

ETSI TS 132 158 V18.0.0 (2024-05)

LTE;
5G;

Management and orchestration;
Design rules for REpresentational State Transfer (REST)

Solution Sets (SS)
(3GPP TS 32.158 version 18.0.0 Release 18)

TECHNICAL SPECIFICATION

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)13GPP TS 32.158 version 18.0.0 Release 18

Reference
RTS/TSGS-0532158vi00

Keywords
5G,LTE

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
https://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2024.

All rights reserved.

https://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)23GPP TS 32.158 version 18.0.0 Release 18

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Legal Notice
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities. These shall be
interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found under https://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and
"cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of
provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://webapp.etsi.org/key/queryform.asp
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)33GPP TS 32.158 version 18.0.0 Release 18

Contents

Intellectual Property Rights .. 2

Legal Notice ... 2

Modal verbs terminology .. 2

Foreword ... 6

1 Scope .. 7

2 References .. 7

3 Definitions and abbreviations ... 8

3.1 Definitions .. 8

3.2 Abbreviations ... 8

4 General rules .. 8

4.1 Information models and resources .. 8

4.1.1 Information models ... 8

4.1.2 Resources .. 8

4.1.3 Resource archetypes ... 9

4.1.4 Mapping of information models to resources ... 9

4.1.5 Usage of information models .. 9

4.2 Managed object naming and resource identification .. 9

4.2.1 Managed object naming .. 9

4.2.1.0 Distinguished Name (DN) ... 9

4.2.1.1 Global and local namespaces .. 10

4.2.2 Resource identification ... 10

4.2.3 Mapping of DNs to URIs .. 10

4.2.4 Canonical URI .. 11

4.3 Message content formats .. 11

4.3.1 Media types ... 11

4.3.2 Response content format negotiation .. 12

4.4 URI structure .. 12

4.4.1 Introduction... 12

4.4.2 URI structure for resources representing managed object instances ... 12

4.4.3 URI structure for resources not representing managed object instances ... 14

4.4.4 Resource "../{MnSName}/{MnSVersion}" .. 14

4.5 Response status codes .. 14

5 Basic design patterns .. 15

5.1 Design pattern for creating a resource .. 15

5.1.1 Creating a resource with identifier creation by the MnS Producer ... 15

5.1.2 Creating a resource with identifier creation by the MnS Consumer ... 16

5.2 Design pattern for reading a resource ... 16

5.3 Design pattern for updating a resource ... 17

5.4 Design pattern for deleting a resource .. 18

5.5 Design pattern for subscribe/notify .. 18

5.5.1 Concept ... 18

5.5.2 Subscription creation .. 18

5.5.3 Subscription deletion .. 19

5.5.4 Notification emission .. 19

5.5.5 Subscription retrieval .. 20

6 Advanced design patterns ... 20

6.1 Design pattern for scoping and filtering ... 20

6.1.1 Introduction... 20

6.1.2 Query parameters for scoping ... 21

6.1.3 Query parameters for filtering .. 21

6.1.4 Construction rules for the response message body ... 22

6.2 Design patterns for attribute and attribute field selection ... 22

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)43GPP TS 32.158 version 18.0.0 Release 18

6.2.1 Introduction... 22

6.2.2 Query parameters for attribute and attribute field selection .. 23

6.2.3 Construction rules for the response message body ... 23

6.3 Design pattern for partially updating a resource ... 23

6.3.1 Introduction... 23

6.3.2 JSON Merge Patch.. 23

6.3.3 JSON Patch ... 25

6.4 Design patterns for patching multiple resources .. 28

6.4.1 Introduction... 28

6.4.2 3GPP JSON Merge Patch ... 28

6.4.3 3GPP JSON Patch ... 29

6.5 Design pattern for large queries ... 32

6.6 Design pattern for error responses .. 32

6.6.1 Introduction... 32

6.6.2 HTTP error codes ... 32

6.6.3 Error response body .. 33

6.6.3.1 Overview ... 33

6.6.3.2 Error response format for GET requests ... 34

6.6.3.3 Error response format for PUT, POST, DELETE, JSON Merge Patch and 3GPP JSON Merge
Patch requests .. 35

6.6.3.4 Error response format for JSON Patch and 3GPP JSON Patch requests .. 35

6.6.4 The "type" property .. 36

6.6.5 The "reason" property ... 37

6.6.5.1 Overview ... 37

6.6.5.2 Error reasons for GET ... 37

6.6.5.3 Error reasons for attribute manipulations .. 39

6.6.5.3.1 JSON Patch and 3GPP JSON Patch .. 39

6.6.5.3.2 JSON Merge Patch, 3GPP JSON Merge Patch and PUT .. 40

6.6.5.4 Error reasons for object manipulations ... 41

6.6.6 Error reasons for application layer errors ... 45

6.6.7 Security considerations ... 46

6.7 Design pattern for conditional data node selection ... 46

7 Resource representation formats .. 47

7.1 Introduction .. 47

7.2 Top-level object .. 47

7.3 Data objects .. 47

7.4 Data arrays.. 47

7.5 Error objects ... 48

7.6 Resource objects ... 48

7.7 Resource objects carried in data objects and arrays ... 49

8 REST SS specification template ... 50

Annex A (informative): Examples ... 54

A.1 Example data model ... 54

A.2 Retrieval of resources ... 59

A.2.1 Retrieval of a single complete resource with HTTP GET .. 59

A.2.2 Attribute and attribute field selection on a single resource .. 60

A.2.3 Retrieval of multiple complete resources using scoping and filtering .. 61

A.2.4 Large queries .. 71

A.3 Creation of resources .. 71

A.3.1 Creation of a resource with HTTP PUT ... 71

A.3.2 Creation of a resource with HTTP POST ... 72

A.3.3 Creation of multiple resources with 3GPP JSON Merge Patch .. 73

A.3.4 Creation of multiple resources with 3GPP JSON Patch ... 75

A.4 Deletion of resources ... 77

A.4.1 Deletion of a resource with HTTP DELETE .. 77

A.4.2 Deletion of multiple resources with HTTP DELETE ... 77

A.4.3 Deletion of multiple resources with 3GPP JSON Merge Patch .. 77

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)53GPP TS 32.158 version 18.0.0 Release 18

A.4.4 Deletion of multiple resources with 3GPP JSON Patch ... 78

A.5 Complete update of a resource ... 78

A.6 Partial update of a resource .. 79

A.6.1 Partial update of a resource with JSON Merge Patch ... 79

A.6.2 Partial update of a resource with 3GPP JSON Merge Patch .. 80

A.6.3 Partial update of a resource with JSON Patch .. 80

A.6.4 Partial update of a resource with 3GPP JSON Patch .. 82

A.7 Manipulating multiple resources .. 83

A.7.1 Manipulating multiple resources with 3GPP JSON Merge Patch .. 83

A.8 Partitioning a data model .. 84

A.7.2 Manipulating multiple resources with 3GPP JSON PATCH ... 85

Annex B (informative): Change history ... 87

History .. 90

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)63GPP TS 32.158 version 18.0.0 Release 18

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)73GPP TS 32.158 version 18.0.0 Release 18

1 Scope
The present document defines design rules for REpresentational State Transfer (REST) Solution Sets (SS). These rules
are applied when specifying REST Solution Sets.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

- For a specific reference, subsequent revisions do not apply.

- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2] IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".

[3] 3GPP TS 32.300: "Telecommunication management; Configuration Management (CM); Name
convention for Managed Objects".

[4] IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".

[5] IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".

[6] IETF RFC 7159: " The JavaScript Object Notation (JSON) Data Interchange Format".

[7] draft-wright-json-schema-01 (October 2017): "JSON Schema: A Media Type for Describing JSON
Documents".

 Editor's note: The above document cannot be formally referenced until it is published as an RFC.

[8] draft-wright-json-schema-validation-01 (October 2017: "JSON Schema Validation: A Vocabulary
for Structural Validation of JSON".

 Editor's note: The above document cannot be formally referenced until it is published as an RFC.

[9] draft-wright-json-schema-hyperschema-01 (October 2017): "JSON Hyper-Schema: A Vocabulary
for Hypermedia Annotation of JSON.

 Editor's note: The above document cannot be formally referenced until it is published as an RFC.

[10] OpenAPI Specification (https://github.com/OAI/OpenAPI-Specification)

[11] IETF RFC 5789: "PATCH Method for HTTP".

[12] IETF RFC 7396: "JSON Merge Patch".

[13] IETF RFC 6902: "JavaScript Object Notation (JSON) Patch".

[14] IETF RFC 6901: "JavaScript Object Notation (JSON) Pointer".

[15] XML Path Language (XPath) Version 1.0, W3C Recommendation 16 November 1999
(https://www.w3.org/TR/xpath-10/)

[16] 3GPP TS 32.160: "Management and orchestration; Management service template".

[17] IETF RFC 4918: "HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV)"

[18] IETF RFC 6585: "Additional HTTP Status Codes"

[19] IETF RFC 7807: "Problem Details for HTTP APIs"

https://github.com/OAI/OpenAPI-Specification
https://www.w3.org/TR/xpath-10/

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)83GPP TS 32.158 version 18.0.0 Release 18

[20] IETF RFC 7725: "An HTTP Status Code to Report Legal Obstacles"

[21] 3GPP TS 32.161: "JSON expressions (Jex)"

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A
term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

3.2 Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An
abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in
TR 21.905 [1].

CRUD Create, Retrieve, Update, Delete
DC Domain Component
DN Distinguished Name
DNS Domain Name Service
FQDN Fully Qualified Doman Name
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
LDN Local Distinguished Name
MnS Management Service
REST REpresentational State Transfer
RPC Remote Procedure Call
TCP Transmission Control Protocol
URI Uniform Resource Identifier

4 General rules

4.1 Information models and resources

4.1.1 Information models

An information model is a representation of a system. Typical models do not reflect all facets of the system, but only
certain aspects required to solve the management problem the model is designed for. 3GPP follows an object-oriented
modelling approach. Models are built from managed object classes. Each object class contains information elements
called attributes. Relationships between classes represent the logical connections. Models are specified formally with
class diagrams produced using the Unified Modelling Language (UML).

The instantiation of a managed object class is called managed object instance, or concisely just managed object or
object. All managed object instances together with the relationships between them constitute an object tree. An object
tree is also called containment tree.

4.1.2 Resources

HTTP uses a different terminology based on the notion of resources, as defined in clause 2 of RFC 7231 [2]. Each
resource is represented by one or more resource representations as defined in clause 3 of RFC 7231 [2]. Valid resource
representations are e.g. XML instance documents or JSON instance documents.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)93GPP TS 32.158 version 18.0.0 Release 18

Besides this primary resource, RFC 3986 [4], clause 3.5 introduces the concept of secondary resources. Secondary
resources are specific portions or subsets of primary resources, that are identifiable.

4.1.3 Resource archetypes

Resources can be classified according to their structure and behaviour into resource archetypes. This helps specifying
clear and understandable interfaces. The following three archetypes are defined:

- Document resource: This is the standard resource containing data in form of name value pairs and links to
related resources. This kind of resource typically represents a real-world object or a logical concept.

- Collection resource: A collection resource is grouping resources of the same kind. The resources below the
collection resource are called items of the collection. An item of a collection is normally a document resource.
Collection resources typically contain links to the items of the collection and information about the collection
like the total number of items in the collection. Collection resources can be further distinguished into server-
managed and client-managed resources. Collection resources are also known as container resources.

- Operation resource: Operation resources represent executable functions. They may have input and output
parameters. Operation resources allow some sort of fall back to an RPC style design in case application specific
actions cannot be mapped easily to CRUD style operations.

4.1.4 Mapping of information models to resources

RESTful SS shall be specified in a way that managed object instances are described by (primary) document resources.
Collection resources have no equivalent in an information model unless some dedicated collection class is introduced.

Attributes are mapped to secondary resources.

4.1.5 Usage of information models

Information models are used for two purposes when specifying interfaces to observe and act upon information models:

- They provide a means to identify information in request messages.

- They provide a format to transfer information in request and response messages..

Identification of information is necessary when retrieving information from a MnS Producer; the MnS Consumer needs
to be able to specify in his retrieveal request the information the MnS Producer shall return. But also when information
needs to be updated or deleted the MnS Consumer needs to identify the information to be updated or deleted in his
request. When information is added, the location of the new information is specified relative to the location of existing
information.

Request and response message bodies carrying (some parts of) the information model are also constructed based on the
information model supported by the MnS Producer. The message format is either identical to the information model
format or identical to some transformation of the information model format.

4.2 Managed object naming and resource identification

4.2.1 Managed object naming

4.2.1.0 Distinguished Name (DN)

The Distinguished Name (DN) is used in 3GPP to uniquely identify a managed object instance within a specific name
space. The DN is a comma (",") separated list of Relative Distinguished Names (RDNs). Each managed object instance
has an associated RDN. The sequence of RDNs is governed by name containment relationships in the UML class
diagram describing the modelled network. The RDN consists of a naming attribute name separated by an equal sign
("=") from the naming attribute value. The naming attribute name is equal to the class name of the MOI.

In addition to the RDNs associated to a managed object instance the DN may have as leftmost RDN whose naming
attribute name is "DC" (Domain Component) and whose value is a domain name. A DN with DC is globally unique.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)103GPP TS 32.158 version 18.0.0 Release 18

The DN concept is described in detail in TS 32.300 [3].The following example DN has a DC.

DN = "DC=operatorA.com,SubNetwork=south,ManagedElement=a,ENBFunction=1,Cell=1"

4.2.1.1 Global and local namespaces

A DN in the global name space is globally unique and starts with the RDN of the global root. A DN in a local name
space starts with the RDN of the local root and is unique only within this name space. A DN in a local namespace is
also referred to as Local Distinguished Name (LDN). The DN of the local root relative to the global root is called DN
prefix. The concatenation of DN prefix and LDN is equal to the globally unique DN of a managed object.

The local root is typically the root of the network resource model representing the managed network.

4.2.2 Resource identification

HTTP uses a subset of the generic Uniform Resource Identifier (URI) scheme (RFC 3986 [4]) defined in RFC 7230 [5]
for target resource identification.

http-URI = "http:" "//" authority path-abempty ["?" query] ["#" fragment]

The path component is an absolute path (one that starts with a single slash character) or empty.

The origin server is identified by the authority component, which includes a host identifier and an optional TCP port.
The hierarchical path component and optional query component serve as an identifier for a potential target resource
within that origin server’s name space. The optional fragment component allows for indirect identification of a
secondary resource.The host identifier is either an IP address or an indirect identifier such as a FQDN to be resolved
with DNS.

URIs are used by HTTP for routing and addressing of target resources.

4.2.3 Mapping of DNs to URIs

URIs are globally unique. For this reason only a globally unique DN with DC is mappable into a URI. The mapping
rules are as follow:

- The DN prefix is mapped semantically to the authority component of the URI. The syntax of the DN prefix is
modified to match the syntax of the authority component.

- The LDN is mapped semantically to the path component of the URI. The syntax of the LDN is modified to
match the syntax of the path component.

When mapping a LDN the equal sign "="shall be used as delineator between the naming attribute name and naming
attribute value when constructing a RDN.

URI-RDN = {namingAttributeName} "=" {namingAttributeValue}

The URI-LDN is the concatenation of URI-RDNs separated by a slash "/".

URI-LDN = *("/" RDN)

For example, the LDN

LDN = "SubNetwork=south,ManagedElement=a,ENBFunction=1,Cell=1"
maps to

URI-LDN = "/SubNetwork=south/ManagedElement=a/ENBFunction=1/Cell=1"

and the LDN

LDN = "ManagedElement=a,ENBFunction=1,Cell=1"
to

URI-LDN = "/ManagedElement=a/ENBFunction=1/Cell=1"

When constructing the authority part from the DN prefix, it shall be reformatted according to the name conventions
applying to FQDNs. For example, the DN prefix

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)113GPP TS 32.158 version 18.0.0 Release 18

DN-prefix = "DC=operatorA.com"

maps to

URI-DN-prefix = "operatorA.com"

and the DN prefix

DN-prefix = "DC=operatorA.com,SubNetwork=south"

to

URI-DN-prefix = "south.subNetwork.operatorA.com"

The complete URIs for the examples are

http://operatorA.com/SubNetwork=south/ManagedElement=a/ENBFunction=1/Cell=1
http://south.subNetwork.operatorA.com/ManagedElement=a/ENBFunction=1/cell=1

The constructed URI-DN-prefix is a FQDN that can be registered into a name resolution service such as DNS. The sole
presence of a constructed FQDN does not mean it can be resolved to an IP address and there is a server listening at that
address.

Using the mapping rule, a DN is mapped predictably into the URI authority component and path component.

The character set allowed in DNs is much bigger than the character set allowed in the path component and authority
component of a URI. Care needs to be taken when selecting the naming attribute names und values that the mapping
from a DN to a URI does not become impossible as a consequence of not mappable characters.

When no registered name can be used, the IP address shall be specified directly in the host component, for example:

http://168.212.226.204/SubNetwork=south/.../Cell=1

This might be required in multiple situations. For example, when a DN prefix is used but the corresponding URI-DN-
prefix cannot be resolved, the MnS Consumer needs to specify an IP address in the target URI of HTTP request
messages. The same is true when no DN prefix is used at all. Another example is when no DN prefix is configured into
MnS Producers and the MnS Producer wants to report events, that occurred related to resources, using notifications sent
to MnS Consumers. The MnS Producer has no other option than to put its own IP address into the host component of
the URI identifying the resource where the event occurred.

4.2.4 Canonical URI

The URI defined in clause 4.2.3 is called canonical URI. It is the main or official URI of a resource. It shall be used
whenever the resource as such shall be identified. The URI for sending HTTP requests to a resource may be different as
described in clause 4.4. Special kinds of requests may have all their own URI. Therefore, a resource has typically one
canonical URI and one or more other URIs. The canonical URI may be looked at as a protocol specific version of the
protocol neutral DN.

A canonical URI may or may not yield further information if dereferenced.

An example usage of a canonical URI is in event notifications such as alarm notifications for identifying the resource
where the event occurred.

4.3 Message content formats

4.3.1 Media types

The format of HTTP request and response message content is indicated with media types consisting of a type, a subtype
and optional parameters, as defined in clause 3.1.1.1 of RFC 7231 [2]. The "Content-Type" header field of a message
contains the media type of the message content (clause 3.1.1.5 of RFC 7231 [2]).

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)123GPP TS 32.158 version 18.0.0 Release 18

If not otherwise stated, the media type of request and response message bodies in the REST SS is

- application/json (RFC 7159 [6]).

Exceptions are when JSON patch documents are contained in request bodies. They are identified with the media types

- application/merge-patch+json (RFC 7396 [12], and clause 6.3.2 of the present document),

- application/json-patch+json (RFC 6902 [13], and clause 6.3.3 of the present document).

Furthermore, this specification defines four new formats. Their media types are

- application/vnd.3gpp.merge-patch+json (clause 6.4.2 of the present document),

- application/vnd.3gpp.json-patch+json (clause 6.4.3 of the present document),

- application/vnd.3gpp.object-tree-hierarchical+json (clause 6.1.4 of the present document),

- application/vnd.3gpp.object-tree-flat+json (clause 6.1.4 of the present document).

JSON documents shall conform to JSON Schema ([7], [8], [9]).

4.3.2 Response content format negotiation

The MnS Consumer shall engage in proactive content negotiation as defined in clause 3.4.1 of RFC 7231 [2] by
including the "Accept" request header field in HTTP requests that expect a message body in the response. The "Accept"
header field indicates to the MnS Producer the media types acceptable to the MnS Consumer.

If the MnS Producer cannot provide any of the acceptable resource representations, it shall respond either with a "406
Not Acceptable" error code or provide a representation for the resource that is not specified in the "Accept" header
field.

4.4 URI structure

4.4.1 Introduction

MnS producers can be divided into two categories. The first category exposes MnS(s) to manipulate resources
representing managed object instances. In this case the URI structure is governed by the mapping rules defined in clause
4.2.3. The second category exposes MnS(s) to manipulate resources not representing managed object instances. In this
case the DN concept is not relevant. The URI structure for both categories is different.

4.4.2 URI structure for resources representing managed object instances

URIs identifying resources representing managed object instances shall follow, when being used as a target URI in
HTTP requests, the structure given by

{scheme}://{URI-DN-prefix}/{root}/{MnSName}/{MnSVersion}/{URI-LDN}

with:

{scheme} Scheme component "http" or "https"

{URI-DN-prefix} Authority component (host identifier and optional TCP port), the host name is constructed
from the DN prefix as defined in clause 4.2.3.

{root} Part of the path component, allows specifying one or more optional path segments for
structuring the resource hierarchy on a HTTP server. The DN or parts thereof shall not be
mapped to this path component.

{MnSName} Part of the path component, allows specifying an optional MnS name in a single path segment.

{MnSVersion} Part of the path component, allows specifying an optional MnS version in a single path segment.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)133GPP TS 32.158 version 18.0.0 Release 18

{URI-LDN} Part of the path component, constructed from the LDN as defined in clause 4.2.3, containing
zero, one or more path segments.

As seen above, to construct the URI from a DN, it is necessary to map the "DNPrefixPlusRDNSeparator" as defined in
clause 7.3 of TS 32.300 [3], the “LocalDN” as defined in clause 7.3 of TS 32.300 [3], and to add the additional optional
path segments "/{root}/{MnSName}/{MnSVersion}".

To allow for a predictive mapping from an URI to the original DN it is necessary to specify
"/{MnSName}/{MnSVersion}" in such a way that the beginning of the "LocalDN" can be unambigously identified.

Note it may be required when specifying a MnS to clearly identify the last RDN of "{URI-LDN}" and to use the
following instead of "{URI-LDN}"

{URI-LDN-first-part}/{RDN}

or

{URI-LDN-first-part}/{className}={id}.

For the sake of brevity, "MnSRoot" is introduced that includes the "{scheme}" part, the colon (":"), the two slash
characters ("//"), the "{authority}" part, a single slash character ("/") and the "{root}" part.

{MnSRoot} := {scheme}://{URI-DN-prefix}/{root}

When using "{MnSRoot}" the abbreviated URI structure is given by

{MnSRoot}/{MnSName}/{MnSVersion}/{URI-LDN}

or

{MnSRoot}/{MnSName}/{MnSVersion}/{URI-LDN-first-part}/{className}={id}

It is recommended to use this abbreviated form of the URI structure when defining Management Services.

