

ETSI TS 126 565 V18.0.0 (2024-07)

5G;
Split Rendering Media Service Enabler

(3GPP TS 26.565 version 18.0.0 Release 18)

TECHNICAL SPECIFICATION

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)13GPP TS 26.565 version 18.0.0 Release 18

Reference
DTS/TSGS-0426565vi00

Keywords
5G

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from the
ETSI Search & Browse Standards application.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format on ETSI deliver.

Users should be aware that the present document may be revised or have its status changed,
this information is available in the Milestones listing.

If you find errors in the present document, please send your comments to
the relevant service listed under Committee Support Staff.

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure (CVD) program.

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2024.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/Services/editHelp/Standards-development/Tracking-a-draft/Status-codes
https://portal.etsi.org/People/Commitee-Support-Staff
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)23GPP TS 26.565 version 18.0.0 Release 18

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Legal Notice
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities. These shall be
interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found under https://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://webapp.etsi.org/key/queryform.asp
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)33GPP TS 26.565 version 18.0.0 Release 18

Contents

Intellectual Property Rights .. 2

Legal Notice ... 2

Modal verbs terminology .. 2

Foreword ... 6

Introduction .. 7

1 Scope .. 8

2 References .. 8

3 Definitions of terms, symbols and abbreviations ... 9

3.1 Terms .. 9

3.2 Symbols .. 9

3.3 Abbreviations ... 9

4 General ... 9

4.1 Overview .. 9

4.2 Typical Use Cases .. 10

5 Reference Architecture and Procedures ... 10

5.1 Reference Architecture ... 10

5.1.1 Introduction... 10

5.1.2 Client Architecture .. 10

5.1.3 End-to-End Architecture ... 11

5.1.4 User Plane Architecture .. 12

5.2 Procedures and Call Flows ... 13

5.2.1 Call flow for Split Rendering instance discovery ... 13

5.2.1.1 Call flow for edge server and split rendering session setup .. 13

5.2.1.2 Client-driven procedures and call flows .. 14

5.2.2 Call flow for Split Rendering session setup .. 15

6 Prerequisites ... 16

6.1 General ... 16

6.2 Pre-requisites on 5G System .. 16

6.3 Pre-requisites on Device APIs and Functionality ... 16

7 Network Support .. 17

7.1 Overview .. 17

7.2 Provisioning ... 17

7.3 Dynamic Policy and Network Assistance .. 17

7.4 Edge Resources .. 17

7.5 Metrics and Consumption Reporting .. 18

8 Split Rendering User Plane .. 18

8.1 General ... 18

8.2 Split Rendering Signalling Protocols ... 18

8.3 Split Rendering Formats for Media and Metadata ... 20

8.3.1 General .. 20

8.3.2 Metadata Formats ... 20

8.3.2.1 General .. 20

8.3.2.2 Pose Format... 20

8.3.2.3 Action Format ... 20

8.3.3 Metadata Data Channel Message Format ... 20

8.4 Split Rendering Formats for Session Setup and Negotiation ... 21

8.4.1 General .. 21

8.4.2 Split Rendering Configuration Format ... 21

8.4.2.1 Introduction ... 21

8.4.2.2 Split Rendering Configuration Format .. 21

8.4.3 Output Format Description ... 24

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)43GPP TS 26.565 version 18.0.0 Release 18

8.5 Split Rendering Transport Protocols .. 24

9 Split Rendering Client .. 24

9.1 Functionality ... 24

9.2 Client API ... 24

9.3 Split Rendering Metrics .. 26

9.3.1 General .. 26

9.3.2 QoE Metrics Formats .. 26

9.3.2.1 Timing Information Format .. 26

9.3.2.2 Latency metrics ... 27

9.3.3 QoE Metrics reporting protocol .. 29

9.3.4 QoE metrics definition .. 29

9.3.4.1 Introduction ... 29

9.3.4.2 Pose to render to photon metric ... 29

9.3.4.3 Render to photon metric .. 30

9.3.4.4 Round-trip interaction delay metric .. 31

9.3.4.5 User interaction delay metric .. 32

9.3.4.6 Age of contents metric .. 32

9.3.2.7 Scene update delay metric ... 33

9.3.2.8 Metadata delay metric ... 34

9.3.2.9 Data frames delay metric .. 35

9.3.5 Quality metrics reporting .. 36

9.3.5.1 General .. 36

9.3.5.2 Report format .. 36

9.3.5.3 Quality Reporting Scheme and Metrics reporting configuration for SRC .. 38

10 Security and Privacy Aspects ... 38

10.1 Security .. 38

10.2 Privacy .. 38

Annex A (informative): Implementation Guidelines ... 39

A.1 Guidelines for Application Developers .. 39

A.2 Guidelines for Split Rendering MSE Implementers ... 39

A.2.1 Guidelines for implementers of the Split Rendering Server ... 39

A.3 Conformance Testing ... 39

Annex B (normative): IDL Definition of Client API .. 40

Annex C (normative): Split Rendering Profiles .. 41

C.1 Pixel Streaming Profile .. 41

C.1.1 Introduction .. 41

C.1.2 2D Pixel Streaming Profile ... 41

C.1.2.1 Introduction... 41

C.1.2.2 SRC Capabilities ... 41

C.1.2.2.1 Overview ... 41

C.1.2.2.2 Media Capabilities .. 41

C.1.2.2.3 Metadata Formats .. 41

C.1.2.3 SRS Capabilities ... 42

C.1.2.3.1 Overview ... 42

C.1.2.3.2 Video encoding ... 42

C.1.2.3.3 Audio and Speech encoding .. 42

C.1.2.3.4 Video decoding ... 42

C.1.2.3.5 Audio and Speech decoding .. 42

C.1.2.3.6 Metadata Formats .. 42

C.1.2.4 Profile identifier .. 42

C.1.3 3D Pixel Streaming Profile ... 42

C.1.3.1 Introduction... 42

C.1.3.2 SRC Capabilities ... 42

C.1.3.2.1 Overview ... 42

C.1.3.2.2 Media Capabilities .. 43

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)53GPP TS 26.565 version 18.0.0 Release 18

C.1.3.2.3 Metadata Formats .. 43

C.1.3.3 SRS Capabilities ... 43

C.1.3.3.1 Overview ... 43

C.1.3.3.2 Video encoding ... 43

C.1.3.3.3 Audio and Speech encoding .. 43

C.1.3.3.4 Video decoding ... 43

C.1.3.3.5 Audio and Speech decoding .. 43

C.1.3.3.6 Metadata Formats .. 43

C.1.3.4 Profile identifier .. 44

C.1.4 Description of the Rendering Format for Pixel Streaming Profiles .. 44

C.1.4.1 General .. 44

C.1.4.2 3D Pixel Streaming Profile-specific glTF Extension .. 44

C.1.5 Profile Restrictions and Requirements ... 48

C.2 Adaptive Split Rendering Profile ... 48

C.2.1 Introduction .. 48

C.2.2 Procedures and Call Flows ... 48

C.2.3 Metadata Formats ... 50

C.2.3.1 Split Rendering Configuration Format ... 50

C.2.3.2 Split Adaptation Message Format ... 51

C.2.3.3 State Synchronization Message Format .. 51

C.2.4 SRC Capabilities .. 52

C.2.4.1 Media Capabilities .. 52

C.2.4.2 Metadata Formats ... 53

C.2.4.3 Rendering format description ... 53

C.2.4.4 Scene Processing and Rendering Capabilities .. 53

C.2.5 SRS Capabilities ... 53

C.2.5.1 Media Capabilities .. 53

C.2.5.2 Metadata Capabilities ... 54

C.2.5.3 Scene Processing and Rendering Capabilities .. 54

C.2.6 Profile identifiers .. 54

C.2.7 Extension to Client API Functions ... 54

C.2.8 Implementation Guidelines for Adaptive Split Rendering ... 55

C.2.8.1 General .. 55

C.2.8.2 Guidelines for Rendering Split and Composition ... 55

Annex X (informative): Change history ... 56

History .. 57

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)63GPP TS 26.565 version 18.0.0 Release 18

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

In the present document, modal verbs have the following meanings:

shall indicates a mandatory requirement to do something

shall not indicates an interdiction (prohibition) to do something

The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in
Technical Reports.

The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided
insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced,
non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a
referenced document.

should indicates a recommendation to do something

should not indicates a recommendation not to do something

may indicates permission to do something

need not indicates permission not to do something

The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions
"might not" or "shall not" are used instead, depending upon the meaning intended.

can indicates that something is possible

cannot indicates that something is impossible

The constructions "can" and "cannot" are not substitutes for "may" and "need not".

will indicates that something is certain or expected to happen as a result of action taken by an agency
the behaviour of which is outside the scope of the present document

will not indicates that something is certain or expected not to happen as a result of action taken by an
agency the behaviour of which is outside the scope of the present document

might indicates a likelihood that something will happen as a result of action taken by some agency the
behaviour of which is outside the scope of the present document

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)73GPP TS 26.565 version 18.0.0 Release 18

might not indicates a likelihood that something will not happen as a result of action taken by some agency
the behaviour of which is outside the scope of the present document

In addition:

is (or any other verb in the indicative mood) indicates a statement of fact

is not (or any other negative verb in the indicative mood) indicates a statement of fact

The constructions "is" and "is not" do not indicate requirements.

Introduction
This specification defines a media service enabler for split rendering in the 5G system.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)83GPP TS 26.565 version 18.0.0 Release 18

1 Scope
The present document defines a Media Service Enabler for Split Rendering according to the guidelines of TR26.857 [1].
The Split Rendering MSE covers functionality on the UE and on the Media AS. It also defines an API that is exposed to
application developers on the UE to start and manage split rendering sessions.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

- For a specific reference, subsequent revisions do not apply.

- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TR 26.857: "5G Media Service Enablers".

[2] ISO/IEC 12113:2022, Information technology, Runtime 3D asset delivery format, Khronos glTF
2.0

[3] ISO/IEC 23090-14: Information technology — Coded representation of immersive media — Part
14: Scene Description for MPEG Media.

[4] 3GPP TS 26.119, Media Capabilities for Augmented Reality

[5] 3GPP TS 26.506, 5G Real-time Media Communication Architecture (Stage 2)

[6] 3GPP TS 26.113, Real-Time Media Communication; Protocols and APIs

[7] 3GPP TS 26.512, 5G Media Streaming (5GMS); Protocols

[8] 3GPP TS 26.522, 5G Real-time Media Transport Protocol Configurations

[9] 3GPP TS 26.510, Media Delivery: interactions and APIs for provisioning and
media session handling

[10] Khronos, The OpenXR API, https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html

[11] W3C, WebXR Device API, WebXR Device API (immersive-web.github.io)

[12] Khronos, WebGL Specification 1.0, WebGL Specification (khronos.org)

[13] W3C, Web Audio API, Web Audio API (w3.org)

[14] 3GPP TS23.501, System architecture for the 5G System (5GS).

[15] 3GPP TS23.503, 5G; Policy and charging control framework for the 5G System (5GS).

[16] 3GPP TS26.857, 5G Media Service Enablers.

[17] 3GPP TS 26.247: "Transparent end-to-end Packet-switched Streaming Services (PSS); Progressive
Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH)".

https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html
https://immersive-web.github.io/webxr/
https://registry.khronos.org/webgl/specs/latest/1.0/
https://www.w3.org/TR/webaudio/

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)93GPP TS 26.565 version 18.0.0 Release 18

3 Definitions of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the terms given in TR 21.905 [1] and the following apply. A term defined in
the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

example: text used to clarify abstract rules by applying them literally.

3.2 Symbols
For the purposes of the present document, the following symbols apply:

<symbol> <Explanation>

3.3 Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An
abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in
TR 21.905 [1].

AF Application Function
AS Application Server
MAF Media Access Function
MAP Media Application Provider
MSH Media Session Handler
MSE Media Service Enabler
5G-RTC 5G Real-Time Communication
RTC Real-Time Communication
SR Split Rendering
SRC Split Rendering Client
SRS Split Rendering Server
SWAP Simple WebRTC Application Protocol
UE User Equipment
XR eXtended Reality

4 General

4.1 Overview
The Split Rendering Media Service Enabler collects a set of 5G media functions to build a media service enabler that
targets application developers, network operators, and Media Application Providers, to enable the realization of split
rendered applications.

The interfaces, formats, protocols, and APIs are either referenced or defined in this specification. This will allow for
interoperability between multiple vendor implementations.

This specification targets primarily XR applications. However, it is not limited to XR applications and may be used for
rendering for 2D displays.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)103GPP TS 26.565 version 18.0.0 Release 18

4.2 Typical Use Cases
A typical use case for the split rendering MSE is immersive gaming. In this use case, the UE benefits from invoking
split rendering by avoiding the download of the game to the phone and getting high quality graphics from edge
rendering.

Another use case that can benefit from split rendering is immersive communication, where users gather in a shared
space and interact with each other and with the environment. Users may be represented by sophisticated Avatars and as
the number of users increases the rendering will become more complex.

5 Reference Architecture and Procedures

5.1 Reference Architecture

5.1.1 Introduction

In this clause, different variants of the reference architecture for the split rendering Media Service Enabler (MSE) are
defined, each representing a different perspective and level of details.

The following functions are introduced:

- Split-Rendering Client (SRC): This function is responsible for discovering the UE media capabilities and
negotiating with the Split-Rendering Server (SRS) to agree on the split-rendering process.

- Split-Rendering Server (SRS): This function is responsible for negotiation of SR session with SRC, monitoring
the server’s edge resource usage, and managing/running the split rendering process.

- Media Application Function (AF): responsible for provisioning, QoS allocation, and edge resource discovery.

- Media Application Provider: The Media Application Provider that offers the service.

- Application: The application running on UE.

- Media Session Handler (MSH): is the entity on UE that is responsible for the control plane communication with
the AF.

- XR Runtime: Set of functions provided by XR Device to the XR Application to create XR experiences.

5.1.2 Client Architecture

The client architectural breakdown is based on the client architecture in TS 26.119 [4] clause 5.1. The figure depicting
the client architecture is replicated here as Figure 5.1.2-1 for convenience.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)113GPP TS 26.565 version 18.0.0 Release 18

Figure 5.1.2-1 - XR Baseline terminal architecture

The split rendering client consists of the following components:

- The Media Access Functions: allows for fetching and processing of the pre-rendered media in preparation of
final display. The MAF is also responsible for the carriage of any metadata or local media to the split rendering
server.

