segment, as described by the segment_duration() structure, is present in the bitstream.
This structure is an instance of the cmmf_time() structure. The duration is optional, and
can be used to replicate the corresponding information from a manifest.

1 Segment start time present: This bit indicates whether the start time of the encoded media
segment, as described by the segment_start_time() structure, is present in the
bitstream. This structure is an instance of the cmmf_time() structure. The start time is
optional, and can be used to replicate the corresponding information from a manifest.

2 Segment index present: This bit indicates whether the segment_index field is present in
the bitstream.

3 Segment count present: This bit indicates whether the segment_count field is present in
the bitstream.

6.1.9.8 segidx_bits, segcnt_bits

The operational variables segidx_bits and segcnt_bits are represented by the num_bits_code() structure.

6.1.9.9 segment_index

The segment_index field identifies which segment of the media is contained within the encoded data.

6.1.9.10 segment_count

The segment_count field describes how many segments of this media exist.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)77

6.1.9.11 b_media_mime_type_present

This Boolean indicates whether information about the MIME type of the media is provided in the bitstream. In this case,
the media_mime_type and media_mime_type_size fields are present in the bitstream.

6.1.9.12 media_mime_type_size, media_mime_type

media_mime_type is a string of ASCII [7] characters that describes the content using a discrete media type value as
defined in section 4 of IETF RFC 2046 [23] and/or IETF RFC 4337 [22]. Up to the first 63 bytes of the media type can
be indicated. The size (in bytes) of the media_mime_type field is indicated by the media_mime_type_size field.
The media_mime_type_size field shall not have a value of 0.

6.1.9.13 b_media_codec_present

This Boolean indicates whether information about the codec is provided in the bitstream. In this case, the
media_codec and media_codec_size fields are present in the bitstream.

6.1.9.14 media_codec_size, media_codec

media_codec is a string of ASCII [7] or UTF-8 [11] characters conforming to either the simp-list or fancy-list
productions of IETF RFC 6381 [5], section 3.2, without the enclosing DQUOTE characters. Up to the first 63 bytes of a
single codec identifier for the media format, mapped into the name space for codecs as specified in IETF RFC 6381 [5],
section 3.3, shall be used. The size (in bytes) of the media_codec field is indicated by the media_codec_size field.
The media_codec_size field shall not have a value of 0.

6.1.9.15 b_bit_rate_present

This Boolean indicates whether the bit_rate field is present in the bitstream.

6.1.9.16 bit_rate_bits_code

The bit_rate_bits_code field describes how many bits are used to describe the bit rate of the media segment.

Table 54: bit_rate_bits_code meaning

bit_rate_bits_code Value Meaning
0b 24 bits
1b 32 bits

The operational variable bps_bits is used to specify the number of bits used to represent the bit rate and is calculated
using the bit_rate_bits_code as follows:

bps_bits = (bit_rate_bits_code + 3) × 8

6.1.9.17 bit_rate

The bit_rate field describes the bit rate of the media segment and has units of bits per second.

6.1.9.18 b_ms_content_type_present

This Boolean indicates whether the ms_content_type field is present in the bitstream.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)78

6.1.9.19 ms_content_type

The ms_content_type field describes the type of content contained within the media segment. The field is described
in Table 55.

Table 55: ms_content_type description

ms_content_type value Description
0x0 Video
0x1 Audio
0x2 Multiplexed media of different content types
0x3 Application data
0x4 Text
0x5-0x7 Reserved

6.1.9.20 b_ms_content_type_info_present

This Boolean indicates whether additional information based on the value of the ms_content_type field is present in
the bitstream. It shall not be set unless b_ms_content_type_present is set.

6.1.9.21 b_aspect_ratio_present

This Boolean indicates whether information about the picture aspect ratio is provided in the bitstream. In this case, the
sample_aspect_ratio and potentially the sar_width and sar_height fields are present in the bitstream.

6.1.9.22 sample_aspect_ratio

The picture aspect ratio describes the ratio of the width dimension to the height dimension of the video. The
sample_aspect_ratio field has the same meaning as the SampleAspectRatio field as described in
ISO/IEC 23091-2 [10].

6.1.9.23 sar_width, sar_height

The picture aspect ratio describes the ratio of the width dimension to the height dimension of the video. When the
sample_aspect_ratio has a value of 255, then the sar_width and sar_height fields are present in the bitstream
and indicate the horizontal and vertical dimensions, respectively, of the sample aspect ratio of the media segment.

6.1.9.24 b_dynamic_resolution_video

This Boolean indicates whether the resolution of the video varies throughout the program. In this case, and if
b_resolution_present is set, the resolution_width and resolution_height fields indicate the maximum
resolution of the program.

6.1.9.25 b_resolution_present

This Boolean indicates whether the resolution of the video is provided in the bitstream. In this case, the
resolution_width and resolution_height fields are present in the bitstream.

6.1.9.26 resolution_width, resolution_height

The resolution_width and resolution_height fields describe the horizontal pixel count and vertical line count,
respectively, of the related video media segment.

6.1.9.27 b_frame_rate_present

This Boolean indicates whether the video frame rate is provided in the bitstream. In this case, the frame_rate field
and a reserved field are present in the bitstream.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)79

6.1.9.28 frame_rate

The frame_rate field describes how many frames per second (fps) appear in the associated video. The meaning of this
field is specified in Table 56. In the case of interlaced video, the frame rate is 1/2 the field rate. Fractional frame rates
expressed as decimal fractions, such as 23,976 fps or 59,94 fps, are approximations of the exact frame rate. The exact
frame rate is calculated by applying a factor of 1 000 / 1 001 to the nearest adjacent integer frame rate (e.g. 23,976 fps
represents 24 fps × 1 000 / 1 001).

Table 56: frame_rate values

frame_rate value Frame rate (fps)
0 23,976
1 24
2 25
3 29,97
4 30
5 47,95
6 48
7 50
8 59,94
9 60
10 100
11 119,88
12 120
13 - 31 Reserved

6.1.9.29 b_hdr_info_present

This Boolean indicates whether High Dynamic Range (HDR) video information follows in the bitstream. Otherwise, the
video should not be considered HDR.

6.1.9.30 hdr_compatibility_mask

The hdr_compatibility_mask field is a bit mask where each bit indicates that the video is compatible with a
specific HDR format. The meaning of this field is specified in Table 57.

Table 57: hdr_compatibility_mask values

hdr_compatibility_mask Bit Meaning (compatible with)
0 HDR10
1 HLG™
2 SMPTE 2094-10
3 SMPTE 2094-20
4 SMPTE 2094-30
5 SMPTE 2094-40
6 Reserved
7 Reserved
8 Dolby Vision™
9 HDR10+™
10 SL-HDR1™
11 SL-HDR2™
12 SL-HDR3™
13 Reserved
14 Reserved
15 Reserved

6.1.9.31 b_addl_hdr_info_present

This Boolean indicates whether additional High Dynamic Range (HDR) video information follows in the bitstream as
indicated by the hdr_compat_mask_index, hdr_profile, hdr_level, and hdr_compatibility_id fields.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)80

6.1.9.32 hdr_compat_mask_index

The hdr_compat_mask_index field is an index into hdr_compatibility_mask field to identify which HDR format
the subsequent hdr_profile, hdr_level, and hdr_compatibility_id fields correspond to.

For example, if hdr_compat_mask_index has a value of 8, then the subsequent fields relate to Dolby Vision™.

6.1.9.33 hdr_profile

The hdr_profile field specifies the profile of the HDR video.

6.1.9.34 hdr_level

The hdr_level field specifies the level of the HDR video.

6.1.9.35 hdr_compatibility_id

The hdr_compatibility_id field specifies a particular form of a base layer substream.

6.1.9.36 b_addl_video_info_present

This Boolean indicates whether the addl_video_info() structure is present in the bitstream. The
addl_video_info() structure provides a mechanism to extend the video content type with additional information and
is an instance of the extension() structure.

6.1.9.37 b_sampling_freq_present

This Boolean indicates whether the audio sampling frequency is provided in the bitstream. In this case, the
b_sampling_freq_is_48k field is present in the bitstream.

6.1.9.38 b_sampling_freq_is_48k

This Boolean indicates whether the audio in this media segment has an audio sampling frequency of 48 000 Hz.
Otherwise, the sampling_frequency field is present in the bitstream, providing the sampling frequency of the audio.

6.1.9.39 sampling_frequency

The sampling_frequency field describes the sampling rate of the audio in the media segment. The value of this field
is specified in Table 58.

Table 58: sampling_frequency values

sampling_frequency value Sampling frequency (kHz)
0 6
1 8
2 12
3 24
4 48
5 96
6 192
7 22,05
8 44,1
9 88,2
10 176,4
11 - 15 Reserved

6.1.9.40 b_audio_config_present

This Boolean indicates whether the audio channel configuration is described in the bitstream. In this case, the
audio_channel_config field is present in the bitstream.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)81

6.1.9.41 audio_channel_config

The audio_channel_config field defines the audio channel configuration of the media segment. The field is a bit
mask of speaker groups present in the channel configuration.

The value of this field is specfied in Table 59.

Table 59: audio_channel_config values

audio_channel_config Bit Speaker group location(s)
0 Left (L)

Right (R)
1 Centre (C)
2 Left surround (Ls)

Right surround (Rs)
3 Left back (Lb)

Right back (Rb)
4 Top front left (Tfl)

Top front right (Tfr)
5 Top back left (Tbl)

Top back right (Tbr)
6 Low-Frequency Effects (LFE)
7 Top Left (Tl)

Top Right (Tr)
8 Top side left (Tsl)

Top side right (Tsr)
9 Top front centre (Tfc)
10 Top back centre (Tbc)
11 Top centre (Tc)
12 Low-frequency effects 2 (LFE2)
13 Bottom front left (Bfl)

Bottom front right (Bfr)
14 Bottom front centre (Bfc)
15 Back centre (Bc)
16 Left screen (Lscr)

Right screen (Rscr)
17 Left wide (Lw)

Right wide (Rw)
18 Vertical Height Left (Vhl)

Vertical Height Right (Vhr)
19 Reserved
20 Reserved
21 Reserved
22 Reserved
23 Reserved

All references to ITU channel names for each speaker group are with regard to Recommendation
ITU-R BS.2051-3 [20].

Bit 23 indicates whether the audio presentation is object based and thus channel presence does not apply. In this case,
bits 22...0 are reserved. Otherwise, bits 18...0 indicate the presence of individual channel groups in the audio
presentation that together form the corresponding channel configuration. In this case bits 18...0 shall indicate the
presence of channel groups in the original content.

For example, if the audio channel configuration contains the L and R channels, then Bit 0 is set to 1. As another
example, for a stream with a 5.1.2 channel configuration of L, C, R, Ls, Rs, LFE, Tsl, Tsr, the
audio_channel_config value is 0x00 0147 (the hexadecimal equivalent of the binary value
0000 0000 0000 0001 0100 0111).

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)82

6.1.9.42 b_audio_props_present

This Boolean indicates whether additional fields describing other audio properties are provided in the bitstream. In this
case, the b_virtualized_bin, b_object_audio and b_complexity_index_present fields, as well as two
reserved fields, are present in the bitstream.

6.1.9.43 b_virtualized_bin

This Boolean indicates whether the audio contains a binaural virtualized experienced. In this case, and if
b_audio_config_present is set, then the audio_channel_config field shall have a value of 0x00 0001
indicating that only the L and R channels are present.

6.1.9.44 b_object_audio

This Boolean indicates whether the media segment contains an object-based audio presentation. Otherwise, the audio
presentation is channel based.

6.1.9.45 b_complexity_index_present

This Boolean indicates whether the complexity index information is provided in the bitstream. In this case, the
complexity_index field is present in the bitstream.

6.1.9.46 complexity_index

The complexity_index field specifies the number of channels and/or objects of the audio.

6.1.9.47 b_addl_audio_info_present

This Boolean indicates whether the addl_audio_info() structure is present in the bitstream. The
addl_audio_info() structure provides a mechanism to extend the audio content type with additional information and
is an instance of the extension() structure.

6.1.9.48 b_addl_ms_content_type_info_present

This Boolean indicates whether the addl_ms_content_type_info() structure is present in the bitstream. The
addl_ms_content_type_info() structure provides a placeholder to define additional information for other
ms_content_type values. This structure is an instance of the extension() structure.

6.1.9.49 accessibility_mask

The accessibility_mask field is a bit mask that describes which subsequent accessibility-related fields are present
in the bitstream as listed in Table 60.

Table 60: accessibility_mask meaning

accessibility_mask bit Meaning
0 Language present: If this bit is set, the language of the media

segment is present in the bitstream.
1 Reserved present: If this bit is set, then a reserved field is

present in the bitstream.
2 Reserved present: If this bit is set, then a reserved field is

present in the bitstream.
3 Additional accessibility information present: If this bit is set, the

addl_accessibility_info() structure is present in the
bitstream. This structure is an instance of the extension()
structure.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)83

6.1.9.50 language_size, language

The language field contains a language tag that conforms to the syntax and semantics defined in IETF RFC 4646 [6].
The size (in bytes) of the field is indicated by the language_size field. The minimum sequence length shall be two
bytes, supporting a two-character language tag as specified in ISO 639 [4]. The maximum supported length of the
language tag shall be 42 bytes.

6.1.10 cmmf_time()

6.1.10.0 Introduction

The cmmf_time() structure represents temporal information, with a range of 31 days, 23 hours, 59 minutes, and
59,999 seconds, and a granularity of one microsecond (1 second / 1 000), one nanosecond (1 second / 1 000 000), or
one picosecond (1 second / 1 000 000 000). Multiple instances of this syntax are present in the CMMF bitstream,
e.g. media_presentation_duration and start_time fields.

6.1.10.1 b_ddhhmmss

This Boolean indicates whether the subsequent temporal information is presented in a days, hours, minutes, and seconds
(DD:HH:MM:SS) format, and the b_dd_present, b_hh_present, b_mm_present, and b_ss_present fields are
present in the bitstream. Otherwise, the temporal information is presented in seconds, and the
int_seconds_bits_code and int_seconds fields are present in the bitstream.

6.1.10.2 DD:HH:MM:SS format

If the b_ddhhmmss field is set, the temporal information is indicated by the days, hours, minutes, and seconds
fields. Each of these fields has an associated presence flag indicating whether the field is present in the bitstream. A
field that is not present in the bitstream has a value of 0.

Table 61: DD:HH:MM:SS format fields and meaning

Presence flag Associated field Allowable range
b_dd_present days [0, 31]
b_hh_present hours [0, 23]
b_mm_present minutes [0, 59]
b_ss_present seconds [0, 59]

6.1.10.3 int_seconds_bits_code

The int_seconds_bits_code field describes the number of bits used to encode the int_seconds field. The
meaning of this field is specified in Table 62.

Table 62: int_seconds_bits_code meaning

int_seconds_bits_code value Meaning
00b The value of int_seconds_bits_code is 8 bits.
01b The value of int_seconds_bits_code is 16 bits.
10b The value of int_seconds_bits_code is 24 bits.
11b Reserved.

The operational variable is_bits can be calculated directly from the int_seconds_bits_code field according to
the following equation:

is_bits = (int_seconds_bits_code + 1) × 8

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)84

6.1.10.4 int_seconds

If the b_ddhhmmss field is cleared, the temporal information is indicated by the int_seconds field, describing the
number of integer seconds. This field has a range of [0, 2 764 799] (up to 31 days, 23 hours, 59 minutes, 59 seconds).

6.1.10.5 b_fract_seconds_present

This Boolean indicates whether the fract_seconds field is present in the bitstream.

6.1.10.6 fract_seconds_bits_code

The fract_seconds_bits_code field describes the number of bits used to encode the fract_seconds field. The
meaning of this field is specified in Table 63.

Table 63: fract_seconds_bits_code meaning

fract_seconds_bits_code value Meaning
00b The value of fract_seconds_bits_code is 10 bits.
01b The value of fract_seconds_bits_code is 20 bits.
10b The value of fract_seconds_bits_code is 40 bits.
11b Reserved.

The operational variable s_bits can be calculated directly from the fract_seconds_bits_code field according to
the following equation:

fs_bits = 10 × 2^fract_seconds_bits_code

6.1.10.7 fract_seconds

The fract_seconds field describes the number of fractional seconds added to the integer seconds described above.
The field has a range depending on the value of fs_bits, as shown in Table 64.

Table 64: fract_seconds range and divisor

fs_bits value fract_seconds range fract_seconds divisor
10 bits [0, 999] 1 000
20 bits [0, 999 999] 1 000 000
40 bits [0, 999 999 999 999] 1 000 000 000 000

The number of fractional seconds is then calculated by dividing the fract_seconds value in the bitstream by the
indicated divisor value as shown in the following equation:

fractional seconds = fract_seconds / divisor

6.1.11 chunked_subatom()

6.1.11.0 Introduction

The chunked_subatom() structure contains a 'chunk' of subatom data. It provides a mechanism to partition large
subatom data into multiple smaller chunk segments. For example if the coded symbol size in a packet subatom is very
large for the transmission protocol in use, the subatom packet() data can be split into smaller chunk segments that fit
the transmission requirements.

A chunked_subatom() cannot itself be chunked. When subatom data is chunked, it shall be split into more than one
chunked_subatom() instances.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)85

6.1.11.1 chunk_segment_id

The chunk_segment_id field identifies a series of chunked_subatom() instances as containing different portions of
the same subatom data. When subatom data is chunked, all chunked_subatom() instances of that data shall have the
same value in the chunk_segment_id field.

6.1.11.2 chunk_segment_index

The chunk_segment_index field identifies the index of the chunk segment of subatom data contained within the
chunked_subatom(). A parser can use this information to reassemble the chunked subatom data to its original order.

If a chunk segment is lost in transmission, and a complete set of chunk segments is not received, it is up to the decoder
implementation to determine how to recover. For instance, the decoder may introduce a timer, if all the chunk segments
are not received within the appropriate time range, then that entire series of chunked_subatom() instances (i.e. all
instances with the same chunk_segment_id), may be discarded.

6.1.11.3 num_chunk_segments

The num_chunk_segments field describes the number of chunk segments that the subatom data (associated with the
indicated chunk_segment_id) has been split into. The value of this field shall be greater than 1.

6.1.11.4 original_subatom_id, original_subatom_id_ext

The original_subatom_id field, which is extendable by the original_subatom_id_ext field, specifies the
subatom_id of the segment data contained within the chunked_subatom().

6.1.11.5 oss_bits

The operational variable oss_bits is used in the syntax to specify the number of bits used to encode the original
subatom data size and is represented by the num_bits_code() structure.

6.1.11.6 original_subatom_size

The original_subatom_size field describes the size of the original subatom data prior to being chunked, in bytes.

6.1.11.7 byte_align

This bit field of size 0 to 7 bits is used for the byte alignment of the associated chunked_subatom() structure. Byte
alignment is defined relative to the start of the enclosing syntactic element.

6.1.11.8 chunked_subatom_segment_data

The chunked_subatom_segment_data field contains a chunk segment of the chunked subatom data.

The operational variable cssd_bits is used in the syntax to specify the number of bits used to encode
chunked_subatom_segment_data and is based on several fields according to the following semantic equation:

cssd_bits = (subatom_size × 8) - sizeof(chunk_segment_id, chunk_segment_index,
num_chunk_segments, original_subatom_id, original_subatom_id_ext, num_bits_code(),

original_subatom_size, byte_align)

In the equation above, subatom_size is the size indicated in the subatom header for this instance of the
chunked_subatom(). The sizeof function determines the number of bits used by the fields prior to the
chunked_subatom_segment_data.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)86

6.1.12 block_group_directory()

6.1.12.0 Introduction

The block group directory (block_group_directory()) contains fields to indicate the start of block header subatom
(i.e. subatoms with the block_header() structure) or packet group subatom (i.e. subatoms with the
packet_group() structure) instances in the bitstream. The block group directory subatom shall not contain any
additional padding after the block_group_directory() structure.

6.1.12.1 block_group_dir_mask

The block_group_dir_mask field is an array of Booleans that describes which subsequent fields are present in the
bitstream as listed in Table 65.

Table 65: block_group_dir_mask meaning

block_group_dir_mask bit Meaning
0 Block header directory symbols present: This Boolean indicates whether fields that

specify the offset to the block header subatoms are present in the bitstream.
1 Packet group directory: This Boolean indicates whether fields that specify the offset

to the packet group subatoms are present in the bitstream.
2 Packet group headers present: This Boolean indicates whether instances of the

packet_group() structure, one for each of the packet group subatoms, are present
and follow in the bitstream. These packet_group() instances shall have a
packet_group_type value of 01b indicating that only the packet group header is
present, no coded symbols. This bit shall only be set if and only if bit 1 is set.

3 Multiple block packet group directory present: This Boolean indicates whether fields
that specify the offset to the multiple block packet group subatoms are present in
the bitstream.

4-7 Reserved.

6.1.12.2 block_header_subatom_offset[block]

The block_header_subatom_offset[block] field describes the offset, in bytes, until the block header subatom
with a block_index value of block. The offset is relative to the 'directory_end' label.

6.1.12.3 num_packet_groups[block]

The num_packet_groups[block] field describes the number of packet group subatom instances present for
block'th block.

6.1.12.4 packet_group_index[block][pg]

The packet_group_index[block][pg] field identifies the pg'th instance of the packet_group()associated with
the block'th block.

This field is only present if bit 2 of the block_group_dir_mask field is 0. Otherwise this field is present as part of the
packet_group() structures in the block group directory.