The path segment "MnSVersion" allows access to resources with different MnS versions, for example:

http://operatorA.com/ProvMnS/v1500/SubNetwork=south/.../Cell=1
http://operatorA.com/ProvMnS/v1600/SubNetwork=south/.../Cell=1

Note that both URIs, though different as to the path segment indicating the version number of the ProvMnS, identify the
same resource that is identified by the canonical URI:

http://operatorA.com/SubNetwork=south/.../Cell=1

and whose DN is:

DC=operatorA.com,SubNetwork=south,...,Cell=1

The optional path component "/{root}" may be used to separate the name space for 3GPP management from the name
space for other domains:

http://operatorA.com/3gppManagement/ProvMnS/v1600/SubNetwork=south/.../Cell=1

or to provide dedicated URIs on the same host for different tasks:

http://operatorA.com/3gppManagement/cm/ProvMnS/v1600/SubNetwork=south/.../Cell=1
http://operatorA.com/3gppManagement/fm/ProvMnS/v1600/SubNetwork=south/.../Cell=1

Note that when different hosts are used for different management tasks, like in

http://cm.operatorA.com/3gppManagement/ProvMnS/v1600/SubNetwork=south/.../Cell=1
http://fm.operatorA.com/3gppManagement/ProvMnS/v1600/SubNetwork=south/.../Cell=1

then also the resources are different and identifierd by the canonical URIs

http://cm.operatorA.com/SubNetwork=south/.../Cell=1
http://fm.operatorA.com/SubNetwork=south/.../Cell=1

or the DNs

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)143GPP TS 32.158 version 18.0.0 Release 18

DC=cm.operatorA.com,SubNetwork=south,...,Cell=1
DC=fm.operatorA.com,SubNetwork=south,...,Cell=1

In the example above, it is assumed that both resources represent the same cell in the network. This information cannot
be derived from the DN or canonical URI, though.

4.4.3 URI structure for resources not representing managed object
instances

URIs identifying other resources shall follow, when being used as a target URI in HTTP requests, the structure given by

{scheme}://{authority}/{root}/{MnSName}/{MnSVersion}/{MnSResourcePath}

with:

{scheme} Scheme component "http" or "https"

{authority} Authority component (host identifier and optional TCP port)

{root} Part of the path component, allows specifying optional path segments for structuring the
resource hierarchy on a HTTP server.

{MnSName} Part of the path component, specifies the mandatory MnS name in a single path segment.

{MnSVersion} Part of the path component, specifies the mandatory MnS version in a single path segment.

{MnSResourcePath} Part of the path component, one or more path segments, specifies a resource of the MnS

For the sake of brevity, {MnSRoot} is introduced that includes the "{scheme}" part, the two slash characters ("//"), the
"{authority}" part, a single slash character ("/") and the "{root}" part. When using "{MnSRoot}" the abbreviated URI
structure is given by

{MnSRoot}/{MnSName}/{MnSVersion}/{MnSResourcePath}

It is recommended to use this abbreviated form of the URI structure when defining Management Services.

4.4.4 Resource "../{MnSName}/{MnSVersion}"

The resource identified by "../{MnSName}/{MnSVersion}" is called NRM root. It represents the conceptual parent of
the top-level managed object instances. It is created by the MnS Producer. A MnS Consumer cannot create or delete this
resource.

The resource is the target resource for many HTTP requests, such as requests to retrieve all top-level managed object
instances in case there are multiple top-level managed object instances, or for requests to create objects in case there are
no manged object instances yet and the creation request needs to be directed to the parent of the resource to be created.

Attempts to read the NRM root only shall return "204 No Content".

4.5 Response status codes
The response status codes as defined in section 6 of RFC 7231 [2] shall be supported.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)153GPP TS 32.158 version 18.0.0 Release 18

5 Basic design patterns

5.1 Design pattern for creating a resource

5.1.1 Creating a resource with identifier creation by the MnS Producer

Operations to create a (single) resource shall be specified with the HTTP POST method, when the MnS Producer shall
create the identifier of the new resource.

Figure 5.1.1-1: Flow for creating a resource with HTTP POST

The procedure is as follows:

1) The MnS Consumer sends an HTTP POST request to the MnS Producer. The target URI identifies the parent
resource below which the new resource shall be created. The target URI shall have no query and no fragment
component. The message body shall carry a representation of the resource to be created. The resource
representation shall not contain the identifier of the new resource, unless the resource representation format
mandates the presence of a resource identifier in which case it shall carry null semantics. If the identifier carries
nevertheless a value, the MnS Producer may consider that as a non-binding recommendation by the MnS
Consumer. The object class name of the resource to be created shall be specified in the message body as well.

2) The MnS Producer returns the HTTP POST response. On success, "201 Created" shall be returned. The
"Location" header shall be present and carry the URI of the new resource. The URI shall be constructed by the
MnS Producer by creating an identifier for the new resource and appending a new path segment containing this
identifier to the request URI. The response message body should carry the representation of the new resource. If
the resource representation received is not modified, the MnS Producer may also return "204 No Content",
instead of "201 Created". The response message body shall be empty in this case. On failure, the appropriate
error code shall be returned. The response message body may provide additional error information.

The resource representation in the request and response message may not be identical, and may not contain all
properties (attributes) that are defined in a schema specifying the format of the representation.

For example, assume the schema for the representation of the resource defines the attributes "attrA", "attrB" and
"attrC". When the MnS Consumer has valid values only for the attributes "attrA" and "attrB", then the representation
sent to the MnS Producer shall include only these two attributes. When the MnS Producer has no valid value for "attrC"
and no default value is defined for attrC, then the response is identical to the request, and a subsequent HTTP GET
request for all attributes returns only a representation with the attributes "attrA" and "attrB", but not with the attribute
"attrC". However, if the MnS Producer populates "attrC" with some value or a default value is defined for attrC, then
the HTTP POST response shall include all three attributes. Likewise, a subsequent HTTP GET request for all attributes
returns all three attributes.

A MnS Producer may also modify attribute values included in the request. In this case, the modified values shall be sent
back to the MnS Cosumer.

It is also possible that a MnS Producer removes attributes received in the request and includes only a subset of the
received attributes in the response.

When the created resource has child resources that are included in the schema definition of the created resource, a
representation of these child resources shall neither be included in the resource representation sent to the MnS Producer
nor in the resource represententation returned to the MnS Consumer. Including child resources would be an attempt to
create multiple resources with a single request. HTTP POST shall be used for the creation of a single resource only.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)163GPP TS 32.158 version 18.0.0 Release 18

Only resources, whose parent resource does exist, can be created (directly under that parent). The MnS Producer shall
consider an attempt to create a resource, whose parent resource does not exist, as an error.

Note that the parent resource of resources for top-level (root) managed object instances is the NRM root. The NRM root
always exists on MnS producers. This ensures that, when no resources for managed object instances have been created
yet, the top-level resources can be created.

5.1.2 Creating a resource with identifier creation by the MnS Consumer

Operations to create a (single) resource shall be specified with the HTTP PUT method, when the MnS Consumer
creates the identifier of the new resource.

Figure 5.1.2-1: Flow for creating a resource with HTTP PUT

The procedure is as follows:

1) The MnS Consumer sends an HTTP PUT request to the MnS Producer. The target URI identifies the location of
the resource to be created. The target URI shall have no query and no fragment component. The message body
shall carry the representation of the resource to be created. The representation shall include the identifier and
object class name of the new resource.

2) The MnS Producer returns the HTTP PUT response. On success, "201 Created" shall be returned. The Location
header shall carry the URI of the new resource. The response message body shall contain the representation of
the new resource. If the resource representation received is not modified, the MnS Producer may also return "204
No Content", instead of "201 Created". The response message body shall be empty in this case. On failure, the
appropriate error code shall be returned. The response message body may provide additional error information.

As for resource creation with HTTP POST, the resource representation in the request and response message may not be
identical and may not contain all properties (attributes) that may be defined in a schema specifying the format of the
representation. Also, just like for resource creation with HTTP POST, the resource representation sent to the MnS
Producer or returned to the MnS Consumer shall not contain the representation of any child resources of the resource to
be created.

As to the existence of parent resources for the resources to be created, the considerations set forth in the preceding
clause for HTTP POST apply.

5.2 Design pattern for reading a resource
Operations to read the representation of a resource shall be specified with the HTTP GET method. The resource to be
read is identified with a URI.

Figure 5.2-1: Flow for reading a resource

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)173GPP TS 32.158 version 18.0.0 Release 18

The procedure is as follows:

1) The MnS Consumer sends a HTTP GET request to the MnS Producer. The resource to be read is identified with
the target URI. The target URI shall have no query and no fragment component. The "Accept" header shall be
included in the request and contain the media types acceptable to the MnS Consumer. The message body shall be
empty.

2) The MnS Producer returns the HTTP GET response. On success, "200 OK" shall be returned. The resource
representation is carried in the response message body. On failure, the appropriate error code shall be returned.
The response message body may provide additional error information.

5.3 Design pattern for updating a resource
Operations to update the complete representation of a (single) resource shall be specified with the HTTP PUT method.
The resource to be updated is identified with the target URI.

 Figure 5.3-1: Flow for updating a resource

The procedure is as follows:

1) The MnS Consumer sends an HTTP PUT request to the MnS Producer. The resource to be updated is identified
with the target URI. The target URI shall have no query and no fragment component. The message body carries
the new representation that shall completely replace the existing resource representation on the MnS Producer.

2) The MnS Producer returns the HTTP PUT response to the MnS Consumer. On success, "200 OK" or "204 No
Content" shall be returned. In the former case the response shall carry the representation of the updated resource
in the message body. In the latter case the response shall have no message body. A "200 OK" response including
the representation of the updated resource shall be sent when the updated representation of the resource is not
identical to the representation received in the request. On failure, the appropriate error code shall be returned.
The response message body may provide additional error information. In case the resource does not exist, the
resource shall be created if resource creation by MnS consumers is supported for that resource (see clause 5.1.2).

Note that the HTTP PUT method has replace semantics and not merge semantics. A complete resource update in this
context does not mean that all properties (attributes) defined by a schema for the representation of the resource need to
be contained in the request, but that the existing representation on the MnS producer is replaced completely by the
received representation (assuming no default values are defined for any of the attributes of the resource and the MnS
Producer does not populate any of the attributes not received in the request with a value).

For example, assume the schema for the representation of a resource defines the attributes "attrA", "attrB" and "attrC".
No default value is defined for these attributes. The current representation of the resource on the MnS Producer contains
only "attrA" and "attrB".

- To update "attrA" and "attrB", the received resource representation needs to contain "attrA" with the new value
and "attrB" with the new value.

- To update only "attrA", the received resource representation needs to contain "attrA" with the new value and
"attrB" with the old value. Sending only a representation with "attrA" deletes "attrB" on the MnS Producer. Vice
versa, to update only "attrB", the received resource representation needs to contain "attrA" with the old value and
"attrB" with the new value. Sending only a representation with "attrB" deletes "attrA" on the MnS Producer.

- In case the received representation contains only "attrC" with some value, the new representation after the update
contains only "attrC". The existing attributes "attrA" and "attrB" are deleted.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)183GPP TS 32.158 version 18.0.0 Release 18

As for resource creation with HTTP PUT, this behavior is modified if default values are defined for attributes or if the
MnS Producer populates attributes not contained in the HTTP PUT request with values. In both cases these attributes
shall be returned in the response with the default value or assigned value.

Also, as for resource creation with HTTP PUT, a MnS Producer may modify attribute values included in the request and
return the modified values to the MnS Consumer, or remove attributes received in the request and include only a subset
of the received attributes in the response.

When the target resource has child resources that are included in the schema definition of the target resource, the
representation of these child resources shall neither be included in the resource representation sent to the MnS Producer
nor in the resource representation returned to the MnS Consumer. The overwrite semantic of PUT refers only to the
target resource and not to child resources.

5.4 Design pattern for deleting a resource
Operations to delete the representation of a (single) resource shall be specified with the HTTP DELETE method. The
resource to be deleted is identified with the target URI in the request message.

Figure 5.4-1: Flow for deleting a resource

The procedure is as follows:

1) The MnS Consumer sends an HTTP DELETE request to the MnS Producer. The resource to be deleted is
identified with the URI. The target URI shall have no query and no fragment component. The message body is
empty.

2) The MnS Producer returns the HTTP DELETE response to the MnS Consumer. On success, "204 No Content"
shall be returned. The response message body shall be empty. On failure, the appropriate error code shall be
returned. The response message body may provide additional error information.

When resources are structured with parent-child relations in a hierarchical tree, it shall not be possible to delete other
resources than leaf resources. Attempts to delete other resources shall result in an error and the "409 Conflict" status
code shall be returned by the MnS Producer.

5.5 Design pattern for subscribe/notify

5.5.1 Concept

HTTP is based on requests and responses. There is no built-in support for notifications and subscriptions to
notifications. These mechanisms need to be modelled based on special subscription resources and the available HTTP
methods. When notifications are used the server shall expose at least one subscription resource.

5.5.2 Subscription creation

To subscribe to notifications the subscriber shall send an HTTP POST request to the subscription resource.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)193GPP TS 32.158 version 18.0.0 Release 18

Figure 5.5.2-1: Flow for creating a subscription

The procedure is as follows:

1) The MnS Consumer (notification subscriber) sends an HTTP POST request to the MnS Producer. The URI shall
indicate a subscriptions collection resource. The resources representing existing subscriptions are created below
the collection resource. The subscriber shall indicate in the message body the URI to which notifications will be
sent (notification sink) and the type of notifications that are subscribed to. Additional filter information may be
included in the message body.

2) The MnS Producer shall return "201 Created" on success. The message body shall carry the representation of the
created subscription resource. The "Location" header shall carry the URI of the created subscription resource. On
failure, the appropriate error code shall be returned. The response message body may provide additional error
information.

5.5.3 Subscription deletion

To cancel a subscription, the subscriber shall delete the corresponding resource with HTTP DELETE.

Figure 5.5.3-1: Flow for deleting a subscription

The procedure is as follows:

1) The MnS Consumer (notification subscriber) sends an HTTP DELETE request to the MnS Producer. The URI
shall indicate the subscription resource to be deleted.

2) The MnS Producer returns the HTTP DELETE response to the MnS Consumer. On success, "204 No Content"
shall be returned. The message body shall be empty. On failure, the appropriate error code shall be returned. The
response message body may provide additional error information.

5.5.4 Notification emission

To send a notification on the occurrence of a notifiable event the MnS Producer sends an HTTP POST request to the
notification sink.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)203GPP TS 32.158 version 18.0.0 Release 18

Figure 5.5.4-1: Flow for sending a notification

The procedure is as follows:

1) The MnS Producer sends an HTTP POST request to the MnS Consumer. The URI identifies the notification
sink. The notification content shall be included in the message body.

2) The MnS Consumer returns "204 No Content". The message body shall be empty. On failure, the appropriate
error code shall be returned. The response message body may provide additional error information.

This design pattern requires the MnS Producer (HTTP server) to contain a reduced feature HTTP client for sending
HTTP POST requests and receiving HTTP POST responses, and vice versa, the MnS Consumer (HTTP client) to
contain a reduced feature HTTP server for receiving HTTP POST requests and sending HTTP POST responses.

5.5.5 Subscription retrieval

The subscriber can retrieve the information about a specific subscription by invoking the HTTP GETmethod on the
URI returned by the server upon creation of this subscription. Information about all subscriptions can be read by
invoking the HTTP GET method on the subscriptions collection resource.

Figure 5.5.5-1: Flow for subscription retrieval

The procedure is as follows:

1) The MnS Consumer sends an HTTP GET request to the MnS Producer. The URI specifies the subscription
resource or subscriptions collection resource to be read.

2) The MnS Producer returns the HTTP Get response. On success, "200 OK" shall be returned. The representation
of the subscription resource or subscriptions collection resource shall be carried in the response message body.
On failure, the appropriate error code shall be returned. The response message body may provide additional error
information.

6 Advanced design patterns

6.1 Design pattern for scoping and filtering

6.1.1 Introduction

In stage 2 specifications a scope construct is often used for selecting multiple managed object instances. The scope
construct, together with a so called base managed object instance, selects a set of object instances from the name-

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)213GPP TS 32.158 version 18.0.0 Release 18

containment tree starting at the document root. This set contains some or all object instances name-contained by the
base object instance. It may contain the base object itself.

In operations, the base object instance and the scope construct are specified as an input parameter. In NRM control
fragments, the base object instance is the object instance that name-contains the control object instance of the NRM
control fragment, and the scope construct is an attribute of the control object instance.

A filter construct is also often used in stage 2 specifications to select a subset of the managed object instances selected
by the base managed object instance and scope construct. The filter is specified in operations as input parameter and in
NRM control fragments as an attribute of a control object.

When scoping and filtering is specified using NRM control fragments, no special considerations are required for the
REST SS, since the scope construct and the filter are normal attributes of a managed object.

When scoping and filtering is specified as part of the input parameters of an operation, however, it is necessary to
define how to map these parameters in the REST SS.

6.1.2 Query parameters for scoping

Scoping may be supported by the HTTP GET method. It is not supported by any other method.

The URI path component identifies the base resource. The URI query component shall be used for carrying the scope
construct. Multiple query parameters shall be separated by an ampersand character ("&").

With one query parameter the base resource and all resources until the level indicated by the query parameter can be
selected. When the value of the query parameter is set to infinite, the complete subtree starting at the base resource is
selected.

Two query parameters for scoping allow for more sophisticated selection methods.

An example scoping method uses a "scopeType" and a "scopeLevel" query parameter. The allowed values are defined
in Table 6.1.2-1.

Table 6.1.2-1: Allowed values of the "scopeType" query parameter

Value Description
BASE_ONLY Selects only the base resource. The "scopeLevel" parameter shall be absent or ignored if

present. This is also the default case, when no "scopeType" query parameter is present in
the request.

BASE_ALL Selects the base resource and all of its descendant resources (incl. the leaf resources). The
"scopeLevel" parameter shall be absent or ignored if present.

BASE_NTH_LEVEL Selects all resources on the level, which is indicated by the "scopeLevel" parameter, below
the base resource. The base resource is at "scopeLevel" zero.

BASE_SUBTREE Selects the base resource and all of its descendant resources down to and including the
resources on the level indicated by the "scopeLevel" parameter. The base resource is at
"scopeLevel" zero.

6.1.3 Query parameters for filtering

Filtering may be supported by the HTTP GET method. It is not supported by any other method.

The URI query component shall be used for carrying the filter expression. The name of the query parameter is "filter".

Jex [21] shall be used for specifying the filter expression.

The Jex expression is applied to a JSON document document constructed based on the following rules:

- The document element is the object identified by the path component of the target URI. If the path component of
the target URI identifies the NRM root (see clause 4.4.4), then the element name of the document element shall
be "nrmRoot". The "nrmRoot" element contains the element nodes coming from the top-level objects as its
children.

- The document includes scoped objects only.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)223GPP TS 32.158 version 18.0.0 Release 18

- The document is constructed with the scoped objects using the hierarchical response construction method
defined in clause.6.1.4.

A valid XPath expression returns a flat list of selected resources. Name-contained resources included in the selected
resources shall be removed before constructing the final response message according to clause 6.1.4.

The Jex expression needs to be percent-encoded as described in clause 2 and 3.4 of RFC 3986 [4].

Note that NRM objects and NRM attributes are both mapped to element nodes. The children of an element node
representing a NRM object are hence the NRM attributes of that NRM object or the name-contained NRM objects. This
needs to be taken into account when constructing a location path for selecting element nodes representing NRM objects
or NRM attributes.

6.1.4 Construction rules for the response message body

When multiple resources are selected for retrieval by HTTP GET, the response message body with the selected resource
set shall be constructed according to one of the following rules.

Flat response construction method: The resources are returned as a flat list of JSON objects. Their location in the
hierarchical containment tree shall be specified by, e.g. , their URI or Distinguished Name (DN) which needs to be
returned for each resource. The object class name of each resource should be returned as well.

Hierarchical response construction method: The resources are returned inside the containment tree as specified by the
JSON schema definition of the information model. For the resources that are not selected, the following applies:

- A resource is not returned at all if it is not an ancestor of any of the selected resources.

- A resource is returned empty, except for the resource identifiers, if it is a descendant of the base resource and an
ancestor of any of the selected resources

The containment tree present in the response message shall always start with the base resource.

If no resource is identified in the retrieval request the MnS Producer shall return a "204 No Content" response.

The following media types shall be used to distinguish the flat and the hierarchical response representation:

- application/vnd.3gpp.object-tree-flat+json,

- application/vnd.3gpp.object-tree-hierarchical+json.

The "application/json" media type may be used alternatively and defaults to the hierarchical representation format.

The MnS Consumer shall indicate the acceptable representations in the "Accept" header, as described in clause 4.3.2.
One or multiple media types may be specified. If the MnS Producer cannot provide an acceptable representation, a "406
Not Acceptable" error response shall be returned. The MnS Consumer may send a second request with another media
type specified in the "Accept" header.

6.2 Design patterns for attribute and attribute field selection

6.2.1 Introduction

This design pattern allows to specify attributes of resources selected by the target URI.

Often attributes have no scalar values but are complex structured data types with an own hierarchy and many attribute
fields. In this case it may be desirable to identify not only the complete attribute but also individual attribute fields.

The attributes or attribute fields to be returned shall be specified in the query part of the URI.

Attribute selection or attribute field selection may be supported by the HTTP GET method. It is not applicable to any
other method.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)233GPP TS 32.158 version 18.0.0 Release 18

6.2.2 Query parameters for attribute and attribute field selection

In case one or more attributes (with all attribute fields) are to be retrieved, the name of the query parameter shall be
"attributes". The value of "attributes" shall be a list with the names of the attributes to be selected. Attribute names are
separated by a comma (","). An empty "attributes" query parameter is allowed and has the special meaning that no
attributes shall be returned.The naming attribute "id" shall always be returned.

In case one or more fields of one or more attributes are to be retrieved, the name of the query parameter shall be
"fields". The value of "fields" shall be a comma (",") separated list of entries that follow the syntax of JSON Pointer in
JSON String Representation [14]. The context resource for the construction of the JSON Pointer is the resource
identified by the target URI.

Note that for multi-valued attributes the selection of one or multiple attribute elements is not supported with this pattern.
Furthermore, conditional attribute or attribute field selection is not supported.