- The scene manager and “thin” Presentation Engine: is responsible for the negotiation of the split rendering
session and the parsing of the description of the rendered media as provided by the SRS. It is also responsible for
setting up and managing the XR session with the XR runtime.

- The XR source management is responsible for gathering timed metadata such as pose and action information and
sending it to the SRS.

- XR Runtime: Set of functions provided by XR Device to the XR Application to
create XR experiences.

5.1.3 End-to-End Architecture

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)123GPP TS 26.565 version 18.0.0 Release 18

Figure 5.1.3-1 – Split management architecture

As shown in Figure 5.1.3-1:

1. The Media Application Providers (AP) provisions the split-rendering through M1.

2. In the use cases in which the MAP is involved in the media delivery, the M2 interface is used for this purpose.

3.The communication between Media AF and SRS is through M3. This interface is out of the scope of this
document. This interface may for instance include the EDGE-3 interface.

4. The signaling as well as the media delivery between SRC and SRS is though M4.

5. The Media AF may provide SR-related information to the Media Session Handler (MSH) through the M5
interface, as defined in TS26.510.

6. The SRC in the UE discovers the application through M11 and handles the XR runtime.

7. The SRC discovers the client media capabilities through the M7 interface. This interface is out of the scope of this
document.

8. The 5G Application and MAP interact through M8. This interface is out of the scope of this document.

5.1.4 User Plane Architecture

Figure 5.1.4-1 depicts the user plane architecture for split rendering.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)133GPP TS 26.565 version 18.0.0 Release 18

Figure 5.1.4-1 – User Plane Architecture for Split management architecture

In the context of split rendering, the M4 interface is further classified as RTC-4s and RTC-4m sub-interfaces. The RTC-
4s interface covers all user-plane signaling, including WebRTC and ICE signaling. The RTC-4m serves for media and
metadata exchange between the split rendering client and the split rendering server.

5.2 Procedures and Call Flows

5.2.1 Call flow for Split Rendering instance discovery

5.2.1.1 Call flow for edge server and split rendering session setup

Figure 5.2.1.1-1 demonstrates a general call flow for split-rendering.

Figure 5.2.1-1: High-level call flow for split-rendering

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)143GPP TS 26.565 version 18.0.0 Release 18

Steps:

1. In this optional step, the Media Application Provider requests and sets up the edge server(s) used for the split-
rendering as described in TS 26.506 clauses 6.1 or 6.2. The Media Application Provider may use any other
method to allocation edge servers, or leave it to the MNO to set up appropriate edge servers to run the split-
rendering process.

2. The Media Application Provider provisions the split-rendering session using M1 and M3, as defined in call flow
of clauses 5.2.1.1. If the edge servers were provisioned in step 1, the edge servers ids are provided in this session
to employ them for split-rendering.

NOTE: In the case of the client-driven edge management (TS 26.501 8.1), only the client-driven split-rendering
(5.2.1.1) is applicable.

3. The split-rendering session is set up according to clause 5.2.2.

5.2.1.2 Client-driven procedures and call flows

Figure 5.2.1.2-1 demonstrates a call flow for setting up the split rendering by the client.

Figure 5.2.1.2-1: High-level call flow for initiating a split

Steps:

1. The Media Application Provider requests from the Media AF, the creation of a Provisioning session for split
rendering.

2. The SR configuration is announced to the MSH as part of the Service Access Information.

3. The Application requests the deployment of split rendering from the SRC.

4. The SRC requests the discovery of a suitable SRS from the MSH. It may provide the client’s media
capabilities as input parameters.

5. The SRC and SRS negotiate the configuration of the split rendering session.

6. The SRS starts the split rendering process.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)153GPP TS 26.565 version 18.0.0 Release 18

7. The SRC provides the session information via the M11 interface and requests the application of dynamic
policy and subscription to network assistance from the Media AF, via the MSH.

8. The SRC establishes the WebRTC session.

9. The SRC informs the application that the split-rendering on edge is running via M7.

10. The SRC sends uplink metadata, such as pose and action information.

11. 0The SRS sends the rendered media to the SRC.

5.2.2 Call flow for Split Rendering session setup

The split rendering operation can be described by the call flow in Figure 5.2.2-1.

XR Runtime

Split Rendering Client

Scene Manager
(thin Presentation Engine)

XR Source
Management

Media Access
Function

Split Rendering Server

1: create a split rendering session

2: send description of split rendering output

3: establish transport connections
e.g. WebRTC session

Session Setup and negotiation

4: receive pose information and user actions

5: transmit pose information and user actions

6: perform rendering
for requested pose (s)

7: send next buffer frame

8: decode and process
buffer frame

9: pass raw buffer frames for display

10: compose and
render frame

Rendering Loop

http://msc-generator.sourceforge.net v7.2

Figure 5.2.2- 1 High-level call flow for split rendering session setup and operation

The steps are:

1. The Presentation Engine discovers the split rendering server and sets up a connection to it. It provides
information about its rendering capabilities and the XR runtime configuration, e.g the OpenXR configuration
may be used for this purpose.

2. In response, the split rendering server creates a description of the split rendering output and the input it
expects to receive from the UE.

3. The Presentation Engine requests the buffer streams from the MAF, which in turn establishes a connection to
the split rendering server to stream pose and retrieve split rendering buffers.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)163GPP TS 26.565 version 18.0.0 Release 18

4. The Source Manager retrieves pose and user input from the XR runtime.

5. The Source Manager shares the pose predictions and user input actions with the split rendering server.

6. The split rendering server uses that information to render the frame.

7. The rendered frame is encoded and streamed down to the MAF.

8. The MAF decodes and processes the received frame.

9. The MAF passes the decoded frame to the Scene Manager which passes it to the XR Runtime.

10. The XR runtime composes and renders the frame onto the display.

6 Prerequisites

6.1 General
The below section provides guidance on the pre-requisites on the 5G system and device APIs in order to host and run a
split rendering session.

Pre-requisites document what is expected to be available either from the 5G System (i.e. certain functionalities of the
5G System) or from implementation (for example functions available on the device). These pre-requisites may be
considered to be part of the specification (as reference to an external specification), but it is important to identify them
separately in order to clearly demarcate the boundaries of the split rendering MSE with respect to other functions.

6.2 Pre-requisites on 5G System
Pre-requisites on the 5G System include, but are not limited to:

- The split rendering session is expected to operate in the 5G system as specified in [14] that supports
functionalities and procedures to configure the quality of service (QoS) and charging information and
functionality, which may be used by split rendering sessions.

- The split rendering session is expected to operate within the 5G system as specified in [14], which supports
functionalities and procedures to configure policy and charging control (PCC) information as specified in [15].
Split rendering sessions may benefit from these procedures.

- The split rendering server functionality may operate within the 5G system as specified in |14], which supports
the discovery of and access to edge resources. The edge functionality may be used to deploy split rendering
server functionality.

6.3 Pre-requisites on Device APIs and Functionality
The following assumptions for the split rendering client are made:

- The SRC may have access to an XR runtime through a well-defined API such as the OpenXR [10] or WebXR
[11] APIs.

- The SRC has access to 3D graphics library, such as. WebGL [12], and to an audio rendering engine, such as
WebAudio [13].

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)173GPP TS 26.565 version 18.0.0 Release 18

7 Network Support

7.1 Overview
The Split Rendering MSE stands to benefit from the several procedures that the network offers. These include but are
not limited to:

- Dynamic QoS and charging,

- Edge resources,

- Consumption and metrics reporting,

- Configuration Information.

In this clause, the control plane procedures that are relevant for split rendering and their usage are described.

7.2 Provisioning
A Media Application Provider that wishes to offer applications using split rendering shall use the procedures and data
models defined in TS 26.510 [9] clauses 6 and 8 to create a Provisioning Session with the Media AF.

The ProvisioningSessionType shall be set to “BIDIRECTIONAL”.

The aspId shall be configured and shall be a unique identifier for the Media Application Provider that offers split
rendering.

The externalApplicationId shall be a URN that uniquely identifies the application and shall be terminated by the sub-
string “+3gpp-sr”. An examples is as follows: “urn:com:example:game+3gpp-sr”.

7.3 Dynamic Policy and Network Assistance
Dynamic policy and network assistance may be provisioned by the Media Application Provider with the Media AF. The
allowed dynamic policies for the split rendering sessions of the Media Application Provider are communicated to the
MSH in the UE using the Configuration procedure.

Upon the creation of a new split rendering session and upon eligibility, the MSH shall use the Dynamic Policy API to
request the allocation of network resources and charging policy to the session based on the information in the
corresponding Provisioning session.

A policy template that is provisioned for split rendering should be associated with the split rendering configuration.

The MSH and the WebRTC Signaling Server shall support the dynamic policy API as defined in clause 10.4 of TS
26.113 [6].

The Media Application Provider may provision support for PDU Set marking. The SRS shall support the PDU Set
marking and should support the End of Burst marking for the RTP streams that are generated by the Split Rendering
Server.

7.4 Edge Resources
A Media Application Provider may use the procedures defined in TS 26.510 [9] clause 8.6 to define an edge resource
configuration to be used for split-rendering sessions.

In this case:

- The eligibilityCriteria shall be present and shall have appRequest set to true.

- The easRequirements shall indicate “SR” as the easType and shall include “3gpp-sr” among the easFeatures. The
serviceKpi shall be present and indicate the SRS processing and networking capabilities and requirements.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)183GPP TS 26.565 version 18.0.0 Release 18

7.5 Metrics and Consumption Reporting
The Media Application Provider may use the Provisioning procedure to configure the collection of split rendering
metrics and logging of consumption statistics. When present, this information shall be passed to the MSH using the
Service Access Information procedure.

The SRC shall collect and report the data for a split rendering session that matches the criteria for metrics and/or
consumption reporting as indicated by the configuration procedure.

8 Split Rendering User Plane

8.1 General
The user plane for split rendering covers all traffic between the SRC and SRS, or the SRC and any other Media AS. The
common formats for split rendering are defined in this clause. Split rendering profiles may define additional user plane
formats.

This clause illustrates the protocol stack for the User plane transport related to the signalling as well as the media
delivery between SRC and SRS though M4.

Figure 8.1-1 Split rendering protocol Stack

8.2 Split Rendering Signalling Protocols
Both SRC and SRS shall support the SWAP protocol as defined in TS 26.113 [6] clause 13.2.

The SWAP protocol allows for the definition of application-specific messages.

The following application-specific messages shall be supported for split rendering:

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)193GPP TS 26.565 version 18.0.0 Release 18

- The configuration message carries the split rendering configuration information from the SRC to the SRS. It
shall be identified by the type “urn:3gpp:sr-mse:sr-configuration” and the object shall be formatted according
to clause 8.4.2.2.

- The rendering description message carries the description of the split rendered media from the SRS to SRC. The
format of the message is SR-profile-specific and shall be defined by each profile. It shall be identified by the
type “urn:3gpp:sr-mse:sr-description”. The rendering description message provides the semantics of the
media that is delivered over WebRTC from the SRS to SRC.

The SWAP message exchange for the establishment of a split rendering session is depicted by the following call flow
diagram:

SRC SWAP
Server

SRS

1: App-specific message on SR configuration

2: match end point

3: forward app-specific SR configuration message

4: acknowledge message forwarded

5: process SR
configuration

6: App-specific messasge on rendering description

7: forward app-specific message on rendering description

8: acknowledge message forwarded

9: process rendering
description

10: connect message with SDP offer

11: acknowledge message forwarded

12: accept message with SDP answer

13: acknowledge message forwarded

https://gitlab.com/msc-generator v8.4

Figure 8.2-1 Call flows for SWAP message exchange

Pre-requisites:

- The SRC has discovered the identifier of the SRS that it will use for its split rendering session.

- The SRC has retrieved the address of the SWAP server as part of the configuration.

The stpes are as follows:

1. The SRC sends the configuration message as an application-specific SWAP message to the SWAP server. It
provides the identifier of the target SRS as a matching criteria.

2. The SWAP server uses the provided matching criteria to locate the SRS.

3. The SWAP server forwards the configuration message to the target SRS.

4. The SWAP server confirms the successful forwarding of the message to the SRC.

5. The SRS processes the SR configuration message. It may for instance verify application and resource availablity,
launch the application, configure its rendering, and create a rendering description.

6. The SRS sends the rendering description message as an application-specific SWAP message to the SWAP server.

7. The SWAP server forwards the message to the SRC.

8. The SWAP server acknowledges the successful forwarding of the message to the SRS.

9. The SRC processes the rendering description and identifies the required data channel and media sessions.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)203GPP TS 26.565 version 18.0.0 Release 18

10. SRC sends a connect message with the SDP offer to the SRS. The offer reflects the negotiated media and data
channel streams.

11. The SWAP server acknowledges the forwarding of the message to the SRS.

12. The SRS replies with an accept message that includes the SDP answer. The SDP answer reflects the information that
was provided in the split rendering description.

13. The SWAP server acknowledges the forwarding of the message to the SRC.

8.3 Split Rendering Formats for Media and Metadata

8.3.1 General

This clause defines media and metadata formats that are common to one or more split rendering profiles.

8.3.2 Metadata Formats

8.3.2.1 General

Both SRC and SRS shall support the usage of the WebRTC data channel for the exchange of split rendering metadata.
The WebRTC data channel shall declare “3gpp-sr” as the data channel sub-protocol. The message content format
depends on the type of the message. The data channel sub-protocol is defined in clause 8.3.3.

Message types shall be unique identifiers in the URN format. This clause defines a set of message types and their
formats. The messages are derived from the OpenXR API to ensure smooth operation with AR devices that support
OpenXR. In case other XR APIs are used, mapping the message payload to the appropriate XR API structures shall be
performed by the split rendering client.

8.3.2.2 Pose Format

The pose format that is used by all split rendering profiles defined by this specification shall comply with the format
defined in TS 26.119 [4] clause 12.2. The pose information shall be carried as part of the data channel messaging
mechanism defined in clause 8.3.3 and shall be provided in JSON format. The message type shall be “urn:3gpp:split-
rendering:v1:pose”.