6.1.12.5 packet_group_subatom_offset[block][pg]

The packet_group_subatom_offset[block] field describes the offset, in bytes, until the pg'th packet group
subatom with a packet_group_block_index value of block. This field shall only describe the offset to packet
group subatoms that have a packet_group_type value of 00b or 10b, i.e. the coded_symbol fields are present. The
offset is relative to the 'directory_end' label.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)87

6.1.12.6 num_multi_block_packet_groups

The num_multi_block_packet_groups field describes the number of multiple block packet group subatom
instances present.

6.1.12.7 multi_block_packet_group_subatom_offset[mbpg]

The multi_block_packet_group_subatom_offset[mbpg] field describes the offset, in bytes, until the instance
of the multiple block packet group subatom with a mpbg__index value of mbpg. The offset is relative to the
'directory_end' label.

6.1.13 fb_integrity()

6.1.13.0 Introduction

The fb_integrity() contains fields to verify the integrity of the received and decoded full file or block.

The fb_integrity() element provides a mechanism to verify the integrity of the decoded data in the full file or a
given block. This element is referenced by other structures in the syntax When referenced in the
encoder_content_info() this structure relates to the file. When referenced in the block_header() this structure
relates to the indicated block_index.

6.1.13.1 fb_hash_type

The fb_hash_type field describes how the hash on the data is calculated. The meaning of this field is specified in
Table 66.

Table 66: fb_hash_type meaning

fb_hash_type value Meaning
00b The hash is calculated on the full file or block data.
01b The hash is a Merkel root hash of the original symbols.
10b-11b Reserved.

6.1.13.2 fb_hash_algorithm

The fb_hash_algorithm field describes the algorithm used to calculate the hash of the data. The meaning of this
field is specified in Table 67.

Table 67: fb_hash_algorithm meaning

fb_hash_algorithm value Meaning
000b The hash is calculated using the SHA-1 [9] algorithm.
001b The hash is a CRC of the data, modulo the polynomial

x8 + x6 + x5 + x + 1 where the relevant shift register is initialized
to 0xA2 before the computation.

010b The hash is calculated using the MD5 [21] Message-Digest
algorithm.

010b-111b Reserved.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)88

6.1.13.3 fb_hash_size

The fb_hash_size field describes the number of bits of the hash digest. The meaning of this field is specified in
Table 68.

Table 68: fb_hash_size meaning

fb_hash_size value Meaning
0000b The hash digest size is 8 bits.
0001b The hash digest size is 32 bits.
0010b The hash digest size is 64 bits.
0011b The hash digest size is 128 bits.
0100b The hash digest size is 160 bits.
0101b The hash digest size is 256 bits.
0110b The hash digest size is 512 bits.
0111b The hash digest size is 1 024 bits.
1000b The hash digest size is 2 048 bits.
1001b-1111b Reserved.

If the reserved values of fb_hash_size (1001b-1111b) is received, it is considered an error.

Depending on the value of fb_hash_algorithm, fb_hash_size is constrained as indicated in Table 69.

Table 69: Allowed fb_hash_size values based on fb_hash_algorithm

fb_hash_algorithm value: algorithm Allowed fb_hash_size value: bits
000b: SHA-1 0100b: 160 bits
001b: CRC 0000b: 8 bits
010b: MD5 0011b: 128 bits

The operational variable fb_hash_bits is the number of bits indicated by the fb_hash_size field. For example, if
the fb_hash_size field is 0111b, then fb_hash_bits = 1 024.

6.1.13.4 b_fb_integrity_ext

This Boolean indicates whether the fb_integrity_ext() structure is present in the bitstream. The
fb_integrity_ext() structure provides a mechanism to extend the file or block integrity check with additional
information and is an instance of the extension() structure.

6.1.13.5 fb_hash

The fb_hash field is the hash calculated on the relevant data. Its size (in bits) is determined by the fb_hash_bits
operational variable. A decoder can use this value to compare against its own calculated hash to ensure that the data was
received without error.

6.1.14 packet_integrity()

6.1.14.0 Introduction

The packet_integrity() element provides a mechanism to verify the integrity of the data (i.e. coded symbols) in a
packet, packet group, or multiple block packet group.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)89

6.1.14.1 packet_hash_algorithm

The packet_hash_algorithm field describes the algorithm used to calculate the hash of the data. The meaning of
this field is specified in Table 70.

Table 70: packet_hash_algorithm meaning

packet_hash_algorithm value Meaning
000b Reserved
001b The hash is a CRC of the data, modulo the polynomial

x8 + x4 + x3 + x2 + 1 where the relevant shift register is initialized to
zero before the computation.

010b The hash is calculated using the MD5 [21] Message-Digest algorithm.
010b-111b Reserved.

6.1.14.2 packet_hash_size

The packet_hash_size field describes the number of bits of the hash digest. The meaning of this field is specified in
Table 71.

Table 71: packet_hash_size meaning

packet_hash_size value Meaning
000b The hash digest size is 8 bits.
001b The hash digest size is 32 bits.
010b The hash digest size is 64 bits.
011b The hash digest size is 128 bits.
100b The hash digest size is 256 bits.
101b The hash digest size is 512 bits.
110b The hash digest size is 1 024 bits.
111b The hash digest size is 2 048 bits.

Depending on the value of packet_hash_algorithm, packet_hash_size is constrained as indicated in Table 72.

Table 72: Allowed packet_hash_size values based on packet_hash_algorithm

packet_hash_algorithm value: algorithm Allowed packet_hash_size value: bits
001b: CRC 000b: 8 bits
010b: MD5 011b: 128 bits

The operational variable pkt_hash_bits is the number of bits indicated by the packet_hash_size field. For
example, if the packet_hash_size field is 110b, then pkt_hash_bits = 1 024.

6.1.14.3 b_packet_integrity_ext

This Boolean indicates whether the packet_integrity_ext() structure is present in the bitstream. The
packet_integrity_ext() structure provides a mechanism to extend the packet integrity check with additional
information and is an instance of the extension() structure.

6.1.14.4 packet_hash

The packet_hash field is the hash calculated on the coded symbol data. The size (in bits) of this field is indicated by
the packet_hash_size field. A decoder can use this value to compare against its own calculated hash to ensure that
the data was received without issue.

The hash is calculated on the coded_symbol field(s) contained within the packet, packet group, or multiple block
packet group subatoms as indicated by the /* start hash */ and /* end hash */ labels.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)90

6.1.15 coefficient_vector()

6.1.15.0 Introduction

The coefficient_vector() contains the explicit coding coefficients used to encode the original data symbols for
the coded symbol contained within the packet. The element contains a window_size worth of coefficients, with each
coefficient requiring block_field_size_exp_val number of bits.

If the coding coefficient information is encrypted (i.e. bit 3 of the block_mask field is set), then this field is
symmetrically encrypted using the block_cce_key and associated parameters.

6.1.15.1 coded_symbol_coeff[index]

The coded_symbol_coeff[index] field is the coefficient for the indexth original symbol used to encode the coded
symbol in the packet. This field requires block_field_size_exp_val number of bits.

For more information on block_field_size_exp, see clause 6.1.5.23.

6.1.16 extension()

6.1.16.0 Introduction

The extension() element defines a mechanism to extend other structures in the bitstream. Multiple instances of this
element are referenced in the bitstream and appear in place of substructures not yet defined.

6.1.16.1 extension_byte_size

The extension_byte_size field describes the number of subsequent bytes that follow as part of the extension()
structure. These bytes should be skipped by a parser conforming to the version of the syntax in the present document.

6.1.17 packet_header_only()

The packet_header_only() structure contains only packet headers.

Packets, as well as other fields contained within larger structures, inherit values from previous subatom() instances.
For example, the packet() structure inherits the value of the block_field_size_exp field specified in the
associated field block_header(), that is, the block_header() with the block_index value that matches the
packet_block_index value.

The packet_header_only() structure that is part of the packet header only subatom carries the coding coefficient
information describing how the coded symbols were encoded. However, it does not contain the actual coded_symbol
field. The packet_header() will be different depending on whether it is encapsulated in a packet subatom, or in a
packet header only subatom.

For more information on packet_header(), see clause 6.1.7.

6.1.18 packet_group()

6.1.18.0 Introduction

The packet group (packet_group()) structure can contain a packet_group_header() as well as coded symbols.
The structure is similar to a packet() structure. However, unlike the packet() structure which contains only single
coded symbol, a packet_group()can have multiple coded symbols from the same block (i.e. a single block symbol
group).

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)91

Packet groups, as well as other fields contained within larger structures, inherit values from previous subatom()
instances. For example, the packet_group() structure inherits the value of the block_field_size_exp field
specified in the associated block_header(), that is, the block_header() with the block_index value that matches
the packet_group_block_index value.

6.1.18.1 packet_group_block_index

The packet_group_block_index, which is extendable by the packet_group_block_index_ext field, describes
which block this packet_group() instance is associated with. If the bitstream only contains a single block
(i.e. block_count is 1), then this field is not present in the bitstream and takes on a value of 0.

As an example, if the packet_group_block_index is 1, then the associated block and its related block_header()
instance has a block_index of 1 as well.

6.1.18.2 packet_group_index

The packet_group_index identifies the instance of the packet_group().

6.1.18.3 pgns_bits

The operational variable pgns_bits is used in the syntax to specify the number of bits used to encode the
packet_group_num_symbols field and is represented by the num_bits_code() structure.

6.1.18.4 packet_group_num_symbols

The packet_group_num_symbols field describes the number of coded symbols present within the packet group.

6.1.18.5 packet_group_type

The packet_group_type field describes the type of packet group instance and whether the packet group header and
coded symbols are present. The meaning of this field is specified in Table 73.

Table 73: packet_group_type meaning

packet_group_type value Meaning
00b Standard packet group with both packet_group_header()

and coded_symbol fields present.
01b Only packet_group_header() present. coded_symbol

fields are not present.
10b Only coded_symbol fields present.

packet_group_header() not present.
11b Reserved.

6.1.18.6 coded_symbol

A coded_symbol is either a systematic symbol or the encoded version of a number of source symbols, generated by
applying coding to the original data symbols. The size of this field is indicated by the block_symbol_size field in the
associated block_header() instance. The block_symbol_size field shall not use the value 0 when packet group
subatoms are present in the bitstream.

6.1.19 packet_group_header()

6.1.19.0 Introduction

The packet_group_header() structure provides information about how the coded symbols contained in the
packet_group() are arranged and encoded.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)92

Because a packet group contains multiple coded symbols, there are less options for how the group of coded symbols can
be encoded compared to if each coded symbol had been individually contained within a packet subatom. Within a
packet group, the coded symbols can be identified with either a symbol/row index, or a coefficient vector. Sliding
windows are not supported within a packet group.

6.1.19.1 packet_group_symbol_arrangement

The packet_group_symbol_arrangement field describes the order that coded symbols (including systematic
symbols) appear within the packet group subatom. The meaning of this field is specified in Table 74.

Table 74: packet_group_symbol_arrangement Meaning

packet_group_symbol_arrangement Value Symbol Arrangement
0000b Not indicated, the arrangement of coded symbols is not

described by a pattern and each symbol is identified by the
packet_symbol_index field, or by a coefficient vector.

0001b Arbitrary, coded symbols are identified explicitly by the
packet_symbol_index field.

0010b Arithmetic sequence, symbols are arranged with a constant
difference between symbol indexes (e.g. if the first coded
symbol in the packet group contains symbol 11, the next
coded symbol is 21, then the third coded symbol has
symbol index 31 etc.). The sequence is determined using
the packet_group_index_difference and
packet_group_first_symbol_index fields.

0011-1111b Reserved.

6.1.19.2 packet_group_mask

The packet_group_mask field is an array of Booleans that describes which subsequent fields are present in the
bitstream as listed in Table 75.

Table 75: packet_group_mask meaning

packet_group_mask bit Meaning
0 Reserved: This Boolean indicates whether a 32-bit reserved field is present in the

bitstream.
1 Symbol index present: This Boolean indicates that an array of symbol indexes

(packet_group_symbol_index), one for each coded symbol in the packet group, is
present in the bitstream. The symbol indexes are either encoding symbol indexes, or
row indexes in the case that a block PRNG seed is used.

2 Additional coding coefficient encryption parameter(s) present: This Boolean indicates
whether additional encryption parameters relevant to this packet group are present in
the bitstream. This bit can only be set if bit 3 of block_mask is also set.

3 Coding vector present: This Boolean indicates whether an array of the
coefficient_vector() structure is present in the bitstream. This array explicitly
describes the coding coefficients that were used to generate the coded symbols in
the packet group. Note that the coefficient_vector() uses block_num_symbols
instead of window_size as an input since sliding windows are not allowed within a
packet group.

4 Packet group integrity: This Boolean indicates whether the
packet_group_integrity() structure, which is an instance of
packet_integrity(), is present in the bitstream. This structure provides a
mechanism to verify that the received data in the packet group matches that of the
original source of the bitstream.

5 Packet header extension: This Boolean indicates whether the
packet_header_extension() structure is present in the bitstream. The
packet_header_extension() structure provides a mechanism to extend the packet
header syntax with additional information and is an instance of the extension()
structure.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)93

Certain bits of the packet_group_mask are set or cleared depending on the values of other fields. Including:

• Bit 1 (symbol index) and bit 3 (coefficient vector) are mutually exclusive, and shall not both be set
simultaneously.

• If bit 3 (coefficient vector) is set, then the value of packet_group_symbol_arrangement shall be 0000b,
meaning the coded symbol arrangement is not indicated.

• If addl_block_coding_mask is present in the relevant block_header() instance, bit 1 of the
addl_block_coding_mask (indicating that a sliding window is used) shall be cleared.

• If bit 2 of block_mask is set, indicating that the coding coefficients are separated and described in the packet
group header only subatom, then:

- The packet_group_index and packet_group_num_symbols values in the packet group subatom
and the associated packet group header only subatom shall have the same value.

- Bits 1, 2, 3, 4, and 5 of packet_group_mask in packet group subatom shall be cleared. That is, the only
allowed packet_group_mask value is 00000Bb (see note). These bits may be set as needed in the
associated packet group header only subatom packet_group_mask field.

• If bit 3 of block_mask is set, indicating that the coding coefficients are encrypted, then bit 2 of
packet_group_mask (additional encryption parameters) shall only be set if and only if bit 3 of
packet_group_mask (coding vector present) is set.

• If bit 4 of block_mask is set, indicating that a block PRNG seed is used, then bit 1 of packet_group_mask
(symbol index present) shall be set, and the value of packet_group_symbol_arrangement shall be 0000b,
meaning the coded symbol arrangement is not indicated.

NOTE: Bit values indicated as B mean that the value of this bit can be set, or not set depending on other settings
in an encoder.

An example packet_group_mask can be 011000b, with bit 3 set indicating the array of coefficient_vector
fields is present in the bitstream, and bit 4 set indicating the presence of the packet group integrity check.

6.1.19.3 pgsi_bits

The operational variable pgsi_bits is used in the syntax to specify the number of bits used to encode the
packet_group_symbol_index fields and is represented by the num_bits_code() structure.

6.1.19.4 packet_group_symbol_index

For each coded symbol in the packet group, the packet_group_symbol_index field provides either an encoded
symbol index value (for code types such as Reed-Solomon, or RaptorQ), or row index value in the case that a block
PRNG seed is used.

6.1.19.5 pgfsi_bits

The operational variable pgfsi_bits is used in the syntax to specify the number of bits used to encode the
packet_group_first_symbol_index fields and is represented by the num_bits_code() structure.

6.1.19.6 packet_group_first_symbol_index

The packet_group_first_symbol_index field describes the symbol index of the first coded symbol in the packet
group. Subsequent symbol indexes are then calculated using this value and the value of the
packet_group_index_difference field.

6.1.19.7 packet_group_index_difference

The packet_group_index_difference field describes the symbol index difference between successive coded
symbols in a packet group. The value 0 shall not be used for this field.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)94

For example, if the first coded symbol in a packet group has a symbol index value of 6, and the
packet_group_index_difference field has a value of 3, then the second coded symbol has a symbol index of 9.

6.1.19.8 pgfsii_bits

The operational variable pgsii_bits is used in the syntax to specify the number of bits used by the
packet_group_symbol_index_info structure which is an instance of the extension() structure. pgsii_bits is
represented by the num_bits_code() structure.

6.1.19.9 Symbol Arrangements in a Packet Group

Within a packet group subatom, a group of coded symbols from the packet_group_block_index'th block are
arranged as described by the packet_group_symbol_arrangement field.

When the coded symbol arrangement in a packet group is not indicated (the value of the
packet_group_symbol_arrangement is 0000b) or is arbitrary (the value of the
packet_group_symbol_arrangement is 0001b), and bit 1 of packet_group_mask (symbol index present) is set,
then each coded symbol can be identified by an instance of the packet_group_symbol_index field present in the
bitstream.

When the coded symbols in a packet group are arranged in an arithmetic sequence (the value of the
packet_group_symbol_arrangement is 0010b), and bit 1 of packet_group_mask (symbol index present) is set,
then the value of packet_group_symbol_index for the n'th coded symbol in the packet group is calculated using the
packet_group_first_symbol_index and packet_group_index_difference fields according to the equation:

packet_group_symbol_index[n] = packet_group_first_symbol_index +
(n x packet_group_index_difference)

Where n = 0,1,2,… and represents the nth coded symbol in the packet group.

If the value of the packet_group_symbol_arrangement is 0010b, a CMMF decoder shall determine the
packet_group_symbol_index value for each coded symbol using the pseudocode in Table 76.

Table 76: Arithmetic coded symbol arrangement in a packet group pseudocode

Pseudocode
packet_group_arithmetic_arrangement(packet_group_num_symbols, packet_group_first_symbol_index,

packet_group_index_difference)
{
 packet_group_symbol_index[packet_group_num_symbols] = {0};
 symbol_index = packet_group_first_symbol_index;
 for (n = 0; n < packet_group_num_symbols; n++) {
 packet_group_symbol_index[n] = symbol_index;
 symbol_index = symbol_index + packet_group_index_difference;
 }
 return;
}

6.1.19.10 Encryption Parameters

6.1.19.10.0 Introduction

When bit 2 of the packet_group_mask field is set, additional encryption parameters needed to decrypt the coding
coefficient information within the packet_group_header() are present in the bitstream. The encrypted coding
coefficient information within the packet_group_header() can be the instances of the coefficient_vector() in
packet_group_header() within the packet group subatom or the packet group header only subatom

When the coding coefficient information is encrypted, keys and other encryption parameters are needed in order to
decrypt the coefficient information and ultimately decode the coded symbols.

The following fields describe the additional packet group or packet group header only encryption parameters.

For more information on encrypting coding coefficient information, see clause 7.3.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)95

6.1.19.10.1 b_addl_packet_group_cce_params_present

This Boolean indicates whether additional encryption parameters required to decrypt the coding coefficient information,
contained in the addl_cce_parameters() structure, follow in the bitstream.

6.1.20 num_bits_code()

6.1.20.0 Introduction

The num_bits_code()is a helper tool used to describe the number of bits used by a field in the bitstream. This tool
returns the num_bits variable value.

6.1.20.1 bits_code

The bits_code field describes the number of bits a subsequent field in the bitstream uses and returned by the
num_bits variable. The meaning of this field is specified in Table 77.

Table 77: bits_code meaning

bits_code value Meaning
00b The value of num_bits is 8 bits.
01b The value of num_bits is 16 bits.
10b The value of num_bits is 24 bits.
11b The value of num_bits is 32 bits.

The operational variable num_bits can be calculated directly from the bits_code field according to the following
equation:

num_bits = (bits_code + 1) × 8

6.1.21 block_index_or_count_value()

6.1.21.0 Introduction

The block_index_or_count_value() structure is a helper tool used to describe either the block index or block
count as required within the context of the encompassing structure. This tool returns the
block_index_or_count_val variable value.

6.1.21.1 block_index_or_count, block_index_or_count_ext

The block_index_or_count field, which is extendable by the block_index_or_count_ext field, describes either
a block index or a block count as appropriate by the context.

The operational variable block_index_or_count_val can be calculated directly from the block_index_or_count
and block_index_or_count_ext fields according to the following equation:

block_index_or_count_val = block_index_or_count + block_index_or_count_ext

6.1.22 multi_block_packet_group()

6.1.22.0 Introduction

The multiple block (or multi-block) packet group (multi_block_packet_group()) contains the mbpg_header() as
well as coded symbols. The structure is similar to the packet_group()structure. However, unlike the
packet_group() structure which contains coded symbols associated with a single block, a
multi_block_packet_group() structure may carry coded symbols from multiple blocks (i.e. a multiple block
symbol group).

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)96

There are several restrictions for the use of a multi-block packet group. Including:

• The multi-block packet group shall only be used when the associated code type utilizes encoded symbol
indexes to identify each symbol or row indexes to identify the row of a coding coefficient matrix generated by
a block PRNG. Code types that transmit coefficient vectors are not supported. The use of sliding windows is
also not supported.

• Within a multi-block packet group, all blocks shall have identical symbol size (block_symbol_size), and if
applicable, shall have identical field size (block_field_size_exp_val) values.

• The blocks represented in a multi-block packet group shall be from a contiguous set of blocks.

• If addl_block_coding_mask is present in the relevant block_header() instances, bit 1 of the
addl_block_coding_mask (indicating that a sliding window is used) shall be cleared.