6.2.3 Construction rules for the response message body

In a first step the resource identified by the target URI, or the set of resources identified by the target URI and the scope
and filter parmeters, is determined. Then, in a second step, resources that do not contain at least one attribute identified
by the "attributes" parameter or one attribute field identified by the "fields" parameter shall be removed from the output
set of the first step. In the last step all attributes and attribute fields not identified by "attributes" and "fields" shall be
removed from the remaining resource representations.

This result set is then used to construct the final response using either the hierarchical or the flat construction method,
both defined in clause 6.1.4.

If no resource is identified in the retrieval request the MnS producer shall return an error response with "404 Not
Found" in the status line.

6.3 Design pattern for partially updating a resource

6.3.1 Introduction

HTTP PUT allows to replace (overwrite) a complete resource on the MnS Producer with the new representation in the
request body. It cannot be used for partial updates of a resource.

For partial updates of a single resource HTTP PATCH (RFC 5789 [11]) shall be used. With PATCH, a set of changes to
be applied to the target resource is described in the request message body. The set of changes carried in the message
body is called patch document. The format of the patch document is identified by its media type. RFC 5789 [11] does
not define any patch format, only the PATCH method.

The HTTP PATCH method is atomic, as per RFC5789 [11]. The MnS Producer shall apply the entire set of changes
atomically and never provide (e.g., in response to a GET during this operation) a partially modified representation. If
the entire patch document cannot be successfully applied, then the MnS Producer shall not apply any of the changes.
PATCH thus has transaction semantics.

For JSON, IETF has defined two patch formats for the use with the HTTP PATCH method: JSON Merge Patch (RFC
7396 [12]) and JSON Patch (RFC 6902 [13]). The usage of these patch formats is described in the following clauses.

6.3.2 JSON Merge Patch

RFC 7396 [12] specifies a simple patch format for JSON documents called JSON Merge Patch. It allows to describe a
set of modifications to be applied to the target resource representation. The JSON Merge Patch document is a partial
representation of the resource to be patched. JSON Merge Patch works at the level of name/value pairs. The received
patch document is merged into the target resource representation. The media type of the patch document is
"application/merge-patch+json".

Three types of patches are described in RFC 7396 [12]:

1) Replacing the value of an already existing name/value pair by a new value.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)243GPP TS 32.158 version 18.0.0 Release 18

2) Adding a new name/value pair.

3) Removing an existing name/value pair.

The target resource is identified by the target URI. The target URI shall have no query and no fragment component. The
target resource needs to exist, otherwise the error status code "404 Not Found" shall be returned.

The "id" of the resource shall be present in the patch document and shall be identical to the "id" of the patched resource
in the request URI. This ensures uniformity of resource representations in message bodies, though, strictly speaking, the
presence of the "id" in the patch document is redundant.

JSON Merge Patch does not allow manipulation of arrays other than replacing the complete array value (an array with
all present items) with a new value (an array with all new items). It is not possible to change individual items in an array
or to add/delete individual items.

Figure 6.3.2-1: Flow for partially updating a resource with JSON Merge Patch

The procedure flow is as follows:

1) The MnS Consumer sends an HTTP PATCH request to the MnS Producer. The resource to be updated is
identified with the target URI. The message body shall carry the JSON Merge Patch document describing a set
of modifications to be applied to the target resource.

2) The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together
with the complete representation of the updated resource in the message body or "204 No Content" shall be
returned. On failure, the appropriate error code shall be returned. The response message body may provide
additional error information.

JSON Merge Patch shall be used for patching the target resource only. The patch format shall not be used for creating,
modifying or deleting child resources of the target resource in the same request, even if the child resources are included
in the schema definition of the target resource. This limitation is introduced, because child resources (of one object
class) are represented as items of an array that is a property of the target resource (alongside with the attributes of the
target resource), and JSON Merge Patch does not allow to modify individual array items. With JSON Merge Patch, only
the complete array value with the representations of all child resources (of one class) could be replaced. Note that child
resources can have child resources as well. The patch document would hence need to include the representations of all
descendant resources. This is very inefficient and against the principle of PATCH to provide the changes only.

The following examples demonstrate the usage of JSON Merge Patch. Assume an "XyzFunction" resource has no
attribute "attrA" yet, then the following PATCH request creates it.

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/merge-patch+json

{
 "id": "XYZF1",
 "attributes": {
 "attrA": "abc"
 }
}

The following subsequently executed PATCH request replaces its value with "def".

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/merge-patch+json

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)253GPP TS 32.158 version 18.0.0 Release 18

{
 "id": "XYZF1",
 "attributes": {
 "attrA": "def"
 }
}

This PATCH request deletes the attribute.

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/merge-patch+json

{
 "id": "XYZF1",
 "attributes": {
 "attrA": null
 }
}

6.3.3 JSON Patch

The JSON Patch format is specified in RFC 6902 [13]. The patch document is a JSON array. Each array item is a JSON
object describing a modification to be applied to the target resource. The modifications shall be applied to the target
resource sequentially in the order they appear in the array. The media type of JSON Patch is "application/json-
patch+json".

Each modification is defined by three properties: The operation ("op"), the identification of the secondary resource
within the target resource to be manipulated ("path") and a value ("value"). When removing a secondary resource, the
"value" property is absent. When moving or copying an existing value, the "value" property is absent, too, and the
"from" property is present instead. The "from" property identifies the secondary resource, whose value is moved or
copied to the location specified by the "path" property. The value of the "from" and "path" property is a JSON Pointer
in string representation as defined in section 5 of IETF RFC 6901 [14].

In contrast to JSON Merge Patch, JSON Patch allows to modify individual items of an array. Array items are identified
based on their position (index) in an array. The first item has the index "0". The "-" character is used by the operations
"add" and "move" to index the end of the array for appending a new array item. Its use in any other operation is
forbidden.

The target URI identifies the resource to be modified. As for JSON Merge Patch, the target URI shall have no query and
no fragment component. The target resource needs to exist, otherwise the error status code "404 Not Found " shall be
returned.

Figure 6.3.3-1: Flow for partially updating a resource with JSON Patch

The procedure flow is as follows:

1) The MnS Consumer sends an HTTP PATCH request to the MnS Producer. The resource to be updated is
identified with the target URI. The message body shall carry a JSON Patch document describing a set of
modification instructions to be applied to the target resource.

2) The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together
with the representation of the updated resource in the message body or "204 No Content" shall be returned. On
failure, the appropriate error code shall be returned. The response message body may provide additional error
information.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)263GPP TS 32.158 version 18.0.0 Release 18

As JSON Merge Patch, also JSON Patch shall be used for patching the target resource only. The patch format shall not
be used for creating, modifying or deleting child resources of the target resource in the same request, even if the child
resources are included in the schema definition of the target resource. This is because JSON Patch can address items in
an array only based on the position of the item in the array, and not based on an identifier independent from the position
of the item in the array. A patch document could hence not address descendant resources of the target resource based on
their "id". This is prone to conflicts in multi-client scenarios, where the position of resource items in an array can
change due to the concurrent creation or deletion of resource items in the same array. Risk mitigation would require
complex ETag calculations in the resource hierarchy.

The JSON Patch document is described by the folloing JSON schema fragment.

{
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "op": {
 "enum": [
 "add",
 "replace",
 "remove",
 "copy",
 "move",
 "test"
]
 },
 "from": {
 "type": "string"
 },
 "path": {
 "type": "string"
 },
 "value": {}
 },
 "required": [
 "op",
 "path"
]
 }
}

The schema for the "value" property is the list (constructed with "anyOf") of the NRM schema fragments for all
resource representations, and the NRM schema fragments for the values of all attributes and attribute fields. The NRM
schema normally contains many NRM schema fragments of these kinds. For that reason it is normally not practicable to
list all NRM schema fragments defining the allowed values of the "value" property. In addition, the resource, attribute
or attribute field identified in the "path" property cannt be related by the schema itself to its value schema. For these
reasons, the schema "{}" is normally used, which is the shorthand syntax for a schema without any type.

The following example adds a new attribute "attrA" to an "XyzFunction" (assuming "attrA" does not exist yet).

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "add",
 "path": "/attributes/attrA",
 "value": "abc"
 }
]

The following example replaces the value of "attrA" with "def".

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "replace",

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)273GPP TS 32.158 version 18.0.0 Release 18

 "path": "/attributes/attrA",
 "value": "def"

 }
]

It is not an error if the "path" property of an "add" operation specifies an object member that exists already. In this case
the value of the specified object member is replaced. The following patch request has hence the same effect as the patch
request in the example above. In both cases the value of "attrA" is replaced with "def".

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "add",
 "path": "/attributes/attrA",
 "value": "def"
 }
]

The following patch document has not the same effect as both examples above. It does not replace the value of "attrA"
with a new value. Instead, it replaces the value of the "attributes" object with a value that is an object and has a single
member, the "attrA" property (attribute), thereby deleting all other attributes, that may exist when the patch request is
received.

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "replace",
 "path": "/attributes",
 "value": {
 "attrA": "def"
 }
 }
]

To remove the attribute "attrA" the MnS Consumer may send.

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "remove",
 "path": "/attributes/attrA",
 }
]

When the attribute to be added is a JSON array, the "value" property contains an array. In the following example the
array has two items of type string.

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "add",
 "path": "/attributes/attrB",
 "value": ["abc", "def"]
 }
]

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)283GPP TS 32.158 version 18.0.0 Release 18

To add a new item to an existing array, the "path" property needs to specify the array index where the item is to be
added. For example, the following PATCH request adds the array item "xyz" after the first array item.

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "add",
 "path": "/attributes/attrB/1",
 "value": "xyz"
 }
]

Note that the "test" operation can be used to construct conditional patch requests. In the following example the "attrA"
value is replaced only with "ghi" if the current value is "def", otherwise the test operation fails and the complete patch
request is not applied.

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "test",
 "path": "/attributes/attrA",
 "value": "def"
 },
 {
 "op": "replace",
 "path": "/attributes/attrA",
 "value": "ghi"
 }
]

Conditional patch requests based on the "test" operation are limited to conditions related to secondary rersources
(attributes) of the target resource. It is not possible to point to secondary resources outside of the target resource using
the "path" property.

Multiple test operations can be combined to construct requests with multiple conditions. All conditions need to evaluate
to true for the patch document to be applied. In other words, the test operations are linked with a logical "and" operator.

6.4 Design patterns for patching multiple resources

6.4.1 Introduction

Clause 6.1 discusses a method for retrieving multiple resources with a single HTTP GET request. This clause specifies
methods allowing to manipulate (create, update, delete) multiple resources with a single request.

The specified methods use the HTTP PATCH method and provide extensions to the JSON Merge Patch and JSON
Patch formats. As described in clause 6.3, JSON Merge Patch and JSON Patch are used for partial updates of a single
resource. The extensions specified in the following clauses are designed to allow for efficient manipulation of multiple
resources with a single HTTP PATCH request. The target resource and all its descendant resources are ascessible with a
single request. The extended patch formats are called 3GPP JSON Merge Patch and 3GPP JSON Patch.

Note that the HTTP PATCH method is atomic as explained in clause 6.3.1.

6.4.2 3GPP JSON Merge Patch

3GPP JSON Merge Patch is a 3GPP defined extension to JSON Merge Patch (RFC 7396 [12]). It allows, using a single
patch document, to update the target resource (as does JSON Merge Patch) and to update, create or delete descendant
resources, which JSON Merge Patch does not allow, at least not in an efficient manner. This is achieved by relaxing for
arrays that contain resources (of a single object class) as array items the constraint that the complete updated array value
needs to be provided in the merge document. Instead, only resources to be manipulated are present in the patch

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)293GPP TS 32.158 version 18.0.0 Release 18

document. These resources are identified with their "id". Resources that are not manipulated are either absent or present
with their "id" only, when this is required to navigate along the containment tree to the resource to be patched. In other
words, the rules of the hierarchical response construction method (clause 6.1.4) apply also when constructing the 3GPP
JSON Merge Patch document.

The merge semantic of JSON Merge Patch is hence extended to descendant resources of the target resource. Note that
the behaviour of patching attributes of type array does not change in 3GPP JSON Merge Patch compared to JSON
Merge Patch. The complete updated array value needs to be provided for attributes of type array also in a 3GPP JSON
Merge Patch document. It is not possible to patch individual array items only.

As for JSON Merge Patch, the target URI shall have no query and no fragment component. The target resource needs to
exist, otherwise the error status code 404 (Not Found) shall be returned. The target URI shall identify a resource that is
a common ancestor of the resources to be patched. The patch document itself shall start with the resource identified by
the target URI.

A resource is deleted by setting the "attributes" property of the resource to "null". In case a complete subtree is deleted,
all resources from the base resource of the subtree down to the leaf resources shall be marked for deletion. When
creating new resources, the object class name of the resource to be created shall be contained in the patch document for
the resources to be created.

The media type of 3GPP JSON Merge Patch is "vnd.3gpp.merge-patch+json". This media type is defined by 3GPP. It is
not registered with IANA. Patch documents using this media type need to conform to the "application/json" media type.

The procedure is as follows:

1) The MnS Consumer sends an HTTP PATCH request to the MnS Producer. The message body shall carry a
3GPP JSON Merge Patch document describing a set of modification instructions to be applied to the identified
resources.

2) The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together
with the representation of the updated and created resources, constructed according to the hierarchical response
construction method described in clause 6.1.4, in the message body or "204 No Content" shall be returned. On
failure, the appropriate error code shall be returned. The response message body may provide additional error
information.

6.4.3 3GPP JSON Patch

3GPP JSON Patch is a 3GPP defined extension to JSON Merge Patch (RFC 6902 [13]).

Like 3GPP JSON Merge Patch, it allows, using a single patch document, to update the target resource (as does JSON
Patch) and to update, create or delete descendant resources, which JSON Patch does not allow, at least not based on
resource identifiers.

This extension is that the "path" and "from" properties of a patch operation define an offset to the target resource as
specified by the request URI. This offset is relative to the target URI. It has a first component pointing to a resource
below the target resource, and a second component pointing to a secondary resource within the resource identified by
the first component.

The first component of "path" or "from" is built from URI path components. It follows the same syntax as the path
components of the target URI. The second component is a URI fragment with a JSON pointer in the URI fragment
identifier representation as defined in clause 6 of RFC 6901 [14], i.e. the second component starts with the "#"
character. Both components are concatenated without a delimiter.

For example, assume the target URI is "/SubNetwork=SN1" and the "userLabel" attribute of a child of class
"ManagedElement" with the id "ME1" is to be patched, then the first path component is "/ManagedElement=ME1/" and
the second path component is "#attributes/userLabel". This results in the following path:

"path": "/ManagedElement=ME1/#attributes/userLabel".

The target URI shall identify a common ancestor resource of the resources to be patched, or the NRM root.

Note that when one or more root resources are patched, the target URI identifies always the NRM root. When no root
resources are patched, the MnS producer has a choice as to the target resource. For example, assume the resource with
the URI

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)303GPP TS 32.158 version 18.0.0 Release 18

"http://example.com/3gpp/ProvMnS/v 1700/ManagedElement=ME1/XyzFunction=XYZF1"

is patched. Then the target resource is either the parent resource of the patched resource, in this case the root resource,

"example.com/3gpp/ProvMnS/v1700/ManagedElement=ME1"

or the NRM root.

"example.com/3gpp/ProvMnS/v1700".

Setting the target resource always to the NRM root is hence a possible implementation option for MnS Consumers.

When creating new resources ("op"="add"), the object class name of the resource to be created shall be included in the
"value" property of the operation. The "replace" operation is not applicable when the "path" identifies a resource.

The media type of 3GPP JSON Merge Patch is "3gpp-patch+json". This media type is defined by 3GPP and is not
registered with IANA. Patch documents using this media type need to conform to the "application/json" media type.

The procedure is as follows:

1) The MnS Consumer sends a HTTP PATCH request to the MnS Producer. The message body carries a 3GPP
JSON Patch document describing a set of modification instructions (patch items) to be applied to the identified
resources. The "Accept" header shall be included in the request and specify the media types acceptable to the
MnS Consumer for "200 OK" or "204 No Content" responses.

2) The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together
with the representation of the updated and created resources, constructed according to either the flat or hierarchical
response construction method described in clause 6.1.1, in the message body or "204 No Content" shall be returned.
On failure, the appropriate error code shall be returned. The response message body may provide additional error
information.

A single operation in a 3GPP JSON Patch document shall patch a single (primary) resource only. Different operations
in a patch document can patch different resources though. The consequence of this restriction is for example that
subtrees with multiple resources cannot be created or deleted with a single patch operation. Each resource needs to be
created or deleted with an own patch operation in the patch document. This behaviour is aligned with those of the PUT
and DELETE methods.

Note that the "replace" operation of (3GPP) JSON Patch has replace semantics like PUT and not merge semantics like
JSON Merge Patch. When multiple attributes or attribute fields of a resource are patched, then a patch operation for
each update is required, for example:

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/vnd.3gpp.json-patch+json
Accept: application/json
[
 {
 "op": "replace",
 "path": "#/attributes/userLabel",
 "value": "Berlin NW-1"
 },
 {
 "op": "replace",
 "path": "#/attributes/plmnId/mcc",
 "value": 654
 }
]

To streamline partial updates of single resources, 3GPP JSON Patch introduces a new patch operation named "merge".
For that operation, the JSON object contained in the "value" property shall be merged into the target resource
referenced by "path" using the rules of JSON Merge Patch (RFC 7396 [12]). An MnS Producer shall verify if a "merge"
operation is for a single resource by checking if the "path" property contains the string "#/attributes" and shall reject the
request with "422 Unprocessable Entity" if it doesn't.

With the "merge" operation, the updates in the previous example can be expressed as follows.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)313GPP TS 32.158 version 18.0.0 Release 18

Content-Type: application/vnd.3gpp.json-patch+json
Accept: application/json
[
 {
 "op": "merge",
 "path": "#/attributes",
 "value": {
 "userLabel": "Berlin NW-1",
 "plmnId": {
 "mcc": 654
 }
 }
 }
]

The following example is invalid. It attempts to patch, besides the target resource, which is allowed, the contained
"ManagedElement" resources, which is not allowed.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/vnd.3gpp.json-patch+json
Accept: application/json
[
 {
 "op": "merge",
 "path": "",
 "value": {
 "attributes": {
 "userLabel": "Berlin NW-1",
 "plmnId": {
 "mcc": 654
 }
 },
 "ManagedElement": [
 {
 ...
 }
]
 }
 }
]

In the same way as JSON Patch allows to construct conditional patch requests using the "test" operation, 3GPP JSON
Patch can be used to construct condititional patch requests where the condition is expressed with the "test" operation. In
contrast to JSON Patch, however, the condition may be based on attribute values outside of the patched resource.

For example, the following patch document replaces the value of "attrA", which is an attribute of a "XyzFunction"
resource whereas the condition relates to an attribute in the "SubNetwork" resource.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json
Accept: application/json
[
 {
 "op": "test",
 "path": "#/attributes/userLabel",
 "value": "Berlin NW"
 },
 {
 "op": "replace",
 "path": "/ManagedElement=ME1/XyzFunction=XYZF1#/attributes/attrA",
 "value": "ghi"
 }
]

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)323GPP TS 32.158 version 18.0.0 Release 18

6.5 Design pattern for large queries
Clauses 6.1 and 6.2 have introduced a pattern that allows querying resources by passing query parameters in the query
part of the target URI of a GET request. However, there can be scenarios where the query string can get very long,
exceeding the URI length that can be expected to be supported by all implementations.

IETF RFC 7130 [5] recommends that a request URI length of at least 8000 octets should be supported. Further, IETF
RFC 7130 [5] requires that implementations shall respond with 414 (URI Too Long) in case the actual request URI is
longer than the supported request URI length.

When the URI length exceeds the supported limit, the query may be passed in the payload body of a POST request
instead of the target URI of a GET request. To signal that the semantics of this POST request is actually the same as a
GET request, the "X-HTTP-Method-Override: GET" HTTP header shall be included in the request.

If the data format of the query in the POST request payload body is a list of name-value pairs separated by the "&"
character (as defined in clauses 6.1 and 6.2 of the present document), the "Content-Type" header of the POST request
shall be set to "application/x-www-form-urlencoded". Using other data formats for long queries and signalling them
appropriately in the "Content-Type" request header is possible but needs to be documented in the specific MnS
documentation.

6.6 Design pattern for error responses

6.6.1 Introduction

If an error occurs on a MnS Producer during the processing of an HTTP request, the MnS Producer does not apply the
request and returns an error response to the MnS Consumer.

This clause describes first HTTP status codes to be used in error responses and then different error response message
body formats.

Note that the case of partial success, i.e. the case where some parts of the request are applied and some are not, is not
covered by this clause.

6.6.2 HTTP error codes

A status code of the classes 4xx (Client Error) or 5xx (Server Error) is returned to the MnS Consumer in the error
response status line. A complete list of error status codes is maintained by IANA.

Tables 6.6.2-1 and 6.6.2-2 list the status codes that shall be supported by MnS Producer and MnS Consumer
implementations compliant to this specification.

Table 6.6.2-1: Supported 4xx client error status codes

Error status code Reference Description
400 Bad Request IETF RFC 7231 [2] indicates that the server cannot or will not process the request

due to something that is perceived to be a client error (e.g.,
malformed request syntax, invalid request message framing, or
deceptive request routing).

403 Forbidden IETF RFC 7231 [2] indicates that the server understood the request but refuses to
authorize it.

404 Not Found IETF RFC 7231 [2] indicates that the origin server did not find a current
representation for the target resource or is not willing to disclose
that one exists.

405 Method Not Allowed IETF RFC 7231 [2] indicates that the method received in the request-line is known by
the origin server but not supported by the target resource.

406 Not Acceptable IETF RFC 7231 [2] indicates that the target resource does not have a current
representation that would be acceptable to the user agent,
according to the proactive negotiation header fields received in
the request (Section 5.3), and the server is unwilling to supply a
default representation.

408 Request Timeout IETF RFC 7231 [2] indicates that the server did not receive a complete request
message within the time that it was prepared to wait.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)333GPP TS 32.158 version 18.0.0 Release 18

410 Gone IETF RFC 7231 [2] indicates that access to the target resource is no longer available
at the origin server and that this condition is likely to be
permanent.

411 Length Required IETF RFC 7231 [2] indicates that the server refuses to accept the request without a
defined Content-Length field containing the length of the message
body in the request message.