8.3.2.3 Action Format

The action information format that is used by all split rendering profiles defined by this specification shall comply with
the format defined in TS 26.119 [4] clause 12.3. The action information shall be carried as part of the data channel
messaging mechanism defined in clause 8.3.3 and shall be provided in JSON format. The message type shall be
“urn:3gpp:split-rendering:v1:action”.

8.3.3 Metadata Data Channel Message Format

For the carriage of metadata defined in clause 8.3, such as pose and action information, the SRS and SRC shall use the
WebRTC data channel. The data channel sub-protocol shall be identified as “3gpp-sr-metadata”, which shall be
included in the dcmap attribute of the SDP.

The transmission order for the data channel shall be set to in-order and the transmission reliability shall be set to
reliable.

The split rendering metadata message format shall be set to text-based and the messages shall be UTF-8 encoded JSON
messages.

A data channel message may carry one or more split rendering messages as defined in Table 8.3.3-1.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)213GPP TS 26.565 version 18.0.0 Release 18

Table 8.3.3-1 Split Rendering Metadata Messages Format

Name Type Cardinality Description

messages Array(Message) 1..n A list of split rendering metadata messages.
Each message shall be formatted according to
the Message data type as defined in Table
8.3.3-2.

Each split rendering message shall follow the format specified in Table 8.3.3-2.

Table 8.3.3-2 Split Rendering Metadata Message Data Type

Name Type Cardinality Description

id string 1..1 An unique identifier of the message in the
scope of the data channel session.

Type string 1..1 A urn that identifies the message type.

Message object 1..1 The message content depends on the message
type.

sendingAtTime (ref. T1’) number 0..1 The time when the split rendering metadata
message is transmitted from the split
rendering client to the split rendering server.

8.4 Split Rendering Formats for Session Setup and Negotiation

8.4.1 General

In Figure 5.2.1.2-1, in step 5, the negotiation between the SRC and SRS for the split-rendering configuration takes
place. The detailed call flow for such a negotiation between the SRC and the SRS may vary. Depending upon the split
rendering profile, the negotiation between the SRC and the SRS may be straight forward or go back and forth.

In the simplest case, the SRC provides SRS the capabilities of the device and if SRS can accommodate the split-
rendering processing that addresses the device’s needs and capabilities, it confirms by providing a description of the
output format. In such scheme, the SRS is responsible to make the decision and no back-and-forth negotiation occurs.

8.4.2 Split Rendering Configuration Format

8.4.2.1 Introduction

The Split Rendering client establishes an XR session locally based on the device configuration and user selection. The
SR client defines the view configuration (e.g. mono or stereo views), the projection format (such as projection,
equirectangular, quad, or cubemap), the swap chain image configuration, etc.

In addition, XR space and action configurations are negotiated between the SR client and server. This includes defining
common XR spaces and defining and selecting actions and action sets.

The format is extensible to support the exchange of additional/future configuration information.

8.4.2.2 Split Rendering Configuration Format

The session configuration information shall be in JSON format. It shall have the following format:

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)223GPP TS 26.565 version 18.0.0 Release 18

Table 8.4.2.2-1 Split Rendering Configuration Format

Name Type Cardinality Description

renderingFlags Array(SR_CONFIG_FLAG
S)

0..1 Provides a set of flags to
activate/deactivate selected rendering
functions. The defined
SR_CONFIG_FLAGS are:

- FLAG_ALPHA_BLENDING

- FLAG_DEPTH_COMPOSITION

- FLAG_EYE_GAZE_TRACKING

splitRenderingProfile array(URI) 0..1 A list of supported split-rendering profile
identifiers on the UE. The profile
identifiers are listed in Annex C for each
profile.

deviceCapabilities Object 0..1 Device capabilities as defined in TS
26.119 [4], clause 6.2.5.

spaceConfiguration Object 0..1 The space configuration is typically sent
by the split rendering server to the split
rendering client. Upon reception of this
information, the SR client uses this
information to create the reference and
action spaces as well as to agree on
common identifiers for the XR spaces.

 referenceSpaces Array 0..1 An array of reference spaces and their
identifiers.

 id number 1..1 A unique identifier of the XR space in the
context of the split rendering session.

 refSpace enum 1..1 One of the defined reference spaces in
OpenXR. These may be:
XR_REFERENCE_SPACE_TYPE_VIE
W,
XR_REFERENCE_SPACE_TYPE_LOC
AL, or
XR_REFERENCE_SPACE_TYPE_STA
GE.

 actionSpaces Array 0..1 An array of action spaces that need to be
defined by the split rendering client in the
XR session.

 id number 1..1 A unique identifier of the XR space in the
context of the split rendering session.

 actionId number 1..1 Provides the unique identifier of the
action.

 subactionPath string 1..1 The subaction path identifies the action,
which can then be mapped by the XR
runtime to user input modalities.

 initialPose Pose 0..1 Provides the initial pose of the new XR
space’s origin.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)233GPP TS 26.565 version 18.0.0 Release 18

viewConfiguration Object 0..1 Conveys the view configuration that is
configured for the XR session.

 type Enum 1..1 The type indicates the view configuration.
Defined values are MONO and STEREO.
Other values may be added.

 width number 1..1 The recommended width of the
swapchain image.

 height number 1..1 The recommended height of the
swapchain image.

 compositionLayer string 1..1 An identifier of the selected composition
layer.

 minPoseInterval number 0..1 The minimum time interval between two
consecutive pose information instances
sent to the network, in milliseconds.

 fovs Array 0..1 An array that provides a list of the field of
views (FoV) associated with each view.

 fov Object 1..n Indicates the four sides of the field of
view used for the projection of the
corresponding XR view.
The number of views n is determined by
the type enum of the viewConfiguration.
Both the viewPoses in the Pose Format
and the fovs arrays shall be ordered in a
consistent way (i.e., a same index can be
used to retrieve the view pose and the
related FoV information).

 angleLeft number 1..1 The angle of the left side of the field of
view. For a symmetric field of view this
value is negative.

 angleRight number 1..1 The angle of the right side of the field of
view.

 angleUp number 1..1 The angle of the top part of the field of
view.

 angleDown number 1..1 The angle of the bottom part of the field
of view. For a symmetric field of view
this value is negative.

environmentBlendMod
e

enum 1..1 The type indicates the environment blend
mode configuration. Defined values are
OPAQUE, ADDITIVE and
ALPHA_BLEND. Other values may be
added.

actionConfiguration Array 0..1 This contains a list of the actions that are
to be defined by the SR client.

 action Object 1..n A definition of a single action object.

 id number 1..1 A unique identifier of the action.

 actionType enum 1..1 The type of the action state. This can be a
Boolean, float, vector2, pose, vibration
output, etc.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)243GPP TS 26.565 version 18.0.0 Release 18

 subactionPaths string 1..n An array of subaction paths associated
with this action. The split rendering client
will provide the state of all defined sub-
action paths.

extraConfigurations Object

0..1 A placeholder for addition configuration
information.

8.4.3 Output Format Description

The output format description depends on the split rendering profile and is defined by the split rendering profile in
Annex C.

8.5 Split Rendering Transport Protocols
Split Rendering shall use WebRTC for the real-time transport of the rendered media. The RTP restrictions for WebRTC
as specified in RFC8834 shall apply. The usage of the WebRTC data channel shall be in accordance with RFC8831.

Editor’s Note: applicable guidelines for the usage of the PDU Set Marking are pending completion of TS 26.522 [8].

9 Split Rendering Client

9.1 Functionality
The Split Rendering Client (SRC) is a function that runs on the UE to provide split rendering functionality to
applications. The SRC is designed to be offered as an SDK to application developers. The SRC abstracts the details of
the split rendering operation and provides a simple to use API to the application to facilitate the usage of split rendering.

The SRC performs the following functions:

- Creates and manages the XR session,

- Discovers and selects a split rendering server (SRS) in the network,

- Establishes a split rendering session with the SRS,

- Communicates the necessary information about the session to the MSH/AF to benefit from dynamic policy,
network assistance, consumption reporting, etc.

- Operates the rendering loop on the UE.

9.2 Client API
As described in clause 5.1.3, the SRC exposes an API over M7 interface to the application. The SRC defines the
following interface:

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)253GPP TS 26.565 version 18.0.0 Release 18

Table 9.2-1 Split Rendering Client API

Method
Parameters State after

Success
Description

in out

SplitRenderer() - appId

- aspId?

-
externalServic
eId?

- preferences?

-
srSessionId

STATE_PROCES
SING

Creates a SplitRenderer instance,
representing the SRC, which can
subsequently be used to connect to an
SRS and perform split rendering.

getState() - srSessionId - state N/A Returns the current state of the SRC.
Possible states are: STATE_IDLE,
STATE_PROCESSING,
STATE_READY,
STATE_RUNNING,
STATE_STOPPED.

getConfiguration() - srSessionId -
configurati
on

N/A Allows the application to query the
current configuration of the split
rendering session.

start()

- srSessionId

- boolean STATE_RUNNIN
G

Instructs the SRC to discover and
connect to an SRS.

If current state is not
STATE_READY, the connection will
fail.

stop() - srSessionId

- reason?

 STATE_STOPPE
D

Terminates the connection to the SRS.

release() - srSessionId STATE_IDLE Releases all resources associated with
the Split Rendering session.

getMetrics() - srSessionId

- metrics

- metrics
report

N/A Retrieves a set of metric reports for the
split rendering session that describe the
quality of experience of the session.

The application is able to subscribe to events related to the split rendering session by setting the corresponding event
handler.

The supported events are:

- State change: the state of the SR session has changed

- Error: an error has occurred during the split rendering session. The error is not severe enough to cause a state
change to the STATE_ERROR state.

- Quality change: the SRC has observed a change in the quality of the split rendering session. This may involve
one or more SR metrics.

The Preferences object shall contain the following information:

- Information about the desired rendering, e.g. choose to render on 2D device or on one of the available connected
XR devices.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)263GPP TS 26.565 version 18.0.0 Release 18

The criteria object may contain the following information:

- Requirements for latency and bitrate that are different from the ones in the provisioning,

- KPIs for the SRS instance, such as its graphics capabilities or current load.

The parameters are defined as follows:

- aspId: a string that holds an identifier of the application service provider. The value is provisioned by the
application service provider as defined in TS 26.510[9].

- appId: a string that holds an identifier of the application. This value is provisioned by the application service
provider as defined in TS 26.510[9].

- externalServiceId: An identifier assigned by the Service Application Provider and shared with the SRC over M8
as defined in TS 26.510[9].

- preferences: the preferences object carries parameters about the user’s current preferences. These include the
preferred display configuration, e.g. 2D display, HMD, etc. It may also include information about quality versus
latency preferences.

- configuration: the configuration object stores information about the currently active configuration for the
session. It carries the same information as described in clause 8.4.2.2.

- srSessionId: the srSessionId is a unique identifier of the split rendering session at the SRC.

- metrics: the metrics and metrics report objects provide the current status of a selected set of metrics that pertain
to the current split rendering session. The format should follw clause 7.5.

9.3 Split Rendering Metrics

9.3.1 General

This clause defines a set of metrics that are relevant to the operation of a split rendering session.

9.3.2 QoE Metrics Formats

9.3.2.1 Timing Information Format

The timing information associated with the rendered frame is transmitted in the RTCP report block formats. This timing
information is listed in the Table 9.3.22-1.

The SRS may use the “QoE timing information” RTCP Extended Reports messages to transmit the timing information
required for measuring the QoE metrics to an SRC. The RTCP report block format for transmitting the QoE timing
information is specified in TS 26.522 [8]. SDP signalling required for negotiating the transmission of QoE metrics
between the UE and the SRS is documented in TS 26.522 [8].

The latency metrics that use the timing information defined in Table 9.3.2-1 are detailed in the section 9.3.2.2.

Table 9.3.2.1-1: Timing information in the RTCP block formats.

Name Description

estimatedAtTime (ref. T1) This wall clock time is defined in TS 26.119 [4] - Pose Format.

This time is sent from the split rendering client.

This time is then received by the split rendering server and sent back to
the split rendering client with the associated media frame.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)273GPP TS 26.565 version 18.0.0 Release 18

sendingAtTime (ref. T1’) This time is defined in Table 8.32.3-2 - Split Rendering Metadata
Message Data Type

This time is sent from the split rendering client.

This time is then received by the split rendering server and sent back to
the split rendering client with the associated media frame.

startToRenderAtTime (ref. T3) The time when the renderer in the Split Rendering Server starts to render
the associated media frame.

sceneUpdateTime (ref. T6) The time when the Scene Manager starts to update the 3D scene graph
according to the viewer pose and the user actions.

serverTransmitTime (ref. T5) The time when the encoded rendered frame is transmitted from the split
rendering server to the split rendering client.

9.3.2.2 Latency metrics

To enable good XR experiences, it is relevant to monitor latencies such as the motion-to-photon and the pose-to-render-
to-photon.

Beyond the sense of presence and immersiveness, the age of the content and user interaction delay are of the uttermost
importance for immersive and non-immersive interactive experiences, i.e., experiences for which the user interaction
with the scene impacts the content of scene (such as online gaming).

Table 9.3.2.2-1 provides timing information collected to compute the latency metrics at the split rendering client or split
rendering server endpoint.

Table 9.3.2.2-1: Timing information for latency metrics

Source endpoint Timing information Definition

Split Rendering Client
estimatedAtTime
(ref. T1)

This time is expressed in wall clock time (refer to Table
9.3.2-1).

Split Rendering Client lastChangeTime

The time the user action is made. It corresponds to the
lastChangeTime field defined in the action format in Table
9.3.2-1.
This time is expressed in XR system time clock.

Split Rendering Server
sceneUpdateTime
(ref. T6)

This time is a NTP timestamp format (refer to Table 9.3.2-
1).

Split Rendering Server
startToRenderAtTime
(ref. T3)

This time is expressed in wall clock time (refer to Table
9.3.2-1).

Split Rendering Client
actualDisplayTime
(ref. T2.actual)

The actual display time of the rendered frame in the
swapchain. The estimation of the actual display time is
available through the XR runtime.