• The block_mask field in the relevant block header subatom instances for the blocks represented in a
multi-block packet group shall have:

- Bit 1 (block field size) and bit 4 (block seed) shall be set to the same value across all instances.

- Bit 2 (separated coding coefficients) and bit 3 (encrypted coding coefficient information) cleared in all
instances.

Multi-block packet groups, as well as other fields contained within larger structures, inherit values from previous
subatom() instances. For example, the multi_block_packet_group() structure inherits the value of the
block_symbol_size field specified in the associated block header subatom instances.

6.1.22.1 mbpg_index

The mbpg_index field identifies the multi_block_packet_group() instance.

6.1.22.2 mbpg_start_block_index

The mbpg_start_block_index field identifies the start block (i.e. first block) of the set of blocks represented in the
multi-block packet group.

6.1.22.3 mbpg_num_blocks

The mbpg_num_blocks field describes the number of blocks present within the multi-block packet group.

The multi-block packet group contains blocks with block_index values in range [mbpg_start_block_index,
mbpg_start_block_index + mbpg_num_blocks - 1]. For example, if mbpg_start_block_index has a value
of 2, and mbpg_num_blocks has a value of 3, then the multi-block packet group contains symbols from blocks 2, 3,
and 4.

6.1.22.4 mbpg_num_symbols

The mbpg_num_symbols field describes the number of coded symbols present within the multi-block packet group.

6.1.22.5 coded_symbol

A coded_symbol is either a systematic symbol or the encoded version of several source symbols, generated by
applying coding to the original data symbols. The size of this field is indicated by the block_symbol_size field in the
associated block header subatom instance as determined by the mbpg_start_block_index value. The
block_symbol_size field shall not use the value 0 when multi-block packet group subatoms are present in the
bitstream.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)97

6.1.23 mbpg_header()

6.1.23.0 Introduction

The mbpg_header() structure provides information about how the coded symbols contained in the
multi_block_packet_group() are arranged.

Because a multiple block (or multi-block) packet group contains multiple coded symbols from different blocks, there
are less options for how the group of coded symbols can be encoded compared to if each coded symbol had been
individually contained within a packet subatom. Within a multi-block packet group, the coded symbols can only be
identified by a symbol/row index. Coefficient vectors, and sliding windows are not supported within a multi-block
packet group. Further, encryption is not supported for any fields within a multi-block packet group.

6.1.23.1 mbpg_symbol_arrangement

The mbpg_symbol_arrangement field describes the order that coded symbols (including systematic symbols) appear
within the multi-block packet group subatom. The meaning of this field is specified in Table 78.

Table 78: mbpg_symbol_arrangement Meaning

mbpg_symbol_arrangement value Symbol Arrangement
0000b Not indicated, the arrangement of coded symbols is not described by a pattern

and each symbol is identified by the values of mbpg_source_block_index and
the mbpg_symbol_index field.

0001b Explicitly-Identified Symbol Arrangement: Arbitrary, coded symbols are
identified explicitly by the values of the mbpg_source_block_index and the
mbpg_symbol_index fields.The arrangement of coded symbols in this case
may follow some unspecified pattern.

0010b Source-Symbol Interleaved Arrangement: Separate systematic symbol and
interleaved coded symbol arithmetic sequence, systematic symbols are
arranged in an arithmetic sequence (i.e. constant difference between symbol
index values) by block, then coded symbols are also arranged with a constant
difference between symbol indexes, with each coded symbol being from a
different block.

0011b Coded-Symbol Interleaved Arrangement: Interleaved by block arithmetic
sequence, coded symbols with the same symbol index from different blocks
are placed followed by the set of symbols with the next symbol index (e.g.
symbol 11 from block 0, symbol 11 from block 1, symbol 12 from block 0,
symbol 12 from block 1, etc.).

0100b-1111b Reserved.

Certain values of the mbpg_symbol_arrangement field impose additional constraints on other fields. Including:

• If the value of mbpg_symbol_arrangement is 0010b or 0011b, then the
b_block_max_symbol_index_present shall be TRUE and the block_max_symbol_index field shall be
present in each relevant block header subatom instance.

• If bit 4 of block_mask is set in the relevant block header subatom instance, indicating that a block PRNG
seed is used, then the value of mbpg_symbol_arrangement shall be 0000b, meaning the coded symbol
arrangement is not indicated.

6.1.23.2 mbpgsi_bits

The operational variable mbpgsi_bits is used in the syntax to specify the number of bits used to encode the
mbpg_symbol_index field and is represented by the num_bits_code() structure.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)98

6.1.23.3 mbpg_source_block_index, mbpg_symbol_index

For each coded symbol in the multiple block packet group the value of mbpg_source_block_index identifies the
block the symbol comes from (i.e. the source block number), and the mbpg_symbol_index field provides either an
encoded symbol index (for code types such as Reed-Solomon, or RaptorQ), or a row index in the case that a block
PRNG seed is used. The block and symbol index uniquely identify the coded symbol.

6.1.23.4 mbpgfsi_bits

The operational variable mbpgfsi_bits is used in the syntax to specify the number of bits used to encode the
mbpg_first_symbol_index field and is represented by the num_bits_code() structure.

6.1.23.5 mbpg_first_symbol_index, b_mbpg_is_symbol_group_subset,
mbpg_symbol_group_subset_index

After arrangement to symbol groups, a multi-block packet group may contain a contiguous subset of symbols from a
symbol group.

The b_mbpg_is_symbol_group_subset Boolean indicates whether multi-block packet group contains a subset or an
entire symbol group. When TRUE, the multiple block packet group contains a subset of symbols from the symbol group
and the mbpg_symbol_group_subset_index field is present in the bitstream.

The mbpg_first_symbol_index field defines the symbol index of the first symbol, from the first block (as indicated
by mbpg_start_block_index field), of the contained symbols in the symbol group associated with the multi-block
packet group.

The mbpg_symbol_group_subset_index field defines the index into the symbol group to form the subset contained
within the multi-block packet group. When b_mbpg_is_symbol_group_subset is FALSE, the value of
mbpg_symbol_group_subset_index shall be equal to 0.

6.1.23.6 mbpg_index_difference

The mbpg_index_difference field describes the symbol index difference between successive coded symbols in a
multi-block packet group. The value of this field may also correspond to the total number of symbol groups. The value
0 shall not be used for this field.

For example, if the first coded symbol in a multi-block packet group has a symbol index value of 6, and the
mbpg_index_difference field has a value of 3, then the next coded symbol from the same block has a symbol index
of 9.

6.1.23.7 mbpgsai_bits_code

The mbpgsai_bits_code field describes the number of bits used by the mbpg_symbol_arrangement_info
structure which is an instance of the extension() structure. The value of the mbpgsai_bits_code field is specified
in Table 79.

Table 79: mbpgsai_bits_code meaning

mbpgsai_bits_code value Meaning
0 8 bits
1 16 bits
2 32 bits
3 64 bits

The operational variable mbpgsai_bits uses the mbpgsai_bits_code value to determine the number of bits the
subsequent mbpg_symbol_arrangement_info structure requires. It can also be calculated as follows:

mbpgsai_bits = 2^(mbpgsai_bits_code + 3)

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)99

6.1.23.8 Symbol Arrangements in a Multiple Block Packet Group

Within a multiple block packet group subatom, a group of coded symbols from blocks mbpg_start_block_index …
mbpg_start_block_index+mbpg_num_blocks-1 are arranged into symbol groups as described by the
mbpg_symbol_arrangement field. This symbol group is either directly used in its entirety, or a subset is used to form
the multiple block packet group.

When the coded symbol arrangement in a multi-block packet group is not indicated (the value of the
mbpg_symbol_arrangement is 0000b) or is an explicitly-identified symbol arrangement (the value of the
mbpg_symbol_arrangement is 0001b), then each coded symbol can be identified by instances of the
mbpg_source_block_index field mbpg_symbol_index fields present in the bitstream.

When the coded symbols in a multi-block packet group are arranged in a source-symbol interleaved arrangement (the
value of the mbpg_group_symbol_arrangement is 0010b), then the values of mbpg_source_block_index and
mbpg_symbol_index are calculated using the block_num_symbols and block_max_symbol_index from each
relevant block header subatom instance, mbpg_first_source_block_index, mbpg_num_blocks,
mbpg_first_symbol_index, mbpg_index_difference, and mbpg_symbol_group_subset_index fields. An
arithmetic sequence of systematic symbols from block mbpg_start_block_index are present, followed by an
arithmetic sequence of systematic symbols from block mbpg_start_block_index+1, and so on until block
mbpg_start_block+mbpg_num_blocks-1. In the context of a multi-block packet group, a systematic symbol has an
mbpg_symbol_index value less than block_num_symbols for a given block. Then coded symbols are arranged with
a constant difference between symbol indexes, however, each coded symbol comes from a different block.

If the value of the mbpg_symbol_arrangement is 0010b, a CMMF decoder shall determine the
mbpg_source_block_index and mbpg_symbol_index values for each coded symbol using the pseudocode in
Table 80.

Table 80: Separate systematic and interleaved coded symbol arithmetic sequences symbol
arrangement in a multi-block group pseudocode

Pseudocode
def mbpg_arrangement_0010b(
 block_info, # contains block_num_symbols and block_max_symbol_index for each block
 mbpg_start_block_index,
 mbpg_num_blocks,
 mbpg_num_symbols,
 mbpg_index_difference,
 mbpg_first_symbol_index,
 mbpg_symbol_group_subset_index,
):
 # source and coded/repair symbol pattern arrays
 cr_pattern_block_indexes = []
 cr_pattern_symbol_indexes = []
 ss_pattern_block_indexes = []
 ss_pattern_symbol_indexes = []
 # symbol group arrays
 symbol_group_block_indexes = []
 symbol_group_symbol_indexes = []
 # multi-block packet group (or subset) arrays
 mbpg_source_block_index = []
 mbpg_symbol_index = []

 # ----- arrange all symbols according to pattern -----
 # arrange source symbols and get source symbols in symbol
 num_source_symbols = 0
 for blk in range(mbpg_start_block_index,(mbpg_start_block_index+mbpg_num_blocks)):
 for symbol in range(block_info[blk]['block_num_symbols']):
 ss_pattern_block_indexes.append(blk)
 ss_pattern_symbol_indexes.append(symbol)
 num_source_symbols += 1

 # create arrays for coded/repair symbols
 # find max number of coded/repair symbols of all blocks

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)100

Pseudocode
 max_num_cr_symbols = 0
 for blk in range(mbpg_start_block_index,(mbpg_start_block_index+mbpg_num_blocks)):
 num_cr_symbols_in_blk = block_info[blk]['max_symbol_index'] - block_info[blk]['block_num_symbols'] + 1
 max_num_cr_symbols = max(max_num_cr_symbols, num_cr_symbols_in_blk)

 # create arrays of length max_num_cr_symbols
 for blk in range(mbpg_start_block_index,(mbpg_start_block_index+mbpg_num_blocks)):
 cr_blocks = [-1] × max_num_cr_symbols
 cr_symbols = [-1] × max_num_cr_symbols
 idx = 0
 for si in range(block_info[blk]['block_num_symbols'], block_info[blk]['max_symbol_index']+1):
 cr_blocks[idx] = blk
 cr_symbols[idx] = si
 idx += 1
 cr_pattern_block_indexes.append(cr_blocks)
 cr_pattern_symbol_indexes.append(cr_symbols)

 # ----- extract symbol group -----
 # source symbols
 for idx in range(mbpg_first_symbol_index, num_source_symbols, mbpg_index_difference):
 symbol_group_block_indexes.append(ss_pattern_block_indexes[idx])
 symbol_group_symbol_indexes.append(ss_pattern_symbol_indexes[idx])

 # coded/repair symbols
 for idx in range(mbpg_first_symbol_index, max_num_cr_symbols, mbpg_index_difference):
 for blk in range(mbpg_start_block_index,(mbpg_start_block_index+mbpg_num_blocks)):
 if (cr_pattern_symbol_indexes[blk][idx] != -1) and (cr_pattern_symbol_indexes[blk][idx] <=
block_info[blk]['max_symbol_index']):
 symbol_group_block_indexes.append(cr_pattern_block_indexes[blk][idx])
 symbol_group_symbol_indexes.append(cr_pattern_symbol_indexes[blk][idx])

 # ----- extract multi-block-packet group (or smaller subset) from symbol group -----
 mbpg_source_block_index =
symbol_group_block_indexes[mbpg_symbol_group_subset_index:(mbpg_symbol_group_subset_index+mbpg_num_s
ymbols)]
 mbpg_symbol_index =
symbol_group_symbol_indexes[mbpg_symbol_group_subset_index:(mbpg_symbol_group_subset_index+mbpg_num
_symbols)]

 return mbpg_source_block_index, mbpg_symbol_index

An example symbol arrangement 0010b (Source-Symbol Interleaved Arrangement) is shown in Figure 12. In this
example, symbols from three blocks (0, 1, and 2) are represented, where:

• block_num symbols is 10 and block_max_symbol_index is 30 for block 0

• block_num symbols is 10 and block_max_symbol_index is 30 for block 1

• block_num symbols is 9 and block_max_symbol_index is 30 for block 2

• mbpg_num_symbols is 30, 30, 29

• mbpg_symbol_group_subset_index is 0, 0, 0

• mbpg_first_symbol_index is 0, 1, 2

• mbpg_index_difference is 3

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)101

Figure 12: Example symbol arrangement for mbpg_symbol_arrangement=0010b
(Source-Symbol Interleaved Arrangement)

When the coded symbols in are arranged in a coded-symbol interleaved arrangement (the value of the
mbpg_symbol_arrangement is 0011b), then the values of mbpg_source_block_index and mbpg_symbol_index
are calculated using the block_max_symbol_index from each relevant block header subatom instance,
mbpg_start_block_index, mbpg_num_blocks, mbpg_first_symbol_index, mbpg_index_difference, and
mbpg_symbol_group_subset_index fields. The coded symbols are arranged in an arithmetic sequence; however,
each coded symbol comes from a different block.

If the value of the mbpg_symbol_arrangement is 0011b, a CMMF decoder shall determine the
mbpg_source_block_index and mbpg_symbol_index values for each coded symbol using the pseudocode in
Table 81.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)102

Table 81: Interleaved by block coded symbol arithmetic sequences symbol arrangement in
a multi-block group pseudocode

Pseudocode
def mbpg_arrangement_0011b(
 block_info, # contains block_num_symbols and block_max_symbol_index for each block
 mbpg_start_block_index ,
 mbpg_num_blocks,
 mbpg_num_symbols,
 mbpg_index_difference,
 mbpg_first_symbol_index,
 mbpg_symbol_group_subset_index,
):
 # source and coded symbol pattern arrays
 coded_symbol_pattern_block_indexes = []
 coded_symbol_pattern_symbol_indexes = []
 # symbol group arrays
 symbol_group_block_indexes = []
 symbol_group_symbol_indexes = []
 # multi-block packet group (or subset) arrays
 mbpg_source_block_index = []
 mbpg_symbol_index = []

 # ----- arrange all symbols according to pattern -----
 # find max number of coded/repair symbols of all blocks
 max_num_coded_symbols = 0
 for blk in range(mbpg_start_block_index,(mbpg_start_block_index+mbpg_num_blocks)):
 num_coded_symbols_in_blk = block_info[blk]['max_symbol_index'] + 1
 max_num_coded_symbols = max(max_num_coded_symbols, num_coded_symbols_in_blk)

 # create arrays of length max_num_coded_symbols
 for blk in range(mbpg_start_block_index,(mbpg_start_block_index+mbpg_num_blocks)):
 cr_blocks = [-1] × max_num_coded_symbols
 cr_symbols = [-1] × max_num_coded_symbols
 idx = 0
 for si in range(block_info[blk]['max_symbol_index']+1):
 cr_blocks[idx] = blk
 return mbpg_source_block_index, mbpg_symbol_index

An example symbol arrangement 0011b (Encoded-Symbol Interleaved Arrangement) is shown in Figure 13. In this
example, symbols from three blocks (0, 1, and 2) are represented, where:

• block_num symbols is 10 and block_max_symbol_index is 29 for block 0

• block_num symbols is 10 and block_max_symbol_index is 29 for block 1

• block_num symbols is 9 and block_max_symbol_index is 26 for block 2

• mbpg_num_symbols is 25, 25, 25

• mbpg_symbol_group_subset_index is 4 for each object

• mbpg_first_symbol_index is 0, 1, 2

• mbpg_index_difference is 3

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)103

Figure 13: Example symbol arrangement for mbpg_symbol_arrangement=0011b
(Encoded-Symbol Interleaved Arrangement)

6.1.23.9 b_mbpg_integrity_present

This Boolean indicates whether the mbpg_integrity() structure is present in the bitstream. The
mbpg_integrity() structure is an instance of the packet_integrity() structure that applies to the group of coded
symbols within the multiple block packet group.

6.1.23.10 b_mbpg_header_ext_present

This Boolean indicates whether the mbpg_header_extension() structure is present in the bitstream. The
mbpg_header_extension() structure provides a mechanism to extend the packet header syntax with additional
information and is an instance of the extension() structure.

7 Design considerations

7.0 Introduction
This clause describes design considerations for encoders, and parsers/decoders.

7.1 Coding coefficients

7.1.0 Generating coding coefficients using a PRNG

A PRNG can be used to generate coding coefficients that are applied to source symbols to create coded symbols. Rather
than transmit the coding coefficients in the bitstream, the means for generating the coefficients are parameterized and
the resulting parameters are transmitted for a decoder to regenerate the coefficients.

The bitstream supports transmission of a seed per block or per packet via the fields in prng_parameters(). The block
or packet seed in the bitstream is used to initialize the PRNG.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)104

A density controller (that also uses the PRNG) controls the amount of non-zero coefficients. The density controller uses
either the block or packet prng_density_percentage field(s) to determine whether the coefficient should be set
to 0.

When a block seed is used, rows of block_num_symbols worth of columns are generated, starting with the first
index (0) until the last index (block_num_symbols - 1) for the first row, and repeating for the subsequent rows to
generate a complete coding matrix. At least block_num_symbols worth of rows need to be generated to be able to
represent the entire source block. Once the rows are generated, the packet_symbol_index value in arriving packet
subatoms identifies which row of the generated coding matrix was applied to the coded_symbol.

For a given packet, packet group, or multi-block packet group subatom, if a block PRNG is used and the
b_systematic_symbol field is set, or if the row index is less than block_num_symbols, then the identified row of
coefficients generated by the block PRNG is discarded and replaced with a coefficient row vector consisting of all 0's
except at the index identified by the packet_symbol_index , or packet_group_symbol_index, or
mbpg_symbol_index value, where the coefficient is set to 1. For example, assuming a
block_field_size_exp_val of 1, if a systematic packet's packet_symbol_index value is 2, and the block PRNG
generated has a coefficient row of [0 1 1 0 1 1], then this will be replaced with [0 0 1 0 0 0].

Figure 14: Block PRNG

When a packet seed is used, a window_size worth of symbols is generated starting with the first index (0) of the
coefficient_vector, and ending with the final index (window_size - 1).

Figure 15: Packet PRNG

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)105

7.1.1 Coefficient density control

The density controller manages the sparsity of non-zero coefficients. The controller can be thought of a function that
accepts a number generated by the PRNG and the density percentage value for either the block or packet (as an integer,
density_int) and returns either a 0 or a 1. When the value is 1, then the block (or packet) coefficient generator block
generates a coefficient. Pseudocode for the density control function is shown in Table 82.

Table 82: Density controller pseudocode

Pseudocode
density_controller(prng_generated_number, density_int)
{
 random_int = prng_number() % 128 + 1;
 if (random_int >= density_int) {
 return 0;
 } else {
 return 1;
 }
}

7.1.2 Mersenne twister PRNG type

When either the block or packet prng_type field has a value of 000b, a Mersenne Twister (MT) based PRNG is used.
The standardized MT19937 [8] shall be used. The PrngMT class shown in the pseudo-code in Table 83 takes the seed,
density (as an integer) and the field size exponent, controls the density and subsequently generates coefficient numbers.

Table 83: Mersenne twister pseudocode

Syntax
class PrngMT {
public:
{
 prngMT(unsigned long seed) {
 m_mt.seed(seed)
 }

 unsigned long get_coefficient(unsigned int density_int, int field_size_exp)
 {
 // Step 1: use density to determine if coefficient should be zero
 auto density_rand = m_mt();
 if (density_rand % 128 + 1 >= density_int) {
 return 0;
 } else {
 // Step 2: Pick a random non-zero coefficient.
 if (field_size_exp == 1) {
 // Special case of binary field needs no random input
 return 1;
 }
 auto coeff_rand = m_mt();
 return (coeff_rand % ((1 << field_size_exp) - 1)) + 1;
 }
 }
private:
 std::mt19937 m_mt;
}

7.2 Handling variable source symbol size
Applications of the CMMF bitstream may include cases where the size of the data source symbols is not constant. Since
most code types require equal-sized source symbols, the CMMF bitstream format was designed not to support explicit
description of the size for each symbol.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)106

When the source symbols have varying sizes, applications shall prepend the size of the source symbol to the data before
passing it to the CMMF bitstream encoder. This size information becomes part of the data source symbol from the
encoder's perspective and will be encoded. Within the encoder, an appropriate amount of zero-padding is applied to the
data to equalize the lengths for encoding. The encoder may choose to make the length to be that of the largest data
source symbol among the symbols to be encoded together. Another option available to the encoder is to apply a global
maximum length and pad all the symbols to a uniform size. If the encoder chooses to transmit a symbol within a
systematic packet, and the block_symbol_size field in the associated block_header() instance is 0, then the
subatom size can be shortened to omit the padding within the coded_symbol.