413 Payload Too Large IETF RFC 7231 [2] indicates that the server is refusing to process a request because
the request payload is larger than the server is willing or able to
process.

414 URI Too Long IETF RFC 7231 [2] indicates that the server is refusing to service the request
because the request-target is longer than the server is willing to
interpret.

415 Unsupported Media
Type

IETF RFC 7231 [2] indicates that the origin server is refusing to service the request
because the payload is in a format not supported by this method
on the target resource.

422 Unprocessable Entity IETF RFC 4918
[17]

indicates the server understands the content type of the request
entity (hence a 415(Unsupported Media Type) status code is
inappropriate), and the syntax of the request entity is correct (thus
a 400 (Bad Request) status code is inappropriate) but was unable
to process the contained instructions.

426 Upgrade Required IETF RFC 7231 [2] indicates that the server refuses to perform the request using the
current protocol but might be willing to do so after the client
upgrades to a different protocol.

429 Too Many Requests IETF RFC 6585
[18]

indicates that the user has sent too many requests in a given
amount of time ("rate limiting").

451 Unavailable For Legal
Reasons

IETF RFC 7725
[20]

Identifies the entity that blocks access to a resource following
receipt of a legal demand.

Table 6.6.2-2: Supported 5xx server error status codes

Error status code Reference Description
500 Internal Server Error IETF RFC 7231 [2] Indicates that the server encountered an unexpected condition

that prevented it from fulfilling the request.
501 Not Implemented IETF RFC 7231 [2] indicates that the server does not support the functionality

required to fulfill the request.
502 Bad Gateway IETF RFC 7231 [2] indicates that the server, while acting as a gateway or proxy,

received an invalid response from an inbound server it accessed
while attempting to fulfill the request.

503 Service Unavailable IETF RFC 7231 [2] indicates that the server is currently unable to handle the request
due to a temporary overload or scheduled maintenance, which
will likely be alleviated after some delay.

504 Gateway Timeout IETF RFC 7231 [2] indicates that the server, while acting as a gateway or proxy, did
not receive a timely response from an upstream server it needed
to access in order to complete the request.

505 HTTP Version Not
Supported

IETF RFC 7231 [2] indicates that the server does not support, or refuses to support,
the major version of HTTP that was used in the request message.

A MnS Producer may use other error response codes as well. However, there is no guarantee that a MnS Consumer
understands the semantics beyond what is specified in clause 6 of IETF RFC 7231 [2]: "A client MUST understand the
class of any status code, as indicated by the first digit, and treat an unrecognized status code as being equivalent to the
x00 status code of that class".

6.6.3 Error response body

6.6.3.1 Overview

HTTP status codes provide high level error information. This is often not sufficient, for example in situations where the
MnS Producer wants to aid the MnS Consumer in generating a valid request. In these cases, the MnS Producer needs to
include an error response body in the response, that contains more details on the error than the error code can provide.

The error response body specified in the present document is an extension of the problem details object defined in IETF
RFC 7807 [19]. The following three properties of the problem details object are re-used for describing a problem:

- The optional "status" property that contains the status code for the error.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)343GPP TS 32.158 version 18.0.0 Release 18

- The mandatory "type" property that provides high level error information.

- The optional "title" that provides a short, human-readable summary of the problem type. It shall not change from
occurrence to occurrence of the problem.

Potential support for the "details" and "instance" properties is outside the provisions of the present document.

The three re-used properties are extended in the present document with the following property:

- The optional "reason" property" that provides more details on the error conditions than the "type" property.

The "status", "type", "title" and "reason" property are called generic problem details properties. They are applicable to
all HTTP methods and request media types. In addition, the following method specific properties are defined:

- The optional "badQueryParams" property that provides information about bad query parameters in GET
requests.

- The mandatory "badOp" property that specifies the operation in JSON Patch and 3GPP JSON Patch requests,
that cannot be satisfied.

- The optional "badAttributes" property provides information about bad attributes in PUT, POST, JSON Merge
Patch and 3GPP JSON Merge Patch requests.

- The optional "badObjects" property provides information about bad objects in 3GPP JSON Merge Patch
requests.

A single request may have more than one problem. This situation may occur for example when a GET request has
multiple bad query parameters, or when a PATCH request contains multiple bad operations. For that reason the optional
"otherProblems" property is provided that allows to return one ore more additional problem detail descriptions.

A MnS Consumer cannot assume that the returned list of problems is exhaustive and includes all problems in the
request. A MnS producer may stop processing the request upon detection of the first problem and return an error
response.

If all problems have the same error status code, that code shall be used in the status line of the error response. The
"status" property of each problem description may repeat that code. However, if the problems have different error
codes, the "207 Multi-Status" (IETF RFC4918 [???]) code shall be used in the response status line. The "status"
property related to each problem shall contain the specific status code.

The concrete format of the error response body depends on the request. The media type for all error response formats is
"application/vnd.3gpp.error+json". The following clauses provide the details.

6.6.3.2 Error response format for GET requests

Each problem is described by the generic problem detail properties, and the additional "badQueryParams" property. The
"type" property shall be present. The "status" property shall be present only under the conditions specified in clause
X.2.1.

A MnS Consumer cannot assume that the returned list of bad query parameters in "badQueryParams" includes all bad
parameters in the request. A MnS Producer may stop processing the request upon detection of the first bad query
parameter and return an error response.

The JSON schema for the error response body is as follows.

{
 "type": "object",
 "properties": {
 "status": {"type": "string"},
 "type": {"type": "string"},
 "reason": {"type": "string"},
 "title": {"type": "string"},
 "badQueryParams": {"type": "array","items": {"type": "string"}},
 "otherProblems": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "status": {"type": "string"},

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)353GPP TS 32.158 version 18.0.0 Release 18

 "type": {"type": "string"},
 "reason": {"type": "string"},
 "title": {"type": "string"},
 "badQueryParams": {"type": "array","items": {"type": "string"}}
 }
 }
 },
 "required": ["type"]
 },
 "required": ["type"]
}

6.6.3.3 Error response format for PUT, POST, DELETE, JSON Merge Patch and
3GPP JSON Merge Patch requests

The error response is a JSON array of JSON objects with the generic problem details, and the "badAttributes" and
"badObjects" properties. The "type" property shall be present. The "status" property shall be present only under the
conditions specified in clause 6.6.3. The "badObjects" property is applicable only for 3GPP JSON Merge Patch.

The value of "badAttributes" or "badObjects" is a pointer referencing the bad node. The pointer is is a relative URI and
constructed according to the rules defined in clause 6.4.3 for the "path" property of 3GPP JSON Patch.

A MnS Consumer cannot assume that the returned list of bad attributes in "badAttributes" or bad objects in
"badObjects" includes all bad attributes or bad objects in the request. A MnS Producer may stop processing the request
upon detection of the first bad attribute or object and return an error response.

The JSON schema for the error response body is as follows.

{
 "type": "object",
 "properties": {
 "status": {"type": "string"},
 "type": {"type": "string"},
 "reason": {"type": "string"},
 "title": {"type": "string"},
 "badAttributes": {"type": "array","items": {"type": "string"}},
 "badObjects": {"type": "array","items": {"type": "string"}},
 "otherProblems": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "status": {"type": "string"},
 "type": {"type": "string"},
 "reason": {"type": "string"},
 "title": {"type": "string"},
 "badAttributes": {"type": "array","items": {"type": "string"}},
 "badObjects": {"type": "array","items": {"type": "string"}}
 }
 }
 },
 "required": ["type"]
 },
 "required": ["type"]
}

6.6.3.4 Error response format for JSON Patch and 3GPP JSON Patch requests

Each problem is described by the generic problem detail properties, and the additional "badOp" property. The "type"
and "badOp" properties shall be present. The "status" property shall be present only under the conditions specified in
clause 6.6.3.

The patch operation, that cannot be satisfied, is identified with "badOp", whose value is a JSON Pointer identifying the
object with the bad patch operation in the request body.

The JSON schema for the error response body is as follows.

{
 "type": "object",

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)363GPP TS 32.158 version 18.0.0 Release 18

 "properties": {
 "status": {"type": "string"},
 "type": {"type": "string"},
 "reason": {"type": "string"},
 "title": {"type": "string"},
 "badOP": {"type": "string"},
 "otherProblems": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "status": {"type": "string"},
 "type": {"type": "string"},
 "reason": {"type": "string"},
 "title": {"type": "string"},
 "badOp": {"type": "string"}
 }
 }
 },
 "required": ["type", "badOp"]
 },
 "required": ["type", "badOp"]
}

6.6.4 The "type" property

The "type" property provides high level error information allowing to complement HTTP 4xx and 5xx error codes in
case this is necessary or desired. It provides more details on the nature of the problem than the HTTP error codes.
Problem types are specified for the following error response codes.

- 400 Bad Request

- 403 Forbidden

- 422 Unprocessable Content

- 500 Internal Server Error

- 503 Service Unavailable

Note that some error codes convey already all information that can be conveyed. For example, the "404 Not Found"
status code indicates that the target resource does not exist or has no current representation. It is hard to see which
information should be added to make the error response more helpful for the MnS Consumer.

The "type" property is an enumeration of string values. A MnS Producer should use the following values. Other values
may be used as well if deemed more appropriate for specific errors.

- VALIDATION_ERROR (HTTP error code: 400 Bad Request): The request message does not validate and
cannot be processed. Validation refers to two aspects: Validation of the received request message against the
JSON schema definition of the request message, and validation of the information model state after applying the
requested changes against the JSON schema definition of the information model, for example, if a new instance
of a certain object class is allowed to be contained under the class of the specified parent object.

- REQUEST_OBJECT_TREE_MISMATCH (HTTP error code: 422 Unprocessable Entity): The request message
is well formed and understood but cannot be completed due to the current state of the object tree on the MnS
Producer. For example, this reason is used when an object is requested to be created below a parent object that
does not exist.

- IE_NOT_FOUND (related error code: 400 Bad Request): The information element (object, attribute, attribute
field, attribute element) requested to be modified does not exist.

- MODIFICATION_NOT_ALLOWED (HTTP error code: 403 Forbidden): The requested modification is correct
and understood but not allowed.

- RETRIEVAL_NOT_ALLOWED (HTTP error code: 403 Forbidden): The retrieval request is well formed and
understood but the retrieval of the specified information is not allowed.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)373GPP TS 32.158 version 18.0.0 Release 18

- SERVER_LIMITATION (HTTP error code: 500 Internal Server Error): The request is well formed and
understood by the MnS Producer, but the MnS Producer cannot satisfy the request due to server limitations.

- SERVICE_DISABLED (HTTP error code: 503 Service Unavailable): The MnS Producer has disabled itself and
is currently unable or unwilling to handle the request. This condition may occur, for example, in overload
situations.

- APPLICATION_LAYER_ERROR (HTTP error code: 500 Internal Server Error): The request is well formed
and understood by the MnS Producer, but the MnS Producer cannot satisfy the request due to application layer
issues.

6.6.5 The "reason" property

6.6.5.1 Overview

The "reason" property provides more details on the error conditions than the "type" property. For client-side errors,
these reasons may provide hints to the MnS Consumer on how to generate a request without errors. For server-side
errors, they may help the MnS Consumer to generate requests that may be satisfied by the MnS Producer.

When multiple reasons apply, the most fundamental reason should be put in the "reasons" property. For example, when
a MnS Consumer attempts to replace an invariant attribute, and - in addition - the attribute value is invalid, then only the
information that the attribute is invariant shall be contained in the "reason" property.

The "reason" property may be omitted when the MnS Producer does not want to disclose details on the error to the MnS
Consumer.

Detailed error reasons are specified by the "reason" property for the following error codes:

- 400 Bad Request

- 403 Forbidden

- 422 Unprocessable Entity

- 500 Internal Server Error

Error reasons depend on the HTTP method, the patch format, and on if attributes or objects are manipulated. The
following clauses specify error reasons for the different cases. The provided reasons are not exhaustive. Other values
may be used as well. The name style of these enumeration literals shall follow clause 5.3.5.3 of 3GPP TS 32.156 [?].

6.6.5.2 Error reasons for GET

Valid values for the "reason" property for an error response related to HTTP GET are:

- RESPONSE_TOO_LARGE (related type: SERVER_LIMITATION, 500 Internal Server Error): The content
requested to be returned exceeds the response body size limit of the MnS Producer.

- NO_DATA_ACCESS (related type: SERVER_LIMITATION, 500 Internal Server Error): The request is correct
and understood by the MnS Producer, but the MnS Producer cannot access the requested data.

- QUERY_MALFORMED (related type: VALIDATION_ERROR, 400 Bad Request): The syntax of the query
component is malformed. The "badQueryParams" property shall be absent.

- QUERY_PARAM_NAMES_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One or more
query parameter names are invalid. The "badQueryParams" property shall indicate the names of the invalid
parameters.

- QUERY_PARAM_VALUES_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One or
more query parameters have an invalid value. The "badQueryParams" property shall indicate the names of the
parameters with invalid value.

- QUERY_PARAMS_MISSING (related type: VALIDATION_ERROR, 400 Bad Request): One or more query
parameters, that shall be present in the request or that shall be present in case another parameter is present, are

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)383GPP TS 32.158 version 18.0.0 Release 18

missing in the query component. The "badQueryParams" property shall indicate the names of the missing
parameters.

- QUERY_PARAMS_INCONSISTENT (related type: VALIDATION_ERROR, 400 Bad Request): Query
parameters with mutual dependency constraints do not respect these constraints. The "badQueryParams"
property shall indicate the names of the parameters not respecting the dependency constraints.

- ATTRIBUTES_NOT_READABLE (related type: RETRIEVAL_NOT_ALLOWED ,403 Forbidden): One or
more attributes or attribute fields identified by the query parameters are not readable, according to the attribute
property "isReadable". The "badQueryParams" property shall indicate the names of the parameters identifying
attributes that are not readable.

- QUERY_PARAMS_TOO_COMPLEX (related type: SERVER_LIMITATION, 500 Internal Server Error): The
query parameters and their values are valid but one or more of them cannot be processed as requested because
complexity limits of the MnS Producer are reached, for example, a filter expression is syntactically correct but
cannot be evaluated and yields no results since the expression is longer or more complex than the MnS producer
can or is willing to process. The "badQueryParams" property shall indicate the names of the parameters that
cannot be processed.

It is not an error when query parameters do not identify anything to be returned.

Note that the following query parameters are currently specified in the present document: "scopeType", "scopeLevel",
"filter", "attributes", and "fields".

Examples:

Consider the following request:

GET /SubNetwork=SN1?scopeType=COMPLETE_SUBTREE&scopeLevel=HIGHEST&\
 attributeFields=userLabel HTTP/1.1
Host: example.org
Accept: application/json

The "scopeType" and "scopeLevel" query parameters have invalid values. The query parameter "attributeField" is not
defined. All problems have the same HTTP error status code. The error response may look like:

HTTP/1.1 400 Bad Request
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/vnd.3gpp.error+json

{
 "type": "VALIDATION_ERROR",
 "reason": "QUERY_PARAM_VALUES_INVALID",
 "title": "The value of one or more query parameters is invalid.",
 "badQueryParams": ["scopeType", "scopeLevel"],
 "otherProblems": [
 {
 "type": "VALIDATION_ERROR",
 "reason": "QUERY_PARAM_VALUES_INVALID",
 "title": "The name of one or more query parameters is invalid.",
 "badQueryParams": ["attributeFields"]
 }
]
}

In the next example the "scopeType" and "scopeLevel" query parameters have invalid values and the "fields" value is
syntactically correct and valid, but too complex for the MnS Producer to process. In this case the problems have
different HTTP error codes. The "207 Multi-Status" code is used in the response status line, and the "status" property of
each problem details object contains to status code of that problem.

HTTP/1.1 207 Multi-Status
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/vnd.3gpp.error+json

{
 "status": 400,
 "type": "VALIDATION_ERROR",
 "reason": "QUERY_PARAM_VALUES_INVALID",
 "title": "The value of one or more query parameters is invalid.",
 "badQueryParams": ["attributes", "fields"],
 "problemDetails": [

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)393GPP TS 32.158 version 18.0.0 Release 18

 {
 "status": 400,
 "type": "VALIDATION_ERROR",
 "reason": "QUERY_PARAM_NAMES_INVALID",
 "title": "The name of one or more query parameters is invalid.",
 "badQueryParams": ["attributeFields"]
 },
 {
 "status": 500,
 "type": "SERVER_LIMITATION",
 "reason": "QUERY_PARAMS_TOO_COMPLEX",
 "title": "The semantics of one or more query parameters is too complex to be
processed.",
 "badQueryParams": ["fields"]
 }
]
}

6.6.5.3 Error reasons for attribute manipulations

6.6.5.3.1 JSON Patch and 3GPP JSON Patch

This clause specifies reasons for errors that may occur when attempting to manipulate attributes of existing resources
with JSON Patch and 3GPP JSON Patch. JSON Patch and 3GPP JSON Patch are used for partial resource updates.

This specification defines the following error reasons for use with JSON Patch and 3GPP JSON Patch:

- NEW_ATTRIBUTE_VALUE_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): The
attribute, attribute field or attribute element, as specified in the "path" property, cannot be added, or its value
cannot be replaced, as requested, because the value, as specified in the "value" property, is invalid. Valid values
are determined by the attribute properties "type", "allowedValues", "multiplicity", "isOrdered", "isUnique", and
"isNullable".

- NEW_ATTRIBUTE_NAME_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): The
attribute or attribute field cannot be added as requested, because its name, as specified in the "path" property, is
invalid.

- NEW_ATTRIBUTE_PARENT_NOT_FOUND (related type: REQUEST_OBJECTS_MISMATCH, 422
Unprocessable Entity): The attribute or attribute field cannot be added as requested, because its parent, as
specified in the "path" property, does not exist.

- ATTRIBUTE_NOT_FOUND (related type: IE_NOT_FOUND, 400 Bad Request): The attribute or attribute
field cannot be removed, moved, copied, or is value cannot be replaced, as requested, because the "path" or
"from" property identifies an attribute or attribute field, that does not exist.

- ATTRIBUTE_ELEMENT_NOT_FOUND (related type: IE_NOT_FOUND, 400 Bad Request): The attribute
element cannot be replaced, removed, moved, or copied, because the "path" or "from" property identifies an
attribute element, that does not exist.

- ATTRIBUTE_INDEX_BAD (related type: IE_NOT_FOUND, 400 Bad Request): The attribute element cannot
be added at the specified array location as requested, because the array element index specified in the "path"
property is greater than the number of elements in the array.

- FINAL_MV_ATTRIBUTE_VALUE_INVALID (related type: REQUEST_OBJECTS_MISMATCH, 422
Unprocessable Entity): The attribute element, as specified in the "value" property cannot be added to or removed
from the multi-valued attribute as requested, because this would result in an invalid value, according to the
attribute properties "multiplicity" or "isUnique". The attribute element itself is valid.

- ATTRIBUTE_NOT_WRITABLE (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): The
attribute or attribute field cannot be added, removed, or moved, or its value cannot be replaced, as requested,
because the attribute or attribute field is not writable by MnS Consumers, according to the attribute property
"isWritable".

- ATTRIBUTE_INVARIANT (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): The attribute
or attribute field cannot be added, removed, or moved, or its value cannot be replaced, as requested, because the
attribute or attribute field is invariant, according to the attribute property "isInvariant".

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)403GPP TS 32.158 version 18.0.0 Release 18

- OP_UNKNOWN (related type: VALIDATION_ERROR, 400 Bad Request): The patch operation specified by
the "op" property is not known by the MnS producer. This situation may occur, for example, when a patch
operation is not supported or wrongly spelled.

Examples:

In this example the attribute field "attrB" is requested to be replaced with a new value.

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "replace",
 "path": "/attributes/attrA/attrB",
 "value": "def"
 }
]

When "attrB" is invariant and its value cannot be replaced after object creation, the error response may look like:

HTTP/1.1 403 Not Forbidden
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/vnd.3gpp.error+json

{
 "type": "MODIFICATION_NOT_ALLOWED",
 "reason": "ATTRIBUTE_INVARIANT",
 "title": "The attribute, whose value is requested to be replaced, is invariant.",
 "badOp": "/0"
}

6.6.5.3.2 JSON Merge Patch, 3GPP JSON Merge Patch and PUT

This clause specifies reasons for errors that may occur when attempting to manipulate attributes of existing resources
with JSON Merge Patch, 3GPP JSON Merge Patch and PUT. JSON Merge Patch and 3GPP Merge JSON Patch are
used for partial resource updates. PUT is used for complete resource updates.

The following error reasons are defined for use with JSON Merge Patch, 3GPP JSON Merge Patch, and PUT:

- NEW_ATTRIBUTE_VALUE_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One or
more attributes or attribute fields cannot be added, or their values cannot be replaced, as requested, because the
received value is invalid. Valid values are determined by the attribute properties "type", "allowedValues",
"multiplicity", "isOrdered", "isUnique", and "isNullable". The "badAttributes" property provides the path to
these attributes and attribute fields.

- NEW_ATTRIBUTE_NAME_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One or
more attributes or attribute fields cannot be added as requested, because the received attribute or attribute field
name is invalid. The "badAttributes" property provides the path to these attributes and attribute fields.

- ATTRIBUTE_NOT_WRITABLE (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): One or
more attributes or attribute fields cannot be added or removed, or their values cannot be replaced, as requested,
because the attributes or attribute fields are not writable by MnS Consumers, according to the attribute property
"isWritable". The "badAttributes" property provides the path to these attributes and attribute fields.

- ATTRIBUTE_INVARIANT (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden): One or more
attributes or attribute fields cannot be added or removed, or their values cannot be replaced, as requested,
because the attributes or attribute fields are invariant, according to the attribute property "isInvariant". The
"badAttributes" property provides the path to these attributes and attribute fields.

The following additional error reasons are defined for use with JSON Merge Patch and 3GPP JSON Merge Patch:

- ATTRIBUTE_NOT_FOUND (related type: IE_NOT_FOUND, 400 Bad Request): One or more attribute or
attribute fields cannot be removed as requested, because they do not exist. The "badAttributes" property provides
the path to these attributes and attribute fields.

Examples:

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)413GPP TS 32.158 version 18.0.0 Release 18

In this example the MnS Consumer requests to replace the current value of "attrB" with "def".

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-merge-patch+json

{
 "id": "XYZF1",
 "attributes": {
 "attrA": {
 "attrB": "def"
 }
 }
}

When "attrB" is invariant the MnS Producer might respond as follows.