Split Rendering Client
sendingAtTime
(ref. T1’)

This time is expressed in wall clock time (refer to Table
9.3.2-1).

Split Rendering Server
serverTransmitTime
(ref. T5)

This time is expressed in wall clock time (refer to Table
9.3.2-1).

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)283GPP TS 26.565 version 18.0.0 Release 18

Split Rendering Client receptionTime
The time when the data is received by the split rendering
client.

The latency metrics are specified in Table 9.3.2.2-2. Latency calculation formulas are defined using the timing
information defined in Table 9.3.2.2-1.

Table 9.3.2.2-2: Latency metrics

Latency metric Description

poseToRenderToPhoton The time duration, in units of milliseconds, between the
time to provide the pose information from the XR
runtime to the renderer (the renderer uses this pose to
generate the rendered frame) and the display time of the
rendered frame.
It can be computed as follows:
actualDisplayTime – estimatedAtTime

renderToPhoton The time duration, in units of milliseconds, between the
start of the rendering by the Presentation Engine and the
display time of the rendered frame.
It can be computed as follows:
actualDisplayTime – startToRenderAtTime

(NOTE 1)

roundtripInteractionDelay The time duration, in units of milliseconds, between the
time a user action is initiated and the time the action is
presented to the user.
It can be computed as follows:
actualDisplayTime – lastChangeTime

userInteractionDelay The time duration, in units of milliseconds, between the
time a user action is initiated and the time the action is
taken into account by the content creation engine in the
scene manager.
It can be computed as follows:
sceneUpdateTime – lastChangeTime

(NOTE 1)

ageOfContent The time duration, in units of milliseconds, between the
time the content is created in the scene by the Scene
Manager and the time it is presented to the user.
It can be computed as follows:
actualDisplayTime – sceneUpdateTime

(NOTE 1)

sceneUpdateDelay The time duration, in units of milliseconds, spent by the
Scene Manager to update the scene graph.
It can be computed as follows:
startToRenderAtTime – sceneUpdateTime

metadataDelay The time duration, in units of milliseconds, between the
time the split rendering metadata message is sent from
the split rendering client and the time the split rendering
server start to render using that metadata.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)293GPP TS 26.565 version 18.0.0 Release 18

It can be computed as follows:
startToRenderAtTime – sendingAtTime

dataFrameDelay The time duration, in units of milliseconds, spent to
transmit the media rendered frame from the split
rendering server to the split rendering client.
It can be computed as follows:
receptionTime – serverTransmitTime

NOTE 1: for the latency metrics computation, the timing information mentioned above need to be converted to a
single time format (e.g., Wall clock time).

9.3.3 QoE Metrics reporting protocol

The Metrics Reporting API allows the Media Session Handler to send QoE metrics reports to the metrics collection
server.

An SR UE supporting Quality of Experience shall report QoE metrics according to the QoE configuration. QoE
reporting is optional, but if an MSH reports QoE metrics, it shall report all requested metrics.

9.3.4 QoE metrics definition

9.3.4.1 Introduction

This clause extends clause 15.2 of TS 26.113 that provides the general QoE metric definitions and measurement
framework. An SR UE supporting the QoE metrics feature shall support the reporting of the metrics in this clause.

The metrics are calculated for each measurement resolution interval "measureinterval" as described in
clause 15.2.1 of TS 26.113. They are reported to the server according to the reporting interval
"reportinginterval" and after the end of the session as described in clause 15.2.1 of TS 26.113.

9.3.4.2 Pose to render to photon metric

The PoseToRenderToPhoton duration is the time duration between the time at which the pose information is available
from the XR runtime to the renderer and the display time of the rendered frame. The unit of this metric is expressed in
milli seconds.

The average pose to render to photon is equal to the sum of PoseToRenderToPhoton duration of each frame during the
measurement resolution period divided by the time duration, in seconds, of the measurement resolution period. The unit
of this metric is expressed in milli seconds and can be a fractional value.

The minimum pose to render to photon duration is equal to the lowest value of PoseToRenderToPhoton duration
measured during the measurement resolution period. The unit of this metric is expressed in milli seconds and is an
integer value.

The maximum pose to render to photon duration is equal to the highest value of PoseToRenderToPhoton duration
measured during the measurement resolution period. The unit of this metric is expressed in milli seconds and is an
integer value.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)303GPP TS 26.565 version 18.0.0 Release 18

The syntax for the metric "PoseToRenderToPhoton" metric is as defined in Table 9.3.4.2-1.

Table 9.3.4.2-1: Pose to render to photon metric information for Quality Reporting

Key Type Description
PoseToRenderToPhoton Object
 @avgPoseToRenderT

oPhoton
doubleVectorType An unordered list of all average pose to render to

photon delay measured within each measurement
resolution period.

 @minPoseToRenderT
oPhoton

unsignedIntVectorType The minimum pose to render to photon duration is
equal to the lowest value of PoseToRenderToPhoton
duration measured during each measurement
resolution period.
Provides an unordered list of minimum pose to render
to photon delay measured during a metric reporting
period.

 @maxPoseToRenderT
oPhoton

unsignedIntVectorType The maximum pose to render to photon duration is
equal to the highest value of
PoseToRenderToPhoton duration measured during
each measurement resolution period.
Provides an unordered list of maximum pose to render
to photon delay measured during a metric reporting
period.

9.3.4.3 Render to photon metric

The renderToPhoton duration is the time duration between the time at which the presentation engine started rendering
to the display time of the rendered frame. The unit of this metric is expressed in milli seconds.

The average render to photon metric is equal to the sum of renderToPhoton duration of each frame during the
measurement resolution period divided by the time duration, in seconds, of the measurement resolution period. The unit
of this metric is expressed in milli seconds and can be a fractional value.

The minimum render to photon duration is equal to the lowest value of renderToPhoton duration measured during the
measurement resolution period. The unit of this metric is expressed in milli seconds and is an integer value.

The maximum render to photon duration is equal to the highest value of renderToPhoton duration measured during the
measurement resolution period. The unit of this metric is expressed in milli seconds and is an integer value.

The syntax for the metric "renderToPhoton" metric is as defined in Table 9.3.4.3-1.

Table 9.3.4.3-1: Render to Photon metric information for Quality Reporting

Key Type Description
renderToPhoton Object
 avgRenderToPhoton doubleVectorType An unordered list of all average render to photon delay

measured within each measurement resolution period.

 @minRenderToPhoto
n

unsignedIntVectorType The minimum render to photon duration is equal to the
lowest value of renderToPhoton duration measured
during each measurement resolution period.
Provides an unordered list of minimum render to
photon delay measured during a metric reporting
period.

 @maxRenderToPhoto
n

unsignedIntVectorType The maximum render to photon duration is equal to the
highest value of renderToPhoton duration measured
during each measurement resolution period.
Provides an unordered list of maximum render to
photon delay measured during a metric reporting
period.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)313GPP TS 26.565 version 18.0.0 Release 18

9.3.4.4 Round-trip interaction delay metric

The roundtripInteractionDelay duration is the time duration between the time a user action is initiated to the time the
action is presented to the user. The unit of this metric is expressed in milli seconds.

The average round trip interaction delay metric is equal to the sum of roundtripInteractionDelay duration of each action
during the measurement resolution period divided by the number of actions in the measurement resolution period. The
unit of this metric is expressed in milli seconds and can be a fractional value. Within each resolution period the number
of user actions are summed up and stored in the vector @numberOfInteractionEvents.

The minimum round trip interaction delay duration is equal to the lowest value of roundtripInteractionDelay duration
measured during the measurement resolution period. The unit of this metric is expressed in milli seconds and is an
integer value.

The maximum round trip interaction delay duration is equal to the highest value of roundtripInteractionDelay duration
measured during the measurement resolution period. The unit of this metric is expressed in milli seconds and is an
integer value.

The identifier of a user action with minimum, and maximum, round trip interaction delays within each measurement
resolution period are provided in the @minActionIDs, @maxActionIDs respectively, as an unordered list of user action
identifiers.

The syntax for the metric "roundtripInteractionDelay" metric is as defined in Table 9.3.4.4-1

Table 9.3.4.4-1: Round-trip interaction delay metric information for Quality Reporting

Key Type Description
roundtripInteractionDe
lay

Object

 @avgRoundTripInte
ractionDelay

doubleVectorType An unordered list of all average round trip interaction
delays measured within each measurement resolution
period.

 @numberOfUserActi
ons

unsignedIntVectorType The number of user actions within each measurement
resolution period are summed up and stored in the
vector. Provides an unordered list of user actions
(occurred within each measurement period) measured
during a metric reporting period.

 @minRoundTripInte
ractionDelay

unsignedIntVectorType The minimum round trip interaction delay duration is
equal to the lowest value of
roundtripInteractionDelay duration measured
during each measurement resolution period.
Provides an unordered list of minimum round trip
interaction delay measured during a metric reporting
period.

 @minActionIDs unsignedIntVectorType The identifier of a user action with minimum round trip
interaction delay within each measurement resolution
period. Provides an unordered list of user action
identifiers (occurred within each measurement period)
with minimum round trip interaction delay measured
during a metric reporting period.

 @maxRoundTripInte
ractionDelay

unsignedIntVectorType The maximum round trip interaction delay duration is
equal to the highest value of
roundtripInteractionDelay duration measured
during each measurement resolution period.
Provides an unordered list of maximum round trip
interaction delay measured during a metric reporting
period.

 @maxActionIDs unsignedIntVectorType The identifier of a user action with maximum round trip
interaction delay within each measurement resolution
period. Provides an unordered list of user action
identifiers (occurred within each measurement period)
with maximum round trip interaction delay measured
during a metric reporting period.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)323GPP TS 26.565 version 18.0.0 Release 18

9.3.4.5 User interaction delay metric

The userInteractionDelay duration is the time duration between the time a user action is initiated to the time the action
is taken account by the content creation engine in the scene manager. The unit of this metric is expressed in milli
seconds.

The average user interaction delay metric is equal to the sum of userInteractionDelay duration of each action during the
measurement resolution period divided by the number of actions in the measurement resolution period. The unit of this
metric is expressed in milli seconds and can be a fractional value.

The minimum user interaction delay duration is equal to the lowest value of userInteractionDelay duration measured
during the measurement resolution period. The unit of this metric is expressed in milli seconds and is an integer value.

The maximum user interaction delay duration is equal to the highest value of userInteractionDelay duration measured
during the measurement resolution period. The unit of this metric is expressed in milli seconds and is an integer value.

The identifier of a user action with minimum and maximum user interaction delays within each measurement resolution
period are provided in the @minActionIDs, and @maxActionIDs respectively as an unordered list of user action
identifiers.

The syntax for the metric "userInteractionDelay" metric is as defined in Table 9.3.4.5-1.

Table 9.3.45-1: User interaction delay metric information for Quality Reporting

Key Type Description
userInteractionDelay Object
 @avgUserInteracti

onDelay
doubleVectorType An unordered list of all average user interaction delays

measured within each measurement resolution period.

 @numberOfUserActi
ons

unsignedIntVectorType The number of user actions within each measurement
resolution period are summed up and stored in the
vector. Provides an unordered list of user actions
(occurred within each measurement period) measured
during a metric reporting period.

 @minUserInteracti
onDelay

unsignedIntVectorType The user interaction delay duration is equal to the
lowest value of userInteractionDelay duration
measured during each measurement resolution period.
Provides an unordered list of user interaction delay
measured during a metric reporting period.

 @minActionIDs unsignedIntVectorType The identifier of a user action with minimum round trip
interaction delay within each measurement resolution
period. Provides an unordered list of user action
identifiers (occurred within each measurement period)
with minimum round trip interaction delay measured
during a metric reporting period.

 @maxUserInteracti
onDelay

unsignedIntVectorType The maximum user interaction delay duration is equal
to the highest value of userInteractionDelay
duration measured during each measurement
resolution period.
Provides an unordered list of maximum user interaction
delay measured during a metric reporting period.

 @maxActionIDs unsignedIntVectorType The identifier of a user action with maximum round trip
interaction delay within each measurement resolution
period. Provides an unordered list of user action
identifiers (occurred within each measurement period)
with maximum round trip interaction delay measured
during a metric reporting period.

9.3.4.6 Age of contents metric

The ageOfContent is the time duration between the time the content is created in the scene by the scene manager and
the time it is presented to the user. The unit of this metric is expressed in milli seconds. Within each measurement
resolution period the number of scene creations and updates are counted and stored in the vector
@numberOfSceneEvents.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)333GPP TS 26.565 version 18.0.0 Release 18

The average age of content metric is equal to the sum of ageOfContent durations of all scene creation and update events
during the measurement resolution period divided by the total number of scene creation and updates in the measurement
resolution period. The unit of this metric is expressed in milli seconds and can be a fractional value.

The minimum age of content duration is equal to the lowest value of ageOfContent duration measured during the
measurement resolution period. The unit of this metric is expressed in milli seconds and is an integer value.

The maximum age of content duration is equal to the highest value of ageOfContent duration measured during the
measurement resolution period. The unit of this metric is expressed in milli seconds and is an integer value.

The syntax for the metric "ageOfContent" metric is as defined in Table 9.3.2.6-1.

Table 9.3.2.6-1: Age of Content metric information for Quality Reporting

Key Type Description
ageOfContent Object
 @avgAgeOfContent doubleVectorType An unordered list of average age of content durations

measured within each measurement resolution period.

 @numberOfSceneEve
nts

unsignedIntVectorType The number of scene creation and/or scene updates
within each measurement resolution period are stored
in the vector. Provides an unordered list of scene
creation and/or scene updates (occurred within each
measurement period) measured during a metric
reporting period.

 @minAgeOfContent unsignedIntVectorType The minimum age of content duration is equal to the
lowest value of ageOfContent measured during each
measurement resolution period.
Provides an unordered list of minimum age of content
measured during a metric reporting period.

 @maxAgeOfContent unsignedIntVectorType The maximum age of content is equal to the highest
value of ageOfContent measured during each
measurement resolution period.
Provides an unordered list of maximum age of content
measured during a metric reporting period.