Following decoding, a size/padding peeler is used to parse the size marker, strip the size data and any excess padding to
obtain the original source symbol and provide the data to the application.

An example of how such a system may work is shown in Figure 16.

Figure 16: Handling variable size data

In the example above, three symbols (P1, P2, P3) of different sizes are encoded together. Since P1 is the largest, the size
marker sets the symbol length to the length of size prepended P1. Thus, P2 and P3 will be padded with zeros before
encoding.

Again, the encoder may choose not to pad symbols that will be sent in systematic packets. When a decoder receives a
systematic packet, the size prepended symbol is passed to the size/padding peeler which will parse the size revealing
that there is no padding to remove, only the size marker. In Figure 16 above, assume transmission of P1 is successful, so
the decoder receives the size prepended P1 with no additional padding, which is passed to the size/padding peeler.

For an encoded symbol, the encoder pads each source symbol to equal size. When the decoder receives an encoded
symbol, after decoding the size marker will be present in the recovered symbol, and potentially may have some amount
of padding. In the example above, assume the transmission of P2 failed, so P2 is retrieved via decoding of the coded
packets. The decoded P2 has both the size marker and padding which will be removed by the size/padding peeler.

7.3 Encrypting coding coefficient information

7.3.0 Introduction

The CMMF bitstream supports encryption of coding coefficient information. Encrypting the coding coefficient
information can provide an extra layer of security for protecting content. Depending on the infrastructure an application
uses, different methods for handling the necessary encryption keys can be used.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)107

7.3.1 Using a bitstream/session key and symmetric keys

As an example of one method to handle encryption of coding coefficient information, a bitstream or session key, and
symmetric keys can be used. In this example, there a single bitstream consisting of multiple blocks.

This method uses a combination of keys to provide secure delivery of coefficient vectors to clients. Each coefficient
vector is encrypted using a stream cypher keyed with a symmetric key unique to each block. These block unique
symmetric keys are themselves encrypted using a stream cypher keyed with a symmetric key unique to each bitstream
or session. The block symmetric keys are stored within the bitstream's block header subatoms. The bitstream symmetric
key that is used to encrypt each block symmetric key is not stored within the bitstream. Rather a key identifier is stored
within the bitstream header that enables the client to request the bitstream symmetric key from a key management
system (KMS). Upon client authentication, the bitstream symmetric key is transmitted to the client using a secure
channel encrypted using an asymmetric key (e.g. TLS [i.1]).

This approach limits the amount of communication between the client and KMS (only one key needs to be
communicated). Once the bitstream key is obtained from the KMS, all encrypted fields within the bitstream are
accessible.

The bitstream key does not necessarily have to be unique to each bitstream. Rather, this key can be shared across
multiple bitstreams. For example, assume that a streaming session consists of segmented content where each segment is
packaged within its own bitstream. Rather than having a unique key for each bitstream/segment, a session key can be
used that is shared across all bitstreams. In this case, the session key is used to encrypt each of the block keys.

Figure 17 shows how the various keys are encrypted and stored within the bitstream and KMS.

Figure 17: Bitstream, block, key management

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)108

Figure 18 shows the client process for decrypting each coefficient vector.

Figure 18: Client process for decryption

Figure 19 demonstrates one possible method of downloading a bitstream.

Figure 19: Bitstream and key download process

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)109

Annex A (normative):
xCD-1

A.0 Introduction
This annex shows the functionality of code type 0, xCD-1.

A.1 Encoding
Segments of source coded audio-visual data are partitioned into one or more blocks. Each block is encoded into
multiple equal-sized xCD-1 coded symbols. The symbols are carried in one or more correlated CMMF bitstreams.
Segment boundaries, number of blocks, symbols, and bitstreams may be chosen to optimize operations including
processing, caching, transmission paths, or to increase redundancy as required for the specific application.

Each CMMF bitstream with code_type xCD-1 shall contain at least one bitstream_header() subatom and at least
one block_header() subatom.

Recommendations for subatom() structures (see clause 6.1.2), when multiple bitstreams are utilized:

• The b_bitstream_id_present field should be set.

• The bitstream_id field should be set to uniquely identify each bitstream, e.g. an ordinal number of the
bitstream starting at 0.

• It is recommended that the bitstream_id field be added to the bitstream header, and block header subatoms
at a minimum.

Recommendations for sync() structures (see clause 6.1.3):

• The b_content_encode_uuid field should be set.

• The content_encode_uuid field should be set so that all correlated bitstreams carry a matching value.

Constraints for the bitstream_header() structure (see clause 6.1.4):

• The code_type field shall be set to 0 (xCD-1).

• The b_rfc5052 field shall be cleared.

• The content_source_size field shall be set to the size of the source segment.

• The block_count_minus1 field shall be set to the number of blocks, minus one.

Constraints for the block_header() structure (see clause 6.1.5):

• The block_size field shall be set to the size of the current block.

• The block_num_symbols field shall be set to the number of symbols in the current block.

• The block_symbol_size field shall be set to the size of each symbol in the current block (all symbols of a
block are of equal size).

• The b_block_max_symbol_index_present field shall be cleared.

• Bit 1 of the block_mask field shall be cleared, indicating that the block_field_size_exp_val parameter
shall have a value of 1.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)110

The symbol size is calculated according to the following formula:

block_symbol_size = ceil(block_size / block_num_symbols)

Padding data of zero or more bytes is added to the end of the last symbol, with the size calculated according to the
following formula:

block_num_symbols × block_symbol_size - block_size

Figure A.1 shows an example with a segment size of 500 kBytes in one block, encoded into six symbols of 83 334
bytes, and 4 bytes of padding.

Figure A.1: xCD-1 segment to symbols

The symbols can be mathematically represented as a vector X of length block_num_symbols.

A coefficient matrix G with block_num_symbols columns and block_num_symbols × number of CMMF bitstreams
rows is generated. Each of the coefficients within the matrix is contained in the Galois Field GF{2} (i.e. each
coefficient is either a 0 or a 1). Multiple methods exist for determining these coefficients. The coefficients can be
randomly or deterministically generated.

Figure A.2 illustrates a case with six symbols and two CMMF bitstreams.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)111

Figure A.2: xCD-1 symbol vector and coefficient matrix

The vector of symbols X is then multiplied with coefficient matrix G to create a vector of encoded symbols Y. These
encoded symbols along with their respective row in matrix G are then packaged within the CMMF bitstreams.

Figure A.3 shows the process for the above example with six symbols and two CMMF bitstreams.

Figure A.3: xCD-1 coefficient matrix

In the simplest case, each CMMF bitstream carries block_header() subatoms with the
b_sufficient_symbols_present fields set, followed by block_num_symbols subatoms of the packet() type,
with the packet_block_index field indicating the block number, and the coded_symbol field holding the data of
the coded symbol (one element of Y). More complex cases with subsets of symbols in each block or chunked subatoms
are also possible.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)112

Constraints for the packet_header() structure (see clause 6.1.7), e.g. contained in the packet() subatom:

• The b_systematic_symbol field shall be cleared, indicating coded symbols.

• Bit 4 of the packet_mask field shall be set, indicating the presence of the coefficient_vector() structure.

Constraints for the coefficient_vector() structure (see clause 6.1.15):

• Bit 2 of the packet_mask field shall be cleared, indicating that the window_size parameter shall have a
value of block_num_symbols.

• The block_field_size_exp_val parameter shall have a value of 1, indicating Galois Field GF{2}
coefficients.

• The structure contains the coefficient vector for the respective row of G, matching the coded symbol.

Each coded symbol shall be carried exactly once. It may be carried, in its entirety, in either bitstream. Each bitstream
shall carry exactly block_num_symbols coded symbols of a block.

A.2 Decoding
When receiving CMMF bitstreams with xCD-1 (i.e. code_type field with a value of 0), the decoder assures matching
content_encode_uuid (if present), content_source_size, content_source_type, and
block_count_minus1 field values across all bitstreams, and matching block_size, block_num_symbols, and
block_symbol_size field values for each block.

The decoder then initializes an empty coded symbol vector Y' with an element size of block_symbol_size, and an
empty coefficient matrix G' with block_num_symbols columns. The length of Y' as well as the row count of G' is at
least block_num_symbols, and no more than block_num_symbols × number of CMMF bitstreams.

For each received packet_header() structure and completed coded symbol, the corresponding coded symbol is
appended to the coded symbol vector Y' and the corresponding coefficient vector is appended (as a row) to the
coefficient matrix G'. This process is repeated until the decoder confirms that the coefficient matrix G' has a rank equal
to block_num_symbols.

Figure A.4 shows the result of this process for an example with six symbols and two bitstreams, where a sufficient
number of coded symbols was received in the order of 1, 7, 8, 2, 9, 10.

Figure A.4: xCD-1 coded symbol vector and decoded coefficient matrix

At that point, the decoder inverts G' and multiplies it with the coded symbol vector Y' to determine the source symbol
vector X'. Figure A.5 shows an example with six symbols.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)113

Figure A.5: xCD-1 symbol reconstruction

The decoder then appends each source symbol in X' together, removes any padding (if present, e.g. to create equal-sized
source symbols), and finally delivers the decoded segment of source data.

Figure A.6 shows an example with a segment size of 500 kBytes in one block, decoded from six symbols, with 4 bytes
of padding at the end of the final symbol.

Figure A.6: xCD-1 data extraction

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)114

Annex B (informative):
Media service architecture Examples

B.0 Introduction
The Coded Multisource Media Format (CMMF) provides an extensible method for the management and interchange of
source coded audio-visual media and related metadata in one or more unique representations resulting from the use of
linear, network or channel coding methods (see note). The CMMF bitstream structure supports multiple linear, network
or channel code types and related information for use in delivering audio-visual media over multipath and/or multi-
access networks in settings targeted at improving cloud/network-powered QoS and rendered QoE. This annex provides
various media service architecture examples showing how CMMF can be employed within existing media service
architectures to enable multisource delivery.

NOTE: Where, linear, network or channel coding methods are directly applied to source coded (or source coded
and packaged) audio-visual media.

B.1 MPEG-DASH HTTP adaptive streaming service
example

A typical MPEG-DASH HTTP adaptive streaming system is setup similarly to the non-shaded blocks shown in
Figure B.1. Source media (e.g. audio/video elementary streams) are segmented and encoded into multiple
representations, each with a different quality and bit rate. These segments are packaged together using MPEG-DASH
and stored on an origin server located within the network. One or more CDNs are setup to distribute and deliver this
content to an OTT service providers' customer base. These CDNs obtain every requested MPEG-DASH segment from
an origin server, caches these segments at the networks' edge, and delivers these segments to clients.

Enabling multisource using CMMF within this existing delivery architecture can be accomplished through the addition
of a CMMF Bitstream Generator/Source before segments are delivered to the CDNs and a CMMF Receiver on each
client as illustrated by the shaded boxes in Figure B.1.

While Figure B.1 shows the CMMF Bitstream Generator/Source between the Origin Server and the CDNs (i.e. CMMF
bitstreams are created on demand), the CMMF Bitstream Generator/Source can just as easily be located between the
MPEG-DASH Packager and Origin Server. In the former case, the original MPEG-DASH segments are stored on the
Origin Server and CMMF representations of those segments are cached on each CDN. In the latter case, the CMMF
Bitstream Generator/Source creates multiple CMMF representations of each segment produced by the MPEG-DASH
Packager and stores them on the Origin Server for later retrieval by a CDN.

Figure B.1: MPEG-DASH with CMMF Delivery System Example

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)115

The reference architecture for this example is shown in Figure B.2. In this architecture, the Application Provider is
responsible for segmenting, encoding, and packaging the media. Each MPEG-DASH segment is equivalent to a single
Source Transport Object; and the Media Information consists of the media's corresponding MPEG-DASH master
manifest. This master manifest (see Figure B.3) contains relative URLs to the files/segments (shown in a dotted outline)
that make up the adaptation sets. This information is transferred via the C1 interface from the Application Provider to
the Media Player (using a method preferred by the Application Provider) and is used by the Media Player to determine
which segments are to be downloaded (via the CMMF Receiver) and played.

Figure B.2: CMMF reference architecture in relation to
MPEG-DASH HTTP adaptive etreaming example

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)116

Figure B.3: Example MPEG-DASH master manifest

The Application Provider for this example is also responsible for determining and setting up the delivery system
(i.e. CDNs) to distribute CMMF encoded media. Information about this setup is captured within the CMMF
Configuration Information as a list of host URLs to each of the CDNs. It is important to note that both the
MPEG-DASH master manifest and the CMMF Configuration Information is required to download the media. It is
assumed that the Application Provider is utilizing two CDNs and each segment listed in the MPEG-DASH master
manifest is encoded and packaged into two unique CMMF bitstreams, one intended for the first CDN and the other for
the second CDN according to the list of host URLs provided in the CMMF Configuration Information. An example of
this is shown in Figure B.4. Furthermore, example bitstream constructions can be found in annex C.

Figure B.4: CMMF bitstreams generated to deliver the MPEG-DASH packaged content

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)117

The process for streaming this content is shown in Figure B.5.

Figure B.5: CMMF request and content delivery example for MPEG-DASH

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)118

An Application Provider provisions an origin server with the original source segments shown in Figure B.1. Upon client
initialization, the CMMF Receiver requests the CMMF Configuration Information (in this case it is stored as a JSON
file) from the Application Provider. This information communicates a list of host URLs specifying the locations for
which the client can retrieve CMMF encoded content for every segment listed within the master manifest file. Upon
media player/delivery session initialization, the media player retrieves and parses the master manifest file from the
Application Provider and chooses the adaptation set(s) it wishes to stream. Once selected, the media player requests the
appropriate segment from the CMMF Receiver using the relative URL communicated in the master manifest. The
CMMF Receiver joins the relative URL with each of the host URLs from the CMMF Configuration Information file
and requests two distinct CMMF bitstreams of that segment from the two available CDNs. Assuming the appropriate
CMMF bitstream is cached, the CDN begins delivery. Otherwise, the CDN requests the segment from the CMMF
Bitstream Generator/Source. At which point, the original segment is pulled from storage, encoded, and delivered to the
CDN and to the client. The CMMF Receiver downloads the two CMMF bitstreams of that segment until it is capable of
decoding (see annex A for an example). It then cancels any outstanding data that has yet to be delivered, decodes the
segment, and delivers it to the media player. The media player selects the next segment to be downloaded and the
process repeats.

In the case of a third CDN being introduced, a new CMMF bitstream can be generated and cached without replacing or
modifying the existing CMMF bitstreams already cached in the initial two CDNs. All that is required is an update to the
host URL list managed by the Application Provider.

Furthermore, the above example implies that CMMF bitstreams are retrieved from each CDN using HTTP. As noted
earlier, CMMF is agnostic to the underlying transport protocol. Other transport protocols (e.g. webRTC, FLUTE,
ROUTE, etc.) may also be used if appropriate.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)119

Annex C (informative):
Example bitstreams

C.0 Introduction
The CMMF bitstream is designed to be applicable in multiple use cases. This annex contains example CMMF
bitstreams for different applications.

C.1 Multisource Video-on-Demand

C.1.0 Multisource Video-on-Demand example using code_type
xCD-1

This example shows one method of implementing the bitstream to support multisource Video-on-Demand (VoD) HTTP
Adaptive Streaming (HAS). In a generalized scenario, a client requests and receives, via HTTP, two CMMF bitstreams
from two separate CDNs as shown in Figure C.1. The client then merges these bitstreams together allowing it to decode
the bitstreams and extract the audio, video, and/or metadata. In this example, communication between the client and the
CDNs is reliable and the bitstream served by the CDN is cached.

Figure C.1: Multi-source CDN-client communication

C.1.1 Bitstream construction
Multiple, correlated bitstreams can be constructed using the xCD-1 code type to enable efficient delivery of the
underlying content. For this approach to work, each bitstream needs to utilize the same code type and encoder settings.
Subatoms carrying this encoder setting information are transmitted in each bitstream. Each bitstream may contain
different packet subatoms depending on the system's objectives. Figure C.2 shows two bitstreams created using the
same data, and same encoder settings, and as a result has similar subatom arrangement.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)120

Figure C.2: CMMF multisource example bitstream arrangement

In this example, the content is partitioned into eight packets. Four systematic packets are transmitted in bitstream A, and
four systematic packets are transmitted in bitstream B. Four additional coded packet subatoms are included within each
bitstream to ensure that the source content can be recovered if a failure to obtain one of the bitstreams occurs. Subatoms
required to initialize playback and/or decoders on client devices are sent within each bitstream.

The following clauses provide examples of the sync() structure and each subatom's construction for one of the
bitstreams shown in Figure C.2 above. Subatoms required to ensure recovery of the original symbols are shown.
Examples of optional subatoms, such as the encoder content information and media segment information subatoms, are
also provided.

C.1.2 Sync construction
The CMMF bitstream starts with a data structure for synchronization, shown in Table C.1.

Table C.1: sync() structure construction

Syntax Encoding Example Value Notes
sync()
{
 syncword v(64) 0x89780D430044AC31 Predefined value.
 version v(4) 0x0 Predefined value.
 b_content_encode_uuid b(1) 1b (TRUE) Content encode UUID is

used to add another
method to ensure that data
from correlated bitstreams
from multiple sources are
matched together.

 reserved v(3) 000b
 if (b_content_encode_uuid) {
 content_encode_uuid v(128) 0x294d34081445441db44f3dd8c1695

cf7
Randomly generated UUID

 }
}

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)121

C.1.3 Subatom construction

C.1.3.1 Bitstream header subatom construction

A subatom containing the Bitstream header structure is shown in Table C.2.

Table C.2: Bitstream header subatom construction

Syntax Encoding Example
Value

Notes

subatom()
{
/* subatom header start */
 subatom_id u(4) 2 SUBATOM_ID_BITSTREA

M_HEADER
 if (subatom_id == 0xF) {
 subatom_id_ext u(8) NULL
 subatom_id = subatom_id + subatom_id_ext
 }

 b_bitstream_id_present b(1) 1b (TRUE) While optional, the

bitstream_id is defined
for bitstream identification
purposes.

 reserved v(1) 0b

 sas_bits = num_bits_code() Other instances of

num_bits_code() are not
expanded for brevity.

 {
 bits_code u(2) 00b
 num_bits = (bits_code + 1) × 8
 return num_bits The subatom data size is

indicated using 8 bits.
 }

 if (b_bitstream_id_present) {
 bitstream_id v(16) 0 bitstream_id was chosen

to be 0 in this example.
The bitstream_id field
can be unique to each
source to help differentiate
between them if
necessary.

 }

 subatom_size u(sas_bits

)
11 Number of bytes contained

between /* subatom
data start */ and /*
subatom data end */.

/* subatom header end */
/* subatom data start */
 bitstream_header() {
 content_source_size u(64) 2 000 000 Content source size is 2

MB. This value has to be
consistent between
bitstreams from each
source.

 content_source_type v(3) 001b Source of the content is
the original data file. This
value has to be consistent
between bitstreams from
each source.

 reserved v(1) 0b
 b_content_source_split b(1) 0b (FALSE) Bitstream represents the

entire file.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)122

Syntax Encoding Example
Value

Notes

 if (b_content_source_split) {
 content_source_split_start u(64) NULL
 content_source_split_end u(64) NULL
 }
 code_type u(4) 0000b xCD-1. This value has to

be consistent between
bitstreams from each
source.

 if (code_type == 0xF) {
 code_type_ext u(8) NULL
 code_type = code_type + code_type_ext
 }
 b_rfc5052 b(1) 0b (FALSE) This CMMF bitstream is

not being used as a
content delivery protocol
as per IETF
RFC 5052 [15].

 if (b_rfc5052) {
 rfc5052_information() NULL
 }
 block_count_minus1 =
block_index_or_count_value()

 Other instances of
block_index_or_count_v

alue() are not expanded
for brevity.

 {
 block_index_or_count u(8) 0 There is only one block in

this bitstream. This value
has to be consistent
between bitstreams from
each source.

 if (block_index_or_count == 0xFF)
 {
 block_index_or_count_ext u(32) NULL
 }
 else
 {
 block_index_or_count_ext = 0
 }
 block_index_or_count_val =
block_index_or_count + block_index_or_count_ext

 return block_index_or_count_val
 }
 block_count = block_count_minus1 + 1 block_count = 1
 b_content_block_separate_sources b(1) 0b (FALSE) The block is composed of

a single source.
 if (b_content_block_separate_sources) {
 num_content_block_sources_minus1 u(8) NULL
 }
 b_profile_information_present b(1) 0b (FALSE) Unknown whether this

bitstream conforms to any
profile.

 if (b_profile_information_present) {
 profile_type_size u(4) NULL
 profile_type v(profile_t

ype_size
× 8)

NULL

 profile_description v(32) NULL
 }
 b_block_cc_encrypted b(1) 0b (FALSE) No blocks have encrypted

coding coefficient
information.

 if (b_block_cc_encrypted) {
 bitstream_encryption_key_id_size_exp u(4) NULL
 bseki_bits = 2^
bitstream_encryption_key_id_size_exp

 bitstream_encryption_key_id v(bseki_bi
ts)

NULL

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)123

Syntax Encoding Example
Value

Notes

 }
 }
 padding pad 000b 3 bits of padding are

needed for byte alignment.
/* subatom data end */
}

C.1.3.2 Block header subatom construction

A subatom containing the Block header structure is shown in Table C.3.