HTTP/1.1 403 Forbidden
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/vnd.3gpp.error+json

{
 "type": "MODIFICATION_NOT_ALLOWED",
 "reason": "ATTRIBUTE_INVARIANT",
 "title": "The attribute field, whose value is requested to be replaced, is invariant.",
 "badAttributes": ["#/attributes/attrA/attrB"]
}

6.6.5.4 Error reasons for object manipulations

The following reasons are defined for errors that may occur when attempting to create objects with PUT, POST. 3GPP
JSON Merge Patch and 3GPP JSON Patch, or when attempting to delete objects with DELETE, 3GPP JSON Merge
Patch and 3GPP JSON Patch:

- OBJECT_CREATION_NOT_ALLOWED (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden):
One or more objects cannot be created as requested because objects of this class cannot be created by MnS
Consumers.

- OBJECT_DELETION_NOT_ALLOWED (related type: MODIFICATION_NOT_ALLOWED, 403 Forbidden):
One or more objects cannot be deleted as requested, because objects of this class cannot be deleted by MnS
Consumers.

- NEW_OBJECT_CLASS_NAME_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One or
more objects cannot be created as requested, because the receive object class name is unknown to the MnS
Producer.

- NEW_OBJECT_REPRESENTATION_INVALID (related type: VALIDATION_ERROR, 400 Bad Request):
One or more objects cannot be created as requested, because the received object representation does not validate.

- NEW_OBJECT_CONTAINMENT_INVALID (related type: VALIDATION_ERROR, 400 Bad Request): One
or more objects cannot be created under the specified parent as requested, because this containment is not
allowed.

- NEW_OBJECTS_ID_EXISTS (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable
Content): One or more objects cannot be created as requested, because the received "id" exists already under the
specified parent.

- NEW_OBJECTS_PARENT_NOT_FOUND (related type: REQUEST_OBJECTS_MISMATCH, 422
Unprocessable Content): One or more objects cannot be created as requested, because their specified parents do
not exist.

- NEW_OBJECT_ATTRIBUTE_VALUE_MISSING (related type: VALIDATION_ERROR, 400 Bad Request):
One or more objects cannot be created as requested, because attribute or attribute field values, that shall be
provided in the creation request, are not provided.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)423GPP TS 32.158 version 18.0.0 Release 18

- OBJECTS_CARDINALITY_INVALID (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable
Content): One or more objects cannot be created or deleted as requested, because this would result in violating
cardinality constraints.

- OBJECT_NOT_A_LEAF (related type: REQUEST_OBJECTS_MISMATCH, 422 Unprocessable Content):
One or more objects cannot be deleted as requested, because they are not leaf objects.

- OBJECT_NOT_FOUND (related type: IE_NOT_FOUND, 400 Bad Request): One or more objects cannot be
deleted as requested, because they do not exist.

- OP_UNKNOWN (related type: VALIDATION_ERROR, 400 Bad Request): The patch operation specified by
the "op" property is not known by the MnS Producer. This situation may occur, for example, when a patch
operation is not supported or wrongly spelled.

The error reason "NEW_OBJECT_REPRESENTATION_INVALID" provides no information on why the
representation of the resource requested to be created is invalid. A MnS Producer may decide to provide more details by
specifying the error reasons related to attributes defined in clause X.4.3.2 instead of the general reason
"NEW_OBJECT_REPRESENTATION_INVALID". The attributes or attribute fields with problems are specified by
the "badAttributes" property.

PUT example:

In this example a MnS Producer requests the creation of a resource using PUT.

PUT /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF3 HTTP/1.1
Host: example.org
Content-Type: application/json

{
 "id": "XYZF3",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "ghi",
 "attrB": 553
 }
}

When the resource representation provided in the request is invalid the MnS Producer may send the following error
response.

HTTP/1.1 400 Bad Request
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/vnd.3gpp.error+json

{
 "type": "VALIDATION_ERROR",
 "reason": "NEW_OBJECT_REPRESENTATION_INVALID",
 "title": "The object cannot be created because its representation is invalid."
}

The MnS Producer may also choose to provide more details on why the resource representation is invalid. For example,
when the attribute name "attrB" is invalid, the MnS Producer may return the following error response.

HTTP/1.1 400 Bad Request
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/vnd.3gpp.error+json

{
 "type": "VALIDATION_ERROR",
 "reason": "NEW_ATTRIBUTE_NAME_INVALID",
 "title": "The object representation is invalid because an attribute name is invalid.",
 "badAttributes": ["#/attributes/attrB"]
}

It is possible that the request fails for multiple reasons. For example, the object representation might be invalid, and the
"id" of the resource requested to be created does already exist.

HTTP/1.1 207 Multi-Status
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/vnd.3gpp.error+json

{

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)433GPP TS 32.158 version 18.0.0 Release 18

 "status": 400,
 "type": "VALIDATION_ERROR",
 "reason": "NEW_OBJECT_REPRESENTATION_INVALID",
 "title": "The object cannot be created because its representation is invalid.",
 "otherProblems": [
 {
 "status": 422,
 "type": "REQUEST_OBJECTS_MISMATCH",
 "reason": "NEW_OBJECTS_ID_EXISTS",
 "title": "The object cannot be created because the object id exists already."
 }
]
}

DELETE example:

In this example a MnS Producer requests the deletion of a resource using DELETE.

DELETE /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF3 HTTP/1.1
Host: example.org

When the object to be deleted does not exist the MnS Producer may send

HTTP/1.1 404 Not Found
Date: Tue, 06 Aug 2019 16:50:26 GMT

When the object does exist but cannot be deleted, because it is not a leaf, the arror response may be as follows.

HTTP/1.1 422 Unprocessable Content
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/vnd.3gpp.error+json

{
 "type": "REQUEST_OBJECTS_MISMATCH",
 "reason": "OBJECT_NOT_A_LEAF",
 "title": "The object cannot be deleted because it is not a leaf.",
}

The MnS Producer can also return multiple reasons why a request fails. For example, when the object requested to be
deleted is not a leaf, and could not be deleted even if it were a leaf due to cardinality constraints, the MnS Producer may
return the following.

HTTP/1.1 422 Unprocessable Content
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/vnd.3gpp.error+json

{
 "status": 422,
 "type": "REQUEST_OBJECTS_MISMATCH",
 "reason": "OBJECT_NOT_A_LEAF",
 "title": "The object cannot be deleted because it is not a leaf.",
 "otherProblems": [
 {
 "status": 422,
 "type": "REQUEST_OBJECTS_MISMATCH",
 "reason": "OBJECTS_CARDINALITY_INVALID",
 "title": "The object cannot be created because of cardinality constraints."
 }
]
}

In the previous example all problems have the same error code. For that reason the error codes can be omitted in the
response body.

HTTP/1.1 422 Unprocessable Content
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/vnd.3gpp.error+json

{
 "type": "REQUEST_OBJECTS_MISMATCH",
 "reason": "OBJECT_NOT_A_LEAF",
 "title": "The object cannot be deleted because it is not a leaf.",
 "otherProblems": [
 {
 "type": "REQUEST_OBJECTS_MISMATCH",

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)443GPP TS 32.158 version 18.0.0 Release 18

 "reason": "OBJECTS_CARDINALITY_INVALID",
 "title": "The object cannot be created because of cardinality constraints."
 }
]
}

3GPP JSON Patch example:

Assume the following patch is applied to an object tree, that has one "SubNetwork" instance only. The first operation
requests to create a "ManagedElement". This operation is successful. The second operation requests to create a
"HuhuFunction" object under the new object. The "HuhuFunction" is not known to the MnS Producer. This operation
fails. The third operation fails as well, since it requests to create a new object under an object that does not exist.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/3gpp-json-patch+json

[
 {
 "op": "add",
 "path": "/ManagedElement=ME1",
 "value": {
 "id": "ME3",
 "objectClass": "ManagedElement",
 "attributes": {
 "userLabel": " Berlin NW 3",
 "vendorName": "Company XY",
 "location": "Spandau"
 }
 }
 },
 {
 "op": "add",
 "path": "/ManagedElement=ME1/HuhuFunction=HUHUF1",
 "value": {
 "id": "XYZF1",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "xyz",
 "attrB": 771
 }
 }
 },
 {
 "op": "add",
 "path": "/ManagedElement=ME3/XyzFunction=XYZF1",
 "value": {
 "id": "XYZF2",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "abc",
 "attrB": 772
 }
 }
 }
]

The error response may look like:

HTTP/1.1 207 Multi-Status
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/vnd.3gpp.error+json

{
 "status": 400,
 "type": "VALIDATION_ERROR",
 "reason": "NEW_OBJECT_CLASS_NAME_INVALID",
 "title": "The class of the new object to be created is invalid.",
 "badOp": "/1",
 "otherProblems": [
 {
 "status": 422,
 "type": "REQUEST_OBJECTS_MISMATCH",
 "reason": "NEW_OBJECTS_PARENT_NOT_FOUND",
 "title": "The parent object of the new object to be created does not exist."
 "badOp": "/2"

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)453GPP TS 32.158 version 18.0.0 Release 18

 }
]
}

3GPP JSON Merge Patch example:

Assume the "ManagedElement" with the identifier "ME3" does not exist. Then the following message requests to create
two new objects under a non-existent object. This request cannot be satisfied.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/3gpp-merge-patch+json

{
 "id": "SN1",
 "ManagedElement": [
 {
 "id": "ME3",
 "XyzFunction": [
 {
 "id": "XYZF1",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "xyz",
 "attrB": 771
 }
 },
 {
 "id": "XYZF2",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "abc",
 "attrB": 772
 }
 }
]
 }
]
}

The error message may look like:

HTTP/1.1 422 Unprocessable Content
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/vnd.3gpp.error+json

{
 "type": "REQUEST_OBJECTS_MISMATCH",
 "reason": "NEW_OBJECT_PARENT_NOT_FOUND",
 "title": "The object, below which new objects are requested to be created, does not exist.",
 "badObjects": [
 "/ManagedElement=ME3/XyzFunction=XYZF1",
 "/ManagedElement=ME3/XyzFunction=XYZF2"
]
}

6.6.6 Error reasons for application layer errors

Error reasons for the error type "APPLICATION_LAYER_ERROR" are very dependent on the specific application.
Therefore, it is almost impossible to define application layer error reasons that are applicable to more than one
application.

This specification defines the following values for the "reason" property:

- RESOURCE_LOCKED (related type: RETRIEVAL_NOT_ALLOWED ,403 Forbidden): The resource was
locked by administrative action and cannot be accessed.

- SERVICE_LOCKED (HTTP error code: 503 Service Unavailable): The MnS Producer has been locked by
administrative action and is currently unable to handle the request. This condition may occur, for example, due
to scheduled maintenance. The "reason" property shall be absent.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)463GPP TS 32.158 version 18.0.0 Release 18

Examples:

In the following example a MnS Consumer requests the creation of a "PerfMetricJob" instance indicating that "metric1"
and "metric2" shall be collected for "obj1" and "obj2" with a granularity period if 5min.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/3gpp-json-patch+json

[
 {
 "op": "add",
 "path": "/PerfMetricJob=PMJ1",
 "value": {
 "PerfMetricJob": [
 {
 "id": "PMJ1",
 "objectClass": "PerfMetricJob",
 "objectInstance": "SubNetwork=SN1,PerfMetricJob=PMJ1",
 "attributes": {
 "granularityPeriod": "5",
 "perfMetrics": [
 "metric1",
 "metric2"
],
 "objectInstances": [
 "obj1",
 "obj2"
]
 }
 }
]
 }
 }
]

When the requested granularity period is not supported, the "PerfMetricJob" instance is not created. The MnS Producer
might answer with the following error response.

HTTP/1.1 400 Bad Request
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/vnd.3gpp.error+json

{
 "type": "APPLICATION_LAYER_ERROR",
 "reason": "GRANULARITY_PERIOD_NOT_SUPPORTED",
 "title": "The requested granularity period for metric collection is not supported."
}

6.6.7 Security considerations

When the MnS Consumer is not trustworthy or the MnS Producer does not want to disclose error details, just the "type"
property may be included in the error response. The response body may be omitted also completely, and just the error
status code be returned in the response status line.

6.7 Design pattern for conditional data node selection
Scoping with the query parameters "scopeType" and "scopeLevel", and filtering with the query parameter "filter"
allows for conditional object selection. The query parameters "attributes" and "fields" allow for (unconditional)
selection of attributes and attribute fields.

For multi-valued attributes, where the attribute elements itself are big complex data types, it may be desirable to select
also attribute elements based on conditions. For example, assume an alarm list object that has a multi-valued attribute
containing alarm records. For retrieving only alarm records with a certain perceived severity it needs to be possible to
filter on the perceived severity and return only the alarm records matching that filter criteria. But also attributes or
attribute fields may need to be selected based on conditions. For example, assume a managed object that can be locked
and disabled. When locked or disabled some state attributes are not updated any more and do not reflect the current
state. Reading of these state attributes is hence only meaningful when the object is neither locked nor disabled.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)473GPP TS 32.158 version 18.0.0 Release 18

Conditional attribute data node selection is similar to conditional object selection with the "filter" query parameter.
Instead of specifying a query parameters for conditional object selection and another parameter for conditional attribute
data node selection, these selection mechanisms may be combined into a single query parameter.

The name of this query parameter is "dataNodeSelector". Jex [x] shall be used for specifying the selection expression.

7 Resource representation formats

7.1 Introduction
According to clause 4.3 the media type specifies only that JSON is used as resource representation format carried in the
HTTP request and HTTP response message bodies. Some resource patterns are quite common and it is desirable to use
a common pattern throughout different APIs. This clause identifies some patterns frequently encountered and provides a
JSON schema for them.

7.2 Top-level object
A single JSON object shall be at the top-level of the document carried in the message body of HTTP requests and
HTTP responses.

{"type": "object"}

Example:

{}

Members of the top-level object can be either a data object, a data array or an error object.

7.3 Data objects
Data objects are carried in HTTP requests and in HTTP responses in case of success. One and only one data object shall
be a member of a top-level object. If a data object is present, no error object shall be present.

{
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {}
 }
 }
}

Example:

{
 "data": {}
}

7.4 Data arrays
Data arrays are carried in HTTP requests and in HTTP responses when data is transferred. One and only one data array
shall be a member of a top-level object. If a data array is present, no error object shall be present.

{
 "type": "object",
 "properties": {
 "data": {
 "type": "array",
 "items": {}
 }

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)483GPP TS 32.158 version 18.0.0 Release 18

 }
}

Example JSON instance:

{
 "data": []
}

7.5 Error objects
Error objects are carried in HTTP responses in case of failure. One and only one error object shall be a member of a
top-level object.

{
 "type": "object",
 "properties": {
 "error": {
 "type": "object"
 "properties": {}
 }
 }
}

Example JSON instance:

{
 "error": {}
}

7.6 Resource objects
Resource objects (resources) are representations of managed object instances. They shall be compliant to the following
JSON schema when one instance of a class is allowed.

{
 "type": "object",
 "properties": {
 "ClassName": {
 "type": "object",
 "properties": {
 "id": { "type": "string" },
 "objectClass": { "type": "string" },
 "objectInstance": { "type": "string" },
 "attributes": {
 "type": "object",
 "properties": {}
 }
 },
 "required": ["id"]
 }
 }
}

or by the following schema when more than one instance of a class is allowed

{
 "type": "object",
 "properties": {
 "ClassName": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "type": "string" },
 "objectClass": { "type": "string" },
 "objectInstance": { "type": "string" },
 "attributes": {
 "type": "object",
 "properties": {}
 }
 },
 "required": ["id"]

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)493GPP TS 32.158 version 18.0.0 Release 18

 }
 }
 }
}

An object, whose name is equal to the NRM class name, encapsulates the resource representation.

The "attributes" object contains NRM attributes as properties. In the generic schema above the "attributes" object has no
properties. These properties are defined in other specifications.

Only the "id" is required to be always present. The "href" property with the URI of the resource and the "class" property
with the name of the NRM class can be omitted, or not specified at all in concrete JSON schemas for resource
representations.

TS 32.160 [16] specifies the complete mapping of stage 2 NRM definitions to stage 3 JSON schema definitions.

7.7 Resource objects carried in data objects and arrays

When a resource object is carried in a data object the schema is given by

{
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "ClassName": {
 "type": "object",
 "properties": {
 "id": { "type": "string" },
 "objectClass": { "type": "string" },
 "objectInstance": { "type": "string" },
 "attributes": {
 "type": "object",
 "properties": {}
 }
 },
 "required": ["id"]
 }
 }
 }
 }
}

Multiple instance of the same NRM class are supported by a JSON array.

{
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "ClassName": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "type": "string" },
 "objectClass": { "type": "string" },
 "objectInstance": { "type": "string" },
 "attributes": {
 "type": "object",
 "properties": {}
 }
 },
 "required": ["id"]
 }
 }
 }
 }
 }
}

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)503GPP TS 32.158 version 18.0.0 Release 18

8 REST SS specification template
This clause contains the REST SS specification template.

W RESTful HTTP-based solution set

W.1 Mapping of operations

W.1.1 Introduction
The IS operations are mapped to SS equivalents according to table W.1.1-1.

Table W.1.1-1: Mapping of IS operations to SS equivalents

IS operation HTTP Method Resource URI S

W.1.2 Operation <operation 1>
The IS operation parameters are mapped to SS equivalents according to table W.1.2-1 and table W.1.2-2.

Table W.1.2-1: Mapping of IS operation input parameters to SS equivalents (<HTTP method>)

IS parameter name SS parameter
location

SS parameter name SS parameter type S

Table W.1.2-2: Mapping of IS operation output parameters to SS equivalents (<HTTP method>)

IS parameter name SS parameter
location

SS parameter name SS parameter type S

W.1.3 Operation <operation 2>
Same as for <operation 1>.

W.2 Mapping of notifications

W.2.1 Introduction
The IS notifications are mapped to SS equivalents according to table W.2.1-1.

Table W.2.1-1: Mapping of IS operations to SS equivalents

IS notification HTTP Method Resource URI S

W.2.2 Notification <notification 1>
The IS notification parameters are mapped to SS equivalents according to table W.2.2-1.

Table W.2.2-1: Mapping of IS notification parameters to SS equivalents

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)513GPP TS 32.158 version 18.0.0 Release 18

IS parameter name SS parameter
location

SS parameter name SS parameter type S

W.2.3 Notification <notification 2>
Same as for <notification 1>.

W.3 Usage of HTTP

W.4 Resources

W.4.1 Resource structure

W.4.1.1 Resource structure on the MnS producer

Figure W.4.1.1-1 shows the resource structure of the <XYZ> MnS on the MnS producer.

<Figure>

Figure W.4.1.1-1: Resource URI structure of the <XYZ> MnS on the MnS producer

Table W.4.1.1-1 provides an overview of the resources and applicable HTTP methods.

Table W.4.1.1-1: Resources and methods overview

Resource name Resource URI HTTP method Description

W.4.1.2 Resource structure on the MnS consumer

Figure W.4.1.2-1 shows the resource structure of the <XYZ> MnS on the MnS consumer.

<Figure>

Figure W.4.1.2-1: Resource URI structure of the <XYZ> MnS on the MnS consumer

Table W.4.1.2-1 provides an overview of the resources and applicable HTTP methods.

Table W.4.1.2-1: Resources and methods overview

Resource name Resource URI HTTP method Description

W.4.2 Resource definitions

W.4.2.1 Resource <resource 1>

W.4.2.1.1 Description

Description of the resource.

W.4.2.1.2 URI

Resource URI: <URI>

The resource URI variables are defined in table W.4.2.1.2-1.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)523GPP TS 32.158 version 18.0.0 Release 18

Table W.4.2.1.2-1: URI variables

Name Definition

W.4.2.1.3 HTTP methods

W.4.2.1.3.1 <method 1>

This method shall support the URI query parameters specified in table W.2.1.3.1-1.

Table W.2.1.3.1-1: URI query parameters supported by the <method 1> on this resource

Name Data type P Cardinality Description

This method shall support the request data structures specified in table W.2.1.3.1-2 and the response data structures and
response codes specified in table W.2.1.3.1-3.

Table W.2.1.3.1-2: Data structures supported by the <method 1> request body on this resource

Data type P Cardinality Description

Table W.2.1.3.1-3: Data structures supported by the <method 1> response body on this resource

Data type P Cardinality Response
codes

Description

W.4.2.1.3.2 <method 2>

Same as for <method 1>.

W.4.2.2 Resource <resource 2>

Same as for <resource 1>.

W.5 Data type definitions

W.5.1 General
This clause defines the data types used by the <XYZ> MnS. Table W.4.1-1 specifies the data types defined in the
present document and table W.4.1-2 the data types imported

Table W.4.1-1: Data types defined in the present document

Data type Reference Description

Table W.4.1-2: Data types imported

Data type Reference Description

W.5.2 Structured data types

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)533GPP TS 32.158 version 18.0.0 Release 18

W.5.2.1 Type <TypeName 1>

Table W.4.2.1-1: Definition of type <TypeName 1>

Attribute name Data type P Cardinality Description

W.5.2.2 Type <TypeName 2>

Same as for <TypeName 1>.

W.5.3 Simple data types and enumerations

W.5.3.1 General

This clause defines simple data types and enumerations that are used by the data structures defined in the previous
clauses.

W.5.3.2 Simple data types

Table W.5.3.2-1: Simple data types

Type Name Type Definition Description

W.5.3.3 Enumeration <EnumType1>

Table W.5.3.3-1: Enumeration < EnumType1>

Enumeration value Description

W.5.3.4 Enumeration <EnumType2>

Annex A (normative)

OpenAPI definition

A.1 Introduction
This clause contains the OpenAPI definition of the <XYZ> MnS in YAML format.

A.2 OpenAPI document "<ABC>.yaml"
OpenAPI definition

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)543GPP TS 32.158 version 18.0.0 Release 18

Annex A (informative):
Examples

A.1 Example data model
The following JSON instance document is used for the examples in this clause.