9.3.2.7 Scene update delay metric

The sceneUpdateDelay duration is the time duration spent by the scene manager to update the scene graph. The unit of
this metric is expressed in milliseconds. Within each measurement resolution period the number of scene updates are
counted and stored in the vector @numberOfSceneUpdates.

The average scene update delay duration metric is equal to the sum of sceneUpdateDelay durations of all scene updates
during the measurement resolution period divided by the total number of scene updates in the measurement resolution
period. The unit of this metric is expressed in milli seconds and can be a fractional value.

The minimum scene update delay is equal to the lowest value of sceneUpdateDelay duration measured during the
measurement resolution period. The unit of this metric is expressed in milli seconds and is an integer value.

The maximum age of content duration is equal to the highest value of sceneUpdateDelay duration measured during the
measurement resolution period. The unit of this metric is expressed in milli seconds and is an integer value.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)343GPP TS 26.565 version 18.0.0 Release 18

The syntax for the metric "sceneUpdateDelay" metric is as defined in Table 9.3.2.7-1.

Table 9.3.2.7-1: Scene update delay metric information for Quality Reporting

Key Type Description
sceneUpdateDelay Object
 @avgSceneUpdateDe

lay
doubleVectorType An unordered list of average scene update delays

measured within each measurement resolution period.

 @numberOfSceneupd
ates

unsignedIntVectorType The number of scene updates within each
measurement resolution period are stored in the vector.
Provides an unordered list of scene updates (occurred
within each measurement period) measured during a
metric reporting period.

 @minSceneUpdateDe
lay

unsignedIntVectorType The minimum scene update delay is equal to the
lowest value of sceneUpdateDelay measured during
each measurement resolution period.
Provides an unordered list of minimum scene update
delay duration measured during a metric reporting
period.

 @maxSceneUpdateDe
lay

unsignedIntVectorType The maximum age of content is equal to the highest
value of sceneUpdateDelay measured during each
measurement resolution period.
Provides an unordered list of maximum scene update
delay duration measured during a metric reporting
period.

9.3.2.8 Metadata delay metric

The metadataDelay duration is the time duration between the time the split rendering metadata is sent from the SRC
and the time the split rendering server start to render using that metadata. The unit of this metric is expressed in
milliseconds.

The average metadata delay metric is equal to the sum of metadataDelay duration of each metadata message during the
measurement resolution period divided by the number of metadata messages in the measurement resolution period. The
unit of this metric is expressed in milli seconds and can be a fractional value. Within each measurement resolution
period the number of metadata messages are summed up and stored in the vector @numberOfMetadataMessages.

The minimum metadata delay is equal to the lowest value of metadataDelay duration measured during the measurement
resolution period. The unit of this metric is expressed in milli seconds and is an integer value.

The maximum metadata delay is equal to the highest value of metadataDelay duration measured during the
measurement resolution period. The unit of this metric is expressed in milli seconds and is an integer value.

The syntax for the metric "metadataDelay" metric is as defined in Table 9.3.2.8-1.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)353GPP TS 26.565 version 18.0.0 Release 18

Table 9.3.2.8-1: Metadata delay metric information for Quality Reporting

Key Type Description
metadataDelay Object
 @avgmetadataDelay doubleVectorType An unordered list of average metadata delays

measured within each measurement resolution period.

 @numberOfMetadata
Messages

unsignedIntVectorType The number of metadata messages within each
measurement resolution period are stored in the vector.
Provides an unordered list of total number of metadata
messages (occurred within each measurement period)
measured during a metric reporting period.

 @minMetadaDataDel
ay

unsignedIntVectorType The minimum metadata delay is equal to the lowest
value of metadataDelay measured during each
measurement resolution period.
Provides an unordered list of minimum metadata delay
duration measured during a metric reporting period.

 @maxMetadataDelay unsignedIntVectorType The maximum metadata message delay is equal to the
highest value of metadataDelay measured during
each measurement resolution period.
Provides an unordered list of maximum metadata delay
duration measured during a metric reporting period.

9.3.2.9 Data frames delay metric

The dataFrameDelay duration is the time duration between the time the media rendered frame is transmitted from the
split rendering server to the time the split rendering client received the data frame. The unit of this metric is expressed
in milliseconds.

The average data frame delay metric is equal to the sum of dataFrameDelay duration of each transmitted frame during
the measurement resolution period divided by the number of frames transmitted in the measurement resolution period.
The unit of this metric is expressed in milli seconds and can be a fractional value. Within each measurement resolution
period the number of data frames transmitted are summed up and stored in the vector @numberOfDataFrames.

The minimum data frame delay is equal to the lowest value of dataFrameDelay duration measured during the
measurement resolution period. The unit of this metric is expressed in milli seconds and is an integer value.

The maximum data frame delay is equal to the highest value of dataFrameDelay duration measured during the
measurement resolution period. The unit of this metric is expressed in milli seconds and is an integer value.

The syntax for the metric "dataFrameDelay" metric is as defined in Table 9.3.2.9-1.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)363GPP TS 26.565 version 18.0.0 Release 18

Table 9.3.2.9-1: Data frame delay metric information for Quality Reporting

Key Type Description
dataFrameDelay Object
 @avgdataFrameDela

y
doubleVectorType An unordered list of average data frame transmission

delays measured within each measurement resolution
period.

 @numberOfDataFram
es

unsignedIntVectorType The number of data frames transmitted within each
measurement resolution period are stored in the vector.
Provides an unordered list of total number of data
frames transmitted (within each measurement period)
during a metric reporting period.

 @minDataFrameDela
y

unsignedIntVectorType The minimum data frame delay is equal to the lowest
value of dataFrameDelay measured during each
measurement resolution period.
Provides an unordered list of minimum data frame
delay duration measured during a metric reporting
period.

 @maxdataFrameDela
y

unsignedIntVectorType The maximum data frame delay is equal to the highest
value of dataFrameDelay measured during each
measurement resolution period.
Provides an unordered list of maximum data frame
delay duration measured during a metric reporting
period.

9.3.5 Quality metrics reporting

9.3.5.1 General

The quality metrics report follows the XML-based report format defined in clause 9.3.5.2.

The MIME type of an XML-formatted QoE report shall be "application/3gprtc-qoe-report+xml".

The metrics reporting protocol is as defined in clause 9.5.3 of TS 26.510. Split rendering UEs shall use the above MIME
content type. The metrics report format is defined in the following sub clause.

9.3.5.2 Report format

The QoE report is formatted as an XML document that complies with the XML schema in listing 10.6.2-1 of
TS 26.247 [17].

The schema in listing 9.3.5.2-1 is an extension to allow additional QoE metrics for SR UE to be reported using the QoE
report specified in clause 10.6.2 of TS 26.247 [17]. The filename of this schema is
"TS26565_SR_MSEQoEMetrics.xsd".

Listing 9.3.5.2-1: SR_MSE QoE Metrics XML schema

<?xml version="1.0"?>
<xs:schema version="TSG104-Rel18" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:3gpp:metadata:2024:RTC:SR_MSEQoEMetrics"

xmlns:sv="urn:3gpp:metadata:2016:PSS:schemaVersion"
 xmlns="urn:3gpp:metadata:2024:RTC:SR_MSEQoEMetrics" elementFormDefault="qualified">

 <xs:element name="QoeMetric" type="QoeMetricType"/>

 <xs:complexType name="QoeMetricType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="poseToRenderToPhoton" type="PoseToRenderToPhotonType"/>
 <xs:element name="renderToPhoton" type="RenderToPhotonType"/>
 <xs:element name="roundTripInteractionDelay"
type="RoundTripInteractionDelayType"/>
 <xs:element name="userInteractionDelay" type="UserInteractionDelayType"/>
 <xs:element name="ageOfContent" type="AgeOfContentType"/>

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)373GPP TS 26.565 version 18.0.0 Release 18

 <xs:element name="sceneUpdateDelay" type="SceneUpdateDelayType"/>
 <xs:element name="metadataDelay" type="MetadataDelayType"/>
 <xs:element name="dataFrameDelay" type="DataFrameDelayType"/>
 </xs:choice>
 <xs:element ref="sv:delimiter"/>
 <xs:any namespace="##other" processContents="skip" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>

 <xs:complexType name="PoseToRenderToPhotonType">
 <xs:attribute name="avgPoseToRenderToPhoton" type="doubleVectorType" use="required"/>
 <xs:attribute name="minPoseToRenderToPhoton" type="unsignedIntVectorType"
use="required"/>
 <xs:attribute name="maxPoseToRenderToPhoton" type="unsignedIntVectorType"
use="required"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>

 <xs:complexType name="RenderToPhotonType">
 <xs:attribute name="avgPoseToRenderToPhoton" type="doubleVectorType" use="required"/>
 <xs:attribute name="minRenderToPhoton" type="unsignedIntVectorType" use="required"/>
 <xs:attribute name="maxRenderToPhoton" type="unsignedIntVectorType" use="required"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>

 <xs:complexType name="RoundTripInteractionDelayType">
 <xs:attribute name="avgRoundTripInteractionDelay" type="doubleVectorType"
use="required"/>
 <xs:attribute name="numberOfUserActions" type="unsignedIntVectorType" use="required"/>
 <xs:attribute name="minRoundTripInteractionDelay" type="unsignedIntVectorType"
use="required"/>
 <xs:attribute name="minActionIds" type="unsignedIntVectorType" use="required"/>
 <xs:attribute name="maxRoundTripInteractionDelay" type="UnsignedIntVectorType"
use="required"/>
 <xs:attribute name="maxActionIds" type="unsignedIntVectorType" use="required"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>

 <xs:complexType name="UserInteractionDelayType">
 <xs:attribute name="avgUserInetractionDelay" type="doubleVectorType" use="required"/>
 <xs:attribute name="numberOfUserActions" type="unsignedIntVectorType" use="required"/>
 <xs:attribute name="minUserInetractionDelay" type="unsignedIntVectorType"
use="required"/>
 <xs:attribute name="minActionIds" type="unsignedIntVectorType" use="required"/>
 <xs:attribute name="maxUserInteractionDelay" type="unsignedIntVectorType"
use="required"/>
 <xs:attribute name="maxActionIds" type="unsignedIntVectorType" use="required"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>

 <xs:complexType name="AgeOfContentType">
 <xs:attribute name="avgAgeOfContent" type="doubleVectorType" use="required"/>
 <xs:attribute name="mumberOfSceneEvents" type="unsignedIntVectorType" use="required"/>
 <xs:attribute name="minageOfContent" type="unsignedIntVectorType" use="required"/>
 <xs:attribute name="maxAgeOfContent" type="unsignedIntVectorType" use="required"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>

 <xs:complexType name="SceneUpdateDelayType">
 <xs:attribute name="avgSceneUpdateDelay" type="doubleVectorType" use="required"/>
 <xs:attribute name="numberOfSceneUpdates" type="unsignedIntVectorType" use="required"/>
 <xs:attribute name="minsceneUpdateDelay" type="unsignedIntVectorType" use="required"/>
 <xs:attribute name="maxsceneUpdateDelay" type="unsignedIntVectorType" use="required"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>

 <xs:complexType name="MetadataDelayType">
 <xs:attribute name="avgMetadataDelay" type="doubleVectorType" use="required"/>
 <xs:attribute name="numberOfMetadataMessages" type="unsignedIntVectorType"
use="required"/>
 <xs:attribute name="minMetadataDelay" type="unsignedIntVectorType" use="required"/>
 <xs:attribute name="maxMetadataDelay" type="unsignedIntVectorType" use="required"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)383GPP TS 26.565 version 18.0.0 Release 18

<xs:complexType name="DataFrameDelayType">
 <xs:attribute name="avgDataFrameDelay" type="doubleVectorType" use="required"/>
 <xs:attribute name="numberOfDataFrames" type="unsignedIntVectorType" use="required"/>
 <xs:attribute name="minDataFrameDelay" type="unsignedIntVectorType" use="required"/>
 <xs:attribute name="maxDataFrameDelay" type="unsignedIntVectorType" use="required"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>

 <xs:simpleType name="doubleVectorType">
 <xs:list itemType="xs:double"/>
 </xs:simpleType>

 <xs:simpleType name="unsignedIntVectorType">
 <xs:list itemType="xs:unsignedInt"/>
 </xs:simpleType>

</xs:schema>

9.3.5.3 Quality Reporting Scheme and Metrics reporting configuration for SRC

An SR UE shall use the metrics reporting scheme defined in clause 6.7 of TS 26.113 [6]. The Metrics Reporting
Provisioning API allows an RTC Application Provider to configure the Metrics Collection and Reporting procedure for
a particular split rendering session at reference point RTC-1. The Service Access Information API allows an RTC
Application Function to configure the metrics collection and reporting process for a particular split rendering session at
reference point M5.

An SR UE shall use the data model for metrics reporting provisioning API defined in clause 8.10.3.1 of TS 26.510 [9]
and the Service Access Information API defined in clause 9.2.3 of TS 26.510 [9]. The metrics element present in the
MetricsReportingConfiguration resource and the ServiceAccessInformation resource shall include zero or more metrics
defined in clause 9.3.4 of this document in addition to the quality metrics defined in clause 15.2 of TS 26.113 [6].

10 Security and Privacy Aspects

10.1 Security
Signaling for session establishment and exchange of application-specific messages shall use a secure transport channel
based on WebSockets as defined in TS 26.113 [6].

Media transport shall be secured by the usage of WebRTC.

10.2 Privacy
Users of the split rendering MSE shall be aware that the application data and traffic are fully accessible to the SRS. The
SRC shall ensure that the SRS used is trusted by the Media Application Provider, for example through the validation of
the SRS’s X.509 certificates.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)393GPP TS 26.565 version 18.0.0 Release 18

Annex A (informative):
Implementation Guidelines

A.1 Guidelines for Application Developers
Application developers may use the SR_MSE enabler as an SDK for developing applications that benefit from Split
Rendering.

The SDK may be accessible through an API that conforms to the API definition in 9.2.

Application developers should implement monitoring of the split rendering session quality in their applications and
always be aware that not all functionality described in this specification is always available for all split rendering
sessions. It is then up to the application to decide whether the usage of split rendering is acceptable or not.