Table C.3: Block header subatom construction

Syntax Encoding Example
Value

Notes

subatom()
{
/* subatom header start */
 subatom_id u(4) 6 SUBATOM_ID_BLOCK_HEADE

R
 if (subatom_id == 0xF) {
 subatom_id_ext u(8) NULL
 subatom_id = subatom_id +
subatom_id_ext

 }

 b_bitstream_id_present b(1) 1b (TRUE) While optional, the

bitstream_id is defined for
bitstream identification
purposes.

 reserved v(1) 0b

 sas_bits = num_bits_code() The subatom data size is

indicated using 8 bits. 2 bits
used within expansion of
num_bits_code().

 if (b_bitstream_id_present) {
 bitstream_id v(16) 0 bitstream_id was chosen to be

0 in this example. The
bitstream_id field can be
unique to each source to help
differentiate between them if
necessary.

 }

 subatom_size u(sas_bits) 11 Number of bytes contained

between /* subatom data
start */ and /* subatom data
end */.

/* subatom header end */
/* subatom data start */
 block_header()
 {
 block_index =
 block_index_or_count_value()

 Block index is 0. 8 bits used in
the expansion of
block_index_or_count_value(
).

 block_size u(32) 2 000 000 Block size is 2 MB. This value is
identical between bitstreams
from each source.

 block_symbol_size u(32) 250 000 Block symbol size = 2 MB / 8.
This value is identical between
bitstreams from each source.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)124

Syntax Encoding Example
Value

Notes

 bns_bits = num_bits_code() block_num_symbols is
represented by 8 bits. 2 bits
used within expansion of
num_bits_code().

 block_num_symbols u(bns_bits) 8 Number of symbols in each
block is 8. This value is identical
between bitstreams from each
source.

 b_block_max_symbol_index_present b(1) 0b
(FALSE)

Symbol indexes not used in this
bitstream.

 if
(b_block_max_symbol_index_present)

 {
 bmsi_bits = num_bits_code() NULL
 block_max_symbol_index
 }

u(bmsi_bits) NULL

 b_block_content_source_index_present

b(1) 0b
(FALSE)

 if
(b_block_content_source_index_present)

 {
 block_content_source_index
 }

u(8) NULL

 b_block_composite_sources

b(1) 0b
(FALSE)

 if (b_block_composite_sources)
 {

 block_num_composite_sources_minus1
 blk_num_cmp_sources =
block_num_composite_sources_minus1 + 1

u(8) NULL

 for (cmpsrc=0; cmpsrc <
blk_num_cmp_sources; cmpsrc++) {

 bcss_bits = num_bits_code() NULL

 block_composite_source_size
 }

u(bcss_bits) NULL

 }
 b_addl_block_coding_info_present b(1) 0b

(FALSE)

 if
(b_addl_block_coding_info_present)

 {
 addl_block_coding_mask v(3) NULL
 if (addl_block_coding_mask &
0x1) {

 b_addl_window_info_present b(1) NULL
 if
(b_addl_window_info_present) {

 addl_window_info() =
extension(4)

 }
 }
 if (addl_block_coding_mask &
0x2) {

 b_reserved_block_coding_params_present

b(1) NULL

 if
(b_reserved_block_coding_params_present)

 {

 reserved_block_coding_params() =
extension(4)

 NULL

 }
 }
 if (addl_block_coding_mask &
0x4) {

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)125

Syntax Encoding Example
Value

Notes

 reserved_block_coding_info()
= extension(4)

 NULL

 }
 }
 block_mask v(6) 000001b See below.
 if (block_mask & 0x1)
 {
 b_sufficient_symbols_present b(1) 1b (TRUE) Sufficient symbols are present in

the bitstream to decode. This
value may be FALSE if the
number of packet subatoms
located at a source is less than
8.

 if (!b_sufficient_symbols_present)
 {
 bsp_bits = num_bits_code() NULL
 block_symbols_present u(bsp_bits) NULL
 }
 }
 else
 {
 /* Symbols present count not
available */

 }
 if (block_mask & 0x2)
 {
 block_field_size_exp v(3) NULL
 }
 else
 {
 /* GF{2^1},
block_field_size_exp_val=1 */

 Block field size is GF{2},
block_field_size_exp_val=1.

 }
 if (block_mask & 0x4)
 {
 /* Coding coeff info in packet
header subatoms */

 Coding coefficient information is
contained within each packet
subatom.

 }
 if (block_mask & 0x8) Coding coefficient information is

not encrypted.
 {

 block_cc_encryption_info_size_bits_code

v(1) NULL

 byte_align pad NULL
 bcceis_bits =
(block_cc_encryption_info_size_bits_code +
1) × 8

 block_cc_encryption_info_size u(bcceis_bits) NULL
/* block encryption info start */
 reserved v(1) NULL
 block_cc_encryption_algorithm v(3) NULL
 block_cc_encryption_mode v(4) NULL
 block_cce_key_size_exp u(4) NULL
 bck_bits =
2^block_cce_key_size_exp

 block_cce_key v(bck_bits) NULL
 b_addl_block_cce_params_present b(1) NULL
 if
(b_addl_block_cce_params_present)

 {
 addl_cce_parameters() NULL
 }
 padding pad NULL
/* block encryption info end */
 }
 if (block_mask & 0x10) A block seed is not used.
 {

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)126

Syntax Encoding Example
Value

Notes

 prng_parameters() NULL
 }
 if (block_mask & 0x20) Block integrity is not present.
 {
 block_integrity() = fb_integrity() NULL
 }
 }
 padding pad 00b 2 bits of padding are needed for

byte alignment.
/* subatom data end */
}

C.1.3.3 Encoder content information subatom construction

A subatom containing the encoder content information structure is shown in Table C.4.

Table C.4: Encoder content info subatom construction

Syntax Encoding Example
Value

Notes

subatom()
{
/* subatom header start */
 subatom_id u(4) 3 SUBATOM_ID_ENCODER_CONT

ENT_INFO
 if (subatom_id == 0xF) {
 subatom_id_ext u(8) NULL
 subatom_id = subatom_id +
subatom_id_ext

 }

 b_bitstream_id_present b(1) 1b (TRUE) While optional, the

bitstream_id is defined for
bitstream identification
purposes.

 reserved v(1) 0b

 sas_bits = num_bits_code() The subatom data size is

indicated using 8 bits. 2 bits
used within expansion of
num_bits_code().

 if (b_bitstream_id_present) {
 bitstream_id v(16) 0 bitstream_id was chosen to

be 0 in this example. The
bitstream_id field can be
unique to each source to help
differentiate between them if
necessary.

 }

 subatom_size u(sas_bits) 35 Number of bytes contained

between /* subatom data
start */ and /* subatom
data end */.

/* subatom header end */
/* subatom data start */
 encoder_content_info()
 {
 b_encoder_id_present b(1) 1b (TRUE)
 if (b_encoder_id_present)
 {

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)127

Syntax Encoding Example
Value

Notes

 encoder_uuid v(128) 0x
8a245264eb
e144eba3bd
94db28b1af

cb

Randomly generated UUID to
represent the encoder that
created this bitstream.

 }
 b_content_id_present b(1) 1b (TRUE) Specifies Entertainment

Identifier Registry (EIDR) to
identify the content.

 if (b_content_id_present)
 {
 content_id_type v(4) 0x0 Specifies Entertainment

Identifier Registry (EIDR) to
identify the content.

 content_id_size_minus1 u(8) 11 EIDR contains a 96-bit
(12 byte) identifier. The value
11 is used because the field is
encoded as minus 1.

 content_id v((content_id_
size_minus1+

1) × 8)

0x1478F85A
E100B0685
B8FB1C8

Corresponds to an EIDR value
of 10.5240/F85A-E100-B068-
5B8F-B1C8-T.

 }
 b_content_location_present b(1) 0b (FALSE)
 if (b_content_location_present)
 {
 content_location_size_minus1 u(11) NULL
 content_location v((content_loc

ation_size_mi
nus1+1)×8)

NULL

 }
 b_content_type_present b(1) 0b (FALSE)
 if (b_content_type_present)
 {
 content_type_size u(8) NULL
 content_type v(content_typ

e_size×8)
NULL

 }
 b_content_header_present b(1) 0b (FALSE)
 if (b_content_header_present)
 {
 content_header_size u(7) NULL
 content_header v(content_hea

der_size×8)
NULL

 }
 b_file_integrity_present b(1) 0b File integrity not present.
 if (b_file_integrity_present)
 {
 file_integrity() = fb_integrity() NULL
 }
 b_media_preso_dur_present b(1) 1b (TRUE)
 if (b_media_preso_dur_present)
 {
 media_presentation_duration() =
cmmf_time()

 media_presentation_duration
= 00:00:03:11.552.

 {
 b_ddhhmmss_format b(1) 1b (TRUE)
 if (b_ddhhmmss_format) {
 if (b_dd_present) (b(1) 0b (FALSE)
 days u(5) NULL
 }
 if (b_hh_present) (b(1) 0b (FALSE)
 hours u(5) NULL
 }
 if (b_mm_present) (b(1) 1b (TRUE)
 minutes u(6) 3
 }

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)128

Syntax Encoding Example
Value

Notes

 if (b_ss_present) (b(1) 1b (TRUE)
 seconds u(6) 11
 }
 } else {
 is_bits = num_bits_code()
 int_seconds u(is_bits) NULL
 }
 b_fract_seconds_present b(1) 1b (TRUE)
 if (b_fract_seconds_present)
 {

 fract_seconds_bits_code v(2) 00b The fract_seconds field is
indicated using 10 bits.

 fs_bits = 10 ×
2^fract_seconds_bits_code

 fract_seconds u(fs_bits) 552
 }
 }
 }
 reserved v(4) 0000b
 }
 padding pad 000b 3 bits of padding needed to

ensure byte alignment.
/* subatom data end */
}

C.1.3.4 Media segment information subatom construction

A subatom containing the media segment information structure is shown in Table C.5.

Table C.5: Media segment info subatom construction

Syntax Encoding Example Value Notes
subatom()
{
/* subatom header start */
 subatom_id u(4) 4 SUBATOM_ID_MEDIA_SEGM

ENT_INFO
 if (subatom_id == 0xF) {
 subatom_id_ext u(8) NULL
 subatom_id = subatom_id +
subatom_id_ext

 }

 b_bitstream_id_present b(1) 1b (TRUE) While optional, the

bitstream_id is defined for
bitstream identification
purposes.

 reserved v(1) 0b

 sas_bits = num_bits_code() The subatom data size is

indicated using 8 bits. 2 bits are
used in the expansion of
num_bits_code().

 if (b_bitstream_id_present) {
 bitstream_id v(16) 0 bitstream_id was chosen to

be 0 in this example. The
bitstream_id field can be
unique to each source to help
differentiate between them if
necessary.

 }

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)129

Syntax Encoding Example Value Notes
 subatom_size u(sas_bits) 49 Number of bytes contained

between /* subatom data
start */ and /* subatom
data end */.

/* subatom header end */
/* subatom data start */
 media_segment_info()
 {
 media_segment_block_index =
block_index_or_count_value()

 0 This media segment
information pertains to the
content in block 0. 8 bits were
used in the expansion of
block_index_or_count_value
().

 reserved v(4) 0000b

 b_composite_source_index_prese
nt

b(1) 0b

 if
(b_composite_source_index_present
)

 {

 media_segment_composite_source
_index

u(8) NULL

 }
 media_segment_index u(2) 0 There is only one media

segment present, its index is 0.
 if (media_segment_index ==
0x3)

 {
 media_segment_index_ext u(6) NULL
 media_segment_index =
media_segment_index +
media_segment_index_ext

 }
 if (b_asset_name_present) b(1) 1b (TRUE)
 {
 asset_name_size u(8) 36
 for (i = 0; i <
asset_name_size; i++)

 {
 asset_name[i] v(36) repousse_180p_100kb/Numb

er03d001.m4s

 }
 }
 segment_tag_mask v(4) 1100b
 if (segment_tag_mask & 0x1)
{

 segment_duration() =
cmmf_time()

 NULL

 }
 if (segment_tag_mask & 0x2)
{

 segment_start_time() =
cmmf_time()

 NULL

 }
 if (segment_tag_mask & 0x4)
{

 segidx_bits =
num_bits_code()

 The segment_index field is
indicated using 8 bits. 2 bits
were used in the expansion of
num_bits_code().

 segment_index u(segidx_bit
s)

1 Index of this segment.

 }
 if (segment_tag_mask & 0x8)
{

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)130

Syntax Encoding Example Value Notes
 segcnt_bits =
num_bits_code()

 The segment_count field is
indicated using 8 bits. 2 bits
were used in the expansion of
num_bits_code().

 segment_count u(segcnt_bi
ts)

79 Number of segments in this
program.

 }

 if
(b_media_mime_type_present) {

b(1) 0b (FALSE)

 media_mime_type_size u(6) NULL
 for (i = 0; i <
media_mime_type_size; i++) {

 media_mime_type[i] v(8) NULL
 }
 }

 if (b_media_codec_present)
{

b(1) 0b (FALSE)

 media_codec_size u(6) NULL
 for (i = 0; i <
media_codec_size; i++) {

 media_codec[i] v(8) NULL
 }
 }
 if (b_bit_rate_present) { b(1) 0b (FALSE)
 bit_rate_bits_code v(1) NULL
 bps_bits =
(bit_rate_bits_code + 3) × 8

 bit_rate u(bps_bits) NULL
 }
 if
(b_ms_content_type_present) {

b(1) 1b (TRUE)

 ms_content_type v(3) 0x0 The content type of video.

 b_ms_content_type_info_present

b(1) 1b (TRUE)

 }
 else
 {
 /*
b_ms_content_type_info_present =
0b */

 }
 if
(b_ms_content_type_info_present)
{

 switch (ms_content_type)
{

 case 0x0:
 if
(b_aspect_ratio_present) {

b(1) 0b (FALSE)

 sample_aspect_ratio

u(8) NULL

 if
(sample_aspect_ratio == 255) {

 sar_width u(8) NULL
 sar_height u(8) NULL
 }
 }

 b_dynamic_resolution_video

b(1) 0b (FALSE)

 if
(b_resolution_present) {

b(1) NULL

 resolution_width u(16) NULL
 resolution_height u(16) NULL
 }
 if
(b_frame_rate_present) {

b(1) 1b (TRUE)

 frame_rate v(5) 4 This video is at 30 frames per
second.

 }
 reserved v(4) 0000b

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)131

Syntax Encoding Example Value Notes
 if
(b_hdr_info_present) {

b(1) 0b (FALSE)

 hdr_compatibility_mask

v(16) NULL

 if
(b_addl_hdr_info_present) {

b(1) 0b (FALSE)

 hdr_compat_mask_index

u(4) NULL

 hdr_profile u(8) NULL
 hdr_level u(8) NULL

 hdr_compatibility_id

u(8) NULL

 }
 }
 if
(b_addl_video_info_present) {

b(1) 0b (FALSE)

 addl_video_info =
extension(4)

 NULL

 }
 break

 case 0x1:
 if
(b_sampling_freq_present) {

b(1) NULL

 b_sampling_freq_is_48k

b(1) NULL

 if
(!b_audio_fs_is_48k) {

 sampling_frequency

v(4) NULL

 }
 }
 if
(b_audio_config_present) {

b(1) NULL

 audio_channel_config

v(24) NULL

 }
 if
(b_audio_props_present) {

b(1) NULL

 reserved v(1) NULL
 b_virtualized_bin b(1) NULL
 reserved v(2) NULL
 b_object_audio b(1) NULL
 if
(b_complexity_index_present) {

b(1) NULL

 complexity_index

u(8) NULL

 }
 }
 if
(b_addl_audio_info_present) {

b(1) NULL

 addl_audio_info =
extension(4)

 NULL

 }
 break

 default:
 if
(b_addl_ms_content_type_info_pres
ent) {

b(1) NULL

 addl_ms_content_type_info() =
extension(6)

 NULL

 }
 }
 }

 accessibility_mask v(4) 0001b
 if (accessibility_mask &
0x1) {

 language_size u(6) 2
 for (i = 0; i <
language_size; i++) {

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)132

Syntax Encoding Example Value Notes
 language[i] v(8) en Language is 'en' for English as

specified in ISO 639 [4].
 }
 }
 if (accessibility_mask &
0x2) {

 reserved v(3) NULL
 }
 if (accessibility_mask &
0x4) {

 reserved v(4) NULL
 }
 if (accessibility_mask &
0x8) {

 addl_accessibility_info() =
extension(4)

 NULL

 }
 }
 padding pad 0000000b Seven bits of padding needed

to ensure byte alignment.
/* subatom data end */
}

C.1.3.5 Packet subatom construction - systematic symbol

A subatom containing the packet structure for a systematic packet is shown in Table C.6.

Table C.6: Packet subatom - systematic packet construction

Syntax Encoding Example
Value

Notes

subatom()
{
/* subatom header start */
 subatom_id u(4) 6 SUBATOM_ID_PACKET
 if (subatom_id == 0xF) {
 subatom_id_ext u(8) NULL
 subatom_id = subatom_id + subatom_id_ext
 }

 b_bitstream_id_present b(1) 1b

(TRUE)
While optional, the
bitstream_id is defined for
bitstream identification
purposes.

 reserved v(1) 0b

 sas_bits = num_bits_code() The subatom data size is

indicated using 24 bits.

 if (b_bitstream_id_present) {
 bitstream_id v(16) 0 bitstream_id was chosen

to be 0 in this example.
The bitstream_id field can
be unique to each source
to help differentiate
between them if necessary.

 }

 subatom_size u(sas_bits) 250 003 Number of bytes contained

between /* subatom data
start */ and /*
subatom_data_end */.

/* subatom header end */
/* subatom data start */
 packet()

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)133

Syntax Encoding Example
Value

Notes

 {
 if (block_count > 1)
 {
 packet_block_index =
 block_index_or_count_value()

 NULL

 }
 else
 {
 packet_block_index = 0 The packet is associated

with block 0.
 }
 packet_header()
 {
 b_systematic_symbol

b(1) 1b
(TRUE)

This packet subatom
contains a systematic
symbol.

 packet_mask v(7) 0000001b See below.
 if (packet_mask & 0x1)
 {
 psi_bits = num_bits_code() The packet_symbol_index

field is indicated using
8 bits. 2 bits were used in
the expansion of
num_bits_code().

 packet_symbol_index u(psi_bits) 0 The systematic packet
corresponds to original
symbol index 0, i.e. the first
source symbol.

 }
 if (packet_mask & 0x2) Coding coefficient

information is not
encrypted.

 {
 if (b_systematic_symbol)
 {
 b_systematic_symbol_encrypted b(1) NULL
 } else {
 reserved v(1) NULL
 }
 b_addl_packet_cce_params_present b(1) NULL
 if (b_addl_packet_cce_params_present)
 {
 addl_cce_parameters() NULL
 }
 }
 if (block_mask & 0x4) { Window boundaries are not

defined.
 window_start_index u(16) NULL
 window_stop_index u(16) NULL
 window_size = (window_stop_index -
window_start_index + 1) % 65 536

 } else {
 window_size = block_num_symbols
 }
 if (packet_mask & 0x8) { PRNG seed is not defined

for systematic packets.
 prng_parameters() NULL
 }
 if (packet_mask & 0x10) { Coefficient vectors are not

defined for systematic
packets.

 coefficient_vector(window_size,
block_field_size_exp_val)

 NULL

 }
 if (packet_mask & 0x20) { Packet integrity not

present.
 packet_integrity() NULL

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)134

Syntax Encoding Example
Value

Notes

 }
 if (packet_mask & 0x40) {
 packet_header_extension() = extension(5) NULL Packet header extension is

not present.
 }
 byte_align pad 000000b 6 bits are necessary for

byte alignment.
 }
 coded_symbol v(css_bits) Coded symbol

size = 250 000 bytes.
 }
 padding pad NULL Padding not necessary to

ensure byte alignment.
/* subatom data end */
}

C.1.3.6 Packet subatom construction - coded symbol

A subatom containing the packet structure for a coded packet is shown in Table C.7.

Table C.7: Packet subatom - coded packet construction

Syntax Encoding Example
Value

Notes

subatom()
{
/* subatom header start */
 subatom_id u(4) 6 SUBATOM_ID_PACKET
 if (subatom_id == 0xF) {
 subatom_id_ext u(8) NULL
 subatom_id = subatom_id + subatom_id_ext
 }

 b_bitstream_id_present b(1) 1b (TRUE) While optional, the bitstream_id

is defined for bitstream
identification purposes.

 reserved v(1) 0b

 sas_bits = num_bits_code() The subatom data size is

indicated using 24 bits.

 if (b_bitstream_id_present) {
 bitstream_id v(16) 0 bitstream_id was chosen to

be 0 in this example. The
bitstream_id field can be
unique to each source to help
differentiate between them if
necessary.

 }

 subatom_size u(sas_bits) 250 002 Number of bytes contained

between /* subatom data
start */ and /*
subatom_data_end */.

/* subatom header end */
/* subatom data start */
 packet()
 {
 if (block_count > 1)
 {
 packet_block_index =
 block_index_or_count_value()

 NULL

 }
 else

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)135

Syntax Encoding Example
Value

Notes

 {
 packet_block_index = 0 The packet is associated with

block 0.
 }
 packet_header()
 {
 b_systematic_symbol

b(1) 0b (FALSE)

 packet_mask v(7) 0010000b This packet subatom contains a
coded symbol.

 if (packet_mask & 0x1) The pscket_symbol_index is
not defined for this packet
subatom.