{
 "SubNetwork": [
 {
 "id": "SN1",
 "objectClass": "SubNetwork",
 "objectInstance": "DC=example.org,SubNetwork=SN1",
 "attributes": {
 "userLabel": "Berlin NW",
 "userDefinedNetworkType": "5G",
 "plmnId": {
 "mcc": 456,
 "mnc": 789
 }
 },
 "ManagedElement": [
 {
 "id": "ME1",
 "objectClass": "ManagedElement",
 "objectInstance": "DC=example.org,SubNetwork=SN1,\
 ManagedElement=ME1",
 "attributes": {
 "userLabel": "Berlin NW 1",
 "vendorName": "Company XY",
 "location": "TV Tower"
 },
 "XyzFunction": [
 {
 "id": "XYZF1",
 "objectClass": "XyzFunction",
 "objectInstance":"DC=example.org,SubNetwork=SN1,\
 ManagedElement=ME1,XyzFunction=XYZF1",
 "attributes": {
 "attrA": "xyz",
 "attrB": 551
 }
 },
 {
 "id": "XYZF2",
 "objectClass": "XyzFunction",
 "objectInstance":"DC=example.org,SubNetwork=SN1,\
 ManagedElement=ME1,XyzFunction=XYZF2",
 "attributes": {
 "attrA": "abc",
 "attrB": 552
 }
 }
]
 },
 {
 "id": "ME2",
 "objectClass": "ManagedElement",
 "objectInstance": "DC=example.org,SubNetwork=SN1,ManagedElement=ME2",
 "attributes": {
 "userLabel": "Berlin NW 2",
 "vendorName": "Company XY",
 "location": "Grunewald"
 }
 }
],
 "PerfMetricJob": [
 {
 "id": "PMJ1",
 "objectClass": "PerfMetricJob",
 "objectInstance": "DC=example.org,SubNetwork=SN1,PerfMetricJob=PMJ1",
 "attributes": {

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)553GPP TS 32.158 version 18.0.0 Release 18

 "granularityPeriod": "5",
 "perfMetrics": [
 "Metric1",
 "Metric2"
],
 "objectInstances": [
 "Obj1",
 "Obj2"
]
 }
 }
],
 "ThresholdMonitor": [
 {
 "id": "TM1",
 "objectClass": "ThresholdMonitor",
 "objectInstance": "DC=example.org,SubNetwork=SN1,ThresholdMonitor=TM1",
 "attributes": {
 "metric": "Metric1",
 "thresholdLevels": [
 {
 "level": "1",
 "thresholdValue": 10
 },
 {
 "level": "2",
 "thresholdValue": 20
 },
 {
 "level": "3",
 "thresholdValue": 30
 }
]
 }
 }
]
 }
]
}

The corresponding JSON schema is

{
 "SubNetwork": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": {
 "type": "string"
 },
 "objectClass": {
 "type": "string"
 },
 "objectInstance": {
 "type": "string"
 },
 "attributes": {
 "type": "object",
 "properties": {
 "userLabel": {
 "type": "string"
 },
 "userDefinedNetworkType": {
 "type": "string"
 },
 "plmnId": {
 "type": "object",
 "properties": {
 "mcc": {
 "type": "integer"
 },
 "mnc": {
 "type": "integer"
 }
 }
 }

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)563GPP TS 32.158 version 18.0.0 Release 18

 }
 },
 "ManagedElement": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": {
 "type": "string"
 },
 "objectClass": {
 "type": "string"
 },
 "objectInstance": {
 "type": "string"
 },
 "attributes": {
 "type": "object",
 "properties": {
 "userLabel": {
 "type": "string"
 },
 "vendorName": {
 "type": "string"
 },
 "location": {
 "type": "string"
 }
 }
 },
 "XyzFunction": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": {
 "type": "string"
 },
 "objectClass": {
 "type": "string"
 },
 "objectInstance": {
 "type": "string"
 },
 "attributes": {
 "type": "object",
 "properties": {
 "attributeA": {
 "type": "string"
 },
 "attributeB": {
 "type": "integer"
 }
 }
 },
 "required": ["id"]
 }
 }
 },
 "required": ["id"]
 }
 }
 },
 "PerfMetricJob": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": {
 "type": "string"
 },
 "objectClass": {
 "type": "string"
 },
 "objectInstance": {
 "type": "string"
 },
 "attributes": {

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)573GPP TS 32.158 version 18.0.0 Release 18

 "type": "object",
 "properties": {
 "granularityPeriod": {
 "type": "integerstring"
 },
 "perfMetrics": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 },
 "objectInstances": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 },
 "required": ["id"]
 }
 }
 },
 "ThresholdMonitor": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": {
 "type": "string"
 },
 "objectClass": {
 "type": "string"
 },
 "objectInstance": {
 "type": "string"
 },
 "attributes": {
 "type": "object",
 "properties": {
 "thresholdLevels": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "level": {
 "type": "string"
 },
 "thresholdValue": {
 "type": "integer"
 }
 }
 }
 }
 }
 },
 "required": ["id"]
 }
 }
 },
 "required": ["id"]
 }
 }
 }
}

The corresponding XML instance document is provided below as well. It can be helpful when evaluating XPath
expressions.

<?xml version="1.0" encoding="UTF-8" ?>
<nrmRoot>
 <SubNetwork>
 <id>SN1</id>
 <objectClass>SubNetwork</objectClass>
 <objectInstance>DC=example.org,SubNetwork=SN1</objectInstance>
 <attributes>

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)583GPP TS 32.158 version 18.0.0 Release 18

 <userLabel>Berlin NW</userLabel>
 <userDefinedNetworkType>5G</userDefinedNetworkType>
 <plmnId>
 <mcc>456</mcc>
 <mnc>789</mnc>
 </plmnId>
 </attributes>
 <ManagedElement>
 <id>ME1</id>
 <objectClass>ManagedElement</objectClass>
 <objectInstance>DC=example.org,SubNetwork=SN1,ManagedElement=ME1</objectInstance>
 <attributes>
 <userLabel>Berlin NW 1</userLabel>
 <vendorName>Company XY</vendorName>
 <location>TV Tower</location>
 </attributes>
 <XyzFunction>
 <id>XYZF1</id>
 <objectClass>XyzFunction</objectClass>
 <objectInstance> DC=example.org,SubNetwork=SN1,\
 ManagedElement=ME1,XyzFunction=XYZF1</objectInstance>
 <attributes>
 <attrA>xyz</attrA>
 <attrB>551</attrB>
 </attributes>
 </XyzFunction>
 <XyzFunction>
 <id>XYZF2</id>
 <objectClass>XyzFunction</objectClass>
 <objectInstance> DC=example.org,SubNetwork=SN1,\
 ManagedElement=ME1,XyzFunction=XYZF2</objectInstance>
 <attributes>
 <attrA>abc</attrA>
 <attrB>552</attrB>
 </attributes>
 </XyzFunction>
 </ManagedElement>
 <ManagedElement>
 <id>ME2</id>
 <objectClass>ManagedElement</objectClass>
 <objectInstance>SubNetwork=SN1,ManagedElement=ME2</objectInstance>
 <attributes>
 <userLabel>Berlin NW 2</userLabel>
 <vendorName>Company XY</vendorName>
 <location>Grunewald</location>
 </attributes>
 </ManagedElement>
 <PerfMetricJob>
 <id>PMJ1</id>
 <objectClass>PerfMetricJob</objectClass>
 <objectInstance>SubNetwork=SN1,PerfMetricJob=PMJ1</objectInstance>
 <attributes>
 <granularityPeriod>5</granularityPeriod>
 <perfMetrics>Metric1</perfMetrics>
 <perfMetrics>Metric2</perfMetrics>
 <objectInstances>Obj1</objectInstances>
 <objectInstances>Obj2</objectInstances>
 </attributes>
 </PerfMetricJob>
 <ThresholdMonitor>
 <id>TM1</id>
 <objectClass>ThresholdMonitor</objectClass>
 <objectInstance>SubNetwork=SN1,ThresholdMonitor=TM1</objectInstance>
 <attributes>
 <ThresholdLevels>
 <level>1</level>
 <thresholdValue>10</thresholdValue>
 </ThresholdLevels>
 <ThresholdLevels>
 <level>2</level>
 <thresholdValue>20</thresholdValue>
 </ThresholdLevels>
 <ThresholdLevels>
 <level>3</level>
 <thresholdValue>30</thresholdValue>
 </ThresholdLevels>
 </attributes>
 </ThresholdMonitor>

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)593GPP TS 32.158 version 18.0.0 Release 18

 </SubNetwork>
</nrmRoot>

NOTE: Void

The following examples do not always follow the URI structure specified in clause 4.4. For simplicity reasons, the path
component "/{MnSName}/{MnSVersion}" is often omitted.

Furthermore, the value of query parameters is not always percent-encoded, as defined in clause 2 and 3.4 of RFC 3986
[4], for better readability.

A.2 Retrieval of resources

A.2.1 Retrieval of a single complete resource with HTTP GET
To retrieve a complete "XyzFunction" resource the MnS Consumer might send the following request.

GET /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Accept: application/json

The response includes a JSON object with the resource representation.

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json

{
 "id": "XYZF1",
 "attributes": {
 "attrA": "xyz",
 "attrB": 551
 }
}

The MnS Consumer might request also to return a response constructed according to the flat response construction
method. In this case the "Accept" header contains the " application/vnd.3gpp.object-tree-flat+json" media type.

GET /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Accept: application/vnd.3gpp.object-tree-flat+json

The response is a JSON array with a single item, which is a JSON object with the resource representation. Note that the
resource representation contains the "objectClass" and "objectInstance" in this case.

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/ vnd.3gpp.object-tree-flat+json

[
 {
 "id": "XYZF1",
 "objectClass": "XyzFunction",
 "objectInstance": "DC=example.org,SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",
 "attributes": {
 "attrA": "xyz",
 "attrB": 551
 }
 }
]

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)603GPP TS 32.158 version 18.0.0 Release 18

A.2.2 Attribute and attribute field selection on a single resource
To retrieve only the "userLabel" attribute and the "mnc" attribute field of the "plmnId" attribute of the "SubNetwork",
the MnS Consumer might send:

GET /SubNetwork=SN1?attributes=userLabel&fields=/attributes/plmnId/mcc HTTP/1.1
Host: example.org
Accept: application/json

Alternatively one might send as well

GET /SubNetwork=SN1?fields=/attributes/userLabel,/attributes/plmnId/mcc HTTP/1.1
Host: example.org
Accept: application/json

The response contains only the selected attribute "userLabel" and the selected attribute field "mnc":

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json

{
 "id": "SN1",
 "attributes": {
 "userLabel": "Berlin NW",
 "plmnId": {
 "mnc": 789
 }
 }
}

In the next example, the MnS Consumer retrieves the "userLabel" and "vendorName" of the "ManagedElement" whose
"id" is equal to "ME1":

GET /SubNetwork=SN1/ManagedElement=ME1?attributes=userLabel,vendorName HTTP/1.1
Host: example.org
Accept: application/json

The MnS Producer responds as follows:

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json

{
 "id": "ME1",
 "attributes": {
 "userLabel": "Berlin NW 1",
 "vendorName": "Company XY"
 }
}

The following request selects all attributes:

GET /SubNetwork=SN1/ManagedElement=ME1?fields=/attributes HTTP/1.1
Host: example.org
Accept: application/json

It is thus identical to:

GET /SubNetwork=SN1/ManagedElement=ME1 HTTP/1.1
Host: example.org
Accept: application/json

Both requests return the complete resource representation with all attributes:

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)613GPP TS 32.158 version 18.0.0 Release 18

Content-Type: application/json

{
 "id": "ME1",
 "attributes": {
 "userLabel": "Berlin NW 1",
 "vendorName": "Company XY",
 "location": "TV Tower"
 }
}

The following request returns the first item of the "perfMetrics" attribute, which is of type array:

GET /SubNetwork=SN1/ManagedElement=ME1/PerfMetricJob=PMJ1?fields=attributes/perfMetrics/0 HTTP/1.1
Host: example.org
Accept: application/json

Note indices start with "0" in JSON Pointer. The response looks like:

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json

{
 "id": "PMJ1",
 "attributes": {
 "perfMetrics": [
 "Metric1"
]
 }
}

A.2.3 Retrieval of multiple complete resources using scoping and
filtering

The following example selects the "SubNetwork" as base object at scope level "0" and all objects at scope level "1":

GET /SubNetwork=SN1?scopeType=BASE_SUBTREE&scopeLevel=1 HTTP/1.1
Host: example.org
Accept: application/json

The base object and all objects at scope level "1", irrespective of their object class, are included in the response. The
acceptable response media type specified by the "Accept" header field is "application/json", which indicates to the MnS
producer to use the hierarchical response construction method

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json

{
 "id": "SN1",
 "attributes": {
 "userLabel": "Berlin NW",
 "userDefinedNetworkType": "5G",
 "plmnId": {
 "mcc": 456,
 "mnc": 789
 }
 },
 "ManagedElement": [
 {
 "id": "ME1",
 "attributes": {
 "userLabel": "Berlin NW 1",
 "vendorName": "Company XY",
 "location": "TV Tower"
 }
 },
 {
 "id": "ME2",
 "attributes": {
 "userLabel": "Berlin NW 2",

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)623GPP TS 32.158 version 18.0.0 Release 18

 "vendorName": "Company XY",
 "location": "Grunewald"
 }
 }
],
 "PerfMetricJob": [
 {
 "id": "PMJ1",
 "attributes": {
 "granularityPeriod": 5,
 "perfMetrics": [
 "Metric1",
 "Metric2"
],
 "objectInstances": [
 "Obj1",
 "Obj2"
]
 }
 }
],
 "ThresholdMonitor": [
 {
 "id": "TM1",
 "attributes": {
 "metric": "Metric1",
 "thresholdLevels": [
 {
 "level": "1",
 "thresholdValue": 10
 },
 {
 "level": "2",
 "thresholdValue": 20
 },
 {
 "level": "3",
 "thresholdValue": 30
 }
]
 }
 }
]
}

The MnS Consumer can request also to return a response constructed according to the flat response construction
method. In this case the "Accept" header contains the "application/vnd.3gpp.object-tree-flat+json" media type.

GET /SubNetwork=SN1?scopeType=BASE_SUBTREE&scopeLevel=1 HTTP/1.1
Host: example.org
Accept: application/vnd.3gpp.object-tree-flat+json

The response looks like:

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/vnd.3gpp.object-tree-flat+json

[
 {
 "id": "SN1",
 "objectClass": "SubNetwork",
 "objectInstance": "DC=example.org,SubNetwork=SN1",
 "attributes": {
 "userLabel": "Berlin NW",
 "userDefinedNetworkType": "5G",
 "plmnId": {
 "mcc": 456,
 "mnc": 789
 }
 }
 },
 {
 "id": "ME1",
 "objectClass": "ManagedElement",
 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1",
 "attributes": {

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)633GPP TS 32.158 version 18.0.0 Release 18

 "userLabel": "Berlin NW 1",
 "vendorName": "Company XY",
 "location": "TV Tower"
 }
 },
 {
 "id": "ME2",
 "objectClass": "ManagedElement",
 "objectInstance": "DC=example.org,SubNetwork=SN1,ManagedElement=ME2",
 "attributes": {
 "userLabel": "Berlin NW 2",
 "vendorName": "Company XY",
 "location": "Grunewald"
 }
 },
 {
 "id": "PMJ1",
 "objectClass": "PerfMetricJob",
 "objectInstance": "DC=example.org,SubNetwork=SN1,PerfMetricJob=PMJ1",
 "attributes": {
 "granularityPeriod": "5",
 "perfMetrics": [
 "Metric1",
 "Metric2"
],
 "objectInstances": [
 "Obj1",
 "Obj2"
]
 }
 },
 {
 "id": "TM1",
 "objectClass": "ThresholdMonitor",
 "objectInstance": "DC=example.org,SubNetwork=SN1,ThresholdMonitor=TM1",
 "attributes": {
 "metric": "Metric1",
 "thresholdLevels": [
 {
 "level": "1",
 "thresholdValue": 10
 },
 {
 "level": "2",
 "thresholdValue": 20
 },
 {
 "level": "3",
 "thresholdValue": 30
 }
]
 }
 }
]

The "objectInstance" of each returned object is present in the response, as required in clause 6.1.4.

When only objects at scope level "1" are requested to be returned, the request looks like:

GET /SubNetwork=SN1?scopeType=BASE_NTH_LEVEL&scopeLevel=1 HTTP/1.1
Host: example.org
Accept: application/json

The response does not include the attributes of "SubNetwork" any more, only its "id" is included:

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json

{
 "id": "SN1",
 "ManagedElement": [
 {
 "id": "ME1",
 "attributes": {
 "userLabel": "Berlin NW 1",

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)643GPP TS 32.158 version 18.0.0 Release 18

 "vendorName": "Company XY",
 "location": "TV Tower"
 }
 },
 {
 "id": "ME2",
 "attributes": {
 "userLabel": "Berlin NW 2",
 "vendorName": "Company XY",
 "location": "Grunewald"
 }
 }
],
 "PerfMetricJob": [
 {
 "id": "PMJ1",
 "attributes": {
 "granularityPeriod": 5,
 "perfMetrics": [
 "Metric1",
 "Metric2"
],
 "objectInstances": [
 "Obj1",
 "Obj2"
]
 }
 }
],
 "ThresholdMonitor": [
 {
 "id": "TM1",
 "attributes": {
 "metric": "Metric1",
 "thresholdLevels": [
 {
 "level": "1",
 "thresholdValue": 10
 },
 {
 "level": "2",
 "thresholdValue": 20
 },
 {
 "level": "3",
 "thresholdValue": 30
 }
]
 }
 }
]
}

Similarly, for reading all objects on scope level "2", the MnS Consumer may send:

GET /SubNetwork=SN1?scopeType=BASE_NTH_LEVEL&scopeLevel=2 HTTP/1.1
Host: example.org
Accept: application/json

When using the hierarchical response construction method, the response includes the complete representations of the
two "XyzFunction" objects. The "SubNetwork" and "ManagedElement" are present with their "id" only; they provide
the containment nodes for the "XyzFunction" objects.

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json

{
 "id": "SN1",
 "ManagedElement": [
 {
 "id": "ME1",
 "XyzFunction": [
 {
 "id": "XYZF1",
 "attributes": {
 "attrA": "xyz",

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)653GPP TS 32.158 version 18.0.0 Release 18

 "attrB": 551
 }
 },
 {
 "id": "XYZF2",
 "attributes": {
 "attrA": "abc",
 "attrB": 552
 }
 }
]
 }
]
}

The "PerfMetricJob" and "ThresholdMonitor" are not included altogether, not even with the "id" only. This is because
these nodes do not represent necessary path components to the scoped objects on the second level.

When using the flat response construction method, the response includes only the two "XyzFunction" objects without
containment nodes.

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json
[
 {
 "id": "XYZF1",
 "objectClass": "XyzFunction",
 "objectInstance": "DC=example.org,SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",
 "attributes": {
 "attrA": "xyz",
 "attrB": 551
 }
 },
 {
 "id": "XYZF2",
 "objectClass": "XyzFunction",
 "objectInstance": "DC=example.org,SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2",
 "attributes": {
 "attrA": "abc",
 "attrB": 552
 }
 }
]

The following example selects all objects of any class on scope level "1" that have a "location" attribute whose value is
equal to "Grunewald":

GET /SubNetwork=SN1?\
 scopeType=BASE_NTH_LEVEL&scopeLevel=1&\
 filter=/*/*/attributes[location="Grunewald"] HTTP/1.1
Host: example.org
Accept: application/json

The response includes one "ManagedElement" object only:

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json

{
 "id": "SN1",
 "ManagedElement": [
 {
 "id": "ME2",
 "attributes": {
 "userLabel": "Berlin NW 2",
 "vendorName": "Company XY",
 "location": "Grunewald"
 }
 }
]
}

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)663GPP TS 32.158 version 18.0.0 Release 18

The input document to the XPath expression is a document whose root node is the object identified by the path
component of the target URI and that includes the object representations of the scoped objects. In this example the root
node is the "SubNetwork", but it is not scoped and hence included in the input document with its "id" only, i.e. without
the "attributes" node. The input document includes furthermore all scoped objects on level "1" with their complete
representations (without name-contained objects). These are the two "ManagedElement" objects, the "PerfMetricJob"
object, and the "ThresholdMonitor" object.

{
 "id": "SN1",
 "ManagedElement": [
 {
 "id": "ME1",
 "attributes": {
 "userLabel": "Berlin NW 1",
 "vendorName": "Company XY",
 "location": "TV Tower"
 }
 },
 {
 "id": "ME2",
 "attributes": {
 "userLabel": "Berlin NW 2",
 "vendorName": "Company XY",
 "location": "Grunewald"
 }
 }
],
 "PerfMetricJob": [
 {
 "id": "PMJ1",
 "attributes": {
 "granularityPeriod": 5,
 "perfMetrics": [
 "Metric1",
 "Metric2"
],
 "objectInstances": [
 "Obj1",
 "Obj2"
]
 }
 }
],
 "ThresholdMonitor": [
 {
 "id": "TM1",
 "attributes": {
 "metric": "Metric1",
 "thresholdLevels": [
 {
 "level": "1",
 "thresholdValue": 10
 },
 {
 "level": "2",
 "thresholdValue": 20
 },
 {
 "level": "3",
 "thresholdValue": 30
 }
]
 }
 }
]
}

An implementation may be based on available XPath tools. In that case the JSON document may have to be converted
to a XML document Note that a valid XML document has one and only one root element. For that reason the
"SubNetwork" element needs to be added as root element..

<SubNetwork>
 <id>SN1</id>
 <ManagedElement>
 <id>ME1</id>
 <attributes>

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)673GPP TS 32.158 version 18.0.0 Release 18

 <userLabel>Berlin NW 1</userLabel>
 <vendorName>Company XY</vendorName>
 <location>TV Tower</location>
 </attributes>
 </ManagedElement>
 <ManagedElement>
 <id>ME2</id>
 <attributes>
 <userLabel>Berlin NW 2</userLabel>
 <vendorName>Company XY</vendorName>
 <location>Grunewald</location>
 </attributes>
 </ManagedElement>
 <PerfMetricJob>
 <id>PMJ1</id>
 <attributes>
 <granularityPeriod>5</granularityPeriod>
 <perfMetrics>Metric1</perfMetrics>
 <perfMetrics>Metric2</perfMetrics>
 <objectInstances>Obj1</objectInstances>
 <objectInstances>Obj2</objectInstances>
 </attributes>
 </PerfMetricJob>
 <ThresholdMonitor>
 <id>TM1</id>
 <attributes>
 <ThresholdLevels>
 <level>1</level>
 <thresholdValue>10</thresholdValue>
 </ThresholdLevels>
 <ThresholdLevels>
 <level>2</level>
 <thresholdValue>20</thresholdValue>
 </ThresholdLevels>
 <ThresholdLevels>
 <level>3</level>
 <thresholdValue>30</thresholdValue>
 </ThresholdLevels>
 </attributes>
 </ThresholdMonitor>
</SubNetwork>

In this example the complete "ManagedElement" object is the result of applying the XPath expression:

<ManagedElement>
 <id>ME2</id>
 <attributes>
 <userLabel>Berlin NW 2</userLabel>
 <vendorName>Company XY</vendorName>
 <location>Grunewald</location>
 </attributes>
</ManagedElement>

XPath predicates allow to specify also ranges. The following example selects objects on scope level "2" that have an
attribute with name "attrB" whose value is equal to or greater than 552 and less than 562.