A.2 Guidelines for Split Rendering MSE Implementers

A.2.1 Guidelines for implementers of the Split Rendering Server
If the use of eye gaze tracking is activated, the SRS may use this confidence information to perform gaze-based
optimizations like foveated rendering and foveated video encoding. In foveated rendering, the rendering engine renders
areas of a picture with higher quality than others to match the user’s current gaze, while in foveated video encoding
areas of the picture are encoded with a higher SNR quality than other areas, to match the user’s current gaze.With gaze
predictions, the SRS should create an importance map for the picture based on the confidence values associated with the
gaze predictions. Additionally, the SRS may also use other information to produce the importance map, such as content
Regions of Interest, type of the experience being rendered for example, game genre, and device type of the SRC

A low confidence score may indicate that the estimation on the device is not adequate. In this case the server can try to
re-estimate the pose and gaze prediction prior to rendering and encoding.

For foveated encoding this importance map is passed to the encoder to properly allocate bits for the encoding of the
picture.

For foveated rendering, the SRS or the rendering engine in the SRS may similarly create an importance map to use to
differentially allocate rendering resources for a frame.

When both foveated rendering and foveated encoding is used, the importance map used for rendering should take into
account the importance map used for encoding and vice-versa.

A.3 Conformance Testing
No conformance testing procedures are defined in this version of the specification.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)403GPP TS 26.565 version 18.0.0 Release 18

Annex B (normative):
IDL Definition of Client API
The Split Rendering Client API is defined using the IDL syntax (according to ISO/IEC 19516) as follows:

interface SplitRenderer {
 readonly attribute SRState state;

 attribute EventHandler onstatechange;
 attribute EventHandler onerror;
 attribute EventHandler onqualitychange;

 void SplitRenderer(in string application_id, in string aspId, in map
settings);

 void connect(in map settings, in List criteria);
 void disconnect(string reason);
 Metrics getMetrics(sequence<string> metrics);
};

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)413GPP TS 26.565 version 18.0.0 Release 18

Annex C (normative):
Split Rendering Profiles

C.1 Pixel Streaming Profile

C.1.1 Introduction
This Annex defines split rendering profiles to define requirements for SRC and SRS for different scenarios. At this
stage the following two profiles are defined:

- 2D Pixel Streaming Profile in clause C.2 to support split rendering to 2D screens, devices of type 3 in TS 26.119
[4].

- 3D Pixel Streaming Profile in clause C.3 to support split rendering to devices of type 1, 2, and 4 in TS 26.119
[4].

C.1.2 2D Pixel Streaming Profile

C.1.2.1 Introduction

This profile defines required capabilities for UE-based SRC functionalities as network-side SRS capabilities to support
split rendering to 2D screens.

C.1.2.2 SRC Capabilities

C.1.2.2.1 Overview

Requirements for UE-based SRC functionalities for following functions are defined in this clause:

- Media Decoding

- Media Encoding

- Metadata Formats

The capabilities of the receiving UE are shared with the split rendering server prior to the start of the split rendering
session.

C.1.2.2.2 Media Capabilities

The SRC shall support the media capabilities of a device type 3 as defined in TS 26.119 [4], clause 10.4.

C.1.2.2.3 Metadata Formats

XR-Pose-Cap 1: the SRC shall be able to retrieve one or more pose predictions for each view and for every frame to be
rendered. The pose prediction shall be formatted according to clause 8.2.2.2.

XR-Pose-Cap 2: the SRC shall be able to retrieve and collect the user actions that occurred during an identified time
interval. The action information shall be formatted according to clause 8.2.2.3.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)423GPP TS 26.565 version 18.0.0 Release 18

C.1.2.3 SRS Capabilities

C.1.2.3.1 Overview

Requirements for network-based SRS functionalities for following functions are defined in this clause:

- Media Encoding

- Media Decoding

- Metadata Formats

The capabilities of the SRC are shared with the SRS prior to the start of the split rendering session.

C.1.2.3.2 Video encoding

The SRS shall at least be able to support the encoding of video that complies to the capabilities in clause 10.4.3 of TS
26.119.

C.1.2.3.3 Audio and Speech encoding

The SRS shall at least be able to support the encoding of audio that complies to the capabilities in clause 10.4.4 of TS
26.119.

C.1.2.3.4 Video decoding

The SRS has no requirements for the decoding of video streams.

C.1.2.3.5 Audio and Speech decoding

The SRS has no requirements for the decoding of audio or speech streams.

C.1.2.3.6 Metadata Formats

The SRS shall support the exchange of Pose and action information as defined in clause 8.3.2.

C.1.2.4 Profile identifier

The type urn:3gpp:sr-mse:src:profile:2dpixelstreaming shall be included in splitRenderingProfile parameter when
the SRC signals SRS the Split Rendering Configuration [8.4.2.2].

C.1.3 3D Pixel Streaming Profile

C.1.3.1 Introduction

This profile defines required capabilities for UE-based SRC functionalities as network-side SRS capabilities to support
MeCAR devices.

C.1.3.2 SRC Capabilities

C.1.3.2.1 Overview

Requirements for UE-based SRC functionalities for following functions are defined in this clause:

- Media Decoding

- Media Encoding

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)433GPP TS 26.565 version 18.0.0 Release 18

- Metadata Formats

The capabilities of the receiving UE are shared with the split rendering server prior to the start of the split rendering
session.

C.1.3.2.2 Media Capabilities

The SRC shall support the media capabilities of a device type 1 as defined in TS 26.119 [4], clause 10.2.

If the device is a device type 2 as defined in TS 26.119 [4], clause 10.4, it shall also support the media capabilities of a
device type 2 as defined in TS 26.119 [4], clause 10.3.

If the device is a device type 4 as defined in TS 26.119 [4], clause 10.5, it shall also support the media capabilities of a
device type 2 as defined in TS 26.119 [4], clause 10.5.

C.1.3.2.3 Metadata Formats

XR-Pose-Cap 1: the SRC shall be able to retrieve one or more pose predictions for each view and for every frame to be
rendered. The pose prediction shall be formatted according to clause 8.2.2.2.

XR-Pose-Cap 2: the SRC shall be able to retrieve and collect the user actions that occurred during an identified time
interval. The action information shall be formatted according to clause 8.2.2.3.

C.1.3.3 SRS Capabilities

C.1.3.3.1 Overview

Requirements for network-based SRS functionalities for following functions are defined in this clause:

- Media Encoding

- Media Decoding

- Metadata Formats

The capabilities of the SRC are shared with the SRS prior to the start of the split rendering session.

C.1.3.3.2 Video encoding

The SRS shall at least be able to support the encoding of video that complies to the capabilities in clause 10.4.3 of
TS26.119.

C.1.3.3.3 Audio and Speech encoding

The SRS shall at least be able to support the encoding of audio that complies to the capabilities in clause 10.4.4 of
TS26.119.

C.1.3.3.4 Video decoding

The SRS has no requirements for the decoding of video streams.

C.1.3.3.5 Audio and Speech decoding

The SRS has no requirements for the decoding of audio or speech streams.

C.1.3.3.6 Metadata Formats

The SRS shall support the exchange of Pose and action information as defined in clause 8.3.2.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)443GPP TS 26.565 version 18.0.0 Release 18

C.1.3.4 Profile identifier

The type urn:3gpp:sr-mse:src:profile:3dpixelstreaming shall be included in splitRenderingProfile parameter when
the SRC signals SRS the Split Rendering Configuration [8.4.2.2].

C.1.4 Description of the Rendering Format for Pixel Streaming
Profiles

C.1.4.1 General

In response to the Split Rendering Configuration message, the SRS shall reply with a description of the rendering
format.

The rendering format description shall be a compliant glTF 2.0 [2] file. The file may include references to the buffer
streams that contain the components of the rendered media.

Both SRS and SRC shall comply with the SD-Rendering-Ext1 capability as defined in TS 26.119 [4].

In addition, both SRS and SRC shall support for referencing WebRTC RTP streams and data channels as described in
[3].

An SRC that complies with the 3D Pixel Streaming profile shall support the 3GPP_node_prerendered extension as
defined in C.1.4.2.

C.1.4.2 3D Pixel Streaming Profile-specific glTF Extension

The 3GPP_node_prerendered extension is an extension at the node level to describe that the corresponding node is
accessible as a prerendered content. The 3GPP_node_prerendered extension should be associated with the root node of
the scene. It constitutes an alternative representation of the node and all its children. As such, if present, if the client
decides to use the pre-rendered representation, it shall completely ignore the mesh description of the node and its
children nodes.

The 3GPP_node_prerendered supports multiple 2D video textures and audio sources that correspond to the rendered
views and audio content.

The semantics of the 3GPP_node_prerendered are provided by the following table:

Name Type Usage Default Description

visual Object O N/A An object that describes the rendered visual

components of the content.

audio Object O N/A An object that describes the rendered audio

components of the content.

The description of the visual object is provided in the following table:

Name Type Usage Default Description

visual_configuration enum O VIEW_STERE

O

An indication of the view configuration for the

pre-rendered media. It can either be

VIEW_MONO or VIEW_MONO.

Views array(Object) M An array that describes the views of the

prerendered content.

 eye_visibility enum M The visibility of the current view. This can take

one of the following values: “EYE_LEFT”,

EYE_RIGHT”, “EYE_BOTH”, or “EYE_NONE”.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)453GPP TS 26.565 version 18.0.0 Release 18

Name Type Usage Default Description

EYE_NONE is used for depth and transparency

components.

 composition_layers array(number

)

M An array of accessors identifiers that each

corresponds to a composition layer of the

parent view.

composition_layer_ty

pe

array(enum) M For each of the composition layers of the parent

view, this indicates the type of that composition

layer. The values should be provided in the

same order as the composition_layers. The

allowed values are:

“COMPOSITION_LAYER_PROJECTION”,

“COMPOSITION_LAYER_QUAD”,

“COMPOSITION_LAYER_EQUIRECTANGULAR”,

“COMPOSITION_LAYER_CUBEMAP”,

“COMPOSITION_LAYER_DEPTH”, and

“COMPOSITION_LAYER_OCCUPANCY”.

The description of the audio object in the prerendered media extension is provided in the following table:

Name Type Usage Default Description

type enum O AUDIO_STER

EO

describes the format of the prerendered audio

content. The type can take one of the following

values: “AUDIO_MONO”, “AUDIO_STEREO”, and

“AUDIO_HOA”.

Components array(numbe

r)

M provides a list of the accessors that point to the

media streams associated with rendered audio

content.

The JSON scheme for the 3GPP_node_prerendered is as follows:

{

 "$schema" : "http://json-schema.org/draft-07/schema",

 "title" : "3GPP_node_rendered",

 "type" : "object",

 "description": "glTF extension to described pre-rendered content",

 "allOf": [{ "$ref": "glTFProperty.schema.json"}],

 "properties" : {

 "visual": {

 "$ref": "3GPP_node_rendered.visual.schema.json",

 "description": "visual streamed buffers"

 },

 "audio": {

 "$ref": "3GPP_node_rendered.audio.schema.json",

 "description": "audio streamed buffers"

 },

 "extensions": {},

 "extras": {}

 },

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)463GPP TS 26.565 version 18.0.0 Release 18

 "required": ["visual"]

}

{

 "$schema" : "http://json-schema.org/draft-07/schema",

 "title" : "3GPP_node_rendered.visual",

 "type" : "object",

 "description": "Object representing the visual rendered media",

 "allOf": [{ "$ref": "glTFProperty.schema.json"}],

 "properties" : {

 "view_configuration": {

 "type": "string",

 "description": "the view configuration used for the session",

 "gltf_detailedDescription": "the view configuration used for the

session",

 "enum": ["VIEW_MONO", "VIEW_STEREO"]

 },

 "views": {

 "type": "array",

 "description": "array of layer view objects",

 "gltf_detailedDescription": "",

 "items": {

 "$ref": "3GPP_node_rendered.visual.view.schema.json"

 },

 "minItems": 1

 },

 "extensions": {},

 "extras": {}

 },

 "required": ["views"]

}

{

 "$schema" : "http://json-schema.org/draft-07/schema",

 "title" : "3GPP_node_rendered.visual.view",

 "type" : "object",

 "description": "A representation of a rendered view",

 "allOf": [{ "$ref": "glTFProperty.schema.json"}],

 "properties" : {

 "eye_visibility": {

 "type": "string",

 "description": "the visibility of the current view",

 "enum": ["EYE_LEFT", "EYE_RIGHT", "EYE_BOTH", "EYE_NONE"]

 },

 "composition_layers": {

 "type": "array",

 "description": "array of timed accessors that carry the streamed

buffers for each composition layer of the view",

 "items": {

 "type": "integer"

 },

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)473GPP TS 26.565 version 18.0.0 Release 18

 "minItems": 1

 },

 "composition_layer_type": {

 "type": "array",

 "items": {

 "type": "string",

 "description": "the type of composition layer in the array of

composition layers with the same array index",

 "gltf_detailedDescription": "the type of composition layer in the

array of composition layers with the same array index",

 "enum": ["COMPOSITION_LAYER_PROJECTION",

"COMPOSITION_LAYER_QUAD", "COMPOSITION_LAYER_EQUIRECTANGULAR",

"COMPOSITION_LAYER_CUBEMAP", "COMPOSITION_LAYER_DEPTH",

"COMPOSITION_LAYER_OCCUPANCY"]

 },

 "minItems": 1

 },

 "extensions": {},

 "extras": {}

 },

 "required": ["views"]

}

{

 "$schema" : "http://json-schema.org/draft-07/schema",

 "title" : "3GPP_node_rendered.audio",

 "type" : "object",

 "description": "Object representing the audio rendered media",

 "allOf": [{ "$ref": "glTFProperty.schema.json"}],

 "properties" : {

 "type": {

 "type": "string",

 "description": "the type of the rendered audio",

 "gltf_detailedDescription": "the type of the rendered audio",

 "enum": ["AUDIO_MONO", "AUDIO_STEREO", "AUDIO_HOA"],

 "default": "AUDIO_STEREO"

 },

 "components": {

 "type": "array",

 "description": "array of timed accessors to audio component

buffers",

 "items": {

 "type": "integer"

 },

 "minItems": 1

 },

 "extensions": {},

 "extras": {}

 },

 "required": ["components"]

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)483GPP TS 26.565 version 18.0.0 Release 18

}

C.1.5 Profile Restrictions and Requirements
All Pixel Streaming profile are expected to be relocation intolerant and if using the 5G edge procedure shall set he
easRelocationRequirements to “RELOCATION_INTOLERANT” in the tolerance field.