 {
 psi_bits = num_bits_code()
 packet_symbol_index u(psi_bits) NULL
 }
 if (packet_mask & 0x2) Coding coefficient information is

not encrypted.
 {
 if (b_systematic_symbol)
 {
 b_systematic_symbol_encrypted b(1) NULL
 } else {
 reserved v(1) NULL
 }
 b_addl_packet_cce_params_present b(1) NULL
 if
(b_addl_packet_cce_params_present)

 {
 addl_cce_parameters() NULL
 }
 }
 if (block_mask & 0x4) { Window boundaries are not

defined.
 window_start_index u(16) NULL
 window_stop_index u(16) NULL
 window_size = (window_stop_index -
window_start_index + 1) % 65 536

 } else {
 window_size = block_num_symbols
 }
 if (packet_mask & 0x8) { PRNG seed is not defined.
 prng_parameters()
 }
 if (packet_mask & 0x10) {
 coefficient_vector(window_size,
block_field_size_exp_val)

 10110101b Coefficient vector containing
8 coefficients (one for each
original source symbol) where
each coefficient is 1 bit.

 }
 if (packet_mask & 0x20) { Packet integrity not present.
 packet_integrity()
 }
 if (packet_mask & 0x40) {
 packet_header_extension() =
extension(5)

 Packet header extension is not
present.

 }
 byte_align pad NULL No bits are required for byte

alignment.
 }
 coded_symbol v(css_bits) coded

symbol data
Coded symbol
size = 250 000 bytes.

 }
 padding pad NULL Padding not necessary to

ensure byte alignment.
/* subatom data end */

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)136

Syntax Encoding Example
Value

Notes

}

C.2 Encrypted coding coefficient information example
using CMMF

The CMMF bitstream supports encryption of coding coefficient information. Following the example described in
clause 7.3.1, Figure C.3 shows field values in the bitstream header, block header, and packet subatoms. Fields within
the bitstream (such as the block_cce_key) and other information (such as the bitstream_key) that are encrypted
are highlighted within a hatched box.

Figure C.3 also shows the communication between the application and the key management system to obtain the
bitstream_key. The daisy-chain process of using the bitstream_key to decrypt the block encryption parameters in
the block header subatom, which are in turn used to decrypt the encrypted coefficient vector within the packet subatom,
is also shown.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)137

Figure C.3: Bitstream with example encrypted coding coefficient information

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)138

Annex D (normative):
Content delivery protocol-based instantiations

D.1 CMMF content delivery protocol principles

D.1.1 Introduction
CMMF as introduced in the principles in clause 4, the bitstream syntax in clause 5, as well as the bitstream semantics in
clause 6 can be, but not exclusively, considered as a Content Delivery Protocol (CDP) specification as defined in
clause 8 of IETF RFC 5052 [15]. This clause provides a mapping of CMMF to the IETF RFC 5052 [15] principles and
vice versa and apply when the b_rfc5052 flag is set to TRUE.

D.1.2 FEC Building Block principles
CMMF provides means to generate coded/repair objects and coded/repair object transport sessions as introduced in
clause 4.3.2. In one example instantiation, the CMMF repair framework is based on an existing Forward Error
Correction (FEC) Building Block as defined in IETF RFC 5052 [15], where CMMF can be considered as a CDP
specification as defined in clause 8 of IETF RFC 5052 [15].

In the definition of the protocol, terminology defined in clause 2 of IETF RFC 5052 [15], is used in this clause.
Specifically, the terms for Object, Symbol, Source Symbol, Repair symbol, Encoding symbol, Encoder, Decoder,
Receiver, Sender, and FEC Scheme are used in this clause.

IETF RFC 5052 [15] provides the definition and transport of three kinds of information from sender to receiver(s):

• encoding symbols (referred to as coded/repair symbols in the general context of CMMF) themselves;

• ancillary information associated with encoding symbols (or groups of such symbols), such as the group of
symbols in a source or repair object; and

• ancillary information associated with the whole object being transferred.

In addition, for FEC the following information is defined and provided in IETF RFC 5052 [15]:

• FEC information associated with an object, referred to as FEC Object Transmission Information (OTI). This
includes for example the FEC Encoding ID that identifies the FEC scheme and is an integer assigned by
IANA, the transfer length of the object or the encoding symbol length. For details refer to clause 6.2 of IETF
RFC 5052 [15].

• FEC information associated with specific encoding symbols for an object, referred to as FEC Payload ID. This
information indicates how the associated repair symbols were constructed from the object. The semantics and
encoding format of the FEC Payload ID, including its size, is defined by the FEC Scheme. CDPs specify how
the FEC Payload ID is carried in the respective framework. For details, refer to clause 6.3 of IETF
RFC 5052 [15].

D.1.3 FEC Schemes and related information
IETF RFC 5052 [15] includes the concept of an FEC Scheme, this concept is different from the concept of an FEC code
or FEC algorithm. An FEC scheme defines the ancillary information and procedures which, combined with an FEC
code or algorithm specification, fully define how the FEC code can be used with CDPs. Requirements for FEC scheme
specifications are defined in clause 7 of IETF RFC 5052 [15].

CMMF, when used as a CDP, only permits the use of fully specified FEC schemes. For each FEC Scheme, the type,
semantics, and an encoding format for the FEC Payload ID and the FEC Object Transmission Information (OTI) are
defined.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)139

The FEC OTI contains information which is essential to the decoder in order to decode the coded/repair object.
Common FEC OTI elements for fully-specified FEC schemes are defined in clause 6.2.4 of IETF RFC 5052 [15], and
include: Transfer-Length, Encoding-Symbol-Length, Maximum-Source-Block-Length, and
Max-Number-of-Encoding-Symbols.

In addition to common information, scheme-specific FEC OTI element may be used by an FEC Scheme to
communicate information that is essential to the decoder and that cannot adequately be represented within the FEC OTI
elements. The FEC Scheme defines the structure of this octet string, which may contain multiple distinct elements.

FEC schemes are identified by an FEC Encoding ID, which is an integer identifier assigned by IANA
(https://www.iana.org/assignments/rmt-fec-parameters/rmt-fec-parameters.xhtml).

The FEC Payload ID contains information that indicates to the FEC decoder the relationships between the encoding
symbols carried by a particular packet. For example, if packet subatom carries a source symbol, then the FEC Payload
ID identifies which source symbol of the object are carried by the packet.

The FEC Payload ID may also contain information about larger groups of encoding symbols of which those contained
in the packet (or packet group) are part of. For example, the FEC Payload ID may contain information about the source
block the symbols are related to.

D.1.4 FEC Scheme information in CMMF
CDPs are required to provide a mechanism to transport the FEC Encoding ID, FEC Payload ID, common FEC OTI, and
scheme-specific information defined by the FEC scheme. CMMF carries this information within the bitstream syntax
defined in clause 5 and clause 6. Primarily this information is carried within the rfc5052_information() structure
present when b_rfc5052 is TRUE. The Payload ID information is defined as part of the packet_header(),
packet_group_header(), and mbpg_header() structures that are part of packet, packet group, and multiple block
packet groups respectively.

NOTE: FEC Schemes define a binary representation of the parameters, but for example the FLUTE delivery
protocol as defined in IETF RFC 6726 [18] as used in the instantiation in clause D.2 specifies an
XML-based encoding format for these elements to be used during delivery. The present document permits
the use of the following fully specified FEC schemes when CMMF is used as a CDP (i.e. when
b_rfc5052 is TRUE):

• Raptor Forward Error Correction Scheme as defined in IETF RFC 5053 [16].

• RaptorQ Forward Error Correction Scheme as defined in IETF RFC 6330 [13].

• Reed-Solomon Forward Error Correction (FEC) with the special case of Reed-Solomon codes over GF{2^8}
as defined in IETF RFC 5510 [14].

The parameters and coding size for the FEC scheme are provided in Table D.1. This table also describes how to map the
FEC scheme information to CMMF bitstream elements.

Table D.1: Parameters and Coding of FEC schemes used in CMMF

Parameter IETF RFC 5053 [16]
(Raptor)

IETF RFC 6330 [13]
(RaptorQ)

IETF RFC 5510 [14]
(Reed-Solomon GF{2^8})

FEC Encoding ID value 1 (see section 3.2.1) 6 (see section 3.3.1) 5 (see section 5)
FEC Payload ID size 4 byte (see

section 3.1)
4 byte (see section 3.2) 4 byte (see section 5.1)

 Source Block Number (SBN)
size

16 bit 8 bit 24 bit

 Encoding Symbol ID (ESI)
size

16 bit 24 bit 8 bit

Maximum Transfer Length 2^^45 bytes
(i.e. 32 terabytes)

2^^40 bytes
(i.e. 1 terabyte)

2^^42 bytes (i.e. 4 terabytes)

Maximum Source Block size 8192 56403 255
FEC Object Transmission
Information (FEC-OTI) Common

10 byte (see
section 3.2.2)

8 byte (see section 3.3.2) 10 byte (see section 5.2.4.1)

Transfer-Length size F 48 bit 40 bit 48 bit
 Reserved 16 bit 8 bit

https://www.iana.org/assignments/rmt-fec-parameters/rmt-fec-parameters.xhtml

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)140

Parameter IETF RFC 5053 [16]
(Raptor)

IETF RFC 6330 [13]
(RaptorQ)

IETF RFC 5510 [14]
(Reed-Solomon GF{2^8})

Encoding-Symbol-Length T
size

16 bit 16 bit 16 bit

 Maximum Source Block
Length size

n/a n/a 8 bit

 maximum number of
encoding symbols max_n
size

n/a n/a 8 bit

FEC Object Transmission
Information (FEC-OTI) Specific

4 byte (see section
3.2.3)

4 byte (see section 3.3.3) See section 5.2.3

number of source blocks (Z) 16 bit 8 bit n/a
number of sub-blocks (N) 8 bit 16 bit n/a
symbol alignment parameter
(Al)

8 bit 8 bit n/a

FEC Object Transmission
Information (FEC-OTI) size

14 byte 12 byte 10 byte

The mapping from the FEC scheme parameters to CMMF bitstream elements/fields are provided in Table D.2. This
table also describes how to map the FEC scheme information to CMMF bitstream elements.

Table D.2: FEC scheme parameters to CMMF mapping

Parameter CMMF Bitstream Parameter Mapping Function Relevant clause(s)
FEC Encoding ID code_type in bitstream_header() code_type = FEC

Encoding ID
6.1.4

FEC Payload ID
 Source Block Number

(SBN)
Either packet_block_index in
packet(), packet_group_block_index
in packet_group(), or
mbpg_source_block_index in
mbpg_header()

packet_block_index =
SBN,
packet_group_block_index
= SBN, or
mbpg_source_block_index
= SBN

6.1.6.1, 6.1.18.1,
6.1.23.3

 Encoding Symbol ID
(ESI)

Either packet_symbol_index in
packet_header(),
packet_group_symbol_index in
packet_group_header(), or
mbpg_symbol_index in mbpg_header()

packet_symbol_index =
ESI,
packet_group_symbol_ind
ex = ESI,
mbpg_symbol_index = ESI

6.1.7.4, 6.1.19.4,
6.1.23.3

FEC Object
Transmission
Information (FEC-OTI)
Common

Transfer-Length size
F

content_source_size in
bitstream_header() (assuming
source itself has not been coded

content_source_size = F
transfer_length = F

6.1.4.1,
6.1.4.6

 Reserved -- -- --
Encoding-Symbol-
Length T

block_symbol_size in
block_header()
encoding_symbol_length in
rfc5052_information()

block_symbol_size = T 6.1.5.3,
6.1.4.6

 Maximum Source
Block Length (B)

block_num_symbols in
block_header()

block_num_symbols = B 6.1.5.5

 maximum number of
encoding symbols
(max_ns)

There is no equivalent for this
parameter in CMMF. However a related
parameter is block_max_symbol_index
in block_header()

block_max_symbol_index
= max_ns - 1

6.1.5.8

The present document does not define a complete binary representation of the FEC-OTI information, but a receiver,
based on the information in Table D.1 and Table D.2 may reconstruct the FEC-OTI information in binary form for each
FEC scheme.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)141

D.1.5 Configuration Information parameters
The Configuration Information allows the CMMF client to map an application request to CMMF receiver operations.
Table D.3 provides examples of possible Configuration Information that can be used where source and coded/repair
transport objects are described. Some use cases may require additional information or only a subset of this information,
and a simpler version of this parameter set may be used.

Table D.3: Example Configuration Information parameters

Parameter Usage Definition
Complete OD Indicates whether the Configuration Information is complete.
Location O Provides information where the Configuration Information can be

accessed in carried externally.
Expires M Provides information when this Configuration Information is no

longer valid and an update is needed, for example using a reload
from Location.

Source Flow 1 … S Provides 1 … S source flows.
 TSI M Identifier of the source flow.
 Object 1 … N Provides 1 … N objects in the source flow.
 TOI M Transport Object Identifier (TOI) value that represents the source

object.
 Size M Size of the transmission object in bytes.
 Content-Type Describes media type of file.
 Encoding Describes encoding of file, for example whether the file is zipped

prior to transfer.
 Message Digest Message digest of file.
 Associated URI Name, Identification, and Location of file (specified by the URI).
 Access URL The URL where the source object can be accessed. If the field is

not present, then the source flow is not directly accessible.
 availabilityStartTime Provides a wall-clock time when the resource is accessible.
 availabilityStartTime Provides a wall-clock time when the resource ceases to be

available.
 <Additional metadata> May include cache or entity tag (E-Tag) metadata.
 Representation Refers to a DASH Representation in an MPD or a Track in an HLS

manifest.
Coded/Repair Flow 1 … R Provides 1 … R coded/repair flows.
 TSI M Identifier of the coded/repair flow.
 Object 1 … N Provides 1 … N objects in the coded/repair flow.
 TOI M Transport Object Identifier (TOI) value that represents the

coded/repair object.
 FEC-OTI If object is coded using a scheme based on IETF RFC 5052 [15],

FEC Object transmission information including the FEC Encoding
ID and, if relevant, the FEC Instance ID.

 includedSourceTOI M List of (TSI, TOI pairs) of the included source transport objects
forming an aggregated object.
Typically, only a single pair is provided.

 Content-Type Media Mime Type of the file.
 completeObject OD

FALSE
Indicates whether the transport object includes sufficient
information to recover all files included in this coded/repair object.

 symbolArrangement O Provide this symbol arrangement in the object according to
Table 78.
If not present, the symbol Arrangement is unknown and only
present in the bitstream.

 sAParameters O may be present if the symbolArrangement is present. If present, it
provides the parameters assigned to the symbol arrangement as
defined in Table 36. For arrangement 2 and 3, this is a comma-
separated list of:

• Index difference
• Symbol group
• Index in symbol group

 Access URLs 1, …,
N

The URLs where the coded/repair object can be accessed.

 availabilityStartTime OD Provides a wall-clock time, when the resource is accessible.
If not present, it is assumed that the resource is accessible during
the validity time of the CI.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)142

Parameter Usage Definition
 availabilityEndTime OD Provides a wall-clock time, when the resource ceases to be

available.
If not present, it is assumed that the resource is accessible during
the validity time of the CI.

 <Additional metadata> Additional metadata may be present for example caching
information, processing information, etc.

Usage
 M: Mandatory parameter
 O: Optional parameter
 OD: Optional parameter, if not set default value applies
 A, …, B: between A times (typically 0 or 1) and B times (typically 1 or N) parameters may be present

D.1.6 Example Instantiations
Based on FEC schemes and FEC framework defined in the IETF, the remainder of this clause defines an instantiation
for CMMF when being used as a CDP. Specifically, an instantiation provides the following information:

• The definition of delivery session.

• An instantiation of the Configuration Information (CI), with related information and a delivery documents.

• The definition of source objects.

• The definition of coded/repair objects based on the bitstream format defined in clause 5.

D.2 FLUTE-based CMMF CDP Instantiation

D.2.1 Introduction
This clause defines an instantiation of the CMMF CDP framework using the FLUTE delivery protocol, in particular the
File Delivery Table (FDT) defined in FLUTE. The instantiation is aligned with IETF RFC 5052 [15] as well as IETF
RFC 6726 [18], and reuses some of the extensions and concepts defined ETSI TS 126 346 [19], namely the FDT
extensions.

The FLUTE-based CMMF CDP Instantiation is defined as follows:

• Typical procedures for a FLUTE-based CMMF CDP Instantiation are provided in clause D.2.2.

• The CI can be expressed as a File Delivery Table (FDT) as defined in IETF RFC 6726 [18] with minimum
extensions to support CMMF, referred to as Extended FDT (EFDT). The EFDT is a document containing one
instance. For details refer to clause D.2.3.

• The delivery session is a single Transport Session, and different coded/repair objects may be generated. Each
transport object is identified by a unique Transport Object Identifier (TOI).

• Source objects may be distributed within a transport session.

• The coded/repair objects are compatible with CMMF Bitstream as defined in clause 6 (where the b_rfc5052
field is set to TRUE), but also with ALC Payload formats as defined in IETF RFC 5775 [17] with some
additional headers as documented in clause D.2.4.

• Only a single object is associated with a TOI.

• Only the fully specified FEC schemes listed in clause D.1.4 are allowed, i.e. the FEC Encoding ID shall either
be set to 1 (Raptor), 5 (Read-Solomon over GF{2^8}), or 6 (RaptorQ).

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)143

D.2.2 Procedures for FLUTE-based CMMF CDP Instantiation
A baseline procedure describing the establishment of a FLUTE-based CMMF CDP transport session is shown in
Figure D.1.

CMMF-Aware
Application

CMMF Receiver CMMF Sender CMMF Application
Provider

Provisioning of CMMF delivery

Request relevant source objects

Provide relevant source objects

Generate EFDT and
transport objects

1: Provision for CMMF delivery

2: Provide URL to EFDT

Request application information

Provide application information
(includes URL to EFDT)

3: Service and Content Discovery

4: Select
content

5: provide URL to EFDT

6: request EFDT

7: Establish transport session

8: Request full or partial transport objects

9: Receive partial transport objects

10: Recover source objects
with metadata

11: Notify app on available objects

12: request updated EFDT

13: Continue

https://gitlab.com/msc-generator v8.5

Figure D.1: High Level Procedure for a FLUTE-based CMMF delivery

Prerequisites:

1: The CMMF Application Provider has provisioned the CMMF Sender and has set up content ingest to provide
source objects. The CMMF Sender uses the source object to generate transport objects and the EFDT.

2: The CMMF Sender provides the EFDT URL to the Application provider.

3: The CMMF-Aware Application triggers Application Information and Content Discovery procedure. The
Application information includes a URL to the EFDT.

Steps:

4: Content is selected.

5: The CMMF-aware Application triggers the CMMF receiver to start the accessing content. The Configuration
Information location is provided to the CMMF Receiver.

6: The CMMF Receiver interacts with the CMMF Sender to acquire the Configuration Information.

7: The CMMF Receiver establishes the transport session with the CMMF Sender.

8: The CMMF Receiver sends requests for downloading partial or complete transport objects.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)144

9: The CMMF Receiver receives the partial transport objects and uses those for recovery, when sufficient data is
available.

10: The CMMF Receiver recovers source objects together with metadata.

11: The CMMF Receiver notifies the CMMF-Aware application on available source objects and the application
access those at appropriate time based on the associated metadata.

12: The CMMF Receiver continuously receives additional transport objects, if not yet complete, based on the
EFDT and updated instances of the EFDT.

D.2.3 Extended File Delivery Table

D.2.3.1 Semantics

In order to provide relevant Configuration information to the CMMF receiver a document including an extended File
Delivery Table (EFDT) is created to signal CI information to the receiver as follows:

• The attributes and elements from the File Delivery Table in IETF RFC 6726 [18], section 3.2, are re-used as
follows:

- The Expires attribute expresses the validity of the EFDT instance, i.e. how long the binding is valid.

- The Complete attribute, when TRUE, signals that this "EFDT Instance" includes the set of "File" entries
that exhausts both the set of files delivered so far and the set of files to be provided in the session.

- The following data may be set as default on instance level, or may set on file level. If set on file level, the
instance level information is overwritten:

 The Content-Type attribute is included to express the type of the delivered file according to IETF
RFC 9110 [i.5].

 The Content-Encoding attribute is included to express the encoding of the delivered file. For
details refer to IETF RFC 6726 [18].

 The FEC-OTI-FEC-Encoding-ID attribute provides the "FEC Encoding ID" Object Transmission
Information element defined in IETF RFC 5052 [15].

 The FEC-OTI-Maximum-Source-Block-Length attribute provides the "Maximum-Source-
Block-Length" Object Transmission Information element defined in IETF RFC 5052 [15], if
required by the FEC Scheme.

 The FEC-OTI-Max-Number-of-Encoding-Symbols attribute provides the "Max-Number-of-
Encoding-Symbols" Object Transmission Information element defined in IETF RFC 5052 [15], if
required by the FEC Scheme.

- The TOI value is a positive integer to express the Transport Object Identifier and identify the object.

- The attribute Content-Location is used for the purpose defined in IETF RFC 9110 [i.5].

- The attribute Content-Length is used for the purpose defined in IETF RFC 9110 [i.5].

- The attribute Transfer-Length is used to carry the transfer length if the file is content encoded before
transport (and thus the "Content-Encoding" attribute is used), e.g. if compression is applied before
transport to reduce the number of octets that need to be transferred, then the transfer length is generally
different.