GET /SubNetwork=SN1?\
 scopeType=BASE_NTH_LEVEL&scopeLevel=2&\
 filter=/*/*/*/attributes[attrB>=552 and attrB<562] HTTP/1.1
Host: example.org
Accept: application/json

The response includes one "XyzFunction" object only:

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json

{
 "id": "SN1",
 "ManagedElement": [
 {
 "id": "ME1",
 "XyzFunction": [
 {
 "id": "XYZF2",
 "attributes": {

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)683GPP TS 32.158 version 18.0.0 Release 18

 "attrA": "abc",
 "attrB": 552
 }
 }
]
 }
]
}

An identical response is returned when using the following requests:

GET /SubNetwork=SN1?\
 scopeType=BASE_ALL&\
 filter=//*[attributes[attrB>=552 and attrB<562]] HTTP/1.1
Host: example.org
Accept: application/json

or

GET /SubNetwork=SN1?\
 scopeType=BASE_SUBTREE&scopeLevel=2&\
 filter=//*[attributes[attrB>=552 and attrB<562]] HTTP/1.1
Host: example.org
Accept: application/json

or

GET /SubNetwork=SN1?\
 scopeType=BASE_ALL&\
 filter=//XyzFunction[attributes[attrB>=552 and attrB<562]] HTTP/1.1
Host: example.org
Accept: application/json

It is possible to combine scoping and filtering with attribute and attribute field selection. The following example returns
the containment tree, starting with the "SubNetwork" identified by the target URI.

GET /SubNetwork=SN1?scopeType=BASE_ALL&attributes= HTTP/1.1
Host: example.org
Accept: application/json
HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json

{
 "id": "SN1",
 "ManagedElement": [
 {
 "id": "ME1",
 "XyzFunction": [
 {
 "id": "XYZF1"
 },
 {
 "id": "XYZF2"
 }
]
 },
 {
 "id": "ME2"
 }
],
 "PerfMetricJob": [
 {
 "id": "PMJ1"
 }
],
 "ThresholdMonitor": [
 {
 "id": "TM1"
 }
]
}

The next example scopes the same subtree as in the previous example and requests to return only "vendorName"
attributes instead of no attributes at all.

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)693GPP TS 32.158 version 18.0.0 Release 18

GET /ProvMnS/v1700?\
 scopeType=BASE_ALL&\
 attributes=vendorName HTTP/1.1
Host: example.org
Accept: application/json

This results, according to clause 6.2.3, in removing from the response all scoped resources that do not have a
"vendorName" attribute.

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json

{
 "id": "SN1",
 "ManagedElement": [
 {
 "id": "ME1",
 "attributes": {
 "vendorName": "Company XY"
 }
 },
 {
 "id": "ME2",
 "attributes": {
 "vendorName": "Company XY"
 }
 }
]
}

If the retrieval request identifies resources that do not exist, such as in

GET /ProvMnS/v1700?scopeType=BASE_NTH_LEVEL&scopeLevel=3 HTTP/1.1
Host: example.org
Accept: application/json

The MnS producer returns a "204 No Content" response.

HTTP/1.1 204 No Content
Date: Tue, 06 Aug 2019 16:50:26 GMT

When the MnS Consumer does not know the root objects of the containment tree and wants to retrieve the complete
trees starting with the roots, the target URI needs to identify the NRM root, i.e. the resource above the root objects.
According to clause 4.4.2, this resource is identified by the path segment "/{MnSName}/{MnSVersion}", for example
"/ProvMnS/v1700". In the following example, the "attributes" query parameter is empty and only the name-containment
hierarchy (without attributes) is returned.

GET /ProvMnS/v1700?scopeType=BASE_ALL&attributes= HTTP/1.1
Host: example.org
Accept: application/json

The response is illustrated below.

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json

{
 "SubNetwork": [
 {
 "id": "SN1",
 "ManagedElement": [
 {
 "id": "ME1",
 "XyzFunction": [
 {
 "id": "XYZF1"
 },
 {
 "id": "XYZF2"
 }
]

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)703GPP TS 32.158 version 18.0.0 Release 18

 },
 {
 "id": "ME2"
 }
],
 "PerfMetricJob": [
 {
 "id": "PMJ1"
 }
],
 "ThresholdMonitor": [
 {
 "id": "TM1"
 }
]
 }
]
}

Multiple root resources can be returned as well. For example, assume a NRM with three "SubNetwork" root resources,
then the response may look like:

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json

{
 "SubNetwork": [
 {
 "id": "SN1",
 ...
 },
 {
 "id": "SN2",
 ...
 },
 {
 "id": "SN3",
 ...
 }
]
}

Note that when the target URI identifies the NRM root, then the name of the document (root) element, to which an
XPath expression is applied, is "nrmRoot". The first step of the location path of an XPath expression is hence
"/nrmRoot". For example, the following HTTP GET request returns the "SubNetwork" with the identifier "SN1".

GET /ProvMnS/v1700?\
 scopeType=BASE_ALL&\
 filter=/nrmRoot/SubNetwork[id="SN1"]/attributes HTTP/1.1
Host: example.org
Accept: application/json

Note the presence of the location step "/attributes". This step is necessary to select only the "attributes" container and
hence only the SubNetwork" with the identifier "SN1" without any name-contained objercts.

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json

{
 "SubNetwork": [
 {
 "id": "SN1",
 "objectClass": "SubNetwork",
 "objectInstance": "DC=example.org,SubNetwork=SN1",
 "attributes": {
 "userLabel": "Berlin NW",
 "userDefinedNetworkType": "5G",
 "plmnId": {
 "mcc": 456,
 "mnc": 789
 }
 }

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)713GPP TS 32.158 version 18.0.0 Release 18

 }
]
}

Without the location step "/attributes" the complete subtree would be returned.

In all examples above query parameter values are not percent-encoded for better readability. For example, the value of
the filter query parameter in the following request

GET /ProvMnS/v1700?\
 scopeType=BASE_ALL&\
 filter=/nrmRoot/SubNetwork[id="SN1"]/attributes HTTP/1.1
Host: example.org
Accept: application/json

needs to be percent-encoded.

GET /ProvMnS/v1700?\
 scopeType=BASE_ALL&\
 filter=%2FnrmRoot%2FSubNetwork%5Bid%3D%22SN1%22%5D%2Fattributes HTTP/1.1
Host: example.org
Accept: application/json

A.2.4 Large queries

The following example shows how to construct a GET request using method override.

POST /ProvMnS/v1700 HTTP/1.1
Host: example.org
X-HTTP-Method-Override: GET
Content-Type: application/x-www-form-urlencoded
Accept: application/json

scopeType=BASE_ALL&filter=%2FnrmRoot%2FSubNetwork%5Bid%3D%22SN1%22%5D%2Fattributes

A.3 Creation of resources

A.3.1 Creation of a resource with HTTP PUT
In this example a new "XyzFunction" resource is created. The target URI specifies the location of the new resource. The
object class name of the resource to be created is present in the request. The "id" of the new resource is "XYZF3" and
created by the MnS Consumer. The "id" contained in the resource representation carried in the request message body
and the "id" in the target URI are identical.

PUT /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF3 HTTP/1.1
Host: example.org
Content-Type: application/json

{
 "id": "XYZF3",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "ghi",
 "attrB": 553
 }
}

If the HTTP PUT request succeeds, the status code "201 Created" is returned in the response status line. The location
header is present, its value is the URI of the created resource. The response message body contains the complete
representation of the new resource. The name of the object class may or may not be present in the response.

HTTP/1.1 201 Created
Date: Tue, 06 Aug 2019 16:50:26 GMT
Location: http://example.org/SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF3

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)723GPP TS 32.158 version 18.0.0 Release 18

Content-Type: application/json

{
 "id": "XYZF3",
 "attributes": {
 "attrA": "ghi",
 "attrB": 553
 }
}

In this example, the MnS Producer creates the object with the attribute name/value pairs as provided in the request. For
that reason, "204 No Content" may be returned in the status line instead of "201 Created". The response message body
is absent in this case.

HTTP/1.1 204 No Content
Date: Tue, 06 Aug 2019 16:50:26 GMT
Location: http://example.org/SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF3
Content-Type: application/json

A.3.2 Creation of a resource with HTTP POST
When creating a new resource with POST the target URI identifies the parent resource of the new resource to be
created. The identifier of the new resource is created by the MnS Producer, hence the "id" is equal to "null" in the POST
request. If the "id" carries a value, then the MnS Producer may consider that value as a non-binding recommendation by
the MnS Consumer. The request message body includes the object class name of the resource to be created.

POST /SubNetwork=SN1/ManagedElement=ME1 HTTP/1.1
Host: example.org
Content-Type: application/json

{
 "id": null,
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "ghi",
 "attrB": 553
 }
}

For the response body the same provisions as for resource creation with HTTP PUT apply.

HTTP/1.1 201 Created
Date: Tue, 06 Aug 2019 16:50:26 GMT
Location: http://example.org/ SubNetwork=SN1/ManagedElement=ME1/XyzFunction=123e4567-e89b
Content-Type: application/json

{
 "id": "123e4567-e89b",
 "attributes": {
 "attrA": "ghi",
 "attrB": 553
 }
}

When creating a root resource of the model, the path component of the request URI refers to the parent resource of the
top level managed object instances as defined in clause 4.4.4.

POST /ProvMnS/v1700 HTTP/1.1
Host: example.org
Content-Type: application/json

{
 "id": null,
 "objectClass": "SubNetwork",
 "attributes": {
 "userLabel": "Berlin NW",
 "userDefinedNetworkType": "5G",
 "plmnId": {

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)733GPP TS 32.158 version 18.0.0 Release 18

 "mcc": 456,
 "mnc": 789
 }
 }
}

A.3.3 Creation of multiple resources with 3GPP JSON Merge
Patch

One or more resources can be created with a single 3GPP JSON Merge Patch request. The following example shows the
creation of a complete subtree for a new "ManagedElement" below "SubNetwork".

The target URI has been chosen to identify the first common ancestor of the resources to be created. In this case, it is
the parent of the base object of the tree to be created. The "objectClass" property is present for the resources to be
created.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/vnd.3gpp.merge-patch+json

{
 "id": "SN1",
 "ManagedElement": [
 {
 "id": "ME3",
 "objectClass": "ManagedElement",
 "attributes": {
 "userLabel": " Berlin NW 3",
 "vendorName": "Company XY",
 "location": "Spandau"
 },
 "XyzFunction": [
 {
 "id": "XYZF1",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "xyz",
 "attrB": 771
 }
 },
 {
 "id": "XYZF2",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "abc",
 "attrB": 772
 }
 }
]
 }
]
}

The MnS Producer might respond as follows to indicate the PATCH request was successful and the received resource
representation was not modified.

HTTP/1.1 204 No Content
Date: Tue, 06 Aug 2019 16:50:26 GMT

The next example shows how a new "XyzFunction" resource is added to each of the "ManagedElement" resouces.

In this case, the parent of the parent of the "XyzFunction" resources to be created has been chosen as the common
ancestor referenced by the target URI. The "objectClass" property is present for the resources to be created.

The "ManagedElement" resources are present with their "id" only. These resources are required to bridge the
containment tree from the "SubNetwork" target resource to the created "XyzFunction" resources.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)743GPP TS 32.158 version 18.0.0 Release 18

Content-Type: application/vnd.3gpp.merge-patch+json

{
 "id": "SN1",
 "ManagedElement": [
 {
 "id": "ME1",
 "XyzFunction": [
 {
 "id": "XYZF3",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "def",
 "attrB": 553
 }
 }
]
 },
 {
 "id": "ME2",
 "XyzFunction": [
 {
 "id": "XYZF1",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "def",
 "attrB": 661
 }
 }
]
 }
]
}

The MnS Producer might respond again as follows to indicate the successful creation of the resources.

HTTP/1.1 204 No Content
Date: Tue, 06 Aug 2019 16:50:26 GMT

Assume now that for "XyzFunction" a third attribute "attrC" is defined and that this attribute has a default value of "5".
The MnS Producer assigns the default value after reception of the PATCH request and before creating the resource
when no value is provided for "attrC" in the request. In this case the response includes the modified resource
representations.

HTTP/1.1 200 OK
Date: Tue, 06 Aug 2019 16:50:26 GMT
Content-Type: application/json

{
 "id": "SN1",
 "ManagedElement": [
 {
 "id": "ME1",
 "XyzFunction": [
 {
 "id": "XYZF3",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "def",
 "attrB": 553,
 "attrC": 5
 }
 }
]
 },
 {
 "id": "ME2",
 "XyzFunction": [
 {
 "id": "XYZF1",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "def",
 "attrB": 661,

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)753GPP TS 32.158 version 18.0.0 Release 18

 "attrC": 5
 }
 }
]
 }
]
}

A.3.4 Creation of multiple resources with 3GPP JSON Patch
One or more resources can be created with a single 3GPP JSON Patch request. The following example shows the
creation of a complete subtree for a new network entity represented by a "ManagedElement" resource and two
"XyzFunction" resources. The target URI has been chosen to identify the first common ancestor of the resources to be
created. The "path" specifies the offset from the target resource to the resource to be created. The "path" has no
fragment component. Parent resources are created before child resources following the order of the operations in the
patch document. The class name of the object to be created is specified in each patch operation. The "Accept" header
specifies responses with hierarchcal object tree are acceptable.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/vnd.3gpp.json-patch+json
Accept: application/json
[
 {
 "op": "add",
 "path": "/ManagedElement=ME3",
 "value": {
 "id": "ME3",
 "objectClass": "ManagedElement",
 "attributes": {
 "userLabel": " Berlin NW 3",
 "vendorName": "Company XY",
 "location": "Spandau"
 }
 }
 },
 {
 "op": "add",
 "path": "/ManagedElement=ME3/XyzFunction=XYZF1",
 "value": {
 "id": "XYZF1",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "xyz",
 "attrB": 771
 }
 }
 },
 {
 "op": "add",
 "path": "/ManagedElement=ME3/XyzFunction=XYZF2",
 "value": {
 "id": "XYZF2",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "abc",
 "attrB": 772
 }
 }
 }
]

Note that each resource to be created shall be specified with a dedicated "add" operation. The following patch document
is hence invalid as it attempts to create three resources with a single "add" operation.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/vnd.3gpp.json-patch+json
Accept: application/json
[
 {

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)763GPP TS 32.158 version 18.0.0 Release 18

 "op": "add",
 "path": "/ManagedElement=ME3",
 "value": {
 "id": "ME3",
 "objectClass": "ManagedElement",
 "attributes": {
 "userLabel": " Berlin NW 3",
 "vendorName": "Company XY",
 "location": "Spandau"
 },
 "XyzFunction": [
 {
 "id": "XYZF1",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "xyz",
 "attrB": 771
 }
 },
 {
 "id": "XYZF2",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "abc",
 "attrB": 772
 }
 }
]
 }
 }
]

It is not an error if the target location of an "add" operation as specified by the "path" property does exist. In this case
the content of the target location is replaced with the content of the "value" property. For example, in the following
example, the first "ManagedElement" resource already exists. The patch document is applied successfully though. The
representation of the first "ManagedElement" resource is replaced and the second "ManagedElement" resource is
created.

Note that the attributes "vendorName" and "location" are removed from the representation of the first
"ManagedElement" resource. The "userLabel" attribute is updated.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/vnd.3gpp.json-patch+json
Accept: application/json
[
 {
 "op": "add",
 "path": "/ManagedElement=ME2",
 "value": {
 "id": "ME2",
 "objectClass": "ManagedElement",
 "attributes": {
 "userLabel": " Berlin NW 4"
 }
 }
 },
 {
 "op": "add",
 "path": "/ManagedElement=ME3",
 "value": {
 "id": "ME3",
 "objectClass": "ManagedElement",
 "attributes": {
 "userLabel": " Berlin NW 3",
 "vendorName": "Company XY",
 "location": "Spandau"
 }
 }
 }
]

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)773GPP TS 32.158 version 18.0.0 Release 18

A.4 Deletion of resources

A.4.1 Deletion of a resource with HTTP DELETE
The following example deletes an instance of "ManagedElement". The resource to be deleted is identified with the
target URI. The request body is absent.

DELETE /SubNetwork=SN1/ManagedElement=ME2 HTTP/1.1
Host: example.org

The MnS Producer might respond as follows.

HTTP/1.1 204 No Content
Date: Tue, 06 Aug 2019 16:50:26 GMT

A.4.2 Deletion of multiple resources with HTTP DELETE
The deletion of multiple resources with a single HTTP DELETE request is not supported. The following request is
hence invalid.

DELETE /SubNetwork=SN1?scopeType= BASE_NTH_LEVEL&scopeLevel=2 HTTP/1.1
Host: example.org

A.4.3 Deletion of multiple resources with 3GPP JSON Merge
Patch

One or more descendant resources of the target URI can be deleted with a single 3GPP JSON Merge Patch request. The
following example deletes the "ManagedElement" resource with "ME1" including both its "XyzFunction" resources.

The target URI has been chosen to identify the first common ancestor of the resources to be deleted. The patch
document starts with the target resource. All resources of the subtree to be deleted are marked for deletion.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/vnd.3gpp.merge-patch+json

{
 "id": "SN1",
 "ManagedElement": [
 {
 "id": "ME1",
 "attributes": null,
 "XyzFunction": [
 {
 "id": "XYZF1",
 "attributes": null
 },
 {
 "id": "XYZF2",
 "attributes": null
 }
]
 }
]
}

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)783GPP TS 32.158 version 18.0.0 Release 18

A.4.4 Deletion of multiple resources with 3GPP JSON Patch
Multiple resources are deleted with an ordered sequence of "remove" operations. The following example removes a
complete subtree for a "ManagedElement".

The target URI has been chosen to identify the parent resource of the "ManagedElement" resource to be deleted. The
"path" specifies the offset to the resources to be deleted. The "path" has no fragment component.

Child resources are deleted before parent resources, starting with leaf resources.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/vnd.3gpp.json-patch+json
Accept: application/json
[
 {
 "op": "remove",
 "path": "/ManagedElement=ME1/XyzFunction=XYZF1"
 },
 {
 "op": "remove",
 "path": "/ManagedElement=ME1/XyzFunction=XYZF2"
 },
 {
 "op": "remove",
 "path": "/ManagedElement=ME1"
 }
]

A.5 Complete update of a resource
The following example updates a "XyzFunction" resource. Only the "attrA" attribute is updated with a new value "def".
The "attrB" attribute is set to the old value "551", but still the "attrB" attribute needs to be present in the resource
representation contained in the request message body. Otherwise "attrB" would be deleted due to the replace semantics
of HTTP PUT.

PUT /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json

{
 "id": "XYZF1",
 "attributes": {
 "attrA": "def",
 "attrB": 551
 }
}

When a non leaf resource is updated, contained resources are not included. For example, the following resource
representation in the message body updates the "ManagedElement" resource only. It does not delete the contained
"XyzFunction" resources.

PUT /SubNetwork=SN1/ManagedElement=ME1 HTTP/1.1
Host: example.org
Content-Type: application/json

{
 "id": "ME1",
 "attributes": {
 "userLabel": "Berlin New Label",
 "vendorName": "Company XY",
 "location": "TV Tower"
 }
}

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)793GPP TS 32.158 version 18.0.0 Release 18

A.6 Partial update of a resource

A.6.1 Partial update of a resource with JSON Merge Patch
The first example shows how the attribute "attrA" of the "XyzFunction with the "id" equal to "YXZF1" is changed from
"xyz" to "def" using JSON Merge Patch.

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/merge-patch+json

{
 "id": "XYZF1",
 "attributes": {
 "attrA": "def"
 }
}

In the second example the "mcc" attribute field of the "plmnId" attribute is updated to "654". The employed patch
method is again JSON Merge Patch.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/merge-patch+json

{
 "id": "SN1",
 "attributes": {
 "plmnId": {
 "mcc": 654
 }
 }
}

In the third example the item "Metric3" is added to the array "perfMetrics". The value of "perfMetrics" contains the two
old items and the new item.

PATCH /SubNetwork=SN1/PerfMetricJob=PMJ1 HTTP/1.1
Host: example.org
Content-Type: application/merge-patch+json

{
 "id": "PMJ1",
 "attributes": {
 "perfMetrics": ["Metric1", "Metric2, Metric3"]
 }
 }
}

Also in case the items of an array have an identifier, the complete updated array value needs to be present in the patch
request. In the following fourth example in this clause the old first threshold level is deleted, for the old second
threshold level the "thresholdValue" is updated from "20" to "22", the old third threshold level is left unchanged, and a
new threshold level is appended as last item.

PATCH /SubNetwork=SN1/ThresholdMonitor=TM1 HTTP/1.1
Host: example.org
Content-Type: application/merge-patch+json

{
 "id": "TM1",
 "attributes": {
 "thresholdLevels": [
 {
 "level": "2",
 "thresholdValue": 22
 },
 {
 "level": "3",

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)803GPP TS 32.158 version 18.0.0 Release 18

 "thresholdValue": 30
 },
 {
 "level": "4",
 "thresholdValue": 40
 }
]
 }
}

A.6.2 Partial update of a resource with 3GPP JSON Merge Patch
When updating a single resource, there is no difference between JSON Merge Patch (see A.6.1) and 3GPP JSON Merge
Patch.