When the 2D Pixel Streaming profile is used, a policy template and a dynamic policy request may include the following
QoS specifications, one for each of the components of the downlink streams:

- 1 QoS specification corresponding to the mono view.

- 1 QoS specification corresponding to one depth buffer stream associated with the mono view.

- 1 QoS specification corresponding to an occupancy/transparency buffer stream associated with the mono view.

- 1 QoS specification corresponding to an audio stream.

When the 3D Pixel Streaming profile is used, a policy template and a dynamic policy request may include the following
QoS specifications, one for each of the components of the downlink streams:

- 2 QoS specifications corresponding to for left and right eye buffer streams.

- 2 QoS specifications corresponding to one depth buffer stream associated with the left and/or the right views.

- 2 QoS specification corresponding to an occupancy/transparency buffer stream associated with the left and/or the
right views.

- 1 QoS specification corresponding to an audio stream.

C.2 Adaptive Split Rendering Profile

C.2.1 Introduction
This profile defines procedures and requirements for SRS and SRC to support split rendering features beyond a remote
rendering paradigm.

Adaptive split rendering profile allows the SRC to render some objects of a scene locally and the rendering split can be
adapted between the SRS and SRC during a session. The adaptation of the rendering split may be triggered either by the
SRS or the SRC to maintain a consistent QoE of the SR session or to accommodate changes in operating conditions.
The triggers may be, for example, channel conditions, SRC or SRS conditions or defined by the application provider.

To successfully render two parts of a scene separately in a split fashion, additional aspects of the rendering process need
to be considered. Two basic requirements are maintaining a coherent state of the scene between the SRS and SRC and
awareness of rendering split. Another requirement is seamless composition and display of the media rendered by the
SRS and SRC into a frame to be displayed.

C.2.2 Procedures and Call Flows
For adaptive split rendering, the general procedures and call flows in clause 5.2 are followed with the following
additions and modifications.

- The SRS and SRC should share a scene description. The implementation details may vary. The application provider
may decide whether to provide identical scene descriptions to the SRS and the SRC or whether to provide a truncated
version of the scene description to the SRC.

Note: The Application Service Provider may provide the scene description resource to the SRS and SRC, for
example, via M8 to SRC and via M2 to SRS.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)493GPP TS 26.565 version 18.0.0 Release 18

- The SRS and SRC agree on an initial rendering split during session negotiation and the states to be synchronized, for
example, in Step 5 of the procedure in clause 5.2.1.2.

- The initial rendering split and states to be synchronized are indicated in the SR configuration.

- In the rendering loop, exchange of split adaptation messages and state synchronization messages between the SRS
and SRC is supported.

Figure C.2.2-1 illustrates a high level call flow set up and operation for a split rendering session which supports the
adaptive split rendering profile.

XR Runtime

Split Rendering Client

Scene Manager
(thin Presentation Engine)

XR Source
Management

Media Access
Function

Split Rendering Server

0: Scene Description Acquisition

1: create a split rendering session

2: send description of split rendering output

3: establish transport connections
e.g. WebRTC session

Session Setup and negotiation

4: receive pose information, user actions and state changes

5: transmit metadata

6.a: perform rendering,
for requested pose (s)
process state changes
process split adaptation

6.b: perform rendering,
for requested pose (s)
process state changes
process split adaptation

7.a: send next buffer frame

7.b: transmit split adaptation
and state change messages

8: decode and process
buffer frame

9: pass raw buffer frames for display

10: prepare composition layers and
their corresponding swapchain images

11: forward swapchain images for
composition and rendering

12: compose and
render frame

Rendering Loop

https://gitlab.com/msc-generator v8.4

Figure C.2.2.-1: High level call flows for Adaptive Split Rendering Profile

The steps are:

0. In this optional step the SRC and the SRS acquire scene description of the scene to be rendered during the
split rendering session. The actual implementation of delivery of the scene description by to the SRC and SRS is
up to the application provider.

1. The Presentation Engine discovers the split rendering server and sets up a connection to it. It provides
information about its rendering capabilities and the XR runtime configuration, e.g the OpenXR configuration

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)503GPP TS 26.565 version 18.0.0 Release 18

may be used for this purpose. States to be synchronized and the initial rendering split is negotiated during this
step.

2. In response, the split rendering server creates a description of the split rendering output and the input it
expects to receive from the UE.

3. The Presentation Engine requests the buffer streams from the MAF, which in turn establishes a connection to
the split rendering server to stream pose and retrieve split rendering buffers.

4. The Source Manager retrieves pose and user input from the XR runtime and state changes in negotiated states
and possible requests from the Scene Manager.

5. The Source Manager shares the pose predictions and user input actions , state changes and possible split
adaptation messages with the split rendering server.

6. a. The split rendering server uses that information to, update states, render the frame and possibly update the
split.

 b. The Scene Manager update states, renders a frame and possibly updates the split.

7. a. The rendered frame is encoded and streamed to the MAF.

 b. Possible split adaptation and state change messages are shared with the presentation engine,

8. The received media frames decoded and processed,

9. The raw buffer frames are passed to the Scene Manager, this includes the frames received from the SRS and
the frames rendered locally by the PE,

10. The scene manager prepares composition layers and their corresponding swapchain images.

11. The swapchain images are forwarded to the XR runtime for composition and rendering,12. The frames
are composed and displayed.

The final composition of a frame from media received from the SRS and locally rendered objects depends on the
application logic. Implementation guidelines in C.2.7 provide a simple example.

C.2.3 Metadata Formats

C.2.3.1 Split Rendering Configuration Format

The configuration format defined in clause 8.4.2.2 with the additional fields defined below shall be used for split
rendering configuration exchange in adaptive split rendering profile.

renderingSplit Object 1..1 A object identifying objects to be
rendered and where they are to be
rendered (SRS or SRC), for example, as a
dictionary with keys “SRS” and “SRC”
and lists of object indices from a scene
description or a scene graph

synchronizedStatesInit Object 1..1 A object identifying states to be
synchronized between the SRS and SRC
and their initial state

 states Object 1..1 A list of state identifiers, their current
values

 state String/number 1..n Identifier of a state

 initVal String 1..n Initial value of the state

 stateVals Array 1..1 An array of values possible for the state

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)513GPP TS 26.565 version 18.0.0 Release 18

These renderingSplit object shall be present as part of the extraConfigurations Object as defined in clause 8.4.2.2 for
extensibility of split rendering configuration format.

C.2.3.2 Split Adaptation Message Format

During a split rendering session, the operating environment of the split rendering server, the split rendering client or the
network conditions may change. Consequently, the rendering split may need to be adapted to deliver a consistent QoE.
When adaptive split rendering is enabled, the SRS or SRC shall request a new rendering split by sending a message of
the type “urn:3gpp:split-rendering:v1:asrp:sr-split”. The message shall be conformant to the metadata message format
specified in clause 8.5.1. The same message type shall be used to acknowledge, accept or reject the request by the
receiver, with the message subtype identifying whether it is a request, acceptance, acknowledgement or rejection. The
message shall follow the format in Table C.2.3.1-1.

Table C.2.3.2-1 Message format for split adaptation messages

Name Type Cardinality Description

id string 1..1 A unique identifier of the message in the
scope of the data channel session.

type string 1..1 urn:3gpp:split-rendering:v1:asrp:sr-split

message Object 1..1 Message content

 subtype string 1..1 An identifier of the subtype of the
message, it may be a request (REQ) for
new split or acknowledgement (ACK),
acceptance (OK) or rejection of a request
(NOK).

 renderingSplitId string 1..1 An identifier of the rendering split unique
within the scope of the SR session

 renderingSplit Object 0..1 A object identifying objects to be rendered
and where they are to be rendered (SRS or
SRC). The message shall be a dictionary
object . with keys “SRS” and “SRC”, and
values corresponding to a key shall be a
list of named nodes from the scene
description being rendered in the SR
session. The keys shall indicate where the
objects named in the corresponding value
list are rendered.

Split adaptation messages indicating acceptance, acknowledgment or rejection of a split adaptation request may not
include the renderingSplit Object.

C.2.3.3 State Synchronization Message Format

During a split rendering session, various states associated with the scene being rendered may transition. Depending on
the nature of the application being executed, a transition may occur at the SRS, at the SRC or at both the SRS and SRC.
For the application execution to be consistent, some state transitions need to be synchronized between the SRS and
SRC. The SRC and SRS may agree on which states to synchronize during session setup. To synchronize state
transitions during a split rendering session the SRS and SRC shall exchange messages of the type “urn:3gpp:split-
rendering:v1:asrp:sr-state” . The same message type shall be used to send a state synchronization update, acknowledge
a state synchronization update or simultaneously send and acknowledge a state synchronization update. The state
synchronization update messages shall be conformant with the meta-data message format defined in clause 8.5.1 and
the message content shall be formatted as shown in Table C.2.3.2-1.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)523GPP TS 26.565 version 18.0.0 Release 18

Table C.2.3.2-1 Message format for state synchronization messages

Name Type Cardinality Description

id string 1..1 A unique identifier of the message in the
scope of the data channel session.

type string 1..1 urn:3gpp:split-rendering:v1:sr-state

message Object 1..1 Message content

 subtype string 1..n An identifier of the subtype of the
message, it may be a state synchronization
update (SYNC), acknowledgment (ACK)
or both (SYNC_ACK)

 syncUpdateId string 1..1 An identifier of the synchronization
update unique within the scope of the SR
session

 synchronizedStates Object 1..1 An object identifying states that are
synchronized between the SRS and SRC
and their current state. Only states that
have transitioned may be exchanged

 states Object 1..1 A list of state identifiers, their current
values and last change time

 identifier String/number 1..n Identifier of a state

 val Object/String/number 1..n Value of the state

 lastChangeTime number 1..1 The timestamp of the last change in state

Split adaptation messages indicating an acknowledgment of a state update may not include the synchronizedStates
Object.

C.2.4 SRC Capabilities
The adaptive split rendering profile may be used in monoscopic mode or stereoscopic mode. In monoscopic mode, the
SRC receives video corresponding to a single view. This mode supports split rendering to 2D screens, devices of type 3
in TS 26.119 .

In stereoscopic mode, the SRC receives video corresponding to two views, one for each eye. This mode supports split
rendering to stereoscopic screens, devices of type 1,2,4 in TS 26.119.

C.2.4.1 Media Capabilities

If adaptive split rendering profile is used in monoscopic mode, the SRC shall support the media capabilities of a device
type 3 as defined in TS 26.119 [4], clause 10.4, and referenced in Annex C.1.2.2.2 .

If adaptive split rendering profile is used in stereoscopic mode, the SRC shall support the media capabilities for device
type 1 as defined in TS 26.119 [4], clauses 10.2, and referenced in Annex C.1.3.2.2

If the device is a device type 2 as defined in TS 26.119 [4], clause 10.4, it shall also support the media capabilities of a
device type 2 as defined in TS 26.119 [4], clause 10.3, and referenced in Annex C.1.3.2.2

If the device is a device type 4 as defined in TS 26.119 [4], clause 10.5, it shall also support the media capabilities of a
device type 4 as defined in TS 26.119 [4], clause 10.5, and as referenced in Annex C.1.3.2.2

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)533GPP TS 26.565 version 18.0.0 Release 18

C.2.4.2 Metadata Formats

XR-Pose-Cap 1: the SRC shall be able to retrieve one or more pose predictions for each view and for every frame to be
rendered. The pose prediction shall be formatted according to clause 8.3.2.2.

XR-Pose-Cap 2: the SRC shall be able to retrieve and collect the user actions that occurred during an identified time
interval. The action information shall be formatted according to clause 8.3.2.3.

XR-ObjId-Cap 1: the SRC shall be able to receive, retrieve and collect identifiers of objects in a scene being rendered
by the SRC in a split rendering session during an identified time interval. The state information shall be formatted
according to clause C.2.3.2

 XR-ObjState-Cap 1: the SRC shall be able to receive, retrieve and collect state changes in identified objects in a scene
being rendered in an split rendering session during an identified time interval. The state information shall be formatted
according to clause C.2.3.3

C.2.4.3 Rendering format description

The SRC and SRS shall comply with rendering format description in annex C.4.1

If adaptive split rendering profile is used for stereoscopic use cases, the SRC shall support the 3GPP_node_prerendered
extension defined in C.4.2, However, the extension may be used on non-root nodes.

C.2.4.4 Scene Processing and Rendering Capabilities

The SRC shall have the following minimum scene processing capabilities:

- the SD-Rendering-gltf-core scene processing capabilities defined in clause 9.2 of TS 26.119.

SD-Rendering-gltf-core enables basic compatibility of an SRC with the adaptive split rendering profile for simple use
cases, where the SRC does minimal local rendering and adaptability of rendering split is minimal. An example of such a
limited scenario may be a cloud gaming use case where the application provider isolates a small subgraph of the
complex game scene to be rendered by the SRC and shares the subgraph with the SRC. The subgraph may contain only
the assets (mesh and textures) related to a user’s character and controller to allow the SRC to render these objects
locally to mask motion to photon to render latency. More advanced use cases of adaptive split rendering place higher
scene processing capabilities on the SRC.

The SRC should have the following scene processing capabilities:

- the SD-Rendering-gltf-Ext1 scene processing capabilities defined in clause 9.2 of TS 26.119.

In addition to the above specified scene processing capabilities, depending on the device type, the SRC shall have scene
capabilities defined for each device type in clause 10 of TS 26.119.

C.2.5 SRS Capabilities
The SRS capabilities to support adaptive split rendering profile are described in the sub-clauses below.

C.2.5.1 Media Capabilities

The media capabilities of the SRS are defined in relation to the media capabilities of the SRCs it is expected to serve.
Therefore, the encoding capabilities of an SRS should match the decoding capabilities of the SRC.