- The Content-MD5 attribute is used for the purpose defined in IETF RFC 2616 [i.4].

• The following new elements and attributes are defined in order access the content:

- A list of access objects assigned to a File, each defined by:

 An access-URL where the object associated to the TOI can be accessed.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)145

 A type attribute that provides the type of the transport object, whether it is a source object or if it
is an object according to the bitstream syntax of CMMF.

 If the type is a CMMF bitstream, then an attribute symbolArrangement may be added and the
value is set according to Table 78. If not present, the symbol Arrangement is unknown and only
present in the bitstream. For details see the semantics in clause D.2.4.3.

 If the type is a CMMF bitstream and attribute symbolArrangement is set to 2 or 3, the following
information may be added as a comma-separated list:

- the total amount of symbol groups, C.

- the included symbol group, c.

- the index of the first symbol of the symbol group.

 An attribute complete if set to TRUE, the file includes sufficient information to recover the
source object included in this transport object.

 An availability time window expressed by a an availabilityStartTime and an
availabilityEndTime attribute indicating when the URL is available. If not present, it is
assumed that the objects are present at the time when accessing the EFDT until the Expires time of
the EFDT.

D.2.3.2 Extended FDT Schema for CMMF

An extended FDT schema is provided below.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns="urn:ETSI:CMMF:2023:EFD"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:ETSI:CMMF:2023:EFD"
 elementFormDefault="qualified"
 version="1">
 <xs:element name="FDT-Instance" type="FDT-InstanceType"/>
 <xs:complexType name="FDT-InstanceType">
 <xs:sequence>
 <xs:element name="File" type="FileType" maxOccurs="unbounded"/>
 <xs:element name="schemaVersion" type="xs:unsignedInt"/>
 <xs:element name="delimiter" type="DelimiterType"/>
 <xs:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Expires" type="xs:dateTime" use="required"/>
 <xs:attribute name="Complete" type="xs:boolean" use="optional"/>
 <xs:attribute name="Content-Type" type="xs:string" use="optional"/>
 <xs:attribute name="Content-Encoding" type="xs:string" use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Encoding-ID" type="xs:unsignedLong" use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Instance-ID" type="xs:unsignedLong" use="optional"/>
 <xs:attribute name="FEC-OTI-Maximum-Source-Block-Length" type="xs:unsignedLong"
use="optional"/>
 <xs:attribute name="FEC-OTI-Encoding-Symbol-Length" type="xs:unsignedLong" use="optional"/>
 <xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols" type="xs:unsignedLong"
use="optional"/>
 <xs:attribute name="FEC-OTI-Scheme-Specific-Info" type="xs:base64Binary" use="optional"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 <xs:complexType name="FileType">
 <xs:sequence>
 <xs:element name="EncodedObjects" type="EncodedObjectType" minOccurs="1"
maxOccurs="unbounded"/>
 <xs:element name="delimiter" type="DelimiterType"/>
 <xs:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Content-Location" type="xs:anyURI" use="required"/>
 <xs:attribute name="TOI" type="xs:positiveInteger" use="required"/>
 <xs:attribute name="Content-Length" type="xs:unsignedLong" use="optional"/>
 <xs:attribute name="Transfer-Length" type="xs:unsignedLong" use="optional"/>
 <xs:attribute name="Content-Type" type="xs:string" use="optional"/>
 <xs:attribute name="Content-Encoding" type="xs:string" use="optional"/>
 <xs:attribute name="Content-MD5" type="xs:base64Binary" use="optional"/>
 <xs:attribute name="FEC-OTI-FEC-Encoding-ID" type="xs:unsignedLong" use="optional"/>

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)146

 <xs:attribute name="FEC-OTI-FEC-Instance-ID" type="xs:unsignedLong" use="optional"/>
 <xs:attribute name="FEC-OTI-Maximum-Source-Block-Length" type="xs:unsignedLong"
use="optional"/>
 <xs:attribute name="FEC-OTI-Encoding-Symbol-Length" type="xs:unsignedLong" use="optional"/>
 <xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols" type="xs:unsignedLong"
use="optional"/>
 <xs:attribute name="FEC-OTI-Scheme-Specific-Info" type="xs:base64Binary" use="optional"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 <xs:complexType name="EncodedObjectType">
 <xs:simpleContent>
 <xs:extension base="xs:anyURI">
 <xs:attribute name="symbolArrangement" type="interleavingType"/>
 <xs:attribute name="sAParameters" type="xs:string"/>
 <xs:attribute name="objectType" type="ObjectTypeType" default="source"/>
 <xs:attribute name="complete" type="xs:boolean" default="false"/>
 <xs:attribute name="availabilityStartTime" type="xs:dateTime"/>
 <xs:attribute name="availabilityEndTime" type="xs:dateTime"/>
 <xs:anyAttribute namespace="##other" processContents="skip"/>
 </xs:extension>
 </xs:simpleContent>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 <xs:simpleType name="DelimiterType">
 <xs:restriction base="xs:byte"/>
 </xs:simpleType>
 <xs:simpleType name="ObjectTypeType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="source"/>
 <xs:enumeration value="cmmf"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="interleavingType">
 <xs:restriction base="xs:unsignedLong">
 <xs:enumeration value="0"/>
 <xs:enumeration value="1"/>
 <xs:enumeration value="2"/>
 <xs:enumeration value="3/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

D.2.3.3 Extended FDT Description for CMMF

The Extended FDT Description (EFD) is a document that contains metadata required by a CMMF Client/CMMF-Aware
application to access Objects and to provide the CMMF session. The EFD is an XML document that shall be formatted
according to the XML schema provided in clause D.2.3.2.

The EFD shall be authored in such a way that after removing any XML attributes or elements that are not part of the
specified XML schema (documented in clause D.2.3.2), the remaining document should still be a valid XML document
that conforms to the schema and the present document. Additionally, if all XML attributes and elements from the EFD
namespace and other namespaces that are not part of the specified XML schema are removed, the resulting document
should still be a valid XML document that complies with the present document.

The MIME type of the EFD document is defined in clause D.2.3.4. The encoding of the EFD and all data provided in
extension namespaces shall be UTF-8 as defined in IETF RFC 3629 [11]. If binary data needs to be added, it shall be
included in Base64 as described in IETF RFC 4648 [12] within a UTF-8 encoded element with a proper name space or
identifier, such that an XML parser knows how to process or ignore it.

The delivery of the EFD is outside the scope of the present document. However, if the EFD is delivered over HTTP,
then the EFD document may be transfer encoded for transport, as described in IETF RFC 9110 [i.5].

Selected EFD examples are provided in clause D.2.5.

D.2.3.4 IANA registration for Extended FDT Description

This clause provides the formal MIME type registration for the EFD. It is referenced from the registry at
http://www.iana.org/.

http://www.iana.org/

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)147

The MIME Type and Subtype are defined as follows:

• MIME media type name: application

• MIME subtype name: cmmf-efd+xml

• Required parameters: None

• Optional parameters: None.

• Encoding considerations: UTF-8

• Security considerations: The EFD contains references to other resources. It is coded in XML, and there are
risks that deliberately malformed XML can cause security issues. In addition, an EFD can be authored that
causes receiving clients to access other resources; if widely distributed, this can be used to cause a
denial-of-service attack.

 The EFD format does not incorporate any active or executable content. However, other forms of material from
outside sources can be referenced by an EFD, and this material can contain active or executable content. Such
material is expected to be identified by its own MIME type, and the security considerations of that format
should be taken into account.

 If operating in an insecure environment and required by the content/service provider, elements and attributes
of EFD may be encrypted to protect their confidentiality by using the syntax and processing rules specified in
the W3C Recommendation "XML Encryption Syntax and Processing".

 If operating in an insecure environment and required by the content/service provider, the digital signing and
verification procedures specified in the W3C Recommendation "XML Signature Syntax and Processing" may
be used to protect data origin authenticity and integrity of the EFD.

• Interoperability considerations: The present document defines a platform-independent expression of a
document, and it is intended that wide interoperability can be achieved.

• Published specification: ETSI TS 103 973 (the present document)

• Applications which use this media type: Various

• Additional information:

• File extension(s): efd

• Intended usage: common

• Other information/general comment: None

• Author/Change controller: ETSI

D.2.4 Transport object formats

D.2.4.1 General

Transport objects are either source transport objects or coded/repair objects.

Source transport objects are unmodified source objects, for details see clause D.2.4.2.

Coded/repair objects conform to the CMMF bitstream format, for details see clause D.2.4.3.

D.2.4.2 Source objects

If the EFD signals a type equal to "source", then the object referenced in the Access-URL is the original source
object. The value of the Access-URL may be identical to the value of the Content-Location, if the application can
also access the object at the original location. The source object as a whole or partially may be used by the CMMF
receiver to reconstruct the application object, possibly in combination with coded/repair objects.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)148

D.2.4.3 Coded/repair objects

D.2.4.3.1 General

Coded/repair objects for the FLUTE-based instantiation shall conform to the CMMF bitstream format. In addition, the
coded/repair objects are aligned with ALC Payload formats as defined in IETF RFC 5775 [17], in a sense that it
includes an encoding that allows the receiver to recover a list of FEC Payload IDs and the corresponding encoding
symbols from the CMMF bitstream information. The FEC Payload ID semantics is the Source Block Number (SBN)
and Encoding Symbol ID (ESI) assigned to each symbol.

Coded/repair objects are a restricted CMMF bitstream with the following constraints:

• The following subatoms shall be present in the following order:

- Exactly one instance of bitstream_header() as defined in clause 5.2.4 and clause 6.1.4.

- Multiple instances of block_header() as defined in clause 5.2.5 and clause 6.1.5, one instance per
number of source blocks.

- Exactly one instance of multi_block_packet_group() as defined in clause 5.2.25 and
clause 6.1.22.

• The bitstream_header() shall be restricted as follows:

- content_source_size shall be set to the value of the Transfer-Length size as included in the
FEC-OTI information as defined in clause D.1.4 and carries the FEC-OTI Information
Transfer-Length size according to IETF RFC 5052 [15].

- content_source_type shall be set to 000b.

- code_type shall be set to either 1, 5, or 6 and carries the FEC Encoding ID value according to IETF
RFC 5052 [15].

- b_rfc5052 shall be set to 1.

- The information in rfc5052_information() as defined in clause 5.2.20 and clause 6.1.4.6 shall be set
as follows (using the size headers in Table D.1):

 the encoding_symbol_length shall be set to the value of the FEC-OTI-Encoding-Symbol-
Length size as included in the FEC-OTI information as defined in clause D.1.4 and carries the
FEC-OTI-Encoding-Symbol-Length according to IETF RFC 5052 [15].

NOTE 1: CMMF in general permits to have different encoding symbol length for each block. For IETF
RFC 5052 [15] based code types this is not permitted and hence the encoding symbol length is
signalled in the bitstream header.

 If code_type is set to 1 (Raptor) or set to 6 (RaptorQ), no additional parameters are set. The
scheme-specific FEC-OTI parameters "number of sub-blocks (N)" and the "symbol alignment
parameter (Al)" are assumed to be set to 1, i.e. sub-blocking shall not be used in the context of
CMMF.

 If code_type is set to 5 (Reed-Solomon), two additional fields are added and set as follows:

- The maximum_source_block_length shall be set to the
FEC-OTI-Maximum-Source-Block-Length (B) as defined in IETF RFC 5510 [14].

- Maximum number of encoding symbols max_n size shall be set to the shall be set to the
FEC-OTI-Max-Number-of-Encoding-Symbols (max_n) as defined in IETF
RFC 5510 [14].

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)149

- block_count_minus1 shall be set to:

 For code_type set to 1 and 6: FEC-OTI information "number of source blocks (Z)" minus 1 and
carries the scheme-specific value number of source blocks (Z) as defined in IETF RFC 5053 [16]
and IETF RFC 6330 [13], respectively.

 For code_type set to 5: the number of source blocks (N) - 1 as defined in clause 9 of IETF
RFC 5510 [14].

NOTE 2: With the above information, the FEC decoder following the respective IETF RFC may be instantiated by
creating the encoded FEC Object Transmission Information as an octet field consisting of the
concatenation of the encoded Common FEC Object Transmission Information and the encoded
Scheme-specific FEC Object Transmission Information.

- The following flags shall not be set:

 b_content_source_split.

 b_content_block_separate_sources.

 b_profile_information_present.

 b_block_cc_encrypted.

• The block_header() instances shall be restricted as follows:

- There shall be exactly block_count instances of block_header(), where
block_count = block_count_minus1 + 1.

- block_header() instances shall have ascending block_index values from 0 to block_count - 1.

- Some values shall be set to the values described by the mapping in Table D.2. This includes the values
for:

 block_symbol_size shall be set to the encoding_symbol_length as defined in the
rfc5052_information() in the bitstream_header().

 block_num_symbols shall be set based according to the source block partitioning rules of the
FEC scheme.

 block_max_symbol_index (b_block_max_symbol_index_present shall be set to TRUE).

- Other values shall be set to the values derived from the source blocking algorithm from the FEC scheme.
This includes the values for:

 block_size shall be set to block_num_symbols × block_symbol_size for all blocks
except of the last one, i.e. block_index set to block_count - 1. The last one is set taking into
account the remaining octets to fill up the transfer length.

- block_mask shall be set to B0000Bb, where values marked as B (bit 0: sufficient symbols present and
bit 5: block integrity present) can be either 0 or 1 depending on the FEC scheme and CMMF encoder
settings.

- The following flags shall not be set:

 b_block_content_source_index_present.

 b_block_composite_sources.

 b_addl_block_coding_info_present.

• The multi_block_packet_group() shall be restricted as follows:

- mbpg_index shall be set to 0.

- mbpg_start_block_index shall be set to 0.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)150

- mbpg_num_blocks shall be set to block_count.

- mbpg_num_symbols shall be set to the number of symbols contained in the transport object,
i.e. ceil(content_source_size/encoding_symbol_length).

- The mbpg_header()shall be restricted as follows:

 mbpg_symbol_arrangement shall be set to either 2 or 3.

 The symbols are arranged according to clause D.2.4.3.2 with the:

- mbpg_index_difference shall be set to the number of symbol groups C.

- mbpg_first_symbol_group_subset_index shall be set to the index of the first symbol
within the symbol group. If the value of mbpg_symbol_group_subset_index is 0, then
b_mbpg_is_symbol_group_subset shall be set to FALSE.

- mbpg_first_symbol_index shall be set to the symbol group that is included in the
multi-block packet group, c.

- b_mbpg_integrity_present shall be set to 0.

- b_mbpg_header_ext_present shall be set to 0.

D.2.4.3.2 Mapping of FEC Payload ID information to transport blocks

D.2.4.3.2.1 General

The information in this clause relates to the Encoding of CMMF as defined in clause 4.2.1 and is specific when using
CDP-based instantiation.

The following parameters are assumed to be available:

• A total number of source symbols Kt, available in mbpg_num_symbols.

• The source object is partitioned into block_count number of source blocks, referred to as Z.

• For each source block z = 0, …, Z-1:

- Assuming that source blocks are covering the source object starting block_index z=0 at the beginning,
and each of the source blocks has the same symbol size.

- The source symbols for each source block z are defined as xz,i with source symbols index i=0, .., Ks[z]-1
and Ks[z] the source block size in symbols of source block z indicated by block_num_symbols in
clause 4.2.1.

- The encoded symbols for each source block z are defined as yz,j with encoding symbol index j = 0, ..,
Ke[z] - 1 and Ke[z] the number of encoding symbols assigned to source block z and Ke[z] ≥ Ks[z].

NOTE: For some codes/FEC schemes Ke[z] may be quite restrictive (for example for Reed-Solomon codes), for
other codes with a fountain property, such as Raptor codes, many symbols may be generated.

- For systematic codes, the first Ks[z] encoding symbols are identical to the source symbols, i.e. yz,j = xz,j
for j =0, …, Ks[z].

The encoding symbols of all source blocks are then distributed across one or multiple symbol groups.

Several symbol groups (as defined in clause 4.2.2) are formed, each including one or multiple symbols from one or
multiple source blocks. As defined in clause 4.2.2, symbols groups may be distinct, i.e. each encoding symbols is added
exactly once to exactly one symbol group. The arrangement of symbols in a symbol group may follow a specific pattern
arrangement. Symbol groups may also have assigned a property of completeness, i.e. the source object can be recovered
from all symbols in the symbol group.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)151

Assume the definition of C symbols groups, indexed with c=0,…, C-1. Each symbol groups c includes Kc[c] encoding
symbols, indexed from k = 0, …, Kc[c] - 1. The symbols in the symbol group are referred to as wc,k for k =0, …, Kc[c]
and c=0,…, C-1. Symbols in a symbol group may come from different encoded blocks.

Based on these symbol groups, multi-block packet groups are formed. Multi-block packet groups represent a subset of
symbol groups with a consecutive set of symbols of exactly one symbol group and fully defined by the index of the first
symbol within the symbol group, and the number of symbols included in the multi-block packet group.

The information on which encoding symbols are included in the multi-block packet group as well their order is provided
in a multi-block packet group header by the mbpg_symbol_arrangement field.

Figure D.2 provides an overview on the formation of transport objects based on a source object. Note the differences
between the partitioning algorithm presented here compared to that described in clause 4.2.1.

Figure D.2: Formation of transport objects from source objects

On the symbol group arrangements, an arbitrary sequence of coded symbols for different source blocks may be
collected in a symbol group. In this case, MBPG header needs to include the list of pairs of source block z and symbol
identifier i assigned to each position k in the symbol group c.

The present document also defines symbol group arrangements that apply certain patterns, and for which only a few
parameters need to be added to map the position k in the symbol group c and the position of source block z and symbol
identifier i.

For the symbol group arrangement mbpg_symbol_arrangement with value set to 3 or 2, the arrangements are
provided in clause D.2.4.3.2.2 and clause D.2.4.3.2.3, respectively.

In Figure D.2 the formation of multi-block packet groups from symbol groups is accomplished by extracting a
contiguous range of symbols from a symbol group, starting from mbpg_first_symbol_index in symbol group
mbpg_symbol_group, c.

D.2.4.3.2.2 Symbol group arrangement 3: encoding symbol interleaving

This pre-defined symbol arrangement is motivated by a scenario for which typically the source symbols are not
included in the transport object, either because the code is non-systematic, or only repair symbols are included. In
addition, the symbols on each transport object are distinct. This symbol group arrangement corresponds to an
mbpg_symbol_arrangement value of 0011b.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)152

In this example, transport objects may be generated with encoding symbols included. On top of this:

1) the transport object includes sufficient information to recover the included source object;

2) if only a subset of several transport objects is accessible, then an initial byte range of a subset of transport
objects is sufficient to recover the source object, and the required number of total bytes is small.

The only parameter for this symbol arrangement is the number of symbol groups C.

In order for the arrangement to be effective, it is assumed that the source blocks are of equal or at least similar size. In
the case of the CDP-based instantiation, this condition is fulfilled.

For defining the symbol group arrangement, the following is defined:

• Total symbol count TOTAL added to symbol groups, initialized to 0.

• Next position in symbol group c that can add a symbol, POS[c], initialized to 0.

• Next symbol index in source block z that has not yet been added to any transport object, ESI[z], initialized to
the index of the first non-source symbol, i.e. 0 for non-systematic code, and Ks[z] for systematic codes.

• Counter for number of symbols included in container c from source block z, SYMBOLS[o,z], initialized to 0.

In addition, a completeness check is carried out for the entire arrangement across different symbol groups. Only if each
symbol group includes a sufficient set of symbols to recover all included source blocks, adding symbols is stopped.

The arrangement as defined in clause 6.1.23.1.

Figure D.3 (aligned with Figure 13) provides an example for encoding symbol arrangement with Kt=29, Z=3,
Ks[0] = Ks[1]=10, Ks[2]=9, Ke[0]=Ke[1]=30, Ke[2]=27 across C=3 symbol groups. The bold ESI number shows the
symbols that makes a source block complete for each symbol group. Symbols are added to each symbol group until all
symbol groups are complete.

Figure D.3: Symbol arrangement for arrangement 3

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)153

D.2.4.3.2.3 Symbol group arrangement 2: source symbol interleaving

This arrangement is motivated by a scenario for which the source symbols are included in the transport object.
However, not all transport objects include all source symbols, but a number of transport objects include a distinct set of
source symbols. If all transport objects are accessible then reading from the beginning each transport objects, the initial
data of the source object can be aggregated. This symbol group arrangement corresponds to an
mbpg_symbol_arrangement value of 0010b.

This configuration supports for example that transport objects are generated with source symbols included. In addition,
the following properties hold:

1) the transport object includes sufficient information to recover the included source object;

2) if only a subset of the transport objects is accessible, then an initial byte range of the subset of transport objects
is sufficient to recover the source object, and the total number of bytes is small.

To abstract the procedure, again symbol groups are used. These symbol groups may then be included into transport
objects, either completely or partially.

The only parameter for this arrangement is the number of symbol groups C.

For defining the symbol group arrangement, the following is defined:

• Total symbol count TOTAL added to symbol groups, initialized to 0.

• Next position in symbol group c that can add a symbol, POS[c], initialized to 0.

• Next symbol index in source block z that has not yet been added to any transport object, ESI[z], initialized
to 0.

• Counter for number of symbols included in container c from source block z, SYMBOLS[o,z], initialized to 0

The arrangement as defined in clause 6.1.23.1.