A.6.3 Partial update of a resource with JSON Patch
When JSON Patch is used to request the same changes as the ones described in the four examples in clause A.6.1, the
MnS consumer may send

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "replace",
 "path": "/attributes/attrA",
 "value": "def"
 }
]

and

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "replace",
 "path": "/attributes/plmnId/mcc",
 "value": 654
 }
]

and

PATCH /SubNetwork=SN1/PerfMetricJob=PMJ1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "add",
 "path": "/attributes/perfMetrics/2",
 "value": "Metric3"
 }
]

and

PATCH /SubNetwork=SN1/ThresholdMonotor=TM1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)813GPP TS 32.158 version 18.0.0 Release 18

 {
 "op": "remove",
 "path": "/attributes/thresholdLevels/0"
 },
 {
 "op": "replace",
 "path": "/attributes/thresholdLevels/0/thresholdValue",
 "value": 22
 },
 {
 "op": "add",
 "path": "/attributes/thresholdLevels/-",
 "value":
 {
 "level": "4",
 "thresholdValue": 40
 }
 }
]

Note that the patch operations are applied sequentially to the "thresholdLevels" array in the order they appear in the
patch array. After removing the first array item with the first operation, the resulting array value becomes the target for
the second operation. The array index "0" identifies the new first item, which was the second item before applying the
first operation of the patch document. Issues with array positions can be avoided by placing "replace" operations at the
beginning of the patch document.

In the examples above the value of "value" is always a simple type (scalar value). When multiple attribute fields of an
attribute need to be added or replaced, it is often more compact to add or replace the complete attribute with a single
patch operation, instead of each attribute field individually. For example, the following patch

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "add",
 "path": "/attributes/plmnId/mcc",
 "value": 456
 },
 {
 "op": "add",
 "path": "/attributes/plmnId/mnc",
 "value": 789
 }
]

can be replaced by

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "add",
 "path": "/attributes/plmnId",
 "value": {
 "mcc": 456,
 "mnc": 789
 }
 }
]

When adding a member to a JSON object, the JSON object needs to exist. Assume "plmnId" does not exist, but
"attributes" does, then the following request is an error, since it attempts to add a "mcc" member to the "plmnId" object,
that does not exist

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)823GPP TS 32.158 version 18.0.0 Release 18

[
 {
 "op": "add",
 "path": "/attributes/plmnId/mcc",
 "value": 654
 }
]

The MnS Consumer should send the following instead.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "add",
 "path": "/attributes/plmnId",
 "value": {
 "mcc": 654
 }
 }
]

Alternatively, an empty "plmnId" object could be created before adding the "mcc" member.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "add",
 "path": "/attributes/plmnId",
 "value": {}
 },
 {
 "op": "add",
 "path": "/attributes/plmnId/mcc",
 "value": 654
 }
]

Replacing all attribute values of an object is a special case of a partial resource update. The following example
demonstrates the usage of a compact format where the "attributes" container is replaced completely. It is not necessary
to specify a patch operation for each attribute of the object.

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "replace",
 "path": "/attributes",
 "value": {
 "attrA": "def",
 "attrB": 123
 }
 }
]

Note that clause 4.3 of IETF RFC 6902 [13] does not consider it as an error if an attribute value is replaced with exactly
the same value. For that reason it would not be an error if in the example above an attribute value is included in the
"value" property that is equal to the value in the current resource representation. A MnS Producer may consider this
compact format hence also for the case that not all attributes of an object are requested to be updated with a new value.

A.6.4 Partial update of a resource with 3GPP JSON Patch
When 3GPP JSON Patch is used to request the changes described in the first two examples in clause A.6.1 the MnS
consumer may send the following

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)833GPP TS 32.158 version 18.0.0 Release 18

PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/vnd.3gpp.json-patch+json
Accept: application/json
[
 {
 "op": "replace",
 "path": "#/attributes/attrA",
 "value": "def"
 }
]

and

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/vnd.3gpp.json-patch+json
Accept: application/json
[
 {
 "op": "replace",
 "path": "#/attributes/plmnId/mcc",
 "value": 654
 }
]

and

PATCH /SubNetwork=SN1/ThresholdMonitor=TM1 HTTP/1.1
Host: example.org
Content-Type: application/vnd.3gpp.json-patch+json
Accept: application/json
[
 {
 "op": "remove",
 "path": "#/attributes/thresholdLevels/0"
 },
 {
 "op": "replace",
 "path": "#/attributes/thresholdLevels/0/thresholdValue",
 "value": 22
 },
 {
 "op": "add",
 "path": "#/attributes/thresholdLevels/-",
 "value":
 {
 "level": "4",
 "thresholdValue": 40
 }
 }
]

When using 3GPP JSON Patch to update a single resource, the only difference compared to JSON Patch is the presence
of "#" in the "path".

A.7 Manipulating multiple resources

A.7.1 Manipulating multiple resources with 3GPP JSON Merge
Patch

JSON Merge Patch allows to update one resource only with a single HTTP PATCH request. The resource needs to
exist. In contrast, 3GPP JSON Merge Patch allows to update multiple resources incl. resource creation and deletion with
a single HTTP PATCH

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)843GPP TS 32.158 version 18.0.0 Release 18

In the following example the "userLabel" attribute and the "mcc" attribute field of the "SubNetwork" resource are
updated. The "attrB" attribute of the "XyzFunction" resource, whose "id" is "XYZF1", is also updated. A new
"XyzFunction" resource with id "XYZF3"is created as well as a new "ManagedElement" resource with id "ME3". The
"XYzFunction" resource, whose "id" is "XYZF2", is deleted.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/vnd.3gpp.merge-patch+json

{
 "id": "SN1",
 "attributes": {
 "userLabel": "Berlin NW-1",
 "plmnId": {
 "mcc": 654
 }
 },
 "ManagedElement": [
 {
 "id": "ME1",
 "XyzFunction": [
 {
 "id": "XYZF1",
 "attributes": {
 "attrB": 1234
 }
 },
 {
 "id": "XYZF2",
 "attributes": null
 },
 {
 "id": "XYZF3",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "fgh",
 "attrB": 555
 }
 }
]
 },
 {
 "id": "ME3",
 "objectClass": "ManagedElement",
 "attributes": {
 "userLabel": " Berlin NW 3",
 "vendorName": "Company XY",
 "location": "Spandau"
 }
 }
]
}

A.8 Partitioning a data model
All objects of the data model in annex A.1 may be accessed and manipulated via a single MnS Producer endpoint, for
example

http://example.org/3gpp/ProvMnS/v1600

An implementation may also provide more than one endpoint for accessing the data model. This may be for allowing
MnS Producers supporting different versions of the CRUD operations to access the data model:

http://example.org/3gpp/ProvMnS/v1600
http://example.org/3gpp/ProvMnS/v1700

Another reason might be to structure the total data model into subsets of managed objects for different purposes such as
configuration management and performance management.

http://example.org/3gpp/cm/ProvMnS/v1600
http://example.org/3gpp/pm/ProvMnS/v1600

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)853GPP TS 32.158 version 18.0.0 Release 18

Using the MnS Producer endpoint for configuration management only the objects for configuration management can be
accessed. The canonical URIs of these objects are

http://example.org/SubNetwork=SN1
http://example.org/SubNetwork=SN1/ManagedElement=ME1
http://example.org/SubNetwork=SN1/ManagedElement=ME2
http://example.org/SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1
http://example.org/SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF2

Using the MnS Producer endpoint for performance management only the objects for performance management can be
accessed.

http://example.org/SubNetwork=SN1/PerfMetricJob=PMJ1
http://example.org/SubNetwork=SN1/ThresholdMonitor=TM1

When trying to access with the MnS Producer for performance management an object pertaining to the subset of
managed objects for configuration management, for example,

GET /3gpp/fm//SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Accept: application/json

an error is raised, for example "403 Forbidden" or "404 Not Found".

A.7.2 Manipulating multiple resources with 3GPP JSON PATCH
The same resource modifications as in the previous clause expressed using 3GPP JSON Patch are given by

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/vnd.3gpp.json-patch+json
Accept: application/json
[
 {
 "op": "replace",
 "path": "#/attributes/userLabel",
 "value": "Berlin NW-1"
 },
 {
 "op": "replace",
 "path": "#/attributes/plmnId/mcc",
 "value": 654
 },
 {
 "op": "replace",
 "path": "ManagedElement=ME1/XyzFunction=XYZF1#/attributes/attrB",
 "value": 1234
 },
 {
 "op": "add",
 "path": "/ManagedElement=ME1/XyzFunction=XYZF3",
 "value": {
 "id": "XYZF3",
 "objectClass": "XyzFunction",
 "attributes": {
 "attrA": "ghi",
 "attrB": 553
 }
 }
 },
 {
 "op": "remove",
 "path": "/ManagedElement=ME1/XyzFunction=XYZF2"
 },
 {
 "op": "add",
 "path": "/ManagedElement=ME3",
 "value": {
 "id": "ME3",
 "objectClass": "ManagedElement",
 "attributes": {

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)863GPP TS 32.158 version 18.0.0 Release 18

 "userLabel": " Berlin NW 3",
 "vendorName": "Company XY",
 "location": "Spandau"
 }
 }
 }
]

The modifications of the "userLabel" attribute and the "mcc" attribute field can be expressed also by a single "merge"
operation instead of two separate "replace" operations.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/vnd.3gpp.json-patch+json
Accept: application/json
[
 {
 "op": "merge",
 "path": "#/attributes",
 "value": {
 "userLabel": "Berlin NW-1",
 "plmnId": {
 "mcc": 654
 }
 }
 }
]

The "copy" operation is useful when complete configurations from existing resources need to be copied to newly
created resources.

PATCH /SubNetwork=SN1 HTTP/1.1
Host: example.org
Content-Type: application/vnd.3gpp.json-patch+json
Accept: application/json
[
 {
 "op": "add",
 "path": "/ManagedElement=ME1/XyzFunction=XYZF3",
 "value": {
 "id": "XYZF3",
 "objectClass": "XyzFunction",
 "attributes": {
 }
 }
 },
 {
 "op": "copy",
 "from": "/ManagedElement=ME1/XyzFunction=XYZF2/attributes"
 "path": "/ManagedElement=ME1/XyzFunction=XYZF3/attributes"
 }
]

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)873GPP TS 32.158 version 18.0.0 Release 18

Annex B (informative):
Change history

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)883GPP TS 32.158 version 18.0.0 Release 18

Change history
Date Meeting TDoc CR Rev Cat Subject/Comment New

version
2018-09 SA#81 Upgrade to change control version 15.0.0
2018-09 Editorial fix (EditHelp/MCC) 15.0.1
2018-12 SA#82 SP-181051 0001 1 F Extend resource representation format descriptions 15.1.0
2019-06 SA#84 SP-190378 0003 1 F Correct the DN to URI mapping rules 15.2.0
2019-12 SA#86 SP-191220 0004 3 F Clarify design pattern for scoping and filtering 15.3.0
2019-12 SA#86 SP-191220 0005 - F Correct basic design patterns 15.3.0
2019-12 SA#86 SP-191220 0006 - F Add design pattern for patching multiple resources 15.3.0
2019-12 SA#86 SP-191220 0007 - F Correct resource representation formats 15.3.0
2019-12 SA#86 SP-191220 0008 - F Add examples 15.3.0
2019-12 SA#86 SP-191220 0010 2 F Clarify design pattern for attribute field selection 15.3.0
2020-03 SA#87E SP-200183 0011 1 F Clarify HTTP PATCH methods 15.4.0
2020-07 SA#88E SP-200504 0012 2 F Add the missing definition for LDN-first-part 15.5.0
2020-07 - - - - - Update to Rel-16 version (MCC) 16.0.0
2020-09 SA#89E SP-200813 0015 1 F Update the URI structure definition 16.1.0
2020-12 SA#90e SP-201088 0016 - F Correct REST SS specification template 16.2.0
2021-06 SA#92e SP-210406 0017 1 F Correct definitions of resource creation 16.3.0
2021-06 SA#92e SP-210406 0019 - F Correct definition of the REST SS specification template 16.3.0
2021-09 SA#93e SP-210886 0018 2 F Correct definitions of resource update 16.4.0
2021-09 SA#93e SP-210886 0021 - F Clarify query parameters for filtering 16.4.0
2021-12 SA#94e SP-211454 0020 2 F Add more examples on how to use provisioning operations 16.5.0
2022-03 - - - - - Update to Rel-17 version (MCC) 17.0.0
2022-06 SA#96 SP-220563 0023 - F Add definition of secondary resource 17.1.0
2022-06 SA#96 SP-220563 0025 - A Add definition of resource {MnSName}{MnSVersion} 17.1.0
2022-06 SA#96 SP-220563 0027 - A Clarify clause Creating a resource with identifier creation by the

MnS Producer
17.1.0

2022-06 SA#96 SP-220563 0029 - A Clarify clause Creating a resource with identifier creation by the
MnS Consumer

17.1.0

2022-06 SA#96 SP-220563 0031 - A Clarify clause Design pattern for updating a resource 17.1.0
2022-06 SA#96 SP-220563 0033 - A Clarify clause Design pattern for deleting a resource 17.1.0
2022-06 SA#96 SP-220563 0035 - A Clarify clause Design pattern for subscribe notify 17.1.0
2022-06 SA#96 SP-220563 0037 - A Clarify clause Design pattern for scoping and filtering 17.1.0
2022-06 SA#96 SP-220563 0039 - A Clarify clause Design patterns for attribute and attribute field

selection
17.1.0

2022-06 SA#96 SP-220563 0041 - A Clarify clause Design patterns for partially updating a resource 17.1.0
2022-06 SA#96 SP-220563 0043 - A Clarify clause Design patterns for patching multiple resources 17.1.0
2022-06 SA#96 SP-220563 0045 - A Add missing clause Large queries 17.1.0
2022-06 SA#96 SP-220563 0047 - A Correct examples in Annex A 17.1.0
2022-09 SA#97e SP-220853 0053 1 A Align examples for DNs and URIs in clause 4.2 with object class

naming conventions
17.2.0

2022-09 SA#97e SP-220853 0055 1 A Clarify concept of NRM root 17.2.0
2022-09 SA#97e SP-220853 0057 1 A Clarify only leaf resources can be created 17.2.0
2022-09 SA#97e SP-220853 0059 1 A Clarify HTTP POST and HTTP PUT response message format 17.2.0
2022-09 SA#97e SP-220853 0061 - A Correct and clarify numerous smaller issues 17.2.0
2022-09 SA#97e SP-220850 0063 - A Clarify use of the JSON Patch test operation 17.2.0
2022-10 SA#97e Correcting CR implementation error in A.1 and formatting in clause

4.2
17.2.1

2022-10 SA#97e SP-221170 0065 1 A Clarify usage of information models 17.3.0
2022-10 SA#97e SP-221170 0067 2 A Clarify format of target URIs 17.3.0
2022-10 SA#97e SP-221170 0069 1 A Clarify media type related aspects 17.3.0
2022-10 SA#97e SP-221170 0071 - A Clarify some aspects of basic design patterns 17.3.0
2022-10 SA#97e SP-221170 0073 - A Clarify construction rules for GET response message body formats 17.3.0
2022-10 SA#97e SP-221170 0075 - A Clarify design patterns for patching resources 17.3.0
2022-10 SA#97e SP-221170 0077 1 A Correct and clarify examples in Annex A 17.3.0
2023-03 SA#99 SP-230198 0079 1 A Clarify URI concept 17.4.0
2023-03 SA#99 SP-230198 0081 - A Correct media type of 3GPP JSON Patch and 3GPP JSON Merge

Patch
17.4.0

2023-03 SA#99 SP-230198 0083 - A Align and clarify definitions for the Accept header 17.4.0
2023-03 SA#99 SP-230198 0085 1 A Clarify an object must exist when adding members with JSON

Patch
17.4.0

2023-03 SA#99 SP-230198 0087 - A Correct objectInstance values in examples 17.4.0
2023-03 SA#99 SP-230198 0089 - A Remove HTTP GET response examples not used in TS 28.532 17.4.0
2023-03 SA#99 SP-230198 0091 - A Add missing JSON schema fragment for the JSON Patch

document
17.4.0

2023-03 SA#99 SP-230198 0093 - A Correct format of MnS versions in examples 17.4.0

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)893GPP TS 32.158 version 18.0.0 Release 18

2023-03 SA#99 SP-230198 0097 - A Clarify the JSON Merge Patch document is a partial resource
representation

17.4.0

2023-03 SA#99 SP-230198 0098 - A Correct attribute value null 17.4.0
2023-03 SA#100 SP-230681 0100 1 A Clarify usage of filter query parameter 17.5.0
2023-03 SA#100 SP-230648 0102 - A Correct JSON schema fragment for JSON Patch documents 17.5.0
2023-03 SA#100 SP-230681 0104 1 A Clarify usage of the attributes container for object selection 17.5.0
2023-03 SA#100 SP-230681 0106 1 A Clarify usage of the attributes container for complete resource

updates
17.5.0

2023-09 SA#101 SP-230942 0108 - A Clarify URI path components need to be percent encoded 17.6.0
2023-09 SA#101 SP-230942 0110 - A Add missing example for large queries 17.6.0
2023-09 SA#101 SP-230942 0112 1 A Clarify an empty result set produced by scoping and filtering is not

an error
17.6.0

2023-09 SA#101 SP-230942 0114 - A Add missing example for data model partitioning 17.6.0
2024-03 SA#103 SP-240168 0128 - B Rel-18 CR 32.158 Add design pattern for error responses 18.0.0
2024-03 SA#103 SP-240168 0129 - B Rel-18 CR 32.158 Add design pattern for conditional data node

selection
18.0.0

2024-03 SA#103 SP-240168 0135 - B Rel-18 CR 32.158 Replace XPath by Jex 18.0.0

ETSI

ETSI TS 132 158 V18.0.0 (2024-05)903GPP TS 32.158 version 18.0.0 Release 18

History

Document history

V18.0.0 May 2024 Publication

	Intellectual Property Rights
	Legal Notice
	Modal verbs terminology
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 General rules
	4.1 Information models and resources
	4.1.1 Information models
	4.1.2 Resources
	4.1.3 Resource archetypes
	4.1.4 Mapping of information models to resources
	4.1.5 Usage of information models

	4.2 Managed object naming and resource identification
	4.2.1 Managed object naming
	4.2.1.0 Distinguished Name (DN)
	4.2.1.1 Global and local namespaces

	4.2.2 Resource identification
	4.2.3 Mapping of DNs to URIs
	4.2.4 Canonical URI

	4.3 Message content formats
	4.3.1 Media types
	4.3.2 Response content format negotiation

	4.4 URI structure
	4.4.1 Introduction
	4.4.2 URI structure for resources representing managed object instances
	4.4.3 URI structure for resources not representing managed object instances
	4.4.4 Resource "../{MnSName}/{MnSVersion}"

	4.5 Response status codes

	5 Basic design patterns
	5.1 Design pattern for creating a resource
	5.1.1 Creating a resource with identifier creation by the MnS Producer
	5.1.2 Creating a resource with identifier creation by the MnS Consumer

	5.2 Design pattern for reading a resource
	5.3 Design pattern for updating a resource
	5.4 Design pattern for deleting a resource
	5.5 Design pattern for subscribe/notify
	5.5.1 Concept
	5.5.2 Subscription creation
	5.5.3 Subscription deletion
	5.5.4 Notification emission
	5.5.5 Subscription retrieval

	6 Advanced design patterns
	6.1 Design pattern for scoping and filtering
	6.1.1 Introduction
	6.1.2 Query parameters for scoping
	6.1.3 Query parameters for filtering
	6.1.4 Construction rules for the response message body

	6.2 Design patterns for attribute and attribute field selection
	6.2.1 Introduction
	6.2.2 Query parameters for attribute and attribute field selection
	6.2.3 Construction rules for the response message body

	6.3 Design pattern for partially updating a resource
	6.3.1 Introduction
	6.3.2 JSON Merge Patch
	6.3.3 JSON Patch

	6.4 Design patterns for patching multiple resources
	6.4.1 Introduction
	6.4.2 3GPP JSON Merge Patch
	6.4.3 3GPP JSON Patch

	6.5 Design pattern for large queries
	6.6 Design pattern for error responses
	6.6.1 Introduction
	6.6.2 HTTP error codes
	6.6.3 Error response body
	6.6.3.1 Overview
	6.6.3.2 Error response format for GET requests
	6.6.3.3 Error response format for PUT, POST, DELETE, JSON Merge Patch and 3GPP JSON Merge Patch requests
	6.6.3.4 Error response format for JSON Patch and 3GPP JSON Patch requests

	6.6.4 The "type" property
	6.6.5 The "reason" property
	6.6.5.1 Overview
	6.6.5.2 Error reasons for GET
	6.6.5.3 Error reasons for attribute manipulations
	6.6.5.3.1 JSON Patch and 3GPP JSON Patch
	6.6.5.3.2 JSON Merge Patch, 3GPP JSON Merge Patch and PUT

	6.6.5.4 Error reasons for object manipulations

	6.6.6 Error reasons for application layer errors
	6.6.7 Security considerations

	6.7 Design pattern for conditional data node selection

	7 Resource representation formats
	7.1 Introduction
	7.2 Top-level object
	7.3 Data objects
	7.4 Data arrays
	7.5 Error objects
	7.6 Resource objects
	7.7 Resource objects carried in data objects and arrays

	8 REST SS specification template
	Annex A (informative): Examples
	A.1 Example data model
	A.2 Retrieval of resources
	A.2.1 Retrieval of a single complete resource with HTTP GET
	A.2.2 Attribute and attribute field selection on a single resource
	A.2.3 Retrieval of multiple complete resources using scoping and filtering
	A.2.4 Large queries

	A.3 Creation of resources
	A.3.1 Creation of a resource with HTTP PUT
	A.3.2 Creation of a resource with HTTP POST
	A.3.3 Creation of multiple resources with 3GPP JSON Merge Patch
	A.3.4 Creation of multiple resources with 3GPP JSON Patch

	A.4 Deletion of resources
	A.4.1 Deletion of a resource with HTTP DELETE
	A.4.2 Deletion of multiple resources with HTTP DELETE
	A.4.3 Deletion of multiple resources with 3GPP JSON Merge Patch
	A.4.4 Deletion of multiple resources with 3GPP JSON Patch

	A.5 Complete update of a resource
	A.6 Partial update of a resource
	A.6.1 Partial update of a resource with JSON Merge Patch
	A.6.2 Partial update of a resource with 3GPP JSON Merge Patch
	A.6.3 Partial update of a resource with JSON Patch
	A.6.4 Partial update of a resource with 3GPP JSON Patch

	A.7 Manipulating multiple resources
	A.7.1 Manipulating multiple resources with 3GPP JSON Merge Patch

	A.8 Partitioning a data model
	A.7.2 Manipulating multiple resources with 3GPP JSON PATCH

	Annex B (informative): Change history
	History