If adaptive split rendering profile is used in monoscopic code, the SRS shall have capabilities defined in clause C.1.2.3

If adaptive split rendering profile is used in stereoscopic mode, the SRS shall have capabilities defined in clause
C.1.3.3.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)543GPP TS 26.565 version 18.0.0 Release 18

C.2.5.2 Metadata Capabilities

The SRS shall support the metadata formats for pose and action defined in Clause 8.3.2. In addition, the SRS shall
support the metadata formats defined in Annex C.2.3, and complement the metadata capabilities defined in Annex
C.2.4.2. This shall include the ability to receive and process messages corresponding to metadata capabilities defined in
Annex C.2.4.2 and formatted according to clause 8.3.2 and C.2.3.

C.2.5.3 Scene Processing and Rendering Capabilities

SRS shall have the SD-Rendering-gltf-Ext1 scene processing capabilities.

Additionally, depending on the device type of the SRC participating in a split rendering session, the SRS should support
the required and recommended scene processing capabilities defined in TS 26.119 in clause 10.3.5 for device type 2,
clause 10.4.5 for device type 3, and 10.5.5 for device type 4.

C.2.6 Profile identifiers
If the adaptive split rendering profile is used in monoscopic modethe type urn:3gpp:sr-
mse:src:profile:asr2dpixelstreaming shall be included in splitRenderingProfile parameter when the SRC signals SRS
the Split Rendering Configuration [8.4.2.2].

If the adaptive split rendering profile is used in in stereoscopic mode the type urn:3gpp:sr-
mse:src:profile:asr3dpixelstreaming shall be included in splitRenderingProfile parameter when the SRC signals SRS
the Split Rendering Configuration [8.4.2.2].

C.2.7 Extension to Client API Functions
The SRC should perform adaptive split management which may be based on metrics reports of an ongoing split
rendering session, scene being rendered and UE operating conditions. For adaptive split rendering, the SRC exposes
functions to load and update scene description resources. The SRC may also expose functions to an application to allow
application developers to deploy custom logic for split management.

Method

Parameters State after
Success

Description

in out

setScene() - srSessionId

-scene
description
resource

-status N/A The application requests the SRC to
load a scene description resource for
rendering in the split rendering
session.

updateScene() - srSessionId

-scene
description
resource

-status N/A The application request the SRC to
update a scene description resource
being rendered in the split rendering
session.

SRC may optionally expose the function below to the application to allow application developers to deploy custom
split management logic.

updateSplit() - srSessionId

-rendering
split

-status

-rendering
split

N/A The application requests or queries
the SRC for a new rendering split or
the current rendering split in use

The parameters used are defined below:

- srSessionId: as defined in Clause 9.2

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)553GPP TS 26.565 version 18.0.0 Release 18

- scene description resource: A scene description resource compliant with capabilities specified in clause C.2.4.4.
The scene description resource may be a subset of the scene description resource being rendered by the SRS. It is
assumed that the application provider makes the scene description resource available to the application, for
example, via M8.

- status: indicates whether the call was successful (OK) or not successful (FAIL)

- rendering split: A pointer to a renderingSplit object defined in C.2.3.

C.2.8 Implementation Guidelines for Adaptive Split Rendering

C.2.8.1 General

ASR profile may be used with any of the pixel streaming profiles defined in Annex C. As such implementation
guidelines for pixel streaming profiles may be applicable. Additional guidelines are provided below, and where
applicable, differences from pixel stream profile guidelines are highlighted.
The ASR profile allows SRS and SRC both to render objects for a given display frame. This functionality may be
leveraged by application developers to develop SR applications which are more responsive to user interaction by
leveraging local rendering for interactive objects. However, caution has to be exercised in choosing which objects to
render locally and which objects to render remotely in a given 3D scene. The division should be such that composition
of the locally rendered and remotely rendered frames into a display frame is visually as seamless as possible for the
user.
The logic on how to choose objects for local or remote rendering and how to compose the frame from locally and
remotely rendered frames is left to the Application provider and application developers. Below we provide guidelines
based on a simple use case to illustrate how to split objects for rendering and how to compose the final frame.

C.2.8.2 Guidelines for Rendering Split and Composition

Adaptive split rendering can be used based on the type of AR object. In this case it is most suited to AR objects that
have low prediction accuracy, i.e., pose prediction and reprojection techniques are not enough to make up for the
motion-to-render latency when using remote rendering. For example,

- Interactive objects that react to user actions, pose, eye gaze, stimuli in the environment, etc.

- Objects with high reflectivity, especially in the presence of motion in the environment, such as, moving objects,
changing light conditions, etc.

- Transparent objects

In most cases, interactive objects can benefit from being rendered locally if the device has the capability to do so.
However, to limit the number of objects rendered by the device, an application may choose to render only those
interactive objects on the device that are near the user, e.g., they are located within a radius surrounding the device.
Since the user is unlikely to interact with objects that are farther, i.e., outside this radius, these can still be rendered
remotely. The application may also choose to render only interactive objects that have high level of interactivity on the
client and render objects with predictable motion and slow responses on the server.

Since, the level of interaction and distance from the user can change during the lifetime of the session, the rendering is
appropriately adapted.

In most cases, reflective objects may need to be rendered remotely as they require higher processing. If reflective
objects are rendered at the client, then for convincing reflection effects, it is important for the server to provide an
environment map to the client so the client can use it for shading its local objects. In practice, the client needs a (low-
resolution) 360-degree cube map of the viewer's entire surroundings, with local objects omitted. The client may still
need to locally augment this environment map with local objects in case they are prominently featured in reflections, for
instance if they are very large or have bright light sources.

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)563GPP TS 26.565 version 18.0.0 Release 18

Annex X (informative):
Change history

Change history
Date Meeting TDoc CR Rev Cat Subject/Comment New

version
04-2023 123-e S4-230726 Improvements and Corrections to edge and dynamic

policy procedures in SR

05-2023 124 S4-121075 General updates to TS26.565
05-2023 124 S4-121004 SR Rendering API
05-2023 124 S4-231005 Pixel Streaming Media Profile
05-2023 124 S4-231003 pCR on signaling for SR session control
05-2023 124 S4-230925 On SR configuration API and view configuration
08-2023 125 S4-231449 [SR_MSE] Transport protocols
08-2023 125 S4-231518 [SR_MSE] Rendering optimization
08-2023 125 S4-231432 [SR_MSE] Updates to Media Capabilities
08-2023 125 S4-231324 Split rendering Metrics
08-2023 125 S4-231434 Editorial corrections on SR MSE architectures
11-2023 126 S4-231909 Editor’s updates 0.7.0
11-2023 126 S4-231911 Added pose interval to configuration 0.7.0
11-2023 126 S4-231912 Added signaling of SR profile in configuration 0.7.0
11-2023 126 S4-231914 Clarified session setup and configuration 0.7.0
11-2023 126 S4-231796 Added protocol stack 0.7.0
11-2023 126 S4-232007 Timing information in QoE metrics 0.7.0
11-2023 126 S4-231800 Made fov optional in pose format 0.7.0
11-2023 126 S4-231802 Defined output signaling format for pixel streaming 0.7.0
11-2023 126 S4-232011 Updated media profiles for pixel streaming profile 0.7.1
12-2023 SA#102 SP-231306 Version 1.0.0 created by MCC 1.0.0
02-2024 127 S4-240404 TS cleanup 1.1.0
02-2024 127 S4-240135 Profile identifiers 1.1.0
02-2024 127 S4-240400 Pre-requisites for Split Rendering 1.1.0
02-2024 127 S4-240405 Device Type 1.1.0
02-2024 127 S4-240198 Editorial corrections 1.1.0
02-2024 127 S4-240422 QoE metrics timing information format 1.1.0
04-2024 127-e S4-240786 Corrections and Guidelines for TS26.565 1.2.0
04-2024 127-e S4-240810 [SR_MSE] pCR on Adaptive Split Rendering Profile 1.2.0
04-2024 127-e S4-240581 [SR_MSE]pCR Editorial Corrections 1.2.0
04-2024 127-e S4-240582 [SR_MSE]pCR ASR Profile Implementation Guidelines 1.2.0
05-2024 128 S4-241006 Clarification on RTC-6 interface in SR_MSE architecture 1.3.0
05-2024 128 S4-241140 Client API in Split Rendering 1.3.0
05-2024 128 S4-241142 Editorial corrections in TS 26.565 1.3.0
05-2024 128 S4-241246 ASR profile client API 1.3.0
05-2024 128 S4-241262 QoE metrics reporting for Split Rendering Client 1.3.0
06-2024 Version 2.0.0 created by MCC to be sent to TSG for

approval
2.0.0

06-2024 Version 18.0.0 created by MCC upon approval in TSG 18.0.0

ETSI

ETSI TS 126 565 V18.0.0 (2024-07)573GPP TS 26.565 version 18.0.0 Release 18

History

Document history

V18.0.0 July 2024 Publication

	Intellectual Property Rights
	Legal Notice
	Modal verbs terminology
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 General
	4.1 Overview
	4.2 Typical Use Cases

	5 Reference Architecture and Procedures
	5.1 Reference Architecture
	5.1.1 Introduction
	5.1.2 Client Architecture
	5.1.3 End-to-End Architecture
	5.1.4 User Plane Architecture

	5.2 Procedures and Call Flows
	5.2.1 Call flow for Split Rendering instance discovery
	5.2.1.1 Call flow for edge server and split rendering session setup
	5.2.1.2 Client-driven procedures and call flows

	5.2.2 Call flow for Split Rendering session setup

	6 Prerequisites
	6.1 General
	6.2 Pre-requisites on 5G System
	6.3 Pre-requisites on Device APIs and Functionality

	7 Network Support
	7.1 Overview
	7.2 Provisioning
	7.3 Dynamic Policy and Network Assistance
	7.4 Edge Resources
	7.5 Metrics and Consumption Reporting

	8 Split Rendering User Plane
	8.1 General
	8.2 Split Rendering Signalling Protocols
	8.3 Split Rendering Formats for Media and Metadata
	8.3.1 General
	8.3.2 Metadata Formats
	8.3.2.1 General
	8.3.2.2 Pose Format
	8.3.2.3 Action Format

	8.3.3 Metadata Data Channel Message Format

	8.4 Split Rendering Formats for Session Setup and Negotiation
	8.4.1 General
	8.4.2 Split Rendering Configuration Format
	8.4.2.1 Introduction
	8.4.2.2 Split Rendering Configuration Format

	8.4.3 Output Format Description

	8.5 Split Rendering Transport Protocols

	9 Split Rendering Client
	9.1 Functionality
	9.2 Client API
	9.3 Split Rendering Metrics
	9.3.1 General
	9.3.2 QoE Metrics Formats
	9.3.2.1 Timing Information Format
	9.3.2.2 Latency metrics

	9.3.3 QoE Metrics reporting protocol
	9.3.4 QoE metrics definition
	9.3.4.1 Introduction
	9.3.4.2 Pose to render to photon metric
	9.3.4.3 Render to photon metric
	9.3.4.4 Round-trip interaction delay metric
	9.3.4.5 User interaction delay metric
	9.3.4.6 Age of contents metric
	9.3.2.7 Scene update delay metric
	9.3.2.8 Metadata delay metric
	9.3.2.9 Data frames delay metric

	9.3.5 Quality metrics reporting
	9.3.5.1 General
	9.3.5.2 Report format
	9.3.5.3 Quality Reporting Scheme and Metrics reporting configuration for SRC

	10 Security and Privacy Aspects
	10.1 Security
	10.2 Privacy

	Annex A (informative): Implementation Guidelines
	A.1 Guidelines for Application Developers
	A.2 Guidelines for Split Rendering MSE Implementers
	A.2.1 Guidelines for implementers of the Split Rendering Server

	A.3 Conformance Testing

	Annex B (normative): IDL Definition of Client API
	Annex C (normative): Split Rendering Profiles
	C.1 Pixel Streaming Profile
	C.1.1 Introduction
	C.1.2 2D Pixel Streaming Profile
	C.1.2.1 Introduction
	C.1.2.2 SRC Capabilities
	C.1.2.2.1 Overview
	C.1.2.2.2 Media Capabilities
	C.1.2.2.3 Metadata Formats

	C.1.2.3 SRS Capabilities
	C.1.2.3.1 Overview
	C.1.2.3.2 Video encoding
	C.1.2.3.3 Audio and Speech encoding
	C.1.2.3.4 Video decoding
	C.1.2.3.5 Audio and Speech decoding
	C.1.2.3.6 Metadata Formats

	C.1.2.4 Profile identifier

	C.1.3 3D Pixel Streaming Profile
	C.1.3.1 Introduction
	C.1.3.2 SRC Capabilities
	C.1.3.2.1 Overview
	C.1.3.2.2 Media Capabilities
	C.1.3.2.3 Metadata Formats

	C.1.3.3 SRS Capabilities
	C.1.3.3.1 Overview
	C.1.3.3.2 Video encoding
	C.1.3.3.3 Audio and Speech encoding
	C.1.3.3.4 Video decoding
	C.1.3.3.5 Audio and Speech decoding
	C.1.3.3.6 Metadata Formats

	C.1.3.4 Profile identifier

	C.1.4 Description of the Rendering Format for Pixel Streaming Profiles
	C.1.4.1 General
	C.1.4.2 3D Pixel Streaming Profile-specific glTF Extension

	C.1.5 Profile Restrictions and Requirements

	C.2 Adaptive Split Rendering Profile
	C.2.1 Introduction
	C.2.2 Procedures and Call Flows
	C.2.3 Metadata Formats
	C.2.3.1 Split Rendering Configuration Format
	C.2.3.2 Split Adaptation Message Format
	C.2.3.3 State Synchronization Message Format

	C.2.4 SRC Capabilities
	C.2.4.1 Media Capabilities
	C.2.4.2 Metadata Formats
	C.2.4.3 Rendering format description
	C.2.4.4 Scene Processing and Rendering Capabilities

	C.2.5 SRS Capabilities
	C.2.5.1 Media Capabilities
	C.2.5.2 Metadata Capabilities
	C.2.5.3 Scene Processing and Rendering Capabilities

	C.2.6 Profile identifiers
	C.2.7 Extension to Client API Functions
	C.2.8 Implementation Guidelines for Adaptive Split Rendering
	C.2.8.1 General
	C.2.8.2 Guidelines for Rendering Split and Composition

	Annex X (informative): Change history
	History