Figure D.4 provides an example for source and repair symbol arrangement with Kt=29, Z=3, Ks[0] = Ks[1]=10,
Ks[2]=9, Kr[0]=Kr[1]=21 and Kr[2]=22 across C=3 symbol groups. The bold ESI number shows the symbols that
makes a source block complete for each symbol group. Symbols are added to each symbol group until all symbol
groups are complete. Obviously more symbols until completion may be added.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)154

Figure D.4: Symbol arrangement for arrangement 2

D.2.5 Examples

D.2.5.1 Single file - source and partial encoding object

The following example is provided for a single file, where the file is an MP4 file compatible to some MIME type and in
addition, for this file, three partial repair objects are provided that each contain 500 symbols of a single source block.
The files are only partial and the information is provided in the extended FDT. The FDT is complete, i.e. no new
information is provided.

<?xml version="1.0" encoding="UTF-8"?>
<FDTInstance xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:ETSI:CMMF:2023:FDT"
 xsi:schemaLocation="urn:ETSI:CMMF:2023:FDT extendedFDT.xsd"
 Expires="2024-05-30T09:30:10Z"
 Complete="true"
 ContentType="video/mp4 codecs='avc1.42c01e,mp4a.40.29' profiles='iso8'"
 FEC-OTI-FEC-Encoding-ID="6"
 FEC-OTI-Encoding-Symbol-Length="64">
 <File ContentLocation="https://example.com/efd1.mp4"
 TOI="0"
 Content-Length="64000">
 <EncodedObjects type="source"
 complete="true">https://example.com/efd1.mp4</EncodedObjects>
 <EncodedObjects type="cmmf"
 symbolArrangement="2"
 sAParameters="3,0,0"
 complete="true">https://example-cdn1.com/efd1-0.cmf</EncodedObjects>
 <EncodedObjects type="cmmf"
 symbolArrangement="2"
 sAParameters="3,1,0"
 complete="true">https://example-cdn2.com/efd1-1.cmf</EncodedObjects>
 <EncodedObjects type="cmmf"
 symbolArrangement="2"
 sAParameters="3,2,0"
 complete="true">https://example-cdn3.com/efd1-2.cmf</EncodedObjects>
 </File>
</FDTInstance>

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)155

D.2.5.2 Multiple files - self-contained objects including source symbols

In the following example, two files are provided, both encoded with RaptorQ and symbol length 64 bytes. In this case,
only self-contained objects are provided, and these symbols are spread such that symbols 0, 3, 6 … are contained in one
file, 1, 4, 7, … are contained in another file, and 2, 5, 8, …. are yet included in another file. At the same time, each
encoded object is self-contained and can represent the files.

<?xml version="1.0" encoding="UTF-8"?>
<FDTInstance xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:ETSI:CMMF:2023:FDT"
 xsi:schemaLocation="urn:ETSI:CMMF:2023:FDT extendedFDT.xsd"
 Expires="2024-05-30T09:30:10Z"
 Complete="true"
 FEC-OTI-FEC-Encoding-ID="6"
 FEC-OTI-Encoding-Symbol-Length="64">
 <File ContentLocation="https://example.com/efd1-video.mp4"
 ContentType="video/mp4 codecs='avc1.42c01e' profiles='iso8'"
 TOI="0"
 Content-Length="64000">
 <EncodedObjects type="cmmf"
 symbolArrangement="2"
 sAParameters="3,0,0"
 complete="true">https://example-cdn1.com/efd1-video-0.cmf</EncodedObjects>
 <EncodedObjects type="cmmf"
 symbolArrangement="2"
 sAParameters="3,1,0"
 complete="true">https://example-cdn2.com/efd1-video-1.cmf</EncodedObjects>
 <EncodedObjects type="cmmf"
 symbolArrangement="2"
 sAParameters="3,2,0"
 complete="true">https://example-cdn3.com/efd1-video-2.cmf</EncodedObjects>
 </File>
 <File ContentLocation="https://example.com/efd1-audio.mp4"
 ContentType="audio/mp4 codecs='mp4a.40.29' profiles='iso8'"
 TOI="1"
 Content-Length="4800">
 <EncodedObjects type="cmmf"
 symbolArrangement="2"
 sAParameters="3,0,0"
 complete="true">https://example-cdn1.com/efd1-audio-0.cmf</EncodedObjects>
 <EncodedObjects type="cmmf"
 symbolArrangement="2"
 sAParameters="3,1,0"
 complete="true">https://example-cdn2.com/efd1-audio-1.cmf</EncodedObjects>
 <EncodedObjects type="cmmf"
 symbolArrangement="2"
 sAParameters="3,2,0"
 complete="true">https://example-cdn3.com/efd1-audio-2.cmf</EncodedObjects>
 </File>
</FDTInstance>

D.2.6 Potential receiver operation
Once a CMMF Receiver receives the Configuration Information in the form of an EFDT, it may access multiple coded
versions of the same source object and operation can proceed as described in clause 4.3.6.A typical operation of the
receiver is to collect symbols from different locations as quickly as possible in order to be able to recover the included
objects while avoiding downloading unnecessary symbols.

The arrangements of symbols allow to minimize the network resource usage.

More details are for further study.

ETSI

ETSI TS 103 973 V1.1.1 (2024-10)156

History

Document history

V1.1.1 October 2024 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Overview
	4.0 Introduction
	4.1 Source data
	4.2 CMMF bitstream creation
	4.2.1 Encoding CMMF
	4.2.2 Symbol groups in CMMF
	4.2.3 Decoding CMMF
	4.2.4 Mapping to/from CMMF

	4.3 Media delivery using CMMF
	4.3.1 Overview
	4.3.2 CMMF transport objects and transport sessions
	4.3.3 CMMF delivery architecture reference points
	4.3.4 CMMF delivery procedure
	4.3.5 CMMF Configuration Information
	4.3.6 CMMF as a Content Delivery Protocol

	4.4 Overview of the Specification

	5 Bitstream syntax
	5.0 Bitstream organization
	5.1 Semantics of syntax specification
	5.1.1 Pseudocode syntax
	5.1.2 Bitstream variable syntax
	5.1.3 Bitstream structure syntax
	5.1.4 Iteration and conditional operators
	5.1.5 Boolean operations
	5.1.6 Labels and comments
	5.1.7 Operational variables not in the bitstream
	5.1.8 Arrays
	5.1.9 Bit field encoding

	5.2 Syntax specification
	5.2.1 cmmf_bitstream()
	5.2.2 subatom()
	5.2.3 sync()
	5.2.4 bitstream_header()
	5.2.5 block_header()
	5.2.6 addl_cce_parameters()
	5.2.7 prng_parameters()
	5.2.8 packet()
	5.2.9 packet_header()
	5.2.10 encoder_content_info()
	5.2.11 media_segment_info()
	5.2.12 cmmf_time()
	5.2.13 chunked_subatom()
	5.2.14 block_group_directory()
	5.2.15 fb_integrity()
	5.2.16 packet_integrity()
	5.2.17 coefficient_vector()
	5.2.18 extension()
	5.2.19 packet_header_only()
	5.2.20 rfc5052_information()
	5.2.21 packet_group()
	5.2.22 packet_group_header()
	5.2.23 num_bits_code()
	5.2.24 block_index_or_count_value()
	5.2.25 multi_block_packet_group()
	5.2.26 mbpg_header()

	6 Bitstream description
	6.0 Introduction
	6.1 Description of bitstream elements
	6.1.1 cmmf_bitstream()
	6.1.2 subatom()
	6.1.2.0 Introduction
	6.1.2.1 subatom_id, subatom_id_ext
	6.1.2.2 b_bitstream_id_present
	6.1.2.3 sas_bits
	6.1.2.4 bitstream_id
	6.1.2.5 subatom_size

	6.1.3 sync()
	6.1.3.0 Introduction
	6.1.3.1 syncword
	6.1.3.2 version
	6.1.3.3 b_content_encode_uuid
	6.1.3.4 content_encode_uuid

	6.1.4 bitstream_header()
	6.1.4.0 Introduction
	6.1.4.1 content_source_size
	6.1.4.2 content_source_type
	6.1.4.3 b_content_source_split
	6.1.4.4 content_soure_split_start, content_source_split_end
	6.1.4.5 code_type, code_type_ext
	6.1.4.6 b_rfc5052, rfc5052_information(), b_addl_rfc5052_information_present
	6.1.4.7 block_count_minus1, block_count
	6.1.4.8 b_content_block_separate_sources
	6.1.4.9 num_content_block_sources_minus1
	6.1.4.10 b_profile_information_present
	6.1.4.11 profile_type_size, profile_type
	6.1.4.12 profile_description
	6.1.4.13 b_block_cc_encrypted
	6.1.4.14 bitstream_encryption_key_id_size_exp
	6.1.4.15 bitstream_encryption_key_id

	6.1.5 block_header()
	6.1.5.0 Introduction
	6.1.5.1 block_index
	6.1.5.2 block_size
	6.1.5.3 block_symbol_size
	6.1.5.4 bns_bits
	6.1.5.5 block_num_symbols
	6.1.5.6 b_block_max_symbol_index_present
	6.1.5.7 bmsi_bits
	6.1.5.8 block_max_symbol_index
	6.1.5.9 b_block_content_source_index_present
	6.1.5.10 block_content_source_index
	6.1.5.11 b_block_composite_sources
	6.1.5.12 block_num_composite_sources_minus1
	6.1.5.13 bcss_bits
	6.1.5.14 block_composite_source_size
	6.1.5.15 b_addl_block_coding_info_present
	6.1.5.16 addl_block_coding_mask
	6.1.5.17 b_addl_window_info_present
	6.1.5.18 b_reserved_block_coding_params_present
	6.1.5.19 block_mask
	6.1.5.20 b_sufficient_symbols_present
	6.1.5.21 bsp_bits
	6.1.5.22 block_symbols_present
	6.1.5.23 block_field_size_exp
	6.1.5.24 Encrypted Coefficients
	6.1.5.24.0 Introduction
	6.1.5.24.1 block_cc_encryption_info_size_bits_code
	6.1.5.24.2 byte_align
	6.1.5.24.3 block_cc_encryption_info_size
	6.1.5.24.4 block_cc_encryption_algorithm
	6.1.5.24.5 block_cc_encryption_mode
	6.1.5.24.6 block_cce_key_size_exp, block_cce_key
	6.1.5.24.7 b_addl_block_cce_params_present
	6.1.5.24.8 addl_cce_parameters()

	6.1.5.25 Pseudorandom Noise Generator (PRNG)
	6.1.5.25.0 Introduction
	6.1.5.25.1 prng_type
	6.1.5.25.2 prng_seed_bits_code
	6.1.5.25.3 prng_seed
	6.1.5.25.4 prng_density_percentage

	6.1.6 packet()
	6.1.6.0 Introduction
	6.1.6.1 packet_block_index
	6.1.6.2 coded_symbol

	6.1.7 packet_header()
	6.1.7.0 Introduction
	6.1.7.1 b_systematic_symbol
	6.1.7.2 packet_mask
	6.1.7.3 psi_bits
	6.1.7.4 packet_symbol_index
	6.1.7.5 Encryption Parameters
	6.1.7.5.0 Introduction
	6.1.7.5.1 b_systematic_symbol_encrypted
	6.1.7.5.2 b_addl_packet_cce_params_present

	6.1.7.6 window_start_index, window_stop_index
	6.1.7.7 byte_align

	6.1.8 encoder_content_info()
	6.1.8.0 Introduction
	6.1.8.1 b_encoder_id_present
	6.1.8.2 encoder_uuid
	6.1.8.3 Content Identification
	6.1.8.4 b_content_id_present
	6.1.8.4.0 Introduction
	6.1.8.4.1 content_id_type
	6.1.8.4.2 content_id_size_minus1
	6.1.8.4.3 content_id

	6.1.8.5 b_content_location_present
	6.1.8.6 content_location_size, content_location
	6.1.8.7 b_content_type_present
	6.1.8.8 content_type_size, content_type
	6.1.8.9 b_content_header_present
	6.1.8.10 content_header_size, content_header
	6.1.8.11 b_file_integrity_present
	6.1.8.12 b_media_preso_dur_present

	6.1.9 media_segment_info()
	6.1.9.0 Introduction
	6.1.9.1 media_segment_block_index, media_segment_block_index_ext
	6.1.9.2 media_segment_index, media_segment_index_ext
	6.1.9.3 b_composite_source_index _present
	6.1.9.4 media_segment_composite_source_index
	6.1.9.5 b_asset_name_present
	6.1.9.6 asset_name_size, asset_name
	6.1.9.7 segment_tag_mask
	6.1.9.8 segidx_bits, segcnt_bits
	6.1.9.9 segment_index
	6.1.9.10 segment_count
	6.1.9.11 b_media_mime_type_present
	6.1.9.12 media_mime_type_size, media_mime_type
	6.1.9.13 b_media_codec_present
	6.1.9.14 media_codec_size, media_codec
	6.1.9.15 b_bit_rate_present
	6.1.9.16 bit_rate_bits_code
	6.1.9.17 bit_rate
	6.1.9.18 b_ms_content_type_present
	6.1.9.19 ms_content_type
	6.1.9.20 b_ms_content_type_info_present
	6.1.9.21 b_aspect_ratio_present
	6.1.9.22 sample_aspect_ratio
	6.1.9.23 sar_width, sar_height
	6.1.9.24 b_dynamic_resolution_video
	6.1.9.25 b_resolution_present
	6.1.9.26 resolution_width, resolution_height
	6.1.9.27 b_frame_rate_present
	6.1.9.28 frame_rate
	6.1.9.29 b_hdr_info_present
	6.1.9.30 hdr_compatibility_mask
	6.1.9.31 b_addl_hdr_info_present
	6.1.9.32 hdr_compat_mask_index
	6.1.9.33 hdr_profile
	6.1.9.34 hdr_level
	6.1.9.35 hdr_compatibility_id
	6.1.9.36 b_addl_video_info_present
	6.1.9.37 b_sampling_freq_present
	6.1.9.38 b_sampling_freq_is_48k
	6.1.9.39 sampling_frequency
	6.1.9.40 b_audio_config_present
	6.1.9.41 audio_channel_config
	6.1.9.42 b_audio_props_present
	6.1.9.43 b_virtualized_bin
	6.1.9.44 b_object_audio
	6.1.9.45 b_complexity_index_present
	6.1.9.46 complexity_index
	6.1.9.47 b_addl_audio_info_present
	6.1.9.48 b_addl_ms_content_type_info_present
	6.1.9.49 accessibility_mask
	6.1.9.50 language_size, language

	6.1.10 cmmf_time()
	6.1.10.0 Introduction
	6.1.10.1 b_ddhhmmss
	6.1.10.2 DD:HH:MM:SS format
	6.1.10.3 int_seconds_bits_code
	6.1.10.4 int_seconds
	6.1.10.5 b_fract_seconds_present
	6.1.10.6 fract_seconds_bits_code
	6.1.10.7 fract_seconds

	6.1.11 chunked_subatom()
	6.1.11.0 Introduction
	6.1.11.1 chunk_segment_id
	6.1.11.2 chunk_segment_index
	6.1.11.3 num_chunk_segments
	6.1.11.4 original_subatom_id, original_subatom_id_ext
	6.1.11.5 oss_bits
	6.1.11.6 original_subatom_size
	6.1.11.7 byte_align
	6.1.11.8 chunked_subatom_segment_data

	6.1.12 block_group_directory()
	6.1.12.0 Introduction
	6.1.12.1 block_group_dir_mask
	6.1.12.2 block_header_subatom_offset[block]
	6.1.12.3 num_packet_groups[block]
	6.1.12.4 packet_group_index[block][pg]
	6.1.12.5 packet_group_subatom_offset[block][pg]
	6.1.12.6 num_multi_block_packet_groups
	6.1.12.7 multi_block_packet_group_subatom_offset[mbpg]

	6.1.13 fb_integrity()
	6.1.13.0 Introduction
	6.1.13.1 fb_hash_type
	6.1.13.2 fb_hash_algorithm
	6.1.13.3 fb_hash_size
	6.1.13.4 b_fb_integrity_ext
	6.1.13.5 fb_hash

	6.1.14 packet_integrity()
	6.1.14.0 Introduction
	6.1.14.1 packet_hash_algorithm
	6.1.14.2 packet_hash_size
	6.1.14.3 b_packet_integrity_ext
	6.1.14.4 packet_hash

	6.1.15 coefficient_vector()
	6.1.15.0 Introduction
	6.1.15.1 coded_symbol_coeff[index]

	6.1.16 extension()
	6.1.16.0 Introduction
	6.1.16.1 extension_byte_size

	6.1.17 packet_header_only()
	6.1.18 packet_group()
	6.1.18.0 Introduction
	6.1.18.1 packet_group_block_index
	6.1.18.2 packet_group_index
	6.1.18.3 pgns_bits
	6.1.18.4 packet_group_num_symbols
	6.1.18.5 packet_group_type
	6.1.18.6 coded_symbol

	6.1.19 packet_group_header()
	6.1.19.0 Introduction
	6.1.19.1 packet_group_symbol_arrangement
	6.1.19.2 packet_group_mask
	6.1.19.3 pgsi_bits
	6.1.19.4 packet_group_symbol_index
	6.1.19.5 pgfsi_bits
	6.1.19.6 packet_group_first_symbol_index
	6.1.19.7 packet_group_index_difference
	6.1.19.8 pgfsii_bits
	6.1.19.9 Symbol Arrangements in a Packet Group
	6.1.19.10 Encryption Parameters
	6.1.19.10.0 Introduction
	6.1.19.10.1 b_addl_packet_group_cce_params_present

	6.1.20 num_bits_code()
	6.1.20.0 Introduction
	6.1.20.1 bits_code

	6.1.21 block_index_or_count_value()
	6.1.21.0 Introduction
	6.1.21.1 block_index_or_count, block_index_or_count_ext

	6.1.22 multi_block_packet_group()
	6.1.22.0 Introduction
	6.1.22.1 mbpg_index
	6.1.22.2 mbpg_start_block_index
	6.1.22.3 mbpg_num_blocks
	6.1.22.4 mbpg_num_symbols
	6.1.22.5 coded_symbol

	6.1.23 mbpg_header()
	6.1.23.0 Introduction
	6.1.23.1 mbpg_symbol_arrangement
	6.1.23.2 mbpgsi_bits
	6.1.23.3 mbpg_source_block_index, mbpg_symbol_index
	6.1.23.4 mbpgfsi_bits
	6.1.23.5 mbpg_first_symbol_index, b_mbpg_is_symbol_group_subset, mbpg_symbol_group_subset_index
	6.1.23.6 mbpg_index_difference
	6.1.23.7 mbpgsai_bits_code
	6.1.23.8 Symbol Arrangements in a Multiple Block Packet Group
	6.1.23.9 b_mbpg_integrity_present
	6.1.23.10 b_mbpg_header_ext_present

	7 Design considerations
	7.0 Introduction
	7.1 Coding coefficients
	7.1.0 Generating coding coefficients using a PRNG
	7.1.1 Coefficient density control
	7.1.2 Mersenne twister PRNG type

	7.2 Handling variable source symbol size
	7.3 Encrypting coding coefficient information
	7.3.0 Introduction
	7.3.1 Using a bitstream/session key and symmetric keys

	Annex A (normative): xCD-1
	A.0 Introduction
	A.1 Encoding
	A.2 Decoding

	Annex B (informative): Media service architecture Examples
	B.0 Introduction
	B.1 MPEG-DASH HTTP adaptive streaming service example

	Annex C (informative): Example bitstreams
	C.0 Introduction
	C.1 Multisource Video-on-Demand
	C.1.0 Multisource Video-on-Demand example using code_type xCD-1
	C.1.1 Bitstream construction
	C.1.2 Sync construction
	C.1.3 Subatom construction
	C.1.3.1 Bitstream header subatom construction
	C.1.3.2 Block header subatom construction
	C.1.3.3 Encoder content information subatom construction
	C.1.3.4 Media segment information subatom construction
	C.1.3.5 Packet subatom construction - systematic symbol
	C.1.3.6 Packet subatom construction - coded symbol

	C.2 Encrypted coding coefficient information example using CMMF

	Annex D (normative): Content delivery protocol-based instantiations
	D.1 CMMF content delivery protocol principles
	D.1.1 Introduction
	D.1.2 FEC Building Block principles
	D.1.3 FEC Schemes and related information
	D.1.4 FEC Scheme information in CMMF
	D.1.5 Configuration Information parameters
	D.1.6 Example Instantiations

	D.2 FLUTE-based CMMF CDP Instantiation
	D.2.1 Introduction
	D.2.2 Procedures for FLUTE-based CMMF CDP Instantiation
	D.2.3 Extended File Delivery Table
	D.2.3.1 Semantics
	D.2.3.2 Extended FDT Schema for CMMF
	D.2.3.3 Extended FDT Description for CMMF
	D.2.3.4 IANA registration for Extended FDT Description

	D.2.4 Transport object formats
	D.2.4.1 General
	D.2.4.2 Source objects
	D.2.4.3 Coded/repair objects
	D.2.4.3.1 General
	D.2.4.3.2 Mapping of FEC Payload ID information to transport blocks
	D.2.4.3.2.1 General
	D.2.4.3.2.2 Symbol group arrangement 3: encoding symbol interleaving
	D.2.4.3.2.3 Symbol group arrangement 2: source symbol interleaving

	D.2.5 Examples
	D.2.5.1 Single file - source and partial encoding object
	D.2.5.2 Multiple files - self-contained objects including source symbols

	D.2.6 Potential receiver operation

	History

